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Preface

Since 1979, when it was first established by the Technical Committee on Reli-
ability, Safety and Security of the European Workshop on Industrial Computer
Systems (EWICS TC7), the SAFECOMP Conference series has regularly and
continuously contributed to improving the state of the art of highly depend-
able computer-based systems, since then increasingly applied to safety-relevant
industrial domains.

In this expanding technical field SAFECOMP offers a platform for knowledge
and technology transfer between academia, industry, research and licensing insti-
tutions, providing ample opportunities for exchanging insights, experiences and
trends in the areas of safety, reliability and security regarding critical computer
applications. In accordance with the growing spread of critical infrastructures
involving both safety and security threats, this year’s SAFECOMP program
included a considerable number of contributions addressing technical problems
and engineering solutions across the border between safety-related and security-
related concerns.

The reaction to our call for papers was particularly gratifying and impressive,
including 136 full papers submitted by authors representing 29 countries from
Europe, Asia, North and South America as well as Australia. The selection of 33
full papers and 16 short papers for presentation and publication was a challenging
task requiring a huge amount of reviewing and organizational effort. In view of
the particularly high number of articles submitted, obvious practical constraints
led – to our regret – to the rejection of a considerable amount of high-quality
work. To all authors, invited speakers, members of the International Program
Committee and external reviewers go our heartfelt thanks!

The local organization of SAFECOMP 2007, hosted in Nuremberg, is also
gratefully acknowledged. The intensive preparatory activities demanded year-
long dedication from the members of the Department of Software Engineer-
ing at the University of Erlangen-Nuremberg, which co-organized the event in
co-operation with the German Computer Society (Gesellschaft für Informatik).
Particular thanks are due to all colleagues and friends from the Organizing Com-
mittee, whose support we regard as crucial for the success of this conference.

We are confident that – when reading the present volume of the Lecture Notes
in Computer Science – you will find its contents interesting enough to consider
joining the SAFECOMP community. In the name of EWICS TC7 and of the
future organizers we welcome you and invite you to attend future SAFECOMP
conferences – among them SAFECOMP 2008 in Newcastle upon Tyne (UK) –
and to contribute actively to their technical program.

July 2007 Francesca Saglietti
Norbert Oster
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Martin Gilje Jaatun, Åsmund Ahlmann Nyre, and Jan Tore Sørensen

How to Secure Bluetooth-Based Pico Networks . . . . . . . . . . . . . . . . . . . . . . 209
Dennis K. Nilsson, Phillip A. Porras, and Erland Jonsson

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Table of Contents XIII

Learning from Your Elders: A Shortcut to Information Security
Management Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Finn Olav Sveen, Jose Manuel Torres, and Jose Maria Sarriegi

Intrusion Attack Tactics for the Model Checking of e-Commerce
Security Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Stylianos Basagiannis, Panagiotis Katsaros, and Andrew Pombortsis

Poster Session 2

Safety Process Improvement with POSE and Alloy . . . . . . . . . . . . . . . . . . . 252
Derek Mannering, Jon G. Hall, and Lucia Rapanotti

Defense-in-Depth and Diverse Qualification of Safety-Critical
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Horst Miedl, Jang-Soo Lee, Arndt Lindner, Ernst Hoffman,
Josef Martz, Young-Jun Lee, Jong-Gyun Choi,
Jang-Yeol Kim, Kyoung-Ho Cha, Se-Woo Cheon, Cheol-Kwon Lee,
Gee-Yong Park, and Kee-Choon Kwon

Experimental Evaluation of the DECOS Fault-Tolerant Communication
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Jonny Vinter, Henrik Eriksson, Astrit Ademaj,
Bernhard Leiner, and Martin Schlager

Achieving Highly Reliable Embedded Software: An Empirical
Evaluation of Different Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Falk Salewski and Stefan Kowalewski

Modeling, Analysis and Testing of Safety Issues - An Event-Based
Approach and Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Fevzi Belli, Axel Hollmann, and Nimal Nissanke

A Concept for a Safe Realization of a State Machine in Embedded
Automotive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Jürgen Mottok, Frank Schiller, Thomas Völkl, and Thomas Zeitler

Verification and Validation

Safety Demonstration and Software Development . . . . . . . . . . . . . . . . . . . . 289
Jean-Claude Laprie

Improving Test Coverage for UML State Machines Using Transition
Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Mario Friske and Bernd-Holger Schlingloff

Verification of Distributed Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Bruno Langenstein, Andreas Nonnengart, Georg Rock, and
Werner Stephan

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



XIV Table of Contents

Platform Reliability

Analysis of Combinations of CRC in Industrial Communication . . . . . . . . 329
Tina Mattes, Jörg Pfahler, Frank Schiller, and Thomas Honold

A Comparison of Partitioning Operating Systems for Integrated
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Bernhard Leiner, Martin Schlager, Roman Obermaisser, and
Bernhard Huber

Software Encoded Processing: Building Dependable Systems with
Commodity Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Ute Wappler and Christof Fetzer

Reliability Evaluation

Reliability Modeling for the Advanced Electric Power Grid . . . . . . . . . . . . 370
Ayman Z. Faza, Sahra Sedigh, and Bruce M. McMillin

Case Study on Bayesian Reliability Estimation of Software Design of
Motor Protection Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Atte Helminen

A Reliability Evaluation of a Group Membership Protocol . . . . . . . . . . . . . 397
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Establishing Evidence for Safety Cases

in Automotive Systems – A Case Study

Willem Ridderhof1, Hans-Gerhard Gross2, and Heiko Doerr3

1 ISPS Medical Software, Rotterdamseweg 145, 2628 AL Delft
willem.ridderhof@isps-medical-software.nl

2 Embedded Software Laboratory, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

h.g.gross@tudelft.nl
3 CARMEQ GmbH, Carnotstr. 4, 10587 Berlin, Germany

heiko.doerr@carmeq.com

Abstract. The upcoming safety standard ISO/WD 26262 that has been
derived from the more general IEC 61508 and adapted for the automo-
tive industry, introduces the concept of a safety case, a scheme that has
already been successfully applied in other sectors of industry such as
nuclear, defense, aerospace, and railway. A safety case communicates a
clear, comprehensive and defensible argument that a system is accept-
ably safe in its operating context. Although, the standard prescribes that
there should be a safety argument, it does not establish detailed guide-
lines on how such an argument should be organized and implemented,
or which artifacts should be provided.

In this paper, we introduce a methodology and a tool chain for es-
tablishing a safety argument, plus the evidence to prove the argument,
as a concrete reference realization of the ISO/WD 26262 for automotive
systems. We use the Goal-Structuring-Notation to decompose and re-
fine safety claims of an emergency braking system (EBS) for trucks into
sub-claims until they can be proven by evidence. The evidence comes
from tracing the safety requirements of the system into their respective
development artifacts in which they are realized.

1 Introduction

Safety critical systems have to fulfill safety requirements in addition to func-
tional requirements. Safety requirements describe the characteristics that a sys-
tem must have in order to be safe [12]. This involves the identification of all
hazards that can take place, and that may harm people or the environment.
Safety-related issues are often captured in standards describing products and
processes to be considered throughout the life-cycle of a safety critical system.
The upcoming safety standard ISO/WD 26262 [2] is an implementation of the
more general IEC 61508 standard that addresses safety issues in the automo-
tive industry. The objective of the automotive standard is to take the specific
constraints of automotive embedded systems and their development processes

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 W. Ridderhof, H.-G. Gross, and H. Doerr

into account. Domain-dependent challenges are, for instance, the task distri-
bution of OEMs and suppliers, the degree of iterative development, and the
high importance of the application of the embedded system to the target ve-
hicle. The short development cycles and large number of produced units are
further specifics which disallow the straight-forward application of safety stan-
dards from other domains of transportation. The current working draft is divided
into a number of volumes considering e.g. determination of safety integrity levels,
and requirements to systems development, software development, and support-
ing processes. Besides many other requirements the standard prescribes that a
safety case should be created for every system that has safety-related features.
It states that part of the system documentation should provide evidence for the
fulfillment of safety requirements, thus guaranteeing functional safety. However,
the standard does not provide any details about which artifacts should be pro-
duced in order to prove functional safety, nor does it say how such a proof may
be devised.

In this paper, we develop a generic safety case that may act as a reference
realization for the automotive industry. In section 2, we describe how a safety case
may be constructed based on the Goal-Structuring-Notation (GSN). Section 3
shows that constructing a safety argument is, to a large extent, a traceability
effort and dealing with the construction of trace tables. Section 4 presents the
case study, a safety critical system, for which we have devised part of a safety
argument. Here, we concentrate on the traceability part. Section 5 summarizes
and concludes the paper.

2 The Safety Case

Part of the certification process in the automotive domain is the assessment of
a system through an inspection agency. To convince inspectors that a system
is safe, a safety case should be created. The safety case communicates a clear,
comprehensive and defensible argument that a system is acceptably safe in its
operating context [7]. The argument should make clear that it is reasonable to
assume the system can be operated safely. It is typically based on engineering
judgment rather than strict formal logic [12], and it provides evidence that the
risks (hazards) associated with the operation of the system have been considered
carefully, and that steps have been taken to deal with the hazards appropriately.

The safety argument (SA) must identify all matters significant to the safety of
the system and demonstrate how these issues have been addressed. A convenient
way to define a safety argument is through the Goal-Structuring-Notation de-
vised by Kelly [7] which is based on earlier work by Toulmin on the construction
of arguments [13]. An argument consists of claims whose truth should be
proven. The facts used to prove the claims are referred to as data, and the
justification for why data prove a claim is described by warrants. If it is possible
to dispute a warrant, backing can be used to show why the warrant is valid.
The structure of this argument is depicted in Fig. 1 as far as it is relevant for
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Data

since

Warrant

based on

Backing

Claim

Fig. 1. Structure of Toulmin’s Argument [13]

Fig. 2. Example GSN tree, decomposition of the goal “the product is safe”

the safety case. Further concepts being introduced by Toulmin like qualifiers or
rebuttals do not contribute to the construction of a safety case. Qualifiers are
ordinary language terms like “few”, “rarely”, or “some” which are used to express
the likelihood of a warrant or backing. For safety analysis, formal methods are
available to capture this aspect of a safety analysis. Rebuttals deal with the
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4 W. Ridderhof, H.-G. Gross, and H. Doerr

potential counter-arguments arising in an ongoing discussion. However, a safety
case is the result of an intense discussion during which all counter-arguments
must have been evaluated and resolved such that a safety case can be accepted.
So, rebuttals are not relevant for a safety case.

The main elements of the GSN are goals and solutions. Goals correspond to
Toulmin’s claims whereas solutions relate to Toulmin’s data, also termed evi-
dence. For constructing a safety case, we have to determine which evidence is
required for a particular safety argument, and why the evidence supports the
claim. According to the GSN, the safety case starts with a top-level claim, or a
goal, such as “the system is safe” or “safety requirements have been realized.”
The top-level claim is then decomposed into sub-ordinate claims down to a level
that a sub-claim can be proven by evidence. The concepts of the GSN are dis-
played in the example in Fig. 2. Claims and sub-claims, or goals, are represented
as rectangular boxes and evidence, or solutions, as circles. A strategy-node, rep-
resented as rhomboid, contains the explanation why a goal has been decomposed.
The argument can be constructed by going through the following steps [3,7]:

1. Identification of the goals to be supported.
2. Definition of the basis on which the goals are stated.
3. Identification of the strategy to support the goals.
4. Definition of the basis on which the strategies are stated.
5. Elaboration of the strategy including the identification of new goals and

starting from step 1, or moving to step 6.
6. Identification of a basic solution that can be proven.

It is difficult to propose a standard safety case structure that may be valid for
most systems. However, some of the argumentation will be the same for many
systems, such as “all safety requirements have been realized,” or the like. Such
argumentation structures, or so-called safety case patterns [6,15], may be reused
in several safety cases for different systems. By using such patterns, safety cases
can be devised much faster. Similarly, safety case anti-pattern can be used to
express weak and flawed safety arguments [7,14].

A particular GSN decomposition proposed by the EU project EASIS [3] orga-
nizes the argumentation into a product branch and a process branch, claiming
that “a system is safe” if “the process is safe” and “the product is safe.” The
safety of the process can be assured through application of certified development
standards, such as the IEC 61508 [4] or the V-model [11]. Here, questions should
be asked about how the product is developed, such as “did we perform hazard
analysis?”, “do we have a hazard checklist?”, “did we perform a preliminary
hazard identification?”, “did we implement the results of the preliminary hazard
identification?”, and so on [3].

On the product side, we can decompose the claim “the product is safe” into the
sub-goal “the safety requirements are traceable” which turns the satisfaction of
our safety case into a traceability problem. We can argue, that if all safety related
aspects of our system can be traced to their origin and to their realization, the
system is safe, given the process is safe (proof of the process branch). Traceability
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is a prerequisite for assessment and validation of the safety goals, which we refer
to as “proof of safety requirements.” We can then decompose the traceability
goal further into “proof of safety requirements”, “origin of safety requirements
documented”, and “safety requirements realized.” This extended organization of
the safety case is depicted in Fig. 2 and, through its general nature, it can be
used as a pattern for all systems.

3 Traceability of Safety Requirements

In the previous section, we argued that part of the proof of a safety case can be
achieved through tracing all safety requirements to the respective development
documents. This is fully in line with the ISO/WD 26262 [2] since it demands that
“the origin, realization and proof for a requirement are clearly described in the
documentation” of a system. A requirement is a condition or an ability that the
system should fulfill. The origin of a requirement is a rationale why this require-
ment has been elicited for the system. The realization demonstrates how/where
the requirement is implemented in the final system. A proof for a requirement
means that it should be demonstrated that the requirement has an origin and
that it is implemented, in other words, that the requirement is traceable across
all development documents in both directions, forwards and backwards. The
documents comprise the hazards possible, the safety goals, the safety require-
ments, design elements, and implementation elements, plus associated review
documents.

As shown in Fig. 2, the “product is safe”-branch is decomposed into a trace-
ability sub-goal that is split into various traceability claims, i.e., “origin of safety
requirements documented”, “safety requirements realized”, and “proof of safety
requirements.” This last goal is decomposed into two sub-goals, “safety require-
ments validated” and “safety requirements satisfied” which can be traced to the
respective documents that deal with those issues.

The origin of a safety requirement can be demonstrated by backward trace-
ability. Safety requirements are derived from hazards and safety goals. Every
safety requirement should be linked to at least one safety goal, expressed through
∀srSR −→ ∃sgSG, and every safety goal should be linked to a hazard, expressed
through ∀sgSG −→ ∃hH . But also forward traceability is important, so that
for every hazard, there is a safety goal (∀hH −→ ∃sgSG), and for every safety
goal, there should be an associated safety requirement (∀sgSG −→ ∃srSR).
Consequently, we can extend our safety case as depicted in Fig. 3.

For the lowest-level goals, we can then come up with solutions in the form of
trace tables. These are now product-specific. Once all trace relations have been
established in a development project we can claim that the system is acceptably
safe with respect to those safety goals, e.g. with respect to “origin of safety
requirements is documented.” We have to do this for all safety goals defined,
and we demonstrate how this may be done for a specific case using specific tools
in the next section.
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Fig. 3. Further decomposition of the goal “origin of safety requirement is documented”

4 Case Study

We have devised a partial safety case for an emergency brake system (EBS). This
innovative assistance functionality becomes part of modern vehicles and lorries.
DaimlerChrysler, for instance, markets that type of application as Active Brake
Assist. An emergency brake system warns the driver of a likely crash, and, if
the driver does not react upon the warning, initiates and emergency braking. It
is a distributed system incorporating the braking system, a distance sensor, the
hifi-system, a control system, as well as the driver’s interface. The individual
subsystems are usually interconnected through a vehicle’s CAN bus.

In order to devise the traceability part of the safety case, first, we have to take
a look at the development processes and tools deployed. The safety requirements
(SR) for this system are coming from a preliminary hazard analysis (PHA), or
from a hazards and operability analysis (HAZOP) [10]. Once all the potential
hazards have been identified, they are associated with safety goals (SG). Safety
goals are comparable to top level functional requirements. The requirements
are decomposed into sub-system requirements, and eventually, into component
requirements. For the execution of the safety analysis the system boundaries
have to be determined. This design decision is typically a compromise between
controllability and complexity. An emergency brake system is a safety application
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Fig. 4. Classes of development artifacts and their (forward) traceability relations that
we implemented for the EBS case study

and an add-on to an already available braking system. The system boundaries
of that embedded system therefore are mostly established by electronic signals.
Potential hazards due to brake wear for instances will have to be signaled by the
brake and these signals must be taken into account by the safety analysis.

All requirements are managed within Telelogic’s DOORS, a widely used re-
quirements management tool (http://www.telelogic.com). They are associated
with different levels such as safety requirement, safety concept, system require-
ment, component specification, etc, and the tool maintains also traces between
those levels. These traces are shown in Fig. 4.

Apart from DOORS for the requirements management, various other tools
should be used throughout the other development phases in order to comply to
standard’s requirements. A typical tool chain could consist of:

– Matlab’s Simulink and Stateflow (http://www.matlab.com) are used for sys-
tem and component design,

– DSpace’s TargetLink (http://www.dspace.com) is used for the implementa-
tion and automatic code generation out of the Matlab models.

– Tessy (by Hitex) is used for automated unit testing,
– the Classification Tree Editor (CTE by Hitex) is used to support input

domain-based testing,
– Time Partition Testing is employed for generating test cases with continuous

input data streams [8,9],
– DSpace’s MTest generates test cases automatically based on the Simulink

and TargetLink models (http://www.dspace.com),
– QA-C/Misra can be used to analyze the resulting C-code

(http://www.qasystems.de),
– PolySpace is a tool that can detect run-time errors during compile time

(http://www.polyspace.de), and
– Mercury’s Quality Center is a global suite of tools for ensuring software

quality (http://www.mercury.com).
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Fig. 6. Information model for the requirements engineering phase

4.1 ToolNet

The tools in the previous list are dealing with different types of work products,
and the trace tables that we have to devise for the safety case have to refer to the
artifacts stored in these various tools. In other words, in order to realize a full
tracing between the different work products, we have to gain access to the tools’
various data representations. This is done through another tool, called ToolNet
[1] which enables us to create traceability links between various development ar-
tifacts independent from the type of tool through which they have been created.
ToolNet is based on a bus-architecture, the so-called information backbone that
connects each tool via an adapter [1] (Fig. 5). Every single development object
recognized by ToolNet is assigned a unique ID (object reference) which is based
on its data source (a tool or part of a tool). The development objects must be
defined unambiguously, according to a product-specific information model [5]. It
describes the available and traceable development objects such as hazard, safety
concept, safety requirement, etc. An example information model for our project
is displayed in Fig. 6. The development object models and the ToolNet structure
permit the tools to interact with each other through services implemented in
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Fig. 7. Product-specific safety case for the emergency braking control system

Fig. 8. Evaluation of an OCL constraint in ToolNet

their respective adapters. A user can select a specific development object from
one tool, e.g., a requirement within DOORS, and associate it with another
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Fig. 9. ToolNet trace table highlighting a trace between a safety requirement and safety
concept

development object, e.g., from Matlab/Simulink, and eventually link that to an
implementation and a number of test cases. In that way, engineers can build up
a network of associations between the many different development objects, and
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thus, construct a trace table for an entire project. The tracing data is stored
within ToolNet.

4.2 Traceability of the EBS-System

When we created the sample safety case for the emergency braking system, we
could, to a large extent, reuse the structure of our generic safety case described
in Sect. 2. The only difference is that we had to apply our claim “safety require-
ments are traceable” to all subsystems of the EBS, the hifi-system, the breaking
system, the distance sensor and the control system. We could, therefore, extend
the safety case displayed in Fig. 2 with a corresponding structure for each of the
four sub-systems, leading to four separate sub-goals of the super-ordinate goal
“the system requirements are traceable.” This extended product-specific safety
case is displayed in Fig. 7. We show the extended safety case for the control
system only. Figure 4 shows the forward traceability links between the various
types of artifacts that we implemented for the EBS system. Each artifact within
the various tools had to be assigned to one of these classes. We implemented
that through adding a type attribute to the artifacts. For future projects, we
propose to create an individual DOORS module for each of the artifact types in
order to facilitate their management. After we had established all traceability
links, the final step was the evaluation of our coverage criterion, that is, can
all development artifacts be linked to artifacts in the respective other classes of
artifacts, and can they be linked to an implementation? In other words, we had
to verify the relations stated in our (forward) traceability claims (Figure 7).

4.3 Verification of the Traceability Links

The aim of a safety argument, following the goal structuring notation, is to
associate goals with solutions. A goal is a claim corresponding to a required
safety property of a system, and a solution is evidence supporting this claim.
By associating every claim with a solution, we demonstrate that a system fulfills
its safety requirements. Initially, we will have no associations stored in the trace
tables, but, eventually, throughout the system development, the trace tables will
be filled. ToolNet can be used to depict the information contained in the trace
tables. An example is shown in Fig. 9.

Assessing to which extent the claims are proven by evidence in a large system
such as the EBS control system, can be daunting. Identifying missing links man-
ually is very tedious and time consuming, and the task must be repeated every
time the system requirements are amended. This is why we are currently devis-
ing an automatic solution generator that can compile the various trace tables
based on the development data found in ToolNet, and then make a traceability
analysis. It works based on evaluating OCL constraints expressing the traceabil-
ity relations. The outcome of such an analysis is twofold. First, we can highlight
missing links in the desktop view of ToolNet for the developers (displayed in
Fig. 8), and, second, we can generate reports about the safety status of an entire
system, i.e., for management or, eventually, the certification authority.
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5 Summary, Conclusions and Future Work

The upcoming safety standard ISO/WD 26262 for the automotive industry, in-
troduces the concept of a safety case, which communicates a clear, comprehensive
and defensible argument that a system is acceptably safe. In the future, it will
be required by safety inspectors in order to assess how and to which extent all
safety-related issues have been addressed and treated by the vendor of a safety-
critical system in the automotive domain.

In this paper, we demonstrated how a safety case can be constructed based on
the goal structuring notation that proposes to create a defensible argument out of
goals that are decomposed recursively into subgoals until a subgoal can be proven
by evidence. The evidence is provided by documents addressing the safety issues.
The standard prescribes that part of the safety case should demonstrate that the
origin, realization and proof for every requirement is clearly documented. In other
words, all requirements should be traceable to their respective implementations
(forward and backward).

We developed a generic safety case that could be applied to emergency braking
systems like the Active Brake Assist for lorries of the brand Mercedes-Benz.
This safety case may act as a template, or a reference realization for other
systems in the automotive domain. The greatest challenge was to incorporate
the traceability features of our safety case into the existing development process
that employs a number of different tools. We solved that through adding trace
information to ToolNet, a framework that integrates many different software
engineering tools. Within ToolNet, we can now navigate along the traceability
paths and assess which safety requirements have been treated sufficiently.

Current work is now focused on the development of an automatic solution
generator that will compile the trace tables required for the safety argument
automatically. In the future, this generator can be used to provide the current
safety status of a project on the punch of a button, i.e., for project management,
display a colored safety argument, with green and red indicating the safety status
of system parts, and, eventually, compile the safety reports for the inspection
agency. Further experience will also have to show whether the purely positivistic
approach presented here must be extended to deal with context information
and the explication of arguments. In particular the contribution of traceability
information to context and arguments must be studied.

References
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Abstract. In virtually all safety-critical industries the operators of systems have 
to demonstrate a systematic and thorough consideration of safety.  This is 
increasingly being done by demonstrating that certain goals have been 
achieved, rather than by simply following prescriptive standards.  Such goal-
based safety cases could be a valuable tool for reasoning about safety in 
healthcare organisations, such as hospitals.  System-wide safety cases are very 
complex, and a reasonable approach is to break down the safety argument into 
sub-system safety cases.  In this paper we outline the development of a goal-
based top-level argument for demonstrating the safety of a particular class of 
medical devices (medical beds).  We review relevant standards both from 
healthcare and from other industries, and illustrate how these can inform the 
development of an appropriate safety argument.  Finally, we discuss 
opportunities and challenges for the development and use of goal-based safety 
cases in healthcare. 

1   Introduction 

In most safety-related industries the operators of systems have to demonstrate a 
systematic and thorough consideration of safety.  In healthcare there is currently a 
differentiation between manufacturers of medical devices on the one hand and 
healthcare providers as users or consumers of such devices on the other hand.  The 
current regulatory practice implies that the device manufacturers are responsible for 
determining acceptable levels of risk and for ensuring that the device is adequately 
safe for use in a specific context.  However, the manufacturer usually has limited 
control over how devices are used in the operational context, and whether critical 
assumptions about aspects, such as training and maintenance are fulfilled.  In 
addition, the healthcare service provider often has to integrate a number of different 
devices within their environment.  The safety of the resulting system can only be 
assured if sufficient information from the manufacturer is provided.  
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In this paper we show how the approach of a goal-based safety case can be used to 
analyse the safety of a medical device throughout its lifecycle, and to document the 
respective evidence used.  Such an approach aims to overcome the limitations of 
current practice that results from the two disjoint regulatory contexts.  It is also a first 
step towards investigating the feasibility of more complex system-wide safety cases.  

Section 2 provides an argument for goal-based safety cases.  In section 3, the 
regulatory context in the medical device area is described (using the UK as an 
example).  The related standards and their dependence are presented in section 4.  To 
explain the problem more closely, medical beds are used as an example for a medical 
device, and the outline of a safety case for this example is developed in section 5.  
Finally, section 6 concludes with a discussion of opportunities and challenges for the 
development and use of goal-based safety cases in healthcare. 

2   Goal-Based Safety Cases 

Argumentation is an important part of the development of safety critical systems.  It 
provides information about why a system can be assumed to be sufficiently safe, and 
it may convey a measure of confidence.  In many safety-critical industries such 
information is documented in a safety case.  The purpose of a safety case can be 
defined as communicating a “clear, comprehensive and defensible argument that a 
system is acceptably safe to operate in a particular context” [1].  This definition 
reflects a goal-based approach, where the justification is constructed via a set of 
claims about the system, its behaviour, the process through which the system was 
produced, and about the safety case itself (i.e. the quality and the trustworthiness of 
the argument and the evidence produced) [2].  To support these claims specific 
evidence is produced.  An essential component of goal-based safety cases is the 
argument that explains how evidence supports a particular claim.  The argument 
makes explicit in the forms of rules and inferences the relationship between claims 
and evidence (see [3] for an extensive discussion of argument structure).   

The use of goal-based arguments is now increasingly being reflected in standards, 
such as the UK Defence Standard 00-56 in its latest revision [4, 5].  Goal-based 
standards tell operators of systems what they need to achieve, rather than what kind of 
specific safety requirements they have to comply with.  As technologies are evolving 
increasingly rapid, such an approach offers greater flexibility with respect to the use 
of novel beneficial technologies for which no corresponding assessment method has 
been defined in the standard, or practices that supersede outdated and costly 
development and assessment techniques [5].   

Many standards also mandate incremental or evolutionary approaches to safety 
case development [6], such as the above mentioned UK Def Stan 00-56.  Such an 
incremental approach can include multiple issues of, for example, Preliminary Safety 
Case, Interim Safety Case, and Operational Safety Case.  At the Preliminary Safety 
Case stage the safety argument defines and describes the principal safety objectives, 
the general approach to arguing safety, and the types of evidence anticipated [1]. As 
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the design progresses and more detailed information becomes available, the 
arguments are subsequently extended and refined.        

Narrative accounts of safety justifications often make it difficult for the reader or 
assessor to follow the logical argument that relates evidence to the claim it is intended 
to support.  In addition, multiple cross-references make such documents generally 
hard to read and difficult to communicate to stakeholders of different backgrounds.  
Graphical argument notations, such as Goal Structuring Notation (GSN) [7] or 
ASCAD [8] explicitly represent the key elements of any safety argument, and their 
relationships.  Tools have been developed that facilitate the construction of such 
graphical representations (SAM, ASCE) [9, 10].  With these tools the construction 
and the communication of safety cases is greatly facilitated [11].        

3   The Regulatory Context 

In many European healthcare systems there is a differentiation between manufacturers 
of medical devices on the one hand, and healthcare providers as users or consumers of 
such devices on the other hand.  In general, manufacturers have to provide evidence 
that their devices are tolerably safe for a particular use in a specific environment.  
Healthcare providers, on the other hand, are audited to ensure that the care they 
provide meets national standards.  A part of this is the requirement to utilise only 
previously certified medical devices.  In this section we illustrate the certification 
process of medical devices and the audit of healthcare providers using the UK 
environment as an example [12]. 

The UK Medical Devices Regulations 2002 (MDR 2002) [13] implement a number 
of European directives relevant to the certification of medical devices.  The definition 
of what constitutes a medical device is broad and comprises devices as diverse as 
radiation therapy machines, syringes and wheelchairs.  The Medicines and Healthcare 
Products Regulatory Agency (MHRA) acts as the Competent Authority overseeing the 
certification of medical devices.  Notified Bodies of experts provide evaluation of high 
and medium risk medical devices undergoing certification to the Competent 
Authority.  The Medical Devices Directive [14] specifies essential requirements that 
have to be met by any device to be marketed in the EU.  It provides classification 
rules based on the risk that medical devices pose, as well as conformity routes that 
specify different ways of manufacturer compliance with the essential requirements 
based on the class of the medical device under consideration.  For most medical 
devices compliance with the requirements is demonstrated not through an explicit 
argument, but rather through either a self-certification process (lowest risk class) or 
through the compilation of specified evidence, including general product description, 
results of the risk analysis, and testing and inspection reports.   

Apart from issuing instructions for use, the manufacturer of common medical 
devices has little influence on the way the devices are actually used in practice.  More 
importantly, the manufacturer does not have detailed information about the specific 
environment and the processes within which the device will be operated within a  
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particular healthcare provider's setting.  In complex systems this is a serious cause for 
concern, as in this way the possible interactions between system components and 
interactions with the environment as well as the system’s particular history will not 
have been accounted for.  It is reasonable, therefore, to expect healthcare providers to 
demonstrate that the services they are providing are acceptably safe.  Such a 
demonstration should make use of data supplied by the manufacturers. 

At present, healthcare providers are audited through a process that involves a 
number of diverse actors and agencies.  The annual review of, for example, NHS 
Trusts is undertaken by the Healthcare Commission.  The aim of this review is to 
establish whether Trusts comply with standards set out by the Department of Health 
[15].  These standards include aspects of safety, but are generally broader focussing 
also on issues such as financial health.  During the annual review it is assessed 
whether Trusts have basic mechanisms in place, such as risk management and 
incident reporting, and whether there is evidence of continuous progress, e.g. learning 
from incidents.  The data is collected throughout the year and includes national data 
about Trust activities, information from local organisations, documentation provided 
by the Trust, meetings with patient groups, as well as data from brief site visits 
conducted by assessors.  The focus is on collecting indicators of (in the case of safety) 
safe practices, and accordingly the recommendations are targeted at specific issues, 
such as the fact that patients may not receive appropriate levels of nutrition, or that 
lessons learned from incidents are not shared among directorates.   

In conclusion, therefore, within the UK regulatory context, both manufacturers of 
medical devices and healthcare service providers are regulated and are required to 
provide some kind of evidence that their devices and the services they provide are 
acceptably safe.  However, in most cases there is no formal argument, and the two 
regulatory contexts (certification and audit) show little integration.  This implies that 
assumptions and dependencies may not be documented properly, that interactions and 
unintended consequences of changes may go unnoticed, and that there are no formal 
notions of issues such as confidence in the evidence or diverse evidence to mitigate 
possible uncertainty (see e.g. [16] for an attempt of a corresponding formalism).   

4   Relevant Standards 

Safety of medical devices is regulated in about a thousand standards.  In Europe, over 
two hundred of these are harmonised and provide a technical interpretation of the 
essential requirements of the MDD [14].  The main standard for electrical medical 
systems is the IEC 60601 series, which is now well underway in its 3rd edition 
revision process that started in 1995.  The IEC 60601-1 series consists of Part 1: 
general requirements for basic safety and essential performance [17], and a number  
of collateral standards IEC 60601-1-XY on EMC, radiation, usability, alarm systems, 
environment, and physiologic closed-loop controllers.  In addition, a particular 
standards series IEC 60601-2-YZ addresses specific requirements for particular 
systems, e.g. anaesthetic systems (60601-2-13), ECG monitoring equipment  
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(60601-2-27), ultrasonic equipment (60601-2-37) and screening thermographs 
(60601-2-56).  Since 2005, the 3rd edition includes an update of all “tried and true” 
requirements of the 2nd edition and introduction of solutions now possible due to the 
availability of new technology.  It also formalises the introduction of “Risk 
Management” by integration of standard ISO 14971 [18], see below, in order to make 
the standard less dependent on rapid growth in technology, and because there is more 
than “tried and true” requirements listed in the standard.  Thus, it can be stated that 
medical electrical equipment shall remain single fault safe or the risk shall remain 
acceptable. 

ISO 14971, entitled Application of risk management to medical devices, is now in 
its 2nd edition.  This industry standard requires that the manufacturer shall establish, 
document and maintain throughout the life-cycle a process for identifying hazards 
associated with a medical device, estimating and evaluating the associated risks, 
controlling these risks, and monitoring the effectiveness of the controls.  The 
manufacturer needs to demonstrate that the residual risk of using the medical system 
is acceptable.  This is assumed when compliance to the requirements specified in IEC 
60601-1 is demonstrated, but the bottom line is that the acceptability of a risk is 
determined by the manufacturer’s policy for risk acceptability.  Compliance to the 
performance of the risk management process is done by inspection of the risk 
management file (RMF).  The RMF is the set of records produced by the risk 
management process, and remains the manufacturer’s property that is not available to 
users.  

Programmable Electrical Medical Systems (PEMS) are addressed in IEC 60601-1 
clause 14 and regarding software elaborated in IEC 62304: Medical device software - 
Software life cycle processes [19].  Note that “it is recognized that the manufacturer 
might not be able to follow all the processes identified in clause 14 for each 
constituent component of the PEMS, such as off-the-shelf (OTS) software, 
subsystems of non-medical origin, and legacy devices.  In this case, the manufacturer 
should take special account of the need for additional risk control measures.”  

Safety-critical human factors requirements are addressed in the standard IEC 
62366  - Medical devices - Application of usability engineering to medical devices 
[20].  It states that “the manufacturer shall establish, document and maintain a 
usability engineering process to provide safety for the patient, operator and others 
related to usability of the human interface.  The process shall address operator 
interactions with the medical device according to the accompanying documents, 
including, but not limited to transport, storage, installation, operation, maintenance, 
and disposal.” 

Other mainly technical standards exist for laboratory equipment, image processing 
systems and information networks, but these are not further elaborated in this paper. 
The standards of safety of medical systems have gone through a major revision 
process since 1995.  This 3rd edition process will end with the implementation of the 
last collateral standard by about 2009. 

The whole set of standards on safety of medical systems puts the manufacturer in 
the position of the decision maker of risk acceptance.  The underlying assumption is  
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that a) the medical system will be used by “laymen”, and b) the manufacturer defines 
normal use.  All risk data about hazards, associated risks and acceptance criteria 
regarding a particular medical system has been elicited with adequate resources using 
inside information, and is recorded in the RMF.  However, the professional user in a 
health care institution is left empty handed when they combine two medical systems 
in one configuration. [21, 22].  It is here that safety cases might help relevant parties 
to improve the understanding of risk assessment and control of operational risks 
related to the use of medical systems. 

5   Development of the Top Level Argument for Medical Beds 

5.1   Medical Beds 

A medical bed is possibly the most stubborn medical device with respect to risk 
identification, control and management.  Based on risk minimisation, an optimal bed 
may in many ways be bad for the patient as well as for the person providing care, 
because the bed will be higher than preferable for the patient, and lower than 
necessary for appropriate use of lifting and handling techniques.  The patient is at risk 
due to gravitational forces (height) and opportunities for entanglement.  Falling out of 
bed or getting strangled between bedrails are real harm scenarios.  Occupational 
health and safety is relevant to nursing staff in particular: staff is at risk because of 
incorrect handling of the patient, wrong height of the bed, absence or wrong use of 
lifting aids, etc., potentially leading to serious back injury and disability to work. 
Hazards associated with medical beds include e.g. electricity, mechanical, 
electromagnetic interference and software failures in the bed motion control system. 
Mechanical hazards include e.g. entrapment, moving beds bumping into walls or 
other objects, bed instability, a collapsing component, and falls. 

The medical bed (see Fig. 1) is defined in the particular standard IEC 60601-2-52 
as a “device for which the intended use is sleeping or resting that contains a mattress  
 

 

Fig. 1. Schema of a medical bed (from IEC 60601-2-52) 
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support platform.  The device can assist in diagnosis, monitoring, prevention, 
treatment, alleviation of disease or compensation for an injury or handicap.  A bed lift 
or a detachable mattress support platform in combination with a compatible non-
medical bed as specified by the manufacturer is also considered a medical bed.  
Excluded are devices for which the intended use is examination or transportation 
under medical supervision (e.g. stretcher, examination table).” [23]  Medical beds are 
meant for patients being defined as “person undergoing a medical, surgical or dental 
procedure, or disabled person”. Maintenance of medical beds includes cleaning before 
reuse for another patient.  

The standard identifies five distinct application environments, see IEC 60601-2-52: 

1. Intensive/critical care provided in a hospital where 24 hours/day medical 
supervision and constant monitoring is required and provision of life support 
system/equipment used in medical procedures is essential to maintain or improve 
the vital functions of the patient. 

2. Acute care provided in a hospital  or other medical facility and medical electrical 
equipment used in medical procedures is often provided to help maintain or 
improve the condition of the patient. 

3. Long term care in a medical area where medical supervision is required and 
monitoring is provided if necessary and medical electrical equipment used in 
medical procedures may be provided to help maintain or improve the condition of 
the patient. 

4. Care provided in a domestic area and medical electrical equipment is used to 
alleviate or compensate for an injury, or disability or disease. 

5. Outpatient (ambulatory) care which is provided in a hospital or other medical 
facility, under medical supervision and medical electrical equipment is provided 
for the need of persons with illness, injury or handicap for treatment, diagnosis or 
monitoring. 

The use context of medical beds is important also because opportunities for 
managing operational risks differ. 

5.2   General Top-Level Structure 

A safety case essentially attempts to demonstrate that:  

• The system under consideration is acceptably safe to enter service (in the UK 
this usually implies that safety risks are broadly acceptable or have been 
reduced as low as reasonably practicable). 

• Arrangements are in place to ensure that the system will remain acceptably 
safe throughout its lifecycle. 

• The structure and content of the safety case, and the process by which the 
safety case is produced and maintained are adequately trustworthy to produce 
a sound and convincing argument. 

A common approach to demonstrate that the system under consideration is 
acceptably safe and continues to be so, is to argue that adequate safety requirements  
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Argue safety over the whole
life-cycle by showing that
requirements have been 
identified and will be 
met throughout. 

G1: Medical Bed is acceptably safe
in specific environmentDescription of 

environment etc List of global assumptionsC
A

S

G1.1: Satisfactory set of 
safety requirements has 
been determined

G1.4: Safety requirements 
continue to be met

G1.2: Safety requirements 
are met in the design

G1.3: Safety requirements 
are met in operational use

Volume 1 Volume 2
 

Fig. 2. Structure of the top-level argument and distribution of goals between manufacturer 
(Volume 1) and service provider (Volume 2) 

have been established, that the safety requirements are met in the design, and that they 
continue to be met throughout all stages of the lifecycle of the system (see, for 
example, the objectives specified in the UK Defence Standard 00-56 [4]).  

A well documented and frequently discussed example of a safety case formulated 
in GSN is the Eurocontrol RVSM Pre-Implementation Safety Case [24].  Here, the 
argument relies on four principle claims:  

• Safety requirements have been determined and are complete and correct.   
• The safety requirements are realised in the concept.  
• The safety requirements are realised in the respective national 

implementations. 
• The switch-over period (i.e. the transition from conventional vertical 

separation to the reduced vertical separation) is adequately safe.   
 

One of the high-level safety requirements relates to continued safety throughout 
operational life:  

• The performance and reliability of the system shall not deteriorate in service. 

The arguments are then organized in such a way that for each it is demonstrated 
that sufficient direct evidence is available, and that this evidence is sufficiently 
trustworthy.   

In principle, a similar general approach can be taken to demonstrate that medical 
devices, or more specifically medical beds, are adequately safe.  We can argue that 
(see figure 2): 

1. G1.1 A satisfactory set of safety requirements has been determined.  
2. G1.2 Safety requirements are met in the actual design of the medical device. 
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3. G1.3 Safety requirements are met in operational use. 
4. G1.4 Safety requirements continue to be met throughout the lifecycle of the 

medical device.  

We can adopt the strategy taken in the RVSM Pre-Implementation Safety Case of 
arguing for each goal that there is sufficient direct evidence available, and that this 
evidence is sufficiently trustworthy.   

Compared to current practice, where everything is addressed to and within the 
responsibility of the manufacturer, it is clear that healthcare service providers will 
have to provide some input.  Objectives G1.3 and G1.4 exceed the control of the 
manufacturer.  This crucially includes maintenance, as many serious accidents with 
technological systems relate to failures in the transition from maintenance mode to 
operational use and vice versa.  Similarly, it cannot be assumed that the manufacturer 
can adequately manage operational risks through safety requirements that are met in 
the medical device.  Rather, the service provider needs to demonstrate that 
arrangements are in place that satisfy assumptions made and ensure ongoing safe use 
and maintenance.  

5.3   Outline of the Safety Case Structure 

The four top-level goals G1.1 – G1.4 described above are then broken down until 
sufficient evidence has been provided that they are fulfilled, and an argument has 
been made that the evidence itself is sufficiently trustworthy.   

G1.1 (A satisfactory set of safety requirements has been determined) is satisfied by 
arguing that a set of safety requirements has been identified, and that the safety 
requirements are complete, consistent and correct.  The key strategy followed is the 
argument that relevant standards have been identified and addressed, and that the 
identified risks are sufficiently mitigated by the derived safety requirements.  This is 
done by demonstrating that a risk management process according to ISO 14971 has 
been followed, and by providing the respective evidence.   

G1.2 (Safety requirements are met in the design) is satisfied by arguing that the 
physical and functional properties of the medical device comply with the safety 
requirements, that procedure and training design comply with the safety requirements, 
and that any residual risks are tolerable.   

G1.3 (Safety requirements are met in operational use) is satisfied by demonstrating 
that the guidance provided and assumptions made by the manufacturer of the medical 
device are taken into account by the service provider during operational use, that a 
hazard identification and risk assessment has been conducted by the service provider, 
and that risks have been sufficiently controlled through the specification of any 
required additional safety requirement.   

G1.4 (Safety requirements continue to be met throughout the lifecycle) is satisfied 
by reference to the quality and safety management system of the service provider, and 
by demonstrating that adequate communication channels between service provider, 
device manufacturer and corresponding regulatory authorities have been established.  

 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Goal-Based Safety Cases for Medical Devices: Opportunities and Challenges 23 

The Appendix provides a sketch of a previous preliminary argument development 
that was created during a session of the EWICS Medical Devices subgroup.       

5.4   Arguing Safety over the Product Lifecycle 

As discussed in section 4, the relevant device standards currently address the 
responsibilities of the device manufacturer.  Standards at the organizational level of 
service provision, such as the UK Department of Health Standards for Better Health 
[15], are not concerned with medical devices apart from the requirement to use only 
those devices that have been certified.  In the case of medical beds – a Class I medical 
device – a process of self-certification on part of the manufacturer is all that is 
required. This implies that decisions about levels of acceptable risks and detailed 
documentation of hazards considered remain with the manufacturer.   

When healthcare providers assemble different devices to create a system within 
their environment, the safety of the resulting system needs to be assured.  To this end 
the service provider needs to ensure that medical devices are installed according to the 
manufacturer’s instructions for use, that appropriate maintenance is available, and that 
training and support to the operational staff is provided.   

Apart from issuing instructions for use, the manufacturer has little influence on the 
way the devices are actually used in practice.  The manufacturer does not have 
detailed information about the specific environment and the processes within which 
the device will be operated within a particular healthcare provider’s setting.  In 
complex systems this is a serious cause for concern, as in this way the possible 
interactions between system components and interactions with the environment as 
well as the system’s particular history will not have been accounted for [12].   

The structure that was chosen for the safety case in this paper attempts to bridge 
this gap by arguing the safety of the medical device throughout its lifecycle. Goals 
G1.1 and G1.2 (Safety requirements, and safety requirements met in the design) are 
clearly addressed to the manufacturer, while goals G1.3 and G1.4 (safety 
requirements are met in operation, and continue to be met) are addressed to the 
service provider.  While in this respect – and quite reasonably – these two parts can be 
regarded as two volumes of the safety case, the requirements for each have now 
considerable impact on the structure and the content of the other. 

In practical terms, the question arises how the two volumes could be sensibly 
separated into independent entities that can be produced by manufacturers and by 
service providers at different points in time.  Here, the differentiation between 
different types of safety cases proposed in the CENELEC standard EN 50129 for 
railway applications (now to become IEC 62425) [25, 26, 27] could be a useful 
starting point.  EN 50129 proposes three types of safety cases1: 

• Generic Product Safety Case: provides an argument that a product can be 
used in safety-related applications; it specifies conditions that must be 
fulfilled in any safety-related application, where the product will be part of, 
and it provides descriptions of relevant characteristics of the product.  

                                                           
1 Although EN 50129 is a standard for railway signaling systems, its definition of safety cases 

and their interrelationships are generic and are, in fact also applied outside the railway 
signaling field. 
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• Generic Application Safety Case: provides an argument that a configuration 
of products is adequately safe, without presupposing specific products.  

• Specific Application Safety Case: provides an argument that a particular 
combination of specific components is adequately safe.  

Each type of safety case specifies explicitly safety-related application conditions, 
the compliance with which has to be demonstrated in each safety case utilising that 
safety argument.   

In the case of medical beds, the manufacturer would need to produce a Generic 
Product Safety Case (Volume 1 in fig. 2). As part of this, the device manufacturer 
needs to explicitly disclose all relevant assumptions made on the application, as well 
as all decisions regarding the acceptability of risks and the resulting mitigation.  In 
addition, the manufacturer needs to demonstrate explicit forethought about the service 
provider’s responsibility of ensuring safety during operation and throughout change.  
This entails, for example, documentation about appropriate procedures to operate the 
device, and the training needs of operators.   

On the other hand, the service provider would need to produce a Specific 
Application Safety Case (Volume 2 in fig. 2), discharging the responsibility of 
demonstrating that the requirements established by the manufacturer as well as all 
assumptions explicitly made, are and continue to be satisfied during operation.  In 
addition, as it is acknowledged that control of operational risks through safety 
requirements established by the manufacturer based on the device level is 
inappropriate, the service provider has to identify additional safety requirements 
based on their own operational environment.  This is a very big change from the 
current practice of auditing that is carried out in order to collect indicators of safe 
practice.   

Finally, to ensure continuing safe operation of the medical device in the 
operational environment, the service provider has to demonstrate that incidents are 
picked up, performance is monitored, the impact of changes is assessed, and crucially 
that effective communication channels to manufacturers and the relevant regulatory 
authorities are established.  This responsibility is reflected on the part of the 
manufacturer by similar requirements that ensure that mechanisms for detecting and 
recording incidents and abnormalities are designed (where appropriate), and that 
arrangements are in place to receive and to react to data provided from the service 
providers or from regulatory authorities.   

As a matter of speculation, we could envisage something similar to a Generic 
Application Safety Case being produced by professional bodies as guidance for the 
development of the specific safety cases to be produced by the service providers.   

6   Opportunities and Challenges 

6.1   Opportunities 

The systematic consideration of safety through the development of goal-based safety 
cases has proven useful in industries such as aviation.  The same benefits could be 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Goal-Based Safety Cases for Medical Devices: Opportunities and Challenges 25 

expected in healthcare.  Goal-based safety cases using graphical representation are 
easy to communicate, and can therefore address the variety of stakeholders of 
different (non-safety, non-engineering) backgrounds.  Goal-based approaches also 
offer greater flexibility and are more suitable to incorporate novel technologies and 
methods. 

In healthcare the disjoint regulation of device manufacturers and service providers 
has led to a situation where data from the two areas is usually not integrated, and 
where the device manufacturer defines both the normal operational context as well as 
acceptable levels of risk.  Assurance of medical devices that have been put together 
by the service provider to form a particular system is hard to achieve.  The 
development of a goal-based safety argument that demonstrates safety throughout the 
lifecycle of a device is an attempt at integrating data from manufacturers and service 
providers.   

This approach could be a useful step towards whole system safety cases, e.g. for 
hospitals.  This would be highly desirable as the individual device level usually is 
insufficient to assure safe operation, as the introduction of any device may have far-
reaching unanticipated organizational reverberations.     

6.2   Challenges 

Healthcare does not have the same long tradition of reasoning about safety in 
systemic and explicit terms.  Risk management in many healthcare organizations is 
still very preliminary and often includes only reactive approaches following incidents.  

There is a split in the regulation between device manufacturers (certification) and 
service providers (audit).  It is not clear who would be responsible for delivering such 
a safety case.  Even if the safety case were split into separate volumes for 
manufacturers and service providers (e.g. along the lines of EN 50129 as proposed 
above), we may expect serious regulatory confusion as to which body is responsible 
for setting specific standards and requirements.   

Many medical devices by themselves are not critical and do not require the 
development of a full safety case.  However, in their specific application they may 
contribute to critical failures.  The complexity of whole system safety cases needs to 
be addressed in future, as well as the process of integration of device manufacturers 
and service providers in the development of safety arguments. 
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Appendix: High-level argument structure for demonstrating the safety of medical beds 
 

 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 28–39, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Electronic Distribution of Airplane Software and the 
Impact of Information Security on Airplane Safety 

Richard Robinson1, Mingyan Li1, Scott Lintelman1, Krishna Sampigethaya2, 
Radha Poovendran2, David von Oheimb3, Jens-Uwe Bußer3, and Jorge Cuellar3 

1 Boeing Phantom Works, Box 3707, Seattle, WA 98124, USA 
{richard.v.robinson,mingyan.li,scott.a.lintelman}@boeing.com 

2 Network Security Lab, University of Washington, Seattle, WA 98195, USA 
{rkrishna,rp3}@u.washington.edu 

3 Siemens Corporate Technology, Otto-Hahn-Ring 6, 81730 München, Germany 
{david.von.oheimb,jens-uwe.busser,jorge.cuellar}@siemens.com 

Abstract. The general trend towards ubiquitous networking has reached the 
realm of airplanes. E-enabled airplanes with wired and wireless network 
interfaces offer a wide spectrum of network applications, in particular electronic 
distribution of software (EDS), and onboard collection and off-board retrieval 
of airplane health reports. On the other hand, airplane safety may be heavily 
dependent on the security of data transported in these applications. The FAA 
mandates safety regulations and policies for the design and development of 
airplane software to ensure continued airworthiness. However, data networks 
have well known security vulnerabilities that can be exploited by attackers to 
corrupt and/or inhibit the transmission of airplane assets, i.e. software and 
airplane generated data. The aviation community has recognized the need to 
address these security threats. This paper explores the role of information 
security in emerging information technology (IT) infrastructure for distribution 
of safety-critical and business-critical airplane software and data. We present 
our threat analysis with related security objectives and state functional and 
assurance requirements necessary to achieve the objectives, in the spirit of the 
well-established Common Criteria (CC) for IT security evaluation. The 
investigation leverages our involvement with FAA standardization efforts. We 
present security properties of a generic system for electronic distribution of 
airplane software, and show how the presence of those security properties 
enhances airplane safety. 

1   Introduction 

Safety concerns with airplane software have been extensively studied [10], [15], [17]. 
The FAA stresses the criticality of some of the software onboard airplanes through 
well established guidance assuring their proper design and development for continued 
airworthiness, e.g. RTCA/DO-178B [1] Level A safety-critical software. Yet the 
guidance does not even address the issue of software distribution and its security. 
Nowadays, airplane software is still distributed manually using disks and other 
storage media, and since security is not a primary objective, embedded systems 
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onboard airplanes check (using CRCs) only for accidental modifications of software 
to be loaded. However, the proposed use of networks to distribute software 
electronically from ground to onboard systems raises unprecedented challenges to 
ensuring airworthiness [7], [11]. In particular, while the electronic distribution of 
software (EDS) reduces overhead and improves efficiency and reliability of airplane 
manufacturing, operation and maintenance processes, these benefits come only at the 
cost of exposing the airplane to potential attacks, in particular via data networks. The 
FAA has recognized that current guidance and regulations for airplane software do 
not cover the requirements needed to address these vulnerabilities [4], [5].  

1.1   Safety vs. Security 

Although information security requirements are warranted, assessing their impact on 
airplane safety is non-trivial. It is clear from the established FAA guidance in [1] and 
elsewhere that the regulatory community is concerned about assuring the design and 
implementation of certain software components and that they consider that safety may 
be affected if such components were to become corrupted. Therefore, vulnerabilities 
in an EDS may present opportunities for attackers seeking to directly lower airplane 
safety, e.g. by corrupting safety-critical software distributed onboard, or to impede 
usability of onboard systems, e.g. by corrupting less critical software such as DO-
178B [1] Level D. One must assume that international terrorists, as well as criminals 
pursuing economic damage, are capable today of employing advanced technologies 
for attacks.  Thus it is now necessary to assess the impact of information security 
attacks against airplane safety and to develop strategies for mitigating the associated 
vulnerabilities.  There is a body of literature that presents arguments for commonality 
among the safety and security disciplines [8], [9], [12], [16], but it remains an open 
question how to integrate the two fields.  While indeed security affects safety, it is not 
clear how to express the relevant security considerations, and how to accommodate 
security risks and mitigations in the context of a safety analysis.  There exist as yet no 
formal or agreed guidelines for certifying or assessing safety critical systems together 
with their security needs.  In particular two questions remain open:  

• How to integrate the mainly discrete methods applied in security analysis into the 
quantitative, probabilistic approaches typical of reliability analysis?  

• How to combine the analysis of security, which refers to non-functional 
properties, with the functional SW correctness analysis in order to achieve a 
defined overall system safety level?  

We believe that more research in this area is needed. Besides our necessarily limited 
contributions, we would like to benefit from any scientific advances there. 

1.2   Our Contributions 

The contributions of this paper are two-fold.  

• We present security requirements for a generic EDS system, called Airplane 
Assets Distribution System (AADS). Our approach is based on the Common 
Criteria (CC) [3] methodology, identifying threats to AADS from an adversary 
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attempting to lower airplane safety, deriving objectives to cover the threats, and 
stating functional requirements to cover the objectives.  

• We assess the implications of information security threats on airplane safety. Our 
approach is based on the Information Assurance Technical Framework [2] to 
analyze the CC Evaluation Assurance Level (EAL) necessary and sufficient to 
address threats against the integrity of software of highest criticality. 

2   Airplane Assets Distribution System (AADS) 

The electronic distribution of airplane information assets, i.e. software and data, can 
be modeled by a generic system that we call the Airplane Assets Distribution System 
(AADS). Figure 1 illustrates the AADS model with the entities and flow of assets. 
Not all entities interact directly with all others. Note that functional overlaps are 
possible, with a single entity assuming roles of multiple entities, e.g. an airplane 
manufacturer can be a supplier for some software. The nature and content of 
interactions change depending on the lifecycle state of a specific airplane, which can 
be: in development, assembly, testing, use, resale, etc. The responsibility of the 
AADS for an asset begins when it takes over the asset from its producer, e.g. supplier 
or airplane, and ends when it delivers the asset at its destination, i.e., embedded 
systems such as a Line Replaceable Unit (LRU) in an airplane, or at the consumer of 
airplane-generated data. The path between the producer and the destination of the 
asset is referred to herein as the end-to-end path. Each of the links in this path must 
fulfill the security objectives given in Section 3.  

 

Fig. 1. Airplane Assets Distribution System (AADS) 

2.1   Assumptions 

Processes in each entity in the AADS are assumed to be operating as designed and 
expected. In particular, the AADS is assumed to be administered in a proper way. 
Access privileges must be assigned and managed appropriately at each entity. 
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Passwords and private keys are kept secret, and certificates are properly managed and 
protected. Each supplier is accountable to produce safety-assured software as per [1]. 
The networks used for asset distribution are assumed to be robust against well known 
denial of service attacks. It is worth noting that software distribution via physical 
media is generally adequate to meet requirements for timely software delivery to an 
aircraft.  Finally, it is assumed that airplane owners are capable to manage the 
software configurations of airplanes reliably and correctly, and that airplanes produce 
status information accurately. 

2.2   Adversary Model 

An adversary in the AADS model is assumed to be capable of passive network traffic 
analysis as well as active traffic manipulation, node impersonation, and insider 
attacks. The objective of the adversary is to actually lower the safety margins of 
airplanes (as in the case of international terrorists) and/or to induce safety concerns 
and disturb business (as would be expected of sophisticated hackers or international 
criminal organizations).  

For purposes of the present analysis, we consider the scope of adversarial attacks to 
be limited to security attacks over data networks. The process of loading software on 
LRUs within an airplane is assumed to be sufficiently protected with specific 
physical, logical, and organizational inhibitors, checks, and control. Loading is only 
performed at specified times, for example, when the airplane is in maintenance mode, 
and by authorized personnel using authorized equipment. Moreover, certain checks 
are in place to enable detection of corrupted software, e.g. checking the list of parts to 
be loaded with a configuration list provided by the airline, and if software is 
compatible with the destination LRU hardware and software environment. 

Furthermore, it can be assumed that due to software and hardware redundancies 
(e.g. several code instances executing in parallel on different system platforms on the 
airplane), most unintentional or unsophisticated corruptions or misconfigurations in 
safety-critical software are detectable at least when loaded into an LRU. Therefore, to 
effectively cripple a safety-critical function in the airplane, the representation of 
software must be modified at several positions. This significantly increases the effort 
needed from the adversary. 

Based on the motivation and impact of adversarial attacks over networks, we can 
classify security threats as described next. 

2.3   Safety Threats 

The adversary can attack the AADS to threaten airplane safety. We identify the 
following specific threats that could amount to sabotage of the airplane. 

 
Asset Corruption. The contents of distributed software can be altered or replaced (in 
an undetectable manner) to provoke accidents. This type of corruption to airplane-
loadable software is sometimes referred to as coherent corruption, emphasizing a 
distinction from arbitrary bit-substitutions, which generally would render a software 
component unloadable. Airplane-generated data can be also corrupted to threaten 
airplane safety, e.g. by altering safety-related reports.  
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Software Misconfiguration. In order to cause havoc, a mismatch between the 
airplane’s intended and actual configuration can be provoked by preventing delivery 
of software, deleting software, or injecting inappropriate software during distribution.   
 

Asset Diversion. Software can be diverted to an unsuitable recipient to provoke 
accidents, e.g. by disturbing the execution of other software at that destination.  
 

Asset Staleness. The revocation and update of software that need to be changed for 
safety reasons can be blocked and delayed, thus impeding the distribution processes.  

2.4   Business Threats 

The adversary can attack the AADS to induce unjustified airplane safety concerns or 
to cause flight delays, and thereby present threats to business of airplane manufacturer 
and/or owner. 
 
Asset Unavailability. Assets can be made inaccessible or unusable, for example by 
jamming asset distribution to disrupt airplane service.  
 
Late Detection. Assets can be intentionally corrupted so that the tampering is detected 
late enough for the airplane to be put out of service.  For example, when tampering of 
software is not detected during distribution from ground systems to airplane, but is 
detected only upon final load at the destination LRU in the receiving airplane. 
Software corruption that is detectable by an LRU, or whose installation renders the 
LRU non-functional, is distinct from that referred to above as coherent corruption. 
 
False Alarm. Assets can be tampered to cause economic damage from misleading 
safety concerns. In particular,, corruption of configuration reports might cause an 
airplane to appear as if incorrectly configured, creating unwarranted flight delays 
from the misleading safety concerns.  
 
Repudiation. Any entity in the AADS could deny having performed security-relevant 
actions, e.g. deny having distributed or received some software. 

3    Securing AADS 

The threats listed in the previous section must be countered and mitigated by 
appropriate security objectives, which in turn must be implemented using suitable 
mechanisms. This section presents the security objectives to counter the security 
threats listed above, followed by an overview of the mechanisms proposed to achieve 
them, as well as a brief rationale why they should be sufficient for this purpose.  

3.1   Safety-Relevant Security Objectives 

1. Integrity. For every asset that is accepted at its destination, its identity and 
contents must not have been altered on the way—it must be exactly the same as 
at the source of the distribution. This includes protection against injection of 
viruses and other malicious code. 
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2. Correct Destination. An airplane must accept only those assets for which it is the 
true intended destination. 

3. Correct Version. An airplane must accept assets only in the appropriate version. 
4. Authenticity. For every security-relevant action, the identity of entities involved 

must be correct. This applies in particular to the alleged source of an asset. 
5. Authorization. Whenever an entity performs a security-relevant action, it  

must have the authorization or privilege to do so. Otherwise the action must be  
denied. 

6. Timeliness. Required software installations and updates must be capable of being 
performed and confirmed by appropriate status reports within a specified period 
of time. Note that otherwise the airline’s configuration management (which is 
not strictly part of the AADS) must take a deliberate decision whether the 
respective airplane is still considered airworthy. 

3.2   Business-Relevant Security Objectives 

7. Availability. All necessary assets must be available in a time window adequate to 
support regulatory requirements and business needs. 

8. Early Detection. The fact that attackers have tampered with assets must be 
detected as early as possible; that is, by the next trusted entity handling it. In 
particular, a tampered part should be detected well before actually being loaded 
by its destination LRU.   

9. Correct Status Reporting. Status information concerning asset disposition, in 
particular reports listing the contents of the current airplane on-board parts 
storage, must be kept intact during transport in order to avoid false claims about, 
for instance, missing parts. 

10. Traceability. For every security-relevant action, as well as unsuccessful attempts 
to perform such actions, all relevant information must be kept for a period of 
time sufficient to support regulatory requirements and business needs, such as 
general short-term security audits. This information includes the identity of 
entity involved, the action type with essential parameters, and a timestamp. 

11. Nonrepudiation. To support forensics, for instance after an airplane crash,  
entities must not be able to deny their security-relevant actions. Evidence for 
this must be verifiable by third parties and must be long-lived: at least 50  
years. 

 
Table 1 (see overleaf) shows which security objectives mitigate which threats. The 
mechanisms employed in the AADS to address the above objectives are described 
next. 

3.3   Securing Distributed Assets Using Digital Signatures 

Digital signatures constitute the main mechanism to secure distributed assets in the 
AADS. We note that the choice of using digital signatures, as opposed to other 
integrity protection solutions such as keyed hashes and virtual private networks 
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Table 1. Security threats and objectives to cover them 

Safety Business 
Threats 

Objectives C
or

-
ru

pt
io

n

M
is

co
nf

ig
-

ur
at

io
n

D
iv

er
- 

si
on

 

S
ta

le
-

ne
ss

 

A
ss

et
 U

n-
av

ai
la

bi
lit

y 

La
te

D
et

ec
tio

n 

F
al

se
A

la
rm

R
ep

ud
i-

at
io

n

Integrity         
Correct Destination         
Latest Version         
Authenticity       
Authorization        

S
af

et
y

R
el

ev
an

t

Timeliness         
Availability         
Early Detection         
Correct Status 
Reporting

        

Traceability       

B
u

si
n

es
s

R
el

ev
an

t

Nonrepudiation         

(VPN), is made in order to additionally provide nonrepudiation of origin as well as 
data authenticity and data integrity across multiple AADS entities. The message sent 
from a source to destination appears as follows: 

),(,, metadataassetsignmetadataasset source                             (1)  

where Xsign  denotes a signature with the private key of entity X, and metadata  

denotes additional information associated with the asset or its handling.  Common 
examples include the destination (or a class of destinations) constituting the intended 
delivery target for assets, and timestamps or similar tags that can be used to inhibit 
later replay. Using the public key of the source and the hash function, the receiver can 
check all the information received. In this way, the signature ensures the integrity of 
the asset and the metadata, thus covering also freshness and the correctness of the 
destination. 

A major challenge remains with respect to authenticity (and the related 
authorization requirement): how does the receiver reliably know the public key of the 
source? The management of identities and associated keys and certificates is an 
important task [13], requiring implementation of key management facilities or 
availability of a PKI. A Public Key Infrastructure (PKI) [6] consists of a Registration 
Authority (RA) to authorize key/certificate requests from entities, a Certification 
Authority (CA) to generate and issue asymmetric key pairs and corresponding digital 
certificates for requesting entities and to determine validity of certificates, and a 
Certificate Repository to store and distribute certificates.  An airline may assign the 
role of RA and/or CA to a trusted third party, e.g. a government agency or 
commercial vendor. Alternatively, an airline can implement its own PKI and itself 
function as RA and CA.  
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Relying on a PKI, the source can simply append to its message a standard digital 
certificate, sourcecert , provided by a  CA trusted by the receiver: 

),,,( periodvalidityidKidsigncert CAsourcesourceCAsource =             (2) 

where Xid  is an identifier for entity X and sourceK  is the public key of source. The 

receiver can check the certificate, needing to know only the public key of the CA, and 
thus obtain and verify the authenticity of sourceK . 

Yet a PKI is a complex system, which in turn needs to be certified, which is a 
major undertaking in itself. Driven by the considerations briefly shared in section 4.2, 
we are currently investigating light-weight alternatives to PKI. 

The verification of asset signatures can be end-to-end or entity-to-entity, as 
follows.  
 
Entity-to-entity integrity protection. For every signed asset, each intermediate entity 
verifies and re-signs it, and then forwards it to the next entity along the desired path 
for that asset.  Depending upon business requirements, and state of an asset’s life-
cycle or workflow, re-signing may constitute replacement of an existing signature or 
addition of a new one. In an entity-to-entity arrangement, localized key management 
capabilities suffice to establish trust and authenticity. 
 
End-to-end integrity protection. Each asset, signed by its producer, is verified at each 
intermediate entity as well as by the final destination. The end-to-end architecture 
may be argued to have stronger security properties than the entity-to-entity 
architecture.   

Implementing an end-to-end architecture requires distributed entities to have access 
to information about more identities than merely those of their immediate neighbors.  
Generally, this means making use of a mature public key infrastructure.  The main 
security advantage of end-to-end architecture is that the final receiver need not trust 
intermediate entities but just the first sender whom it can authenticate directly. 
Intermediate entities cannot undetectably tamper with data in transit. 

As the life-cycle of AADS-distributed parts evolves, the practical lifetime of 
signatures must be considered.  The cryptanalytic capabilities available to attackers 
improve over time, and the potential for compromise of secret keys increases.  
Signature lifetimes may be extended via periodic refreshment or replacement of 
signatures.  New signatures can be based on longer keys and improved cryptographic 
algorithms, as they become available. 

3.4   Other Security Mechanisms 

Security-relevant actions like releasing, approving, ordering, receiving, and loading 
software, as well as issuing and revoking certificates must be authorized. This can be 
achieved, for instance, via role-based access control or certificate-based capabilities.  

In order to support traceability, all security-relevant actions, as well as 
unsuccessful attempts to perform such actions, are timestamped and logged. Logs 
must be implemented with tamper-proof storage.  
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High availability can be achieved with host and network protection mechanisms, 
for instance efficient filtering, channel switching, and redundant storage and 
bandwidth. 

3.5   Coverage Analysis 

The security mechanisms given in sections 3.3 and 3.4 suffice to cover required EDS 
security objectives given in sections 3.1 and 3.2, as described below.  A more in-
depth examination of the requirements coverage is contained in [14]. 

The integrity and authenticity of assets is guaranteed by the digital signature of the 
source and the corresponding public key or certificate(s), with the validity period of 
the signatures extended by refreshing them. Checking signatures as soon as possible 
during transmission (i.e. at each intermediate entity) contributes to early detection of 
improper contents. In the source signed asset, the timestamp together with version 
numbers ensures that an outdated asset is not accepted, satisfying latest version, in 
accordance with the principle that airlines must be responsible for managing the 
configurations of the aircrafts they own. Further, by including the intended destination 
among signed meta-data with distributed assets, diverted assets are not accepted, 
meeting correct destination. None of the above mechanisms can mitigate insider 
attacks, though appropriate access controls ensure that critical actions are initiated by 
authorized personnel only.  

Signatures for integrity protection of status information and authorization of status-
changing actions contribute to correct status reporting of information on assets. 
Signatures and audit logs are sufficient for achieving nonrepudiation and traceability.  

Although availability cannot be fully guaranteed in AADS, existing techniques can 
be used to mitigate jamming attacks. Backup mechanisms, such as traditional physical 
transfer of storage media using bonded carriers, can be used to reduce impact of non-
availability of assets or asset distribution. Timeliness relies on availability, 
timestamping and organizational measures: in case of asset uploads being due, the 
providers must notify the respective receivers in a timely way and specify the new 
version numbers as well as a deadline by which the assets must have been loaded. 
Moreover, they must make sure that the assets are available for being pulled by the 
receivers during the required period of time. 

4   Assurance Levels and Impact on Safety 

In this section we present our analysis of the implications of security threats to the 
safety of airplanes, and determine the minimum assurance levels that must be met by 
AADS. Moreover, we mention pragmatic considerations on achieving them. 

4.1   Determination of Assurance Levels 

The Threat Level for the expected threat source on airplane safety, according to [2], is 
that of international terrorists, i.e. T5 - sophisticated adversary with moderate 
resources who is willing to take significant risk. Some software is of ultimate 
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criticality for flight safety and is assigned RTCA/DO-178B [1] Level A1, and thus 
according to [2] have Information Value V5 - violation of the information protection 
policy would cause exceptionally grave damage to the security, safety, financial 
posture, or infrastructure of the organization. Since the failure of parts with software 
Level A is catastrophic, so too can be the effect of not achieving the integrity and 
authenticity protection that should be guaranteed by the AADS distributing such 
software. According to [2], the above assigned Threat Level T5 and Information 
Value V5 together imply selection of EAL 6. 

To address security concerns emerging from business threats, an assurance level of 
EAL 4 is sufficient, as follows. The Threat Level according to [1] for the expected 
business Threat Source is that of organized crime, sophisticated hackers, and 
international corporations, i.e. T4 - sophisticated adversary with moderate resources 
who is willing to take little risk. Attacks against the availability of assets can cause 
major damage to airlines from the business perspective, by putting individual 
airplanes out of service. Moreover, one must be able to counter attacks against 
software that have a highly visible effect to passengers, in particular if they affect 
more than one airplane. For example, a hacker could corrupt Level D or Level E 
software e.g. controlling the cabin light or sound system, for which generally no 
strong defense may exist. In this way the attacker could create anomalies to provoke 
safety concerns. This can cause severe damage to the reputation of both the airline 
and the airplane manufacturer, in particular as it might appear that little confidence 
can be put on their ability to protect other, highly critical software in the airplane. 
This could cause the whole fleet to be grounded, even though mainly for 
psychological reasons. From scenarios like these, we propose that there are assets that 
have a business Information Value of V4 - violation of the information protection 
policy would cause serious damage to the security, safety, financial posture, or 
infrastructure of the organization. Given a Threat Level T4 and a Information Value 
V4 for parts, according to [2], EAL 4 is sufficient. 

4.2   Pragmatic Issues 

An assurance level of EAL 4 permits maximum assurance for the development of the 
AADS with the use of positive security engineering based on good commercial 
development practices [3]. Although these practices are rigorous, they do not require 
significant specialist knowledge, skills, and other economically taxing or time 
consuming resources.  

As mentioned in Section 3.3, the state-of-the-art requires the AADS to make use of 
digital signatures which rely on some form of key management. Unfortunately, the 
maximum assurance level of current commercially available Public Key Infrastructure 
is EAL 4, and the practical value of evaluating the system to a level higher than its 
PKI environment can support is questionable. This could motivate specification of 
assurance for the AADS at the highest EAL available for PKI, which currently is 
EAL 4. Yet EAL 4 would be insufficient for the integrity protection needs of Level A 

                                                           
1 For software of lower criticality level (B thru E according to [1]), some lower value would be 

sufficient, but since the AADS should uniformly handle software of all criticality levels, the 
desired EAL with respect to safety threats should be the one for Level A software. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



38 R. Robinson et al. 

software. Moreover, evaluating a whole system as complex as an AADS at an 
assurance level of EAL 6 would be extremely costly.  

As a viable solution to the discrepancy just described, we suggest a two-level 
approach where the mechanisms covering the most critical safety-relevant objectives, 
namely those which counter the threat of corrupted software (i.e., integrity, 
authenticity, and authorization), reach EAL 6, while the remaining components are 
kept at EAL 4. Since the mechanisms requiring EAL 6 include key management, it is 
necessary to raise the certification of an existing PKI to that level, or to implement the 
necessary functionality within the highly-critical part of the AADS. Designing the 
AADS architecture such that the key management for the EAL 6 components is 
minimized should make the high-level certification effort bearable.  

5   Conclusions and Future Work 

In this paper, we have studied the safety and security aspects of electronic distribution 
of software (EDS) and data. We have identified information security threats to 
airplane safety emerging from attacks on safety-critical software. Additionally, we 
have found that attacks on less critical (and hence less protected) software controlling 
onboard utility systems can induce unwarranted and misleading safety concerns, 
impeding business of airplanes. We have proposed a secure EDS system, Airplane 
Assets Distribution System (AADS), which addresses the threats and serves as a 
guideline for design and evaluation of EDS systems implemented for use with 
airplanes. Further, we have evaluated the impact of security threats on safety, and 
suggested suitable assurance levels for enabling a Common Criteria security 
evaluation of EDS system implementations. Concerning the assurance assessment and 
certification effort for AADS, we have proposed a two-assurance-level approach that 
addresses integrity protection of safety-critical software while keeping evaluation cost 
manageable. 

It is hoped that the security requirements described above and the analysis detailed 
in the AADS Protection Profile [14], will provide a permanently useful public 
reference, and that they may be adopted by the regulatory community in much the 
same way as existing RTCA and other guidance have been.  Several difficult and 
interesting issues remain to be investigated and resolved.  Future work should focus 
on advancing the knowledge on the relations of security and safety analysis of an 
EDS system, including quantifying vulnerabilities to evaluate and certify a safety 
critical system under security threats, and correlating security assessment methods 
with development assurance guidelines in RTCA/DO-178B [1] as well as using this 
mapping for insights into the interaction between information security and airplane 
safety. 
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Abstract. The fast growing Internet technology has affected many areas of 
human life. As it offers a convenient and widely accepted approach for 
communication and service distribution it is expected to continue its influence 
to future system design. Motivated from this successful spreading we assume 
hypothetical scenarios in our paper, whereby automotive components might 
also be influenced by omnipresent communication in near future. If such a 
development would take place it becomes important to investigate the influence 
to security and safety aspects. Based on today’s wide variety of Internet based 
security attacks our goal is therefore to simulate and analyze potential security 
risks and their impact to safety constraints when cars would become equipped 
and connected with an IP based protocol via unique IP addresses. Therefore, 
our work should motivate the inserting of security mechanisms into the design, 
implementation and configuration of the car IT systems from the beginning of 
the development, which we substantiate by practical demo attacks on recent 
automotive technology. 

Keywords: Security, Safety, Automotive, Future Vision. 

1   Introduction 

The growing IT technology offers many applications. Office computers are connected 
to each other and required business data is available everywhere. Home users use 
their computers for writing emails, chatting with friends and more. The Internet is for 
many applications one of the most important requirements for daily business. The 
connection between the computers and to the Internet conceals IT-security risks, 
which are used by attackers with different motivations. Since last decade many 
different forms of attacks are known and well studied. Thereby, an incident, which 
includes the attack and event, is introduced in a taxonomy [1], which is created in 
order to standardize the terminology used when dealing with incidents. This 
taxonomy helps the users of an IT system (for example system administrators or 
forensic teams) to identify and to classify threats, incidents, attacks and events. The 
safety aspect is not in focus of this taxonomy and neglected. In [2] this taxonomy is 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Future Perspectives: The Car and Its IP-Address 41 

 

enhanced to identify the violated security aspects (confidentiality, integrity, 
authenticity, availability, non-repudiability) from the result of the attacks. Thereby it 
is shown that different attacked targets with different attack results violate different 
security aspects. The attacker and his running attacks specify which and how security 
aspects are violated. To focus on the safety other publications are available. In [3] 
assignments of safety integrity levels (SILs) are defined, which focus on the 
acceptable failure rate and controllability by the person concerned. Thereby 4 main 
levels (and one without safety) are defined. The abstractness of safety violation differs 
and increases between five safety levels which are as follows: 

 
- Level 0: Not addressed. It means, that the probability of events regarding this 

safety level are reasonable possible with the effect, that they are nuisance only.  
- Level 1: In this level are events categorized which are unlikely and would 

distract the person concerned. 
- Level 2: In this level are events categorized, which have a remote change to 

occur and they debilitate the person concerned.  
- Level 3: In this level are events categorized, which are very remote and if they 

occur, then they are difficult to control.  
- Level 4: In this level are events categorized, which are extremely improbable, 

but when they occur, they are uncontrollable for the persons concerned. 
 
Note, that these safety integrity levels primary focus on the probability of 

occurrence and the controllability by humans. For our potential attacker scenario, the 
probability of randomly or naturally failures can be neglected, because the potential 
attacker has the goal to attack the IT system.  

The paper is structured as follows. In section 2 known threats and vulnerabilities 
on example attack scenarios are introduced and described. Furthermore, these attack 
scenarios are associated with the violated security aspects. Section 3 introduces our 
hypothetical risk assessment on exemplary selected attack scenarios for cars. 
Additionally, these car attack scenarios are discussed with the violated security 
aspects and violated safety level by focusing on its controllability. In section 4, we 
introduce a practical simulation on cars today and adapt this on cars using IP protocol 
based communication. Section 5 closes the paper by summarizing it and discussing 
the importance of future work. 

2   Selection of Known Threats and Vulnerabilities of IP Based 
Protocols and Communication 

The IT security, attacks and the prevention of the attacks are well studied and 
analyzed. Attackers try to find new strategies and types of attacks to compromise 
information, computers or networks. The CERT taxonomy [1] classifies the 
vulnerabilities into the three main classes: design, implementation and configuration. 
The vulnerability design exists, when the design of the system is not well analyzed 
and studied in focus of security. An implementation error provides an implementation 
vulnerability, which is mostly exploited by an attacker to get unauthorized access to 
the system. If the configuration of the IT system includes mistakes, then a 
configuration vulnerability can be used by attackers for compromising. 
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Many network based attacks (Ai) require an Internet Protocol (IP) based 
communication. Thereby, we classify the main basic attack principles, based on 
network communication as follows, introduced in the six scenarios shown in Figure 1. 
The assumption is that the normal data flow (A0) exists. An attacker can read and/or 
sniff the transmitted information (A1) whereby the sender and receiver do not notice 
it. If the attacker is between both communication partners (A2), than she/he can 
modify the data as man in the middle. An interruption (A3) occurs, when the source 
sends information, but the destination never receives them. The attacker can also 
create data and send them by spoofing the source address to the destination (A4). The 
last possibility of our basic attack principles of the attacker is to steal (A5) the 
transmitted data. 

Source Destination

A0 Normal Data Flow

Source Destination

Attacker

A1 Read

Source Destination

Attacker

A2 Modification

Source Destination

A3 Interruption

Source Destination

Attacker

Create/SpoofA4

Source Destination

Attacker

A5 Steal/Removal

 

Fig. 1. General Attacking Strategies 

Each of these basic attack principles address a different security aspect and if 
combinations of these attacks are performed by an attacker, then more different attack 
strategies which violate more security aspects can be described.  

Depending on the type and goal of the attacker, different security aspects can be 
violated. Table 1 shows the association between the presented types of attacks 
(A1,…,A5) and the violated security aspects.  

Table 1. Association between Attack Types and Violated Security Aspects 

Security Aspect A1 A2 A3 A4 A5 
Confidentiality X X   X 
Integrity  X  X  
Authenticity  X  X  
Non-Repudiability  X    
Availability   X X X 
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Note, that combination or special cases of the attacks also address other security 
aspects. It is shown, that different attack types violate different security aspects. 
Existing combinations of attacks or the modification of attacks have as result, that 
more than the introduced security aspects are violated. 

In the literature [4] different practically useable attack scenarios (ASi) are 
identified and described. Well known and often used attacks from attackers are 
selected exemplarily and briefly summarized and introduced in the following listing 
[5]. 

 

- Sniffing attack – AS1: An attacker who uses this type of attack gets 
unnoticed information like the attack A1. The source and receiver computers 
or users do not know that their communication is eavesdropped by an attacker. 
In a computer network, the attacker sniffs the transmitted IP packets and 
derived from it, she/he knows, for example, which services are used and which 
data are transmitted. The attacker can read the complete communication. 

- Man-in-the-Middle attack – AS2 (MITM): This attack requires a direct 
eavesdrop of the communication between two computers, like A2. Instead of 
sniffing them, by using this type of attack, the attacker captures the transmitted 
data and modifies them with the content she/he wants and sends the modified 
data to the destination. In a computer network, the attacker can work as 
gateway or router, where all IP traffic has to pass trough. Without any security 
mechanisms, the sender and receiver do not notice the presence of the attacker. 

- Spoofing attack – AS3: Is an attack, whereby the transmission appears to 
have come from another source, which is introduced within attack A4. Often, 
data are transmitted, which seems to be sent from a valid, authentic source 
computer or user. Typical examples are IP-spoofing, where the source IP 
address of the attacker is replaced by any or a valid IP address accepted by the 
receiver.  

- Replay attack – AS4: By this type of attack, the attacker uses a combination 
of A1 and A4. She/he sniffs as first transmitted data (IP packets) from the 
network (A1). The second step is to resend the same data to the attacked 
computer (A4). If this attack is combined with the spoofing attack, then 
replayed IP packet seems to sent from the valid source computer. 

- Denial of Service attack – AS5 (DoS): This attack tries to prevent valid users 
the access to a service, system or network. Mostly, the attacker floods the 
target with so many as possible IP packets per second or disrupts the target by 
alternation of the system configuration (for example packet filter) or 
destruction of physical components. By flooding, it is like the attack scenario 
A4, but the created IP packets are sent, for example, as often as possible per 
second. Note, that distributed denial of service (DDoS) is a subclass of DoS 
with the difference, that the attack is performed from many computers at the 
same time to the target, thereby increasing the effectiveness.  

- Malformed packet – AS6: This attack is based on sending nonstandard IP 
packets, which produce unexpected results on the target computer, also a type 
of A4. Depending on the payload of the sent IP packet, the result can be, for 
example, crashing the attacked service or computer (DoS) or unauthorized 
access by exploiting a service. 
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- Malicious code – AS7: The usage of malicious code attacks the target system 
by running the attacker code which causes to harm the software or data on the 
target computer. The attacker can use the attack scenarios A2 or A4 to bring in 
the malicious code. Typical examples for this attack scenario are viruses, 
worms, Trojan horses or ticks [6]. 

- Social Engineering – AS8: This type of attack focuses on (the weak point) 
humans and is a special case of the introduced attacks. Because social 
engineering does not address, for example, the network communication or an 
IT system. The attacker can employ human- or computer based social 
engineering to persuade another person to compromise information or the 
system security. If IT systems are connected each other via untrusted 
networks, then computer based social engineering is also enabled for attackers, 
which can use all introduced attack principles (A1,…,A5). 

 

The literature [7] divides the attacks into active and passive. A passive attack ΞP 
means that the attacker eavesdrops the communication without modifying anything of 
the communication. In contrast, an active attack ΞA is an attack, where the attacker 
modifies at least one bit of the communication, replays old messages or deletes a 
selected IP packet or bit from the wire. 

Furthermore, all introduced and all other existing attacks can be used from internal 
ΘI and external ΘE attackers. An internal attacker is already located close to the target 
computer, has a network connection and has knowledge about the internal network 
topology. If the attacker is external, then she/he is somewhere in the Internet and 
attacks the target computer with one or a combination of the attacks from outside the 
attacked network (company, authority or home).  

If the existing and well studied IT systems are used in the growing area of car and 
its IT, then the security risk and its safety implications should be analyzed and 
simulated, done exemplary in the following section. 

3   Hypothetical Risk Assessments on the Selected Examples 

In this section, we introduce a hypothetical risk assessment and we map the existing 
types of attacks on selected examples for automotive with its communications. 

Imagine, in the near future, the electronic and IT part of available cars has maybe 
similar electronic technology like today (2007). If somebody travels by car, the car 
would be opened by using a wireless unique key. Thereby, the boot process of all 
devices and the main car control unit starts. It includes loading the BIOS (Basic 
Input/Output System), starting the device kernel with all available applications and 
services including the setup of the IP stack by initializing the car IP address and its 
Internet name like car.car-producer.de. This unique identification might also be used 
in the car-to-car (C2C) communication. Furthermore, the driver has to be identified 
by, for example, biometrics such as her/his voice and the car initializes all 
components to the user by assigning its personal internet identification like 
driver@car.car-producer.de. This identification is also used to adjust personal 
configuration settings like seat position, mirror and climate control, phone address 
book, entertainment system, private list of the navigation system and the energy and 
power setting, which is allowed for the user. In particular, the car has a permanent 
Internet connection to receive actual relevant information, like the traffic 
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announcements, device updates and security patches. Furthermore, the car sends its 
GPS location to different servers for registration and the username of the driver is 
used to enable VoIP (Voice over IP) communication. Additionally, the car insurance 
is informed, that the identified driver is using the car to enable the insurance on 
request and in accordance to driver profile (pay per drive contracts). To enable local 
communication between the cars (also used for car-to-car communication) mobile ad-
hoc networks are created. Note that a potential attacker who used the mobile ad-hoc 
network to attack the victim is not permanent close to them. The mobility let the 
attacker drive away and it is difficult to trace and identify she/he. Figure 2 introduces 
existing communication networks for mobile cars. The mobile ad-hoc networks are 
used for short range communication to change local road or traffic information. In 
additional, the network topology of these networks permanently changes. For the 
long-term Internet connection, a link via UMTS (Universal Mobile 
Telecommunications System) or HSDPA (High-Speed Downlink Packet Access) is 
used, for example, to enable VoIP and to receive navigation and traffic information. 

Mobile Ad−Hoc Networks
Car−To−Car Communication

UMTS or HSDPA for
Internet Connection

 

Fig. 2. Car Communication Scenario 

The Internet Protocol is the enabling protocol with a lot of years of experience 
from the IT. Thereby, it is suggested, that this protocol is used in automotive for its 
local short range and long range communication (maybe except real time applications 
like engine management system or airbag systems). In particular, the following 
examples introduce the risk assessment of security and its derived safety aspects by 
connecting cars to each other and with the internet via IP. Thereby, we assume, that 
both types of attackers ΘI and ΘE exists and attack the car communication. 

- The selected attack scenario (S1) is, for example, that we have a car-to-car 
communication between cars (carA and carB) and their drivers (Alice and 
Bob) alice@carA.car-producer1.de and bob@carB.car-producer2.de. In our 
example scenario, Alice drives in front of Bob and Bob wants to get ahead of 
Alice. Bob fakes the message “Slippery Road Ahead – Decrease Speed!” and 
sends it via car-to-car communication to Alice by spoofing (AS3) the source in 
that way, that the car of Alice “visualizes” the message is if it was sent by the 
carX in front of Alice. The spoofing attack changes the original source address 
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in such way, that sender carB.car-producer2.de is now carX.car-
producer3.com. For Alice, it is hard to control the attack by verifying the 
sender without any security mechanisms. 

- In this attack scenario (S2), Alice drives with her car’s identification 
alice@carA.car-producer1.de in front of Bob (bob@carB.car-producer2.de). 
The car of Alice sends via car-to-car communication the current speed to Bob 
and all other cars behind Alice. This is useful to adjust the speed of all cars 
and to prevent rear-end collision accidents. The oncoming car carX.car-
producer3.com, which can be a police car, converges to Alice. Thereby, carX 
read via AS1 the car-to-car communication and sniffs the current speed of 
Alice. If the police identifies, that Alice drives to fast, then she gets a ticket 
and she has to pay. For a mobile ad-hoc network, where the users are 
unknown, it is difficult to protect the network for unauthorized reading, which 
decreases the controllability.  

- In attack scenario (S3), Alice wants to drive with the car. She opens the door 
and all car systems start the booting process. As introduced above, the car 
downloads, for example, the current security patches and navigation system 
information on the IT systems. A potential attacker ΘE located in the Internet, 
performs a Man in the Middle attack (AS2) and captures the navigation 
request of Alice and send it to the navigation server. The response of the 
navigation server is also captured by the attacker. Without the protection of the 
confidentiality of the transmitted data, the attacker knows the route, which 
Alice wants to drive. Additional, the attacker can modify the route and ΘE can 
send a much longer way and it is known, how long at least, Alice wants to 
drive the car. With this information, the attacker could, for example, rob the 
house of Alice, anger Alice by sending her to a traffic jam or increase the 
required gasoline of the car of Alice or kidnap her, because the exact driving 
route is known. Note, that the controllability of such an scenario should be 
given, which requires the assumption and defense of potential attackers. 

- Alice drives with its car alice@carA.car-producer1.de in front ob Bob 
bob@carB.car-producer2.de in our exemplary attack scenario S4. Bob drives 
in front of Chris chris@carC.car-producer3.de. All cars communicate via car-
to-car communication. Sensors of carA identify, that there is road hole on the 
road. To avoid a damage of the cars behind Alice, the car of Alice sends the 
Information “Attention - Road Hole Ahead!” to carB from Bob. The car of Bob 
receives the message and interrupts the car-to-car communication (A3) by not 
distributing this message to cars behind him. Thereby, carC.car-producer3.de 
does not receive the message and Chris cannot be getting the warning. 
Depending on the road hole, the car of Chris drives into the hole and gets 
damage. Bob, which is the attacker in this scenario, was motivated by 
malicious joy. For Chris is it difficult to control the attack, because he does not 
know that the communication is interrupted. 

- In our attack scenario S5, a potential attacker can read/sniff the car initializa-
tion process of Alice car, whereby the car sends all requested information to, 
for example, the car insurance via Internet connection. The captured IP 
packets could be resend with a replay attack (A4), to enable another car with 
the insurance of Alice. Security mechanisms are strongly recommended to 
prevent such an attack. Otherwise, the controllability decreases. 
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- If an attacker wants, for example in our attack scenario S6, to perform a replay 
attack, then it is maybe useful, if the original source (for example, the IP 
address of the car of Alice) is not available and disconnected from Internet 
and/or the mobile ad-hoc networks. If this car is driving or has a permanent 
connection to the Internet, then an attacker would be disabling and 
disconnecting the original source with a denial of service attack (AS5). 
Thereby, the attacker could flood the IP address of the car of Alice (carA.car-
producer1.de) and/or provided services of it. After disabling the Internet or 
mobile ad-hoc network connection, the attacker can perform the replay or 
spoofing attack with a low delectability and controllability. 

- Scenario S7: If the cars have an IP addresses and if they are connected to each 
other via mobile ad-hoc networks and the Internet, then an attacker could send 
malformed packets (AS6), to crash a provided service or the car connection 
itself. If a design or implementation error exists, then the addressed service can 
crash. The result can be that this part of the car software or the addressed 
application does not work anymore and mostly only a reboot can solve the 
occurred problem. Note, that many car components cannot be rebooted during 
a tour on a highway. Additionally to control such an attack is difficult, because 
one specific IP packet might perform this attack. 

- In our attack scenario S8, an attacker can use different existing distribution 
channels for malicious code known from the IT [6]. Thereby, the attacker can 
send the malicious code (AS7) via email or other communication channels to 
the car driver, who runs the code. Or the malicious code is injected into the car 
IT system by exploiting a specific service provided by a car application. If the 
malicious code runs on one or more car components, then, in the worst case, 
the attacker can control many car functions. Thereby, the route of navigation 
system or the user specific control setting can be changed. Additionally, if the 
malicious code focuses on the electronic throttle control, then the attacker can 
remotely increase or decrease the speed of the car, which implies and violates 
safety aspects. Note: if malicious code runs inside of the car IT, then the car IT 
is out of control of the owner.  

- Scenario S9: One of the well known and not IP based attack focuses on the 
humans by social engineering them to get unauthorized information like a 
password. It is distinguish between computer and human based social 
engineering. By computer based social engineering, the attacker uses 
computers with their potentials like, for example, sending an email where the 
users open or run the attachment. If it is human based, then the attacker talks 
with the user by playing a boss or having an order from the boss. If the social 
engineering attacks success, then, depending on the gained information, the 
attacker has full or partly access to the system and control the complete 
information gain (A1-A5).  

Note, that the introduced hypothetical scenarios are exemplary selected to show 
and motivate the necessity of security protection mechanisms. In addition, these 
scenarios can be enhanced by other known attacking techniques [4] or combined 
together to be more efficient for the potential attacker to address one or more 
selected security aspects. The following Table 2 summarizes the exemplarily 
selected and simulated attack scenarios and discusses their impact on the five 
security aspects.  
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Table 2. Security Analysis of the Hypothetical Attack Scenarios 

 
Confidentiality Integrity Authenticity Non-

Repudiability 
Availability 

S1 

Is not violated, 
because the 
information is 
public for all. 

The retrieved 
message is not 
proved and 
therefore unknown, 
if it is changed. 

Is not verified and 
unknown, who was 
the sender of the 
message. 

Is not given. Is not addressed. 

S2 

Is violated and 
private or personal 
data should be kept 
secret or protected.  

It is unknown, 
whether the 
retrieved speed is 
correct or not. 

It is not proven, 
whether Alice was 
the sender of the 
message or not. 

Alice can dispute, 
that she drove too
fast and it is not 
provable. 

Is not addressed. 

S3 

Is not given, 
because the 
attacker reads all 
transmitted data. 

Is violated, because 
the attacker 
modified the 
response. 

Is not given, 
because Alice 
seems to get the 
data from her 
insurance.  

It is hard to prove 
that Alice sent the 
retrieved data. 

Is not addressed. 

S4 

Is not addressed, 
because the 
message is public. 

Is not proved and 
can be changed by 
anybody. 

Is not addressed 
and it is unknown, 
whether the 
message was send 
by Alice or not. 

It is hard to prove 
that Alice sent the 
retrieved data. 

Is not addressed. 

S5 

Is important to 
protect the owner 
for abuse its 
information. 

Should be proved, 
to guarantee to 
required duration 
time. 

Is very important 
to charge the right 
driver. 

Must be given, to 
prove the required 
car insurance. 

Is not addressed. 

S6 

Is not addressed.  Is not addressed. Is not addressed. Is not addressed. Whether violated 
and Alice cannot 
use the provided 
services. 

S7 

Is not addressed.  Is not addressed. It is hard to verify 
the right sender 
whether the 
malformed IP 
packet. 

Is not addressed. It violated and 
Alice cannot use 
the provided 
services. 

 
Confidentiality Integrity Authenticity Non-

Repudiability 
Availability 

S8 

If the malicious 
code runs on the 
car IT, then this 
security aspect is 
broken and the 
attacker can read 
everything. 

If the malicious 
code runs on the 
car IT, then this 
security aspect is 
broken and the 
attacker can 
modify everything.

If the malicious 
code runs on the car 
IT, then this 
security aspect is 
broken and the 
attacker can change 
the source and 
destination IPs. 

If the malicious 
code runs on the 
car IT, then this 
security aspect is 
broken. 

Depending on the 
payload function, 
services can be 
disabled. 

S9 

If the attack is 
successful, then 
this security aspect 
is broken by telling 
the attacker the 
requested 
information. 

If the attack is 
successful, then 
this security aspect 
is broken by
changing 
information. 

If the attack is 
successful, then 
this security aspect 
is broken because 
of the attack itself. 

If the attack is 
successful, then 
this security aspect 
is broken by the 
user doing 
something for the 
attacker. 

If the user disables 
services called 
upon by the 
attacker, then it is 
violated. 
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Table 3. Safety Analysis of the Hypothetical Attack Scenarios 

 SIL Association 

S1 

It is difficult to control S1 and without any security mechanisms, the detection of such an 
attack is difficult. Alice seems to be decreasing the speed. Because the integrity and 
authenticity of the message was not proven. Therefore, the controllability is associated to the 
SIL level 3. 

S2 
The sniffing of information in a wireless mobile ad-hoc network is easy and therefore, it is not 
controllable, who receives and reads the information. This is the reason, why this attack 
scenario is associated with the highest SIL level 5.  

S3 

The communication between Alice and her insurance can be protected with existing 
cryptographic mechanisms. Therefore, existing mechanisms are currently available to control 
the access by unauthorized reading, writing and modifying of the information. If the security 
mechanisms are implemented and configured, then we can associate this attack scenario to the 
SIL level 1.  

S4 
If this attack is successful, then Chris does not know that the sent message is interrupted by an 
attacker. Therefore, it is difficult for him, to control such an attack which is the reason that this 
attack scenario is assigned to the SIL level 4. 

S5 

Currently, there are different mechanisms available (like timestamp or unique packet ID) to 
identify a replay attack. If such mechanisms are designed, implemented and configured for 
this car scenario, then the attack fails. Otherwise, the attacker can perform this attack 
successful. It means that security mechanisms must be designed and implemented in car 
environment to prevent such an attack. Therefore, the SIL level is assigned to level 1. 

S6 
To control and prevent a denial of service attack based on flooding is difficult, if the attacker 
has at least a higher bandwidth. Furthermore, the source of the attacker is not known always to 
block and control him. The association of this attack scenario to the SIL level is 2. 

S7 
This attack scenario is successful, if an implementation error exists, which is used by the 
attacker. If the attacker knows it, then it is hard to control it, because only one IP packed is 
required for the attack itself. Therefore, it is hard to control and associated to the SIL level 3. 

S8 

This form of an attack provides the attacker many possibilities, which reach up deactivate 
existing security mechanisms and to remote control the infected system. If this occurs, then 
the system is hard to be controlled by the owner. This is the reason, why it is associated to the 
SIL level 4. 

S9 

This form of attack does not focus on the IT system itself. Therefore, it is hard for technical 
security mechanisms to prevent such an attack. The human is the weak point of the system and 
if the human is social engineered, then the car IT system cannot be only controlled by the 
owner. Therefore, this attack scenario is associated to the SIL level 4. 

The introduced hypothetical attack scenarios do not only violate the security 
aspects. For cars, the safety and its implication on human health is important and 
discussed in the following. Therefore, the safety integrity levels are used with the 
attack scenarios and presented in Table 3. Note that we only focus on the 
controllability of the threat. The failure rate depends on the potential attacker and not 
on randomly occurred events. Furthermore, the main affected safety violates are 
discussed to introduce the controllability of them and possible combinations are 
neglected. 

Note, that the safety levels are defined for potential attackers. Thereby, for 3 
attacks, we defined the highest SIL level, because the owner does not control the car 
IT system anymore. Furthermore, exiting definitions of safety levels should be 
redefined for cars, because of other environments, requirements and its mobility. Note 
also, that the possibility to violate humans is much easier with cars, than with 
classical IT systems and networks.  
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From the introduced attacker scenarios for cars IT systems derived from classical 
IT systems and networks, the risk and threat increased and provides attacker more 
points of attacks. Because of it, we want to motivate to investigate to focus more on 
security aspects for common design criteria’s for car components and car IT systems. 
Furthermore, the designed security mechanisms should be implemented and 
configured for car IT systems to protect them from potential attackers.  

4   Practical Risk Assessments on a Selected Example 

In this section we present one first simulation for the potential attack S8 on the IT 
security of an automotive system, making use of malicious code (AS7) that employs 
the attacking strategies introduced in chapter 2, namely, the basic attack principles A1 
(read) and A4 (create/spoof) as well as the attack scenario AS4 (replay attack). Again, 
the violated security aspects are pointed out. Thereby, we present potential attacks on 
today’s cars using the CAN bus and we simulate the scenario for S8. Note that cars 
produced today will be still found on roads in 15 years. An upgrade in a car service 
station in, for example, 15 years could add many car functions (like car-2-car 
communication and so on) by adding the IP protocol based communication. These 
features can increase the security threats as introduced as follows. 

In our scenario S8, the attacker can attack the five security aspects, summarized 
within Table 4 using the basic attack principles A1 and A4 as well as the attack 
scenario AS4.  

Table 4. Scenario S8 with its Basic Attack Principles and Attack Scenario Addressing the 
Security Aspects 

 Confidentiality Integrity Authenticity Non-Repudiability Availability 
S8 A1 A4 A4 AS4 A4 

 
As basis for our simulation to study potential CAN bus attacks for A1, A4 and AS4 

to perform S8 we use the software product CANoe from Vector Informatik [8], which 
is widely used throughout the automotive industry for development, testing and 
diagnosis of embedded automotive systems. It provides hardware interfaces to 
common automotive bus systems (e.g. CAN, LIN, MOST, FlexRay), which allows 
bus traffic analysis and the coupling of simulated and physical devices. 

The standard installation provides a few automotive demo-environments, which 
represent a subset of a simplified car’s automotive components. For our test setup we 
chose a demo environment that consists of two CAN networks (powertrain and 
comfort subnets). Both are connected together via a gateway that passes some 
messages from one subnet into the other, e.g. to provide the main display in the 
comfort bus with its needed input data from the powertrain subnet. 

As exemplary target for the simulated basic attacks A1 and A4 we chose the 
electric window lift triggered by a corresponding switch within a console to perform 
the attack scenario AS4, which is used for our scenario S8.  

Under normal operation, the ECU for these switches periodically (every 20 
milliseconds) sends its status onto the comfort bus in form of a 32 bit data telegram, 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Future Perspectives: The Car and Its IP-Address 51 

 

which contains the position of the window switches as bit flags. For the driver 
window, “open” and “close” are represented as bit 26 and 27 (the other bits are 
responsible e.g. for adjusting the horizontal and vertical position of each mirror). If 
the responsible electronic control unit receives such a data telegram from the console 
(Message-ID 416) it reacts corresponding to these bit flags contained and trigger the 
window-lift motor according to the direction specified by the received data telegram 
from the console. For example, a data telegram sent while pushing the “open” switch 
for the driver window has the 26th bit set and pressing the close button results in a set 
bit in position 27 of a 32 bit datagram. 

Based on this test setup, we conceived and simulated S8 as an attack on the electric 
window lift. To infiltrate malicious code (AS7) the attacker prepares a manipulated 
email attachment and transmits this email via IP based car-to-infrastructure (C2I) 
communication to Alice (alice@carA.producer1.de). By convincing Alice to read the 
email and execute the attachment by using known computer based social engineering 
approaches or by exploiting some security vulnerabilities in the ECU software the 
malicious code gets started in the automotive IT system. If the infected ECU is also 
connected to the internal CAN bus or has even gateway functionality, the malicious 
code from the email can also gain access to internal bus systems of the car, which 
might still be today’s automotive bus systems like CAN in the old cars of tomorrow. 
To achieve the aim of this attack, the attacker combines code for A1 and A4 in two 
parts of the attack: 

Part 1 (A1): The malicious code (AS7) reads/sniffs (A1) messages (Message-ID 273) 
from the internal car communication containing information about the current speed 
of carA.producer1.de. The sniffing is repeated until some condition (in this case: the 
car exceeds 200 km/h) is fulfilled, which leads to activation of second part (A4, see 
below). During this first step, this and other sniffed sensitive information could also 
be transmitted back to the attacker via C2C/C2I IP communication. 
Part 2 (A4): In the second part of the payload function, the attack scenario A4 is 
performed by creating and spoofing the data telegram for opening the driver’s 
window in a loop. The content of the data telegrams to be generated is hard coded in 
the malicious code and might got acquired by the attacker prior the attack by reading 
(A1) such a message from another car of that series or by looking it up in a 
specification. 

Combining A1 (read) as well as A4 (create/spoof) represents a replay attack (AS4). 
By enforcing the opening of the driver window at high speed of 200 km/h, the 

attacker might have the intention to harm or at least frighten Alice. Obviously she 
would get distracted a lot which poses clear safety implications (at least SIL 1). 

In our simulation (implemented by adding 16 additional lines of CAPL code, a C-
like programming language within the CANoe environment) we found that during this 
replay attack the enforced opening of the window cannot even be stopped by manual 
counter steering via pressing the close-button. 

By using another logical starting condition like a timer for example, the attacker 
might also intend to steal items out of Alice’s car (carA.producer1.de), for example, 
parts of the entertainment system, by opening the window at an appropriate point in 
time, for example, when her car is usually placed at a public parking lot. 

With respect to the violated security aspects, the practical implementation of S8 
can be classified as shown in Table 5. 
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Table 5. Security Analysis of the Exemplary Practical Attack Scenario 

 Confidentiality Integrity Authenticity Non-Repudiability Availability 

S8 

The code reads out 
the current speed 
which is sensitive 
information telling 
about the drivers 
habits 
 

(A1) 

The integrity of the 
replayed messages 
is not violated but 
the integrity of the 
entire system is
changed by 
injecting packets. 

(A4) 

The authenticity of 
the replayed 
messages is 
violated since they 
do not stem from 
the door’s console 
 

(A4) 

After the spoofing 
attack, it is hard to 
prove for Alice, 
that the window
opened without her
trigger  
 

(AS4) 

The availability of 
the real window 
switch is not given 
while it is blocked 
 
 
 

(A4) 

 
Using the described combination of the basic attacks read (A1) and create/spoof 

(A4) which forms a replay attack (AS4), we simulated the attack scenario S8 on the 
given environment using existing automotive development and simulation software. 
The results of this first simulated attack show that there is an increasing importance of 
requirements and measures for IT security in embedded automotive application 
domains. 

5   Conclusion 

In this paper, we summarize existing security aspects and safety levels for a 
hypothetical application scenario the IP-enabled car. Based on Internet Protocol (IP) 
based communication, selected threats and vulnerabilities are introduced and 
discussed on example attack scenarios. Derived from classical IP based attacks, the 
assumption is done to map them to car IT systems in near future. Therefore, 
hypothetical risk assessments on selected examples are introduced and their 
implication on the security and safety are discussed. Our goal for this paper is the 
simulation of the potential attack behavior for Internet and mobile ad-hoc network 
enabled automotive protocol attack performance and the impact to security and safety 
is investigated for selected examples. If the IP protocol is considered in future 
automotive technology, our work should motivate to design, implement and configure 
methods of defense for future cars IT systems from the beginning of the developing 
process. To point out the need for such IT security measures in tomorrows automotive 
systems, we have simulated an example attack scenario practically on today’s 
technology using a wide spread automotive development and simulation software. 
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Abstract. The aim of this paper is to provide qualitative models characterizing 
interdependencies related failures of two critical infrastructures: the electricity 
infrastructure and the associated information infrastructure. The interdependen-
cies of these two infrastructures are increasing due to a growing connection of 
the power grid networks to the global information infrastructure, as a conse-
quence of market deregulation and opening. These interdependencies increase 
the risk of failures. We focus on cascading, escalating and common-cause fail-
ures, which correspond to the main causes of failures due to interdependencies. 
We address failures in the electricity infrastructure, in combination with acci-
dental failures in the information infrastructure, then we show briefly how ma-
licious attacks in the information infrastructure can be addressed. 

1   Introduction 

In the past decades, the electric power grid experienced several severe failures that 
affected the power supply to millions of customers. The most recent one occurred in 
November 2006 in Western Europe when a shutdown of a high-voltage line in Ger-
many resulted in massive power failures in France and Italy as well as in parts of 
Spain, Portugal, the Netherlands, Belgium and Austria, and even extended as far as 
Morocco. About ten million customers were affected by this failure. Similar major 
blackouts with even more severe consequences have occurred in summer 2003 in the 
United States, in Canada and in Italy [1, 2]. These events highlight the vulnerability of 
the electric grid infrastructures and their interdependencies. The large geographic 
extension of power failures effects is related to i) the high interconnectivity of power 
grid transmission and distribution infrastructures and to ii) the multiple interdepend-
encies existing between these infrastructures and the information infrastructures sup-
porting the control, the monitoring, the maintenance and the exploitation of power 
supply systems. An interdependency is a bidirectional relationship between two infra-
structures through which the state of each infrastructure influences or is correlated to 
the state of the other. Clearly there is a need to analyze and model critical infrastruc-
tures in the presence of interdependencies in order to understand i) how such interde-
pendencies may contribute to the occurrence of large outages and ii) how to reduce 
their impact.  

This paper focuses on two interdependent infrastructures: the electric power infra-
structure and the information infrastructures supporting management, control and 
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maintenance functionality. More specifically, it addresses modelling and analysis of 
interdependency-related failures between these infrastructures.  

We concentrate on cascading, escalating and common-cause failures, which corre-
spond to the main causes of interdependency-related failures. We model the infra-
structures globally, not explicitly modelling their components. The models presented 
are qualitative ones. They describe scenarios that are likely to take place when fail-
ures occur. The models are built based on assumptions related to the behaviour of the 
infrastructures as resulting from their mutual interdependencies.  

In the remainder of this paper, we will first address failures in the electricity infra-
structure and accidental failures in the information infrastructure, considering the 
three classes of interdependencies, then we will illustrate briefly how malicious at-
tacks of information infrastructures can be addressed. 

Section 2 presents the background and related work. Sections 3 and 4 are dedicated 
to modelling interdependencies taking into account failures in the information infra-
structure and in the electricity infrastructure. Section 3 addresses accidental failures in 
the information infrastructure while Section 4 addresses malicious attacks. Section 5 
concludes the paper. 

2   Background and Related Work 

Interdependencies increase the vulnerability of the corresponding infrastructures as 
they give rise to multiple error propagation channels from one infrastructure to an-
other that make them more prone to exposure to accidental as well as to malicious 
threats. Consequently the impact of infrastructure components failures and their se-
verity can be exacerbated and are generally much higher and more difficult to foresee, 
compared to failures confined to single infrastructures. As an example, most major 
power grid blackouts that have occurred in the past were initiated by a single event (or 
multiple related events such as a power grid equipment failure that is not properly 
handled by the SCADA, i.e., Supervisory Control And Data Acquisition, system) that 
gradually leads to cascading failures and eventual collapse of the entire system [2]. 

Infrastructure interdependencies can be categorized according to various dimen-
sions in order to facilitate their identification, understanding and analysis. Six dimen-
sions have been identified in [3]. They correspond to: a) the type of interdependencies 
(physical, cyber, geographic, and logical), b) the infrastructure environment (techni-
cal, business, political, legal, etc.), c) the couplings among the infrastructures and 
their effects on their response behaviour (loose or tight, inflexible or adaptive), d) the 
infrastructure characteristics (organisational, operational, temporal, spatial), e) the 
state of operation (normal, stressed, emergency, repair), the degree to which the infra-
structures are coupled, f) the type of failure affecting the infrastructures (common-
cause, cascading, escalating). Other classifications have also been proposed in [4-6, 
29]. In particular, the study reported in [29], based on 12 years public domain failure 
data, provides useful insights about the sources of failures affecting critical infrastruc-
tures, their propagation and their impact on public life, considering in particular the 
interdependencies between the communication and information technology infrastruc-
ture and other critical infrastructures such as electricity, transportation, financial  
services, etc. 
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Referring to the classification of [3], our work addresses the three types of failures 
that are of particular interest when analyzing interdependent infrastructures: i)  cas-
cading failures, ii) escalating failures, and iii) common cause failures. Definitions are 
as follows: 

• Cascading failures occur when a failure in one infrastructure causes the failure of 
one or more component(s) in a second infrastructure. 

• Escalating failures occur when an existing failure in one infrastructure exacerbates 
an independent failure in another infrastructure, increasing its severity or the time 
for recovery and restoration from this failure. 

• Common cause failures occur when two or more infrastructures are affected simul-
taneously because of some common cause. 

It is noteworthy that these classes of failures are not independent; e.g., common-
cause failures can cause cascading failures [7]. 

Among the three relevant types of failures in interdependent infrastructures, the 
modelling of cascading failures has received increasing interest in the past years, in 
particular after the large blackouts of electric power transmission systems in 1996 and 
2003. Several research papers and modelling studies have been published on this topic 
in particular by the Consortium for Electric Reliability Technology Solutions 
(CERTS) in the United-States [8]. A large literature has been dedicated recently to the 
elaboration of analytic or simulation based models that are able to capture the dynam-
ics of cascading failures and blackouts. A brief review of related research addressing 
this topic is given hereafter. A more detailed state-of-the art can be found in [9, 10].  

In [11, 12], the authors present an idealised probabilistic model of cascading fail-
ures called CASCADE that is simple enough to be analytically tractable. It describes 
a general cascading process in which component failures weaken and further load the 
system so that components failures are more likely. This model describes a finite 
number of identical components that fail when their loads exceed a threshold. As 
components fail, the system becomes more loaded, since an amount of load is trans-
ferred to the other components, and cascading failures of further components become 
likely. This cascade model and variants of it have been approximated in [13-15] by a 
Galton-Watson branching process in which failures occur in stages, with each failure 
giving rise to a Poisson distribution of failures at the next stage.  

The models mentioned above do not take into account the characteristics of power 
systems.  An example of a cascading failures model for a power transmission system is 
discussed in [16]. The proposed model represents transmission lines, loads, generators 
and the operating limits on these components. Blackout cascades are essentially instan-
taneous events due to dynamical redistribution of power flows and are triggered by 
probabilistic failures of overloaded lines. In [17] a simulation model is proposed to 
calculate the expected cost of failures, taking into account time-dependent phenomena 
such a cascade tripping of elements due to overloads, malfunction of the protection 
system, potential power system instabilities and weather conditions. Other examples 
emphasizing different aspects of the problem have been proposed e.g., in [18-21], in 
which hidden failures of the protection system are represented. Their approach uses a 
probabilistic model to simulate the incorrect tripping of lines and generators due to 
hidden failures of line or generator protection systems. The distribution of power system 
blackout size is obtained using importance sampling and Monte-Carlo simulation.  
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Recently, new approaches using complex networks theory have been also proposed 
for modelling cascading failures [22-27]. These models are based on the analysis of 
the topology of the network characterizing the system and the evaluation of the resil-
ience of the network to the removal of nodes and arcs, due either to random failures or 
to malicious attacks).  

All the models discussed above adopt a simplified representation of the power sys-
tem, assuming that the overloading of system components eventually leads to the 
collapse of the global system. However, these models do not take into account explic-
itly the complex interactions and interdependencies between the power infrastructure 
and the ICT infrastructures. Moreover, the modelling of escalating failures is not 
addressed. Further work is needed in these directions. This paper presents a prelimi-
nary attempt at filling such gaps.  

3   Accidental Failures in the Information Infrastructure 

Our aim is to model the infrastructures behaviour together, when taking into account 
the impact of accidental failures in the information infrastructure and failures in the 
electricity infrastructure, as well as their effects on both infrastructures. Modelling is 
carried out progressively: 

- First, we model cascading failures by analysing the constraints one infrastructure 
puts on the other one, assuming that the latter was in a working state when an event 
occurs in the other one.  

- Then, we address cascading and escalating failures considering successively: 
- constraints of the information infrastructure on the electricity infrastructure, 
- constraints both ways (of the information infrastructure on the electricity infra-

structure and of the electricity infrastructure on the information infrastructure). 
- Finally, we address common-cause failures. 

For the sake of clarity, and in order to avoid any confusion between the two infra-
structures, we use specialized but similar terms for the two infrastructures states and 
events as indicated by Table 1.  

Table 1. States and events of the infrastructures 

Information Infrastructure Electricity Infrastructure 
i-failure e-failure 

i-restoration e-restoration 

i-working e-working  

Partial i-outage Partial e-outage, e-lost 

i-weakened e-weakened 

3.1   Modelling Cascading Failures 

We first analyse the impact of accidental i-failures on each infrastructure assuming 
that the electricity infrastructure is in an e-working state, then we analyse the impact 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



58 J.-C. Laprie, K. Kanoun, and M. Kaâniche 

of e-failures on each infrastructure assuming that the and information infrastructure is 
in an i-working state, before considering the combined impact of i- and e-failures in 
Section 3.2.  

3.1.1   Impact of Information Infrastructure Failures (i-failures) 
Accidental i-fa-ilures, hardware- or software-induced, affecting the information 
infrastructure can be: 

• Masked (unsignalled) i-failures, leading to latent errors. 
• Signalled i-failures. 

Latent errors can be:  
• Passive (i.e., without any action on the electricity infrastructure), but keeping  

the operators uninformed of possible disruptions occurring in the electricity  
infrastructure. 

• Active, provoking undue configuration changes in the electricity infrastructure. 

After signalled i-failures, the information infrastructure is in a partial i-outage 
state: the variety of functions and components of the information infrastructure, and 
its essential character of large network make unlikely total outage. Latent errors can 
accumulate. Signalled i-failures may take place when the information infrastructure is 
in latent error states. When the information infrastructure is in a partial i-outage state, 
i-restoration is necessary to bring it back to an i-working state. 

Fig. 1-a gives the state machine model of the information infrastructure taking into 
account its own failures. It is noteworthy that all states are presented by several boxes, 
meaning that a state corresponds in reality to a group of different states that are con-
sidered as equivalent with respect to the classification given in Table 1. For example 
all states with only one busbar isolated can be considered as equivalent irrespective of 
which busbar is isolated. 

We assume that an i-failure puts some constraints on the electricity infrastructure 
(i.e., cascading failure), leading to a weakened electricity infrastructure (e.g., with a 
lower performance, unduly isolations, or unnecessary off-line trips of production 
plants or of transmission lines).  

From an e-weakened state, a configuration restoration leads the electricity infra-
structure back into a working state, because no e-failures occurred in the electricity 
infrastructure. Accumulation of untimely configuration changes, may lead to e-lost 
state (i.e., a blackout state), from which an e-restoration is required to bring back the 
electricity infrastructure into an e-working state. Fig. 1-b shows the constraint that the 
information infrastructure puts on the electricity infrastructure when the latter is in an 
e-working state.  

3.1.2   Impact of Electricity Infrastructure Failures (e-failures) 
We consider that the occurrence of e-failures leads the electricity infrastructure to be in 
a partial e-outage state, unless propagation within the infrastructure leads to loosing its 
control (e.g., a blackout of the power grid), because of an i-failure (this latter case 
corresponds to escalating events that will be covered in the next section). Fig. 2-a gives 
the state machine model of the electricity infrastructure taking into account its own 
failures. 
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Fig. 1. Impact of i-failures on infrastructures behaviour 
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Fig. 2. Impact of e-failures on infrastructures behaviour 

Also e-failures may lead the information infrastructure to an i-weakened state in 
which parts of the information infrastructure can no longer implement their functions, 
although they are not failed, due to constraints originating from the failure of the 
electricity infrastructure. Fig. 2-b shows the constraint that the electricity infrastruc-
ture puts on the information infrastructure assuming that the latter is in an i-working 
state.  

Tables 2 and 3 summarise the states and events of each infrastructure, taking into 
account cascading events, as described above.  

3.2   Modelling Cascading and Escalating Failures 

The global state machine model of the two infrastructures is built progressively: 

• Considering, in a first step, only the constraints of the information infrastructure on 
the electricity infrastructure. 

• Considering constraints of each infrastructure on the other. 
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Table 2. States and events of the information infrastructure 

Events
Signalled i-

failure
Detected i-failure

Masked i-failure Undetected i-failure
i-restotation Action for bringing back the information infrastructure in its normal

functioning after i-failure(s) occurred
States

i-working The information infrastructure ensures normal control of the
electricity infrastructure

Passive latent
error

Parts of the information infrastructure have an i-failure, which
prevents monitoring of the electricity infrastructure: e-failures may
remain unnoticed

Active latent error Parts of the information infrastructure have an i-failure, that may lead
to unnecessary, and unnoticed configuration changes

Partial i-outage Parts of the information infrastructure have knowingly an i-failure.
Partial i-outage is assumed: the variety of functions and of the
components of the infrastructure, and its essential character of large
network make unlikely total outage

i-weakened Parts of the information infrastructure can no longer implement their
functions, although they do not have an e-failure, due to constraints
originating from e-failures, e.g., shortage of electricity supply of
unprotected parts.  

Table 3. States and events of the electricity infrastructure 

Events
e-failure Malfunctioning of elements of the power grid: production plants,

transformers, transmission lines, breakers, etc.
e-restoration Actions for bringing back the electricity infrastructure in its normal

functioning after e-failure(s) occurred. Typically, e-restoration is a
sequence of configuration change(s), repair(s), configuration
restoration(s)

e-configuration
change

Change of configuration of the power grid that are not immediate
consequences of e-failures, e.g., off-line trips of production plants or of
transmission lines

e-configuration
restoration

Act of bringing back the electricity infrastructure in its initial
configuration, when configuration changes have taken place

States
e-working Electricity production, transmission and distribution are ensured in

normal conditions
Partial e-outage Due to e-failure(s), electricity production, transmission and distribution

are no longer ensured in normal conditions, they are however somehow
ensured, in degraded conditions

e-lost Propagation of e-failures within the electricity infrastructure led to
loosing its control, i.e., a blackout occurred.

e-weakened Electricity production, transmission and distribution are no longer
ensured in normal conditions, due to i-failure(s) of the information
infrastructure that constrain the functioning of the electricity
infrastructure, although no e-failure occurred in the latter. The
capability of the electricity infrastructure is degraded: lower
performance, configuration changes, possible manual control, etc.  
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Fig. 3 gives a state machine model of the infrastructures, taking into account, only 
the constraints of the information infrastructure on the electricity infrastructure. The 
states are described in terms of the statuses of both infrastructures. Both cascading 
failures (states 3, 4) and escalating ones are evidenced, with a distinction of conse-
quences of the latter in terms of time to restoration (state 6) and of severity (state 7). 
Dependency of the electricity infrastructure upon the information infrastructure is 
illustrated by the need for both i- and e-restoration from states 6 and 7.  

A noteworthy example of transitions from states 1 to 2, and from 2 to 7 relates to 
the August 2003 blackout in the USA and Canada: the failure of the monitoring soft-
ware was one of the immediate causes of the blackout, as it prevented confining the 
electrical line incident, before its propagation across the power grid [1].  

 

Fig. 3. State Machine taking into account constraints of the information infrastructure on the 
electricity infrastructure 

A Petri net representation of the Fig. 3 model is given by Fig. 4 which enables to 
evidence the cascading and escalating mechanisms. Such mechanisms are, in Petri net 
terms, synchronizations between the individual events of the infrastructures. Table 4 
gives the correspondence between the states and events of Figures 3 and 4. 

This Petri net is deliberately kept simple. In particular, it does not distinguish the 
individual states within a group of states represented by several boxes in Fig. 3. For 
example, state 2 of Fig. 3 that represents in reality a set of states is represented by a 
single state in the Petri net of Fig. 4.  
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Fig. 4. Example of a high level Petri net associated to the model of Figure 3 

Table 4. Correspondence between states and events of Fig. 3 and Fig. 4 

States in 
State

Machine

Markings in the 
Petri net

1 P1, P5
2 P2,P5
3 P4,P5,P11
4 P3,P5,P8
5 P1,P6
6 P7
7 P9

Transitions in State Machine Transitions in the 
Petri net 

1  2 T1
1  3 T4 - 1
1  4 T2 - 3
1  5 T7 - 10
2  4 T3 - 2
2  7 T7 - 10 - 6
3  4 T5 - 9

3  7 - configuration change T8
3  7 - e-failure T7 - 10 - 7

4  1 T6
4  6 T7 - 4
5  1 T9
5  6 T2 - 5
5  7 T1 - 6 or T4 - 8
6  1 T10
7  1 T11  

Fig. 5 gives a state machine model of the infrastructures, taking into account the con-
straints of the electricity infrastructure on the information infrastructure in addition to 
those of the information infrastructure on the electricity infrastructure already consid-
ered in Fig. 3. In addition, Fig. 5 assumes possible accumulation of e-failures from 
states 5 to 7 and from the escalation restoration state 6 to the escalation severity state 8.  
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Fig. 5. Model of the two infrastructures when considering accidental failures 

3.3   Modelling Common-Cause Failures 

Figure 6 gives a model with respect to common-cause failures that would occur when 
the infrastructures are in normal operation, bringing the infrastructures into states 6 or 
8 of Figure 5, i.e., to escalation. Should such failures occur in other states of the infra-
structures of Figure 5 model, they would also lead to states 6 or 8. 
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Fig. 6. Common-cause failures model 

Considering common-cause failures does not introduce additional states, they how-
ever add direct transitions from already existing states that do not exist when consid-
ering only cascading and escalating failures. The states of the resulting model become 
almost totally interconnected.  
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4   Malicious Attacks of the Information Infrastructure 

We consider malicious attacks of the information infrastructure and their conse-
quences on the electricity infrastructure. Due to the very nature of attacks, a distinc-
tion has to be performed for both infrastructures between their real status and their 
apparent status. For the electricity infrastructure, the apparent status is as reported by 
the information infrastructure. 

 

Attacks fall into two classes:  
• Deceptive attacks that are provoking unperceived malfunctions, thus similar to the 

latent errors previously considered,  
• Perceptible attacks creating detected damages. 

 
Deceptive attacks can be:  

- Passive (i.e., without any direct action on the electricity infrastructure).  
- Active, provoking configuration changes in the electricity infrastructure. 

 
Fig. 7 gives the state machine model of the infrastructures. This model and the pre-

vious one are syntactically identical: they differ by the semantics of the states and of 
the inter-state transitions. Let us consider for example states 2 and 3. 

In state 2, the effects of the passive deceptive attack are: i) the information infra-
structure looks like working while it is in a partial i-outage state due to the attack, 
ii) it informs wrongly the operator that the electricity infrastructure is in partial i-
outage, and as consequence iii) the operator performs some configuration changes in 
the electricity infrastructure leading it to a i-weakened state. Accumulation of con-
figuration changes by the operator may lead the electricity infrastructure into e-lost 
state.  

In state 3, the effects of the active deceptive attack are: i) the information infra-
structure looks like working while it is in a partial i-outage state due to the attack, 
ii) it performs some configuration changes in the electricity infrastructure leading it to 
a weakened state without informing the operator that the electricity infrastructure is in 
partial e-outage, for whom the electricity infrastructure appears if it were working. 
Accumulation of configuration changes by the information infrastructure may lead the 
electricity infrastructure into a e-lost state. 

The difference between states 2 and 3 is that in state 2 the operator has made some 
actions on the electricity infrastructure and is aware of the e-weakened state, while in 
state 3 the operator is not aware of the actions performed by the information infra-
structure on the electricity infrastructure.  

After detection of the attack, the apparent states of the infrastructures become iden-
tical to the real ones (state 4), in which i-restoration and configuration restoration are 
necessary to bring back the infrastructures to their working states. 

States 5, 6 and 7 are very similar respectively to states 5, 6 and 7 of Fig. 5, except 
that in state 6 the information infrastructure is in a partial i-outage state following a 
perceptive attack in Fig. 7 and following a signalled i-failure in Fig. 5. 

In Fig. 7, state 8 corresponds to e-lost state but the operator is not aware, he/she 
has been informed wrongly by the partial i-outage of information infrastructure that it 
is in a partial e-outage state. 
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Fig. 7. Model of the two infrastructures when considering malicious attacks 

5   Conclusion 

In this paper we have introduced qualitative models allowing the description and the 
analysis of the behaviour of the information and electricity infrastructures taking into 
account the effect of failures of each infrastructure on the other one. These models 
describe, at a high level, scenarios that may occur when failures occur and the rela-
tionship between the states of the two infrastructures.  

We have presented different models when considering accidental failures in the in-
formation infrastructure and when accounting for malicious attacks. Currently we are 
investigating a unified model for taking into account both classes of failures of the 
information infrastructure.  

The high level models developed in this paper are to be refined to evaluate quantita-
tive measures characterizing the impact of the interdependency-related failures on the 
resilience of the electricity and information infrastructures, with respect to the occur-
rence of critical outages and blackouts. In particular, in parallel to this work, within the 
CRUTIAL project, preliminary investigations have been carried out in order to develop 
a hierarchical modelling framework aimed at the detailed modelling of the electricity 
and information infrastructures taking into account their internal structure, and acciden-
tal failures [28]. When considering accidental failures, modelling techniques such as 
stochastic Petri nets or stochastic activity networks, complemented by data collected 
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from observation of the two infrastructures (or based on more general data, see e.g., 
[29]) are used. Consideration of malicious attacks raises some difficulties and chal-
lenges. Indeed, the very definition of security measures and evaluation has been, and is 
still, a research topic (see e.g., [30, 31]). Future work will be focussed on the definition 
of an integrated modelling approach that is well suited to take into account the com-
bined impact of accidental as well as  malicious faults. 
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Abstract. After the 911 terrorist attacks, the American government thoroughly 
investigated the vulnerabilities of infrastructure environment and found that the 
lack of security protection of most automated control systems is a vulnerable 
point. In order to ensure security in control systems, it is urgent to investigate 
the issue of potential malicious code, especially that made by insiders. This 
paper first discusses the undecidability of identifying all kinds of malicious 
code on control systems. However, effort to analyzing malicious code pays 
since it may increase the difficulty of insider attacks and improve the safety and 
security of the system. This paper then classifies malicious codes based on 
control system characteristics. The potential malicious code classifications 
include time-dependent, data-dependent, behavior-dependent, input-dependent, 
violation of a certain theorem, and so on. Finally, the paper presents possible 
approaches to prevention and detection of malicious code on control systems.  

Keywords: control systems security, malicious code classification, 
undecidability. 

1   Introduction 

Since the 911 terrorist attacks in 2001, many critical infrastructure vulnerabilities are 
revealed. The American government has thoroughly investigated the infrastructure 
environment and found that the automated control system security is a weakness 
point. Control systems may have many security vulnerabilities, and thus, they can be 
attacked easily by terrorists. Moreover, once the terrorist attack happens, it will lead 
to a serious consequence. 

The reasons why control systems have security weakness may be explained below. 
First, a control system usually executes in a closed-environment. It is difficult to 
intrude the independent network of a control system form outside. Second, if someone 
wants to take malicious actions, he or she must possess the domain knowledge to 
operate the control system. Therefore, compared to the security of information 
system, the control system security has been neglected in a long time. However, the 
911 terrorist attacks show that the terrorist may resort to every conceivable means to 
achieve their goals.  

During these years, many critical security events on infrastructures have happened 
[1,2,3,6,7]. The control system programming of Inalina nuclear power-plant in 
Lithuanian [1], was embedded the logic bomb by an insider who had a grievance 
against the government. Thus, it can be seen that the malicious code written by an 
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insider may cause disastrous damages. Therefore, the detection of malicious code on 
control systems is an important issue which needs to be resolved immediately. 

In this paper, we will first prove that to develop a malicious code detection 
program is undicidable. However, effort to analyzing malicious code pays since it 
may increase the difficulty of insider attacks. Then, our research focuses on the 
control system malicious code classification and their prevention and detection 
methods. There are many differences between control systems and general business 
systems. The control system emphasizes the real-time implementation, and operates 
with feedback loops, sensor inputs, actuator actions, and operator commands to 
execute the operation. Thus, the potential malicious programs on control systems are 
different from those on other systems [5,8]. 

The rest of the paper is organized as follows. Background will be briefly described 
first in Section 2. Section 3 presents undecidability of malicious code detection, 
followed by the malicious code classification as well as their prevention and detection 
methods. Finally, future work is given in Section 4. 

2   Related Background 

The research on malicious code classification includes McGraw [5] and R. W. Lo et 
al. [8]. R. W. Lo et al. [8] defined tell-tale signs and used them to detect the malicious 
code by program slicing  and data-flow technique. However, all of the research on 
malicious code classification deals with general programming code. It seems that 
there is no research so far to classify malicious code specifically for control systems. 
Thus, differing from these studies, our research first focuses on control system 
malicious code classification. 

According to the U.S. Secret Service and CERT Coordination Center/SEI statistics 
[9,10], the insider threat can lead to serious damages. They show that the insider 
threat can result in powerful attacks and severe loss. Thus, the insider attack 
consequence can not be neglected. So, to prevent the insider attack will be important 
research for control systems security. 

3   Our Malicious Code Classifications on Control Systems 

3.1   Undecidable Problem 

To develop a universal program to detect and prevent malicious code on control 
systems is desirable. However, this section will prove that the general malicious code 
program does not exist. We assume that program Detect_Malware(p,x) detects 
whether a program p executes malicious code when running on an arbitrary data x. 
Now, we consider a new program M(x) as indicated below: 
 

 

 

M(x){ 
   If (not Detect_Malware(x,x))= TRUE then 
      malicious code 
} 
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We may infer as follows:  

1. Malicious code is executed when M runs on x iff not Detect_Malware(x,x)= 
TRUE (according to the definition of M) 

2. If malicious code is executed when M runs on x, then  
Detect_Malware(M,x) = true (according to the definition of Detect_Malware) 

3. Since x is an arbitrary input, it can be replaced by M. For x representing the 
coded representation of M, we obtain the contradiction 
Detect_Malware(M,M) = not Detect_Malware(M,M). 

By this contradiction the original assumption on the existence of  
Detect_Malware can be proven to be an undecidable problem.  

It can be seen that to develop the omnipotent program which can detect all kinds of 
malicious code written by insiders is impossible. In other words, to define complete 
malicious code classifications and find their detection methods is an extremely 
difficult research. However, it is very important. Such research may increase the 
difficulty of insider attacks and improve the safety and security of the system. In the 
next section based on control system properties, we develop the malicious code 
classifications as well as their potential prevention and detection methods. 

3.2   Malicious Code Classifications 

The malicious code classifications are widely investigated on general business 
systems. However, control system security has been neglected for a long time. 
Potential insider attacks and vulnerabilities of control systems must be identified. In 
order to ensure the control system code security, the malicious program issue needs to 
be investigated. For a control system, a single malicious action may not cause serious 
hazards. It always takes two or more instances of different types of malicious code to 
lead to a serious attack. In this section, we will analyze potential malicious code based 
on control system characteristics. The following distinguishing features of control 
systems are identified first: 1. Real-time implement action, 2. Feedback loop, 
3.Sensor inputs, 4. Actuator actions, 5.Keeping stable state, 6. Require sequential 
control, 7.Involved with operator. 

According to the above mentioned characteristics and existing research, we 
identified the following potential malicious code classifications for control systems. 

(1) Time-dependent 
Control systems always emphasize real-time operations. Hence, the timing-
related problems are critical for them. 
a. Time-bomb: the meaning of a time-bomb is that the malicious code is 

triggered at a certain time. 
b. Early or delayed message/action: in generally, a message or an action 

directly influences the actual operations. An early or a delayed 
message/action will change the sequential operation of the control system. 
Thus, to keep the right control sequences is important.  

c. Race condition/Synchronization: a race condition occurs when multiple 
processes access and manipulate the same data concurrently, and the 
outcome of the execution depends on the particular order in which the access 
takes place. 
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(2) Data-dependent (value-related) 
Some of the control system operations depend on data setting. For example, for a 
car cruise control system, the speed set-point will influence the safety of a 
vehicle.  The malicious code may change the critical data, and cause terrible 
damages. 
a. Display inconsistency: the distances between the plants and the control room 

are always very far. Therefore, the monitor in the control room is a key 
reference basis to the operator. Once the malicious code counterfeits the 
actual result, it will confuse the operator to perform right actions. 

b. Change alert set-point: the control systems include several critical alert set-
points. The malicious code may change that setting to invalidate the alert. 

c. Sending/receiving fake data: on control systems the action depends on the 
sending/receiving data. Once the sensor and actuator send or receive the fake 
data, it would affect the proper actions. 

d. Getting fake feedback data: the control system may be open loop systems or 
closed loop systems. Thus, to get the fake feedback data would cause the 
system in an unstable state.    

e. Independent/isolated data: the anomalous data flow may include the 
potential malicious actions, such as use of undefined variables, use of extra 
data. 

(3) Behavior-dependent (action-related) 
Actuator actions affect the actual execution. Thus, the malicious actions will 
destroy the normal operation. Such actions include adding extra malicious 
actions, ignoring critical actions, executing wrong actions and mixing up 
execution sequences.  

(4) Input-dependent 
The malicious action may be triggered when certain inputs are encountered. The 
insider may add abnormal actions in the program triggered by the particular 
inputs. 

(5) Violation of a certain theorem/rule/relation/invariant 
A sound control system should always keep the system in a stable state. The 
system can not violate certain theorems, such as conservation of mass, the law of 
the conservation of energy, and so on. 

(6) Deviation errors 
In the control system, the damages may not occur immediately, but they may 
result from accumulated deviation actions over a long period. 

In addition to these categories, we may also include results from existing research on 
malicious code classification. Thus, isolated codes, change of privilege/authentication, 
anomalous file access, and access of text segment as data are also considered.  

3.3   Prevention and Detection Methods 

In the above section, we have shown that it is not feasible to develop a general 
malicious code detection program. However, in order to alleviate the damages from 
the malicious code. We proposed offering different prevention and detection methods 
at software developing stages. First, in the analysis and design stages of software 
development, adequate constraints can be added to the system input and output data. 
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The constraints data may consist of safety range, type, unit, exception handling and so 
on. Constraints [4] keep systems in a stable and safety state, and thus, avoid 
unnecessary hazards. Furthermore, dynamic monitors can be used to check whether 
constraints are violated at run time. Consequently, the malicious code of the Data-
dependent category can be prevented.  

Next, in order to find out malicious code from source code, we suggest that 
program slicing can be used first to extract related data, specified commands or 
timing-related programming fragments. After getting the fragments, reviewers can 
judge whether the extracted parts are suspicious with malicious code. When this 
method is used, the malicious code of the Time-dependent and Data-dependent types 
can be found. In order to detect the malicious code of the Behavior-dependent type, 
we supposed that to utilize reverse engineering to reconstruct statecharts from source 
code and identify the unsafe state combination. According to the reconstructed 
statechart, the illegal transitions leading to unsafe states can be detected to reveal 
potential Behavior-dependent type of malicious code. 

As to the malicious code of the Time-dependent, Data-dependent, Behavior-
dependent, Input-dependent, violation of a certain theorem and Deviation errors, we 
advise to perform testing. Generally, testing can detect the abnormal behavior from 
code. However, in order to detect Input-dependent type of malicious code, the fault 
injection method can be included. Once the faults injected to the code, we can observe 
the possible system behavior which may show the insecure outcome. Nevertheless, 
testing effort can only increase the difficulty faced by the insider; it can not guarantee 
to detect all of malicious spots. Next, Deviation errors and violation of a certain 
theorem may lead to damages after the system has run for a long period, such 
malicious code may be detected through testing the system over a longer period of 
time, or detected through  constraint checking at run-time.  

Table 1 summarizes the malicious code classification and their prevention and 
detection methods by a cruise control system case. For example, once a time bomb 
planed in the code, program slicing method may extract time relevant fragments. Thus 
to analyze the extracted fragments, one can find the malicious code. About changing 
alert set points type of malicious code, constraints can check safety ranges and types and 
so on. For adding extra malicious actions types of problems, we can identify unsafe 
state, i.e. brake and accelerator actions run simultaneously, by basing on reconstructed 
statecharts to diagnose whether this case happens. For Deviation errors, the throttle 
delta computation exist deviate incrementally. This problem may be detected by running 
the system over a period time, or be caught eventually by constraint checking at run 
time. Thus, our prevention and detection methods may make malicious code difficult to 
hide, and thus, reduce the probability of potential damages. 

4   Future Works 

This research focuses on handling the control system malicious code based on our 
malicious code classification. Our classification includes time-dependent, data-
dependent, behavior-dependent, input-dependent, violation of a certain theorem, 
deviation error, isolated codes, change of privilege/authentication, anomalous file 
access, access of text segment as data, and so on. Possible prevention and detection 
methods for these categories of malicious code were also addressed.  In order to 
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Table 1. Cruise control system example 

Combination of malicious 
code classification 

Example (cruise control system) Prevention 
and detection 

(1) Time-dependent  
a. Time-bomb To trigger accelerator action at a 

certain time  

1. Program 
slicing 
2. Testing 

(2) Data-dependent  
a. Display inconsistency Speed display inconsistency (less 

actual speed )  
b. Change alert set point Change speed set point 
c. Sending/receiving fake data sensor send fake data 
d. Get fake feedback data Feedback the fake vehicle speed  

1. Constraint 
and run-time 
monitor 
2. Program 
slicing  
3. Testing 

(3) Behavior-dependent  
a. adding extra malicious 
actions 

clean setting data (speed set point) 

b. ignoring critical actions Brake or accelerator fail 
c. executing wrong actions replace brake by accelerator action 

1. Reverse 
engineering 
2. Testing 

(4) Input-dependent / Time-
bomb + Behavior-dependent 

Specified commands/time + 
Behavior-dependent 

1. Program 
slicing 
2. Testing 

(5) Input-dependent / Time-
bomb + Data-dependent 

Specified commands/time + Data-
dependent 

1. Program 
slicing 
2.Testing 

(6) Behavior-dependent + 
Data-dependent  

Send fake vehicle speed + Display 
computed vehicle speed  

1.Program 
slicing 
2.Testing  

(7) Deviation errors To add a random value to throttle 
delta computation over a long period  

1. Testing  

enhance the security of control systems and reduce their vulnerabilities, the final goal 
is to discriminate the malicious code from the benign ones. In the future, we plan to 
construct a systematized way to enhance system safety and security from software 
development early stages and develop practical tools that address the automatic 
detection of the malicious code on control systems. 
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Abstract. This paper describes techniques and solutions for management of 
groups and cryptographic keys when sharing secure documents protected at 
different classification levels. Such access control environment enforces access 
to documents at multiple security classification levels, starting from the 
membership in the group, then access to particular group applications, then 
access to individual documents and finally even their sections.  
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1   Introduction 

Current protocols for distribution of group messages and group keys require group 
members to be online in order to receive re-key and group management messages [1, 
2, 3, 4, 5, 6, 7]. These are very restrictive protocols both for scheduling and 
distribution of group keys, as well as for deployment by secure group applications 
such as long-term sharing of protected documents, but they are suitable for on-line 
exchange of short messages within groups.  

In this paper we propose a new definition of group membership by introducing two 
membership states: on-line and off-line, and two group memberships: group 
membership and session membership. Group membership is used to identify group 
members, which means that it is used for registration purposes. Session membership 
is used for communication purposes because it identifies the subset of group members 
who can participate in the group communication at any time. 

Using our new group membership concept, we introduce the new features of se-
cure group communication systems, i.e. the possibility to archive group messages,  
as well as group keys. This provides the possibility for delayed verification of  
messages, as well as continuous membership in a group, even after leaving the  
session.  
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2   Related Work 

2.1   Group Key Agreement Protocols (KAPs) 

Most of KAPs are based on long-term keys scheme, which assigns a long-term unique 
key for each member [2, 3, 4, 7, 11]. This long-term key is established by a peer-to-
peer communication protocol between each group member and the Key Server (KS) 
or Group Controller (GC).  

C. Rotaru [9] analyzed the cost of adding security to group communication 
systems, which includes key management and data encryption, and she showed how 
significant is the delay caused by rekey activities. 

Based on the key creation and distribution method, the KAPs can be divided into 
two main types: Centralized Key Agreement Protocols and Contributory Key 
Agreement Protocols [2, 3, 4, 5, 8].  

2.2   Document Based Collaboration and Access Control Systems 

There are many systems that provide protection to documents, but some of them do 
not address security requirements in shared and collaborative environments [12, 13, 
14], such as sharing documents between cryptographic groups.  

There are several systems developed to provide the required platforms and 
functionalities for documents sharing and collaboration such as Microsoft SharePoint 
Services, IBM Document.Doc which is part of the IBM's Lotus Notes suite, and 
Oracle's Collaboration suite. These three systems provide access control at the folder 
and document levels only, but not at the section level within the document. 

3   Group Membership and Rekeying in Collaborative 
Environments 

The actual problem with the current group and key management protocols is that they 
do not allow group members to enter an off-line state without losing their 
membership. Leaving the group means that a rekey event has to occur and it occurs 
every time a member rejoins the group. Besides the overhead of rekeying events [10], 
this approach can not differentiate between new group members, who should not have 
access to the previous communications and the returned users who should be allowed 
to do so.  

In this work we are trying to avoid the overhead of rekeying events that occur 
because of rejoin activities by minimizing the number of such activities. We are 
trying also to re-define the group membership states so group-based applications can 
allow group members to change their status back and forth between on-line and off-
line while guaranteeing message delivery to off-line members when they re-enter the 
on-line state again. To do so we introduce two states (on-line and off-line) for group 
members. 

In our solution we differentiate between two types of group memberships: group 
membership that requires key changes, in case of join and leave activities, and session 
membership that does not require any key changes.  
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The current group management and key distribution protocols allow the users to go 
through two states: Join Group and Leave Group. Any group member can 
communicate with the other group members as long as he/she is an active member 
which is the status between join and leave. If any member leaves the group, then 
he/she has to rejoin the group and this will cause a rekeying event. Also, based on 
groups and key management terminology, no user should have access to any data 
exchanged within a group after leaving that group, which means if the same user re-
joins the group, then he/she will be prevented from viewing the data that was 
exchanged after he/she left the group. 

The key management in our model uses access controls like the one described in 
[15], which is used also to controls and manages the access of group members to the 
group keys, to differentiate between authorized and unauthorized so it can provide the 
authorized users with the appropriate keys as we will describe later in section 5. 

In our approach the user can change his/her status from on-line to off-line and vice 
versa without any need to change the group key every time he/she changes his/her 
status. The only cases in which the key changes are when any new member joins or an 
existing member leaves the group. In Figure 1, the first state is called Join Group. In 
this state the joined user becomes a group member, which requires an update and 
dissemination of the members list to current members. In addition, the group key must 
be changed and disseminated to group members. In this state the user can not 
exchange messages with the other members yet. The second state is the on-line state. 
It means that the user has already joined the group and he/she will be joining an active 
session to participate in the group communication. The off-line state means that the 
user has already joined the group, but he/she will be leaving an active session, and 
therefore can not participate in the group activities, but he/she will not be losing 
his/her group membership. 

Join Leave

Group Communication

Online Off-line  

Fig. 1. On-line/Off-line States 

During the off-line status of any member, other members may continue their 
communication. Once that member rejoins the session he/she must be updated with 
the current group key, in case if it has changed, as well as with all messages 
exchanged during his off-line mode period. The problem in this case is that this 
member has no knowledge about the keys used to encrypt these messages, if they 
were encrypted by different group keys. This means that he/she will not be able to 
decrypt these messages and read them. 
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4   Group Key Management and Document Protection and 
Delivery Process 

In document-based sharing systems, group members are not required to be on-line all 
the time. In this case, a special server, equivalent to a mail–server, is needed to store 
and manage delayed delivery of keys and messages. Since the group keys change 
from time to time, there is a big chance that some archived messages will be 
encrypted with different keys. This leads to a conclusion that the group keys should 
be long-lived keys in order to use them to decrypt archived messages. 

In the systems that share multi-level security documents the documents are divided 
into multiple sections. This means that the messages are composite and not one-unit 
messages. When any group member requests an access to a shared document, the 
authorization processor, depending on the user’s authorization level, might return 
only portion of the document which represents the portion that the user is authorized 
to access. Also, since the document is a composite of multiple sections modified or 
added at different times, then it might have sections encrypted with different keys, 
because the keys change from time to time during the group life time. 

To create long-life keys we divide the group lifetime into multiple time windows. 
Each window represents the lifetime of one key. This means that any window is 
opened and closed based on rekey activities. Each window is opened when new key is 
created and it is closed when that key is changed, and new window is opened for the 
new key and so on. Each key value is recorded in addition to the time period when it 
was effective. So when an access request is received the server will determine which 
keys were used to encrypt the document when it was uploaded or modified. 

This approach is used to archive all keys during the group lifetime. It records the 
keys as well as the starting and ending time points. This information will be used later 
to specify the key that was effective at any moment and then use it for decryption/ 
encryption of the group messages that were exchanged during that key time period. 

When archiving a multi-level document at the server, the server needs to know the 
encryption keys so they can be used later to decrypt the saved document. Our 
approach to protect the document is by encrypting each section in the document with 
the key that was in use when it was added or updated. This will produce documents 
encrypted with multiple keys. This means that only the updated parts of the document 
will be re-encrypted, which improves the performance of the system not like the 
approach that re-encrypts the whole document whenever any section changes. 

5   The Analysis of the Solution 

Encrypting the transmitted document by the current group key is not secure enough 
because unauthorized members can access the documents during transmission when 
requested by authorized members because they have the current group key. This 
approach protects the document against the group outsiders only since they do not 
have access to the group key. From this scenario we conclude that access control 
system by it self is not sufficient, because without encryption everybody will be able 
to decrypt the group communication including group outsiders. And confidentiality 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Management of Groups and Group Keys in Multi-level Security Environments 79 

only is not sufficient, because the group members will be able to view sections that 
they are not authorized to view. To solve this problem we propose two solutions and 
we analyze their advantages and disadvantages. 

5.1   Subgroups vs. Members Exclusion Using Complementary Values 

In the first solution, to deliver the document to the right users, we create a temporary 
subgroup that contains homogeneous members, i.e. those who are authorized to see 
the same document, and then send the document to this subgroup. In this approach the 
key server, based on the access control processor results, identifies the authorized 
users and by using the long-term keys, it establishes a new group that has the 
authorized members and shares a new key with them. 

To deliver the document the key server encrypts the document with the subgroup 
key and sends it to them. The other group members will not be able to view the 
transmitted document because they don’t have access to the new key. Therefore, we 
guarantee that only the authorized users will be able to read the protected document. 

One disadvantage is the need to create many groups within the main group to 
guarantee secure delivery of the document. The worst case is to have as many groups 
as members. The second disadvantage is the continuous key agreement and 
distribution actions between subgroups. 

In the second solution we exclude the members who do not have the right 
credentials that allow them to view the delivered sections. In this solution the key 
server shares a new key with only the authorized members and delivers the document 
using this key. As a result of this, no other members will be able to decrypt the 
message. 

The new secret key is based on the complementary variables approach as in [3]. In 
this approach every group member will have access to the group current key and a set 
of complementary values of all other group members except his/her own. The only 
entity that has access to all complementary values is the key management server. 

For example when member M1 requests an access to any document, the access 
control processor analyzes the request and generates a matrix that shows the list of 
members who can access any section. For example, if the access control decides that 
the members M1 and M2 should be allowed to access sections 1 and 2, then the key 
server creates a temporary key K’ and uses it to encrypt the message. The new key K’ 
is a function F ( K, M3’, M4’) of the current group key K and all of the unauthorized 
members complementary values (M3’, M4’). At the client side only members M1 and 
M2 will be able to decrypt the message because they are the only members who have 
access to the values K, M3’, and M4’.  

This solution is based on excluding non-authorized members from the group. It 
works well, with one exception: if two unauthorized members collaborate with each 
other. There are two possible solutions to the collaboration problem: the first solution 
is to change all complementary values when any new member joins the group. The 
second solution is by preventing any communication between group members. The 
second solution can solve the problem by preventing group members from 
exchanging complementary values, but it puts more restrictions on the communication 
between group members.  
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6   Conclusions 

In this paper we solved problems of sharing protected documents within a group. We 
described how to protect multi-layered documents, even when they are created and 
then edited at different times, still with the full protection for controlled sharing 
within a group. Since it may be expected that group keys are different at these times, 
the document has sections encrypted with different keys, based on the time of creation 
and/or editing of those sections. For such cases security system described in this paper 
can analyze the structure of protected documents and accordingly apply correct 
cryptographic keys before delivering the target document to the user. Finally, the 
system addresses not only protection of documents and messages within a group 
against external intruders, but it also prevents any unauthorized group member from 
intercepting and accessing those sections of a document that he/she is not authorized 
to access, even though the user is in possession of the current group key. This may be 
a problem when documents, sent to some authorized member of a group, are 
intercepted by any other members of the group, but with the authorization different 
from the original recipient of the document. 
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Abstract. The paper presents a concept of support for the design and
analysis of Internet security systems with a rule-based methodology. It
considers a web security architecture, including a network and application-
level firewall with intrusion detection systems. The XTT methodology al-
lows for hierarchical design, and on-line analysis of rule-based systems. It
is applied using the Unified Firewall Model, allowing for implementation-
agnostic formal design and verification of firewalls. UFM extension aimed
at integration with ModSecurity HTTP firewall are introduced.

1 Introduction

In order to provide security, complex Internet security systems combine number
of advanced techniques from different domains [1]. In this heterogeneous environ-
ment finding an accurate approach to the problem of the design of such systems
remains a challenge. This paper presents a concept of practical support of design
and analysis of selected Internet security systems with a formal methodology,
based on the classic rule-based programming paradigm [2,3]. The paper considers
an extended security architecture for web systems security, including a network-
level and application-level firewalls integrated with an intrusion detection system
(IDS). The rule-based XTT methodology allows for hierarchical design, and on-
line analysis of rule-based security systems [4]. The methodology is applied, using
the Unified Firewall Model (UFM) [5,6], allowing for implementation-agnostic
formal design and verification of firewalls. The paper presents extensions towards
integration with an application-level HTTP firewall.
This paper is organized as follows: in Sect. 2 a short discussion of rule-based

security systems is given, and the architecture of integrated web firewalls is
discussed. In Sect. 3 important elements of rule-based systems (RBS) formalism
are recalled, with the XTT design process briefly discussed. In Sect. 4 the UFM
is presented, along with extensions. Elements of the visual UFM design are
presented in Sect. 5. Directions for future work are presented in the Sect. 6.
� The paper is supported by the Hekate Project funded from 2007–2009 resources for
science as a research project, and from AGH University Grant No.: 11.11.120.44.
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2 Rule-Based Computer Security Systems

Network firewalls are the most common component of every network infrastruc-
ture. They are in fact optimized real-time rule-based control systems. A natural
feedback for firewalls is provided by intrusion detection systems (IDS) that play
a critical role in monitoring and surveillance. Network infrastructure based on
network firewalls and IDS is often extended with application-level firewall so-
lutions. These are especially important with complex web services, based on
the HTTP protocol. Solutions such as ModSecurity [7], allow for HTTP traffic
monitoring and filtering, with real-time intrusion detection. The practical devel-
opment of integrated security systems is non trivial. The fact is, that it is usually
a complex engineering task, often close to a hand craft activity. Improving this
design and analysis process remains an area of active research.
The general idea behind this paper is to consider an integrated hybrid network

and web application-level firewall model. A statefull network firewall serves as a
gateway to a demilitarized zone (DMZ), where the main web server is located;
it is integrated with an application-level firewall, working at the HTTP level.
The infrastructure includes an intrusion detection system with several sensors
for the subnetworks. In this approach an open implementation, called ModSe-
curity [7] (www.modsecurity.org) is considered. ModSecurity is an embeddable
web application firewall available for the well known opensource Apache2 web-
server. Ultimately, the application of the UFM/XTT approach presented in this
paper should develop into an integrated design methodology, combining both
network-level and application-level firewall, and the intrusion detection system.

3 Formal Rule-Based Systems Analysis with XTT

Rule-Based Systems (RBS) [2,3] constitute a powerful AI tool for specification
of knowledge in design and implementation of systems in many domains. In the
formal analysis of RBS important aspects of the design and implementation are
identified, such as rulebase design, and inference engine implementation. In order
to design and implement a RBS in a efficient way, the knowledge representation
method should support the designer introducing a scalable visual representa-
tion. As the number of rules exceeds even relatively very low quantities, it is
hard to keep the rule-base consistent, complete, and correct. These problems are
related to knowledge-base verification, validation, and testing. To meet security
requirements a formal analysis and verification of RBS should be carried out; it
usually takes place after the design. However, the XTT method allows for on-line
verification during the design and gradual refinement of the system.
The main goal of the XTT approach is to move the design procedure to a

more abstract, logical level. The design begins with the conceptual design, which
aims at modelling the most important features of the system, i.e. attributes
and functional dependencies among them. Attribute-Relationship Diagrams [3],
allow for specification of functional dependencies of system attributes. An ARD
diagram is a hierarchical conceptual system model at a certain abstract level.
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The ARD model is the basis for the actual XTT model which allows for the
logical design. The main idea behind XTT [8] knowledge representation and
design method aims at providing a hierarchical visual representation of the deci-
sion tables linked into tree-like structure, according to the control specification
provided. The logical design specification can be automatically translated into
a low-level code, including Prolog, so that the designer can focus on logical
specification of safety and reliability. The translation is the physical design. Se-
lected formal system properties can be automatically analyzed on-line during
the logical design, so that system characteristics are preserved. In this way XTT
provides a clear separation of logical and physical design phases.

4 The Extension of the Unified Firewall Model

The Unified Firewall Model (UFM) [5] is a formal, implementation-free firewall
model, build on top of the XTT methodology, providing a unified attribute spec-
ification for representing network firewalls. It is introduced as a middle-layer in
firewall design process, enabling formal analysis of the created firewall. Genera-
tion of target language code for specific firewall implementation is achieved by
defining translation rules from the abstract model into a specific implementa-
tion. In order to apply the UFM-based approach to firewall system design it is
necessary to define: formal firewall system attributes, attributes domains, and
syntax for expressing firewall policy in different implementations A full list of
conditional firewall attributes is specified; they correspond to information found
in network packets header. The specification is given in the Table 1, where each
attribute is specified with: Name, Symbol, Subset (the position in inference pro-
cess, specifying whether attribute is input, output or its value is defined during
inference process – middle), and Atomicity (specifying whether attribute takes
only atomic values from specified domain or also sets or ranges of these values).
In order to construct a practical firewall implementation, it is necessary to

provide a formal translation from the unified model to particular implementa-
tions. Two open firewall implementations have been considered so far: Linux

Table 1. UFM Attribute Specification

Name Symbol Subset Domain Atomic
Source/Destination IP aSIP/aDIP input Ipaddr set

Protocol aPROTO input Protocol set
Destination port aPORT input Port atomic

Input/Output interface aIINT/aOINT input Interface atomic
ICMP type aICMPT input Icmptype atomic

ICMP error code aICMPC input Icmperrcode atomic
TCP flags aTCPF input Tcpflags atomic
Service aSERV middle Service set

Source/Destination group aSGR/aDGR middle Group set
Action aACT output Action atomic
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NetFilter and OpenBSD PacketFilter (PF). Full translation contained in [5] is
long and detailed, and is out of scope of this paper. The goal of this research
is to extend the UFM with attributes needed to describe an application-level
HTTP firewall. Some natural specification restrictions are considered here, such
as the fact that HTTP packets are contained only in the TCP packets, so the
specification restricts HTTP-related rules only with use of the TCP. It can be
observed, that traffic restrictions are in practise down-to-top; that is when de-
signing the system the packet traversal in the network stack must be taken into
account. A packet blocked at the network firewall level, basing on the IP/TCP
attributes does not reach the HTTP level application firewall. So the translation
to the target languages is not trivial, e.g. a rule: “block the traffic from the IP
w.x.y.z” can be carried out at the IP level, so the HTTP level firewall never sees
the packet. The traffic could also be allowed at the IP level, with the packet
blocked at the HTTP level. Practically, at the unified level more detailed rules
are considered. Let’s consider three general firewall rules, each one more specific:

1) block the traffic from the IP w.x.y.z
2) block the traffic from the IP w.x.y.z to destination port HTTP
3) block the traffic from the IP w.x.y.z to destination port HTTP

with BODY containg "cmd.exe"

In the extended UFM, the first rule is translated into 1 network level firewall rule;
the second rule generates 2 rules, the second one for the HTTP level firewall (the
fact is, that the rules are redundant, but both security policies are consistent);
the third rule also generates 2 target rules, the first one identical to the previous
ones, and the second for the HTTP level firewall which is more specific. In this
way, there is a more fine-grained control over the security policy.
ModSecurity supports number of complex rule cases, the most important

and common is the basic: SecRule VARIABLES OPERATOR [ACTIONS]. Where
VARIABLES together with the OPERATOR part specifies rule precondition, and
the ACTIONS specifies the decision (if omitted the default decision is made).
In order to extend the UFM to support HTTP-level firewall, ModSecurity-
specific attributes have been introduced. The translation procedure had to be
extended, taking into account a two level firewall. The ModSecurity-specific part
is trigerred when the destination port 80 (service www) is encountered. Let us
now move to the design and verification procedure, using the extended UFM.

5 Visual UFM Design with XTT

The UFM has been developed for the integration with the XTT design process,
which in case of generic RBS consists of several basic stages. On top of this
process a Unified Firewall Model is built. In this case, the RBS designed is an
abstract firewall. The UFM model provides a well-defined attribute specification
for the 1st phase. Using this specification, in the 2nd phase, a general ARD model
capturing functional relationships between UFM attributes, has been built [5].
Its simplified version is presented in Fig. 1. Basing on the conceptual design,
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Fig. 1. The ARD Diagram for the UFM

XTT tables are built. Every row of an XTT table corresponds to a firewall
rule in the UFM. Having the XTT structure partially designed, it possible to
conduct a verification of the firewall structure. The last stage is the physical
design, where the XTT rules are translated into a given firewall implementation
language, using formally predefined translation provided by the UFM.
Let us show how rules translation to the target implementation language is

performed for the an example XTT rule.

Precondition(aSGR=inet, aDGR=fw_inet, aSERV=www),
Retract(aDIP=f_inet, aPort=80), Assert(aDIP=d_3w, aPort=8080),
Decision(aACT=dnat)

This is a rule for web proxy address translation. During the system attribute
specification symbolic names of given IP networks and addresses are defined, in
this case these are: f inet, fw inet, d 3w. The firewall rule for the NetFilter is:

iptables -t nat -A PREROUTING -s 0/0 -i eth0 -d 10.10.22.129
-p tcp --dport 80 -j DNAT --to-destination 192.168.2.2:8080

The full translation is discussed in [5]. It is important to point out that the
expressiveness of the UFM is as high as possible, so it is closer to the more
expressive target language, e.g. OpenBSD PF. However, all of the UFM syntactic
structures can be translated to any firewall language, provided that the the
implementation has the features represented by the UFM. The whole design
process proposed in this paper is presented in Fig. 2. An important part of this
process is the analysis and verification framework. The XTT approach offers a
possibility of automatic, on-line formal analysis of the firewall structure during
the logical design. The analysis is accomplished by an automatic transformation
of the XTT model into a corresponding code in Prolog. An extensible Prolog-
based inference engine is provided, with number of analysis modules available,
for important firewall features, including completeness, or determinism.
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6 Future Research

The original contribution of this paper is the extension of the formalization
of the Unified Firewall Model, aimed at the application-level HTTP firewall,
ModSecurity for the Apache webserver. This research should still be considered
a work in progress. Future work includes: UFM application to intrusion detection
systems, e.g. Snort, and improved verification with firewall-specific plugins. The
XTT-backed UFM approach for security systems design and analysis allows for
improving system quality, by introducing the formal verification during the visual
design, while offering an abstract layer over common firewall implementations.
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Abstract. The European Project COOPERS1 aims at developing co-
operative systems based on innovative telematics solutions to increase
road safety. Co-operative traffic management is implemented by intelli-
gent services interfacing vehicles, drivers, road infrastructure and
operators. These services involve various types of smart systems and
wireless communications and have different impact on safety. Therefore,
a RAMSS analysis has been carried out in the initial phase of the project.
One of the major problems faced was the lack of knowledge regarding
the implementation of the system. Consequently, a holistic approach to
identify the most critical parts of COOPERS had to be considered. The
methods used and the results found by applying a RAMSS analysis to
the specific case of co-operative road traffic management services are
presented.

Keywords: RAMSS, dependability, analysis, co-operative traffic man-
agement, traffic telematics, road safety.

1 Improving Road Traffic Safety by a Co-operative
Integrated Traffic Management System

In the Sixth Framework Programme of the European Commission, COOPERS
[1] takes a specific position with unique ways and methods to attain road traffic
safety improvement. Co-operative services will be provided through an intelligent
network which exploits existing technologies and infrastructure at affordable
costs.

In each car, a receiver for I2V (infrastructure to vehicle) communication and a
display offer information relevant for the driver about the current traffic situation
(see Fig. 1), e. g. accidents, congestions, or road work. In the reverse direction,
i. e. V2I (vehicle to infrastructure), the communication channel is used for veri-
fying infrastructure sensor data using vehicles as floating sensors.
1 Research supported in part by COOPERS (Co-Operative Networks for Intelligent

Road Safety), an integrated project funded by the EU within priority “Information
Society Technologies (IST)” in the Sixth EU Framework Programme (contract no.
FP6 IST 4 026814).
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Fig. 1. Intelligent Infrastructure and Smart Cars plus individual location based services -
I2V and V2I communication

COOPERS services offer information and warnings about e. g., accidents,
weather condition, traffic congestion, speed limit, and road charging.

COOPERS is expected to reduce the risk in road traffic to a significantly
lower value, expressed by number and severity of accidents, injuries and fatalities
counts. But the implementation of the service might be faulty, and it is even
possible that the driver (e. g. through distraction) is exposed to a higher risk with
the COOPERS service than without. This paper describes motivation, methods
used and the results of the RAMSS analysis performed for identifying such risks
in an early stage of the COOPERS project.

2 Goals of a RAMSS Analysis in COOPERS

Generally, RAMSS analysis covers five different quality attributes of safety-
critical systems: Reliability, Availability, Maintainability, Safety and Security
(RAMSS). For COOPERS, it shall give advice on how to construct COOPERS
services, regarding their functional architecture as well as the selection of appro-
priate technologies.

Breaking the COOPERS services down into the components of the signal flow
path (see Fig. 2), it is evident that the availability of the single node functions
and of each signal flow through the edges in the information flow path will play
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Fig. 2. Signal flow path of the data

the key role. This becomes clearer when we consider the COOPERS services as
a safety function in terms of EN ISO/IEC 61508 [2], which will be explained
further below.

3 Risk

For technical applications, risk is defined as “the combination of the probability
of occurrence of harm and the severity of that harm” [3].

In the considerations given below, we discuss the risk to die in road traffic and
neglect – for simplicity – injuries as well as material loss through road accidents.

What human beings consider a tolerable risk depends strongly on the sub-
jective perception. Risks lower than the minimum natural risk of about 10−4

fatalities per year and person are commonly accepted.

3.1 Risk Reduction for Safety-Critical Systems

In EN ISO/IEC 61508-5, Appendix A, the concept of risk is explained for tech-
nical systems, which is depicted on the right hand side of Fig. 3. This description
assumes a technical system that imposes an additional risk to people who are
physically in the area of the system. The resulting risk is intolerable, therefore
countermeasures have to be taken to reduce the risk to a residual risk level,
which is below the tolerable risk.

4 Risk Reduction in COOPERS

In COOPERS, the services are intended to improve safety and therefore to reduce
the risk imposed by the system “road traffic”. But, unlike in usual cases of
safety-relevant systems like chemical or nuclear plants, the system is expected
to improve safety. In terms of ISO/IEC 61508, a COOPERS service represents
a “safety function”. The scope of consideration comprises therefore all involved
objects and subjects: The in-car and the infrastructure equipment including the
communication channel[s], as well as the driver.

Fig. 3 shows the different situation of a COOPERS service in the risk diagram.
The starting point is the risk that is currently accepted (“tolerable risk”), namely

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



90 A. Selhofer et al.

Fig. 3. Additional risk reduction by COOPERS

the risk of road traffic without COOPERS services. The EUC (equipment under
control), in this case the COOPERS service, improves safety (left-oriented arrow
“COOPERS Service”) instead of increasing risk like in common cases.

The arrow below the latter indicates a possible loss of safety gain whose causes
can be two-fold:

– Failures of the E/E/PES resulting in wrong or no information
– Driver reduces attention to the road while strongly increasing reliance on

the system.

The amount of safety loss could even be larger than the safety gain by the
COOPERS services and overshoot the established tolerated risk (dotted arrow).
Therefore, these reasons for safety-loss have both to be treated in the RAMSS
analysis (lower arrow “RAMSS”) to support the goal of the project.

5 Analysis

At the early stage of the project it had been necessary to operate with assump-
tions about functional architecture and typical technologies. At first during a
Preliminary Hazard Analysis (PHA, see also [4],[5]), the co-operative system
was investigated to identify the hazards due to road traffic. Subsequently the
Hazard and Operability Analysis (HAZOP) examined systematically each node
of the signal path depicted in Fig. 2. Deviations from the original design intent
for each node were studied and potential problems were collected to be able to
tell which parts of the system have to be designed with special care.
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The question whether COOPERS is safety relevant or not depends on the
way how COOPERS interacts with the car and the driver:

1. If the services directly control safety related functions (e. g. steer or brake
the car), COOPERS is safety relevant and the SIL (Safety Integrity Level)
has to be determined.

2. If the drivers are assumed to be always finally responsible for steering the
car, then COOPERS services need not to be treated as safety-relevant (like
for instance car radio for traffic messages).

The recommended implementation for COOPERS is that the services do not
directly control safety functions (SIL =0) but provide information to the driver
that can either improve safety (e. g. warnings) but could also reduce safety
(e. g. false information, overstressing or distracting the driver). A SIL ≥ 1 would
otherwise increase the development efforts significantly.

6 Results

6.1 Hazard Analysis

The PHA results in the hazards of the road traffic, of which the traffic accident
is the most obvious one. Its severity is strongly related to the kinetic energy
stored in the moving vehicle. Since COOPERS does not add kinetic energy
or harmful substances to the system it does not influence the severity of the
hazards. On contrary, the system provides information about the current traffic
and road condition with the intention to improve road safety, but wrong or
missing information may increase the probability of accidents.

Considering common state-of-the-art components, all electronic and electric
equipment can generally be expected to have a fairly low failure rate. Hence,
because no details regarding the technical implementation are known yet, the
RAMSS analysis will be based on assumptions taken from comparable technology
and will yield results, that may be subject to change, depending on the real
implementation.

6.2 HAZOP Analysis

According to the HAZOP (for a description of the method see [5]) investigation
and the signal flow path (see Fig. 2), two parts were identified to contain a
relatively higher risk of failure than other parts. These are the radio link (TX
and RX) and the human driver relying on the provided information in the car.

Wireless Radio Link. The wireless radio link is expected to have a remarkably
higher probability of failure than other components, because of the immanent
mobility of the vehicle, the change in quality of the communication media, multi-
path propagation, and interference. It is therefore rated as a part within the
signal path which requires particular attention. A general recommendation to
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increase the availability of the wireless transmission is to use redundancy, for
instance two independent technology standards (e. g. DSRC and GSM) for the
radio link.

Human Machine Interface. The intention of the COOPERS services it to
deliver information to the driver. The presentation of this information must be
unambiguous, clearly comprehensible and consistent, least distracting as well
as congruent with other, similar information sources, e. g. the perception of the
surrounding by the driver. The design of the human machine interface can have
a big impact on how people perform.

Comment Regarding the Results. The overall risk cannot simply be ob-
tained by a linear superposition of the risks of the single services. COOPERS
often uses a combination of multiple services where consistency plays a impor-
tant role. In extreme cases, poor services implementation may end up in an
even higher risk compared to the current road traffic situation (dotted arrow in
Fig. 3). RAMSS analysis helped to ensure that the best possible safety gain by
COOPERS services will be attained (lower arrow “RAMSS” in Fig. 3).

Finally, the COOPERS system has to detect misoperation of the services and
must inform the user about it. Otherwise, the driver could assume there is no
hazardous situation ahead and be exposed as well as expose others to a higher
risk than without COOPERS.

7 Conclusion

In this paper the hazards and operability problems of COOPERS services have
been investigated and the most relevant results of the RAMSS analysis doc-
umented. Due to the early project phase, a holistic approach and qualitative
methods have been used.

The analysis identified parts that need more attention with respect to safety
and reliability than others, namely the wireless connection (I2V and V2I) and the
design of the human machine interface (HMI). Nevertheless there are also other
parts of the system that are exposed to safety risks and therefore require attention.
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Abstract. In this study, an alternative approach for combining Fault Trees (FT) 
and Event Trees (ET) using capabilities of Bayesian networks (BN) for 
dependency analysis is proposed. We focused on treating implicit and explicit 
weak s-dependencies that may exist among different static/dynamic FTs related 
to an ET. In case of combining implicit s-dependent static FTs and ET that 
combinatorial approaches fail to get the exact result, the proposed approach is 
accurate and more efficient than using Markov Chain (MC) based approaches. 
In case of combining implicit weak s-dependent dynamic FTs and ET where the 
effect of implicit s-dependencies have to be manually inserted into the MC, the 
proposed approach is more efficient for getting an acceptable result.  

1   Introduction 

Event Tree (ET) analysis is one of the most common methods for accident sequence 
modeling when performing Probabilistic Safety Assessment (PRA) [1]. ET is a 
graphical model that depicts the response of different mitigating functions (Headings 
of ET) of the system to an Initiating Event (IE) and results in different sequences 
based on success or failure of these Headings. The failures of these Headings may be 
then analyzed using static and/or dynamic Fault Trees (FT) [2]. FT is a graphical 
model of the various parallel and sequential combinations of faults that may result in 
occurrence of a predefined undesired event. ET and related FTs are then combined 
together for further quantification of occurrence frequencies of different ET 
sequences. When ET branches are statistically independent (s-independent) events, 
frequency of each sequence will be easily quantified as the product of success or 
failure probabilities of the Headings along corresponding path from IE to that 
sequence further multiplied by IE frequency. 

Despite of strong qualitative capability of ET for accident sequence analysis, one 
of the main limitations is the difficulty to analyze weak s-dependencies that may exist 
among different branches of an ET. Two branches of an ET have explicit weak s-
dependency when there is at least one shared Basic Event (BE) among corresponding 
FTs. However, when there are implicit s-dependencies among BEs of FTs related to 
different ET branches, we say those ET branches have implicit weak s-dependency. 

In case of combining static FTs and ET with explicit weak s-dependencies, 
traditional approaches result in analyzing non-coherent FTs [3] where the 
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convergence of inclusion-exclusion expansion (exact calculation) is very slow and 
other approximations such as Minimal Cut Sets (MCS) upper bound approximation, 
coherent approximation are not accurate [4]. A new approach proposed by Andrews 
and Dunnett [4] using Binary Decision Diagrams (BDD) is more efficient and 
accurate for analyzing ETs with explicit weak s-dependent branches, but  it is not 
capable of treating other kinds of dependencies especially implicit weak s-
dependencies among different branches of an ET and analyzing ETs with multiple 
branches (along with weak s-dependencies). 

In case of combining dynamic FTs and ET, the most efficient method is to use a 
combination of BDD and Markov Chains (MC) [1] for static and dynamic modules 
separately. However, when there are weak s-dependencies among ET branches 
(modeled by static and dynamic FTs), we should make a single MC for whole the s-
dependent FTs (including dependent static FTs) involved in an ET that is not efficient 
due to the obvious disadvantage of MC that the size would face a state-space 
explosion problem with the increase of number of events. 

To address the above mentioned problems, we exploited a recently developed 
methodology [5] for mapping dynamic FT into Bayesian Networks (BN) [6] and 
presented an approach to treat different kinds of dependencies in ET analysis using 
the capabilities of BN for dependency analysis.  

2   FT Analysis Using BN 

Bayesian networks also known as Bayesian belief networks, is a directed acyclic 
graph (DAG) formed by the variables (nodes) together with the directed edges, 
attached by a table of conditional probabilities of each variable on all their parents [7]. 
It is a graphical representation that provides a powerful framework for reasoning 
under uncertainty and also for representing local conditional dependencies by directly 
specifying the causes that influence a given effect.  

Boudali and Dugan [5] developed a methodology for mapping dynamic FTs into 
discrete-time BN for facilitating dynamic FT analysis. In this methodology, in order 
to consider the dynamic effects of dynamic gates (e.g. spare gates, sequential gates, 
etc.) the time line is divided into n+1 intervals. Each node (random variable) in the 
corresponding BN has a finite number of n+1 states. The n first states divide the time 
interval ]0,Tm] (Tm is the mission time for analysis) into n (possibly equal) intervals, 
and the last ((n+1)th) state represents the time interval ]Tm,+∞[. We call this kind of 
nodes (with n+1 states and n>1) “dynamic node”. For example, for a Cold Spare gate 
(CSP), considering n=2, the equivalent BN is shown in Fig. 1. P1 and P2 are the 
probabilities of component A, failing in the interval 1 (]0,∆])and interval 2 (]∆,T]), 
respectively, and P3 is the probability of component A, not failing in mission time 
(being in state 3). Suppose that time to failure distribution of component A is defined 
by f(t). The equations for quantification of P1, P2, and P3 are shown in Eq. 1.  
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Fig. 1. BN and CPTs corresponding to CSP Gate 

The zero entries for the CPT of node B in Fig. 1 state that the spare B cannot fail 
before, or at the same time as, the primary A. Suppose that time to failure distribution 
of component B is defined by g(t). The equations for quantification of P12 and P13 are 
shown in Eq. 2. 
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For mapping static gates into corresponding BN nodes, using this methodology, it 
is just required to assign nodes with two states (state 1: failure in Tm , state 2: not fail 
in mission time) for them that are called “static node”.  

3   Combining Static/Dynamic FTs and ET Using BN 

In this section, the procedure for combining FTs and ET using the described 
methodology is presented along with application to a redundant multiprocessor 
system example depicted in Fig 2 (see [8] for further details). To make a redundant 
bus system, an additional bus is applied, intentionally, and one power supply (PS) is 
also implemented (not depicted in Fig. 2) to supply both processors. The following s-
dependencies are considered: 

• Degraded mode of power supply (PS) increases the failure rate of P1 and P2 by 
10% (implicit weak s-dependency). 

• Failures of both buses (N1 and N2) will cause M3 unavailable (time-invariant) 
• M3 is shared between two subsystems S1 and S2 (explicit weak s-dependency). 

The ET, related FTs, and the resulted BN corresponding to failure of one of the 
redundant buses (N1) (as IE) are shown in Fig. 3. To combine static/dynamic FTs and 
ET using BN, we define the term “dynamic events” as follows. In FTs that contains 
both dynamic and static gates, all the BEs, static and/or dynamic gates (subsystems) 
below a dynamic gate are considered as dynamic events. Also, BEs or subsystems that 
have time-variant weak s-dependency with dynamic events are included. To find 
dynamic events, the linear time FT modularization algorithm developed by Rauzy and 
Dutuit [9] is used with some modifications. In this algorithm, if one BE that is the 
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Fig. 3. FT, and Corresponding BN related to N1 Failure in Multiprocessor System 

Table 1. Frequency (per hour) of ET Sequences1 

Sequence 
Number 

1 2 3 4 5 6 7 8 

Frequency 
(Exact) 

0.9973 0.0025 6.312× 10-6 9.972× 10-5 2.751× 10-7 7.611×10-10 5×10-5 1×10-5 

Frequency 
(n=9) 

0.9973 0.0025 6.324× 10-6 9.972× 10-5 2.750× 10-7 7.622×10-10 5×10-5 1×10-5 

Error% 0 0 0.19 0 -0.04 0.15 0 0 
Frequency 
(n=14) 

0.9973 0.0025 6.323× 10-6 9.972× 10-5 2.750× 10-7 7.621×10-10 5×10-5 1×10-5 

Error% 0 0 0.17 0 -0.04 0.13 0 0 
Frequency 
(n=19) 

0.9973 0.0025 6.320× 10-6 9.972× 10-5 2.751× 10-7 7.618×10-10 5×10-5 1×10-5 

Error% 0 0 0.13 0 0 0.10 0 0  
1 The frequency values should be multiplied by failure frequency of N1 (i.e. 2 × 10-9). 
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input to a static gate is shared with a dynamic module, all the related static gate’s 
inputs and output are also included in the related dynamic module. However we 
exclude these events from dynamic events (despite MC-based approaches).  

The procedure for combining static/dynamic FTs and ET using BN along with 
application to the ET/FT of Fig. 3 is as follows: 

1. Searching through the FTs to find dynamic events and assigning dynamic nodes to 
them (dark background color BN nodes in Fig.3). The remaining BEs are translated 
into static nodes in the corresponding BN.  

2. Mapping all BEs of different FTs of ET to their corresponding BN nodes.  
3. For IE, we consider a BN node with two states (occurrence and non-occurrence) 

with probability of occurrence of 1 (its occurrence is assumed as an evident). 
4. Mapping different gates into their corresponding BN structure and applying the 

related conditional (or prior) probability values into the constructed BN (e.g. using 
equations 1 and 2 for CSP gate). In cases that we have common BEs in different 
FTs, their corresponding BN will be connected through those common BE nodes.  

5. In order to apply implicit s-dependencies that may exist between different 
components, we connect related BN nodes and apply the related conditional 
probability values in related CPTs (e.g. PS node connected to P1 and P2 nodes in 
Fig. 6). Effects of IE on different components would be applied in the same way. 

6. Deriving the logic of different sequences of the ET based on status (success, 
failure, etc.) of the Headings and quantifying its probability by inferring the 
corresponding joint probability in the resultant BN (e.g. the logic of the seventh 
sequence of the ET in Fig. 3 is: (N2=success,PS=failure)). Then multiplying the 
result with the occurrence frequency of IE to quantify the sequence frequency.  

The results (see Table 2 for component failure data) of the quantification of different 
sequences of the ET using MC (exact result), and using the resulted BN considering 
n=9, 14, 19 for dynamic nodes along with corresponding errors are given in Table 1. 

It is clear that the maximum error for sequence frequencies is less than 0.2% for 
small amount of n (the relative error is about 10-3). The results show that we can 
acquire an acceptable result with small values of n using the proposed methodology. 
Comparing with conventional approaches, the proposed method is more appropriate 
in the following cases: 

• When the number of s-dependent static and dynamic modules among different ET 
branches increases (because of less number of dynamic nodes included). 

• When no dynamic FT is included in ET, and the exact result is preferred. 
• Although the process of converting dynamic gates into corresponding MC is 

performed automatically in codes like GALILEO [10], including the effects of 
implicit weak s-dependencies among ET branches should be done manually 
(within the state space) that is quite time-consuming and error prone.  

Moreover, one of the unique features of the proposed methodology is facilitating 
elimination of impossible ET sequences that is one of the main concerns in 
constructing ETs. Using conflict measure in Eq. 2 [11], given a set of evidences 
e={e1, e2, …, en}, we can easily trace possible conflicts that may exist in the 
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constructed BN between negatively correlated evidences that result in a positive 
conflict measure and remove those sequences that are not possible to occur.  

)(

)(

log()( 1

eP

eP

eConf

m

i
i∏

==  
(3) 

Where P(ei) is the probability of ith evidence being in a specified state.  

Table 2. Component Failure Rates and Probabilities 

Component Failure Rate / hour Failure Probability 
Processor (Pi) 5 × 10-7 2.50 × 10-3 
Memory (Mi) 3 × 10-8 1.50 × 10-4 

Hard Disk (Dij) 1 × 10-6 5.00 × 10-3 
Bus (Ni) 2 × 10-9 1.00 × 10-5 

Failure: 1 × 10-8 5 .00 × 10-5 Power Supply 
(PS) Degraded: 2 × 10-8 1.00 × 10-4 

4   Conclusions 

An alternative approach for combining s-dependent static/dynamic FTs and ET has 
been proposed that makes use of capabilities of BN for dependency analysis. Using 
the proposed approach, we can acquire the exact result for combining static FTs and 
ET with implicit weak s-dependency among FTs along with multiple ET branches. 
The proposed approach is a good alternative in place of conventional MC-based 
approaches especially when there are shared events among static and dynamic FTs 
and when implicit weak s-dependencies exist across the ET branches. Capability of 
the new approach for elimination of impossible accident sequences is quite useful for 
accident sequence analysis. However, the probabilistic computational complexity of 
BN with increasing the number of states for dynamic nodes should be considered.  
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Abstract. In 2006 Siemens Transportation systems had to obtain an
operating license for the brake system of a newly developed train. There-
fore a safety analysis for the brake system had to be performed to show
that the probability of a failure of the brakes is sufficiently small, less
than specified limits. The safety analysis was performed by Siemens Cor-
porate Technology. The probability of a failure of the brake system was
calculated using hierarchical fault tree analysis. The large number of dif-
ferent combinations of subsystems contributing to failure scenarios was
managed by a specially developed program for automatic generation of
combinatorial fault trees. The most important result was the proof of the
quantitative safety targets of the brake system to the regulating body.

Keywords: Hierarchical Fault Trees, Combinatorial Fault Trees, Rail-
way Brake System, Practical Example.

1 Introduction - Safety of a Railway Brake System

In order to prevent people and the environment from harm, it is required to
establish that safety relevant systems meet their respective safety targets. This is
especially challenging for newly developed technical systems innovating existing
technical concepts. In 2006 Siemens Transportation systems had to obtain an
operating license for the brake system of a newly developed train. Therefore
a safety analysis for the brake system had to be performed to show that the
probability of a failure of the brakes is sufficiently small, less than specified
limits.

Train brake systems consist of many individual brakes of different types. The
different kinds of brakes are contributing to the total brake force to varying
degrees in accordance with the brake scenarios that stem from the different
requirements trains are facing. Consider for example the requirements of an
emergency stop caused by a passenger vs. a controlled stop of the train arriving
at the station or the brake force applied to prevent the train from moving when
stationed at the platform.
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To increase the availability of the brake system and therefore enable a safe
operation of the train, the total amount of brake force that the brake system
is able to generate is more than 100 percent of the specified brake force of
these scenarios. Therefore the failure of a certain number of individual brakes
is tolerable as long as the brake force that the remaining brakes can generate
is sufficient. Furthermore the train control system is able to observe which and
how many individual brakes are functioning correctly. On this basis progressively
more restricting measures (e. g. speed limits, kind of operation possible) may be
chosen to ensure that the train is operated safely. When considering these facts,
it is not surprising that the number of failure combinations which do not lead
to a complete failure of the brake system is large.

In this report we describe how for a practical, not needlessly restrictive safety
concept an analysis of the failure scenarios was carried out. The safety analysis
was performed by Siemens Corporate Technology. The probability of a failure of
the brake system was calculated using fault tree analysis. However, the special
structure of the system required adequate methods to resolve the complexity for
the analyses. Therefore instead of classical fault trees a new approach with hier-
archical component fault trees was chosen. Finally the large number of different
combinations of subsystems contributing to failure scenarios was managed by
a specially developed program for automatic generation of combinatorial fault
trees.

2 Traditional vs. Hierarchical Component-Based Fault
Trees

FTA is an analysis technique for safety and reliability aspects that uses a graph-
ical representation to model causal chains leading to failures. FTA has been used
since the 1960s and is defined in international standards ([1], [2]). It uses a top-
down approach, starting off at the undesired failure (TOP-event) and tracing its
causes down to the necessary level of detail. The various conditions that have to
be met for the TOP-event to happen are modelled accordingly.

As modern technical systems become more and more complex, fault trees need
to be partitioned both for editing and for efficient computer analysis. Principally
there are two principles for partitioning:

1. The backward refinement of the cause-effect relations as indicated by the
tree.

2. The refinement by architectural components ([3]).

Traditionally the first principle is used in fault tree development, thereby the
system is partitioned into independent fault trees. However some events - so
called repeated events - can have effects on a number of other components, e. g.
a power unit break down might influence the main CPU as well as the auxiliary
CPU. It is important to know that most calculation rules for the probabilistic
analysis depend on the assumption that all events are stochastically independent
of each other. Therefore repeated events cannot be displayed correctly using
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simple trees. Apart from repeated events, the fact that Fault Trees contain only
one top-event ([2]) is also a restriction. In practice, it is often important to
analyze cause-effect relations between various top-events that represent different
failure modes of the same technical component.

A generalization of traditional fault trees that provides a solution to this
problem leads to the notion of Directed Acyclic Graphs (DAGs) or Cause Effect
Graphs (CEGs). Repeated events are only displayed once and linked correctly
to all other components on which they have influence. Furthermore the CEGs
can be used to follow the second refinement approach according to the physical
structure of the system.

A further extension of CEGs is the concept of hierarchical fault trees ([4]).
Here the different (physical) subsystems of the system are modelled separately.
On the system level they are connected using input- and output-ports. Usually a
quantitative evaluation of a component alone is not possible. Only on the system
level the whole model becomes a CEG. Hierarchical fault trees can be evaluated
using standard algorithms, e.g. BDD algorithms ([5]).

In practice the structuring of the system according to its physical subsys-
tems has a huge advantage as it strongly supports the understanding of system
developers.

3 Combinatorial Fault Trees

A wide variety of technical systems contains several equal subsystems. To in-
crease the system’s reliability and availability, often redundant subsystems are
added besides the minimum required number. Further more usually more than
one subsystem is involved in the performance of a system function. If multiple
subsystems with redundancies are involved in a system function, a fault tree
analysis of a failure of this function becomes very complicated due to the var-
ious possible combinations of working and defective subsystems, although the
actual amount of different components may be manageable.

To resolve the complexity of fault tree analyses arising from a large number of
different redundant components, we developed a special approach. Each actual
physical component is modelled manually using component fault trees. The var-
ious possible combinations of working and defective components are generated
automatically by a special designed computer program. For each combination
the resulting performance of the desired function is computed by multiplying
the working components with their degree of performance and then adding all
of the products. The result is the degree to which the function is performed by
the considered combination of working components.

In order to calculate the probability of a special scenario, all combinations
which contribute to this scenario are ported into the fault tree tool using a tool
with XML-interface. Each combination is represented by m : n-gates, one gate
for each physical component type. Thereby n is the number of occurrences of
the component type in the train and m is the number of working components
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in this combination. For each combination the m : n-gates representing the
different physical types of components are connected via an AND-gate. All AND-
gates representing one combination then are connected via an OR-gate. This final
OR-gate represents the considered scenario.

For our calculations we wrote a special computer program which generates
all necessary gates and edges of the fault tree for our considered scenarios. The
probability of the top-event of the fault tree is calculated using the normal
functionality of the tool.

We give a simple example to describe our proceeding. A simplified railway
brake system may consist of three different types of brakes. There are different
numbers of brakes of the different types and they add differently to the brake
force of the entire train. The total amount #Comb of different combinations of

Table 1. Brake subsystems

Brake subsystem type Number of subsystems Contribution of single
of this type subsystem to brake force

1 4 10 %

2 5 5 %

3 5 7 %

working and defective subsystems without distinguishing between subsystems of
the same type is

#Comb = 5 · 6 · 6 = 180 (1)

We consider the example that we have to calculate the probability that the
brake force of the entire train is down to 50%. For this task all failure combina-
tions of subsystems exhibiting 50% brake force have to be determined. For each
combination the corresponding gates and edges have to be generated. Then all
combinations are combined via an OR-gate in a fault tree with the top event
”brake force down to 50%”. The following table contains all combinations of
working brake subsystems which together exhibit 50%. The result as presented
in Table 2 can now be used to generate the corresponding fault tree. For every
scenario describing reduced brake force the starting point of the analysis is the

Table 2. Combinations of working subsystems with 50 % total brake force

Working subsystems Brake force
type 1 type 2 type 3

0 3 5 50%

1 1 5 50%

3 4 0 50%

4 2 0 50%
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Fig. 1. Incomplete Fault Tree ”Brake System”

Fig. 2. Incomplete Fault Tree ”Brake System”

incomplete fault tree displayed in Fig. 1 Each box in Fig. 1 contains the fault
tree of one brake subsystem. Every physical component is represented by one
box. We now generate the complete fault tree describing the brake force scenario
automatically by reading the relevant combinations and transferring them into
the fault tree tool via an XML-interface. Fig. 2 shows the result for the example
brake system exhibiting 50% brake force. The fault tree is evaluated using the
normal probability calculation of the tool. Due to the many combinations which
can occur at practical examples it is important to use fast algorithms for the
computations. There are efficient BDD algorithms which are able to handle even
a large number of basic events ([3]) which also led to satisfactory results during
our analysis of the railway brake system.
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4 Results, Benefits Obtained and Conclusions

Using the approaches described above the brake system was modelled. After the
definition of the possible failure scenarios within the lifetime of the train, the fault
trees for the failure combinations were generated and evaluated automatically.
By these means it was easily possible to obtain the probabilities that the trains
brake system is able to provide a desired percentage of its maximum brake force.
The benefits of being able to obtain these probabilities are wide-ranging:

1. Safety, reliability and availability characteristics of the brake system were
obtained in a very efficient manner.

2. Strategies for a graceful degradation concept could be obtained on a reason-
able basis.

3. Proof of the quantitative safety targets of the brake system could be shown
to the regulating body.

Based on these results it was possible to establish a graduated approach to in-
crease the reliability and availability of the trains brake system. The methodology
used and results obtained were approved by the responsible Railway Operator.
In addition to the benefits that DAGs provide, combinatorial fault trees will in
praxis further enable engineers to manage the complexity of failure scenarios
of technical systems based on multiple redundancy. Using combinatorial fault
trees failure scenarios that up to now would not have been manageable and
would therefore have to be simplified - usually leading to worse results - can be
resolved and provide a real advantage in applications.
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Abstract. HiP-HOPS (Hierarchically-Performed Hazard Origin and Propaga-
tion Studies) is a recent technique that partly automates Fault Tree Analysis 
(FTA) by constructing fault trees from system topologies annotated with 
component-level failure specifications. HiP-HOPS has hitherto created only 
classical combinatorial fault trees that fail to capture the often significant 
temporal ordering of failure events. In this paper, we propose temporal 
extensions to the fault tree notation that can elevate HiP-HOPS, and potentially  
other FTA techniques, above the classical combinatorial model of FTA. We 
develop the formal foundations of a new logic to represent event sequences in 
fault trees using Priority-AND, Simultaneous-AND, and Priority-OR gates, and 
present a set of temporal laws to identify logical contradictions and remove 
redundancies in temporal fault trees. By qualitatively analysing these temporal 
trees to obtain ordered minimal cut-sets, we show how these extensions to FTA 
can enhance the safety of dynamic systems. 

Keywords: temporal fault trees, formal FTA, automated FTA, fault tree 
synthesis, formal safety analysis. 

1   Introduction 

Fault Tree Analysis (FTA) is a safety analysis technique first used in the 1960s, and 
since then it has been used in a number of different areas, including the aerospace, 
automobile, and nuclear industries. However, despite the improvements it has 
received over the years, it still suffers from a number of problems. One major 
problem is that although the analysis of fault trees has long been automated, the actual 
production (or synthesis) of fault trees has remained a manual process.  

Recently, work has been directed towards addressing this problem by looking at 
the potential integration of design and safety analysis. In this work, fault trees are 
automatically produced from system models that contain information about 
component failures and their effects. Techniques developed to support this concept 
include HiP-HOPS [1] and Components Fault Trees (CFT) [2]; both support 
assessment processes in which composability and reuse of "component safety 
analyses" across applications becomes possible.  In HiP-HOPS, a topological model 
of a system together with annotated failure data for each component is used to 
produce a set of fault trees and a FMEA (Failure Modes and Effects Analysis) for the 
system. Instead of forcing analysts to produce entire fault trees, they can focus on 
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local failure behaviour, and HiP-HOPS then takes that focused information and shows 
how local failures propagate through the system to cause system-wide faults. This 
compositional approach also has the benefit of speeding up fault tree synthesis to a 
matter of seconds, so that it becomes practical to perform multiple iterations of fault 
tree analysis to investigate different variations on a design and to see the impact 
different design changes have on the system safety.  

In spite of these benefits, HiP-HOPS, like traditional FTA, struggles to accurately 
model systems in which the failure behaviour is dependent on the sequence or timing 
of events. In these cases, the analyst has to work around the limitations in FTA, e.g. 
by representing the temporal requirements as separate events or by including them in 
the event descriptions themselves, but in doing so, the temporal information is 
effectively hidden. If the temporal information is not present in the logical structure of 
the fault tree, then it is unable to play a role in qualitative analysis. 

One solution to this problem is Pandora [3], a recent extension to FTA and HiP-
HOPS that extends the vocabulary of the fault tree with a small set of new temporal 
gates without altering the familiar structure of the fault tree. These new gates allow 
FTA to represent sequences of events and take into account any potential 
redundancies or contradictions that arise as a result.  

In this paper, we present the formal logic that underpins Pandora (etymology: Hour 
or “time” - ora [ώρα] in Greek - of Pand gates), and show how it can be used to more 
effectively analyse dynamic systems. Firstly, we briefly discuss similar approaches, 
and then we describe Pandora itself. We also give a small example system to show 
how Pandora is used and finally we present our conclusions. Although much of the 
discussion is focused on how Pandora is usefully integrated within HiP-HOPS to 
enable compositional temporal FTA of dynamic systems, the principles presented in 
the paper are generic and directly applicable to conventional and other compositional 
FTA techniques, e.g. CFTs. 

2   Background 

An early solution to the problem of representing time and event sequences in fault 
trees was the "Priority-AND" (PAND) gate [4]. According to the Fault Tree 
Handbook [5], "the PRIORITY AND-gate is a special case of the AND-gate in which 
the output event occurs only if all input events occur in a specified ordered sequence." 
Unfortunately, this definition is not sufficiently precise in that it is not clear how the 
PAND gate behaves if no order is specified or if the inputs occur at the same time; nor 
does it specify whether the events have a duration, and if so, whether they can 
overlap. When it is used at all, the PAND gate is often treated as a simple AND gate 
in qualitative analysis.  This ignores the potential for contradictions and redundancies 
that the PAND gate introduces, e.g. (X PAND Y) AND (Y PAND X) specifies that X 
precedes Y and that Y precedes X, which is obviously impossible, and yet (X AND 
Y) AND (Y AND X) is valid. For quantitative analysis, there are a number of 
different methods available [6], but without prior qualitative analysis, there is still the 
risk of obtaining invalid results. 

More recent solutions include the Dynamic Fault Tree (DFT) methodology [7], 
which introduces a set of new dynamic gates to the fault tree, such as Spare gates, 
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Functional Dependency gates, and even the old PAND gates. Dynamic fault trees are 
quantitatively analysed using either the static BDD (Binary Decision Diagram) 
method or dynamic Markov analysis as appropriate. There has also been a recent 
proposal for performing qualitative analysis on DFTs using a variation on the BDD 
approach [8], but this explicitly separates the temporal and logical constraints until 
after the analysis is complete, potentially missing earlier opportunities for removing 
redundancies and contradictions during the analysis. 

Temporal Fault Trees (TFT) [9] are another proposed solution. TFTs introduce a 
larger set of new temporal gates to the fault tree to represent various aspects of a new 
temporal logic (called PLTLP), including gates like "within", "sometime", and "prev". 
TFTs also come with algorithms for both quantitative and qualitative analysis, but 
they are intended to be used after the system has failed, in conjunction with the 
system log, as a diagnostic aid.  

A much more compact solution is the AND-THEN (or TAND) gate [10], which is 
designed to be a building block that can represent more complex expressions. The 
TAND gate (indicated by Π) represents a situation where one event immediately 
follows the cessation of another event, so for example, to specify that Y must be true 
at some time after X becomes false but not immediately after, it is necessary to write 
X.¬Y Π ¬X.¬Y Π ¬X.Y. However, the TAND suffers from certain problems relating 
to its definition; in particular, it treats events more like states, and it also requires the 
use of NOT gates to build more complex expressions. This can lead to non-coherent 
fault trees, since the non-occurrence or cessation of a fault can potentially lead to the 
system failure, and thus the necessity for more complex analysis algorithms due to the 
need to represent both events and their complements [11].  

A slightly different style of approach is taken by both Gorski and Wardzinski [12] 
and Hansen and Ravn [13], who represent timing constraints as a separate event in a 
more formalised fault tree structure. However, this is intended for the representation 
of specific real-time requirements, rather than to enable temporal qualitative analysis 
of fault trees. Because it expresses the temporal information as a new event rather 
than as a gate, that information is not part of the fault tree structure, and so the 
potential for removing contradictions and redundancies is lost. 

Although each of these solutions is well-suited for its intended tasks, whether it be 
the representation of real-time requirements in fault trees or the quantitative analysis 
of redundant and standby components, we believe that there is still scope for a 
solution which offers a general and flexible approach without substantially altering 
the existing semantics and structure of the fault tree.  

3   Pandora 

Pandora allows for the general representation and analysis of event sequences without 
introducing many new gates or overcomplicating the process of fault tree analysis 
with complex new semantics. To that end, it is based around a redefinition of the 
long-established Priority-AND gate; the aim is to remain as close as possible to the 
original philosophy of simplicity and flexibility that makes FTA popular, while also 
solving the ambiguities that plagued the original PAND gate. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Compositional Temporal Fault Tree Analysis 109 

3.1   Events and Events Orderings 

The Fault Tree Handbook states that for the purposes of FTA, it is the occurrence of 
faults that matters, i.e. the transition of a component to a faulty state at a certain point 
in time, rather than the existence of the faulty state. Pandora thus avoids the 
complexities of formalising time by focusing solely on events and their temporal 
relationships. It is based on one simple principle: like the original PAND gate, it is 
designed to allow the temporal ordering of events to be represented as part of the fault 
tree structure itself. Because we are interested only in the moment at which a fault 
occurs, we do not need to consider the duration of the fault, and instead we assume 
that once a fault has occurred, it persists; if necessary, the cessation of a fault (i.e. the 
disappearance of a fault after it has occurred) could be modelled separately as an 
another event. This assumption fits with the original definition in the Fault Tree 
Handbook, which states that "From the standpoint of constructing a fault tree we need 
only concern ourselves with the phenomenon of occurrence. This is tantamount to 
considering all systems as non-repairable" and "Under conditions of no repair, a fault 
that occurs will continue to exist." (p V-1).  

In Pandora, the occurrence of an event, e.g. the transition to a faulty state, is 
instantaneous and can occur at most once. Therefore, given the occurrence of two 
distinct events X and Y, either: 
 

• X occurs before Y 
• X occurs at the same time as Y 
• X occurs after Y, or equivalently, Y occurs before X 
 
Rather than working with the date of occurrence of an event to determine which of 

these relationships hold, Pandora uses a more abstract approach by taking into 
account only the order of events. In Pandora, the PAND gate is used to represent 
"before", e.g. X PAND Y means X occurs before Y, and a "Simultaneous-AND" (or 
SAND) gate represents "at the same time as", i.e. X SAND Y means X occurs at the 
same time as Y. There is also a third gate, "Priority-OR" (or POR), that represents the 
situation in which X has to occur before Y if Y occurs, e.g. X POR Y means that 
either X occurs and Y does not, or X occurs before Y.  The inclusion of both PAND 
and SAND gates is important to ensure that we can represent all three temporal 
relationships without overlap; other approaches either omit a SAND gate (which leads 
to a question of what happens if two events occur simultaneously, e.g. if they share a 
common cause), or, as in the case of the TAND approach, redefine the existing 
Boolean AND gate to match the definition of the SAND. 

Conventional fault tree analysis using the AND and OR operators allows the 
specification of combinations or sets of basic events. Pandora adds the ability to 
specify sequences of sets of events. A sequence of sets of events, called an event 
ordering, is fundamental to the Pandora logic. For example, given three basic events, 
X, Y and Z, there are a number of possible event orderings. The empty sequence 〈〉 is 
the empty event ordering in which no events have occurred, 〈{X, Y}〉 is an event 
ordering in which both X and Y occurred simultaneously (this applies to all events in 
the same set in an event ordering), and 〈{X}{Y, Z}〉 is an event ordering in which X 
occurred first followed by the simultaneous occurrence of Y and Z. Thus, given a set 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



110 M. Walker, L. Bottaci, and Y. Papadopoulos 

of basic events E, an event ordering o contains a subset of E that specifies not only 
which basic events have occurred, but also the sequence in which they occurred. An 
event cannot occur more than once in an event ordering, which prevents an event 
from preceding itself, and there are no empty event sets in an event ordering.   

The set of all possible event orderings for a given set of events E is denoted o(E), 
or in formal notation:  

 
o(E) = {〈〉} ∪ {o : 〈A1, A2, ... An〉}  
         where Ai ≠ ∅ ∧ A1 ∪ A2 ∪...∪ An ⊆ E ∧ Ai ∩ Aj =∅, i ≠ j, and i, j ∈ 1...n.  
 
A basic event, e.g. X, occurs in o if o contains a basic event set containing X, i.e. X 

∈ o ⇔ ∃A:Ρ(E) • A ∈ o ∧ X ∈ A where Ρ(E) is the power set of E. Similarly, two 
basic events, e.g. X and Y, occur at the same time in the event ordering o if o 
contains a set A which contains both X and Y, i.e. ∃A ∈ o • X ∈ A ∧ Y ∈ A.  

Event orderings themselves can be ordered as a precedence tree as shown in Fig. 1, 
which shows the precedence tree of the event orderings o({X, Y, Z}). The empty 
event ordering 〈〉 precedes all other event orderings, and successive event orderings 
are formed by appending sequences of sets of simultaneous events. Given an event 
ordering o, pre(o) is the set of event orderings that precede o in the precedence tree, 
so for example pre(〈{X}{Y, Z}〉) contains 〈{X}〉 and 〈〉.  

 

Fig. 1. The precedence tree for o({X, Y, Z}) 

Each leaf of the precedence tree is a complete event ordering in that it contains 
every basic event.  At non-leaf nodes there are incomplete event orderings that may 
be extended to produce “future” event orderings. The set of possible future event 
orderings for an incomplete event ordering o is denoted by fu(o). Clearly, if an event 
occurs in o, it must also occur in all of fu(o), and similarly, if o does not include an 
event, then nor do any of the event orderings in pre(o). 
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3.2   Non-basic or Intermediate Events 

A non-basic or intermediate event occurs when other combinations or sequences of 
events occur and is defined by a Boolean expression containing Boolean operators 
(gates). In order to apply any Boolean operator to events, events must be interpreted 
as being true or false. This is done conventionally by speaking of “X is true” to mean 
that X occurs and that “X is false” to mean that X does not occur. To avoid confusion 
between a basic event such as X and Boolean expressions about the occurrence of X, 
Pandora uses lower case italics, e.g. x, for Boolean expressions. In Pandora, Boolean 
expressions involving events are called event expressions. Basic event expressions are 
event expressions that contain no operators (gates). There is a 1-1 correspondence 
between basic events and basic event expressions; so for example, if X is a basic 
event, then there is a basic event expression x that is true of any event ordering in 
which X occurs.  More generally, an event expression is a Boolean function on the set 
of event orderings o(E). Note that an event expression such as x, which is true of 
some event orders in o(E), implicitly defines a subset of o(E), i.e. that set of event 
orderings for which x is true.  For this reason, it is common to abbreviate the set of 
event expressions, i.e. the set of functions o(E) → {true, false}, as the power set of 
event orderings, i.e. P o(E). The informal statement, “the event x occurs in o” is 
therefore defined formally as “the set of event orderings x contains the event order o”. 

Non-basic event expression are Boolean expressions that contain Boolean 
operators or gates. Pandora uses five gates: the conventional AND (.) and OR (+) 
gates, and three temporal gates, PAND (<), SAND (&) and POR (|), where the gate 
symbol has been shown in parentheses following the gate name. In event expressions, 
the operator precedence is, from highest to lowest, & (SAND), < (PAND), | (POR), 
. (AND), and finally + (OR). The following rules determine the occurrence of 
intermediate events for each of the five operators. The informal definition is given 
above the line and the definition in the Pandora formal semantics is given below the 
line. x and y are event expressions and therefore members of P o(E). 

 
The event x + y occurs in o  ⇔  x occurs in o or y occurs in o 
+ : P o(E) × P o(E) → P o(E) 
∀x, y : P o(E) • o ∈ x + y ⇔ o ∈ x ∨ o ∈ y 
 
The event x . y occurs in o  ⇔  x occurs in o and y occurs in o 
. : P o(E) × P o(E) → P o(E) 
∀x, y : P o(E) • o ∈ x . y ⇔ o ∈ x ∧ o ∈ y 

 
The event x&y occurs in o  ⇔  x and y in o and x occurs at the same time as y 
& : P o(E) × P o(E) → P o(E) 
∀x, y : P o(E) • o ∈ x & y ⇔ o ∈ x ∧ o ∈ y ∧ ∀ r : pre(o) • r ∈ x ⇔ r ∈ y 
 
In the above definition, x is specified to occur at the same time as y in o by 

specifying that any event ordering in pre(o) in which  x occurs, y also occurs and vice 
versa. 
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The event x<y occurs in o  ⇔  x and y occur in o and x occurs before y 
< : P o(E) × P o(E) → P o(E) 
∀x, y : P o(E) • o ∈ x < y ⇔ o ∈ x ∧ o ∈ y ∧ ∃ r : pre(o) • r ∈ x ∧ r ∉ y 
 
In the above definition, x is specified to occur before y in o by specifying that for 

some event ordering in pre(o), x occurs but y does not. 
 

The event x|y occurs in o  ⇔  x occurs in o and x occurs before y if y occurs 
| : P o(E) × P o(E) → P o(E) 
∀x, y : P o(E) • o ∈ x | y ⇔ o ∈ x ∧ ∃ r : pre(o) ∪ {o} • r ∈ x ∧ r ∉ y 
 
In the above definition, x is specified to occur in o before y or without y in o by 

specifying that for some event ordering in pre(o) or o itself x occurs y does not. 

3.3   Truth Tables 

These five semantic rules for the five operators can be illustrated in a truth table 
containing the event orderings on two events X and Y, with 1 representing true and 0 
representing false: 

Table 1. Truth table demonstrating the five operators in Pandora 

ordering x y x + y  x . y x|y x<y x&y y<x y|x 
<> 0 0 0 0 0 0 0 0 0 
<{X}> 1 0 1 0 1 0 0 0 0 
<{Y}> 0 1 1 0 0 0 0 0 1 
<{X}{Y}> 1 1 1 1 1 1 0 0 0 
<{Y}{X}> 1 1 1 1 0 0 0 1 1 
<{X, Y}> 1 1 1 1 0 0 1 0 0 

 
The truth table size increases rapidly with the number of basic events; for three 

events, the truth table would require 26 rows (see the number of nodes in the 
precedence tree of Fig. 1). It possible, however, to produce a more compact table by 
exploiting the property that event expressions are monotonic with respect to the set 
fu(o) of future event orderings, i.e. if x occurs in o then it occurs in all fu(o). In terms 
of the precedence tree of event orderings, every node below a true node must also be 
true. Compact truth tables list not event orderings but paths in the event precedence 
tree. Each path is indicated by the complete event ordering that terminates the path. 
For a given event expression, the entry in the compact truth table for a given path is 
an integer rather than a Boolean value. The integer indicates the position of the first 
event ordering in the path for which the given event expression is true. For example, 
the path to 〈{X}{Y}〉 has two predecessor orderings - 〈{X}〉 and 〈〉. If x means X 
occurs in o, then x is true in the second event ordering on this path; counting from 0, 
this event order is therefore indicated by 1. If y means Y occurs in o then the entry for 
x . y on this path would be 2. Zero indicates that the event expression is not true for 
any event orderings in the given path. Because integers in compact truth tables 
indicate positions in paths of event orderings, ordered by temporal relations, we refer 
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Table 2. A temporal truth table demonstrating the five operators in Pandora 

 x y x + y x . y x|y x<y x&y y<x y|x 
<{X}{Y}> 1 2 1 2 1 2 0 0 0 
<{Y}{X}> 2 1 1 2 0 0 0 2 1 
<{X, Y}> 1 1 1 1 0 0 1 0 0 

 
to compact truth tables as Temporal Truth Tables (TTTs). Table 2 is the TTT 
equivalent to Table 1. Note that the temporal truth table entries for x + y are the 
minimum of those of x and y and the entries for x . y are maximum of x and y. 

Two event expressions are equivalent if they are true of exactly the same set of 
event orderings, and this can be seen by comparing their columns in a truth table. For 
example, Table 2 shows the equivalence between x + y and x|y + x&y + y|x as well as 
the equivalence between x . y and x<y + x&y + y<x – for every value in the x . y 
column, there is a corresponding value in one of x<y, x&y, or y<x (highlighted in 
bold), and similarly for x + y.  

3.4   Temporal Laws 

The purpose of qualitative analysis of fault trees is to obtain minimal cut sets (MCS). 
A MCS is a conjunctive set of basic events which are precisely sufficient to cause the 
top event of the fault tree to occur, i.e. if all events in a MCS occur, so will the top 
event. Qualitative analysis produces a disjunctive set of MCSs, so that the occurrence 
of all events in any one MCS is sufficient to cause the top event. In traditional 
analysis, the MCSs are obtained by applying Boolean laws (such as the Absorption 
Laws and Distributive Laws) to simplify the logical expression representing the fault 
tree until it is in minimal form. 

In Pandora, the situation is complicated by the presence of the three temporal 
gates. We seek to define a cut sequence, analogous to a cut set, that contains temporal 
operators, and a minimal cut sequence (MCSQ), analogous to a minimal cut set, 
containing no redundancies or contradictions. The conventional laws for the Boolean 
operators AND and OR remain valid, but additional laws are required to simplify 
expressions that contain temporal operators. Many of these are temporal analogues to 
the well known Boolean laws; for example, there are Absorption laws that apply to 
PAND gates: (x<y + x ⇔ x and x<y . x ⇔ x<y), POR gates (x|y + x ⇔ x and x|y . x 
⇔ x|y), and SAND gates (x&y + x ⇔ x and x&y . x ⇔ x&y), and also Distributive 
expansion laws (e.g. x<(y + z) ⇔ x|y . x|z . (y + z)  and  (x + y)|z ⇔ x|z + y|z). Other 
laws may be used to detect contradictions and eliminate redundancies in expressions 
that contain only temporal gates. There is insufficient space to consider all of these 
laws in depth, but below is a brief subset containing some of the most useful laws for 
reduction. 

 
Absorption 
 x . (x<y) ⇔ x<y  x . (x&y) ⇔ x&y  x . (x|y) ⇔ x|y 
 y . (x<y) ⇔ x<y  y . (x&y) ⇔ x&y  y . (x|y) ⇔ x<y 
 x + (x<y) ⇔ x  x + (x&y) ⇔ x  x + (x|y) ⇔ x 
 y + (x<y) ⇔ y  y + (x&y) ⇔ y  y + (x|y) ⇔ x + y 
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Mutual Exclusion 
 x&y . x<y ⇔ 0  x<y . y<x ⇔ 0  x|y . y|x ⇔ 0 
 x&y . x|y ⇔ 0  x<y . y|x ⇔ 0  x|y . y<x ⇔ 0 
 
Simultaneity 
 x&x ⇔ x  x<x ⇔ 0  x|x ⇔ 0 
 
The laws given above can be formally proven using one of two methods: a truth 

table may be used to verify that each expression is true of exactly the same event 
orderings, or alternatively, a proof by deduction can be done using the conventional 
proof rules of Predicate logic. That this is possible is clear from the formal definitions 
of the temporal gates given earlier in that each definition allows expressions 
containing temporal gates to be rewritten as expressions in Predicate logic. An 
unpublished technical report containing proofs of a number of laws is available from 
the authors. 

3.5   Base Temporal Form 

One approach towards simplification of the Boolean expressions that contain 
temporal operators is to rewrite the expression into an equivalent form in which all 
temporal operators are applied to basic event expressions only, i.e. the temporal 
operators occur only immediately above the leaf expressions of the resulting fault 
tree. For example, (x&y)<z is equivalent to x&y . x<z . y<z, and in the case that x, y 
and z are basic event expressions, the temporal operators are restricted to the lowest 
levels of the fault tree. The resulting event expressions, consisting of two basic event 
expressions and a temporal operator, are called doublets, and are indicated by 
brackets, i.e. [x&y] . [x<z] . [y<z]. Above the doublet level of the fault tree, the tree 
contains only AND and OR gates and so, providing the doublets are treated as atomic 
event expressions, may be analysed as a non-temporal fault tree. This makes it 
possible to treat a cut sequence as a normal cut set – a conjunctive set of events – 
albeit with a greater range of reduction methods able to be applied. 

An expression in which all the temporal operators are within doublets is said to be 
in base temporal form (BTF).  It is possible to prove that any temporal fault tree may 
be reduced to BTF. The proof is by induction on the height of temporal subtrees 
within the overall fault tree. Let the height of a basic event expression be 0 and the 
height of an intermediate event expression be one greater than the maximum height of 
either of its operands, then for an expression to be in BTF, the height of any temporal 
event expression should be 1. Consider a fault tree in which the height of the tallest 
temporal expression is greater than 1. Any law that distributes a temporal operator 
over AND and OR operators will "push" the temporal operator further down the fault 
tree, i.e. it produces an equivalent tree in which the height of temporal expression is 
reduced. By repeatedly applying such laws, a fault tree can be reduced to BTF. There 
are sufficient distributive laws to reduce all the temporal expressions (again, an 
unpublished technical report listing these laws is available from the authors). Some 
examples are shown below: 

 

x<(y + z) ⇔ x|y . x|z . (y + z)     (y + z)<x ⇔ (y<x) + (z<x) 
x<(y . z) ⇔ y . (x<z) + z . (x<y)                 (y . z)<x ⇔ (y<x) . (z<x) 
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x&(y + z) ⇔ x&y&z + x&y|z + x&z|y    (y + z)&x ⇔ x&y&z + x&y|z + x&z|y 
x&(y . z) ⇔ y<x&z + z<x&y + x&y&z   (y . z)&x ⇔ y<x&z + z<x&y + x&y&z 
x|(y + z) ⇔ x|y . x|z     (y + z)|x ⇔ y|x + z|x 
x|(y . z) ⇔ x|y + x|z     (y . z)|x ⇔ y|x . z|x 
 
Because each rule above reduces the height of the temporal expression to which it 

is applied, any sequence of such rule applications must eventually terminate and 
hence lead to an expression in base temporal form.  

Within cut sets, reduction is based on redundancy according to the Idempotent and 
Absorption laws, i.e. x . x ⇔ x and x + x . y ⇔ x, but cut sequences also introduce the 
possibility of contradiction – from the Mutual Exclusion or Simultaneity laws given 
earlier, for example. Together with the laws x . false ⇔ false and x + false ⇔ x, it is 
possible to entirely remove cut sequences containing contradictions. For example, the 
expression x < (x + y) can be rewritten using one of the laws shown above and the 
usual Distributive law to obtain two cut sequences in BTF: x|x . x|y . x + x|x . x|y . y. 
Because both contain x|x, which is a contradiction according to the Simultaneity Law, 
both cut sequences are impossible (since x.false ⇔ false) and therefore the result is 
equivalent to false + false ⇔ false.  

4   Example 

As an example of how Pandora can improve the analysis of a dynamic system, 
consider the design pattern of Fig. 2. The pattern describes a generic primary-backup 
recovery system in which the backup is of simpler design and provides only a subset 
of the functionality of the primary. The diverse design of primary and backup 
components serves as a guard against common cause failures. The advantage of using 
such a generic example for illustration of Pandora is that the results of analysis can be 
easily generalised on a wider class of systems that follow this particular pattern. It can 
be easily imagined, for example, how specific components (e.g. a control computer in 
a safety critical process) and the failure modes of these components can substitute the 
generic references made in this section.  

"Out" is the system output, and is initially the output of Algorithmic unit 1 ("A1"). 
A1 performs a function on the measurements provided by sensors "S1" and "S2", which 
monitor a common input. "M" is a monitor that detects an omission of output from A1 
and activates the redundant Algorithmic unit "A2" to replace A1. In that case, the 
system output is provided by A2 instead. A1 is capable of detecting an omission from 
one of the two sensors, and can continue operation with just one sensor. Omission from 
both sensors will lead to an omission from A1. If the values provided by S1 and S2 
differ, A1 will use an average value, so any value errors propagate through to the output. 
A2 is of a simpler design, and directly propagates omission and value failures received 
from sensor S2. A2 does not use any input from S1. 

There are two possible output failures for this system: Omission (O-Out), caused 
by an omission of output from both A2 (O-A2) and A1 (O-A1); and Value (V-Out), 
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Fig. 2. Example System 

caused by undetectable value failures in the outputs of either A1 or A2 (V-A1 and V-
A2 respectively), depending on which is currently active. These failures are given 
using a simplified form of the HiP-HOPS notation. There are two types of failure in 
HiP-HOPS – deviations, which represent an error in the input or output of a 
component, and internal failures, which mean the component itself has suffered a 
failure. Together, these make up the local failure behaviour annotations for each 
component by indicating how output deviations are caused by a mixture of input 
deviations (due to faults elsewhere in the system, i.e. not local to the component) and 
internal failures (faults in the current component). The failure behaviour of the 
example system is: 

 
Out:  O-Out = O-A2    V-Out = V-A2 + V-A1 
A2: O-A2 = O-M + StartA2-M.(A2 +O-S2) V-A2 = StartA2-M.V-S2 
M: O-M = M<O-A1 + M&O-A1  StartA2-M = O-A1 
A1: O-A1= A1 + O-S1.O-S2    V-A1 = (V-S1+V-S2) |A1 
S1:  O-S1 = S1f    V-S1 = S1b + V-I  
S2:  O-S2 = S2f    V-S2 = S2b + V-I 
 
On the left of each expression is the output deviation. The first letter indicates the 

failure class (i.e. O = Omission, V = Value) and the second part is the name of the 
component in question. On the right are the contributing input deviations (in the same 
format as the output deviations) and internal failures. Internal failures have no failure 
class, and are represented here by just the name of the component, e.g. M represents a 
failure of the monitor, and A1 represents a failure of A1. StartA2-M is not a failure 
but an event representing the conditions for the monitor to start A2. And since O-A2 
includes O-A1, we do not repeat O-A1 in O-Out, since if O-A2 is true O-A1 must 
also be true. 

The sensors have two internal failure modes each: S1b and S2b both indicate the 
values provided by the sensor in question are biased, leading to a value error; S1f and 
S2f mean the sensor has failed, leading to an omission. The three temporal operators 
are each used in the expressions to represent a more accurate model of the failure 
behaviour; for example, an omission from the monitor M occurs only if the monitor 
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fails before or at the same time as A1, and the POR is used to indicate that a value 
error from A1 is caused if the sensors provide incorrect output before A1 fails. 

The first step in the analysis is to start with a system output deviation and 
substitute all input deviations for their equivalent output deviations, e.g. O-A2 is 
replaced by O-M + StartA2-M.(A2 +O-S2). This process continues until only internal 
failures remain in the expression. The resulting expression then represents the fault 
tree for that system output, and indicates the root causes for that failure. The two fault 
tree expressions for this example are as follows: 

 
O-Out = M<(A1 + S1f.S2f) + M&(A1 + S1f.S2f)  

  + (A1 + S1f.S2f).(A2 + S2f) 
V-Out = (A1 + S1f.S2f).(V-I + S2b)  

  + (V-I + S1b + V-I + S2b) | A1 
 

The next step is to begin to apply the laws of reduction to these expressions in 
order to arrive at the base temporal form of the expressions. For example, 
M < (A1 + S1f.S2f) may be rewritten to place the OR uppermost in the 
expression. Three laws are needed to achieve this: x<(y + z) ⇔ x|y . x|z . (y + z), 
which develops < over +,  x|(y . z) ⇔ x|y + x|z, which develops POR over AND, and 
one of the traditional Boolean Distributive laws, x . (y + z) ⇔ x . y + x . z. Applying 
them gives the expression in base temporal form: 

 

M < (A1 + S1f.S2f) 
⇔  M|A1 . M|(S1f.S2f) . (A1 + S1f.S2f)  
⇔  M|A1 . M|(S1f.S2f) . A1 +  

M|A1 . M|(S1f.S2f) . S1f.S2f 
⇔  M|A1 . (M|S1f + M|S2f) . A1 +  

M|A1 . (M|S1f + M|S2f) . S1f.S2f 
⇔  [M|A1] . [M|S1f] . A1 + [M|A1] . [M|S2f] . A1 +  

[M|A1] . [M|S1f] . S1f . S2f +  
[M|A1] . [M|S2f] . S1f . S2f 

 

The last expression is in base temporal form (BTF) and contains the doublets. Once 
the expression is in BTF, it is possible to perform some reduction. In this case, the 
temporal law x|y . y ⇔ x<y can be applied to reduce [M|A1].A1 to [M<A1], and 
similarly for S1f and S2f (i.e. [M|S1f].S1f ⇔ [M<S1f]). 

The final step is to perform reduction between each cut sequence, eliminating 
redundancies. For example, once V-Out has been transformed into BTF, it is possible 
to apply temporal laws such as x|y + x . y ⇔ x and the traditional absorption law 
x + x . y ⇔ x to reduce the number of cut sequences: 

 

V-Out = (A1+S1f.S2f).(V-I+S2b) + (V-I+S1b+V-I+S2b)|A1 
⇔ A1.V-I + A1.S2b + S1f.S2f.V-I + S1f.S2f.S2b +  

[V-I|A1] + [S1b|A1] + [S2b|A1] 
⇔ V-I + S2b + S1f.S2f.V-I + S1f.S2f.S2b + [S1b|A1] 
⇔ V-I + S2b + [S1b|A1] 
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In this case, for example, A1.V-I + [V-I|A1] reduces to V-I which in turn 
means S1f.S2f.V-I is redundant. As a result, we can reduce the original seven cut 
sequences to just three MCSQs. The results for both O-Out and V-Out are: 

 

O-Out    V-Out 
M<A1    V-I 
M&A1    S1b | A1 
A1.A2    S2b 
A1.S2f 
S1f.S2f 

 

These eight minimal cut sequences together represent all the minimal causes of the 
two system failures. An omission of output can be caused if: the monitor fails before 
or at the same time as A1, in which case it never activates the standby A2; if both A1 
and A2 fail; if both sensors fail; or if S2 fails and A1 fails, in which case A2 has no 
input. A value failure of the output, by contrast, is caused either by a value failure of 
the input, a biased result from S2, or a biased result from S1 before A1 fails. If S1 
provides a biased result after A1 fails, then it is irrelevant because the output is now 
being provided by A2, which takes its input only from S2. This means that a failure of 
A2 independent of S2b, once A2 is activated, leads to an omission from the system, 
rather than a value failure; this behaviour is inexpressible in classical FTA without 
using NOT gates. 

The subtleties of these results make them more accurate than the results obtainable 
through purely traditional FTA. Using only Boolean operators means that M.A1 
would be a cut set (which ignores the fact that if M fails after A1, the system can 
continue to operate) and that S1b alone would cause a value error, which is not the 
case if A1 has failed and A2 is providing output instead. It is not possible to represent 
the fact that S1b only causes a value failure when the system is using A1 using only 
AND and OR. With the temporal operators, the results are more informative and only 
slightly more complex. 

5   Conclusion 

Pandora is a new temporal extension to fault trees intended to enable them to 
represent the effects of sequences of events and to allow for analysis of systems in 
which such sequences play a role. Pandora is defined in such a way to be similar to 
both the structure and semantics of existing fault trees, and it introduces only three 
new gates that allow analysts to represent many possible combinations of events. By 
using a formalisation based on event orderings, which are sequences of sets of 
simultaneous events, it is possible to prove, within Predicate Logic, a set of laws that 
can be used to qualitatively analyse Pandora fault trees and obtain minimal cut 
sequences, analogous to minimal cut sets in ordinary fault trees. These show the 
minimum combinations or sequences of events necessary to cause the top event. In 
the future, the aim is to extend Pandora to allow for the quantitative analysis of 
minimal cut sequences too. 

Furthermore, Pandora is compatible with HiP-HOPS, which is a hierarchical and 
compositional methodology for the automatic synthesis of fault trees. HiP-HOPS uses 
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hierarchical descriptions of component-level failure behaviour and the topology of the 
system to build system-wide fault trees. By extending these descriptions to include 
temporal expressions, it is possible for Pandora to be integrated into HiP-HOPS, 
enabling the compositional synthesis and analysis of temporal fault trees as well as 
normal fault trees. This allows HiP-HOPS to be used to more precisely analyse 
complex dynamic systems in which the order of faults and events is critical to the 
failure behaviour. The result, we hope, is a powerful tool which can produce more 
accurate and more informative safety analyses for a wider range of different systems. 
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Abstract. Fault trees are used to model how failures lead to hazards and so to 
estimate the frequencies of the identified hazards of a system. Large systems, 
such as a rail network, do not give rise to endless different hazards.  Rather, 
similar hazards arise repeatedly but with different frequency depending on 
factors such as location.  Several authors have identified the need to build 
models to estimate both system-wide average hazard frequencies and hazard 
frequencies in specific situations.  Fault trees can be used for this but they grow 
as additional factors are considered.  In this paper, we describe a compact 
model using Bayesian networks.  The fault tree notation is retained; with base 
events parameterised by variables in the Bayesian net to represent a mixture of 
related fault trees compactly.  We use a simple example to describe the model 
structure and report on ongoing work on a model of train derailment.  

Keywords: risk analysis, fault tree, Bayesian network. 

1   Introduction 

Quantitative risk modelling is used for safety management across a wide range of 
industries such as nuclear power generation, aviation, chemical processing, oil and 
gas, and transportation. A common approach is to use a fault tree to represent the 
combinations of failures leading to a hazard, together with an event tree to model the 
possible accidents. These models are well suited to the modelling of risk in particular 
locations, for example at a particular nuclear power station where the factors that 
influence failure rates can be investigated and specific failure probabilities 
determined. 

The models are less well suited to industries where accidents can happen over a 
large geographic area. In such industries, such as railway transportation, although the 
accidents that can occur in different locations are similar, there will be local 
differences in factors that influence failure rates. Risk models in such industries can 
either be revised for each location or averaged over all locations.  Both forms of 
model are used: a location specific model is used to analyse an operational or 
engineering change in a specific location whilst a risk model averaging over all 
locations is useful for monitoring system-wide risk. 
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Several groups have identified the need to build risk models for multiple locations 
without averaging. Since understanding the variation in risk arising from local 
differences is important for making decisions about how to reduce risks, it is desirable 
to make the factors giving rise to the variation explicit in the risk model.  If the factors 
are used to parameterise a generic model, then the risk model for a specific location 
can be obtained by giving the factor value appropriate for the location and a profile of 
risk can be generated by location or by another causative factor. 

The objective of this paper is to describe how a Bayesian network can be used to 
represent a risk model that is generalised in this way, equivalent to a set of fault trees, 
with explicit parameterisation by factors.  We do this using a highly simplified case 
study, introduced using fault trees in Section 4 and then represented in Section 5 using 
Bayesian network.  Before this, we cover some background: Section 2 describes fault 
trees, Bayesian networks and the relationship between them and Section 3 describes 
existing system-wide risk models.  Further work and conclusions are in Section 6. 

2   Fault-Trees and Bayesian Networks 

In this section we review fault trees and Bayesian networks briefly, together with 
existing work on the relationship between them.  

2.1   Bayesian Networks 

A Bayesian network [1] shows the dependencies between a set of probabilistic 
variables. The network is made up of nodes and arcs. The nodes correspond to 
random variables: each variable has a finite set of possible states but we may be 
uncertain which state a variable is in. The arcs in the network represent probabilistic 
influence: the state of one node influences the probabilities of the states of another 
node. Each node has a table of conditional probabilities, providing the probabilities of 
each state of the variable for each combination of the states of parent variables. A 
Bayesian network can therefore be used to model relationships of cause and effect, 
which may be uncertain.  

The network represents the joint probability distribution of all the variables. If the 
value of one variable is known, this evidence can be entered and ‘propagated’ around 
the network, updating the marginal probability distributions of the other variables. 
Although Bayesian probability theory has a long history, executing realistic models 
was only first made possible in the late 1980s using new algorithms [2], making it 
possible to apply Bayesian networks to the problems of systems engineering. 

Bayesian networks have been applied to safety and risk assessment.  In [3] 
Bayesian networks are used to model changes in an organisation’s safety culture, and 
provide a quantified assessment of the impact of such changes on risk.  In [4, 5] the 
use of Bayesian networks to model the technical and managerial causes of aviation 
accidents at airports is described.   

2.2   Fault Trees 

Fault trees were developed in the early 1960’s by Watson and Mearns of Bell 
Laboratories for analysis of the Minuteman launch control system [6]. The technique 
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became well known after it was used to review nuclear power plant design in the 
WASH-1400 study [7].  

A fault tree is an analytical technique for describing the combinations of failure 
events that cause a system failure. The system failure being analysed is called the 
‘top-event’, and its decomposition into ‘base events’ is specified using logical AND 
and OR gates.  Other types of gate can also be used, for example exclusive OR gates, 
or NOR gates. The probability of the top-event is calculated from the set of minimal 
cut sets, each set containing the base events whose simultaneous occurrence causes 
the top-event.  This calculation is automated using computer programs such as Fault 
Tree + [8]. 

2.3   Fault Trees and Bayesian Networks 

Bobbio et al [9] outline how any fault tree can be directly translated into an equivalent 
Bayesian network. The diagram of Fig. 1 shows networks equivalent to fault tree 
AND and OR gates, with the different logical relationship of each represented in the 
conditional probability distributions for the network nodes. Given the probabilities of 
occurrence of base events, the Bayesian network calculates the top event probability. 

A false  true  
B false true false true
C=false 1 0 0 0 
C=true 0 1 1 1 

B

C

AND

OR

C

A or B

C

BA

A false  true  
B false true false true
C=false 1 1 1 0 
C=true 0 0 0 1 

 

A

B

A and B

A

Condition Probability – AND Gate

Condition Probability – OR Gate

 

Fig. 1. Fault Tree Gates as Bayesian networks 

We show below how related fault trees can be merged into a single Bayesian 
network. We also show how the resulting failure model can be parameterised by the 
factors that determine the base event probabilities. The fault trees representing a 
particular location can be retrieved from this failure model by entering evidence in 
Bayesian network to match the conditions in that location.  

3   System-Wide Risk Models 

We are aware of several initiatives, particularly in the railway industry, to build 
system wide models, modelling the risk associated with a whole system rather than 
just a specific location within the system. 
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3.1   The UK Railway Safety Risk Model 

The Safety Risk Model (SRM) is a model of risk on the UK Rail Network [10]. It 
consists of a series of fault and event tree models for 110 hazardous events that 
together estimate the overall level of risk on the railway. The base event probabilities 
are derived from historical data of incidents and accidents. This leads to the SRM 
calculating averages, taken over the whole network, allowing it to be used to monitor 
network-wide risks. However, because the causes of varying base event probabilities 
are not included, the model does not profile the risk in different locations.  

3.2   Parameterised Risk Models 

Others have identified the need to develop models that can be used to estimate the 
whole system risk as well as to analyse risks in different locations. This requires the 
factors that determine failure probabilities to be included and their dependence on 
location to be modelled. 

Research was commissioned by the RSSB in the UK [11, 12] to investigate a 
model of this type to optimise track inspection and monitoring processes in order to 
reduce the risk of train derailment due to track faults. The study identified nine 
separate track faults to be modelled with separate sets of fault trees. A prototype 
model of the risk due to one of these types of fault, gauge spreading, was built using 
fault trees. The approach used fault trees in two ways: the first use was a traditional 
fault tree of failures leading to a hazard; while the second use combined relevant 
‘environmental factors’ (such as the degree of curvature, rail condition and rail type) 
and used these to determine the base event probabilities in the first tree. 

The environment factors were parameters in the model, so that the failure 
probabilities could be varied without a separate fault tree for each case. However, 
despite this, a large number of fault trees were needed, as it was not possible to treat 
all factors as parameters. Separate fault trees were needed for high, medium and low 
severity gauge spreading faults as different control measures applied to each, and also 
for high and low speed conditions. This resulted in six similar, but entirely separate 
fault tree structures being built for this one particular type of track fault. Despite the 
efforts to simplify the modelling approach using parameterisation, the complete track 
fault derailment model would have required approximately 55 separate fault tree 
structures to be built and the development was not completed.  

A parameterised risk model has been produced for Irish rail [13]. The model 
consists of fault trees and event trees modelling all of the accident sequences on the 
Irish railway network. Over 200 parameters were identified and sets of values for 
these parameters were gathered for 227 separate locations. These parameters include 
ratings for the design and condition of each asset, human factor performance and 
location factors such as train loading, frequency and topography. The model assumes 
that the states of parameters are fixed in any particular location and therefore 
locations are selected to have uniform characteristics. Cut sets generated from the 
fault trees are evaluated for different parameter values using Excel. The risk model 
can calculate risk breakdowns, such as risk by location, line and by type of asset.  

In a recent review [14] of the state of the art in causal modelling in aviation, Ale et 
al. argue that more detailed causal models are needed of the particular circumstances 
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in which ‘organisational accidents’ occur. They outline a research project to develop 
causal models in the aviation industry for this purpose, bringing together existing 
work undertaken using fault trees, event trees and Bayesian networks. However they 
do not describe in detail how they propose to build such models.  

4   A Simplified Case Study, Using Fault Trees 

In this section we describe a simplified but illustrative failure model, using fault trees.  
The application is described first and then two fault trees, covering different situations 
(or locations) are given.  Each fault tree has several different quantifications, 
depending on the local conditions, so that the full failure model would require 
multiple copies of the two fault trees. In Section 5, we show how the same failure 
model is represented using a single Bayesian network.  

4.1   ‘SPAD’ Events 

Train separation on the UK railway network is maintained through the use of line-side 
signalling. A track circuit for each ‘block section’ of the line detects the presence of a 
train. A block section consists of the area of track preceding a signal, and also a small 
‘overlap’ beyond to prevent an accident occurring if the braking is misjudged or if the 
train’s adhesion to the track is poor.  

The signal behind an occupied block section is set to red to indicate that no other 
train should enter the block section. Safety therefore relies on the driver reacting to 
the signalling indications. A protection system, called the Train Protection and 
Warning System (TPWS), is used at all high-risk signals automatically to apply the 
brakes of a train that fails to slow at a red signal. If a train passes a red signal for any 
reason, the incident is known as a Signal Passed at Danger (SPAD).  

This case study is a highly simplified model of the causes of SPADs events.  The 
case study is intended to illustrate the use of a Bayesian network for modelling 
failure: the logic of the causes of SPADs and the failure probabilities are for 
illustration only. 

4.2   The Logic of SPADs, Using Fault Trees 

Two locations are distinguished: (i) a junction with TPWS fitted, and (ii) a plain line, 
where TPWS is not fitted. For the purposes of the case study, we will assume that 
these locations cover all variations in the failure logic.  Identifying a sufficient set of 
such variations is a necessary step in creating a failure model: in practice more cases 
would be needed. 

Fault Tree 1: Junction with TPWS. At this type of junction, TPWS is fitted. A 
SPAD occurs if the driver fails to react to a signal and if TPWS fails to operate.  The 
risk of poor train adhesion leading to a SPAD (beyond the overlap) is negligible since 
the overlap is greater than 200m, even though the speed is high. The fault tree is 
shown in Fig. 2.  
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Fig. 2. FT for the Junction Signal with TPWS 
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Fig. 3. FT for the Plain Line 

Fault Tree 2: Plain Line. At this type of signal, TPWS is not fitted and the overlap is 
less than 200m. A SPAD occurs if the driver fails to react to a signal (NOBRAKE 
event).  A SPAD, beyond the end of the overlap, may also occur if the train adhe- 
sion is poor (SLIP event), particularly if the speed is high, since in these conditions it 
is possible for the driver to misjudge the application of the brakes. The fault tree is 
shown in Fig. 3. 

4.3   Fault Tree Events and Probabilities 

The events in the fault trees are shown in Table 1. Except for the REDSIG event, 
these events are quantified as probabilities. The REDSIG event represents the number 
of trains per year approaching a red signal and is used to scale the failure model, so 
that the top-event gives an estimate of the number of SPAD events. Some fault tree 
software (such as FaultTree+) allows this usage although it departs from the standard 
definition of an event. 
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The probabilities of the events may depend on the conditions that can vary in the 
two locations analysed by fault trees.  For the first fault tree, covering the junction 
fitted with TPWS, the signal sighting varies changing the NOBRAKE probability. In 
the second fault tree the signal sighting, line speed and adhesion can vary. The 
factors, or conditions, that cause variation and the event affected are shown in Table 2 
and the probabilities are in Table 3.  

Table 1. Events in the SPAD Fault Tree 

Event Description 
REDSIG Trains approaching red signal aspect (number/year) 
SLIP Train adhesion failure  
NOBRAKE Driver fails to brake at a red signal aspect 
TPWSFAIL TPWS fails on demand, i.e. conditional on train passing the signal. 

Table 2. Conditions, Representing Attribute of the Rail Infrastructure 

Condition Description Events Influenced 
Signal sighting The signal may be easier or harder 

to read from the driver cab. Values: 
poor, good 

NOBRAKE 

TPWS fitted TPWS is not fitted to all signals.  
Values: True, False 

NOBRAKE, 
TPWSFAILS 

Overlap length The overlap following a junction 
maybe shorter.  Values: <200m, 
>200m 

SLIP 

Train speed The speed of the train towards the 
signal varies.  Values: High (>100 
mph), Medium (100-60 mph), Low 
(<60 mph) 

SLIP 

Adhesion The train may be liable to slip. 
Values: Good, Poor 

SLIP 

Table 3. Event Probabilities 

Event Probability Condition 1 Condition 2 
TPWSFAIL 0.01   
NOBRAKE 1E-08 Good signal sighting  
 1E-06 Poor signal sighting  
NOBRAKE 1E-08 Good signal sighting  
 1E-06 Poor signal sighting  
SLIP 1E-06 High speed Good adhesion 
 5E-06  Poor adhesion 
 1E-07 Medium speed Good adhesion 
 5E-07  Poor adhesion 
 5E-07 Low speed Good adhesion 
 5E-07  Poor adhesion 
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Table 4. Quantification of the REDSIG event 

Fault 
Tree 

Condition 1 Condition 2 Condition 3 REDSIG 
(number/year) 

1 Good signal sighting   5,000,000 
1 Poor signal sighting   100,000 
2 Good signal sighting High speed Good adhesion 5,000,000 
2   Poor adhesion 50,000 
2  Medium speed Good adhesion 10,000,000 
2   Poor adhesion 100,000 
2  Low speed Good adhesion 10,000,000 
2   Poor adhesion 500,000 
2 Poor signal sighting High speed Good adhesion 50,000 
2   Poor adhesion 10,000 
2  Medium speed Good adhesion 100,000 
2   Poor adhesion 50,000 
2  Low speed Good adhesion 500,000 
2   Poor adhesion 100,000 
   Total 31,560,000 

 
The variation in base event probabilities could be analysed by duplicating the fault 

trees and combining the different copies with an OR-gate. Given the number of values 
of the conditions distinguished, we would need 2 copies of the tree in Fig. 2 (given by 
2 values of signal sighting) and 12 copies of the fault tree in Fig. 3 (given by 2 values 
of signal sighting, 3 values of train speed and 2 values of adhesion), making 14 
‘situations’ overall. The REDSIG event also needs to be quantified by giving the 
number of approach events in each of the 14 situations. Table 4 shows example data. 

5   The SPAD Failure Model as a Bayesian Network 

In this section we show that the fault trees of Section 4 can be represented using a 
Bayesian Network.  The main advantages of this representation are: 

• The 14 variants of the fault tree are combined into a single Bayesian Network 
• The conditions that cause the probabilities in the fault tree to vary are made 

explicit as parameters in the model. 

5.1   Variables in the Bayesian Network 

The network is shown in Fig. 4. The variables (or nodes) in the network are of four 
types: 

1. A base event, with states ‘true’ and ‘false’. 
2. A gate is a variable with states ‘true’ and ‘false’. 
3. A condition, with states corresponding to the possible values of the condition. 
4. The situation variable, with a state for each of the 14 situations described in 

Section 4. 
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Fig. 4. SPAD Model as a Bayesian Network 

5.2   Conditional Probability Tables 

The probability tables for the gate variables are deterministic, corresponding to 
‘logical and’ or ‘logical or’, as shown in Fig. 1. The probability table for the base 
events NOBRAKE, TPWSFAIL and SLIP are determined from Table 3, with the 
additional constraints: 

1. the probability of TPWSFAIL is unity when TPWS is not fitted, and 
2. the probability of SLIP is zero when the overlap length exceeds 200m. 

The number of red signal approaches is represented in the Bayesian network using 
the ‘Situation’ variable and the ‘REDSIG’ variable, which corresponds to the 
‘REDSIG’ event but is quantified with a probability.  The ‘REDSIG’ variable 
depends on ‘Situation’ and the probability is the proportion of train approaching a red 
signal belonging to each situation, determined from the data in Table 4. For example, 
there are 500,000 (out of a total of 31,560,000) train approaches in the situation given 
by good signal sighting, TPWS not fitted, overlap less than 200m and poor adhesion, 
corresponding to a fraction of 1.584% of the total train approaches.  

The ‘Situation’ determines the setting of each condition. In this case study, we 
have a deterministic relationship between the situations and the condition value, but a 
distribution over the possible values of the condition could be expressed as well. The 
‘Situation’ node has a uniform (prior) distribution. 

5.3   Viewing the Bayesian Network as a Combined Fault Tree 

The Bayesian network, excluding the nodes representing conditions, can be viewed as 
the single fault tree shown in Fig. 5. The fault tree gives a clearer view of the logic of 
the failure – how the base events lead to the top event – than the Bayesian network, 
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Fig. 5. BN Viewed as a Combined Fault Tree 

since the fault tree notation distinguishes AND from OR.  Moreover, the fault tree 
notation is familiar to safety engineers.  It is therefore preferable to view the logical 
part of model as a fault tree. 

As well as viewing the model as the combined fault tree of Fig. 5, it is also 
possible to project the original fault trees as special cases. Fig. 5 corresponds to Fig. 2 
when the probability of the SLIP event is zero, which is the case when the ‘overlap 
length’ condition is set to ‘> 200m’.  Similarly, the combined fault tree corresponds to 
Fig. 3 when the probability of TPWSFAIL event is unity – representing the condition 
of TPWS not being fitted. 

5.4   Calculations Using the Bayesian Network 

The Bayesian network can be used to calculate the SPAD probability in a given 
situation. This is done by entering evidence at the situation variable – setting it to a 
particular situation – and observing the marginal probability at the node ‘GATE1-
AND’. The result for each situation is shown in Fig. 6. The probability shown is the 
probability that a signal approach occurs in the situation and leads to a SPAD, thus 
most SPADs are estimated to occur in situations 3 and 7. This calculation allows for 
the varying fraction of signal approaches in each situation, so an estimate of the 
number of SPADs expected in each situation is obtained by multiplying the 
probability by the uniform scale factor of 31,650,000 signal approaches per year. 

The Bayesian Network can also be used to calculate the aggregate probability by 
setting the ‘REDSIG’ node to ‘true’ and leaving other nodes unset. The overall SPAD 
probability, weighted over all the situations in 4.136e-07. Setting the ‘REDSIG’ node 
gives marginal probabilities on the ‘Situation’ node equal to the fraction of signal 
approaches in each situation. This overall probability is the sum of the probabilities in 
each situation, which is the correct result provided that the situations are mutually 
exclusive. The result given by constructing a fault tree with its top event given by the 
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Fig. 6. SPAD Probability in Each Situation. The situation numbers follow the rows of Table 4. 

disjunction of a fault tree for each situation – two copies Fig. 2 and twelve of Fig. 3 – 
does not assume mutual exclusion. Instead, each minimum cut set derives from one of 
the situation fault trees and the top event probability allows for the overlap of the cut 
sets; the sum of the situation probabilities is the first approximation to this 
calculation. The assumption of mutual exclusion is appropriate to the way we have 
scaled the failure model, since each approach by a train to a red signal belongs to 
exactly one situation.  

6   Further Work and Summary 

In this section we summarise the contribution of the paper and outline some areas of 
further work towards the goals described in Section 1. 

6.1   Modelling the Infrastructure: How Factors Relate  

In the failure model we have described above, the situation determines the value of 
the factors. This relationship between situation and factors forms a model of the 
infrastructure, possibility extending to the environment. The importance of the 
situation is to be able to calibrate (or scale) the model, with the number of events at 
risk – in the case study, a train approaching a red signal – counted for each situation. 
A simple approach is for the situation to be a geographical area, but other partitions 
such as routes combined with train type could be used provided that the number of 
events can be estimated.  

In principle, the data on the infrastructure and its use needed for an infrastructure 
model could be taken from an asset database together with maintenance and 
operational records. However, there are many practical issues to be resolved including 
how to define situations, which factors are important and how many values of each 
factor should be distinguished. 
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In the case study, the value of each factor is uniquely determined in each situation. 
This restriction is unnecessary: a more general model would be for the situation to 
determine a distribution of the factor values. Another common simplification we are 
aware of in the work surveyed in Section 3 is for infrastructure factors to vary 
independently, given the location. In the context of our case study this implies that, 
for example, a signal with poor adhesion is no more or less likely to be hard to see 
than the average for all signals in the same geographical area. We would like to 
investigate how this approximation impacts the overall risk: if dependencies do exist 
it seems possible that this could impact the overall risk significantly. 

Whether or not situations are geographical, it is likely that analyses of the top-
event probabilities for different groups of situations would be useful. This could be 
done using a program interface to the Bayesian network, which automatically enters 
the appropriate evidence in the Bayesian network. We plan to develop software to 
assist with the construction and use of failure models of the form we have described, 
so that the Bayesian network is largely hidden from the user. 

6.2   Modelling Train Derailment  

We are currently working on a Bayesian network, of the type described above, to 
model derailment risk. The model covers derailments caused by track and train faults, 
over speeding and obstructions. The fault tree part of the model can be parameterised 
by the following factors: 

• Rolling stock type: high-speed train, electric multiple unit, freight. 
• Rolling stock fault type: break failure, axle failure, wheel failure, and 

suspension failure. 
• Rolling stock fault severity. 
• Rolling stock inspection interval. 
• Effectiveness of rolling stock maintenance. 
• Track type: plain line, switch and crossing. 
• Track fault type: gauge spread, track twist, broken rail, buckled rail, broken 

fishplate, subsidence failure. 
• Track fault severity and curvature. 
• Location of track: in tunnel, on tunnel approach, outside rural, outside urban, 

in station. 
• Switch and crossing fault type and fault severity. 
• Effectiveness of infrastructure maintenance. 
• Type of obstruction. 
• Traffic density and train speed. 

The Bayesian Network consists of just 64 nodes and can calculate the top event 
probabilities with all possible combinations of the parameter values (over 108 in 
total). The number of fault trees replaced would be the number of these combinations 
occurring in practice. No node in the Bayesian network has more than four parents, 
with the result that the model has 905 probabilities that need to be determined.  

In related work [15, 16] we showed how sets of similar event trees could be 
merged into a single BN model and generalised in a similar way to that shown here. 
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We intend to link the event tree model and the fault tree model to form a single BN in 
which factors can affect both parts of the model, ensuring that correlations between 
variations in the fault tree and event tree parts of the model are effectively captured.  

6.3   Building Parameterised Risk Models 

As we have shown, it is possible to view the logical part of the model as a fault tree so 
that the Bayesian net can be hidden from the risk analyst. However, there are still 
some unresolved issues about how to build these models in practice. A simple 
approach would be to build the combined fault tree (corresponding to Fig. 5) and then 
to consider the failure probability for all relevant factor values. In our simple case 
study the fault tree of Fig. 5 can be interpreted as representing the case of TPWS 
fitted with overlap length ‘< 200m’. Since this makes sense, it is reasonable to expect 
a risk analyst to use the standard top-down method to build the tree. However, the 
combined fault tree will not always have a coherent interpretation – it could mix cases 
that make no sense in combination – making this approach unworkable. Moreover, it 
would be preferable to handle the 0 and 1 failure probabilities implicitly by building 
fault trees for a representative number of cases. We plan to develop prototype 
software to investigate these issues more fully. 

6.4   Summary 

We have shown how a Bayesian network can be used to represent a risk model that is 
generalised for multiple locations, or other subdivisions of a system, rather than 
averaged over all locations. The generalisation is achieved by including factors – 
properties of the system and its environment – that cause the failure logic and the 
failure probabilities to vary between different locations.  

The parameterised model is equivalent to a set of fault trees but is represented by a 
Bayesian network. The part of the model expressing the logic of failure can be viewed 
as fault tree. The Bayesian network representation is compact, so that more factors to 
be added to the model without an exponential increase in the number of model 
elements. The representation will make it practical to build system-wide risk models, 
in the manner proposed by Ale et al. [14], for the causal analysis of the profile of risk 
at different locations in a system made up of repeated installations or sub-systems, 
such a railway network. 
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Andreas Lüdtke and Lothar Pfeifer

OFFIS Institute for Information Technology, 26121 Oldenburg, Germany
{luedtke,pfeifer}@offis.de

Abstract. In this paper an approach to formal analysis of potential hu-
man errors in the interaction with mode-based systems in modern aircraft
cockpits is presented. We developed a cognitive model of pilot behaviour
that is integrated with system design models in order to predict human
errors and the resulting safety impact due to cognitive adaptation to fre-
quently experienced flight scenarios during pilot-cockpit interaction. The
paper focuses on the definition of a formal semantics for the pilot model
as a basis for formal verification of pilot-system interaction. It is shown
how formal verification can support debugging formal specifications of
nominal flight procedures as well as producing Human Error Fault Trees.

1 Introduction

Modern interactive avionics systems like Autopilots or Flight Management Sys-
tems are equipped with a huge number of different modes. Generally a mode
may be understood as a system configuration with a specific functionality. The
mode concept allows the use of systems in a variety of different operating condi-
tions but at the same time it becomes difficult for the operators to retain “mode
awareness”. Mode related problems have been identified by numerous researches,
e.g. by Sherry et al. [1] in the Vertical Navigation function of Flight Management
Systems. A study conducted by the Federal Aviation Administration (FAA) Hu-
man Factors Team highlighted a lack of mode awareness as one major concern
in the current aviation system [2]. Lack of mode awareness may lead to mode
errors where an action is performed that is correct in some modes but not in
the present one. Mode errors lead to “automation surprises”, where an operator
no longer understands what the system is doing. During the design process the
need for modes has to be balanced against the probability of mode errors.

In the industry human errors are often considered very late in the system
development process when a prototype is available for flight simulator studies
with test and line pilots. At this stage changes to improve the usability are
very time-consuming and expensive. New approaches to an earlier human er-
ror analysis (HEA) provide techniques to automatically analyse system design
models and rely on Norman’s [3] assumption that operators use mental models
to guide their interaction with machines. In design-centred approaches, formal
verification is used on a combination of mental user models and system models
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to identify potential human errors. Examples of these are [4][5]. The advantage
is that a complete analysis can be performed, but the question is, how to gen-
erate psychological plausible mental models. In user-centred approaches, human
simulation is performed to predict user behaviour. These are discussed in [6][7].
The advantage here is that human cognitive processes can be considered explic-
itly; a disadvantage is that simulation can never be complete. We suggest the
integration of both approaches by (1) generating psychologically plausible men-
tal models through simulation of cognitive learning processes, (2) automatically
translating these models into a design notation in order to (3) perform formal
verification to automatically compute potential pilot errors (presented as a Fault
Tree). In this way, simulation and verification complement each other and the
mental model is the mediating concept. Parts of this work have been carried out
in the ISAAC (Improvement of Safety Activities on Aeronautical Complex Sys-
tems) project1, funded by the European Commission under the 6th Framework
Programme.

We understand mental models as knowledge about how to operate a system
during concrete flight procedures (e.g. takeoff). Operators adapt their mental
models while they gain experience of a particular system. The psychological the-
ory “Learned Carelessness” [8] states that humans have a tendency to neglect
safety precautions if this has immediate advantages, e.g. it saves time. Care-
less behaviour emerges if safety precautions have been followed several times
but would not have been necessary, because no hazards occurred. Then, peo-
ple deliberately omit safety precautions because they are considered a waste of
time. Learned Carelessness is characteristic for human nature because we have to
implicitly simplify in order to be capable to perform efficiently in a complex en-
vironment. Unfortunately this may be disastrous in non-routine scenarios. In the
context of mode based avionics systems safety precautions may be understood
as checking the current mode before performing critical actions (e.g. pressing
buttons). We think it is crucial to consider the cognitive process of Learned
Carelessnes during system design. Cognitive architectures, where the human
cognitive system is understood as an information processing system, provide a
framework for building models of human cognitive processing. Well-known ex-
amples are ACT-R [9] and SOAR [10]. From an engineering point of view, they
can be understood as vehicles to run and modify mental models. We developed
a cognitive model (implemented in PROLOG and C) in which we used concepts
from ACT-R but modified them to model Learned Carelessness. The model is
capable to interact in a closed-loop simulation with formal system designs devel-
oped with the commercial case tool StateMate. The simulation starts with a
normative mental model of a flight procedure (called procedure model). During
simulation, the procedure model is modified/simplified by the cognitive learning
process. At any time, the current status of the procedure model can be translated
to the state-based input language of the OFFIS model checker tool called Mod-
elCertifier. Model checking allows (1) to identify inconsistencies, incompleteness
and errors in the normative procedure model, and (2) to generate a Fault Tree

1 www.isaac-fp6.org
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that points out possible safety requirement violations due to pilot errors caused
by Learned Carelessness.

The paper describes the role of formal verification during our HEA methodol-
ogy (Section 2) and presents a formal semantics for the pilot model (Section 3).
The semantics serves as a reference for the algorithm that translates the proce-
dure model to the state-based input language of the OFFIS model checker. Our
work is guided by the semantics for StateMate defined in [11]. Similar to that
approach we use synchronous transition systems. The paper closes with briefly
presenting some results of an evaluation of the HEA methodology (Section 4).

2 Human Error Analysis (HEA) Methodology

This section describes the seven steps of our HEA methodology. Steps 1 – 4 serve
to prepare the needed input models for the simulation in step 5. Step 6 and 7
analyse and then harvest the results of the simulated learning process.

In step 1 (System Design) a formal system design has to be modeled in
StateMate. In ISAAC a highly reusable modeling structure encompassing the
mode logic (set of modes and mode transitions) and the corresponding control
laws was developed. It allows to describe the system from the pilot’s point of
view. In step 2 (Procedure Model) a procedure model is produced that pre-
scribes how to operate the system during a certain flight task. It is a nor-
mative model. The main components are Goals, Operators, Conditions, and
Rules (similar to the famous GOMS [12] notation). Figure 1a shows a sim-
ple rule example with the informal meaning: “If you want to fulfill the goal
PRESS VERTICAL SPEED BUTTON and the current VERTICAL MODE as
retrieved from memory is 4, then press the VERTICAL SPEED BUTTON”.
Further details will be given in the next section. A procedure can be applied in
many operational situations. These different situations are termed “scenarios”.
The methodology foresees to model scenarios in step 3 (Scenario Model) using
StateMate. In ISAAC a modeling structure for scenario templates has been
developed. A scenario is defined by an initial state and a list of events (e.g. ATC
clearances) and describes day-to-day normal revenue flights. Instead of defining
concrete values for the variables representing events and initial state data it is
possible to define probability distributions over possible values. Before the simu-
lation can be started it has to be verified in step 4 (Debugging) that the procedure
model is indeed normative, in the sense that the application of the rules does
not violate functional requirements. In this phase model checking technology is
used to analyse all possible interactions between procedure model and system
model. To allow this investigation the procedure model is automatically trans-
lated into the state based design notation and tightly integrated with the sys-
tem model. In this form the integrated model can be analysed using the OFFIS
ModelCertifier:

– Reachability analysis: to analyse if there is any goal or operator that can
never be applied.
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– Completeness analysis: to analyse if there is any subgoal g for which there
is no rule with g as a main goal.

– Functional requirements: to analyse if the top goal of the modeled procedure
may be reached, e.g. during a descend procedure the top goal is to reach
and maintain a lower altitude cleared by the ATC. The requirement to be
checked can be derived by formalising the desired state in LTL (Linear Tem-
poral Logic): G(CLEARANCE DESCEND ⇒ FG(CURRENT ALTITUDE
= CLEARED ALTITUDE)), where G stands for globally and FG for finally
globally. In case of a possible violation the model checker generates the result
false and a simulation run with a counter example.

For step 5 (Human Simulation) we implemented a platform that integrates the
pilot model and system model with a flight simulator software to allow a closed
loop simulation. The flight simulator software provides the environment model,
including the aircraft dynamics. Before the first simulation run is started, the
procedure model has to be uploaded to the cognitive architecture. The platform
allows to expose the pilot model to a large number of scenarios without user
interaction (batch mode). This is necessary to generate realistic results for the
Learned Carelessness process implemented in the cognitive architecture. At the
beginning of each run a scenario is randomly chosen. Afterwards, all scenario
variables are randomly instantiated with initial values according to the defined
probability distributions. During simulation the Learned Carelessness mecha-
nism of the cognitive architecture modifies the procedure model according to
the simulated scenarios. This means that new rules are added to the procedure.
These rules may be incorrect, meaning that they derive pilot actions in flight
situations where they are not allowed, e.g. pressing a button in a certain mode,
where it is prohibited. For example, the rule in Figure 1a may be simplified
by deleting the memory-retrieval and the condition (see Figure 1b). Based on
this new rule the pilot model would press the VERTICAL SPEED BUTTON
independent of the current vertical mode. This simplification is generated if re-
peatedly the memory retrieval of the current mode delivered the same value and
subsequently the condition was always true. According to Learned Carelessness
the pilot will in such cases consider checking the current mode a waste of time.
Further details can be found in [13].

Fig. 1. Example of a normative rule (a) and simplified rule (b)
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After the learning process has reached a stable state, step 6 (Human Error
Fault Tree) is performed to check if there are scenarios in which the learned pro-
cedure model leads to pilot errors that are not covered by the system model. In
order to exhaustively analyse the impact of such errors we apply model checking
techniques again. In a subtheme of ISAAC, dealing with automating traditional
safety analysis methods, an automatic Fault Tree Analysis based on model check-
ing for StateMate models was developed [14]. Apart from the StateMate

model this analysis needs a set of failure modes and a formal safety require-
ment (in LTL) as input. The failure modes are automatically injected in the
model producing an extended model. Model checking is then used to analyse if
one of the failure modes or an arbitrary combination (potential basic events)
leads to a violation of a safety requirement (top level event). In the case of
Human Error Analysis the set of failure modes is generated by treating every
learned rule as a potential failure mode. The safety requirements are derived by
formalising the top level procedure goal. Different from the analysis in step 4,
here the goal is used in a negative version, e.g. ¬(G(CLEARANCE DESCEND
⇒ FG(CURRENT ALTITUDE = CLEARED ALTITUDE))) – roughly this
means: “if an altitude clearance is emitted the aircraft must not under- or
overshoot the cleared altitude”. Like in step 4 the procedure model is auto-
matically translated into the state based design notation and tightly integrated
with the system model. The generated tree presents causal relationships be-
tween a violated safety requirement (depicted as top level event) and learned
rules (depicted as basic events). The fault tree in Figure 2 indicates that the
learning process produced two rules (rules 41 and 42) that may cause an
altitude over- or undershoot. For example, rule 41 (see also Figure 1) repre-
sents the behaviour in which the pilot presses the vertical speed button with-
out checking the current mode. In step 7 (Design or Procedure Improvement)
either the system or the procedure design has to be improved in order to
prevent or mitigate indentified pilot errors. The analysis has to be re-
peated iteratively until no more errors can be found: Fault Tree with no basic
events.

Model checking technologies are applied in step 4 and 6. Since realistic system
models are very complex, these models have to be abstracted for this analysis: a

Fig. 2. Example of a Human Error Fault Tree
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certain resolution has to be defined for each floating point variable and bounds
have to be defined for each integer. Moreover, a simple StateMate model of
the environment has to be added to the system model to replace the flight simu-
lator software. We used very simple environment models that are tailored to the
safety requirements under investigation. The procedure model is automatically
translated into the state based input language of the model checker. The tech-
nical challenge was to define the translation in a way that preserves the model
semantics. In order to guide the development of the translation algorithm we
defined a reference semantics for the pilot model. This semantics is introduced
in the next section.

3 Formal Semantics for the Cognitive Pilot Model

In this section we define a formal semantics of the cognitive pilot model. The
main parts of the model are a percept component (to retrieve values from the
environment), a motor component (to manipulate variables in the environment),
a short-term memory (in which values from the environment are stored), a long-
term memory (in which procedure rules are stored) and a knowledge processing
component (which selects and fires rules from the long-term memory according
to the current state of the short-term memory). The semantics below describes
the details of the knowledge processing component.

The syntax grammar for rules is given in Figure 3. In general, a rule consists
of a goal-part, a state-part and a means-part. Rules are selected and fired by

Fig. 3. Grammar for procedure rules

the knowledge processing component in a so called cognitive cycle. This cycle is
started as soon as one of the goals is triggered by an event or condition in the
environment. During the cycle rules are selected to fulfill the goal. This leads
to actions and new goals (subgoals). The cycle is repeated until all derived sub-
goals have been fulfilled. The semantics of the knowledge processing component
is defined as a synchronous transition system (STS). In the sequel, we first in-
troduce the STS, afterwards an abstract syntax of the main procedure model
constituents is defined. Next, the concepts needed to specify the individual steps
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of the cognitive cycle are handled, before finally the execution of the cognitive
cycle is defined.

3.1 Synchronous Transition System

A transition system
Φ = (V, Θ, ρ)

is given by

– a typed set of variables V and a typed data domain D,
– a set Θ ⊆ Σ(V ) of initial valuations,
– a transition relation ρ ⊆ Σ(V ) × Σ(V ).

The valuation of a variable v is a type preserving mapping σ : V → D, Σ(V )
denotes the set of all valuations on V . The domains used in the pilot model are
of the types Integer and Float.

A run π of a transition system Φ is defined as a finite or infinite sequence of
valuations

π = σ0 → σ1 → σ2 → . . .

with σ0 ∈ Θ and ∀i ∈ N : (σi, σi+1) ∈ ρ.
In the context of the pilot model V consists of the following subsets

– Vinterface is defined as the set of variables representing the values provided
by the system and environment model.

– Vlocal represents the short-term memory of the pilot model.
– Vtmp represents variables that are local to the rules.

3.2 Formal Definition of the Pilot Model Key Concepts

The key concepts of the pilot model are goals, operations, conditions and rules.

Goals. G is a set of goal names. Every g ∈ G comes equipped with two sets:

– A set of predecessor goals pre(g) with pre(g) : G → P (G). During the
cognitive cycle every predecessor goal has to be fulfilled before the goal g
can be selected.

– A set of successor goals post(g) with post(g) : G → P (G). During the cogni-
tive cycle these are goals that have to be fulfilled before g can be considered
as fully achieved.

A subset of G called Ginit denotes the set of initial goals of the pilot model. For
every goal in Ginit a trigger is defined: trigger : G → Bool. This trigger is a
Boolean condition specifying situations in which g becomes a candidate for goal
selection.
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Operations. Operations are the functional elements of the pilot model. The
pilot model supports four types of operations:

– Memory-read operations represent the ability of the pilot model to recall
perceived data. memory read(u, d) is an expression of type D, where D is
the type of u, u ∈ Vtmp and d ∈ Vlocal. The operation assigns the value of d
to u:

[[memory read(u, d)]](σ)(v) = σ[memory read(u, d)](v),

with v ∈ V , is the state that agrees with σ except for u where its value is d.
OPmrd is the set of all memory-read operations.

– Memory-write-operations represent the ability of the pilot model to memo-
rize perceived data.
memory write(d, u) is an expression of type D, where D is the type of d,
d ∈ Vlocal and u ∈ Vtmp. The operation assigns the value of u to d:

[[memory write(d, u)]](σ)(v) = σ[memory write(d, u)](v)

with v ∈ V , is the state that agrees with σ except for d where its value is u.
OPmwr is the set of all memory-write operations.

– Percept-operations: Percept-operations represent the pilot model’s ability to
perceive data from the environment and system model. percept(u, d) is an
expression of type D, where D is the type of u, u ∈ Vtemp and d ∈ Vinterface.
The operation assigns the value of d to u:

[[percept(u, d)]](σ)(v) = σ[percept(u, d)](v)

with v ∈ V , is the state that agrees with σ except for u where its value is d.
OPp is the set of all percept operations.

– Motor-operations: Motor-operations represent the pilot model’s ability to
manipulate the system model. motor(d, u) is an expression of type D, where
D is the type of d, u ∈ Vtemp and d ∈ Vinterface. The operation assigns the
value of u to d:

[[motor(d, u)]](σ)(v) = σ[motor(d, u)](v)

with v ∈ V , is the state that agrees with σ except for d where its value is u.
OPm is the set of all motor operations.

Rules. The dynamic behavior of the pilot model stems from firing rules. The
set of rules is denoted by R. Every rule r comes equipped with a set of relations
providing the individual elements of the various parts:

– The function goal : R → G provides the goal in the goal-part. This is the
goal which shall be achieved by the rule.
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– The function mem read ops : R → P(OPmrd) provides the memory-read
operations. These operations retrieve variables from the short-term memory.
The memory represents a mental “image” of the actual environmental state.
This relation is defined on sets of rules as follows:
mem read ops : P(R) → P(OPmrd) with

mem read ops(Ri) =
⋃

r∈Ri

mem read ops(r) .

– The function cond op : R → Bool provides the Boolean expression. The
condition specifies constraints over the mental environment that must hold
in order to apply the rule. A condition contains only variables from Vtmp.
For every variable in a condition there has to be a corresponding memory-
read operation assigning the value of a local variable to a corresponding tmp
variable.

– The function mem write ops : R → P(OPmwr) provides the set of memory-
write operations. These are used to store values in the memory component.

– The function percept ops : R → P(OPp) provides the set of percept op-
erations. During rule execution percept-operation are sent to the percept-
component.

– The function motor ops : R → P(OPm) provides the set of motor opera-
tions. During rule execution motor-operations that are sent to the motor
component.

– The function subgoals : R → P(G) provides the set of subgoals in the
means-part. This set is partially ordered defined by the relation �.

Subsymbolic Concepts. On a subsymbolic level the strength of a rule is de-
fined by the number of successful applications (successes) and the number of
erroneous applications (failures). These parameters are used in the cognitive
cycle to select the rule with the highest probability of success. During the simu-
lation these values are adapted by the learning process according to the success
or failure of a run. Successes and failures are used to compute the strength of a
rule as

rule strength : R → [0, . . . , 1]
rule strength(r) = successes(r)

successes(r)+failures(r) .

3.3 The Dynamic Behaviour of the Pilot Model

The following concepts are used to define the dynamics of the cognitive cycle.

Execution Concepts. Every valuation σ contains exactly one dedicated set
called goal agenda GA, where

– GA is a subset of G. It denotes the set of goals that are candidates for goal
selection.
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– The goals in GA form a set of trees with partially ordered leaves. Goals in
Ginit ∩ GA are defined as roots. The tree structure is derived from the post
sets

for gi, gj ∈ G : child(gi) = gj iff gj ∈ post(gi)

The goal agenda contains those goals that the pilot model has to fulfill during
execution of a task. In every valuation only a subset of GA is ready to be
chosen during goal selection. A goal g ∈ G is selectable in σ, denoted by σ |=
selectable(g), iff all predecessor goals have been fulfilled before and no successor
goals have been derived so far:

σ |= selectable(g) iff

– g ∈ σ(GA) and
– the set of predecessors of g is empty: σ(pre(g)) = ∅ and
– the set of successors of g is empty: σ(post(g)) = ∅.

Every valuation σ contains exactly one dedicated goal gactive where

– σ |= selectable(gactive) or gactive = undef .

Every valuation σ contains exactly one dedicated set called conflict set CS,
where

– CS ⊆ R and
– either CS = ∅ or
– CS = {r ∈ R|goal(r) = gactive} or
– CS = {r ∈ R|goal(r) = gactive ∧ [[cond op(r)]]σ = true}.

A rule r ∈ R is selectable in σ, denoted by σ |= selectable(r), iff the goal in the
goal-part of r is gactive and the condition evaluates true:

σ |= selectable(r) iff

– goal(r) = gactive and [[cond op(r)]]σ = true.

Every valuation σ contains exactly one dedicated rule rselected, where

– σ |= selectable(rselected) or rselected = undef .

Cognitive Cycle. The cognitive cycle describes the procedure processing of the
cognitive architecture. In the sequel, we define six transition subrelations. These
are used afterwards to compose the main transition relation for the cognitive
cycle. The six relations correspond to the individual steps of the cognitive cycle
described above.

1. Select a goal g ∈ GA : σ ρselect goal σ′ iff
– σ |= selectable(gactive) and
– σ′(GA) = σ(GA) and σ′(CS) = σ(CS) and
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– σ′(rselected) = σ(rselected) = undef and
– σ′(v) = σ(v) for all v ∈ V

2. Build conflict set: σ ρbuild CS σ′ iff
– σ′(CS) = {r|goal(r) = gactive} and
– σ′(GA) = σ(GA) and
– σ′(gactive) = σ(gactive) and σ′(rselected) = σ(rselected) and
– σ′(v) = σ(v) for all v ∈ V

3. Perform all memory-read operations to prepare subsequent conflict resolu-
tion: σ ρexe read σ′ iff
– σ′(v) = σ[mem read ops(CS)](v) and
– σ′(GA) = σ(GA) and σ′(CS) = σ(CS) and
– σ′(gactive) = σ(gactive) and σ′(rselected) = σ(rselected)

with σ′(v) = σ[mem read ops(CS)](v) denotes the subsequent execution of
every memory-read operation of every rule r ∈ CS.

4. Conflict resolution: In order to be able to chose a rule from CS two actions
are performed during conflict resolution:
(a) CS is reduced by evaluating the conditions of every rule in CS and

removing those rules whose conditions evaluate to false. In this way the
set of selectable rules is generated.

(b) Of the remaining rules in CS the rule with the highest rule strength is
chosen. If more than one rule in CS have the same maximal strength
value one of these rules is randomly chosen.

The transition relation is defined as: σ ρconflict res σ′ iff
– σ′(CS) = {r|σ |= selectable(r)} and
– σ′(GA) = σ(GA) and
– ∃r ∈ σ′(CS) : ∀rj ∈ σ′(CS) :

strength(r) ≥ strength(rj) : σ′(rselected) = r and
– σ′(gactive) = σ(gactive) and
– σ′(v) = σ(v) for all v ∈ V .

5. Fire rules: rselected is fired: σ ρfire rule σ′ iff
– σ′(CS) = σ(CS) and
– σ′(v) = σ[percept ops(rselected)](v) ◦ σ[motor ops(rselected)](v)◦

σ[mem write ops(rselected)](v) and
– if subgoals(rselected) �= ∅ then

σ′(GA) = σ(GA) ∪ subgoals(rselected) and
σ′(post(goal(rselected))) = subgoals(rselected) and
∀gi, gj ∈ subgoals(rselected) and gi � gj : gi ∈ σ′(pre(gj))

– if subgoals(rselected) = ∅ then
σ′(GA) = σ(GA) \ goal(rselected) and
∀g ∈ σ(GA) and goal(rselected) ∈ σ(post(g)) :

σ′(post(g)) = σ(post(g)) \ goal(rselected) and
∀g ∈ σ(GA) and goal(rselected) ∈ σ(pre(g)) :

σ′(pre(g)) = σ(pre(g)) \ goal(rselected).
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6. Trigger goals: At the beginning of the cognitive cycle GA is empty. As long
as no goal g ∈ Ginit is triggered the pilot model remains in its initial state. In
every step the pilot model checks the trigger conditions of all goals in Ginit

and adds those whose trigger evaluates to true defined by the transition
relation ρadd triggered.

The main transition relation ρ for the cognitive cycle is formally defined as the
product of the subtransition relations:

ρ = ρselect goal||ρadd triggered ◦ ρbuild CS ||ρadd triggered

◦ ρexe read||ρadd triggered ◦ ρconflict res||ρadd triggered

◦ ρfire rule||ρadd triggered

Initially there is no goal in GA and CS is empty, the valuation of all variables
in Vtemp and Vlocal are undefined and the variables in Vinterface are given by the
state of the environment model.

Related Work. At the end of this section two related approaches to defin-
ing a formal semantics for cognitive architectures (SOAR and ACT-R) shall be
briefly described. Heise and Westermann [15] conducted a structuralist analysis
of an early version of ACT-R called ACT* in order to clearly extract the unique
contents of ACT*. They used set-theoretic axioms to define the concepts and
structural relationships. For our purpose of formal verification this semantics is
too informal and lacks a definition of the dynamics. Milnes [16] constructed a
formal specification of SOAR in order to guide a reimplementation of the archi-
tecture. He used the formal specification language Z to define a state-transition
system. The major difference to our synchronous transition system semantics is
the level of detail. Milnes defines a level of detail that allows direct mapping of
the specification into executable code. Our semantics abstracts from execution
details, because for the purpose of formal verification we only need to define the
transition between states but not how the transitions are actually performed.

4 Evaluation Results

In the ISAAC European Project the pilot-model-based HEA methodology as
described in Section 2 was evaluated by the industrial partners with two case
studies: one general auto pilot model (plus airport arrival procedure) and a
reduced version of the Airbus A340 auto flight system (plus takeoff procedure).
Due to space limitation we can only highlight the most important findings. More
details can be found in [13].

Building the models (system, procedure, scenarios) that are necessary as input
for the HEA methodolgy was a very time consuming process. The complexity of
the models had to be reduced due to constraints imposed by the methodology.
Some constraints stem from the current state of development of the pilot model.
In the current development state it does not allow multitasking. All (sub-)tasks
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have to be performed in sequence. This is no problem when dealing with short
subtasks. But, especially the takeoff procedure requires longer periods of observ-
ing the flight mode or speed annunciation. The lack of multitasking leads to some
overshoots of speed and altitude limits. Thus we had to broaden the accepted
envelops in the safety requirements. Multitasking is planned for the next exten-
sion of the architecture. Further limitations due to the intended model focus
are: no crew task sharing, no memory effect (like forgetting), no sophisticated
perception.

It was acknowledged that a number of erroneous actions due to learned rules
have been observed and then discussed with pilots who have good knowledge
of the scenarios that were simulated. As an example with reference to the ar-
rival procedure, altitude selection errors were observed; analysis showed that
such errors were due to simplification of normative procedure induced by the
“Learned Carelessness” mechanism. Results gathered so far appear to be plau-
sible in terms of observable behaviour. However, subject matter experts high-
lighted that “Learned Carelessness” may be a cause for such errors only under
specific environmental circumstances (e.g. high workload, rush operations). This
allows deriving an indication for improving the cognitive architecture with re-
gard to workload and workload inducing factors. Testers stated that though the
pilot model focuses on “Learned Carelessness” only, it is possible to derive indi-
cations that may be useful to support the identification of system improvements.
But it was noted that due to the scope of the current method it is necessary to
thoroughly discuss and evaluate the results with experts.

5 Summary and Future Work

In this paper we presented a new methodology for Human Error Analysis during
system design. The focus was on defining a formal semantics for an executable
cognitive pilot model that forms the basis for the methodology. Based on this
definition it is possible to translate the pilot model into the state-based input
language of a model checker tool and to apply formal verification to analyse hu-
man errors (here caused by Learned Carelessness) in the pilot-system interaction
in a mathematical exhaustive way. In future work we intend to extend the pilot
model to include multitasking aspects and further cognitive error mechanisms
like incorrect prioritizing of goals. In parallel we will extend the formal semantics
in order to provide a clear reference for formal analysis algorithms like model
checking.
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wards a unified model-based safety assassment. In: Górski, J. (ed.) SAFECOMP
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Abstract. A strategy and relating activities of a software safety analysis (SSA) 
are presented for the software of a digital reactor protection system where 
software modules in the design description are represented by function blocks 
(FBs). The SSA, as a part of the verification and validation activities, was 
activated at each phase of the software lifecycle. For the SSA of the FB 
modules, the software HAZOP was performed and then the SFTA (Software 
Fault Tree Analysis) was applied. Both methods are redundant and 
complementary because the software HAZOP is a forward broad-thinking 
analysis method and the SFTA is a backward step-by-step local analysis 
method. The software HAZOP with qualitative properties for a deviation 
evaluated all the software modules and identified various hazards. The SFTA 
with well-defined FB fault tree templates was applied to some critical modules 
selected from the software HAZOP analysis and it identified some hazards that 
had not been identified in the prior processes of the document evaluation and 
the formal verification. 

Keywords: Software Safety Analysis, Software FTA, Software HAZOP, 
Function Block Diagram, Nuclear Reactor Protection System. 

1   Introduction 

A fully-digitalized reactor protection system (RPS), which is called the IDiPS, is 
being developed under the KNICS (Korea Nuclear Instrumentation & Control 
Systems) project in order to be used in newly-constructed nuclear power plants and 
also in the upgrade of existing analog-based RPSs [1]. The IDiPS has four channels 
which are located in electrically and physically isolated rooms. The IDiPS generates 
the reactor trip signals and the engineered safety features (ESF) actuation signals 
automatically whenever the monitored process variables reach their predefined 
setpoints. Fig.1 shows the overall architecture of a single channel of IDiPS. A single 
channel IDiPS is composed of bistable processors (BPs), coincidence processors 
(CPs), an automatic test and interface processor (ATIP), and a cabinet operator 
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Fig. 1. Architecture of the KNICS reactor protection system, IDiPS 

Note - RSR: Remote Shutdown Room, MCR: Main Control Room, OM: Operator 
Module, IPS: Information Processing System, CPC: Core Protection Calculator, 
QIAS: Qualified Information & Alarm System, WDT: Watchdog Timer. 

 
module (COM). It contains three different networks such as the intra-channel network 
(ICN), safety data link (HR-SDL), and inter-channel data network (ICDN). 

The BP determines the trip state and generates a trip signal by comparing the 
measured process variables with the predefined trip setpoints. The CP generates a 
final hardware-actuating trip signal by a two-out-of-four voting logic. The ATIP 
generates the test signals for a manual test and a manual initiated automatic test. 
Moreover, the ATIP performs IDiPS status indications and also performs integrity 
tests to verify the operational status of the BP and CP. The COM comprises of two 
parts: (a) a computer based part that provides and displays the status information 
regarding the overall IDiPS equipments, and (b) a hardware based part that performs 
protection-related controls such as a channel bypass and an initiation circuit reset. 

In the IDiPS, the trip functions such as a signal comparison in the BP and a voting 
logic in the CP are implemented in the software. Hence, the software in the IDiPS is 
crucial to the safety of a nuclear power plant in that its malfunction may result in 
irreversible consequences. The software in the BP and CP of IDiPS is classified as a 
safety-critical class and it is mandatory that the software safety analysis be performed 
on all the safety-critical software. In the KNICS project, the software used in the 
IDiPS is being developed under a rigorous procedure [1]. Also, independent 
verification & validation (V&V) activities are being arranged [2][3]. The IDiPS is 
configured based on the POSAFE-Q PLC-based platform. The software of the IDiPS 
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is programmed by the use of a function block diagram (FBD) which is compliant with 
the standard of IEC 61131-3 [4]. And the software modules in the detailed design 
description are represented by the FBD. In order to follow the nuclear regulation and 
also to improve the software quality, the software safety analysis (SSA) is being 
performed as a part of the V&V activities. This paper describes the software safety 
analysis performed on the FBD modules. 

2   Strategy of SSA 

It is recommended in the code and standards that the SSA shall be performed during 
the development of the software used for a safety system of nuclear power plants [5], 
[6]. For the strategy for performing the SSA, various methods have been proposed in 
the literature and in the research reports. The report by LLNL (Lawrence Livermore 
National Laboratory) [7] suggested that the SSA start from the hazard analysis of the 
target system and a software hazard analysis be performed at each phase of a software 
lifecycle. For the software hazard analysis to be applied to the phases of a software 
lifecycle, the software HAZOP (Hazard and Operability) was proposed. The strategy 
proposed by Leveson [8] has a distinctive characteristic in the safety verification. It is 
suggested that the safety analysis at any phase is to check against the safety 
requirements and constraints, being independent of the software requirements and 
design specifications, rather than checking the consistency such that the current 
implementation is in compliance with the specifications concerning the safety at the 
previous phase. 

For the KNICS project, Lee and his colleagues have proposed a proper software 
safety lifecycle [9] by investigating various standards including IEC and IEEE 
standards. This safety process was adopted by the KNICS project where not only a 
digital reactor protection system but a programmable logic controller (PLC), 
POSAFE-Q, with proprietary operating software is being developed. Fig.2 depicts the 
software safety lifecycle for the KNICS project. As can be seen in Fig.2, the SSA is 
activated at each software lifecycle, starting from the establishment of a software 
safety plan where the SSA is planned as a part of the system safety analysis. The 
software-contributable hazards necessary for the SSA are extracted from the system 
hazard analysis by FMEA (Failure Modes and Effects Analysis). For the SSA at the 
requirements phase, the software HAZOP is employed in the hazard analysis. Also 
the software HAZOP and SFTA techniques are used for the SSA at the design and 
implementation (code) phases. 

3   Identification of Software-Contributable Hazards 

For the SSA of the FBD modules for a detailed design description and also for a FBD 
program, the software HAZOP is performed at first and then SFTA is applied. For 
these two techniques to be applicable, the software-contributable system hazards and 
the interface points between the system hazard and the application software must be 
identified. Based on these hazards and interface points, the software HAZOP 
identifies a software hazard, which can affect a certain system hazard, by applying a 
qualitative deviation into a FBD module. Also the interface points provide the 
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necessary information about the top node event of the SFTA for the FBD modules 
that are found to be defective, resulting from the software HAZOP analysis. 

The system hazards were identified from an FMEA for the IDiPS hazard analysis 
by a digital system safety engineer. The FMEA identified some failure modes due to 
the trip-functioning application software which can affect the system safety. The 
interface points between the trip-functioning safety-critical software and the system 
hazards were identified by examining the analysis results of the FMEA. Table 1 
represents the software-contributable system hazards and their criticality level. The 
criticality level implies the severity of a hazard on the system and plant safety and it is 
divided into the four levels. Level 4 means the most critical hazard that can induce the 
severe plant accident resulting in a disaster. Level 3 implies a hazard that can induce a 
significant impact on the system operation but does not lead to an accident of a 
nuclear power plant, and level 2 means a hazard that can affect more or less the 
system operation. And finally, level 1 indicates an insignificant hazard. 

System Hazards

System
FMEA

Software Hazards

Hardware FTA

Software FTA

System, Hardware, 
Operator Faults

Software  Causes
of Hazards

Minimal Cut Set, 
Reliability 
Analysis

Recommendations,
Reliability/Safety Analysis

Reports

System FTA

System 
Requirements 

Definition

System Design

Software 
Requirements 
Specification

Software Design 

Code, CT, IT, ST, and 
CM Reports 

Software 
Design FTA

Software
Code FTA

Preliminary System 
Hazard Analysis

Software 
Design HAZOP

Software 
Code, Test, Change, 

and COTS SW 
HAZOP

Software 
Requirements HAZOP

Software Safety Plan

Reliability Analysis 
Process

Safety Analysis 
Process

Design Process

Design Change

PDS, COTS Software 

HAZOP: Hazard and Operability, FTA: Fault Tree Analysis
PDS: Pre-Developed Software, COTS: Commercial-Off-The-Shelf  

Fig. 2. Software safety lifecycle for KNICS RPS and PLC systems 

Table 1. Software-contributable system hazards and criticality level for IDiPS RPS 

Item 
No. 

Software Contributable Hazards Criticality 
Level 

1 
IDiPS cannot generate a trip signal when a trip condition for a process 
variable is satisfied. 

4 

2 IDiPS generates a trip signal when it should not generate a trip signal. 3 

3 
IDiPS cannot send qualified information of its operating status to the 
main control room for plant operators. 

2 
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The first hazard item contradicts the purpose of the IDiPS which is to protect the 
nuclear reactor core at any situation and this hazard can drive a nuclear power plant 
into a fatal unsafe state. The second hazard item does not affect the overall plant 
safety but it influences adversely on the economic operation of the system. The third 
hazard item may be induced from an omission of some necessary information or a 
transfer of incorrect information during the execution of the application software. 
This hazard can also be generated from a malfunction of the communication software, 
but this is not the scope of the SSA for the IDiPS. Instead, the hazards related to the 
communication software are analyzed in the SSA of PLC operating software. 

The software modules of the BP which is a safety-critical processor of IDiPS are 
presented in Table 2. The software modules in the Trip_Logic module are all the 
trip-functioning modules and hence, all the final output variables in these modules 
are the interface points that affect the system hazard items 1 and 2 in Table 1. Some 
software modules in no.1 and no.3 also affect the hazard items 1 and 2 through the 
Trip_Logic module. The software modules in no.5, no.8, and no.9 affect the hazard 
item 3. The rest of the software modules are insignificant because the failures from 
these modules can be accommodated by the fault-tolerant functions such as a 
watchdog timer. 

Table 2. Software modules in BP 

NO Module Description 
1 Receive_Signal HW/SDL/ICN Receive Module 
2 PAT_Scheduler Automatic Test Scheduler 
3 Test_Selection Test Selection Module 

PZR_PR_Hi Trip Pressurizer Hi Pressure Trip  
SG1_LVL_Lo_RPS Trip SG-1 Low Level Trip 
SG1_LVL_Lo_ESF Trip SG-1 Low Level Trip for ESF 
SG1_LVL_Hi Trip SG-1 Hi Level Trip 
SG1_PR_Lo Trip SG-1 Low Pressure Trip 
CMT_PR_Hi Trip Containment Hi Pressure Trip 
CMT_PR_HH Trip Containment Hi-Hi Pressure Trip 
SG1_FLW_Lo Trip SG-1 Low Coolant Flow Trip 
PZR_PR_Lo Trip Pressurizer Low Pressure Trip 
VA_OVR_PWR_Hi Trip  Variable Over Power Hi Trip 
SG2_LVL_Lo_RPS Trip SG-2 Low Level Trip 
SG2_LVL_Lo_ESF Trip SG-2 Low Level Trip for ESF 
SG2_LVL_Hi Trip SG-2 Hi Level Trip  
SG2_PR_Lo Trip SG-2 Low Pressure Trip 
SG2_FLW_Lo Trip SG-2 Low Coolant Flow Trip 
LOG_PWR_Hi Trip Log Reactor Power Hi Trip 
DNBR_Lo Trip Low DNBR Trip 
LPD_Hi Trip Hi LPD Trip 

4 Trip_ 
Logic 

CPC_CWP Trip CPC CWP 
5 Test_Results_Handler Test Results Handling Module 
6 HB_MONITORING Heartbeat Monitoring Module 
7 HB_Gen  Heartbeat Generation Module 
8 Ch_Bypass_Send_Receive Channel Bypass Transfer Module 
9 Send_Signal HW/SDL/ICN Sending Module 
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4   Software Safety Analysis for the FBD Modules 

4.1   Software HAZOP 

A HAZOP study is for the identification of a hazard in a target system represented by 
a so-called P&ID (Pipes and Instrumentation Diagram) by investigating a plausible 
deviation of a quantity or attribute and then seeking out the cause that is capable of 
inducing this deviation and the consequences resulting from this deviation. For the 
deviation to be performed systematically, well-defined guide words are established 
and then some essential questions suitable for a specific application area are devised 
based on these guidewords. This hazard analysis has been applied successfully to 
processes such as chemical plants, nuclear power plants, and so forth. And, there have 
been a few applications on computers and software systems [10], [11]. For HAZOP 
studies on the software systems, there are few papers if any that describe a systematic 
procedure for a HAZOP to be applied to all the software lifecycles. 

In the KNICS project, a software HAZOP was developed for use in all the phases 
of the software lifecycle. The software HAZOP has different aspects from the 
conventional HAZOP applied to power plants and even to software designs, in that 
the quantity or attribute to be deviated is not a quantitative quantity such as a 
temperature value or a input data value but a qualitative functional characteristic of 
the software, and, moreover, the guide phrases are established for a systematic 
deviation rather than a set of guidewords. Thus, the software HAZOP is performed to 
identify some software hazards or defects that can induce one of the system hazards 
when a certain deviation for each functional characteristic is applied to the software 
system. The software functional characteristics are those proposed in NUREG0800 
BTP/HICB-14 [12] such as accuracy, capacity, functionality, reliability, robustness, 
security, and safety. The concept of using the guide phrases was originally proposed 
by the LLNL report [7]. The guide phrases suited for the safety-critical software of 
the KNICS RPS and PLC systems and applicable to the requirements, design, and 
implementation phases were devised carefully [13]. 

While the V&V activities are performed on all the software of the IDiPS, the 
software on which a safety analysis is performed is the safety-critical software of  
the BP and CP of IDiPS. The form of the software module representation is based on 
the FBD. Among all the guide phrases [13], the guide phrases useful for these 
software representations were selected. Table 3 represents the guide phrases for the 
FBD-based software module descriptions and the corresponding checklist. 

In Table 3, the functional characteristics have the deviations whose causes are 
external faults except for the four items from the bottom of the table. For the analysis 
of the “functionality” characteristic, the function blocks and their logical connections 
are inspected over a FBD module. This procedure is similar to a walkthrough during 
tests, possibly combined with a prior individual desk checking, but this is carried out 
briefly. At the test phase, this type of test is facilitated in order to find an error in the 
code for satisfying a specified software behavior. Being different from the test phase, 
the purpose of the inspection of the functionality characteristic is to find an error or 
hazard that can ultimately lead to one of the system hazards defined in Table 1. 
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Table 3. Guide phrases and checklist for the FBD-based software modules of IDiPS 

Characteristic Guide Phrase Deviation Checklist 

Accuracy Below minimum range What is the consequence if the sensor value is 
below its minimum range? 

Accuracy Above maximum range What is the consequence if the sensor value is 
above its maximum range? 

Accuracy Within range, but wrong What is the consequence if the sensor value is 
within its physical range but incorrect? 

Accuracy Incorrect physical units What is the consequence if the input has an 
incorrect physical unit? 

Accuracy Wrong data type or data size What is the consequence if the input has a wrong 
data type or data size? 

Accuracy Wrong physical address What is the consequence if the input variable is 
allocated to a wrong physical address? 

Accuracy Correct physical address, but 
wrong variable 

What is the consequence if a wrong input variable 
is allocated to a correct physical address? 

Accuracy Wrong variable type or name 
What is the consequence if wrong type or name 
for an input /output/internal variable is used in the 
FBD module?  

Accuracy Incorrect variable initialization What is the consequence if the input/output/ 
internal variables are initialized incorrectly? 

Accuracy Wong constant value What is the consequence if the internal constant is 
given a wrong value? 

Accuracy Incorrect update of history 
variables 

What is the consequence if the variable is updated 
incorrectly? 

Accuracy Wrong setpoint calculation What is the consequence if the procedure for 
calculating a setpoint is incorrect? 

Capacity Erroneous communication data What is the consequence if there is an error in the 
ICN data? 

Capacity Erroneous communication data What is the consequence if there is an error in the 
SDL data? 

Capacity Unexpected input signal What is the consequence when an unexpected 
input signal is arrived? 

Capacity Untimely operator action 
What is the consequence if the operator 
commences a setpoint reset or an operating 
bypass function untimely? 

Functionality 
Function is not carried out as 
specified  

What is the consequence if some portions in the 
FBD module have a defect or cannot perform the 
intended behavior? 

Reliability Data is passed to incorrect 
process 

What is the consequence if the data is passed to 
an incorrect process? 

Robustness Incorrect selection of test mode What is the consequence if the test mode is 
selected or changed unexpectedly? 

Robustness Incorrect input selection What is the consequence if the input selection is 
incorrect? 

 
The software HAZARD analysis evaluates all the software design modules with 

respect to all the hazards in Table 1 by applying iteratively all the items in the 
deviation checklist to each module, reflecting the system safety and availability. 
Hence this process requires a considerably large amount of time and efforts of the 
HAZOP members. It is very important to draw a good corporation of members to 
obtain a successful result from the software HAZOP. Through the software HAZOP 
with the checklist in Table 3, various hazards affecting the availability of the system 
were identified and also the software HAZOP was proven to be useful in identifying a 
software hazard affecting the system safety. 

One of the software HAZOP analysis results is presented in Table 4 where a trip 
logic module, “SG1_FLW_Lo Trip” (which indicates the module of Steam Generator 
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Table 4. Software HAZOP analysis for SG1_FLW_Lo trip 

 
 
#1 Low Coolant Flow Trip) was analyzed. Table 4 shows the deviations, the causes 
that induce these deviations, the hazards analyzed, the effects of hazards, the 
criticality levels, and the suggestions for their hazards. 

4.2   SFTA 

In the activities of the SSA for the IDiPS software module descriptions, the SFTA 
was employed after the software HAZOP was carried out in the hazard analysis. As 
Leveson and Shimeall [14] mentioned the procedure of the SFTA, it is hypothesized 
that the software has produced an unsafe output and it is shown that this could not 
happen because the hypothesis leads to a contradiction. The SFTA was applied to a 
part of the software module descriptions with some critical defects identified by the 
“functionality” of the software HAZOP. The top node of the SFTA was only related 
to the most safety-critical hazard. Thus, the SFTA was used in a detailed analysis for 
a specific area with the consideration of a software defect that can affect the most 
significant system hazard. The software defect identified by the SFTA was mainly a 
software logic error or a certain input condition for the occurrence of a hazard. 

Both methods, the software HAZOP and the SFTA, are supposed to be redundant 
and, at the same time, complementary because the software HAZOP is a forward 
broad-thinking analysis method and the SFTA is a backward step-by-step local 
analysis method. This redundancy obviously requires an additional overlapping work 
on the SSA but this type of overlap is recommended by a regulatory agency and some 
standards because all of the safety analysis methods have their own advantages and 
disadvantages. For the complementariness, the HAZOP study is actually a bidirect-
ional analysis method in that, at the point of a plausible deviation, the analysis is 
carried out backwardly from the deviation to find a cause or causes for this deviation 
and also it is searched to identify the consequence(s) and the effect on hazards due to 
this deviation. In the application of the software HAZOP to the BP/CP FBD modules 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



156 G.-Y. Park et al. 

of IDiPS, searching for a consequence from a deviation was much more weighted 
than searching for a cause of a deviation. Hence, in this study, the software HAZOP 
was thought of as a forward analysis method. The SFTA is, needless to say, a 
backward analysis method. It begins from the top node which represents an unsafe 
state and searches for the causes of the top event through logical paths of a FBD 
module, up to its inputs and input conditions. Moreover, the SFTA is usually 
performed by an individual expert rather than through a meeting of analysis team 
members. Although a part of functional characteristics adopted the form of a code 
walkthrough, the analysis results of the software HAZOP in this study were brief with 
broad descriptions. But the SFTA could pinpoint a local defect or some logical error. 

Because the software is based on the logistical constructs and its behavior is 
deterministic, the fault tree analysis for the software is slightly different from that for 
the process systems where fault trees are based on a probabilistic nature. The SFTA 
for a code has been constructed based on the fault tree templates [14], [15]. The fault 
tree templates for the function blocks (FBs) in the FBD program had been proposed in 
an earlier research [16], but those templates considering both the fault-oriented view 
and the cause-effect view were proven to be inefficient in a real implementation. In 
this study, the templates for the FBs were refined to be more fault-oriented in order 
for the templates to be implemented easily in the SFTA. The types of function blocks 
used for the FBD modules were divided into 5 classes: Logic Operation FB (AND/ 
 

 

Fig. 3. Fault tree template for the AND function block 
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Fig. 4. Fault tree template for the ADD function block 

OR), Comparison FB (GE/GT/LE/LT/EQ), Selection FB (SEL), Algebraic Operation 
FB (ADD/SUB/MUL/DIV/ABS), and Timer FB (TON). Among the function blocks, 
for the limitation of this paper, the fault tree templates of the function blocks, AND 
and ADD are presented in Fig. 3 and Fig.4, respectively. Beside of the templates for 
the function blocks, the fault tree template at the final output port and also the 
templates for the input variables at a leaf node were devised. In Fig.3 and Fig.4, the 
box with a circle at the bottom of it means a basic event and one with a triangle 
represents an event that has more trees presented at another page. The box with a 
rectangle indicates that a further analysis could be progressed through this event by 
pasting a low-level fault tree template to this rectangle. That is, the fault tree for an 
FBD module is constructed by connecting the fault tree templates associated with 
each other through the event with a rectangle box. 

The software modules selected from the results of the software HAZOP for the 
case of the BP FBD modules as in Table 2 are SG1_FLW_Lo Trip (Steam Generator 
#1 Low Coolant Flow Trip), PZR_PR_Lo Trip (Pressurizer Low Pressure Trip), 
VA_OVR_PWR_Hi Trip (Variable Over-Power High Trip), and DNBR_Lo Trip 
(Low DNBR Trip). The SFTA could systematically identify the software hazard that 
induced a critical system hazard. A simple example of the SFTA is shown in Fig.5 
where the SFTA for the trip function of DNBR_Lo trip was pruned to leave 
meaningful trees. The trip logic module for a DNBR trip is depicted in Fig.6 where 
the function blocks related with the trip functions are “SEL1”, “AND1”, and “OR1”. 
The sequence of an execution is from left to right and then from top to bottom (i.e., 
SEL1  AND1  OR1 for the trip functions of a DNBR). In Fig.5, an event box 
with a diamond symbol represents that event is not analyzed further. An event box 
with a house symbol means that this event is natural. 

The event in the top node of Fig.5(a) (Page 1) reflects the fact that the software 
cannot generate a trip signal when a trip condition is triggered and, for the case of 
DNBR_LO trip, it is described such that the final output value of _4_TRIP (at OR1) 
is 0 when an input trip variable, _4_TRIP, at the front input port (at SEL1) becomes 1. 
In this analysis, other trips induced from the external hardware and interface failures 
are precluded and thus, a fault-propagating path is progressed through an input 
TRIP_LOGIC at the IN4 port of OR1. This input variable is again the output variable 
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Fig. 5. SFTA for DNBR_LO trip 

of AND1 and the SFTA is extended into the AND1 by lowering its tree level. The 
fault trees regarding the AND1 are depicted in the second picture (Page 2) of Fig.5. 
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SEL1

AND1

OR1

 

Fig. 6. FBD module of DNBR_LO trip 

There are two possible failures: One is at the input variable TRIP_LOGIC and the 
other at the TEMP_TRIP. With the value of _4_BP_T_TRIP_VAL at SEL1 being 0, 
one failure mode concerning TEMP_TRIP, leading to the top event, is the wrong 
input selection during the real trip operation, that is, _4_BP_T_INI = 0 (but it must be 
1) as in Fig.5(d). This input selection failure was not progressed further in this 
example because this is not the scope of the FBD module in Fig.6. For reasoning the 
failure modes about the TRIP_LOGIC in AND1, the tree logic is divided into two 
cases. One is the fault trees when an unsafe event at the top node occurs at the 
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execution immediately after the initial execution was finished and the other is the 
fault trees when the top event occurs at an arbitrary time instance. As can be seen in 
Fig.5(b), the event named “LP_S0_OG_AND1”, where the name starting with a 
prefix LP_ means there is a loop within the fault trees, indicates the events occurring 
immediately below this event are the same as those below an upper event named 
“S0_OG_AND1”. This means that the values of TRIP_LOGIC are toggling, which 
results in the coming-and-going trip signals between 0 and 1. 

The logic error described above had not been detected even in the formal verifica-
tion process where a file containing a FBD module was converted into the Verilog 
language format by the use of a conversion tool [17] developed proprietarily for the 
KNICS project and the model checking by a SMV mode checker was performed on 
the converted Verilog specification based on the specified computational temporal 
logic properties. Some results from the formal verification are presented in Table 5. 

Table 5. Formal verification results for DNBR_LO trip 

Label Attribute Attribute Description Result 

_4_P3 
if (!TRIP_LOGIC && (_4_BP_T_INI && 
_4_BP_T_TRIP_VAL)) assert _4_P3: 
TRIP_LOGIC_1 == 1 

If the current state is non-trip, the test 
mode is activated, and the test value 
is 1, then the trip output variable is 1. 

TRUE 

_4_P4 
if (DI_MDL_E || _4_TRIP_DI_E || 
ENFMS_T_TRIP || TRIP_LOGIC_1) assert 
_4_P2: _4_TRIP_out == 1 

If there is any hardware error or a 
logical trip, then trip signal is 
generated. 

TRUE 

 
In fact, the hazard identified by the SFTA of Fig.5 may be found in the code 

inspection or through a unit test at the implementation phase. Moreover, the software 
HAZOP is capable of identifying such a hazard in a small FBD module as in Fig.6. 
Regardless of this fact, the application of the SFTA is thought to be necessary to find 
a local defect. The SFTA for the other FBD modules had a tremendously complex and 
lengthy tree structure where the software HAZOP seemed to be impossible to draw 
out a logical defect. For the case of a testing, a good set of test cases or a paramount 
test scenario needs to be designed carefully. 

5   Conclusions 

For the SSA of a digital reactor protection system in the KNICS project, the strategy 
and methods are presented in this paper. As techniques, the software HAZOP and the 
SFTA are employed in the SSA for the design description represented by FBD 
modules (and they can also be used for the FBD program). Because of a different 
viewpoint from the V&V activities, the SSA could produce some valuable results that 
had not been identified through a previous rigorous V&V procedure including a tool-
based formal verification. 
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Abstract. Electronic safety systems for applications with a high level of safety 
integrity as in nuclear plants use hardware redundancy extensively. By 
implementing identical or similar software in the redundant hardware channels, 
systematic software failures may become a vital origin of common cause 
failures. The paper specifies a Software Common Cause Analysis allowing a 
well-documented judgment whether the likelihood of dangerous common cause 
failures in the conjunction of the system environment with the embedded 
software is adequately low, or which initiating events cannot be adequately 
controlled and measures on system level must be taken in order to prevent the 
initiating event or diversify the subsystems. The paper specifies an extensive 
list of common cause initiators from the environment onto software and 
combines them with fault avoidance and control measures in an event tree 
method. 

Keywords: Software Common Cause Initiators, Event Tree, Fault Avoidance, 
Fault Control. 

1   Scope and Introduction 

This paper solely regards software-related common cause failures, i.e. the 
combination of specification- and design weaknesses, which were not detected by 
verification- & validation measures, with initiating events outside the software like 
rare transients of processed signals and data, evoked by system status, human action 
or hardware failure of the automation equipment. The paper does not regard 
hardware-related production failures. 

2   Software Common Cause Analysis 

Common Cause Analysis (CCA) analyses the influences of similar events on the 
channels of redundant systems. Common Cause Analysis (CCA) is mostly executed 
on system level. In order to support the system-level CCA and to determine a 
hardware common cause factor, IEC 61508-6 offers an evaluation table, which leads 
to a ß-factor estimation. 

By implementing identical or similar software in the redundant hardware channels, 
systematic software failures may become a vital origin of common cause failures. 
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Systematic software failures are primarily avoided by quality assuring measurements 
in development. Not detected systematic failures, however, may, in combination with 
unusual external events lead to similar failures in redundant applications. Typically 
these are rare external events, as expected external events would already have been 
detected during the tests in the safety-related software development. 

2.1   Definitions 

Common Cause Failure (CCF) (CDV1 IEC 62430:2005) 
Failure of two or more structures, systems or components due to a single specific 
event or cause. 

Note 1 – The coincidental failure of two or more structures, systems or components is 
caused by any latent deficiency from design or manufacturing, from operation or 
maintenance errors, and which is triggered by any event induced by natural 
phenomenon, plant process operation or a man cased action or by any internal event 
in the I&C system. 

Note 2 – Coincidental failure is interpreted in a way that also a sequence of system or 
component failures is included when the time interval between the failures is too short 
for repair measures. 

Software Common Cause Failures are coincidental failures of several redundant 
software-based subsystems for which on software failure is causal in the chain of 
events. The triggering event itself may be a rare external incident, such as 
environmental conditions (EMC, lightning, radiation), hardware failures of other 
system outside the subsystem under evaluation, human failure, human maintenance 
failure. 

IEC 60880-2: Software by itself does not have a CCF mode. CCF is related to 
system failures arising from faults in the functional requirements, system design, or in 
the software. 

2.2   Method 

The Software Common Cause Analysis proposed herein examines possible chains of 
events and conditions. For this purpose, triggering events are defined, which may act 
as common cause initiator, and the software behaviour in respect of these common 
cause initiators is analysed. For the common cause initiator to lead to a safety critical 
system behaviour, the software must meet three conditions:  

I - Impact: The potential common cause initiator must influence the software in 
   the considered operation mode. 

A - Avoidance: The software has not been analyzed or tested in terms of the 
   initiator during development; 

M - Mastering: The software does not contain measures1 which control or mitigate 
   the negative effects of the initiator at runtime. 

                                                           
1 Typical measures according to IEC 61508 are: (1) Logical program flow monitoring, 

(2) assertions / plausibility check and (3) data/ time redundancy. 
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Fig. 1. Initiating event leading to a dangerous system failure 

Only if these conditions are met and no measures on system level are taken (e.g. 
functional diversity), the initiating event will lead to a dangerous system behaviour.  

The following event flow results from the conditions described:  
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Fig. 2. Event flow from initiating event to system failure 

For easier application, the event tree may also be implemented as a table. 
It is important for the analysis to define the initiating events to be regarded. A 

proposal for a comprehensive list is shown in chapter „Initiating events to be 
regarded“. 

If the event flow shows that the consequence associated with an initiating event 
must be considered as critical, measures on system level must be taken, in order to: 

- Avoid the initiating events; or 
- Strengthen weak system parts; or 
- Diversify the weak sub-systems.  

Initiating event 
- Fault 

Dangerous system 
behavior - Failure Conditions 

System structure 
I: Software Impact 
A: Avoidance measures 
M: Control measures
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Table 1. Example: Initiating event - Too high interrupt frequency by input signal 

Conditions Description 
E: Initiating event is 
common cause initiator 

Too high interrupt frequency  
Interrupt is formed in both channels from different, 
but similar signals 

I: Event is relevant for the 
operation mode regarded 

Yes, safety-relevant software parts are interrupt-
driven 

A: Software not analyzed or 
tested on initiating event 

Explicit stress tests with excessive interrupt 
frequencies 

M: Software contains no 
runtime measures 

Logical and temporal program flow monitoring 

Consequence No Failure 
 

It might be useful to fill in probabilities instead of “Yes” and “No”, as described in 
chapter “Exemplary quantification“.   

2.3   Independence  

The independence of the conditions is essential for the event tree modelling. 
Therefore only few conditions (I, A, M) are defined. Further refinement of the 
conditions is only possible if the independence is preserved. The conditions used in 
this paper can be justified as follows: 

- Avoidance vs. Mastering and Impact 

    Avoidance is a development time issue whereas the other conditions are run time 
issues. 

- Mastering vs. Impact 

     Different parts of the system determine these conditions. The possibility for an 
impact of a common cause initiator is determined by the inputs to the software 
thru interaction with other subsystems. The mastering of the impact is 
determined by the run time measures implemented in the software. 

2.4   Initiating Events to Be Considered  

The method follows the Stress versus Strength concept, which is the basis for many 
common cause analysis methods. It is assumed that a component had been developed 
against frequently occurring assumed external stress factors. If these stress factors are 
stronger than assumed or if not assumed stress factors occur then redundant 
components exposed to this stress fail in common. 

The following table of initiating events lists influencing factors (stress) which may 
adversely influence the Software, but are rarely examined in software reviews and 
tests. The table is supposed to portray an adequate checklist for a software common 
cause analysis. The table considers and refines the requirements from CDV1 
IEC 62340 chapter 8, 9.3 and 9.6 with the exception of 8.E, as this requirement can 
only be analyzed for specific plant software.  
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In order to graduate the analysis effort, recommendations using the IEC 61508 
nomenclature are given with each common cause initiator. The SIL-classification 
stems from the safety function(s) executed by the device / system. 

HR: The common cause initiator is highly recommended to be considered for this 
SIL. If this common cause initiator is not considered then the rationale behind 
not using it should be detailed and agreed with the assessor. 

R:  The common cause initiator is recommended to be considered for this SIL. 

Table 2. List of initiating events 

Initiator SIL 1 2 3 4 
Initiators via signals and data     
 Influences from non-examined combinations of input 

signals 
-- R R HR 

 Influences from non-examined signal form of input signals 
(transients, non-examined frequency spectrum) 

-- R R HR 

 Exceeding of boundaries R HR HR HR 
 Incorrect communication data R HR HR HR 
Initiator via lack of independence     
 Lacking independence of the data of safety-relevant and 

non-safety-relevant program parts 
-- HR HR HR 

 Lacking temporal independence of safety-relevant from 
non-safety-relevant program parts 

-- HR HR HR 

 Lacking independence of the processing of different safety 
functions 

-- R HR HR 

 Non-availability of several safety functions at failures of 
input signals of a single safety function  

-- R HR HR 

 Illegal Pointer -- R HR HR 
Initiator via temporal influence     
 Non-deterministic or not monitored time behaviour     
 Interrupt-driven instead of cyclical processing -- R HR HR 
 Interrupts dependent on process data R HR HR HR 
 Interrupt-driven scheduling without logical and temporal 

program flow supervision 
-- R HR HR 

 Event-driven communication of safety-relevant data  -- R HR HR 
 Influences from not regarded combinations of input 

events / communication events / interrupts 
-- R HR HR 

 Utilization of the time behaviour of Source Code 
constructions (e.g. program loops for time generation) 

R HR HR HR 

 Violation of worst-case time-/frequency assumptions 
(e.g.. sampling theorem, interrupt frequency) 

-- R R HR 

 Asynchronous access to common resources -- R HR HR 
 Calendar-dependent processing -- R R HR 
Initiator via human influences     
 Erroneous parameterization due to complexity or 

ambiguity of parameters 
HR HR HR HR 
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Table 2. (continued) 

Initiator SIL 1 2 3 4 
 Erroneous interference in parameterization -- R HR HR 
 Illegal change of software or parameterization -- R R HR 
Initiator via influences from Coding     
 Dangerous source code constructions – General  

e.g. substantial use of global variables, platform-dependent 
data types, recursion, heap und queue elements of different 
length. 

R HR HR HR 

 Dangerous source code constructions – C / C++ specific 
e.g. variable allocations in conditions, complex pointer 
calculations, Union, macros. 

R HR HR HR 

 Not intercepted run-time failures like overflow, divide-by-
zero, illegal pointer access. 

R R HR HR 

 Changing memory load     
 Dynamic objects explicitly created during run-time by 

the application software 
R HR HR HR 

 Dynamic objects implicitly created during run-time like 
Standard C/C++ library functions with implicit memory 
allocation, library functions for lists, queue, heap 
management 

-- R HR HR 

 

3   Exemplary Quantification 

The Software Common Cause Analysis shows which initiating events, whose 
occurrence probability cannot be regarded as negligible, cannot be sufficiently 
controlled. Alternatively, the method can show that the probability of dangerous 
common cause failures in connection with software is sufficiently low. For the 
definition of „sufficiently low“, a comparison of the probability of dangerous 
common cause failure of a single event against the allowed Probability of Failure on 
Demand (PFD) per IEC 61508 for the affected safety function is proposed. 

The probabilities resulting from the event flow and the effectiveness of the failure 
avoidance and failure control measures shall presently serve only for evaluating 
different software solutions and improvements (Sensitivity) within the Software 
Common Cause analysis. 

In order to better judge event flows, the initiating events and the conditions should 
be associated with probabilities. The probability of the initiating event can be 
quantified from previous experience as explained in [9] and IEC 61508-7 Annex D.2. 
If no initiating event has been observed during N statistically independent runs with 
input distribution equal to the distribution for demands during operation, the 
probability of the initiating event can be estimated for the confidence level ß: 

N

ß
P EventInitiating

)1ln( −−≤  . (1) 
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3.1   Quantification of Typical Measures of Fault Control  

As there are presently no generic statements regarding software-related failure 
probabilities, three very conservative probability classes are proposed:  

- High Effectiveness = 0,99; 
    The effectiveness is high, if there is a coherent justification, that the event or its 

effect will be mastered for all scenarios. 
- Medium Effectiveness ≥ 0,9; 
    The effectiveness is medium, if there is a coherent justification, that the event or 

its effect will be mastered, but only under rare circumstances. 
- Low Effectiveness ≥ 0,7; 
    The effectiveness is low, if the measure is judge to be helpful but there is no 

coherent justification, that the event or its effect will be mastered. 

The ranges were chosen as they seem to be analytically justifiable even without 
statistical evidence. Experience data should be collected at a later stage. 

Table 3. Measure to master initiating events or their effect 

Measure Qualitative description of effectiveness Effectiveness 
A: Stress Testing Can provide evidence for compliance 

with the safety related process time 
conditions and memory constraints. 

Medium ≥ 0,9 

M: Logical and temporal 
program flow monitoring 

Can monitor all program states and the 
compliance with the safety related 
process time conditions. 

High = 0,99 

M: Time Fence Can monitor the compliance with the 
safety related process time conditions. 

Medium ≥ 0,9 

M: Pre-assertions on data 
input 

Monitors the input space. Effective for 
algorithms without history. 
Less effective for algorithms with 
history. 

High = 0,99 
 
Low ≥ 0,7 

M: Memory Protection Covers corruption of data due to 
interference from other non-safety 
software parts 

Medium ≥ 0,9 

M: Safe Data Types Covers corruption of data by hardware 
failures and interference from other 
(non-safety) software parts. 

High = 0,99 

Examples for Safe Date Types are: A logical variable is stored and processed in 
two representations as bit and integer; a numerical variable is stored and processed as 
float and normalized integer or the data content of the variable is secured by a 
redundancy code. 

Exemplary limit: The probability of the dangerous common cause failure resulting 
from a single initiating event shall not be greater than 1% of PFD as specified by 
IEC 61508. 
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Table 4. Example 1: Initiating event - Too high interrupt frequency by input signal 

Condition Description Probability 
E: Initiating event is 
common cause initiator 

Too high interrupt frequency 
Interrupt is formed in both channels from 
different but similar signals  
Data from operating experience  

PInitiator = 2*10-2 

I: Event is relevant for 
operation mode regarded 

Safety-relevant software parts are interrupt-
driven 

1 

A: Not suitable tests Explicit stress tests with excessive interrupt 
frequencies 

1 – 0.95 

M: Independent runtime 
measures 

Logical and chronological program flow 
monitoring 

1 – 0.99 

Probability of a dangerous CC failure 1e-5 
Exemplary limit (1%): Suitable for SIL SIL 3 

 
Alternatively shown as graphic event flow: 
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Fig. 3. Example 1: Initiating event - Too high interrupt frequency by input signal 
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Table 5. Example 2: Initiating event - Incorrect scheduling 

Condition Description Probability 
E: Initiating event is 
common cause initiator 

Incorrect scheduling  
Common operating system 
Data from operating experience 

PInitiator = 1e-3 

I: Event is relevant for 
operation mode regarded 

Safety-relevant software is controlled by 
OS 

1 

A: Not suitable tests Scheduling tested under normal conditions, 
but no evidence for extreme conditions 

1 – 0.7 

M: Independent runtime 
measures 

Logical and chronological program flow 
monitoring 

1 – 0.99 

Probability of a dangerous CC failure 3e-6 
Exemplary limit (1%): Suitable for SIL SIL 3 

 

Alternatively shown as graphic event flow: 
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Fig. 4. Example 2: Initiating event - Incorrect scheduling 
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4   Outlook 

The qualitative part of the method stems from the safety evaluation of the common 
cause potential of identical field devices or identical software parts in different field 
devices such as operating system kernels and libraries in nuclear power plants. 

The quantitative part of the method will be tested during the application of the 
qualitative part. The comparison of qualitative and quantitative approach shall help to 
gain experience with the assumed probabilities. On a longer term, it shall justify 
conservative software failure quantification and widen the view on software-related 
common cause in respect of safety standards such as IEC 61508 and IEC 60880 
which concentrate common cause considerations to the system level and development 
process level. 
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Abstract. There have been an increasing number of applications of Bayesian 
Belief Network (BBN) for predicting safety properties in an attempt to handle 
the obstacles of uncertainty and complexity present in modern software 
development. Yet there is little practical guidance on justifying the use of BBN 
models for the purpose of safety. In this paper, we propose a compositional and 
semi-automated approach to reasoning about safety properties of architectures. 
This approach consists of compositional failure analysis through applying the 
object-oriented BBN framework. We also show that producing sound safety 
arguments for BBN-based deviation analysis results can help understand the 
implications of analysis results and identify new safety problems. The 
feasibility of the proposed approach is demonstrated by means of a case study. 

1   Introduction 

Designing dependable software systems requires early prediction of critical system 
properties so that effective architectural feedback can be generated as part of the 
evolutionary design process. The elaboration of the linkage between architectural 
design and safety poses challenging research problems of reasoning – reasoning about 
safety properties of an architecture given current level of design detail and items of 
evidence available in the development process. By formalising and articulating the 
reasoning behind architectural design, we believe that there can be an increased level 
of confidence in architecting safety-critical software applications. Experience has 
shown that most design methods predominantly rely on implicit human reasoning and 
judgements to inform design decisions. 

In this paper we propose an approach to compositional failure analysis of system 
and software architectures through the application of the object-oriented Bayesian 
Belief Network (OOBBN) framework and articulating analysis results through the 
Goal Structuring Notation (GSN). We argue that BBN/OOBBN models can provide a 
cost-effective medium for architects to analyse critical system properties on the basis 
of limited evidence available, only if the underlying assumptions and implications of 
the BBN models developed are fully understood and properly consolidated. We 
therefore distinguish two essential steps of architectural reasoning from the 
perspective of safety: compositional failure analysis with the aid of OOBBN tools, 
and comprehensible safety argumentation based upon the explanation of BBN-based 
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failure analysis results. We illustrate the proposed framework by means of an aircraft 
wheel brake system (WBS) controller example extracted from ARP 4761 [1]. 

The remainder of the paper is organised in the following five sections. Section 2 
reviews related work. Section 3 describes compositional failure analysis through the 
application of the OOBBN framework. Section 4 describes the safety argumentation 
required to support the analysis in the form of goal structures. Section 5 presents the 
WBS example as an illustration of the approach. Finally, Section 6 draws some 
conclusions and discusses future work. 

2   Related Work 

The notion of BBN was developed in the AI community to facilitate automated 
reasoning about real-world problems under uncertainty. A BBN represents a directed 
acyclic graph (DAG) together with associated conditional probability distributions 
based upon explicit conditional independence assumptions, thereby saving space for 
probabilistic computation [17]. In practice, BBN models are often interpreted as 
causal models [16], in which the directed edges represent knowledge about causal 
relations. Modular development of large-scale BBN models has also been explored in 
a form of objects [18]. Several BBN tools such as Hugin [2] are also available to 
facilitate inductive and deductive reasoning in an automated manner. BBN models 
have already been applied to solving software engineering problems. Fenton et al [3] 
developed a number of generic BBN patterns to support software safety case 
development and risk assessment. Sutcliffe et al proposed a method of constructing 
generic BBN models to evaluate usability [8] and later developed an automated tool 
to evaluate reliability and performance through different configurations of BBN 
models [9]. However, little work exists on leveraging BBN-based reasoning power for 
the purpose of safety analysis. 

Whilst BBN-based reasoning can replace human reasoning by combining 
subjective estimates and statistical data theoretically, it has been generally accepted 
that producing an accurate BBN model can be very difficult. One possible solution is 
to create an effective dialogue between human reasoning and automated reasoning in 
order to communicate the domain knowledge and explain the reasoning behind the 
BBN models [5]. There are two classes of the explanation methods in the literature 
[13]: explanation of the construction of BBN models, and explanation of the BBN 
inference process on the basis of evidence obtained. The research in automated 
explanation is still in its early stages, however. We believe that existing 
argumentation approaches such as GSN may be used to offer such a dialogue.  

The benefits of compositional reasoning have been increasingly recognised in the 
software community. At York, Fenelon et al [6] proposed a compositional failure 
modelling prototype – Failure Propagation and Transformation Notation (FPTN). 
Within the FPTN framework, failure behaviours of an architectural component can be 
classified in terms of failure propagation and generation behaviours specified by 
Boolean logic. Failure behaviours of a composite system can thus be inferred by its 
underlying structure as captured by its architecture. The authors have examined the 
application of Communicating Sequential Processes (CSP) as an implementation of 
FPTN [19]. Although CSP can capture uncertainty in both a qualitative and 
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quantitative manner [15], as a behaviour modelling language it is lacking expressive 
power for reasoning about safety risk. In this paper we have attempted to integrate the 
OOBBN framework with compositional failure modelling. 

3   Compositional Failure Analysis 

A specification describes the desired behaviours of an architectural component 
situated in a specific environment [11]. The behaviours are inherently causal, as the 
provided service of that component is dependent upon its required service as 
stipulated in the specification. In practice, the behaviours can be effectively 
interpreted in terms of stimulus and response [4]. Obviously, a stimulus can be treated 
as the cause of its designated response. The stimulus can be generated by either the 
environment or the component itself. The stimulus-response formulation can be 
applied recursively, where the response of a component becomes the stimulus of 
connected components in the architecture. As a result, system properties can be 
inferred in a compositional manner. 

Yet the stimulus-response specification is only desired and perceived by the 
stakeholders, as the regularity between stimulus and response may not be true due to 
the potential existence of defects embedded in either that component or its situated 
environment. Deviation arises when the causal link between a stimulus and response 
is disrupted or intervened (using Pearl’s term [16]). The problem then lies in the 
robustness of the causation as specified under all circumstances. Put another way, the 
main concern will be the exhaustiveness and credibility of the potential disruptions of 
the epistemic causation, as well as their possible safety consequences once they do 
occur, since deterministic causation may not be realistic. Deviations can be 
generalised in terms of failure modes. Previous work at York has developed a 
comprehensive set of failure modes for software systems as part of the SHARD 
(Software Hazard Analysis and Resolution in Design) method [14]. We interpret the 
SHARD failure modes with respect to the stimulus-response specification as follows: 

• Omission. Response part does not hold while the stimulus and environment parts 
hold. 

• Commission. Stimulus or environment part does not hold while the response part 
holds. 

• Timing. Timing constraint specified in the response part is violated while the other 
parts hold. 

• Value. Accuracy constraint specified in the response part is violated while the other 
parts hold. 

If we translate the specification of an architectural component into pairs of stimulus 
and response, we will have a DAG model (i.e. a BBN structure)  

C = (V, E) 

where V is defined as a set of Boolean variables, each corresponding to a distinct 
element of all identified stimuli and responses, and E is defined as a set of directed 
edges among V, each corresponding to a distinct element of all identified causal 
relations between stimuli and responses. As a result, each architectural component can 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Combining BBN and the GSN to Support Architectural Reasoning About Safety 175 

be mapped onto an individual BBN model. Architectural components of the same 
component type (i.e. sharing the same specification) will be mapped onto the same 
BBN model. Formally, the mapping can be defined as a total, surjective function 
where the domain is defined as the number of architectural components and range is 
defined as a set of BBN models. Following the OOBBN terminology, the stimulus 
and response nodes in V can be represented by input and output nodes, respectively. 
The corresponding BBN models are known as OOBBN models and their instances 
(representing architectural components) can be composed together within a composite 
OOBBN model, in which these OOBBN instances are represented as instance nodes 
(or subnets) and connected by linking the output nodes of an instance node to the 
input nodes of another, as specified in an architectural view. 

A1 : ArchCompA

A2 : ArchCompA

A3 : ArchCompA

B : ArchCompB

in1

in2

in3

out1

out2

out3

output

ArchCompA

ArchCompB

Architectural View Specifications

OOBBN Framework

s1 r1

s3 r2

A1 : ArchCompA

r1

s1

A2 : ArchCompA

r1

s1

B : ArchCompB

r2

s2

s2

s4

s3 s4

Key

Input Node

Output 

Node

Instance Node

A3 : ArchCompA

r1

s1

 

Fig. 1. A schematic model of compositional failure modeling 

Figure 1 illustrates a schematic model of a compositional failure modelling 
process. We assume that a run-time view of an architecture is available, which 
introduces three parallel-running architectural components of the same type and an 
architectural component responsible for arbitrating the outputs of the three. Since 
there are two types of architectural components (i.e. two architectural specifications) 
in the run-time view, there will be two corresponding OOBBN models, in which the 
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input and output nodes are specified according to their specifications. Finally, we will 
have a composite OOBBN model that represents the composition of the four 
architectural components, as described in the run-time view. 

The aim of compositional failure modelling is to identify the possible component 
deviations and reason about their safety implications at the system level. It is equally 
important to reason about the credibility of each deviation identified, as some 
deviations are certainly more likely than others. From the perspective of evolutionary 
design, credibility estimation can also help the architect to prioritise safety concerns 
in terms of risks, since addressing all safety concerns in a one-off manner is simply 
unrealistic. To estimate the credibility of a deviation (e.g., the credibility of omission 
failure P(Not-Response | Stimulus)), we need to distinguish the types of architectural 
components: hardware (e.g., processor or communication link), software, human (e.g., 
operator), or environmental components (e.g., weather and runway conditions). For a 
hardware or environmental component, historical data collected will often be 
adequate to justify the existence of a specific deviation. For example, a sensor can fail 
due to electromechanical wearout, moisture intrusion, or vibration. For software or 
human agents, the architect should either identify the relevant causal factors given 
his/her knowledge and judgement, or choose appropriate BBN patterns to add them 
into the BBN subnet relating to the architectural component. Figure 2 illustrates a 
simple BBN model to estimate the credibility of omission failure of ArchCompA. 

Omission failure of ArchCompA 
P(r1 = false | s1 = true)

Complexity of function
Competency of development 

team

V1

V2 V3  

Fig. 2. A simple BBN model for estimating credibility of omission failure of ArchCompA 

As shown in Figure 2, we simply assume that the credibility of omission failure is 
subject to the product-related factor (i.e. complexity of the behaviour of that 
architectural component) and the process-related factor (i.e. competency of the 
allocated development team). The resultant BBN model thus consists of three nodes: 
V1 (a Boolean variable), V2 (a discrete node with three states) and V3 (a discrete node 
with three states). The derivation of the conditional probabilities such as P(V1=true | 
V2 = medium, V3 = low) within this example BBN model can be based upon the 
subjective judgement or statistical functions (e.g., the Beta function [3]), whilst the 
prior probabilities are simply undefined. Once the architect has inputted the relevant 
process and product findings (e.g., V2 = high, V3 = medium), the credibility of 
omission output of the component type ArchCompA, for example, can be obtained 
automatically through the BBN inference engine. Similarly, we can estimate the 
credibility of omission failure of the architectural component type ArchCompB 
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through using the same BBN model with different findings entered (e.g., V2= low, V3 
= medium). For different failure behaviours of the same architectural component, it is 
possible to adopt different BBN models to estimate their credibility.  

Consequently, for each OOBBN model representing an elementary architectural 
component, we should be able to derive all the conditional probabilities for the output 
nodes through credibility estimation, whilst leaving the conditional probabilities of 
the input nodes undefined. Having defined the conditional probabilities of elementary 
OOBBN models, we can compile the composite OOBBN model by means of an 
OOBBN tool and conduct inductive reasoning (i.e. ‘what if’ analysis) by setting 
specific values of input nodes and determine whether the credibility of system failures 
(i.e., omission of system outputs when system inputs arrive) is acceptable with respect 
to specific risk acceptance criteria. Obviously, further mitigation mechanisms will be 
required if system failures are unacceptably credible. 

The procedure of BBN-based credibility estimation is inevitably subjective: given 
the same deviation, different architects may have different BBN models in terms of 
the DAG models (i.e., a set of causal factors) and conditional probabilities (i.e. the 
relative strength of these casual factors). In order to produce an accurate BBN model 
one solution is to exploit machine learning [10] over the past project data. The 
effectiveness of learning would however be subject to the availability of past projects 
with sufficient commonality to the current project. Another solution is to exploit 
human reasoning capabilities to review a BBN model produced. This is labour-
intensive, however. We therefore propose to use GSN to help explain and justify BBN 
models, as discussed in the next section. 

4   Safety Argumentation for Architectures 

Once the BBN-based reasoning produces a “safe enough” prediction (i.e., the 
credibility of all safety-related system failures is acceptably low), an architect should 
produce preliminary safety arguments to justify the BBN models produced and the 
underlying inferences. The purpose of safety argumentation at architectural level is 
twofold: 

• Consolidation. By seeking safety arguments behind the BBN-based safety analysis, 
an architect can obtain better insight into the BBN models in terms of a model’s 
assumptions, context and implications. 

• Communication. By presenting safety arguments behind BBN-based reasoning and 
communicating them to safety assessors (who may have little knowledge about 
BBN), there can be an improvement on the overall agreement with respect to safety 
acceptability prior to system construction. 

At York we have developed GSN to provide an effective medium for structuring and 
communicating safety arguments in terms of goal structures. Figure 3 shows the 
principal symbols of GSN. An away goal is a goal that is not defined within the 
module where it is presented but instead in another module. Within GSN, safety 
arguments can be generalised in terms of meta-arguments, from which domain-
specific arguments can be directly instantiated. These meta-arguments can be 
captured in a form of GSN patterns using the multiplicity, optionality and entity 
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System is 
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SafetyArgument

SafetyArgument

ChildGoal

Developed Goal  

Fig. 3. The principal symbols of GSN 

abstraction extensions [12]. The remainder of this section describes a four-step 
procedure of producing preliminary safety arguments to justify BBN-based failure 
analysis and architectural decisions made. 

 
Step 1: Identify the context and boundaries of architectural safety arguments 
Failure analysis is only part of safety assessment, and architecture itself cannot 
guarantee the achievement of system safety. It is therefore crucial that an architect be 
able to distinguish safety arguments derived from architectural considerations and 
non-architectural ones, and identify their relationships to the top-level system safety 
objectives. In GSN, this can be achieved by defining argument modules, declaring 
their interface and linking the declared modules through GSN relationships. 
Obviously, only argument modules related to architectural parts will be further 
developed by the architect. 

Step 2: Create the primary safety argument 
A primary argument consists of explaining the safety properties of an architecture 
with respect to the overall safety objectives specified, and how the desired properties 
can be enforced by the proposed system structures and constraints. We distinguish 
two classes of safety properties at an architectural level:  

• Normal behaviours of an architectural component. The normal behaviours of an 
architectural component include both functional and non-functional requirements 
such as timing constraints. Apparently, a key safety concern here is if these 
requirements have been met satisfactorily through the proposed architecture. 
Equally important for safety is to ensure that all the safety-related normal 
behaviours are correct with respect to what are intended from the safety viewpoint. 
For example, a deadline requirement of an aero-engine controller may be implicitly 
derived from historical values related to similar products. The relevancy of this 
timing requirement to this particular project must be validated through extensive 
engine simulation and trials. For another, functional requirements may be derived 
from the application of safety-related design decisions (e.g., failure detection). 
Correctness arguments for these derived requirements must be established. 

• Failure behaviours of an architectural component. Deviation analysis concerns the 
possible ways of violating the normal behaviours of an architectural component 
and their contributions to the known system hazards. Establishing an argument of 
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exhaustive identification of failure behaviours and corresponding mitigation 
alternatives is recognised as the key to the robustness of dependability design. The 
creation of the exhaustiveness arguments should be straightforward. For example, 
the exhaustive identification of failure behaviours of an architectural component 
can be relied upon the use of predefined failure/deviation modes of that 
component. We assume two basic forms of failure behaviours within boundaries of 
a composite system: failure propagation and failure generation. Component failures 
can only be propagated through dependencies between architectural components 
identified in an architectural view. Under the feasibility of failure propagation is 
the assumed claim that architectural components are independent given that there 
exists no connection between them in an architectural view. This independence 
assumption may be conditional however. For example, two parallel-running 
software tasks in a run-time view may share the same processor in the deployment 
view. It is thus important for an architect to establish the independence argument. 
The soundness of such an argument needs to be further validated through thorough 
review of all related architectural documents by a safety assessor. 
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Figure 4 shows the meta-argument for top-level primary safety argumentation. The 
argumentation process starts by supporting the top-level claim of acceptable safety 
through defining the acceptability criteria for a system’s architecture. The meta-
argument is then divided into two parts: a qualitative and quantitative part. The 
quantitative part argues that the risk of failure behaviours of the architecture is 
acceptably low. The qualitative part addresses how the normal behaviours of the 
architecture meet the necessary safety-related goals. Three backing arguments are also 
referred as the contextual parts within the primary argument structure to address two 
particular concerns regarding the refinement: the correctness of the identified system 
goals, and exhaustiveness of the identified system failures, and plausibility of the 
BBN inference results. We will discuss the development of backing arguments in the 
next step. 

Step 3: Create the backing arguments 
Backing arguments offer rationale behind the primary argument in terms of the 
following aspects: exhaustiveness, independence, correctness, and credibility 
estimation. The creation of exhaustiveness, independence and correctness arguments 
should be straightforward. Here we will focus upon the creation of credibility 
estimation arguments that justify the results generated by compiled BBN models.  A 
compiled BBN model consists of the following three elements: 

• Causal structure. A causal structure encodes information about the causal factors 
involved and the explicit assumption of conditional independence. For example, an 
architect simply assumes that complexity of the software function, quality of 
requirements specification and quality of development process are the dominant 
factors contributing failures of a software component. 

• Conditional probabilities. The conditional probability table (CPT) for a child node 
expresses the relative strength of causal influence towards that node. The CPTs for 
parentless nodes are deliberately undefined, as we will enter findings once the 
BBN model is compiled. For the same BBN model example in Figure 2, the more 
complex the software function is, the more likely it will fail; the better-quality the 
development process is, the less likely the software component will fail. Between 
the two factors, the complexity may be assumed to be the most influential factor; 
the quality of the development process comes second. The definition of the 
conditional probabilities should be consistent with this implicit ranking assumption 
and should be validated through evidence weighing or sensitivity analysis [13]. 

• Findings entered. A finding on a BBN node means one of the states of that node is 
observed to be true. In our application of BBN, findings are entered for parentless 
nodes only. The findings are not necessarily the evidence in the real world. For the 
previous example, we may simply claim that the quality of requirements 
specification will be good by assuming a rigorous the review procedure. Whether 
the claim is satisfied depends upon the result of requirements specification review 
that will be available in the subsequent development stages. 

Justifying the BBN prediction results thus involves the steps of justifying the 
definition of the causal structure, conditional probabilities of child nodes, and findings 
entered for the parentless nodes. Figure 5 shows the meta-argument for credibility 
estimation using BBN models. The meta-argument consists of three parts in order to 
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Fig. 5. Meta-argument for backing argument of credibility estimation 

support the claims of plausibility of the definition of causal structure and conditional 
probabilities, and the inputs of findings, respectively. The three parts of argument are 
refined through examining the corresponding elements within the BBN model (such 
as items of causal factors, CPTs, and findings entered). The assumptions of 
conditional independence and relative causal strengths must be explicitly specified, as 
shown in Figure 5. 

Step 4: Review the architectural safety arguments and generate feedback 
The architectural safety arguments developed must be reviewed by an independent 
review team. The aim of the review is to verify the safety arguments developed and 
identify new safety problems as input for the subsequent architectural design stages. 
The reviewers should include both safety assessors and related system stakeholders. 
The review procedure starts by presenting the primary safety argument and explaining 
the safety goals/concerns identified, safety-related architectural strategies chosen, and 
relevant context behind the primary argument. By now, the reviewers will have a 
good idea of current progress of architecting. They will also study the supporting 
documents (e.g., architectural views) that the argument refers to. The reviewers then 
start to ask probing questions regarding to the validity of the goal structure presented. 
Issues identified will be fed back to the subsequent design process. 

Once the primary argument is agreed, the reviewer will examine all backing 
arguments. Review of arguments for correctness, exhaustiveness and independence 
should be straightforward. Review of argument for credibility should be accompanied 
by the demonstration using a BBN tool (e.g., walking through the BBN nodes, 
conditional probability tables and inference results). Explanation of the context of the 
BBN model produced is also required. It must be stressed that the main use of BBN 
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models is to reason about the probability of systematic failures in the early stages of 
system development so that negative scenarios can be prioritised. Therefore, the 
reviewers should compare the BBN prediction results with their subjective judgement. 
If any inconsistencies found, further clarification of BBN models is required. 

The output of the review procedure is a set of architectural feedback in a form of 
safety issues and derived requirements, as well as the underdeveloped goals in the 
argument structures, which will be addressed in the next iterations. 

5   Example 

Our example concerns the design of WBS in which a software system (residing in the 
Brake System Control Unit – BSCU) is required to generate braking commands 
according to the braking request from a pilot (via pedal) and the current status of the 
WBS. The system consists of two hydraulic supplies: the GREEN and BLUE 
hydraulic supplies, which are selected automatically through the selector valve. A 
system architecture of WBS is illustrated in [1]. We assume that the specifications of 
each system component have been identified in a stimulus-response form. We then 
map each system component into individual OOBBN model in terms of input and 
output nodes. Finally, we compose instances of these OOBBN models into a 
composite one to represent the whole system architecture. Figure 6 illustrates the 
composite OOBBN model captured by Hugin tool. 

 

Fig. 6. A composite OOBBN model formed on the basis of WBS system architecture 

As shown in Figure 6, specifications of some architectural components such as 
hydraulic supply or power system do not have the stimulus part. On the other hand, 
the specification of BSCU can have multiple response parts. Two ordinary BBN 
nodes (i.e. Boolean variables) are also added in the OOBBN model to aid the 
architectural reasoning process: the WBS goal and system context (i.e., when wheel 
braking feature is required during specific aircraft flight phases). An obvious system 
hazard is the case when the context is true but the WBS goal is false (i.e. loss of 
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wheel braking). An alternative system hazard is when the WBS goal holds within the 
wrong context (i.e. inadvertent wheel braking). The conditional probabilities between 
the WBS goal and subnets (e.g., ServoValve_1) are defined as a Boolean function, 
whilst the prior probability of the system context variable is deliberatively undefined, 
as the architect can freely perform ‘what if’ analysis by setting different values. 

In order to predict the credibility of both system hazards identified, we need to 
define the credibility of failure behaviours of each system component in terms of 
conditional probabilities. For hardware components such as ServoValve_1, we simply 
assume they can only generate omission failures due to the underlying random faults 
with the credibility P (Not-Response | Stimulus) = 1E-5 and SelectorValve_1 and 
ServoValve_1 can also propagate any failure from BSCU_1 with certainty P(Not-
Response | Not-Stimulus) = 1. For software/human components, we need to identify 
the relevant causal factors available in the current state of system development. For 
simplicity, we here assume that Pilot_1 is fault-free by claiming that both omission 
and commission of braking request sent by pilot are impossible (i.e., P(send_request = 
true | need_for_braking = true ) = 1). For BSCU_1, we may assume that no product-
related metrics are available at this level, and thus we adopt process-based prediction. 
For the purpose of demonstration, we use the simplest process metric available (i.e. 
quality of development process) to predict the number of latent software faults during 
system operations. Figure 7 shows the BBN model derived from empirical data 
relating to CMM levels [7] in order to estimate the credibility of omission failures of 
BSCU software such as P(generate_braking_cmd = false | arrival_request = true).  

 

Fig. 7. The BBN model created for estimating credibility of omission failure of BSCU software 

If we decide to decompose the BSCU into two individual channels on the basis of 
the use of Command/Monitor pattern [20] (i.e., a COM channel responsible for 
braking calculation, and a MON channel responsible for detecting faults from COM 
channel given knowledge about the reasonableness of the braking output), the subnet 
BSCU_1 is thus decomposed into two subnets: COM_1 and MON_1. The internal 
structure of COM_1 is the same as the initial subnet BSCU_1 except that the response 
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Fig. 8. The compiled OOBBN model for BSCU designed with Command/Monitor pattern 
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Fig. 9. Part of the primary safety argument for the WBS example 

part is changed to become the calculation of braking commands. The MON_1 subnet 
is defined by assigning the Boolean function between the response part sanity check 
and the stimuli parts from inputs and COM output. Figure 8 shows the compiled BBN 
model for the refined subnet BSCU_1 in order to predict the credibility of omission 
output of BSCU. The probability of generating braking commands has changed to 
100% due to the additional safety check by the MON channel, whilst the reliability of 
selecting the braking mode is still unchanged (i.e., 99.97%). If the prediction results 
are acceptable, we then create the preliminary safety argument which can be directly 
instantiated from the predefined meta-argument. The primary argument simply 
replays the progress of the WBS system design: i.e., how the WBS system goal is 
achieved in the proposed architecture and the two system hazards have been 
addressed sufficiently. Figure 9 shows part of the primary argument, which shows 
that failure behaviours of BSCU have been sufficiently mitigated.  

Having reviewed these arguments by the safety assessor, it becomes obvious that 
some value failures of the COM channel are subtle and thus undetectable. Therefore 
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the zero credibility of omission braking output predicted by OOBBN models is not 
realistic. Consequently, we may need to refine the COM channel in order to address 
the undetectable failures. For example, we may improve the reliability of the COM 
channel to ensure that the credibility of undetectable COM failures is sufficiently low. 

6   Conclusions and Future Work 

We have presented a novel approach to architectural reasoning about safety in a 
compositional and semi-automated manner. The approach is based upon BBN-based 
deviation analysis and goal-based argumentation to justify the deviation analysis 
results. Although it may be attractive to realise the ultimate goal of automated 
reasoning about safety in the future, human reasoning is still the vital part of 
architectural reasoning. The proposed method for safety argumentation is aimed to 
improve human reasoning by means of clearly-structured dialogues, thereby offering 
complementary means of architectural reasoning. The proposed approach relies 
heavily upon the development of BBN models derived from architectural knowledge 
about the system domain and current status of the development process. We expect 
that an architectural reasoning language that sits between existing architectural 
description languages and OOBBN inference engine will thus be desired. Our future 
work includes the precise definition of an architectural reasoning language, and 
integrating BBN inference engine and automatic generation of GSN-based safety 
arguments into existing architectural design environments. 
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Safety requirements have a high impact on current industrial applications. 
Companies are liable by law for injuries to health and environmental hazards. 
Today international standards exist to prove for hazard avoidance. A decisive 
part of safe industrial applications is the software running a Programmable 
Electronic System. Programmable systems cannot be certified in general, so a 
time-consuming certification process has to be re-initiated during each 
commissioning. Hence, there is a strong need for easy-to-use tools, which not 
only simplify the application development, but do also support the certification 
process by modelling and presenting the system's behaviour in an easily 
accessible way. We present a methodically diverse approach combining both, 
safety-related and standard requirements, within a single application. We apply 
the documentation technique of "Cause & Effect Diagrams" to a software tool. 
This allows developing efficiently safety-related applications up to Safety SIL 3 
[2]. 

1   Introduction 

OpenPCS is the only IEC 61131-3 workbench certified for "Portability Level" by 
PLCopen. Infoteam Software GmbH integrated a new concept called OpenPCS/SIL. 
SIL means the Safety Integrity Level [2]. OpenPCS/SIL is designed for automation 
engineers enabling them to address within one engineering tool both the safety and 
the standard requirements placed on an automation solution. 

In the field of automation safety-related aspects are always directly related to a 
standard application to be created. The safety aspect of OpenPCS/SIL is based on the 
proven in use concept of Cause & Effect Charts and refines this method to a level, 
which allows developing safety applications effectively and efficiently up to SIL3 in 
combination with standard functionality. With that, OpenPCS/SIL reaches a high 
level of competitiveness due to its efficiency within the safety-related development 
process. Another advantage of the close collaboration between the safety and the 
standard part of an application by using Cause & Effect is to save time and money 
during safety specific activities, verification and validation. Cause & Effect Charts are 
a well known method in process control and related industries for documenting the 
wiring of plants and facilities. So the idea was born and realized to use Cause & 
Effect as a method of developing safety-related applications.  
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The originality of the approach to use the Cause & Effect to develop a safety-
related application is similar to the approach of use of object-oriented programming 
languages like Small Talk or C++ to develop OO-Software. Surely it is possible to 
develop object-oriented software with C or Assembler but it is not forced to do it 
right. The analogy says: Cause & Effect forces the development of a safety-related 
application in comparison to other programming languages e.g. FBD. The evidence 
for that is that the Cause & Effect programming approach mirrors many requirements 
of the standard IEC 61508 [2]. The IEC 61508 standard sets out a generic approach 
for all safety lifecycle activities for systems comprised of electrical and/or electronic 
and/or programmable electronic components (electrical/electronic/programmable 
electronic systems (E/E/PESs)) that are used to perform safety functions. Some main 
requirements that are touched from the Cause & Effect approach are found in the 
chapters 7.4.2, 7.4.3, 7.4.4 IEC 61508-3:2001 [3]. 

This will be demonstrated in chapter 7.4.2.4 [3] and chapter 7.4.4.3 [3] 
The standard requires in chapter 7.4.2.4 [3]: 

“The design method chosen shall possess features that facilitate software 
modification. Such features include modularity, information hiding and 
encapsulation” 

This Requirement is realized by the use of Cause & Effect due to the finding the 
design of the application this means finding the causes and find out what the reaction 
has to be is equal to the implementing phase. Furthermore it is planed to generate the 
documentation automatically from these informations. 
 

The standard requires chapter 7.4.4.3 [3]: 

“To the extent required by the safety integrity level, the programming language 
selected shall: 

a) have a translator/compiler which has either a certificate of validation to a 
recognized national or international standard, or it shall be assessed to 
establish its fitness for purpose; 
b) be completely and unambiguously defined or restricted to unambiguously 
defined features; 
c) match the characteristics of the application; 
d) contain features that facilitate the detection of programming mistakes; and 
e) support features that match the design method.” 

This Requirement is realized by the use of Cause & Effect due to: 

a) It is planed to fully certify OpenPCS/SIL. 
b) The restrictions are strong and clear. 
c) It is the application itself 
d) Automatically error detection 
e) It is the design itself 

2   Cause and Effect Methodology 

The Cause & Effect methodology consists of the Cause & Effect matrix and input and 
output values. The Cause & Effect matrix contains four quadrants. Quadrant 1 has no 
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Fig. 1. Cause & Effect Methodology 

functionality; it is used to hold some general information. Quadrant 2 lists the causes 
from top to down. A cause is an effect producer, e.g. to push a stop button should stop 
the device. So pushing the stop button is the cause. Stopping the device is the effect. 

Quadrant 3 lists the effects from left to right. The quadrant 4 lists all logical 
interconnections called intersections between Causes and Effects.  

In our case all Causes are represented through an electrical input Signal. The 
special requirements to that signal is that it has to be a SAFEBOOL type which is 
BOOL with additional information like PL [2], SIL [2], PDF [2], PFH [2]. It is 
planned to use that additional information to calculate the Safety Integrity of the 
System that is taken into account from the Cause & Effect Matrix. 

3   OpenPCS/SIL Component Overview 

OpenPCS/SIL consists of three components: 

1. C&E Editor 
2. C&E Viewer 
3. C&E Runtime System (RTS) 

 

The component C&E Editor enables the automation engineer to develop the 
application. The C&E Editor will be explained later in more detailed. 

The C&E Viewer is a control view that controls automatically that there is no 
falsification during compilation. The Viewer shows the compiled and de-compiled 
input. The user is also able to view his inputs after compilation and de-compilation.  

The safety relevant criterion is that the de-compiled view of the source code (C&E 
Matrix) has to be identical to the editor view, where the user enters his code. 

The C&E Safety Runtime System runs on the controller as a separate task. There 
are some interactions between standard and safety runtime system, but nevertheless 
the systems are independent from each other as far as possible. 
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Fig. 2. Component Overview 

As well as the standard RTS the C&E RTS is processed cyclically. At the 
beginning of each cycle the safety-related input signals of the periphery are read into 
the safety-related process image. During the cycle the input variables are translated 
into output variables by the Cause & Effect matrix. At the end of each cycle the 
safety-related process image is written into the periphery. 

4   Cause and Effect Matrix in OpenPCS/SIL 

The Cause & Effect (C&E) matrix contains all causes and effects and their 
interconnections with each other. The C&E matrix is build similar to the C&E matrix 
of C&E methodology. 

4.1   Quadrant I 

Quadrant is the matrix cell, which is used to display certain attributes of the matrix 
such as location within the name of the application, version, date of creation, date of 
modification, date of certification, Safety Integrity Level, project tree, dimension, etc. 

4.2   Quadrant II 

In quadrant II all causes are listed from top to down. The alignment of a cause line 
visualizes the entering of the safety-related input signal into the matrix on the left 
 

Editor IEC-
Application 

Generate 
IEC-

Application 

Download 
IEC-

Application 

Editor C&E-
Application 

Generate 
C&E-

Application 

Download 
C&E-

Application 

C&E-
RTS 

Standard-
RTS 

Viewer 
C&E-

Application 

De-Compile 
C&E-

Application 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Application of Interactive Cause and Effect Diagrams 191 

 

Fig. 3. C&E Editor integrated in OpenPCS 

side. A cause line is defined through the name and the safety function of a cause. The 
safety function determines how many input variables have to be assigned and how 
many output variables have to be written: e.g. an emergency stop has one input 
variable; a SF_TwoHandControl_TypIII has two input variables [4], both have one 
output. The input signals are processed according to the safety function. The safety 
function is selected through a combo box in the cell. 

If pre-certified safety functions are used, the matrix allows creating a safety 
application which is easily certifiable. The integration of a pre-certified function in 
OpenPCS/SIL is organized via a template library. It is planned to offer a template 
network library within OpenPCS/SIL, that integrates at least all safety function blocks 
defined in the Technical Specification of PLCOpen [4]; see bellow for some safety 
function blocks. 

4.3   Quadrant III 

In quadrant III all effects are listed from left to right. An effect line is one row of the 
grid. This alignment of the effects within the matrix visualizes the exit of the  
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Fig. 4. Three examples from Safety Software Technical Specification [4]. All variables that are 
owner of a prefix S_ are SAFEBOOL variables. 

safety-related signals from the top of the matrix into the periphery. An effect is 
defined by its output variable. An effect is always the answer to the question “Is 
something safe”. The input of an effect line is the result value of all causes, which are 
interconnected with that effect line. The semantic how the interconnections are 
merged together is explained in next chapter “Quadrant IV”. The effect simply maps 
its input to its output variable according to a TON or TOF function block that can be 
used to adapt the time behavior of the effect. An effect provides a special attribute to 
configure the default mapping of an assigned cause AND, OR, MAJORITY. 

4.4   Quadrant IV 

The intersections are the heart of the implementation of any Cause & Effect 
application. Therefore most of the programming rules apply to the intersections’ 
quadrant IV.  

Quadrant IV contains all interconnections between the causes and the effects. It is 
possible to map one output of a cause to each effect that has to respect that cause. 
This is a "1 to n" relationship. On the other hand it is possible to map every cause to 
one effect line. All causes in one intersection column below an effect line are 
connected to that single effect. The results of all causes have to be merged according 
to the semantic rules to one single SAFEBOOL value which is the input for the effect. 

Causes can be connected to an effect by way of 
 
Assignment (X) manifold (more than one assignment per column). In case there is 
more than one cause connected to an effect by an assignment, the effect’s attribute 
interconnection determines the exact computation of the assignments. Also one cause 
can be connected with many effects by an assignment (more than one assignment per 
row). At the top of an intersection column there is a specifier that determines the rules 
how the different intersections assignments in a column (one assignment belongs to 
one Cause) are combined with each other. There are three different specifiers: AND, 
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OR and MAJORITY. AND means that the signal result is TRUE, if all interconnected 
causes are TRUE. OR means that the signal result is TRUE, if at least one 
interconnected cause is TRUE. MAJORITY means that the combined calculation 
result is determined from the majority of causes. If the Signal from two causes of 
three causes is TRUE the combination is also TRUE. If the Signal from two causes of 
four causes is TRUE the combination is FALSE, due to there is no MAJORITY. 
 
Set (S) manifold (more than one set per column). In case there is more than one cause 
connected to the effect by a set, the corresponding causes are interconnected like an 
AND (see above). Also one cause can be connected with many effects by a set (more 
than one set per row). Set intersections have priority to assignments and reset 
intersections. The set intersections recognize a falling edge of the cause’s output value 
defined in this row and pulls the effect’s input values of this column down until a 
reset is recognized for this effect. 
 
Reset (R) only once (only one reset per column). Only one cause can be 
interconnected with many effects by a reset (more than one reset per row). Reset 
intersections have priority to assignments but not to set intersections. The reset 
intersections switch the computation of the column’s effect back to the assigned 
causes on a rising edge of the corresponding cause unless other Set intersections hold. 

4.5   Sophisticated Error Detection  

During the whole development process there is a compilation and de-compilation loop 
working in background. If there are detected syntactical or compilation errors, these 
errors are reported immediately to the editor component. This leads to a changed text 
font from black normal to a red bold italic text at the object that encapsulates the 
error. Two examples of errors are: an assignment on an intersection column without a 
defined effect/cause column/row or a cause is made with a safety function, which 
input variables are not connected to a variable. 

5   Example 

5.1   Application Requirements 

A safety-related application within a hazardous area for providing a molding press 
with material shall be realized.  The hazardous area can be entered through a safety 
door. There are two options for the provision process. 

Manual mode: a worker lifts the material manually into the press and triggers 
pressing. In this case the press must operate only if a two-hand-control is operated 
properly. 

Automatic mode: the material provision cell is equipped with a handling robot. The 
robot lifts the material into the press, controlled by a process control system. The 
same system triggers the press. In this case the press must operate only if the safety 
door is closed and the control system requests pressing. 

For both modes there has to be an emergency stop available. Furthermore there 
exists an operation mode selector and a reset button. 
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Fig. 5. Molding Press: The hazardous area is surrounded with a fence which has a safety door 
to access the area 

5.2   Safety Application Developing 

First we have to find all effects. We are able to find the effects with the following 
questions:  

1) Is the conveyor safe? 
2) Is the robot safe? 
3) Is the press safe? 

 

For each effect we need an output variable of type SAFEBOOL which represents the 
answer to the questions above. Each variable defines an effect. 

 

Next we need to known what safety devices are available: 

1) Emergency Stop 
2) Two hand control for manual operation mode 
3) Safety Door for automatic operation mode 
4) Operation mode selector 

 
For each safety device we have a pre-certified safety function block in our template 
library. Now, the input variables to represent the input devices have to be defined. 
 
Now we are able to create the program and documentation of the safety application: 

1) Put in all effects by drag and drop the variable into a row of quadrant III. 
2) Put in all causes by naming the cause and select the safety function block and 

drag and drop the input variable from the variable window of OpenPCS (see 
variable window at the left bottom of Fig:3) onto the corresponding variable 
of the safety function block and select the operation mode. 

3) Interconnect all causes with the effects that have to observe the causes.  
a. The two hand control has to be considered for the press only in 

manual mode 
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b. The Safety Door is has to be considered for all devices in automatic 
mode 

c. The mode selector can be used to answer the question if the robot is 
safe in manual operation mode. In manual operation mode the robot 
is always unsafe. 

d. The Stop Facility button has to stop all devices. So all effects are 
connected to that cause with a set intersection. 

e. The Reset Facility is the reset button for all devices 
 

After 30 minutes the safety application is up and running and documented. The result 
is shown in figure 3. 

Due to the pre-certified “safety function blocks” and the pre-certified 
OpenPCS/SIL programming component the certification process is less time-
consuming then the standard programming technique for a safety application. 
Additionally it is planed to use the safety matrix for calculation of safety relevant 
values like SIL [2], PFH [2]… which are an essential part of the certification process. 

6   Benefits 

Implementing safety-related applications with Cause & Effect closes the gap between 
hazard analysis, implementation and documentation in the process of safety-related 
software development. 

Implementation of safety-related applications with function block diagram based 
programming languages, required manual verification and validation steps of analysis 
to implementation and again of implementation to documentation. The Cause & 
Effect implementation supersedes these manual steps because analysis, 
implementation and documentation are done with the same method based on the same 
notation. 

Hence OpenPCS/SIL reduces verification and validation effort for safety-related 
software significantly compared to software written with tools based on conventional 
programming languages. This saves cost of the software related certification process. 

Furthermore Cause & Effect is realized as a subsystem of standard OpenPCS, but 
not as a standalone tool. With that, safety and standard part of an application are well 
covered by one tool throughout all phases of development. Hence OpenPCS/SIL 
meets the requirements to address both safety and standard aspects of today’s 
automation solutions. 

Moreover, programming with Cause & Effect is simple and straightforward. This 
approach does not only make Cause & Effect predestined for the safety sector, but it 
allows efficient tool support during software development. With that, the overall 
engineering time is reduced. Many possible coding errors are avoided by the 
simplicity of the Cause & Effect methodology or recognized by the error detection. 
For the Safety development of safety-related applications OpenPCS/SIL reduces 
complexity and enforces best practices. 

Additionally the safety concept of OpenPCS/SIL is TÜV approved complying with 
IEC 61508. 
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Abstract. A system with a high degree of availability and survivabil-
ity can be created via service duplication on disparate server platforms,
where a compromise via a previously unknown attack is detected by
a voting mechanism. However, shutting down the compromised compo-
nent will inform the attacker that the subversion attempt was unsuccess-
ful, and might lead her to explore other avenues of attack. This paper
presents a better solution by transforming the compromised component
to a state of honeypot; removing it from duty, while providing the at-
tacker with bogus data. This provides the administrator of the target
system with extra time to implement adequate security measures while
the attacker is busy “exploiting” the honeypot. As long as the majority
of components remain uncompromised, the system continues to deliver
service to legitimate users.

1 Introduction

The history of the Internet shows that it is not possible to develop a system
that is both impervious to attack and useful (i.e., provides anything more than
rudimentary functionality) – no matter how carefully crafted the armor may be,
the vandals1 always seem to be able to find a chink in it.

Attacks on e-commerce installations and general web sites frequently em-
ploy platform-specific exploits based on known vulnerabilities. In later years,
the “patch window” has been steadily decreasing, to the point where we now
face “zero-day exploits” that are being wielded even before a patch for the spe-
cific vulnerability is generally available. Clearly, new mechanisms are required
to combat this threat. Our contribution to the cause is a system for Increas-
ing Survivability by dynamic deployment of Honeypots (ISH). In the follow-
ing, we will discuss the theoretical backgound and describe our prototype ISH
implementation.

2 Background

Protagonists of honeypots have by many been considered the lunatic fringe of the
computer security community, but Lance Spitzner [2] and the Honeynet Project
1 We agree with Marcus J. Ranum [1] that this may be a more descriptive term for

what is usually referred to as a “hacker”.
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[3] have contributed to get more mainstream attention (if not general accep-
tance) for honeypot ideas. Recent publications such as [4] and [5] at recognized
conferences, and others listed on the Honeynet homepage [6] lends academic
credibility to the honeypot as an information security resource.

To quote [6], the raison d’etre for the honeynet project (and thus, a honeypot)
is

To learn the tools, tactics and motives involved in computer and network
attacks, and share the lessons learned.

Indeed, the idea of “peering over the shoulder” of an active hacker has been
pursued by many, and classic papers such as [7] and [8] describe how pioneering
defenders in an ad-hoc fashion have thrown together what in reality were the
first (after-the-fact) honeypot systems2.

The idea of dynamically transforming a compromised system to a state of hon-
eypot was introduced in [9], but the authors did not describe in detail how this
might be accomplished. Disparity and redundancy are classic tenets of depend-
ability [10] and (by extension) survivability. We have employed the definition of
survivability given in [11], but with added emphasis on malicious activity rather
than accidental incidents.

2.1 Related Work

– SITAR [12] is an architecture that aims to provide a system invulnerable to
attack, using replication, software diversity and a voting mechanism.

– Bait and Switch Honeypot [13] is an open source project that is in many
ways similar to our own. The main difference is that Bait and Switch uses a
firewall proxy to direct malicious traffic to a (permanent) honeypot server,
and relies solely on an Intrusion Detection System (Snort [14]) to differentiate
legitimate from malicious activity.

– Shadow Honeypots [15] also employ a proxy-like mechanism to classify traf-
fic, routing suspicious traffic to a special shadow server that makes a final
decision.

– MPITS [16] is a relatively simple system that employs disparity and redun-
dancy to offer a basis for intrusion tolerance. We have employed MPITS as
an important component in the prototype implementation of ISH; MPITS is
described further in section 2.2. Note that ISH depends on service replication
on disparate software platforms, but not directly on MPTIS.

2.2 Minimal Proxy for Intrusion Tolerant Systems

MPITS was developed by Broen [16] to provide a less complex basis for intrusion
tolerant systems, that additionally would serve as a reference system when com-
paring existing, more complex systems. Although existing intrusion tolerance
2 That these early efforts did not develop further, can partly be ascribed to the fact

that this kind of activity quickly proved too time-consuming – a point we will return
to later.
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systems have a relatively high level of complexity, they are still vulnerable to
single point of failure. Acknowledging that the connection point to the external
network always will be a single point of failure, MPITS seeks to minimize the
likelihood of compromising the unit by limiting the functionality and complex-
ity of the system. The low complexity yields better understanding and enables
a more thorough inspection of the source code to eliminate vulnerabilities.

MPITS utilizes replication of services on disparate software platforms to
achieve survivability. The system consists of two types of components; a number
of application servers and a proxy server (see figure 1). The application servers
are the servers containing the actual service the system is providing, while the
proxy server works as the connection point to the outside world and manages
all inbound and outbound traffic.

The proxy will forward all incoming requests to the application servers, and
process the responses. In theory, all well-formed requests should generate the
same resonse if the various application servers are functionally equivalent. In
practice, there may be minor differences, which is why MPITS groups replies in
equivalence classes, based on a configurable notion of what is “close enough”.
To determine whether two responses belong to the same equivalence class, the
responses are compared byte for byte, and all discrepancies counted. If the error
ratio is below a configurable threshould, the responses are considered equivalent.
Special characters may be weighted to indicate their increased or decreased rela-
tive importance, such that numbers may be labeled more crucial than letters in
a banking transaction. The equivalence algorithm of Broen is rather simplistic,
and requires further development. Once the responses in the different equivalence
classes have been tallied, MPITS performs a voting process to determine which
is the majority response. For the configuration depicted in Fig. 1, the following
possibilities exist:

– All three responses are put in the same equivalence class; the request is con-
sidered benign, and the response is forwarded to the external client. (Voting:
3-0)

Internet

Linux / Apache 1.3

FreeBSD  / Apache 2.0

Windows / IISProxy

Client

Fig. 1. An overview of the MPITS architecture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
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– Two responses are put in one equivalence class, and the last in another; the
odd man out is considered compromised, and the response from the majority
equivalence class is forwarded to the external client. (Voting: 2-1)

– All three responses are put in different equivalence classes; no determina-
tion can be made regarding which response is valid, and the system cannot
generate a response. (Voting: 1-1-1; “Hung jury”)

MPITS thus only provides a means for determining that something is amiss, but
makes no attempt do do anything about the situation. It is therefore considered a
basis or framwork for intrusion tolerance, rather than an intrusion tolerant system.

3 System Idea

The main goals of the ISH system are to deliver critical services to legitimate
users even when under attack, detect and detain the attacker without alerting
same, and provide bogus data to the attacker. This is illustrated in Fig. 2.

Fig. 2. A compromised component stringing an attacker along

The idea is that if a server unit is exposed to an exploit specific to that
particular platform, the response will be different than the one generated by the
two other units. All well-formed requests, on the other hand, should result in
the same response or output. Once it is determined which unit is the odd man
out, this unit can be isolated and removed from further voting.

4 System Overview

A logical description of the ISH system is given in Fig. 3. The fundamental
components are as follows:
– Voter
– Router/Switch
– Logging unit
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Fig. 3. Conceptual system overview

– Proxy
– Server units

In the following, we briefly describe each component.

Voter: The voter component is taken from MPITS, as described earlier. The
voter is responsible for detecting attacks based on response discrepancies,
and taking appropriate response.

Router/Switch: For connectivity, and also hiding internal network structure.
This is a standard COTS component.

Logging Unit: A separate write-only loghost, for logging attacker activity. The
logging is only activated once an attack has been detected.

Proxy: The proxy forwards requests and responses between client and server(s).
Server Unit: In these days of rootkits [17], it is difficult to trust any system

that does not consist of pure hardware. Such systems, however, no longer
exist. To up the ante against the attackers, we have designed a prototype
server unit that allows us to verify the operating system files of an application
server while it is still running.

The server unit is composed of two computers: A file server and the actual
application server, as depicted in Fig. 4. The latter has no writeable file
system of its own, but mounts an exported file system from the former.
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Fig. 4. Server unit

In addition to providing the application server with a file system, the file
server also performs integrity checking of important files [18] to detect a
compromise, and will report any anomalies to the voter.

Once a compromise is detected (either via the voter, or via the file integrity
check), the file server will replace all sensitve data on the unit with obfuscated
data prepared in advance. This is accomplished by maintaining a shadow
volume that is periodically updated to keep it roughly equivalent to the real
partition; the file server can then simply switch partitions – in all but the
most unfortunate circumstances3 this would be possible to achieve without
the attacker noticing.

The dedicated file server could in theory be replaced by a Storage Area
Network solution where an independent mechanism could verify the integrity
of the files.

5 Implementation

For practical reasons we had to scale down our ambitions for the initial pro-
toype implementation; while the original plan had called for three separate hard-
ware/software platforms, e.g. Solaris on Sun, Windows on Intel and Linux on
PowerPC, we had to settle for identical Intel PCs running FreeBSD and Linux,
and two different versions of the Apache web server. The prototype ISH imple-
mentation is illustrated in Fig. 5.

3 In the case of a web server with dynamic content, such an unfortunate circumstance
could be that some information has significantly changed or been added just prior
to the attack; the attacker might then notice that the information is different or
missing on the “compromised” unit. This only applies to information that would
be available to all clients, and not to information that first requires a breach of the
access control mechanisms of the service.
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Fig. 5. Prototype System

The proxy unit is based on MPITS, extended with an attacker handling fea-
ture. Most importantly, when the voter detects a 2-1 voting anomaly, we no
longer forward the majority response to the client; in this situation the client is
assumed to be an attacker, and thus the minority response (from the compro-
mised unit) is returned.
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5.1 Identifying and Detaining the Attacker

Based on our description above, detecting that an attack has taken place based
either on a voting discrepancy or on file integrity violation detection is fairly
manageable (but see also section 5.2). However, new challenges arise when faced
with the problem of identifying the attacker.

If we operated a single-user system, it would have been trivial: The current
user would have been the culprit. With several concurrent users, it is more
difficult – we have settled for labeling the first request causing a discrepancy in
the voter as an attack, and using the originating IP address of this request as
the address of the attacker. We acknowledge that this approach has its obvious
downsides due to the common usage of VPNs, NATs and the fact that attackers
may control several IP-addresses through bot-nets or the like. If the server utilizes
a login feature, a user profile may be utilized, but for servers with open access
such as web servers, this approach is not feasible.

Once the attacker has been identified, traffic originating from this source is no
longer distributed to all the units; only to the compromised unit (now acting as
honeypot). Responses from the honeypot is naturally not voted on, but passed
on directly. In this sense, the user (i.e. attacker) interacting with the honeypot
actually experiences improved efficiency with respect to an uncompromised sys-
tem; this “spare capacity” may be used e.g. for extended logging of attacker
activity.

5.2 False Positives and Negatives

The success of the voter relies on the assumption that well-formed input will
result in the same output, regardless of which platform the service is implemented
on. Unfortunately, practical tests have shown that this is not necessarily true,
in rare cases causing the voting unit to detect a discrepancy based on legitimate
input. This implies that careful configuration is required on each platform, and
special modifications (e.g. suppresion of platform-specific staus messages) may be
necessary to prevent spurious discrepancies. This of course also has implications
for the specification of equivalence classes, as mentioned earlier.

Furthermore, it is possible that a given exploit would generate innocuous
output, but have side-effects that causes a compromise further down the line.
Since the voter is based on the generated output, such an attack would not be
detected.

6 Discussion

Strictly speaking, dynamically transforming a system into a honeypot only makes
sense as long as you are dealing with a human attacker; i.e. if you are concerned
with detecting “dumb”, indiscriminate network worms, a few ordinary honeypots
sprinkeled around your domain would probably have served nicely. However, even
in such cases the service duplication of our system will ensure that the adverse
effects of the worm will be mitigated.
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Another objection to ISH might be that it represents “security through ob-
scurity” – one could argue that once it is known that a given installation is
implemented by ISH, its value is nil. However, if ISH were to be deployed in
the spirit of “Defense in depth” we claim that this does represent at least two
additional lines of defense; no single-platform exploits would be applicable to
our system, and any attack that does succeed, but changes one of the files in our
“integrity check set” will still be flagged and cause the unit to be removed from
service.

To focus on our idea of dynamic heneypot deployment, we have in our presen-
tation intentionally omitted discussing other network intrusion detection mech-
anisms (e.g. [19], [20]), but we acknowledge that to the extent that ISH is an
intrusion detection tool, it may be augmented by employing additional (tra-
ditional) IDS mechanisms, either before the traffic reaches ISH, or as part of
ISH.

6.1 Determining the Optimal Number of Units

The use of three server units in our prototype means that once a single unit is
transformed into a honeypot, a subsequent compromise of one of the two other
units can be detected but not localised. This could be remedied by increasing
the number of units4 , but there will none the less be a point at which additional
intrusions will mean that the entire system must be taken down. However, as
long as systems are diligently updated with the latest patches (and otherwise
protected against known attacks), such an occurence will be rare – zero-day
exploits aren’t that prolific. Also note that as long as the server units are on
disparate platforms, repeat infections from automatic “bots” will be avoided, as
only the unit that already is compromised will be vulnerable to a given exploit5.

Also note that in contrast to a traditional honeypot, the goals of ISH do not
include being penetrated by known exploits – we assume that in a production
system, other measures will be in place that will be able to block known attacks.
Thus, only new, otherwise undetected, and successful6 attacks will cause ISH to
transform a unit to honeypot state.

6.2 Application Areas

ISH would be applicable to business-critical services with high availability and
security requirements. However, we realize that network administrators already
have their hands full with managing the current crop of firewalls and intrusion
detection systems. Furthermore, the ISH system also represents added cost for

4 Or by using virutal machines.
5 To be fair, this would ultimately require all the software to be devoloped according

to “true” n-version programming [21].
6 Attacks that are unsuccessful, either due to blocking by other mechanisms, or because

the underlying system is not vulnerable to the particular attack, will not trigger
honeypot deployment.
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hardware (in the worst case multiplying the initial procurement costs by seven),
software development (at least three-fold) and maintenance.

Thus, we presume that ISH would be of greatest interest to managed security
providers for customers who offer such business-critical services to their cus-
tomers. The managed security provider could deploy ISH to provide the service
in question, but would additionally use it as a complement to their existing ef-
forts in detecting new attacks/exploits. This would be of benefit not only to the
current customer, but also to other customers of the managed service provider
and to the community in general.

For the managed security provider, ISH would represent an improvement over
a conventional honeypot or honeynet, in that the deployed ISH system would be
a “real” system until it is successfully attacked.

7 Further Work

Our prototype ISH implementation is a very simple web server; a logical exten-
sion would be to implement a system for a generic service. There are also ample
opportunities for less trivial extensions.

7.1 Code Integrity

Even though we practice defense in depth to detect intruders who do not trigger
a voting anomaly, there still remains the challenge of detecting intrusions that
do not alter the file system of the affected unit.

In a very interesting approach presented by Wang and Dasgupta [22], it is
possible to verify the correctness of all static parts of a Linux kernel by employing
a special autonomus “co-computer” (a single-board computer with access to
the system bus). We believe this solution could be adapted to ISH to increase
protection against arracks that leave the file system intact.

7.2 Attacker Separation

It would have been preferable to identify the attacker based solely on the session
generating the exploit traffic, and used dynamically configured switches to route
traffic from/to the attacker along a separate path. This would also allow us to
separate an attacker from legitimate traffic originating from the attacker’s IP
address.

7.3 Darkhost Voter

Although we have strived to keep the proxy/voting unit simple, it still has an
uncomfortable level of complexity when considering that it represents a single
point of failure with respect to security.

If we can put the voting mechanism on an “invisible” (i.e. dark) host without
an IP address, we leave only a very simple proxy and query replicator on the
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publicly available host, while at the same time ensuring that the vital (and
much more complex) voting unit cannot be adressed directly from the internet.
The darkhost would have to craft packets with the proxy unit as originating
address; this would require some fancy footwork with respect to ensuring that
TCP sequence numbers etc. are properly maintained.

8 Conclusion

We have presented ISH, a prototype system that through duplication of server
units detects new platform-specific attacks, and enhances the survivability of the
system as a whole by transforming the compromised unit to a state of honeypot,
while the uncompromised units continue to deliver service to legitimate users.
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K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 51–68. Springer, Heidel-
berg (2005)

6. The HoneyNet Project. [Online]. Available: http://www.honeynet.org
7. Cheswick, B.: An evening with Berferd in which a cracker is lured, endured, and

studied. In: USENIX Conference Proceedings, pp. 163–174. USENIX (1992)
8. Stoll, C.: Stalking the wily hacker. Communications of the ACM 31(5), 484–497

(1988)
9. Jaatun, M.G., Hallingstad, G.: Techniques for increasing survivability in NATO

CIS. In: proceedings of the 1st European Survivability Workshop, February 2002,
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Abstract. We have examined Bluetooth-based Pico-network (Piconet)
applications in wireless computing and cellular devices and found an ex-
tensive number of “unexpected abuses”, where the security expectations
of the device owner can be violated. We have studied the underlying
causes of such problems and found that many products lack the controls
to administer these devices securely. We also observed cases where ex-
plicit security claims from the Bluetooth protocol are not satisfied. We
classify a number of abuses and security violations as Bluetooth protocol
design flaws, application-layer implementation errors or simply pitfalls
in the security management. Using this classification we define a core set
of requirements that would improve security significantly.

Keywords: Bluetooth, pico networks, security controls, design flaws,
implementation flaws.

1 Introduction

Wireless personal area networks are emerging with explosive growth as more
devices and peripherals are becoming untethered and users continue to evolve
toward the expectation of mobility in computing. Among the necessities for
wireless computing has been the need to efficiently link small numbers of devices
across short distance, and to this end one highly successful protocol that has
emerged is Bluetooth.

Among its appeals, Bluetooth incorporates a low-cost, low-power, radio fre-
quency management scheme for quickly forming ad hoc networks.

Unfortunately, there has been an extensive and continually growing list of
“unexpected abuses” of Bluetooth-enabled devices that have plagued users and
led to protocol revisions, as well as revisions to address the vulnerabilities in
applications that overlay Bluetooth Pico Networks (Piconets). We have investi-
gated and suggested countermeasures to more than a dozen such attacks.

This paper is a shortened version of a more extensive work [1]. The reminder
of this paper is as follows. Section 2 discusses previous work related to identi-
fying Bluetooth vulnerabilities. Section 3 provides a brief overview of Bluetooth
network concepts. In Section 4, we categorize vulnerabilities based on where we
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believe the vulnerability was introduced. In Section 5, we define a core set of
security requirements. Lastly, Section 6 summarizes our findings, and the paper
is concluded in Section 7.

2 Related Work

In recent years, Bluetooth security has received significant attention. In particu-
lar, Bluetooth’s authentication and data encryption services have been examined.
A broad summary of vulnerabilities in the Bluetooth protocol was given in [2].
These vulnerabilities were categorized into weaknesses in the security concept,
man-in-the-middle attacks, problems with encryption, uncontrolled propagation
of radio waves and other security aspects. Some of the vulnerabilities mentioned
in [2] have been taken into consideration in our paper.

Gehrmann and Nyberg [3] propose methods for link key establishment (pair-
ing) through the use of Encrypted Diffie-Hellman key-exchange or Diffie-Hellman
key-exchange with check values. These new suggested pairing procedures can re-
place the weak Bluetooth pairing procedure to improve security while the user’s
convenience is maintained.

Janssens [4] has listed a plethora of exploits that demonstrate many inherent
security risks with Bluetooth devices. This extensive list contains descriptions of
vulnerabilities but no solutions. Several additional studies have proposed security
improvements to the authentication procedure and data encryption scheme [5,6],
while others have suggested overlay components to facilitate better production
of security credentials [7].

An analysis on worms spreading in a Bluetooth environment was performed
by [8]. However, the analysis does not explain the underlying causes for the
vulnerabilities that the worms use. Moreover, it does not describe how to prevent
the worms from spreading.

3 Bluetooth Communication Basics and Security
Features

Below we briefly summarize the procedures that allow devices to communicate
and access services.

• The devices establish radio coordination by synchronizing on the same
frequency-hopping pattern.

• The devices authenticate each other using a shared link key1. This is called
Link Management Protocol (LMP)-authentication.

• If the devices do not possess the shared link key (e.g., the first time two
devices communicate), the devices will first generate the shared link key and
then perform authentication. This is called LMP-pairing.

1 The link key is a symmetric key stored in both devices that can be used for fu-
ture communication. Throughout this paper a link key is a combination key unless
otherwise specified. Thus, the link key is specific for a link between two devices.
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• The devices establish secure sessions and gain authorization to access net-
work services.

Device Discovery and Connection
A device can be transitioned into a non-discoverable or non-connectable mode
to control Piconet participation. Non-discoverable mode allows a device to re-
main silent to inquiry requests and avoid revealing its presence. Non-connectable
mode allows a device to ignore connection requests. A device does not need to
be in discoverable mode for it to be connectable (in other words, a device can
be in non-discoverable and connectable mode) [9, vol.4, p.189-194].

LMP-Authentication
During LMP-authentication, illustrated in Fig. 1, one device is the verifier and
the other device is the claimant. The verifier generates a random number and
sends it to the claimant, which calculates a response using the shared link key
and the received number. The response is sent to the verifier, which verifies that
the claimant possesses the shared link key.

LMP-Pairing
The pairing procedure is illustrated in Fig. 1. Pairing control can be enforced
by putting a device in non-pairable mode, where the device will ignore pairing
requests [9, vol.4, p.195].

Fig. 1. LMP-Pairing and LMP-Authentication [9, vol.4, p.223-224]

Communications Security
Confidentiality in Bluetooth is achieved by using encryption. Integrity protection
of the transmitted data is not part of the Bluetooth standard. However, there
exist several integrity checks in the protocol, e.g., the baseband performs an
integrity check using the 1-bit sequence number [9, vol.3, p.117].
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Security Modes and Service Levels
There exist three security modes: Mode 1 (nonsecure mode), no security; Mode
2, service-level security; and Mode 3, link-level security. In mode 2, secure com-
munication may be imposed on a per network service basis. There are three
levels of service security: require authorization (includes require authentication),
require authentication and require encryption that can be used to implement
security policies. For a device in security mode 3 with a security policy that re-
quires encryption, secure communication is applied to the complete link before
the devices are allowed to access network services [9, vol.4, p.198-200] [10,11].

4 Piconet Vulnerabilities and Their Relationship to Poor
Security Control

We performed thorough analysis of the Bluetooth protocol specification and
on the implementation of Bluetooth technology in several devices in all of the
mentioned areas in Section 3. We tried known exploits with successful outcome
and also discovered new exploits during our analysis. Table 1 summarizes a set of
Bluetooth vulnerabilities. For each vulnerability, we identify the applicable area
and classify the weakness as a manifestation of a Bluetooth protocol design flaw,
an application-layer implementation error or a pitfall in the security management
of noncustomizable Piconet devices. A design flaw is a specification flaw in the
Bluetooth protocol, which requires revision of the protocol. The implementation
errors we are interested in are caused for two reasons. The first obvious reason
is an implementation flaw in the application itself caused by poor programming.
The second reason is the lack of security controls necessary to disable or change
the security policy for the vulnerable application. By implementation error we
mean error in the implementation of Bluetooth functionality (the second reason).
A pitfall is defined as a weakness that can be exploited by a third party but does
not violate any security specifications. This vulnerability classification, based on
terms from [12], is used in Table 1.

The following attacks are described by first explaining the vulnerability that an
attacker could exploit using a specific method. The cause identifies the underlying
problem causing the vulnerability. Lastly, a countermeasure against the exploit
is suggested.

4.1 Device Discovery and Connection

A device owner may wish to hide a device from discovery and prevent participa-
tion in Piconets. Without proper device discovery and connection controls this
is not possible.

Discovering Non-discoverable Devices

Vulnerability: Devices in non-discoverable mode can be found by a third party.
Method: A third party can check for the presence of a device that is in non-
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Table 1. Summary of Bluetooth Device Vulnerabilities

Applicable Area Vulnerability Classification Exploit Name
Device Discovery
and Connection

Pitfall — in non-connectable mode implementa-
tion

Discovering Non-
discoverable Devices

Error — in non-pairable mode implementation
and PIN management

Peripheral Hijacking
Reverse Peripheral Hijacking
Online PIN Cracking
Forced Re-Pairing

LMP-Pairing Error — in non-pairable mode implementation
and PIN management
Design flaw — in Link Management Protocol

Online PIN Cracking 2
Offline PIN Cracking

Design flaw — in Link Management Protocol Relay Attack
LMP-
Authentication

Error — in non-pairable mode implementation
and PIN management
Design flaw — in Link Management Protocol

Forced Re-pairing 2

Design flaw — in Bluetooth packet definition Traffic Forging and Replay
Communications Se-
curity

Pitfall and design flaw — dependence on PIN for
secure key production is often limited by static or
guessable PINs

Encryption Key Attack

Security Modes and
Service Levels

Error — in require authorization, require authen-
tication and secure mode 3 implementation

Bluejacking
Bluesnarfing
Bluebugging

discoverable and connectable mode to which it knows the Bluetooth device ad-
dress (BD ADDR) by submitting a connection request, to which the device would
reply. Even when the device address is unknown, a device in non-discoverable
and connectable mode can be discovered through bruteforce methods. Redfang
is a tool developed to detect non-discoverable devices in this manner [13].
Cause: The device owner cannot transition the device into non-connectable
mode, which potentially leads to the device being discovered in non-discoverable
mode through bruteforce methods, which we consider a pitfall.
Countermeasure: Provide controls for device owners to transition a device into
non-connectable mode and non-discoverable mode (see Section 5.1).

4.2 LMP-Pairing

We also find that Bluetooth implementations often fail to provide the device
owner adequate control to transition between pairable and non-pairable mode.
If a device is in pairable mode it is susceptible to several abuses.

Peripheral Hijacking

Vulnerability: For devices without a sufficient man-to-machine interface, pair-
ing control is commonly enforced by physically pressing a button on the device.
However, there exist devices that will respond to pairing requests even though
the device is not set to this “pairing” mode.
Method: There are headsets that allow pairing even though the headset has
not been set to “pairing” mode. An attacker can connect to the headset and
pair with it by guessing the PIN.
Cause: The device owner cannot transition the fixed PIN device into non-
pairable mode, which we consider an implementation flaw.
Countermeasure: Provide secure LMP-pairing control (see Section 5.2).
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Reverse Peripheral Hijacking

Vulnerability: Certain devices engage in automatic Piconet reestablishment.
The device owner cannot disable this feature.
Method: An attacker can assume the identity of a previously paired device by
spoofing its BD ADDR. The peripheral will then connect to the attacker believ-
ing that it is talking to the previously paired device. The attacker can guess the
PIN and pair with the device.
Cause: The device owner lacks the ability to block automatic Piconet reestab-
lishment and to transition the device into non-pairable mode. We consider this
an implementation flaw.
Countermeasure: Same as Peripheral Hijacking.

Online PIN Cracking

Vulnerability: Devices that use a fixed PIN (usually four decimal digits) are
susceptible to online PIN cracking. An attacker can simply try arbitrary PINs.
In response to this threat, the Bluetooth protocol employs a delay scheme that
increases the response time exponentially upon successive failed attempts from
the same claimant, until a maximum delay value is reached [9, vol.3, p.799].
However, the attacker can spoof different BD ADDR (i.e., assume the identity
of different claimants) for every authentication attempt to circumvent this secu-
rity mechanism.
Method: The attacker calculates a link key based on a guessed PIN. The fixed
PIN device uses its fixed PIN to calculate the link key. The fixed PIN device (ver-
ifier) then verifies if the attacker (claimant) has calculated the correct link key.
If the response does not match the challenge it means that the wrong PIN was
guessed. The attacker starts over with another PIN and a different BD ADDR.
If the response matches, the attacker and the fixed PIN device are paired [4].
Cause: Same as Peripheral Hijacking.
Countermeasure: Same as Peripheral Hijacking.

Online PIN Cracking 2
We propose an improved version, illustrated in Fig. 2, to the previously described
online PIN cracking method. Here, the attacker is the verifier. In the first ver-
sion, the fixed PIN device was the verifier.

Vulnerability: Same as Online PIN Cracking.
Method: The attacker (A) calculates C Kinit based on a guessed PIN. The
fixed PIN device (B) calculates Kinit using the fixed PIN. Authentication on
Kinit is initiated by the attacker by sending the random number au rand. Since
B knows the correct PIN the response SRES is correctly calculated. From this
point, the attacker can compare the received SRES to the calculated challenge.
If they match the correct PIN is found. Otherwise, another PIN is tried until
the correct PIN is found. By spoofing different BD ADDRs (verifiers) for every
authentication attempt the repeated attempt security mechanism is bypassed.
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Fig. 2. Online PIN Cracking Technique

Cause: Information leakage in the challenge-response scheme is used to brute-
force the PIN. We consider this a design flaw. In addition, the device owner lacks
the ability to alter the easily guessable fixed PIN and to transition the device to
non-pairable mode, which we consider an implementation flaw.
Countermeasure: Prevent information leakage (revise the protocol), provide
secure LMP-pairing control (see Section 5.2).

Offline PIN Cracking

Vulnerability: The messages exchanged during the pairing procedure can be
used for offline PIN cracking.
Method: The messages needed to perform the offline PIN cracking can be ac-
quired in two ways. The first way is to use one round of online PIN cracking,
where the attacker sends the messages in rand, au rand and receives the mes-
sage SRES.

The second way is to capture the messages exchanged between two devices
during the pairing procedure by using, e.g., a Bluetooth protocol analyzer and
packet sniffer [14].

Using these three messages (in rand, au rand and SRES), the PIN can be
bruteforced offline. The initialization key (C Kinit) for a guessed PIN is cal-
culated using the same in rand, and then the verification algorithm is run on
the calculated C Kinit using the same au rand. If the calculated challenge does
not match the captured SRES, an incorrect PIN was guessed, and the proce-
dure starts over with another PIN. This procedure is repeated until the calcu-
lated challenge matches the SRES value, in which case the correct PIN was
guessed [15,16].
Cause: Same as Online PIN Cracking 2.
Countermeasure: Same as Online PIN Cracking 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



216 D.K. Nilsson, P.A. Porras, and E. Jonsson

Forced Re-pairing

Vulnerability: An attacker can take advantage of the limited link key store
to force two devices to re-pair. By initializing a forced re-pair the attacker can
choose an appropriate time and place for eavesdropping, which substantially
simplifies the task of capturing the messages being exchanged during the pairing
procedure. Possession of these messages allows offline PIN cracking.
Method: The attacker pairs with the fixed PIN device by successfully guessing
the PIN. This creates a new link key that overwrites one of the stored link
keys [17]. This procedure is repeated using different BD ADDR for each pairing
attempt until all stored link keys are overwritten. Alternatively, the attacker
spoofs the BD ADDR of a previously paired device if known, and then pairs
with the fixed PIN device to just overwrite that link key. The result is that the
previously paired device is forced to re-pair the next time it connects to the
fixed PIN device since its corresponding link key in the fixed PIN device has
been overwritten.
Cause: We consider this an implementation flaw since device owners lack the
ability to transition the device into non-pairable mode and to alter the usually
short and trivial (“0000”) fixed PIN.
Countermeasure: Same as Peripheral Hijacking.

4.3 LMP-Authentication

The following attacks on the authentication procedure are due to design flaws
in the Bluetooth protocol specification. These attacks assume that the devices
involved have already established a relationship and share a link key.

Forced Re-pairing 2

Vulnerability: An attacker can inject messages during the authentication pro-
cedure to force two devices to re-pair.
Method: When two devices perform LMP-authentication, a random number,
LMP au rand PDU (Protocol Data Unit), is sent from the verifier to the claimant.
An attacker can inject an LMP not accepted PDU to the verifier claiming to be
from the claimant before the real claimant replies with the calculated response
LMP sres PDU. If the verifier receives an LMP not accepted PDU, it believes that
the claimant has lost its link key, and the two devices must pair again to create
a new link key. Another method of forcing two devices to re-pair is if an at-
tacker injects an LMP in rand PDU to the claimant claiming to be from the ver-
ifier before the verifier sends the LMP au rand PDU to the claimant. This causes
the claimant to believe that the verifier has lost its link key, and pairing is
started [16].
Cause: The authentication messages can be spoofed since there is no proper
way to establish identity, which we consider a design flaw.
Countermeasure: Provide secure LMP-authentication (see Section 5.3).
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Relay Attack

Vulnerability: An attacker can relay authentication messages and get authen-
ticated without possessing the link key.
Method: An attacker can use two devices (EA and EB), connected to each
other through some medium, to mount a man-in-the-middle attack against two
pre-paired devices A and B. The attacker does this by establishing two Piconets:
A − EB and EA − B. A believes it is talking to B when in fact it is talking to
EB, and B believes it is talking to A when in fact it is talking to EA. Messages
are relayed through EA and EB.

There exist two methods to exploit this vulnerability depending on which de-
vice is initiating the authentication. In the first method the target device A (veri-
fier) initiates authentication by sending a random number to EB (claimant), which
relays the number to EA. EA (verifier) passes the number onto B (claimant),
which in turn calculates the correct response using its link key. This response is
sent back to A via EA and EB . A verifies that this response is correct, and EB

is now authenticated [5]. This is not a proper authentication since EB does not
possess the link key. The second method is similar, but the attacker is initiating
the authentication.
Cause: The authentication messages can be relayed since there is no proper way
to establish identity. We consider this a design flaw.
Countermeasure: Same as Forced Re-pairing 2.

4.4 Communications Security

There exist weaknesses in how the encryption key is calculated, which can lead
to unintended information leakage. Furthermore, the integrity aspect for com-
munications security is bluntly missing [11].

Traffic Forging and Replay

Vulnerability: Bluetooth is subject to forging, modification and replay threats
even if the link key is not known [4]. Moreover, when a link key is shared among
several devices in a Piconet, as is the case with unit keys2 and master keys3,
there exists no intra-Piconet secure communication.
Method: An attacker can capture packets and resend them into the Piconet with
minimal interference from the Bluetooth sequence number, which is a single bit in
length [4] [9, vol.3, p.117]. Messages can be forged and sent to devices in a Piconet
to force re-pairing. Furthermore, an attacker can relay and replay authentication
messages to get authenticated. Moreover, a slave device can read or inject traffic
between the master and another slave when the link key is shared among the de-
vices in the Piconet [18].
2 A unit key is generated in a device the first time the device is started. This key is

sent to devices with which it wishes to communicate. Thus, the same key is used for
communicating with several devices [9, vol.3, p.780-781].

3 A master key is generated by the master and shared among several slaves in the
same Piconet [9, vol.3, p.783-784].
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Cause: Messages can be forged since there is no proper way to establish iden-
tity. We consider this a design flaw in the Bluetooth packet definition since an
attacker can successfully inject messages into the Piconet. We also consider it
a design flaw to share symmetric keys that are used for authentication among
several devices.
Countermeasure: Provide secure Piconet communication (see Section 5.4).

Encryption Key Attack

Vulnerability: An attacker can calculate the encryption key, if the link key
is compromised, by capturing the random value sent initially between the two
devices enforcing encryption. This means that an external entity can read con-
fidential communications between Piconet participants. In Piconets using unit
keys any slave can capture the random value sent initially between the two de-
vices enforcing encryption and calculate the encryption key [18].
Method: After calculating the encryption key, the attacker can generate the
same ciphering stream used to encrypt the data and can thus decrypt all mes-
sages in the encrypted communication [4].
Cause: The encryption key depends on the link key, and the link key in turn
depends on the PIN. It is a pitfall since manufacturers often make PINs weak or
trivially guessable. Encrypted data is not confidential between two devices when
the encryption key is built on a shared link key available in other devices than
those two devices, which we consider a design flaw.
Countermeasure: Provide secure Piconet end-point communication (see Sec-
tion 5.4).

4.5 Security Modes and Service Levels

Bluetooth-enabled devices often provide a simplified interface for controlling the
Bluetooth features in the device. As a result, controls for security modes and
service levels are often missing.

Bluejacking

Vulnerability: The Object Push Profile (OPP) is used for pushing and pulling
data to and from a device. For example, phonebook entries can easily be ex-
changed using the OPP. An implementation flaw in the OPP allows data to
be pushed without authentication. The device owner cannot disable or enforce
security on the vulnerable service.
Method: An attacker can connect to the OPP on a device and push data with-
out authentication [19].
Cause: We consider this an implementation error since the device owner lacks
controls to require authorization or authentication for the vulnerable service. In
addition, the device owner lacks controls to transition the device into security
mode 3, where link-level authentication is done.
Countermeasure: Provide security mode and secure service control (see
Section 5.5).
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Bluesnarfing

Vulnerability: An implementation flaw in the OPP allows data to be pulled
without authentication. The device owner cannot disable or enforce security on
the vulnerable service.
Method: An attacker can connect to the OPP on a device and pull private data
without authentication [20].
Cause: Same as Bluejacking.
Countermeasure: Same as Bluejacking.

Bluebugging

Vulnerability: Certain devices provide a service for serial communications and
support the AT command set4. An implementation flaw allows an attacker to
establish a serial connection without authentication. The device owner cannot
disable or enforce security on the vulnerable service.
Method: An attacker can gain full access to the AT command set without
authentication. With these AT commands the device (in particular a cell phone)
can be controlled to read/create/delete phone book entries, read/send SMS and
make phone calls [20].
Cause: Same as Bluejacking.
Countermeasure: Same as Bluejacking.

5 Requirements for a Secure Piconet

In analyzing present Bluetooth attacks, we find that devices often lack the ability
for users to control the security features of their devices. Furthermore, the se-
curity features in the Bluetooth protocol provides incomplete protection against
the threats that they are expected to counter (Section 4).

In this section, we suggest an additional set of security requirements to ad-
dress these issues. In Fig. 3, we illustrate the logical insertion points where our
proposed security requirements fit in the link management and L2CAP5 network
service protocol stacks.

5.1 Device Discovery and Connection

We propose a combination of two security controls (1 and 2) to provide device
owners an ability to fully isolate a device from communication.

– Requirement 1: A device should provide secure device discovery control. This
is fulfilled if the device owner, and only the device owner, can transition the
device between discoverable mode and non-discoverable mode.

4 The AT command set is a language developed originally for controlling modem
communications. It contains commands to dial, hangup, answer incoming calls etc.

5 The logical link control and adaptation protocol (L2CAP) is responsible for higher-
level protocol multiplexing and packet segmentation [9, vol.1, p.50].
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Fig. 3. Logical Insertion Points for Security Requirements for Bluetooth Devices

– Requirement 2: A device should provide secure device connection control.
This is fulfilled if the device owner, and only the device owner, can transition
the device between connectable mode and non-connectable mode.

5.2 LMP-Pairing

Device owners should have full control over when devices should engage in pair-
ing. The credentials used should also be controlled by the device owner.

– Requirement 3: A device should provide secure LMP-pairing control. This is
fulfilled if the device owner, and only the device owner, can
1) transition the device between pairable mode and non-pairable mode,
2) prevent the device from initiating pairing with unpaired devices,
3) prevent the device from participating in automated reestablishment of
Piconets with previously paired devices,
4) alter the PIN.

5.3 LMP-Authentication

We express requirements for secure LMP-authentication to prevent the relay and
forced re-pairing attacks.

– Requirement 4: A device should provide secure LMP-authentication. This is
fulfilled if the device will only successfully LMP-authenticate with another
device with which it shares a link key, and only the verifier or the claimant
can reinitiate the LMP-pairing procedure.

5.4 Communications Security

We express confidentiality and integrity requirements for secure communication.

– Requirement 5: A Piconet should provide secure Piconet communication.
This if fulfilled if no external entity can read communications between
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Piconet participants, and no external entity can inject traffic that will be
accepted by Piconet participants.

– Requirement 6: A Piconet should provide secure Piconet end-point communi-
cation. This is fulfilled if the Piconet provides secure Piconet communication,
and no Piconet slave can read communications other than those between it-
self and the master, and no Piconet slave can inject traffic between the master
and another slave.

5.5 Security Modes and Service Levels

Device owners should have controls to handle security modes and service levels.
A device in security mode 3 requires authentication before any access to a service
is granted.

– Requirement 7: A device should provide security mode control. This is ful-
filled if the device owner, and only the device owner, can
1) transition the device into security mode 3,
2) require encryption for security mode 3,
3) prevent the device from transition to security mode 1 (nonsecure mode).

– Requirement 8: A device should provide secure service control in security
mode 2. This is fulfilled if the device owner, and only the device owner, can
1) require authentication for all hosted services,
2) require authorization for all hosted services,
3) require encryption for all hosted services.

6 Areas of Concern

We have analyzed the vulnerabilities and identified three main areas of concern:
specification weaknesses, administration and management problems and device
manufacturing issues.

Specification Weaknesses
There exist several design flaws in the Bluetooth authentication procedures and
encryption and integrity services. Bluetooth allows the relaying of authentication
messages so that devices not possessing the shared key can successfully authen-
ticate themselves. Moreover, an attacker can force Piconet participants into the
pairing procedure, which can lead to the various link key compromises. Blue-
tooth offers no protection against replay attacks and offers no message integrity
checks. To sum up, the current Bluetooth standard does not provide a robust
protection for Piconet devices.

Administration and Management Problems
In Section 5, we define eight security requirements, whereof five are security
control requirements that allow device owners to fully control the connection
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and network service accessibility of their devices. Bluetooth devices offer very
little control over the potential security management capabilities that devices in
high-sensitivity environments need to make accessible. These include the ability
for the device owner to control non-discoverable mode, non-connectable mode,
non-pairable mode, service authorization control, service authentication control,
secure mode transition and encryption control. In addition, Section 4 illustrates
the importance of PIN management. Short PINs can lead to link key compromise
or forcing a device to pair. Also, devices should avoid using fixed PINs. When
fixed PINs are necessary, those PINs should be long and random (not “0000”).

Device Manufacturing Issues
One problematic aspect of Bluetooth device management is that of providing
significant configurability of the Bluetooth protection services, as well as the
management of security credentials, when the device has a minimal man-to-
machine interface. The Bluetooth protocol needs to consider techniques that
allow greater security in credentials and greater flexibility in security manage-
ment in environments where the user cannot provide significant input beyond a
synchronization button or on-off switch.

7 Conclusion

We examined the causes of security abuses that can be mounted against Blue-
tooth devices, and suggested that many of these abuses can be prevented by using
the security features already included in Bluetooth, if only the device owner had
the ability to properly administer these features. We also observed cases where
even explicit security claims from Bluetooth are not satisfied due to design flaws.
We express our understanding of the needed security controls to securely man-
age Bluetooth devices by defining a set of security requirements, based on how
abuses violate the current Bluetooth protocol and implementations.

We also consider the question of whether the current protocol can be used to
develop Piconet applications that satisfy a higher degree of security than what is
typically accepted in contemporary products. To fully address this question we
believe that one must both remove the inherent flaws in the Bluetooth protocol
design and equally important, incorporate greater owner control of the Bluetooth
security features according to the proposed security requirements.
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Abstract. Knowledge Management (KM), Quality Management (QM) and 
Safety Management (SM) are mature fields that have evolved and improved 
over time. Information security management (ISM) has aspects of these fields. 
E.g. tougher customer demands require continuous quality improvement, while 
new threats create a need for constantly improved security. Information 
technology brings new opportunities, but also challenges for KM, as it does for 
security. Organizations must comply with increasingly stricter safety laws, 
analogous to ISM requirements given by e.g. the Sarbanes-Oxley act. Research 
and practical experiences in KM, QM and SM have generated valuable insights 
that the younger, immature field of ISM can learn from. We present ten lessons 
and apply them to ISM. Key insights include the emphasis of good 
implementation over selection of model, the necessity of multi disciplinary 
teams, long term thinking, measurement, visualizing security costs, 
benchmarking, continuous improvement, collaboration, going beyond 
compliance and security as a competitive advantage. 

Keywords: Information Security Management, Knowledge Management, 
Quality Improvement, Safety Management. 

1   Introduction 

The trend over the last years has been one of increasing amounts of security 
vulnerabilities. The CERT Coordination Center reported 1090 vulnerabilities in the 
year 2000. By 2006 the figure had multiplied eightfold to 8064 vulnerabilities1. 
Although some of this increase may be attributed to better vulnerability detection 
tools, it is quite clear that we are still facing serious challenges in Information 
Security Management (ISM). 

We believe that it is necessary with a large, systematic effort to improve 
information security. The complexity of the information security problem requires 
commitment from all levels of an organization. Furthermore, no magic formulas will 
instantly fix the problem. However, we do not need to start entirely from scratch. 
Pioneering work has already been done in the information security community. Some 

                                                           
1 http://www.cert.org/stats/ 
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examples are [1-3]. Furthermore, the process of improving ISM may be enhanced by 
looking towards other fields where similar problems have already been solved. 

Fundamentally, achieving better information security means becoming better at 
learning. Not just on the individual level, but on an organizational and even inter-
organizational level. We are continuously finding new and novel ways to use 
communications technology. It follows that new and novel methods of attacking the 
systems also will be found. In such a situation old knowledge quickly becomes 
obsolete. An example is computer security before and after the Internet. Daily anti-
virus updates were unnecessary as the speed with which viruses spread were limited. 
When the Internet came that changed dramatically. The Internet Worm, ILoveYou 
and Melissa showed how fast malware can spread in a networked world. To keep up 
with and pre-empt advances in attack techniques, defenders must learn faster than 
attackers. 

Effective continuous learning is necessary to achieve satisfactory information 
security in today’s world. This makes ISM dependent upon effective Knowledge 
Management (KM) and Quality Management strategies. Furthermore, the challenges 
facing ISM have in many cases been encountered previously in these fields. E.g. 
tougher customer demands require continuous quality improvement, while new 
threats create a need for constantly improved security. Information technology brings 
new opportunities, but also challenges for KM, as it does for security.  

An example of a field which has successfully leveraged both KM and QM is Safety 
Management (SM). Like ISM, SM is characterized by complexity. Multiple factors 
interact, creating dangerous situations and presenting considerable challenges for 
managers. These challenges go beyond purely technical issues, e.g., organizations 
must comply with increasingly stricter safety laws, analogous to ISM requirements 
given by e.g. the Sarbanes-Oxley act. 

KM, QM and SM are all mature fields compared to ISM. There is an abundance of 
theories and studies, which is sorely lacking in ISM. By critically examining the 
experiences of KM, QM and SM, we can speed up the transition of ISM to a more 
mature state. Below we present ten lessons that we believe managers should learn. 

2   Not Which But How 

At the present there are more than 80 information security management models and 
standards [4]. The most widely known are ISO-17799 (BS-7799), COBIT , CERT-CC 
Security Improvement Modules, the IT Infrastructure Library, ADDME Approach 
and ISPME collection of standards. As a manager, which one should you choose? The 
obvious answer is that you should choose the one that fits best with your requirements 
and your situation. However, figuring out which one that is, is seldom 
straightforward. 

The situation for KM is very similar. A few examples of KM models are Nonaka 
and Takeuchi’s Five-phase model of knowledge creation [5], Davenport and Prusak’s 
Knowledge Market model [6] and Probst, Raub and Romhardt’s building blocks of 
knowledge management [7]. As the preceding shows there is wide variety of 
theoretical models. 
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QM standards are abundant. For example, there are standards for complaints 
handling (ISO 10002:2004), for software quality (ISO/IEC 25001:2007), for medical 
devices (ISO 13485:2003) as well as more generic standards like ISO 9000:2005, 
European Foundation for Quality Management (EFQM), The Malcolm Baldridge 
Award and the Capability Maturity Model. These standards build on more generic 
paradigms like the Plan-Do-Check-Act cycle, Total Quality Management (TQM) and 
Six Sigma [8], which encompasses a wide range of activities in an organization. 

So, which methodology or standard do you choose? On the whole it does not 
matter. The theories and models are similar and overlap to some extent. Furthermore, 
there have been successful applications of a wide variety of KM and QM programs. 
Lee-Mortimer [9] describes an implementation of Six Sigma at a UK based 
manufacturing company. “Six Sigma has enabled the company to eliminate a wide 
range of long standing process variations.” [9] Prajogo and Sohal [10] describe an 
implementation of a TQM program at an Australian automotive manufacturer. “…the 
success enjoyed by the company for many years is closely tied to its long history of 
implementing a sound quality management system.” [10] Actually, you can find case 
studies about successful implementations of almost any model or methodology. All of 
them can be successful if correctly implemented. Within SM this can be seen through 
near-miss reporting systems. Near-misses refer to “almost accidents” or “close calls”. 
While many such systems have been successful in improving safety, others have been 
less successful or complete failures. An example is a study of the introduction of near-
miss reporting systems at two Danish factories [11]. The study found that only one of 
the two factories was able to improve safety. The authors state: “At Plant B the 
implementation of the incident reporting scheme failed (i.e., the company did not 
succeed in getting a system up and running, and thus the employees could not report 
any NM's [near-misses] and did not increase the reporting of MI's [minor incidents]).” 

Repenning and Sterman [12] studied process improvement and learning programs 
through more than a dozen case studies. In their words: “Most importantly, our 
research suggests that the inability of most organizations to reap the full benefit of 
these innovations has little to do with the specific tool they select. Instead the problem 
has its roots in how a new improvement program interacts with the physical, 
economic, social and psychological structures in which implementation takes place. 
In other words it’s not just a tool problem, any more than it’s a human resources 
problem or a leadership problem. Instead it’s a systemic problem, one that is created 
by the interaction of tools, equipment, workers and managers.” 

Security is in many ways similar. To implement an effective security program the 
environment in which the program operates must be taken into account. Security may 
interfere with business needs, and thus be disregarded by managers and staff [13]. 
Focusing mainly on technical security leaves an organization open to social 
engineering attacks, as effectively demonstrated by Winkler [14] and Mitnick [15] 
who give real world examples. On the other hand, focusing solely on human factors 
leave computer networks open to technical attacks. Another example is exclusive 
focus on external threats which leaves the organization open to insider attacks, of 
which there are considerable amounts. In the FBI Computer Crime Survey 44% of 
responding organizations had experienced intrusions from within their own 
organization [16]. 
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Security, like improvement and learning programs, is a systemic problem. It is not 
a matter of only installing the latest firewall, rather, “security is a process” [17], a 
process that must be carefully managed to ensure successful implementation and 
continuous effectiveness. It must take into account the full range of economic, 
technical, social, external and internal factors that affect the security of an 
organization. Currently, all information security models include the key factors 
necessary for success. More standards are confusing and unnecessary; focus should 
now be directed towards implementation. 

3   Think Wide 

The preceding discussion highlights another important need: multidisciplinary efforts. 
Systemic problems can not be tackled by a single discipline. We use the histories of 
KM and QM as examples. KM and QM are both complex problems, characterized by 
complex environments with social and technical factors. These are characteristics they 
share with ISM. We will examine KM and QM in turn and see that the historic 
developments of both fields are similar. 

McElroy distinguishes between two generations of KM [18]. The first generation 
focuses on knowledge integration. It was thought that the organizations possessed the 
right knowledge, but that often it was not available to those who needed it. First 
generation KM therefore focused on tools to facilitate knowledge sharing. Often these 
initiatives were technically oriented, focusing on data repositories and the like. 

However, this ignores the important element of how organizations create new 
knowledge. Nonaka and Takeuchi were among the first to recognize this [5]. They 
developed a theory of knowledge creation which emphasizes that knowledge has both 
tacit and explicit elements. First generation knowledge management only takes the 
latter into account. The tacit element, developed mainly through social interaction has 
a key role in ensuring both knowledge transfer and creation [5]. Second generation 
KM focuses on accelerating the creation of new knowledge [18]. KM has transitioned 
from a mainly technical viewpoint of knowledge repositories to encompass both the 
technical systems needed to store information and communicate over large distances, 
and the social processes that are necessary for knowledge creation and transfer. 

QM methodologies initially focused on statistical tools [19]. Although first 
developed in the 1920s they first became popular during World War II. Quality was 
inspected into the product at the end of the assembly line [19]. The focus was on 
detection and fire fighting, not prevention [19]. Defective products were not detected 
until after they had gone through most of the production process. Furthermore there 
was no systematic methodology for preventing such defects in the future. In the 1950s 
and 60s the focus shifted from quality control to quality assurance, i.e., a shift from 
detection to prevention [19]. 

With the advent of TQM, quality became a company wide endeavor. Systematic 
learning and improvement became a part of quality management paradigms. Total 
quality means that the whole business process, not just the end product is subject to 
improvement and control. This was first practiced in Japan, which in the post war 
years took to heart the lessons of quality gurus such as Deming and Juran [19]. It can 
be argued that the Japanese quality movement, encompassing the whole of the 
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enterprise, is the reason for their strong competitive advantage in the 70s and 80s. 
Unlike western businesses, Japanese businesses saw quality as the responsibility of 
the whole company [19]. 

KM and QM have gone from focusing on a limited set of tools and areas to 
encompassing the whole business. In essence KM and QM are both multifaceted 
problems. One has to take into account all stages of a process: technical, 
organizational and social issues.  Thus, to solve systemic problems systemic solutions 
are necessary. 

Another example comes from SM. A brief review of the safety literature reviews 
that achieving high safety standards requires, among others, the active participation of 
top management, dedicated safety personnel, investigators who are skilled at finding 
accident/incident causes, engineers, ergonomics specialists, health care personnel, 
operators at the sharp end, suppliers and contractors [20-24]. None of these groups 
can achieve high safety standards on their own, as modern accidents are often the 
cause of systemic, organizational factors [25]. 

Traditionally, information security has been the domain of IT administrators. 
However, information security relies equally on non-technical disciplines. Detecting 
insiders may require psychological profiling [26], while legal action requires the 
support of lawyers, especially because computer crime often crosses international 
borders. Single vector solutions are no longer sufficient to counter today’s diverse 
threats [27]. We have reached a time where multidisciplinary teams (engineers, 
economist, lawyers, and policymakers) must try to forge common approaches in the 
name of information security management improvements [2]. 

4   Think Long 

The issue of short-term gain versus long-term success regularly arises in the business 
media. The tendency to favor short-term gain is often much lamented. The work of 
Repenning and Sterman [12] indicate that short-term strategies are not so much 
chosen, but rather forced. Improvement programs require time and resources to 
implement successfully, and organizations seldom have unlimited resources. When a 
crisis hits, e.g., missing a production target, resources may be routed away from 
improvement processes to amend the problem, giving short term relief. However, 
removing resources from improvement processes reduces future benefit from them. 
Thus in time, the lack of improvement causes more crises, leading to yet more 
resources being taken away from improvement, again, causing yet more crises. And 
so the organization reaches a vicious circle which is hard to exit. A similar effect has 
been found in safety. The tendency to correct production shortfalls by bypassing 
safety, leads, in the long run, to poorer safety and also poorer production. The topic of 
bypassing safety will be revisited later. 

The natural tendency to fall into a short-term reactive mode is further strengthened 
by the long time that is often required to implement improvement and learning 
programs [12]. For example, developing TQM programs in marketing departments 
may take seven to eight years [28]. When the benefit of the improvement work is far 
away, it becomes easier to fall into a short-term reactive mode. In Dörner’s [29, p. 
198] words: “We human beings are creatures of the present.” 
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The same problem exists within the realm of information security as well. Wiik et 
al. [30] describes how a Computer Security Incident Response Team (CSIRT) can fall 
into a “capability trap”. Working harder to alleviate short term pressures takes 
resources away from long term improvement efforts. The team falls into the same 
vicious circle as described by Repenning and Sterman [12]. Symptomatic of both 
Repenning’s [12] and Wiik’s [30] work is that the solution involves a worse-before-
better scenario, making any exit from the circle of crises difficult. 

A study by Royal Dutch Shell indicate that the longest living companies are those 
who are most sensitive to their environment [31]. They react to new threats and 
changes in the marketplace with foresight, before it is too late [31]. Skipping out on 
security today, may mean disaster tomorrow. 

5   Always Improve 

This lesson is closely connected with our previous one. As has been previously 
mentioned, the post-war success of the Japanese economy can be attributed to their 
focus on quality management. However, something more fundamental is at work. 
Fueling the continuous advance in quality was their ability to innovate.  Not once or 
twice, but continuously [5]. The ability to innovate is closely connected with the 
creation of new knowledge [5]. The only sustainable business advantage is the ability 
to learn faster than your competitors [18]. Everything else can in principle be copied. 
This is especially true in today’s business climate where the focus is on knowledge 
and less on resources, capital and labor. Thus organizations must become “learning 
organizations” [32]. And in our opinion, in the area of information security they must 
learn fast. 

Today organizations are continuously facing new information security challenges. 
The sustained development of new attack methods must be met by a sustained effort 
to create counter methods. And at heart of this is the creation of new knowledge faster 
than competitors, or in this case, attackers, especially as offence is much easier than 
defense. The attacker can attack anywhere while the defender has to defend 
everywhere [2]. Attack-tool developers, hackers, crackers and insiders currently 
dictate the speed of information systems’ insecurity. Continuous improvement 
programs for information security will help organizations to keep up with increasing 
threat sophistication. Furthermore, just keeping up is not enough. The lead must be 
taken back and continuous improvement programs may hold the key to this. 

6   Together Is Better 

Sharing information on risk factors, realized or not, enables learning from the 
mistakes and solutions of others. This is a potentially powerful lever, as reinventing 
the wheel is both time-consuming and expensive. A good example is NASA’s 
Aviation Safety Reporting system where thousands of incident reports are logged 
every year. Each report is analyzed and the information is fed back to airlines, 
regulators, airplane producers and airports, enabling them to improve routines and 
equipment [21]. In this way future accidents are avoided or mitigated. It is true that 
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airplane accidents have not disappeared, but countries which have well working 
aviation safety reporting systems perform better than those who do not. For example 
the accident rate in Taiwan is higher than in the US and western Europe, something 
which has been attributed to a poorly functioning national reporting system [33].  

As previously mentioned, Senge [32] stresses that organizations must become 
“learning organizations”. Those organizations that do not take advantage of all 
sources of knowledge will fall behind those who do. Knowledge is not just created 
inside an organization, but an organization interacts with its environment, absorbing 
and creating new knowledge [34]. A crucial insight of Nonaka and Takeuchi is that 
knowledge is created through interaction [5]. 

Davenport and Prusak [6] speak of knowledge markets. According to them a firm 
has an internal knowledge market consisting of sellers, buyers and brokers. A seller’s 
willingness to share knowledge is dependent on three conditions: 1) Reciprocity, i.e. 
expectations of future advantage by sharing knowledge now. 2) Repute, i.e. becoming 
known as a knowledgeable person and the status that entails. 3) Altruism, i.e. sharing 
because one likes to help. If we extend Davenport and Prusak’s concepts to an 
industry sector or the society as a whole, we can infer that companies will not share 
their knowledge if there is no advantage for them to do so. Furthermore, the 
advantage must be mutual. In our opinion it is unlikely that commercial organizations 
will share their knowledge for reasons of repute or altruism.  

It follows that the knowledge an organization can absorb from the outside is 
limited unless there is genuine reciprocity. Furthermore, by not sharing knowledge 
with others, knowledge creation is also reduced, as the crucial social interaction that is 
necessary for knowledge creation becomes restricted to inside the organization. Large 
multinational organizations may have the resources necessary to keep information 
security internal, but the majority of businesses are too small to operate entirely 
independently. Organizations can not afford to shut themselves off from the outside. 

The benefit of sharing information has been recognized by government and the 
security community for some time. The federal US government has encouraged the 
establishment of Information Sharing and Analysis Centers (ISACS) [35]. However 
distorted incentives [2] and the tendency to free ride [36] are detriments to successful 
information sharing. We believe that these challenges must be overcome for security 
to improve on a larger scale. Although an extreme case, the terrorist attack of 9/11 is a 
revealing example. The 9-11 Commission Report highlights how the lack of 
information-sharing between the FBI, CIA and other important parties impeded the 
detection of the attackers’ intentions and thus the actual attack [37].  

7   The Boiled Frog 

Measuring information security is hard. Currently there is no reliable, absolute 
measure for security level. Information security exists in the context of a social, 
dynamic system of which only a few of the elements are directly visible. For example, 
actual incident rates may be masked by underreporting [38]. Indicators tend to be 
heavily biased, indirect and subject to a wide range of different interpretations. 

However, it is still necessary to measure. It is a widely accepted principle that an 
activity cannot be managed properly if it is not measured. Setting goals without the 
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ability to measure whether the goal have been reached is meaningless. Furthermore, 
as Senge [32] eloquently explains, changes that take place over long time periods tend 
to go unnoticed. Senge recounts an experiment where a frog is placed into a bowl of 
water. If the frog is placed in a bowl of boiling water, it jumps out as it instantly 
recognizes the heat. However, if the frog is placed in a bowl of cold water which is 
then slowly heated, the frog will happily stay in, even if the water starts to boil. The 
frog’s sensory system is geared towards detecting sudden changes in the environment, 
whereas slow, long term changes are not noticed. 

In quality management this need to measure can be seen in the rise of Six Sigma. 
Compared to TQM, Six Sigma is not a radically new paradigm. It is the natural 
evolution towards “data based management”. 

To avoid “being boiled”, that is not noticing degradation of security or an increased 
threat, adequate measures for information security must be developed. Experiences 
from KM show us that it is possible to develop a wide variety of indicators to measure 
intangible resources. Sveiby [39], Brooking [40] and Edvinsson [41] have developed 
methods for measuring the value of intellectual capital. 

8   Show Me the Money 

Numerous case studies and textbooks in KM, QM and SM points to the importance of 
top management support. Without top-management support new initiatives are not 
followed up or prioritized. To gain top-management support it is necessary to evaluate 
the economic impact. Top-management is unlikely to sanction initiatives which have 
no clear impact on the bottom line, long-term or short-term. Thus, sooner or later it 
becomes necessary to justify information security expenses. 

This has also been recognized in QM where there has been a long tradition of 
measuring quality costs. For example Six Sigma makes an explicit connection 
between the bottom line and the improvement effort. Pande et al. urges Six Sigma 
teams to measure the “Cost of Poor Quality”, as it “speaks a language that almost 
anyone understands: money” [8, p. 231]. 

In security the direct expenses such as wages, the cost of security-equipment and -
software is easy to measure, whereas the costs of security breaches are more difficult 
ascertain in advance. Nevertheless, the cost of poor security should be measured. 
Waiting until it is actually realized, i.e., when a serious incident strikes, leaves the 
organization unprepared as security then is an invisible part of the agenda. Although it 
is difficult to measure the implicit costs of incidents, methodology for measuring such 
costs exist [42]. If the cost of poor security is not known it is also difficult to know 
how much should be spent on security. 

9   Benchmark 

Benchmarking is an accepted and effective way of assessing an organization’s 
performance compared to leading organizations. Information security is seldom 
considered a primary activity. Thus, being leading innovators in ISM is perhaps 
beyond most organizations. Benchmarking provides these organizations with 
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important information on best practice. However, in information security it is difficult 
to know what best practice is. Deep probing surveys and case studies are sorely 
lacking. 

The lack of such research has its natural explanation in the very nature of 
information security data. Such studies would expose an organization’s 
vulnerabilities, which might be used by potential attackers, including competitors. 

Contrasting the situation for information security with that of KM, QM and SM, 
we find numerous surveys and case studies, ranging from more superficial studies of 
whole industry sectors to deep probing studies of single companies. For example 
Prajogo and Sohal [10] follow a company’s QM practices closely for twenty years. 
Nonaka and Takeuchi [5] give in-depth examples from individual projects in many 
different companies. With a battery of case studies the Knowledge Management 
Casebook lays bare the KM practices of Siemens [43]. The Best Practices in 
Knowledge Management & Organizational Learning Handbook has case studies of 
companies such as Ernst & Young, AT&T and Microsoft [44]. Within SM there is a 
tradition of sharing. Examples include sharing of accident classification and reporting 
routines and studies of why accidents happen, such as Vaughan’s study of the 
Challenger disaster [45] and Tsuchiya et al’s study of the Tokaimura nuclear 
criticality accident [46]. The existence of such widely available studies enable 
comparison with industry leaders, and thus also a measure of where to improve your 
own organization. 

Without knowing where you are it is impossible to know where to go. Thus, ways 
must be found to overcome the information security “data barrier”. Our own team has 
been working on this problem for some time [47-49]. 

10   Secure Advantage 

Traditionally, security has been seen as an expense, a necessary evil. This is much the 
same view as that which has been taken on safety. However, research on safety show 
that a high level of safety is not just a necessary evil, but a business enabler and to 
some extent, even a competitive advantage. 

Cooke describes the Westray mine disaster [50]. Prior to the disaster accidents 
caused production delays. To recoup the lost time, managers, and thus also workers, 
started to cut corners, disregarding safety procedures. This lead to more accidents, 
more lost time, and thus even more corner cutting. Westray was in a vicious circle, a 
problem that constantly amplified itself. Ultimately, the mine suffered a disaster. The 
preceding supports the notion of safety as a necessary evil. 

However, Cooke did not just describe the historic development of the disaster. He 
also created a computerized simulation model of Westray mine. The results of which 
is interesting. By shifting focus from recouping time to prioritizing safety the 
organization could have been able to turn the vicious circle into a virtuous circle. 
More focus on safety leads to less lost time, which leads to more production targets 
being met. This again reinforces the pressure on safety, as the urgency of meeting the 
production schedule is lessened, causing yet fewer accidents, less lost time and again 
a more efficient production. In this latter case, safety is not just a necessary evil, but a 
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real business enabler. It can even be argued that it is a competitive advantage, as long 
as the competition is not doing the same. 

We argue that it is likely that the same kind of dynamics can be found in 
information security. Organizations that are constantly plagued by computer problems 
loose precious time, and like in safety, the time loss may make managers and 
employees take shortcuts, which may lead to more problems. In a sense this kind of 
behavior is counter intuitive. One would expect that accidents or security incidents 
would cause people to be more cautious. However, strong economic pressures to 
produce may overshadow such learning. 

Organizations may gain an economic advantage by the reduction of information 
security incidents. However, there is also an indirect advantage to good information 
security. For an explanation we look to QM. The various certifications and awards 
that exist within quality management have given organizations a means with which to 
advertise their excellence within the area. When a company has been certified in ISO-
9000 or have received a quality award, customers know that the company meets a 
certain standard. 

With the increasing use of information technology to transfer information, manage 
bank accounts and buy goods online, the need for security is not going to go away. On 
the contrary it will become even more important. Thus being certified in a security 
standard not only ensures that the company meets a high standard, but it also 
constitutes an advertisement tool for customer confidence. 

11   Compliance Is Not Enough 

Organizations looking to improve their security have, as previously mentioned, 
several different standards available. These standards provide a good starting point. 
However, there is an inherent danger in relying on standards and regulations. Relying 
on them may shift the focus away from continuous improvement towards conformity 
with requirements, a tendency which have been noted in among others, the French 
healthcare system [51]. 

A survey of medical device makers indicate that top performers have an edge on 
the competition because they focus on proactive quality topics [52]. Numerous 
organizations have moved to get ISO-9000 registration; however, many do so not out 
of an actual wish to improve quality. Chelsom states that: “Many organizations have 
obtained ISO[-9000] registration simply because major clients require them to do so... 
While in response, many suppliers have obtained ISO-9000 approval through a 
genuine quality improvement effort, others have paid lip-service to their customers’ 
demands, ...” [53] In the words of Karapetrovic: “Although it may seem illogical at 
the first glance, ISO-9000 is not about compliance at all. It is about quality systems 
and effective and efficient ways to assure and improve quality” [54].  

In the context of ISM, the concern over regulatory biases have been mentioned by 
Caralli and Wilson [55]. The experiences from QM show that forgetting improvement 
when complying with standards is not just a possibility, but a real concern. [ISO-
9000] is the lowest common denominator of any successful quality system.” [54] The 
same applies to information security standards. Organizations have to go past 
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compliance towards continuous security improvement. Complying with a standard is 
not a pillow that you can rest your head on, compliance is only a starting point. 

12   Conclusion 

ISM is fundamentally about learning and improving quality. Therefore we have 
highlighted some of the crucial lessons of KM, QM and SM, and we have related 
them to ISM. If information security managers do not realize these lessons, they risk a 
costly re-invention of the wheel. 

First, we have highlighted that choosing a method is not so important, but that 
process implementation is paramount. Second, we have stressed the importance of 
thinking holistically. ISM must move from a technically oriented discipline towards 
one that encompasses both technical and organizational issues. Third, long term 
sustainability must take precedence over short term gains. Organizations must 
evaluate the security threat before implementing new business systems. Fourth, the 
process nature of ISM makes it necessary to continuously improve to meet new 
threats that arise from changing conditions. Fifth, communication with external actors 
is crucial for accelerating knowledge absorption and generation. Few companies have 
the resources available to go at ISM entirely alone. Sixth, assessing the organization’s 
performance is necessary. To stop the ship from taking on water one must first know 
where the holes are. Seventh, top-management support is crucial. To gain it one must 
speak their language, namely money. Eighth, organizations should compare their 
performance with the top performers. Ninth, compliance with standards is a good 
start, but only a start. Tenth, security should be leveraged as a business enabler. 

Information Security Management is currently preoccupied with technical 
measures and short sightedness. Committing to the ten lessons above will help move 
ISM towards a more mature state that will lead to an improved security situation. Like 
KM, QM and SM, ISM must become something that you simply do. It must become a 
natural part of any business that relies on information technology, which today are 
most businesses. 

The subtitle of this paper is “A Short Cut to Information Security Management 
Success”. The only short cut lies in realizing the ten lessons above. The hard work of 
implementing them still remains. And lastly we would like to say that these are 
probably not all the lessons that an ISM manager should learn, but they are a starting 
point. The lessons above are all common sense, but in our research we have yet to 
find any company who actually do all of the above. 
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Abstract. In existing security model-checkers the intruder’s behavior is defined 
as a message deducibility rule base governing use of eavesdropped information, 
with the aim to find out a message that is meant to be secret or to generate mes-
sages that impersonate some protocol participant(s). The advent of complex 
protocols like those used in e-commerce brings to the foreground intrusion at-
tacks that are not always attributed to failures of secrecy or authentication. We 
introduce an intruder model that provides an open-ended base for the integra-
tion of multiple attack tactics. In our model checking approach, protocol cor-
rectness is checked by appropriate user-supplied assertions or reachability of 
invalid end states. Thus, the analyst can express e-commerce security guaran-
tees that are not restricted to the absence of secrecy and the absence of authenti-
cation failures. The described intruder model was implemented within the SPIN 
model-checker and revealed an integrity violation attack on the PayWord micro 
payment protocol. 

Keywords: intrusion attacks, e-commerce protocols, model checking, SPIN. 

1   Introduction 

Model-checking of cryptographic protocols takes place on a model of a small system 
running the protocol of interest together with an intruder model that interacts with the 
protocol. Security flaws are found by an appropriate state exploration approach that 
discovers if the system can enter an insecure state, that is, whether there is an attack 
upon the protocol. 

The basic assumptions are summarized as follows: (i) The encryption method used 
is unbreakable, (ii) The intruder can prevent any message from reaching its destina-
tion and (iii) The intruder can create messages of his own. As a consequence of the 
foresaid assumptions, model-checking analyses treat any message sent by a honest 
user as a message sent to the intruder and any message received by a honest user as a 
message sent by the intruder. This setting refers to a system that becomes a machine, 
which is used by the intruder to generate words (messages). The intruder’s behavior is 
defined as a message deducibility rule base governing composition and decomposi-
tion of messages, encryption and decryption with known keys, as well as memoriza-
tion and use of eavesdropped information. 
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In section 2 we provide an overview of the most influential model checking ap-
proaches. All of them use the general Dolev and Yao intruder model [1], but the in-
truder’s goal is restricted in finding out a message that is meant to be secret or in 
generating messages that impersonate some protocol participant. Failures of secrecy 
or authentication reveal a previously unknown attack on the analyzed protocol. 

However, security guarantees cannot always be expressed as absence of secrecy or 
authentication failure. A typical case is the well-known family of replay attacks, 
where the intruder aims to playback previously recorded messages in an attempt to 
sabotage an ongoing protocol session: in [2] the authors show that failures of informa-
tion exchange timeliness that enable message replays do not always manifest them-
selves as secrecy failures. Hence, replay attacks are basically analyzed [3] with  
special-purpose modal logics, like the BAN logic (named after its inventors called 
Burrows, Abadi and Needham [4]). Another complication is that recent studies ([5]) 
concluded in that authentication is a protocol dependent notion and there is not a 
unique definition of authentication that all secure protocols satisfy.  

Sections 3 and 4 introduce a philosophically different approach in designing the in-
truder model. We also adopt the assumptions of the Dolev - Yao intruder model, but 
instead of specifying its behavior with a set of rules governing deducibility of mes-
sages, we attempt to combine multiple attack tactics based on a careful analysis of 
how they proceed. Attack tactics are formalized and are then combined into a single 
Dolev - Yao intruder model within the SPIN model-checking environment ([6], [7]). 
Four types of attack tactics have been implemented so far, namely: (i) Replay and 
integrity violation attacks, (ii) Type-flaw attacks, (iii) Impersonation attacks and (iv) 
Parallel session attacks.  

Although we cannot claim that our approach covers all possible attack tactics, we 
do not exclude known attacks that are not reflected as failures of secrecy or authenti-
cation. The developed Dolev - Yao intruder model constitutes a supplemental model-
checking mean, used as an open-ended base for implementing more specialized attack 
tactics. This enables revealing attacks, which cannot be detected by existing security 
model checkers, like for example attacks that subvert non-repudiation [8], fairness, 
accountability, abuse-freeness [9] or other e-commerce security guarantees.  

An interesting aspect is the comparatively smaller state spaces enabling analyses 
that are not restricted to small systems running the protocol of interest. This allows 
application of the proposed intruder model to larger and more complex systems, thus 
opening new potentialities in revealing for example multi-protocol attacks [10] on 
cryptographic protocols that are executed in the same environment.  

With the described approach we discovered an integrity violation attack on the 
PayWord micro payment protocol [11]. The obtained results are shown in section 6.    

2   Related Work 

One of the first systems that used the Dolev - Yao intruder model and the secrecy 
failure approach was the Interrogator tool [12]. Given a final state in which the in-
truder knows some word, which should be secret, the Interrogator tries all possible 
ways of constructing a path by which that state can be reached. If it finds a path, then 
it has identified a security flaw. 
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Finite state analysis of cryptographic protocols has been developed in a range of 
published works, which implement the secrecy or authentication failure approach 
within specialized security analysis tools like BRUTUS [13] or within general pur-
pose model checkers like Murφ [14] and FDR (Failures Divergence Refinement) [15].  

The most detailed description of a Dolev - Yao intruder model is given for the so-
called “Lazy Spy” [16]. The “Lazy Spy” was initially expressed [17] in the traces 
model of Communicating Sequential Processes (CSP)/FDR and was later integrated 
into Casper [18], a front-end for semi-automated CSP description of security proto-
cols. Casper works based on a custom-made set of rules governing deducibility of 
messages through encryption and uses a lazy exploration strategy, which examines 
the subset of intruder states reachable by the protocol rules. NRL Protocol Analyzer 
[19] is another well-known tool with a similar Dolev - Yao intruder model. 

In [20] the authors provide a thorough review of the most important state space 
analysis contributions until 1999. A more recent contribution for the model checking 
of secrecy and authentication is the so-called “lazy intruder” [21] for the on-the-fly 
model checker of the AVISPA security toolset [22]. The “lazy intruder” avoids an 
explicit enumeration of the possible messages the intruder model can generate, by 
storing and manipulating constraints about what must be generated. The resulted 
symbolic representation is evaluated in a demand-driven way and this approach re-
duces the search tree without excluding any attacks. 

3   The Intruder Model 

We adopt the pessimistic assumption that the intruder has absolute control over the 
used communication network, as well as the basic Dolev - Yao assumptions men-
tioned in section 1 regarding his abilities. More precisely, the intruder eavesdrops or 
intercepts messages and analyzes them if he possesses the keys required for decryp-
tion. Also, the intruder can generate messages from his knowledge and can send them 
to any protocol participant. The new messages are created from already known mes-
sages by applying one or more of four (4) basic operations: encryption, decryption, 
concatenation and projection.  

Any attempt to enumerate all meaningful messages that the intruder can send will 
inevitably lead to an enormous branching of the resulting state space. The model 
checking approaches of section 2 attempt to preserve the generality of the intruder 
model while applying specialized techniques to overcome the foresaid problem. How-
ever, they are only applicable to a small system running the protocol of interest. If no 
attack is found, there is still an open possibility for an attack upon some larger system 
(a principle known as the absence of model-checking completeness [23]).  

We aim in a less general but complementary approach for the generation of new 
messages based on an open-ended base of predefined attack tactics. The structure and 
the number of all possible fake messages are restricted by the patterns and the number 
of initial messages of the available attack tactics. The intruder model can be thought 
as two concurrent processes, where the first aims to eavesdrop/intercept exchanged 
messages and the second performs a non-deterministically selected attack tactic 
against the ongoing protocol session(s) (Figure 1). 
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Fig. 1. The intruder process 

Upon reception of a fake message, by some victim, the performed attack step suc-
ceeds and the subsequent execution trace is possible to reach an invalid end state or a 
correctness assertion violation. If the “victim” does not accept the sent fake message, 
falls into a fail-stop state, where he does not continue with the ongoing protocol execu-
tion. Protocol correctness, whether it is expressed as reachability of an invalid end state 
or an assertion check is thus not restricted to secrecy or authentication guarantees. 

An atomic message may come from one of the sets: 

- Keys, with members that represent the keys used to encrypt messages, such 
that every key k ∈ Keys has an inverse k-1 ∈ Keys. For symmetric cryptogra-
phy the decryption key is the same as the encryption key, i.e. k = k-1. 

- Agents, with members that represent the names of the honest protocol 
 participants. 

- Nonces, which is an infinite set of randomly generated numbers. Members of 
Nonces are used as timestamps that is, any message containing one of them 
can be assumed having been generated after the nonce itself was generated. 

- Data, with members that represent the plaintext strings exchanged between the 
protocol’s participants. 

We denote by I the intruder (I ∉ Agents). Also, we define the binary relation, 

is_key_of = {(k, id): k∈ Keys, id ∈ Agents ∪ {I}, 
“key k is used by the participant id”} 

such that |is_key_of (k)| =1 in the case of public key cryptography or |is_key_of (k)| =2 
in the case of symmetric cryptography. 

The set Msgs of exchanged messages is defined inductively over the disjoint union  

AMsgs = Keys ∪ Agents ∪ {I} ∪ Nonces ∪ Data 
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that represents the set of atomic messages (Seti ∩ Setj = ∅ for any two Seti, Setj of the 
unified sets). More precisely: 

- If α ∈ AMsgs then α ∈ Msgs. 
- If msgx ∈ Msgs and msgy ∈ Msgs then msgx ⋅ msgy ∈ Msgs, where ⋅ represents 

message concatenation. 
- If msg ∈ Msgs and k ∈ Keys then {msg}k ∈ Msgs. 

Each ag ∈ Agents may attempt to execute the protocol for a bounded number of 
times say #Sesag and each such attempt is a separate protocol session noSes, such that 
1 ≤ noSes ≤ #Sesag. In a protocol session, ag plays either the role of the initiator or 
the responder.  

We denote by noSes
nsent ag  the finite-length concatenation sequence of messages sent 

by ag ∈ Agents in the course of session noSes:  

)( ag
1

ag
nnn msgsentsent noSesnoSes ⋅= −  

with the first term equal to the null sequence that is, ) (ag
0 =noSessent . The sequence 

noSes
nsent ag  represents participant’s ag history for session noSes, after having sent 

msgn. We denote by noSes
nrcvd ag  the finite-length concatenation sequence of messages 

received by ag in the course of session noSes. In a given time instant the acquired 
participant’s knowledge for the ongoing protocol execution is given as 

agknowledge ∪
j

jag
ircvd

ag
)max( }{ = ∪ agin_knowledge, 

for all 1 ≤ j ≤ #Sesag, where agin_knowledge represents the initial knowledge base of ag 
(keys, agent identities and so on) and i > 0 represent the terms of the received mes-
sage concatenation sequences. A protocol session for a honest participant ag ∈ 

Agents is defined formally as a 5-tuple 〈ag, j, agknowledge, j
historyag , P〉, where 1 ≤ j ≤ 

#Sesag and P is a process description given as a sequence of actions to be performed. 
We consider the actions send and receive for sending and receiving messages to/from 
other protocol’s participants. 

The assumptions mentioned in section 1 for the general Dolev - Yao intruder 
model imply that in a given time instant the acquired intruder’s knowledge for the 
ongoing protocol execution is given as 

∪
jag

)max( }{  jag
iknowledge sentI = ∪ Iin_knowledge, 

for all 1 ≤ j ≤ #Sesag, ag ∈ Agents ∪ {I}, where Ιin_knowledge represents the initial in-
truder’s knowledge base and i ≥ 1 represent the terms of the eavesdropped message 
concatenation sequences. 

The protocol model is given as the asynchronous composition of the models for 
each protocol session, including the intruder model, whose behavior depends on the 
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defined attack tactics. Attack tactics are non-deterministically selected and are then 
executed within a single thread of control. Each possible execution of the model cor-
responds to a finite alternating sequence of global states and actions: 

τ = s0 α1 s1 α2 . . . sn, for some n ∈ N 

such that i
a

i ss i   1 ⎯→⎯−  for 0 < i ≤ n and for the transition relation → defined as 

→ ⊆ S × PS × A × Msgs × S 

where S is the set of global states, PS is the set of protocol sessions and A is the set of 
action names. 

4   Attack Tactics 

We formalized and subsequently implemented a series of basic attack tactics. First, 
we present the elementary tactics that are also used in forming more complex attack 
scenarios. The implemented attack tactics are the ones that are most often reported in 
related bibliography. 

4.1   Message INterCePTion (INCPT) 

Message interception takes place after the occurrence of some action send (ag, v, 
msg)1, for some ag, v ∈ Agents and some msg ∈ Msgs, if there is no receive (v, u, 
msg)2 with u ∈ {ag, I} in the suffix execution trace. When intercepting an encrypted 
message {msg}k there is no receive (v, u, {msg}k) action in the suffix execution trace. 

4.2   Replay Attack Tactics 

Replay attacks take place when the intruder redirects eavesdropped or altered mes-
sages within one or more interleaved protocol session(s). We adopt the replay attack 
classification of [5] and we formalize the following replay attack tactics. 

 
REFlections (R-REF): 
In a reflection attack the intruder resends an altered version of a previously sent 
message back to its sender. Run-internal reflections are performed within the same 
protocol session. Interleaving reflections use contemporaneous protocol sessions and 
classic reflections use messages obtained from already finished protocol sessions. 

The R-REF attack takes place anytime after the occurrence of some action send (v, 
ag, msg), with msg representing any non-encrypted msg ∈ Msgs or after the occur-
rence of some action send (v, ag, {msg}k) such that I ∉ is_key_of (k) ∧ k-1∈ Iknowledge. 

The foresaid actions result in a global state where either  

exists(msg, jv
isent )max( )3 = true or respectively exists({msg}k, 

jv
isent )max( ) = true 

                                                           
1 The action whereby ag sends msg to v. 
2 The action whereby v receives msg from ,.  
3 Boolean predicate exists(msg, str) is true if the message msg ∈ Msgs appears in string str. 
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for some 1 ≤ j ≤ #Sesv, with i ≥ 1 representing the terms of an eavesdropped message 
concatenation sequence. 

In the performed reflection attack the intruder alters msg based on Iknowledge and 
uses the altered msg΄∈ Msgs in an action send (I, v, msg΄) or respectively send (I, v, 
{msg΄}k΄) for some k΄ ∈ Iknowledge such that v ∈ is_key_of (k΄).   

The R-REF attack succeeds only when v performs the action receive (v, I, msg΄) or 
respectively the action receive (v, I, {msg΄}k΄) with the following potential outcomes: 

- run-internal reflection 

exists(msg΄, jv
ircvd )max( ) = true or exists({msg΄}k΄, 

jv
ircvd )max( ) = true 

- classic or interleaving reflection 

∃ j΄≠j: exists(msg΄, j΄v
ircvd )max( ) = true or exists({msg΄}k΄, 

j΄v
ircvd )max( ) = true 

 

DEFlections (R-DEF): 
In a deflection attack the intruder redirects a possibly altered sent message to some 
participant that is neither the message’s recipient nor the sender. Run-internal deflec-
tions are performed within the same protocol session. Interleaving deflections use 
contemporaneous protocol sessions and classic reflections use messages obtained 
from already finished protocol sessions. 

 
STraight Replays (R-STR): 
In a straight replay attack the intruder resends a previously sent message to its in-
tended destination. If the eavesdropped message is replaced by an altered version, this 
attack is also known as INTegrity Violation attack (INTV). 

Depending on whether this attack is performed within the same session or contem-
poraneous or non-interleaved sessions, straight replays are also characterized either as 
run-internal, interleaving or classic replays.   

4.3   Type Flaw Attack Tactics (TFLAWS) 

A type flaw attack arises when the recipient of a message accepts that message as 
valid, but imposes a different interpretation on the bit sequence than the protocol 
participant who created it. Type flaw attacks follow the action sequences of the replay 
attack tactics and may be optionally combined with a message interception (INCPT), 
in order to prevent reception of intercepted message by its recipient such as to per-
form a type flaw based message replay. 

I triggers a type flaw attack possibly after having altered an eavesdropped msg ∈ 
Msgs based on Iknowledge, thus resulting in some msg΄ ∈ Msgs. The subsequent action 
performed by I is either send (I, v, msg΄) or send (I, v, {msg΄}k΄) for some k΄∈Iknowledge 
such that v ∈ is_key_of (k΄). 

This attack tactic succeeds if in the global state after the occurrence of the action 
receive (v, I, msg΄) or respectively receive (v, I, {msg΄}k΄) there is some atomic mes-
sage amsg, such that 

exists(amsg, jv
ircvd )max( ) = true, 1 ≤ j ≤ #Sesv  
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with i ≥ 1 representing the terms of jv
nrcvd  and for two sets Seti and Setj from the 

“disjoint” union Amsgs, 

amsg ∈ Seti ∩ Setj 

The described insecure global state expresses the fact that it is possible for an 
atomic message that was originally intended to have one type (e.g. nonce) to be inter-
preted as having another type (e.g. key or data). However, this possibility occurs only 
when both types are represented as bit sequences of the same length, so that when the 
intruder positions an atomic message in place of a type flawed one, the recipient is 
fooled into accepting the used atomic message as the one expected according to the 
owned process description (P). 

We note that type flaw attacks [24] may not lead to a direct security compromise, 
since it is possible that the plaintext bit string of the atomic message used by I to be 
unknown to him (the secrecy is still preserved). However, if for example a nonce is 
used as a key, this is not a good key, because the main concern in generating nonces is 
to be unique in a protocol session, as opposed to keys that basically have to be non-
predictable. Type flaw attacks may result in failures of security properties beyond the 
typical secrecy and authentication properties, like for example anonymity and  
non-repudiation [25]. 

4.4   Simple IMPersonation Attack (IMP) 

An insecure state (precondition) for the performance of a simple IMP attack is any 
state where I can read the contents of a protocol message sent by some ag ∈ Agents, 
who acts as initiator of a new protocol session:  

{∃ noSessent ag
1 ∈Iknowledge, ag ∈ Agents, 1≤ noSes≤ #Sesag : 

    { noSessent ag
1 =msg for some non-encrypted msg∈Msgs} 

 ∨ { noSessent ag
1 ={msg}k: is_key_of (k) = I ∨ (is_key_of (k) ≠ I ∧ k-1∈ Iknowledge)}} 

The IMP attack tactic takes place when the intruder performs the following three 
subsequent actions against some victim v ∈ Agents, such that v ∉ is_key_of (k) and 
v ≠ ag: 

send (I, v, msg΄), receive (I, v, newSesvsent1 ), send (I, ag, newSesvsent1 ) 

where msg΄= noSessent ag
1 , when the latter is a non-encrypted message or otherwise 

msg΄={msg}k΄, with k΄∈ Iknowledge and v ∈ is_key_of (k΄). Also, vnewSes is a unique ses-
sion identifier for session newSes, in which victim v acts as responder and the boo-

lean predicate exists(v, newSesvsent1 ) is false. If the last mentioned predicate would be 

true, ag would realize that the responder in session agnoSes is not the one selected 
and would subsequently abort the corrupted protocol session. 
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4.5   Parallel Session Attack Tactics (PARSES) 

Parallel session attacks take place by subsequent interleaving replays among contem-
poraneous protocol sessions, in which the intruder manipulates protocol participants 
in multiple roles (initiator or responder), in order to subvert the protocol’s goals. 

The intruder can under special conditions use the cryptographic protocol dialogs 

- as an oracle that is, to foretell the contents of otherwise perfectly encrypted 
messages (refer to the oracle session attack shown in [26]);  

- to impersonate a protocol participant (e.g. the BAN-Yahalom attack in [5]); 

or possibly to subvert properties beyond secrecy and authentication. 
In a parallel session attack the execution sequence τ includes a series of action cy-

cles that open with some action send (ag, v, msg) or send (ag, v, {msg}k) and this 
results in 

exists(msg, j

isent
ag

)max( ) = true or respectively exists({msg}k, 
jg

isent
a

)max( ) = true 

I either opens a new protocol session newSesv΄  or responds to an already opened 
session say mv΄  (with v΄∈Agents including ag and v), for which the last action of the 
process description P is not included in the prefix execution sequence of τ. The attack 
is performed possibly after having altered the eavesdropped msg ∈ Msgs (based on 
Iknowledge), thus resulting in sending some msg΄ ∈ Msgs by send (I, v΄, msg΄) or send (I, 
v΄, {msg΄}k΄) for some k΄ ∈ Iknowledge such that v΄ ∈ is_key_of (k΄). The interleaving 
replay succeeds if the action cycle ends with a receive action by v΄, yielding a global 
state such that 

exists(msg΄, mv΄
ircvd )max( ) = true or respectively exists({msg΄}k΄, mv΄

ircvd )max( ) = true 

with max(i) = 1, if m represents a new protocol session (newSes). 
A number of successive interleaving replays may end up in a fail-stop global state 

or in either an invalid end state or violation of a protocol correctness assertion. The 
latter possibilities reveal a previously unknown parallel session attack. 

5   The PayWord Micro Payment Protocol 

We focus on the analysis of the PayWord micro-payment protocol that was first pro-
posed by Rivest and Shamir in [11]. PayWord is a credit based off-line protocol im-
plemented by the use of hash chains that are called chains of PayWords. In our work 
we will assume the use of the MD5 hash function [27] denoted by w(i). Three par-
ticipants are involved in a protocol session: the Customer, the Broker and the Vendor. 
The Customer (C) establishes an account with the Broker (B) who issues a certificate 
containing customer’s information and B’s name. This certificate will authorize C to 
construct PayWord chains validating himself to some Vendor (V). The basic steps of 
PayWord micro-payments are shown in Figure 2. 

Upon reception of the foresaid certificate (certC), C computes the PayWord 
chain w in reverse order based on a randomly chosen term. Then, he signs the  
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so-called commitment (M) of the PayWord protocol which consists of the calculated 
first term of the chain (w(0)) along with the required customer information; M is sent 
to V. In every single payment, a chain term of type, P:(w(i),i) is sent to V until 
the last payment, P:(w(I),I). We consider the (attacked) variable-size payment 
scenario, where the value of each payment varies between 1 and n. V verifies the 
payments P, by applying the hash function w to the last valid payment v times, where 
v is the value of the requested payment (w(i-v)). At the end of the day, V reports to 
B the last (highest-indexed) payment (w(I),I) - where I=max(i) - received from 
C within the current day, together with the owned C’s commitment.  

 
 

Fig. 2. The PayWord micro payment protocol 

Table 1. Glossary of the PayWord protocol notation 

IDc Customer ID 
IDb Broker ID 
IDv  Vendor ID 
SKb Broker’s key 
PKc Customer’s public key 
SKc Customer’s secret key 

Addrc  Customer address  
certC Customer certificate 
Exp  Certificate expiration time  

stamp  
Ic  Customer’s information 
Im Vendor’s information 
D  Date 
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While the use of the hash chain ensures reduced computational requirements for V, 
the attack found on the protocol is based on V’s mechanism, when accepting an al-
tered “hashed” message. Provided the intruder’s ability to perform hash function 
calculations by MD5, the detected attack takes place when the intruder intercepts and 
alters a variable-size payment request.  

6   Verification Results 

This section provides simulation and verification results obtained within the SPIN 
model checking environment for the developed PayWord model, when combined with 
the described intruder model. The simulation output is shown by the automatically 
generated Message Sequence Chart.  

 

Fig. 3. INTV attack of a variable-size payment (P): V accepts an altered message 

 

Fig. 4. Verification output 
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Figure 3 shows the detected INTV attack. In state 19 C sends a commitment (M), 
which is not affected by the intruder and continues with the first variable-size pay-
ment attempt (P). In state 27 the intruder alters message (w1,n1) thus resulting in 
the fake message (w1’,n1-1), which is eventually accepted by V. Finally, V dis-
patches message D (deposit) and the protocol session ends with a successful INTV 
attack that is encoded as an invalid end state. 

Figure 4 shows the obtained verification output that revealed the described attack 
scenario. The performed state space search reports an error and generates a counter-
example reflecting a feasible path to the defined invalid end state. By the use of the 
error trail simulation feature of SPIN we roll back the protocol execution and identify 
the detected flaw. 

 

Fig. 5. Attack tactics on the PayWord micro payment protocol 
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Figure 5 summarizes the attack tactics attempted by the described intruder model 
and the participants’ responses in all protocol steps. Failed attack scenarios are noted 
as “not accepted!!” and result in fail-stop model states. The detected INTV attack is 
shown within the frame in the right-hand side that represents V’s hash mechanism.  

7   Conclusion 

This work introduces an open-ended Dolev - Yao intruder model that combines ele-
mentary and more complex attack tactics in an attempt to subvert security protocol 
guarantees. We provided a formalized description of the most often reported attack 
tactics, which were implemented within the SPIN model-checking environment. The 
obtained intruder model was applied to a range of electronic payment protocols and 
revealed an integrity violation attack on the PayWord micro-payment protocol. 

Although the proposed model is bound to the absence of model checking com-
pleteness - as all published approaches - it constitutes a supplemental model-checking 
mean, capable to reveal violations of protocol correctness properties, beyond those 
checked by existing security model checkers. 

Finally, the proposed intruder model is open to extensions aiming to integrate more 
specialized attack tactics that may subvert e-commerce security guarantees like non-
repudiation, fairness, accountability, abuse-freeness and so on. 

References 

1. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory 2/29, 198–208 (1983) 

2. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: Proc. of the 
IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press, 
Los Alamitos (1993) 

3. Meadows, C.A.: Formal verification of cryptographic protocols: A survey. In: Safavi-
Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 133–150. 
Springer, Heidelberg (1995) 

4. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transaction on 
Computer Systems 8/1, 18–36 (1990) 

5. Syverson, P., Cervesato, I.: The logic of authentication protocols. In: Focardi, R., Gorrieri, 
R. (eds.) Foundations of Security Analysis and Design. LNCS, vol. 2171, pp. 63–137. 
Springer, Heidelberg (2001) 

6. The SPIN model checker official website, available at http://spinroot.com/ 
7. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, Englewood 

Cliffs (1991) 
8. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation proto-

cols. Computer Communications 25/17, 1606–1621 (2002) 
9. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing protocols. 

Theoretical Computer Science 283, 419–450 (2002) 
10. Cremers, C.J.F.: Feasibility of multi-protocol attacks. In: Proc. of the First International 

Conference on Availability, Reliability and Security, IEEE Computer Society Press, Los 
Alamitos (2006) 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Intrusion Attack Tactics for the Model Checking of e-Commerce Security Guarantees 251 

11. Rivest, R.L., Shamir, A.: Payword and Micromint: Two simple micropayment schemes. 
In: Lomas, M. (ed.) Security Protocols. LNCS, vol. 1189, pp. 69–87. Springer, Heidelberg 
(1997) 

12. Millen, J.K., Clark, S.C., Freedman, S.B.: The Interrogator: Protocol Security Analysis. 
IEEE Transactions on Software Engineering 13/2 (1987) 

13. Clarke, E.M., Jha, S., Marrero, W.: Verifying security protocols with Brutus. ACM Trans-
actions on Software Engineering and Methodology 9/4, 443–487 (2000) 

14. Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic protocols us-
ing Murφ. In: Proc. of the IEEE Symposium on Research in Security and Privacy, pp. 
141–153. IEEE Computer Society, Los Alamitos (1997) 

15. Roscoe, A.W.: Modeling and verifying key-exchange protocols using CSP and FDR. In: 
Proc. of the 8th IEEE Computer Security Foundations Workshop, pp. 98–107. IEEE Com-
puter Society, Los Alamitos (1995) 

16. Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall, Englewood Cliffs 
(1997) 

17. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking cryptoprotocols. In: 
Proc. of the 1997 DIMACS Workshop on Design and Formal Verification of Security Pro-
tocols (1997) 

18. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: Proc. of the IEEE 
Computer Security Foundations Workshop, pp. 18–30. IEEE Computer Society, Los 
Alamitos (1997) 

19. Meadows, C., Kemmerer, R., Millen, J.: Three systems for cryptographic protocol analy-
sis. Journal of Cryptology 7/2, 79–130 (1994) 

20. Gritzalis, S., Spinellis, D., Georgiadis, P.: Security protocols over open networks and dis-
tributed systems: formal methods for their analysis, design, and verification. Computer 
Communications 22, 697–709 (1999) 

21. Basin, D., Modersheim, S., Vigano, L.: OFMC: A Symbolic Model-Checker for Security 
Protocols. International Journal of Information Security (2004) 

22. AVISPA: Automated validation of internet security protocols and applications, FET Open 
Project IST-2001-39252 (2003), http://www.avispa-project.org 

23. Lowe, G.: Towards a completeness result for model-checking of Security Protocols. In: 
Proc. of the 11th Computer Security Foundations Workshop, IEEE Computer Society 
Press, Los Alamitos (1998) 

24. Clark, J., Jacob, J.: A survey of authentication protocol literature: version 1.0, Technical 
Report, University of York (1997) 

25. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security proto-
cols. In: Proc. of the 13th IEEE Computer Security Foundations Workshop, pp. 255–268. 
IEEE Computer Society, Los Alamitos (2000) 

26. Carlsen, U.: Cryptographic protocol flaws – Know your enemy. In: Proc. of the 7th IEEE 
Computer Security Foundations Workshop, pp. 192–200. IEEE Computer Society, Los 
Alamitos (1994) 

27. Rivest, R.L.: The MD5 Message-Digest Algorithm. In: Internet informational RFC 1321 
(1992) 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Safety Process Improvement with POSE and

Alloy

Derek Mannering1, Jon G. Hall2, and Lucia Rapanotti2

1 General Dynamics UK Limited
2 Centre for Research in Computing, The Open University

Abstract. Safety Standards demand that applications demonstrate they
have the required safety integrity, starting with the initial requirements
phase. This paper shows how the Problem Oriented Software Engineering
(POSE) framework, in conjunction with the Alloy formal method, sup-
ports this task through its ability to elaborate, transform and analyse the
project requirements. The results of applying this combination to an ex-
isting design showed that process improvement can be realised through its
ability to detect anomalies early in the life cycle that had previously been
detected by much later (and more costly) validation work.

1 Introduction

The first author is a member of a development group which has a successful
safety critical design process based on the use of the Z notation [1]. Of critical
importance to the process is the proof of conformance of the Z design specifi-
cation against the formal Z safety properties. Currently, validation occurs well
into the design process which, if anomalies with the Z safety properties are un-
covered, greatly increases the impact of reworking. One of the reasons for such a
late validation is that the current process does not have tool support, but relies
on manual proof, which is expensive. In this paper we illustrate, through a case
study, how front-end support for safety analyses of early requirements models
was added to the process. The candidate front end is based on the combination
of the Problem Oriented Software Engineering (POSE) safety pattern proposed
in [2] and the Alloy formal method [3]: POSE provides for early requirements
models which are amenable to safety analysis, and Alloy for lightweight tool sup-
port for animation and proof based on such models and is compatible with Z.
The case study was chosen partly because of the existence of known anomalies,
ranging from modelling errors through to contradictory requirements, so that
the ability of the front end to detect anomalies early could be tested. Indeed,
these (known) anomalies were found early in the process; in addition from an
analysis of the case study results we conjecture that, given a reasonable process,
the front end could have found certain classes of anomaly ab initio, and without
prior knowledge. Another benefit of the front end is that it is efficient, i.e., it
uses the same information and models as used for the development task, and so
any overhead in validating specific safety analysis models can be avoided.

The paper is organised as follows. Brief descriptions of the background to the
paper are given in Section 2. Section 3 applies the POSE and Alloy combination
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on a case study involving the development of a Stores Management System.
Section 4 includes related work. Section 5 contains a discussion and conclusions.

2 Problem Oriented Software Engineering

In POSE, software development is viewed as solving a problem, the solution
being a machine—that is, a program running in a computer—that will ensure
satisfaction of the requirement in the given problem world consisting of real-
world domains. POSE is defined as a formal Gentzen-style sequent calculus [4]
that allows problems to be transformed into problems that are easier to solve, or
that will lead to other problems that are easier to solve. A set of transformation
rule schema defined in the calculus capture (atomic) discrete steps in develop-
ment. Each requires a justification of application in order for the transformation
to be solution preserving—simplifying only slightly, this means that a solution
to a transformed problem is also a solution to the original problem—although
justifications need not be formal. The combination of the justifications is an ar-
gument that the solution is adequate as a solution to the original problem. The
interested reader is referred to [5,6] for a complete presentation of POSE.

Context & 

Requirement

Interpretation

Solution

Interpretation & 

Expansion

Preliminary

Safety Analysis

[PSA ok]

[not PSA ok]
1

2 3

4

(a) POSE Safety Pattern (b) Selective Jettison Panel

Fig. 1.

Previous work [2] has identified a re-usable process template or ‘pattern’ for
safety-critical development, shown in Figure 1a as a UML activity diagram. The
activities in the figure include the following POSE activities: (a) Context & Re-
quirement Interpretation, used to capture increasing knowledge and detail in
the context (i.e., the environment) and requirement of the problem; (b) Solu-
tion Interpretation & Expansion, through which an architecture (logical and/or
physical) for the solution is chosen, and used to transform the problem; (c) Pre-
liminary Safety Analysis (PSA), a combination of problem simplification and
traditional safety analysis conducted to ensure a feasible solution structure has
been chosen. The choice point (labelled 4) uses the outcome of the PSA to de-
termine whether: (a) the current architecture is viable as the basis of a solution;
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or (b) whether backtracking and (re-)development of the problem (activity 1)
and/or another candidate architecture (activity 2) should be chosen. The pro-
cess pattern was applied to the case study discussed in this paper in order to
support the early detection of anomalies.

3 Case Study

The case study concerns the development of the Stores Management System
(SMS) in use on a real aircraft. For space reasons only part of the case study
is reported in this paper, namely the design of the selective jettison (SJ) func-
tionality, i.e., the way in which stores are chosen for jettison from the aircraft.
Although only one part of the system, this is sufficiently illustrative of the ap-
plication of the POSE/Alloy combination to the problem of early detection of
anomalies. The Selective Jettison Panel (SP) shown in Figure 1b indicates the
aircraft has six release stations—corresponding to Outer, Middle and Inner po-
sitions on each of the Starboard and Port wings. The pilot (P) controls the store
jettison via the SP, using: (a) six selection switches, one for each station; (b)
a three position SJ mode selection switch; (c) an ‘In Air’ indicator lamp; and
(d) the SJ button which initiates the jettison. The SJ sequence does not release
all the stores at once, as this could result in a collision hazard, rather the step
release sequence used is Out → Mid → In (see Figure 1b) with a delay between
each step: the SJ is not an atomic action, but rather three atomic actions in se-
quence. A balance algorithm is applied to most jettison sequences to ensure that
the aircraft is not put into an unsafe state. The exception is that a single store
jettison is always allowed to give the pilot final control under error conditions.

3.1 Applying the POSE Safety Pattern

The first two steps in the POSE safety pattern (Figure 1a) led us to the devel-
opment problem sketched in Figure 2(a)1. Each station (there are six of them)
has a Store Unit (SU) and a Suspension and Release Equipment (S&RE) asso-
ciated with it. The SU provides the power to release or jettison the store held
on the S&RE, under the control of the Safety Manager (SM) to be designed. R
represents both functional and safety requirements at the system boundary.

The third step of the POSE pattern is to perform a PSA. As described above,
this step combines problem simplification and traditional safety analysis. Problem
simplification removes the non-direct domains (6x S&RE and P2) and transforms
requirements R at the system boundary to requirements RM that apply directly
to the required solution machine SM. The mechanism is explained in detail in [2],
but is not covered in depth here. The idea of reformulating requirements such as
RM which apply directly to the required solution machine (SM in this case) is that
it helps in the specification of the solution machine. However, before producing
1 Instead of the formal notation of POSE, which would take too long to explain, here

we use a graphical notation derived from that of Problem Frames [7].
2 The system safety analysis and assumptions associated with the simplification [6]

cover the pilot impact on safety.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Safety Process Improvement with POSE and Alloy 255

(a)SMS Architecture and (b) POSE Transformed SMS Architecture

Fig. 2.

such a specification, it is important to establish that the requirements are feasible
from a safety perspective; otherwise, the development must backtrack. The Alloy
model for the formal requirements specification of the SM was developed directly
from the POSE model as depicted in Figure 2(b). The functionality of this Alloy
model was based on the POSE model information, the Z specifications, and the
derived requirements, RM. There is not space to provide the Alloy specification,
but it is based on modifying the trace models of Chapter 6 of [3].

3.2 The PSA Safety Analysis

The formal Alloy model was successfully validated against the requirements RM
using a variety of simulation runs with different combinations of inputs covering
the range of input values. After this, the PSA safety analysis was undertaken,
which followed the pattern used on earlier examples (e.g. [2]), with Functional Fail-
ure Analysis (FFA) [8] being applied to identify any system issues. An important
FFA issue was ‘Multiple station SJ release but balance not applied’. The Alloy
model was simulated for a number of jettison package selections involving single
and multiple stores. The results should have been that single store jettisons are
always allowed, whilst multi-store jettisons must satisfy the balance algorithm.
However, a package consisting of the release sequence p1;p0;p1, where a single
store (p1) is released in the Out and In steps and no release (p0) in the Mid step,
resulted in no balance being applied. Further investigation established that bal-
ance was only applied when two stores were being released in the same step (p2),
and only for that step. The problem occurs in the high level Z specification of the
SM, which contains the term #releaseLocations > 1 = θSM ∈ balanced, where
# represents the cardinality of the set and θSM represents the bound values of
SM. Now releaseLocations is the number of jettison pulses being applied (the p0,
p1 and p2)—this is modelled in Alloy by a function balance() which specifies no
balance only if there are zero (p0) or a single (p1) pulse. The problem is that (as
noted above) SJ is not an atomic action, but rather three: one each for Out, Mid
and In. The functionality given above ensures each atomic action satisfies the bal-
ance, but does not ensure the entire SJ sequence does. Hence the pulse sequence
p1;p0;p1 meets the criteria for each of its atomic components, indicating that
the model does not require it to be balanced, when it should be. The solution is
to base the balance calculation on the SJ station selection and not on the jettison
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pulses. When this change was made, the model behaved as required. Other FFA
issues were addressed in a similar fashion, and the modelling identified the fur-
ther known anomaly and a not previously identified one. The latter concerned an
inconsistency between two of the Customer supplied requirements documents.

4 Related Work

The case study is based on multi-level safety analyses process typical of many
industries; one example is ARP4761 [8] which governs commercial airborne sys-
tems. This paper uses Preliminary Safety Analysis, which corresponds to the
Preliminary System Safety Assessment (PSSA) phase of ARP4761.

Requirements in POSE follow the fundamental clarification work of Jackson
[9] and Parnas [10] which distinguishes between the given domain properties of
the environment and the desired behaviour covered by the requirements. This
work also distinguishes between requirements that are presented in terms of the
stakeholder(s) and the specification of the solution which is formulated in terms
of objects manipulated by software [11]. Therefore there is a large semantic
gap between the system level requirements and the specification of the machine
solution. POSE bridges this gap by transforming the system level requirements
so they apply more directly to the solution.

The POSE notion of problem fits well with the Parnas 4-Variable model [10]
which is well suited to defining embedded critical applications. The 4-Variable
model also forms the basis of the SCR [12] and SpecTRM [13] methods, both of
which have toolsets for the development of safety systems. Recent work indicates
that POSE will interface to these methods. AMBERS [14], also uses the model
(SCR variant) and has similar goals to and is also compatible with POSE, but
it does not include the PSA feasibility check.

5 Discussion and Conclusions

The case study results illustrate that application of the POSE safety pattern
allows the safety feasibility of a system’s requirements to be analysed early in
the development life cycle. Earlier papers ([15,6,2]) have shown that POSE is
flexible enough to work well with a variety of common development approaches.
The results of this case study further confirm this finding by showing that the
POSE/Alloy combination works well and is suitable for supporting the front end
of a safety process. As in the earlier case work [2], the analysis was found to be
quick and efficient since there is no need to validate special models produced
just for the safety analysis.

The task of using the POSE/Alloy combination to improve the front end of
the safety critical process asked two major questions. The first, and easiest to ad-
dress, was: “Could the POSE/Alloy combination detect the anomalies?” The re-
sults demonstrate that both POSE and Alloy can be used in combination to detect
the anomalies of interest. The second question is: “Would the POSE/Alloy combi-
nation have detected these anomalies by following a reasonably expected process?
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This is more difficult, but a plausible answer is that in the case study POSE and
Alloy were used as recommended and found the anomalies of interest. This im-
parts confidence that a process using POSE/Alloy would be able to detect these
and similar anomalies at an early phase in the development life cycle. Therefore
technically the POSE/Alloy combination could and would be expected to provide
the required process improvement for the safety critical process under study. The
next step is to evaluate the process improvement on a project using normal, but
suitably trained, project engineers rather than those specialising in the POSE and
Alloy techniques, to see if similarly encouraging results are obtained.
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Abstract. In the Korea Nuclear instrumentation and control (I&C) System 
(KNICS) project, a digital safety system including Reactor Protection System 
(RPS) and Engineered Safety Features-Component Control System (ESF-CCS) 
is developed. It is based on a safety grade Programmable Logic Controller 
(PLC) as a platform for the safety critical I&C systems. The software used in 
the digital safety system is classified as safety-critical, and it is qualified 
according to an appropriate lifecycle. This lifecycle includes design and 
qualification activities for the components and the system. In the KNICS 
project a defense-in-depth organizational structure for qualification is 
implemented based on different teams including 3rd party review teams. Each 
team uses diverse techniques, methods, and tools for their qualification tasks. 
Using the Korean KNICS project as an example, the results of Defence-in-
Depth and Diversity (D3) qualification of safety-critical software are presented. 

1   Introduction 

Software is one of the main sources of Common Cause Failures (CCF) in digital 
Instrumentation and Control (I&C) systems for nuclear power plants. This paper 
describes a strategy to cope with CCF by Defense-in-Depth and Diversity (D3) in the 
qualification process. In the KNICS project a defense-in-depth and diverse 
organizational structure for qualification is implemented. 

The objectives of the D3 qualification are mainly to ensure high quality in the 
development process of the programmable logic controllers (PLC) for the safety-
critical I&C systems. Those PLCs are then applied to develop a prototype of a safety-
critical software based digital protection system for nuclear power plants. 
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2   D3 Approaches 

Following the terminology of the International Atomic Energy Agency (IAEA) 
Defense-in-Depth is defined as “The application of more than one protective measure 
for a given safety objective, such that the objective is achieved even if one of the 
protective measures fails.” This definition is similar to the definition of Diversity: 
“The presence of two or more redundant systems or components to perform an 
identified function, where the different systems or components have different 
attributes so as to reduce the possibility of common cause failure, including common 
mode failure.” [1]. 

The principles of D3 approaches for I&C systems are given in several publications 
[2], [3], [4]. Additionally, projects in this field are under way like the IEC standard 
IEC 62340 “Requirements to cope with Common Cause Failure (CCF)” [5] and the 
IAEA TECDOC project “Avoiding Common-Cause Failures in Digital I&C Systems 
of NPPs” [6].  

In the KNICS project the principles of DiD and Diversity (D3) have been applied 
to both, the system architecture and the development and qualification processes. The 
following gives a brief overview about the main issues. 

3   The KNICS Project 

The KNICS project is a research and development project starting in 2001 to develop 
a safety I&C system for nuclear power plants. About 25 Korean organizations 
(industrial organizations, research institutes, universities and the Korean Institute for 
Nuclear Safety (KINS)) participate in the project. The project will be finished in 
2008. Besides the Korean participants organizations from outside Korea have been 
involved to diversify the development and qualification processes. 

As shown in Fig. 1, the plant protection system (PPS) in the KNICS project is 
designed in a PLC-based architecture with four redundant channels/divisions (A, B, 
C, and D). The PPS in KNICS design consists of the reactor protection system (RPS) 
and the engineered safety feature – component control system (ESF-CCS). In order to 
avoid CCF in the four channels, different kinds of diversity (e.g. functional diversity, 
signal diversity, design diversity, equipment diversity, software diversity), are applied 
to a greater or lesser extend. 

To achieve the objective of human diversity, different design and qualification 
organizations designed and qualified independently the PLC platform, the RPS, and 
the ESF-CCS as shown in Table 1. 

Through the lifecycle used for the PLC platform including the RPS, and the ESF-
CCS different design technologies were applied as shown in Table 2. 

To achieve the objective of equipment diversity, different CPUs and memory 
manufacturer have been chosen. Software diversity is achieved by different op- 
erating systems, algorithms, compilers/languages and the different communication  
protocols. 
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Fig. 1. KNICS Plant Protection System - Overview 

Table 1. Application of human diversity 

  
Design 

organization 
Programmer, 

Internal Tester 
Management 

teams (QA, CM) 

External 
Testers, 

Certifiers 

1 RPS 
DOOSAN, 

Enesys 
DOOSAN, 

Enesys 
KAERI KAERI 

2 ESF-CCS 
DOOSAN, 

BNF 
DOOSAN, BNF KAERI KAERI 

3 
POSAFE-Q PLC 
platform 

    

3.1 
Operating system 
(pCOS) 

POSCON 
POSCON, 

KAERI 
KAERI 

KAERI, 
ISTec 

3.2 
Communication system 
(HR-SDL, HR-SDN, 
FMS) 

POSCON, 
CREVIS 

POSCON, 
CREVIS 

KAERI 
KAERI, 
ISTec 

3.3 
I/O modules (AD/DA, 
DI/DO) 

POSCON, 
CREVIS 

POSCON, 
CREVIS 

KAERI KAERI  

To achieve diversity of design criteria, different sets of standards and regulatory 
criteria have been applied for PLC platform, the RPS and the ESF-CCS. Both, IAEA 
and IEC guidelines and standards as well as Nuclear Regulatory Commission (NRC) 
and IEEE guidelines and standards have been used for development and qualification 
of the POSAFE-Q PLC. In the KNICS project, IEEE 7-4.3.2-2003 [7], NUREG-6303 
[8], NRC Branch Technical Position BTP19 [4], draft of IAEA TECDOC on avoiding 
common-cause failures in digital I&C systems of NPPs [6], drafts of IEC 62340 [5], 
and IEC 60880 [9] have been referenced to as D3 criteria. 
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Table 2. Application of design diversity through the lifecycle 

  Software 
requirements 

Software design Implementation Testing 

  Models Models 
Compiler / 
Language 

Testing / 
Analysis 

1 RPS
NuSEE (Nu-
SRS) 

Nu-SDS pSET 
Cantata++/ 
LDRA Testbed 

2 ESF-CCS
SCADE 
(DFD, CFD, 
SSM) 

FBD pSET 
Cantata++/ 
LDRA Testbed 

3
POSAFE-Q PLC 
platform

    

3.1
Operating system 
(pCOS)

Statechart 
Structure chart, 
Modulechart, 
Flowchart 

TI Code 
Composer C 

Cantata++/ 
LDRA Testbed 

3.2
Communication 
system (HR-SDL, 
HR-SDN, FMS)

SDL Flowchart 
TI Code 
Composer C, 
Paradigm C++ 

Cantata++/ 
LDRA Testbed 

3.3
I/O modules 
(AD/DA, DI/DO)

DFD Structure chart Keil/C 
Tessy/McCabe 
/ModelSim  

4   Application to D3 Qualification in KNICS Project 

The qualification of the safety-critical software for the KNICS project has been 
conducted by a defense-in-depth organizational structure, that consists of the 
development team, the performance and availability analysis team, the internal testing 
team, the independent testing team, the independent verification and validation team, 
the dependability (safety, security, and reliability) analysis team, the quality assurance 
team, the configuration management team, and the 3rd party review team as a safety 
envelope. Each team has used diverse techniques, methods, and tools for their tasks. 
 
KAERI analysis and V&V 
The software qualification approach applied by KAERI includes dependability 
analysis (safety and security), verification and validation (V&V) tasks, independent 
tests, quality assurance and configuration control activities.  

To assure high quality of the software, V&V tasks are performed through out all 
the phases of the life cycle. The V&V activities for the software requirement 
specifications and for the software design specifications consist of review of the 
licensing suitability, Fagan inspection, traceability analysis, and fault detection with 
formal verification methods to avoid subsequent errors. The V&V processes for the 
code comprise traceability analysis, source code inspection, test case and test 
procedure generation. Different teams tested the software with diverse tools and 
methods through the life cycle. Testing is the main V&V action for software 
integration and system integration phases to detect faults [7]. 

Failure mode and effect analysis (FMEA) was used to analyze the behavior of the 
system in cases of failures. Hazard and operability (HAZOP) method was applied to 
software requirements, design, and implementation analysis. Fault tree analysis (FTA) 
method was used for the safety analysis of the RPS and the analysis of the final code.  
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Fig. 2. Cause-consequence coverage of the diverse methods 

Due to the application of these three methods, cause-consequence coverage was 
achieved in the safety analysis as shown in Fig 2 [10]. 

The software configuration management (SCM) activities comprise configuration 
identification, configuration control, status accounting, audits and reviews. 
Configuration audits were performed to verify compliance to specified requirements, 
standards and contract conditions. They also verify the identification of manuals and 
traceability of modification requests. The audits are part of the process whereby 
baselines are accepted or rejected. All SCM, V&V, design and testing activities are 
controlled by the quality assurance team. 

 
3rd party review 
The 3rd party review was performed as software type test in compliance with the 
procedures developed and applied by ISTec for assessment of safety critical software 
[11]. The assessment work was restricted to the software of the real time operating 
system and the safety communication modules. It was performed parallel with the 
software components’ development process. It was not issue of the qualification to 
assess certain application tasks, i.e. the code of I&C functions. 

For practical reasons and to enhance effectivity of the assessment process the 
work was done in close collaboration between ISTec and KAERI. After each 
development step the documentation was circulated for assessment to ISTec by 
KAERI. A subset of documents was evaluated by KAERI itself. In these cases ISTec 
checked the results of the evaluation (i.e. the verification reports). Additionally, spot 
checks of the development documents were performed. 

All documents were evaluated with respect to ISTec’s assessment procedure for 
safety critical software [11], [12]. The results of document evaluation were discussed 
at project meetings in detail. During the project meetings refinements of the 
qualification process in both involved organizations were discussed and 
improvements were implemented. 

5   Conclusions 

The paper presents the strategy to cope with CCF by Defense-in-Depth and Diversity 
(D3) in the qualification process of the Korea Nuclear I&C System (KNICS). In the 
project different kinds of diversity were applied to the I&C system itself as well as the 
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qualification process. None of the methods can be claimed to be complete and 
sufficient to dominate totally every kind of CCF. 

To apply D3 methods to design and qualification of a safety critical system needs 
huge human, technical and financial resources. Therefore, it seems to be necessary to 
optimize - or at least to improve - criteria for a D3 approach to ensure the required 
safety and to limit the resources to reasonable expense. One step to this direction 
should be the quantification of the effectiveness of Defence-in-Depth and Diversity 
measures. The quantification has to consider the correlation of different D3 methods. 

However, the experiences of the project show that D3 approaches provide a wide 
variety of methods to dominate CCF in safety I&C systems as well as in qualification 
processes. 
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Abstract. This paper presents an experimental evaluation of the fault-tolerant 
communication (FTCOM) layer of the DECOS integrated architecture. The 
FTCOM layer implements different agreement functions that detect and mask 
errors sent either by one node using replicated communication channels or by 
redundant nodes. DECOS facilitates a move from a federated to an integrated 
architecture which means that non-safety and safety-related applications run on 
the same hardware infrastructure and use the same network. Due to the in-
creased amount of data caused by the integration, the FTCOM is partly imple-
mented in hardware to speed up packing and unpacking of messages. A cluster 
of DECOS nodes is interconnected via a time-triggered bus where transient 
faults with varying duration are injected on the bus. The goal of the experiments 
is to evaluate the fault-handling mechanisms and different agreement functions 
of the FTCOM layer. 

1   Introduction 

In a modern upper class car the number of electronic control units (ECUs) has passed 
50 and the total cable length is more than two km. As a consequence, the weight of 
the electronics systems constitutes a non-negligible part of the total weight, and the 
cost of trouble-not-identified problems (TNIs) associated with connector faults is rais-
ing [1]. The trend of using a single ECU for each new function is costly and for mass 
produced systems indefensible. Additionally, several emerging subsystems will re-
quire data from and control over other subsystems. An example could be a collision 
avoidance subsystem which has to simultaneously control both the steer-by-wire and 
brake-by-wire subsystems [2]. This becomes very complex to implement on an archi-
tecture based on the federated design approach where a single ECU is required for 
each function. All these issues imply that a move towards an integrated architecture is 
necessary and this is the goal of DECOS (Dependable Embedded Components and 
Systems) [3], and also for similar initiatives such as AUTOSAR [4]. In an integrated 
architecture several applications can and will share the same ECU which requires 
temporal and spatial separation of applications. Within DECOS such encapsulation is 
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ensured by high-level services like encapsulated execution environments [5] as well 
as virtual networks [6]. Other high-level services provided by the DECOS architec-
ture are integrated services for diagnosis [7] and a new FTCOM layer based on the 
one used in TTP/C [8]. The goal of the DECOS FTCOM layer, whose validation is 
the focus of this paper, is to implement different agreement functions that detect and 
mask errors sent either by one node using replicated communication or by redundant 
nodes. Since the communication to and from a node will be increased in an integrated 
architecture, parts of the DECOS FTCOM layer are implemented in hardware to ac-
celerate message packing and unpacking. The remainder of the paper is organized as 
follows. Section 2 briefly describes the DECOS fault-tolerant communication layer. 
The experimental setup used for the dependability evaluation is described in Section 
3, and the results of the evaluation are presented and discussed in Section 4. Finally, 
the conclusions are given in Section 5.  

2   DECOS FTCOM Layer 

The FTCOM layer consists of one part which is implemented in hardware (Xilinx 
Virtex-4) together with the communication controller to accelerate frame sending and 
receiving as well as message packing and unpacking. During frame receiving, the two 
frame replicas received on the two replicated channels are checked by a CRC for va-
lidity and merged into a single virtual valid frame which is handed over to the upper 
FTCOM layers. The other parts of the FTCOM layer are implemented in software and 
are automatically generated by the node design tool [9]. The software-implemented 
parts have services for sender and receiver status as well as message age. However, 
the most important service is the provision of replica deterministic agreement (RDA) 
functions to handle replication by node redundancy. A number of useful agreement 
functions are provided. For fail-silent subsystems, where the subsystems produce cor-
rect messages or no messages at all, the agreement function ‘one valid’ is provided. It 
uses the first incoming message as its agreed value. For fail-consistent subsystems, 
where incorrect messages can be received, the agreement function ‘vote’ is provided. 
It uses majority voting to establish the agreed message and thus an odd number of 
replicas are needed. For range-consistent subsystems, e.g. redundant sensor values, 
the agreement function ‘average’ is provided. It takes the arithmetic mean of the mes-
sages as its agreed value. For a case where the message is e.g. a boolean representing 
that the corresponding subsystem is alive, the agreement function ‘add’ is provided, 
which sums up the living number of replicas and can therefore be used to get subsys-
tem membership information. The function ‘valid strict’ compares all valid raw val-
ues and only uses the (agreed) value if they are identical.  

3   Experimental Setup 

The DECOS cluster consists of a set of nodes that communicate with each other using 
replicated communication channels. A node knows the message sending instants of  
all the other nodes. Each node consists of a communication controller and a host ap-
plication. The communication controller executes a time-triggered communication 
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protocol, whereas user applications and the software part of the FTCOM layer are 
executed in the host computer. Each DECOS node has a FPGA where the communi-
cation controller and the hardware part of the FTCOM layer are implemented.  Appli-
cation software, DECOS middleware and high-level services are implemented in the 
Infineon Tricore 1796 which is the host computer of the node. During the experi-
ments, relevant data is logged in an external SRAM and after the experiments are fin-
ished data is downloaded via the debugger to a PC for analysis [10] (see Fig. 1). The 
disturbances are injected by the TTX - Disturbance Node [11] which is running syn-
chronously with the cluster. A wide variety of protocol-independent faults can be in-
jected such as bus breaks, stuck-at faults, babbling idiot faults and e.g. mismatched 
bus terminations. Faults can have a random, but bounded or specified duration, re-
peated at a random or specified frequency. The shortest pulse which can be injected 
has duration of 1 µs which corresponds to roughly 10-15 bits on the bus at a band-
width of 10 Mbps. A counter application is used in this study to evaluate the FTCOM 
layer. The application toggles one boolean state variable and increments one float, 
and one integer variable, before the values of these variables are sent on the bus. The 
counter workload is executed on three redundant nodes. A fourth node is executing its 
RDA functions on the three replicated messages read on the bus to recover or mask an 
erroneous message. Each fault injection campaign is configured in an XML file where 
parameters such as fault type, target channel(s), fault duration and time between faults 
are defined.  

 

Fig. 1. Fault injection platform 

4   Results 

Several fault injection campaigns are carried out to validate that the FTCOM layer 
handles a message failure at replicated channels or at redundant nodes. The results are 
presented in the following sub sections. 

4.1   Message Failure at Replicated Channels 

The goal of this campaign is to validate the error detection and masking mechanisms 
of frames sent in replicated channels. Transient stuck-at-0 faults (denoted SA0), 
stuck-at-1 faults (denoted SA1), and white noise (denoted WN) with different burst 
lengths (from 1µs up to 500µs) are injected on communication channel A or channel 
B. The types of erroneous frames observed are Invalid frames and Incorrect frames. 
An Invalid frame is a case when a frame was expected but not received, or the frame 
does not have the specified header, or a wrong length. An Incorrect frame is the case 
when there is a mismatch between the data and the calculated CRC value (which 
means that data in the frame or the CRC are corrupted by a fault).  
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The expected number of erroneous frames nef due to injected disturbances can be 

calculated as: 

 
4

3) 1(
  ⋅+−⋅=

sl

flbl
nfnef                                       (1) 

Where nf denotes the number of fault injected and bl, fl, and sl denotes the burst, 
length, frame length and slot length respectively (in µs). The ratio ¾ is needed be-
cause only three out of four nodes are analyzed while the fourth logs the results. In the 
counter workload, the frame and slot lengths are 35 and 625 µs, respectively and the 
number of injected faults is 310. For a burst length of 1 µs, the equation gives nef = 
13 which agrees well with the experimental data. Equation (1) is also experimentally 
validated by a comparison between theoretical and practical results. The percentage of 
activated faults (Invalid and Incorrect frames) is shown in Fig. 2.  
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Fig. 2. Percentage of erroneous frames caused by different faults and burst lengths (presented 
both in micro seconds and as the probability of erroneous frames according to Equation 1) 

4.2   Message Failure at Redundant Nodes 

The goals of the campaigns presented in this section are to test the error detection and 
masking capabilities of the FTCOM layer in the case of failure of one of the redun-
dant nodes. Here, the fault is injected in one of the redundant nodes, for example by 
disturbing the frames of the same node in both channels (campaign RN1). An addi-
tionally test was performed (RN2) to check the correctness at application level. In 
campaign RN3, faults are injected in the application layer of one node, forcing the 
node to produce value failures. 

4.2.1   Campaign  RN1 
The type of faults used in RN1 could be caused by an erroneous packing of frames in 
the sending node. Fig. 3 shows the percentage of detected erroneous frames caused by 
simultaneous faults on both channels.  
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Percentage of invalid and incorrect frames observed
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Fig. 3. Percentage of erroneous frames (observed at different nodes) caused by a uniform dis-
tribution of SA0, SA1 and WN faults with different burst lengths 

4.2.2   Campaign RN2 
The objective of this campaign is to not rely directly on the detection and masking ca-
pabilities of the FTCOM layer as in campaign RN1, but to check the correctness at 
the application level. During approximately 64 hours more than 4.5 million white 
noise faults of duration 500 µs were injected on both channels. According to Equation 
1, nearly 2.9 million effective faults have thus been injected. The correctness was 
validated at the application level by checking the continuous increment of the count-
ers and not a single application failure was observed. 

4.2.3   Campaign RN3 
Erroneous frames that are syntactically correct but semantically incorrect (i.e. cor-
rectly built frames including e.g. value failures) will not result in e.g. Invalid or Incor-
rect frames and should be recovered or masked by the RDA algorithms. The objective 
of this campaign is to evaluate how well the RDA algorithms can detect and handle a 
message failure caused by one of the redundant nodes with or without replicated 
channels. Five different RDA functions operating on three data types are evaluated. 
One node in the cluster is deliberately forced to send non-expected data such as min 
and max values, NaN (Not a number) and Infinity floats as well as arbitrary float, 
boolean and integer values. All RDA functions behaved as expected but some cases 
needs to be discussed. A valid float value [12] can be changed into NaN or Infinity 
floats by e.g. a single bit-flip fault (e.g. if a 32-bit float value is 1.5 and bit 30 is al-
tered).  Arithmetic with NaN floats will produce more NaN floats and the error may 
propagate quickly in the software [13]. Thus, the result of the RDA algorithms, ‘aver-
age’ and ‘add’ operating on NaN floats are therefore also NaN and this should be 
considered during the choice of appropriate RDA functions.  The RDA function ‘valid 
strict’ demands that all three replicated values must be exact copies and performs 
therefore a roll-back recovery each time one or two faulty nodes are detected.  Thus, 
this RDA function seems powerful to recover from transient or intermittent node er-
rors, even such errors causing e.g. NaN floats.  
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5   Conclusions 

An experimental evaluation of the fault-tolerant communication layer of the DECOS 
architecture is presented. The evaluation shows that built-in error detection and re-
covery mechanisms including different RDA functions are able to detect, mask or re-
cover from errors both internal in a redundant node or on a replicated communication 
network. However, some erroneous data values such as NaN floats must be handled 
by the RDA algorithm before they are passed to the application level. This is auto-
matically handled e.g. by the RDA function ‘valid strict’ which detects and recovers 
from a transient or an intermittent node value failure by using the previously agreed 
value instead (roll-back recovery). A final observation is that a ‘median’ RDA func-
tion could be useful as an alternative to the average function. 
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Abstract. Designing highly reliable embedded software is a challenge
and several approaches are known to improve the reliability of this soft-
ware. However, all approaches have their advantages and disadvantages
which makes empirical evaluations investigating their potentials necessary.
In this paper, different approaches of software reliability improvement for
embedded systems were compared on basis of experiments conducted at
our institute. The first approach is an instance of N-version programming
based on forced diversity. Two fundamentally diverse hardware platforms
(microcontroller and CPLD/FPGA) were used to force diversity. Another
experimentwas conducted in which participants designed their software on
one hardware platform only. The second half of this experiment was used
for review and testing. Based on our experiments, the potentials of our ap-
plication of N-version programming, review and testing are compared with
respect to different fault categories (specification, implementation, appli-
cation) identified during evaluation.

1 Introduction

In the domain of embedded systems, more and more systems require certain
levels of reliability as for example future drive-by-wire systems in the automotive
industry. These embedded systems are subject to strong development constraints
as low cost and (hard) real-time requirements. In this context, applications of
specific software reliability improvement measures are needed. In this paper, we
will have a closer look at the application of three important approaches, namely
N-version programming (NVP), testing and review.

The approach of NVP, firstly introduced by [3] seems very promising, but in
the well known experiment of Knight and Leveson [5] it has been shown that
developers tend to make the same faults. Different approaches modeling this de-
pendency structure (e.g. [6]) and corresponding empirical studies [1,2] are known
which allow certain (model-based) predictions of failure probabilities in NVP sys-
tems. Other approaches try to decrease the dependencies between the different
software versions. One of these approaches is ”forced diversity” introduced by
[6] with an empirical evaluation in [8]. The basic assumption is that different de-
velopment methodologies lead to diversity in decision and thus diversity in the
behavior of the resulting product. However, recent publications [7,13] show, that
even these improved approaches can lead to undesired dependencies between the
diverse software versions. The approach of diverse NVP used for the evaluation
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in this paper is based on different hardware platforms used in today’s embedded
systems: microcontrollers (MCU) and programmable logic devices (PLD). The
effect of this hardware based diversity on NVP has been analyzed with the help
of experiments which are described in Section 2.

Testing, as the second approach investigated, can be applied at different stages
in the design cycle and is currently one of the most important means of verifica-
tion in embedded systems [9]. The disadvantage of all testing approaches is that
in typical applications not every possible input combination can be checked.
Embedded systems are often real-time systems which complicates the testing
process additionally. The evaluation in this paper applies black box testing with
an automatic test environment designed for this purpose and focuses on the
general potentials of testing.

Different approaches of reviews are well known [4,9] and applied in industry.
The idea is to inspect code, written by another person, to reveal problems in
the code and to identify inconsistencies with the specification. Reviews offer
chances to identify problems with respect to functional requirements, but also
with respect to non-functional requirements as maintainability and reliability.
However, the result of each review process depends a lot on the persons used
as reviewers and their review performance is hard to quantify. In this paper we
investigate the potentials of code inspection and details of this review-technique
can be found in Section 2.

The option of using as many of these approaches as possible seems promising
but is resulting in high costs (development time and human resources). Since in
many embedded applications reasonable costs of the resulting products have to
be achieved, evaluations which investigate the potentials of different approaches
and their combinations to prevent failures are needed.

2 Design of Experiments

Three experiments were conducted to obtain the empirical data needed for the
comparing evaluation of the different approaches of reliability improvement ac-
complished in later sections of this paper. This section gives a brief description
of these experiments while a more detailed description can be found in [10].

The first experiment with respect to NVP was based on two different hardware
platforms, namely MCUs and CPLDs and has been described in [13]. In order
to validate the results and to investigate additional aspects, the experiment was
replicated in a modified form. In this experiment, MCUs and FPGAs were used
as diverse hardware platforms and each group had to program both hardware
platforms starting with a platform picked randomly. While the task of the first
experiment was mainly the frequency measurement of four independent speed
signals and a communication via CAN bus (see [12,13] for details), the task of
the second experiment had been extended with 6 additional tasks in order to
increase the complexity of the application.

The aim of the third experiment was to identify which types of failures could
be identified by review and by testing respectively. Each group had to program
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the same task as used in the second NVP-experiment described above. However,
only the microcontroller hardware was used for implementation and the second
half of the lab course was used for review and testing. For testing, all test groups
were equipped with an own automated test environment similar to the one used
for evaluation. Each group received the machine code for testing and an empty
test report form which had to be filled out. As in the case of testing, every
review group received an empty review report form, a short review instruction
and the source code to review. Additionally they received the corresponding
documentation which should help them to understand the code if necessary.

In case of all three experiments, each version had to pass an automated accep-
tance test in order to receive versions with a certain minimum level of quality.
In the following evaluation test, the accepted versions were tested by an auto-
matic real-time test environment designed for this purpose. Further details of
the evaluation and challenges resulting from real-time requirements and specific
properties of embedded systems can be found in [10,11].

3 Experiment Results

For the analysis in this paper, we took a closer look at the most recent common
mode failures and listed them in Fig. 1 for all three experiments (cell is colored if
amount of versions with this failure is > 50%). It has to be noted that a stronger
acceptance test was used for the 2nd and 3rd experiment. Further details cannot
be listed here for space reasons, but can be found in [10].

4 Fault Classification and Potentials of the Approaches

During evaluation of the NVP experiment results, it became obvious that differ-
ent sources exist for the failures found. Those failure sources (faults) have been
identified as follows:

– Specification specific faults: the specification was misleading or
ambiguously.

– Application specific faults: application specific problems and challenges
have not been understood and thus have not been handled sufficiently (e.g.
forget to handle a certain scenario/input constellation).

– Implementation specific faults: specification and application specific
problems have been identified correctly, but faults have been made during
implementation (e.g. incomplete case structure).

The failures found in our three experiments have been analyzed with respect
to these fault categories and the results, presented in Fig.2 qualitatively, are
discussed in the following (see [10] for a more detailed failure description).

As expected, diverse hardware NVP allowed to mitigate most but not all of
the implementation specific faults (e.g. No.7-9, 11, 12 in Fig. 1 were handled
while No. 10 was faulty in several versions). In case of non real-time tasks re-
views uncovered many implementation specific faults while testing was more
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No. Failure describtion Type of 
problem

# versions with this failure
Exp. 1* Exp. 2 Exp.3

MCU CPLD MCU FPGA MCU

1 Wrong or delayed CAN messages after reset, especially if the 
input signal frequency is high.

Impl./
Spec. 100% 10% 36% 20% 25%

2
Wrong values in the CAN message as soon as input signals are 
of very low frequency (<5Hz).  measurement interval probably 
too short

Appl. 33% 80% 18% 40% 25%

3
Wrong values in the CAN message as soon as input signals are 
close above the maximum frequency explicilty specified. 
Overflows or wrong determination of maximum output value

Impl./
Appl. 42% 20% 0% 0% 0%

4 Missing or delayed CAN messages or messages with wrong 
values if subsequent input signal values change quickly. Appl. 83% 40% 91% 100% 75%

5

Wrong or delayed results as soon as different values are fed 
into the four measurement channels while changes of 
subsequent input signal values are limited to ~3.5% (200Hz) of 
the max. frequency  et al.: faulty determination of the 
measurement interval

Appl. n.a. n.a. 82% 90% 75%

6 Test cases with only equal test values at all inputs do not 
always lead to 4 identical results (not necessarily a failure). Impl. 33% 30% 64% 20% 42%

7 Device stops sending of CAN messages as soon as the input 
frequency has been above a certain threshold** Impl. 0% 0% 9% 0% 0%

8 No messages after reset if the input signal frequency is low Impl. 0% 0% 0% 0% 8%

9
Device stops sending of CAN messages as soon as two buttons 
are pressed sequentially with high frequency  probably 
leading to an undefined state in state machine

Impl. n.a. n.a. 0% 10% 0%

10
Testmessage counter does not always start with 0 as specified 

 at least in some cases: faulty interaction between 
testmessage counter and sending method

Impl. n.a. n.a. 27% 60% 17%

11
Testmessage counter is not incremented correctly (is 
incremented by more than 1)  faulty interaction between 
testmessage counter and sending method

Impl. n.a. n.a. 0% 60% 0%

12 User input via buttons changes the number of wrong values for 
the worse  real-time properties affected by user input Impl. n.a. n.a. 27% 0% 8%

number of versions used for analysis: 12 10 11 10 12

* only elementary acceptance test.
** close above the maximum input signal frequency explicitly specified if no button in pressed.
Impl. = Implementation, Appl. = Application, Spec. = Specification.
Exp.3: versions have been debugged according to individual test and review reports.

Fig. 1. Failures found during evaluation
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Fig. 2. Failure mitigation potentials with respect to failure categories
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successful in case of real-time functionalities. For this reason, high potentials
of implementation specific fault mitigation are assigned for NVP (not the best
value according to common mode failure described), closely followed by test and
review, since many implementation specific problems had not been identified by
all reviewers/testers.

Despite the immense effort put into different development processes, languages
and programming styles by using completely different hardware platforms in our
NVP experiments, several problems remained the same in all implementations
leading to identical wrong results in several cases. These problems (No. 2-5,
Fig. 1) result from the application itself, are implementation independent and
thus cannot be avoided by this approach of NVP. Some of these application spe-
cific faults occurred less often on the first hardware while others were present
less often on the other hardware. However, these differences were usually small
(exceptions are No.2, Exp.1 and No.6, Exp2. in Fig. 1). For this reason, only
low to medium potentials are seen for diverse hardware NVP to mitigate ap-
plication specific faults. On the other hand, testing and review discovered most
of the known application specific problems. With respect to application specific
faults, testing showed a little more advantages in comparison to review since
also unexpected faults were identified during testing while reviewers typically
concentrated on finding known problems in the code.

Finally, specification specific faults were a problem for all three approaches.
In case of diverse hardware NVP, only few specification specific faults could be
avoided (if one hardware platform was guiding to the correct implementation,
as in Exp.1, No.1, Fig. 1). In case of testing and review, all known specification
problems had been identified, but in several cases only by a minority of the
groups. Review seemed to have the highest potentials to reveal specification
specific problems, since the specification had been analyzed closely for review,
while it was used only for test case generation in the test process.

5 Conclusion

The three different approaches analyzed in this paper showed different potentials
with respect to the three fault categories identified.

During the analysis of the two NVP experiments, high numbers of depen-
dent failures had been found which resulted from application specific faults. The
reason for this common mode failures are application specific difficulties, which
exist independently from the implementation. A similar problem exists for spec-
ification specific problems. Several ambiguities could be uncovered by NVP, or
even mitigated by an implementation on one hardware platform (No.1, Exp1,
Fig. 1). However, our results show no hint that the majority of implementations
delivers correct results with respect to the intended behavior. For the third fail-
ure category, namely implementation specific faults, it had been expected that
diverse hardware NVP would allow maximum diversity between the faults in the
different versions. However, even in this case at least one common mode failure
has been introduced in several versions (No.10 in Fig. 1).
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Review and testing showed medium to high potentials with respect to all three
fault categories. With respect to specification specific faults, reviews showed the
highest potentials. It seems that during review the specification is read more
intensely than during testing in which the specification is used only for test case
generation. In case of application specific faults, testing showed the highest po-
tentials. A reason might be that, while review focuses on finding known problems
in the code, testing could reveal unexpected faults. In the case of implementation
specific faults, testing and review showed lower potentials for reliability improve-
ment than our NVP approach. These implementation specific faults were often
related to real-time requirements which are comparatively hard to detect by
testing and review.
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Abstract. This paper proposes an event-based approach with an intuitive simple 
graphical representation of the system and its environment for designing, analy-
sis and testing safety-critical systems. The events are user actions and system 
responses, and are ordered according to the threats posed by the resulting sys-
tem states. This ordering is an integral aspect of the graphical representation, 
making it possible to directly identify the risks associated with each and every 
functionally desirable, and undesirable, event relative to one another. Tests that 
target safety requirements are devised by examining possible traces of these 
events, represented compactly by regular expressions, exhibiting particular risk 
patterns such as human error and system failures. 

Keywords: Safety, Analysis and Testing, Event Sequence Graphs, Risk 
Graphs, Regular Expressions, User Interactions. 

1   Introduction, Related Work 

Modern safety critical systems with automated monitoring and control, sophisticated 
man-machine interfaces place much greater demands on software to deliver timely re-
sponse to failures, correct performance of complex tasks and required level of reliabil-
ity. These are complex requirements vital to assuring system safety [7, 12]. While en-
hancing the reliability of safety critical systems, man-machine interfaces are known to 
introduce additional vulnerabilities, requiring careful consideration of various factors 
such as aspects of automation, psychological issues and ergonomics. 

In the face of such vulnerabilities, analysis and testing form an important part of 
the system development process in revealing and eliminating system’s faults. Because 
of the substantial costs involved in testing, particularly in critical applications requir-
ing extensive testing lasting several months, both testability and the choice of tests to 
be conducted become an important design consideration. Because of the conflicting 
demands of minimizing the extent of tests and maximizing the coverage of faults, it is 
therefore critically important to follow a systematic approach to identifying the test 
sets that focus on safety, as well as tests that address specific safety requirements. 

State-based and event-based methods have been used for almost four decades for 
specification and testing of software and system behavior, e.g., for conformance test-
ing [3], as well as for specification and testing of system behavior [4] and more re-
cently by [10]. A different approach for testing [8] deploys knowledge engineering 
methods to generate test cases, test oracles, etc.  
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Our approach is black-box-oriented. Tests that target safety requirements are de-
vised by examining possible traces of events exhibiting particular risk patterns. These 
sequences are represented by regular expressions, the undesirable events in them rep-
resenting human error and system failures, while the desirable events including, in 
addition to functional ones, various recovery measures to be undertaken following 
undesirable events. The approach can be used not only for requirements analysis and 
validation before implementation, but also for analysis and testing of existing code, 
detecting output faults, detecting erroneous internal states, etc., at low levels of ab-
straction. This paper is an introduction to our approach and unlike our prior work [2] 
focuses on safety and testability and demonstrates its use in designing tests that target 
safety aspects as part of an integrated system development process. 

2   Event-Based Modeling of System Vulnerabilities 

This work uses Event Sequence Graphs (ESG) [2] for representing the user and sys-
tem behavior. Due to the lack of space, we will give only a brief introduction. Ab-
stractly, an ESG is a digraph M = (α, E), α being a set of nodes uniquely labeled by 
some input symbols, also denoted here by α, and E a non-empty relation on α, with 
elements in E representing directed arcs between the nodes in α. Each arc represents a 
pair of consecutive legal events called a legal event pair (EP). Faulty event pairs 
(FEP) are the edges of the corresponding ESG . The set α can be partitioned into two 
disjoint subsets αenv (environmental events, e.g., user inputs) and αsys (system signals). 
This distinction is important because events in the latter are controllable within the 
system, whereas events in the former are not subject to such control.  

 

Fig. 1. Example of an ESG, its complement ESG and CESG (Completed ESG) 

Regular expressions based on alphabet α are used for describing patterns of inter-
activity between the system and its environment. System functions (F), as well as the 
threats to safety, may each be described using two disjoint subsets of strings, one be-
longing to the language L(M) and another not belonging to L(M), respectively. Legal 
state transitions are brought about by desirable events, leading to symbol sequences 
belonging to L(M). Illegal transitions represent undesirable events, leading to faulty 
symbol sequences not belonging to L(M), signifying breaches to vulnerabilities (V). 

F ⊆ L(M) and V ⊆ (1) 

Risks to safety are often related to the system state. Our approach refers to states 
indirectly in terms of strings in L(M). Thus, a string s∈ L(M) may also be treated as 
an interchangeable notation for the state reached by the execution of the events in  
s. The remainder of the vulnerability specification consists of a risk ordering relation 

a b a b a b

L(M) 
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⊑ - a relation on L(M)xL(M). It is defined such that, given states s1, s2 ∈ L(M), s1 ⊑ 
s2 is true if and only if the risk level of s1 to breaches of safety is known to be less 
than, or equal to, the risk level of s2  [9]. In this context, risk level quantifies the “de-
gree of the undesirability” of an event from the safety perspective. A specific benefit 
of risk ordering in our framework is that it allows a more systematic approach to se-
lection of test cases by focusing on particular vulnerability attributes. The risk order-
ing relation is intended as a guide to decision making upon the detection of a threat 
and on how to react to it. The required response to breaches of vulnerability needs to 
be specified in a defense matrix D ∈ L(M)xV →L(M), which is a partial function. The 
defense matrix utilizes the risk ordering relation to revert the system state from its 
current one to a less, or the least, risky state. In this sense, D is subject to the follow-
ing constraint: 

∀ s1, s2, v: (s1,v)∈ D ∧ D(s1,v) = s2 ⇒ s2⊑s1 (2) 

This expresses the requirement that, should it encounter the vulnerability v in any 
given state s1, the system must be brought down to a state s2, which is of a lower risk 
level than s1. The means by which this is brought about is called an exception han-
dler, or a defensive action, which is an appropriately enforced sequence of events. 
The actual definition of the defense matrix and the appropriate set X of exception 
handlers is the responsibility of a domain expert specializing in the risks to a given 
vulnerability. If x is a defense action, then s1 x = s2. Finally, the model of an applica-
tion defended against vulnerabilities is defined as Md = (α, E, F, V, ⊑, D, X). 

3   Safety Critical Features and a Case Study 

The system under test is a terminal which controls a marginal strip mower (Fig. 2, left 
top), a vehicle that takes optimum advantage of mowing around guide poles, road 
signs and trees, etc. The buttons on the control desk (Fig. 2, left bottom) simplify the 
operation, so that, e.g., the mow head (with revolving knives) returns to working or to 
transport position when a button is pressed. Beside the positioning, the inclination and 
the support pressure of the mowing unit can be controlled. 

      

       

Fig. 2. Marginal strip mower, control desk and its completed ESG model 
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The ESG in Fig. 2, right, represents the control desk. The set of events α  is given 
by αsys = {A,B,D,E} and αenv = {C,F}. Here, the symbol C stands for the event of a 
passing object, e.g., a person, whereas symbol F denotes a service delivery, e.g., a 
mechanic repairing the mower unit. The pressure of the mowing unit can be switched 
on and off and the two events are denoted by symbols A and E. The cutter spindle of 
the revolving knives is controlled by symbols B and D. When the cutter spindle is 
switched on (B), a safety mechanism is activated. This mechanism recognizes objects 
which approach to the mower unit. When the spindle is switched off (D), the safety 
mechanism is also deactivated. These events bring about hazardous states posing dif-
ferent risks. For example, state C (a person passing) represents a state with the highest 
risk. As is shown by directed arcs in Fig. 3, the EPs in this example are 

AE, EF, FF, FA, AB, BC, BD, CC, CD, DE  (3) 

while the complete event sequences (CESs) in any complete cycle of system opera-
tion can be represented by the regular expression 

RegEx = (AEF+)*A+((AEF+)*ABC*DEF+)*A = ((AEF+)* (λ + ABC*DEF+))*A (4) 

The FEPs shown as dashed lines in Fig. 2 are given by 

AA, DD, BB, EE, AD, AC, AF, DA, DB, DC, DF, BA, BF,  
BE, CA, CB, CF, CE, FD, FB, FC, FE, ED, EB, EA, EC (5) 

Expression (4) constitutes system function F, while those of (5) the vulnerability 
threats V posed at the junctures corresponding to any matching sub-expression among 
the ESs that can be generated from (4), e.g., (AEF+)*A. Each FEP in (5) represents the 
leading pair of events of an emerging faulty behavioral pattern, with the first event be-
ing an acceptable one and the second an unacceptable one. Should the first event of 
any of the FEPs, e.g., AC, thus happen to match the last event in any of the ESs that 
can be generated by such a sub-expression, e.g., (AEF+)*A, then the corresponding 
pair of ES and FEP, e.g., (AEF+)* AC, describes, or signifies, the occurrence of a spe-
cific form of a faulty behavioral pattern. 

Table 1. Mower vulnerabilities, the level of the threats posed, and possible defense action 

ES 
(Col. 1) 

FEP 
(Col. 2) 

Interpretation 
(Col. 3) 

Comment 
(Col. 4) 

Defense 
action  
(Col. 5) 

BA Pressure switched on, though already on. Ignored – 
BF Delivering a service, e.g., repair at run-

ning system. 
Danger BD 

(AEF+)*

AB 

BE Switches of pressure though cutter spin-
dle active. 

Danger BD 

 
Table 1 presents an extract of the vulnerabilities relevant to the model given in Fig. 2. 

In order to overcome the inadequacy of the representation in Table 1, a risk graph of 
the form in Fig. 3 may be used to express the relative risk levels of states with a greater  
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degree of formality and precision. Each node in the risk graph represents a state de-
scribed by a regular expression. A directed arc running from a state s1 to s2 in Fig. 3 is 
equivalent to s1 ⊑ s2, signifying that the risks posed by state s2  is known to be at the 
same level as, or exceed, the risks by s1.  In the diagram, an upward running arc signi-
fies that the state lying above poses a greater risk than the one lying below. Arcs drawn 
in solid lines, as well as the states denoted by underscored ES (regular expressions),  
refer to the normal functional behavior, while those in dashed lines and other (non-
underscored) FES (regular expressions) refer to vulnerability states. For reducing clut-
ter, loops at nodes have been omitted in the diagram. 

Having identified potential vulnerabilities of safety concerns, it is possible to pro-
vide measures that counteract them. This was what is intended by the concept of de-
fense matrix and exception handlers. An attempt has been made in Table 1 to propose 
the defensive actions that may be taken, although due to the limited scope of our 
model these actions address the potential vulnerabilities only partially. 

 

Fig. 3. Risk graph 

Should Table 1 have been complete in these respects, the event sequences listed in 
column 5 would have been equivalent the set of the exception handlers X, while col-
umns 1,2 and 5 would have amounted to a definition of the required defense matrix 
implicitly, provided that the data in these columns satisfies condition (2). Note that 
the concatenation of expressions for the current state, columns 1, 2 and 5 in the ap-
propriate manner (by dropping common signals as appropriate) gives the state aimed 
at by the defense matrix as a result of invoking the corresponding exception handler. 

We can use the CESG in Fig. 3 to simulate all potential test scenarios. All what is 
required is the information given in EPs (3) and FEPs (5), which can be generated by  
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Table 2. Excerpt of issues detected 

No. Faulty Behavioral Pattern Detected 
1 When the function PressureOn is deactivated, the function CutterSpindleOn can only 

then be activated if the function PressureOn is activated (contradiction!). 
2 A change from the view RSM_Mode_I to the view RSM_TranspWorkpos while func-

tion PressureOn is active is possible only if the function PressureOn is deactivated. 
3 When the function CutterSpindleOn is activated, the function PressureOn can only be 

deactivated if the function CutterSpindleOn is deactivated. 

 
expanding the RegEx (4), applying wellknown algorithms [11]. An excerpt of faulty 
behavioral patterns detected by the tests is given in Table 2. 

4   Conclusion and Future Work  

Based on [1, 5, 9], this paper has introduced an integrated design approach capable of 
addressing system design against system vulnerabilities threatening safety. It allows 
the consideration of further vulnerabilities threatening other system attributes, such as 
security and usability, in a single framework and in a similar manner. Incorporation of 
both the desired and the undesired features of the system in the model allows a practi-
cal way to realize the “design for testability” in software design. The degree of unde-
sirability is represented in the form of a risk ordering relation – an expression of rela-
tive levels of risks posed by hazardous states. This allows targeting the design of tests 
at specific system attributes. The framework is based on the concept of ‘event se-
quence graphs’. This could form the basis for the adoption of the approach in other 
software modeling approaches and tools such as Statecharts [6]. 
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Abstract. Currently, both fail safe and fail operational architectures
are based on hardware redundancy in automotive embedded systems.
In contrast to this approach, safety is either a result of diverse soft-
ware channels or of one channel of specifically coded software within
the framework of Safely Embedded Software. Product costs are reduced
and flexibility is increased. The overall concept is inspired by the well-
known Vital Coded Processor approach. Since Mealy state machines are
frequently used in embedded automotive systems, application software
with a general Mealy state machine is realized differently with Safely
Embedded Software starting from the high level programming language
C with corresponding measurements.

Keywords: Safely Embedded Software, Safe State Machine, Diverse In-
structions, Safety Code Weaving, Safety Supervisor.

1 Introduction and Related Work

The importance of the non-functional requirement safety is more and more rec-
ognized in the automotive industry and therewith in the automotive embedded
systems area. In contrast to functions without a relation to safety, the execution
of safety-related functions necessitates additional considerations and efforts.

The normative regulations of the generic industrial safety standard IEC 61508
[5] can be applied to automotive safety functions as well. In the future, the new
automotive safety standard ISO/WD 26262 will be available.

In the paper, the concept of Safely Embedded Software (SES) is proposed.
This concept is capable to reduce redundancy in hardware by adding diverse re-
dundancy in software. Safely Embedded Software enables the realization and the
� This work is supported by the FHprofUnd program of the German Federal Ministry
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proof of safety properties of software by specific coding with the result of diverse
data and diverse instructions. Software diversity is one technique to fulfill the
single fault criterion [1,2]. The coding avoids non-detectable common-cause fail-
ures in the software components. Safely Embedded Software does not constrict
capabilities but can supplement multi-version software fault tolerance techniques
[7] like N version programming, consensus recovery block techniques, or N self-
checking programming.

In 1988, the Vital Coded Processor [3] was published as an approach to de-
sign typically used operators and to process and compute vital data with non-
redundant hardware and software. But in particular, the Vital Coded Processor
approach can not be handled as standard embedded hardware.

The paper is structured as follows. In Chapter 2 the Safely Embedded Soft-
ware approach is introduced. Chapter 3 contains a case study with a typical
automotive state machine. The paper ends with some conclusions in chapter 4.

2 The Safely Embedded Software Approach

Safely Embedded Software (SES) can establish safety independently of the type
of the processing unit. It is possible to detect permanent errors, e. g. errors in the
Arithmetic Logical Unit (ALU) as well as temporary errors, e. g. bit-flips, and
their impact on data and the control flow. SES runs on the application software
layer. Several application tasks have to be safeguarded like e. g. the evaluation
of some diagnosis data and the check of the data from the sensors. Because of
the underlying principles, SES is a processor and operating system independent
safety approach.

Furthermore, SES is a programming language independent approach. Its im-
plementation is possible in assembler language as well as in an intermediate or a
high programming language like C. When using an intermediate or higher imple-
mentation language, the compiler has to be used without code optimization. A
code review has to assure, that neither a compiler code optimization nor removal
of diverse instructions happened. Basically, the certification process is based on
the assembler program or a similar machine language. Since programming lan-
guage C is the de facto implementation language in automotive industry, the C
programming language is used in this study exclusively.

Figure 1 shows the method of safety code weaving. Safety code weaving is
the procedure of adding a second software channel to an existing software chan-
nel. In this way, SES adds a second channel of the transformed domain to the
software channel of the original domain. In dedicated nodes of the control flow
graph, comparator functionality is added. Though, the second channel comprises
diverse data, diverse instructions, comparator and monitoring functionality. The
comparator or voter, respectively, on the same Electonic Control Unit (ECU)
has to be safeguarded with voter diversity [1].

Safely Embedded Software is based on the (AN+B)-code of the Vital Coded
Processor [3] transformation of original integer data xf to diverse coded data xc

(see Table 1).
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Fig. 1. Safety Code Weaving

Table 1. Selected rules of SES whereas xc, xf ∈ Z ∧ A ∈ N
+ ∧ Bx, D ∈ N0

Area of SES Used Technique Rule

Coded Data xc xc := A ∗ xf + Bx + D 1

Coded Operator OPc zc := xc OPc yc 2
(common case)

Coded Addition ⊕ zc := xc ⊕ yc 2
(special case of OPc) zc := xc + yc + (Bz − Bx − By) − D

Coded logical Operator geqzc geqzc(xc) := TRUEc, if xf ≥ 0 2
(special case of an unary OPc) geqzc(xc) := FALSEc, if xf < 0

geqzc(xc) := ERRORc, if xc is invalid

Local program flow monitoring Safeguarding of C control structures 4
by means of coded data

Global program flow monitoring Classical key value method [6] 5
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In the following, the principal procedure of safety code weaving is demon-
strated in compliance with nine rules:

1. Diverse Data. The prime number A determines important safety character-
istics like the Hamming Distance and the residual error probability of the
code and some other properties like the bit field size necessary for the coded
data. The static signature Bx ensures the correct memory address of vari-
ables by using the memory address of the variable or any other variable
specific number. The dynamic signature D ensures that the variable is used
in the correct task cycle. It can be calculated by a clocked counter.

2. Diverse Operations. A coded operator OPc is an operator in the transformed
domain that corresponds to an operator OP in the original domain. Each
transformed operation follows directly the original operation. Original and
safety code are interweaved in this way.

3. Update of dynamic signature. In each task cycle, the dynamic signature of
each variable has to be incremented.

4. Local (logical) program flow monitoring. The C control structures are safe-
guarded against local program flow errors. The branch condition of the con-
trol structure is transformed and checked inside the branch.

5. Global (logical) program flow monitoring. This technique includes a specific
initial key value and a key process within the program function to assure
that the program function has been processed completely in the given parts
and in the correct order [6].

6. Temporal program flow monitoring. Dedicated checkpoints have to be added
for monitoring periodicity and deadlines. The specified execution time is
safeguarded.

7. Comparator function. Comparator functions or check functions, respectively,
have to be added in the specified granularity in the program flow for each
task cycle. Either a comparator verifies the diverse channel results zc =
A ∗ zf + Bz + D?, or the coded channel is checked directly by checking the
condition (zc − Bz − D) mod A = 0?.

8. Safety protocol. Safety critical and safety related software modules (in the
application software layer) communicate intra or inter ECU via a safety
protocol [4]. Therefore a safety interface is added to the functional
interface.

9. Safe communication with a safety supervisor. Fault status information is
communicated to a global safety supervisor. The safety supervisor can initi-
ate the appropriate (global) fault reaction [4].

According to rule 1 and rule 2 in Listing 1 the example code is transformed.
All C control structures are transformed following the given rule set. It can
be realized that the Greater or equal zero operator(geqzc) of the transformed
domain is frequently applied for safeguarding C control structures. Its usage in
principal is presented in Listing 1.
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Listing 1. Example code after applying rule 1 and rule 2

� �

1 int af ; int ac; // <= rule 1
2 int xf ; int xc; // <= rule 1
3 int tmpf; int tmpc; // <= rule 1
4

5 af = 1; ac = 1∗A + Ba + D; //coded 1 // <= rule 2
6 xf = 5; xc = 5∗A + Bx + D; //coded 5 // <= rule 2
7 tmpf = ( xf >= 0 ); tmpc = geqz c( xc ); //greater/equal zero // <= rule 2
8

9 if ( tmpf )
10 {
11 af = 4; ac = 4∗A + Ba + D; //coded 4 // <= rule 2
12 }
13 else
14 {
15 af = 9; ac = 9∗A + Ba + D; //coded 9 // <= rule 2
16 }

� �

3 State Machine Case Study

In the case study, a simplified sensor actuator state machine is used. The behavior
of a sensor actuator chain is managed by control techniques and Mealy state
machines. Acquisition and diagnosis of sensor signals is managed outside the
state machine in the input management, whereas the output management is
responsible for control techniques and for distributing the actuator signals. The
input management processes the sensor values, generates an event, and saves
them on a blackboard, a managed global variable.

The state machine reads the current state and the event from the blackboard,
if necessary executes a transition, and saves the next state and the action on the
blackboard. If a fault is detected, the blackboard is saved in a fault storage for
diagnosis purpose. Finally, the output management executes the action. This is
repeated in each cycle of the task.

The Safety Supervisor supervises the correct work of the state machine in the
application software [4].

A simplified state machine was implemented in the Safely Embedded Soft-
ware approach. The two classical implementation variants given by nested switch
statement and table driven design are verified. The runtime and the file size of
the state machine are measured and compared with the non-coded original one.

As result a rise up factor for runtime of 4.56 and a rise up factor for filesize
of 5.75 for the nested switch variant was measured. The table driven variant
was also implemented and measured. However, the table driven variant takes a
factor of 2.5 more compared to the nested switch statement one. This growth
is caused in the additional instructions of state table management that is also
safeguarded by SES, e. g. updating of dynamic signatures.
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The executable code was generated for a test computer with an Intel(R) Pen-
tium(R) 4 CPU 1.60 GHz processor. The used integrated development envi-
ronment Dev-C++ 4.9.9.2 covers the compiler “GCC (MinGW) 3.4.2” and the
linker “GNU ld version 2.15.91 20040904 Supported emulations: i386pe”.

4 Conclusion

Safely Embedded Software gives a guideline to diversify application software.
The fault detection is realized locally by SES. Whereas the fault reaction is
globally managed by a Safety Supervisor.

An overall safety architecture comprises diversity of application software re-
alized with the nine rules of Safely Embedded Software, remaining hardware
diagnosis, and hardware redundancy e. g. a clock time watchdog. Moreover, en-
vironmental monitoring (supply voltage, temperature) has to be provided by
hardware means. Temporal control flow monitoring needs control hooks main-
tained by the operating system or by specialized basic software. Classical RAM
test techniques can be replaced by SES since fault propagation techniques en-
sures the propagation of the detectability up to the check. A system partitioning
is possible, the comparator function might be located on another ECU. In this
case, a safety protocol is necessary for inter ECU communication.

An application of SES can be motivated by the model driven approach in
the automotive industry. State machines are modeled with tools like Matlab
or Rhapsody. A dedicated safety code weaving compiler for the given tools is
proposed. The intention is to develop a single channel state chart model in
the functional design phase. A preprocessor will add the duplex channel and
comparator function to the model. Afterwards, the tool based code generation
can be performed to produce the desired C code. Either a safety certification [5]
of the used tools will be necessary, or the assembler code will be reviewed.

This work will be published in a forthcoming paper.
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Abstract. The paper reports about a study conducted for RATP, the utility 
organisation for public transportation in Paris and region.  

RATP has developed since the mid eighties a mathematically formal 
approach for the development of safety-critical software, based on the B 
method. 

The question raised, in the context of evolutions in software development, 
was: 

Is it possible to demonstrate the same level of safety without 
resorting to mathematically formal approaches? 

In order to respond this question, several steps were considered: 1) 
reminding the infeasibility of quantifying safety-critical software, and its 
consequences on the development process, and on the system vision, 2) 
situating the current RATP approach with respect to other safety-critical 
domains, 3) examining and comparing alternate approaches for developing 
safety-critical software, 4) coming back to the RATP approach, for examining 
underlying assumptions. 

The conclusion was the recommendation to pursue the mathematically 
formal development approach. 

1   Objectives and Summary 

RATP (Régie Autonome des Transports Parisiens) is the utility organisation for 
public transportation in Paris and region. RATP has established since the mid-eighties 
a mathematically formal approach for the development of safety-critical software, 
based on the B method [Abrial 1996, Abrial 2003]. The approach has been first 
defined and implemented for the SACEM system [Hennebert & Guiho 1993], and has 
then been applied to several generations of speed control systems, either for subways 
or for trains [Dollé et al. 2003, Chapront 1993]. It is noteworthy that SACEM, 
operationally deployed in 1989, was the first operational safety system in the world 
that had been subjected to formal verifications [Craigen et al. 1993]. 

The current RATP approach has reached maturity with the Meteor automatic 
subway line [Dollé et al. 2003], in the sense that, going beyond verification, the 
development has been mathematically formal. In the context of automating several 
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lines of the Paris subway, the question discussed within RATP with respect to the 
evolution of software development approaches is: 

Is it possible to demonstrate the same level of safety without resorting 
to mathematically formal approaches for developing safety-critical 
software? 

In order to respond to this question, we consider the following steps: 
1)    Reminding the infeasibility of quantifying the reliability of safety-critical 

software, which leads to approaches combining a) the development process for 
software reliability, and b) a system vision for safety demonstration. 

2)    Situating the current RATP approach with respect to other safety-critical domains. 
3)    Examining and comparing alternate approaches for developing safety-critical 

 software. 
4)    Coming back to the RATP approach, for examining a) the underlying 

 assumptions of the correctness of the specification and of the static data , and b) 
 the structure of the development process. 

5)    Concluding in recommending to pursue the mathematically formal development 
 approach. 

2   The Infeasibility of the Reliability Quantification of  
Safety-Critical Software, and Its Consequences 

Safety software for subways, and more generally for railway safety equipments, must 
satisfy the requirements of the SIL 4 level (Safety Integrity Level) of the CENELEC 
EN 50128 standard [CENELEC 2001]. The system failure rate for such a safety level 
must be lower than probabilities in the range 10-9 - 10-12/h. 

Demonstrating via 'zero-failure' tests, i.e., via experimentations with no failure 
observed, conformance to such requirements before operational life is practically 
infeasible. A general result of the probability theory (be it by classical frequentist 
courses of reasoning [Cho 1987, Howden 1987], or by Bayesian formulations 
[Littlewood & Wright 1997]) is that the number of tests for demonstrating a 10-n rate 
is of the order of n.10n (the exact number is a function of the confidence interval in a 
frequentist formulation), be this rate expressed in continuous time (per hour) or in 
discrete time (per execution). Furthermore, this result assumes a total coverage of the 
input space, which is still more difficult to demonstrate, even when constraining the 
digital representation of the inputs to integers or fractional numbers. The input 
domain is defined by the possible variations of the inputs, either dynamic data, 
acquired by sensors, or static data, describing the environment. 

It is also worth emphasising that numerous years in operation generally do not 
enable to demonstrate the conformance to safety requirements, because of the 
insufficient number of operational hours, even for largely deployed equipments in 
large fleets, whether failures occurred during operational life or not [Shoomann 
1996]. For instance, if we estimate the cumulative operational duration of the 
SACEM system to 107h, and assuming that no failure due to software has been 
observed, we are led to a measured failure rate of 10-6/h, thus largely higher than the 
requested failure rate, but without prejudging of the actual value, lower than 10-6/h. 
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A classical approach for evaluating software reliability, based on the reliability 
growth consecutive to a progressive decrease of the failure intensity, is by its very 
nature unsuitable for safety  software, since it is based on failures that are numerous 
enough for being statistically significant. 

Finally, following a course similar to the usual practice for physical failures 
affecting hardware, i.e., evaluating a system reliability from the reliability of its 
components, is equally impractical for safety-critical software, be the software fault 
tolerant or not  [Butler & Finelli 1993, Littlewood et al. 2001]. It is noteworthy that 
approaches aimed at improving software reliability predictions via explicitly 
incorporating past operational experience [Laprie 1992, Laprie & Littlewood 1992] 
do not pretend applicability to safety software. 

The consequences of what has been presented in this section, i.e., the infeasability 
of the quantified evaluation of the reliability of safety software, are two-fold: 

• 1) Emphasis put on the development process, which, in all cases, is aimed at 
producing fault free software. 

• 2) System vision for demonstrating safety. 

3   Situation of the RATP Current Approach 

The combination process-system we have just mentioned can be found in the various 
safety-critical domains, e.g., beyond railway signalling, civil avionics or nuclear 
protection. We address briefly these domains in order to situate the adopted solutions 
with respect to essential characters of these domains. Such characters can be termed 
as cultural: diversity for civil avionics, in-depth defences for nuclear control, end-to-
end control for railway signalling. 

3.1   Civil Avionics 

An essential character which can be found all along the civil avionics history is 
diversity, or dissimilarity. Regarding the flight control system, diversity means the 
combination of: 

a)   Resorting to different technologies for insuring redundancy, e.g., hydraulics 
sparing electro-mechanics before the advent of fly-by-wire; software, and often 
hardware, diversity since. 

b)   Different control channels for a given movement of the plane, thanks to control 
surfaces (ailerons, spoilers, flaps, rudder) that are split and redundant. 

This combination of approaches exists in current fly-by-wire airplanes: 
• software and hardware diversity at two levels for all Airbus generations since the 

A-320 [Brière & Traverse 1993], the software codes being automatically generated 
from detailed specifications, 

• diversity of the compilers and of hardware for the Boeing 777 [Yeh 1998]. 

The development of safety-critical software is governed by the DO-178 standard 
[RTCA/EUROCAE 1992]. It is interesting to note that this standard does not grant 
diversity any specific advantage for certification, in the sense of accepting a lower 
criticality for diversified software than for non-diversified ones. 
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3.2   Nuclear Protection 

In this domain, an essential character is in-depth defences, with successive 
confinement barriers of different technologies. In addition, operators are always 
present in the control loop, and, taking into account the inertia of the phenomena that 
come into play, have to observe a delay before reacting to an incident.  

Considering the protection systems (i.e., the control of halting the fission), which 
are systems whose criticality is at the SIL4 level, approaches differ according to the 
countries where the protection systems are computerised. For instance, emphasis is 
put in France on producing fault free software [Remus 1982, Pilaud 1990, Nguyen & 
Ourghanlian 2003]. In the UK, the protection systems are diversified: a computerised 
primary protection system, and a hardwired secondary protection system, whose 
functionalities are less than the primary system ones [Hunns & Wainwright 1991]. 

Development of safety-critical software is governed by the IEC 880 standard [CEI 
1986]. 

3.3   Railway Signalling — The RATP Approach 

Railway signalling has two major functions: speed control and itinerary control. The 
essential character that was prevailing before computerisation is intrinsic safety, 
which, in system terms leads to end-to-end control. This end-to-end control can be 
implemented by a 'safety net' for the itinerary control as in the Elektra system [Kantz 
& Koza 1995]. For the speed control, RATP choose the coded processor approach 
[Forin 1989, Hennebert & Guiho 1993], where the end-to-end control is insured by a 
signature of the software execution flow, computed from the software source code, 
and which includes the processed data and the execution timing. An undetected error 
can be caused only by the production of a signature identical to the pre-computed one, 
against which protection is insured by the length of the coding key. The approach 
provides a quantifiable end-to-end control, and is free from any assumption about a) 
the hardware failure modes, b) the execution of the executive software supporting the 
execution of the application software, and c) the compiler. It however assumes a) the 
absence of faults in the application software, b) the correctness of the static data 
describing the environment, and c) the independence of the failures of the signature 
checking hardware and of the processor which executes the software. Confidence in 
the absence of software faults is based on the use of the B method for its 
development. 

Development by the B method is mathematically formal from the specifications. It 
is based on logically rigorous reasoning by theorem proving, where main proofs relate 
to consistency checking at a given step (checking invariant preservation by a 
machine), and to the refinement checking (checking that a machine is a correct 
refinement of a more abstract machine) [Abrial 2003, Potet 2003]. Such a 
development brings a maximum confidence in the absence of faults in the produced 
software, because the development is based on calculi in mathematical logic. Such a 
development therefore brings, when compared with pure process approaches (control, 
monitoring and documentation of the process), a rigorous dimension about the 
product correctness. It can thus be said that the freedom from fault becomes objective, 
as opposed to pure process approaches, which can only bring a subjective confidence. 
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This 'objectivisation' of the confidence in the freedom from faults is based on 
assumptions pertaining to a) mathematical logic (decidability), to b) the practice of 
proving (interpretation of unsuccessful proofs), and to c) the correctness of the 
specifications and of their formalisation. 

4   Alternate Approaches for Safety-Critical Software Development 

We examine two alternate approaches in this section: 

• approaches aiming at fault freedom by mathematically formal verification, 
• approaches aiming at fault detection during execution by diversified software. 

We do not consider traditional approaches, either purely informal, or without any 
detection means during execution. 

4.1   Other Approaches of Mathematically Formal Verification 

Without pretending being exhaustive, because of the richness of the studies in formal 
verification, such other approaches can be put in two broad classes: model checking 
and static analysis. 

Model checking [Clarke & Wing 1996, Schnoebelen 1999] is based on 
representing the specifications via a transition system (finite state machine, Petri 
nets), and expressing the properties that must be satisfied in temporal logic. Checking 
that the properties are indeed satisfied is performed by enumerating the reachable 
states. Model checking is usually supplemented by automatic generation of the 
software code from the model. Taking into account the processed data leading to 
infinite or unbounded models, the model and the properties have to be simplified. 
Because of such simplifications, model checking does not alleviate from testing. Tests 
can be generated from the model upon which verification is based (especially 
exploiting the refutations), leading to the so-called 'formal testing' [Carrington & 
Stocks 1994, Callahan et al. 1996, Howden 1998, Hamon et al. 2004]. Theorem 
proving directly incorporates the processed data [Rushby 2000], and is not subjected 
to the above-mentioned limitation. The synchronous language approach [Benveniste 
& Berry 1991, Benveniste et al. 2003] can be classed as a model checking approach, 
although it occupies a specific position due to a) its focus on reactive systems, and to 
b) the synchrony constructs that underly the approach. It is worth mentioning in the 
context of this paper the approach developed by Union Switch & Signal [Profeta et al. 
1996], which presents similarities with the RATP approach, since it is also based on a 
coded processor, but whose software is based on the Lustre synchronous language 
[Halbwachs et al. 1991].  

Static analysis [Pilaud 1999, Nguyen & Ourghanlian 2003, Cousot & Cousot 2004] 
is performed on the software source code, and is aimed at detecting errors that would 
be produced at execution. Static analysis is thus aimed at supplementing, or at 
replacing, tests performed on the software source code. 

A schematic representation of the confidence brought by these approaches as a 
function of the verification effort is given by Figure 1, adapted from [Rushby 2001]. 
In addition to the above-mentioned approaches, this figure also positions type control, 
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which can be termed as an 'invisible formal approach'. The figure illustrates an 
important distinction between the formal verification approaches that have been 
(briefly) surveyed and the formal development approach constituted by the B method: 
verification approaches are aimed at uncovering and removing faults that have been 
introduced during software production, whereas formal development aims at 
preventing fault introduction.  

Confidence in
absence of faults

Verification effort

Type
control

Static
analysis

Model-
checking

Theorem
proving

 

Fig. 1. The formal verification approaches 

4.2   Diversified Software 

Software diversity results from the production, by separate development teams, of 
functionally equivalent (since they satisfy common specifications) software systems. 
Software diversity aims at insuring failure independence of the versions or variants so 
produced, i.e., at avoiding that faults are simultaneously activated in the variants and 
produce similar errors, non distinguishable by comparators or voters. Although 
diversity covers the whole spectrum of fault tolerance techniques [Laprie et al. 1990], 
we restrict in the context of this paper to two-variant software, thus focusing on error 
detection via back-to-back comparison. 

Diversity does not assume any development style, and especially whether 
verification is formal or not. Diversity can be free, assuming different choices 
performed by separate teams, or can be forced by imposing constraints aimed at 
favouring it, such as different formats for data structures, different programming 
languages. 

Deploying two-variant software needs a two-processor hardware platform. 
Presence of residual development faults in processors [Avizienis & He 1999] leads to 
diversified processors, unless it is assumed that executing diversified variants on 
identical processors leads to different states of the processors, and thus enables 
assuming that residual development faults of the processors are not activated 
simultaneously. Although this may look as a reasonable assumption, analysis can 
hardly confirm it at the level requested for safety-critical systems. 

A major difficulty with diversified software is the evaluation of the reliability gain, 
given that total failure independence cannot be assumed, because of a) the hard-core 
that the common specification is, and of b) the fact that faults can be correlated 
because of design difficulties brought about by some software components [Bishop et 
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al. 1986, Knight & Leveson 1986]. The various experimentations conducted in 
software diversity, including the latter two references, demonstrate reliability 
increases. However, these increases are not commensurate with the requirements of 
safety-critical systems at the SIL4 level. Reliability models [Arlat et al. 1990, 
Littlewood et al. 2001] take into account correlated faults, but the precise 
quantification of their influence when evaluating reliability comes up against the 
infeasibility reminded in section 2, and this is all the more true as there are very few 
published experimental data relative to operational diversified software [Lindenberg 
1993]. 

It is important to emphasise in the context of this study that resorting to diversified 
software would mean abandoning the end-to-end control via the signatures associated 
to the coded processor, unless it is envisaged that both processors supporting the 
execution of the variants are coded processors. Although such a solution would lead 
to a very significant cost increase, the end-to-end control would then be performed via 
the comparison of the outputs delivered by the two variants, without however the 
possibility of performing a realistic probabilistic evaluation, as reminded above. 

Finally, the presence of two variants executed by two processors for the on-board 
system would lead to a system failure rate higher than the current solution (even when 
accounting for the large overhead in memory size brought by the coded processor), 
thus penalising availability, and this independently of the obtained safety level. 

5   Flashback on the RATP Approach 

As announced in Section 1, we address a) two underlying assumptions, the 
correctness of the specifications and of the static data, and b) the structure of the 
development process. 

5.1   Specification Correctness 

The initial step of specification writing is, by essence, informal. It is thus this initial 
step that can benefit most of developments in terms of the so-called 'semi-formal' 
methods (in the sense of notations without formally defined semantics). Such 
approaches are already practised by RATP, with the SADT notation, supported by the 
ASA+ environment. Among recent developments in the domain of semi-formal 
methods, the current de facto standard modelling method that UML is cannot be 
ignored. RATP has indeed interest in UML. This is strengthened by works aimed at 
establishing a link between UML and B  [Ledang & Souquières 2001, Snook & 
Butler 2003].  

Important facets of specifications are the safety specifications, deduced from the 
behaviour of the controlled system. This step traditionally involves check-lists [Lutz 
1996], and models and simulations of the behaviour in the presence of failures, 
especially via fault trees and state machines. It is worth mentioning in this respect: 

• studies aimed at giving formal definitions of fault trees for removing their 
ambiguities, especially temporal ones [Hansen et al. 1998], as well as studies 
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aimed at establishing a relationship between automata and fault trees [Rauzy 
2002], 

• the possible resorting to models or simulations based on formal approaches, whose 
validation can then be performed by model checking [Bieber et al. 2002, Bohn et 
al. 2002]. 

5.2   Static Data Correctness 

Static data constitute the Achilles tendon of any control system, as their verification 
can only be performed via reviews and inspections. In addition, they typically involve 
a significant memory size, possibly larger than the memory size necessitated by the 
programs. It is worth noting the special attention devoted to the derivation of the 
parameters and constraints, from the basic static data, that are used by the control 
programmes [Delebarre et al. 1999]. 

5.3   Structure of the Development Process 

The structure of the development process of a safety-critical system is bound to be 
heavy and complex. Such heavy and complex structures stem directly from the 
recommendations of the standards, especially in terms of independence of  
the verifications and validations that have to be undertaken at the various steps of the 
development. 

Giving up a formal development would not, in our opinion, lower the development 
costs, for two major reasons, common to both alternate approaches examined in 
section 4 (formal verification and diversity): 

• reintroduction of unit tests, that are not necessary with the B method, 
• effort necessary for removing faults more numerous than they are presently. 

In addition, within a scope of constant total cost, that would lead inevitably to 
lower the effort devoted to specifications, thus going in the opposite direction of one 
of the widely recognised benefits of formal methods, i.e., enabling to devote an 
increased proportion of the effort to specification1. 

It is worth noting that, in the development of the information system of the air traffic 
control in the UK [Hall 1996], it has been estimated that using formal methods has led 
to decreased costs when compared to traditional, informal, approaches, although the 
extent of formal methods was then more limited than it is in the case of RATP. 

A stumbling block of any process is the actual application of its guidelines and 
recommendations in practice, and as a consequence the related control means. From 
this viewpoint, resorting to mathematical formalism can only be favourable, due to 
the corresponding reduction of the ambiguities. 

6   Conclusion 

As announced in section 1, and argued in the paper, the recommendation has been to 
pursue the mathematically formal development approach associated to the coded 
                                                           
1 Granting an increasing proportion of the development effort to specifications is a general 

trend in software development [NIST 2002].  
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processor, as this association provides a safety demonstration that is based on weaker 
assumptions than the other envisaged approaches. 

The B method is particularly well adapted to safety applications of RATP, as it has 
initially been developed for those applications. The method has since been employed 
in other fields of application, and is currently a research topic in several countries 
[Bert 2003], and continues to evolve. As any mathematically formal approach, it 
suffers from difficulties relating either to the mathematics culture necessitated from 
its practicioners, or to the limits of the tools that implement it (as those tools have to 
guided interactively, they may lead to focus on their technicalities rather than on the 
subject of the proof). 

The recommendation does not mean to stay in an immutable framework. 
Significant developments are still on going in formal methods (see for instance the 
virtual library <http://vl.fmnet.info>).  
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Abstract. We discuss the problem of generating test suites from UML
state machines and present a method to extend the capabilities of exist-
ing automated test case generators. Current tools provide only a limited
coverage for different testing objectives. We argue that a better coverage
can be achieved by instrumenting transitions, and performing an appro-
priate pre- and postprocessing. We describe the necessary enhancements
of the UML model and demonstrate our method on a simple example. We
further report on an industrial case study where we successfully applied
our method for generating a validation test suite for a safety-relevant
communication protocol.

1 Introduction

Testing is one of the most time-consuming tasks in the development of complex
reactive systems. Thus, it is highly desirable to obtain as much tool support as
possible. In code-based testing, the tester derives test sequences from the ac-
tual program code of the implementation. Code-based testing has some major
drawbacks: First, mere code-based testing cannot ensure that the observed be-
haviour is equivalent to the intended behaviour, second, testing can only start
when an actual implementation is available, which is usually rather late in the
development process, and third, whenever the implementation is modified, the
test suite has to be adapted anew. In contrast, specification-based testing focuses
on required properties rather than on a particular implementation. The tester
regards the implementation as a black box with hidden content. The develop-
ment of specification-based tests can begin as soon as there is a requirements
document (i. e., even before writing the first line of code).

The effectiveness of automated specification-based test case derivation meth-
ods largely depends on the specification formalism, which is used to denote
system properties. Model-based testing assumes that system properties are rep-
resented in a formal or semiformal modelling language. Often, state-based for-
malisms such as finite state machines [1], Statecharts [2], UML state machines
[3] or Stateflow models [4] are used. These formalisms are easy to use and have
a well-understood semantics. Moreover, in a model-based development process
diagrams can be used to derive an implementation by stepwise refinement. In
such a context, the system model should represent the specification (i. e., focus on
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the functional requirements only). The implementation model is a refinement of
the system model and takes implementation aspects such as data representation,
efficiency, and scheduling into account.

For several modelling formalisms there exist code and test generation tools.
Whereas for the generation of production code a detailed implementation model
is necessary, test cases can already be generated from the system model. Various
algorithms can be used for the construction of test cases. For example, one strat-
egy is to use a breadth-first or depth-first search to generate all paths through
the state graph up to a certain length. More elaborated strategies try to satisfy
coverage criteria such as All Transitions [5] or Modified Condition /Decision Cov-
erage (MCDC) [6] on the model. Even more advanced techniques use temporal
logic model checking and fault injection to generate error traces, which can then
be used as test sequences. A main topic in all of these approaches is to construct
test suites which are both meaningful and manageable (i. e., provide a sufficient
coverage and can be generated, executed and evaluated in reasonable time).

In the literature, many methods for generating test cases from state-based
specifications have been proposed. Among them are methods based on FSM
(e. g. [7,8]), extended FSM (e. g. [9,10]) or various variations of Statecharts (e. g.
[11,12]). For practical application, there are a few commercial tools (Rhap-
sody/ATG [13], Conformiq [14], and Reactis [15]) and a number of experimental
research tools (Agedis [16], Teager [17], TGV [18], TORX [19], AGATHA [20],
and others) available. While research prototypes cover a wide range of cover-
age criteria, commercial tools only support a very limited selection of coverage
criteria.

In this paper, we present two methods for improving the test coverage of test
case generators, Transparent Transition Instrumentation and Extended Transi-
tion Instrumentation. We achieve a better coverage than the originally supported
criterion MCDC by instrumenting transitions, and performing an appropriate
pre- and postprocessing. Transition Instrumentation allows us to realize addi-
tional transition-based coverage criteria (e. g., All n-Transition Sequences [5])
without modifying the generator. We describe the necessary enhancements of
the model and demonstrate our method on a simple example. We further re-
port on an industrial case study where we successfully applied our method for
generating a validation test suite for a safety-relevant communication protocol.

This paper is structured as follows: In the next section, we discuss capabil-
ities and limitations of currently available test case generators for UML state
machines. In Sect. 3, we present the two methods Transparent Transition Instru-
mentation and Extended Transition Instrumentation. Section 4 describes the
industrial application of these methods. Finally, in Sect. 5 we draw some conclu-
sions and give an outlook on future research work.

2 Test Generation from UML State Machines

We use the sample state machine shown in Fig. 1 to discuss abilities and limi-
tations of current commercial test case generators for deterministic UML state
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Control

Motor

Button

PositionSensor

OneAxis

Idle

bp_release

SystemReaction
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);

bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward

[IS_IN(minimum)]

Control

bp_release
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);

bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward

[IS_IN(minimum)]

forward

m_limit/itsEnv->GEN(env_limit);

stop

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop);

back

m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

Motor

m_limit/itsEnv->GEN(env_limit);

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop); m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

forward backcenter

b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

Button
b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

maximumminimum normal

pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

PositionSensor

pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

bp_release
p_max/GEN(m_stop);

p_min/GEN(m_stop);

bp_release/GEN(m_stop);

[else]/GEN(m_back);

bp_back

[IS_IN(maximum)]

[else]/GEN(m_forward);bp_forward

[IS_IN(minimum)]

m_limit/itsEnv->GEN(env_limit);

m_forward/itsEnv->GEN(env_forward);

m_stop/itsEnv->GEN(env_stop); m_back/itsEnv->GEN(env_back);

m_stop/itsEnv->GEN(env_stop);

m_limit/itsEnv->GEN(env_limit);

b_forward/GEN(bp_forward);

b_center/GEN(bp_release);

b_center/GEN(bp_release);

b_back/GEN(bp_back);

pos_min/GEN(p_min);

pos_normal

pos_normal

pos_max/GEN(p_max);

Fig. 1. State machine of simplified seat control (one axis)

machines. The state machine is a realization of one axis of the seat control
specified in [21]. It allows moving a seat forward or backward by pressing a
three-positions-button. When the button is pressed, the seat should move in the
corresponding direction. The seat should stop moving when it reaches the final
position. The seat should not move further in this direction before it has moved
back into the opposite direction.

We manually created the model in a systematic approach following the mod-
elling guidelines described in [22]. In contrast to the original guidelines, which
suggest creating separate classes with their own Statechart for the control and
for each sensor and actuator, we created just one class and one state machine
with an orthogonal state comprising concurrent regions. As a modelling tool,
we used Rhapsody in C++ [23], which utilizes C++ statements and macros
as action language in UML state machines. For each sensor and each actua-
tor, we modelled possible transitions between valid equivalence classes of input
and output in a state machine. An additional state machine models the reactive
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forward none

env_forward

env_stop
backward

env_stop

env_back

max_limit

env_limit/itsSC->GEN(pos_max);

env_forward/itsSC->GEN(pos_normal);

min_limit

env_limit/itsSC->GEN(pos_min);

env_back/itsSC->GEN(pos_normal);

Fig. 2. Environment model of seat control

TestSetup

itsSC:SeatControl1 itsEnv:Environment1

«requiredInterface»

«providedInterface»

Fig. 3. Test setup including system model and environment model

behaviour of the controller. The parallel composition of these four state machines
(see Fig. 1) models the overall behaviour of the seat control.

An environment model, which describes how the environment behaves if the
system is integrated into it, complements the system model. The environment
model covers only physical feedback but does not include behaviour of the user.
The state machine of the environment model displayed in Fig. 2 defines possi-
ble transitions between equivalence classes of seat movement (i. e., the feedback
between motor movement and resulting positions detected by the position sen-
sor). Whenever the motor is switched on or off, an indicating event is sent from
the seat control to the environment model. There it causes a transition between
states indicating the current position of the seat. Transitions in the environment
model define valid changes of positions. For example, only when the seat moves
backward it will reach its maximum position.

As displayed in Fig. 3, the test setup consists of one instance itsSC of the
class SeatControl which communicates with an instance itsEnv of the class
Environment. The state machines displayed in Fig. 1 and Fig. 2 define the be-
haviour of the classes SeatControl and Environment, respectively. Stereotyped
dependencies specify provided interfaces (inputs) and required interfaces (out-
puts) for test case generation.

We used Rhapsody’s event generation mechanism [23] to realize the com-
munication between these concurrent state machines. For example, the expres-
sion m_forward/itsEnv->GEN(env_forward) in the upper left corner of Fig. 1
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signifies that the corresponding transition fires when the trigger event m_forward
occurs and as a result, an event env_forward is generated and sent to the en-
vironment model itsEnv. Using such a combination of system and environment
model allows modelling the interaction resulting from feedback between actua-
tors and sensors.

For the following experiment, we use the commercially available test case gen-
erator ATG [13] to generate test cases from the combined model. The generator
supports the coverage criterion MCDC [6] on the code generated from the state
machine. MCDC means that every point of entry and exit in the program has
been reached at least once, every condition in a decision in the program has taken
on each possible outcome at least once, and each condition has been shown to
affect that decision outcome independently [24]. This includes the coverage cri-
terion All Transitions [5] which in turn includes the coverage criteria All States
[5] and All Events [5]. MCDC is the generally acknowledged coverage criterion
for white box testing of safety critical systems in avionics, as required by cer-
tain standards such as DO178B [24]. ATG does not explicitly handle the state
machine’s data space.

We convert the resulting test suite into simple sequences of events observable
at the interfaces of the black box, which is the system under test. Then we free
this test suite from duplicates and inclusions. Figure 4 shows the resulting test
suite. It consists of six test cases which specify sequences of input events to be
generated and output events to be observed. They are shown in six columns and
should be read top-down.

b_back
m_back
m_limit
m_stop
b_center
b_forward
m_forward

b_forward
m_forward
b_center
m_stop

b_forward
m_forward
m_limit
m_stop
b_center
b_back
m_back

b_back
m_back
b_center
m_stop

b_forward
m_forward
m_limit
m_stop
b_center
b_forward

b_back
m_back
m_limit
m_stop
b_center
b_back

Fig. 4. Test cases generated from Fig. 1 according to coverage criterion MCDC

Although the test suite shown in Fig. 4 satisfies the coverage criteria MCDC,
All States, All Events and All Transitions in the specification, it is not sufficient
for black box testing. In particular, the normal behaviour of the system is only
tested in very short sequences. Many typical testing objectives for black box test-
ing such as detecting missing or invalid states are not covered by this approach.
For example, the test suite would not detect an erroneous implementation of
the upper right transition with trigger event m_stop in Fig. 1 that leads to a
different state than specified. The test suite does not contain a test case that
shows the feasibility of moving the seat back again after reaching it’s maximum
position and subsequently moving it forward. Hence executing this test suite
and observing input-output-conformance is not sufficient for ensuring that the
transition reaches its target state.
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Other conformance criteria and test case generation algorithms have been
proposed in the literature. Amongst these are the transition tour method [25],
the W-method [7] and UIO-method [8]. These methods construct test sequences
to check the isomorphism or bisimilarity of finite IO-automata; that is, for each
state, possible input and corresponding output of one automaton there must
be an appropriate state in the other automaton which under the same input
yields the same output and goes to an appropriate successor state. For black box
testing these methods are only partially adequate. Firstly, they assume that both
specification and implementation are given as finite automata. In our case, the
specification is given as a UML state machine which may contain local variables
and parameterized events, and the implementation is a black box. Secondly, these
methods aim at the construction of test sequences of minimal length; during
test execution, the implementation is reset after each sequence. In our case,
reset is a costly operation which requires manual intervention and should be
avoided. Thirdly, the goal of these methods is to construct test suites which
are “complete” for some conformance criterion, such that the testing process
must stop when all test cases are executed. In our case, we want to be able to
adjust the coverage criterion such that the implementation can be exercised for
a certain amount of time with well-defined test coverage.

In summary, for black box test generation from UML state machines the
coverage which can be achieved by current commercial test case generators or
other available tools is not sufficient. Hence, we are looking for ways to achieve
a better coverage. Two options are apparent: One is to build a homemade test
case generator. Another one is to modify a commercial test case generator.

Unfortunately, these two approaches are normally not applicable. On the one
hand, it takes too much effort to build a test case generator. On the other
hand, source code of commercial generators and extension APIs are mostly not
available. Another aspect is that certification requires applying tools which are
proven-in-use. Certification normally prevents engineers from using homemade
or academic prototypes and forbids modifications of established test case gen-
erators. Hence, we have been looking for an alternative option for improving
test coverage of commercial test generators. As a result, we have developed two
methods that we present in the next section.

3 Improving Test Coverage

As discussed in the previous section, the coverage that can be achieved using
currently available commercial test case generators is not sufficient for black
box testing. Therefore, we developed an alternative approach that offers a third
option. First, we present the overall approach and then we present two specific
methods relying on this approach.

3.1 Extending Coverage Functions of Test Case Generators

Applying a coverage criterion to a model results in a set of test goals. A test
generator generates a corresponding test suite by generating a test case for each
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test goal. Test case generation might fail for some of these goals, for example
resulting from unreachable code.

The basic idea of our approach is as follows: As depicted in Fig. 5, first, we
enhance the state machine using a preprocessor by inserting additional elements
to the model. The additional elements result in additional test goals for a test
case generator leading to an enhanced coverage on the model. Then we generate
test cases with an available test case generator, and finally we process the result-
ing test cases using a postprocessor. This allows us to generate test suites that
satisfy more complex coverage criteria than the test case generator originally
provides.

Fig. 5. Extending capabilities of test case generators through pre- and postprocessing

A test case generator provides a generator coverage function on a model.
We augmented the input model by using an enhancement function. Then we
generated test cases from the enhanced model. The test coverage of the resulting
model is the composition of both functions, the extended coverage function.

In order to apply this general approach to our state-machine-based example
shown in Fig. 1, we need to find a reasonable enhancement function. The gen-
erator coverage function of ATG [13] is MCDC on the generated code. MCDC
includes coverage of all states, all transitions and all events in the model. Hence
augmenting the state machine by including additional states, transitions, events
or conditions would possibly result in larger test suites. Using additional states
and transitions has the drawback of resulting in larger models while not directly
leading to a larger coverage. Therefore, we did pursue the following two options
for enhancing the state machine:

1. Additional variables and conditions in action code, and
2. additional events.

The first option can be used to implement counters. The main advantage
of this option is transparency (i. e., no structural modification of the model
is necessary and there are no extra events in the generated output). This is
similar to the idea of User Defined Test Goals in Reactis [15], which are boolean
expressions augmenting a test model.

The second option can be used to write additional information into event
traces in test cases for further processing. Such information can be for instance
information on the current allocation of global variables. It can also be used to
pass other meta information (e. g., information about traversed paths) into test
cases.

Based on these results we developed two methods for achieving extended
coverage criteria: (1) Transparent Transition Instrumentation, resulting in test

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



308 M. Friske and B.-H. Schlingloff

cases, which contain longer sequences of events and comply with a given cover-
age criteria without changing the set of used events, and (2) Extended Transition
Instrumentation, including additional events providing information for postpro-
cessing. In the following subsections, we present these two methods in detail.

3.2 Transparent Transition Instrumentation

The test case generator generates test suites satisfying the coverage criterion
MCDC. This means that for each condition in the action code two test cases
are generated: in one the condition evaluates to true and in the other to false.
Adding a C++-Statement to the action code of a transition that compares an
additional variable with a given value results in two extra test goals for the test
case generator. We can exploit this fact to implement a counter mechanism that
allows sets of extra test goals resulting in generation of a desired sequence of
transitions.

For a desired sequence of transitions, we use a counter variable and compare
this variable with given values within condition statements and conditionally
increment the variable. In other words, we add C++-Statements in the form
if(counter==n){counter++;} to the action code of each transition in the se-
quence, where n is set according to the position of the transition within the
sequence. These additional statements let a desired sequence of transitions be-
come a goal for the test case generator. The mechanism can be exploited to force
the test case generator to generate test cases that cover designated sequences
of transitions and consequently to generate test suites that satisfy other test
coverage criteria than MCDC.

Being able to generate specific sequences of transitions allows realizing all test
case generation strategies relying on sequences of transitions. Sequences of tran-
sitions can be calculated based on the length of sequences as in the generation
strategy All n-Transition Sequences [5], characterization sets as in the W-method
[7], unique input/output sequences as in the UIO-method [8], or other criteria.

Most of these strategies based on sequences of transitions originally have been
proposed for FSMs. Specific problems arise when applying these strategies to
UML state machines which can be hierarchical and parallel. A strategy can be
applied to either the entire state machine model with interleaved firing of transi-
tions from all regions or to a single region. Calculation of transition sequences for
complex hierarchical and parallel state machines is a non-trivial task and usually
requires simulation of the state machine. Executing a transition sequence in a
single region requires execution of the overall state machine and usually requires
firing of several transitions in all regions.

Applying a transition-sequence-based strategy to one or more regions appears
very eligible from the tester’s perspective. Testers usually give more importance
to certain aspects than to other aspects. Often a state machine has regions
providing synchronization of other regions by communicating with them. For
the previously presented state machine realizing a one-axis seat control, such
central part is the region Control which processes inputs provided by the two
sensors (regions Button and PositionSensor) and controls the actuator (region
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Motor). The task of determining a transition sequence resulting from the overall
state machine that contains the specific transition sequence in a region will be
delegated to the test case generator.

In the following we explain Transition Instrumentation by applying the strat-
egy All n-Transition Sequences [5] with n = 2 to the region Control. All 2-
Transition Sequences requires that every specified transition sequence of length
two has to be exercised at least once. The resulting test suite will achieve this
coverage criterion on the region Control in addition to the previously achieved
coverage criterion MCDC on the model.

Therefore, we create a more abstract alternative representation of this region
with all transitions labelled using letters as shown in Fig. 6. Then we determine
all sequences of length two from this representation: ad, ae, af, ag, ah, bd, be,
bf, bg, bh, cd, ce, cf, cg, ch, da, db, dc, ea, eb, ec, fd, fe, ff, fg, fh, gd, ge,
gf, gg, gh, hd, he, hf, hg, hh.

Idle

f

h

g

SystemReaction
a

b

c

e

d

Fig. 6. Abstraction of seat control

Now we enhance the model with one counter variable of type integer for
each sequence simply naming the variable after the sequence (e. g., ad). Then
we instrument the transitions with extra code resulting in additional test goals
required for achieving MCDC. The code is added using the following algorithm:

for each sequence of transitions
for each transition within the sequence

add if(counter==n){counter++;}

In the pseudo code counter stands for the integer counting variable and n
for the number of transitions firing. For example applying this algorithm to
determine the instrumentation code for exercising the transition sequence ad
yields the following result: to the state machine presented in Fig. 1 we have to add
to transition a the additional statement if(ad==0){ad++;}, and to transition d
the statement if(ad==1){ad++;}.

In case that a transition has to fire twice or more, sequential order of addi-
tional statements is important, because it has to be ensured that the counter is
not incremented to the maximum by a single firing. For example for achieving
transition sequence hh the statement if(hh==1){hh++;} must appear before
if(hh==0){hh++;} within the action code added to transition h.

After all transitions have been instrumented, generating test cases with the
test case generator again will result in an extended test suite. If all transition
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sequences required for achieving a strategy have been coded into the model,
then the resulting test suite will also fulfil the corresponding coverage criterion.
The extended test suite resulting from instrumenting the state machine in Fig. 1
according to All n-Transition Sequences with n = 2 is shown in Fig. 7.

As discussed at the end of Sect. 2, the previously generated test suite displayed
in Fig. 4 cannot detect erroneous implementations of the upper right transition
with trigger event m_stop in Fig. 1. The extended set of test cases shown in Fig. 7
can detect this error (e. g., by the test case in the lower left corner).
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Fig. 7. Extended set of test cases generated from Fig. 1

3.3 Extended Transition Instrumentation

The previously explained method Transparent Transition Instrumentation allows
to generate a set of test cases achieving a given transition-sequence-based cover-
age criterion. The test generator generates one test case for each goal. Thus, the
number of test cases contained in the test suite can get large while each test case
is quite short. In certain situations, it is required to minimize the actual number
of test cases while not reducing the coverage (i. e., to have a set of few, but
long test cases). One approach to achieve this goal is concatenation of test cases.
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Another aspect is that depending on the model and test strategy, applying Trans-
parent Transition Instrumentation for very long sequences might fail because of
limited resources such as CPU-time and memory.

For example, it is possible to include all sequences of transitions of length
two presented in the previous section in one test case. One possible solution
is the sequence adaeafdbdcecffgghdagfebeahfhebfhhgecgdcdbgdbhech. This
can be done by concatenating test cases individually generated for each sequence
of length two.

Usually concatenation of generated test cases is more complex than simply
appending the sequences displayed in Fig. 7. In a UML state machine, the current
configuration of the system is not just determined by the set of current states of
all sub-automata, but also by the configuration of all global variables. Hence, the
concatenation of fragments cannot be done by overlapping transitions only. Such
overlapping without regarding global variables might result in invalid traces. For
concatenating two test cases, we must ensure that at the concatenation point
the state machine has the same configuration in both test cases.

In order to take into account information about global variables during con-
catenation, we introduce a new event with one parameter corresponding to each
global variable. We generate this event on each transition that is a potential
concatenation point. If the state machine contains concurrent regions, then for
each concurrent region we add one more parameter to this event. Each of these
parameters represents the current state of one region as enumeration. We also
introduce another type of event to record information about subsequences of
events contained in this test case. The postprocessor reads both events and uses
this information during test case concatenation. After the concatenation is fin-
ished, the postprocessor removes all additional events.

The sample UML state machine that we introduced in Sect. 2 does not in-
clude global variables but concurrent regions. In order to generate one sequence
that covers All n-Transition Sequences with n = 2 for the region Control, first
we generate one valid sequence1, see above, that satisfies this criterion on the
abstraction shown in Fig. 6. Then we instrument the model with counters us-
ing Transparent Transition Instrumentation as discussed in the previous section.
Furthermore, we add the action code for generating additional events providing
information about the current state of all concurrent regions.

Then we generate test cases using the test case generator and subsequently
concatenate the test cases using our postprocessor. Therefore, we pass the pre-
viously generated string representing the valid target sequence as parameter to
the postprocessor. We realized the concatenation by recursively selecting a test
case that contains the next required transition sequence, checking if global con-
figurations of the state machines match, cutting out the corresponding sequence
of events, and pasting it to the tail of the concatenated test case. How to ensure
matching configurations will be discussed at the end of the next section.

1 Here we do not consider the initial transition leading into state idle. Inclusion of
the initial transition would require a minimum of five test cases for achieving All
n-Transition Sequences with n = 2.
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4 Industrial Application

We used this approach within an industrial research project to generate test
cases for the slave device for an automation protocol. Two state machines, one
for the master device and one for the slave device, details of which are under
NDA, specified the protocol. First, we translated the slave’s Statechart-like spec-
ification with pseudo action code into an executable UML state machine with
C++ action code. Then, we analysed the protocol and built an additional ab-
straction of the state machine of the slave. The original Statechart consisted of 8
states and 15 transitions, comprising two cycles, each consisting of three states.
We could create an abstraction as depicted in Fig. 8. One cycle was the normal
operation cycle without occurrence of faults and the other cycle was the fault
handling cycle.

normal_operation

d

fault_handling
c

a

b

e

Fig. 8. Abstraction of automation protocol

For the automated generation of test cases we defined three coverage criteria:

CC1: MCDC of the Code generated from the state machine.
CC2: All sequences of length n from the abstraction of the state machine.
CC3: Concatenations of m sequences obtained by CC2 in random order.

Coverage criterion CC1 was directly supported by the test case generator.
We could achieve coverage criterion CC2 by applying our method Transition
Instrumentation. To this end, we calculated all possible sequences of length n =
3 from the abstraction in Fig. 8. We used these sequences to instrument the
transitions of the state machine, as described above. Then, we generated a test
suite satisfying CC2 from it.

For achieving coverage criterion CC3 we applied our second method Extended
Transition Instrumentation. To this end, we extended the instrumentation for
achieving CC2 by adding extra events both for marking transitions and for writ-
ing the state of all global variables. After the test cases were generated we used
our postprocessor to extract all fragments corresponding to the sequences of
length n = 3. In order to extract fragments the postprocessor evaluated all extra
events that have been added for marking sequences.

Then we calculated valid sequences of m transitions from the abstraction in
random order and tried to concatenate the fragments accordingly. Comparing
of global state machine configurations has shown that a simple concatenation
of sequences was not always possible because of conflicting configurations. We
could solve this problem by concatenation of sequences of length n = 3 with an
overlapping of two transitions.
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5 Conclusions and Further Work

We presented a method to improve the coverage capabilities of specification-
based automated test generators. Whereas our considerations have been largely
driven by particular application needs, there is the potential of extending them
to a more abstract level.

We implemented a preprocessor which calculates sequences of transitions, de-
termines counter variables and calculates corresponding instrumentation state-
ments. Currently, we manually insert results of the calculations into the model.
Although this is a relatively easy task, a further enhancement would be automat-
ing these steps (i. e., export the model using XMI [26], conduct an automated
analysis of the model, calculate counter variables and instrumentation state-
ments, instrument the model, reimport the model).

A further extension would be the realization of other test enhancement al-
gorithms within our framework. We explained Transition Instrumentation using
UML state machines, but the underlying principle is not restricted to transitions
in state machines. The principle can be applied in all situations where a func-
tional dependency between generator coverage function, enhancement function,
and extended coverage function can be found.

A more fundamental question, which is tackled by our work, is the defini-
tion of appropriate numerical coverage criteria for specification-based testing.
Currently, there are no generally acknowledged criteria for accrediting such test
suites in safety-critical systems. By giving a possibility to experiment with dif-
ferent algorithms, our work can help in establishing such quantitative values for
different safety layers.
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Abstract. Safety and security guarantees for individual applications in
almost all cases depend on assumptions on the given context provided
by distributed instances of operating systems, hardware platforms, and
other application level programs running on these. In particular for for-
mal approaches the problem is to formalize these assumptions without
looking at the (formal) model of the operating system (including the
machines that execute applications) in all detail.

The work described in the paper proposes a modular approach which
uses histories of observable events to specify runs of distributed instances
of the system. The overall verification approach decomposes the given
verification problem into local tasks along the lines of assume-guarantee
reasoning.

As an example the paper discusses the specification and implemen-
tation of the SMTP scenario. It shows in detail how this methodology
is utilized within the Verification Support Environment (VSE) to verify
the SMTP server part.

1 Introduction

The theory developed in the following aims at a modular approach for the spec-
ification and verification of concurrent systems with heterogeneous components.

Concurrency typically results from the actual parallel execution of indepen-
dent systems and the abstraction from a concrete scheduler within the context
of a given platform.

Like the systems themselves their formal models will consist of various types
of components specified by different types of state transitions systems. In the
composed (global) system the components interact with each other by certain
communication mechanisms.

The instantiation of the general approach considered in this paper is taken
from the context of the Verisoft project where a pervasive formal model of a
distributed collection of hardware-software platforms with application level pro-
grams running on each of these was established, [1].

It will be argued that for behavioral properties and in particular safety and
security guarantees it is not appropriate to work directly on such models. Instead
we propose to provide (possibly different) views by using traces of observable
events that according to a given view are attached to steps of computations (or
runs) of the system model. Since for a state in a run we collect all events that have
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happened so far we call these lists (of events) histories. The behavior of the global
systems as well as that of single components will be specified by sets of histories
thereby abstracting from the local state spaces of the various components and
the local computations taking place on these. Like an input output specification
for a sequential piece of of software sets of histories describe the concurrent,
typically nonterminating computation of a global system or component.

In particular event traces defined by a certain view on a given model provide
an appropriate interface for an inductive analysis of cryptographic protocols,
[2,3] or an information flow analysis [4].

Our approach is modular in the sense that the task of verifying a history
specification against runs of the global system can be decomposed into local
verification tasks for its components. Following the general assume-guarantee
approach, see [5] for comprehensive discussion of these approaches, for each
event specified in a history there is exactly one component which may violate
the specification at this point. This is the component considered to be responsible
for the event. Events in a history a particular component is not responsible for
are considered as assumptions of the component w.r.t. its environment.

For a history specification the components that are possibly restricted by it
can easily be derived. For an operating system as considered in Verisoft this
means that a formal manual would consist of a specification that only restricts
the behavior (of instances) of the operating system itself. Having established
this restriction locally it can be combined at the specification level with results,
lets say for the SMTP server and client to derive desired properties of e-mail
exchange.

The method proposed here proceeds in the following basic steps:

1. Define events and associate them with steps given by the transition Rg of a
global system model.

2. Decompose Rg into local transition relations Rc for each component c.
3. Take Rc out of the system context by defining a transformation into R̃c

which operates on histories.
4. Prove a theorem that establishes the faithful simulation of Rc by R̃c.
5. Prove the local correctness of a component c w.r.t. to a given specification

by using R̃c. The simulation theorem guarantees that the correctness of Rg

follows from the local results.

Note that the simulation theorem is about a transformation tilde which can
be applied to certain type of transition systems. Proving it once and for all then
allows for a local verification of all concrete instances. In our Verisoft application
these instances are given by programs written in (a subset of) C.

In the next section we describe the general method as well as its instantiation
in Verisoft more formally. Section 3 provides the transformation tilde for C pro-
grams and the events introduced before in section 2. Based on the specification
of the SMTP scenario in Verisoft in section 4 we show how an efficient, purely
sequential verification technique can be applied to prove the correctness of C
programs with system calls. In the concluding remarks we in particular outline
how this technique may be embedded into a (full) temporal framework.
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2 Modular Verification of Distributed Systems

In the following we describe the method in general terms before we turn to the
actual instantiation use din Verisoft.

2.1 Events and Histories

Let S = (S, R, I) be the global transition system where S is the global state
space, R ⊆ S × S the global transition function, and I ⊆ S the set of initial
states. Typically the systems will not be considered to terminate and therefore
we do not include final states here.

For a decomposition of S we fix a set C of indexes (or selectors) for compo-
nents. Given s ∈ S and c ∈ C let comp(s, c) = sc be the local state of component
c. Let Sc be the state space of component c, i.e. sc ∈ Sc.

Since a transition in a component may depend on the states in or even the
transitions of other components the local transition relations Rc cannot simply
be Rc ⊆ Sc × Sc. Instead a transition in component c may (sometimes) depend
on transitions (not only states) in other components. Hence we have

Rc0 ⊆ Π((Sc1 × Sc1) | c1 ∈ Cc0 ⊆ C − {c0}) × Sc0 × Sc0 .

We have used Cc0 for the set of components c0 depends on in the sense that the
transitions of these components provide enough information.

The local transition system for c is then given by Sc = (Sc, Rc, {sc | s ∈ I}).
For a decomposition we expect that the global system is completely deter-

mined by the local ones, i.e.

sRs′ ↔ ∀c0 ∈ C.((((sc1 , s
′
c1

) | c1 ∈ Cc0), sc0 , s
′
c0

) ∈ Rc0)

To define a view on S with each such step (s, s′) ∈ R we associate a (small) list
of (communication) events [e0, . . . , en−1], each of the form e = mk ev(c0, c1, m),
where the component c0 is the so-called sender, c1 is the so-called recipient and
m is the message to be sent. Each event e = mk ev(c0, c1, m) ∈ [e0, . . . , en−1]
results from a local state transition (sc0 , s

′
c0

) ∈ Rc0((sc1 , s
′
c1

) | c1 ∈ Cc0). The
corresponding message m = mes(sc0 , s

′
c0

) describes in an abstract and state
independent way data that are made available by component c0 to some other
component c1 where c0 ∈ Cc1 . Note that the information given by m does not
necessarily influence the transition (sc1 , s

′
c1

) ∈ Rc1 . It can also be the case that
only some enabling condition for a transition in c1 becomes true by this step in
c0 but the actual transition is carried out later.

We will not impose general rules on the assignment of events to steps of the
global system. Instead a simulation theorem has to be proved for each decom-
position and the associated assignment of events.

Let s̄ = s0, s1, s2, . . . , where siRsi+1 is a run of the global system. Then
for each k the history observed so far is the concatenation of all (small) lists of
events, i.e. hist(s̄, k) = evts(s0, s1) ◦ evts(s1, s2) ◦ . . . ◦ evts(sk−1, sk).
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For a fixed data type of events E t the behavior of systems (both local and
global) is specified by a unary predicate H on E t∗. A system S satisfies H ,
written S |= H iff for all runs s̄ of S and all k we have hist(s̄, k) ∈ H . If S
violates H in a run s̄, then there is a unique component c that (in s̄) violates H
first by an event sent (or generated) by c. Let S |=c H denote the fact that in any
run s̄ of S H will not first be violated by c. Clearly S |= H ↔ ∀c ∈ C.S |=c H .

2.2 Verification by Replay and Extend

To verify a (history) specification H local to a given component c ∈ C we
uniformly transform (Sc, Rc) into (S̃c, R̃c), where R̃c ⊆ ((E t∗ × E t∗ × S̃c) ×
(E t∗ × E t∗ × S̃c)).

The modified transition system in addition to states s̃ operates on two his-
tories the current input and output history. The current input will always be a
final section of the initial input. The computation stops when the input history
becomes empty. The underlying idea is that whenever information is needed from
the environment the (current) input history is scanned for suitable events pro-
viding information intended for c. Events actively sent (generated) by c during
the replay have to coincide with the ones given by the input history. Otherwise
due to a possible overspecification we have chosen a wrong input history. In this
case we stop by appending the remaining input history to the (current) output
thereby reconstructing the original input history. In some cases we will not only
consume and reconstruct the complete (initial) input history but add some new
c-events at the end. This is the extend case. Altogether we expect

((h0, [ ], s̃0) R̃∗
c ([ ], hf , s̃f) →

hf = h0 ∨ ∃h1.(hf = h0 ◦ h1 ∧ ∀e ∈ h1.get sender(e) = c)

So far we have not established any relation between Rc (as part of global runs)
and R̃c. The simulation theorem expresses the fact that R̃c faithfully simulates
initial segments of computations of Rc in the context of global runs.

(s0R
∗s ∧ hist(s) = h0 ◦ h1

∧get sender(lst(h0)) �= c ∧ ∀e ∈ h1.get sender(e) = c)
→
∃s̃f .(h0, [ ], initc(s0)) R̃∗

c ([ ], h0 ◦ h1, s̃f )

This means that in a situation where there is enough information about the
past the modified (local) system will extend the history in the same way as it
happens in real system context. Note that this is a general theorem basically
depending (only) on the definition of hist and the transformation of S into
S̃c = (S̃c, R̃c).

Using Sc |= H for the fact that S̃c preserves H we get Sc |= H → S |=c H as
the final soundness result for our decomposition.
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2.3 The Verisoft Model

In the Verisoft project a formal model of an operating system was developed and
verified with respect to its implementation, [6]. Application level programs run on
(abstract) machines that are part of the model. They interact by a RPC like mech-
anism and access resources (of the OS) by external calls. Here we are interested in
verifying concrete such programs given properties of the system environment.

A model of a distributed system consists of instances of (the same) system
and an abstract network component connecting them. Each system is identified
by a unique network address na ∈ Na. It basically consists of two parts. The
(instance of the) operating system provides resources like input-output devices,
a file system, and sockets for the communication over the network component. A
number of processes each of them being identified be a process identifier pid ∈
Pid is given by an abstract execution mechanism (machine) for certain kinds
of application-level programs. In this paper we are interested in applications
implemented in C0, the subset of C considered in Verisoft.

The configuration of a C0 machine conf =< prog, mem >∈ Conf consists of
a program part prog and a memory mem. In each step < prog, mem > RC0 <
prog′, mem′ > depending on the first statement of prog the memory is updated
and the computation proceeds with the continuation prog′ of the first statement
in prog.

From point of view of an application programmer the system context consists
of all operating systems and the network connecting them. Hence we consider
this complete context as a single component in our decomposition. It will be
denoted by the selector (symbol) sc. The states of this component ssc ∈ Ssc are
made up of the states of all instances of the operating system and the state of the
network. Processes are identified with pairs p = mk proc(na, pid). Altogether we
have C = {mk proc(na, pid) | na ∈ Na, pid ∈ Pid} ∪ {sc}. For a process p the
local state is the configuration confp of the corresponding C0 machine, i.e. for
all c we have Sc = Conf .

The view we have chosen is depicted in Figure 1.

Net

os@na

pid@na

system-context

Net

os@na

pid@na

system-context

Fig. 1. Verisoft Model

The communication between user pro-
grams and the surrounding operating sys-
tem (instance) is by so called external
calls. External calls cext(τ̄ : z̄, res) take
the same syntax as ordinary function
calls. We use τ̄ as a sequence of value pa-
rameters and z̄, res as a sequence of return
parameters.

Whenever a system call is reached,
i.e. for confp RC0 conf ′

p we have
conf �= conf ′

p =< r := cext(τ̄ :
z̄); progcont, mem′ >, the normal execu-
tion as given by the (small step) seman-
tics RC0 ⊆ Conf × Conf is interrupted
(stopped).
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With these steps we associate events of the form mk ev(p, sc, m) where the
message m encodes the particular call given by cext and the values of the pa-
rameters (τ̄ : z̄) in mem′. For a call of socket read socket read(sid : length,
buffer, ec) the corresponding message will by Sread(sid, length) where Sread
is a constructor symbol for an abstract data type and sid, length are the values
of the programming variables length, buffer in mem′. They indicate the socket
and the length of the string to be read.

To model the return of external calls the standard C0 machines have to be
extended by steps where the resulting configuration is (also) determined by a
transition ssc Rsc s′sc, that is we have Rext

C0 ⊆ (Ssc × Ssc) × Conf × Conf . If
an external call is processed by the system context leading to a step ssc Rsc s′sc

then the information intended for process p will be written to the return pa-
rameters of. For the transition in p this leads to a new memory mem′′ and
a new program progcont to be executed further. The event we associate with
these steps is of the form mkev(sc, p, m) where the message m represents the
return information. For example a successful call of socket read the message
will be Succ sread(length, buffer) where length indicates the elements in the
fixed length array buffer that have actually been read. These values uniquely
determine the values of the result parameters after return of the external call.

3 Application Level Programs

In this section we describe the construction of R̃C0 out of RC0. This will be done
not be defining a new kind of machines but be transforming the C0 program π
with external calls that is executed by a component into a program π̃ that takes
histories as input and produces histories as output but uses only standard func-
tion calls. Since histories describe initial segments of nonterminating behaviors
the new program is intended always to terminate. We consider its result as an
approximation of the computation of π following the general replay and extend
strategy outline above.

We suggest a uniform transformation of the program into an approximation
exhibiting the same behavior as the original program with respect to prefixes
of event histories. The transformation preserves the structure of the program.
Thus it is possible to use a verification approach that follows the structure of
the implementation. Moreover this approach enables us to employ well known
verification techniques for sequential programs as described in, for instance, [7]
and [8]. The latter system has been used for the verification of SMTP.

3.1 Computing Approximations

In this section the uniform procedure to convert programs πi into their approx-
imations π̃i is described. Let the program πi be given as πi = (δi|αi(x̄)), where
x̄ are the (program) variables occurring free in αi and δi is the list of procedure
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declarations used in αi. The function approxπi(p0, h0) will be computed by the
program π̃i given by

( approx i(p, hin : hout, mode) ⇐ declare hc := hin; x̄ := σ̄

begin mode := fin; hout := []; start i(p : x̄, hc, hout); α̃i(x̄);
stop(: hout, hc, mode) end,

ext call(πi), δ̃i | approx i(p0, h0 : h1, m0) )

where the initial values of h1 and m0 (used to return the results) are not relevant.
The sequence ext call(πi) contains declarations for the procedures that sim-

ulate the external calls occurring in πi together with additional start and stop
procedure, start i and stop, respectively.

In the computation of the approximation a local variable hc is used that
contains the currently remaining history during the execution of α̃i. It is set to
hin initially. The output history is collected in hout as the computation proceeds
while the mode is kept in mode.

At least for processes generated by a fork operation the variables in x̄ have
to be initialized dynamically. In these cases the corresponding create event will
provide the necessary values. They are then assigned to x̄ by the start proce-
dure overwriting the values given by σ̄. If the initial values are fixed the start
procedure will leave x̄ untouched.

The construction is guided by the following general idea. An initial segment
of the computation of αi executed by p is replayed using (consuming) h and
extending hout.

External calls c(τ̄ : z̄, res) are replaced (or simulated) by procedures with dec-
larations c sim(p, x̄ : ȳ, res, hc, hout, mode) ⇐ bodyc. The simulating procedures
analyze and shorten (consume) the current history h and extend the current
output hout. The first argument indicates the process that is executing αi. Let
v̄ and w̄ be the values of τ̄ and z̄, respectively.

If in hc there is no event generated by p, then the computation (of α̃i) stops
with hout ◦ h ◦ [evc(p, v̄ : w̄)] as final output, where evc(p, v̄ : w̄) is the event
generated by this call of c.

If in hc there is a further event generated by p, then it has to be evc(p, v̄ : w̄).
Otherwise the computation stops signalling a failure. In that case the particular
hc is not realized by πi (and π̃i) which might happen due to over specification.

For hc = h0 ◦ h′
1, where in h0 there is no event generated by p and fst(h′

1) =
evc(p, v̄ : w̄), h′

1 is scanned for a matching answer event. If there is no such
answer, then the computation stops with hout ◦h as the final output history and
mode being set to stop.

In all these cases the procedure simulating the external call leaves the result
parameters untouched since they are not needed anymore.

For h′
1 = h1 ◦ h2, where rst(h1) contains no answer matching fst(h′

1) =
fst(h1) = evc(p, v̄ : w̄) and fst(h2) = e such that Match ev(evc(p, v̄ : w̄), e) the
procedure returns values for the result parameters according to mes of(e) and
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the computation of α̃i continues with rst(h2) as the new remaining history and
hout ◦ h0 ◦ h1 ◦ [fst(h2)] as the new current output.

The above mentioned analysis of the current history h with respect to an
external call c(τ̄ : z̄, res) of p is given by parsec(p, h, v̄, w̄) ∈ His × His × His,
where again v̄ and w̄ are the values of τ̄ and z̄, respectively.

parsec(p, h, v̄, w̄) = (h0, h1, h2) ↔ (h = h0 ◦ h1 ◦ h2 ∧
evc(p, v̄ : w̄) �∈ h0 ∧
(h1 �= [] → (fst(h1) = evc(p, v̄ : w̄) ∧

∀e ∈ rst(h1).¬Match ev(evc(p, v̄ : w̄), e))) ∧
(h2 �= [] → Match ev(evc(p, v̄ : w̄), fst(h2))))

The body of the procedure is given below

bodyc :≡ declare h0 := parsec(p, hc, x̄, ȳ).0;
h1 := parsec(p, hc, x̄, ȳ).1;
h2 := parsec(p, hc, x̄, ȳ).2

begin

if mode �= fin then skip else
if ∃e ∈ h0.Gen(p, e) then mode := fail else

if h2 = [] then mode := stop;
if h1 = [] then

hout := hout ◦ h ◦ [evc(p, x̄, ȳ)];
hc := [] fi else

hout := hout ◦ h0 ◦ h1 ◦ [fst(h2)];
hc := rst(h2); y0 := ret val1c(fst(h2))
. . .

yn−1 := ret valn−1
c (fst(h2))

res := ret resc(fst(h2))
fi fi fi

Before the execution of α̃i is started the begin of an active thread of p has to
be determined by the start procedure. If there is no p-thread executing πi, then
the given input history is returned as output and mode is set to term.

The procedure that simulates the start of a process πi is given by the decla-
ration start i(p : ȳ, hc, h out, mode) ⇐ bodystart i. It parses the given history h
according to the definition of Proc.

parsestart i(p, hc) = (h0, h1) ↔ h = h0 ◦ h1 ∧
(h1 �= [] → (Create(i, p, fst(h1)) ∧

∀e ∈ rst(h1).¬Term(i, p, e)))
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The procedure body then is given below

bodystart i :≡ declare h0 := parsestart i(p, h).0;
h1 := parsestart i(p, hc).1;

begin

if h1 = [] then mode := term; hout := hc; else
y0 := initi0(get mes(fst(h1)));
· · ·
yni−1 := initini−1(get mes(fst(h1)));
hc := rst(h1); hout := h0 ◦ [fst(h1)]

fi

Finally we need a stop procedure stop(: hout, h, mode) ⇐ bodystop that finalizes
the simulation. It restores the original history by appending the remaining h to
hout. Note that in those cases where a new (final) event was generated hc will be
[]. If we have reached the end of α̃i, indicated by mode = fin, we check whether
according to the remaining history something needs to be done a signal the
result by setting mode to fin or term, respectively. This information is needed
for decomposing verification problems. The body of the stop procedure is then
given as

bodystop :≡ hout := hout ◦ h;
if mode = fin ∧ ∀e ∈ h.¬Gen(p, e) then mode := term fi

Whenever mode is changed (to m ∈ {stop, fail}) by a procedure simulating
an external call the rest of α̃i has to be skipped. This is achieved by adding a
kind of guards to while loops and (possibly) recursive procedures. In addition h,
hout, and mode have to be passed as arguments to the procedures declared in δi.

For declarations we have

∅ �→∼ ∅
q(x̄ : ȳ) ⇐ β , δ �→∼ q̃(x̄ : ȳ, hc, hout, mode) ⇐

if mode �= fin then skip else β̃ fi , δ̃

Commands are modified as follows.

skip �→∼ skip
x := τ �→∼ x := τ

α0; α1 �→∼ α̃0; α̃1

if ε then α0 else α1 fi �→∼ if ε then α̃0 else α̃1 fi

while ε do α od �→∼ while ε ∧ mode �= fin do α̃ od
q(τ̄ : z̄) �→∼ q̃(τ̄ : z̄, hc, hout, mode)

c(τ̄ : z̄, res) �→∼ c sim(p, τ̄ : z̄, res, hc, hout, mode)
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4 SMTP-Server

As already mentioned earlier we considered a non-trivial example in the Verisoft
context, namely the full implementation (in a C-like language) and the full spec-
ification (in terms of histories) of an SMTP-Server as part of an Simple Mail
Transfer Scenario. All in all this implementation required about 7.500 lines of
code.

The SMTP server listens for connections from SMTP clients. If a connection
has been established, it spawns a child process, which inherits the socket grant-
ing access to that new connection. The child communicates with the remote
SMTP client while obeying the so-called SMTP Protocol. In the meantime, the
main SMTP server process listens again for new connections and spawns child
processes to handle the session.

This behaviour can be formalised by a step by step description of the main
process and its child processes. For the formalisation we fix the constant SOS
(Simple Operating System) representing the operating system. Any process –
and thus the SOS as well – is determined by a network address (the host) and
a process id on this host.

For simplicity use the following abbreviations: For every history h and process
p we define h ↓ p as the projection of the history h on process p. I. e.,

() ↓ p = ()
(〈s, r, m〉 ◦ h) ↓ p = 〈s, r, m〉 ◦ h ↓ p if s=p or r=p
(〈s, r, m〉 ◦ h) ↓ p = h ↓ p otherwise

With this we can describe for a given history h the set of histories whose pro-
jection on p is just h as

h+ = {h′ ∈ Hist | h′ ↓ p = h}

Recall that we defined the binary operator ◦ on histories as the concatena-
tion of its two arguments. In what follows we also use this operator for the
”concatenation” of two history sets, and that as

H1 ◦ H2 = {h1 ◦ h2 | h1 ∈ H1, h2 ∈ H2}

The top-level specification (in terms of histories) of the SMTP-Server then
looks as follows: we consider the prefix-closure of the set HSMTP Server where

HSMTP Server =HCREATE(p)◦HOPEN(p, sid)◦HLISTEN(p, sid)◦HLOOP (p, sid)

for some process p and some socket id sid.
The history sets HCREATE(p), HOPEN (p, sid), and HLISTEN (p, sid) (in the

successful case) are easily defined as

HCREATE(p) = (〈p, SOS, Create(SMTP − Server, SOS, 1)〉)+
HOPEN (p, sid) = (〈p, SOS, Sopen(25)〉〈SOS, p, Succ sopen(sid)〉)+
HLISTEN (p, sid) = (〈p, SOS, Slisten(sid)〉〈SOS, p, Succ〉)+
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The history set HLOOP (p, sid) is supposed to cover the parent process of the
SMTP-server together with all the children processes that might be initiated.

HLOOP (p, sid) = (〈p, SOS, Saccept(sid, ∞)〉)+ ∪
HACC(p, sid, sid′) ◦ HFORK CALL(p) ◦

(HFORK ANS C(p′) ◦ HCHILD(p′, sid, sid′) ∩
HFORK ANS P (p) ◦ HCLOSE(p, sid′) ◦ HLOOP (p, sid))

for some socket id sid′ �= sid and some process p′ �= p .
Again, the histories HACC(p, sid, sid′), HFORK(p), and HCLOSE(p, sid′) (in

the successful case) are fairly simple, namely

HACC(p, sid, sid′) = (〈p, SOS, Saccept(sid, ∞)〉〈SOS, p, Succ saccept(sid, rna, rpn)〉)+
for some remote network address rna and port number rpn

HFORK CALL(p) = (〈p, SOS, Afork(1)〉)+
HFORK ANS P (p) = (〈SOS, p, Succ afork(hdl)〉)+ for some handle hdl �= none
HFORK ANS C(p′) = (〈p′, SOS, Create Clone(iC , p, 1)〉〈SOS, p′, Succ afork(none)〉)+
HCLOSE(p, sid) = (〈p, SOS, Sclose(sid)〉〈SOS, p, Succ〉)+

Remains the most complicated case, namely the specification of the child process
which is responsible for carrying out the SMTP protocol. As above, we consider
only the successful case here.

HCHILD(p, sid′, sid)=HCLOSE(p, sid′) ◦ HGREETING(p, sid) ◦ ReadEmails(p,sid) ◦
HQUIT (p, sid) ◦ HCLOSE(p, sid)

The history set for HCLOSE(p,sid) is already defined above. HGREETING(p, sid)
and HQUIT (p, sid) look as follows:

HGREETING(p, sid) = HREADY (p, sid) ◦ HReadLine(p, sid, ”EHLO ” + ipr) ◦
HGREETS(p, sid, ipr) for some remote ip address ipr

HREADY (p, sid) = (〈p, SOS, Swrite(sid, ”220 ” + get na(p) +
” SMT Service Ready”)〉〈SOS, p, Succ〉)+

HGREETS(p, sid, ipr) = (〈p, SOS, Swrite(sid, ”250 ” + get na(p) + ” greets ” + ipr)〉
〈SOS, p, Succ〉)+

HQUIT (p, sid) = HReadLine(p, sid, ”QUIT”) ◦
(〈p, SOS, Swrite(sid, ”221 ” + p + ” closing”)〉〈SOS, p, Succ〉)+

ReadLine consists essentially of successively reading one character after the
other. A slight complication arises as it may be possible that the attempt to
read a single character may be successful, yet results in an empty string.

HReadLine(p, sid, string) =

8<
:

ReadString(p, sid, string) if ∃s : string = sˆCRˆLF
and s does not contain CRˆLF

Ø otherwise

i. e., reading a line means to read a string that (uniquely) ends with CR and LF.

ReadString(p, sid, ””) = ()+

ReadString(p, sid, cˆs) = ReadChar(p, sid, c) ◦ ReadString(p, sid, s)
ReadChar(p, sid, c) = ReadEmpty(p,sid) ◦ ReadChar1(p, sid, c)
ReadChar1(p, sid, c) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(1, ”c”)〉)+
ReadEmpty(p,sid) = ()+ ∪ (ReadEmpty1(p,sid) ◦ ReadEmpty(p,sid))
ReadEmpty1(p,sid) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(0, ””)〉)+
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Remains to specify the history set ReadEmails (which in addition covers writing
the email to the Inbox file):

ReadEmails(p, sid) = ()+ ∪ (ReadEmail(p, sid) ◦ ReadEmails(p,sid))
ReadEmail(p, sid) = ReadS(p, sid, s) ◦ ReadR(p, sid, r) ◦ ReadD(p, sid, d) ◦

WriteEmail(p, sˆrˆd) for some s, r, d
ReadS(p, sid, s) = ReadLine(p, sid, ”MAIL FROM: ” + s) ◦

(〈p, SOS, Swrite(sid, ”OK”)〉〈SOS, p, Succ〉)+
ReadR(p, sid, r) = ReadLine(p, sid, ”RCPT TO: ” + r) ◦

(〈p, SOS, Swrite(sid, ”OK”)〉〈SOS, p, Succ〉)+
ReadD(p, sid, d) = ReadLine(p, sid, ”DATA:”) ◦

(〈p, SOS, Swrite(sid, ”354 Start mail input;
end with CRLF .CRLF”)〉〈SOS, p, Succ〉)+ ◦

ReadD′(p, sid, d)◦
(〈p, SOS, Swrite(sid, ”OK”)〉〈SOS, p, Succ〉)+

ReadD′(p, sid, ”.”) = ReadLine(p, sid, ”.”)
ReadD′(p, sid, lˆd) = ReadLine(p, sid, l) ◦ ReadD′(p, sid, d) provided l �= ”.”

The final step is to specify WriteEmail.

WriteEmail(p, e) = (〈p, SOS, F lock(Inbox, ∞)〉〈SOS, p, Succ〉
〈p, SOS, Fseek(Inbox,1, 0)〉〈SOS, p, Succ fseek(pos1)〉
〈p, SOS, Fwrite(Inbox, e)〉〈SOS, p, Succ fwrite(pos2, n)〉
〈p, SOS, Funlock(Inbox, ∞)〉〈SOS, p, Succ〉)+

for some file positions pos1 and pos2.
It is certainly out of the scope of this paper to show all the verification details

for the whole SMTP-Server. Instead, we emphasise on a small portion of it,
namely the readLine procedure as specified above.
In a VSE-like fashion the procedure is listed below:

PROCEDURE readLine(sid:length,buffer,res)
int length, ec;
buffer buffer_array;
char c, cprevious;
bool res;

BEGIN length := 1; res := true; c := null; cprevious := null;
cl := nil;
WHILE ((cprevious /= CR OR c /= LF) AND res = true) DO
length := 1; socket_read(sid:length,buffer,ec);
if (ec = SUCC) then res := true else res := false fi;
if (length = 1 and res = t) then
cprevious := c; c := buffer[0]; cl := write(cl,c) fi

OD;
END

The readline procedure is supposed to read characters from the given TCP/IP
socket until it finds a CR followed by a LF. This behaviour is described by the
history sets HreadLine(p, sid, cl) for a procedure identifier p, socket id sid and a
list of characters (string) cl. Now, the segments of the histories that are members
of this set are the result of calling the readLine procedure from above. Therefore,
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for the verification of the SMTP server, we need to make sure that this procedure
(implementation) meets its intended semantics (the corresponding history sets
from above), namely HreadLine(p, sid, cl) = ReadLine(sid, cl).

According to the technique described above we have to prove the following
property:

∃h : (h ◦ h0
c = hc ∧ h0

out = hout ∧ mode = fin
→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉hc = h0

c ∧ hout = h0
out ◦ h ∧

((mode = fin ∧ res = t) ↔ h ∈ HreadLine(p, sid, cl)))

The proof of this property is split into three main lemmas (and several small
lemmas about the data structures used): The first lemma is formulated close to
an invariant used to deal with the (single) while loop occurring in the body of
readLine. The history of past events every time the while loop is entered (end
exited)

∃h : (h ◦ h0
c = hc ∧ h0

out = hout ∧ mode = fin

→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉
hc = h0

c ∧ hout = h0
out ◦ h

∧ ((mode = fin ∧ res = t)
→ h ∈ HreadTCPString(p, sid, cl) ◦ HreadTCPEmpty(p, sid))

∧ (h ∈ HreadTCPString(p, sid, cl) ◦ HreadTCPEmpty(p, sid) ∧ cl �= 〈〉
→ (mode = fin ∧ res = t))

The following lemma shows that we can drop the history sets HreadTCPEmpty,
because HreadTCPEmpty(p, sid) \ HreadTCPEmpty1(p, sid) = {〈〉}.

∃h : (h ◦ h0
c = hc ∧ h0

out = hout ∧ mode = fin
→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉hc = h0

c ∧ hout = h0
out ◦ h ∧

((mode = fin ∧ res = t) → h /∈ HreadTCPEmpty1(p, sid) ◦ H

Finally, we need a lemma that deals with the fact that end of lines are marked
with 〈CR, LF 〉. Notably, the proof for this lemma does not require any knowledge
about the external call simulation socket read sim. Thus this example shows
how a proof can be separated into parts dealing with concurrent communication
and those dealing with properties independent of the communication, even if the
properties are not separated by the program structure.

〈readLine(p, sid : hc, hout, mode, cl, res)〉
mode = fin ∧ res = t → ∃cl0 : cl = cl0 ◦ 〈CR, LF 〉

5 Conclusions

We have demonstrated how properties of a complex (formal model of a) dis-
tributed system including application level programs of 7.500 lines can be spec-
ified in a way that abstracts from internal states of the components and allows
for a decomposition of the verification task.
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Instead of requiring a certain form of the model we have proposed a technique
to a posteriori define a view that in our case represented the one of an application
programmer. Other orthogonal views on the same model will be useful. For
example to verify the protocol that underlies the network part of the model
another decomposition and event structure is necessary.

The price we have to pay for this flexibility is that we have to prove a simula-
tion theorem for each view. This can be justified in our case by the fact that the
same application view can be used for all kinds of software implemented for the
given (formally specified) operating system. It basically provides one interface
between the internal structures and information needed by the outside world.

The theory as described in this paper is limited to safety assertions in the
temporal sense. The idea to locally replay and extend histories can be used
to embed the technique into full temporal logic. Using for example TLA, [9],
one can define a concurrent system where a shared history is on the one side
extended by approximations for a particular component and on the other by an
oracle that guesses steps of the environment (of that component) according to a
given history specification. The temporal treatment then is entirely at the level
of histories as opposed to the state transitions of all the components involved.
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Abstract. Cyclic Redundancy Check (CRC) is an established coding method to 
ensure a low probability of undetected errors in data transmission. In CRC, a 
checksum (Frame Check Sequence, FCS) is attached to the data. The FCS is a 
result of a polynomial division by a so called generator polynomial. CRC is 
widely used in industrial communication where the data are often transmitted 
through different layers. Each layer has usually its own CRC with its specific 
generator polynomial. The paper presents results of examinations of such 
cascades and other combinations of CRC. It is shown that residual error 
probability can be decreased by choosing the right combination and explained 
how the residual error probability of already existing cascades has to be 
determined in order to reduce the number of worst case assumptions in the 
overall safety proof. The combinations are illustrated by means of examples. 

Keywords: Cyclic Redundancy Check, Residual Error Probability, Safety-
critical Communication. 

1   Introduction 

Transmission of data is an essential function of automated plants. Sensors send data to 
data processing units like Programmable Logic Controllers (PLC) and these 
processing units send data to actuators affecting the plants under control. In safety-
critical applications, the integrity of received data is very important, since undetected 
errors could lead to dangerous accidents. Therefore, data communication is to be 
considered as an essential part of the overall safety proof. Its residual error probability 
has to be involved in the safety calculations (cf. e.g. [2]) and may increase or decrease 
the overall safety tremendously. 

The Cyclic Redundancy Check (CRC) is a widely used coding method to detect 
errors in data transmission because of three reasons: 

• The on-line algorithm can be implemented relatively easy by means of a 
Linear Feedback Shift Register (LFSR) in hardware (cf. e.g. [9], [10]) or a 
corresponding software solution by e.g. predefined tables. 
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• The number of redundant bits is relatively small compared to approaches of 
e.g. sending data several times. 

• Different methods of proof of the residual error probability have been 
developed (see [4], [6], [9], [10]).  

Since CRC itself is very efficient and widely used it is obvious to analyze different 
types of existing or potential combinations of CRC because of the following 
advantages: 

• Already implemented and proved solutions can be re-used. 
• Specific combinations of CRC can potentially decrease the residual error 

probability efficiently. 
• Existing combinations in the layer-oriented industrial communication can be 

involved in the proof in order to reduce unnecessary automation equipment 
costs. 

The last mentioned cascading has not been considered explicitly yet for the 
calculation of the residual error probability. Usually, worst case assumptions are 
applied and lead to additional effort. 

The paper is structured as follows. The mathematical principle of CRC is explained 
in Section 2. Some remarks about the calculation of the residual error probability are 
made. In Section 3, the analyzed combinations are introduced and discussed in detail. 
These combinations are discussed and compared in Section 4. Significant examples 
are presented there. It is shown that the residual error probability can be reduced by 
almost no additional effort depending on the chosen combination. Conclusions and 
statements about necessary future work are given in Section 5. 

2   Principle of CRC  

In this chapter, basic principles of CRC are summarized. For further and detailed 
information see e.g. [1], [6], [7], [8], [9]. 

2.1   Functionality of CRC  

In order to detect errors in data transmission by CRC the original data (net data ND, 
information bits) consisting of m bits are processed in the sender as follows: ND is 
handled as a binary polynomial nd(x). A so called generator polynomial g(x) has to be 
chosen. Polynomial nd(x) is multiplied by xr, where r is the degree of g(x). The result 
of this multiplication is divided by g(x). The corresponding bit pattern consisting of r 
bits of the remaining polynomial fcs(x) corresponds to the checksum FCS that is 
attached to ND:  

)()(mod)( xfcsxgxxnd r =⋅ . (1) 

For instance, the bit pattern of information bits ND = [1110011] and the generator 
polynomial g(x) = x3+x+1 are given. The bit pattern ND leads to the binary 
polynomial nd(x) = 1⋅x6+1⋅x5+1⋅x4+0⋅x3+0⋅x2+1⋅x1+1⋅x0 = x6+x5+x4+x+1. The degree 
of g(x) is r = 3. The polynomial counterpart of the checksum FCS is obtained by 
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application of (1): fcs(x) = ((x6+x5+x4+x+1) ⋅x3) mod (x3+x+1) = x. Thus FCS = [010] 
and the telegram T that is sent to the receiver is T = [ND, FCS] = [110011010]. 

The receiver handles the received telegram T’ as a binary polynomial t’(x) and tests 
if t’(x) is divisible by g(x): 

?0)(mod)(' =xgxt  (2) 

If equation (2) is not true, the telegram was changed during transmission, i.e. T ≠ 
T’; if equation (2) holds, T is regarded to be transmitted correctly, i.e. T = T’ because: 

.0

)(mod)()(mod)(

)(mod)()(mod)(

)(mod))()(()(mod)(

=
+=

+⋅=

+⋅=

xgxfcsxgxfcs

xgxfcsxgxxnd

xgxfcsxxndxgxt
r

r

  (3) 

For instance, as in the example above, T = [1110011010] is sent, g(x) = x3+x+1 and 
the received telegram T’ is T’ = [1110001011]. Since t’(x) mod g(x) = x2+1 ≠ 0, hence 
the falsification is detected. 

The determination of FCS in the receiver and the check in the sender is often 
realized by a linear feedback shift register (LFSR). For the proof of the residual error 
probability, the LFSR can be modeled by matrix-vector-multiplication. Let Im denote 
the unit matrix of dimension m×m, nd = (dm-1 dm-2 … d0) a vector whose coefficients 
are the bits of ND, and t = (dm-1 dm-2 … d0 cr-1 cr-2 … c0) a vector consisting of the bits 
of telegram T. Then t can be calculated by means of a matrix A of dimension m×r that 
depends on the used generator polynomial g(x) by: 

.)|( AIndt m⋅=  (4) 

The test in the receiver can be formulated as follows: 

 ?0')|( =⋅ tIA r
T   

If this equation holds, T is regarded to be transmitted correctly.  
The method of matrix-vector-multiplication is well described in [6], [7], [8]. It is 

applied and adapted in section 4.1.  

2.2   Undetectable Errors  

Obviously, CRC can not detect all errors. If in the example above T’ is equal to T’ = 
[1100101010] then equation (2) holds for t’(x) and the falsification is not detectable. 

 Transmission errors can be modeled by superimposed error patterns F. These 
patterns have the same lengths (number of bits) like T. A bit of F is allocated by value 
0, if the corresponding bit in T is transmitted correctly, and a bit of F is allocated by 
value 1, if the corresponding bit in T is falsified during the transmission. 
Consequently, T is superimposed by F such that T’ = T+F holds1. A transmission 

                                                           
1 Note that ‘+’ stands for exclusive-or in the space of binary polynomials. 
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error is undetectable by CRC if and only if the polynomial corresponding to F, f(x), is 
divisible by the generator polynomial g(x), since: 

.)(mod)(

)(mod)()(mod)(

)(mod))()(()(mod)('

xgxf

xgxfxgxt

xgxfxtxgxt

=
+=

+=
 

 

Therefore, if t’(x) mod g(x) is equal to zero, the same holds for f(x) and vice versa. 
Since not all transmission errors are detectable it is necessary to define criteria to 

measure the quality of error detection. One important criterion is the Hamming 
Distance, which is the number of bits that at least have to be falsified to constitute an 
undetectable error. This conforms to the minimum number of entries 1 in an error 
pattern F over all possible error patterns.  

More precise than Hamming Distance is the residual error probability (Pre) that is 
the probability that an erroneous telegram is regarded to be transmitted correctly. A 
rough estimate for Pre is the ratio of the number of undetectable errors to the number 
of all possible errors: 

r
rm

m

reP −
+ <

−
−≈ 2

12

12
 . (5) 

This estimate is very imprecise since it is assumed implicitly that a bit is corrupted 
during transmission with probability 0.5. In fact, this probability (so called bit error 
probability p) is much smaller. The estimate (5) is sufficient for some applications 
like voice transmission but not for safety-critical applications. There the residual error 
probability has to be calculated for given generator polynomial g(x) and given length 
of net data m for various bit error probabilities p ∈(0; 0.5]. 

2.3   Calculation of the Residual Error Probability  

The exact calculation of the residual error probability is usually very complex. There 
are various methods to calculate Pre. Fig. 1 gives a survey of these methods. 
 

Monte-Carlo-Simulation. Random samples are used to estimate Pre by the ratio of the 
number of undetectable error patterns to the number of samples. This method is an  
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Fig. 1. Survey of methods for the determination of the residual error probability 
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incomplete determination of estimation (5) and therefore not feasible for safety-
critical applications. 
 

Direct code analysis. All 2m-1 undetectable error patterns have to be generated 
explicitly. The numbers Ai of those of i erroneous bits  have to be counted (Ai, i=1,…, 
n is the so-called weight distribution). Using the weight distribution, Pre is calculated 
by formula (6) 

∑ −⋅⋅=
=

−n

i

ini
ire ppAP

1
)1(  . 

 
(6) 

Obviously, the generation of all these error patterns leads to a complexity of 2m and 
the computation becomes feasible only for short telegrams.  
 
Transformed code analysis. Instead of generating all undetectable error patterns of the 
original code, a much smaller set of patterns (2r patterns instead of 2m) of the 
corresponding dual code are generated. The weight distribution Bi of this code (so 
called dual weight distribution) is determined. Based on the dual weight distribution it 
is either possible to calculate Pre directly or to calculate the weight distribution Ai of 
the original code by means of the MacWilliams Identity (see [5]) which is the more 
precise alternative. Both options sometimes lead to numerical problems and to 
inaccurate results (cf. [6]). 
 
Stochastic automata. This method avoids numerical problems which occur in the 
transformed code analysis. The idea is to model the behavior of the LFSR which is 
used to implement the calculation of FCS by a deterministic automaton. This 
automation is extended to a stochastic one by the explicit inclusion of bit error 
probability p. Pre is equal to the probability of one of the states of the stochastic 
automaton (for detailed information see [6], [9], [10]). 

3   Investigated Combinations of CRC 

In this section, three combinations of CRC are introduced. 

3.1   CRC with a Generator Polynomial That Is a Product of Two Polynomials 
(“Product-CRC”) 

In this first combination, the generator polynomial g(x) is a product of two 
polynomials g1(x) and g2(x) with degree r1 and r2. The FCS, consisting of r bits with r 
= r1+r2 is calculated by 

.)()(mod)( 21 xfcsxgxxnd rr =⋅ +   

The sent telegram T = [ND, FCS] consists of m+ r1+r2 bits. The receiver checks if 
equation (2) holds.  

This combination is depicted schematically in Fig. 2. Fig. 3 shows the frame of the 
telegram T. 
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ND FCSCRC
g=g1·g2  

Fig. 2. CRC with a generator polynomial that is a product of two polynomials 

ND FCS

k r=r1+r2

 

Fig. 3. Frame of the telegram of Product-CRC 

This approach leading to a CRC with a new generator polynomial is investigated in 
order to compare it to the following combinations, since the telegrams have the same 
number of net data bits m and the same number of check bits r = r1+r2.  

3.2   Twofold CRC with Two Different Polynomials (“Twofold-CRC”) 

This combination codes the net data ND twice. The first FCS, FCS1, is calculated 
based on g1(x), and the second FCS, FCS2, by generator polynomial g2(x): 
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For a schematic illustration of the calculation algorithm see Fig. 4. The frame of the 
sent telegram T = [ND, FCS1, FCS2] is shown in Fig. 5. 

The receiver check consists of two checks consequently:  

?0)(mod))(')('(

?0)(mod))(')('(

22
2

11
1

=+⋅

=+⋅

xgxfcsxxnd

xgxfcsxxnd
r

r

 
 

ND

FCS1CRC1 g1

CRC2
FCS2

g2

ND

FCS1CRC1 g1

CRC2
FCS2

g2  

Fig. 4. Schematic illustration of Twofold-CRC 
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Fig. 5. Frame of the telegram of Twofold-CRC 
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If and only if both checks hold, the telegram is regarded to be transmitted correctly.  
This combination is investigated in order to see how much Pre can be decreased by 

a second CRC and to be compared to the other combinations. 

3.3   Cascaded CRC with Two Different Polynomials (“Cascaded-CRC”) 

In this kind of combination, two FCS have to be calculated like in Section 3.2, but the 
FCS1 is handled like net data within the second CRC (see Fig. 6). 

ND FCS1CRC1 g1

CRC2 FCS2
g2

ND FCS1

ND FCS1CRC1 g1

CRC2 FCS2
g2

ND FCS1

 

Fig. 6. Schematic illustration of Cascaded-CRC 

The frame of the telegram is equal to the structure of the Twofold-CRC in Fig. 5. 
First, FCS1 is calculated. In contrast to Twofold-CRC, FCS2 is calculated for the 

bit pattern consisting of ND and FCS1: 
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The sent telegram T = [ND, FCS1, FCS2] consists of the information bits and both 
FCS like in Twofold-CRC. Here the receiver checks if: 
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If and only if both checks hold, the telegram is regarded to be transmitted correctly.  
This combination is analyzed because industrial communication is often executed 

through different layers. In each layer, a CRC with a specific generator polynomial 
may be applied. This interlocking has not yet been considered at the calculation of the 
residual error probability. Thus, usually unnecessary additional work has been done to 
achieve a residual error probability which was gained by the CRC in upper 
communication layer only. 

4   Comparison of the Combinations 

The introduced combinations are compared regarding their residual error probability.  
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4.1   Calculation of Pre of the Combinations 

The residual error probability of Product-CRC is calculated by means of stochastic 
automata (see Fig. 1) because it is the most precise method. Pre of Twofold- and 
Cascaded-CRC are calculated by transformed code analyses where the undetectable 
error patterns were generated by matrix-vector-multiplication (see Section 2.1).  

The matrix to generate telegrams for Twofold-CRC is given by (Im | A1 | A2), where 
A1 is the characteristic matrix for polynomial g1(x) and A2 the characteristic matrix for 
polynomial g2(x). All undetectable error patterns F (or their corresponding vector f, 
respectively, cf. section 2.1) of the dual code can be generated by:  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅= rT

T

I
A

A
kf

2

1
 

 

where k = (kr-1 kr-2 … k0) comprises all possible vectors element of {0; 1}r. These 
undetectable error patterns where used to determine the dual weights as the basis for 
the calculation of the original weights. Pre is calculated by equation (6). 

 

Fig. 7. Residual error probability for polynomials 1EFh and 185h and 128 information bits 
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Fig. 8. Residual error probability for polynomials 89h and 185h and 128 information bits 

The residual error probability of Cascaded-CRC is determined in the same way. 
There the matrix to generate telegrams can be derived as follows:  

Let (Im | A1) be the matrix to generate the temporary telegram Tt = [ND, FCS1] 
based on the net data ND (i.e. compared to equation (4) it is tt = nd⋅(Im | A1)). 
Furthermore, let (Im+r1 | A2) be the matrix that is used to calculate the telegram T = 
[ND, FCS1, FCS2] out of Tt (i.e. t = tt⋅(Im+r1 | A2)) in the second CRC, then the 
following equations holds:  
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with B = (Im | A1) ⋅A2. Thus, all undetectable error patterns F can be generated by: 
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where k = (kr-1 kr-2 … k0) comprises all possible vectors element of {0; 1}r. 
Since matrix multiplication is not commutative, the derivation of the matrix to 

compute the telegram shows that the sequence of polynomials in Cascaded-CRC is of 
importance (unlike Product- and Twofold-CRC).  
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4.2   Results of the Comparison 

The comparison of the combinations shows that no combination can be figured out as 
the best one for all applications. The best combination depends on the generator 
polynomials g1(x) and g2(x), the length m of ND, and the bit error probability p.  

In Fig. 7 the residual error probabilities Pre of the investigated combinations over 
bit error probability p is given for polynomials 1EFh2 and 185h. The number of 
information bits is 128.  

The figure shows, that Twofold-CRC is the worst alternative up to a bit error 
probability of about 0.003, beyond that the Cascaded-CRC becomes even worse. 
Product-CRC is the best alternative in this specific case. 

For orientation, the residual error probability for equal distribution (at p = 0.5) is 
drawn with line, that is marked with stars (cf. estimation (5)).  

In contrast to Fig. 7, Product-CRC is the worst alternative in Fig. 8. There, Pre of 
polynomials 89h and 185h for 128 information bits is given. The product of these 
polynomials is polynomial C599h that is used in CAN bus [3].  

 

Fig. 9. Residual error probability for polynomials 89h and 185h and 64 information bits 
                                                           
2 Polynomials are denoted hexadecimally, i.e. 185h = (1 1000 0101)2 = x8+x7+x2+1.  
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Fig. 10. Residual error probability for polynomials 405h and 5Dh with 256 information bits 

Fig. 9 displays the residual error probability again for polynomials 89h and 185h 
but for 64 information bits, which is the maximal length of a CAN bus telegram. Only 
Product-CRC and Twofold-CRC are depicted. The figure shows that in this case the 
Product-CRC is much better than Twofold-CRC. This emphasizes that also the length 
of net data is very important for the choice of a combination. 

In Fig. 10 it is shown, that the quality of the combinations differs in a wide range. 
There, Pre of polynomials 405h and 5Dh for 256 information bits is displayed for 
Product-CRC and Cascaded-CRC. At bit error probability p = 0.000001, Cascaded-
CRC is nearly 109 times better in error detection than Product-CRC. 

5   Conclusions and Future Work 

It has been shown that various combinations of CRC are worth to be investigated for 
practical applications: 

• The appropriate combination of existing implementations of CRC can reduce 
the residual error probability tremendously. 
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• Unfortunately no combination can be figured out as the best one for all 
applications. The choice of the combination depends on the number of 
information bits and the applicable generator polynomials. 

• Existing cascades of CRC can be involved into the safety proof easily. 

All necessary algorithms for the calculations of the residual error probability have 
been developed. 

Future work will include additional information bits of the outer CRC in cascades 
of CRC. There an extension of the calculation methods is necessary. It is based on 
coding theory as well as on the stochastic automaton approach (cf. Fig. 1) 

A second future task investigates the layer-oriented communication in detail. There 
usually several CRC are applied on different layers with the consequence that a 
detected erroneous telegram will not be forwarded to the upper layers. In many 
applications, the detection within the lower layers is even not known and cannot be 
used for the proof of the overall residual error probability of transmitted data. Thus, 
the worst case of identical checks has to be assumed with the effect that only the 
check of the upper known check is applied for the proof. A real problem arises if the 
determination of the rate of undetectable erroneous telegrams involves the measured 
rate of detectable erroneous telegrams. There the proof is almost impossible since the 
detectable erroneous telegrams are not forwarded and not known on the upper layers. 
The only way to overcome that problem is to increase the independency of the checks 
of different layers. The solution to that task will be published in a forthcoming  
paper [11]. 
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Abstract. In present-day electronic systems, application subsystems
from different vendors and with different criticality levels are integrated
within the same hardware. Hence, encapsulation of these subsystems is
required in the temporal as well as in the spatial domain. Partitioning
Operating Systems (OSs) are employed to allow shared access of appli-
cations to critical resources within an integrated system.

In this paper we will discuss fundamental properties of partitioning OSs
and compare features of existing solutions. Thereby, we will investigate on
LynxOS which is a partitioning OS according to ARINC653, on Tresos,
a partitioning OS in accordance with AUTomotive Open System ARchi-
tecture (AUTOSAR), as well as on two prototypical partitioning OS re-
alizations that have been implemented within the Dependable Embedded
COmponents and Systems (DECOS) project, an integrated project within
the Sixth Framework Programme of the European Commission.

Keyworks: Embedded Systems, Dependability, Partitioning OS.

1 Introduction

Dramatic advances within the last years have paved the way for the integration
of application subsystems by different vendors into a single coherent embed-
ded system architecture. Thereby, important initiatives (e. g., AUTOSAR [1],
Integrated Modular Avionics (IMA) [2], DECOS [3]) in the automotive, avionic
and related domains have been concerned with a systematic, domain oriented
process to bundle different application subsystems within the same hardware.
These approaches target at increased interoperability, a reduction of the number
of Electronic Control Units (ECUs), cables and connectors, and an increase in
reliability of the overall system.

A fundamental pre-requisite for the integration of different application sub-
systems is given by a reliable protection mechanism that partitions a system into
execution spaces that prohibit unintended interference of different application
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subsystems. Reliable protection in both the spatial and the temporal domains
is particularly relevant for systems where the co-existence of safety-critical and
non safety-critical application subsystems shall be supported. Partitioning on
node level enforces fault containment and thereby enables simplified replace-
ment/update and increased reuse of SW components. A major commercial ben-
efit of partitioning comes with significantly reduced certification effort for mixed
criticality systems.

This paper investigates on different existing OSs that are designed to support
the partitioning of hardware resources in order to enable the integration of differ-
ent application subsystems. Such partitioning OSs can be found in the automo-
tive (e. g., Tresos according to AUTOSAR), the avionic (e. g., LynxOS according
to ARINC653 for IMA systems), or in cross-industry approaches (e. g., DECOS
Encapsulated Execution Environment (EEE) [4], DECOS partitioning OS-based
on Real-Time Application Interface (RTAI) [5]).

In this paper we identify fundamental features of partitioning OSs and com-
pare these features based on the existing partitioning OSs: Tresos, LynxOS,
DECOS EEE, and the RTAI based DECOS partitioning OS.

The remainder of the paper is structured as follows: Subsequent to this intro-
duction, section 2 describes the concepts of an integrated architecture as tackled
by AUTOSAR, IMA, and DECOS. Section 3 outlines the fundamentals of par-
titioning OSs that enable spatial and temporal partitioning. Section 4 outlines
properties of TRESOS, LynxOS, and the DECOS OSs, whereas section 5 com-
pares the features of these solutions. Section 6 concludes this paper.

2 Integrated Architecture

Characteristic of an integrated architecture is the sharing of computational re-
sources (e. g., CPU time, memory) and communication resources (i. e., network
bandwidth) among multiple software components. This strategy leads to a reduc-
tion of the number of deployed node computers and avoids unnecessary resource
duplication. In the following we discuss our system model of an integrated ar-
chitecture. In particular, we describe the model of an integrated node computer,
which exploits a partitioning operating system to establish an execution envi-
ronment for multiple software components.

2.1 System Model

Today large distributed computer systems are typically constructed out of node
computers (e. g., denoted as ECUs in the automotive domain). However, there is
a shift towards a component-based integration at a finer level of granularity. In
integrated architectures, such as DECOS or AUTOSAR, vendors supply software
components instead of node computers. In an additional step these software
components are then allocated to the ECUs of the target platform [6,7]. This
integration of software components on an integrated node is depicted in Figure 1
and will replace the “1 Function – 1 ECU” methodology of today’s federated
architectures.
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Fig. 1. Integrated Architecture

In order to provide an execution environment that allows the execution of
software components without unintended interference, temporal and spatial par-
titioning for both computational and communication resources is required. For
both communication and computational resources, one can distinguish two types
of partitioning [8]:

– Spatial Partitioning. Spatial partitioning ensures that one software com-
ponent cannot alter the code or private data of another software component.
Spatial partitioning also prevents a software component from interfering with
control of external devices (e. g., actuators) of other software components.

– Temporal Partitioning. Temporal partitioning ensures that a software
component cannot affect the ability of other software components to access
shared resources, such as the common network or a shared CPU. This in-
cludes the temporal behavior of the services provided by resources (latency,
jitter, duration of availability during a scheduled access).

While partitioning of communication resources in an integrated architecture
has been addressed in [9], this paper focuses on the partitioning of computational
resources.

2.2 Model of an Integrated Node Computer

An integrated node computer provides an execution environment for multiple
collocated software components of one or more application subsystems as shown
in Figure 1. The model of an integrated node computer comprises:

– Software components: The software components implement the application
functionality. A software component is part of an application subsystem and
represents the unit of distribution. Each software component is the respon-
sibility of a single organizational entity (e. g., a specific supplier). The inter-
action with other software components occurs through the communication
services provided by the communication middleware.

– Partitioning operating system: The purpose of the partitioning operating
system is the establishment of multiple encapsulated execution environments
for combining multiple software components within a single node computer.
The encapsulated execution environment provided for a software component
is denoted as a partition and provides guaranteed computational resources
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(CPU time, memory). The partitioning operating system implements mech-
anisms for spatial and temporal partitioning in order to protect the compu-
tational resources of the individual partitions. The scheduling of partitions
needs to ensure that a timing failure of a software component, such as a
worst-case execution time violation, does not affect the CPU time avail-
able to other partitions. In analogy, the spatial partitioning mechanisms of
the partitioning operating system include memory protection between parti-
tions (e. g., hardware-enforced with a Memory Management Unit (MMU)).
Thereby, each partition emulates a virtual node computer that is dedicated
to a single software component only.

– Communication middleware: The main purpose of the middleware is the
management of the communication resources as previously described. The
middleware provides a technology invariant interface to the software compo-
nents that abstracts from any hardware-specific implementation details. For
example, in AUTOSAR [7] the runtime environment (RTE) provides such a
generic communication service for the applications. In DECOS the high-level
virtual network services perform this task [10].

– Communication controller: The purpose of the communication controller is
to provide access to the underlying communication system. By the use of
hardware drivers and the provision of standardized Application Program-
ming Interface (API) one typically abstracts from the used hardware and
thus ensures reuse of existing code in future systems.

– Input/Output (I/O) and drivers: The software components hosted on a node
computer exploits the input/output subsystem for interacting with the con-
trolled object and the human operator. This interaction occurs either via
a direct connection to sensors and actuators or via a fieldbus (e. g., Local
Interconnect Network (LIN) [11]). The latter approach simplifies the instal-
lation – both from a logical and a physical point of view – at the expense of
increased latency of sensory information and actuator control values.

3 Partitioning OS Fundamentals

Integrated node computers as those introduced in Section 2 raise the demand for
an OS which is in charge of managing the available resources. Besides the usual
feature set of an OS like process scheduling, memory management, inter-process
communication and Input/Output, support for partitioning in the temporal and
the spatial domains as mentioned in Section 2 is important for encapsulation as
the basis for composability. A more detailed discussion is included in [12].

The goal of a partitioning OS as depicted in Figure 2 is to provide fault con-
tainment equivalent to an idealized system in which each partition is allocated an
independent processor and associated peripherals, and all inter-partition commu-
nications are carried out on dedicated lines [8]. As mentioned above, partitioning
can be splitted into spatial and temporal partitioning. Both of this partitioning
dimensions have an influence on the implementation of the basic OS features
listed below as well as on the general OS API. For instance, no system call shall
corrupt other partitions or the OS itself.
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Fig. 2. Concept of a partitioning OS

In the following, we will investigate on the fundamental properties of an par-
titioning OS, namely scheduling, memory management, and communication.

3.1 Scheduling

Scheduling is concerned with the allocation of resources to software components
including the instants of invocation, the assignment of memory regions and the
right to access I/O. We can distinguish between static (i. e., offline) and dy-
namic (i. e., online) scheduling approaches. In [13] the following four classes of
scheduling paradigms in the area of real-time systems are outlined:

Static table-driven scheduling: The resource allocation is based on a static
schedulability analysis. At runtime, the invocation of tasks is triggered ac-
cording to a pre-defined schedule, which is usually called table.

Static priority driven preemptive scheduling: A static schedulability ana-
lysis is performed but, in contrast to static table-driven scheduling, software
components are scheduled at runtime according to a ”highest priority first”
strategy.

Dynamic planning-based scheduling: With dynamic planning-based sched-
uling, resource allocation to a software component is decided dynamically
based on a feasibility check (that is also performed at runtime).

Dynamic best effort scheduling: The focus of dynamic best effort sched-
uling is to provide an efficient allocation of given resources to software com-
ponents. No feasibility checks are performed. Hence, no guarantees with re-
spect to the real-time behavior can be given and tasks may be aborted during
their execution.

A partitioning OS typically supports a static table-driven scheduling approach
that is very well suited for safety-critical, hard real-time systems since its static
nature makes it possible to check the feasibility of the schedule in advance.
Furthermore, the maximum time between two partition activations is known in
advance.

In addition to partitioning OS services, it should be possible to host several
software components within a single partition. In this case, the partitioning OS
schedules the partitions and a secondary OS schedules the software components
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within a partition (multi-level scheduling). This secondary OS can implement a
simple table-driven scheduling or even a full featured OS or virtual machine.

3.2 Memory Management

Memory management deals with the allocation of memory to a partition (and
to the software components residing in that partition). Hence, the OS shall
ensure that no undesired interference between any two partitions might occur.
Therefore, it must be avoided that a software component is able to write into
or execute code from a different partition if not explicitly granted to do so.
Spatial partitioning is only possible if the processor provides hardware support
for memory protection, i. e., a dedicated protection unit that assigns memory
access rights to a certain partition and that avoids errors by strictly blocking
illegal requests of faulty partitions.

In existing implementations, two approaches can be found with respect to
memory protection that depend on the available hardware support.

Virtual Address Space: Memory protection in modern OSs is typically orga-
nized by providing a virtual address space to each process (e. g., Windows,
Linux). Virtual addresses are translated to physical addresses by an MMU.
In case a virtual address cannot be translated into a physical address (due
to an illegal request from a software component), a protection trap is raised.

Protection Blocks: When using protection blocks, multiple memory areas are
assigned to software components with different access rights, e. g., read,
write, execute. This approach is comparably simpler and thus favored for
low-end embedded devices that offer a Memory Protection Unit (MPU).

3.3 Interaction

A partitioning OS must support the interaction of a software component with
other software components and with its physical environment. We distinguish
between: (a) communication that takes place between software components on
the same physical node (i. e., intra-node communication), (b) communication
between software components that are located on different nodes (i. e., inter-node
communication), and (c) interaction of a software component with its physical
environment (i. e., I/O interaction).

Intra-Node Communication. The interaction between software components
that are located in different partitions on the same physical hardware node
must be supported by a partitioning OS. The most simple mechanism for intra-
node communication is to provide shared memory regions that can be accessed
by more than one partition. More sophisticated approaches provide message
channels / queues for intra-node communication.

Inter-Node Communication. Inter-node communication is typically sup-
ported by a middleware layer as discussed in Section 2 that provides a message-
based interface to a software component. The inter-node communication must be
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supported by a partitioning OS in the sense that the realization of a middleware
layer is enabled that provides a message-based communication interface to the
partitions and that accesses and instruments the communication controller of a
node.

I/O Interaction. I/O interaction of a software component with its physical
environment takes place either across a standardized fieldbus (e. g., LIN [11],
Controller Area Network (CAN) [14]) or via direct I/O. Thus, I/O interaction
is concerned with the protection of I/O hardware of a given microcontroller
(e. g., a particular I/O block). In case a transducer or a fieldbus is instrumented
only from a single partition, it is sufficient to grant this partition access to the
transducer/fieldbus. If more than one partition needs to access I/O, typically a
shared partition is implemented that offers I/O services to other partitions by
inter and intra-node communication.

It should be mentioned that if a memory-mapped device is employed, con-
trolled I/O interaction must be supported by the memory management mecha-
nism as previously discussed. This means that a partition is granted access to
the memory region to which the memory-mapped device is linked.

4 Overview of Partitioning OSs

In this section we discuss the capabilities of partitioning OSs that have been
selected from the avionics (i. e., LynxOS), automotive (i. e., Tresos), and cross-
industry domains (i. e., DECOS OSs). Our survey is based on data available
from the respective vendors/research groups. No actual verification of the stated
properties has been carried out for this survey.

4.1 Encapsulated Execution Environment – DECOS Core OS

The Encapsulated Execution Environment (EEE) was developed by TTTech
within the DECOS project and consists of the DECOS Core Operating System
(COS) as well as a set of graphical configuration tools to generate configuration
files.

The COS has been written from scratch with strict temporal and spatial
partitioning of all system resources in mind. Using a static configuration is the
fundamental mechanism to implement the partitioning functionality. Resource
ownership and scheduling is defined statically and can be checked for feasibility in
advance. Besides partitioning mechanisms, the COS provides a system interface
for intra-node communication as well as error handling and health checks.

Scheduling. The COS uses a two-level scheduling hierarchy. The top-level
schedule table divides the schedule cycle into multiple time slots, each of them
assigned to a single partition. A second schedule table is used to trigger events
and their corresponding event handler function within those partition intervals.
Both of these schedule tables are generated during system configuration. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Comparison of Partitioning Operating Systems for Integrated Systems 349

table responsible for scheduling the partitions is fixed whereas the secondary
table can be reconfigured during runtime. The COS ensures that SW components
can only reconfigure events belonging to their partition as well as that the new
scheduled time for an event lies within a partition interval of the same partition.

For event handlers within partitions fixed priority-based preemptive schedul-
ing is used. This is also necessary for hardware interrupts. An interrupt belonging
to a partition is only enabled if this partition is currently scheduled. If this in-
terrupt is triggered, it is mapped to a high-priority partition event with the ISR
as event handler.

Temporal partitioning among different partitions is guaranteed since at the
end of a partition time slot, the COS preempts all running event handlers, dis-
ables all interrupt sources belonging to this partition and finally sets up the
environment for the next partition.

Memory Management. The memory protection mechanisms of the COS de-
pends on an MMU that allows the concurrent assignment of permissions to at
least five different memory regions (protection blocks). Each partition has exe-
cute rights for all its private code as well as for a memory region containing the
system interface functions and libraries. Additionally, each partition has read
and write permissions for its private data and a dedicated part of a node-wide
shared memory. The last protection block is used to grant read access to the
whole shared memory.

Interaction. Intra-node communication can be done by using the message
channel service provided by the COS which can either be sampled or queued
and support an arbitrary number of producers and consumers. A simpler way
of intra-node communication can be achieved by using the node-wide shared
memory. In the DECOS project this memory is also used for private inter-node
communication lines (memory mapped I/O).

Another way to provide private access to I/O devices is to deny direct access
to hardware for usual partitions1. A dedicated I/O partition with the necessary
access rights is used which provides an API for the different hardware compo-
nents.

4.2 RTAI-Based Partitioning OS

In the course of the DECOS project, a partitioning operating system has been
developed, which is based on the real-time Linux variant RTAI and which ex-
ploits the Linux Real-Time (LXRT) extension of RTAI for realizing spatial and
temporal partitioning. LXRT is an extension of RTAI that enables the develop-
ment of hard real-time programs running in user space by utilizing the real-time
scheduler provided by RTAI. The RTAI real-time scheduler executes the Linux
kernel as an idle task, i. e., non real-time Linux applications are only executed
when no RTAI/LXRT tasks are active.

1 Only possible if the target platform provides support for such a restricted run level.
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The central element of the partitioning OS is a time-triggered dispatcher, an
RTAI kernel module that is responsible for the allocation of processor time to
the individual partitions. The partitions are implemented as LXRT tasks, thus
executed in user space while preserving the temporal benefits of RTAI.

Scheduling. The activation of partitions is performed by the time-triggered
dispatcher that extends the built-in functionality of RTAI/LXRT operating sys-
tem. The dispatching points are derived from a static dispatching table which
is created during system configuration. The dispatching table consists of the
activation of a particular partition along with its maximum time granted for
execution.

For providing temporal partitioning, individual partitions must not be able
to exceed their maximum assigned processor time as defined in the dispatching
table, even in the case of a software fault within a partition. For this purpose,
deadline monitoring is done by the time-triggered dispatcher: The dispatcher is
periodically executed according to the dispatching table. Due to its realization
as an RTAI kernel module with the system-wide highest priority, an eventually
active partition would be preempted by the dispatcher. The dispatcher analyzes
the processor state of the previously executed partition right after its activation
and, eventually, removes the partition from the ready-queue of the RTAI sched-
uler. Due to this enforced preemption by RTAI, the partitions are not required
to act cooperatively and release the processor on their own.

Memory Management. Memory protection of the RTAI-based partitioning
operating system relies on the MMU functionality provided by the processor
on which it is executed. Since a processor that is equipped with an MMU ba-
sically distinguishes between supervisor mode and user mode, where memory
access is only protected in the latter one, spatial partitioning by exploiting the
functionality of the MMU can only be provided for applications running in user
mode.

Like in many real-time Linux variants, applications using the RTAI API are
implemented as Linux kernel modules. Thus, they are executed in supervisor
mode and could circumvent memory protection. However, due to the realization
of the partitions as LXRT tasks which are executed in user mode, the mem-
ory protection mechanisms of Linux are preserved and thus spatial partitioning
between individual partitions is provided.

Interaction. According to the system model of DECOS, a software compo-
nent, denoted in DECOS as job [3], is the basic unit of work that is distributed
among the nodes of a DECOS cluster. Usually, a mapping of one job per parti-
tion is established. Communication between jobs is realized via virtual network
services [10]. Thus, from the point of view of the individual jobs it is transparent
whether an interaction occurs via intra-node or inter-node communication.

The virtual network service is provided by the virtual network middleware,
which is implemented in a dedicated partition on each DECOS node. The inter-
action of jobs with the virtual network middleware occurs via shared memory,
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denoted as ports. The memory layout and access rights of these ports is de-
termined during system configuration. The code sequences for allocating and
initializing the corresponding memory areas are then statically linked to the
application code in order to prevent an application developer from allocating
forbidden areas. The same strategy is followed for protecting I/O regions, which
are accessed by the use of memory mapped I/O, i. e., by mapping the physical
address of the I/O in the virtual address space of a particular partition.

4.3 AUTOSAR OS – Tresos

The AUTomotive Open System ARchitecture (AUTOSAR) standard contains
the operating system specification AUTOSAR OS which defines the main fea-
tures of an AUTOSAR-compliant OS: real-time performance, static configura-
tion combined with a priority-based scheduling strategy and protective functions
for memory and timing during runtime. A further requirement is the capability
to be hostable on low-end microcontrollers. In order to support this, the AU-
TOSAR OS specification introduces four scalability classes, each of them with
different mandatory features. Those scalability classes also affect partitioning.
E.g., memory protection is only required for class three and four, timing protec-
tion for class two and four. The example OS for this section is Tresos, developed
by Elektrobit, which supports scalability classes one to four.

The AUTOSAR standard does not know the concept of partitions. Instead,
multiple OS-Applications, which form a cohesive functional unit composed of
tasks, Interrupt Service Routines (ISRs) and other resources, are used. OS-
Applications can either be trusted or non-trusted. Since trusted OS-Applications
are allowed to run with monitoring and protection features disabled at runtime,
a non-trusted OS-Application is the best fit to the partition notion like defined
in Section 3.

Scheduling. The AUTOSAR OS standard is based on OSEK/VDX which
is widely used in the automotive industry. In order to be OSEK-compatible,
AUTOSAR uses the same fixed priority-based preemptive scheduling strategy.
The scheduling is event-triggered and a high-priority event is always able to
reserve the CPU which prevents strict temporal partitioning. To support tem-
poral partitioning to a certain extent, two mechanisms are available in AU-
TOSAR: (1) Schedule tables which allow defining a statically, periodic activation
of events and (2) time monitoring which is used to limit the maximum execu-
tion time of tasks/ISRs, the maximum time they are allowed to hold a shared
resource/disable interrupts and the arrival rate of tasks/interrupts.

Memory Management. The basic memory protection requirement that shall
be fulfilled by the OS is to protect the data, code and stack section of tasks
within an OS-Application from other non-trusted OS-Applications. Additionally,
it should provide protection for private data and stack for tasks within the same
OS-Application. This requires hardware support in form of an MMU or an MPU.
Since this is highly platform specific, the AUTOSAR OS standard does not define
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implementation details. Tresos uses static allocation of memory to tasks and
OS-Applications in combination with an MPU to achieve spatial partitioning of
memory.

Interaction. All AUTOSAR software components run on top of the AUTOSAR
Runtime Environment (RTE), which acts as a communication abstraction layer.
The same interface in form of ports is provided whether intra-node or inter-
node information channels are used. The current version of the AUTOSAR RTE
specification (Release 2.0) does not support memory protection mechanisms even
if provided by the OS.

4.4 ARINC653-Compliant Partitioning OS – LynxOS-178

The operating system LynxOS-178 is a real-time operating system that has been
developed by LynuxWorks for safety-critical avionic applications based on Inte-
grated Modular Avionics (IMA) [2]. LynxOS-178 adheres to the ARINC stan-
dard 653 [15], which is known as APplication EXecutive (APEX) and defines
the services of the avionic software environment. APEX provides services for
partition management, process management, time management, memory man-
agement, interpartition communication, intrapartition communication, and diag-
nosis. In addition, LynxOS-178 distinguishes between a small partitioning kernel,
which establishes the encapsulated partitions, and higher software layers (e.g.,
for POSIX support) that run within the partitions. LynxOS-178 supports certifi-
cation to the highest criticality levels, namely DO-178B level A [16]. LynxOS-178
has already been deployed in safety-critical avionic military and aerospace sys-
tems.

Scheduling. For the scheduling of partitions, LynxOS-178 uses fixed cyclic
scheduling. Each partition is statically assigned CPU time via a periodically
recurring time slice. Thereby, interference between partitions is prevented in the
temporal domain. Within a partition, on the other hand, LynxOS-178 offers a
process-based execution environment with priority-based preemptive scheduling,
priority inheritance, and priority ceilings according to the POSIX model.

Memory Management. In analogy to the allocation of the CPU time, Lynx-
OS-178 statically performs the allocation of memory to the partitions. The mem-
ory allocation of a partition is fixed at design time and the configured memory
size cannot be changed at runtime. An MMU is employed for isolating the par-
titions from each other. In contrast to the memory allocation at the partition
level, dynamic memory management is supported within a partition. Therefore,
LynxOS-178 offers an API with POSIX-compliant calls. The software layer for
establishing this POSIX interface is not part of the LynxOS-178 partitioning
kernel, but executed in the partitions.

Interaction. For the interaction between partitions, ARINC653 specifies com-
munication channels that are accessible via two types of ports: sampling and
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queuing ports. At sampling ports, successive messages contain identical but up-
dated data. Received messages overwrite old information, thus requiring no mes-
sage queuing. In queueing ports, messages are assumed to contain uniquely differ-
ent data. Messages are buffered in queues, which are managed on a first-in/first-
out (FIFO) basis.

Inner-partition communication services (e. g., message queues, black boards,
semaphores, and events) are not part of the LynxOS-178 partitioning kernel, but
can be provided by software layers within the partitions.

5 Feature Comparison

Table 1 gives a brief overview of the features of the four partitioning OSs dis-
cussed in this paper. LynxOS-178 has the highest maturity level and provides the

Table 1. Feature Comparison Overview

DECOS COS DECOS RTAI Tresos LynxOS-178

Vendor TTTech Vienna Univer-
sity of Technol-
ogy

Electrobit Lynuxworks

Maturity prototype prototype commercial certified
Standard — — AUTOSAR ARINC653
Footprint ≤ 1 MB 1 – 10 MB (incl.

Linux Kernel)
≤ 1 MB ≥ 100 MB (incl.

secondary OSs)

Temporal Partitioning

DECOS COS Temporal partitioning ensured by static cyclic scheduling of par-
tition time slots. Deadline monitoring to detect faulty SW com-
ponents within a partition.

DECOS RTAI Temporal partitioning ensured by static cyclic scheduling of par-
tition time slots. Deadline monitoring to detect faulty SW com-
ponents within a partition.

Tresos No strict partitioning due to preemtive scheduling. Time moni-
toring to detect faulty SW components.

LynxOS-178 Temporal partitioning ensured by static cyclic scheduling of par-
tition time slots.

Spatial Partitioning

DECOS COS Private memory statically assigned and protected by MPU. Pri-
vate communication lines for I/O, inter-partition communication
and cluster-wide communication.

DECOS RTAI Private data protected by MMU. Private communication and I/O
by mapping memory into the virtual address room of partitions.

Tresos Private memory statically assigned and protected by MPU. Com-
munication middleware (RTE) does not support memory protec-
tion.

LynxOS-178 Private data protected by MMU.
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most features at the cost of higher hardware requirements. Tresos concentrates
on the compliance with the AUTOSAR OS specification, which focuses more
on backward compatibility and sophisticated communication middleware than
on partitioning. Both OSs for the DECOS project have been developed with
partitioning as core feature. The DECOS COS is a small OS written for low-
end embedded hardware whereas DECOS RTAI profits from the many features
provided by underlying Linux kernel.

6 Conclusion

The bundling of software components by different vendors and with different
levels of criticality on an integrated node computer as currently undertaken in
integrated architecture approaches (e. g., AUTOSAR, ARINC, DECOS) requires
strict partitioning of these software components at the OS level. A number of
partitioning OSs exist that aim at providing encapsulation of software compo-
nents in the temporal and the spatial domains.

In this paper we presented four partitioning OSs, i. e., DECOS EEE Core OS,
RTAI-based partitioning OS, Tresos, and LynxOS, and compared the features
of these partitioning OSs. Thereby, we investigated on the temporal and spatial
protection mechanisms as well as on the code size and the targeted area of
application of these partitioning OSs. It turned out that although all presented
partitioning OSs adhere to the same core principles, there are notable differences
with respect to maturity, code size, and support for spatial protection of these
OSs. In the future we expect significant improvements and further establishement
of partitioning OSs on different markets (particularly in the automotive domain).
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Abstract. In future, the decreasing feature size and the reduced power
supply will make it much more difficult to built reliable microprocessors.
Economic pressure will most likely result in the reliability of microproces-
sors being tuned for the commodity market. In the dependability domain
we expect the continued spreading of mixed-mode computing systems,
i.e., systems that execute both critical and non-critical functionality. To
permit the efficient execution of non-critical applications and the correct
execution of critical applications, we introduce the concept of Software
Encoded Processing (SEP). SEP enforces a crash failure semantics of the
underlying CPU. It does not require the source code of encoded programs
and provides probabilistic guarantees. To achieve this, arithmetic codes
and signatures are used to detect corrupted data and faulty executions
of programs.

1 Introduction

Society depends more and more on critical computing systems such as financial
systems or x-by-wire systems. Safety related systems are typically built using spe-
cial purpose hardware. However, such hardware is expensive because the number
of units is much smaller than that of commodity systems. Also, such hardware
is usually an order of magnitude slower than commodity hardware. We expect
that in future there will be economic pressure to use commodity hardware for de-
pendable computing. Systems will need to facilitate the execution of both critical
and non-critical applications on the same computer system. Such mixed-mode
commodity systems will require new dependability mechanisms which make it
possible to cope with the restrictive failure detection capabilities of commodity
hardware. One crucial step in providing such mechanisms is the ability to trans-
form value failures of commodity hardware into crash failures: the aim is that the
probability that a value failure of the CPU is not transformed into a crash failure
is negligible. The concept of Software Encoded Processing (SEP) presented in
this paper guarantees such a failure virtualization, i.e., the transformation of a
(more difficult to handle) failure model into another (easier to handle) failure
model.

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 356–369, 2007.
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A valid question is, of course, if such a SEP is indeed needed. Historically,
hardware reliability has been increasing with every new generation. In future,
the decreasing feature size of hardware will however not lead to more reliable
but to less reliable hardware—logic and memory—as [17] states. [4] impressively
describes the effects of reduced feature sizes. Today’s CPUs have a variation in
operating frequency of about 30% which is dealt with by using die binning, i.e.,
testing the resulting chips to find their operating frequency. This variability will
increase further with decreasing feature sizes because of the following reasons
[4]:

– dopant variation. The threshold voltage of transistors is controlled by
dopants inserted into the transistor channels. The smaller the transistors
become, the less dopants are inserted. That results in a greater impact of
variations (in this amount of dopants) onto the electrical properties of the
transistors.

– subwavelength lithography. Nowadays, the wavelength of the light used
in lithography is bigger than the produced structures—resulting in rough
structures. That again results in variations in the electrical properties of the
produced transistors.

– varying heat flux. How much heat is produced highly depends on the
functionality of a building block and thus varies across the die. Since the
transistor’s electrical properties are influenced by heat, transistors will have
varying properties depending on their location on the die.

So, the uncontrollable variety of the production process will make processor
designs, at least as done today, more and more unpredictable.

Apart from that, smaller features are less reliable because smaller transistors
age faster and thus become faster unreliable. Furthermore, smaller features are
more susceptible to soft errors since supply voltages decrease with decreasing
feature size. It is expected that the amount of failures caused by soft errors
increases exponentially with every new technology generation [4].

While the number of transistors per chip is expected to increase exponen-
tially for at least another decade, we expect that the increase in CPU cycles
needed to provide the functionality of safety-critical components will be much
less. Therefore, we are faced with the prospect that in future we will have plenty
of CPU cycles to spare but we cannot assume that all instructions are exe-
cuted correctly. The objective of SEP is to provide probabilistic guarantees that
can be tuned for the demanded dependability requirements and the expected
maximum failure rate of the underlying hardware. SEP will support commodity
hardware while executing standard binaries without requiring their recompila-
tion. Programs with low or no safety requirements will be executed at full speed
concurrently to software encoded programs.

2 Related Work

Detection of transient and permanent hardware errors is a widely researched
topic. A widespread technique to detect errors in memory are error correcting
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codes (ECC) and parities. [16] and [5] demonstrate their usage to protect Itanium
and Power4 processors. But soft errors can also influence the logic building blocks
of a computing system. On hardware level this problem is usually tackled by
replication. [2] describes lock-stepped and loosely lock-stepped processors, that
is redundant processors executing the same instruction stream. Their results are
compared to detect erroneous executions. These approaches are completed by
redundant memory blocks, redundant communication links and redundant disks.
This redundancy can also provides means to fail-over.

Another, approach especially used in the avionics and aeronautics area is
radiation hardening. This obviously only protects from soft errors. Permanent
errors are not handled.

These hardware solutions which are able to handle errors in logic building
blocks are very expensive. That typically rules out the execution of non-safety-
critical software on such hardware. Furthermore, they are not designed for de-
tection of permanent design faults.

Control flow checking which can be implemented in hardware, e.g., [10] and
[11], or software, e.g., [1], provides means to recognize invalid control flow for the
executed program, that is execution of instructions which are not expected for
the executed binary. If hardware errors do only influence processed data, these
errors will not be recognized. Even if an error is detected, it is not possible to
identify erroneous data as it is possible with SEP. Furthermore, most control
flow checking techniques require the source or assembler code of the executed
program to determine a model for the expected control flow. They do not provide
adjustable guarantees.

Algorithm based fault tolerance [8,18] and self-checking software [22,3] use
invariants contained in the executed program to check the validity of the gen-
erated results. This requires that appropriate invariants exist. These invariants
have to be designed to provide a good failure detection capability.

On software level, redundant execution too is used to detect hardware errors.
[13] duplicates instruction and compares their outcomes. A similar approach is
taken in ED4I [14], but the duplicated instructions do not process the original
data but a k-multiple of it. Thus all results of duplicate instructions have to be
k-multiples of the original results. So, many hardware errors are recognizable.
But faults in program loading, changed control flow and operand errors are not
recognized if these occur in both program versions. Also not recognized are errors
in the code comparing the two results.

Currently, much research is done on how to efficiently exploit multicore pro-
cessors for fault detection [19] using them for efficient redundant execution of
the same program and result comparison. Here too, design faults will influence
both copies, and the comparison is critical wrt. soft errors.

The Vital Coded Processor (VCP) presented in [7] uses time, space and data
redundancy to recognize transient and permanent errors. Programs executed by
the VCP process data which is encoded using:

– an AN-code, that is multiplication of every data item with a constant A, to
detect data modifications and faulty CPU operations (operation errors),
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– variable dependent signatures to detect execution of wrong operations (op-
erator errors) or usage of wrong operands (operand errors), and

– a time stamp d to detect the usage of out-dated operands (lost updates).

Thus, instead of using the functional value xf of the variable x the value is
transformed to xc = A∗xf +Bx +d. A is a variable independent constant, Bx is
the signature of the variable x and d is the time stamp which identifies the cur-
rent iteration of the executed program. Signatures are associated with variables
after transforming a program into single-assignment form, i.e., every variable is
assigned exactly once. Signatures for all input variables are chosen during the
program development process. The signatures which are to be expected for any
dependent variable including output variables can be derived using the signa-
tures of input variables and the source code of the executed program.

In the following listing ac, bc, and cc are encoded variables. The signature of
the result rc can be precomputed to be Ba + Bb + Bc. The code has to maintain
the timestamp d. That requires correctional steps such as subtraction of the
current d after an addition of two encoded variables.

// encoded computation o f a+b+c
int f ( int a c , int b c , int c c , int d){

int t c=a c+b c−d ; // t c = (A∗a+Ba+d)+(A∗b+Bb+d)−d
// t c = A(a+b)+Ba+Bb+d

int r c=t c+c c−d ; // r c = (A∗ t+Bt+d)+(A∗c+Bc+d)−d
// r c = A( t+c)+Bt+Bc+d
// r c = A(a+b+c)+Ba+Bb+Bc+d

return r c ;
}

An encoded program only processes encoded values. It has no direct access
to their functional values. The encoding of input values is done by a special
hardware encoder before the input is given to the main CPU. The signatures
for input variables and precomputed signatures for output variables are stored
in another part of special hardware. The precomputed signatures are used by
the hardware-implemented checker to test the validity of generated output rc

by evaluating the following condition: (rc − d) mod A == Ba + Bb + Bc. The
functional value rf of rc is obtained by integer division: (rc−d)/A. Code checking
and decoding require that Br = Ba + Bb + Bc < A is valid. Special hardware
provides the d which is used for encoding, decoding, and code correction during
execution. The VCP executes programs in a loop where every run uses the same
signatures but a different time stamp d.

It can easily be seen that rc will not be a valid code word if a) any of the op-
erations executed is faulty, e.g., an addition which delivers for some input values
incorrect results, b) if an unintended operation, e.g., a subtraction instead of an
addition, is executed, c) an operand is modified or replaced with another operand
encoded using a different signature or d) an out-dated operand, i.e., an operand
from the previous iteration which is encoded using a wrong d, is used. Errors re-
main undetected if they result in a multiple of A plus the correct signature for
the modified variable and the current time stamp d. With high probability, an
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introduced error destroys the code of any variable which depends on a variable
containing an invalid code word. Further faults might rectify the code. But that
is very improbable because these faults would have to create a correctly encoded
word for the modified variable, i.e., a multiple of A plus the appropriate signature
and timestamp d. In section 4 we compute the probability for undetected errors.

Control structures such as branches or loops are implemented in such a way
that the signatures of all variables whose values depend on the control structure
are defined independently of the chosen branch or the number of executed iter-
ations. However, the signature will be incorrect if the wrong branch is taken or
a wrong number of iterations are executed (see [7]).

The following pseudo code demonstrates the encoding of the unencoded if-
statement if(x>=0){y=z+x}else{y=x-y}.

sigCond = sigGEZ ( x c ) ; // i f ( x f <0) sigGEZ(<0) e l s e sigGEZ(>=0)
i f ( x c >= 0 ){

y c = z c+x c−d ; // y c=A∗( z f+x f )+Bz+Bx+d
} else {

y c = x c−y c+d ; // y c=A∗( x f −y f )+Bx−By+d
y c+= (Bz+Bx ) ; // y c=A∗( x f −y f )+Bx−By+Bz+Bx+d
y c+= −(Bx−By) // y c=A∗( x f −y f )+Bz+Bx+d
y c+= −sigGEZ(<0)+sigGEZ(>=0); // y c=A∗( x f −y f )+Bz+Bx+d

// −sigGEZ(<0)+sigGEZ(>=0)
}
y c += sigCond ; // By=Bz+Bx+sigGEZ(>=0)

sigGEZ computes the signature for the comparison of xf >= 0. sigGEZ eval-
uates to two different values: one if xf is greater-equal zero and another if xf

is less zero. The signature of yc after executing the if-statement is defined to
be Bz + Bx + sigGEZ(>= 0)—independent of the chosen branch. If any of the
computations or any of the used operands is faulty, the signature of yc will be
destroyed, i.e., not be equal to Bz + Bx + sigGEZ(>= 0). The same is the case
if a branch is chosen which does not match xf ’s size in relation to zero.

VCP has the following disadvantages that restrict its use: a) The complete
data flow of the encoded program has to be known before the execution to be
able to precompute the signatures of all output variables. b) The source code
of all software components is needed. c) The signatures chosen for the input
variables have to be selected in such a way that the signatures of all variables
are smaller than A or corrective actions during execution have to be taken. d)
Special hardware is required to encode input variables, to store signatures, and
to check the signatures of output variables.

3 Software Encoded Processor (SEP)

The goal of SEP is to provide the same safety as the VCP but without its disad-
vantages. SEP will execute arbitrary programs given as binaries on commodity
hardware and turn hardware failures into fail-stop runs.

The main idea is to develop an interpreter which itself is encoded using the
principles of VCP [7], that is every variable which is crucial to the correct
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execution of a program is encoded. This includes the program executed by the
interpreter and data processed by that program, but also data used by the in-
terpreter to manage program execution such as the program counter. The in-
terpreter executes the program in an encoded fashion and thereby generates
encoded outputs which are checked by another (standard) hardware unit to de-
termine if they are valid code words (see section 3.4 on Code Checking).

In this paper we focus on the problem how to cope with unpredictable dataflow
of programs. For example, for a server program that can process a diverse set
of requests, it is in general not possible to know the exact dataflow beforehand
because it depends on the exact sequence of requests sent to the server and
also the arguments provided to these requests. Hence, in general we cannot
precompute the signatures of variables. Furthermore, our interpreter approach
introduces new fault types which we have to deal with: the interpreter might load
wrong instruction (loading error) from the process image, that is the instruction
does not match the current program counter (PC) or the PC itself is incorrect.
Second, the interpreter might execute a wrong instruction (selection error) which
does not match the loaded one.

We will not discuss how to encode instructions such as addition, multiplication
or jumps. These instructions are assumed to be atomic with high probability,
i.e., either executed completely or result in invalid code words. Furthermore,
different instructions have to result in different signatures for the data items
they produce. See [21] for information on encoding a CPU’s instruction set.

3.1 Encoding of the Process Image and Management Data

We abstract from the dataflow of the executed program by associating a sig-
nature with each memory address of the virtual address space provided to the
executed program. This signature only depends on the memory address and the
number of executed instructions (version). Thus, it can be computed dynami-
cally without knowing the executed program. Only knowledge of the number of
so far executed instruction and the checked address is required.

The whole process image, that is processed data and program code, are encoded
using the following code: xc = A ∗ xf + h(address, version) where address is the
address of the encoded memory cell and version the number of instructions exe-
cuted since program start. A memory cell can contain a data item to be processed
by the executed program or an instruction to be executed by the interpreter. This
code implies that every memory cell has to be updated after each instruction to
match the current instruction count. In section 3.5 we shortly introduce a more
sophisticated approach which generates less overhead. Obviously, encoding will
result in a higher memory consumption depending on the size of A.

Multiplication with A protects from unrecognized data modifications and op-
eration errors. A has to be chosen in such a way that it is very unlikely that
bitflips result in valid code words. That excludes all powers and multiples of two.
Forin [7] suggests the usage of prime numbers.

h(address, version) maps address and version to a number smaller than A.
Its addition protects from operand errors, operator errors and lost updates as the
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signatures introduced by Forin [7] do. h(address, version) is called the signature
of address or signature of x.

To protect from loading and selection errors we have to encode the pro-
gram counter (PC) too. The PC is part of the interpreter and points to the
next instruction to be executed. The following code is used: PCc = A ∗ PCf +
h(PCf , version). The next section shows how the encoding of the PC is used to
detect loading errors.

3.2 Execution of Encoded Programs

The following pseudocode shows the interpreter main loop which executes one
instruction of the binary and changes the PC to point to the next one.

1 // decode PC and load i n s t r u c t i o n from memory
2 PC f=PC c/A; I n s t r u c t i o n c=M[ PC f ] ;
3

4 // e x t r a c t execu t i on information from i n s t r u c t i o n c
5 OpCode = getOpcode ( I n s t r u c t i o n c − h(PC f , v e r s i on ) ) ;
6 O1 = getOperand1Addr ( I n s t r u c t i o n c − h( PC f , v e r s i on ) ) ;
7 O2 = getOperand2Addr ( I n s t r u c t i o n c − h( PC f , v e r s i on ) ) ;
8 Resu lt = getResultAddr ( I n s t r u c t i o n c − h(PC f , v e r s i on ) ) ;
9

10 // Did a load error occur ?
11 S l i = I n s t r u c t i o n c % A − h(PC f , v e r s i on ) ;
12 S pc = PC c % A − h(PC f , v e r s i on ) ;
13

14 // execu te i n s t r u c t i o n
15 switch (OpCode ) {
16 case ADD:
17 ∗Resu lt = ∗O1+∗O2 ;
18 ∗Resu lt −= h(O1, v e r s i on )+h(O2, v e r s i on ) ;
19 S op=formOp(ADD, Result , O1, O2) ;
20 ∗Resu lt += In s t r u c t i o n c /A−S op ;
21 ∗Resu lt += S l i+S pc ;
22 ∗Resu lt += h( Result , v e r s i on+1) ;
23 case SUB:
24 ∗Resu lt =∗O1−∗O2 ;
25 ∗Resu lt −= h(O1, v e r s i on )−h(O2, v e r s i on ) ;
26 S op=formOp(SUB, Result , O1, O2) ;
27 ∗Resu lt += In s t r u c t i o n c /A−S op ;
28 ∗Resu lt += S l i+S pc ;
29 ∗Resu lt += h( Result , v e r s i on+1)
30 case MULT:
31 . . .
32 }
33 v e r s i on++;
34 updateS ignatures ( I n s t r u c t i o n c ) ;
35 incrementPC( ) ;
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Line 2 loads the instruction to be executed from memory. Lines 5 to 8 extract
which operation is to be executed and operand and result addresses. These ad-
dresses identify registers or memory locations. Immediates are handled similarly.
This information can be extracted from the encoded instruction instructionc

after subtracing its signature, because then the contained information is an A-
multiple of the unencoded information. Lines 11 to 12 calculate checkvalues
which are later on (lines 21 and 28) added to the generated result. S li checks
if the loaded instruction matches the current PC, i.e., the instruction signature
has to equal h(PCf , version). Thus, if no error happenend S li should be zero.
Next, it is checked if the PC used to load the instruction was a valid codeword.
In that case S pc should be zero.

The switch statement uses the OpCode to select the code implementing the
instruction matching the opcode. Its selection is checked by the lines 19/20 and
26/27. If the correct branch was chosen Instruction c/A-S op should evaluate
to zero. If any of the check values (S li, S pc and Instruction c/A-S op) does
not, their addition will destroy the code of the result.

The remaining errors: operand, operation and operator errors are handled
in the same way as in the VCP. Lines 17 and 24 use encoded numbers for
the computations and thus are protected from operation errors. Lines 18/22
and 25/29 correct the signature of the result to match the signature which is
expected for the result address. If an operand, operator or lost update error for
the operands had occurred this correctional step would destroy the code of the
result, since the precomputed signature used for correction would not match the
actual existing one.

During computation of the result of an instruction its version is updated (see
lines 22 and 29). Additionally, the versions of all other encoded values have to be
updated (line 34), because otherwise they would not match the current version
information version which is incremented in each round to protect from lost
updates (line 33) and counts the number of executed instructions. Last, the PC
is incremented by an encoded addition so that it points to the next instruction to
be executed. Its encoding ensures that errors on the PC and instruction loading
errors will be detected.

3.3 Program Loading

On load time, binary programs have to be transformed into the encoded process
image described in section 3.1. This has to be done in a safe way without un-
recognized modifications. Therefore, we expect that binaries are equipped with
a cryptographic hash covering all parts which are used by the program loader
to install the process image in memory. After loading and encoding the binary
the loader starts a check procedure which is encoded after the principles of VCP
[7]. The check procedure computes the hash of the encoded process image and
compares it to the stored hash. If they are equal, the execution can be started.
Otherwise, the program has to be loaded again or an error has to be reported.
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3.4 Code Checking

Encoding alone will not result in the recognition of errors. Therefor, the code has
to be checked. A code word is valid if the condition xc mod A ==
h(address, version) holds. address is the address where xc is stored and version
either equals the global version counter version or is determined using version
and an additional data structure as described in section 3.5. In addition to check-
ing if a memory address contains a valid code word, the validity of the PCc has to
be checked because control flow errors might only manifest in destroying PCc’s
signature.

In the VCP code checking is done by a trusted hardware part. For SEP
that could be an FPGA which we expect processors will have on chip in fu-
ture, the graphics processors, the data receiving party or other software encoded
processors—in short anything made fault tolerant by other means. FPGAs for
example can be made fault tolerant using triple modular redundancy [6]. Natu-
rally, the code can be checked in parallel by multiple independent checkers. Each
of the checkers can independently interrupt the execution of the main CPU.

When and how often code checking is performed, influences performance and
the latency of error detection. Code checking has to be done at least before data
becomes externally visible. This generates the smallest overhead but results in
the biggest latency. On the other hand, a special variable can be used which
collects all the errors which occurred. The easiest way to realize such a variable
is to sum up (encoded) all results generated by executed instructions. We also
have to sum up the modified PCc to be able to detect control flow errors. The
resulting value of the error collecting variable is either valid encoded if no error
occurred or invalid otherwise. This variable can be checked periodically. The
check will introduce an insignificant overhead, but of course after each instruction
two additional encoded additions are required. But an encoded addition is one
of the fastest encoded operations (see section 5).

For detecting if the interpreter has crashed or hangs, the checker has to imple-
ment a watchdog functionality. The interpreter periodically has to send an alive-
sign to the checker to reset the watchdog. Therefor, the error collecting variable
can be used which also ensures early detection of execution errors. Additionally,
the version variable has to be sent to the watchdog. Thus, the watchdog can
check if the interpreter does make progress.

If an invalid code word is detected or the watchdog is not reset by the in-
terpreter, the execution can be stopped (fail-stop) or otherwise dealt with, e.g.,
by going back to a checkpoint with data values with correct signatures or by
recomputing invalid data.

3.5 Updating the Versions

Obviously, updating the whole memory image with the new version number after
each instruction would generate way too much overhead. Thus, we decided to
use additional data structures to store the version of its last change for each
address instead of updating the whole process image after each instruction. The
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used data structures have to be encoded manually. If any error happened, such
as lost updates to the memory and these structures, this has to result in the
return of a wrong version number for the affected memory cell. This in return
will destroy the code of any memory cell updated using this memory cell.

Note, that using an unencoded data structure like a hashmap would increase
the probability for lost updates: a lost update and a not updated hashmap would
remain unrecognized. The version of an address has to depend on the current
instruction counter version and the data structure. The simplest way to achieve
this is a list. After each instruction, the updated address is inserted before the
first list element. Subtracting the number of list items in front of an address
from the current version results in the version information for that address. If
both the update of version and the data structure are lost, version will not
match PCc. If additionally, PCc was not updated, the affected instruction will
be executed again and if that re-execution is fault-free everything is fine.

When updating an address, the list item describing the last update of that ad-
dress has to be removed and the surrounding items have to be updated accord-
ingly. Thus, each item has to store an increment which is used when computing
version information. The performance of the list approach highly depends on the
data locality of the executed program. In worst case, it is O(n) for finding a ver-
sion information and updating the list. The list can be pruned by updating the
versions stored in the memory. Another less locality dependent approach are tree
structures which independent of data locality provide a complexity of O(log(n)).

3.6 Implementation

Our proof-of-concept implementation executes DLX-binaries. DLX is an aca-
demic RISC instruction set developed by Hennessy and Patterson [15]. For com-
piling, we use the DLX compiler based on gcc which is provided by UC Santa
Cruz for a student project [12].

Currently, we are able to execute simple C-programs which can make use of
nearly the whole DLX instruction set, apart from floating point instructions. The
binaries can use bitwise logical instructions but these are not completely encoded
at the moment: the actual operation is done on the functional values and not on
the encoded ones. Encoding of these operations is possible but our implementation
is not yet feature complete. We also provide a simple set of system calls which
implement basic I/O-functionality such as printf and file operations.

4 Guarantees

Code words consist of n functional bits and k redundant bits with
k = sizeOf(A) + 1. Assumed, that errors are leading to a random modifica-
tion of a valid code word, such a modification will result in another valid code
word and thus in an undetected error with the probability

pundetected =
number of valid code words-1

number of possible words
≈ 2n

2n+k
= 2−k.
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To determine the probability of unrecognized errors during program execution,
we have to assume a failure model for the executing infrastructure. The least
restrictive assumption we can make, is that with every executed instruction an
error occurs which modifies the result or used operands. Modifications can change
a value to any number. The error is assumed to be uniformly distributed. This
results in the following probability distribution p(x) for x failures (i.e., errors
which are not detected because codes are still valid), within noOfInst executed
instructions:

p(x) =
(

1 − 1
2k

)noOfInst−x

∗
(

1
2k

)x

∗
(

noOfInst

x

)

The actuarial expectation of this binomial distribution gives the failure rate
FIT (failures in 109hours) for SEP under the assumed model:

FIT (k) =
noOfInst in 109 hours

2k

The required redundancy k for a decreased failure rate increases logarithmi-
cally: To achieve a failure rate of at most 1 undetected error in 109 hours 72 bits
redundancy are required. With a 128-bit architecture—as used in IBM’s Cell
processor—32 bit numbers can be encoded using 96 bits of redundancy which
can ensure a failure rate of 0 FIT even for an execution environment which
injects at least one error into every result or operand.

To test the fault detection capabilities of SEP, we used our simulation-based
fault injection tool FITgrind [20]. We compared the three execution variants:

encoded interpreter the used interpreter was encoded as described in section
3 using an A which added 16 bits of redundancy.

unencoded interpreter the same interpreter but no encoding (of the inter-
preted code, data or interpreter) was used.

native the executed program was compiled to the native architecture and exe-
cuted.

FITgrind was used to inject probabilistically errors of the following types into
the running interpreter or native execution: bitflips in memory and operation
results and execution of different instructions to simulate address line errors.
How many bits were flipped was chosen according to an exponential probability
distribution. That is, mostly one bit was flipped and the probability of n-bit
flips decreased exponentially with n. For one bit flips one would expect 100%
coverage since one bit flip corresponds to addition or subtration of a power of
two which cannot result in another multiple of A with the same signature.

The results of an injection run were compared with an error free (golden) run.
It was checked if any erroneous output, i.e., output differing from the golden run,
was generated and if an error was recognized either by the OS or the interpreter.
For testing, we used a program for computing the MD5 hash of a string consisting
of 10,000 characters. That we executed around 8000 times for each variant.
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For each run, FITgrind was initialized with another random number and thus
generated different error patterns.

While the encoded interpreter produced no incorrect output at all, 4% and
9% respectively of the unencoded interpreted and native executions produced
incorrect output. On the other hand, 31% of all native runs and 15% of the
unencoded interpreted runs produced complete and correct output despite the
injected errors. For the encoded interpreter, only 0.06% of the runs under fault
injection produced completely correct results. That shows that the interpreter
detects errors before they can propagate and become visible.

5 Performance

For our performance measurements we encoded 32-bit programs using a 31-bit
A which doubles the memory consumption and executed the following programs:

– Computation of prime numbers up to 5,000 using the Sieve of Eratosthenes
which is very computation intensive and uses a lot of multiplications whose
encoding is quite expensive.

– Computing the MD5 hash of a string which has a length of 10,000. This
represents a real world problem. It is a mixture of loops, branches and com-
putations.

– A Quicksort, sorting 1,000 numbers which is not computation intensive.

The comparison of unencoded interpreted version and encoded version shows
the slow down induced by encoding. The measurements were done on an AMD
Athlon 64 running with a clock rate of 2200 MHz under SuSE Linux. For the
prime number computation the encoded version is 25 times slower than the
unencoded version. But for MD5 the slowdown is 3.4 and for Quicksort 2.2 [9].

Table 1 shows the slowdowns for some encoded 32-bit operations (31-bit A) as
we measured them using the processor’s time stamp counter. Additions and Sub-
tractions are quite fast, while divisions, multiplications and comparisons induce
higher overheads. That confirms slowdowns measured for our example programs:
A higher slowdown is to be expected for programs which are using more multi-
plications, divisions and comparisons.

An encoded multiplication (using encoded 32-bit numbers) requires 128-bit
arithmetic which is realized using the processor’s SSE extension. Hand-crafted
assembler routines proved to be much slower. Comparisons are relatively slow
because the signature computation requires additional encoded subtractions and
unencoded modulo operations.

Table 1. Runtime comparison of encoded vs. unencoded operations

operation add unsigned
sub

div unsigned
div

mult greater

slowdown 3 2 15 7 38 30
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The slowdown generated by our straight-forward interpreter implementation
are very high and definitely not practicable. We expect these can be reduced to
the same levels other virtual machine based approaches provide.

6 Conclusion and Future Work

SEP provides failure virtualization, i.e., it turns value failures of the underlying
infrastructure into crash failures. Neither expensive, e.g., radiation hardened,
hardware nor recompilation of executed programs are required. Programs for
which failure virtualization is required, just have to be executed using the SEP
interpreter introduced in Section 3. The interpreter itself is encoded similar to
the approach of [7] and encodes the executed program at load time with a similar
arithmetic code as used by Forin [7]. But in contrast to Forin’s approach, this
code can be checked without the requirement to know the complete data flow of
the executed program beforehand.

SEP opens up the possibility to run critical applications (in particular, fail-
stop but to a more limited extend also fail-operational applications) in parallel to
non-critical applications on commodity hardware which is tuned for performance
instead of reliability and is in particular much cheaper than hardware designed
for reliability.

SEP’s failure rate, i.e., the rate of undetected value failures, is bounded. That
bound depends on the amount of redundancy used for encoding and is indepen-
dent of the failure rate of the underlying hardware. As long as encoded numbers
do not exceed the processor’s native word width an increase in redundancy does
not increase the overhead.

Our next steps will be to switch to amorewidespread architecture and to replace
interpretation as far as possible with precompiled and preencoded parts to reduce
the overheadgeneratedby interpretation.Thaneither recompilationor preprocess-
ing of some bytecode format, e.g., Java Bytecode, will be required. Another option
would be to integrate our approach into an existing virtualization framework.

Fault injection experiments have shown that in contrast to native execution
or unencoded interpretation, SEP produced no unsafe (i.e., only fail-stop) runs.
But a more thorough research on the error detection capabilities of the used
code is required. Especially, our knowledge about the influence of the choice of
A on the Hamming distance of code words is shallow.

Another interesting question we will look at is the applicability of SEP for code
safety, e.g., protection from buffer overflow attacks. As long as an attacker does
not know the code parameters, it is nearly impossible for him to inject valid code.
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Abstract. The advanced electric power grid promises a self-healing in-
frastructure using distributed, coordinated, power electronics control.
One promising power electronics device, the Flexible AC Transmission
System (FACTS), can modify power flow locally within a grid. Embedded
computers within the FACTS devices, along with the links connecting
them, form a communication and control network that can dynamically
change the power grid to achieve higher dependability. The goal is to
reroute power in the event of transmission line failure. Such a system,
over a widespread area, is a cyber-physical system. The overall reliability
of the grid is a function of the respective reliabilities of its two major
subsystems, namely, the FACTS network and the physical components
that comprise the infrastructure. This paper presents a mathematical
model, based on the Markov chain imbeddable structure, for the overall
reliability of the grid. The model utilizes a priori knowledge of reliability
estimates for the FACTS devices and the communications links among
them to predict the overall reliability of the power grid.

Keywords: Reliability, cyber-physical, embedded, FACTS, power grid.

1 Introduction

Providing reliable power delivery has always been an essential requirement in
the design and maintenance of the power generation and distribution system. In
its simplest form, the power grid consists of generators, transmission lines, and
corresponding loads. Increased load and a greater number of power transfers,
caused by deregulation, stress the power grid to an unprecedented extent. Con-
tinued provision of reliable power delivery necessitates distributed, intelligent
control of the grid.

The advanced electric power grid, as proposed by the US Department of En-
ergy [1], promises a self-healing infrastructure. To achieve this vision requires a
mechanism for maintaining functionality of the grid and ensuring its adaptabil-
ity to changes in load. Coordinated power electronics can be used to this end,
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by controlling power flow to prevent failures, or to mitigate the effect of failures
when they occur.

A Flexible AC Transmission System (FACTS) controller is a system based on
power electronics that enable control of one or more AC transmission system
parameters [2]. FACTS devices modify specific parameters of the transmission
line, such as the line impedance, to control power flow. Correct modification
of these parameters necessitates communication among the FACTS devices, to
maintain balance in the grid and to harden it against contingencies.

This need for communication and control creates a cyber-physical system
with two parallel networks, a cyber network comprised of FACTS devices and
the communication links among them, and a physical network comprised of
generators, loads, and transmission lines. These two networks interact; however,
there is no one-to-one correspondence between their respective components.

Cascading failures have particular significance in our reliability analysis of the
grid, as component failures can no longer be assumed independent. One such
scenario occurred in North America on August 14, 2003. A power plant failure
in Ohio, combined with the tripping of a transmission line, caused a series of
cascading failures that eventually led to a complete blackout. Eight states in
the Northeastern United States and the province of Ontario were affected, and
over 50 million people were left without power [3]. In order to prevent similar
blackouts in the future, the power grid and the network of FACTS devices need
to be carefully designed and maintained to provide reliable delivery of power.

In this paper, we present a system-level reliability model for the power grid,
which includes FACTS devices and the interactions among them. Our effort
towards producing a mathematical representation is guided by actual failure
scenarios from the field. Exhaustive analysis of all possible failures in a cyber-
physical system is infeasible; hence, our model takes into consideration the most
common failure scenarios for the grid. This information can aid in determination
of the expected frequency of failures, as well as identification of areas of the
system where adding redundancy will have the greatest impact on fault tolerance.

2 Related Literature

Reliability modeling has been the subject of numerous studies. In this section,
we discuss a select few that are most relevant to this paper. One such study is
[4], which describes an early effort in hierarchical modeling of system reliability.
The method proposed is useful in cases where the system is too large to be an-
alyzed as a whole, and is instead studied as a sum of its parts. The importance
of individual components in determining system reliability was first examined in
[5]. The studies presented in [6], [7] and [8] further explore the topic of compo-
nent importance, introducing metrics and indices that can be used in assessing
the importance of components in a system. None of those studies, however, uti-
lizes this knowledge of importance in implementing redundancy or otherwise
improving the reliability of the system.
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In our research, the specific system being analyzed for dependability is the
power grid. Relevant studies include [9], which numerically estimates the reliabil-
ity of the power grid based on component attributes such as failure rate, outage
time, and unavailability. Other research investigates methods for increasing fault
tolerance of the grid, including [10], which proposes the use of hybrid cars as
local generators of electric power.

As described in Sect. 1, FACTS devices are used to increase the reliability of
power grids and facilitate reliable transmission of power, even in the presence
of failures in the grid. Use of the max flow algorithm and prudent positioning of
FACTS devices are discussed in [11]. This work is further extended in [12], where
a distributed version of the max flow algorithm is introduced. FACTS devices are
particularly important in reducing the risk of cascading failures. A number of re-
lated case studies appear in [13], and [14], which demonstrates the use of FACTS
devices in mitigating the risk of cascading failures.

In subsequent sections of this paper, we will use the results of [13] and [14] to
develop a model for system reliability. Our work is different from other studies
presented in this section, as we are modeling the reliability of the power grid as
a whole, including both the physical network, i.e., the grid itself, and the cyber
network of FACTS devices.

3 Reliability Modeling of Complex Networks

The power grid can be represented as a network comprised of two sets of com-
ponents; nodes and links. Nodes can represent buses or transformers, while links
represent the transmission lines among them. The two main models that we use
to represent power networks are the mesh network and the bipartite network.
This section provides descriptions of both models.

3.1 The Mesh Network Model

Figure 1(a) depicts the mesh network model for a system of 4 nodes and 6
links. A direct link between every pair of nodes provides redundancy. For a fully
functional system, all 4 nodes and all 6 links should be operational; however,
the system can still function well despite the failure of one or two of the links,
provided that a path still exists between any two nodes. Node failure is more
harmful than link failure, but it is possible for the system to remain functional,
albeit in a degraded mode, despite the failure of one or more nodes. The number
of component failures that the system can tolerate depends on the application
for which it is being used.

3.2 The Bipartite Network Model

Figure 1(b) depicts the bipartite network model. Similar to the case of a mesh
network, both the links and the nodes of a bipartite network are prone to failure.
However, a distinction between this model and the previous one is the presence
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(a) Mesh network (b) Bipartite network

Fig. 1. The two network models used to represent the power grid

of link L8, which connects two separate subsystems. When this link fails, the
two subsystems are disconnected from each other, and even if each subsystem
can function separately, the overall system will operate in a degraded mode. We
acknowledge the critical location of L8 by assigning a higher importance value
to this link, and therefore, a greater contribution to the overall reliability.

3.3 The Markov Chain Imbeddable Structure

Our model for the reliability of a network of components is based on a Markov
chain Imbeddable Structure (MIS). In this section, we provide a brief intro-
duction to the MIS, and illustrate its application to the two network models
described in Sects. 3.1 and 3.2.

The state of a system composed of n components can be represented by an
n-dimensional binary vector, S. Each of the 2n possible states of this vector
represents one combination of component failures for the system.

Let Π0 denote a vector of probabilities, where Pr(Y0 = Si) is the probability
of the system initially being in state Si. In a normal system, the initial state
would be S0, which represents a fully functional network with no component
failures.

Π0 = [Pr(Y0 = S0), P r(Y0) = S1, ...., P r(Y0) = SN ]T . (1)

Also, for a given component, l, we define a matrix Λl that represents the state
transition probabilities of the system as a function of l. In other words, each
element pij(l) in the matrix Λl represents the probability that the system would
switch from state Si to another state Sj due to the failure of component l.

Finally we define u, which is a vector of length equal to the number of states,
where each element has a value of 1 if the corresponding state is considered a
“good” state for the system, and 0 otherwise. In this sense, the system is in a
“good” (i.e., acceptable) state if it exceeds the minimum threshold for a given
quality of service parameter.
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The overall reliability of the n-component system can now be expressed as:

Rn = (Π0)T (
n∏

l=1

Λl)u . (2)

The MIS technique can now be applied to the mesh and bipartite networks. For
brevity, we illustrate the technique only for the more general bipartite network.

3.4 Application of MIS to the Bipartite Network Model

To further refine the state of the system, we now define five levels of operation
and explain each in detail. This refinement allows the system to endure a finite
number of component failures; as long as it delivers some fraction of its expected
functionality, it is still considered operational. The system is assumed to initially
be in the fully functional state, but transitions to an increasingly degraded oper-
ational level with each additional component failure. The five levels are described
below.

Level 1: Fully functional system. All components are functional, i.e., the
system is in state S0.

Level 2: Degraded mode. A number of links have failed, but all system nodes
are still able to communicate with each other, i.e., no node is isolated from
the others.

Level 3: Barely acceptable. A single node is isolated from the rest of the
system. This could happen as a result of the node failing, or when the failure
of a sufficient number of links isolates the node from the remainder of the
network.

Level 4: Separated subsystems level. The link connecting the two subsys-
tems (L8) has failed. The two subsystems are still functioning separately,
but communication between them is lost.

Level 5: Unacceptable operation. Any failures beyond those described in
Levels 1-4 bring the system to this state. This level of functionality is con-
sidered unacceptable.

Mathematically, a different reliability function corresponds to each level of
functionality. Recall that the state vector u represents each “acceptable” state
of the system with a 1. Any state where the system is not in Level 5 is considered
an acceptable state.

The bipartite network representing a power grid is typically quite large, and as
the system grows in size, the reliability analysis becomes increasingly complex.
The matrix Λ, which represents the state transition probabilities, doubles in
size with the addition of one component. To simplify the analysis, we divide the
system into two subsystems, each of which is analyzed separately with the MIS
technique. The results are then combined to produce the system-level reliability
equations.

For the example of Fig. 1(b), the portion depicted in Fig. 2(a) is labeled “Sub-
system 1,” and analyzed first. Here, the subsystem is considered fully functional.
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(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Fig. 2. Operational states for Subsystem 1 of the bipartite network of Fig. 1(b)

Level 2 results from the failure of a single link, e.g., L2 in Fig. 2(b). The failure
of two links, or equivalently, a single node, further degrades the subsystem op-
eration to Level 3. The failed components depicted in Fig. 2(c) are links L2 and
L3, or node N7. Level 4, which causes the separated subsystems state, appears
in Fig. 2(d), where links L1 and L2, or node N5 have failed.

3.5 Derivation of Reliability Expressions

In the bipartite network, for each of the two subsystems, equations were calcu-
lated using the MIS technique for the different operational levels defined. The
overall system reliability can then be calculated as:

Rsys = Rsub1 ∗ Rsub2 ∗ RL8 , (3)

where Rsys is the system reliability, Rsub1 and Rsub2 are the reliabilities of
subsystems 1 and 2, respectively, and RL8 is the reliability of link L8, which
connects the two subsystems.

In order to derive an expression for each of the operational levels, different
combinations of Rsub1 and Rsub2 are used to reflect the overall operational level
of the system.

Let Rsubij denote the reliability expression corresponding to the jth level of
operation in Subsystem i. The equations for overall system reliability can be
calculated as follows:

Operational Level 1. For this level, none of the components in either subsys-
tem can fail; therefore, the corresponding expressions for each subsystem are
Rsub11 and Rsub21 , respectively, and the overall system reliability becomes:

R1 = Rsys = Rsub11 ∗ Rsub21 ∗ RL8 . (4)

Operational Level 2. For this level, only a single link is allowed to fail; this
link could be in either subsystem. This raises two cases, if the failed link is
in Subsystem 1, then:

Rsys1 = Rsub12 ∗ Rsub21 ∗ RL8 . (5)
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If the failed link is in Subsystem 2, then:

Rsys2 = Rsub11 ∗ Rsub22 ∗ RL8 . (6)

Assuming that the two cases are equally likely, the mean of (5) and (6)
represents the overall system reliability:

R2 = Rsys = 0.5 ∗ (Rsys1 + Rsys2) . (7)

Operational Level 3. In this level, the failure of a single node can be toler-
ated in one of the subsystems, and the failure of a single link in the other
subsystem. This again leads to two cases, based on the respective subsys-
tems of the failed node and link. If a node fails in Subsystem 1 and a link in
Subsystem 2, then:

Rsys1 = Rsub13 ∗ Rsub22 ∗ RL8 . (8)

If it is the other way around, then:

Rsys2 = Rsub12 ∗ Rsub23 ∗ RL8 . (9)

Symmetry, and the assumption that all states are equally likely, leads to the
following expression for system reliability at Level 3.

R3 = Rsys = 0.5 ∗ (Rsys1 + Rsys2) . (10)

Operational Level 4. This level of operation can occur in any of three cases;
if link L8 between the subsystems fails, or if one of nodes N3 or node N5
fails. This can be translated into the following expressions:

Rsys1 = Rsub11 ∗ Rsub24 ∗ RL8 . (11)

Rsys2 = Rsub14 ∗ Rsub21 ∗ RL8 . (12)

Rsys3 = Rsub11 ∗ Rsub21 ∗ (1 − RL8) . (13)

Again, assuming that all cases are equally likely:

R4 = Rsys = (1/3) ∗ (Rsys1 + Rsys2 + Rsys3) . (14)

Figures. 3(a), 3(b), and 3(c) depict the overall system reliability as a function
of node and link reliability. In Fig. 3(a), the value of RL8 is assumed to be 1,
corresponding to no chance of failure for the critical link L8. Figure 3(b) assumes
RL8 to be 0.7. It is clear that this link has a direct effect on system reliability, as
the decrease of RL8 drastically affects the rest of the system. Finally, Fig. 3(c)
represents the reliability of the bipartite network in Operational Level 2. In the
next section, we will apply the generalized model for system reliability derived
thus far to the specific case of the power grid.
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(a) Bipartite network, Level 1, RL8 = 1 (b) Bipartite network, Level 1, RL8 = 0.7

(c) Bipartite network, Level 2

Fig. 3. Reliability of networks in Fig. 1 as a function of node and link reliability

4 Reliability of Power Transmission Lines

Several components constitute the power grid, including power generators, trans-
mission lines, and transformers. In addition, we also consider the presence of
FACTS devices, as they significantly affect the overall system reliability.

In general, all devices are prone to failure; however, our main interest will be
in the failures of transmission lines. Even though generators and transformers can
fail, there are usually sufficient backup units installed in the system to compensate
for their failures, leaving transmission lines as the main contributors to system fail-
ures. Analysis of the reliability of transmission lines is the subject of this section.

4.1 Known Failure Scenarios, No FACTS Devices Installed

Several cascading failure scenarios in the IEEE 118 bus system have been stud-
ied and described in detail in [13]. Cascading failures show that links are not
independent, negating a common assumption in reliability modeling. Our model
does not assume independence of the links.

The following definitions and notations will be used for the remainder of this
paper.

FA: The event that link A remains functional for a specified period of time.
OVA: The event that link A is overloaded.
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NOVA: The event that link A is not overloaded.
R(A): Reliability of link A
Q(A): Unreliability of link A, which is equal to 1 − R(A)
Pr(.): Probability that the specified event will happen.

The reliability of link A is defined as the probability that link A remains
functional for a specified period of time. Using conditional probability notation,

R(A) = Pr(FA) = Pr(FA|OVA) ∗ Pr(OVA) + Pr(FA|NOVA) ∗ Pr(NOVA) .
(15)

In theory, lines that are not overloaded are expected to function properly for
an indefinite period of time. Under normal operating conditions, the failure of
a line can only be attributed to accidents, such as inclement weather or phys-
ical disconnection. Therefore, the probability denoted as Pr(FA|NOVA) is the
probability that no such accidents occur for the transmission line during normal
non-overloaded conditions.

However, when a line is overloaded, a different situation occurs. Depending
on the amount of overload, the duration of time before the line fails can range
between 0.15 seconds for an overload of 2000% of the line capacity, and 4.2
seconds for an overload of 150% [15].

In our analysis, we assume that no repair will be carried out for overloaded
lines. According to this assumption, if the line becomes overloaded, it will even-
tually fail. In that case, the term Pr(FA|OVA) will be reduced to 0, and (15)
becomes:

R(A) = Pr(FA) = Pr(FA|NOVA) ∗ Pr(NOVA) . (16)

Outage of Line 4-5. As described in [13], the outage of line (4-5) leads to
several other outages that lead to a failure in the system. The problem starts
when the line fails, as line (5-11) becomes overloaded in the process. Taking
out line (5-11) will force power to be diverted through lines (5-6), (6-7), and (7-
12). Line (7-12) becomes overloaded, and its failure causes overload in lines (3-5)
and (16-17). As line (3-5) fails, power is diverted through line (8-30). This causes
overload in lines (15-17), (14-15), (15-19), (15-33), and (33-37). Eventually, line
(14-15) breaks and causes the system to fail. This sequence of events is depicted
in Figs. 4(a)-4(e) From the information available about this scenario, we can now
construct reliability expressions for the links involved. For example, line (5-11)
becomes overloaded if line (4-5) fails. Thus:

R(5 − 11) = Pr(F(5−11)) = Pr(F(5−11)|NOV(5−11)) ∗ Pr(NOV(5−11)) . (17)

The probability Pr(F(5−11)|NOV(5−11)) is the probability of link (5-11) staying
functional in non-overloading conditions, as described above. It is readily ap-
parent that the probability of link (5-11) is the same as the probability of link
(4-5) failing, or link (4-5)’s unreliability, Q(4-5), which is equal to 1 - R(4-5).
Therefore, Pr(NOV(5−11)) = 1 − Q(4 − 5) = R(4 − 5), and the equation for
R(5-11) becomes:

R(5 − 11) = Pr(F(5−11)) = Pr(F(5−11)|NOV(5−11)) ∗ R(4 − 5) . (18)
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(a) Cascade stage 1 (b) Cascade stage 2

(c) Cascade stage 3 (d) Cascade stage 4

(e) Cascade stage 5

Fig. 4. Cascading failure resulting from the outage of line (4-5)
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Taking another example from the same cascading scenario, the reliability of line
(7-12) can be found using the expression:

R(7 − 12) = Pr(F(7−12)) = Pr(F(7−12)|NOV(7−12)) ∗ Pr(NOV(7−12)) . (19)

Again, Pr(NOV(7−12)) is a function of the reliability of line (5-11), whose failure
causes line (7-12) to overload. Hence, (19) becomes:

R(7 − 12) = Pr(F(7−12)) = Pr(F(7−12)|NOV(7−12)) ∗ R(5 − 11) . (20)

Substituting (18) into (20) yields:

R(7− 12) = Pr(F(7−12)|NOV(7−12)) ∗Pr(F(5−11)|NOV(5−11)) ∗R(4− 5) . (21)

We can further simplify the notation, by definingRNOV (A) as the non-overloading,
or nominal, reliability of link A to be equal to Pr(FA|NOVA). Equations (18) and
(21) will therefore become, respectively:

R(5 − 11) = RNOV (5 − 11) ∗ R(4 − 5) . (22)

R(7 − 12) = RNOV (7 − 12) ∗ RNOV (5 − 11) ∗ R(4 − 5) . (23)

In a similar fashion, reliability equations can be derived for every other link.

4.2 Known Failure Scenarios, FACTS Devices Installed

As an improvement to the situation described in Sect. 4.1, FACTS devices are
installed in the system in order to prevent cascading failures from happening.
However, if these devices fail or lose communication with each other, failures can
still occur and cascades can happen.

Figs. 5(a) and 5(b) show a scenario where the outage of line (37-39) can lead
to a cascading failure. After this line fails, line (37-40) becomes overloaded and
eventually fails. Installing FACTS devices on lines (37-40) and (66-65) can allevi-
ate the problem, by rerouting enough power through lines (37-38), (38-65), and
through transformer (65-66) to prevent line (37-40) from becoming overloaded. A
problem arises if one or more of the installed FACTS devices, or a the communica-
tion links among them fail. If the FACTS device on line (37-40) fails, line (37-39)
will fail, causing (37-40) to become overloaded and eventually fail. In the case of
a failure in the communication line, the FACTS devices can still function on their
own; however, the effect on line (37-40) will depend on how they choose to operate.
A number of possible alternatives are summarized below.

– Bypass the FACTS devices and leave the system to function according to the
laws of physics. This choice will obviously cause the system to fail whenever
an outage in line (37-39) occurs.

– Set the power flow value to the capacity of the line. This could cause a trouble
only if nearby lines are of lower capacity, but in that case the FACTS device
would probably have been installed on the lower capacity line. This choice
should normally keep the system stable.
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(a) Potential cascading failure (b) Mitigation performed by FACTS
devices

Fig. 5. Outage of line (37-39)

– Maintain the power flow values as they were the last time the max flow
algorithm was run before the outage of the communication link occurred.
Depending on the system, this may or may not be a good choice. In our
case, this choice leaves overloads on lines (24-72), (34-43) and (70-75), so it
is not the best choice.

– Allow the power flow to change in the system according to the laws of physics,
as long as they stay within ±20% of the line capacity, otherwise stop the
power flow from increasing any further. Again, depending on the system,
this may or may not be a good choice.

In general, one of two cases arises, depending on our choice of action when the
communication link fails.

Case 1. The reliability of line (37-40) depends on the reliability of both the
FACTS devices at (37-39) and (65-66) and the communication link between
them.

Case 2. The reliability of line (37-40) depends only on the reliability of the
FACTS device at (37-40), and does not depend on the communication link
or the other FACTS device.

In Case 1, the reliability equation for line (37-40) will be:

R(37 − 40) = RNOV (37 − 40) ∗ Pr(NOV(37−40)) . (24)

In order to compute the probability of overload for line (37-40), we define the
following events.

F1: The event that the FACTS device at line (37-40) remains functional.
F2: The event that the FACTS device at transformer (65-66) remains functional.
CL1: The event that the communication line between the FACTS devices stays

functional.
L(37-39): The event that line (37-39) remains functional.
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The probability of no overloading in line (37-40) can now be defined as:

Pr(NOV(37−40)) = Pr
[
L(37 − 39) ∪ [L(37 − 39)] ∩ [F1 ∩ F2 ∩ CL1]

]
. (25)

This can be translated into:

Pr(NOV(37−40)) = R(37 − 39) + Q(37 − 39) ∗ R(F1) ∗ R(F2) ∗ R(CL1) , (26)

and the equation for the reliability of link (37-40) becomes:

R(37−40) = RNOV (37−40)∗(R(37−39)+Q(37−39)∗R(F1)∗R(F2)∗R(CL1)) .
(27)

For Case 2, we are only concerned with the reliability of the FACTS device
installed on line (37-40). The equation then reduces to:

R(37 − 40) = RNOV (37 − 40) ∗ (R(37 − 39) + Q(37 − 39) ∗ R(F1)) . (28)

5 Conclusions and Future Work

The objective of the research described in this paper is the development of a
model for the reliability of the advanced electric power grid. The model takes
into consideration the FACTS network used to regulate power flow and lessen the
likelihood of cascading failures. We used the Markov chain imbeddable structure
to find expressions for system reliability at predefined levels of degraded oper-
ation. On the link level, we demonstrated the sequence of events leading to a
cascading failure. The occurrence of cascading failures illustrates that links do
not fail independently, meaning that the reliability of each link is dependent on
the reliabilities of surrounding links. Using actual failure scenarios, we developed
a model for link-level reliability.

The limited amount of information available on failure scenarios is the main
challenge in accurate modeling of any aspect of dependability for the electric
power grid. In future extensions to this research, we plan to use statistical tech-
niques to investigate the confidence levels achievable for reliability models based
on this limited sample set. We also plan to validate the proposed reliability model
through large-scale simulation of the power grid, which will undoubtedly lead to
refinements to the model.
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Abstract. A case study on the reliability estimation of software design of a 
motor protection relay is presented. The case study is part of a long-term 
research effort to develop methodology and support for the reliability 
estimation of computer-based systems to be used in the safety-critical 
applications of nuclear industry. The estimation method is based on Bayesian 
inference and the case study is a follow-up to previous case study presented in 
SAFECOMP 2003. 

In the case study reliability estimate of the protection functions of the relay 
is built in a sophisticated expert judgement process. The expert judgement 
process consists of two phases including several sessions where the relay 
designers from different development stages participated. The sessions are 
named according to the phases as qualitative and quantitative sessions. The 
qualitative sessions are used to identify and record possible uncertainty and 
unpunctuality in the planning and documentation of the software design. The 
quantitative sessions are used to analyse the recordings and to generate a prior 
reliability estimate. Finally, the prior estimate is updated to a posterior estimate 
using the operating data of the relay. 

The estimation demonstrates the excellence of Bayesian modelling in the 
reliability estimation of computer-based systems. The reliability estimation 
typically involves evidence of different kind and with Bayesian modelling the 
evidence can be combined coherently and transparently together. The 
estimation method is particularly attractive for probabilistic safety assessment 
(PSA) of nuclear industry. The method provides informative posterior 
probability distributions on the failure rates of the protection functions to be 
used in the PSA models. 

1   Introduction 

Digital systems are introduced to nuclear power plants in accelerated pace. The 
instrumentation and control (I&C) systems based on old analog technology are 
coming to the end of their lifespan and can be considered obsolete in many ways. The 
old I&C systems will be replaced with digital systems applying the benefits of 
programmable technology. 

Digital systems are generally more tolerant against wear and tear of ageing and 
environmental factors than the old systems. On the other hand the risk of design faults 
in digital systems is greater since the implementation of diverse and complex 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Case Study on Bayesian Reliability Estimation of Software Design 385 

functions is easier and the functionality of a system can be altered significantly just by 
making minor changes in the software. With increasing influence to the safety of 
nuclear power plants it is important to be able to accurately and plausibly estimate the 
reliability of the digital systems. 

Considerable effort is generally required for making a reliability assessment of a 
digital system. The effort is even increased if the system is complex and an estimate 
of high reliability is aspired. Generating an estimate of high reliability for a non-
trivial digital system at least one of the following assumptions must be valid: 

 

• The scope of the system, possible failure modes and/or possible inputs of the 
system must be strongly reduced or simplified in the assessment. 

• Strong influence of expert judgement must be accepted in the assessment. 
 

A practical reliability assessment presumes a combination of both assumptions. 
Expert judgements are typically applied on the evaluation of testing and operational 
data. Relying only on this so called hard evidence in the reliability estimation of 
digital systems is not rational. For example, information from the design features and 
the development process can provide qualitative evidence on the reliability 
characteristics of the system and discarding this evidence is not wise. Proper methods 
for supporting more extensive use of evidence of qualitative nature in the reliability 
assessment of digital systems should therefore be developed. 

The paper presents a case study of reliability estimation of a motor protection 
relay. The estimation is based on Bayesian inference and Bayesian modelling 
framework is used to create a plausible and transparent reliability estimate for the 
software design of the relay. The case study is part of a long-term research effort to 
develop methodology and support for the reliability estimation of computer-based 
systems. The study is a follow-up to a similar case study presented in 
SAFECOMP 2003 [1]. The emphasis of the case study is in the development of the 
expert judgement process and in the feasibility evaluation of the method for the use of 
probabilistic safety assessments (PSAs) of nuclear power plants. 

The aim of the case study has been in the methodological development of the 
assessment approach. The failure rate distributions in the end of the paper are given 
only as a demonstration of the informative results the assessment method can provide. 
The details related to the technical features of the case study system and to the 
evidence used have only been reviewed on a level necessary to test the functionality 
of the assessment method. 

The paper starts with a description of the reliability assessment procedure and 
model in section 2. In section 3 the case study system, the system software and the 
development process of the software is described. The expert judgement process is 
explained in detail in section 4. The numerical results of the assessment are given in 
section 4. Finally, the conclusions of the assessment are stated in section 5. 

2   Reliability Assessment Procedure and Model 

Overview of the reliability assessment procedure is shown in Fig. 1. The assessment can 
be formulated as a pyramid where the bottom part is created by the information available 
for the system and the upper part by the reliability target of the software design. 
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Fig. 1. Reliability assessment procedure 

In the case study the system information is analysed and relevant parts of the 
information are nominated as evidence. The evidence may include, for example, 
artefacts of software development process, descriptions of software design features, 
analysis of software design, results of software testing and feedback from the 
operational use of the software. The reliability estimate of the software design is 
based on the evidence. Part of the evidence can be easily interpreted as quantitative 
figures and implemented as data to the assessment. Part of the evidence is more of 
qualitative characterisations of the software and to use the evidence in the reliability 
estimation extensive expert judgement is required. 

The qualitative evidence is carefully analysed, discussed and finally transformed 
into quantitative reliability measure using a special expert judgement process. The 
reliability measure applied in the case study is the distribution of the failure rate of 
selected protection functions. The failure rate distribution estimated in the expert 
judgement process functions as the prior reliability estimate for the software design. 

The prior estimate and data are implemented to a reliability model. The reliability 
model used in the case study is a homogenous Poisson model. Therefore, the 
appropriate conditional distribution of the number of software faults of the protection 
functions given the failure rate and the number of operating years is considered 
Poisson distributed as follows: 

( ) ( )TPoissonTxf λλ ~,  , (1) 

where x is the number of software faults, λ the failure rate and T the estimated 
operating years of the selected protection functions in the assessment. 

Bayesian inference is used to update the prior estimate to a posterior estimate. The 
posterior estimate represents the best reliability estimate of the software design with 
the given evidence. In Bayesian estimation it is important to keep the data and other 
evidence separate so that the data does not corrupt the prior estimation. The posterior 
estimate can be updated as additional evidence is collected for the software. The 
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posterior estimate can be compared with the reliability target set for the software 
design. 

3   Case Study System 

3.1   System Overview 

The assessment object is motor protection relay REM 610. REM 610 is a versatile 
multifunctional protection relay mainly designed for protection of standard medium 
and large medium voltage asynchronous motors in a wide range of motor 
applications. The typical area of usage for REM 610 is motor applications from 
500 kW to 2 MW. REM 610 handles fault conditions during motor start-up, normal 
operation, idling and cooling down at standstill. The relay can be used in both circuit-
breaker controlled and contactor controlled drives. Different uses of the relay can be, 
for example, motors in pump, fan, mill and crusher applications. REM 610 was 
released to the market in the beginning of 2004 and a picture of the relay is shown in 
Fig. 2. 

 

Fig. 2. REM 610 

REM 610 contains ten different protection functions. From the ten protection 
functions four were selected to the actual reliability assessment: 

 

• Thermal overload protection 
• Start-up supervision 
• Short-circuit protection 
• Earth-fault protection 
 

Detailed descriptions of the four selected protection functions can be found from 
the technical reference [2]. 
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3.2   Software Overview 

The size of the binary code of REM 610 is around 150-160 kilobytes and code 
executed on the main CPU is approximately 100-120 kilobytes. The software is 
programmed using C and assembly languages. Approximately half of the software  
is reused from the previous products and most of the code of the protection functions 
is legacy from the previous products. The software is implemented as firmware on the 
program memory. 

3.3   Software Development Process 

The main design phases of REM 610 and the main documents produced are 
following: 

 
1. Market requirement phase => Market requirement specification (MRS) 
2. Product requirement phase => Product requirement specification (PRS) 
3. Functional design phase => Functional design specification (FDS) 
4. Functional test phase => Functional test specification (FTS) 
 
In the market requirement phase the hopes and needs of different customers are 

collected and documented to MRS. In the product requirement phase the requirement 
of MRS are analysed and discussed between the developers. Some of the 
requirements of MRS may be removed, some are accepted and some are accepted as 
modified. All accepted requirements are finally documented in PRS. 

Based on the requirement of PRS the functions of the device are designed. The 
exact design of each function is documented in FDS. FDS contains all the required 
information for the implementation of the functions. FDS is actually a collection of 
documents each document describing a specific functional entity to be implemented. 
Each entity is programmed as an own programme segment and the programming is 
carried out mainly within the same design group that generated the design 
specification. In the assessment the programming of the protection functions is not 
considered as an independent development phase but is seen as an integrated part of 
the functional design phase. 

The functional test phase involves the design of the test cases, running the tests and 
analysis of the results. The testing phase is carried out independent of the software 
designers of functional design phase. FTS exists as an electronic database containing 
the test cases of the different programme segments and the final programme. Results 
of the functional testing phase are recorded to the database. 

4   Expert Judgement Process 

Ten designers of the systems participated in the assessment. The experts formed four 
assessment groups representing the different development stages of REM 610. The 
experts were assigned to different assessment groups according to their actual position  
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and involvement in the development process. The expert judgement process of 
REM 610 contained the following sessions: 

 

1. Expert training 
2. Qualitative session 
3. Quantitative session 
 

In the expert training the experts received an introduction to the assessment, expert 
judgement process and applied methods. The expert training was followed by the 
qualitative and quantitative sessions. In the qualitative session the uncertainty and 
unpunctuality related to the design and documentation of the relay was identify and 
recorded. The recordings of the qualitative sessions were gathered and distributed to 
the assessment groups in the quantitative sessions. The objective of the quantitative 
session was to generate the actual reliability estimate for the four protection functions 
of REM 610. The training was given to all experts simultaneously. The qualitative 
and quantitative sessions were carried out for all assessment groups separately. The 
total number of sessions in the assessment was 13 and the duration of a single session 
was from two to three hours. The qualitative and quantitative sessions are described 
below in more detail. 

4.1   Qualitative Session 

A special form was used in the qualitative session. In the beginning the experts 
described simplified logical models for the protection functions with the required 
inputs and outputs. The general idea of a logical model is to illustrate the principle 
functionality of a function without anchoring the actual implementation. The manner 
of representation and the level of detail in the logical models were left for the 
assessment groups to decide, but it was guided that an independent assessor with a 
technical background should easily understand the models. 

From the logical models different dependencies of the protection functions were 
identified and written down. In the identification the dependency of the protection 
functions on the other protection functions, hardware and new functionality 
implemented first time on REM 610 were particularly considered. 

After completing the forms for the four protection functions the recordings were 
reviewed and compared to the descriptions of technical reference manual [2]. If any 
uncertainty or inconsistency was found in the recordings or descriptions, they were 
listed to the bottom part of the form for further analysis and discussion in the 
quantitative session. 

4.2   Quantitative Session 

The quantitative sessions were carried out after all qualitative sessions had been held. 
Failure rates of two different failure modes were estimated: 

 

• Failure of trip – system does not launch a protection when needed 
• Spurious trip – system launches an unnecessary protection 
 
First, a target failure rate was considered for both failure modes. The target failure 

rate should be seen as a target design value for the software reliability of a new motor 
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protection relay. In other words, the target failure rate represents a value the software 
of the critical protection functions of a new relay should in average meet so that the 
end customer would be satisfied with the reliability of the new product. It should; 
however, be emphasised that at this point of the session the failure rate of REM 610 
was not considered in any ways. The target failure rates were discussed only in a 
general level and the goal of the discussion was to create some kind of consensus 
among the assessment group members on the target reliability of software design of 
new motor protection relays in general. 

Next, the recordings of the qualitative sessions of all assessment groups were 
distributed to the assessment group. The recordings were examined and discussed. In 
the examination the logical models of design phases of different protection functions 
were reviewed so that potential inconsistencies between the design phases could be 
notified. As guidance to the experts it was stated that a significant deviation in the 
logical models may imply misapprehension in the relay design, and therefore should 
decrease the expert's belief on the relay reliability. The dependencies, potential factors 
of uncertainty and unpunctuality listed by the other assessment groups were also 
reviewed to see if some important points had been forgotten by the group in the 
previous session. Finally, the own recordings of the assessment group were studied 
once more in detail. Key elements for and against the reliability of the protection 
functions of REM 610 were pointed out and written down on the form. 

After listing the key elements the session proceeded to the actual quantification 
phase. Two numerical prior estimates were generated by each assessment group to 
represent the reliability of the four protection functions. The first prior estimate was 
generated for the failure of trip –failure mode and the second for the spurious trip –
failure mode. Description of the quantification is following: 

 
1. Based on the information given in the recordings and the remarks pointed out in 

the discussions each expert gave an individual and independent median value 
for the failure rate of the first failure mode. The expectation value of the target 
failure rate discussed in the beginning of the session could be used as a 
reference point, but this was left for the expert to decide. 

2. Similarly 10 and 90 percentiles were given by the expert to reflect the 
uncertainty of his estimation. 

3. The combined median, 10 percentile and 90 percentile values for the assessment 
group were generated simply by taking an average of the median, 10 percentile 
and 90 percentile values given by the individual experts.  

4. A lognormal distribution based on the least squares method was fitted to the 
combined values. 

5. The fitted lognormal distribution was presented for the assessment group for 
discussion. 

6. Requested modifications to the lognormal distribution were made and the group 
accepted the estimate. 

7. Similar procedure was carried out for the second failure mode. 
 
In the generation of the group estimate the average values were used in point 3 to 

give equal weights to the estimates given by the individual experts. In point 4 the 
lognormal distribution and the method of least square were used so that it was 
possible to give an immediate response to the assessment group. 
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After creating the prior estimates for the four assessment groups the estimates were 
merged to form joint prior estimates. One joint prior estimate was created for each 
failure mode. Equal weights were given to the assessment groups when creating the 
joint prior estimates. The actual construction of the joint prior estimates was carried 
out in the calculation program WinBUGS [3]. 

5   Numerical Results 

5.1   Prior Distributions 

The recordings of different sessions are described in detail in [4]. Table 1 lists the key 
elements increasing and decreasing the confidence of the experts to the reliability of 
software design of REM 610. 

The lognormal prior distributions of the assessment groups for two different failure 
modes are illustrated in Fig. 3-4. Fig. 3 presents the probability density functions of 
the failure of trip failure mode. Fig. 4 presents the corresponding probability density 
functions for the spurious trip failure mode. 

5.2   Operational Data 

The operational data used in the numerical calculations contains the estimated 
operating years and the reported software faults of REM 610 in the first year of 
operation. The operating years were estimated based on the sales figures of REM 610 
using the following assumptions: 

 

• After an order the relay was delivered to the customer in one week 
• The time between delivery and commissioning phase is on average several 

months 
• After commissioning the relay was used full-time for the rest of the year 
 
The estimated number of operational years of REM 610 by the end of 2004 was 

140 years. This number was used in the calculations as the operating years of 
REM 610. In the calculations all the devices were assumed to function in a single and 
similar operational profile. 

Since start of the deliveries, following software faults of REM 610 have been 
found and reported by the customers by the end of 2004: 

 
1. In case of external open command for circuit breaker, the circuit breaker failure 

protection function operated without current condition indicating circuit breaker 
status. 

2. Trip circuit supervision function gave only local alarm indication to HMI, not to 
alarm relay output. 

 
These were of limited influence and they were not related to the four protection 

functions under analysis in the case study. Therefore, the number of software faults 
used for the calculations is 0. 
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Table 1. Key elements increasing and decreasing confidence on the reliability of REM 610 

MRS PRS FDS FTS 

Increasing 
confidence: 
– Logical models 

are consistent 
even to the level 
of detail 

– Designers are 
experts with 
strong 
experience on 
similar previous 
projects 

– Customers are 
provided with a 
support 
program to help 
them find the 
proper relay 
settings 

Increasing 
confidence: 
– Thermal 

overload 
protection has 
been 
surprisingly 
well 
understood in 
the different 
phases 

Increasing 
confidence: 
– The technology 

used and the 
functionality of 
the relay is well 
known to the 
designer 

– Thoroughly 
tested legacy 
code was used 
in the 
implementation 
of the protection 
functions 

Increasing 
confidence: 
– Descriptions of 

the protection 
functions of the 
different design 
groups are 
consistent 

Decreasing 
confidence: 
– Uncertainty 

related to the 
dependencies of 
the load testing 

– Uncertainty 
related to the 
increased 
number of serial 
communication 
protocols 

Decreasing 
confidence: 
– The level of 

abstraction in 
the 
descriptions 
of the MRS 
group 
deviates from 
the other 
groups 

– The 
limitations of 
the testing 
equipment 
increases 
uncertainty 

Decreasing 
confidence: 
– The calculation 

accuracy in the 
motor start-up 
supervision 

– RTD ambient 
temperature 

– Special PU-
scale settings 
may cause 
unwanted 
behaviour from 
customer point 
of view 

Decreasing 
confidence: 
– Sufficiency of 

performance 
testing 

– Uncertainty 
related to the 
testing of 
multiple 
simultaneous 
protection 
function 

5.3   Posterior Distributions 

Based on the prior estimates and the data posterior reliability estimates were 
calculated. The results are shown in Fig. 5. 
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Fig. 3. Prior distributions (pdf) of the failure of trip failure mode 
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Fig. 4. Prior distributions (pdf) of the spurious trip failure mode 

In the graphs 2,5-50-97,5 percentiles of the failure rate distributions are presented. 
Starting from the top, the first graph is the joint prior estimate generated from the 
prior estimates of the assessment groups given for the failure of trip failure mode. The  
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Fig. 5. Prior and posterior estimates of two failure modes 

second graph is the calculated posterior estimate of the failure of trip failure mode. 
The third and fourth graphs present the corresponding prior and posterior estimates of 
the spurious trip failure mode. 

From Fig. 5 it is easy to see that the prior estimates have a strong influence to the 
posterior estimates. The reliability estimates do not change very much from the prior 
estimates. The median values are only slightly shifted to the left and the variance of 
the posterior estimates is only modestly narrower than the variance of the prior 
estimates. Reason to the minor change in the estimates is the relatively small amount 
of operational data available in the estimation. The operational data was even 
diminished due to some conservative assumptions stated in the previous subsection. 
In the future, it will be interesting to see how the estimation changes while it is 
updated with new operational data collected for the relay. 

6   Conclusions 

In the paper a case study on the reliability estimation of the software design of motor 
protection relay REM 610 is presented. The purpose of the case study is to develop 
the expert judgement process of the assessment method and to evaluate the feasibility 
of the method for the use of PSA. 

Based on the experiences the expert judgement process applied in the case study 
was considered functional. In the feedback the phased structure of the expert 
judgement process and the use of assessment groups instead of interviewing 
individual experts was appreciated by the assessment experts. With clear phasing it 
was easier for the experts to analyse the important reliability related factors of a 
specific protection function. Making the assessment as a teamwork created discussion 
on topics that might have been overlooked in pure personal interviews. 

Giving quantitative estimates on the reliability of software design is not; however, 
an everyday task for typical software engineers. Therefore, better support should be 
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provided for the estimation task. This could be done for example by developing 
special reliability estimation tools that could be integrated as a part of the normal 
software development process requiring no extra effort from the engineers. Other way 
of supporting the task is to make the engineers more experienced and familiar with 
the reliability estimation by making the assessment a normal part of the software 
development process. 

The feasibility of Bayesian method in the reliability assessment of computer-based 
systems has been addressed for example in [5] and [6]. The experience from the case 
study supports this. Different evidence is typically involved in the reliability 
assessment and with Bayesian method the evidence can be discussed and flexibly 
combined together. 

Using the method for the purposes of PSA is particularly attractive. The method 
provides informative posterior probability distributions for the failure rates of the 
protection functions. These can be applied in the PSA models. The assessment is 
carried out from bottom-up (see Fig. 1) trying to create as plausible reliability 
estimate of the software design as possible. For practical reasons it is useful to discuss 
about the target failure rates, or reliability goals, in general in the assessment. This 
sets the experts at least to some extent to the same magnitude in their estimations 
making it easier to generate the joint prior estimates for the assessment groups. 

In PSA the main interest is in generating an objective reliability estimate of the 
target system. Discussion on the reliability goals may influence the outcome of the 
assessment increasing the top-down (see Fig. 1) influence to the estimates. Therefore, 
it is highly important to maintain the qualitative statements of the assessment to find 
the reasoning behind the posterior estimates. This makes it easier for independent 
assessors to critically evaluate the validity of the results as demanded in [7] and [8]. 
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Abstract. We present a reliability evaluation of a group membership
protocol (GMP), by computing the probability of violating the fault as-
sumptions made in its proof. The evaluation of the reliability of a GMP
is of paramount importance because group membership services are of-
ten used as building blocks in the design of fault-tolerant applications.
The GMP that we consider here has been proposed for dual scheduled
TDMA networks such as FlexRay, a protocol that is likely to become the
de-facto standard for next generation automotive networks. Our study is
carried out by modeling the GMP with discrete-time Markov chains. The
models consider different fault scenarios, including permanent, transient
and common-mode faults, affecting both channels and nodes. Further-
more we perform a sensitivity analysis to assess the influence of differ-
ent parameters on the protocol’s reliability. The results show that the
GMP can achieve reliability levels in the range required for safety critical
applications.

1 Introduction

It is widely accepted [1] that services such as group membership and distributed
agreement facilitate the systematic development of safety-critical applications.

In [2] we presented a novel group membership protocol (GMP) for a new
class of time division multiple access (TDMA) control protocols, which we call
dual scheduled TDMA (DuST). This type of TDMA protocol is likely to become
widely deployed, because FlexRay [3], a protocol being designed by a consortium
of some of the main car manufacturers and automotive electronics companies,
uses a DuST protocol and it is expected that FlexRay will become the de facto
standard of the next generation network for automotive applications.

Because the GMP is intended to be used as a general service by safety-critical
applications, it is important to ensure its correctness, ideally through a proof.
However, any proof relies on fault assumptions and it ensures that the protocol
behaves correctly only as long as the fault assumptions hold true. Therefore the
reliability evaluation of the protocol is of paramount importance.

In this paper we evaluate the reliability of the GMP by equating it to the
reliability of the assumptions made in its proof, i.e. the probability of these
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assumptions being true, an approach that, to our knowledge, was first proposed
by Latronico, Miner and Koopman in [4]. The fault model used in this study
includes both permanent and transient faults affecting both nodes and channels.
In addition, we consider two classes of common-mode transient communication
faults, faults that partition the network for the duration of the one message and
error bursts.

In order to carry out this study we have developed several discrete-time
Markov chain (DTMC) models, which were evaluated using PRISM [5], a prob-
abilistic symbolic model checker. The results show that the GMP protocol can
achieve reliability levels required by safety-critical applications, even for config-
urations of a small number of nodes and common-mode faults, by introducing a
small modification to the original protocol.

The remaining of this paper is structured as follows. In Section 2, we describe
the GMP and its maximum fault assumption (MFA). The fault model and the use
of discrete-time Markov chains with PRISM to evaluate the reliability under this
fault model are shortly described in Section 3. Then in Section 4 we present the
experiments we carried out in this study, and analyze their results. Related work is
covered in Section 5. In Section 6 we conclude with a summary of the main results.

All the models (or the scripts used for their generation) and the results of
all the experiments are available at http://web.fe.up.pt/~pfs/research/
safecomp2007/experiments.

2 Group Membership Protocol

In safety-critical applications, group membership is used mainly to keep track of
the operating components (we will use the term nodes) of the system. Therefore,
a group membership protocol comprises essentially two tasks: failure detection,
by which a node determines the operational state of the other nodes in the
system, and set agreement, by which non-faulty nodes agree on the state of all
the nodes in the system.

The Group Membership Protocol (GMP) [2] under study comprises two phases:
a failure detection phase (FD-phase) and a set agreement phase (SA-phase), as
shown in Figure 1. During the FD-phase, each group member broadcasts a heart-
beatmessage, anduses the heartbeats received to update amembership set.During
the SA-phase, each group member broadcasts its own membership set, we call this
message a vote, and applies a majority set function to its own membership set and
to all membership sets it received in that phase, thus performing a majority voting.

The GMP was designed to take advantage of a new class of time division
multiple access (TDMA) control protocols. In this class of protocols, rounds are
split in two segments: one whose slots are statically scheduled like in conventional
TDMA protocols, and another in which slots are allocated dynamically to nodes.
Thus, the GMP executes the FD-phase during the statically scheduled segment
of the communication round, and the SA-phase during the dynamically sched-
uled segment of the round, only when events that may lead to group membership
change are detected. This approach allows for a more efficient use of the network
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Fig. 1. GMP phases vs. DuST phases. Single-round (i) and multiple-round diagnosis
periods (ii).

bandwidth than if set agreement was executed in every round, and therefore used
the statically allocated segment. Figure 1(i) illustrates the relationship between
GMP phases and the segments of DuST protocols. Figure 1(ii) shows a proposed
extension of the GMP, in which the FD-phase rather than comprising the static
segment of one communication round, comprises several static segments in con-
secutive communication rounds. We call this extension multiple-round diagnosis
period GMP whereas we use the expression single-round diagnosis period GMP
for the original protocol.

2.1 Maximum Fault Assumption

The majority set function is the core of the GMP. To mask faults and to ensure
agreement among non-faulty group members, no more than half of the group
members may fail between consecutive executions of the GMP. This condition
is the maximum fault assumption (MFA). If it is violated, there is no guarantee
that the GMP will satisfy its specifications.

2.2 Goals of the Reliability Evaluation

The reliability evaluation reported here started out with the general goal of
quantifying the reliability of the GMP. The methodology we follow is to deter-
mine the reliability of the assumptions made in its proof, i.e. the reliability of
the MFA.

From this general goal, more specific questions arose as the study progressed.
The following, is a summary of the questions to which we try to answer:

1. What are the main factors that affect the GMP reliability?
2. What is the effect of using diagnosis period multiple of the communication

round?
3. How do common-mode faults affect the GMP reliability?

3 Model

3.1 Fault Model

In arguing the correctness of the GMP in [2] we assumed that a node might
fail by crashing or by omitting either to send or to receive messages. However,
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because of well-known results on the impossibility of agreement in the presence
of communication faults [6], we had to assume that the communication channels
were reliable. For reliability evaluation studies, like this one, these results are
not important. Thus, we now consider a more realistic fault model, by assuming
that communication channels may also fail by crashing or by omitting to deliver
messages, e.g. as a result of noise. Furthermore, we assume that these faults may
be either permanent or transient. E.g., a node might fail to receive a message
because it has not enough buffer space, but recover later.

Finally, in addition to single message faults, we consider two other types of
transient fault in channels: common-mode faults and error bursts. Common-
mode faults partition the network for the duration of one message, leading to
what some authors [7] call strictly omission asymmetric faults, i.e. a scenario in
which some nodes receive a message correctly, whereas other nodes receive no
messages. (We assume that the error detection codes used by communication
protocols are strong enough to detect virtually all communication errors.) Com-
munication error bursts are caused by long duration electromagnetic interference
(EMI) bursts that make communication all but impossible while it lasts.

3.2 Model

Because the GMP is round-based, we chose to use discrete-time Markov chains
(DTMC) to model its behavior. Indeed, the use of DTMCs allows us to associate
the state transitions with the passing of rounds, facilitating the evaluation of the
MFA, which specifies the maximum number of faults in each protocol execution.

The GMP reliability models we have developed are parametric models, al-
lowing to analyze the sensitivity of the protocol’s reliability to different factors,
and are comprised of several DTMCs: one for each node, and one for the com-
munication network. Because of space limitations, we are unable discuss the
models in this paper. Interested readers can find the models used in this study
in http://web.fe.up.pt/∼pfs/research/safecomp2007/experiments.

3.3 Reliability Evaluation

We have implemented the reliability models mentioned using PRISM [5], a prob-
abilistic model checker, and determined the reliability of the GMP MFA, which
can be expressed as a conjunction of two predicates:

1. The number of good channels, i.e. channels without permanent faults, which
we denote nc must be larger than 0, otherwise no communication will be
possible.

2. In every protocol execution, the number of members that may fail, either
transiently or permanently, which we denote nt and np respectively, must
not exceed the number of good members, i.e. that do not fail, which we
denote ng. This condition is necessary so that the majority function can
mask faults.
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Thus, the reliability of the GMP is given by the probability of the predicate

(nc > 0) ∧ (ng > np + nt)

holding true in a time interval of a given duration.

4 Experiments Design

In order to answer each of the questions stated in Section 2, we have designed
one set of experiments except for the case of common-mode faults, for which we
considered two sets of experiments: one for faults that affect a single message
and another for communication error bursts.

For each experiment, all frames have the same size. Furthermore, we assume
that each node transmits 2 frames per communication round, and that the com-
munication round is as short as possible. I.e. we assume that as soon as the last
node in a round finishes the transmission of its second frame the first node starts
the transmission of its first frame of the next round. Therefore, the duration of
a round depends on the number of nodes, the frame size and the bit-rate. An
alternative is to assume that a communication round has a fixed duration. We
decided to model the protocol as described, because most automotive applica-
tions are real-time requiring high responsiveness.

Also, in all these experiments we consider that the fault inter-arrival times
have an exponential distribution. This is a common assumption for faults with
a physical cause such as electromagnetic interference (EMI). Furthermore, for
the model parameters we use values from the automotive domain, the main
application domain of DuST networks in the near future. These values are based
on figures provided both in [4] and in [8]. Table 1 shows the values of the relevant
parameters that we have used in virtually all experiments. Other parameters used
in specific sets of experiments are presented when we describe those experiments
in more detail.

Table 1. Parameter values used in virtually all experiments

Parameter Values (units)

Number of nodes (N) 3, 4, 5, 6, 7, 8, 9, 10

Number of channels 1, 2

Frame Size (FS) 32, 128 (bytes)

Bit Rate 1, 10 (Mbps)

Bit-error rate (BER) 1E-6, 1E-7, 1E-8

Node Permanent Fault Rate (PHw) 1E-5 (faults/hour)

Channel Perm. Fault Rate (PCh) 1E-6 (faults/hour)

The number of nodes range from 3 to 10. The reason for this is threefold. First,
to limit the number of configurations. Second, because the time required to eval-
uate the models increases almost exponentially with the number of nodes. This
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is especially true for some models whose symmetry is limited. Third, and most
importantly, the reliability of the protocol improves with the number of nodes,
as we shall see, leveling off at the probability of failure of the communication
channels.

We consider both single and duplicated channels. Indeed, whereas the use of
duplicated channels affords higher reliability, its cost is higher. In most appli-
cations, a single channel will be used if its reliability is acceptable. Thus, it is
important to evaluate the reliability of single channel configurations.

The frame size, the bit error rate (BER) and the bit-rate all affect the proba-
bility of transient communication faults. We consider frames of two sizes: 32 and
128 bytes. This is likely to cover most automotive applications. E.g. the header,
trailer and synchronization bits in FlexRay lead to an overhead of around 16
bytes. Frames with size of 128 bytes are probably very rare in automotive appli-
cations, however we have chosen this value because longer frames have a higher
probability of being affected by errors. For the BER we consider values in the
range typical of copper medium. Although, optical fiber has a much lower BER,
it is more expensive and therefore seldom used in the automotive domain. With
respect to the bit-rate we consider 2 values: 1 Mbps and 10 Mbps. Again, these
are typical of the automotive domain. E.g., the timing parameters specified in
FlexRay were determined for a 10 Mbps. However, it mentions the possibility of
specifying values for lower bit-rates.

We assume that the only cause for transient faults in the GMP are commu-
nication errors. This is because for the parameter values considered, cf. Table 1,
the probability of transient faults in nodes ([8] mentions a fault rate between
1E-3/hour and 1E-5/hour) is at least two orders of magnitude lower than the
probability of transient communication faults and does not affect the reliability
of the GMP.

For each of the permanent fault rates, hardware and channels, we used a single
value, 1E-5/hour and 1E-6/hour, commonly used in the literature. However,
we have performed some additional experiments to evaluate the effect of these
parameters on the reliability of the protocol.

All the results presented in this section are the result of the evaluation of the
probability of violation of the maximum fault assumption after one hour. This is
a standard time interval used for reliability evaluation. Also, all the results were
obtained starting from one initial state in which all components are working
properly and all nodes are members of the group.

4.1 Single-Round Diagnosis Period

The goal of these experiments was to determine the main factors that affect the
reliability of the GMP proposed in [2].

First, we carried out an experiment for all combinations of the values of the
parameters shown in Table 1.

In addition, in order to evaluate the effect of the permanent fault rates, of
both channels and nodes, and to keep the number of configurations evaluated
manageable, we run two additional sets of experiments. In one of them we varied
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the channel permanent fault rate one order of magnitude above and below the
values shown in Table 1 while maintaining the node permanent fault rate con-
stant (and equal to the value shown in Table 1). In the second one, we varied the
node permanent fault rate while maintaining the channel permanent fault rate
constant. In each of these experiments we considered all possible combinations
for the remaining parameters.

Data Analysis. Figure 2 shows the unreliability of the GMP for a commu-
nication network with two channels for bit-rates of both 1Mbps and 10 Mbps.
The permanent hardware fault rate is 1E-5 per hour and the permanent channel
fault rate is 1E-6 per hour.
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Fig. 2. Assumption violation probability in the first hour for the single-round diagnosis
period GMP [2]

The figure shows that the GMP reliability is highly sensitive to transient com-
munication faults. In particular, it depends heavily on the BER. The effects of
the frame size are also visible but not as large. Indeed, larger frames lead to a
higher transient communication fault, but this is partially compensated in our
models by a decrease in the number of executions in the reliability evaluation
interval as a consequence of the increase in the duration of the communication
round. The effect of the number of protocols executions can be observed com-
paring the results for 1 Mbps and 10 Mbps channels. All other parameters being
equal, the difference between configurations with 1 Mbps and 10 Mbps channels
is on the number of protocol executions, and this leads to a reliability almost
one order of magnitude lower for 10 Mbps channels, especially for configurations
with a small number of nodes.

The GMP sensitiveness to transient communication faults is especially acute
for configurations with a small number of nodes. This is because the GMP per-
ceives transient communication faults as faults in nodes, and the smaller the
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number of nodes more likely is that the GMP will be unable to gather a ma-
jority. As we increase the number of nodes, the reliability improves fast. Note
however that when we increase the number of nodes by one, the reliability im-
provement is larger if the number of nodes before the increment is even. This is
because in that case the increment will allow for the failure (real or perceived) of
one additional node per protocol execution without violating the MFA, whereas
if the number of nodes before the increment is odd it will not. Ultimately, for
the factor values considered, the system reliability is bounded by the probability
of both communication channels failing permanently. For example, for a BER of
1E-6 and frames with the size of 32 bytes, this limit is reached for configurations
of 9 nodes.

From this discussion, it is clear that the best we can hope with a single
channel configuration is an unreliability of 1E-6 – this bound is determined by
the probability of the single channel failing permanently. (This is confirmed by
the experiments for single channel configurations whose results we do not show.)
It is obvious then that single channel configurations are not appropriate for
safety-critical applications, and we do not consider them further in this paper.

These results hint that the probability of permanent channel faults affects
significantly the reliability of the GMP. This is because, if a channel fails per-
manently, the protocol will operate with a single channel and therefore, the
probability of a transient fault will be much higher. Indeed, the results we ob-
tained from our experiments show that for networks with duplicated channels
and the factor values shown in Table 1, a one order of magnitude variation in
the probability of the permanent channel fault may lead to a variation up to two
orders of magnitude in the GMP unreliability, for configurations with a large
number of nodes. Conversely, for configurations with a small number of nodes
and a high transient communication fault rate, e.g. 128 byte frames, the com-
munication channel permanent fault rate has virtually no effect on the protocol
reliability. On the other hand, our experiments have shown that for the values
of all the other factors that we have considered, one order of magnitude change
above or below the permanent hardware fault probability has no effect on the
reliability of the GMP.

4.2 Multiple-Round Diagnosis Periods

One approach to improve the resiliency of the GMP to transient communication
faults is to make the diagnosis period a multiple of the communication round and
to diagnose a node as faulty only if it is affected by transient communication
faults in more than some number, that we call diagnosis threshold, of these
rounds.

In order to assess the efficacy of this approach we carried out an experiment
in which we varied both the diagnosis period from 2 to 5 communication rounds,
and considered thresholds of 1 and 2 messages.

We considered configurations with 3 to 6 nodes, only. This is because most
configurations for single round diagnosis periods and a larger number of nodes
already present an acceptable reliability for safety-critical applications.
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Furthermore, as shown in Figure 3, below, the reliability increases with the
number of nodes and configurations with 4 nodes already exhibit an unreliabil-
ity below 1E-9.

For the BER we used only one value: 1E-6. This corresponds to the worst case
for the values considered in Table 1.

Data Analysis. Figure 3 shows the reliability of the GMP for diagnosis peri-
ods multiple of the communication round, for communication network with two
channels of 1 Mbps and 10 Mbps. The threshold used by the fault diagnosis
algorithm is 1 message.
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Fig. 3. Effect of the length of the diagnosis period on the MFA violation probability

These results show clearly the efficacy in terms of reliability improvement of
using longer diagnosis periods, even with a diagnosis threshold of only 1 message.
Note that this approach is especially advantageous for configurations with a low
number of nodes, which have a relatively low reliability for single round diagnosis
periods. Nevertheless, configurations with 3 nodes are still too unreliable to be
used in safety-critical applications, except for configurations of 1 Mbps and frame
sizes smaller than 32 bytes.

We have also evaluated the reliability of the GMP for a diagnosis threshold of
2 messages. As expected, the reliability improved compared with that obtained
with 1 message thresholds, but 10 Mbps configurations with 3 nodes and 128
bytes still exhibit insufficient reliability for safety-critical applications.

4.3 Common-Mode Faults

In all previous experiments we considered only independent faults, i.e. faults
that affect only one node. However, virtually all transient communication faults
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are caused by EMI, which may be localized and therefore affect a subset of the
nodes. Essentially, this corresponds to a partition of the network and may split
the group members almost evenly.

In order to assess how this kind of fault affects the reliability of the GMP,
we designed an experiment in which we modeled common-mode faults as a fault
in every node. To keep the model tractable we made two simplifications. First,
we considered that at most two common-mode faults may occur per diagnosis
period. Second, we handled the loss of votes just like that of heart-beat messages:
they are used to diagnose a node as faulty but are not otherwise taken into
account in the gathering of a majority. This leads to a slight overestimation of
the reliability.

Given that we did not find data on the rate of this kind of fault, we assumed
that it is a fraction of the transient communication faults, that we call the
common-mode to independent fault ratio (cir). We considered a range between
0.1% and 10% for this parameter.

Furthermore, we have considered diagnosis periods of both 2 and 5 commu-
nication rounds, and thresholds of 1 and 2 messages, respectively.

Because of the execution time of the model is large, we run this experiment
only for channels with a 1 Mpbs bit-rate, but nevertheless considered configura-
tions with 3 to 10 nodes.

Data Analysis. Figure 4 shows the results of these experiments.
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Fig. 4. Effect of the common-mode to independent faults ration in the MFA violation
probability

As we might expect the reliability of the GMP is badly affected by the
common-mode faults, especially for common-mode to independent fault ratios
(CIR) above 1%, and for diagnosis thresholds of 1.

In contrast to the results of the previous experiments, for the values used,
the unreliability increases with the number of nodes, especially for thresholds of
one. This is partially an artifact of the way we model common-mode faults: for a
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threshold of one, in diagnosis periods with common mode faults, one additional
independent fault causes the violation of the MFA, and the probability of such
a fault occurring increases with the number of nodes. For configurations with a
threshold of two messages, the occurrence of one additional independent fault is
not enough to cause a violation of the MFA. This partially explains the much
better results obtained in experiments with that threshold, in spite of using a
higher diagnosis period.

Another factor that accounts for the much better results of configurations
with a threshold of two is that we limit the number of common-mode faults
per diagnosis period to two. For configurations with a threshold of one, this
does not affect the results because the occurrence of two common-mode faults
leads automatically to the violation of the MFA. However, for configurations
with a threshold of two this is not the case, leading to an overestimation of the
reliability.

4.4 Communication Error Bursts

The goal of this experiment was to determine whether it is possible to make the
GMP resilient to long duration EMI bursts by using diagnosis periods multiple
of the communication round.

The conventional approach to deal with this kind of fault is to switch to a
special operating mode such as the black-out mode in the TTP/C architecture.
The main problem with this approach is that it requires that the nodes resyn-
chronize. In the case of the GMP it would require the creation of a new group,
usually a lengthy procedure.

In order to tolerate faults that long, we propose to change the GMP so that it
allows failure of the protocol execution in as many consecutive diagnosis periods
as can be affected by the error burst. An alternative that we considered was
to lengthen the diagnosis period to a duration longer than the error burst and
to define a threshold that would tolerate the loss of as many messages as can
be affected by the error burst. However, this alternative makes the GMP less
responsive to permanent faults.

We characterize error burst faults with two parameters: the burst duration
and the burst rate. In our experiment we used values of 50 ms for the burst
duration, and varied the error burst rate (BR) one order of magnitude below
and above 1E-4 per hour. These values are based on the figures provided in [8]
for transient hardware faults in nodes caused by EMI.

To keep the model tractable we handle the loss of votes just like that of
heart-beat messages, as described in the previous subsection.

We run this experiment for configurations of both 1 Mbps and 10 Mbps chan-
nels, diagnosis periods of 2 communication rounds and thresholds of 1 message.
We chose these values because the results obtained in Section 4.2 show that they
provide adequate reliability for almost all configurations.

Data Analysis. Figure 5 shows the results of these experiments.
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Fig. 5. Effect of the error burst rate on the MFA violation probability

These results indicate that the approach proposed is effective to tolerate error
bursts. Except for burst rates of 1E-3 per hour, the reliability is comparable
to that for the corresponding configurations of the models without burst errors
reported in Subsection 4.2. However, the reliability for configurations of 3 nodes
is larger than that shown in Figure 3. This is because the way we model the
effect of lost votes leads to an overestimation of the reliability.

Although at the time of writing we do not have values for 10 Mbps channels,
we expect them to be in agreement with those obtained for 1 Mbps channels.

5 Related Work

In this paper we evaluate the reliability of a GMP through the computation of
the reliability of its fault assumptions. To the best of our knowledge, this method-
ology was first proposed by Latronico, Miner and Koopman in [4]. Incidentally,
[4] also uses a Group Membership Protocol (of the SPIDER architecture) as a
case study. Although the methodology used is generally the same, there are some
major differences between both works.

First, whereas [4] uses a continuous-time Markov chain (CTMC) model for
modeling the GMP protocol we have chosen to use a discrete-time model. The
use of a discrete-time model is more appropriate for round-based protocols that
are executed repeatedly, such as group membership protocols. In particular, it
allows to model the rounds themselves, facilitating the evaluation of assumptions
on the number of faults in each round. This is important, because the fault
tolerance of most round-based protocols relies on this kind of assumption. On
the contrary, CTMC models make it virtually impossible to accurately model the
rounds. This requires the analyst to use rough approximations in the evaluation
of properties that depend on rounds. E.g. in [9] Latronico and Koopman also
use CTMC models to evaluate the reliability of the group membership protocol
of TTP/C. However, because of the limitation mentioned above, rather than
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evaluating the reliability of TTP/C’s fault assumption – that exactly one fault
may occur within two-rounds, – they had to state a different fault assumption.
Such an approach may raise some doubts regarding the outcome of the evalua-
tion. Second, whereas in [4] the authors consider only independent fault models,
in our work we consider also common-mode transient communication faults such
as those caused by localized EMI or EMI bursts that affect several communi-
cation rounds. Finally, whereas [4] considers arbitrary, i.e. Byzantine, faults we
do not. The reason for this is that whereas the SPIDER protocol tolerates these
faults, the GMP we analyzed does not. Therefore, a single arbitrary fault will
lead to violation of its fault assumptions. As pointed out in [4], faults outside
the MFA are addressed by the concept of assumption coverage, as defined by
Powell in [10].

6 Conclusions

We have evaluated the reliability of the assumptions made in the proof of a
group membership protocol (GMP) especially designed to take advantage of a
new TDMA protocol that is likely to become the de facto standard for next
generation networks in the automotive domain.

In our study we considered several fault scenarios, including permanent, tran-
sient and common-mode faults, affecting both channels and nodes. Furthermore
we performed a sensitivity analysis to assess the influence of different param-
eters on the protocol’s reliability, using value ranges typical of the automotive
domain.

The results obtained show that the protocol as originally proposed is highly
sensitive to transient faults especially for configurations with a few nodes. How-
ever, reliability levels close to those required for safety critical applications can
be achieved, through the use of duplicated channel and a diagnosis period mul-
tiple of the communication round. This same approach works also for common-
mode transient communication faults, both those that partition the network for
a frame duration and error-bursts that may affect several frames.

An interesting investigation direction that we plan to take is to extend this
work to the class of protocols that use majority voting to mask faults. Indeed,
many other fault-tolerant protocols rely on majority voting, and all models de-
veloped in this work focus on how faults affect the ability of gathering a majority.
We believe that such an investigation may produce very general and very useful
results.
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Abstract. Fault tolerance via diversity has been advocated as a vi-
able defence against common-mode failure in safety critical systems. The
consequences of using diverse, redundant software components in fault-
tolerant, software-based systems have been the subject of much research.
In particular, Littlewood and Miller showed analytically how “forcing”
diversity between redundant software components might achieve higher
expected system reliability than if these components failed indepen-
dently. But their theorems concerned very special scenarios. This paper
examines various lower and upper bounds on the expected reliability of
systems built by ”forcing diversity” and specify conditions for forced di-
versity to guarantee improved upper bounds on the system’s expected
probability of failure on demand (pfd).

1 Fault Tolerance Via Failure Diversity

Fault tolerance, the ability of a system to continue to operate in the presence
of faults, can be achieved by building systems composed of multiple, function-
ally equivalent software components. These components may be combined in a
“1-out-of-N ” or a “voted” configuration1. At the heart of these approaches for
achieving fault tolerance is the notion of failure diversity: the notion that redun-
dant components may fail on different system demands. For instance, consider a
1-out-of-2 system. If its component software versions fail on mutually exclusive
sets of demands then the 1-out-of-2 system does not fail on any demand. Diver-
sity is possible because the process of software development is random; running
the process multiple times may not result in the same software being produced
each time. The resulting software components may fail on different demands.

In developing a 1-out-of-2 system, diversity between the failures of the com-
ponent software versions can occur naturally. This can be achieved by software

1 A parallel redundant (1-out-of-N) system is one in which correct system functioning
is assured provided at least one channel functions correctly; in a voted system, correct
system functioning is assured if a majority of channels function correctly. Many
other architectures are possible, but here we are interested in the simplest practical
scenario where evaluation problems arise.
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development teams, one for each software component, developing their respec-
tive software components while being perfectly isolated from each other. The
teams, as a consequence of being isolated, develop their respective software ver-
sions independently. Diversity that arises in this way is unforced/natural :it arises
naturally from the randomness that is inherent in the software development
processes. In a seminal paper by Eckhardt and Lee, [1], it was shown that un-
forced diversity results in average system reliability that is no better than if
the component software versions were expected to fail independently. This is
partly summarised by the statement “For a 1-out-of-2 system, independently
developed software components cannot be expected to fail independently”. This
result can be understood by appreciating that though the teams (as a result of
being isolated) are independent in how they develop their respective versions,
the teams are likely to find similar tasks in the development process difficult. So,
if a software version made by one team fails on a given demand, this indicates
that the demand might be a difficult demand and so we may expect the other
team’s version to fail on the same demand.

Eckhardt and Lee [1] demonstrated, via their model (EL model, for short),
why we might expect coincident failure between independently developed, soft-
ware versions. However, Littlewood and Miller [2] demonstrated that forcing
diversity can result in 1-out-of-2 systems with average system reliability that is
better than if the software components failed independently. Forcing diversity
is the deliberate requirement that the functionally equivalent software compo-
nents be developed in different ways. Littlewood and Miller [2] argue that this
is achievable because there is usually a choice of alternative methodologies that
can be employed in developing software. For instance, there are various methods
of fault removal, various equivalent algorithms, various programming languages
and development environments that may be utilised in developing software com-
ponents. By using different or diverse methodologies the development teams may
have different view points of the issues in software development and consequently
be less likely to make the same mistakes. So, some tasks during development may
be easy for one team and difficult for another team. We can formalise this notion
of varying difficulties between the teams. Making mistakes during the develop-
ment of software can impact on whether the software successfully handles or fails
to handle some subset of it’s input or demand space2. So, as a consequence of
mistakes that may be made by a team in the development process, the software
developed by the team fails, deterministically, on some subset of the system’s
input space. Since we do not know which mistakes will be made by the team in
development, we are also uncertain about the failure behaviour of the developed
software on any given demand is also random. This means that we can associate
with each demand a probability that the team develops software that fails on
this demand. The difficulty function3 for a team is then a mapping, defined on

2 The input space is the set of all inputs that the system is required to operate on.
This may be determined from the system’s functional requirements.

3 Difficulty function is a term coined by Littlewood and Miller [2] to name a concept
introduced by Eckhardt and Lee [1].
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the set of system demands, that assigns to each system demand a probability
that the development team creates software that fails on that demand.

In this paper, by reasoning in terms of the LM model, we shall discuss bounds
on the reliability of 1-out-of-2 systems and give rather general theorems about
the effects, on system reliability, of forcing diversity. The layout of the paper is
as follows. Section 2 introduces terminology and parameters necessary for our
analysis. Section 3 details various bounds on the the reliabilities of systems built
by forcing diversity. Finally, Sect. 4 outlines conclusions and relevant ongoing
work.

2 Forced and Unforced Diversity: Relevant Parameters
and Terminology

The following measures and terminology will be useful.

Probability of failure on demand (pfd): The uncertainty about which demand
will be submitted next to the system in operation allows us to define the following
reliability measure. The probability of failure on demand (pfd) of a system
is the probability that the system fails on a demand submitted to it, selected
at random, from its operational environment. In addition, the expected pfd, qA,
of a system developed using methodology A, is the probability that a system,
developed by a team employing methodology A, fails on a demand submitted to
it at random from its operational environment;

Homogeneous and Heterogeneous Systems: Recall, from Sect. 1, that in the de-
velopment of a 1-out-of-2 system diversity may be forced or unforced (allowed
to occur naturally). A development process of a 1-out-of-2 system that employs
“Forced diversity” is one in which each of the redundant channels is built by
employing a unique development methodology. For instance, given two method-
ologies called ’A’ and ’B’ say, ’A’ may be used to develop one of the channels and
’B’ may be used to develop the other channel. The resulting system is a “Het-
erogeneous” AB system with expected pfd, qAB. Alternatively, if the component
software channels are built by employing the same development methodology,
methodology ’A’ say, then diversity was not forced or occurred naturally and
we say the resulting system is a “Homogeneous” AA system with expected pfd,
qAA.

Indifference: There are at least 2 contexts in which a system developer may be
indifferent. The alternative methodologies, when used in development processes,
may be such that they have equal likelihood of being used by the system developer
and we say that the developer is “indifferent between the methodologies”.

Diversity Parameter (γA): Given a methodology ‘A’ the quantity γA := qAA/q2
A

is an indicator of how effective unforced diversity, arising by employing method-
ology ‘A’ in building a 1-out-of-2, homogeneous system, is. To see this consider
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the tightest bounds on γA. These bounds represent the extreme cases of method-
ology A’s usefulness when used in building homogeneous systems.

– Maximum benefit from diversity with Methodology A : At one ex-
treme, γA = 1, say. That is, qAA = q2

A. This is the maximum benefit possible
and we say that values of γA close to 1 are “good”. Recall, from Sect. 1, that
both teams use the same methodology and, as a consequence, have very
similar difficulty functions.;

– No benefit from diversity with Methodology A : At the other ex-
treme,the development teams always build software with identical failure
behaviour and qAA = qA. Therefore,γA = 1/qA. The software developed
always have the same failure set. This means that the difficulty function
only takes the values 0 and 1. So, unforced diversity is expected to bring no
improvement and we say that γA values close to 1/qA are “bad”.

The gamma factors are related to beta factors, used in common-cause failure
models, since γA × qA = βA.

3 Bounds on the Reliability of Systems Built by Forcing
Diversity

The following, fairly general, scenario is necessary for all of the theorems that
follow. Consider an assessor of some 1-out-of-2 systems who

1. has a choice of 2 software development methodologies, A and B say;
2. has estimates for the expected pfds, qA and qB, of single version systems;
3. may have evidence to support beliefs about whether, or not, γA ≤ γB. Knowl-

edge of the values of qAA and qBB is not necessary. Instead, knowledge of
the beta factors βA and βB will suffice.4;

Under these conditions all of the following theorems hold. Proofs for these
theorems are available at [3].

Theorem 1. Under indifference between methodologies A and B, building
a 1-out-of-2 system by forcing diversity results in a system with expected pfd that
is no greater than the expected pfd obtained if a homogeneous system were built,
instead. That is,

qAB ≤ qAA + qBB

2
.

The following theorem can be stated as a corollary of Theorem 1. A similar
theorem, derived in [2], requires a system assessor to know that qAA = qBB .
This is not required here.

Corollary 2. If the expected pfds of homogeneous systems are equal (that is, qAA =
qBB) and a system developer is indifferent between the methodologies then
4 Beta factor estimates are used in industry and, in particular, are recommended in

industry standards for safety-critical systems. For instance, EN 61508 (2008).
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building a 1-out-of-2 system by forcing diversity results in a system with expected
pfd that is no greater than the expected pfd obtained if a homogeneous system were
built, instead. That is, qAB ≤ qAA or qBB.

The following theorem states upper and lower bounds on qAB.

Theorem 3

max
(
0, qAqB

(
1 −

√
(γA − 1) (γB − 1)

))
≤ qAB

≤ qAqB

(
1 +

√
(γA − 1) (γB − 1)

)

≤ qAqB
√

γAγB .

The following theorem gives a necessary and sufficient condition for
qAqB

√
γAγB to be the least upper bound on qAB.

Theorem 4. For the existence of a pair of difficulty functions such that

qAB = qAqB
√

γAγB

it is necessary and sufficient that γA = γB.

From Theorem 3 the following special cases can be identified in which not forcing
diversity is preferred, from the view point of the upper bound on qAB.

1. If γA = 1 and γB = 1 and qA ≤ qB then qAA ≤ qAB ≤ qBB. Therefore, a
homogeneous ‘AA’ system should be built.

2. If γA = 1 and γB = 1/qB and qA ≤ qB then qAA ≤ qAB ≤ qBB. Therefore,
a homogeneous ‘AA’ system should be built.

3. If γA = 1/qA and γB = 1/qB and qA ≤ qB then qAA ≤ qAB ≤ qBB .
Therefore, a homogeneous ‘AA’ system should be built.

4 Conclusions

The expected pfd of a 1-out-of-2 system is always no greater than the expected
pfds of either one of the system’s redundant channels. In this sense “Diversity is
always a good thing”. However, when trying to build a more reliable, 1-out-of-2
system instead of a single version system, a choice may be made between build-
ing either a heterogeneous or homogeneous 1-out-of-2 system. That is, a choice
has to be made between whether, or not, to force diversity in the development
process of the 1-out-of-2 system. The focus of this paper has been to state bounds
on the expected pfd, qAB, of a 1-out-of-2 system built by forcing diversity. In
particular, under rather general conditions, some theorems state preferences, in
terms of upper bounds on qAB, between forced and unforced (natural) diversity
during the development of 1-out-of-2 systems. The preferences are obtained by
deriving relevant bounds, which are functions of γA, γB, qA and qB, on the value
of qAB. In practice, some of these results depend on estimates of the values of
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γA, γB, qA and qB will be known. It is not unusual to have estimates for com-
ponent software (single version systems) that are to be integrated into a larger
system. Indeed, for COTS-based systems it is sometimes possible to have em-
pirical estimates of the reliabilities of the software components. Also, the use of
beta factors in estimating system reliability is commonplace.

Theorem 1, in particular, states a development process scenario, for a 1-out-
of-2 system, for which diversity should be forced. Suppose a system developer has
a choice of 2 development process methodologies. Upon employing the method-
ologies to build homogeneous 1-out-of-2 systems the developer does not know
which methodology results in a system with better expected pfd. As a result,
methodologies are equally likely to be chosen by the developer. That is, the
developer has no preference or is indifferent between the methodologies. In prac-
tice, it is common for system developers to be indifferent between methodologies
especially when there is no evidence to support a clear choice between them.
Theorem 1 states that under these conditions a heterogeneous 1-out-of-2 system
should be built. Diversity should be forced in the system’s development process.

Practical judgments about whether to force diversity or not should also take
into account economic issues, such as the cost of implementing a regime of forc-
ing diversity. However, this paper has focused on making the judgment about
whether to force diversity or not purely in terms of the expected pfds of the sys-
tems built. As an extension of the current work an economic/utility model could
take into account our theorems and results, in a bid to aid system developers in
decision making.

The parameters in this paper are averages so care should be taken in their
use. In particular, a system’s actual pfd, when built, will normally differ from
the expected pfd, given the system’s development methodologies.
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Abstract. A network is a structure where any couple of nodes is
normally connected by different independent paths, thus making the
structure intrinsically reliable. For this reason, many natural, social and
technological systems organize in the form of networks. A tool for net-
work reliability analysis, where different approaches are tested and com-
pared, is in progress. The paper presents some preliminary results of a
scalable benchmark, that includes different network structures.

1 Introduction

A peculiar feature of the modern organization of the human life is the increasing
level of interconnectivity. Critical Infrastructures (CI) form a framework of inter-
connected and interdependent networks and systems [6]. One relevant property
of networks, that make them a preferential structure both in natural and tech-
nological systems, is that the connection between any two nodes of the network
can be usually achieved through a number of redundant paths, thus making the
connection intrinsically reliable.

The increased complexity of real networked systems requires new analytic
approaches to afford their new scale and predict their behavior. There is a wide
literature concerning complex networked system analysis [1,4,2] that looks at
the structural properties of the graph and the rules governing the aggregation of
its nodes, with the aim to predict networked system behavior. Two topological
classes are relevant for representing CIs: Random Graph (RG) networks and
Scale Free (SF) networks [1,4].

In the last decades, Binary Decision Diagrams (BDD) [3] have provided an
extraordinarily efficient method to represent and manipulate Boolean functions,
and we present a tool that makes use of the BDD’s to encode the network
connectivity function, and to compute the network reliability.

2 Network Definitions and Characterization

A network can be represented in the form of a graph G = (V, E), where V is the
set of vertices (or nodes) and E the set of edges (or arcs). If the network elements
are binary entities (up or down) the network connectivity can be expressed
as a Boolean function. By assigning a probability measure to each element of
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the graph to be up or down, we define as two-terminal reliability (or (s,t)-
reliability) the probability that two nodes communicate with each other by at
least one path of working edges.

Regular, Random and Scale Free networks - Networks can be classified
according to different topological structures. Regular networks are represented
by graphs that can be described by means of defined geometrical properties
and can be very well suited for scalable benchmarks. An example of symmetric
regular network with N = 5 nodes and connectivity degree k = 2 is shown in
Figure 1 (the arcs are oriented counterclockwise).

v1 =s

v5 =tv2

v3 v4

1

2

3

4

56

7 8

9

10

Fig. 1. A regular network with N = 5 and k = 2

The most relevant topological classes of networks for representing CI struc-
tures, are RG and SF networks. In RG networks, the degree distribution P (k)
follows a Poisson distribution; the network degree is characterized by an average
value with a given standard deviation. In SF networks, the degree distribution
P (k) follows a power-law [5], so that a small number of very highly connected
nodes (the hubs) are linked to a large number of poorly connected nodes.

3 Tool Implementation

A software tool for network reliability analysis has been developed. The tool
accepts in input a graph with various formats, and evaluates its reliability by
means of two algorithms based on BDD.

Binary Decision Diagrams - A BDD represents a Boolean expression by
means of the Shannon’s decomposition principle. If F is a Boolean function on
the variables x1, x2, . . . , xn the following (Shannon) decomposition holds:

F = x1 ∧ Fx1=1 ∨ x1 ∧ Fx1=0 (1)

Furthermore, if we assign to every variable xi a probability pi of being true
(1−pi false), we can compute the probability P{F} of the function F by applying
recursively Equation 2.

P{F}=p1P{Fx1=1}+(1−p1)P{Fx1=0}=P{Fx1=0}+p1(P{Fx1=1}−P{Fx1=0})
(2)
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In particular, two different algorithms will be discussed, the first based on the
search of the minpaths, the second based on a recursive visit of the graph.

3.1 (s-t)-Reliability Via Minpath Analysis (MPA)

Given a network G = (V, E) and two nodes (s,t), the following definition holds.

Definition 1. A (s,t)-path is a subset of elements (arcs and/or nodes) that
guarantees the source s and the termination t to be connected if all the elements
of this subset are up. A path H is a minpath if a subset of elements in H does
not exist that is also a path.

Let H1, H2, . . . , Hh be the h minpaths between s and t. All the elements of a
minpath must be working, therefore the elements of the minpath are logically
connected in AND. The network connectivity S(s,t) can be represented as the
logical OR of its minpaths, since it is sufficient that any one of the minpaths is
operational to make the network working.

S(s,t) = H1 ∨ H2 ∨ . . . Hh (3)

The two terminal reliability can be calculated as:

R(s,t) = P{S(s,t)} = P{H1 ∨ H2 ∨ . . . Hh} (4)

Formula 4 shows that the network reliability can be evaluated as the probability
of the union of non-disjoint events.

Example 1 - Visual inspection on the network of Figure 1, assuming s=v1 and
t=v5, shows that the graph possesses 5 minpaths (listed in order of their rank):

H1 = {6, 8}; H2 = {6, 3, 4}; H3 = {1, 7, 4}; H4 = {1, 2, 8}; H5 = {1, 2, 3, 4}
(5)

Replacing (5) into (3), the network (s,t)-connectivity can be expressed as:

S(s,t) = (6 ∧ 8) ∨ (6 ∧ 3 ∧ 4) ∨ (1 ∧ 7 ∧ 4) ∨ (1 ∧ 2 ∧ 8) ∨ (1 ∧ 2 ∧ 3 ∧ 4) (6)

The connectivity expression (6) is a Boolean function for which the Shannon’s
decomposition can be applied and the related BDD constructed.

3.2 (s-t)-Reliability by Graph Visiting Algorithms (VA)

The BDD representation of the (s-t) connectivity of a graph, can be directly
derived without passing from a preliminary search for the minpaths or mincuts.
In [7], an algorithm is proposed that generates the BDD directly, via a recursive
visit on the graph, without explicitly deriving the Boolean expression.

Given a graph G = (V, E) and two nodes (s,t), the algorithm starts from s
and visits the graph (according to a given but arbitrary visiting strategy) until
t is reached. The BDD construction starts recursively once the sink node t is
reached.
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Fig. 2. The final BDD of the network of Figure 1

Example 2 - The construction of the BDD by means of the described visiting
algorithm is illustrated step by step on the same symmetric directed network
of Figure 1. The graph is visited according to the progressive (but arbitrary)
number assigned to the nodes. Starting from the source node s = v1 the visit
proceeds along nodes v2, v3, v4, until the sink node t = v5 is reached. Once
the sink is reached, the construction starts with the BDD representing the last
visited arc 4. Then, the algorithm makes one step back to node v3 where it finds
a bifurcation and builds the BDD ((4 ∧ 3) ∨ 8). Going one step back with the
recursion, the algorithm revisits node v2 and builds the BDD (((4 ∧ 3) ∨ 8) ∧
2) ∨ (4 ∧ 7). Finally, in the last step, the algorithm visits the source node v1
and builds the BDD for the complete (s,t)-connectivity function.

S(s,t) = (((((4 ∧ 3) ∨ 8) ∧ 2) ∨ (4 ∧ 7)) ∧ 1) ∨ (((4 ∧ 3) ∨ 8) ∧ 6) (7)

It is easy to see that formula (7) contains replicated terms that are simplified
and folded automatically during the construction of the BDD reported in Fig. 2.

4 Scalable Benchmark

A scalable benchmark has been carried out to evaluate and to compare the effi-
ciency of the software tool against the increasing complexity of different network
topologies: namely Symmetric, Lattice, RG and SF networks. In all the exper-
iments, a failure probability equal to p = 0.9 is uniformly assigned to all the
arcs, only. The experiments have been run on a SUN machine with a dual AMD
Opteron 2.3 GHz processor, and with 4 GB of memory.

Regular networks - Symmetric networks (Figure 1) depend on two parame-
ters, the number of nodes N and the degree k. In all the experiments s and t
are two adjacent nodes. Table 1 reports the results for increasing values of N
and k.
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Table 1. Benchmark Results on symmetric networks

N k # arcs # minpath # BDD nodes # BDD nodes (s,t)
VA MPA reliability

10 2 20 55 33 274 0.97137

10 4 40 755 2156 755 0.99980

10 7 70 19900 355650 62764 1

20 2 40 6765 73 43041 0.96096

20 3 60 83929 594 n.a. 0.99793

30 2 60 832040 113 n.a. 0.95065

35 2 70 n.a. 133 n.a. 0.94554

The results obtained from the two algorithms differ only in the number of gen-
erated BDD nodes, since they use a different ordering for the variables. In Table 1,
the column (# BDD nodes VA) reports the number of BDD nodes generated in the
visit algorithm, while the (# BDD nodes MPA) reports the number of BDD nodes
generated in the minpath algorithm and the value of the reliability.

Random Graphs and Scale Free Networks - Tables 2 and 3 display the
results obtained on RG and SF networks, respectively. Networks are grown with
an increasing number of final nodes N , while keeping constant the number of
connections (k = 2), and, for RG networks only, the probability of attachment
(p = 1). The first generated node is assumed as the source s and the last gener-
ated node as the sink t.

The first three columns of each table report the final number of nodes, the
final number of edges and the clustering coefficient. Columns 4, 5, 6 report,
respectively, the number of minpaths, the number of the nodes of the BDD with
VA algorithm, the number of the nodes of the BDD with MPA algorithm and
the reliability value.

Table 2. Benchmark Results on Random Graphs

#nodes #arcs clustering # minpath # BDD nodes # BDD nodes (s,t)
coefficient VA MPA reliability

20 72 0.1632 2046 316360 10032 0.98885

30 112 0.1502 119033 n.a. 708801 0.98906

40 152 0.1379 6757683 n.a. n.a. n.a.

Table 3. Benchmark Results on Scale Free networks

#nodes #arcs clustering # minpath # BDD nodes # BDD nodes (s,t)
coefficient VA MPA reliability

20 74 0.5869 263 10409 266 0.98010

30 114 0.3927 4707 n.a. 239788 0.98001

40 154 0.3888 73680 n.a. n.a. n.a.
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All the results in Tables 2 and 3 have been obtained on incremental networks,
in the sense that the network with M > N nodes has been obtained by starting
from the network with N nodes and adding the remaining M − N nodes.

5 Conclusions

The paper has presented a tool for the reliability analysis of networks by means
of two independent algorithms via the construction of a BDD. The ability of the
algorithm to cope with different network topologies of increasing complexity has
been tested in a series of preliminary experiments. The limits of the technique
have been impinged and further experimentation is needed with more powerful
computing facilities.
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Abstract. Many alternatives are available for modeling reliability as-
pects, such as reliability block diagrams (RBD), fault trees (FT) or reli-
ability graphs (RG). Since they are easy to use and to understand, they
are widely spread. But, often, the stochastic independence assumption
significantly limits the applicability of such tools. In particular this con-
cerns complex systems such as computing systems. Also more enhanced
formalisms as dynamic FT (DFT) could result not adequate to model de-
pendent and dynamic aspects. To overcome this limitation we developed
a new formalism derived from RBD: the dynamic RBD (DRBD). In this
paper we compare the DFT and the DRBD approaches in the evaluation
of a multiprocessor distributed computing system. Particular attention
is given to the analysis phase, in order to highlight the capabilities of
DRBD.

1 Introduction

There are several approaches to represent and analyze system reliability. From
these particular mention is for the combinatorial models, i.e. high level spe-
cific reliability/availability modeling formalisms such as reliability block diagrams
(RBD) [1], fault trees (FT) [2] and reliability graphs (RG). Although RBD, RG
and FT provide a view of the system close to the modeler, they are defined on
the stochastic independence assumption among components. They do not provide
any elements or capabilities to model reliability interactions among components
or subsystems, or to represent system configuration changing, aspects conven-
tionally identified as dynamic. In particular these remarks concern computing
systems: load sharing phenomena could affect the network availability; standby
redundancy and maintenance policies could be considered in the management;
interference or inter-dependence among components could arise (wireless de-
vices, sensors, ...); common cause failures could group electric devices (power
jumps, sudden changes of temperature, ...). These argumentations awakened the
scientific community to the need of new formalisms as the dynamic fault trees
(DFT) [3]. DFT extend static FT to enable modeling of time dependent fail-
ures, introducing new dynamic gates. But, using DFT it is hard to compose
dependencies reflecting characteristics of complex and/or hierarchical systems,
to define customizable redundancy schema or policy, to represent load sharing
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and to adequately model reparability features. To overcome these lacks in relia-
bility modeling, in [4,5] we have defined a new reliability/availability modeling
notation named dynamic reliability block diagrams (DRBD), by extending the
RBD formalism. In this paper we in depth compare the two approaches, evaluat-
ing the reliability of a computing system taken as case study. More specifically,
in section 2 the DRBD notation is briefly introduced. The motivating example
and the corresponding DFT and DRBD models are described in section 3, then,
the analysis of the two models is reported in section 4. Lastly, section 5 provides
some final considerations.

2 DRBD Overview

DRBD extend the RBD formalism to the systems’ dynamics representation.Two
are the key points of DRBD: the unit dynamics and the dependency concept.
In a DRBD model each unit is characterized by a variable state identifying its
operational condition at a given time. The evolution of a unit’s state (unit’s
dynamics) is characterized by the events occurring to it, as depicted in Fig. 1.
The states a generic DRBD unit can assume are: active if the unit works with-
out any problem, failed if unit is not operational, following up its failure, and
standby if it is operable but not committable. The events represent transitions
between states: a failure models changes from active or standby to the failed
states, a wake-up switches from standby to active states, the sleep from active
to standby states, the reparation from failed to active state, the adep-switch
represents transitions between two active states and sdep-switch between two
standby states.

ACTIVE

FAILED

wake-up

failuresleep

STANDBY failure

β

sdep-switch

adep-switch

reparation

β

Fig. 1. DRBD unit’s states-events finite state automata

The main enhancement introduced by DBRD is the capability to model de-
pendencies among units concerning their reliability behaviours. A dependency
establishes a reliability relationship between two units, a driver and a target. In-
formally a dependency works as follow: when a specified event, named action or
trigger, occurs to the driver, the dependency condition is applied to the target.
This condition is associated to a specific target event, named reaction. When the
satisfied dependency condition becomes unsatisfied, the target unit comes back
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to the fully active state. The dependent state (standby or active) is character-
ized by the dependency rate, weighting, in terms of reliability, the dependence of
the target unit from the driver. This corresponds to the dormancy factor α of
DFT (β = 1 − α), but β could assume values greater than one. A dependency
is characterized by the action (trigger) and the reaction events. Four types of
trigger and reaction events can be identified: wake-up (W), reparation (R), sleep
(S) and failure (F). Combining action and reaction, 16 types of dependencies are
identified. The concept of dependence is exploited in DRBD as the basis to rep-
resent dynamic reliability behaviors. Details on the dynamics aspects modeling
capabilities of DRBD can be found in [4,5].

3 The Multiprocessor Distributed Computing System

The scheme reported in Fig. 2 describes the multiprocessor computing system
taken from literature [6,7] used for comparing the DFT and the DRBD ap-
proaches. It is composed by two computing module: CM1 and CM2. Each of
them contains one processor (P1 and P2 respectively), one memory (M1 and
M2) and two hard disks: a primary (D11 and D21) and a backup disk (D12 and
D22). Initially, the primary disk is used for storing data while the backup disk
is accessed only periodically for updating operations. If the primary disk fails,
it is replaced by the backup disk. The computing modules are connected by the
bus N ; moreover, P1 and P2 are energized by the power supply PS: the failure
of PS forces P1 and P2 to fail. M3 is a spare memory replacing M1 or M2 in
the case of failure. If M1 and M2 are operational, M3 is just kept alive, but
it is not accessed to load/store any data by the processors. When M1 or M2
fail, M3 substitutes the failed unit. In order to work properly the multiprocessor
computing system of Fig. 2 requires that at least one computing module (CM1
or CM2), the power supply PS and the bus N are operating correctly. A com-
puting module is operational if the processor (P1 and P2), one between the local
memory (M1 and M2) and the shared memory M3 and one disk (D11 or D21 for
CM1 and D12 or D22 for CM2) are not failed.

The DFT modeling the multiprocessor computing system is depicted in
Fig. 3(a) as it is in [6,7], while Fig. 3(b) reports the corresponding DRBD model.

P1 D11 D12
M1

P2 D21 D22
M2

NPS
M3

CM2

CM1

Fig. 2. Schematic representation of the Multiprocessor Distributed Computing System
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Fig. 3. Multiprocessor Distributed Computing System models

The DFT is composed by a FDEP and four WSP. The FDEP gate models the
dependency among the power supply PS and the two processors P1 and P2.
Since the power supply PS energizes the P1 and P2 processors, the failure of PS
does not imply the failure of P1 and P2 thus we represent this behaviour in the
DRBD by a series between each processor and PS. The backup disks D12 and
D22 are considered as spare units of the primary disks D11 and D21 respectively,
thus D11 and D21 drive WSP1 and WSP4 DFT gates in the control of D12
and D22 respectively. The disks management policy is represented in DRBD by
a wake-up/wake-up dependency: when the primary disks D11 and/or D21 are
operational, the backup disks D12 and/or D22 respectively are partial active,
maintaining the backup. The level of activity of the dependent components is
numerically translated into the DFT by dormancy factor α and into the DRBD
by the dependency rate β, related to α by β = 1 − α.

The partly-loaded standby redundancy policy applied to the M1, M2 and M3
memory units, is represented by the WSP2 and WSP3 DFT gates: if M1 or
M2 fail, M3 is activated. Wake-up/standby dependency are instead exploited to
model the redundancy policy managing the memories. Such dependency must be
applied to M3 if and only if both M1 and M2 are at the same time operational;
when one of these fails, M3 must switch to the fully active state. To realize
this condition two wake-up/standby dependencies, from M1 to M3 and from
M2 to M3 are series composed [5]: when both are simultaneously satisfied the
component M3 is placed in standby, otherwise M3 is active.

The other DFT gates are static: the internal events DISK1 and DISK2
represent the failure of the corresponding CM1 and CM2 storage blocks, while
MEM1 and MEM2 represent the computing modules’ memory block failure.
The failure of the processor (P1 and P2) or of the memory block (MEM1 and
MEM2) or of the disk block (DISK1 and DISK2) drives to the failure of the
corresponding computing module (CM1 and CM2 internal events). Finally, if
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both the computing modules fail, or the power supply PS goes down, or the bus
N fails, the overall system fault occurs, represented in the DFT as the top event
TE. It corresponds to the series among the two computing modules parallel, the
power supply PS and the bus N in the DRBD in Fig. 3(b).

4 The Analysis

The example described and modeled in section 3 has been studied in depth by
analyzing the overall system reliability cdf trend in time, knowing the compo-
nents’ reliability cdfs or the corresponding failure rates. All the components have
been modeled by a constant failure rate λ as reported in Table 1, characterizing
exponential reliability cdfs or memoryless systems.

Table 1. Parameters of the multiprocessor computing system

Component λ α β

N 2
P1, P2 500

PS 6000
D11, D21, D12, D22 80000 0.5 0.5

M1, M2 30
M3 30 0.5 0.5

CM1, CM2 0.9 0.1

M 1_A M 1_F

M 2_FM 2_A

M 3_FM 3_A

M 3_S

M EM 1_F

M EM 2_F

M 1_AF

M 2_AF

M 3_AF

M 3_AS

M 3_SF

M 3_SA1

M 3_SA2

FM EM 1

FM EM 2

(a) Memory Subsystem

D11_A
D11_F

D12_PA

D12_A
D12_F

DISK1_F

D11_AF D12_PAFD12_APA

D12_AF

D12_PAA

FDISK1

(b) Disk Subsystem

Fig. 4. GSPNs modeling the memory (a) and the disk (b) blocks

Initially the multiprocessor computing systems DRBD reported in Fig. 3(b)
is subdivided in three independent subsystems: the first, static, is composed by
the series among the power supply PS and the bus N , series connected with the
parallel between the two computing modules CM1 and CM2, that are the other
two subsystems. Since these latter are identical, it is possible to study only one
computing module subsystem and then apply the parallel structure equation to
obtain the reliability of the two computing modules’ parallel. A computing mod-
ule subsystem is further subdivided into the series of three blocks: the processor,
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Table 2. Unreliability results of the multiprocessor computing system analysis

Time DBNet DRPFTproc Galileo DRBD
1000 0.006009 0.006009 0.006009 0.006009
2000 0.012245 0.012245 0.012245 0.012245
3000 0.019182 0.019183 0.019183 0.019183
4000 0.027352 0.027355 0.027355 0.027354
5000 0.037238 0.037241 0.037241 0.037240

the memory and the disk. The memory and the disk blocks are dynamic parts.
To study these dynamic parts the generalized SPNs (GSPNs) reported in Fig. 4
are exploited. These are generated by applying the DRBD-GSPN mapping al-
gorithm specified in [5]. Thus, analyzing the two GSPNs through the WebSPN
tool [8] and putting all together by applying the RBD structure equations, the
results shown in the last column of Table 2 are obtained.

By the same way, the DFT model depicted in Fig. 3(a) corresponding to the
motivating example discussed, has been analyzed in [7] by exploiting three differ-
ent tool: DBNet [7], DRPFTproc [9] and Galileo [3]. The first analyzes the DFT
by translating it into a dynamic Bayesian network (DBN) and therefore by solv-
ing the DBN. DRPFTproc is based on modularization and conversion to stochastic
well-formed nets (SWN) of the dynamic gates, tracing back the problem to a SWN
solution. Galileo approaches the problem by firstly modularizing it, then solving
the obtained modules by exploiting binary decision diagrams and CTMCs.

Also the results obtained by such analysis are summarized in Table 2, where
they are compared to the DRBD approach. Table 2 reports some system unre-
liability probabilities calculated in specific time instants. The time is expressed
in hours. These results demonstrate and validate the effectiveness of the DRBD
approach, providing consistent values for all the tests.

5 Conclusions

In this paper, the effectiveness of the DRBD methodology in the evaluation of
system dynamic reliability is demonstrated. An in depth comparison among the
DRBD and the DFT methodologies is investigated in the paper by exploiting a
case study reporting the modeling and the analysis of a multiprocessor comput-
ing system, for which evaluate the overall system reliability. The results obtained
allow to identify DRBD as a valid alternative in dynamic reliability/availability
evaluation scenario.
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Abstract. The development standard for railway control software requires sev-
eral design and verification methods. To support these methods we elaborated a 
coherent set of tools based on UML state diagrams. To avoid the problems of 
the ambiguous UML semantics, we propose a subset of UML state machines 
that includes the practical modeling concepts and has well-defined operational 
semantics elaborated definitely for software engineers. Based on this formalism 
we developed a tool chain supporting (i) the simulation of the behavior speci-
fied by the state diagram, (ii) static checking the completeness and consistency 
of the specification, (iii) generation of the C source of the application control 
flow, (iv) automatic construction of test cases on the basis of structural test cov-
erage criteria and (v) automatic construction of the source code of run-time 
verification procedures that aim at checking high-level safety properties. 

Keywords: UML state diagrams, static checking, assertions, test generation. 

1   Introduction 

The software development standard EN 50128 for computerized railway control sys-
tems prescribes several methods and techniques that are mandatory or highly recom-
mended at a given safety integrity level. Among others, we can mention static analysis, 
failure assertion programming and structural testing. Some of these methods can be 
supported by automatic tools. However, tool application in the design and verification 
phases needs a clear understanding of the formalisms and models that form the input of 
the tools and allow the interpretation of the results produced by these tools. 

In the framework of a project supported by the Hungarian National Office of Re-
search and Technology1 we have elaborated a coherent set of tools and techniques 
based on UML statecharts models. UML statecharts as a modeling language could be 
effectively used in the design of event-triggered state-based control systems, however, 
its use in safety critical applications was hindered by its ambiguous standard seman-
tics (often reported in the literature) and usability problems appeared in connection 
with the formal semantics developed so far. Accordingly, we have elaborated a subset 
of UML 2.0 state machines called Precise Statecharts. It includes all practically 
meaningful modeling concepts and has a fully defined operational semantics that was 
                                                           
1 Project nr. GVOP - 3.1.1 - 2004 - 05 - 0523/3.0. 
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elaborated definitely for software engineers (instead of computer scientists). This 
formalization step allowed the development of the following support tools: (i) simula-
tion of the control flow specified by precise statecharts, (ii) static checking the  
completeness and consistency of statechart specifications, (iii) generation of the C 
language representation of the control flow of the application, (iv) automated con-
struction of test cases on the basis of structural test coverage criteria and (v) auto-
matic construction of the source code of run-time verification procedures that aim at 
checking high-level safety properties. The application of these tools (as they are not 
certified) is intended to increase the confidence of the designers in the correctness of 
the design. This is assured by automating those systematic and tedious (typically 
error-prone) construction and verification procedures that were executed manually. 
The following parts of this short paper present the general concepts of formalization 
and tool development. 

2   A Formal Operational Semantics for UML Statecharts 

Automated checking and implementation of systems specified by statecharts needs to 
assign unambiguous meaning to statecharts. As the UML standard does not define an 
unambiguous operational semantics, multiple approaches have been published in the 
literature. Common drawbacks of these formalisms are that (i) they focus on quite 
restricted subsets of statechart artifacts, (ii) they were developed for old versions of 
UML and (iii) their model-checking point of view results in their extensive use of 
mathematical formalisms that are hard to understand for software engineers. We de-
cided to define a formal semantics that is both mathematically well established and 
easily applicable in the engineering practice. The key steps of the approach are as 
follows: (i) first we establish the syntactic foundations by introducing the concept of 
precise statecharts and defining their metamodel; then (ii) we outline a formalism for 
explicit representation of compound transition and activity structures, finally (iii) we 
outline the definition of semantics for statecharts by a Kripke transition system and 
the translation of this formalism to easy to understand imperative algorithms. 

The syntactic basis of our approach is the UML statechart metamodel. In order to 
rule the complexity, we considered junction and choice pseudostates, history vertices 
and facilities for embedding state machines as advanced constructs (shorthand nota-
tions that make the visual modeling more comfortable) and defined a set of formal 
transformation rules for their substitution with basic concepts [1]. From this point on, 
we will focus on those statecharts that contain basic constructs only (or are mapped to 
this form) and we will call these statecharts as precise statecharts (PSC). 

From the point of view of software engineers, the main deficiencies of precise se-
mantics definition are related to the transition structures (fork, join), and the ordering 
of activities when a compound transition is fired. We introduced the following  
concepts: 

- Transition conglomerates: There are many cases when some transitions of a 
statechart can not be considered in isolation, e.g., input and output transitions of a 
fork pseudostate. In order to facilitate consistent and uniform discussion of these 
compound transition structures we introduced the concept of transition conglom-
erates  grouped into six classes (Fig. 1). 
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Fig. 1. Transition Conglomerate Classes 

- LCA and priority: In the context of transition conglomerates we were able to 
provide a precise and intuitive formalization of the concepts of least common an-
cestor region (LCA), priority and conflict relations. 

- Compound activity structures: When firing a transition conglomerate several 
activities are to be performed in a single step. The UML standard does not intro-
duce a concept for handling compound activity structures either; however the  
unambiguous representation of strict subsequence relations and possibilities for 
parallel execution would be highly beneficial for exploiting the parallel process-
ing capabilities of modern computing platforms.  In order to overcome this 
weakness of the standard we introduced a formalism representing compound ac-
tivity structures based on PERT graphs. 

We introduced these concepts into the metamodel of precise statecharts and speci-
fied the formal operational semantics of UML 2.0 statecharts by a Kripke transition 
system (KTS).  A KTS is defined by a three-tuple of states, state labeling function and 
the labeled state transition relation.  In our case the states (statuses of the statechart) 
represent (i) the actual configuration of the statechart, (ii) the actual evaluation  
of variables and (iii) the actual phase of operation (e.g., run-to-completion step,  
terminated, etc.), thus the state labels represent three-tuples of this information. A 
transition of the KTS corresponds to a step between two statuses of the statechart 
representing (i) the event that triggered this step, (ii) the transition conglomerates that 
were fired in the step and (iii) the compound activity structure performed in the step. 

We translated this declarative definition to easy to understand imperative algo-
rithms implemented in the Microsoft AsmL executable specification language [1].  
This way our approach is (i) mathematically well established (due to the rigorous 
formal semantics) and (ii) easily applicable in the engineering practice (due to the 
translation to imperative algorithms). 

3   The Tool Chain 

The AsmL imperative algorithms belonging to the formal semantics formed the basis 
of a statechart simulator tool. The modeler can construct an event sequence and the 
simulator calculates the transition conglomerates to be fired and the PERT graphs 
corresponding to the activity structures. 

Besides this simulator, our tool set contains four other tools that are presented in 
the following subsections. 

3.1   Static Checking of the Statechart Models 

The compact representation of UML statecharts (including hierarchy, parallelism and 
nontrivial model elements) is a typical source of insufficiencies. Here we mention 
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only the following three criteria [2]: (i) completeness – in order to prevent the state 
machine from dropping an event, in all possible statuses of KTS, for all possible 
events, there must be a step transition defined which is triggered by the event; (ii) 
determinism – in each status, each event should trigger only a single step transition; 
and (iii) reachability – all states are reachable from the initial configuration. 

These criteria can be formalized on the basis of the formal semantics, since it “un-
folds” hierarchy, parallelism and the nontrivial model elements. Checking these crite-
ria directly on the KTS requires the explicit generation of the KTS (i.e., the state 
space), which may lead to state space explosion in case of complex models. Accord-
ingly, we adopted the approach of static checking: the criteria are adapted to syntactic 
terms (constructions of model elements) of precise statecharts to be able to check 
them directly on the model. We identified the hazardous scenarios belonging to the 
violation of the above criteria and on the basis of “reverse” semantic rules we defined 
static patterns that lead to these scenarios. The consistency and completeness checker 
tool applies a pattern matching algorithm to identify the concerned model elements. 

3.2   Automatic Implementation of UML Statecharts 

The implementation of a complex formalism like a statechart is definitely a nontrivial 
issue. The usual approaches (e.g., nested switch statements) are unable to handle such 
constructs as state refinement or parallel execution.  Even the popular QHsm tech-
nique [3] is restricted to non-concurrent statecharts.  The basis of our code generation 
is our metamodel of precise statecharts and our algorithms defining the operational 
semantics. We mapped the abstract concepts to the specialties of resource-constrained 
embedded systems: we substituted the complex AsmL algorithms (that calculate a 
possibly parallel execution order of various activities) with simple algorithms that 
calculate a single valid sequence of activities; substituted the recursive or mutually 
recursive function structures with iterative algorithms; introduced compact represen-
tation of configurations and similar data. We proved the semantic equivalence of 
these representations by comparing the corresponding algorithms line-by-line. In the 
final step, our tool implements the platform specific model in the ANSI-C language. 

3.3   Automatic Test Generation for Statechart Implementations 

To assess the quality of the test suites standards usually prescribe to meet certain 
coverage criteria, e.g., all statements and decisions must be at least once taken. Our 
test generator tool supports the model-based construction of a test suite satisfying 
model based coverage criteria (i.e., all states and transitions coverage) [5]. 

The components of our tool are depicted on Fig. 2. From the statechart model and a 
selected coverage criterion abstract test cases are generated that use the events de-
scribed in the model. These abstract test cases are transformed to the format of the 
selected test execution engine. These concrete tests are then executed, and finally 
their code-based coverage is measured. 

Our tool utilizes an external model checker to calculate the test cases: (i) the state-
chart is transformed into the input format of a model checker, (ii) each test require-
ment defined by the coverage criterion is formulated as a temporal logic expression, 
(iii) for each expression the negation of the formula is verified by the model checker.  
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Fig. 2. Components of the Testing Environment 

If there is an execution path in the model that does not satisfy the negated formula 
then it is presented by the model checker as a counter-example. This path becomes a 
test sequence belonging to the original test requirement. The input and output events 
are extracted from this path and saved as an abstract test case. The test transformation 
uses test skeletons that describe the test execution engine’s format (currently JUnit or 
Rational Robot) and templates (e.g., event dispatching and action verifying code). 

3.4   Runtime Error Detection in Statechart Implementations 

In case of safety critical systems random faults are typically addressed in run-time by 
various fault confinement or fault tolerance mechanisms based on efficient error 
detection. We present two runtime error detection techniques that aim at the detection 
of not only random operational faults but also statechart model refinement faults and 
implementation faults. 

Model refinement faults are addressed by defining a temporal logic language for 
the specification of key dependability requirements in the context of early draft mod-
els and automatically checking that these temporal correctness criteria hold for the 
execution of the implementation. On the basis of the formal semantics we defined 
PSC-PLTL, the propositional linear temporal logic for precise statecharts. It includes 
(i) Boolean operators, (ii) temporal operators (the next-time X and until U, together 
with shorthand notations like the temporal future F and globally G) and (iii) atomic 
predicates of the language. The actual connection of PSC-PLTL and statecharts ap-
pear in the semantics of atomic predicates: they refer to the actual state configuration, 
the transition conglomerates fired, and the activities performed (this information re-
sides in the state and transition labels of the KTS). For the runtime evaluation of PSC-
PLTL formulae we elaborated an efficient method [6]. The source code of the runtime 
evaluation is generated automatically. 

Implementation faults may originate from the misunderstanding of the model, 
usual programming bugs, or from the undesired interference of generated and manu-
ally inserted code. In our approach these faults are detected by a monitor that observes 
the runtime behavior of the implementation and compares it to the statechart model of 
the application. This approach was inspired by the idea of traditional watchdog proc-
essors [7] that observe the execution of a program and detect if it deviates from the 
reference control flow specified by the control flow graph of the program. Although 
traditional watchdog solutions were successfully applied for detecting low-level er-
rors, unfortunately none of them were capable of supporting such high-level reference 
structures as state refinement and concurrent execution featured by UML statecharts. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Development of Model Based Tools to Support the Design 435 

In our approach we instrument the application in such a way that when taking a transi-
tion, it sends the labels of the source state, labels of the transition and labels of the 
target state to the watchdog monitor. These labels and the possible valid sequences of 
them are defined by the KTS, and the monitor is an automaton accepting the language 
formed by these valid sequences. This idea was implemented in a tool that generates 
the source code of the monitor automatically on the basis of the PSC model. 

4   Conclusions 

In our paper we presented a coherent set of tools that support the UML statechart 
based design of event-driven applications that are typical in railway control systems. 

The pilot application of our tools was a railway supervisory and control system [8]. 
Our experiments have shown that (i) for complex models, applications built according 
to our code generation approach delivered better performance with lower memory 
consumption than the common QHsm pattern, (ii) test suites for real-life models 
(2·108 states) can be generated, (iii) the PSC-PLTL checker is able to detect errors 
caused by model refinement faults, and (iv) the watchdog monitor detects most of the 
errors caused by implementation faults and a considerable number of errors caused by 
physical faults (as demonstrated by a software based fault injection campaign). The 
utilization of the tools and techniques is envisaged in the SAFEDMI (Safe Driver 
Machine Interface for ERTMS Automatic Train Control) European project. 
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Abstract. Reliable communication among avionic applications is a crucial pre-
requisite for today’s all-electronic fly-by-wire aircraft technology. The AFDX
switched Ethernet has been developed as a scalable, cost-effective network, based
upon IEEE 802.3 Ethernet. It uses redundant links to increase the availability.
Typical consensus strategies for the redundancy management task are not fea-
sible, as they introduce too heavy delays. In this paper, we formally investigate
AFDX redundancy management algorithms, making use of Lamport’s Tempo-
ral Logic of Actions (TLA). Furthermore, we present our experiences made with
TLA+ and the TLA+ model checker TLC.

Keywords: Redundancy Management, AFDX, TLA, Model Checking, Case
Study.

1 Introduction

Reliable communication between avionic subsystems is essential, especially as in 1988
with the Airbus A320 the all-electronic fly-by-wire technology attained commercial air-
line service. There are established avionic data communication protocols such as AR-
INC 429 [2] and MIL-STD-1553 [16]. Recently, the desire for increased performance
and more cost-effective solutions has prompted the industry to also explore off-the-
shelf alternatives such as IEEE 802.3 Ethernet [14]. The Ethernet specification, how-
ever, does not guarantee a maximum latency, as the package collisions are resolved
through a back off strategy that may lead to a possibly unbounded latency. That is why
the next-generation avionics data bus shall on the one hand allow usage of as much
cost-efficient, IEEE 802.3 compliant hardware as possible and on the other hand shall
guarantee a certain bandwidth and Quality of Service, which includes specifying max-
imal transmission latency. These requirements have lead to the Avionics Full Duplex
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�� R. von Hanxleden performed part of this work while EADS Airbus, Hamburg/Toulouse.

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 436–450, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Formal Specification and Analysis of AFDX RM Algorithms 437

Switched Ethernet (AFDX), based upon IEEE 802.3 Ethernet technology, which is used
today in the Airbus A-380.

AFDX transmits network frames over redundant networks (see Figure 1) and these
redundant streams of frames get filtered at the receiving end system (Figure 2). As it
turns out, the apparently simple problem of merging redundant streams of frames into
a single non-redundant stream is not trivial and enforces some trade-offs in terms of
availability, performance and resource requirements. A fairly thorough, but still infor-
mal investigation of this redundancy management (RM) problem has been performed
in 2001 by von Hanxleden and Gambardella (documented in an internal, unpublished
report [6]). This investigation appeared fairly thorough, but the apparent complexity
of the problem1 has prompted an interest in another, more formal investigation, using
Lamport’s Temporal Logic of Actions (TLA) [9] and the corresponding model checker
TLC [17] (documented in a diploma thesis [15]).

This paper summarizes the findings of the first report and the subsequent formaliza-
tion. The main contributions are, on the one hand, a formal definition and investigation
of the redundancy management problem for frame-oriented communication protocols,
such as AFDX, and, on the other hand, a fairly involved case study on the use of TLA
and TLC for a safety-critical real-world problem.

The rest of this paper is organized as follows. The remainder of the introduction cov-
ers the basics of AFDX and TLA+ and surveys related work. Section 2 presents the
basics of frame ordering. Sections 3 and 4 describe an environment for the RM algo-
rithms and the checked properties. Section 5 presents three alternative RM algorithms.
Sections 6 and 7 summarize our experiences made with TLA+, TLC, and the formal
investigation of the RM algorithms.

1.1 AFDX

AFDX addresses the shortcomings of Ethernet using concepts of Asynchronous Trans-
fer Mode (ATM) [5]. AFDX is a profiled network, meaning that configuration tables
are loaded into switches at start-up. It is organized in a star topology with a maximum
of 24 End Systems (ES) per switch. Larger systems can be realized through cascading.

Standard Ethernet suffers the possibility of an infinite chain of frame collisions and
hence an unpredictable delay of messages. Therefore every ES is connected to a switch
with two twisted pair cables, one pair for sending and the other for receiving frames,
which makes AFDX full duplex. Each switch has the capability to buffer multiple pack-
ages for each ES in each communication direction. Consequently buffer-overflows and
message delays due to congestion at the switch may cause erroneous behaviors. AFDX
emulates a deterministic point-to-point network through the use of Virtual Links (VLS).
Each VL builds a unidirectional path from one ES to one or maybe more other ESs. A
certain predefined bandwidth is allocated for each VL, ensuring that the sum of alloca-
tions does not exceed the maximum available bandwidth of the whole network. AFDX
can be run with either 10 Mbps or 100 Mbps. A minimal bandwidth and a maximum
latency for end-to-end transmission is guaranteed.

1 The original report contained 75 pages of rather terse technical writing, including 37 corollar-
ies and 86 figures, most of which concerned with different communication scenarios. As far as
such figures are meaningful, this does suggest a certain complexity of the problem.
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Fig. 1. Concept of redundant networks [6]
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Fig. 2. Receiving End System [6]

In order to improve the reliability AFDX provides a redundant network scheme.
Each frame is transmitted in parallel over two redundant networks and afterwards fil-
tered by RM at the receiving ES (Figure 1). This shall reduce the probability of loos-
ing frames and enable further operation even in presence of one faulty network. This
redundancy has to be managed somehow, which leads to the task of redundancy man-
agement (RM). We consider RM to be part of the receiving ES. The task of RM can be
formulated quite simply: forward all received frames to the application, but eliminate
redundant copies. Hence redundancy shall be transparent to the application.

Each frame has first to pass integrity checking (see Figure 2). A basic form of integrity
checking could just check if a frame is well-formed (e. g., whether it contains a correct
CRC field). A more involved integrity check could validate whether the received frame
was expected to be delivered next. Integrity checking, however, is not considered in this
paper. It is assumed that integrity checking filters frames in a way that all frames reaching
the RM are well-formed. No further assumptions about integrity checking are made.

1.2 Related Work

The technical problem addressed here, namely how to merge redundant streams of com-
municated frames (packets) into a single logical stream, should occur rather frequently
in safety-critical applications. However, we have found that there is comparatively little
published systematic work on this. A general approach to simplify modular specifica-
tions of dependable distributed systems is given by Sinha and Suri [12]. They propose
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to define building blocks to specify and verify larger protocols. These blocks can be
consensus, broadcast, redundancy management and many more. However, they do not
go into further detail on how to specify these building blocks, as has been investigated
in this paper for the redundancy management task.

Tanenbaum [14] gives a basic introduction about computer networks in general.
Advanced topics on ATM and switched Ethernet are considered in Goralski [5] and
Breyer [3].

Temporal logic was introduced by Pnueli [11] to describe system behaviors, a com-
plete overview is given by Manna and Pnueli [10]. Most specifications consist of or-
dinary mathematics, however, temporal logic is important for describing system prop-
erties. The system properties define what a system is supposed to do and the specified
automaton describes its real behavior. If the specified behavior implies the conjunction
of the properties, the system behaves correctly with regard to the defined properties. In
principle, a system’s behavior could be defined with a single formula using this formal-
ism. In Pnueli’s logic, however, it can be hard to define certain properties of systems.
TLA [8] is a variant of Pnueli’s originally proposed logic. TLA was developed to permit
the simplest, most direct formalization of assertional correctness proofs of concurrent
systems. TLA+ [9] is a specification language for concurrent and reactive systems that
combines the temporal logic TLA with full first-order logic and Zermelo-Fränkel set
theory. A very short introduction to the TLA+ syntax is given in Lamport [7]. One main
reason why we selected TLA+ for formulating the redundancy management problem
and associated algorithms was the ability to decompose specifications into modules
and to specify reusable functions. Sommerfeld provides a case study on TLA+ [13].
TLDA [1] extends TLA to compositionally specify distributed actions. TLC [17] is a
model checker for debugging a TLA+ specification by checking invariance and liveness
properties of a finite-state model of the specification.

2 Ordering Frames

The redundancy management task requires to eliminate redundant as well as outdated
frames. Consider two frames with equal content. What is needed to decide whether one
frame is the redundant copy of the other? First we need to know from which network a
frame was delivered. Two frames delivered by the same network cannot be redundant
copies of each other. Furthermore an order of frames received from a network must be
established. A common approach to identify and order frames is to include a sequence
number (SN) in each frame. However, a problem here is that SNs are not really unique:
since the number of frames sent is not a priori bounded and there are only limited
resources for sequence numbers (in our case an 8-bit field), SNs eventually must wrap
around. The following considerations address the problem of frame ordering with finite
sequence numbers.

The number of sequence numbers is SN CNT =def 28. Thus the maximum sequence
number is SN MAX =def SN CNT − 1. The mid-point sequence number is denoted
as SN HALF =def SN CNT/2. Consecutive frames have a sequence SN (fi+1) =def

(SN (fi)+1) mod SN CNT , where SN maps frames to sequence numbers, fi denotes
frame i , and i is some conceptual frame index denoting sending sequence.
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In a first step towards comparison operators for the above defined sequence numbers
we define subtraction on sequence numbers as follows:

Definition 1. (Sequence Number Subtraction) The subtraction operator −SN is:

s1 −SN s2 =def ((s1 − s2 + SN HALF ) mod SN CNT ) − SN HALF .

It can be seen that for sequence numbers within a range of SN HALF and without a
wrap around the subtraction of sequence numbers (“−SN ”) is equal to common sub-
traction on natural numbers modulo SN CNT and can be used to establish an order on
the frames. To order sequence numbers correctly even in the presence of wrap arounds,
with the known restrictions on the range of the sequence numbers, the SN HALF gets
involved into the definition. Definition 1 can be used to define the following comparison
operators.

Definition 2. (Comparison Operators)

s1 <SN s2 ⇔def (s1 −SN s2) < 0,

s1 =SN s2 ⇔def (s1 −SN s2) = 0,

s1 >SN s2 ⇔def (s1 −SN s2) > 0.

To prove the correctness of the operators is beyond the scope of this paper, but the
corollary below should enable a straight forward proof. The unwrapped sequence num-
ber USN (f ) is needed to reason about sequence number operations. This number is
a theoretical number for each frame f , which does not wrap around and thus is un-
bounded. In the following, reset refers to setting the sequence number count to zero;
this occurs when an ES gets rebooted.

Corollary 1. Let frames f1 and f2 be generated without intermediate sequence num-
ber reset, and let s1 and s2 be their respective sequence numbers. If |USN (f1) −
USN (f2)| < SN HALF , then it is s1 −SN s2 = USN (f1) − USN (f2)

Hence a correct ordering of frames using sequence numbers can be established if the
unwrapped sequence numbers differ at most by SN HALF .

3 The Environment

In the following we describe and formally specify an appropriate environment to
each of the tested redundancy management algorithms. Such an environment should feed
the RM with a well-formed stream of frames and provide information to reason about
the correctness of the redundancy management’s decisions. The first step is to define the
set of actions that the environment can perform. An appropriate environment can either
send a frame, loose a frame, deliver a frame to the RM, reset the sequence number count,
disable one network due to failures or it just can do nothing for a certain time.

The interaction specification of these allowed actions, hence the specified behavior
of the environment without the RM part, is defined as in the TLA+ fragment shown in
Figure 3. (Note: for space considerations, we here refrain from a detailed explanation
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Step of the environment

EnvNext
Δ= ∃ id ∈ networks : sendFrame ∨ die(id) ∨ reset

Step of the redundancy management system

SysNext
Δ= ∃ 〈id , pos〉 ∈ deliverable :

∨ extAcceptFrame(id , env .frames[id ][pos][SN ], pos)
∨ extRejectFrame(id , env .frames[id ][pos][SN ], pos)
∨ extWait

Step of whole model

Next
Δ= SysNext ∨ EnvNext

Fig. 3. Step definition of environment without RM

of the TLA+ syntax, and would like to refer the reader instead to Lamport’s excel-
lent 7-page summary of TLA+ [7], which is also available on-line.) The definition of
EnvNext expresses that a step of the environment is either a send step, a step where a
single network dies (gets disabled), or a step that resets the sequence numbers. A frame
is represented as a pair of the transmitting network id and the position in the network
queue. SysNext, the system’s next step, states that a frame from the set of deliverable
frames may be either accepted or rejected, or that the environment can just do nothing.
All frames ahead of the currently delivered frame on the same network are considered
lost. So the loss of frames is implicitly defined, which reduces the state space signifi-
cantly (and hence speeds up model checking). Finally, the definition of Next states that
a step of the full model is either a step of the environment or a step of the system, which
can be directly mapped to a step of the redundancy management.

Providing an Oracle
A crucial point of the environments specification is to enable reasoning about the cor-
rectness of the redundancy management algorithms, as the ones presented in Section 5.
To recognize faulty behaviors, a system must be introduced that, independently of the
actual program state, marks pending frames correctly, corresponding to their status as
either normal, redundant or old. A frame is considered to be normal iff no frame sent
later to any network has yet been received by the RM and its twin frame (i. e., its re-
dundant copy) has not yet been received. A frame is considered to be redundant iff its
twin frame has already been delivered to the RM. The remaining frames—which are
not redundant and where a later sent frame has already been delivered to the RM—are
considered old.

The environment sends its frames to both networks in parallel and only if both net-
works still have capacity to buffer another frame. Thus for a given frame f from network
N1 it is

1. decidable whether f ’s twin frame is still transient on N2, and
2. possible to find the position of f ’s twin frame in the sequence where it is located.

Figure 4 shows how an algorithm to mark all frames correctly with a minimum effort
is realized in TLA+. Figure 5 shows an example behavior. The first two frames of each
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tag [seq1 ∈ Seq([sn : (0 . . SN MAX ), tag : {“n”, “r”, “o”}]),
seq2 ∈ Seq([sn : (0 . . SN MAX ), tag : {“n”, “r”, “o”}]),
val ∈ (0 . . SN CNT ), id ∈ networks] Δ=

if Len(seq1) > Len(seq2) then

if Head(seq1)[TAG ] = “r” then 〈Head(seq1)〉 ◦ tag [Tail(seq1), seq2, val , id ]
else 〈[sn �→ Head(seq1)[SN ], tag �→ “o”]〉 ◦ tag [Tail(seq1), seq2, val , id ]

else 〈[sn �→ Head(seq1)[SN ], tag �→ “r”]〉 ◦ Tail(seq1)

Fig. 4. Marking algorithm in TLA+

Fig. 5. The Marking Algorithm, with example behavior (left) and result (right)

network are considered to be deliverable to the receiving end system. When the second
frame of N2 gets delivered, the marking algorithm takes N1 and N2 without the first
frame as input. As long as N1 has more elements than the modified sequence N2, the
first element of N1 is marked as old, if not already marked as redundant, and calls the
function recursively with the tail of sequence N1. If both sequences have equal length,
the algorithm marks the first frame in N1 as redundant and terminates, as can be seen in
Figure 5. A full discussion of this algorithm and a correctness proof, based on Floyd’s
inductive assertion method for transition diagrams [4], can be found in [15].

4 The Properties

Traditionally an algorithm is examined to satisfy safety and liveness properties, stating
that it behaves correctly and does not block. This is not appropriate in our situation
as, before our formal investigation, we did not expect any of the redundancy manage-
ment algorithms to be completely safe, which means neither forwarding redundant nor
outdated frames to the application layer. The proposed algorithms in von Hanxleden [6]
were not designed to satisfiy these safety requirements at all circumstances. That is why
we refined the original properties relative to the behavior of the environment, e.g. one
property allows the behavior to reset the sequence numbers, while a relaxed property
would prevent such resets. This should help to distinguish the different algorithms and
to decide about their quality. Besides safety and liveness a third class of requirements
addresses properties regarding the quality of an algorithm. This includes the proper-
ties concerning the per frame loss as well as special scenarios with only one connected
network. A fourth class of requirements, availability, addresses the behavior of the al-
gorithms in case of network failures. As for the safety requirements, several refinement
steps were defined to distinguish the analyzed algorithms. To give a complete descrip-
tion of all properties is beyond the scope of this paper, and we will restrict ourselves to
give representatives of each of the four classes of properties. However, the numbering
of the properties corresponds to the original thesis [15].
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4.1 Safety

What does safety mean for RM? First of all, the RM shall not submit any redundant
frames to the application layer. Secondly the RM shall preserve the order of frames and
hence shall not submit old frames to the application layer. Each of these tasks can be
weakened accordingly to the benignity of the environment.

Redundancy 2: If the environment does not reset anymore, the RM stabilizes and
works properly from that time on.

Redundancy2 Δ= ��¬[reset ]v
⇒ ��(∀ 〈id , pos〉 ∈ deliverable :
enabled 〈extAcceptFrame(id , env .frames[id ][pos][SN ], pos)〉

v

⇒ env .frames[id ][pos][TAG ] �= “r”)

The premise of the TLA+-formula expresses that from some state σi on, all consecu-
tive states σn → σm are neither a reset nor a stuttering step. If this holds the redun-
dancy management algorithm shall, after a finite time, only accept frames which are not
marked as redundant.

Order 1: No old frame shall ever be submitted to the application layer.

Ordering1 Δ= ∀ frame ∈ out : frame[TAG ] �= “o”

Obviously this is a very rigorous claim, which we expect to be failed by most of the
proposed algorithms. Nevertheless this claim can be relaxed in the same way we relaxed
the claim to never accept redundant frames to what is defined above in Redundancy 2.

4.2 Liveness

Of course the redundancy management algorithms shall not deadlock as long as it re-
ceives frames from its environment. More specifically:

Liveness: Each frame that is delivered to the RM will be either accepted or re-
jected.

Liveness
Δ= ∀ 〈id , pos〉 ∈ deliverable :

∨ enabled 〈extAcceptFrame(id , env .frames[id ][pos][SN ], pos)〉
v

∨ enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉
v

It is expected that all algorithms will satisfy this property as they are all of type: IF

condition = TRUE THEN accept ELSE reject, which implies that there exists a unique
decision for each frame. That is why we do not mind that our formula is stronger than
needed as this formula reasons about all frames and not only the set of received frames.
It is enough to know that the Liveness formula implies absence of deadlocks.

4.3 Quality

One of the original requirements [6] states that the redundancy management shall main-
tain the availability of a single network. In other words, it shall not increase the number
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of frames lost that would be obtained with one of two networks normally running and
alone. This is a difficult, but important demand. Assume a fast but unreliable, hence
lossy network A and a slower, completely reliable network B. It follows that an algo-
rithm would need to use buffering to solve this problem. Buffering is considered harm-
ful since it produces possibly large delays. So a gradation was introduced to obtain a
more realistic estimation for the performance of the algorithms.

Quality 0: If only one network is connected to the RM, all received frames are
forwarded.

Quality0 Δ= �(∀ id1, id2 ∈ networks : isAlive[id1] ∧ ¬isAlive[id2])
⇒ �(∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉
v
)

Hence, if the RM receives only frames from one network, the whole ES shall behave as
with only one network running alone.

Quality 1: If both networks are alive and at least one member of a Twin Frame
reaches the RM, one member gets submitted.

Quality1 Δ= ∀ id ∈ networks, pos ∈ (1 . . MCFL) :
∧ isAlive[id ]
∧ isAlive[TNid [id ]]
∧ 〈id , pos〉 ∈ deliverable

∧ enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉
v

⇒ ∃ frame ∈ out : frame[SN ] = env .frames[id ][pos][SN ]

Quality 1 is equivalent to the original requirement, but it is easier to formalize that if
a frame gets rejected, its twin frame has already successfully passed the redundancy
management algorithm.

4.4 Availability

The goal of redundancy is to raise the availability of a system by duplicating parts
of a system. In our case communication is done over multiple networks, since one
single network is not reliable enough. The Quality requirements are concerned with the
availability of the system in case of both networks operating. Now the case is considered
that one network dies. This is the most important part of the properties. Redundancy is
used to remain operating in presence of partial failures. These properties tell us how
good an algorithm serves this task and finally enables a final decision whether this
algorithm is a feasible choice.

Avail 1: If one network fails, all consecutive frames of the other, remaining network
are accepted.

Avail1 Δ= ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])
⇒ (∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉
v
)

An algorithm that satisfies this property would be a preferred choice (unless it fails
all other requirements). Although this formula looks similar to Quality 0 they describe
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different behaviors of the environment. While Quality 0 specifies that from the be-
ginning only one network is operating, Avail 1 specifies that one network fails during
execution. Obviously an algorithm that handles absence of one network correctly at any
time, it especially handles the situation where only one network operates from the be-
ginning correctly. Hence Avail 1 ⇒ Quality 0 holds. To satisfy this formula, it would
help if the RM could detect whether a network is down; this task, however, was explic-
itly moved to the Network Management.

Avail 2: If one network fails and no reset occurs from that time on, all consecutive
frames of the remaining network are accepted.

Avail2 Δ= �( ∧ �(status �= “reject”)
∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])
⇒ (∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames[id ][pos][SN ], pos)〉
v
))

5 Three Redundancy Management Algorithms

Of the thirteen RM algorithms considered in the original report [6], we now present
a selection of three algorithms. As with the environment, the first step to model the
algorithms behaviors is to define appropriate actions. This specification of actions is
trivial, because all the RM can do is to receive a frame and decide whether it should
submit or discard it.

5.1 RMA1

Recall that the Sequence Number (SN) of frame f is SN (f ) ∈ {0 . . .SN MAX }. The
Received Sequence Number of frame f is denoted as RSN (f ) and it may be SN (f ) �=
RSN (f ). However we assume those frames with SN (f ) �= RSN (f ) are not well-
formed and thus discarded by the integrity checking. The Previous Twin Network Frame
PTN (f ) for a frame f received on network N1 denotes the last frame received on the
other network N2.

Definition 3. (Sequence Number Skew) The Sequence Number Skew (SNS) of frame f
is

SNS (f ) =def RSN (f ) −SN RSN (PTN (f )).

This leads to the first RM algorithm considered here: RMA1 specifies to “accept a
frame if and only if its sequence number skew is positive”. The corresponding TLA+

specification is given in Figure 6.
The formal analysis of RMA1 with TLC revealed that this algorithm works correctly

if both networks are operational. However, if one network fails, RMA1 at some point
starts rejecting frames from the remaining network due to the finite sequence number-
ing, as illustrated in Figure 7. This violates the property Avail 2. Moreover the algorithm
will periodically discard non-redundant frames.
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Accept frame if frames are available and (SNS(f ) > 0)

acceptFrame(id , sn) Δ=
∧ snSkew [id , sn] > 0
∧ rm ′ = [rm except !.rsn = sn, !.ptn[id ] = sn]

Reject frame if frames are available and SNS(f ) < = 0

rejectFrame(id , sn) Δ=
∧ snSkew [id , sn] ≤ 0
∧ rm ′ = [rm except !.rsn = sn, !.ptn[id ] = sn]

Fig. 6. Specification of RMA1

RMA1
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3 3
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A13 A14
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A139 A140

A139
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126 127 −128 −127 −126SNS(f)

SNS(f) −1−2? −2

rejected!

Network B faults!

Frames A141...

Fig. 7. Silent Network Scenario—Using RMA1. The upper time lines indicate frames received
along the redundant network, along with their corresponding Sequence Number Skews. The lower
time line indicates frames that RMA1 lets through to the application.

5.2 RMA3

As an evolution from RMA1, the next RM algorithm considered here compares not only
the sequence numbers between frames of different networks, but also the difference of
successive frames of the same network. Let PAF (f ) be the previously (from the RMA)
accepted frame, prior to the reception of a frame f .

Definition 4. (Previously Accepted Sequence Number) Let f be a frame with SN (f ) ∈
{0 . . .SN MAX }. Then the Previously Accepted Sequence Number (PASN) of f is
given by

PASN (f ) =def RSN (PAF (f )).

Definition 5. (Sequence Number Offset) The Sequence Number Offset of a frame f is
given by

SNO(f ) =def RSN (f ) −SN PASN (f )

RMA3 specifies to “accept if and only if the maximum of the sequence number skew
and the sequence number offset is positive”. The corresponding TLA+ specifications
to accept or reject the currently received frame are shown in Figure 8. Note how paf
keeps track of accepted SNs. Model checking RMA3 proved that this algorithm will
handle network failures better than RMA1. In case of a faulty network and no reset of
the sequence number this algorithm will accept all subsequent frames. But as it turns
out, RMA3 still needs two operating networks to cope with sequence number resets.
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Accept frame if frames are available and (SNS(f ) > 0 or SNO(f ) > 0)

acceptFrame(id , sn) Δ=
∧ ∨ snSkew [id , sn] > 0 ∨ snOffset [sn] > 0
∧ rm ′ = [rm except !.rsn = sn, !.paf = sn, !.ptn[id ] = sn]

Reject frame if frames are available and SNS(f ) < = 0 and SNO(f ) < = 0

rejectFrame(id , sn) Δ=
∧ snSkew [id , sn] ≤ 0 ∧ snOffset [sn] ≤ 0
∧ rm ′ = [rm except !.rsn = sn, !.ptn[id ] = sn]

Fig. 8. Specification of RMA3

Exceed time bound:

wait
Δ= ∧ rm.time = true ∧ rm ′ = [rm except !.time = false]

Accept frame if frames are available and SNS(f ) > 0

acceptFrame(id , sn) Δ=
∧ ∨ rm.pan = “all” ∨ id = rm.pan ∨ rm.time = false

∧ rm ′ = [rm except !.pan = id , !.time = true]

Reject frame if frames are available and SNS(f ) < = 0

rejectFrame(id , sn) Δ=
∧ rm.pan �= “all” ∧ id �= rm.pan ∧ rm.time = true

∧ rm ′ = [rm except !.time = true]

Fig. 9. Specification of RMA13

5.3 RMA13

The last algorithm considered here, RMA13, circumvents this limitation by introducing
the concept of time. TLA+ allows the modeling of continuous real-time aspects. Un-
fortunately, a first, very detailed timing model was not checkable with TLC, because
of state explosion. However, since the only real-time aspect in the redundancy man-
agement algorithms is a time-out, we could model this as a another ordinary action in
TLA+ that can occur under specific circumstances. RMA13 is specified to “accept if
and only if the frame has the same network identifier as the last accepted frame or after
time out”. The corresponding TLA+ specification is given in Figure 9. Note that in ad-
dition to the already known actions to accept or reject a frame, an action is introduced
to model that the maximum time between two successive accepted frames is exceeded.
RMA13 actually deviates from the first valid wins strategy, meaning that the first valid
twin frame should always be passed to the application. Model checking revealed that,
although RMA13 may cause a higher per frame loss than other algorithms, it behaves
best in critical situations like network failures and sequence number resets. The most
important advantage of RMA13 is that it satsfies all safety properties, which means that
it never submits redundant or outdated frames to the application layer.

A complete and thorough analysis of the remaining algorithms would exceed the
bounds of this paper. The interested reader can find the complete analysis in the
thesis [15].
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6 Assessment of the RMA Algorithms and Their Formal Modeling

In summary, the formal analysis results indicate that one of the simplest proposed al-
gorithms, RMA13, is the best choice overall. Although it does not increase the macro-
scopic availability, it satisfies all safety related properties, as it never submits redundant
or outdated frames to the application, which is considered more important for the redun-
dancy management task. Furthermore, the formal investigation of the RM task revealed
that the decision to have a relatively small sequence number range (only 8 bits, as op-
posed to 28 bits, as had been considered originally) is not only economical, but prevents
some catastrophic behaviors, too.

In our experience, TLA+ is very suitable to specify the redundancy management
algorithms. Though the compact notations of TLA+ might be a little bit confusing at
a first glance, they are very practical and maintain a good readability. Moreover the
concept of untyped variables turned out to be not as error-prone as expected and is
indeed very flexible.

The experience with the model checker TLC was also positive overall, but we did
encounter some complications and at times strange or (we think) even faulty behaviors.
TLC allows to check a wide range of expressible TLA+ properties, however, temporal
formulas that shall be checked with TLC and which contain actions must be of the form
��A (“always eventually A”) or ��A (“eventually always A”), where A denotes the
action. A work-around for this is to introduce another variable that records the action
actually taken and to use this variable instead of actions in the formulas.

The possibility of constraining infinite models with specifying constraints on the de-
fined variables is a major quality of TLC. Nevertheless the user must take care that
the specified and checked invariants not only hold on the constrained state space. TLC
checks for each state if all invariants hold and subsequently if all constraints are satis-
fied. Thus a state, which is considered unreachable may cause a violation of an invari-
ant. This increases the complexity of optimizing the TLA+ specifications for model
checking with TLC.

A complete and more detailed description of the observed limitations can be found
in the original thesis [15].

7 Summary and Conclusions

Of course, model checking a large set of algorithms and properties has its limitations. In
our case, there is no way to give reliable conclusions of how many frames one algorithm
accepts and rejects. However, the formal specification of the RM algorithms did detect
gaps in the original specification. The specification of one algorithm turned out to be
wrong, such that this algorithm failed all defined properties.

Writing formal specifications forces the engineer to clearly express what an algo-
rithm must and what it must not do. The formalization effort presented here therefore
focused on stating a precise set of requirements, and checking which algorithms ful-
fill which requirements. In contrast, the original, informal investigation followed an
evolutionary, scenario-based approach; it started with a simple RM algorithm, detected
scenarios where this RMA failed, and subsequently extended/modified the RMA. We
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have noticed that some RMAs fail the same properties, however, behave differently
for certain scenarios. This suggests that the requirements in the formalization, which
were already significantly refined compared to the original report, still could be refined
further.
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Abstract. With the rapid progress in science and technology, we find ubiquitous
use of safety-critical systems in avionics, consumer electronics, and medical in-
struments. In such systems, unintentional design faults might result in injury or
even death to human beings. To avoid such mishaps, we need to verify safety-
critical systems thoroughly, where formal verification techniques such as model
checking play a very promising role. Currently, there is practically no automatic
technique in formal verification used to formally model system faults and re-
pairs. This work contributes in proposing an extension to the Safecharts model,
with which faults and repairs can be easily modeled. Moreover, these Safecharts
can be directly transformed into semantically equivalent Extended Timed Au-
tomata models for model checking. That is, after these models were integrated
into a model checker, such as our previously proposed State Graph Manipula-
tors (SGM) model checker, we can verify safety-critical systems. An application
example is run to show the feasibility and benefits of the proposed model-driven
verification method for safety-critical systems. As observed, the checking results,
such as witnesses of property specifications representing hazards, provide more
concrete and useful failure analysis information than the conventional Fault Tree
Analysis (FTA).

Keywords: Safety-critical systems, Safecharts, FTO-failure, SO-failure,
NC-failure, Effective repair actions, Ineffective repair actions.

1 Introduction

Safety-critical systems are systems whose failure causes damages to its environment.
Traditional hazard analysis techniques, such as fault tree analysis (FTA), failure modes
and effects analysis (FMEA), failure modes, effects, and criticality analysis (FMECA)
have been successfully applied to several different real-world safety-critical systems
[12]. Recently, formal verification techniques such as model checking [4] has become
a promising verification method due to its automatic analysis capabilities. We propose
an extended Safecharts model [5] to model and analyze failures and repairs in safety-
critical systems and integrate it into a formal verification tool. Our contributions are
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three-folds. First, according to the classification of failure modes, we propose an in-
tuitive representation of the faulty states in a safety-critical system using Safecharts
model. Second, we transform the Safecharts model into a semantically equivalent Ex-
tended Timed Automata (ETA) model that can be directly input to model checkers.
Finally, a compositional model checker, namely the State Graph Manipulators (SGM)
[15], is used to not only verify a safety-critical system formally, but also provide auto-
matic failure analysis results to help users rectify that system.

The remaining of this article is organized as follows. Section 2 describes the current
state-of-the-art in the verification of safety-critical systems. Section 3 describes our
work flow and how failure analysis is performed in model checking. The extension of
Safecharts to cover faults and repairs is given in Section 4. Section 5 shows the details
of the transformation from Safecharts to ETA. The implementation of our proposed
method in the SGM model checker is described in Section 6. An application example
is given in Section 7 along with several analysis results. The article is concluded and
future research directions are given in Section 8.

2 Related Work

The conventional hazard analysis techniques, such as FTA and FMEA, have been suc-
cessfully applied to several different real-world safety-critical systems. Nevertheless, a
major limitation of hazard analysis is that phenomena unknown to the analysts are not
covered in the analysis and thus hazards related to these phenomena are not foreseen.
Safety-critical systems are getting more and more complex and thus there is a trend
to use methods [3] that are more automatic and exhaustive than hazard analysis, for
example model checking.

The verification of safety-critical systems using formal techniques is not new [12].
However, as noted by Leveson [12], this approach is inadequate because in the system
models we are assuming that all the components do not fail and the system is proved to
be safe under this assumption. However, the assumption is not always valid, so trans-
forming each hazard into a formal property for verification as in [9] is not sufficient.
As described in the following, our work on using Safecharts to verify safety-critical
systems contributes in several ways to the state-of-the-art in formal verification.

1. The Unified Modeling Language (UML) is an industry de facto standard for model-
driven architecture design. Safecharts, being an extension of the UML Statecharts,
blends naturally with the semantics of other UML diagrams for the design of safety-
critical systems. The work described in this article automatically transforms
Safecharts into the timed automata model which can be accepted by conventional
model checkers.

2. The extended Safecharts model allows and requires explicit modeling of compo-
nent failures and repairs within a newly proposed failure layer in the model. This
is very helpful not only for the safety design engineers but also for the safety ver-
ification engineers. Through its unique features of risk states, transition priorities,
and component failure and repair modeling artifacts, Safecharts can be successfully
used for verifying safety-critical systems.
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3. The model checking paradigm helps generate witnesses to the satisfaction of prop-
erties that provide more accurate and informative safety analysis results than con-
ventional methods such as FTA.

3 Automatic Failure Analysis

The failure analysis performed in a model checker is as proposed and illustrated in
Figure 1. A safety-critical system is first analyzed for all possible failures and corre-
sponding repairs. Safecharts are then used to model the functional, safety, and failure
characteristics of the system, according to the description in Section 4. As described in
Section 5, these Safechart models are then automatically transformed into equivalent
ETA models that are input to the SGM model checker as system models. Each hazard is
then represented as a temporal logic property. On model checking the ETA against the
properties, we obtain witnesses to the hazard properties that represent how the system
might face a hazard. The witnesses are system traces that contain more information than
traditional minimum cut results from FTA.

Model Checker (SGM) 

Satisfied! Unsatisfied! + counterexample 

Safety-critical 

System/Component S
Manual Analysis 

Safechart model of S

Transformation 

ETA model of S

Failure-mode-related 

property

Fig. 1. Work flow of automatic failure analysis in model checking

4 Extending Safecharts

The main focus of the original Safecharts [5], as defined in Definition 1, was on propos-
ing functional and safety layers. Failures are due to faults, but not all faults result in fail-
ures. In this work, we focus on failures and extend the original Safecharts with a more
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Fig. 2. Safechart for route[x] with functional and safety layers

comprehensive modeling capability for different types of failures and repairs, in a new
and explicit failure layer. In this extension, we use a generic classification of failures
and repairs to help safety-critical system designers categorize the possible failures and
repair actions in the system to be modeled and verified.

4.1 Safecharts

Figure 2 shows the functional and safety layers of a Safecharts model route[x] for set-
ting a route of a railway system. The functional layer specifies the normal functions of
requesting and setting or rejecting a route. The safety layer enforces the safety restric-
tions for setting or unsetting a route. Notations � and � in the safety layer will be defined
in Definition 1, which, respectively, restricts setting a route or enforces the release of a
route when any of the signals in that route is faulty. Recognizing the possibility of gaps
and inaccuracies in safety analysis, Safecharts do not permit transitions between states
with unknown relative risk levels [14].

Definition 1. Safecharts
Given two comparable states s1 and s2, a risk ordering relation � specifies their relative
risk levels, that is s1 � s2 specifies s1 is safer then s2. Transition labels in Safecharts
have an extended form: e[fcond]/a[l, u)Ψ [G] where e, fcond, and a are the conven-
tional Statechart event, transition guard, and action, respectively, and / separates the
transition guard from the transition action. The time interval [l, u) is a real-time con-
straint on a transition t and imposes the condition that t does not execute until at least l
time units have elapsed since it most recently became enabled and must execute strictly
within u time units. The expression Ψ [G] is a safety enforcement on the transition ex-
ecution and is determined by the safety clause G. The safety clause G is a predicate,
which specifies the conditions under which a given transition t must, or must not, exe-
cute. Ψ is a binary valued constant, signifying one of the following enforcement values:

– Prohibition enforcement value, denoted by �. Given a transition label of the form
� [G], it signifies that the transition is forbidden to execute as long as G holds.

– Mandatory enforcement value, denoted by �. Given a transition label of the form
[l, u) � [G], it indicates that whenever G holds the transition is forced to execute
within the time interval [l, u), even in the absence of a triggering event.
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4.2 Failure Modes

The failure modes of safety-critical systems can be classified into three types as defined
in the following [2].

– Fail-To-Operate (FTO-failure): A system does not respond correctly to an abnormal
operating condition. This is a critical failure.

– Spurious Operation (SO-failure): A system initiates an automatic unexpected ac-
tion without the presence of an abnormal operating condition. This is also a critical
failure.

– Non-critical (NC-failure): In this case, maintenance of a system is required even
though the main service of the system has been preserved, that is it is neither an
FTO-failure nor an SO-failure in the safety-critical system. With this type of fail-
ure, a system can still work, but its performance may be poorer than expected. We
assume that when a system has an NC-failure, it must be repaired before other
critical failures can occur.

The representation of failure modes in Safecharts is given in Section 4.4.
Example: Take an automatic electric lamp as an example, which is supposed to be

turned on automatically within three seconds when the room is too dark, however if
it fails, then an FTO-failure occurs. In addition, if the lamp is turned on unexpectedly
when the room is bright, it is said that an SO-failure occurs. However, if the lamp blinks
after being turned on, we take this as an NC-failure.

After an FTO- or SO-failure, as shown in Figure 3 and Figure 4, respectively, when
more than one intermediate repair actions are needed to return to normal state, then we
assume that the component or system enters an NC-failure mode, which is an interme-
diate state between an FTO- or SO-failure and a normal state.

A component FTO- or SO-failure can lead to a system FTO- or SO-failure unless
this is prevented by fault-removal or fault-prevention techniques [2]. In this work, we
assume that each component is under the control of its controller and the controllers
could be taken as error-free. We do not discuss controller fault tolerance techniques in
this work.

4.3 Safety Repair Actions

A system may return to normal operating condition after a failure is either automatically
or manually repaired. Repair actions of safety-critical systems can be classified into two
types as follows.

– Effective repair actions: A failure is completely eliminated after an effective repair
action is taken. We denote the set of all effective repair actions as U = {μ}.

– Ineffective repair actions: A failure is not completely eliminated, but its severity
may be reduced after ineffective repair actions are taken. These repair actions could
be taken as intermediate safety actions. Let U ′ = {μ′} denote the set of all ineffec-
tive repair actions. Moreover, U ∩ U ′ = φ. ��
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For example, in an automatic electric lamp system, if the electric lamp is not turned on
automatically within three seconds when the room is too dark, an FTO-failure occurs.
We should turn it on manually to eliminate this failure. This repair action is effective
if the electric lamp becomes bright after we turn it on. Otherwise, it is an ineffective
repair action.

4.4 Representation of Failures and Repairs in Extended Safecharts

Using some conventional safety analysis technique, a designer can identify all the pos-
sible failures and their effects in a system to be modeled and verified. Further, based on
the classifications of failures and of repair actions, as described in Sections 4.2 and 4.3,
respectively, a system designer can categorize all the possible failures and correspond-
ing repair actions of the system. We now give the representations of these different
failures and repair actions in the extended Safecharts model.

Recall from Definition 1, in Safecharts, the transition label e[fcond]/a appears in
the functional layer, while [l,u)Ψ [G] may appear in the safety layer. In this work, as
mentioned before, we propose a new failure layer, and three new symbols in Safecharts
to represent failure conditions, namely, inoperable (�), spurious (�), and non-critical
(�) failures, which are modeled in the failure layer of extended Safecharts.

In this work, we found that there is an interesting coupling between safety conditions
and failure conditions. Whenever a mandatory condition ([l, u) � [G]) is violated, an
FTO-failure ([u, ∞)�[G]) occurs. Whenever a prohibitory condition (� [G]) is violated,
an SO-failure (�[G]) occurs. As far as the non-critical (�) condition is concerned, it
can be used in more flexible ways than the other two critical failure conditions. System
designers can model an NC-failure for a component or a system wherever it is required.

Figures 3, 4, and 5 show the representation of different failure modes and their cor-
responding repair actions for a component or system modeled in Safecharts. Each com-
ponent or system may be modeled with one or more failure modes. The condition and
assignment label e[fcond]/a[l, u)Ψ [G] on a transition t, from the original Safecharts
(Definition 1), is now extended to cover both safety conditions as well as failure condi-
tions, as classified in the following.

1. Safety conditions: According to [5], safety conditions are modeled into the func-
tional and safety layers.

– e[fcond]/a: This is just a normal functional transition without any safety clause.
– e[fcond]/a � [G]: There is prohibition enforcement value on a transition t. It

signifies that the transition t is forbidden to execute as long as G holds.
– e[fcond]/a[l, u) � [G]: There is mandatory enforcement value on a transition

t. It signifies that the transition is forced to execute within [l,u) whenever G
holds.

2. Failure conditions: Failure conditions are modeled into the failure layer of
Safecharts.

– e[fcond]/a[u, ∞)�[G]: Transition t represents an FTO-failure. It signifies that
under the condition G, if a corresponding mandatory transition t′ with label
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'

e[fcond]/a[l,u)    [G]

e[fcond]/a[u, )     [G] src(t)

FTO-

failure

des(t)

NC-

failure

Transition t

Transition t'

Fig. 3. FTO-failure in Safechart

'

e[fcond]/a   [G]

e[fcond]/a     [G]

src(t)

SO-

failure

des(t)

NC-

failure

Transition t

Transition t'

Fig. 4. SO-failure in Safechart

e[fcond]/a[¬G]

e[fcond]/a     [G]

src(t)

NC-

failure

des(t)

Transition t

Fig. 5. NC-failure in Safechart

e[fcond]/a[l, u) � [G] is not executed within the time interval [l, u), then there
is a critical FTO-failure.

– e[fcond]/a�[G]: Transition t represents an SO-failure. It signifies that un-
der the condition G, if a corresponding prohibitory transition t′ with label
e[fcond]/a � [G] is unexpectedly executed, then there is a critical SO-failure.

– e[fcond]/a � [G]: Transition t represents an NC-failure. The condition G
means that the main service of the safety-critical system is not supported as
good as expected. It signifies that repair actions are needed when G holds.

Here, we assume that when a component or system has failed, the failure must be
repaired before another failure can occur.

Let us take the automatic electric lamp system as an example again to illustrate the
three failure modes represented by the above described transitions. Table 1 shows the
conditions and assignments for normal safety operation and for the three possible failure
modes of the electric lamp.

In Figure 3, the transition from src(t) to des(t) has mandatory evaluation. By defini-
tion, the transition is supposed to be executed before the deadline u. If it fails, by the
failure definitions, we can specify that an FTO-failure has occurred. Similarly, we can
find an SO-failure may occur in Figure 4. Note that there is an important concept here:
the transition from src(t) to des(t) is executed, therefore, in a real system, the des(t)
state appears to be the same as the SO-failure state. However, in modeling, we cannot
model the contradictory conditions of taking and not taking the safety transitions in the
same mode. In Safecharts modeling, we have to specify these conditions into two differ-
ent modes. When the safety transitions are executed under the expected semantics, then
the des(t) state is a correct final destination. Otherwise, this state represents a failure
state. As shown in Figure 5, we allow more flexible ways for system designers to model
non-critical failures, because non-critical failures are defined case by case. In our work,
we also assume that each type of failure could be recovered by some repair actions. If
not, there might be too many dead states in the model. Nevertheless, we do not focus on
how to deal with the dead states, except using them to specify properties representing
system hazards.
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Table 1. Safecharts Normal operations and possible failure modes for the Electric Lamp System

Type of condition
(Transition Label)

Safecharts Transition Label Descriptions

Mandatory
(e[fcond]/a[l, u) � [G])

e: someone enters the room
fcond: lamp is normally functioning
a: automatically turn on the lamp
[l, u) = [0, 3)
G: insufficient light indoor

Prohibitory
(e[fcond]/a � [G])

e: someone enters the room
fcond: lamp is normally functioning
a: automatically turn on the lamp
G: sufficient light indoor

FTO
(e[fcond]/a[u, ∞)�[G])

electric lamp does not operate normally
by the deadline time u.

SO
(e[fcond]/a�[G])

electric lamp automatically turns on when
there is sufficient light indoor.

NC
(e[fcond]/a � [G])

e: someone enters the room
fcond: true
a: record non-critical problem
G: the main service of the lamp is not supported

as good as expected, for example,
illumination is poor.

5 Transformation from Safecharts to Extended Timed Automata

The user-given Safecharts are automatically transformed into extended timed automata
(ETA) models [8], which are simply timed automata [1] with discrete variables and
synchronization labels. We first show in detail how system designers might model their
safety-critical system in Safecharts, and then how the model is transformed into ETA
for model checking.

5.1 Transformation from Safecharts to ETA

To analyze failures automatically in model checking, one of the primary goals is to
model check the Safecharts model of a component or a system. However, Safecharts
cannot be accepted as system model input by most model checkers, most of which
accept only flat automata models. For example, extended timed automata (ETA) can be
accepted by SGM. The three Safecharts layers, namedly safety, functional, and failure,
must also be transformed into equivalent modeling constructs in ETA and specified as
properties for verification.

There are three types of states in Safecharts: OR, AND, and BASIC. An OR-state or
an AND-state, consists generally of two or more substates. All the substates in an AND-
state are active simultaneously, while an OR-state is in exactly one of its substates.
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A BASIC-state is represented simply by an ETA mode. The translations for OR-states
and AND-states are performed as described in [11].

Before we translate Safecharts to ETA, we need to introduce three different types of
transition urgency semantics [10]:

1. Eager Evaluation (ε): Execute the transition as soon as possible, i.e., as soon as a
guard is enabled. Time cannot progress as soon as a guard is enabled.

2. Delayable Evaluation (δ): Can put off execution until the last moment the guard is
true. So time cannot progress beyond the falling edge of a guard, except when there
is another enabled transition outgoing from the same state.

3. Lazy Evaluation (λ): The transition may or may not be executed.

The transition condition and assignment label e[fcond]/a[l, u)Ψ [G] as described in
Section 4.4 can be translated to the following equivalent semantics in ETA.

– e[fcond]/a: There is no safety clause on a transition in Safecharts, thus we can
simply transform it to a similar transition in ETA. We have translated it in [6].

– e[fcond]/a � [G]: There is prohibition enforcement value on a transition t. It sig-
nifies that the transition t is forbidden to execute as long as G holds. We also have
performed this transformation in [6].

– e[fcond]/a[l, u) � [G]: There is mandatory enforcement value on a transition t. It
signifies that the transition is forced to execute within [l,u) whenever G holds. The
transformation to ETA was done in [6].

– e[fcond]/a[u, ∞)�[G]: As shown in Figure 6, the transformations of the safety and
the functional layers are same as those for a transition t′ with the mandatory en-
forcement value, that is, e[fcond]/a[l, u) � [G]. A transition from some state src(t)
to an FTO-failure state in Safecharts, as depicted in Figure 3, will be translated into
a transition labeled with (timer � u)ε from state translator(t) to an FTO-failure
state in ETA, where translator(t) is a state generated during the transformation of
mandatory evaluation [6].

– e[fcond]/a�[G]: As shown in Figure 7, the transformations of the safety and the
functional layers are same as those for a transition t′ with the prohibition enforce-
ment value, that is, e[fcond]/a � [G]. The transition from some state src(t) to an
SO-failure state in Safecharts, as depicted in Figure 4, will be translated into a tran-
sition labeled with (e[fcond ∧ G]/a)λ from state src(t) to an SO-failure state in
ETA.

– e[fcond]/a � [G]: As shown in Figure 8, we translate a transition from some state
src(t) to an NC-failure state in Safecharts, as depicted in Figure 5, into a transition
labeled with (e[fcond ∧ G]/a)λ from state src(t) to an NC-failure state in ETA.

As shown in Figures 6, 7, and 8, the transitions representing repair actions in
Safecharts are translated into similar corresponding transitions, without any special
transformation. All the proposed transformations from the Safecharts layers to ETA
modeling artifacts are trivially equivalent in semantics.

6 Implementation

The proposed model extensions in Safecharts for explicit failure representation and the
related techniques for supporting failure analysis have all been integrated into the SGM
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Fig. 6. FTO-failure in ETA
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Fig. 7. SO-failure in ETA
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src(t)

NC-failure

des(t)

Fig. 8. NC-failure in ETA

model checker, on which we can perform verification and failure analysis. Mainly, what
we had done are listed in the following.

– Extend the semantics of Safecharts to include the failure layer,
– Flatten the extended Safecharts into ETA models, and
– Transform all safety and failure modeling artifacts into equivalent constructs in the

ETA models, which include the following.
• Transition priority calculation from Safechart risk bands,
• Support for prioritized transitions, and
• Support for urgent transitions.

Details of the implementation for supporting prioritized transitions in the SGM model
checker were given in [13]. The main issue is priority results in non-convex clock zones
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which cannot be represented by a single difference bound matrix (DBM), a data-structure
for representing time in a model checker. We solved this issue by proposing an optimal
zone partitioning algorithm.

In our work, we also implemented support for urgent transitions in the SGM model
checker by proposing a novel zone capping operation that restricts the clock zone in a
mode (symbolic set of states) [7]. Due to page-limit, this part of the work is out-of-scope
here and will not be described in details.

7 Application Example

To illustrate how the failure-extended Safecharts model aids in verifying safety-critical
systems, we use an automatic water sprinkler system that is found in almost all high-
rise apartments and garages for safety from fires. In such a system, the most important
functionality is that when the sensors detect an abnormally high temperature degree, the
controller sends a command to the sprinkler, which is supposed to start sprinkling water.
We assume that the controller polls the temperature sensor once every second. We have
used the extended Safecharts model to specify the relations between the failure state
and the normal operating state for the sprinkler system, as shown in Figure 9, where
clock is the triggering event for the system, and it arrives once every second. Totally,
four failure states are specified, of which two are FTO-failures and two are SO-failures.

To analyze the possible failures in this sprinkler system, we have to first introduce
its design. When the sensors detect an abnormally high temperature degree, it asserts
a signal F , which is polled by the controller. If the sprinkler system is in the Non-
sprinkling state, it is supposed to start sprinkling water within two seconds after the
assertion of signal F . Otherwise, an FTO-failure occurs. When the sprinkler system
is in the Sprinkling state, if the sensors detect a normal temperature degree, then the
system is supposed to stop sprinkling within three seconds. Otherwise, there is also an
FTO-failure. It is prohibited that the sprinkler system transits from the Non-sprinkling
state to the Sprinkling state without an asserted signal F . It is also required in the design
that the sprinkler system is prohibited from transiting from the Sprinkling state to the
Non-sprinkling state while the signal F is asserted. Otherwise, an SO-failure occurs.

In Figure 9, F = 1 represents abnormally high temperature, F = 0 represents
normal temperature, R := 0 is the action to stop sprinkling, and R := 1 is the action
to start sprinkling. The sprinkler system is quite simple, thus only two effective repair
actions, namely stop sprinkling and start sprinkling, are modeled in this system. There
are no ineffective repairs and no NC-failure in this system.

We transformed the Safecharts model for this system automatically and generated
the ETA model as shown in Figure 10, which was then input to the SGM model checker
for verification and failure analysis. As we can see, the ETA model in Figure 10 is much
more complex than the Safecharts model in Figure 9. Table 2 shows the transformation
results for the sprinkler system. Even for this small example, the Safecharts model gives
a reduction of 25% in the number of states and 25% in the number of transitions, com-
pared to the generated ETA model. For larger and more complex systems, our proposed
Safecharts with failure extensions will give greater benefits in terms of reduced sizes
of models, compared to the more complex ETA models. The designers can thus focus
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(R:=0)

clock / R:= 1     [F=0]

(R:=1)

clock/R:=1[2, )     [F=1] 

clock/R:=1    [F=0] or clock/R:=1[0,2)    [F=1]

(R:=1)

clock / R:= 0     [F=1]

clock/R:=0[0,3)     [F=0] or clock/R := 0     [F=1]

(R:=0)

clock/ R:=0[3, )     [F=0]

FTO1 FTO2

Sprinkling Non-Sprinkling

SO2SO1

Fig. 9. Sprinkler System Controller in Safecharts

their attention and time to failure identification, classification, and safety analysis, rather
than spending a lot of time and efforts in modeling them.

For this sprinkler system, we specified four different properties in CTL to analyze
the four failures in the Safecharts model, namely, FTO1, FTO2, SO1, and SO2, as
follows.

EF (mode = HAZARD), where HAZARD ∈ {FTO1, FTO2, SO1, SO2}

On model checking, the sprinkler system model satisfied all of the above proper-
ties. Witnesses to the satisfaction of these properties, generated by SGM, helped us
in analyzing how the system would be faced with such hazards. For example, the
witness 〈(Non-Sprinkling, F = 0), (Non-Sprinkling, F = 1), (Non-Sprinkling, F =
1 ∧ timer � 2), (FTO2)〉, shows that one possible way in which the sprinkler system
could face the FTO2 failure is when the system is not sprinkling (Non-Sprinkling), the
temperature becomes abnormally high (F = 1), and the timer has expired (timer � 2).
This property witness generated from a model checker contains more information than
the minimum cut generated from Fault Tree Analysis (FTA) [12], which is a conven-
tional and widely used analysis method for safety-critical systems. A minimum cut only

Table 2. Transformation Results for the Sprinkler System Example

Numbers of Modes Numbers of Transitions
Safecharts 6 12

(−25%) (−25%)
ETA 8 16
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t1: (clock/R:=1)
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(clock[True ¬(F=1)]/R:=0)
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t : ([F=0]/timer:=0)

FTO1 FTO2

Translator1(t) Translator2(t)

Sprinkling Non-Sprinkling

SO1 SO2

Fig. 10. Sprinkler System Controller in ETA

shows the logical combination of different faults or failures in a system that results in
some hazard, however it cannot show the temporal sequencing of the faults that leads
to a hazard. The same logical combination could have different temporal sequences,
of which only some might result in a hazard and others would not. However, property
witnesses show the exact computation run that would result in a hazard. Hence, there is
more accurate information in a witness compared to that in a minimum cut.

Besides automatically generating a hazard witness for a single component failure,
model checking our failure-extended Safecharts can also be used to verify a common
safety-critical system property that specifies no single component failure results in a
system failure, where a system failure is defined as the simultaneous occurrence of two
component failures. We can thus check if the following property is satisfied.

AG¬
∨

i,j

[(mode(Ci) = HAZARD) ∧ (mode(Cj) = HAZARD)] (1)

where HAZARD is either an FTO-failure or SO-failure and Ci is the ith component.

8 Conclusion

Nowadays, safety-critical systems are becoming more and more pervasive in our daily
lives. To reduce the probability of tragedy, we must use a formal and accurate method-
ology to verify whether a safety-critical system is safe or not. We have proposed a for-
mal method to verify safety-critical systems based on the Safecharts model and model
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checking paradigm. Our methodology can be applied widely to safety-critical systems
with a model-driven architecture. Through examples, we have shown the benefits of the
proposed verification method and system model. We hope our methodology can have
some real contribution in making the world a safer place to live in.
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Abstract. Esterel Technologies’ SCADE Suite is one of the most im-
portant development tools for software for safety-critical systems. It is
used for designing many critical components of aerospace, automotive
and transportation applications. For such systems safety analysis is a
key requirement in the development process.

In this paper we show how one formal safety analysis method – De-
ductive Cause-Consequence Analysis (DCCA) – can be integrated in the
SCADE framework. This method allows for performing safety analysis
largely automatically. It uses SCADE’s semantical model and SCADE’s
built in verification engine Design Verifier. So the whole analysis can be
done within one tool. This is of big importance, as a key feature for the
acceptance of formal methods in broad engineering practice is, that they
can be applied in an industrial development suite.

We illustrate the method on a real world case study from transporta-
tion domain and discuss possible next steps and limitations.

Keywords: formal methods, safety critical systems, deductive cause
consequence analysis, dcca, safety analysis, dependability, SCADE.

1 Introduction

The role of software in embedded systems development is becoming more impor-
tant, as more and more features are implemented in software instead of hard-
ware. One example for this are the x-by-wire features in automotive application
or avionics. Here, safety critical tasks like steering or breaking are controlled
by electronic devices which are connected electrically. In contrast to traditional
techniques, there no longer exists a physical link between controller and actu-
ator. The result is that, the controlling software now becomes a safety critical
system itself, as it takes over a large portion of safety critical tasks.

Systems for avionics must for example be DO178B [14] compliant. To achieve
this, software must also be certified. For embedded systems SCADE Suite of Es-
terel Technologies is a widely accepted, state-of-the-art toolkit which allows to
develop software graphically and has a certified development process for safety
critical systems. The developed models are automatically converted into exe-
cutable C code (for various target systems) using a certified code generator.

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 465–478, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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SCADE Suite also allows to automatically verify safety properties of the devel-
oped software using the built-in Design Verifier of Prover Technologies.

Traditionally SCADE models are mainly used for designing software. Hard-
ware elements and safety analysis are not being modelled. On the other hand
(formal) safety analysis methods need to reason about hardware and software,
to give answers like “How many failures can be tolerated?” etc. In the last years
a lot of advances in the domain of formal safety analysis have been made like
formalisations of fault tree analysis (FTA) [15, 5, 2], fault injection (FI) [1] or
the unifying methods of formal cause-consequence analysis (DCCA) [13, 12].
Most of these techniques are semantically grounded on either linear temporal
logic (LTL) or computational temporal logic (CTL) and use some variation of fi-
nite automata for system modelling. Unfortunately, SCADE does not have proof
support for LTL nor for CTL.

In this paper we show how one of the listed methods can be adopted, such that
it can be used with SCADE’s verification capabilities. This is of big importance
for practical applications as it allows system developers to analyse the model
which will be used for code generation (and do not need to manually translate
it into another modelling language). The paper is structured as follows: Sect. 2
gives an introduction on DCCA. Sect. 3 shows how to conduct DCCA in SCADE.
It also sketches a proof idea on why this adaptation of DCCA is semantically
correct. Sect. 4 describes a case study and illustrates the application of DCCA
in SCADE. Sect. 5 concludes the paper.

2 DCCA

This section describes briefly the formal semantics of DCCA. The formalisation
is done with Computational Tree Logic(CTL) [4] using finite automata as sys-
tem models. The use of CTL and finite automata allows to use powerful model
checkers like SMV [9] to verify the proof obligations. The goal of DCCA is the
following:

Given an unwanted, hazardous situation H and a set of component fail-
ure modes Γ . Determine, which combinations of failures modes may (1)
potentially cause an hazard and (2) are minimal in the sense, such that
no proper subset of these failure modes can cause the hazard.

This is the standard question, which most safety analysis methods try to answer.
In the following we assume that a set of hazards {H} on system level and a
set of possible basic component failures Δ modes is given. Both data may be
collected by other safety analysis techniques like failure-sensitive specification
[11] or HazOp [6].

2.1 Failure/Hazard Automata

For formal safety analysis failure modes must be explicitly modelled. The mod-
elling can be naturally split into two parts. One part is modelling the occurrence
pattern of the failure mode and the other is modelling the failure mode itself.
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yes no

Transient Failure

yes no

Persistent Failure

Fig. 1. Failure automata for transient and persistent failures

An “occurrence pattern” describes how and when the failure mode occurs. For
example does the failure mode occur nondeterministically (like packet loss in IP
traffic) or does it occur once and forever (like a broken switch) or does it occur
only during certain time intervals (like until the next maintenance). To model
this failure automata are used. Figure 1 shows two such failure automata.

The left automaton models a transient failure which can nondeterministically
occur and disappear. The right one models a persistent failure, which happens
once and stays forever (e.g. a broken relay). Maintenance etc. may be modelled
analogously. Failure predicates δ are then defined as “failure automaton for fail-
ure mode δ̃ in state yes”. For readability the symbol δ is used for both the
predicate and the automaton describing the occurrence pattern.

The second step is to model the direct effects of failure modes. This is usually
done by adding transitions to the model of the system with conditions of the form
ϕ ∧ δ. This assures, that these additional transitions – which reflect erroneous
behaviour – may only be taken, when a failure automaton is in state yes i.e.
when a failure occurs1.

A similar approach may be used to define predicates for system hazards. If
the system hazard can not be described by a predicate logic formula directly,
then often an observer automaton may be implemented such that whenever the
automaton is in an accepting state, the hazard has occurred before [15]. This
allows to describe the hazard as a predicate logic formula on the states of the
observer automaton. However in practical applications hazards may mostly be
described by predicate logic formulas.

2.2 Critical Sets

The central part of the analysis is the definition of a temporal logic property
which says, whether a certain combination of failure modes may lead to the
hazard or not. This property is called criticality of a set of failure modes.

Definition 1. critical set / minimal critical set
For a system SYS and a set of failure modes Δ a subset of component failures
Γ ⊆ Δ is called critical for a system hazard, which is described by a predicate
logic formula H if

SY S |= E(Γ until H) where Γ :=
∧

δ∈(Δ\Γ )

¬ δ

1 It can also be shown, that the integration of failure modes is monotone – wrt. to
traces inclusion to the original model – if a certain set of modelling rules is followed
(see [10] for details).
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We call Γ a minimal critical set if Γ is critical and no proper subset of Γ is
critical.

Here, E(ϕ until ψ) denotes the existential CTL-UNTIL-operator. It means there
exists a path in the model, such that ϕ holds until the property ψ holds. The
property critical set translates into natural language as follows: “There exists a
path such that the system hazard occurs without the previous occurrence of any
failures except those which are in the critical set”. In other words this means, it
is possible that the systems fails, if only the component failures in the critical
set occur.

Intuitively, criticality is not sufficient to define a cause-consequence relation-
ship. It is possible that a critical set includes failure modes, which have nothing
to do with the hazard. Therefore, the notion minimal critical set also requires
that no proper subset is critical. Minimal critical sets really describe what one
would expect for a cause-consequence relationship in safety analysis to hold: the
causes may - but not necessarily - lead to the consequence and second all causes
are necessary to allow the consequence to happen. The goal of DCCA is to find
minimal critical sets of failure modes. A DCCA is called complete if all minimal
critical sets are found.

Testing all sets by brute force would require an effort exponential in the num-
ber of failure modes. However, DCCA may be used to formally verify the results
of informal safety analysis techniques. This reduces the effort of DCCA a lot,
because the informal techniques often yield good “initial guesses” for solutions.
Note also, that the property critical is monotone with respect to set inclusion
i.e. ∀Γ1, Γ2 ⊆ Δ : Γ1 ⊆ Γ2 ⇒ (Γ1 is critical set ⇒ Γ2 is critical set). This helps
to reduce proof efforts a lot.

3 DCCA in SCADE

Integrating DCCA in SCADE is not directly possible. This is because of two
major problems. Firstly, SCADE does not allow for nondeterministic automata.
The idea behind this “feature” is, that the toolkit was traditionally used for
software development (where nondeterminism is mostly unwanted). The second
(somewhat harder) problem is that SCADE only allows to verify properties of
the form “on all paths it is at all times the case that ϕ holds” or short in CTL
notation “AG(ϕ)”. Therefore some adaptations are necessary and integration is
only possible for a specific type of failure modes.

3.1 Semantics and Syntax of SCADE Models

The semantics of SCADE models is based on data flows. Each single data flow
can be seen as a sequence of values for a variable. The set of all possible data
flows defines the semantics of the model. So semantically this model is very
similar to the set of traces defined by a Kripke structure.

On the other hand specification in SCADE is very different. Every SCADE
model has a fixed set of input and output variables. A syntactic convention is
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that all inputs are drawn on the left side of a block and all outputs are drawn on
the right side. SCADE models are built of blocks. Each block has a fixed input
and output interface. Basic blocks are composed to larger models by connecting
outputs to inputs. System inputs maybe be connected to any component’s input
and system outputs can be any component’s output. Note that input data is
processed immediately throughout the whole model. To avoid inconsistencies
direct feedback is not allowed2. However, there exists a special operator FBY
whose output is the input of the last step3. This operator is often used if data
feedback is needed. A simple SCADE model is shown in Fig. 2.

+

+

*

FBY

System
−

O
utputs

a

b
c

System
−

Inputs o

Fig. 2. A simple SCADE model

This model has three inputs a, b and c. The first two inputs are added (“+”-
operator) and multiplied (“*”-operator) with the third input. The output o is
the accumulation of all previous results (“FBY”-operator). An example data
flow (a, b, c, o)i of the system is: (1, 2, 3, 9), (1, 2, 2, 15), (2, 2, 2, 23), ...4.

SCADE also allows to embed state machines in single blocks. Here, the se-
mantics is that the state machine executes exactly one step for every step of the
data flow. Note that state machines in SCADE must always be deterministic.
So direct modelling of failures as described in Sect. 2.1 is not possible.

3.2 Semantics of DCCA in SCADE

Occurrence patterns of failure modes are modelled in specific failure mode blocks
and the hazard is modelled as a SCADE block as well. The output of these blocks
is true if the failure mode/hazards occurs and false otherwise.

The basic architecture for applying DCCA to a SCADE model is shown in
Fig. 3. Outputs of failure blocks are connected as inputs to the system model. The
hazard is connected to the system outputs (outputs may also be some internal
variables which are only used for defining the hazard). Failure blocks use as input
specific (system) failure inputs.

In Fig. 4 a failure block is shown. The block contains a state machine which
is similar to the failure automata shown in Fig. 1. However, there are slight
2 This is checked by a syntactic analysis.
3 For the initial state the output of this operator must be defined explicitly (for more

details see the documentation of SCADE).
4 Because: (1+2)*3 + 0=9; (1+2)*2+9=15; (2+2)*2+15=23.
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Fig. 3. System model
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Fig. 4. Failure block

differences. First of all the block has an input, which indicates when the failure
starts occurring (Fail− Input). This is not redundant as only system inputs are
allowed to be nondeterministic in SCADE; state machine must be deterministic.
The output of the block evaluates to true if and only if the state machine is in
state “yes”. This output is then triggering the direct effects of the failure mode
as usual. Similar blocks for transient failures are possible.

For DCCA in SCADE two restrictions are necessary. The first one is, that
failure blocks must not contain a feedback link from the system. So for example
a failure block may not also depend on any of the systems outputs5. The second
restriction is, that each failure block must have the choice to stay in state “no”
whenever it is in state “no”. Informally this means: “Every failure happens
nondeterministically.” The consequence is that at all times there exists some
future in which the failure will not occur (if it hasn’t already occurred).

It is clear that these two restriction are an abstraction of the real world.
However this is not a real problem in the context of safety analysis, because
the only relevant question in this domain is, which failures caused hazards (i.e.
which components failed before the whole system failed). This approach and the
architecture of Fig. 3 lead to the following definition for DCCA:

Definition 2. critical set / minimal critical set (SCADE)
For a system SYS and a set of failure mode inputs Δ a subset of failure mode
inputs Γ ⊆ Δ is called critical for a system hazard, which is described by an
hazard block H if the boolean output flow of block H is not always false – under
the restriction that all failure mode inputs of Δ \ Γ are permanently false. It is
called minimal critical, if no proper subset of Γ is critical.

This means in informal language: If no failures of Δ \ Γ occur and the hazard
H occurs, then the failures modes of Δ are critical. So the process for DCCA is
as follows: (1) Add failure mode blocks and hazard blocks, (2) connect failure
mode blocks, hazard block and system block as shown in Fig. 3, (3) model direct
effects of failure modes (this is analogous to modelling direct effects in finite
5 An example where this could make sense, is that a crash of an aircraft determinis-

tically triggers the failure mode “loss of power”.
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automata) and (4) for each set of failure modes check (with SCADE’s Design
Verifier) if the output of the hazard block is always false under the restriction
that all other failure mode inputs are false.

3.3 Correctness of DCCA Implementation

This section outlines a sketch of a proof why this adaptation of DCCA is correct.
CTL semantics are only where necessary. The following CTL-operators are used:

– “A” denotes the “on-all-paths”-operator
– “E” denotes the “there-exists-a-paths”-operator
– “G” means “at-all-times”
– “F” means “in-some-future-time”

Complete semantics may be found - for example - in [3]. The semantics of the
CTL proof obligation for DCCA (SYS |= E(Γ until H)) is defined as follows:

∃π ∈ SYS : ∃k ≥ 0 : SYS, πk |= H and ∀j : 0 ≤ j < k : SYS, πi |= Γ

This means that there exists a trace π in the system on which at some point
in time k the hazard H occurs and on all points in time before no failures in the
set Δ \ Γ occurred.

As said above, this is not directly expressible in SCADE, as only safety prop-
erties of the form “on all paths at all times” can be expressed. Therefore the
negated hazard is integrated as proof goal into a verification project as additional
boolean output data flow and for every critical set Γ , the range of possible fail-
ure inputs is restricted, such that all failure inputs of Δ \ Γ are permanently
set to false. Semantically this means that a system SYSΓ is used for verification.
The formal definition of this system is:

π ∈ SYSΓ := (π ∈ SYS ∧ π |= GΓ )

Here Γ is defined as in definition 1. The verification goal for showing the criti-
cality of a set of failure modes in SCADE is then:

SYSΓ 
|= AG¬H

For correctness of this integration it must be shown, that proving the above
formula is equivalent to proving the DCCA formula of definition 1. So the fol-
lowing equivalence must hold:

SYSΓ 
|= AG¬H ⇔ SYS |= E(Γ until H)

This means informally: “A set of failure modes can be proven critical in
SCADE if and only if it can be proven critical in a corresponding CTL
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proving environment.” The sketch of the proof is as follows (note that H and Γ
propositional formulas):

SYSΓ 
|= AG¬H

⇔
∃π ∈ SYSΓ : π |= FH

⇔ (∗)
∃π ∈ SYS : π |= FH and π |= GΓ

⇔ (∗∗)
∃π ∈ SYS : π |= (Γ until H)

⇔
SYS |= E(Γ until H)

For proving (*) the definition of SYSΓ is needed. The downwards equivalence
of (**) is trivial. Proof of the upwards direction of (∗∗) is a little tricky. Informally
one must show, that for every path (which has a finite prefix where Γ holds in
all states and on which H occurs) there also exists a continuation of this path
such that Γ never occurs.

Formally:

π ∈ SYS : ∃i ∈ N : ∀j < i πj |= Γ and πi |= H

⇒
∃π̃ ∈ SYS : ∀j ≤ i : πi = π̃i and π̃ |= GΓ

This implication is true for the considered SCADE models. All variables that
appear in the formula Γ are failure block outputs. More specifically they are
of the form “¬(state machine in state yes)”. Initially the state machine is in
state “no”. Because of the restrictions described in Sect. 3.2 a transition to state
“yes” is only possible if the external input “Fail-Input” is true (see Fig. 4). This
input is a nondeterministic system input. Therefore every trace where the state
machine is in state “no” can be extended such that the state machine stays
always in this state. This closes the proof of the upward direction of (**).

4 Application

As an example for the application of DCCA we present an analysis of a radio-
based railroad crossing. This case study is the reference case study of the German
research councils (DFG) priority program 1064. This program aims at bringing
together field-tested engineering techniques with modern methods of the domain
of software engineering.

The German railway organisation, Deutsche Bahn, prepares a novel technique
to control railroad crossings: the decentralised, radio-based railroad crossing con-
trol. This technique aims at medium speed routes, i.e. routes with maximum
speed of 160 km/h. An overview is given in [7].
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radio communication

central office

route
profile defects

Fig. 5. Radio-based railroad crossing

The main difference between this technology and the traditional control of
railroad crossings is that signals and sensors on the route are replaced by radio
communication and software computations in the train and railroad crossing.
This offers cheaper and more flexible solutions, but also shifts safety critical
functionality from hardware to software.

Instead of detecting an approaching train by a sensor, the train computes the
position where it has to send a signal to secure the level crossing. To calculate the
activation point the train uses data about its position, maximum deceleration
and the position of the crossing. Therefore the train has to know the position
of the railroad crossing, the time needed to secure the railroad crossing, and its
current speed and position. The first two items are memorised in a data store
and the last two items are measured by an odometer. For safety reasons a safety
margin is added to the activation distance. This allows for compensating some
deviations in the odometer. The system works as follows:

The train continuously computes its position. When it approaches a crossing,
it broadcasts a ‘secure’-request to the crossing. When the railroad crossing re-
ceives the command ‘secure’, it switches on the traffic lights, first the ‘yellow’
light, then the ‘red’ light, and finally closes the barriers. When they are closed,
the railroad crossing is ‘secured’ for a certain period of time. The ‘stop’ signal
on the train route, indicating an insecure crossing, is also substituted by compu-
tation and communication. Shortly before the train reaches the ‘latest braking
point’ (latest point, where it is possible for the train to stop in front of the cross-
ing), it requests the status of the railroad crossing. When the crossing is secured,
it responds with a ‘release’ signal which indicates, that the train may pass the
crossing. Otherwise the train has to brake and stop before the crossing. The
railroad crossing periodically performs self-diagnosis and automatically informs
the central office about defects and problems. The central office is responsible
for repair and provides route descriptions for trains. These descriptions indicate
the positions of railroad crossings and maximum speed on the route. The safety
goal of the system is clear: it must never happen, that the train is on the cross-
ing and a car is passing the crossing at the same time. A well designed control
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system must assure this property — at least as long as no component failures
occur. The corresponding hazard H is “a train passes the crossing and the cross-
ing is not secured”. This is the only hazard which we will consider in this case
study.

4.1 Formal Model

We now give a brief description of the formal system model in SCADE notation.
In Fig. 6 the SCADE model of the described system is shown.

FBY

F
B

Y

F
B

Y

communication

Hazard

train_control

crossing

train_physics

error_passed

error_brake

error_actuator

error_closed

error_comm

error_passed

error_actuator

error_closed

train_desired_speed

error_comm

error_brake

Pos

Crossing_State

Speed

Fig. 6. SCADE model of the system

The system model itself is made of four blocks: one for modelling the physics
of the train, one for modelling the railroad crossing, one for the communication
between the train and the crossing and one for modelling the control logic of the
train. To this system model failure mode blocks and a hazard block have been
added.

The following five different types of failure modes were taken into account:

– Failure of the brakes: error brake - This error describes the failure of the
brakes. It’s direct effects are modelled in block train physics.

– Failure of the communication: error comm - This error describes the
failure of the radio communication. It’s direct effects are modelled in block
communication.

– Failure of the barriers closed sensor: error closed - This error describes
that the crossing signals Crossing Secured, although it is not closed. It’s
direct effects are modelled in block crossing.

– Failure of the barriers’ actuator: error actuator - This error describes
that the actuator of the crossing fails. It’s direct effects are modelled in block
crossing.

– Failure of the train passed sensor: error passed - This error describes
that the sensor detecting trains which passed the crossing fails. It’s direct
effects are modelled in block crossing.
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The hazard of this system is, that the train passes an insecure crossing. We
call this hazard collision HCol. This is modelled by the following formula:

HCol := Pos ≤ Posds ∧ Pos + Speed > Posds ∧ ¬Crossing State = closed

In this formula Posds is an abbreviation for the position of the crossing (ds =
danger spot). It describes the location of the crossing. HCol evaluates to true,
if and only if the train passes the crossing and the barriers are not closed. In
Fig. 7 the SCADE block for this formula is shown.

closed

ColH

Crossing_State

Speed

Pos

Pos
ds

Fig. 7. Hazard block

Because of lack of space we will not show the whole model here, but only
describe the block “crossing” in detail.

The block in Fig. 8 shows the model of the crossing. It has inputs for a received
closing request (comm close rcv) and for data of the sensor on the track after
the crossing (sensor passed). Additionally, direct effects of failure modes “error
actuator”, “error passed” and “error close” are modelled in this block. We will
not explain how direct failure effects of failure modes can be modelled but refer
to [10] where methodology and modelling rules are described.

The component works as follows: Initially the barriers are opened. When the
crossing receives a close request from an arriving train - i.e. input comm close rcv
becomes true, the barriers start closing. This process takes some time. This is
modelled by timer block Timer Closing. After a certain amount of time the bar-
riers are Closed. They will remain closed until the train has passed the crossing
(input sensor passed). The barriers reopen automatically after a defined time
interval. This is a standard procedure in railroad organisation, as car drivers
tend to ignore closed barriers at a railroad crossing if the barriers are closed too
long. So it is better to reopen the barriers, than having car drivers slowly driv-
ing around the closed barriers6. The reopening is controlled by another timer
Timer Closed.

The direct effects of failures which are modelled in this component are marked
with grey boxes in Fig. 8. A faulty signal from the sensor, which detects when the
train has passed the crossing will also open the crossing. This is modelled by er-
ror passed. The barriers may also get stuck, if the actuator fails (error actuator).
6 The target systems for this technologies are railroad crossings in rural areas where

only one lane of the road is blocked by a barrier.
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Fig. 8. Model of the crossing

Error Closed models the failure of the sensor which is detecting the end position
of the barrier. This may lead to a scenario, where the crossing signals Cross-
ing Secured although the barriers are not closed. The other components are
modelled analogously.

4.2 Results of DCCA

This model was used to analyse the system with DCCA as described in Sect. 3.
All proofs were done using the Design Verifier model checker from Prover Tech-
nologies which is integrated into SCADE. This verification engine allows for two
different verification strategies: proof and debug. The first strategy can give rig-
orous proof of a property (by covering the complete state space of the model)
while the debug-strategy is much faster but aims at finding counter examples.
Unfortunately using the proof strategy for proving sets of failure modes to be
non-critical did not work, as even for one failure mode, running time was more
than three days. This is because linear time model checking has a higher com-
plexity than for example CTL model checking [8] where the necessary proofs
took less than one minute [12] with the SMV model checker.

Criticality of sets of failure modes can be shown with the debug strategy. The
verification to show that a set is critical was really fast (a couple of seconds to
a minute). For all of these critical sets a simulation file is generated which holds
the counterexample with values for input variables that lead to the violation of
the corresponding proof objective. This file can then be loaded and simulated
on the given model to observe its behaviour. The design verifier could prove the
following sets to be critical:

– {error passed}
– {error comm, error brake}
– {error closed, error actuator}
– {error brake, error actuator}

It was not possible (in a runtime of three days before interruption) to show,
that the other sets of failure modes are not critical. We did the same analysis with
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the SMV tool (by translating the model into an equivalent Kripke structure).
The result was that (1) all critical sets could also be proven critical with SMV,
(2) one additional critical set ({error comm, error closed}) was found7 and (3)
that all other sets were not critical. The runtime of SMV is – for this example –
very fast. Building the BDD and verifying all 13 proof obligations8 took less
than one minute.

5 Conclusion

Integration of DCCA into an industrial system development environment is pos-
sible. However, due to the limited expressiveness of the verification engine re-
strictions to occurrence patterns of failure modes were necessary. On the other
hand the possibility to carry out formal safety analysis without the need to
translate system models by hand is a great step forward for integration of for-
mal methods into an industrial development process. We showed the application
to a real world case study, presented the results and compared them in terms of
time needed for verification to CTL based verification methods.

Using the violation of certain safety properties is a rather natural way of
expressing hazards in SCADE. Defining failure modes via nondeterministic fail-
ure blocks is a rather general concept for integration of failures into a system
model, which integrates smoothly into SCADE. This process can easily be done
by an experienced system engineer. The algorithmic capabilities of SCADE’s
verification engine and the temporal logic available is not as strong as that of
state-of-the-art symbolic model checking tools. Nevertheless, formal safety anal-
ysis can be done in the framework and yields new results. It can be used within
the SCADE framework with only little additional effort and can be used as help
for system developers to rate their systems.

Future work will now investigate, if SCADE models can be automatically
(and semantically equivalent) translated into Kripke structures. This will allow
for much more powerful proof support as well as for more expressive logics.
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Abstract. Astrée is a parametric Abstract Interpretation based static analyser 
that aims at proving the absence of RTE (Run-Time Errors) in control programs 
written in C. Such properties are clearly safety properties since the behaviour of 
a C program is undefined after a RTE. When it analyses a program of the class 
for which it is specialised, Astrée is far more precise than general purpose static 
analysers. Nevertheless, for safety and industrial reasons, the small number of 
false alarms first produced by the tool must be reduced down to zero by a new 
fine tuned analysis. Through the description of experiments made on real pro-
grams, the paper shows how Abstract Interpretation based static analysis will 
contribute to the safety of avionics programs and how a user from industry can 
achieve the false alarm reduction process via a dedicated method. 

Keywords: avionics software, safety, verification, Abstract Interpretation, 
static analysis, run-time errors, Astrée. 

1   Introduction 

Safety-Critical avionics systems are composed of  sensors, actuators, hydraulic pipes, 
electrical cables and computers. All these components must contribute to system 
safety. The contribution of hardware components to the safety objectives is being as-
sessed using well-known techniques, that unfortunately do not apply to software com-
ponents. Avionics software is considered “good” provided its development process is 
DO178B compliant, “good” meaning that the program implements its specification 
safely. 

A way to view software verification from a safety-oriented perspective could be to 
get some safety properties as inputs of the software development process and to dem-
onstrate that these properties hold. How do we perform such a demonstration?  

Basically, software verification involves three kinds of techniques: testing, intellec-
tual analyses and formal verification. The first one, i.e., testing, is the most popular. It 
has the advantage of being based on actual executions of the program under test. 
Moreover, tests can be performed in an environment very close to the operational one. 
Nevertheless, testing is not sound. Indeed, even during the heaviest possible test cam-
paign, it is impossible to verify every possible execution of the program under test. 
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The second verification technique, i.e., intellectual analyses, is often used as a com-
plement to testing. But this not really a proof that a property holds. The last technique, 
i.e., formal verification, aims at formalising the proof that a program satisfies some 
properties. But “formal” is not enough, for obvious industrial reasons it must also be 
automatic. 

Ideally, safety properties of software should be demonstrated formally by auto-
matic tools. Indeed, when any sound formal technique allows to prove a property, this 
means there exists no execution of the program that falsifies the property. We recall 
that, by principle, testing is unable to do so.  

Existing formal proof techniques are Model-Checking, Theorem Proving and Ab-
stract Interpretation ([3], [4], [5]) based Static Analysis. The items to be verified  
being final products, i.e. source or binary code, Model-Checking is not considered 
relevant. For different reasons, the use of Theorem Proving to verify safety properties 
on complete real-size programs seems far beyond software engineers capabilities. 

Currently, to prove safety properties on real-life safety-critical programs, good 
candidates are static analysers aiming at proving a specific class of properties, i.e., 
WCET (Worst-Case Execution Time), Stack analysis, Floating-point calculus, Run-
Time Errors, Memory usage properties. Indeed, Abstract Interpretation based static 
analysers now do scale, i.e., they are able to analyse complete safety-critical pro-
grams. They are a first step towards the proof of almost all safety properties of  
software. A second big step will be the proof of so-called “user-defined” safety prop-
erties, as opposed to the above analysers, in which the properties are “hard-coded. For 
instance, Fluctuat C (CEA, French nuclear research centre) does not analyse C pro-
grams in order to prove properties submitted by the user, but to compute a safe ap-
proximation of the rounding errors in floating-point calculus and stability properties.  

The rest of the paper is focused on the proof of absence of Run-Time Errors in 
safety-critical avionics programs. Such a property is clearly a safety objective for 
software since after most RTE, the behaviour of a program is undefined. Indeed, al-
though some RTE raise an interrupt, e.g., floating-point overflow, other errors like 
out-of-bounds array access or dereferencing an invalid  pointer, might let the errone-
ous program do very bad things before any failure is detected. 

This paper is essentially an industrial experience report on the use of the Astrée 
Abstract Interpretation based static analyser. 

2   Astrée 

Astrée is a parametric Abstract Interpretation based static analyser that aims at prov-
ing the absence of Run-Time Errors in programs written in C. 

The absence of RTE has been defined in [2, §2]: “The absence of run-time errors is 
the implicit specification that there is no violation of the C norm (e.g., array index of 
bounds), no implementation-specific undefined behaviours (e.g., floating-point divi-
sion by zero), no violation of the programming guidelines (e.g., arithmetic operators 
on short variables should not overflow the range [-32768,32767] although, on 
the specific platform, the result can be well-defined through modular arithmetics).” 
 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Experimental Assessment of Astrée on Safety-Critical Avionics Software 481 

Notion of false alarm. To prove the absence of Run-Time Errors, Astrée computes an 
abstract invariant that safely represents (thanks to the Abstract Interpretation theoreti-
cal framework) a superset of all possible executions of the analysed program.  
Actually, the first abstraction Astrée implements consists in computing an over-
approximation of the reachable states of the analysed program, without storing the 
execution traces, i.e., the sequences of states. Intuitively, a program state is a pair 
(program location, memory state). The abstract invariant is the set of “per program lo-
cation abstract invariants”, otherwise called local invariants. A local invariant is  
defined for a particular location in the program and it is an over-approximation of all 
possible memory states at that point. 

By definition of Run-Time Errors, Astrée knows at which program locations an 
RTE might occur. Therefore, at each such location in the program, the diagnosis part 
of Astrée checks if the RTE condition might be satisfied by the local invariant. 

Unfortunately, as the abstract invariant is an over-approximation of all possible 
reachable states and, consequently, of all possible executions of the analysed pro-
gram, any RTE condition, like “division by zero”, might be satisfied by “false” execu-
tions only. By “false executions” we mean: executions that cannot occur in reality. 
When it is the case, the alarm is called a “false alarm”. 

 
Zero false alarm is mandatory, for industrial reasons. The main result of a Astrée is a 
list of alarms raised from the abstract invariant it computes. For each alarm, the user 
is informed about the program location at which the corresponding error could happen 
during real execution. Each alarm also comes with additional contextual information. 
Unfortunately, there is no simple and direct way to state whether an alarm is true or 
false. For each alarm, the user must look at the analysed program and analyse it 
backwards from the location at which the Run-Time Error might occur in a real exe-
cution. This user backward analysis aims at deciding whether it exists a run-time sce-
nario causing the error or not.  

By principle of  Abstract Interpretation, if all the alarms raised by an analysis, i.e., 
one run of an analyser, are false, then the proof of absence of Run-Time Errors is 
completed. The problem here is that such a human analysis is error-prone and time-
consuming.  

Therefore, the fewer false alarms an Abstract Interpretation based static analyser 
like Astrée produces, the better for the safety of the demonstration that the analysed 
program cannot produce Run-Time Errors. 

An analyser is said more precise than another one if it produces less false alarms 
for the same analysed program. The maximum precision is reached when all alarms, if 
any, are true. 

2.1   Specialisation of Astrée 

To achieve the above mentioned “zero false alarm” objective, an Abstract Interpreta-
tion based static analyser needs to be “specialised”. Here, specialisation deals with the 
ability to capture1 precise enough abstract invariants by taking into account the kind 

                                                           
1 In the Abstract Interpretation framework, this capture is performed via so-called “abstract 

domains”. 
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of computations performed by the analysed program. The “per program family spe-
cialisation” is performed at design time by the developers of the analyser. As ex-
plained in [1, §3.1], it is obtained by refinement of a previous more general-purpose 
analyser, making the new analyser more precise for any program of a targeted class of 
programs. 

One example of the specialisation of Astrée has consisted in turning it able to pre-
cisely – and safely, of course – over-approximate the output stream of floating-point 
values produced by digital filters. 

 
Specialisation to synchronous avionics programs. Such programs perform con-
trol/command operations and are those on which Astrée is the most precise, i.e., on 
which it produces the smallest number of false alarms. In avionics, these programs are 
automatically produced from SCADETM (formerly SAO) detailed specifications and 
have very peculiar computational characteristics. The following four paragraphs de-
scribe the most important specialisation issues. 

 
Synchronous programs. First, their scheduling is fully statically defined. It means 
that although they are made of parallel tasks, their serialisation is performed at design 
time, i.e., the execution of any piece of code only depends on the date at which it must 
execute. Such a date is given by the program’s clock. Mainly for that reason, these 
programs are said to be “synchronous”. There is no event driven task, no pre-emption, 
etc. For automatic analysis, the first important consequence in terms of precision, is 
that it is bounded by the maximum value of the clock, i.e., the maximum duration of 
an “aircraft mission”. Consequently, the “clock abstract domain” was the first due to 
the specialisation. 

 
Linear control flow – Intensive use of Booleans. Another characteristic of these 
automatically produced programs stands in their extremely linear code structure. As 
any code instruction belongs to a small library component, conditionals, i.e., 
“if(){}else{};”, or loops, e.g., “while() {};” are necessarily very local and 
contain a very limited number of instructions. For the loops, the consequence is that 
they are quite easy to analyse precisely. With respect to the conditionals, the conse-
quence of their extreme locality is that the program contains a lot of Booleans.  
Typical scheme is the computation of a Boolean value as the result of a condition on 
floating-point values, and then the test of this Boolean value elsewhere in the code for 
performing appropriate actions. In “classical” programming, this is done by testing 
the condition in an “if(){}else{};” statement and performing the actions in the 
scope of the first or second pair of “{}”. For a static analyser, the two situations are 
not similar. Indeed, without dedicated “abstract domain”, there is a severe loss of pre-
cision when the control flow is “encoded in Booleans”, like in the first of the two 
situations described above. To avoid this kind of loss of precision, Astrée contains an 
Abstract domain called the “Boolean tree domain”. 

 
Floating-point calculus. Synchronous control/command avionics programs use a 
large number of floating-point variables (over 10,000): inputs, state variables and out-
puts. The operations performed for computing the state variables from inputs and the 
output variables from the state variables at each clock tick (every 10ms, for instance) 
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represent thousands of lines of C code and are subject to accumulating rounding er-
rors. To be sound, Astrée abstracts each single floating-point operation in such a way 
that the computed set of values includes all possible rounding errors. It is a real chal-
lenge, also because the proper tool, i.e., Astrée, makes its own computations by using 
floating-point arithmetic. 

 
Digital filters. As mentioned above, the control/command program computations are 
those induced by the control theory. Beyond the arithmetic operations, typical basic 
operators are delays, derivation, integration, first and second order digital filters. The 
very first versions of Astrée did not take into account the last two specificities. Con-
sequently, the abstract domains existing at that time, e.g., intervals, clock, octagons, 
were not able to compute tight shapes of values for the outputs of the filters. As there 
are cascades of such filters, a lot of false overflows of floating-point values were 
raised by Astrée. The implementation of the Filter domain led to the suppression of all 
false alarms consecutive to the excessive over-approximation of the filter outputs.   

 
Last step in specialisation: fine tuning by the user. In spite of its dedicated do-
mains, Astrée might produce a few false alarms, which it is better to suppress by 
launching the tool again with a new set of “parameters”, if possible.  

In fact, after the user is convinced that a given alarm is false, next step is to under-
stand why the analyser could not compute an invariant precise enough to avoid this 
false alarm. Since abstraction consists in not taking into account some characteristics 
(or properties) of the real executions of the program, it might be the case that none of 
the Astrée abstract domains is able to capture the program properties that would have 
avoided the false alarm. In this case, there is no other way than asking the Astrée team 
to improve the tool.  

On the other hand, it might be that the domains able to capture the missing infor-
mation are there, but their complexity is too high to be applied a priori uniformly to 
the whole program. In this case, some domains like the octagons or the domain of par-
titions can be locally used by means of Astrée directives to be inserted in the analysed 
program. This final “per program specialisation process” matches the adaptation by 
parameterisation described in [1, §3.2]. It is sound, provided the user only inputs facts 
about the environment of the program, and hints (to be checked by the tool) on how to 
improve the precision. 

3   An Engineering Method to Handle Astrée Outputs 

The first analysis of a complete real-world application usually floods the user with 
many alarms, so one hardly knows how to get started. Let us try to define a methodi-
cal approach to deal with these alarms. 

3.1   The Need for Full Alarm Investigation 

Exhaustive alarm analysis is absolutely necessary: every single alarm must either dis-
appear by means of a more precise automated analysis, or be proved by the user to be 
impossible in the real environment of the program. Indeed, every time Astrée signals 
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an alarm, it assumes the execution of the analysed program to stop whenever the pre-
condition of the alarm is true. As a consequence, any true alarm may “hide” more 
alarms. Let us give a simple example with variable X of type int in interval 
[0,10]: 

Y = 1/X; 

Z = 1/X; 

Astrée will report a warning on line 1 (possible division by zero), but not on line 2: 
since the execution is assumed to stop whenever X happens to equal zero on line 1, 
line 2 cannot be executed unless X≠0. As a consequence, Astrée assumes X to be in 
interval [1,10] from line 2. 

3.2   How to Read an Alarm Message 

Here is an example of alarm reported by Astrée: 

bnrvec.c:127.2-10:: 

[call#APPLICATION_ENTRY@449:loop@466>=4: 

 call#SEQ_C3_4_P@543: 

 call#P_9_1_6_P@247: 

 call#BNRVEC_P@442:]: 

WARN: float->signed int conversion range [-6999258112, 
6991659520] not included in [-2147483648, 2147483647] 

Let us explain how this message is to be understood. Astrée warns that some 
float->signed int conversion may cause an integer overflow. It points pre-
cisely to the operation that may cause such a RTE: line 127 of the (pre-processed) file 
bnrvec.c, between columns 2 and 102: 

R3=E1*A3; 

where R3 has type int, while E1 and A3 have type float. 
All other information describe the stack. The analysis entry point3 is the 

APPLICATION_ENTRY function, defined line 449 of file appl_task.c. This 
function contains a loop at line 466. From the fourth loop iteration, at least in the ab-
stract semantics computed by the tool, there exists an execution trace such that : 

- function SEQ_C3_4_P is called on line 543 of file appl_task.c; 
- SEQ_C3_4_P calls function P_9_1_6_P on line 247 of file seq_c3_4.c; 
- P_9_1_6_P calls function BNRVEC_P on line 442 of file P9_1_6.c; 
- the floating-point product of the operands E1 and A3 ranges from -6999258112 

to 6991659520. 

                                                           
2 Line numbers start from 1, whereas column numbers start from 0. 
3 The user provides Astrée with an entry point for the analysis, by means of the --exec-fn 

option. Usually, this is the program's entry point. 
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However, this interval is not a subset of [-2147483648, 2147483647], 
hence contains values that cannot fit into a 32 bit signed integer. 

Of course, this does not necessarily mean there exists such an erroneous execution 
in the concrete semantics of the program: one is now to address this issue via a dedi-
cated method. 

3.3   How to Deal with Alarm Investigation 

As explained above, every alarm message refers to a program location in the pre-
processed code. It is usually useful to get back to the corresponding source code, to 
obtain readable context information. 

To investigate an alarm, one makes use of the global invariant of the most external 
loop of the program, which is available in the Astrée log file (provided the –dump-
invariants analysis option is set). Considering every (global) variable processed 
by the operation pointed to by an alarm, one may extract the corresponding interval, 
which is a sound over-approximation of the range of this variable. 

Then, we have to go backwards in the program data-flow, in order to get to the 
roots of the alarm: either a bug or insufficient precision of the automated analysis. 
This activity can be quite time-consuming. However, it can be made easier for a con-
trol/command program that has been specified in some stream language such as SAO, 
SCADETM or SimulinkTM. The engineering user can indeed label every arrow repre-
senting a global variable with an interval, going backwards from the alarm point. The 
origin of the problem is usually found when some abrupt unforeseen increase in vari-
able ranges is detected. 

At this point, we know whether the alarm originated in some “random code” or in 
some definite specialized operator (i.e., function or macro-function). Indeed, an effi-
cient approach is first to concentrate on alarms in operators that are used frequently in 
the program, especially if several alarms with different stack contexts point to the 
same operators: such alarms will usually affect the analysis of the calling functions, 
thus raising more alarms. 

Once we have probed into the roots of the alarm, we will usually need to extract a 
reduced example to analyse it. Therefore, we: 

- write a small program containing the code at stake; 
- build a new configuration file for this example, where the input variables V are de-

clared volatile by means of the __ASTREE_volatile_input((V 
[min, max])); directive. The variable bounds are extracted from the global 
invariant computed by Astrée on the complete program; 

- run Astrée on the reduced example (which takes far less time than on a complete 
program). 

Such a process is not necessarily conservative in terms of RTE detection. Indeed, 
as the abstract operators implemented in Astrée are not monotonic, an alarm raised 
when analysing the complete program may not be raised when analysing the reduced 
example. In this case, this suggests (though does not prove) that the alarm under in-
vestigation is probably false, or that the reduced example is not an actual slice of the 
complete program with respect to the program point pointed to by the alarm. 
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However, this hardly ever happens in practice: every alarm raised on the complete 
program will usually be raised on the reduced example as well. Besides, it is much 
easier to experiment with the reduced example: 

- adding directives in the source, to help Astrée increase the precision of its analysis; 
- tuning the list of analysis options; 
- changing the parameters of the example to better understand the cause of the alarm. 

Once a satisfactory solution has been found on reduced examples, it is re-injected 
into the analysis of the complete program: in most cases, the number of alarms  
decreases. 

4   Verifying a Safety-Critical Control/Command Program with 
Astrée 

We will now present experiments realised on a periodic synchronous con-
trol/command program developed at Airbus. Most of its C source code was generated 
automatically from a higher-level synchronous data-flow specification. Most gener-
ated C functions are essentially sequences of calls of macro-functions coded by hand. 
Like in [1, §4], it has the following overall form: 

declare volatile input, state and output variables; 

initialise state variables; 

loop forever 

read volatile input variables, 

compute output and state variables, 

write to volatile output variables; 

wait for next clock tick; 

end loop 

This program is composed of about 200,000 lines of (pre-processed) C code proc-
essing over 10,000 global variables. Its control-flow depends on many state variables. 
It performs massive floating-point computations and contains digital filters. 

Although an upper bound of the number of iterations of the main loop is provided 
by the user, all these features make precise automatic analysis (taking rounding errors 
into account) a great challenge. A general-purpose analyser would not be suitable. 

Fortunately, Astrée has been specialised to deal with this type of programs: only 
the last step in specialisation (fine tuning by the user) has to be carried out. The auto-
mated analyses are being run on a 2.6 GHz, 16 Gb RAM PC. Each analysis of the 
complete program takes about 6 hours. 

The very first analysis produces 467 alarms. With this program, after options re-
lated to loop unrolling and widening parameters have been tuned, we get 327 remain-
ing alarms to be further analysed by the industrial user, in order to decide whether 
they are false alarms or not. 
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4.1   Analyzing a False Alarm 

For instance, in this program, many calling contexts of the widely used linear two-
variable interpolation function G_P give rise to alarms within the source code of this 
function. Here are two examples: 

g.c:191.8-55:: 

[call#APPLICATION_ENTRY@449:loop@466=1:call#SEQ_C1_P@49
8:call#P_2_7_1_P@360:call#G_P@967:if@119=false:if@124=f
alse:loop@132=2:if@152=false:if@156=false:loop@164=2:]: 

WARN: float arithmetic range ([-inf, inf] 

g.c:191.8-55:: 

[call#APPLICATION_ENTRY@449:loop@466=1:call#SEQ_C3_3_P@
522:call#P_2_7_4_P@202:call#G_P@694:if@119=false:if@124
=false:loop@132=3:if@152=false:if@156=false:loop@164=2:
]: 

WARN: float arithmetic range ([-inf, inf] 

To understand the problem and be able to tune the analysis parameters, one is to 
build a reduced example from one of these contexts, say P_2_7_1_P. The following 
code is being extracted from the original P_2_7_1_P function: 

void P_2_7_1_P () { 

PADN13 = fabs(DQM); 

PADN12 = fabs(PHI1F); 

X271Z14 = G_P(PADN13, PADN12, G_50Z_C1, G_50Z_C2, & 
G_50Z_C3 [0][0], & G_50Z_C4 [0][0], ((sizeof( 
G_50Z_C1 )/sizeof(float))-1), (sizeof( G_50Z_C2 
)/sizeof(float))-1); 

} 

where: 

- fabs returns the module of a floating-point number; 
- DQM,  PHI1F, PADN13, PADN12 and X271Z14 are floating-point numbers; 
- G_50Z_C1, G_50Z_C2, G_50Z_C3 and G_50Z_C4 are constant interpolation 

tables. 

DQM and PHI1F are declared as volatile inputs in the analysis configuration file. 
Their ranges are extracted from the global invariant computed by Astrée on the full 
program: 

DQM in [-37.5559, 37.5559] 

PHI1F in [-199.22, 199.22] 
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On this reduced example, we get the same alarms as on the full program. All of 
them suspect an overflow or a division by zero in the last instruction of the G_P  
function: 

return(Z2*(Y2-C2[R3])+Z1*(C2[G2]-Y2))/(C2[G2]-C2[R3]); 

However, reading the code of G_P, one notices that G2=R3+1 always holds at this 
point. Moreover, in this reduced example, the interpolation table G_50Z_C2 is such 
that G_50Z_C2[i+1]-G_50Z_C2[i]>1 for any index i. Hence, these alarms are 
false alarms; we must now tune the analysis to get rid of them. 

To do so, we have to make Astrée perform a separate analysis for every possible 
value of R3, so it can check no RTE can possibly happen on this code. The way to do 
it, is to ask for a local partitioning on R3 values between: 

- the first program point after which R3 is no longer written; 
- the first program point after which R3 is no longer read. 

Let us implement this, using Astrée partitioning directives: 

__ASTREE_partition_begin((R3)); 

G2=R3+1; 

Z1=(X1-C1[R2])*(*(C4+(TAILLE_X)*R3+R2)) + 
(*(C3+(TAILLE_X+1)*R3+R2)); 

Z2=(X1-C1[R2])*(*(C4+(TAILLE_X)*G2+R2)) + 
(*(C3+(TAILLE_X+1)*G2+R2)); 

return(Z2*(Y2-C2[R3])+Z1*(C2[G2]-Y2))/(C2[G2]-C2[R3]); 

__ASTREE_partition_merge(()); 

This hint makes the alarms disappear on the reduced example. It has the same ef-
fect on the complete program. Besides, many alarms depending directly or indirectly 
on variables written after a call of function G_P disappear as well: the overall number 
of alarms boils down to 11. 

4.2   Analysing a True Alarm 

Let us describe one of the (few) remaining alarms: 

P8_4_1.c:506.0-38:: 

[call#APPLICATION_ENTRY@449:loop@466=1:call#SEQ_C4_7_P@
609:call#P_8_4_1_P@152:]: 

WARN: implicit unsigned int->signed int conversion 
range {3090427953} not included in [-2147483648, 
2147483647] 

This alarm points to the following (pre-processed) instruction: 

MODULE_NUMBER= 0x80000000 + 0x38343031 ; 

where MODULE_NUMBER has type int. 
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This code is fairly straightforward, in the sense that its execution does not depend 
on any input. Such a context allows for a very precise analysis, which is why Astrée 
does not report an interval, but a single possible value for the result of the addition 
(3090427953). 

The reason for this alarm is the following: the ISO/IEC 9899 international stan-
dard, describing the semantics of integer constants, specifies the type of an integer 
constant to be the first of the corresponding list in which its value can be represented. 
For a hexadecimal constant without a suffix, the list is: 

1. int 
2. unsigned int 
3. long int 
4. unsigned long int 
5. unsigned long long int 
6. long long int 

As 0x80000000 = 231 does not fit into a 32 bit int, this constant must have 
type unsigned int. 0x38343031>0, hence the result of the addition has type 
unsigned int and its value (3090427953) is outside the range of signed 32 bit 
integers, i.e. [-2147483648, 2147483647]. 

Most compilers will know how to deal with such a conversion, however, Astrée 
soundly and genuinely warns that the semantics of this code is unspecified by 
ISO/IEC 9899. Indeed, its behaviour is implementation-defined. 

One way to fix it (without using type long long int, which Astrée does not 
support) is to replace 0x80000000 by (-2147483647-1), which is probably 
what the programmer had in mind in the first place. 

4.3   Results 

On this control/command program, it has been possible for a non-expert user from in-
dustry to reduce the number of false alarms down to zero. 

5   Conclusion and Future Work 

Several theoretical papers, such as [1] and [2], already explained the solutions to the 
scientific and technological issues which the Astrée team had to deal with to demon-
strate that an Abstract Interpretation based static analyser, Astrée, can analyse real-
size industrial programs and be extremely precise. 

But it was a point of view of scientists. 
In our paper, we have tried to present an industrial point of view. The challenge for 

software engineers from industry was to be able to use the analyser Astrée on a real-
size program without altering it before the analysis. We have succeeded, as shown in 
the previous sections, thanks to two kinds of skills. First, being software engineers, 
we were not afraid of reading code. Secondly, we have had the confirmation that, to 
use an Abstract Interpretation based static analyser, it is mandatory to know enough 
about its underlying principles, and that it was within the reach of software engineers. 
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A proof that a safety-critical avionics program is free from Run-Time Errors is ob-
viously not a proof that this program is safe. Although we have not described it in this 
paper, we are also addressing complementary safety objectives such as WCET as-
sessment [6], safe memory use, precision and stability of floating-point computations 
[7]. To meet all these objectives is a first step towards the safety assessment of a  
program. 

Other future work will address the proof of absence of RTE on multi-threaded 
asynchronous programs. 
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Abstract. In this paper, we describe a method for detecting runtime
errors for programs which are written in an industrially sponsored safe
subset of C called MISRA C. The method is based on a novel model of
C programs: each C program is modeled as a typed transition system
encoded in the specification language accepted by PVS theorem prover.
Since the specification is strongly typed, proof obligations are gener-
ated, for possible type violations in each statement in C, when loaded
in the PVS theorem prover which need to be discharged. The technique
does not require execution of the program to be analysed and is capa-
ble of detecting runtime errors such as array bound errors, divide by
zero, arithmetic overflows and underflows etc. Based upon the method,
we have developed a tool, which converts MISRA C programs into PVS
specifications automatically. The tool has been used in checking runtime
errors in several programs developed for real-time control applications.

1 Introduction

Ensuring the absence of errors in software used in safety-critical systems is ex-
tremely important as the failure of such software can lead to system failure
causing a loss of safety function. Run Time Errors (RTEs) are the most subtle
but crucial type of errors found in software leading to system failures. Examples
of such errors are array indices out of bound, divide by zero and arithmetic over-
flows/underflows etc. This paper describes our work in developing techniques for
detection of such RTEs using a deductive approach.

Runtime errors can be detected using testing but testing cannot guarantee the
absence of such errors because of the very large number of test cases required.
Detecting run time errors statically through program analysis, helps in reducing
efforts in activities like Debugging, White box testing and Code reviews.
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Static Analysis tools like SPLint [7] are very useful in detecting RTEs related
to buffer overflow and pointer arithmetic but they do not address RTEs associ-
ated with arithmetic expressions. The program supervision tools e.g. those built
using Valgrind [12] require target program execution and suffer from the same
limitations as that of testing. Semantic Analysis based on Abstract Interpre-
tation [4] is a more rigorous approach to detect runtime errors statically. This
technique is based on data flow analysis which computes program properties
by converting programs into equations over datatypes represented as lattices
and then solving these equations over these lattices. Tools such as PolySpace
[14], ASTREÉ [6] use the abstract interpretation technique for the detection of
runtime errors in C programs. However these tools work on an abstract model
(sound but not complete) of a program and are prone to false positives which
are possible errors requiring further effort to investigate. Commercial tools also
do not allow tuning to reduce false positives. The tool ASTREÉ was designed to
work on a specific class of C programs called synchronous C programs [6], and
is being extended to general class of C programs. There are also excellent works
on software model checking like BLAST [8], SLAM [1] etc., which are used for
checking specifications related to software interfaces, shared resources in device
drivers etc. These tools model check specified property and do not specifically
address the issues of arithmetic runtime errors in a global manner.

In this paper, we explain an alternative approach for detecting run time errors
based on Type System [3] and describe an in-house tool developed based on this
approach. The technique is based upon modeling C programs as state transition
systems encoded in the specification language of Prototype Verification System
(PVS) [13]. State Transition System model of a program describes how variables
in the program are modified as program executes from beginning to end. The de-
scription of a given program as state transition system in PVS language is called
PVS Specification or PVS Model of the program. Since the specification language
of PVS is strongly typed, the possible runtime errors in the C program result
into type inconsistencies in the PVS specification. When the PVS specification is
typechecked, these type inconsistencies automatically generate proof obligations
called Type Correctness Conditions (TCCs). The PVS prover commands can be
used for discharging the proofs of these TCCs. If all the TCCs are proved, the
program can be declared as free of type violations and therefore corresponding
runtime errors. Presence of any unproved TCC indicates that the program is not
typesafe and it can be traced back to a possible runtime error in the C program.
Based on this method, we have developed a tool, which is currently capable to
detect array bound errors, divide by zero, arithmetic overflows/underflows and
illegal values for function parameters. This is a deductive technique and requires
user interaction but can handle infinite state systems. The proof process is auto-
mated to some extent using PVS strategies as scripts. However this approach of
checking properties cannot be fully automated as it sometimes requires power-
ful theorem proving techniques that can be applied only interactively. Although
the technique can be applied to general class of C programs, it is specifically
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targeted towards safety-critical software developed following software engineer-
ing practices like controlling module sizing, complexity(McCabe) etc.

The rest of the paper is organized as follows. Section 2 gives an overview of
the method. In section 3, we describe how C programs are modeled in PVS. A
brief account on how TCCs are proved in PVS and how to locate the RTE is
given in section 4. Section 5 presents a small example to illustrate the method.
Section 6 summarises our experience and provides some discussion related to
future work.

2 Overview

The method is based on modeling the C programs as state transition systems
in PVS specification language. The states are encoded as the evaluation of the
program variables over the data domains. The transitions are the execution of
statements and modeled as the effect of modifying the set of state variables par-
ticipating in the statement. Each state is expressed as a function of the previous
state and thereby the entire program is encoded as a list of states each in terms
of the previous states.

The datatypes of C (which are represented in the machine in finite size) are
modeled in PVS as subtypes of PVS types with limited size. For example int
datatype of C is represented as restr int which is a subtype of int datatype
of PVS restricted between the integer maximum and integer minimum. Each
operator in C is modeled as a PVS function with operands having subtypes
and return value having PVS type. For example, the binary + operator on
int datatype of C is represented as a PVS function add restr int with restr int
operands and int return value. When + operator is used in any expression in
the C program, it is replaced by the function add restr int in the PVS model.
This modeling scheme causes the typechecker to generate TCCs for all possible
runtime errors. This is explained in detail in section 3.

Most of the software development process standards like IEC [10] used in de-
veloping software for safety-critical applications recommend use of programming
rules which prohibit usages of unsafe constructs of a programming language.
MISRA C:2004 [11] standard is a set of programming rules for C language cat-
egorized in Required and Advisory rules. These set of rules together define a
subset of C Language. We have adopted this subset of C as it is a well accepted
standard and one can check compliance to MISRA standard using commercial
tools. Use of MISRA C also helps in meeting recommendations of standards for
safe subsets of languages. Limiting the method to MISRA C subset which does
not allow union datatype, pointer arithmetic and dynamic memory allocation
eliminates difficulties with PVS model generation and reasoning. These features
(allowed in general POSIX standard) are considered unsafe in context of safety
critical software.

Fig. 1, shows the steps that are followed in carrying out runtime error de-
tection. The source code compliant to the MISRA C standard is annotated
with formal annotations extracted from the constraints on the input data of the
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Fig. 1. Runtime Error Detection Process

program. These constraints are referred in the Fig. 1 as Data Range Specifi-
cations. The translator c2pvs, developed as part of this work, translates the
annotated MISRA C program to a PVS specification which is loaded in the
PVS theorem prover. The type inconsistencies in the PVS specification are de-
tected by the PVS typechecker causing generation of TCCs (Type Correctness
Conditions), which need to be proved before the specification can be consid-
ered typesafe. An unprovable TCC shows that the program is not typesafe and
indicates presence of a runtime error.

The annotations are written as comments in a predefined syntax, so that they
will be ignored by the compiler and the behavior of the source code will not be
changed. The annotations are translated by c2pvs to axioms or lemmas which
are used in the proofs. We explain the method with the help of the example
shown in Fig.2, where the value of z is computed based on the parameters a
and b.

There are two parameters a and b for the given function. Let the ranges of
values a and b can take at the entry to the function be,

1500 <= a <= 2000
500 <= b <= 1000

The function find z can be annotated with these constraints using annota-
tions of type pre-conditions denoted as pre. The annotated function is shown
in Fig.3. It can be seen that there is a divide by zero error in the statement
z = (a ∗ 4000)/(p − b); at l2 (shown by an arrow) as the expression p − b evalu-
ates to zero at this program point (Note that the statement z = (a∗1000)/(p−b);
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extern int ext glob;
int find z(int a,int b)
{

int p,z;
if(ext glob>0)

p=a;
else

p=b;
if(ext glob>0)

l1: z=(a*1000)/(p-b);
else

l2: z=(a*4000)/(p-b);
return z;

}

Fig. 2. Example Program

extern int ext glob;
int find z(int a,int b)
{

int p,z;
/*pre a≥1500 AND a≤2000
AND b ≥500 AND b ≤ 1000 end*/
if(ext glob>0)

p=a;
else

p=b;
if(ext glob>0)

l1: z=(a*1000)/(p-b);
else

l2: z=(a*4000)/(p-b); ←−
return z;

}

Fig. 3. Annotated Program

at l1 does not cause divide by zero error). The actual steps in the proof process
are further explained below.

As shown in Fig.1, the annotated function is given as input to c2pvs. The
c2pvs translator translates the function to a state transition system encoded as
PVS specification. The pre-condition is translated as an axiom in the PVS spec-
ification. The PVS specification generated by c2pvs is then loaded in PVS and
typechecked. The PVS typechecker generates the following TCC to guarantee
that p− b is not zero at l2 (sub restr int is the PVS representation of the binary
− operator in C).

OBLIGATION sub_restr_int(p, b) /= 0

The proof of this TCC is tried using the pre-condition and the PVS prover
commands. The proof fails, which indicates that p − b is zero at l2 and the
statement z = (a ∗ 4000)/(p − b) can lead to a divide by zero error. A similar
TCC is generated at l1 for the statement z = (a ∗ 1000)/(p − b) also; but it gets
proved indicating that the statement does not result into division by zero.

The annotations of type pre-conditions used here specify the ranges of values
function parameters and global variables can take at the entry to a function.
In general pre-conditions can be used to specify the constraints on the input
data (ranges of input data) and any condition which is true at the entry to
the function. It must be noted that these annotations are only used to capture
the ranges of the input data and do not capture the functional specifications of
each C function. Tools like PolySpace use similar Data Range Specifications for
global variables. The different types of annotations supported by the tool and
their syntax are listed in table 1.
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Table 1. Formal annotations and their syntax

Annotation Syntax Meaning

/ ∗ pre formula end ∗ / Conditions true at entry to function
/ ∗ post formula end ∗ / Conditions true at exit of function
/ ∗ postfunc formula end ∗ / Model effect of function calls
/ ∗ prefunc formula end ∗ / Conditions true before function calls
/ ∗ loopinv formula end ∗ / Loop invariants

Generating PVS specification of a C program involves modeling the datatypes
and modeling the execution semantics. The next section describes the modeling
scheme in detail.

The method can be used for runtime error detection of sequential C programs
at the unit level (C function level). However, to guarantee the absence of runtime
errors across the entire program, one can use compositional technique.

3 Modeling C Programs in PVS

3.1 Modeling Datatypes of C in PVS

The PVS type system has number, real, rational, integer, and natural as number
related types [13]. The variables of these types can have values varying from -∞
to +∞ (except natural where the range is 0 to +∞). Unlike PVS, in C the ranges
of values for datatypes are restricted. Hence we have modeled the C datatypes
as restricted types (subtypes) in PVS.

Modeling Integer and Character Datatypes: Integer and character data-
types of C are modeled as subtypes of the PVS datatype int, restricted between
the maximum and minimum representable values. For example, int datatype of
C is modeled as a subtype restr int.

restr_int:TYPE =
{x:int| x<=INT_MAX AND x>=INT_MIN AND INT_MAX>=INT_MIN}

where INT MAX and INT MIN are constants indicating the integer maximum
and integer minimum respectively for the machine on which the C program will
be executed. Similar modeling is used for other integer types and character types.

Operators on integer and character datatypes are modeled as functions with
subtype arguments and PVS type return value. For example, arithmetic oper-
ators on int are modeled as functions with restr int arguments and int return
value. Binary + on int is modeled as a function add restr int.

add_restr_int(x:restr_int,y:restr_int):int=x+y

Similar modeling is used for other operators on integer and character datatypes.

Modeling Floating Point Datatypes: Floating point datatypes of C (float,
double, and long double) are modeled as subtypes of PVS datatype real restricted
to the normalized range [9].
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For example, float datatype of C is modeled as a subtype restr float.

restr_float:TYPE={x:real|((x <= MAX AND x >= MIN) OR
(x <= -1*MIN AND x >= -1*MAX) OR (x = 0)) AND (MAX >= MIN)}

Here MAX and MIN are constants indicating the normalized float maximum
and normalized float minimum respectively.

Operators on floating point datatypes are also modeled as functions with sub-
type arguments and PVS type return value. But these functions modeling the
floating point operators first perform the operations with infinite precision and
then the result is converted to finite precision. Hence three rounding functions
round to nearest float, round to nearest double and round to nearest long double
are defined, which round an infinite precision real number to the nearest repre-
sentable float, double and long double number respectively. For example, binary
+ operator on float is modeled as a function add restr float.

add_restr_float(x:restr_float, y:restr_float): real
= round_to_nearest_float(x+y)

Similar modeling is used for other operators on floating point datatypes.

Generation of TCCs: The modeling scheme described above causes the type-
checker to generate proper TCCs for all possible runtime errors. We will illustrate
this with the help of two simple examples.

Let us consider the statement c = a + b; where a, b, c are int. The value of
a+ b can go beyond INT MAX or INT MIN which can get assigned to c causing
an integer overflow/underflow. Let us see how the typechecker detects this.

The statement c = a + b is modeled in PVS as,

c = add_restr_int(a,b)

The typechecker finds that the type of c is restr int which does not match with
the type of add restr int(a,b). Hence it generates the following TCC to ensure
that the value of add restr int(a,b) does not go beyond INT MAX or INT MIN
so that it is of type restr int.

add_restr_int(a,b)<=INT_MAX AND add_restr_int(a,b)>=INT_MIN

Proving this TCC ensures that a + b does not overflow/underflow in this
statement.

Let us consider another statement c = a/b; where a, b, c are integers. There
are two possible runtime errors in the statement.

1. b can be zero resulting in divide by zero error.
2. a/b can overflow/underflow.

The statement is encoded in PVS as,

c = div_restr_int(a,b)

The typechecker expects restr int and nonzero restr int (restr int with zero
excluded) as the argument types for div restr int. But it encounters restr int as
the second argument of div restr int. Similarly it expects restr int as the type
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of div restr int and encounters int instead of it. The typechecker generates two
TCCs.

1. b /= 0

This TCC is to ensure that b is not zero.
2. div_restr_int(a,b)<=INT_MAX AND div_restr_int(a,b)>=INT_MIN

This TCC is to ensure that the operation a/b does not overflow/underflow.

Proving these TCCs ensures that b is not zero a/b does not overflow/underflow
in this statement.

3.2 Modeling Execution Semantics of C in PVS

In our method, a C function is modeled as a state transition system, encoded as
a PVS theory (A PVS specification is composed of theories similar to the way a
C program is composed of functions). In the state transition system considered
here, a state is a type consistent valuation of all the program variables and
statements are the transitions between the type consistent states. A state is type
consistent if the valuations of state variables are within proper ranges defined
for that type. We encode the state transition system as a list of such states with
each state defined in terms of the previous states. i.e. a statement S causing the
si→sj transition is represented by sj where sj is defined as a function of si. A
program is type safe if all the reachable states are type consistent.

Modeling of State: State is modeled in PVS by a tuple of values. Each com-
ponent of the tuple corresponds to a variable of the program. In general consider
a C program with n variables v1, v2, . . . , vi, . . . , vn of types t1, t2, . . . , ti, . . . , tn.
The states of the program are modeled as tuples of type [t1, t2, . . . , ti, . . . , tn].
For example a state sa is modeled as

sa : state = (sa‘1, sa‘2, . . . , sa‘i, . . . , sa‘n)

Now the components of the tuple sa‘1, sa‘2, . . . , sa‘i, . . . , sa‘n denote the values
of the program variables v1, v2, . . . , vi, . . . , vn respectively at the state sa.

Assignment Statement: An assignment statement modifies the value of a
program variable and thus changes the state of the program. It can therefore
be modeled in PVS as a new state resulting from the application of a state
transition on the present state.

Sequential Composition: Consider a sequence of statements S1; S2; Let the
current state of the program be sa. Let the statement S1 changes the program
state to sa+1. The statement S2 now acts on the state sa+1, to get sa+2 as the
resulting state. We represent this in PVS as

sa+1 : state = state transition for S1(sa)
sa+2 : state = state transition for S2(sa+1)
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The statements after S2 will act on the state sa+2 and are represented in the
same manner as S1 and S2.

If-else Statement: Consider an if-else statement which occurs at a program
state sa as shown in the table 2. After the if-else statement at state sa, the
program can go to two possible states sb (if the condition is true) or sd (if the
condition is false). The statements inside the if part will operate on the state sb

and those inside the else part will operate on sd. Let sc be the final state in the
if part and se the final state in the else part. The states sb to sc and sd to se

are not reachable always and their reachability depends on the if condition. The
state after the whole if-else statement sf will be either sc or se. Hence modeling
the if-else statement includes modeling of all the states from sb to sf .

Loops: Consider the loop while(B) S , where B is the loop condition and S is
the statement part of the loop. We take loop invariants as input from the user
(A loop invariant is defined as a formula which is true before control enters the
loop, remains true each time the program executes the body of the loop, and
is still true when control exits the loop). Now the state after the loop can be
modeled as any state satisfying the condition:

(loop invariant) AND NOT(loop condition)

The accuracy of the proofs depends on the correctness and accuracy of the
user supplied invariants. Tools like STeP [2], which can generate loop invariants
automatically can be used for this purpose.

The possible runtime errors inside the loop are detected by handling the state-
ments inside the loop separately i.e. by putting the translation of these state-
ments into another theory. This theory is named as looptheory i for the ith loop
in the function. As the loop invariant conjuncted with loop condition is true
before entry to the loop body, it is put as a pre-condition to these statements.
Typechecking this theory generates TCCs representing possible runtime errors
inside the loop, the proofs of which are tried by using the pre-condition. Thus
a C function with n loops will generate a PVS specification with n + 1 theories
i.e. n loop theories and one main theory.

The PVS transformations of different constructs in a C program with n vari-
ables v1, v2, . . . , vi, . . . , vj , . . . , vn of types t1, t2, . . . , ti, . . . , tj , . . . , tn respectively
are illustrated in detail in the table 2. All the constructs are labeled with iden-
tifiers indicating the states at which they occur.

4 Proving TCCs in PVS and Tracing RTEs to Source
Code

Most of the TCCs generated in PVS can be proved by using the axioms in the
PVS theory, type predicates on the program variables and type predicates on
the loop states followed by the application of prover command grind. The tool
automates the proofs of such TCCs by generating a strategy which performs the
above steps. Such a strategy is generated for each theory.
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Table 2. The C constructs and their PVS transformations

C construct PVS transformation

sa : vi = expr; sa+1 : state = (sa‘1, sa‘2, . . . , expr, . . . , sa‘j, . . . , sa‘n)

sa : vi = expr; sa+1 : state = (sa‘1, sa‘2, . . . , expr, . . . , sa‘j, . . . , sa‘n)
vj = expr; sa+2 : state = (sa+1‘1, sa+1‘2, . . . , sa+1‘i, . . . , expr, . . . , sa+1‘n)

sa : if(cond)
{
sb : statements sb : state = if cond(sa) = true then sa else unreachable endif
sc : sc : state = state transition for last statement in if part

} (state previous to sc in if part)
else
{
sd : statements sd : state = if cond(sa) = false then sa else unreachable endif
se : se : state = state transition for last statement in else part

} (state previous to se in else part)
sf : sf : state = if reachable(sc) then sc else se endif

sa : while(B) S
sb : substate : type = {s : state|loop invariant(s) and not(B(s))}

sb : substate

But there exists TCCs which cannot be proved this way; particularly those
related to multiplication, and division. This is due to the reason that grind
cannot handle nonlinear arithmetic. For example, let us consider that we want
to prove in PVS the following

{-1} a >= 0
|-------

{1} a * a >= 0

grind alone will not prove this. We need to use a lemma le times le pos from
the prelude (prelude consists of theories that are built into the PVS system),
properly instantiate it and then invoke grind. The need to select and use lemmas
from prelude and instantiating them makes the automatic discharge of such
TCCs difficult. Such TCCs should be tried interactively.

Presence of any unproved TCC indicates the presence of possible RTEs in the
original C program. Each TCC generated by PVS is identified by the state and
the operation from which it is generated. The name of a TCC si TCCj indicates
that it is generated from the jth operation of the ith state in the PVS model. As
we know the number of states generated by each type of C statement, given that
a TCC si TCCj is unproved we can infer the C statement causing the possible
RTE from the state number i. The exact operation causing the RTE can be
inferred from the operation number j. The type of RTE detected (array bound
errors, divide by zero etc.) can be found out by analyzing the TCC description
generated by PVS. Currently this functionality of tracing the RTEs from the
unproved TCCs is not incorporated into the tool and effort is on to automate it.
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5 Example

We now present an example to illustrate the method.

int average(int n)
{

int i,sum,avg;
/*pre n>=1 AND n<=100 end*/
i=n;
sum=0;
while(i>0)
{
/*loopinv (i>=0) AND (i<=n) AND (n>=1) AND (n<=100) AND
(sum = (n*(n+1)-(i+1)*i)/2) end*/
sum=sum+i;
i=i-1;
}
avg=sum/n;
return(avg);

}

The function average finds out the average of first n natural numbers. The user
supplied pre- condition and the loop invariant are inserted as formal annotations.
The PVS specification generated for the function is shown below.

looptheory_1:THEORY
BEGIN
...
state:TYPE=[bool,void,restr_int,restr_int,restr_int,restr_int,restr_int]
s1:state
axiom_3: AXIOM (s1‘5>=0) AND (s1‘5<=s1‘4) AND (s1‘4>=1) AND

(s1‘4<=100) AND (s1‘6=(s1‘4*(s1‘4+1)-(s1‘5+1)*s1‘5)/2) AND
great_restr_int(s1‘5,0)
...

s3:state=IF s2‘1=FALSE THEN s2 ELSE
(s2‘1,s2‘2,s2‘3,s2‘4,sub_restr_int(s2‘5,1),s2‘6,s2‘7) ENDIF

END looptheory_1

average:THEORY
BEGIN
.....
state:TYPE=[bool,void,restr_int,restr_int,restr_int,restr_int,restr_int]
s1:state
axiom_3: AXIOM s1‘4>=1 AND s1‘4<=100
.....
s3:state=IF s2‘1=FALSE THEN s2 ELSE (s2‘1,s2‘2,s2‘3,s2‘4,s2‘5,0,s2‘7)

ENDIF
loopcondition_1:[state->bool]=LAMBDA(u:state): (great_restr_int(u‘5,0))
loopinvariant_1:[state->bool]=(LAMBDA(u:state): ( (u‘1=s3‘1) AND

(u‘2=s3‘2) AND (u‘3 =s3‘3) AND (u‘4=s3‘4) AND (u‘7= s3‘7) AND
(u‘5>=0) AND (u‘5<=u‘4) AND (u‘4>=1) AND (u‘4<=100) AND

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



502 A.K. John et al.

(u‘6=(u‘4*(u‘4+1)-(u‘5+1)*u‘5)/2)))
substate_1:TYPE={s:state | loopinvariant_1(s) AND

NOT(loopcondition_1(s))}
axiom_4: AXIOM EXISTS (x1: substate_1): TRUE
s4:substate_1
.....
s6:state=IF s5‘1=FALSE THEN s5 ELSE

(s5‘1,s5‘2,s5‘3,s5‘4,s5‘5,s5‘6,s5‘6) ENDIF
END average

The PVS specification consists of two theories. The first theory looptheory 1
is the translation of the loop and the second is the translation of the function
average. The statements inside the loop are translated to states s1 to s3 in
looptheory 1. loop invariant AND loop condition is translated to axiom axiom 3
in looptheory 1. In theory average, the pre-condition is translated to axiom 3
and the loop invariant is translated to [state → bool] function loopinvariant 1.
s4 is the state after the loop defined as a constant of the type substate 1 which is
a subtype of the state type satisfying loopinvariant AND NOT(loop condition).

The tool generates strategy looptheory 1 strategy for the theory looptheory 1
and average strategy for the theory average. The PVS specification is type
checked. Table 3 shows the TCCs generated, their significance and how they
are proved. All the TCCs generated are proved. Hence there are no arithmetic
overflows/underflows and divide by zero in the function average.

Table 3. The TCCs, their significance and proofs for function average

TCC Name Theory Name Significance of the TCC How the TCC is proved

s2 TCC1 looptheory 1 To ensure sum + i does not Interactively
overflow/underflow inside
the loop

s3 TCC1 looptheory 1 To ensure i − 1 does not (looptheory 1 strategy)
overflow/underflow inside
the loop

s5 TCC1 average To ensure n is nonzero (average strategy)
in operation sum/n

s5 TCC2 average To ensure sum/n does Interactively
not overflow/underflow

6 Conclusion and Future Work

In this paper, we have presented an approach for detecting run time errors in
MISRA C programs by transforming the input programs into typed PVS specifi-
cations and subsequently discharging TCCs using PVS. The method is capable of
detecting RTEs such as array out of bound, divide by zero, overflow/underflow.
With tools based on abstract interpretation resolving false positives requires
manual review of the code. In the proposed approach, an unproved TCC has a
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direct correlation with the source line and it is easy to track the cause of the
RTE in the source code. Also the loop invariants can be tightened to reduce the
false positives.

The tool was initially validated with a number of examples. Table 4 gives
an abstract of these examples as a list with the RTEs detected. The names are
indicative of the operation performed by each function. These examples were
also checked using PolySpace.

The tool was used for checking a library of function blocks for runtime errors.
This function block library was used in SCHEMER (an Integrated Development
Environment (IDE) for Function Block Diagram (FBD) based Programmable
Controllers). SCHEMER contains a code generator that generates C code from
the Function Blocks based process logics diagram. SCHEMER is being used for
developing process logics and controls in safety critical applications of nuclear
reactors. The constraints on the function parameters were extracted from the
specifications in the User Requirements Document (URD) and were inserted into
the code as annotations of type pre-conditions. The annotated code was given
as input to the tool which checked for any possible runtime errors. The function
block library consisted of 40 functions. Out of them some were found to have
possible arithmetic overflow/underflow and divide by zero.

Table 4. List of examples used for testing the tool

Function Name TCCs generated TCCs unproved RTEs

Sqare Root 11 2 Illegal value for function
parameter

Sqare Root concv 10 0 No RTEs
Close To Zero 11 4 F loating point overflow/

underflow
PID 15 7 F loating point overflow/

underflow, divide by zero
Non Infinite Loop 11 0 No RTEs

One of the requirements for the application of the tool is to provide the loop
invariant for programs having loops. This may be difficult for general complex
programs but in safety critical software the functions tend to be simple and our
experience has been that with little effort the invariants can be written down.

In the present implementation, the proof process is not completely automated.
User interaction with PVS is needed for proving TCCs related to loops and
nonlinear arithmetic operations. Tracing the RTEs from the unproved TCCs is
also not automatic. We are developing a front end GUI which can help the user
to manage the proof process. There are also few issues with PVS cache size which
we are trying to resolve. This influences the time taken to discharge the TCCs
and the size of the program which can be checked for RTEs.

It would be an interesting future work to combine the general theorem proving
capabilities with BLAST like model checking techniques to improve the automa-
tion of the class of properties that we are interested. The tools like PVS are,
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indeed, useful for this as they can incorporate many automatic decision theories.
In this sense, the proposed work, being based upon PVS, would be useful and
forms a first step for combining theorem proving and model checking techniques
for the class of properties that we are interested in.

Acknowledgments. We wish to thank the Board of Research in Nuclear Sci-
ences (BRNS) for supporting this work.
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Abstract. This paper presents an extension and refinement to the mod-
elling of architectures for safety functions as suggested in IEC61508-6.
We propose an implementation oriented taxonomy providing an easy and
unambiguous approach to model real life architectures in conformance
with IEC61508.

Modelling safety related architectures with this taxonomy results in
the following benefits: (1) A clear and unambiguous approach to the se-
lection of required diagnostic techniques and measures (IEC61508-2 and
IEC61508-3) based on the Safety Integrity Level (SIL); (2) Quick esti-
mates of Probability of Failure on Demand (PFD)/ Probability of Failure
per Hour (PFH) / Safe Failure Fraction (SFF) values in relation to the
quantitative SIL requirements; (3) Optimising the design and perfor-
mance by allocating specific diagnostic techniques to specific elements
of the architecture; (4) Improved overview and understanding of the
architecture supporting the development and certification process. The
taxonomy is part of ongoing effort to automate the selection and con-
formance checking of diagnostic techniques and measures with IEC61508.

Keywords: dependable architectures, safety related architectures,
IEC61508.

1 Introduction

A fundamental step in the development of safety-related functions to a given SIL
in accordance with IEC 61508 is the identification of an adequate and realisable
system architecture. The standard provides, in its part 6, some guidance for this
step. Typical structures with different degrees of redundancy (”MooN”1), with
or without diagnostics, are presented. For each structure, formulas and tables are
provided for calculating Probability of Failure on Demand (PFD) / Probability
of Failure per Hour (PFH) / Safe Failure Fraction (SFF) values.
� Thanks are due to Prof. Christo Angelov (University of Southern Denmark) and

Jørgen Born Rasmussen (Center for Software Innovation, Denmark) for inspiration
and supervision, and The Danish Ministry of Science, Technology and Innovation
for a scholarship.

1 MooN - M out of N, e.g. 1oo1, 1oo2, 2oo3, etc.

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 505–517, 2007.
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These ”MooN(D)”2 architectures represent a high level of abstraction, and
model a rather ”ideal world” of safety-related systems. The developers, however,
must implement real-life systems, where safety functions may share resources
with non safety-related functions, required diagnostic functions may lead to per-
formance problems, or hardware-implemented redundancy and diagnostics may
not be possible but must be implemented in software.

This paper sets out to describe a taxonomy for refining the high-level archi-
tectures towards more implementation-near models in a formalised way, in order
to both assure conformance with the requirements implied by a given SIL, and
to account for the constraints and particularities of the real-life system to be
developed.

Section 2 briefly describes the architectures from IEC 61508-6. Section 3 de-
scribes the foundation for the proposed taxonomy as well as the proposed tax-
onomy; the taxonomy is illustrated for the 1oo2D architecture for a single and
a redundant processor platform in section 4. In section 5 the modelled 1oo2D
architecture for the redundant processor platform is mapped to the hardware
block diagram in the context of a safety related frequency converter. Section
6 and 7 describes the related work and future work respectively and section 8
concludes the presented taxonomy.

2 Architecture Modelling Based on IEC 61508-6

IEC 61508-6 [3] describes a number of different architectures to be used when
modelling safety related systems. The aim of the system architecture is to cal-
culate PFD/PFH value and to change the properties of the architecture to fulfil
the required safety integrity level (SIL). Figure 1 shows a 1 out of 2 architec-
ture with diagnostics (1oo2D), where the channels perform the safety function
of the system. The diagnostics can activate a safe state independently from the
channels.

Fig. 1. 1oo2D architecture [3]

3 Taxonomy

This section describes the proposed taxonomy, which is an extension, and re-
finement to the way architectures are described in IEC 61508-6. The aim is to
simplify the modelling of safety related architectures in relation to the required
2 MooN(D) - M out of N with or without Diagnostic.
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diagnostic techniques and measures as well as to provide an implementation ori-
ented representation of the architecture. We will firstly analysis and describe the
notation used in IEC 61508-6 to model the architecture, which was used as a
basis to develop the proposed taxonomy in the paper.

The architectures presented in IEC 61508-6 are modelled consisting of ele-
ments such as channel, diagnostic and voting where the flow/relations between
elements are modelled. The elements are represented using either a solid or dot-
ted line where the solid line is used to represent elements related to the imple-
mentation of the safety function and the dotted line is used to represent elements
related to the diagnostic functions. This defines the notation and functional rep-
resentation used in IEC 61508-6 to model safety related architectures and will
in the following be denoted as Safe and Diagnostic. Table 1 lists the foundation
of the taxonomy used in IEC 61508-6.

Table 1. IEC 61508-6 architectural taxonomy

Function Notation
Safe

Diagnostic

In IEC 61508 it is not described if a hardware or software implementation
has to be used to implement the architecture of the system - e.g. a watch dog
timer could be either implemented in hardware or software. The 1oo2D archi-
tecture models a redundant system consisting of two channels. Realising such
an architecture using a single processor system requires other measures to be
applied compared to those for a dual processor system, in order to argument for
the redundancy of each channel. The hardware/software platform is currently
not modelled as part of the safety related architecture and it is therefore the
safety engineer’s responsibility to map the modelled MooN architecture onto
the platform of the system. The relation between the architecture and the plat-
form is therefore typically described using plain text and/or block diagrams.
Therefore, in order to represent an element as either hardware or software, the
taxonomy is extended such that elements implemented in hardware are denoted
as Physical where elements implemented in software are denoted as Virtual. A
colour notation is used to differentiate between Physical and Virtual elements
in the architecture. The Physical elements are represented with a black colour
and Virtual elements are represented with a grey colour.

Another important aspect of today’s safety related systems is how to han-
dle non-safety related functions such as normal operational data transmitted
over a safety field bus such as PROFIsafe or DeviceNet Safety. IEC 61508 re-
quires that the non-safety and safety related elements have a clearly defined
interface, in order to justify the independence between these. Representing non-
safety related elements, as part of the architecture is one approach to model the
interface/relation between the Safe and Non-safe elements. A Non-safe type is
therefore added to the taxonomy and represented in the architecture using a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



508 J. Berthing and T. Maier

Table 2. Safety architecture taxonomy

Function
Implementation

Physical Virtual

Safe

Diagnostic

Non-safe

dashed line. The three new identified types Physical, Virtual and Non-safe are
added to the taxonomy derived from IEC-61508-6 and listed in Tab. 2.

The taxonomy from Tab. 2 is used to classify the elements of the safety related
architecture and enables an element to be represented as either Safe, Diagnostic
or Non-safe and are further refined as implemented in either hardware (Physical)
or software (Virtual). This makes it possible to clearly differentiate between the
elements of the architecture - e.g. a sensor that is part of a safety function (solid
line) from a sensor used for diagnostic purposes (dotted line).

A number of typical elements have been identified and listed in Tab. 3 some
of the elements are general (e.g. Sensor, Actuator, Final element actuator, Pro-
cessor and Bus) where others are specific (e.g. Diagnostic, Safe channel, Fail safe
sensor and Fail safe actuator). General elements can in principle be represented
as one of the three functions from the taxonomy; whereas the specific elements
are limited to either Safe or Diagnostic. Table 3 lists the elements that we have
used with success in the development of this taxonomy and do not represent a
final list of elements.

Using the taxonomy from Tab. 3 to represent a processor that is part of the
safety related function is therefore represented as Safe (solid line) and Physical
(black colour), where a temperature sensor used to implement a diagnostics
function is represented as Diagnostic (dotted line) and Physical (black colour).

If an element of the architecture is used to represent more than one function of
the taxonomy (Safe, Diagnostic and/or Non-safe) then the following hierarchi-
cal rule is used to determine how the element is represented: Safe < Diagnostic
< Non-safe, meaning that the Safe function has higher ”priority” than the Di-
agnostics and Non-safe functions. Therefore if a sensor implements a Non-safe
function and the measured data is used in relation to the diagnostics of the
system, the sensor is represented in the architecture as Diagnostic (Dotted line).

An element can encapsulate other elements of the same and different type
in order to give a detailed representation of the architecture if necessary, e.g. a
processor encapsulating a safe channel and a number of diagnostic techniques
represented as software elements in the processor. This makes it possible to
model a safety related system implemented on e.g. a System-On-Chip platform
consisting of one or more processors. Figure 2 represents a System-On-Chip
configuration consisting of two Safe Physical processors connected via a Safe
Physical bus.

The 1oo1 architecture from IEC 61508-6 (See Fig. 3) is used as an example
to illustrate how the taxonomy in Tab. 2 and the elements from Tab. 3 is used
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Table 3. List of architectural elements

Element Description
Sensor (S) Source of signals or data (safety-related if solid,

diagnostic-related if dotted, non-safe if dashed)

Actuator (A) An interface to the environment representing e.g
a switch, relay, door lock, ect.

Final element actua-
tor (FE)

The final element actuator can, depending on the
architecture of the system, activate the safety
function

Processor Contains logic and functions for safety, diagnos-
tics, and normal operation.

Diagnostic Implements a diagnostic function in either hard-
ware or software

Safe channel Implements a safety function (on a processor)

Bus Uni and bidirectional communication between el-
ements either hardware (e.g. network) or software
(e.g. message passing) implementations

Fail safe sensor (FS) Sensor implementing self diagnostic, or defined
failure behaviour

Fail safe actuator
(FA)

Actuator implementing self diagnostic

Fig. 2. System-On-Chip configuration

to model the architecture of a safety related system realised on two different
hardware platforms. Figure 4(a) shows how the 1oo1 architecture is modelled
consisting of a microprocessor encapsulating the safe channel implemented in
software and the diagnostics of the channel implemented in hardware where
Fig. 4(b) shows a microprocessor encapsulating the safe channel and diagnostics
element implemented in software. Figure 4 illustrates the use of the Physical and
Virtual notation to represent the elements of the 1oo1 architecture in relation
to Fig. 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



510 J. Berthing and T. Maier

Fig. 3. 1oo1 architecture [3]

(a) Software implemented safe chan-
nel and hardware implemented diag-
nostics

(b) Software implemented safe chan-
nel and diagnostics

Fig. 4. 1oo1 architecture of a logical subsystem

4 1oo2D Architecture - Single and Redundant Processor
Realisations

The 1oo2D architecture is used as an example to demonstrate how the taxonomy
is used to model the safety related architecture of a safety related component
- e.g. an emergency shutdown system. The safety related system is realised on
two hardware platforms, a single and a redundant processor platform where both
systems must fulfil the Safety Integrity Level (SIL) of 2.

The sensor subsystem consists of an emergency switch, a safe field bus and a
reset switch. The reset switch is used to reintegrate the safety functions in case of
a power cycle and/or the activation of the safety function (this does not include
the activation via the safe field bus). The emergency switch and the safe field
bus are used to activate the safety function. The logical subsystem consists of a
non-safety related function that implements a gateway to/from a CAN network
for the operational data transmitted over the safe field bus. The final element
subsystem implements two independent ways to activate the safety function of
the system.

Both hardware platforms are modelled using the following three steps: (1)
The 1oo2D architecture from figure 1 is mapped onto the platforms as a basis
for the (2) selection of diagnostic techniques and measures - (3) These are then
allocated to the architecture and the relation between the elements is modelled.
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4.1 Mapping the 1oo2D Architecture to the Hardware Platforms

The 1oo2D architecture (See Fig. 1) is mapped onto the single and the redun-
dant processor platform, see Fig. 5 for the single and Fig. 6 for the redundant
processor architecture. The electronic interface of the sensor subsystem for both
architectures is modelled as two Diagnostic actuators (A) that are used to diag-
nose the sensors (S) and the input circuits of the processor. The Safe actuators
(A) are used to activate the safety function and to diagnose the output circuit
and final element actuators (FE). The actuators of the sensor and the final ele-
ment subsystem could be implemented as a switch to remove the supply voltage
for the input circuit of each sensor and likewise to remove the supply voltage for
each final element actuator (FE).

The non-safety related elements for both architectures are represented using
the Non-safe function from table 2; this clearly defines where the non-safety
related functions (Gateway and Reset handler) interact with the other elements
of the architecture. The safe field bus in Fig. 5 and 6 shows how the non-safety
related gateway function is modelled exchanging the operational data between
the two busses where the received safe data is passed as input to both safe
channels.

4.2 Selection of Required Diagnostics Techniques and Measures

Figure 5 and 6 are used to select the required diagnostic techniques and mea-
sures to be implemented in order to fulfil the SIL requirements. The modelled
architectures do already include elements representing the diagnostics part of
the architecture in a high level abstraction where the aim of the remaining two
steps is to select and represent these as part of the architecture. Based on the
intermediate models of both architectures the required diagnostics techniques
and measures are selected from the tables A.2 - A.15 from IEC 61508-2 [1].
The resulting set of selected measures are listed in Tab. 4 denoted with a ”*”
for both platforms where techniques denoted with a ”(*)” are selected but not
represented as part of the architecture.

Fig. 5. Single processor 1oo2D architecture
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Fig. 6. Redundant processor 1oo2D architecture

4.3 Allocation of Diagnostics Techniques and Measures

The selected techniques are then allocated to the architecture of each platform as
either physical or virtual diagnostic elements and the relation between elements
is modelled. See Fig. 7 and 8 for the single and the redundant architecture
respectively. The architectures for both platforms do not explicitly model how
each diagnostics element activates the safe state of the system if a failure is
detected.

The relation between hardware and software elements shows for example how
the diagnostic element (A.2.5, A.6.1 and A.13.1) uses the ”safe” actuator (A)
to diagnose the output circuit related to the final element actuator (FE) and
monitors the feedback. Other diagnostics techniques like A.4.3 (Signature of
one word) and A.4.5 (Block replication) are applied to the software design and
implementation of the other software elements.

The main difference between the single and the redundant processor architec-
tures is that the safe channels of the single processor platform are represented
as inverse of each other where this is not necessary in the redundant processor
case. This is derived from the diagnostic techniques A.3.5, A.4.5 and A.6.5 argu-
menting for the independence between the safe channels in the single processor
case.

The safe field bus and the bus between the processors in the redundant ar-
chitecture (Fig. 8) both transmits Safe, Diagnostics and Non-safe data, the safe
field bus is modelled such that the data fans out/(in) where the communica-
tion between the two processors are modelled as Virtual relations across the
boundary of each processor.
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Table 4. Selected techniques and measures for both platforms

Table Techniques / Measures
Maximum diagnos-
tic coverage consid-
ered achievable

Single pro-
cessor

Redundant
processor

A.2 Electrical sub-
system

A.1.5 Idle current principle low (*) (*)

A.3 Electronic
subsystem

A.2.1 Test by redundant hard-
ware

Medium *

A.2.5 Monitored redundancy High * *

A.4 Processing unit
A.1.3 Comparator High *
A.3.2 Self-test by software: walk-
ing bit (one-channel)

Medium * *

A.3.5 Reciprocal comparison by
software

High *

A.5 Invariable
memory ranges

A.4.3 Signature of one word (8-
bit)

Medium * *

A.4.5 Block replication High *
A.6 Variable mem-
ory ranges

A.5.2 RAM test ”walk-path” Medium * *

A.7 I/O units and
interfaces (external
communication)

A.6.1 Test pattern High * *
A.6.5 Input comparison/Voting
(1oo2,2oo3 or better redun-
dancy)

High * *

A.8 Data path A.7.6 Information redundancy High * *

A.9 Power supply

A.8.1 Overvoltage protection
with safety shut-off or switch-
over to second power unit

Low * *

A.8.2 Voltage control (sec-
ondary) with safety shut-off or
switch-over to second power unit

High * *

A.8.3 Power-down with safety
shut-off or switch-over to second
power unit

High * *

A.1.5 Idle current principle Low (*) (*)
A.10 Program
sequence
(watch-dog)

A.9.1 Watch dog with separate
time base without time window

Low * *

A.9.3 Logical monitoring of pro-
gram sequence

Medium * *

A.9.4 Combination of temporal
and logical monitoring of pro-
gramme sequences

High *

A.11 Ventilation
and heating system
(if necessary)

A.10.1 Temperature sensor Medium * *
A.10.4 Staggered message of
thermo sensors and conditional
alarm

High * *

A.12 Clock See A.10
A.13 Communi-
cation and mass-
storage

Not relevant

A.14 Sensor
A.1.1 Failure detection by online
monitoring

Low * *

A.6.1 Test pattern High * *
A.6.5 Input comparison/Voting
(1oo2,2oo3 or better redun-
dancy)

High * *

A.15 Final element
(actuators)

A.1.5 Idle current principle Low (*) (*)
A.6.1 Test pattern High * *
A.13.1 Monitoring High * *

This section has demonstrated how the proposed taxonomy is used to
classify the elements of the architecture depending on their functionality and
implementation. The modelled architecture can then be used in the further de-
velopment of the software and hardware for the safety related system. The fol-
lowing section describes how the architecture for the redundant platform can be
realised in the context of a safety related frequency converter.
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Fig. 7. Single processor 1oo2D architecture

Fig. 8. Redundant processor 1oo2D architecture
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5 Case Example Architecture for Safety Related
Frequency Converters

This section describes how the 1oo2D architecture is realised in a safety related
frequency converter. The basic functionality of a frequency converter is to control
the speed of a motor by generating a PWM3 signal to the power electronics
(IGBT’s4) that supply the motor. The frequency converter is for example used
to control a conveyor belt in a production line.

The safety related function added to a frequency converter is to safely stop the
rotation of the motor. Figure 9 shows a case example architecture for such a prod-
uct, where the safe channels independently can activate the safety function of the
device. The Emergency Stop button and the safe field bus are used to activate the
safety function of the system. The architecture represents a real life implementa-
tion of the architecture described in the previous section (see Fig. 6).

Fig. 9. Safety related frequency converter - block diagram

Mapping the architectural elements from Fig. 6 with the physical hardware
components of the safety related frequency converter gives the following map-
ping: The two Safe Physical sensors (S) corresponds to the Emergency Stop
button (EScontact1 and EScontact2), the sensors are diagnosed using the Di-
agnostic Physical actuators (A) corresponding to the transistors DiagSwitch1
and DiagSwitch2 and the Physical sensor (S) reset switch corresponds with the
resetSwitch connected to uP2 - The Safe Physical microprocessors 1 and 2 cor-
responds to uP1 and uP2 - The Safe Physical bus (Safe Field Bus) corresponds
3 Pulse Width Modulation.
4 Insulated Gate Bipolar Transistor.
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to the field bus connected to uP1 and the Safe Physical bus that implements
the communication between microprocessor 1 and 2 corresponds with the cross
communication between uP1 and uP2 - The Safe Physical final element actua-
tors (FE) corresponds to the PWM generator and the Power electronics modules
where the Safe Physical actuators (A) activates the safety function correspond-
ing to the transistors Switchoff1 and Switchoff2.

The natural next step is then to further refine the hardware block diagram
from Fig. 9 according to the architecture shown in Fig. 8, with the related
hardware implementations of the temperature sensors, power supply monitor/
actuator and the watch-dog timer.

6 Related Work

The Architecture Analysis and Design Language (AADL) [5] describes three cat-
egories of component abstractions, e.g. application software, execution platform
and composite. The application software consists of the following components:
thread, thread group, process, data and subprogram. These are used to model
the architecture of the application software. The application software is then
mapped onto the execution platform, which is modelled based on the following
components: processor, memory, device and bus. The application software and
the execution platform are encapsulated in one or more system components of
the composite category.

The 4+1 view model [4] describes a methodology to derive the software ar-
chitecture using 5 concurrent views to capture the concerns of the stakeholders.
Two of the views are concerned with the process and physical view, similar to the
application software and the execution platform in [5]. The physical view is mod-
elled using a generic notation consisting of components and connectors. Com-
ponents are used to represent ”processors” and ”other devices” in the physical
view where as the connectors connect the ”processors” and the ”other devices”
representing one or more networks.

Our list of elements are similar in the sense of the components that are de-
scribed for the physical view [4] and the execution platform [5]. The 4+1 and
AADL can be seen as a lower level abstraction representing the architecture in
term of threads, their interaction and their physical realisation on processors,
other devices and networks.

The taxonomy presented in this paper, provides a higher level abstraction of
the system architecture representing the architectural elements as either physical
or virtual in terms of their implementation as well as their functional relation.
The 4+1 or AADL can be extended with the presented taxonomy or seen as
a natural next step in the further refinement of the safety related architecture,
mapping the identified software and hardware elements onto the components
defined in the two approaches [4] [5].

The emphasis of the taxonomy presented here is to model the architecture of
the safety related system consisting of hardware and software elements, focus-
ing on the relation between the MooN architecture and the applied diagnostic
techniques and measures.
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7 Future Work

The taxonomy is envisioned implemented in a graphical modelling environment
to support the development of safety related systems and to automate the selec-
tion of diagnostic techniques and measures based on the modelled architecture as
well as the functional safety requirements implied by the required SIL. Another
issue is to use the modelled architecture to identify and design a set of reusable
software components encapsulating one or more diagnostics techniques from IEC
61508-2, tables A.1 to A.19 [1] to be used in future safety related development
projects.

8 Conclusion

The MooN architectures from IEC 61508-6 [3] have been used to derive the foun-
dation of our taxonomy, which describes the functional relation of the elements
in the architecture. We have extended the taxonomy with a new functional rela-
tion in order to represent non-safety related functions as part of the architecture
as well as to further define elements as implemented in hardware or software.
This has shown valuable, because it is possible to represent the interface be-
tween safety and non-safety related elements of the architecture. It provides a
clear overview on the diagnostic techniques and measures needed in order to
fulfil SFF and PFH/PFD requirements; and their allocation to specific parts
of the architecture in order to account for performance and implementation
constraints.
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Abstract. Cognition of technical systems, as the ability to perceive sit-
uations, to learn about favorable behavior, and to autonomously gener-
ate decisions, adds new attributes to safety issues. The system can cope
with heavily changing conditions but its future behavior is not known
a-priori. Therefore, present software solutions to safety like a compre-
hensive analysis of the specification and its implementation according to
e.g. the V-model are not sufficient. The paper proposes an architecture
for safe cognitive controllers consisting of an operational and a strategic
functional part. While the first provides certified safety, the strategic part
computes safe strategies based on appropriate dynamic models, adapted
sets of safety specifications, and learned knowledge about potentially
safety critical scenarios. Thus, the architecture explicitly uses cognitive
functions to achieve safe behavior, and it allows the application of cog-
nitively controlled plants for safety-related tasks.

Keywords: cognitive systems, cognitive controllers, safety, hybrid sys-
tems, learning.

1 Introduction

Current research on safety in industry and academia is related to random faults,
software errors, and errors in human interaction without any explicit relation to
cognition. Related standards, as the generic guideline on functional safety [12], do
not consider the particular requirements and possibilities that apply for cognitive
systems. The term cognition is here used according to [22], i.e. a system is con-
sidered to be cognitive if it is able to assess its environment and to autonomously
select its actions even for new situations. The non-determinism of the behavior of
cognitive systems (in reaction to changing environments) poses particular chal-
lenges for designing appropriate safety concepts for controlled cognitive technical
systems.
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As long as safety is not guaranteed for these systems, the breakthrough into
application will not take place. Currently, the only connection between safety and
cognition is that cognitive systems are used to model human operators in safety-
critical systems to optimize the interface design and to analyze human errors and
reliability. In this context, several research results are published, see e.g. [4], [9],
[21], including classifications of cognitive models and techniques, the categoriza-
tion of safety systems, and the evaluation of cognitive systems with regard to
safety. In automation, one present challenge is seen in the development of flexi-
ble low-cost solutions without any loss of provable safety. The focus is put to such
an approach to safety, i.e. its guaranty should be achieved without assumptions
on the application environment, the hardware, and the software like the operat-
ing system [10], [12], [15].

Safety can only be ensured, if the safety of both the controller software and its
adaptation can be proved. In addition to the technical difficulties of this complex
task, the necessary reaction time in case of a fault is usually very short such that
learning and adaptive algorithms are not always completely suitable in this par-
ticular situation. As these algorithms are fitted for long-term actions like learning,
additional short-term mechanisms have to be installed.

With respect to control methods relevant for the scope of this paper, one has
to distinguish between dedicated supervisory controllers which trigger interlocks
or shutdown procedures if a critical situation occurs, and techniques which uti-
lize concepts of perception and learning. As for the latter, intelligent and itera-
tive learning control refers to the class of controllers which adapt plant models
to varying situations or conditions (often in form of neural nets or fuzzy models)
and autonomously infer appropriate control actions (see e.g. [1]). These techniques
do not address, however, the safety situation in particular – in contrast, this pa-
per proposes a two-level approach in which (a) a strategic controller increases the
availability and the reliability based on cognitive functions like learning principles
for derivation of control strategies (non safety-critical) and (b) an independent op-
erational controller ensures safety. By this architecture, the cognitive system can
make use of previous experiences to derive future behavior which complies with
safety requirements even for heavily changing conditions of the environment, i.e.
a proof of safety and the advantages of learning algorithms are combined to a pow-
erful cognitive system which is applicable to complex industrial automation tasks.

The paper is structured as follows: in Section 2 functions and architectures of
cognitive systems are presented. Safety requirements and present solutions are ex-
plained in Section 3. In Section 4, the proposed architecture for cognitive solutions
to safety is presented and described in detail. Finally, the application of the pre-
sented architecture is illustrated by means of an example of a car manufacturing
cell in the automotive industry.

2 Functions and Architectures of Cognitive Systems

Cognition in cognitive psychology comprises functions of perception, compre-
hension, memorizing and remembering, thinking and problem solving, motion
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control, and the use of language. Applied to cognitive systems, both biological
and technical, this may be confined to the ability of systems to represent rele-
vant aspects of the environment and the system itself by using prior experiences.
Thus memorizing, as the ability to accumulate and store knowledge, is assumed
as a basic requirement. Furthermore, functions for the processing of data, as well
as planning and control of actions, hare parts of a cognitive system [22].

For understanding human control behavior and design of artificial systems,
several cognitive architectures have been developed [20], some of which are briefly
described: The EPIC (Executive-Process Interactive Control) architecture com-
bines cognitive and perceptual operations with procedural task analysis [14].
Different interconnected modules, called processors, operate in parallel. Control
is executed by a cognitive processor interconnected to modules and interpreting
so called production rules.

In contrast to EPIC, the SOAR (symbolic cognitive architecture) architecture
models behavior as selection and application of operators to a state. A state
represents the current situation of knowledge and problem-solving, and operators
transfer knowledge from one state to another. At runtime, SOAR tries to apply
a series of operators in order to reach a goal [16]. Control in SOAR refers to
the conflict solution and is implemented as a deliberate and knowledge-based
process, whereas in ACT-R control is regarded as an automatic process by using
an automatic conflict resolution strategy [13].

The main goal of these cognitive architectures is to build artificial systems
by emulating human behavior. They do not focus on ensuring safety issues in
technical systems so far. However, by applying these architectures to complex
automated technical systems, the availability and productivity of a system can
be increased due to cognitive planning components. Thus, the objective of this
paper is to propose a control architecture which is, in contrast to standard control
solutions, enriched by cognitive functions but can cope with the safety challenges
arising from components for adaptation and learning.

3 Safety Requirements and Present Solutions

3.1 Requirements

In this paper, the manufacturing industry will be considered as domain of appli-
cation. Typical are highly automated plants, in which, though, the collaboration
between human operators and automated devices cannot be avoided for certain
steps of production. The interaction with human operators can possibly lead
to injuries if appropriate measures are missing – obviously, one requirement for
the development of safety concepts is to minimize the probability of incidents in
which human operators are harmed. Likewise, the likelihood of damage of the
equipment or the contamination of the environment has to be excluded. Among
several existing approaches to categorize safety requirements and its measures
in the automation industry, this paper focuses on the performance level ’d’ ac-
cording to DIN EN ISO 13849, and on safety integrity level 3 according to IEC
61508, respectively.
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In addition to plain safety requirements, the reliability and availability of
the plant have to be taken into account. Typically, in order to enable a safety
proof, measures are better conservatively designed to react more often than
indeed necessary to avoid unsafe incidents [19]. Unfortunately, safety reactions
usually decrease the productivity of the plant. Thus, a combined approach to
safety and reliability is favorable. Concurrently to requirements relating to these
two properties, requirements derived from the actual goal of operation of the
production system have to be considered in the control architecture, as will
become obvious in Sec. 4.

3.2 Non-cognitive Safety Controllers

A common architectural approach for technical applications (not only in the
manufacturing industries) consists of controllers for non-safety related functions
and a safety components (e.g. a Safety PLC). In modern hardware solutions,
both types of functions can be executed in one device based on proved software
diversity. The safety controller is connected to the process by safe sensors and
safe actuators. The communication among controllers, sensors, and actuators
has to meet safety requirements, too. Typical solutions are based on field bus
communication either by proprietary protocols or by embedding safe protocols
into standard ones [11].

Present solutions to the design of safety-related software of controllers consist
of a comprehensive analysis (with or without consideration of the environment
of the software). The software development process is executed according to the
V-model including testing and verification in all stages, and both techniques can
address static and dynamic properties in principle. Testing is usually carried out
by simulating the software for randomly or arbitrarily chosen inputs, and it is
observed whether any critical state is attained. Verification, in contrast to ex-
plicit tests, analyzes safety properties for all possible inputs and evolutions, and
thus can prove the absence of critical behaviors. Recent advances in verification
led to algorithms which can handle very large state spaces (above 1020 states) for
control software that is converted into state transition models [3]. Furthermore,
new approaches to verification of hybrid dynamic systems allow analyzing con-
trolled system with complex nonlinear continuous dynamics, i.e. the controller
can be checked in composition with the model to be controlled [24]. As the com-
plementary task to verification, synthesis algorithms generate safe controllers
from a model of the plant to be controlled and a safety specification. Research
in this field has produced first algorithms to compute safe controllers for hybrid
systems (e.g. [18], [25], [26]). However, neither verification nor synthesis tech-
niques consider the particular requirements and safety properties of cognitive
systems so far.

The proper execution of safety-related software is usually achieved by redun-
dancy. Copies of the software run on different processors and their corresponding
outputs are compared in order to detect random faults. Data exchange and gen-
eral synchronization are usually enabled by fiber optic cables in industrial PLCs.
If the comparison is not successful then a safe reaction has to occur with high
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reliability. In many cases, a simple state like the voltage free state will be cap-
tured. The more functionality is involved in the safe reaction the more compli-
cated becomes the proof since component reliability plays an essential role [6].
If a single processor is used, the software channels have to be diverse. This di-
versity is often a result of specific coding techniques and has to be proved [15].
Even solutions for one software channel executed on one hardware component
are applied [7]. In that solution, only definite values of variables are permitted
and processed correspondingly. In case of a fault, the probability to obtain such
a fitting value is provably low.

4 Architecture for Cognitive Solutions to Safety

4.1 General Structure of Cognitive Safety Controllers

As described above, for application of cognitive algorithms to safety-critical tech-
nical systems, an adapted controller architecture is necessary. By means of this
architecture, the cognitive abilities of the system should be used for achieving
safety while, at the same time, safety has to be ensured. An architecture fulfilling
these requirements is presented in Fig. 1.

The plant is controlled by a standard controller, connected by sensors and
actuators. Safety is ensured by the Cognitive Safety Controller (CSC) connected
to the plant by sensors and actuators which are safe by construction, i.e. failures
of these elements can be detected and that lead to a safe reaction (e.g., so-called
fail-safe states are reached).

The CSC receives information about the state of the plant by sensor and ac-
tuator signals transmitted by the standard controller. Vice versa, the standard
controller obtains control information from the CSC, e.g. in case of emergency
routines or if the cognitive safety controller computes new reference trajectories
or parameters for the standard controller. The CSC consists of two main parts:
a Strategic Controller (SC) and an Operational Controller (OC). The SC com-
putes control strategies and actions that aim at keeping the plant away from
safety-critical states, while the OC becomes active when a warning level (before

Standard
Controller

Cognitive Safety Controller (CSC)

Strategic Controller (SC)

Operational Controller (OC)

SafeSafe
Actuators ActuatorsSensors Sensors

Plant

y

y

ys

ys

u us

u∗

u∗

w

Fig. 1. Architecture of the Cognitive Safety Controller
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reaching the critical state) is encountered, and the OC ensures that a critical
state is never entered.

The measured variables y from the sensors are transferred to the standard
controller and then to the SC. The signals ys from the safe sensors are available
in the SC through the OC, enhanced by information on the current mode of
the OC. Based on these data, the SC updates the internal dynamic models
of the other components, and these models are used for the optimization and
learning process. The result is an optimal control action u∗ which is passed
to the standard controller (there executed as u) and the OC (executed as us),
depending on the actuators which are affected. Besides checking the data ys and
u∗, the OC provides diagnostic values and information on safe reactions in form
of the signal w.

The functionality of the CSC is further illustrated by Fig. 2. In nominal op-
eration, the plant is controlled by the SC and the standard controller (I). If the
system enters a warning region (due to a mismatch of the models used in the SC
and the plant, e.g. in case of a device malfunction in the plant), the OC takes
over control and drives the system out of this region (II), until the SC eventually
resumes the nominal operation. If the nominal operation cannot be resumed due
to a persistent failure, the SC and the OC drive the plant into a state of degraded
operation or reduced functionality (III). An architecture without the SC and the
OC could not prevent the plant from reaching the safety-critical area (IV).

Fig. 2. Functionality of the cognitive safety controller
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4.2 Strategic Controller

The objective of the SC is to compute a control strategy based on the cur-
rent plant state, a model-based prediction of the behavior of the plant for the
(near) future, and an assessment of the safety situation for this prediction. Ac-
cordingly, the SC comprises four main parts: a dynamic model of the plant, a
strategy optimizer, a component for generating safety constraints, and a learning
unit containing a knowledge-base. The computation of the strategy combines a
performance maximization for reaching a control goal and the adherence to all
constraints resulting from the safety assessment.

To obtain the strategy, an approach resembling model predictive control(MPC),
a well-known online method to iteratively compute locally optimal controllers, is
used (see e.g. [17,5]). MPC solves in any point of a discretized time axis an opti-
mization problem which maximizes the performance for the controlled behavior
based on a dynamic model and for a so-called prediction horizon (a limited time
span starting from the current time). The optimization generates a (sub-)optimal
control strategy, of which the part up to the next discrete point of time is applied
to the plant. At any sampling time the horizon is shifted forward, and the calcula-
tion is repeated. The approach presented here extends this principle to cognitive
systems in the following respects: (i) To represent the varying environment of the
cognitive system, parts of the plant model are established as dynamic models with
structural changes over time (see below). (ii) Safety restrictions to be obeyed by
the controlled plant behavior are derived automatically from the current state of
the plant model and a model of the OC. These restrictions are established as con-
straints of the optimization for the corresponding sampling time. (iii) The perfor-
mance criterion considered for optimization is time-varying and thus adjusted to
global specifications in the course of the iteration. (iv) Evaluated behavior, i.e. past
evolutions of the plant and trajectories computed based on the dynamic model,
is stored in the knowledge-base with a numeric quantifier expressing whether the
behavior is preferable or has to be avoided with respect to safety. This knowledge-
base is a crucial component of the learning unit which aims at determining suitable
behavior (and thus control strategies) for situations that the cognitive system has
not identically experienced before, but which have similarities to already evaluated
situations and behaviors. A strategy derived by the learning unit is transferred to
the optimizer as initialization. In turn, an optimal strategy obtained from the opti-
mizer is stored in the knowledge-base, and it is transferred to the OC which checks
the feasiblity of the action with respect to the current plant situation (which may
deviate from the model used in the SC).

The structure of the SC is shown in Fig. 3 using the following notation:
Tp = {tk, tk+1, · · · tk+p} is a set of discrete time points considered in the pre-
diction starting from the current time tk ∈ R

≥0; y(tk) ∈ R
ny denotes the vector

of the current measured variables (the plant output); φσ,k is the predicted state
trajectory; the state σ(t) of the model combines information of the plant (the
modeled dynamics of the cognitive system and its environment) and the OC;
φu,k is the control trajectory computed by the optimizer (φσ,i, and φu,i are in-
termediate results computed during the iteration of optimization and simulation
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Fig. 3. Structure of the strategic controller. (The communication with the standard
controller is left out here for simplicity).

carried out at time tk). φL
u,k denotes the predicted control strategy derived from

the learning block; if a notification about a safety-relevant incident is passed
from the OC to the SC at time tk, this information is encoded by the signal
e(tk); this signal together with φσ,k and a set of generic user-specified safety
specifications F ∗ is converted into the safety specifications to be considered in
the optimization. These specifications enable the SC to foresee and thus avoid
situations in the prediction, in which the OC had to interfere. φF,k denotes a
sequence of state sets to be avoided. G specifies the control goal, i.e. a subset
of goals into which the cognitive system should be driven. Finally, u∗

s(tk) is the
control output from the OC to the plant at time tk.

Dynamic model: Since cognitive systems operate in changing environments
and have to adapt their behavior qualitatively to new situations, the use of
hybrid dynamic models is appropriate, as they combine discrete (qualitative)
with continuous dynamics [2]. The plant and the OC is modeled according to a
hybrid automaton HA = (X, U, Z, inv, Θ, g, r, f) as in [23], where:

– X ⊆ R
nx specifies the state space, on which the continuous state vector x is

defined;
– U ⊆ R

nu is the input space of dimension nu;
– the finite set of locations is denoted by Z = {z1, · · · , znz};
– a mapping inv: Z → 2X assigns an invariant set to each location zj ∈ Z;
– the set of transitions is given by Θ ⊆ Z × Z;
– a mapping g : Θ → 2X associates a guard g((z1, z2)) ⊆ X with each (z1, z2) ∈

Θ;
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– a reset function r : Θ × X → X assigns an updated state x′ ∈ X to each
(z1, z2) ∈ Θ, x ∈ g((z1, z2));

– fz : Z ×X ×U → R
nx defines discrete-time continuous state update function

xj+1 = f(zj , xj , uj) in which zj, xj , and uj denote the values of the location,
the continuous state, and the input at time tj ∈ Tp, respectively.

A feasible run φσ of HA is defined as a sequence φσ = (σ(t0), σ(t1), · · · ) of hybrid
states σ(tj) = (z(tj), x(tj)) with z(tj) ∈ Z and x(tj) ∈ inv(z). Let Φσ denote
the set of all feasible runs. After initialization of σ(t0), the run is obtained by an
alternating sequence of continuous evolution and transitions (see more details in
[23]). The discrete part of the dynamics (i.e. the locations Z and the transitions
Θ) are particularly suited to model the logic functions of the OC (see below).

Generation of safety constraints: The corresponding unit produces a se-
quence of forbidden regions φF,k = {Fk, Fk+1, · · · , Fk+p} over the prediction
horizon. Any Fj ⊂ Z × X defines for tj a subset of the hybrid state space for
which it must hold that σ(tj) /∈ Fj for j ∈ {k, . . . , k + p}. The function produc-
ing the forbidden regions according to φF,k = Γ (F ∗, φσ,k, y(tk), ε(tk)) takes the
global safety specification F ∗, the state trajectory obtained from simulation of
the model φσ,k, the current plant output y(tk), and the current state e(tk) of
the OC into account.

Optimization: A run φσ obtained from simulation of the dynamic model and
φF,k serve as constaints for an optimization to be carried out at any time
tk. The optimization problem is solved to yield the input trajectory φu,k =
(u(tk), . . . , u(tk+p−1)), u(tj) ∈ U, j ∈ {k, . . . , k + p − 1} which minimizes a cost
function J . The optimization problem can be formulated as:

min
φu,k

J(φσ,k, φu,k, p, G, F )

s.t. σ(tj) /∈ Fj ∀j ∈ {k, . . . , k + p}
φσ,k ∈ Φσ

Among many alternatives, a possible and simple version of the cost function is to
minimize the distance of the last hybrid state within the prediction horizon to the
goal set G ⊂

⋃nz

i=1(zj × inv(zj)). For computation of the distance, appropriate
measures on Z and X are defined. Depending on the specific form of J and the
components of the dynamic model, a suitable solver has to be chosen.

Learning For a given situation in tk, i.e. a combination of σ(tk), G, and φF,k,
the learning unit aims at inferring a proper control strategy φL

u,k and to pass
the latter to the optimizer as initialization. The principle of the correspond-
ing function φL

u,k = λ(σ(tk), G, φF,k) is to compare the situation with entries
in the knowledge-base and to select the most appropriate control strategy of
those which are stored for previously encountered similar situations. Similar-
ity is here defined by small distances of the quantities specifying a situation
in the underlying hybrid state space. Entries in the knowledge-base are tuples
(σ(tk), φσ,k, G, φF,k, φu,k, π, J), where π ∈ [0, 1] denotes a numeric safety indica-
tor. This indicator is computed as a scaled distance of φσ,k (the state trajectory
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starting from σ(tk) and arising from φL
u,k) from the forbidden state sets φF,k.

The selection of φL
u,k by λ for a given situation is based on the associated value

of the cost function J and on π.

4.3 Operational Controller

The OC provides the safety necessary for certification by independent authori-
ties. Based on safe perception it avoids safety-critical states with safe reactions
by overruling the instructions given to the plant by the SC, whenever a potential
safety-critical state is detected. Safe perception means that a representation of
the environment and the plant is obtained based on the measurements from the
safe sensors.

The functionality of the OC is illustrated in Fig. 4. It carries out the following
three actions:

– to ensure the appropriate planned safe reaction according to measured safe
values supplied by the safe sensors;

– to ensure a safe behavior if the SC operates faulty or cannot reach the non-
critical space for any other reason;

– to lead to safe states of the overall plant in case of:
• erroneous sensor data,
• erroneous data communication between OC and sensors and actuators,
• or erroneous data processing within the OC.

Furthermore, it executes two information tasks:

– to consider information (u∗) from the SC for decision, which safe reaction
should be executed, if there is a choice;

– to supply information about its behavior to the SC;

To ensure safety of the plant (including the environment), it is indispensable
to measure the plant’s state with respect to safety, e.g. signals which trace mov-
ing machine parts. Additionally, the correct execution of safety functions and
corresponding data integrity have to be checked [12]. In case of a positive check
of the data integrity (e.g. by correct checksum or corresponding values in case
of redundancy), the signals can be used for selection of safe reactions.

The OC can react in different ways either to a safety-critical state or to
a failure detected in the OC itself. The OC should only interfere, when the
safety-critical state certainly would occur without the reaction of the OC. Safety-
critical states are averted by safe reactions, e.g. deflecting or even stopping of
a movement, or reducing velocities. In case of a critical state, a set of suitable
safe reactions is derived from the current state what can be supported by an
abstract representation. In general, there are various approaches to the design
phase for the determination of a safe reaction for safety-critical states. Thus, a
description of the plant is necessary, which allows a systematic deduction of safe
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Fig. 4. The functionality of the OC

reactions. Efficient deduction is only possible, when this description is abstracted
to safety-concerning attributes and their interactions. This description bases
on methods like fault tree analysis, block diagram representations and Markov
models, Failure Mode, and Effects Analysis (FMEA), Failure Mode, Effect, and
Diagnostics Analysis (FMEDA), etc. [8]. Depending on the rules to be applied,
an independent authority has to certify the resulting safety program.

Besides the correct measurement, it is necessary to have at least one safe
reaction available to ensure safety in critical states. This has to be guaranteed
by the design of the safe reactions. When the SC predicts the plant entering a
warning area, it may preselect a possible safe reaction for the OC in addition
to the avoidance measures. Independently from detected signal failures, a failed
selection of reactions, or a failed execution of reactions, the checks of correctness
as described above can fail itself. Then the OC’s representation of the plant
would deviate from reality. In this case, one must not assume that reactions
selected based on this wrong representation would lead to safety.

Supervision in each check of correctness triggers safe reactions as well, see the
blocks in Fig. 4. By failure detection, the system has to be transferred into a
safe state (even if the availability of the overall plant may be affected).

5 Example: Car Manufacturing Cell

A manufacturing scenario of the automotive industry is shown in Fig. 5. Two
human operators assemble a car supported by an automation manufacturing
system, consisting of two moving portals and grippers moving in orthogonal di-
rection. The gripper takes a part from a part supply, moves it to the car, and
installs it. Simultaneously, the operators pick parts from supply 3 and mounts
these to the parts installed by the grippers. Altogether the scenario includes 10
drives and approximately 40 sensors. According to the plant layout, the por-
tals as well as the human operators share the same space the crossing of paths
is necessary for completing the production. Since safety-critical situations may
appear if the portals and the human operators collide, a particular safety con-
cept is necessary. Furthermore, since the actions of the human operators are not
exactly known a-priori, the automation of the manufacturing system calls for
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Fig. 5. SIL 3 Scenario for application of the Cognitive Safety Controller

cognitive functionality. The following safety-critical situations may arise in the
manufacturing cell:

1. a human operator steps into the area of a moving object;
2. a gripper moves towards or above a human operator;
3. a gripper brings a human operator into danger by moving a wide-stretched

sharp part.

The following safe sensors and actuators are available:

– a light curtain;
– safe position detectors for the human operators and portals;
– safe detectors for the parts;
– and safe drives for the portals and the grippers;

The SC optimizes the movements of the grippers including safety aspects. For
example, in the procedure of mounting a part taken from supply 1 using gripper
1 requires to compute the trajectory of portal 1 and gripper 1 to the car, where
the latter represents the goal set G in this case. The human operators, which may
block the direct path temporarily, represent forbidden sets F . The optimization
in the SC has to compute a trajectory which avoids F and minimizes, e.g.,
the time for the mounting procedure. Since the procedure is repeated for every
car, the learning unit of the SC may, after some repetitions foresee the typical
behavior of the human operators, and has an appropriate control strategy readily
available in the knowledge-base.

The OC evaluates the signal from the light curtain and the positions of the
portals. They are both implemented on a PLC whereas the OC is specifically
coded based on the coding principle of [7]. The OC, the safe sensors, and the
actuators communicate via the safe protocol PROFIsafe [11]. If a human operator
moves into the area of moving objects, the SC changes the motion of the gripper
dynamically in order to avoid a collision. If the SC fails in this, e.g. because
of lacking solution from the optimization algorithm for very fast disturbances,
the OC will turn off the power to the gripper immediately. If the light curtain
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fails, a communication error arises, or the OC calculates an erroneous value,
the same action is taken (as last resort safe action). The presented scenario is
currently implemented and examined in a simulation environment, implementing
the standard controller and the OC on a Soft PLC (Siemens WinAC) with cycle
time 10 milliseconds and the SC in Matlab R© with a prediction horizon in the
range of 10 seconds.

6 Conclusions and Future Work

The paper proposes an architecture for cognitive safety controllers, leading to
the following conclusions:

– Cognitively controlled plants can be used in safety-critical environments: the
proposed architecture permits the use of any standard controller. Safety can
be guaranteed also for cognitive and learning controllers, although the future
behavior of the controlled plant is not known at design time.

– Cognitive algorithms can contribute to safety: controllers can actively make
use of the principles of perception and learning in order to predict dangerous
situations in the future, and they can align their behavior to this prediction
to avoid unsafe situations.

– Cognition can increase the availability: by predicting and preventing possi-
bly dangerous situations, the overall availability of the plant is enhanced.
Furthermore, the optimization used in the SC (with an embedded model
of the OC) maximizes the plant performances while considering the current
safety restrictions and ensuring certified safety by the OC all the time.

The current work is focused on completing the implementation of the ar-
chitecture and applying it to various scenarios of the described manufacturing
example.
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Abstract. Traditionally in avionics, Federated Architecture (FA) is used where 
each function has its own independent, dedicated fault-tolerant computing 
resources. FA though has the advantage of inherent fault containment but 
envelops a potential risk of massive use of resources resulting in increase in 
weight, increase in looming, cost and maintenance. Integrated Modular 
Avionics architecture (IMA) is successful, as it has an efficient and effective 
management of hardware and software computing. Most of the applications 
designed on IMA currently do not have dynamic reconfiguration. The paper 
presents a new method for re-configuration of tasks or a process in an 
embedded avionics application. The proposed algorithm works based on four 
control parameters: re-configurability Information factor, Schedulability 
Test/TL/UF, Context Adaptability/suitability and Context Flight Safety. The 
algorithm is data centric and interfaces system health as control input and 
initiation of the re-configuration is only after successful evaluation of the 
parameter metrics. It enhances the availability and reliability of the system 
under failed conditions by efficient selection and procedural re-configuration 
with safe state exit. The advantage of the new approach over the non-
configurable systems is the increased availability of flight critical applications 
under failed conditions. It also preserves the advantages of non-Reconfigurable 
systems over federated architecture. Invalid failure of control parameter brings 
the system to safe state. The scheme, algorithm and the control parameters 
metrics and their   validation approach are described. The algorithm provides 
very good availability of the system even under failures.  

1   Introduction 

The avionics systems and software architecture of federated era was no doubt very 
good in terms of the fault containment, fault tolerant and a sort of fool proof 
architecture. However, this has disadvantages like, increased weight, redundant 
computer resources in each Line Replaceable Unit (LRU), higher looming volume, 
electrical interfaces complexity and physical maintenance.  

The advances in computer technology encouraged the avionics industry to utilize 
the increased processing and communication power and combine multiple federated 
applications into a single shared platform [1]. The Integrated Modular Avionics 
(IMA) was developed for integrating multiple software components into a shared 
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Fig. 1. System Architecture 

computing environment [2].  This is powerful enough to meet the computing demands 
of multiple applications using common hardware and system resources. 

The IMA integration has the advantage of lower hardware costs and reduced level 
of spares inventory.  Typical system architecture for such IMA [2] is shown in Fig. 1. 

1.1   Motivation and Related Work  

Existing mechanism of system behavior in the event of a task failure is to declare 
system failure resulting in non-availability of either part or full partition functionality. 
Here the failure recovery, by removing the faulty task or replacing by a new task is 
not exercised. However, all the failures cannot be re-configured due to the safety and 
criticality of the avionics applications. 

Proposed algorithm has the desirable feature of reconfiguring the critical tasks or 
removal from the schedule to enable continued functionality of the non-faulty partition. 
The novelty of the proposed algorithm is of reconfiguring the critical tasks or removal 
from the schedule to enable continued functionality of the non-faulty partition using 
control metrics [3]. This aspect has motivated to propose a new approach of re-
configuration to attain higher system availability and improved reliability. This re-
configuration algorithm is based on rule based decision-making approach and control 
metrics coupled with state and condition matrix. The algorithm is described for a typical 
multi partitioned multiple process task based architecture and finds its use in important 
phase of flight like cruise very easily. The other crucial phases of flight like take off and 
landing requires more validation, as these phases are very critical. 

2   Organization of Task or Process Scheduler in a Typical 
Aerospace Avionics Application 

Typical aerospace IMA applications employ multiple functionalities with the same 
hardware and system software resources.  
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P - Partition 
C - Time Budget for P 
T - Time period   

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4P1 P2 P3 P4…..
Ci

p

Ti
p Ti

p

Major Frame period  

Fig. 2. Static table schedule diagram with partition period and process execution duration 

This uses the concept of major frames, multiple partitions and each partition 
having multiple processes to schedule the tasks.  

Fig. 2 shows the set of partitions [4], which are scheduled across a major frame M 
consisting set of partitions and each partition having set of tasks/process. Typical 
integrated avionics ARINC 653 based applications have a major frame. Major frame 
consists of number of partitions with each partition having set of process and each 
process having set of tasks. In some applications task and process are interchangeably 
used, but it is better to use process and task separately under the multi-process 
operating system. 

Consider a major frame M having a set of partitions Pti..Ptn based on 
functionalities. Each partition Pti consists of a set of process Psi..Psn based on the 
applications sub functionalities. The number of partitions and number of processes in 
each partition is a trade-off to get the real time response based on the capabilities of 
the hardware and software together. The representation of Major frames, partition, 
processes and each process with number of tasks represented as (1).  
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Each process Ps consists of set of tasks τ1...τn and the sequence of tasks are 
predefined and priorities are fixed as per static table scheduling mechanism is  
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Each task τi has definite timing characteristics:  

Ci ≤ Di ≤ Ti, where Ci  - Task Worst Case Execution Time, Di  - Task Deadline and    
Ti   - Period   

Also each task τi have other timing characteristics, which are critically examined 
for real-time capabilities like worst-case blocking, worst-case partition delay, worst-
case process jitter and OS overheads. During the execution of a process, Worst Case 
Execution Time (WCET) and Worst Case Process Jitter (J) are the two important 
timing characteristics to be considered for realistic estimation of execution time.   

Worst Case Process Jitter quantifies the maximum difference of the response time 
with the execution times for each period [5]. Jitter depends on the kernel overheads 
and partition jitter. Typical jitter measurements were carried out using embedded 
target to study the jitter timings (refer 3.4). These timing measurements help to 
characterize the delays and execution non-linearity in the algorithm. 

However, the response time of a task or a process encompasses the various delays 
and execution times and they are  

iL
nS

sC
Sμ

iS
Sμ

iA
mS  

Where  Li – Interrupt latency time, Cs – Context save time, Si – Schedule time 
 Ai – Process Time 
Therefore the response time is expressed as 

   Ri = Li + Cs + Si + Ai. 

3   Proposed Algorithm  

3.1   Control Parameters for the Proposed Algorithm 

A new re-configuration algorithm using critical control parameters is introduced using 
control parameter metrics. The re-configuration algorithm is implemented based on 
four major metrics, which are the heart of the algorithm in re-configuration. The Re-
configurability Information-Factor, Schedulability Test/TL/UF, Context Adaptability/ 
Suitability and Context Flight Safety Factor are the efficient decision-making control 
parameters defined and used in the algorithm. Based on these control metrics, the re-
configuration GO/NO-GO is decided. 

3.1.1   Re-configurability Information-Factor (RI) 
Re-configurability Information Factor (RI) is defined as the ratio of re-scheduled Task 
or Process Functional Credit Point (FCP) to the original scheduled task or process 
FCP. The FCP or Credit Point is the measure of the functionality characteristics in 
terms of its requirement and weight age of the task or process to accomplish the  
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defined system accomplishments. Credit point is represented in the range of 0 to 1 and 
hence FCP is the ratio of credit points.  

For every selected critical task (τs) in a Major frame consisting of number of 
scheduled lists, there can be at least one configurable task (τr). The selection of 
replaceable task is based on the RI i.e., a process Ps or task τs can be re-configured by 
a process Pr or a task τr if and only if the RI of new process Pr or task τr should be at 
least equal to or greater than the RI of the faulty process Ps or task τs and is expressed 
as   

(τs = τr) ↔ (RI (τs) ≥ RI (τr)) or (Ps = Pr) ↔ (RI (Ps) ≥ RI (Pr)) (3) 

For every task (τs) or (Ps) there is exactly one task  (τr)  

(Denoted by E!) Or process (Pr) such that  
[RI (τs) ≥ RI (τr)]  Or [RI (Ps) ≥ RI (Pr)] 

((∀τs)(E! τr)(RI (τs) ≥  RI (τr))) Or ((∀Ps)(E! Pr)(RI (Ps) ≥ RI (Pr))) 
 

 

FCP is derived based on the type of task, criticality of the task and phase of 
application envelope. For all critical tasks task τ in a process Ps scheduled in a 
partition Pt, has a defined FCP. Every element of (2) has corresponding credit point 
matrix as denoted in (4). 

FCP elements in (4) are derived from the system requirements, design limits and 
Failure Mode Effect Analysis and Testing guidelines. 
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(4) 

3.1.2   Schedulability Test (Time Loading TL or Utilization Factor UF) 
Schedulability Test is the standard method of testing the time loading or utilization for 
a task to be scheduled 
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Similarly for a process, the faulty process shall be replaceable if and only if 
Schedulability test as per (5) passes for a process. 
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For all cases of task phasing, a set of n tasks will always meet their deadlines [4] if 

69.0    )12()(
1

≤−=≤∑
=

n

i i

i nnU
T

Cn

 (6) 

And (5) and (6) is strictly enforced in algorithm for static computation of time loading 
in each schedule table of every partition.  

Execution time or utilization is the important data resulting in efficient selection of 
a task or process to re-configure.  Each task is benchmarked with the execution times 
and the same is used in real time for the algorithm and the corresponding matrix as 
per (2) is  

 

(7) 

For selected critical tasks, reference execution time dataset is compiled and 
generated in accordance with (1) and (2). Re-configurable algorithm, which uses (7) 
as one control parameter input is tested using the data captured from a live flight 
critical project. The algorithm checks this reference dataset for task selection 
criteria.  

3.1.3   Context Adaptability and Suitability (CAS) 
Context Adaptability and Suitability metric decides acceptability of the faulty task 
replacement in real time. This involves checking the state table and condition table to 
decide whether the re-configuration is permissible. Hence the context of the scenario 
is verified and validated for the functionality and context suitability of the task.  

Context Adaptability and Suitability (CAS) is defined as  

(CAS=TRUE) ↔ (Re-scheduled Task or Process Context Flag is equal to 
Original Task or Process Context Flag) 

And is expressed as      

For every task (τs) or process (Ps) there can be a replaceable task  (τr) or 
process (Pr) such that  

(CAS (τs, τr) is TRUE)  Or (CAS (Ps, Pr) is TRUE)   

((∀τs (CAS (τs, τr) is TRUE))  Or ((∀Ps (CAS (Ps, Pr) is TRUE)) 
 

(8) 

Every task in a process and partition has the CAS flag dictating the function’s use at 
that point of time using task reference dataset condition table. However, each task can  
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have more than one suitable tasks depending on the prevailing scenario (phase of 
flight) in real time. The CAS condition table used in the algorithm is derived based on 
the system functionality and inter system re-configuration dependencies based on 
Failure Mode Effect Analysis (FMEA) and Failure Hazard Analysis (FHA) along 
with System Safety Assessment (SSA). 

3.1.4   Context Flight Safety Factor (CFS) 
It is very vital in aerospace flight critical applications to check the safety of the 
system before and after re-configuration. After validating the above three control 
parameters, the system is checked for safe state to initiate re-configuration.  For 
aircraft systems in closed loop control, a wrong function being re-configured can lead 
to catastrophic failure. Hence any action carried out in real time is verified and 
validated thoroughly by all the control parameter artifacts along with the system 
information.   

Context Flight Safety Factor (CFS) is defined as  

(CFS = TRUE) ↔ ((Re-scheduled task or process Safety Factor / Original 
scheduled task or process Safety Factor) ≥ 1.0)   

Also process or task is replaceable only if  
(Ps=Pr) ↔ (CFS (Ps) ≥ CFS (Pr)) 
(τs=τr) ↔ (CFS (τs) ≥ CFS (τr)) 

 

(9) 

And is described as 

For every critical task (τs) or process (Ps) there can be a replaceable task  (τr) or 
process (Pr) such that  

(CFS (τs, τr) ≥ 1.0)  Or (CFS (Ps, Pr) ≥ 1.0)   
((∀τs (CFS (τs, τr) ≥ 1.0))  Or ((∀Ps (CFS (Ps, Pr) ≥ 1.0)) 

 
A process Ps or task τs can be re-configured by a process Pr or a task τr if and only if 
the safety factor of new process Pr or task τr should be at least equal to or greater than 
the safety factor of the faulty process Ps or task τs and is expressed as in (9).  

CFS is derived from both RI and the Safety Units (Su) based on the Failure hazard 
Analysis (FHA), Failure Mode Effect Analysis (FMEA) and System Safety Analysis 
(SSA)[6]. Every element of (2) has corresponding Safety Unit matrix, which will be 
used by (9). Su is a measure of margin of system safety to re-configure a task with the 
prevailing dynamic context of the flight. 

In case of failure of task after re-configuration, the system considering the safety 
issues can have Degraded mode for limited functionality. The extent of degraded 
performance allowed in such safety critical systems is decided based on CAS and 
degradation factor derived specific to the application objectives and functionalities as 
described in (10) for both process and task.  
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If (τCAS is TRUE) then 

(τCFS=τRI) 

Else 

τCFS=τRI * Degradation Factor 
 

If (PCAS is TRUE) then 

(PCFS=PRI) 

Else 

PCFS=PRI * Degradation Factor 
 

(10) 

The Degradation Factor (DF) is the measure of allowed degraded performance or 
functionality in selected envelope of the system being re-configured. If degraded 
functionality is not allowed then the degradation factor is 1. The reference data set of 
DF is captured from functionality requirements under dynamic pre-defined scenarios. 
Each scenario will be analyzed statically and the functionality is simulated for varying 
degraded functions and finally the data is compiled for each functional requirement as 
what is the extent of degradation allowed. 

3.2   Condition, Status and State Information 

Input reference dataset for the control parameters used in the algorithm depends on 
the information of the system are captured by System Design and analysis, Sample 
Implementation on typical platform, Aircraft Level Failure Hazard Analysis (FHA), 
system level Failure Mode Effect Analysis (FMEA), FAA/TSO requirements for 
aerospace flight critical systems and System Safety Analysis (SSA). The dataset for 
each of the control parameters are captured from live projects of flight critical in 
nature during the design and integration phase. Each control parameter will have 
dataset captured with varying real time scenarios. 

3.3   Re-configurable Algorithm  

A non-Reconfigurable system either shuts down or performs a partial degraded 
functionality in the event of a task failure. In some cases, this may lead to infinite 
loops or crash of the application leading to serious failure. Here the fault is not 
resolved rather the system enters failed state. 

The proposed algorithm overcomes above fault scenario by re-configuration of 
faulty task resulting in recovery of fault in complete or partial. The identification of a 
task failure is by the monitors and is called System Monitors. System Monitor 
continuously monitors the state and status of critical tasks with reference to the 
schedule sequence with control parameters in context. The algorithm replaces a faulty 
process or task by a compatible, suitable and safe substitute after extensive check and 
validation.  The re-configured task or process performs the required operation without 
any safety impact to the system and aircraft. 

After careful design and definition of control parameter metrics for re-configurable 
decision-making as described in section 3.1, the following algorithm is proposed for 
re-configuration of a task or a process. The algorithm has the fail off path in case the 
algorithm enters the fault loop with multiple re-configurations without effective 
output. This is handled by a re-configuration counter, which avoids the repetitive 
reconfiguration for the same failure. 
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Proposed Algorithm 
• If a task/job fails 

• Capture the task (τs) status, functionality, priority, criticality to identify the 
faulty task 

• Identify the most suitable substitution task (τr) after validating the following 
metrics for feasibility 

• Re-configurability I-Factor         (RI) 
• Schedulability Test/TL/UF        (TL) 
• Context Adaptability/suitability      (CAS) 
• Context Flight Safety Unit              (CFS) 
• Re-configure the task table or Process (Ps) before the next major frame 
after system assessment of functional state of the partition. 

 
• If re-configured task fails, 
• If the system can run in de-graded mode 

• Revert all tasks to its original state  
• Identify set of tasks which needs to be removed from the   schedule 
• re-schedule the task set with de-graded performance using dead task removal 

techniques ( all the failed tasks are removed from the task set ) 
• The rest of the task set continues to run provided no safety impact after re-

schedule 
 

• In case de-graded mode is not feasible, 
• Declare failure 
• Shutdown the system  

 
The algorithm is well suited for an open architecture multiple process and multiple 
schedule static table mechanism. The algorithm plays the role of high-level real time 
monitor software continuously monitoring the status of the running tasks of a 
schedule table. The algorithm is explained in the following five phase. 

3.3.1   Phase I: Status Capture   
The algorithm starts with continuous monitoring the status and health of a task 
execution. The data capture is part of the application software and the algorithm 
receives the information on function call or through global shared resources. When 
the algorithm detects a task failure or not performing as per its functionality, then the 
algorithm initiates the Phase II execution. 

3.3.2   Phase II: Control Parameter Validation  
The main objective of phase II is to identify the most suitable task using the results of 
control parameter validations.   In any case, if any of the control parameter fails to 
comply with limit values, the algorithm returns to the system without any action 
resulting in resumption to the original state or transits to phase IV.  On successful 
completion of control parameter checking and validation, the algorithm initiates the 
Phase III execution. 
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3.3.3   Phase III: Re-configuration 
During the re-configuration process, the global state of the system, process or 
partition is not altered. Only the selected task or process gets altered for their 
respective state variables. On successful re-configuration, the re-configured task start 
execution in the next major frame.  

3.3.4   Phase IV:  De-graded Performance 
If the re-configured task fails again in the next major frame, then the algorithm reverts 
back to its earlier state by reverting the re-configured task. If the degraded 
performance or functionality is allowed for that particular function, then the algorithm 
removes/alter order of the faulty task or process from the schedule table and allows it 
to continue. In this case, the system continues to execute without the functionality of 
removed task.  This is still an improved mechanism instead of totally shutting down 
the application with many others tasks in good state. 

3.3.5   Phase V: Fail Off Procedure  
During the execution of the algorithm if the degraded functionality is not allowed then 
the algorithm behaves similar to the normal process of entering failed state.   

The re-configuration algorithm is applied only for the critical task or process, 
which improves the availability as an effect of re-configuration. The algorithm is 
simulated on a test platform using predefined known states and the work is in 
progress to simulate using the realistic dataset. The simulated results under defined 
conditions show significant improvement from reliability numbers from 1E-05 to 1E-
07 under failed conditions for critical task. The reliability numbers is for the system 
under critical function failure followed by recovery and not for the task. 
Configuration of a task or a process in aerospace flight critical system is a crucial 
event with the safety of the aircraft and availability of systems. Hence to identify a 
task for re-configuration requires severe judgment, methodical analysis, extensive 
cross checking across various relative parameters in real-time. The control parameters 
are checked for their states, status and validation before re-scheduling the sequence of 
tasks. Failure data collection for various scenarios is based on standards and 
equipment life cycle and quality control data management [7]. 

3.4   Simulation and Experimental Data  

A sample schedule partition is simulated in Matlab Simulink using the state machines 
to check the time loading and execution scenarios. Even though the target is not that 
of a real environment, this gives a platform to study the timing behavior of system 
under varying external reactive interfaces. Experiments using low scale target 
hardware shows an average of ± 0.1 ms, ±0.14 ms, ± 0.2 ms and ±0.2 ms execution 
and jitter timing for 10 ms, 30 ms, 40 ms and 50 ms interrupt intervals for various 
configurations under multiple code composition in terms of the control and data flow 
deviations. The scenarios were simulated to capture the worst-case timings with 
constructs simulating the single and multiple failures.  

The measurements were carried out with an embedded target system working at 
20.0 MHz clock and Fs/4 internal clock frequency. Measurements show an average 
value of 20 to 30 μsec for the interrupt jitter or interrupt arrival interval time. 
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However these numbers vary across target to target with different clock frequencies 
and architectures. In this experiment an effort was made to study the interrupt interval 
time variation with varying clock frequencies and dynamic external reactive inputs for 
the same target. Context switching time is very vital in determining the response time 
of a task.  An effort was made to capture typical switch time between an interrupt and 
a task entry / exit-using RISC based Micro-controller as target. These measurements 
were used in algorithm simulation.  

Experiments showed the interrupt and function call timing measurements in entry 
and exit conditions based on simulated task execution are 2.52 μsec and 7.62 μsec for 
11.056 MHz and 4.0 MHz clock respectively. The complete partition schedule was 
simulated using Matlab Simulink and the time loading aspects were studied with 
varying time loading or utilization of 0.32 to 0.7. Also simulation was done with 
varying fault scenarios and the results of varying task timings are as shown in Fig. 3 
and Table 1.  

The tasks used in the simulation were first scheduled as per the fixed priority 
scheduler and the sequence of tasks with execution times were simulated using Time 
Optimization of Resources, SCHEduling (Torsche) toolbox [8]. Torsche results were 
used to sequence the tasks in Matlab Simulink as table driven fixed priority 
scheduling for implementing the algorithm.  
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Fig. 3. Simulation of multiprocessing multitasks 

TORSCHE is a MATLAB-based toolbox including various scheduling algorithms, 
which are used for various applications as high-level synthesis of parallel algorithms 
and optimized production of manufacturing lines. Using the toolbox, one can easily 
and quickly obtain an optimal code of computing intensive applications running on 
specific hardware architectures 
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Table 1. Timing for a varying fault scenario of a set of tasks 

Tasks 
 

Trail 
#1(ms) 

Trail 
#2(ms)

Trail  
#3(ms)

Trail  
#4(ms)

Trail  
#5(ms) 

IO Proc 4.77 4.57 3.50 4.64 4.11 
Sensor Valid 3.33 3.23 4.44 3.12 3.46 
LMS Filter 0.03 0.03 0.032 0.031 0.034 
Cross Comp 1.27 1.25 1.26 1.28 1.29 
RT Comp 3.9 2.86 3.90 3.86 3.75 
Data Format 3.9 4.10 3.50 2.66 2.54 
Output Proc 0.03 0.03 0.034 0.031 0.030 
Fault Mngt 0.03 0.03 0.031 0.032 0.031 
Time Loading (%) 69.17 64.50 66.88 62.73 61.06 

IO Processing

Sensor Validation

Filtering

Cross Compare

RT Compare

Data Format

Output Processing

Fault management

0 5 10 15 20 25 30T in Ms  

Fig. 4. Torsche scheduler task sequence optimization 

The tool can also be used to investigate application performance prior to its 
implementation and to use these values in the control system design process 
performed in Matlab / Simulink. Torsche supports number of scheduling algorithms, 
but the fixed priority scheduler is selected for modeling optimized task sequence for 
our algorithm as shown in Fig. 4. The total frame time of 40 ms was used and 
corresponding tasks executed with utilization of up to 24 ms. 

4   Conclusion and Future Work 

Consequent to research and study, the algorithm along with the control parameter 
metrics were designed and defined. Identification of suitable task as a substitute for a  
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faulty task is very crucial and difficult task. The effectiveness of the algorithm is 
purely dependent on the system information available at the instance of failure in real 
time. Also the fault models of the dynamic environment should be considered for 
simulation for a realistic behavior of the algorithm. The simulation is being carried 
out using True Time [9] plug-in to Matlab Simulink with various fault scenarios.  
However the data generation for the control parameter metrics is very crucial for the 
full-fledged algorithm simulation. The preliminary data generation activity is 
completed and the second level data generation is in progress.  

The solution to the problem of software complexity is not to avoid complexity 
rather to develop reliable protection and safety mechanisms to handle such scenarios. 
At the same time the implementation overheads should be maintained to the least 
possible for effective resource management. The re-configurable algorithm described 
offers the benefits of higher availability with the state of the art techniques. The 
algorithm uses re-configurability Information factor, Schedulability Test/TL/UF, 
Context Adaptability/suitability and Context Flight Safety for efficient and safe re-
configuration for effective failure handling. Bench marking of all these control 
parameter reference dataset is not covered in this paper. 

Work is being done in optimization of the control parameter validation process for 
task selection and compiling the required reference dataset for the algorithm using 
flight critical open architecture platform. Also the algorithm fault scenarios are being 
evolved and studied using true time, Torsche and neural network model using Matlab 
Simulink. 
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