

Lecture Notes in Computer Science 4749
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bernd J. Krämer Kwei-Jay Lin
Priya Narasimhan (Eds.)

Service-Oriented
Computing –
ICSOC 2007

Fifth International Conference
Vienna, Austria, September 17-20, 2007
Proceedings

13

Volume Editors

Bernd J. Krämer
FernUniversität Hagen
D-58084 Hagen, Germany
E-mail: Bernd.Kraemer@FernUni-Hagen.de

Kwei-Jay Lin
University of California
Irvine, California 92697-2625, USA
E-mail: klin@ece.uci.edu

Priya Narasimhan
Carnegie Mellon University
Pittsburgh PA 15213, USA
E-mail: priya@cs.cmu.edu

Library of Congress Control Number: 2007934544

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74973-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74973-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12124367 06/3180 5 4 3 2 1 0

Preface

This volume contains all of the Research-Track, Industry-Track and Demo-Track
papers that were selected for presentation at the Fifth International Conference
on Service-Oriented Computing (ICSOC 2007), which was held in Vienna, Aus-
tria, September 17–20, 2007.

ICSOC 2007 followed the footsteps of four previous successful editions of
the International Conference on Service-Oriented Computing that were held in
Chicago, USA (2006), Amsterdam, The Netherlands (2005), New York City, USA
(2004) and Trento, Italy (2003). ICSOC is recognized as the flagship conference
for service-oriented computing research and best practices. ICSOC covers the
entire spectrum from theoretical and foundational results to empirical evalua-
tion, as well as practical and industrial experiences. ICSOC 2007 continued this
tradition while introducing several new themes to further these goals.

Service-oriented computing brings together ideas and technologies from many
diverse fields in an evolutionary manner in order to address research challenges
including service-based application modeling, service composition, discovery, in-
tegration, monitoring and management of services, service quality and security,
methodologies for supporting service development, grid services, and novel top-
ics including information as a service and service-oriented architecture (SOA)
governance.

To provide a balanced coverage and an equal emphasis across all aspects of
service-oriented computing, ICSOC 2007’s topics were divided into seven major
areas: Business Service Modeling, Service Assembly, and Service Management,
addressing research issues and best practices in the primary life-cycle phases
of a service, modeling, assembly, deployment, and management; SOA Runtime
and Quality of Service, covering issues spanning all stages of the life-cycle; Grid
Services and Service Architectures, combining grid infrastructure concepts with
service-oriented computing; and Business and Economical Aspects of Services.

Our solicitation of Industrial- and Research-Track submissions was extremely
aggressive, particularly given the short time span between ICSOC 2006 (in De-
cember 2006) and ICSOC 2007 (in September 2007). The Research Track’s
paper-selection process was stringent, given the large number of excellent submis-
sions that we had to select from in a very short time. In addition, matching the
diversity of paper topics and reviewer expertise was a challenge, considering the
multi-discplinary and emergent nature of service-oriented computing research.
We worked closely with and consulted the designated Area Coordinators, with
two experts leading the review process for each of the areas, for reviewer selec-
tion and also for resolution in the case of papers with conflicting reviews. In the
paper-selection process, the quality of the submission was the ultimate deciding
factor. We also strived to achieve a balance across all of the areas that encompass

VI Preface

service-oriented computing. Of the 139 submissions to the ICSOC 2007 Research
Track, only 30 full papers and 14 short papers were accepted for the program.

Our Industrial Track focused on three topic areas: Information as a Service,
SOA Governance, and SOA Runtime and Registries. Each of these topic areas
was covered on separate days. Each conference day started with a review of the
state of the art, followed by a panel discussion reviewing key issues, both tech-
nical and practical, that were relevant to that area. The panel discussion was
followed by a presentation of the accepted Industrial-Track papers in the form of
multiple sessions throughout the day. The Industrial Track specifically solicited
submissions covering the state of practice and real-world experience in service-
oriented computing, especially in the three focused topic areas. Of particular
interest were papers that described innovative service-based implementations,
novel applications of service-oriented technology, and insights and improvements
to the state of practice along with case studies and lessons learned from prac-
titioners that emphasized applications, service technology, system deployment,
organizational ramifications, or business impact. Of the 28 submissions to the
ICSOC 2007 Industrial Track, only 13 full papers were accepted for the program.

In addition to the Research and Industry Tracks, ICSOC 2007 featured top-
notch keynotes, presented by influential and recognized leaders in the industrial
and academic community. The program included five tutorials and hands-on
sessions on SOA, BPEL, Monitoring and Testing, Non-functional Properties,
and Web APIs on Rails that were developed and presented by renowned re-
searchers and practitioners. Also featured in the program were three panels ad-
dressing innovative issues like Information as a Service, SOA Governance, and
Registries and SOA Runtime. Five pre-conference workshops on Engineering
Service-Oriented Applications, Business-Oriented Aspects concerning Semantics
and Methodologies in Service-oriented Computing, Non-functional Properties
and Service-Level Agreements in Service-Oriented Computing, Web APIs and
Services Mashups, and Telecom Service-Oriented Architectures completed the
attractive conference program.

This outstanding conference program was a testament to the efforts of many
dedicated individuals who were committed to the success of ICSOC 2007.

We start by acknowledging the Area Coordinators, the Program Committee
members, and the reviewers for their painstaking efforts and integrity in the
review and paper-selection process, especially given the pressures of time. We
also acknowledge the significant contributions of Eva Nedoma and Uwe Zdun
in the local organization; Karl Goeschka for handling finances; Soila Pertet and
Alexander Stuckenholz for handling publicity-related activities. We also thank
the Workshop Chairs, Elisabetta Di Nitto and Matei Ripeanu; the Demo Chairs,
Martin Bichler and Ming-Chien Shan; Tutorial Chair, Marco Aiello; the Panel
Chairs, Klaus Pohl and Robert D. Johnson; the Ph D ssSymposium Chairs, Tu-
dor Dumitras, Andreas Hanemann and Benedikt Kratz. We would also like to
single out individuals for their special help and contributions: Renate Zielinski
and Volker Winkler for assisting the Program Chairs in compiling the proceed-

Preface VII

ings, Harald Weinreich, who set up and adapted Conftool for our use and who
was extremely responsive throughout.

We would like to express our deep gratitude to the Steering Committee mem-
bers: Fabio Casati, Paco Curbera, Mike Papazoglou and Paolo Traverso for their
constant guidance. Finally, we would like to acknowledge the cooperation of
Springer, the ACM Special Interest Group on Hypertext, Hypermedia and the
Web (SIGWeb), the ACM Special Interest Group on Software Engineering (SIG-
Soft) and the Networked European Software and Services Initiative (NESSI).

Finally, we thank the authors of our accepted papers for submitting their
work to ICSOC 2007. Without the high-quality work of these researchers and
practitioners, and their efforts in the area of service-oriented computing, such
an excellent conference program would not have been possible.

It was our privilege and pleasure to compile this outstanding ICSOC 2007
conference proceedings. We sincerely hope that you find the papers in this volume
as interesting and stimulating as we did.

July 2007 Asit Dan
Schahram Dustdar

Bernd Krämer
Kwei-Jay Lin

Priya Narasimhan
Stefano De Panfilis

Bobbi Young

Organization

ICSOC 2007 Conference Chairs

General Chairs Asit Dan, IBM Software Group, USA
Schahram Dustdar, Vienna University of

Technology, Austria
Program Chairs Bernd Krämer, FernUniversität in Hagen,

Germany
Kwei-Jay Lin, University of California, Irvine,

USA
Priya Narasimhan, Carnegie Mellon University,

USA
Workshop Chair Elisabetta Di Nitto, Politecnico di Milano,

Italy
Matei Ripeanu, University of British Columbia,

Canada
Demo Chairs Ming-Chien Shan, SAP

Martin Bichler, Technische Universität
München, Germany

Tutorial Chair Marco Aiello, University of Groningen,
Netherlands

Panel Chairs Klaus Pohl, LERO, Ireland and University of
Essen, Germany

Robert D. Johnson, IBM Software Group, USA
Industrial Chairs Stefano De Panfilis, NESSI and Engineering,

Italy
Bobbi Young, Unisys, USA

Industrial-Academic Robert D. Johnson, IBM Software Group, USA
Coordination Chair
Ph D Symposium Chairs Tudor Dumitras, Carnegie Mellon University,

USA
Andreas Hanemann, Leibniz-Rechenzentrum,

Germany
Benedikt Kratz, Tilburg University,

The Netherlands
Publicity Chairs Soila M. Pertet, Carnegie Mellon University,

USA
Alexander Stuckenholz, FernUniversität in

Hagen, Germany

X Organization

Local Organization Chair Uwe Zdun, Vienna University of Technology,
Austria

Financial Chair Karl M. Goeschka, Vienna University of
Technology, Austria

Area Coordinators

Service Modeling Boualem Benatallah, University of New South
Wales, Australia

Ingolf Krüger, University of California,
San Diego, USA

Service Assembly Tiziana Margaria, University of Potsdam,
Germany

Vincenzo D’Andrea, University of Trento, Italy
Service Management Fabio Casati, University of Trento, Italy

Heiko Ludwig, IBM Research, USA
SOA Runtime Karsten Schwan, Georgia Tech, USA

Frank Leymann, University of Stuttgart,
Germany

Quality of Service Doug Schmidt, Vanderbilt University, USA
Elisa Bertino, Purdue University, USA

Grid Services Jörn Altmann, International University,
Germany, and Seoul National University,
Korea

Business and Economical Christos Nikolaou, University of Crete, Greece
Aspects of Services Michael Huhns, University of South Carolina,

USA

Program Committee

Research Track

Mikio Aoyama NISE, Japan
Luciano Baresi Politecnico di Milano, Italy
Elisa Bertino Purdue University, USA
Bishwaranjan Bhattacharjee IBM Research Hawthorne, USA
Walter Binder EPFL, Switzerland
Marina Bitsaki University of Crete, Greece
M. Brian Blake Georgetown University, USA
Athman Bouguettaya Virginia Tech, USA
Tevfik Bultan UC Santa Barbara, USA
Nathan Caswell IBM T.J. Watson Research, USA
Kuo-Ming Chao Coventry University, UK
Shing-Chi Cheung Hong Kong University of Science and

Technology, China

Organization XI

Paco Curbera IBM T. J. Watson Research, USA
Flavio De Paoli University of Milan, Italy
Tommaso Di Noia University of Bari, Italy
Wolfgang Emmerich UC London, UK
Gianluigi Ferrari University of Pisa, Italy
George Feuerlicht University of Technology Sydney, Australia
Dennis Gannon Indiana University, USA
Dimitrios Georgakopoulos Telcordia, USA
Claude Godart University of Nancy, France
Andy Gordon Microsoft, UK
Paul Grefen Eindhoven University of Technology,

Netherlands
John Grundy University of Auckland, New Zealand
Mohand-Said Hacid University of Leon, France
Bernhard Holtkamp Fraunhofer ISST, Germany
Bettina Kemme McGill University, Canada
Alfons Kemper Technische Universität München, Germany
Rania Khalaf IBM T.J. Watson Research, USA
Roger Kilian-Kehr SAP, Germany
Patricia Lago Free University of Amsterdam, Netherlands
Neil Maiden City University of Hong Kong, China
E. Michael Maximilien IBM Almaden, USA
Massimo Macella University of Rome, Italy
Brahim Medjahed University of Michigan, USA
David O’Hallaron CMU, USA
Anna Perini University of Trento, Italy
Marco Pistore University of Trento, Italy
Axel Polleres Universidad Rey Juan Carlos, Spain
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Thomas Risse Universität Hannover, Germany
Norbert Ritter Universität Hamburg, Germany
Colette Rolland University of Paris, France
Akhil Sahai HP, USA
Jakka Sairamesh IBM T. J. Watson Research, USA
Volker Sander Fachhochschule Aachen, Germany
Jun Shen University of Wollongong, Australia
Jianwen Su UC Santa Barbara, USA
Angelo Susi ITC, Italy
Stefan Tai IBM T.J. Watson Research, USA
Kian-Lee Tan NU Singapore, Singapore
Djamshid Tavangarian Universität Rostock, Germany
Farouk Toumani ISIMA, France
Karthikeyan Umapathy Penn State, USA

XII Organization

Julien Vayssiere SAP, USA
Yan Wang Macquarie University, Australia
Mathias Weske Universität Potsdam, Germany
Martin Wirsing Universität München, Germany
Jian Yang Macquarie University, Australia
Jih-Shyr Yih IBM T.J. Watson Research, USA
Gianluigi Zavattaro University of Bologna, Italy
Wenbing Zhao Cleveland State University, USA
Wolfgang Ziegler Fraunhofer SCAI, Germany
Christian Zirpins Universität Hamburg, Germany

Industrial Track

John Falkl IBM, USA
Paul Freemantle WSO2, UK
Steve Graham IBM, USA
Mansour Kavianpour Unisys, USA
Robert Maksimchuk Unisys, USA
Roger Milton USA
Jeff Mischinsky Oracle, USA
Andy Mulholland CapGemini, UK
Srinivas Narayannan Tavant, USA
Greg Pavlik Oracle, USA
Alberto Sardini IBM, Italy
Gunter Sauter IBM, USA
Karl Schulmeisters Unisys, USA
Harini Srinivasan IBM, USA
Lynne Thompson Twin Pearls Consulting Services, USA
Mahesh Viswanathan IBM, USA
Sanjeeva Weerawarana WSO2, Sri Lanka
Hemesh Yadav Unisys, USA

Table of Contents

Part I: Research Track Full Papers

Service Deployment

Pattern Based SOA Deployment . 1
William Arnold, Tamar Eilam, Michael Kalantar,
Alexander V. Konstantinou, and Alexander A. Totok

A Domain-Specific Language for Web APIs and Services Mashups 13
E. Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and
Stefan Tai

Business Process Design

BPEL4Job: A Fault-Handling Design for Job Flow Management 27
Wei Tan, Liana Fong, and Norman Bobroff

Faster and More Focused Control-Flow Analysis for Business Process
Models Through SESE Decomposition . 43

Jussi Vanhatalo, Hagen Völzer, and Frank Leymann

Service Discovery

Discovering Service Compositions That Feature a Desired Behaviour . . . 56
Fabrizio Benigni, Antonio Brogi, and Sara Corfini

An Hybrid, QoS-Aware Discovery of Semantic Web Services Using
Constraint Programming . 69

José Maŕıa Garćıa, David Ruiz, Antonio Ruiz-Cortés,
Octavio Mart́ın-Dı́az, and Manuel Resinas

Workflow

Architectural Decisions and Patterns for Transactional Workflows in
SOA . 81

Olaf Zimmermann, Jonas Grundler, Stefan Tai, and Frank Leymann

Bite: Workflow Composition for the Web . 94
Francisco Curbera, Matthew Duftler, Rania Khalaf, and
Douglas Lovell

XIV Table of Contents

Stochastic Modeling of Composite Web Services for Closed-Form
Analysis of Their Performance and Reliability Bottlenecks 107

N. Sato and K.S. Trivedi

Quality of Service Support

SLA-Based Advance Reservations with Flexible and Adaptive Time
QoS Parameters . 119

Marco A.S. Netto, Kris Bubendorfer, and Rajkumar Buyya

Monitoring the QoS for Web Services . 132
Liangzhao Zeng, Hui Lei, and Henry Chang

Q-Peer: A Decentralized QoS Registry Architecture for Web Services . . . 145
Fei Li, Fangchun Yang, Kai Shuang, and Sen Su

Testing and Validation

Business Process Regression Testing . 157
Hehui Liu, Zhongjie Li, Jun Zhu, and Huafang Tan

Auditing Business Process Compliance . 169
Aditya Ghose and George Koliadis

Specification and Verification of Artifact Behaviors in Business Process
Models . 181

Cagdas E. Gerede and Jianwen Su

Service Assembly

Improving Temporal-Awareness of WS-Agreement . 193
Carlos Müller, Octavio Mart́ın-Dı́az, Antonio Ruiz-Cortés,
Manuel Resinas, and Pablo Fernández

Maintaining Data Dependencies Across BPEL Process Fragments 207
Rania Khalaf, Oliver Kopp, and Frank Leymann

Supporting Dynamics in Service Descriptions - The Key to Automatic
Service Usage . 220

Ulrich Küster and Birgitta König-Ries

Service Properties

Grid Application Fault Diagnosis Using Wrapper Services and Machine
Learning . 233

Juergen Hofer and Thomas Fahringer

Table of Contents XV

Service Modeling

Stochastic COWS . 245
Davide Prandi and Paola Quaglia

Service License Composition and Compatibility Analysis 257
G.R. Gangadharan, Michael Weiss, Vincenzo D’Andrea, and
Renato Iannella

Dynamic Requirements Specification for Adaptable and Open
Service-Oriented Systems . 270

Ivan J. Jureta, Stéphane Faulkner, and Philippe Thiran

SOA Composition

High Performance Approach for Multi-QoS Constrained Web Services
Selection . 283

Lei Li, Jun Wei, and Tao Huang

Negotiation of Service Level Agreements: An Architecture and a
Search-Based Approach . 295

Elisabetta Di Nitto, Massimiliano Di Penta, Alessio Gambi,
Gianluca Ripa, and Maria Luisa Villani

Byzantine Fault Tolerant Coordination for Web Services Atomic
Transactions . 307

Wenbing Zhao

SOA Experience

Syntactic Validation of Web Services Security Policies 319
Yuichi Nakamura, Fumiko Sato, and Hyen-Vui Chung

An Agent-Based, Model-Driven Approach for Enabling Interoperability
in the Area of Multi-brand Vehicle Configuration . 330

Ingo Zinnikus, Christian Hahn, Michael Klein, and Klaus Fischer

User-Driven Service Lifecycle Management – Adopting Internet
Paradigms in Telecom Services . 342

Juan C. Yelmo, Rubén Trapero, José M. del Álamo, Juergen Sienel,
Marc Drewniok, Isabel Ordás, and Kathleen McCallum

SOA Runtime

Run-Time Monitoring for Privacy-Agreement Compliance 353
S. Benbernou, H. Meziane, and M.S. Hacid

XVI Table of Contents

Task Memories and Task Forums: A Foundation for Sharing
Service-Based Personal Processes . 365

Rosanna Bova, Hye-Young Paik, Boualem Benatallah,
Liangzhao Zeng, and Salima Benbernou

Part II: Research Track Short Papers

SOA Adoption

Addressing the Issue of Service Volatility in Scientific Workflows 377
Khalid Belhajjame

Facilitating Mobile Service Provisioning in IP Multimedia Subsystem
(IMS) Using Service Oriented Architecture . 383

Igor Radovanović, Amit Ray, Johan Lukkien, and Michel Chaudron

eServices for Hospital Equipment . 391
Merijn de Jonge, Wim van der Linden, and Rik Willems

Using Reo for Service Coordination . 398
Alexander Lazovik and Farhad Arbab

Service Modeling

A Context-Aware Service Discovery Framework Based on Human
Needs Model . 404

Nasser Ghadiri, Mohammad Ali Nematbakhsh,
Ahmad Baraani-Dastjerdi, and Nasser Ghasem-Aghaee

Weight Assignment of Semantic Match Using User Values and a Fuzzy
Approach . 410

Simone A. Ludwig

Grounding OWL-S in SAWSDL . 416
Massimo Paolucci, Matthias Wagner, and David Martin

QoS and Composite Service Support

A Declarative Approach for QoS-Aware Web Service Compositions 422
Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux

Supporting QoS Negotiation with Feature Modeling 429
Marcelo Fantinato, Itana Maria de S. Gimenes, and
Maria Beatriz F. de Toledo

Table of Contents XVII

A Multi-criteria Service Ranking Approach Based on Non-Functional
Properties Rules Evaluation . 435

Ioan Toma, Dumitru Roman, Dieter Fensel,
Brahmanada Sapkota, and Juan Miguel Gomez

A Development Process for Self-adapting Service Oriented
Applications . 442

Marco Autili, Luca Berardinelli, Vittorio Cortellessa,
Antinisca Di Marco, Davide Di Ruscio,
Paola Inverardi, and Massimo Tivoli

Automated Dynamic Maintenance of Composite Services Based on
Service Reputation . 449

Domenico Bianculli, Radu Jurca, Walter Binder, Carlo Ghezzi, and
Boi Faltings

Verifying Temporal and Epistemic Properties of Web Service
Compositions . 456

Alessio Lomuscio, Hongyang Qu, Marek Sergot, and Monika Solanki

Part III: Industrial Track Full Papers

Information as a Service

Research and Implementation of Knowledge-Enhanced Information
Services . 462

Bo Yang, Hao Wang, Liang Liu, Qian Ma, Ying Chen, and Hui Lei

A Model and Rule Driven Approach to Service Integration with Eclipse
Modeling Framework . 474

Isaac Cheng, Neil Boyette, Joel Bethea, and Vikas Krishna

Semantic Web Services in Action - Enterprise Information
Integration . 485

Parachuri Deepti and Bijoy Majumdar

Service Properties

Policy Based Messaging Framework . 497
Martin Eggenberger, Nupur Prakash, Koji Matsumoto, and
Darrell Thurmond

SOA Governance

Contextualized B2B Registries . 506
Uwe Radetzki, Mike J. Boniface, and Mike Surridge

XVIII Table of Contents

Bridging Architectural Boundaries Design and Implementation of a
Semantic BPM and SOA Governance Tool . 518

Christoph F. Strnadl

SOA and Large Scale and Complex Enterprise Transformation 530
Mansour Kavianpour

SOA Runtime

Run-Time Adaptation of Non-functional Properties of Composite Web
Services Using Aspect-Oriented Programming . 546

N.C. Narendra, Karthikeyan Ponnalagu,
Jayatheerthan Krishnamurthy, and R. Ramkumar

Software as a Service: An Integration Perspective . 558
Wei Sun, Kuo Zhang, Shyh-Kwei Chen, Xin Zhang, and Haiqi Liang

Building Data-Intensive Grid Applications with Globus Toolkit – An
Evaluation Based on Web Crawling . 570

Andreas Walter, Klemens Böhm, and Stephan Schosser

QoS-Aware Web Service Compositions Using Non-intrusive Policy
Attachment to BPEL . 582

Anis Charfi, Rania Khalaf, and Nirmal Mukhi

Execution Optimization for Composite Services Through Multiple
Engines . 594

Wubin Li, Zhuofeng Zhao, Jun Fang, and Kun Chen

Service Design Process for Reusable Services: Financial Services Case
Study . 606

Abdelkarim Erradi, Naveen Kulkarni, and Piyush Maheshwari

Part IV: Demo Track Short Papers

UMM Add-In: A UML Extension for UN/CEFACT’s Modeling
Methodology . 618

B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zapletal

CP4T WS - A Prototype Demonstrating Context and Policies for
T ransactional Web Services . 620

Sattanathan Subramanian, Zakaria Maamar,
Nanjangud C. Narendra, Djamal Benslimane, and Philippe Thiran

WSQoSX – A QoS Architecture for Web Service Workflows 623
Rainer Berbner, Michael Spahn, Nicolas Repp,
Oliver Heckmann, and Ralf Steinmetz

Table of Contents XIX

ReoService: Coordination Modeling Tool . 625
Christian Koehler, Alexander Lazovik, and Farhad Arbab

Author Index . 627

Pattern Based SOA Deployment

William Arnold, Tamar Eilam, Michael Kalantar, Alexander V. Konstantinou,
and Alexander A. Totok

IBM T.J. Watson Research Center, Hawthorne, NY, USA
{barnold, eilamt, kalantar, avk, aatotok}@us.ibm.com

Abstract. A key function of a Service Oriented Architecture is the sep-
aration between business logic and the platform of its implementation
and deployment. Much of the focus in SOA research has been on service
design, implementation, composition, and placement. In this paper we
address the challenge of configuring the hosting infrastructure for SOA
service deployment. The functional and non-functional requirements of
services impose constraints on the configuration of their containers at dif-
ferent levels. Presently, such requirements are captured in informal doc-
uments, making service deployment a slow, expensive, and error-prone
process. In this paper, we introduce a novel approach to formally captur-
ing service deployment best-practices as model-based patterns. Deploy-
ment patterns capture the structure of a solution, without bindings to
specific resource instances. They can be defined at different levels of ab-
straction supporting reuse, and role-based iterative refinement and com-
position. We show how we extended an existing model driven deployment
platform to support pattern based deployment. We formally define pat-
tern semantics, validation, and refinement. We also present an algorithm
for automatically instantiating such patterns on multiple distributed ser-
vice environments. Our approach has been verified in a large prototype
that has been used to capture a variety of functional and non-functional
deployment constraints, and demonstrate their end-to-end maintenance
and realization.

1 Introduction

Much of the focus in SOA research has been on service design, implementation,
composition, and placement [1]. In order to fully realize the promise of SOA, sim-
ilar attention must also be paid to the deployment, configuration, and runtime
management phases of the service life cycle. While SOA allows designers and
programmers to access business logic independent of implementation platform,
from the operator’s view the situation is the extreme opposite. SOA services
are typically implemented using standard distributed application platforms such
as J2EE, CORBA, and .NET, and are hosted on large middleware stacks with
complex configuration interdependencies. Deployment of SOA services, and the
composite applications that implement them, often involves creation of opera-
tional resources such as databases, messaging queues, and topics. The runtime
container of the service must then be configured to access these resources. Es-
tablishing access may require installation and configuration of client software,

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 W. Arnold et al.

security credentials, as well as network-level configuration. Deployers must assure
that all service resources have been correctly instantiated and configured, satis-
fying all functional and non-functional requirements. Cross cutting interdepen-
dencies and constraints make this a very challenging and error-prone task [2]. In
addition to the communication and hosting configuration challenge, SOA poses
additional challenges in transforming non-functional requirements and goals to
deployment solutions including configuration for security, availability, and per-
formance.

One approach to reducing the complexity of designing the deployment of ser-
vices is to capture common deployment patterns. Such patterns describe proven
solutions that exhibit certain non-functional properties. For example, experts
in WebSphere Process Server (WPS) have identified 12 best practices patterns
for WPS deployment [3]. Each pattern offers a different set of capabilities (high
availability, scalability, security) and supports classes of applications with dif-
ferent characteristics. Today, these SOA deployment patterns are still captured
informally in lengthy unstructured documents. Information about what com-
binations of products and versions are known to work must be looked up in
manuals and documents libraries. Tradeoffs between cost, availability, security,
scalability, and performance are investigated in an ad hoc fashion. There are no
models, methodology and tools to define, reuse, assemble, customize, validate,
and instantiate SOA deployment patterns.

In this paper we present a novel approach to capturing SOA deployment pat-
terns through formal methods, models, and tools. We use and extend a model-
driven deployment platform that we have previously presented in the context of
middleware[4] and network[5] configuration design, validation and deployment.
We present how we extend the platform with the ability to express model-based
patterns representing abstract deployment topologies. These models are used by
experts to capture the essential outline and requirements of a deployment so-
lution without specific resource bindings. We formally define the semantics and
validation of the realization of such abstract patterns. Using our deployment
platform, we enable non-expert users to safely compose and iteratively refine
such patterns to design a fully specified topology with bindings to specific re-
sources. The resulting desired state topology can be validated as satisfying the
functional service requirements, while maintaining the non-functional properties
of the pattern. We also show how automatic resource binding can be introduced
to reduce the steps required to reach a valid and complete deployment topology.
The desired state of the complete deployment topology can then be provisioned
automatically by generating a one-time workflow as we presented in [6].

The paper is structured as follows. In Section 2, we describe our deploy
platform resource model, architecture and concepts. In Section 3, we present
our novel pattern modeling constructs, their semantics and validation. We also
present an algorithm to automate the instantiation of patterns over an existing
infrastructure. Section 4 covers related work. Finally, we conclude with a brief
discussion of our prototype implementation and on-going work.

Pattern Based SOA Deployment 3

2 Deployment Platform

Our model-driven SOA deployment platform supports the construction of desired
deployment state models that are complete, correct, and actionable. These mod-
els include detailed software stacks and configuration [4,5]. They are consumed
by provisioning automation technologies [7] to drive automated provisioning [6].
The deployment platform is built on a core configuration meta-model, and ex-
poses a number of services for model extension, validation, problem resolution,
resource discovery, query, and provisioning.

2.1 Core Configuration Meta-model

The core model captures common aspects of deployment configuration syntax,
structure and semantics. Core types are extended to capture domain-specific
information. Domain objects and links are instantiated in a Topology which is
used to design the desired state of the infrastructure after deployment. The Unit
core type represents a unit of deployment. A Topology contains Unit instances
that may represent resources that are already installed, or ones that are to be in-
stalled. The install state of a unit is a tuple (init, desired) representing the install
state of the unit when it was provided to the topology, and its state after pub-
lishing. The values of init and desired can be one of {uninstalled, installed}.
Installable Units, may be associated with one or more Artifacts. A Unit may
also represent a configuration node, such as J2EE data source, in a hierarchi-
cal structure (current or desired). A Unit can contain any number of Capability
instances. Subtypes of Capability group domain-specific configuration attributes
by function. The relationships of a Unit with other Units are expressed through
containment of Requirement objects. The core model defines three types of rela-
tionships: hosting, dependency, and membership. Each Requirement is associated
with one of these types. Relationships are represented using a Link association
class. All these types extend a common DeployObject super-type. All DeployOb-
ject can be associated with any number of Constraint instances. The semantics
and validation of a Constraint are defined by the subtypes extending it. The con-
text of Constraint evaluation is the object on which it is defined. In the case of a
Constraint contained in a Requirement, the constraint context is the target of the
requirement link. This allows users to define constraints that must be satisfied
by the resource at the other end of a relationship. Figure 1 outlines a deploy-
ment Topology instance model example. The topology captures the deployment
of a new J2EE Enterprise Application (EAR) on an existing IBM WebSphere
Application Server (WAS), using a pre-configured J2EE data-source. We have
similarly defined extension schemas and instance models for a variety of other
product domains and vendors.

2.2 Deploy Platform Architecture

The overall architecture of our model-based SOA deployment platform is de-
picted in Figure 2. At its base lies the core configuration model, on top of which

4 W. Arnold et al.

<<Unit>

EarUnit

state = {uninstalled, installed}

<<Requirement>>

J2eeDatasource

type=dependency

<<Requirement>>

J2eeContainer

type=hosting

<<Unit>>

Was6Unit

state={installed, installed}

<<Capability>>
J2eeContainer

version=1.4

<<Capability>>
WasServer

version=6.0

Hosting Link

<<Unit>

Db2DataSourceUnit

configurationUnit = true
state={installed, installed}

<<Capability>>
WasV6DataSource

jndiName=“jdbc.plants”

Dependency Link

<<Requirement>>

WindowsOS

type=hosting

<<Requirement>>

WasServer

type=hosting

Hosting Link

<<Capability>>

WebService <<Artifact>>

file=plants.ear

jndiName=“jdbc:plants” version >= 1.4 version >= 6

version >= 5.1

collocate=J2eeContainer

Fig. 1. Topology instance example modeling the deployment of a J2EE Application

a number of extensible services are supported. The platform defines the deploy-
ment service interfaces and provides the managers for registering extensions.
The Domain Service is used to extend the core model types in domain-specific
schemas. The Validation Service is used by domain authors to inject semantic
validation logic. An example validation rule may express that the database name
attribute of a J2EE datasource must match the actual name of the database on
which it depends. The validation service invokes the validation rules when types
from the domains with which they are associated are instantiated or changed.
Validation rules generate semantically rich status errors markers. These error
markers identify the areas in the model that violate a registered validation rule.
The Resolution Service is used to declare logic for fixing the errors underly-
ing the markers generated by validators. For example, in the earlier datasource
database name validation example, a resolution may be declared to propagate
the name of the database to all of the datasources that have a dependency rela-
tionship to it. For a given error status, the resolution service can be queried to
provide the list of possible resolution actions. These resolutions can be invoked,
either manually or programmatically, to modify the model. The core platform is
packaged together with a core set of Constraints, Requirements, and an accom-
panying set of core validation and resolution rules. The Provider Service is used
to discover and query configuration repositories (e.g. CMDBs), so that units that
represent existing resources can be discovered and incorporated in deployment
topologies. The Publisher Service is used to register provisioning agents whose
role is to configure the infrastructure to match the desired state expressed in
the topology. Finally, the platform supports a Core Editor which is a standard
graphical interface for creating and editing topologies. The editor interfaces with
the existing platform services for resource discovery, topology validation, error
resolution, and publishing.

Pattern Based SOA Deployment 5

Core Model C
o
re

 E
d
it
o
r

Validation

Service

Domain

Service

Provider

Service

Publisher

Service

Resolution

Service

Fig. 2. Deployment Platform Extension Architecture

2.3 Valid Deployment Models

Users construct deployment models by adding or modifying units, and by execut-
ing resolution rules. The goal is to reach complete and valid deployment topolo-
gies that do not contain any error markers. A topology is validated against a set
of core validation rules, a set of domain-specific type-level rules, and the con-
straints associated at the object instance level. The core validation rules check
the cardinality of the topology links, as well as the type and configuration of
their endpoints. Domain-specific validation rules can be expressed at the type
level, to apply to all instances, or at the instance level as constraints. Formally,
we say that a topology T is valid w.r.t. a given set of validation rules V iff (1)
all core link validation rules are satisfied, (2) all type-level validation rules v ∈ V
evaluate to true on any object u ∈ T , and (3) all constraints on topology objects
evaluate to true in the context of their evaluation. Recall that for a constraint
defined in a capability the evaluation context is the capability’s attribute set,
while for a constraint defined in a requirement the context is the target of the
relationship (and its contained capabilities). The logic for evaluating constraints
is itself extensible.

3 Pattern Platform

A common requirement across different SOA deployments is the ability to de-
scribe a deployment topology at various levels of abstraction. At a base level
of abstraction, the topology may represent a fully defined deployment struc-
ture that is only missing the relationships to the specific resources on to which
it will be deployed. At higher levels of abstraction, the topology may partially
specify the configuration of resources, focusing on key parameters and structures,
while leaving others to be determined at deployment time. The deployment plat-
form described in the previous section is well suited for modeling the concrete
desired state of services, components, and their relationships that are directly
mappable to native configuration models. In this section, we describe how we
extend the deployment platform to support abstract models, termed patterns.
As depicted in Figure 3, pattern models are defined by experts using a rich de-
sign tool and instantiated by deployers, potentially using a simple installation
wizard for resource and parameter selection. First, we describe the modeling
extensions, including structural constraints, virtual units, and realization links.
Then we describe how we use views to execute the original set of validation rules

6 W. Arnold et al.

Deployment
Wizard

Model-based
Pattern Editor

Expert

Patterns

Deploy Platform

Provisioning Engine

CMDB Deploy Platform Deployer

Fig. 3. Pattern use-case

on the extended class of models. Last we describe an approach for automatically
realizing pattern topologies on multiple distributed environments.

3.1 Pattern Modeling Extensions

Structural Constraints. When defining patterns, it is often necessary to ex-
press structural constraints. For example, a fail over high-availability service
pattern may include a structural constraint to anti-collocate the primary and
standby services at the operating system level. To support structural constraints,
we introduce a new constraint link type, and we extended it for two common
types of structural constraints: collocation and deferred host.

A collocation constraint restricts the valid hosting of two units. It is associated
with a type property which determines the type of the host on which the two
units’ hosting stacks must converge (anti-collocation can be defined similarly).
Deferred hosting is a constraint that the source unit be eventually hosted on
the target. For example, a deployer may wish to constrain the deployment of
a service on a particular system without having to model the entire software
stack. A valid topology, realizing a pattern with a deferred host constraint, must
include a direct or indirect hosting link path from the source to the identified
target.

Virtual Units and Realization Links. Many patterns can be expressed in the
form of a model with partially specified units of abstract or non-abstract types.
Our approach to presenting such patterns is through the concept of a virtual unit.
A virtual unit is one which does not directly represent an existing or installable
service, but instead must be realized by another unit. The Virtual property of a
unit is a Boolean attribute on the base Unit type. Typically, virtual units will
include capabilities with unspecified values and associated constraints. Every
unit type can be instantiated as a virtual unit. A new realizedBy relationship can
be defined between any two objects, where the source is virtual. The semantics
of the relationship is that the source acts as a constraint over its target. Often,
a realizedBy link will be defined from a virtual unit to a concrete (non-virtual)
unit, although it may also target a more specific virtual unit. For simplicity,
in this paper we restrict ourselves to the case where virtual units are realized
only by concrete units. In cases where Unit-level realization is ambiguous in
terms of the mapping of contained objects such as capabilities and requirements,
additional realization links may be required between these objects. In the rest of

Pattern Based SOA Deployment 7

<<Unit>> <<Virtual>>

Unit

state={*, installed}

<<Capability>>
J2eeContainer

<<Unit>>

WebSphere6Unit

state={installed, installed}

<<Capability>>
J2eeContainer

version=1.4

<<Capability>>
WasServer

version=6.0

<<Requirement>>
WindowsOS

type=hosting

version >= 5.1memory >= 2GB

version >= 1.4

T1 T2

…

<<realizedBy>>

<<Unit>

EarUnit

…

…

…

<<host>>

<<host>>

<<Unit>

W.OSUnit

W.OS

v.=5.1

m.=4GB<<Requirement>>
OperatingSystem

type=hosting

Fig. 4. Example of a virtual unit realized by a concrete unit

the paper, in order to simplify the formal definition, we assume all capabilities
and requirements of realized units are also explicitly realized.

Figure 4 is a valid realization example which shows a virtual unit in a topology
T1 that is realized by a unit in a topology T2 representing an installed WebSphere
Application Server. Note that all constraints are satisfied by the realizing unit,
and the type hierarchy is respected. The rules for locally validating a realization
relationship between two units are formally defined in two stages as follows.

For any two model objects o1, o2, matchR(o1, o2) iff (1) supertype(type(o1),
type(o2)), (2) For every attribute a ∈ attributes(type(o1)), isSet(o1, a) → value
(o1, a) = value(o2, a), and (3) For every constraint c ∈ constraints(o1), c(o2).

For any two unit objects u1, u2, validR(u1, u2) iff (1) virtual(u1), (2) matchR
(u1, u2), (3) For every capability c1 ∈ cap(u1), there exists a unique capability
c2 ∈ cap(u2) s.t. realizedBy(c1, c2) ∧ matchR(c1, c2), and (4) For every re-
quirement r1 ∈ req(u1), there exists a unique requirement r2 ∈ req(u2) s.t.
realizedBy(r1, r2) ∧ matchR(r1, (r2)).

3.2 Pattern Validation

By design, patterns are incomplete topologies. To meaningfully validate patterns,
we have to distinguish between two sources of errors: model violations and model
incompleteness. To formalize this concept we define three different validation
states on attributes, relationships, or constraints, associated with virtual units in
the model: undefined, satisfied, and violated. An element O is in an undefined
state in a model M if objects can be added to M , and undefined attributes set,
such that O transitions to a satisfied state.

The deferred host structural constraint between a source A and a target B
is undefined as long as the hosting stack for A is incomplete and there is no
hosting link path from A to B′ where type(B′) = type(B) ∧ B �= B′. The
collocation relationship, with target type t, between units A and B is undefined
as long as there are no hosting link paths from A to C and from B to C′

where type(C) = type(C′) = t. A topology T is weakly valid iff all constraints,
requirements and links associated with virtual units are in either satisfied or
undefined states. For example, consider a pattern containing a virtual unit u
with an associated hosting requirement r. If r is not linked, then the model will
still be weakly valid, however if its linked to two different units it will be invalid.

8 W. Arnold et al.

1

2

3

4
T

3

4
Fold(T)

c1

c2

c3

c4

c1

c3

c2

c4

c c <<host>>

<<realizedBy>>

<<unit>>

<<constraint>>

<<virtual unit>>

<<depend>>

5 5

Fig. 5. Topology folding example

Topology Folding. Given a topology (or a set of topologies) with virtual units
and realization links, it is not enough to locally check the validity of individual
realization links using the rules defined in the previous section. For example, in
Figure 4, the realization would be locally valid even if the WebSphere Application
Server is hosted on an operating system with less than 2GB of memory. As
another example, consider a virtual unit u hosted on a non virtual unit v. A
valid local realization of u can map it to a non virtual unit u′ hosted on a non
virtual unit v′ where v′ �= v. In this section we complete the semantic definition
of patterns by defining the full set of validation and realization rules.

For this purpose, it is helpful to define the folded topology foldR(T) of a given
topology T , where, intuitively, we collapse all realized virtual units, relationships
and constraints. An example of a folded topology is illustrated in Figure 5. The
folded topology foldR(T) satisfies the following rules: (1) For every o ∈ T ,
o ∈ foldR(T) iff o is not the source of any realizedBy relationship, (2) For
every o ∈ T , constraints(o) is the union of constraints defined on all o′ ∈ T such
that realizedBy(o′, o), (3) For every o1, o2 ∈ foldR(T) : ∃r of type t from o1 to
o2 iff there exists a relationship r′ ∈ T s.t. type(r′) = t, and for o′1 = source(r′)
: ((o1 = o′1) ∨ realizedBy(o′1, o1)) (resp. target(r′) and o2), and (4) For every
r ∈ foldR(T), constraints(r) includes the union of constraints defined on the
set of relationships r′ ∈ T as defined in item (3).

A strict folded topology foldRS(T) of a topology T , is foldR(T) where all
virtual units and their associated relationships are removed. Note that the class
of strict folded topologies is identical to the class of concrete topologies defined in
Section 2. Thus, for a given pattern T all of the core deploy platform validation
rules can run on foldRS(T) without requiring any changes.

Topology Realization Semantics. Given our definition of a locally valid
realization, and the folded view of a topology, we can now define the validity of
a topology containing multiple realization links. Given a topology T , T forms
a valid topology realization iff the following properties are satisfied: (1) Every
virtual unit is realized by at most one unit, (2) Each realization link in T is
locally valid, and (3) FoldR(T) is weakly valid (defined earlier in this section).
Note that Item (3) guarantees that links between virtual units “agree” with
links between their realizing concrete units (if they don’t we will get a link
multiplicity constraint violation in the folded topology). A topology realization
is complete when it is valid and all its virtual units are realized. Note that if T
forms a complete topology realization then foldR(T) = foldRS(T). Now that

Pattern Based SOA Deployment 9

we extended the set of topologies defined in Section 2 to include patterns, the
definition of a valid topology must be generalized, as follows. A topology T is
valid∗ iff (1) T forms a valid and complete realization, and (2) foldR(T) is valid
(according to the definition in Section 2). Note that for the provisioning phase
of a valid∗ topology T , only foldR(T) is needed.

3.3 Automatic Pattern Realization

In the beginning of this section, we introduced the idea of automatically instan-
tiating patterns in multiple environments. To do that, we have to have a way to
automatically generate a valid∗ topology T ′, given an input pattern T1 and a tar-
get topology T2 representing the target environment. To simplify the discussion,
lets assume that the inputs T1 and T2 are merged into one topology T . Now, T
must be automatically modified by adding realization links between virtual units
originating in T1 and concrete units originating in T2. When the modified topology
T ′ forms a valid and complete realization, it may still be necessary to automati-
cally execute some resolution rules to reach a valid∗ state. For example, values of
attributes, originating in objects in T2 may need to be propagated to units origi-
nating in T1. An approach for automatic resolution execution was proposed in [4].
Hereafter, we limit the discussion to the automatic realization function.

Following is the formal definition of the automatic realization problem. Given
a source topology T1 and a target topology T2, let R be a set of realization links
from T1 to T2, and let T ′ = T1 ∪ T2 ∪ R be the merged topology. The tuple
(T1, T2, R) is a maximum valid realization iff (1) T ′ forms a valid realization,
and (2) |R| is maximum. The goal of the automatic realization problem is to
find a maximum realization for given source and target topologies.

Note that a maximum valid realization may be incomplete: unrealized virtual
units may exist. An incomplete topology may still be automatically completed to
a valid∗ topology in some cases. We defer the discussion of automatic completion
to future publications.

Our approach to address the automatic realization problem is based on the
observation that the problem is reducible (with some variations) to the error
correcting subgraph isomorphism problem [8], where realization links play the
role of the isomorphism mapping. Given T1, T2, R, and T ′, as defined above, let
r be the mapping function. Then we define the following changes to the original
definition of the error correcting subgraph isomorphism problem. For every two
units a ∈ T1 and b ∈ T2, r(a) = b is permissible only if the following conditions
are satisfied. (1) validR(a, b), (2) every constraint c ∈ constraints(a) is not in
a violated state in foldR(T ′), and (3) for every link l ∈ T1 with source(l) = a,
the corresponding link l′ in foldR(T ′) is not in a violated state.

Consider the example in Figure 6, where colored nodes represent concrete
units. The mapping r in all of the of the topologies in the figure is a valid error
correcting subgraph isomorphism mapping. However, only topologies (a) and
(c) show valid mapping according to our modified definition of the problem,
and according to the definition of a valid realization in the previous section.
Topologies (b) and (d) violate Item (3) in the the definition above.

10 W. Arnold et al.

a

b

a’

b’

h

a

b

a’

b’

h

c’

h

a

b

a’

h

a

b

a’

h

c’

h

(a) (b) (c) (d)

r

r

rr

r

r

Fig. 6. Valid and invalid mappings according to our modified definition of error cor-
recting subgraph isomorphism

Clearly, existing algorithms for error correcting subgraph isomorphism can
be modified to handle the modified version defined above. The formal definition
of such an algorithm is beyond the scope of the paper. We implemented and
studied the performance of a simpler variant of the problem, where all virtual
units must be matched. Preliminary performance results are on the practical
side, although maximum subgraph isomorphism is NP-Complete. We speculate
that this is because our graphs are heavily labeled, and sparse.

4 Related Work

Service deployment often refers to service selection [9] and service composition
to satisfy functional and QoS requirements, for example, [10,11]. In contrast
to this, our work focuses on the deployment, configuration and management of
complex services including their supporting middleware. Work that addresses
this depth of deployment and configuration often assumes a simplified model
such as common middleware already deployed [10] or knowledge of the specific
target environment so that provisioning steps are known in advance [12]. In
[13] models are used to realize a conceptual service interface with one or more
interfaces of its concrete implementation. The focus is on interface realization,
not middleware configuration and deployment. Models are also used to capture
non-functional aspects in [14] at the service design level. Such constraints can
be used as input to our deployment refinement process.

The use of object-relationship models for the design and configuration of
systems[15] and networks[16] has been widely adopted in industry[17,18] and
their use is being standardized for service deployment models as SML[18]. [19]
used a spreadsheet-style system to propagate configuration attributes over an
object-relationship structure. Design tools for application deployment[5,20] have
adopted Model Driven Architecture (MDA)[21] approaches.

Patterns have been used for the deployment of network services[22]. In this
case, a pattern represented a detailed description of the conditions needed for
the deployment of a service. While our patterns can be used as a key to find
necessary conditions, they can also be used to create the necessary conditions.
Patterns were used as a mechanism for service deployment in [12]. In this latter
case, patterns are pre-defined and associated with concrete provisioning steps
or workflows. Pattern selection is identified by mapping from a service level
agreement. In our work, we divorce the pattern from the provisioning actions.

Pattern Based SOA Deployment 11

Instead, the pattern can be used to drive resource selection and to complete
configuration planning, creating a detailed configuration plan. Such a plan can
then be consumed by other tools such as [23,6] for provisioning.

5 Future Work

The model extensions for patterns that we have presented in this paper have
been implemented in our model-driven deployment platform prototype. We are
currently using this prototype to capture deployment patterns for complex do-
mains such as WPS [3], as well as complex high-availability patterns for data-
bases, messaging, and application servers. We have also implemented same basic
structural constraints, such as collocation and deferred hosting, as well as more
complex ones, such as communication. A rich visual interface supports simple
model-based pattern creation and refinement. An initial implementation of the
automatic realization algorithm allows users to automatically realize complex
patterns over existing infrastructure resources. We plan on extending our im-
plementation to also support installation of resources that may be missing. In
future research we plan on investigating automated pattern composition, reverse
pattern discovery, and pattern maintenance.

Acknowledgements

The authors would like to thank Daniel Berg, Andrew Trossman, Michael Elder,
Edward Snible, and John Pershing for helping to shape our vision, contributing
ideas, and assisting in implementation.

References

1. Curbera, F., Ferguson, D., Nally, M., Stockton, M.L.: Towards a programming
model for service oriented computing. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 33–47. Springer, Heidelberg (2005)

2. Brown, A.B., Keller, A., Hellerstein, J.: A model of configuration complexity and its
applications to a change management system. In: Integrated Management (2005)

3. Redlin, C., Carlson-Neumann, K.: Websphere process server and websphere enter-
prise service bus deployment patterns. Technical report, IBM (2006)

4. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G.: Reducing the complexity
of application deployment in large data centers. In: Integrated Management (2005)

5. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Pershing, J., Agrawal, A.:
Managing the configuration complexity of distributed applications in internet data
centers. IEEE Communication Magazine 44(3), 166–177 (2006)

6. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.:
Model driven provisioning: Bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

7. IBM: Tivoli Provisioning Manager (TPM) (2006)

12 W. Arnold et al.

8. Tsai, W., Fu, K.: Error-correcting isomorphisms of attributed relational graphs for
pattern recognition. IEEE Trans. on Sys., Man, and Cybernetics 9, 757–768 (1979)

9. Su, X., Rao, J.: A survey of automated web service composition methods. In:
SWSWPC (2004)

10. Kichkaylo, T., Karamcheti, V.: Optimal resource-aware deployment planning for
component-based distributed applications. In: HPDC, Washington, DC, USA, pp.
150–159. IEEE Computer Society Press, Los Alamitos (2004)

11. Canfora, G., Penta, M.D., Esposito, R., Perfetto, F., Villani, M.L.: Service compo-
sition (re)binding driven by application-specific QoS. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 141–152. Springer, Heidelberg (2006)

12. Ludwig, H., Gimpel, H., Dan, A., Kearney, B.: Template based automated service
provisioning supporting the agreement driven service life-cycle. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 283–295. Springer,
Heidelberg (2005)

13. Emig, C., Krutz, K., Link, S., Momm, C., Abeck, S.: Model-driven development of
SOA services. Technical report, Forschungsbericht (2007)

14. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented
architecture. In: IEEE Int. Conf. on Service Computing, IEEE Computer Society
Press, Los Alamitos (2006)

15. Sloman, M.: Management for open distributed processing. DCS 1(9), 25–39 (1990)
16. Sengupta, S., Dupuy, A., Schwartz, J., Yemini, Y.: An Object-Oriented Model

for Network Management. In: OO Databases with Applic. to CASE, Networks and
VLSI CAD. Series in Data and Knowledge base systems, Prentice-Hall, Englewood
Cliffs (1991)

17. DMTF: Common Information Model (CIM). Technical report, DMTF (2006)
18. W3C: Service Modeling Language, version 1.0. Technical report (2007)
19. Yemini, Y., Konstantinou, A., Florissi, D.: NESTOR: An architecture for self-

management and organization. In: JSAC, vol. 18(5) (2000)
20. Microsoft: DSI: Applications of model-based management (Technical report)
21. Soley, R.: Model driven architecture. Technical report, OMG (2000)
22. Bossardt, M., Mühlemann, A., Zürcher, R., Plattner, B.: Pattern based service

deployment for active networks. In: ANTA (2003)
23. Keller, A., Hellerstein, J., Wolf, J., Wu, K.L., Krishnan, V.: The CHAMPS system:

change management with planning, and scheduling. In: NOMS, IEEE Press, Los
Alamitos (2004)

A Domain-Specific Language for Web APIs and

Services Mashups

E. Michael Maximilien1, Hernan Wilkinson2, Nirmit Desai3, and Stefan Tai1

1 IBM Research
{maxim, stai}@us.ibm.com

2 Universidad de Buenos Aires
hernan.wilkinson@gmail.com

3 N.C. State University
nvdesai@ncsu.edu

Abstract. Distributed programming has shifted from private networks
to the public Internet and from using private and controlled services to
increasingly using publicly available heterogeneous Web services (e.g.,
REST, SOAP, RSS, and Atom). This move enables the creation of in-
novative end-user-oriented composed services with user interfaces. These
services mashups are typically point solutions to specific (specialized)
problems; however, what is missing is a programming model that facil-
itates and accelerates creation and deployment of mashups of diverse ser-
vices. In this paper we describe a domain-specific language that
unifies the most common service models and facilitates service composi-
tion and integration into end-user-oriented Web applications. We demon-
strate our approach with an implementation that leverages the Ruby on
Rails framework.

1 Introduction

There are two paradigm shifts occurring on the Web that are changing the way
software is developed. The first is the increasing availability of Web APIs (or
Web services) in the form of Representational State Transfer (REST) [2] and
SOAP services, as well as RSS and Atom data services. These Web APIs enable
external partners (or software agents) to incorporate business data and processes
of the service providers into their own Web application or Web client. Indeed, the
proliferation of these Web APIs have resulted in various composed services with
UIs, or mashups, which provide solutions to very specific and narrow problems.
An example is Podbop.org, which combines the API and data retrieved from
Eventful.com with MySpace.com, as well as other MP3 databases, to create a site
for music lovers who want to sample music of new (unknown) artists performing
in local bars and clubs.

The second paradigm shift is a movement to increasingly program Web appli-
cations using dynamic programming languages and frameworks, e.g., JavaScript
with AJAX, Ruby with Ruby on Rails (RoR), Python with Zope, Smalltalk
with Seaside, as well as PHP. These languages allow for rapid application devel-
opment and testing; and not only afford programmers expressive and powerful

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 13–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 E.M. Maximilien et al.

frameworks, but they also lead to the use of high-level abstractions which are
more representative of the domain in question.

In many ways these two paradigm shifts are complementary since they es-
sentially help realize the vision of a programmable Web. However, frameworks
focused directly on facilitating the creation and deployment of mashups of di-
verse Web APIs and services are missing. For instance, each type of service
(REST, SOAP, RSS, and Atom) has heterogeneous means of exposing the ser-
vice interface or none at all. Additionally, there is a need to help address common
distributed systems issues that arise [3].

In this paper we present a domain specific language (DSL) for services mashups
that alleviates some of these issues. In particular, our DSL (1) allows for a com-
mon interface representation among diverse service types, (2) facilitates exposing
asynchronous and synchronous method invocations, (3) gives a uniform model for
service data and service operations’ interactions, and (4) enables basic service data
caching. We demonstrate an implementation of our language using Ruby and the
RoR framework.

1.1 Organization

The rest of this paper is organized as follows. Section 2 gives an overview of our
platform architecture. We also provide a more thorough definition of services
mashups. Section 3 gives a more precise definition of our language and some
brief examples of the language in action. Section 4 describes our implementation.
Finally, Section 5 follows with a discussion of our approach which includes related
works and limitations.

2 Background and Architecture

In order to demonstrate our approach to mashups and how a DSL can facilitate
mashup creation, it’s useful to first have a more precise definition of mashups
along with possible implementation approaches. We then illustrate our architec-
ture with a brief overview of the base platform that we use.

2.1 What Are Mashups?

At its core, a mashup is a Web application that aggregates multiple services to
achieve a new purpose. Conceptually, mashups are new Web applications used for
repurposing existing Web resources and services. They include all three aspects of
a typical Web application (model-view-controller) with additional functionality.
For us, a mashup includes three primary components:

1. Data mediation involves converting, transforming, and combining the data
elements from one or multiple services to meet the needs of the operations
of another. For instance, mediating between data models of tags represented
in both the Flickr 1 and the Eventful’s APIs.

1 http://api.flickr.com

A Domain-Specific Language for Web APIs and Services Mashups 15

2. Process (or protocol) mediation is essentially choreographing between the
different services to create a new process. For instance, process mediation
includes invoking the various service methods, waiting for asynchronous mes-
sages, and sending any necessary confirmation messages.

3. User interface customization is used to elicit user information as well as to
display intermittent and final process information to the user. Depending on
the domain, the user interface customization can be as simple as an HTML
page, a more complex series of input forms, or an interactive AJAX UI.

2.2 Mashup Implementation Approaches

Two example technologies used to build mashups are the Google Web Toolkit
(GWT) 2 and plain RoR. As an example, consider implementing a mashup that
updates personal calendars from Atom feeds, and allows adding rating infor-
mation for events. Assume, without loss of generality, that each user’s calendar
can be accessed via a REST API using a key parameter to authenticate users.
The Atom feeds generate heterogeneous event entries for each up-coming talks.
And finally, each user has an account in Eventful, which exposes a common data
model for events and REST APIs to add, search, rate, and retrieve events.

Using GWT, two main components of the mashups are to represent the various
talk feeds entries and converting them to the uniform Event data model of
Eventful. This involves data mediation between the model for a Talk entry from
the Atom feed to an the Event model in Eventful. For instance, the former may
have a location data as a string which needs to be parsed into the different fields
for location represented by the latter.

GWT does not have built-in libraries for accessing REST or Atom services.
This means that for each service type, there is a need to find an appropriate
Java TMlibrary or creating one manually and binding and testing to the services
in question.

Next, we need to mediate the protocols of the three services to achieve the
goals of our mashup. For instance, assume that the first page of our mashup
simply displays all up-coming events in the next two-weeks that are not already
added to the user’s calendar. One possible choreography between the three ser-
vices to achieve this goal is:

1. Retrieve entries from all feeds for up-coming talks. Additional consideration
for this step are: caching public entries for subsequent access or for other
users and enabling asynchronous updates of the cache.

2. Query the user’s calendar to get all talk entries for the next two weeks.
3. Mediate between the user’s calendar entries and the feed entries. Decide on

comparison criteria, e.g., time, date, location, and so on.
4. For each talk not present in the user’s calendar, create a common representa-

tion of these talks as events in Eventful and add to the Eventful database via
REST API. Eventful events include a model for speakers which also needs to

2 http://code.google.com/webtoolkit

16 E.M. Maximilien et al.

be mediated from the data feeds. If the talk is already present, then retrieve
it and mediate between the reconciled event in previous step and this one.

5. Present a formatted page to the user with each new event with checkboxes
and a button to enable the user to add events to her calendar.

6. Allow user to view events in her calendar. For each event: (1) display event
data; (2) allow user to delete the event; and (3) allow user to indicate atten-
dance.

It’s worth noting that using GWT to implement the choreography above re-
sults in adding custom code for the data mediation steps, for resolving the chore-
ography, as well as for any data caching. Additionally, there is no reuse of the
various steps across mashups of the same services.

Using RoR is effectively similar to using GWT, though simpler for some as-
pects. For instance, RoR’s built-in support for databases via ActiveRecord would
facilitate caching the feed entries into a relational database. However, this would
need to be manually done for each type of Talk feed added to the system.

2.3 Ruby on Rails

The Ruby on Rails (RoR) framework enables agile development of Web ap-
plications. The framework contains primitives to help efficiently implement all
aspects of an Model-View-Controller (MVC) Web application. Each MVC Web
application contains: (1) Model classes representing the data elements of the ap-
plication’s domain. Model objects can persist their state in a database using a
series of conventions; (2) Views are the dynamic pages displayed to the user of
the Web application. Each view file contains HTML and embedded Ruby code
which is translated into JavaScript, HTML, and CSS on the server before being
sent to the client (i.e., browser); and (3) Controllers constitute the middle layer
between models and views. Controllers are classes whose names and methods
map to the application URL path. Controller methods contain business logic by
operating on model objects and accessing remote services.

Additionally, RoR also includes basic facilities to allow controllers to invoke
external SOAP Web services and to access remote Web resources. However, the
RoR Web API support lacks some key features needed to streamline and cre-
ate mashups, e.g., lack of consistent and uniform representation for all different
types of services, lack of support for asynchronous invocation of services’ oper-
ations that can work across all service types, and lack of provisions for easily
manipulating complex XML data (beyond parsing).

2.4 Architecture Overview

To address the above deficiencies (and others) as well as to provide a uniform
model for building and sharing services mashup we created the Swashup plat-
form. Our architecture extends the RoR architecture with a new DSL, supporting
libraries, as well as associated platform models and services. Figure 1 illustrates
the high-level components of our architecture.

A Domain-Specific Language for Web APIs and Services Mashups 17

Internet

Service
 proxies

Service
endpoints

RoR Web
application

Web browser
(mashup client)

HTML

VB

JS

Service
Data

cache

Swashup
Web tools

<script
 var a=
 var xl
 if(xls

Swashup DSL

<?xml v
 <ref:
 <gr

XML

DB

Swashup + RoR base + gems
(models, DSL engine, and services)

Example
deployed
mashup

SOAP, REST, and
RSS/Atom services

Fig. 1. Swashup high-level architecture

Using the Swashup Web UI tools, an end user creates, edits, and deploys a
Swashup project which contains the necessary information for describing the
services to be mashed up as well as the mashup information. Using the Swashup
platform services, the Swashup project is deployed as a complete RoR Web
application with all necessary service proxies, models, and initial views for each
mashup.

3 Swashup DSL

We now introduce our language and discuss the main requirements for any DSL
as well as some criteria for judging their value.

3.1 What Are DSLs?

A domain-specific language (DSL) is a ‘mini’ language built on top of a hosting
language that provides a common syntax and semantics to represent concepts
and behaviors in a particular domain. In general, using or designing a DSL helps
achieve the following goals: (1) Abstraction by enabling programming at a level
higher than what is available with the host programming language constructs
or its libraries. A DSL allows the domain concepts, actions, and behaviors to
be represented directly in the new syntax; (2) Terse Code as a side effect of
programming in a higher-level of abstraction; (3) Simple and Natural Syntax,
which leads to easy to write and read code; (4) Ease of Programming, which
is desirable of any programming language and also somewhat difficult to judge.
However, since a DSL enables the expression of constructs that map directly to a
domain, it generally makes programming easier (for applications in the domain)
than using the underlying language directly; and (5) Code Generation is how
a DSL primarily functions. Essentially, the DSL statements are translated at
runtime into code that uses the underlying language and its libraries. This can
be either using metaprogramming techniques or by code generation of program
files.

18 E.M. Maximilien et al.

3.2 Language Overview

In the Swashup DSL, we directly represent in the syntax, the concepts necessary
to cover the three main components of our conceptual model for mashups: (1)
data and mediation; (2) service APIs, their protocols, and choreography; and
(3) a means to generate Web applications with customized UIs for the result-
ing mashups. The following concepts form the main types of statements in our
language.

– data describes a data element used in a service. A data element corresponds
to an XML schema complex type. Each data element has a name and a
series of member attributes. These attributes’ types can be either regular
XSD simple types or other data elements. Section 4 gives more details on
our XML mapping approach including conventions and rules.

– api gives a complete description of a service’s interface. This includes de-
scriptions for the service’s API, including operation names, parameters, and
data types. An operation data type is either a simple type (e.g., string or
integer) or refers to a data element. Section 4.1 discusses the conventions
for creating api definitions for SOAP and REST services, as well as Atom
and RSS services.

– mediation describes the transformation of one or multiple data elements
to create a new one. Essentially, a mediation is a mapping between data
elements with some possible transformations.

– service binds a service api with a concrete service. Part of the binding is to
indicate the service’s type (e.g., SOAP, REST, RSS, or Atom), the service’s
endpoint, as well as give an alias for the service instance.

– recipe constitutes a collection of services and mashups. A recipe also in-
cludes views for each of the mashup wiring. Some views are automatically
generated and others are customized by the user.

• mashup is a composition of one or multiple services. It comprises a col-
lection of wiring declarations. Each mashup translates into a composed
service which may be exposed externally and used for further mashups.

• mediate invokes a mediation declaration with instances of the data
elements to mediate. The result of a mediate call is a primitive type
instance or another data element instance.

• wiring which comprises two levels of granularities of connecting the
services that are part of a mashup: (1) :protocol is a top-level structure
of a mashup. It represents one or multiple operation wirings and steps
invocations. It also associates with views as specified in Section 3.3 and
(2) :operation is the wiring of one or multiple services’ operations.
Operation wiring includes the ability to invoke services’ operations in an
asynchronous fashion by automatically setting up callbacks.

• step constitutes one atomic step in a protocol mediation. A step can be
invoked multiple times as part of a protocol wiring. A step is invoked
by the step’s name as a method call.

A Domain-Specific Language for Web APIs and Services Mashups 19

– tag and tags allows users to annotate terms to the various components of a
Swashup recipe as well as data and api definitions. These types of tagging
allows for some level of comments and idiosyncratic semantics to the various
components.

For brevity, a complete formalization of our language in BNF (Backus-Naur
form) is not described in this paper.

3.3 Conventions

Following one of RoR’s main philosophy, namely, using conventions over config-
urations 3 our Swashup DSL includes a series of conventions. The use of conven-
tions is meant to simplify the language’s usage and to make the resulting code
more compact.

– Naming are added to most statements as the first parameter and as a
Ruby symbol or string. Names use either a camel-case (e.g., :SomeDataEle-
ment) format or lower-case (e.g., :some mashup) using underscore to separate
words. The data and api require camel-case. Other language constructs ac-
cept either camel-case or lower-case with underscore, e.g., wiring constructs.

– Variables are always lower-case with underscore separating the words in the
variable’s name.

– Recipes when deployed are complete RoR Web applications with controllers
matching each of the mashup.

– Mashups are converted to a RoR Web application controller and every pro-
tocol wiring translates into an action for the Web application. This allows
the application to be exposed as a service as well as adding views.

– Views by RoR convention associate with a controller’s action and therefore
with a protocol wiring. Using an async parameter to operation wiring
allows the views to be created with AJAX JavaScript that can check back
with the controller for updated data and refresh the view’s content.

3.4 Examples

To illustrate the power of our DSL we now give a complete example. Briefly, our
example mashes the data and protocol of two available services: (1) Google’s
SOAP search Web service and (2) Yahoo! Flickr’s photo REST API. The main
purpose of our mashup is to allow users to search for a phrase or word using
the Google search service and display the top results. Additionally, we display
the top thumb nail photos associated with the searched words from Flickr by
matching the tags that the Flickr community has used for the shared photos.

Our mashup’s recipe is divided into four listings (Listings 1.1 to 1.4), each
illustrating one aspect of the solution. Listing 1.1 shows how we use the DSL’s
data construct to represent the data coming from Flickr (starting line 1). The
API definition starts at line 5.
3 http://www.rubyonrails.org/

20 E.M. Maximilien et al.

Listing 1.1. Example Swashup data and api definitions.

1 data : Photo do

member : ur l , : xml text

3 member : tags , [: s t r i n g] , : xml text

end

5 ap i : F l i ck rAp i do

api method : f ind photos ,

7 : expec t s => [{ : tags => [: s t r i n g] }] ,

: r e tu rn s => [[: Photo]]

9 end

Listing 1.2 shows the start of our Google search SOAP API and Flickr REST
API mashup recipe. We start by tagging the recipe in lines 11. Next we use
the service construct to create a binding to the Flickr REST service, giving it
an alias name of f and we would include similarly for all other services used.

The service construct unifies the different types of services supported in
our DSL. It includes type specific parameters, e.g., :wsdl for a SOAP service,
and type independent parameters, for instance, the :endpoint which is used for
SOAP and REST services and used to indicate the RSS or Atom feed URL. The
service’s :api parameter points to the defined API (Listing 1.1) for SOAP or
REST services and is implicit for RSS and Atom feeds (see Section 4.1). However,
RSS and Atom feeds require a :entry parameter to indicate the data definition
for the expected entries of of the data feed.

Listing 1.2. Example Swashup recipe showing tag(s) and service(s) definitions.

9 r e c i p e : GoogleFl ikcrRec ipe do

tag ‘ r e c i p e ’ ,

11 : synonyms => [‘ example ’ , ‘ exemplar ’ , ‘ pattern ’]

s e r v i c e : f l i c k r s e r v i c e , : al ias => : f

13 : type => : r e s t ,

: ap i => : F l ickrApi ,

15 : endpoint => ‘ http : // r e s t . f l i c k r . com/ api ’

s e r v i c e f o r Google search s e r v i c e

17 # constant s d e c l a r a t i on s , other s e r v i c e d e f i n i t i o n s , $\ l d o t s $

end

Next, we illustrate how to define mediators, wirings, and steps. These are
shown in Listing 1.3. Our extract tags mediator starts in Line 20 and takes a
string input and divides it into a set of keywords by first filtering them.

Each wiring is converted into a method that can be called in the context
of the recipe, e.g., search ‘flickr mashups’, however, the value added for the
creating wiring (besides the design values and potential for reuse) is the ability
to automatically make the wiring invoke operations in an asynchronous fashion.

A Domain-Specific Language for Web APIs and Services Mashups 21

This is achieved by either passing a Ruby block that is called back with the
result of the wiring when the operation completes or by passing a block or
Ruby method taking one parameter using the automatically generated setter
method named search callback=. The result of last invocation of a wiring is
also automatically added to an instance variable by the wiring name.

Listing 1.3. Example Swashup recipe and mashup.

r e c i p e : GoogleFl ikcrRec ipe do

19 # tag (s) , tags , s e r v i c e (s) , and CONSTANT(s)

mediator (: e x t r a c t t ag s , : data) do | s t r i n g |
21 keywords = []

s t r i n g . s p l i t . each do | s |
23 keywords << s unless NONKEYWORDS. inc lude ?(s)

end

25 return keywords

end

27 wir ing (: f ind images , : operat ion , : async) do | words |
@urls = []

29 words . each do |w |
u r l = f . f ind photo (w) . u r l

31 @urls << u r l unless u r l s . in c lude ?(u r l)

end

33 return @urls

end

35 step : search and images do | s t r i n g |
@resu l t s = search (s t r i n g)

37 @keywords = ex t r a c t t a g s (s t r i n g)

@urls = f ind images (keywords)

39 end

other mashup (s)

41 end

end

Listing 1.4 completes our example recipe. It illustrates how different mashups
are added to a recipe by adding different protocol wirings. Each protocol
wiring can accept parameters as a Ruby block parameters and can make calls
to steps, mediators, and operation wirings. Importantly, each mashup can have
it’s protocol wirings exposed as SOAP, REST, RSS, or Atom services. This is
achieved using the expose operation construct. For RSS and Atom services the
protocol expose operation uses an :entry parameter which binds to a data
indicating the format of the RSS or Atom entry and instance variable that will
contain the updated entry data.

22 E.M. Maximilien et al.

Listing 1.4. Example Swashup recipe and mashup.

r e c i p e : GoogleFl ikcrRec ipe do

43 # tag , tags , serv i ce , and any CONSTANT(s)

mediator (s) , w i r ing (s) , and s t ep (s)

45 mashup : spe l l s ea rch images mashup do | g , f |
tags [‘ mashup ’ , ‘ s p e l l ’]

47 wir ing (: images for keywords , : p r o t o co l) do | words |
expose operat ion : soap ,

49 : expec t s => [{ : keywords => : s t r i n g }]

: r e tu rn s => [[: Photo]]

51 f ind images (words)

end

53 wir ing (: search and images , : p r o t o co l) do | s t r i n g |
expose operat ion : atom ,

55 : en t ry data => : GoogleSeearchResult ,

: e n t r i e s => @resu lt s ,

57 : atom metadata => [{ : author => ‘ Jane Doe ’ }]

s p e l l e d = s p e l l s e a r c h (s t r i n g)

59 search and images (s p e l l e d)

end

61 end # mashup

end # re c ip e

63 end

3.5 Value of DSL

As mentioned in Section 3.1 our DSL enables mashup programming at a higher-
level of abstraction than frameworks supporting Web application programming.
This is primarily achieved by defining high-level constructs that facilitate mashup
creations. Specifically:

1. Uniform treatment of diverse services (REST, SOAP, RSS, and Atom). This
is especially useful for REST, RSS, and Atom services which do not have
standard machine readable definitions (such as WSDL for SOAP services).

2. Facilitate asynchronous operation calls. For each wiring operation you can
specify :async as an option which will add (via metaprogramming) all nec-
essary code to call methods asynchronously and deal with callbacks and so
on.

3. Uniform treatment of service data elements. This includes having a defini-
tion of the data elements passed and returned to the service constructs.
Additionally, our data construct help: (1) facilitate data mediation and reuse
and (2) facilitate service data caching

A Domain-Specific Language for Web APIs and Services Mashups 23

4. Uniform design for mashups. Using our language we give some structure
to the design of service mashups while also enabling the full support of a
modern language and framework for Web application development.

5. Integrate into RoR. First by using Ruby as the implementation language
(which makes RoR integration seamless) but also in how to expose a recipe
as a RoR Web application.

4 Implementation

Our Swashup platform is implemented completely in Ruby and RoR. We lever-
age the RoR framework by using and extending various aspects. Using Ruby’s
metaprogramming support and the rich view capabilities of the RoR platform
every recipe is converted into a Web application that can be customized to create
rich AJAX Web applications. In addition, every recipe’s mashup can be exposed
as a Web service (SOAP, REST, RSS, or Atom). This is achieved using the DSL
constructs and a series of conventions.

Our metaprogramming approach is enabled using a series of class and object
templates for the different constructs of our DSL. For instance, each data con-
struct is translated into three classes: (1) a ROXML 4 class to enable parsing and
generation of XML; (2) an ActiveRecord class to allow the data element to be
cached in a relational database; and (3) a Ruby class that seamlessly aggregates
the other two classes’ functionalities.

For each recipewe generate a full RoR Web application with a controller class
for each mashup. Each api construct translates into a RoR ActionWebService
API classes that make use of the data classes. We extend the RoR classes to deal
with REST and other types of services. Each service construct translates into
an object that proxies the service it binds. The proxy exposes the api interface
and is adjusted for each type of service supported.

The mediator and operation wiring translate into Ruby methods that are
added to a module created for eachrecipe. Thismodule includes the Swashupplat-
form modules and is included itself into the generated controller classes for each of
the mashup constructs. Finally for each mashupwe also generate an API class with
api method for eachprotocolwiring that includes anexposeoperation construct
call. This is how a mashup is exposed as a service.

For each protocol wiring we generate the following view related artifacts:

1. A partial view that includes an HTML form for the parameters of the pro-
tocol wiring. If the protocol wiring does not have parameters then no
partial view is generated. Using Ruby and ActiveRecord conventions we use
text fields for strings, numbers, and data fields marked xml attribute; and
we use an HTML form for fields that point to other data element using
xml object.

2. An RHTML template view with the name of the protocol wiring that in-
cludes the partial views and with some default text to indicate that this view
associates with the action and needs to be customized.

4 http://roxml.rubyforge.org

24 E.M. Maximilien et al.

3. An action method in the generated mashup controller class that uses the data
from the partial view (if any is present) to call the protocol wiring method
and displays the view page.

4.1 Details

We achieve uniform data and service and api descriptions by extending the
RoR platform and using a series of conventions when describing services. First,
the service data are described by using the XML schema. For SOAP services this
schema is part of the WSDL and for REST, RSS, and Atom it can be inferred,
by the human designer, from service’s documentation, or from example input
and output messages. The representation of the api for a service depends on the
service’s type.

– SOAP services are expected to have an associated WSDL which makes the
API definition somewhat automatic. Each SOAP portType maps to an api
definition. Each operation in a portType maps to an api method in the
associated api and uses the input messages as expects parameters and out-
put messages for the returns hash 5. The input and output message’s XSD
types translate one-to-one to a data definition. The service’s endpoint
parameter maps to the SOAP endpoint in the WSDL’s service section.

– REST services require additional conventions, especially since REST services
do not have associated standard description languages. Each REST service
specifies its endpoint as the root URI that is common across all of its oper-
ations. For instance, we use http://api.evdb.com for the Eventful’s API
since all REST operations have this root URI in common. The api method
for a REST api definition can also take a third :http method parameter to
specify either if this operation should be an HTTP :get (default), :post,
:put, or :delete.
REST operations use a simple convention to convert the path into a Ruby
method. For path names that do not contain the underscore character (i.e.,
‘ ’) in the operation’s path elements translate into a Ruby method that uses
underscore to separate its sections (if any). For instance, the path ‘search/-
customer’ translates into the operation named ‘search customer’. If the path
contains the underscore character then it is assumed that the path section
translates into two underscores when converting to a Ruby method. For
instance, the path ‘search all/customers’ translates into the Ruby method
‘search all customers’.

– RSS and Atom services follow the same api so it never needs to be speci-
fied. Figure 2 shows the UML class diagram for Atom services showing the
operations available for any Atom service.
Since RSS and Atom services are feeds that contains recurring elements, the
type of the element must be specified in the service construct. That type
is specified as a data construct which uses its ActiveRecord part to enable
caching of the feed’s data entries.

5 A Ruby hash is equivalent to maps or dictionaries in other languages.

A Domain-Specific Language for Web APIs and Services Mashups 25

+ endpoint : String
+ metadata : AtomMetadata
+ entries : Entry[]

<<api>>
AtomApi

+ author : String <<xml_text>>
+ date : String <<xml_text>>
+ link : String <<xml_text>>

<<data>>
AtomMetadata

<<data>>
Entry

Entry contains attributes matching the
Atom feed entry. This may contain

other data elements as well.

1

1

*

Fig. 2. Atom service API UML class diagram

5 Discussion

The Swashup DSL gives a high-level abstraction and language to create service
mashups. Our initial implementation leverages and extends the RoR framework
to create a set of tools that facilitate mashup creation as well as management.

5.1 Related Works

We divide related works into two main categories: mashup tools and frameworks
and service compositions and service workflows.

Yahoo! Pipes 6 is an example of a mashup tool available on the Web. In
Yahoo! Pipes, services (primarily RSS and Atom data services) can be ‘piped’
together (à la UNIX pipes) to create more complex data composition mashups.
IBM’s QEDWiki 7 is another example of a mashup tool. However, unlike Yahoo!
Pipes, QEDWiki allows users to create widgets that access different services and
data sources. Using the wiki metaphor, QEDWiki aims to make the composi-
tion process iterative and collaborative. While similar in objectives, both Pipes
and QEDWiki differ from the Swashup platform, which focuses instead on giv-
ing common structures to mashups and creating a language to facilitate their
creation and sharing.

Since Swashup, at some level, is essentially a platform for services composition,
related works in services composition and workflows are important to note. BPEL
is a workflow language adapted for services—instead of orchestrating a flow
of activities, it orchestrates a flow of services [1]. Although BPEL has gained
currency as a services composition solution, it is not geared toward UI-ready
situational applications and mashups.

5.2 Directions

While with the current Swashup DSL we are able to create recipes which en-
compass different types of services and somewhat complex data and protocol
mediation, there is a need to test our language and platform with even more
complex services and mediations. For instance, the types of mediations neces-
sary for back-end enterprise integration. For examples, services such as the ones
available in the SalesForce.com’s AppExchange 8 platform.
6 http://pipes.yahoo.com
7 http://services.alphaworks.ibm.com/qedwiki
8 http://www.salesforce.com/appexchange

26 E.M. Maximilien et al.

In addition to tooling enabling users of the Swashup platform to program
in our DSL, there is also a real need to directly facilitate the UI customization
aspects of mashups. Currently, this is achieved using the RoR platform’s UI prim-
itives by using RHTML and AJAX library tags (e.g., prototype, script.aculo.us,
and others). One possible direction is to add support for UI customization di-
rectly in our mashup DSL which could make recipes more complete at the point
of their creation.

Another direction is enabling the system and platform for collaboration [4].
We started in that direction by enabling the various components of a recipe to
be tagged with information. In addition we would like to explore adding directly
the ability to share, reuse, copy, restrict, and measure the effectiveness of recipes
in our tools. This may result in some changes to the DSL, especially in the area
of restricting access to recipes for instance. Additionally, with enough usage the
tags in the recipes may form a folksonomy, 9 which might help users discover
recipes and reuse them.

References

1. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weer-
awarana, S.: Business Process Execution Language for Web Services, Version
1.0 (2002), http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

2. Fielding, R.T.: Software Architectural Styles for Network-based Applications.
Ph.D. thesis, University of California, Irvine, CA (January 2000)

3. Goff, M.K.: Network Distributed Computing: Fitscapes and Fallacies. Prentice
Hall, Upper Saddle River, NJ (2003)

4. Tai, S., Desai, N., Mazzoleni, P.: Service communities: applications and middle-
ware. In: SEM-06. Proceedings of the 6th International Workshop on Software
Engineering and Middleware, Portland, OR, pp. 17–22 (2006)

9 http://en.wikipedia.org/wiki/Folksonomy

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 27–42, 2007.
© Springer-Verlag Berlin Heidelberg 2007

BPEL4Job: A Fault-Handling Design for Job Flow
Management

Wei Tan1,*, Liana Fong2, and Norman Bobroff2

1 Department of Automation, Tsinghua University, Beijing 100084, China
2 IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA

tanwei@mails.tsinghua.edu.cn, llfong@us.ibm.com,
bobroff@us.ibm.com

Abstract. Workflow technology is an emerging paradigm for systematic
modeling and orchestration of job flow for enterprise and scientific
applications. This paper introduces BPEL4Job, a BPEL-based design for fault
handling of job flow in a distributed computing environment. The features of
the proposed design include: a two-stage approach for job flow modeling that
separates base flow structure from fault-handling policy, a generic job proxy
that isolates the interaction complexity between the flow engine and the job
scheduler, and a method for migrating flow instances between different flow
engines for fault handling in a distributed system. An implementation of the
design based on a set of industrial products from IBM is presented and
validated using a Montage application.

1 Introduction

Originating from the people-oriented business process area, the applicability of
workflow technology today is increasingly broad, extending to inter and intra
organizational business-to-business interactions, automatic transactional flow, etc [1].
With the advent of web services as a new application-building paradigm in a loosely-
coupled, platform-independent and standardized manner, the use of workflow to
orchestrate the invocation of web services is gaining importance. The Web Service
Business Process Execution Language [2] (WS-BPEL or BPEL for short), proposed by
OASIS as a standard for workflow orchestration, will enhance the inter-operability of
workflow in distributed and heterogeneous systems. Although many custom workflow
systems have been developed by the scientific application community [3-5], the inter-
operability of BPEL workflow systems has attracted many researchers [1, 6-10] to
experiment with BPEL for applications in distributed environments such as grid.

BPEL-based workflow is particularly relevant in orchestrating batch jobs for enterprise
applications, as job flow is an integral part of the business operation. There are obvious
advantages in standardizing on a common flow language, such as BPEL, for both
business process and batch jobs. Although some workflow systems are used for
enterprise applications [11, 12], these workflow systems use proprietary flow languages.

* The work was done while the author was on an internship at IBM T.J. Watson Research

Center, NY, USA.

28 W. Tan, L. Fong, and N. Bobroff

The use of BPEL for job flow is not without technical challenges, as BPEL was not
designed with job flow requirements. These challenges include defining a job1 entity
within BPEL, expressing data dependency (usually implicitly expressed in the job
definition), and passing of large data between jobs. Another key challenge is to
manage the predominately asynchronous interaction between the BPEL engine and
the job scheduling partners. Finally, support for fault tolerance and recovery strategy
is important due to the long-running nature of jobs, as well as the interaction of grid
services with dynamic resources [13]. This paper addresses the latter issues of
asynchronous interactions and fault handling in job flow by proposing a design called
BPEL4Job.

BPEL4Job includes three unique features. First, a two-stage approach for job flow
modeling is presented. In stage one the flow structure and fault-handling policies are
modeled separately. Stage two combines and transforms the flow model and policy
into an expanded flow that is then orchestrated by a BPEL-compliant engine. The
advantage of this approach is that it separates the concerns of application flow
modeling from fault handling. Second, a generic job proxy is inserted between the
BPEL engine and the job scheduler to facilitate job submission and isolate the flow
engine from the asynchronous nature of status notification, including fault events.
Finally, we propose several schemes for flow-level fault handling, including a novel
method for instance migration between flow engines. Instance migration is important
for scalable failure recovery in a distributed environment. For example, a flow that
fails due to resource unavailability may be migrated to another resource domain.

The design and implementation work in this paper is based on the IBM BPEL-
compliant workflow modeler and execution engine, as well as the service oriented job
scheduler.

The following section introduces BPEL4Job, the overall design approach to
incorporating fault handing features into the BPEL design and execution process.
Section 3 discusses integrating fault policies at the flow’s design stage. Section 4
presents the fault handling scheme and especially, the technique for flow instance
migration and flow re-submission. Section 5 introduces our prototype system, and
demonstrates our fault handling method using the Montage application [14]. Section
6 surveys related work and Section 7 concludes the paper and suggests future
directions.

2 BPEL4Job: A Fault-Handling Design for Job Flow Management

In this section, we introduce our overall design, BPEL4Job, which facilitates the
advanced fault handing in BPEL both the flow modeling tools and execution
environments. More specifically, BPEL4Job has the following unique features:

• Adding a flexible fault handling approach based on policies. These policies can
express a range of actions from simple job retry, to how and at what point in the
flow to restart for a particular type of execution failure. The policies allow options
to clean or retain the state of the jobs flow in the flow engine database.

1 The terms “job” and “job step”, and “job flow” and “flow” are used interchangeably in this

paper. A job flow consists of one or more jobs.

 BPEL4Job: A Fault-Handling Design for Job Flow Management 29

• Introducing a functional element called a ‘job proxy’ that connects and integrates
the high level BPEL engine with the lower level job scheduler that accepts and
executes jobs. The proxy captures the job status notifications from the scheduler
and relays them to the BPEL engine. The proxy serves as an arbiter and filter of
asynchronous events between the BPEL engine and the job scheduler.

• Supporting migration of the persisted state of a BPEL job flow to another engine.
This capability provides fault tolerance by allowing a flow that has failed, for
example, because of resource exhaustion in one environment to continue execution
in another environment.

The design of BPEL4Job consists of three layers: the flow modeling layer, the flow
execution layer and the job scheduling layer, as shown in Fig. 1. First, we describe the
flow modeling layer. The flow modeling in BPEL4Job takes a two-stage approach in
modeling job flow. In the first stage, the base flow, the job definitions, and the fault-
handling policies are defined. The base flow is a BPEL expression of the control flow
of jobs for a process or an application. Each job definition describes a unit of work
(e.g. an executable file together with parameters and resource requirements) to be
submitted to scheduler and is expressed by a markup language such as Job
Submission Description Language (JSDL) [15]. The fault-handling policies define
the actions to be taken in case of job failures and can be described using the web
service policy language WS-Policy [16]. In the second stage, the base flow, job
definitions, and fault-handling policies are transformed into an expanded flow that is
an executable BPEL process. This two-stage modeling approach has many
advantages. First, the flow designer defines the job flow structure and fault-handling

. . .

fault
handler

fault
handlers

c ompens ation
handler

termination
handler

event
handlers

. . .

. . .

. . .

. . .

correlation
s ets

partner
link s

s c ope

variables

Fig. 1. BPEL4Job: fault-handling design for job flow management

30 W. Tan, L. Fong, and N. Bobroff

policies separately, and needs not be concerned on how to implement these policies in
BPEL. Second, the base flow and policies can be reused and combined if necessary.
More details and examples are provided in Section 3.

The flow execution layer consists of three major components: the flow engine, the
job proxy, and the fault-handling service. The flow engine executes the expanded
BPEL originating in the flow modeling layer. For each job step in the expanded flow,
the job proxy is invoked by the flow engine. The job proxy submits the job definition
to the scheduler, listens for job status notification, and reports job success or failure to
the flow engine. In the case of job failure, the flow engine invokes the fault-handling
service if necessary. Otherwise, if successful, the flow engine proceeds to the next job
step. The fault-handling service is discussed in Section 4.

The job-scheduling layer accepts jobs, returns a unique end-point reference (EPR)
for each job, and sends notification on job status changes. We assume that the
schedulers are responsible for resources matching and job execution management.
Some schedulers also implement failure recovery techniques such as re-try. In
BPEL4Job, we supplement this capability with a set of fault-handling techniques at
the flow execution layer including re-try from another job step, as well as flow
instance migration to other engines.

3 Integrating Fault-Handling Policies with Job Flow Modeling

Yu et al. [5] and Hwang et al. [17] classified the fault-handling methods of grid
workflow into two levels: task level and flow level. From their work, we observe that,
re-try and re-submit are the most elementary methods in these two levels respectively.
Second, while several approaches [5, 18] have been proposed to deal with the task
level re-try, the issue of flow level re-submit is still challenging. In this section, we
provide a set of schemes to address fault-handling at both task and flow levels and to
put emphasis on flow level.

BPEL4Job design considers three kinds of policies: cleanup policy, re-try policy
and re-submit policy. These policies leverage the persistent flow states storage in
most of the BPEL engines. Cleanup policy refers to generate fault report and delete
the instance data in flow engine. Re-try technique refers to execute the same task
again in case of failure. Re-submit technique refers to, in case of failure, the state of
flow instance being exported from the flow engine, and restored to the same or a
different engine, such that the flow can resume from the failed step without re-
execution of completed steps. Other fault-handling policies such as using alternative
resources, or rollback, can be built from these three fundamental ones.

As described in Section 2, our design of BPEL4Job has a two-stage approach for
job flow modeling. The first stage models the flow structure and fault-handling
policy separately. The second stage combines and transforms the flow model and
policy into an expanded flow that is then orchestrated by an existing BPEL engine in
the flow execution layer.

We now explain how the fault-handling policies are defined and integrated with the
base flow to produce the expanded BPEL flow. Fig. 2 shows two exemplary fault-
handling policies and a BPEL skeleton of a base flow. The first policy, named retry-
policy, specifies that when job failure occurs, the flow will re-try from the current job
step (by setting the value of element RetryEntry to itself), and after an interval of 300

 BPEL4Job: A Fault-Handling Design for Job Flow Management 31

seconds (by setting the value of element RetryTimes to Unlimited, and RetryInterval
to 300s). The second policy, named resubmit-policy, specifies that when job failure
occurs, the flow will resume at another flow engine if desired. When it resumes, it
restarts from the previous step of the failed job (by setting the value of element
RescueEntry to previous-step. The base flow consists of two sequential job steps,
SubmitJob1 and SubmitJob2. In the base flow, the retry-policy is linked to
SubmitJob1 (<bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy"
/>), and resubmit-policy linked to SubmitJob2 (<bpws:invoke name="SubmitJob2"
faultHandling:policy= "resubmit-policy" />).

The re-try policy of SubmitJob1 is realized by transforming the base flow to the
expanded flow as shown in Fig. 3, and described as follows:

 Add a variable RETRY to indicate whether the job should be retried and
set its value to TRUE before the job.

 Add an assign activity after the job to set variable RETRY to FALSE.
 Add a scope enclosing the job and succeeding assign activity.
 Add a While loop on top of the newly-added scope, and set the condition

for the While loop to (RETRY == TRUE).
 Add a fault handler for the newly added scope to catch the fault.

Advanced re-try schemes, including re-try for a given times, re-try after a
given time of period, and re-try from a previous job, could all be
implemented in this fault-handler block.

In case of job failure, the control flow goes to the fault handler (the Catch All block
in Fig. 3), and when the fault-handling block completes, the control flow proceeds to
the beginning of the While loop. Because the newly added scope does not complete
when failure occurs, the value of variable RETRY is still TRUE, so the flow will
continue at the beginning of the While loop (Submit Job1 in Fig. 2), by this means the
re-try policy is realized. It is important to note that expanded flow contains all the
necessary fault-handling blocks, unlike other approaches in supporting runtime fault-
handling selection [18].

<?xml version="1.0" encoding="UTF-8" ?>
<bpws:process xmlns:bpws="..." xmlns:faultHandling="...">

<bpws:partnerLinks>...</bpws:partnerLinks>
<bpws:variables>...</bpws:variables>
<bpws:sequence name="HiddenSequence">
<bpws:receive createInstance="yes" name="ReceiveJobRequest" />
<bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy" />
<bpws:invoke name="SubmitJob2" faultHandling:policy="resubmit-policy" />
<bpws:reply name="Reply" />

</bpws:sequence>
</bpws:process>

<?xml version="1.0" encoding="UTF-8" ?>
<wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."

name="resubmit-policy">
<jobFlow:Rescue wsp:Usage="wsp:Required">
<jobFlow:RescueEntry>previous-step?

 </jobFlow:RescueEntry>
</jobFlow:Rescue>
</wsp:Policy>

<?xml version="1.0" encoding="UTF-8" ?>
<wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."

name="retry-policy">
<jobFlow:Retry wsp:Usage="wsp:Required">
<jobFlow:RetryEntry>self</jobFlow:RetryEntry>
<jobFlow:RetryTimes>Unlimited</jobFlow:RetryTimes>
<jobFlow:RetryInterval>300s</jobFlow:RetryInterval>
</jobFlow:Retry>
</wsp:Policy>

Fig. 2. The re-try and re-submit policy, and the base flow embedded with these policies

32 W. Tan, L. Fong, and N. Bobroff

Base flow

transformation

Expanded

flow

Base flow

transformation

Expanded

flow

Fig. 3. The transformation to implement the re-try policy of Job1

4 Fault-Handling at the Flow Execution Layer in BPEL4Job

Job execution may fail due to a variety of reasons, such as resource and data
unavailability, application failure, scheduler or human input error, etc. The fault
handling at flow execution layer needs two mechanisms: the capability to recognize
various job failures and the capability to handle the failures according to the policies
defined at flow modeling layer.

In BPEL, faults can be raised by an invoked service and be caught by the invoking
service. BPEL also provides a Java-style support for fault handling, using constructs
like Catch, Catch All, Throw, Rethrow, etc. A BPEL fault handler catches faults and
can handle them by, for example, calling a suitable fault-handling service. In
addition, most of BPEL engines store persistent states of the flow and the use of states
can support resumption of flow execution from a failed task. The design of fault
handling in BPEL4Job would leverage the BPEL basic fault-handling features and
enhance specific capabilities to recognize job failures and to handle faults according
to defined policies. The following section addresses both aspects by introducing: i)
the generic job proxy for job submission and job status notification (especially for
fault recognition), and ii) the fault-handling schemes for various policies at the task
level and flow level.

4.1 The Generic Job Proxy

The generic job proxy connects and integrates the higher-level BPEL workflow
engine with the lower-level job scheduler. For each job submission invocation, the
proxy submits jobs, captures the job status notifications from the scheduler, and
returns the job failure/success result in a synchronous manner. It serves as an arbiter
and filter of asynchronous notification events of jobs. When a job fails, the job proxy

 BPEL4Job: A Fault-Handling Design for Job Flow Management 33

raises a fault to the workflow engine. Then, the workflow engine would invoke fault-
handling service after catching the fault.

Fig. 4 shows the control flow of a generic job proxy. The explanation is as
follows:

1. Receive a job submission request.
2. Forward the job request to a scheduler, and start to listen for the job state

notification from it. The state notifications from different schedulers may
vary, but usually they include Submitted, Waiting_For_Resources,
Resource_Allocation_Received, Resource_Allocation_Failed, Executing,
Failed_Execution, Succeeded_Execution, etc.

3. When state notifications come, filter the states. For states indicating the
success/failure of job comes, forward this information to flow engine and
returns, otherwise continue listening for the notification.

The job proxy provides a compact job-submission interface to the flow engine, so
that for each job the flow engine does not need to use two separate activities to submit
job and query job status respectively. The function of job proxy is not limit to fault
handling, and it is actually a single entrance for job schedulers and can handle the
complexity stemmed from the heterogeneity of different schedulers.

Receive job request

Submit job to scheduler

Receive job state notification

Return success

Return failure

[other]

[succeeded]

[failed]

Fig. 4. Control flow of the generic job proxy

4.2 Fault-Handling Schemes in BPEL4Job

The fault-handling logical schemes of BPEL4Job are illustrated in Fig. 5, though the
design is not limit to these policy schemes. When a job step is in state Ready, the flow
engine submits it (Submit Job) and listens for the notification from the job proxy
(submitted). If the job succeeds, flow engine navigates to next job and the flow
proceeds. If the job fails, flow engine reacts according to the fault-handling policy for
that job. If the policy is cleanup, the fault report is generated and flow instance is
deleted in flow engine database. If the policy is re-try, the engine find the re-try entry

34 W. Tan, L. Fong, and N. Bobroff

(the re-try entry is the point to re-try a single job step, it can be at current failed job
step, or at some previous step which has already completed) and submit the job to the
scheduler. If the policy is re-submit, flow engine suspends the current flow instance,
export the instance data to a permanent storage (for example, to a XML or other
portable formats), and delete the instance data in current flow engine database. The
exported flow instance can be re-submitted to the original engine when the source of
the fault has been fixed, or be re-submitted to another flow engine to resume. After
the flow instance is imported to the flow engine (either the original one or a new one),
the flow instance is resumed at the re-submit entry (similar to the re-try entry, the re-
submit entry is the point to re-start a job flow, it can be at the failed job step, or at
some previous step which has already completed).

Which

implemented

policy

Instance

suspended

[re-submit]

[re-try]

Export instance

data & delete it

Instance

deleted

Re-submit

Find retry

entry

Suspend

instance

Instance

resumed

Find

re-submit

entry

Generate report

& delete

instance

Instance

deleted

[cleanup]

Submit Job

What

completion

status

Ready

submitted

success failure

Navigate to

next job

[failure][success]

Fig. 5. Fault-handling scheme in BPEL4Job

4.2.1 Cleanup
Cleanup policy is used when the flow execution does not have any side effect resulted
from failure, the user may just want to get the failure report and terminate the flow.
Therefore, after the failure report is generated, the flow instance can be deleted
(cleanup) from the flow engine database.

4.2.2 Task Level Re-try
We have shown the realization of a re-try policy as an example in section 3 where we
explain how to integrate policy with job flow. The re-try policy is accomplished by
adding a scope, a While loop and other additional constructs. Re-try policy can be
extended to more advanced schemes, for example, to alter input parameters for the re-
try job such as instructing the job proxy to use alternative schedulers or resources.

4.2.3 Flow Re-submission and Instance Migration
Now we investigate BPEL’s capability to continue un-executed job steps without re-
execution of successful job steps of a flow in the event of a fault. Many other job flow

 BPEL4Job: A Fault-Handling Design for Job Flow Management 35

systems support restarting a flow regardless whether or not they persist job state
during execution. Here are two of the exemplary systems:

1. DAGMan [3] is the flow manager of Condor [19] jobs. While executing,
DAGMan keeps in memory a list of job steps of the flow, their parent-child
relationships, and their current states. When a flow fails, it produces a
Rescue DAG file for re-submission with a list of the job steps along their
states and reasons of failures. The Rescue DAG can then be submitted later
to continue execution.

2. Platform LSF [20] supports job dependency and flow restarting with the
“requeue” feature. In LSF, job steps are executed sequentially unless they
have a conditional statement on the success of failure or preceding steps. If
“requeue” is specified for a job flow, for example
“REQUEUE_EXIT_VALUES = 99 100”, the flow will be requeued if the
return code of a step matches the requeue_exit criteria and the requeued job
flow will restart from this particular step.

BPEL4Job supports re-submit and facilitates instance migration if desire. The
motivation to do job flow re-submission and instance migration is two-fold. The first
reason is the performance issue. For long-running job flows, flow instance data is
stored in the flow engine’s database. This instance data include instance state
information, the navigated activities, the value of messages/variables, etc. Depending
on the flow definition and the run-time data used in the instance, a relatively large
amount of data can be created with each instance. Unlike business processes,
scientists may submit job flows in very large numbers and may not return to handle
the flows immediately. A strategy for removing the failed flow instance out of the
database is desirable to lessen the burden on the data storage or database.

The second reason is for job flow re-submission to a different engine. When a job
flow instance f fails during the execution, the flow user or administrator may find that
resource needed for f to proceed is unavailable in current resource domain. Thus, an
alternative is to export and delete f in current flow engine, choose another resource
domain in grid environments, re-submit f to the flow engine in that domain and
resume it. (See Fig. 6 for an example.)

In order to realize flow re-submission, we introduce the concept of instance
migration. Instance migration refers to the technique to export job flow instance data
in one flow engine, and import it into anther one so that the flow instance can resume
in it. When we do instance migration, the challenge is to collect sufficient data from
the source flow engine, so that the target engine could re-build the status of the on-
going job flow. The job flow instance database schemas vary with the different
implementation, and in Fig. 7 we give a conceptual and high-level flow instance data
model. Next section presents our implementation based on IBM Webshpere Process
Server [21].

In Fig. 7, a process instance (or flow instance) has an attribute named
ProcessInstanceID, and an attribute ProcessTemplateID to refer to the process
template it belongs. A process instance can consist of multiple activity instances, task
instances, correlation set instances, scope instances, partnerlink instances, variable
instances, etc. Each of these instances has an attribute ProcessInstanceID to refer to
the process instance it belongs.

36 W. Tan, L. Fong, and N. Bobroff

Flow engine 1

DB 1

Flow engine 2

DB 2

1. Job2 fails due
to resource
unavailability

3. Instance data
exported to XML, and
instance deleted in
DB1

4. Instance data
imported to DB2

5.Instance
resumed in
engine 2

2. Suspend
instance in
engine 1

3 4

Fig. 6. An illustration of instance migration and flow re-submission

-ProcessInstanceID : string(idl)

-ProcessTemplateID : string(idl)

-Name : string(idl)
-State : string(idl)

ProcessInstance

-ScopeInstanceID : string(idl)
-ProcessInstanceID : string(idl)

-ScopeTemplateID : string(idl)

ScopeInstance

1
*

-ActivityInstanceID : string(idl)
-ProcessInstanceID : string(idl)

-ActivityTemplateID : string(idl)

ActivityInstance

1

*

-VariableInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-VariableTemplateID : string(idl)
-Data : object(idl)

VariableInstance

1

*

1..*

*

0..1

0..*

-PartnerLinkInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-PartnerLinkTemplateID : string(idl)
-Name : object(idl)

PartnerLinkInstance

1*

-CorrelationSetInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-CorrelationSetTemplateID : object(idl)

-CorrelateSetData : object(idl)

CorrelationSetInstance

1

*

-TaskInstanceID : string(idl)

-ProcessInstanceID : string(idl)

-TaskTemplateID : string(idl)

-Name : object(idl)

TaskInstance

1

*

0..1 0..1

-ProcessTemplateID : string(idl)

-Name : string(idl)

ProcessTemplate

1

0..*

Fig. 7. Class diagram of flow instance data model

5 System Implementation and Case Study

A system is developed to validate the design of BPEL4Job. In our implementation,
IBM Websphere Integration Developer (WID) [22] is used as BPEL modeling tool,
IBM Websphere Process Server (WPS) [21] as BPEL engine, and IBM Tivoli
Dynamic Workload Broker (ITDWB) [23] as job scheduler. In flow modeling layer, a

 BPEL4Job: A Fault-Handling Design for Job Flow Management 37

WID plug-in is developed to facilitate the use of JSDL for job step definition and the
use of WS-Policy for policy definition. In flow execution layer, a generic job proxy is
devised, and a fault-handling service is developed to implement the fault-handling
schemes proposed in Section 4. For the job scheduling layer, we use ITDWB which
provide job management web service API including job submission and job status
notification.

We take an example from Montage astronomy mosaic generation application [14],
named m101 Mosaic, to demonstrate the implementation of BPEL4Job. This example
application takes several raw images (we use four images in our exemplary job flow),
reprojects them and then combines them into a mosaic. We model the procedure of
this application into a BPEL-based job flow (Fig. 8(a)). The first job, mImgtbl,
generates an image metadata table describing the content of all the four raw images.
Followed are four parallel jobs (mProject1, mProject2, mProject3, and mProject4),
each of which reprojects one image. After all the images have been reprojected, a new
metadata table is generated by job mImgtbl1, then job mAdd1 generates a mosaic from
the reprojected images, and finally job mJPEG transforms the mosaic into jpeg
format.

Then we define fault-handling policies for job mProject2 and mAdd1, respectively.
The policy for job mProject2 is to re-try after 10 seconds in case of failure; for job
mAdd1, the policy is to re-submit the flow to another engine and re-start from its
preceding job mImgtbl1. It is more logical to apply the re-submit policy on the flow
scope such that re-submit will be triggered in any failed job step. But, we believe
these two scenarios here are illustrative enough to demonstrate our different fault
handling policies.

In Fig, 8, we show that the base flow plus the two policies are transformed into an
expanded flow with JSDL and fault handling capability (Fig. 8 (b)). For space limit
consideration, here we only give the JSDL definition of job mAdd1 (Fig. 8(c)).

We will demonstrate the effects in migrating instance between two WPS servers,
i.e., from server saba10 to server weitan. The Montage job flow is instantiated at
saba10, and when mAdd1 fails, the flow instance is migrated to weitan. We use
Business Process Choreographer (BPC) explorer [24] to monitor the orchestration of
the Montage flow. The Montage flow is initiated with the name Montage_saga10.
When job mProject2 fails, the flow will automatically re-try it after 10 seconds (as
discussed in Section 3). When job mAdd1 fails, the fault-handling service suspends
the flow instance at saba10 (Fig. 9 (a)), and the flow instance data is exported into a
XML file named rescue.xml (the size is about 560KB). When the user decides that
Montage_saga10 should be re-submit to server weitan, the fault-handling service
imports rescue.xml to weitan (see Fig. 9 (b) for the BPC explorer at weitan, please be
noted that the flow instance is restored from saba10 to weitan). Then
Montage_saga10 will resume in weitan following the policy, that is, to restart from
job mImgtbl1 (Fig. 9 (c)). If we compare Fig. 9 (a) and (c), we could find jobs
mImgtbl1 and mAdd1 are activated (submitted) at different time on two servers (for
example, job mImgtbl1 is activated on saba10 at 5/8/07 4:26:28 PM and on weitan at
5/8/07 10:36:40 PM), this shows that when Montage_saga10 is resumed at weitan,
jobs mAdd1 and mImgtbl1 are executed for a second time (and the BPC explorer only
show the latest execution time of them). That is to say, when Montage_saga10 is
resumed on weitan, the flow is re-started from the preceding job of mAdd1, i.e.,
mImgtbl1.

38 W. Tan, L. Fong, and N. Bobroff

 (a) (b)

(c)

<?xml version="1.0" encoding="UTF-8" ?>
- <jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="mAdd1">
- <jsdl:application name="executable">
- <jsdle:executable path="/opt/Montage_v3.0/bin/mAdd">
- <jsdle:arguments>

<jsdle:value>-p</jsdle:value>
<jsdle:value>/opt/m101/projdir</jsdle:value>
<jsdle:value>/opt/m101/images.tbl</jsdle:value>
<jsdle:value>/opt/m101/template.hdr</jsdle:value>
<jsdle:value>/opt/m101/final/m101.fits</jsdle:value>
</jsdle:arguments>
</jsdle:executable>

</jsdl:application>
</jsdl:jobDefinition>

Fig. 8. Sample Montage application: (a) base flow (b) expanded flow (c) JSDL description of
job mAdd1

 BPEL4Job: A Fault-Handling Design for Job Flow Management 39

(a) Montage_saba10 initiated at saba10

(b) Montage_saba10 re-submitted to weitan

(c) Montage_saba10 re-started and completed at weitan

Fig. 9. The BPC explorer to illustrate flow instance migration between saba10 and weitan

6 Related Works

Most works on using BPEL for job flow can be classified into two categories. The
first approach [8] extends BPEL model elements, which make the flow model
intuitive and simple. However, the workflow engine needs to be modified to deal with
the model extension for jobs. The second approach [7, 25, 26] uses standard BPEL
activity, so that the models are less intuitive and sometimes verbose to meet the needs
of job flow. However, these models adhere to the standard BPEL and thus portable
among BPEL-compliant flow engines. Our work falls into the second category of
approach. However, the two-stage modeling approach gracefully hides the complexity
to deal with jobs submission and fault-handling, while keep the advantage of using
existing BPEL engine.

Sedna [10] is a BPEL-based environment for visual scientific workflow modeling.
Domain specific abstraction layers are added in Sedna to increase the expressiveness
of BPEL for scientific workflows. This method is similar to our two-stage approach.
However, fault-handling issue is not addressed in that work.

40 W. Tan, L. Fong, and N. Bobroff

TRAP/BPEL [18] is a framework that supports runtime selection of equivalent
services for monitored services. An exemplary usage of this framework is for
selection of recovery services when monitored services fail. By introducing a proxy as
the generic fault handler, the logic in the proxy can dynamically select various
recovery services according to some configurable recovery polices during runtime.
Unlike the runtime dynamic support in TRAP/BPEL, the fault-handling services and
policies for job flow are specified during modeling time in BPEL4Job. We require
process and application flow modelers to provide directives on the scope (e.g. task or
flow level) and types (e.g. re-try, re-submit) of fault recovery.

GridSam [27] provided a set of generic web services for job submission and
monitoring. Our generic job proxy takes inspiration from this work. However, in our
job proxy, job submission and job status query are combined into a single
synchronous scheduling service invocation, with which the job failure/success status
is returned. This approach provides a more compact job-submission interface to the
flow engine, so that for each job submission the flow engine does not need to use two
separate activities to submit job and query job status respectively.

DAGMan used in Condor is popular in many grid job management systems to
manage job flow. The fault handling mechanism in DAGMan is re-try and rescue
workflow (a kind of re-submit). Our idea of flow re-submission is similar to rescue
DAG. Unlike DAGMan, our approach is policy-based and needs to consider the
persistent states of job flows in BPEL-compliant engines.

7 Conclusion and Future Work

In this paper, we address two challenging issues in using WS-BPEL for job flow
orchestration: the predominantly asynchronous interactions with job execution on
dynamic resources, and the fault handling in job flow. We propose a design, called
BPEL4Job, to illustrate our approach. BPEL4Job has three unique features: a two-stage
approach for job flow modeling with integration with fault-handling policies, a generic
job proxy to facilitate the asynchronous nature of job submission and job status
notification, and a rich set of fault handling schemes including a novel method for
instance migration between different flow engines in distributed system environment.

One direction of future work includes support for the definition and enforcement of
more complicated fault-handling policies other than the proposed clean-up, re-try and
re-submit. Our solution to instance migration can be extended to other related
scenarios such as load balance between flow engines and versioning support for long-
running processes. For the versioning support for long-running BPEL processes, if a
template of a long-running BPEL process changes during the execution of many
instances, the process instances that conform to the old template may need to be
migrated to conform to the new one.

References

1. Leymann, F.: Choreography for the Grid: towards fitting BPEL to the resource framework.
Concurrency and Computation-Practice & Experience 18(10), 1201–1217 (2006)

2. Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0 (2007),
Available from: http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

 BPEL4Job: A Fault-Handling Design for Job Flow Management 41

3. Couvares, P., et al.: Workflow Management in Condor. In: Taylor, I.J., et al. (eds.)
Workflows for e-Science, Springer, Heidelberg (2007)

4. Oinn, T., et al.: Taverna/myGrid: Aligning a Workflow System with the Life Sciences
Community. In: Taylor, I.J., et al. (eds.) Workflows for e-Science, pp. 300–319. Springer,
Heidelberg (2007)

5. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. Journal
of Grid Computing 34(3), 44–49 (2006)

6. Slominski, A.: Adapting BPEL to Scientific Workflows. In: Taylor, I.J., et al. (eds.)
Workflows for e-Science, pp. 212–230. Springer, Heidelberg (2007)

7. Amnuaykanjanasin, P., Nupairoj, N.: The BPEL orchestrating framework for secured grid
services. In: ITCC 2005. International Conference on Information Technology: Coding
and Computing (2005)

8. Dörnemann, T., et al.: Grid Workflow Modelling Using Grid-Specific BPEL Extensions.
In: German e-Science Conference 2007, Baden-Baden (2007)

9. Emmerich, W., et al.: Grid Service Orchestration using the Business Process Execution
Language (BPEL). In: UCL-CS Research Note RN/05/07, University College London, UK
(2005)

10. Wassermann, B., et al.: Sedna: A BPEL-Based Environment for Visual Scientific
Workflow Modeling. In: Taylor, I.J., et al. (eds.) Workflows for e-Science, pp. 428–449.
Springer, Heidelberg (2007)

11. Gucer, V., Lowry, M.A., Knudsen, F.B.: End-to-End Scheduling with IBM Tivoli
Workload Scheduler Version 8.2., pp. 33–34. IBM Press (2004)

12. BMCSoftware: Meet Your Business Needs Successfully With CONTROL-M For z/OS.
Available from:
www.bmc.com/USA/Promotions/attachments/controlm_for_os390_and_zOS.pdf

13. Slomiski, A.: On using BPEL extensibility to implement OGSI and WSRF Grid
workflows. Concurrency and Computation: Practice & Experience 18(10), 1229–1241
(2006)

14. Montage Tutorial: m101 Mosaic (2007), Available from: http://montage.ipac.caltech.edu/
docs/ m101tutorial.html

15. Anjomshoaa, A., et al.: Job Submission Description Language (JSDL) Specification v1.0.
Proposed Recommendation from the JSDL Working Group (2005), Available from
http://www.gridforum.org/documents/GFD.56.pdf

16. W3C: Web Services Policy 1.2 - Framework (WS-Policy) (2006), Available from
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

17. Soonwook, H., Kesselman, C.: Grid workflow: a flexible failure handling framework for
the grid. In: HPDC’03. 12th IEEE International Symposium on High Performance
Distributed Computing, Seattle, WA USA (2003)

18. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services. In: WEBIST-2007. International Conference on Web Information
Systems and Technologies, Barcelona, Spain (2007)

19. Condor. Available from: http://www.cs.wisc.edu/condor/
20. Platform LSF. Available from: http://www-cecpv.u-strasbg.fr/Documentations/lsf/html/

lsf6.1_admin/E_jobrequeue.html
21. IBM Websphere Process Server. Available from: http://www-306.ibm.com/software/

integration/wps/
22. IBM Websphere Integration Developer. Available from: http://www-306.ibm.com/

software/ integration/ wid/

42 W. Tan, L. Fong, and N. Bobroff

23. IBM Tivoli Dynamic Workload Broker. Available from: http://www-
306.ibm.com/software/tivoli/products/dynamic-workload-broker/index.html

24. Starting to use the Business Process Choreographer Explorer (2007), Available from:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.ws
ps.ins.doc/doc/bpc/t7stwcl.html

25. Kuo-Ming, C., et al.: Analysis of grid service composition with BPEL4WS. In: 18th
International Conference on Advanced Information Networking and Applications (2004)

26. Tan, K.L.L., Turner, K.J.: Orchestrating Grid Services using BPEL and Globus Toolkit 4.
In: 7th PGNet Symposium (2006)

27. GridSAM - Grid Job Submission and Monitoring Web Service (2007), Available from:
http://gridsam.sourceforge.net/2.0.1/index.html

Faster and More Focused Control-Flow Analysis for
Business Process Models Through SESE Decomposition

Jussi Vanhatalo1,2, Hagen Völzer1, and Frank Leymann2

1 IBM Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
{juv,hvo}@zurich.ibm.com

2 Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstrasse 38, D-70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. We present a technique to enhance control-flow analysis of business
process models. The technique considerably speeds up the analysis and improves
the diagnostic information that is given to the user to fix control-flow errors.
The technique consists of two parts: Firstly, the process model is decomposed
into single-entry-single-exit (SESE) fragments, which are usually substantially
smaller than the original process. This decomposition is done in linear time. Sec-
ondly, each fragment is analyzed in isolation using a fast heuristic that can ana-
lyze many of the fragments occurring in practice. Any remaining fragments that
are not covered by the heuristic can then be analyzed using any known complete
analysis technique.

We used our technique in a case study with more than 340 real business
processes modeled with the IBM WebSphere Business Modeler. The results sug-
gest that control-flow analysis of many real process models is feasible without
significant delay (less than a second). Therefore, control-flow analysis could be
used frequently during editing time, which allows errors to be caught at earliest
possible time.

1 Introduction

The quality of a business process model becomes crucial when it is executed directly on
a workflow engine or when it is used for generating code that is to be executed. A correct
model is also important when one tries to obtain realistic business measures from a
process model through simulation. Detecting and fixing errors as early as possible can
therefore substantially reduce costs.

The control flow of a business process can be modeled as a workflow graph [11,14].
A workflow graph that has no structural errors such as deadlocks or lack of synchroniza-
tion [11] is said to be sound [14]. Soundness can and should be checked automatically
during the modeling phase. To achieve a high acceptance among the users, the sound-
ness check should

• be as fast as possible and not delay the process of constructing the model — note
that a fast soundness check that can be done after each small change of the model
allows the user to identify the change that introduced an error — and
• produce useful diagnostic information that helps to locate and fix errors.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 43–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

44 J. Vanhatalo, H. Völzer, and F. Leymann

When reviewing the techniques currently available for deciding soundness, there
seems to be a trade-off between the two requirements. The fastest technique known (cf.
[14,6]) translates the workflow graph into a free choice Petri net (cf. [2]) and then de-
cides soundness of that Petri net using the rank theorem (cf. [2]). This technique uses
time that is cubic in the size of the workflow graph, but does not provide useful diag-
nostic information. The best diagnostic information is currently provided by a search of
the state space of the workflow graph. This can return an execution sequence that leads
to the error but it can use time that is exponential in the size of the workflow graph.
Esparza [3] (cf. also [2]) provides a technique that can be used to decide soundness in
polynomial time (more than cubic) which could potentially provide some diagnostic in-
formation, but the latter has not yet been worked out. The analysis tool Woflan [17] can
decide soundness and provide diagnostic information, but because the tool ultimately
resorts to state space search, it can also take exponential time.

Some authors provide algorithms for deciding soundness for the special case of
acyclic workflow graphs. Perumal and Mahanti [10] gave an algorithm that takes quad-
ratic time, which improves on previous approaches for that special case, which were
either slower [7] or incomplete [11].

Given any complete technique for deciding soundness from above, we propose two
enhancements in this paper. Firstly, we propose to decompose the workflow graph into
a tree of single-entry-single-exit (SESE) fragments. This technique is known from com-
piler theory and can be done in linear time [5]. To check soundness of the workflow
graph, one can now check soundness of each fragment in isolation. The overall time
used now depends mainly on the size of the largest fragment. We show by experimental
evidence on a large number of industrial workflow models that the largest fragment of
a workflow graph is usually considerably smaller than the workflow graph itself.

Zerguini [18] and Hauser et al. [4] have proposed similar techniques of deciding
soundness through decomposition into fragments. However, they decompose into
multiple-entry-multiple-exit (MEME) fragments. These fragments are more general,
and include SESE fragments as a special case. This however implies that a fragment
can be less intuitive in general. Moreover, their decomposition into fragments is no
longer unique and their decomposition algorithms are slower; while Zerguini’s algo-
rithm [18] uses quadratic time, the time complexity of the approach of Hauser et al. [4]
is unknown, but we conjecture it to be at least quadratic. Both techniques could be used
after our fast SESE decomposition.

A nice feature of the decomposition (SESE or MEME) approach is that each error is
contained in a fragment. Thus, the error can be shown in a small local context, which in
turn should help fixing the error. Errors that are located in disjoint fragments are likely
to be independent. Hence, the decomposition also allows multiple independent errors
to be detected in one pass.

The second enhancement we propose are two heuristics that can prove soundness
or unsoundness of some fragments in linear time. The heuristics are meant to be used
before any of the complete techniques from the literature are used, because the latter are
likely to be more expensive. The heuristics are based on the observation that many of the
fragments found in real process models have a simple structure that can be recognized
quickly. The first heuristic uses ideas from Hauser et al. [4].

Faster and More Focused Control-Flow Analysis for Business Process Models 45

Note that simple reduction rules (e.g. [2,11,15]) can also be used to speed up the ver-
ification. Usually applied with low cost, they reduce the process model while preserving
soundness.

We have implemented our technique and tried it on two libraries of altogether more
than 340 industrial process models. 81% of the process models can be completely ana-
lyzed with the SESE decomposition and the heuristics alone. For the remaining cases,
the analysis task becomes considerably smaller through SESE decomposition.

Mendling et al. [9,8] have analyzed more than 2000 EPC process models using the
Woflan tool [17] for a relaxed version of soundness. We are not aware of any other
published case study with large industrial data.

This paper is structured as follows. In Sect. 2, we recall the definition of work-
flow graphs and their soundness. Section 3 describes our approach in detail. Section 4
presents the results of the case study. Missing proofs can be found in a technical re-
port [16].

2 Sound Workflow Graphs

In this section, we recall the definition of sound workflow graphs [11,14]. We also give
an equivalent characterization of soundness, which will be used later in this paper.

2.1 Workflow Graphs

A workflow graph is a directed graph G = (N, E), where a node n ∈ N is exactly one of
the following: a start node, a stop node, an activity, a fork, a join, a decision, or a merge
such that

1. there is exactly one start node and exactly one stop node; the start node has no
incoming edges and exactly one outgoing edge, whereas the stop node has exactly
one incoming edge but no outgoing edges;

2. each fork and each decision has exactly one incoming edge and two or more out-
going edges, whereas each join and each merge has exactly one outgoing edge and
two or more incoming edges; each activity has exactly one incoming and exactly
one outgoing edge;

3. each node n ∈ N is on a path from the start node to the stop node.

a1

a2

a3

activity

start
node

stop
node

decision

fork join

merge

edge

entry
edge

exit
edge

Fig. 1. A workflow graph

It follows from the definition that no
node is directly connected to itself. Figure 1
shows an example of a workflow graph. An
activity is depicted as a square, a fork and
a join as a thin rectangle, a decision as a
diamond, and a merge as a triangle. Start
and stop nodes are depicted as (decorated)
circles. The unique outgoing edge of the
start node is called the entry edge, and the
unique incoming edge of the stop node is
called the exit edge of the workflow graph.

46 J. Vanhatalo, H. Völzer, and F. Leymann

The semantics of a workflow graph is, similarly to Petri nets, defined as a token
game. A state of a workflow graph is represented by tokens on the edges of the graph.
Let G = (N, E) be a workflow graph. A state of G is a mapping s : E → N, which
assigns a natural number to each edge. When s(e) = k, we say that edge e carries k
tokens in state s. The semantics of the various nodes is defined as usual. An activity,
a fork, and a join remove one token from each of its ingoing edges and add one token
to each of its outgoing edges. A decision node removes a token from its incoming
edge, nondeterministically chooses one of its outgoing edges, and adds one token to
that outgoing edge. A merge node nondeterministically chooses one of its incoming
edges on which there is at least one token, removes one token from that edge, and adds
a token to its outgoing edge.

To be more precise, let s and s′ be two states and n a node that is neither a start nor

a stop node. We write s
n→ s′ when s changes to s′ by executing n. We have s

n→ s′ if

1. n is an activity, fork or join and

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e is an incoming edge of n,

s(e) + 1 e is an outgoing edge of n,

s(e) otherwise.
2. n is a decision and there exists an outgoing edge e′ of n such that

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e is an incoming edge of n,

s(e) + 1 e = e′,
s(e) otherwise.

3. n is a merge and there exists an incoming edge e′ of n such that

s′(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(e) − 1 e = e′,
s(e) + 1 e is an outgoing edge of n,

s(e) otherwise.

Node n is said to be activated in a state s if there exists a state s′ such that s
n→ s′. A

state s′ is reachable from a state s, denoted s
∗−→ s′, if there exists a (possibly empty)

finite sequence s0
n1→ s1 . . . sk−1

nk→ sk such that s0 = s and sk = s′.

2.2 Soundness

To define soundness [14] of a workflow graph G, we use the following notions. The
initial state of G is the state that has exactly one token on the entry edge and no tokens
elsewhere. The terminal state of G is the state that has exactly one token on the exit
edge and no tokens elsewhere. A stopping state of G is a state of G in which the exit
edge carries at least one token.

G is live if for every state s that is reachable from the initial state, a stopping state is
reachable from s. G is safe if the terminal state is the only stopping state that is reachable
from the initial state. G is sound if it is live and safe. The soundness criterion is a global
view on correctness. Liveness says that each run can be completed, and safeness says that
each completion of a run is a proper termination, i.e., there are no tokens inside the graph
upon completion. The workflow graph in Fig. 1is sound. Figure 2shows simple examples
of unsound graphs. The graph in part (a) is not live, the graph in part (b) is not safe.

Faster and More Focused Control-Flow Analysis for Business Process Models 47

a1

a2

a3

a1

a2

a3

(a) (b)

Fig. 2. Structural conflicts: (a) a local deadlock (b) a lack of synchronization

The two examples of unsound workflow graphs in Fig. 2 are examples of a structural
conflict, viz. a local deadlock (part a) and a lack of synchronization (part b) [11]. A local
deadlock is a state s such that there exists a join n where (i) at least one incoming edge of
n carries a token in s and (ii) there is an incoming edge e of n such that e does not carry
a token in any state s′ that is reachable from s. That is, that join will never get ‘enough’
tokens. A state s of G has lack of synchronization if there is a merge n such that more
than one incoming edge of n carries a token, i.e., that merge gets ‘too many’ tokens.
Note that a lack of synchronization can lead to a state where there is more than one
token on a single edge. Van der Aalst et al. [14] have shown that for acyclic workflow
graphs, soundness is equivalent with the condition that neither a local deadlock nor a
state with lack of synchronization is reachable from the initial state. We generalize this
here for arbitrary workflow graphs, therefore providing a local view of correctness for
arbitrary workflow graphs.

Definition 1. Let G be a workflow graph. G is locally live if there is no local deadlock
that is reachable from the initial state. G is locally safe if no state is reachable from the
initial state that has more than one token on a single edge.

Theorem 1. A workflow graph is sound if and only if it is locally safe and locally live.

3 Enhanced Control-Flow Analysis

In this section, we explain the decomposition of a workflow graph into SESE fragments
and show how some fragments can be quickly recognized as sound or unsound.

3.1 Decomposition into Fragments

Figure 3 shows a workflow graph and its decomposition into SESE fragments (cf. e.g.
[5]). A SESE fragment is depicted as a dotted box. Let G = (N, E) be a workflow
graph. A SESE fragment (fragment for short) F = (N′, E′) is a nonempty subgraph of
G, i.e., N′ ⊆ N and E′ = E ∩ (N′ × N′) such that there exist edges e, e′ ∈ E with
E ∩ ((N \ N′) × N′) = {e} and E ∩ (N′ × (N \ N′)) = {e′}; e and e′ are called the entry
and the exit edge of F, respectively.

The workflow graph shown in Fig. 3 has more fragments than those that are shown
explicitly. For example, the union of fragments J and K, denoted J ∪ K, as well as
K ∪ L are fragments. Those however are not of interest here and they are subsumed
in fragment X. Interesting fragments will be called canonical, which are defined in the
following. We say that two fragments F and F′ are in sequence if the exit edge of F is

48 J. Vanhatalo, H. Völzer, and F. Leymann

E
A

B

C

D

J
Z

Y

F

G

H

I
K

L

X

M

a1

d1
a2

f1 j1

a3

m4

m1

a6

a5 a7

a4 a8

a10

a11

f4 j4

d2
m2

m3

a12
a13 d3

f7

d4
m5

f6

f5

a15

a14

a17

a16
j5

j6

f2

a9

N

O

P
Q

V R

S

T

U

W

j2

f3

j3

Fig. 3. Decomposition of a workflow graph into canonical fragments

the entry edge of F′ or vice versa. The union F ∪ F′ of two fragments F and F′ that are
in sequence is a fragment again. A fragment F is non-canonical if there are fragments
X, Y, Z such that X and Y are in sequence, F = X ∪ Y, and F and Z are in sequence;
otherwise F is said to be canonical.

The fragments shown in Fig. 3 are exactly the canonical fragments of that workflow
graph. Canonical fragments do not overlap. Two canonical fragments are either nested
or disjoint [5]. Therefore, it is possible to organize the canonical fragments in a unique
tree, similarly to the Program Structure Tree shown in [5]. We call this tree the process
structure tree of a workflow graph. It can be computed in time linear in the size of
the workflow graph [5]1. As we are only interested in canonical fragments, we mean
‘canonical fragment’ whenever we say ‘fragment’ in the following.

Z

X Y

KJ L

C D E F G H I

V W

M N

O P Q R S T U

A B j1

j2 j3

j4

j5

f1

f2 f3

f4

f5 f6d1 d2 d3 d4m1 m2 m3 m4 m5

a1 a2

a3 a4 a5 a6 a7 a8

a9

a10 a11

a12 a13 a14 a15 a16 a17

f7 j6

Fig. 4. The process structure tree of the workflow graph in Fig. 3

Figure 4 shows the process structure tree of the workflow graph from Fig. 3. A frag-
ment is represented as a boxed tree node. In addition, we represent the nodes of the
workflow graph as leaves in the tree. The parent of a fragment F (a workflow graph

1 Note: Ananian [1] gives a slightly modified linear time algorithm that includes corrections.

Faster and More Focused Control-Flow Analysis for Business Process Models 49

node n) is the smallest fragment F′ that contains F (n). Then, we also say that F is a
child fragment of F′ (n is a child node of F’).

To check the soundness of a workflow graph, it is sufficient to analyze the soundness
of its fragments in isolation. Note that a fragment can be viewed as a workflow graph by
adding entry and exit edges as well as a start and a stop node. Hence we can apply the
notion of soundness also to fragments. The following theorem follows from classical
Petri net theory (e.g. [12], cf. also [13,14,18]).

Theorem 2. A workflow graph is sound if and only if all its child fragments are sound
and the workflow graph that is obtained by replacing each child fragment with an ac-
tivity is sound.

Checking soundness of fragments can therefore be done along the structure of the
process structure tree, starting from the leaves upwards. If a fragment F was checked
for soundness, checking soundness of the parent fragment (in the tree) can abstract from
the internal structure of F, i.e., F can be treated as an activity in the parent fragment.
Figure 5 shows fragments J and V from Figs. 3 and 4, where fragment J abstracts from
the structure of the child fragments C and D and fragment V abstracts from the structure
of fragment O.

C

D

J

d1

m1

d2
m2

m3

d3

O

P
Q

V

(a) (b)

Fig. 5. Fragments J and V ignoring the structure of their child fragments

3.2 Heuristic for Sound Fragments

Many fragments that occur in practice have a simple structure that can easily be recog-
nized, which identifies those fragments as being sound. To this end, we define the fol-
lowing categories, based on definitions given by Hauser et al. [4].

Definition 2. Let F be a fragment of a workflow graph. F is

1. well-structured if it satisfies one of the following conditions:
• F has no decisions, merges, forks or joins as children in the process structure

tree (sequence),
• F has exactly one decision and exactly one merge, but no forks and no joins as

children. The entry edge of F is the incoming edge of the decision, and the exit
edge of F is the outgoing edge of the merge (sequential branching),
• F has exactly one decision and exactly one merge, but no forks and no joins as

children. The entry edge of F is an incoming edge of the merge, and the exit
edge of F is an outgoing edge of the decision (cycle),

50 J. Vanhatalo, H. Völzer, and F. Leymann

• F has exactly one fork, exactly one join, no decisions and no merges as chil-
dren. The entry edge is the incoming edge of the fork. The exit edge is the
outgoing edge of the join. (concurrent branching).

2. an unstructured concurrent fragment if F is not well-structured, contains no cycles,
and has no decisions and no merges as children.

3. an unstructured sequential fragment if F is not well-structured and has no forks
and no joins as children.

4. a complex fragment if it is none of the above.

It is easy to see that it can be decided in linear time to which of the four categories listed
above a fragment belongs.

Theorem 3. If a fragment F is well-structured, an unstructured concurrent, or an un-
structured sequential fragment, then F is sound if and only if all its child fragments are
sound.

This theorem was already observed by Hauser et al. [4]. Note that all fragment cate-
gories ignore the structure of child fragments, taking only the top-level structure into
account. In Fig. 3, fragments X and Y are well-structured (sequence) and so are also
fragments C, O, Z (concurrent branching) and J (sequential branching). Fragments K
and V are examples of unstructured concurrent and unstructured sequential fragments,
respectively. Note that unstructured sequential fragments may contain cycles, whereas
unstructured concurrent fragments must not.

A complex fragment may be sound or unsound. Fragment W in Fig. 3 is a sound
complex fragment. It follows from Theorems 2 and 3 that the entire workflow graph in
Fig. 3 is sound.

3.3 Heuristic for Unsound Fragments

Some complex fragments can be efficiently determined as not being sound:

Theorem 4. A complex fragment F is not sound if it satisfies one of the following con-
ditions:

1. F has one or more decisions (merges), but no merges (decisions) as children in the
process structure tree,

2. F has one or more forks (joins), but no joins (forks) as children,
3. F contains a cycle, but has no decisions or no merges as children.

It is again easy to see that this heuristic can be applied in linear time. We actually found
numerous errors in real process models using this heuristic (see Sect. 4.2). The relative
strength of this heuristic is due to the fact that, similar to the heuristic in Sect. 3.2, the
structure of child fragments is ignored.

4 Case Study

In this section, we describe the results of an application of our proposed technique in a
case study with industrial data.

Faster and More Focused Control-Flow Analysis for Business Process Models 51

4.1 The Data

We have analyzed the soundness of more than 340 workflow graphs that were extracted
from two libraries of industrial business processes modeled in the IBM WebSphere
Business Modeler. Although the modeling language used there is more expressive than
workflow graphs, it was possible to translate the process models into workflow graphs
because strict guidelines were used for the construction of these process models. The
description of the translation is beyond the scope of this paper.

Library 1 consists of more than 140 processes. The extracted workflow graphs have,
on average, 67 edges, with the maximum being 215. Library 2 is an experimental ex-
tension of Library 1. It contains similar processes, but many features were added to the
processes and also some processes were added. It contains more than 200 processes,
the extracted workflow graphs have 99 edges on average, with the maximum being 342.

4.2 The Results

We analyzed the libraries using an IBM ThinkPad T43p laptop that has a 2.13 GHz Intel
Pentium M processor and 2 GB of main memory. The entire Library 1 is analyzed in
9 seconds, and Library 2 in 15 seconds. Thus, the average analysis time per workflow
graph is less than 0.1 seconds.

SESE Decomposition. As described in Sect. 1, the worst-case time a complete tech-
nique needs for checking the soundness of a workflow graph can be polynomial or
exponential in the size g of the workflow graph, which is defined to be its number of
edges. Similarly, the size of a fragment is defined as its number of edges plus 2 (for the
entry edge and the exit edge). If we use a complete technique after the SESE decompo-
sition according to the procedure in Sect. 3.1, the time used is linear in the number of
fragments. Note also that the number of fragments in a workflow graph is at most twice
the number of nodes. The overall time used therefore mainly depends on the size fmax of
the largest fragment to which we have to apply the complete technique. If the complete
technique uses polynomial time gc for some constant c, then the reduction that SESE
decomposition could achieve is gc/ f c

max = (g/ fmax)c. If the complete technique uses
exponential time cg, then the possible reduction is cg/c fmax = cg− fmax . Table 1 shows the
values for g/ fmax and g − fmax for Library 1 as an indication of the reduction achieved
due to SESE decomposition.

Figure 6 shows the largest fragment size in relation to the graph size for each work-
flow graph in Library 1. It shows that the graph size has only a minor impact on the

Table 1. Graph size (i.e., number of edges) compared to the size of the largest fragment in the
graph and size reductions for the workflow graphs in Library 1

Graph size Largest fragment size Reduction Reduction
g fmax g − fmax g/ fmax

Maximum 215 51 191 9.0
Average 67 24 44 2.8
Minimum 11 11 0 1.0

52 J. Vanhatalo, H. Völzer, and F. Leymann

0

10

20

30

40

50

60

0 50 100 150 200 250

Number of edges in the workflow graph

N
um

be
r

of
 e

dg
es

 in
 th

e
la

rg
es

t
fr

ag
m

en
t o

f
th

e
w

or
kf

lo
w

 g
ra

ph

Fig. 6. Size of largest fragment in relation to graph size for all workflow graphs in Library 1

largest fragment size. Therefore, the reduction increases as the graph size increases.
Thus, the technique is most useful when the complete techniques would be most time
consuming. Even a small reduction can be significant, as the complete techniques for
checking soundness can take a time that is cubic or exponential in the graph size.

Table 2 shows the reduction statistics for the workflow graphs in Library 2. The
graphs are larger, and also the reduction is higher.

Table 2. Graph size compared to the size of the largest fragment in the graph, and size reductions
for Library 2

Graph size Largest fragment size Reduction Reduction
g fmax g − fmax g/ fmax

Maximum 342 82 328 24.4
Average 99 21 78 5.6
Minimum 12 6 5 1.5

Using both heuristics from Sect. 3, we can decide soundness for 68.5% of the work-
flow graphs in Library 2. For the remaining graphs, our prototype tool highlights the
complex fragments that may be unsound. A complete analysis method is needed to
decide their soundness, or they can be reviewed manually. The reduction statistics for
these remaining workflow graphs are shown in Table 3.

Fragment Categories. Even though our heuristics from Sect. 3 are incomplete, we
were able to decide soundness for all the workflow graphs from Library 1. They are all
sound.

The first column in Table 4 illustrates the distribution of fragments according to
the categories defined in Sects. 3.2-3.3 for Library 1. We excluded here any fragments
that are well-structured sequences from these statistics, because most fragments are
sequences and those are trivially sound and thus not interesting.

Faster and More Focused Control-Flow Analysis for Business Process Models 53

Table 3. Library 2: Graph size, largest fragment size, and reduction for the remaining 31.5% of
workflow graphs for which soundness is unknown after applying our heuristics

Graph size Largest fragment size Reduction Reduction
g fmax g − fmax g/ fmax

Maximum 334 82 284 10.4
Average 126 32 94 4.3
Minimum 40 12 25 1.6

We can also put entire workflow graphs into the various categories. For example, a
workflow graph is complex if it has at least one complex fragment. Complex graphs are
further divided into those known to be not sound by applying the heuristic in Sect. 3.3
and those for which soundness is unknown. A workflow graph is unstructured if it has
at least one unstructured fragment and no complex fragments. Otherwise, a graph has
only well-structured fragments and it is therefore called well-structured. Column 3 of
Table 4 shows the distribution of workflow graphs in Library 1 in the various categories.
The last two columns present the same statistics for Library 2.

Most fragments are well-structured, which makes it attractive to analyze fragments
separately. However, only a third of the workflow graphs are well-structured and there
is a considerable number of sound unstructured workflow graphs. Therefore, although
well-structuredness is also an appealing correctness requirement, it seems to be overly
restrictive. As unstructured fragments occur often, it makes sense to detect those with
fast heuristics before using a complete analysis technique. Our heuristics can decide
soundness not only for many fragments, but also for a significant proportion of the
workflow graphs.

In Library 2, 43.5% of the workflow graphs contain at least one complex fragment.
Only one workflow graph has more than one complex fragment. 19.7% of the fragments
in Library 2 are complex fragments. Our heuristic recognized 27.3% of these fragments
as being unsound. We have not yet checked the soundness of the remaining complex
graphs by integrating our tool with a complete analysis method. The high error rate in
Library 2 is due to its experimental nature.

Table 4. Categories of fragments and workflow graphs in the libraries

Library 1 Library 2
Fragment category / Percentage Percentage Percentage Percentage
Workflow graph category of fragments of graphs of fragments of graphs

Well-structured (sound) 54.8% 37.5% 65.4% 33.3%
Unstructured (sound) 45.2% 62.5% 14.9% 23.1%
- Unstructured concurrent 1.4% - 6.0% -
- Unstructured sequential (acyclic) 29.2% - 4.4% -
- Unstructured sequential (cyclic) 14.6% - 4.6% -

Complex 0.0% 0.0% 19.7% 43.5%
- Complex (not sound) 0.0% 0.0% 5.4% 12.0%
- Complex (soundness unknown) 0.0% 0.0% 14.3% 31.5%

54 J. Vanhatalo, H. Völzer, and F. Leymann

5 Conclusion

We proposed a technique to focus and speed up control-flow analysis of business
process models that is based on decomposition into SESE fragments. The SESE de-
composition could also be used for other purposes such as browsing and constructing
large processes, discovery of reusable subprocesses, code generation, and others.

We also proposed a partition of the fragments into various categories, which can be
computed fast. We think that tagging a fragment with its category may help to better
understand the process model and may help to establish modeling patterns. It also helps
to speed up the control-flow analysis as many of the correct fragments that occur in
practice have a simple structure.

We plan to integrate our prototype with existing complete verification techniques and
measure the impact of SESE decomposition on the analysis time. In addition, we plan
to investigate the errors that occur in Library 2, together with approaches to fix them.

Acknowledgments. We thank Michael Friess for suggesting to apply SESE decompo-
sition to workflow graphs. We thank Wil van der Aalst, Rainer Hauser, Rania Khalaf,
Jana Koehler, Oliver Kopp, Jochen Küster and Ksenia Ryndina for helpful discussions
and comments.

The work published in this article was partially supported by the SUPER project
(http://www.ip-super.org/) under the EU 6th Framework Programme Information Soci-
ety Technologies Objective (contract no. FP6-026850).

References

1. Scott Ananian, C.: The static single information form. Master’s thesis, Massachusetts Insti-
tute of Technology (September 1999)

2. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)
3. Esparza, J.: Reduction and synthesis of live and bounded free choice Petri nets. Inf. Com-

put. 114(1), 50–87 (1994)
4. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An incremental approach to the analysis

and transformation of workflows using region trees. IEEE Transactions on Systems, Man,
and Cybernetics - Part C (June 2007) (to appear, also available as IBM Research Report RZ
3693)

5. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: PLDI. Proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation, pp. 171–185. ACM Press, New York (1994)

6. Kemper, P.: Linear time algorithm to find a minimal deadlock in a strongly connected free-
choice net. In: Ajmone Marsan, M. (ed.) Application and Theory of Petri Nets 1993. LNCS,
vol. 691, pp. 319–338. Springer, Heidelberg (1993)

7. Lin, H., Zhao, Z., Li, H., Chen, Z.: A novel graph reduction algorithm to identify structural
conflicts. In: HICSS-35 2002. Proceedings of the 35th Hawaii International Conference on
System Sciences, p. 289 (2002)

8. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration (WU Wien), Austria
(May 2007)

Faster and More Focused Control-Flow Analysis for Business Process Models 55

9. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP reference model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg (2006)

10. Perumal, S., Mahanti, A.: A graph-search based algorithm for verifying workflow graphs.
In: DEXA 2005. Proceedings of the 16th International Workshop on Database and Expert
Systems Applications, pp. 992–996. IEEE Computer Society, Los Alamitos (2005)

11. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf.
Syst. 25(2), 117–134 (2000)

12. Valette, R.: Analysis of Petri nets by stepwise refinements. Journal of Computer and System
Sciences 18(1), 35–46 (1979)

13. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using Petri-net-
based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

14. van der Aalst, W.M.P., Hirnschall, A. (Eric) Verbeek, H.M.W.: An alternative way to analyze
workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

15. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of EPCs: Using
reduction rules and Petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

16. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for
business process models though SESE decomposition. IBM Research Report RZ 3694 (July
2007)

17. (Eric) Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow processes
using Woflan. Comput. J. 44(4), 246–279 (2001)

18. Zerguini, L.: A novel hierarchical method for decomposition and design of workflow models.
Journal of Integrated Design and Process Science 8(2), 65–74 (2004)

Discovering Service Compositions

That Feature a Desired Behaviour�

Fabrizio Benigni, Antonio Brogi, and Sara Corfini

Department of Computer Science, University of Pisa, Italy
{benigni,brogi,corfini}@di.unipi.it

Abstract. Web service discovery is one of the key issues in the emerg-
ing area of Service-oriented Computing. In this paper, we present a com-
plete composition-oriented, ontology-based methodology for discovering
semantic Web services, which exploits functional and behavioural prop-
erties contained in OWL-S service advertisements to satisfy functional
and behavioural client queries. To this aim, we build on top of the results
contained in two recent articles, where we presented (1) a suitable data
structure (viz., a dependency hypergraph) to collect functional informa-
tion of services, and (2) a suitable notion of behavioural equivalence for
Web services. We also discuss the architecture and the main implemen-
tation choices of the matchmaking system applying such a methodology.

1 Introduction

Service-oriented Computing (SoC) [1] is emerging as a new promising computing
paradigm that centers on the notion of service as the fundamental element for
developing distributed software applications. In this setting, Web service discov-
ery is a major issue of SoC, as it allows developers to find and re-use existing
services to rapidly build complex applications.

The standard service description language (WSDL) provides services with
purely syntactic descriptions, not including neither behavioural information on
the possible interaction among services, nor semantics information to describe
the functionality of services. Yet, both behavioural and semantic information
may be necessary, for example, to satisfy complex queries that require to compose
the functionalities offered by different services, as well as to automatise the
processes of service discovery and composition.

During the last years, various proposals have been put forward to feature
more expressive service descriptions that include both semantics (viz., ontology-
based) and behaviour information about services. One of the major efforts in
this direction is OWL-S [2], a high-level ontology-based language for describing
services. In particular, OWL-S service descriptions include a list of semantically
annotated functional attributes of services (the service profile), and a declaration
of the interaction behaviour of services (the so-called process model).

� Research partially supported by EU FP6-IST STREP 0333563 SMEPP and MIUR
FIRB TOCAI.IT.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 56–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discovering Service Compositions That Feature a Desired Behaviour 57

In this paper, we present a composition-oriented, ontology-based methodology
for discovering OWL-S described services. In particular, we employ semantic
information to select available services that can be exploited to satisfy a given
query, and we employ behaviour information to suitably compose such services
to achieve the desired result.

The methodology integrates the results recently presented in [3,4]. In [3] a
suitable data structure (viz., a dependency hypergraph) to collect relationships
among ontology-annotated inputs and outputs of services (i.e., semantic infor-
mation) was introduced. It is important to stress that the construction of such
a hypergraph does not affect the query answering time, as it is built off-line and
updated whenever a new service is added to the local service repository. In [4]
we defined a suitable notion of behavioural equivalence for Web services. Such a
notion allows to establish whether two services, described by means of a simple
variant of standard Petri nets, are behaviourally equivalent, i.e., such that an
external observer can not tell them apart. An interesting feature of this method-
ology is the ability of addressing both functional and behavioural queries, i.e.,
respectively, queries specifying the functional attributes of the desired service,
and queries also requiring a specific behaviour of the service to be found. In par-
ticular, in case of a behavioural query, the methodology – besides satisfying the
query functional requirements – guarantees that the returned service features
the desired behaviour.

In this paper we also present a system – called SAM, for Service Aggregation
Matchmaking – implementing the discovery methodology here introduced. The
main features of the new version of SAM can be summarised as follows:

• Composition-oriented matching – that is, the capability of discovering service
compositions. When no single service can satisfy the client query, SAM checks
whether the query can be fulfilled by a suitable composition of services.

• Ontology-based matching – that is, the ability of “crossing” different ontolo-
gies and performing flexible matching automatically. Given that different
services are typically described in terms of different ontologies, SAM deter-
mines relationships between concepts defined in separate ontologies, so to
establish functional dependencies among services.

• Behaviour-aware matching – that is, the ability of guaranteeing behavioural
properties. Given a query synthetising the behaviour of a service, SAM
searches for (compositions of) services which are behaviourally equivalent
to the query. Each matched service (composition) can be used interchange-
ably with the service described by the query.

It is also worth observing that, with respect to its first version described in [5],
SAM is now capable of properly coping with the problem of “crossing” different
ontologies (thanks to the introduction of the hypergraph), as well as of suitably
addressing behavioural queries.

The rest of the paper is organized as follows. Section 2 describes the composi-
tion-oriented, ontology-based methodology for discovering services. Section 3
is devoted to discuss the architecture, the main implementation choices, and

58 F. Benigni, A. Brogi, and S. Corfini

possible future extensions of the system applying such a methodology. Finally,
some concluding remarks are drawn in Section 4.

2 A Methodology for a Composition-Oriented Discovery

In this Section, we present a methodology for discovering compositions of seman-
tic Web services which takes into account both semantic and behavioural infor-
mation advertised in the OWL-S service descriptions. In particular, we employ
“semantics”, namely all those ontological information regarding the functional
attributes (i.e., inputs and outputs) of services, to select services with respect
to “what they really do”, and we employ “behaviour”, namely, information con-
cerning the order with which messages can be received or sent by each service,
to guarantee some useful properties of selected services. Before presenting the
discovery methodology, we describe hereafter the data structures and formalisms
we employ to summarise service descriptions.

2.1 The Internal Representation of Services

As briefly mentioned in the Introduction, the complete behaviour of a service
is described by the OWL-S process model, which may include conditional and
iterative constructs. Hence, a service may behave in different ways and feature
different functionalities. We say that a service may have different profiles, each
of them requiring/providing different inputs/outputs. Hence, as one may expect,
we represent each service with two distinct items: a set of profiles, to summarise
the different sets of functional attributes employed by each profile of the service,
and a Petri net, to model the whole service behaviour.

More precisely, a profile Sn represents a dependency between the set of the
inputs and the set of the outputs employed by the specific behaviour n of a service
S. Service profiles are collected into a hypergraph, whose nodes correspond to
the functional attributes of the service profiles, and whose hyperedges represent
relationships among such attributes. It is worth observing that each node v of
the hypergraph, that is, each functional attribute, is associated with a concept,
which is defined in one of the ontologies referred by the service employing v. The
hypergraph also includes equivalent and sub-concept relationships among nodes,
viz., among ontology concepts. (A formal definition of the hypergraph and the
algorithms for its construction can be found in [3,6].)

Example. Let us consider the simple service T , defined as a choice of two
atomic operations. The former inputs a zipCode (Z) and returns the correspond-
ing geographicCoordinates (GC), and the latter inputs a location (L) and a date
(D), and returns the computed wheatherInformation (W). The service T has
hence two profiles, T1 and T2, represented by the hyperedges {Z} T1→ {GC} and
{L, D} T2→ {W}, respectively. Consider next the service S, which inputs a city
(C) and a nation (N), and returns the corresponding zipCode (Z). Service S

exposes a single profile S1 represented by the hyperedge {C, N} S1→ {Z}. The

Discovering Service Compositions That Feature a Desired Behaviour 59

Fig. 1. A simple hypergraph

hypergraph including profiles S1, T1, T2 is illustrated in Figure 1. Note the equiv-
alent relationship linking together state (ST) and nation (viz., ST and N are
synonyms), as well as, the sub-concept relationship linking geographicCoordi-
nates and geographicLocation (GL) (viz., GC is a sub-concept of GL).

While a profile describes a particular behaviour of a service from a functional
point of view, the complete interaction behaviour of a service is represented
by an OCPR net. OCPR nets (for Open Consume-Produce-Read nets) [4] are a
simple variant of the standard Condition/Event Petri nets, designed to naturally
model the behaviour of services, and in particular the persistency of data (i.e.,
once a data has been produced by some service operation, it remains available
for all the service operations that input it). Briefly, an OCPR net is equipped
with two disjoint sets of places, namely, control and data places, to properly
model the control flow and the data flow of a Web service, and with an interface,
which establishes those data places that can be observed externally. Hence, whilst
control places can be produced and consumed, data places can be read, produced
but not consumed. We formally defined OCPR nets in [4], where a mapping from
OWL-S process models to OCPR nets is also presented. Intuitively speaking
(see [4] for details), transitions map (OWL-S) atomic operations, while data and
control places respectively model the availability of data and the executability
of atomic operations. It is worth observing that when a service is translated into
an OCPR net, all the data places of the net are externally observable by default.

Example. Figure 2 (which will be explained in more detail later) illustrates four
simple OCPR nets, where rectangles, circles and diamonds respectively represent
transitions, data places and control places. The initial control place i as well as
the final control place f of each net are emphasised in light gray. Furthermore,
each net is delimited by a box which represents the net interface, namely, the
set of places which can interact with the environment. Hence, those data places
that lie on the box are the ones that can be observed externally.

2.2 Discovering Compositions of Services

So far, we have introduced the internal representation of services that we use to
store them in a local repository. We can now propose a complete composition-
oriented methodology for discovering services. The methodology takes as input
the so-called behavioural queries, that is, queries specifying both the inputs and
outputs, as well as the expected behaviour of the service to be found. A be-
havioural query, for example, can be expressed in terms of the OWL-S process

60 F. Benigni, A. Brogi, and S. Corfini

model describing the desired service. The set of the functional attributes of the
query can be easily retrieved by its OWL-S process model, which can be in turn
suitably translated into an OCPR net [4]. Hence, we can assume that a query
consists of two parts: a couple (I, O) and an OCPR net, respectively describing
the set of the inputs and outputs, and the behaviour of the service to be found.

The discovery methodology we are going to propose consists of two main
phases: a functional analysis and a behavioural analysis, that we describe below.

Functional Analysis
This first phase consists in a sort of functional filter, indeed, services are se-
lected according to their functional attributes only. More precisely, the func-
tional analysis focuses on the first functional part of the query (viz., the couple
(I, O) of inputs and outputs), and returns those set of services which satisfy the
functional requirements of the query. Hence, for each set of services S passing
the functional filter: (1) all the query outputs are provided by the services in S,
(2) all the inputs of the services in S are provided by the query (or they can be
produced by some service in S).

As described in the previous subsection, we summarise functional information
of the services stored in the repository in an hypergraph. The functional analysis
hence consists of a visit of the hypergraph. It is worth noting that by explor-
ing profiles, we address the discovery of sets of services, as well as by exploring
sub-concept and equivalent relationships we properly reason with (different) on-
tologies. In particular, the functional analysis explores the hypergraph starting
from those nodes corresponding to the query outputs, and it continues by visit-
ing backwards the hyperedges until reaching, if possible, the query inputs. The
profile-labelled hyperedges which take part in an hyperpath from the query out-
puts to the query inputs determine a set of service profiles satisfying the query.
A detailed discussion of the algorithm for visiting the hypergraph can be found
in [6]. Furthermore, it is also worth noting that we have enriched the functional
analysis with a minimality check [5], in order to avoid constructing non-minimal
sets of service, that is, sets containing (at least) a service not strictly necessary
to satisfy the query.

Example. Consider the simple hypergraph illustrated in Figure 1, and the query
taking as input a city (C) and a state (ST) and providing as output the corre-
sponding geographicLocation (GL). The functional analysis visits the hypergraph
starting from the query output GL. Then, by exploring the sub-concept relation-
ship {GC} → {GL} and the profile T1, it reaches the node Z. Next, by visiting
the profile S1 and by crossing the equivalence relationship {ST } → {N}, it
reaches both the query inputs {C, ST }. Hence, the set of profiles {S1, T1} satis-
fies (the functional requirements of) the query.

Behavioural Analysis
As previously described, every set of profiles determined by the functional analy-
sis satisfies the query from a functional perspective. Consider now a specific set P
of profiles. The behavioural analysis checks whether the services included in the

Discovering Service Compositions That Feature a Desired Behaviour 61

Fig. 2. OCPR nets

set, and suitably composed together, are behaviourally equivalent to the client
query. The behavioural analysis consists of the following two main steps.

(1) Constructing the composite service. The objective of this step is to
construct the OCPR net modelling the parallel composition of the service profiles
included in P . Firstly, for each service profile Sn in the set, we retrieve from
the local repository the OCPR net modelling the complete behaviour of the
corresponding service S. As described in subsection 2.1, all the data places of an
OCPR net are externally observable by default (viz., all the data places of the
net belong to the net interface). Yet, a profile identifies a specific portion (i.e.,
behaviour) of the service, which may partially employ the inputs and outputs of
the whole service. Hence, let Sn be a profile of a service S, and let NS be the
OCPR net modelling S. Then, we remove from the interface of NS those data
places which do not belong to the inputs and outputs of the profile Sn.

We can now construct the composite OCPR net N‖ modelling the parallel
composition of the OCPR nets NS1 , . . . , NSn associated to the profiles S1, . . . , Sn

belonging to the set P . Note that, if the set of profiles returned by the functional
analysis contains n profiles of the same service S, we insert into the composite
net n copies of the OCPR net modelling S, each of them typically providing a
different interface. In other words, we are considering multiple executions of the
same service.

As stated before, the data places which belong to the net interface are the
only ones that can interact with the external environment. Consequently, in or-
der to compose OCPR nets, we have to operate on their interfaces. To build N‖
we first perform the disjoint union of the transitions, data places and control
places of the nets NS1 , . . . , NSn . Next, we collapse those data places which are
equivalent and which occur in the interfaces of NS1 , . . . , NSn . It is worth noting
that we qualify as equivalent data places, those data places which are syntacti-
cally and/or semantically equivalent. For example, we collapse two data places
corresponding to two syntactically different, yet synonyms concepts. Moreover,
in order to perform the parallel composition of NS1 , . . . , NSn , we add to N‖
the necessary additional transitions and control places, according to the OCPR
mapping of the parallel composition (viz., the OWL-S split+join construct)
given in [4]. It is important to observe that the initial control places as well
as the final control place of an OCPR net are externally observable by default.

62 F. Benigni, A. Brogi, and S. Corfini

The interface of the resulting composite net N‖ is the union of the interfaces of
the nets NS1 , . . . , NSn . Finally, before verifying the equivalence of the composite
net with the behavioural query, we have to properly revise the interface of the
composite net. Indeed, the interface of N‖ may contain some data places with
do not belong to the interface of the query net. We do not need to observe those
data places, which, hence, have to be removed from the interface of N‖.

Example. Let us continue the example previously introduced. For each profile
included in the set {S1, T1} returned by the functional analysis, we consider its
OCPR net representation. The OCPR nets NS1 , NT1 , respectively representing
the profiles S1, T1, are illustrated in Figure 2. While all the data places of NS1

belong to the net interface (as they belong to the single profile S1 of S), the
interface of NT1 contains only the data places employed by the profile T1. We
perform next the parallel composition of the two nets NS1 and NT1 . The resulting
net NS1‖T1 is depicted in the right part of Figure 2. Finally, note that we removed
Z from the interface of NS1‖T1 , since it does not belong to the query.

(2) Analysing the service behaviour. The second step of the behavioural
analysis checks whether the composition of those services previously selected
during the functional analysis is capable of satisfying the query from a behav-
ioural perspective. Let NQ denote the net representing the behavioural query.
Namely, this step checks whether NQ and N‖ are equivalent, that is, whether
they are externally indistinguishable.

To this end, we defined in [4] a suitable notion of behavioural equivalence for
Web services, which features weakness, as it equates structurally different yet
externally indistinguishable services; compositionality, as it is also a congruence;
and decidability, as the set of states that an OCPR net can reach is finite. More
precisely, a state of an OCPR net is the marking of its observable places. In
the initial state only the initial control place contains a token, while all the
other places belonging to the net interface are empty. Then, in each state, an
OCPR net can execute two types of actions, namely, it can put a token in one
of the data places of its interface, or it can perform τ -transitions (i.e., it can
fire transitions not requiring any additional token). Hence, intuitively speaking,
in order to verify whether NQ and N‖ are equivalent, the second step of the
behavioural analysis checks whether for each state s of NQ: (1) there exists a
state t of N‖ which can perform all the actions executable by s; (2) for each state
s′ reachable from s by executing the action a, t can reach a state t′ by executing
the same action a, such that s′ and t′ are equivalent. It is important to observe
that if s reaches s′ by performing a single τ -transition, t can reach a state t′

equivalent to s′ with one or more τ -transitions. Dually, this step checks whether
similar conditions hold for each state of N‖. If so, the query and the composite
net are equivalent, that is, the found service composition fully satisfies the query.

Example. Consider the nets NQ and NS1‖T1 , illustrated in Figure 2, and respec-
tively representing the client query and the previously built composite service.
According to [4], the nets NQ and NS1‖T1 are equivalent. In particular, note that
if we add a token in C and ST (namely, N , since ST and N are equivalent), NQ

Discovering Service Compositions That Feature a Desired Behaviour 63

reaches the final state in a single τ -transition, while NS1‖T1 needs of performing
four τ -transitions.

3 Implementation of the Methodology

We discuss below the architecture and the main implementation choices of the
system (viz., SAM) applying the discovery methodology described in Section 2.

Architecture
Figure 3 illustrates the overall architecture of the matchmaking system imple-
menting the proposed discovery methodology. The system – available as Web
service – is designed to cope with two classes of users, clients and providers,
which, mainly, can query the system, and add a new service to the system, as
reflected by the WSDL interface depicted in Figure 3.

The client queries are handled by the search engine core component, which
consists of two building blocks, namely, the functional analyser and the behav-
ioural analyser, respectively implementing the functional analysis and the be-
havioural analysis of the discovery methodology described in subsection 2.2. In
particular, functional queries can be satisfied by the functional analyser only,
while behavioural queries need of the joint work of both functional and behav-
ioural analysers. It is worth noting that the implementation of the behavioural
analyser makes use of the algorithm presented by Fernandez and Mounier in
[7] for verifying the bisimilarity of two systems. Clients can also list available
services and ontologies: the service browser component satisfies these requests.

When a provider adds a new service to the system, the hypergraph builder
and the OWL-S2PNML components translate the service into the internal rep-
resentation described in subsection 2.1. The hypergraph builder determines the
profiles of the service. Moreover, it exploits SemFiT [8], a tool for “crossing” dif-
ferent ontologies, to establish the semantic (viz., equivalence and sub-concept)
relationships among ontology concepts. In particular, the hypergraph builder
determines the relationships concerning those concepts defined in the new on-
tologies employed by the service to be added, and those concepts which belong to
the ontologies previously registered to the system. A more detailed description
of the behaviour of the hypergraph builder component is available in [6].

OWL-S2PNML translates the OWL-S process model of the service into an
OCPR net, which is described by a corresponding PNML file. The Petri Net
Markup Language1 (PNML) is a XML-based and customizable interchange for-
mat for Petri nets. We employ PNML in order to enhance the modularity and
portability of the system. Providers can also add single ontologies: in such a case,
the hypergraph builder component suffices to update the hypergraph.

It is also worth noting that, before adding a new service as well as a new on-
tology, a provider has to login the system. The authentication service is managed
by the account manager component.

1 http://www2.informatik.hu-berlin.de/top/pnml/about.html

64 F. Benigni, A. Brogi, and S. Corfini

Fig. 3. System architecture

Service internal descriptions (i.e., profiles and semantic relationships, and
PNML files), ontologies and account information are stored in the local reg-
istry. All system components can access the local registry by means of a suitable
registry manager.

Implementation
We discuss hereafter the main implementation aspects of SAM, the matchmaking
system previously described in Section 2. In particular, the implementation of
SAM has been conditioned by the following requisites.

• Portability – the system consists of Java packages, each of them wrapped in a
standard Java EE 5 component. SAM is accessible as a Web service, described
by a standard WSDL interface as well as by an OWL-S advertisement.

• Extensibility – SAM is deployed as a multitiered Java enterprise application,
which allows for high levels of modularization and ease of substitute/add
logic components (e.g., the integration with SemFiT, remotely accessed by
its WSDL interface). Furthermore, the use of Java language allows us to
employ many existing Java libraries and tools (e.g., OWL-S parsers).

• Scalability – Java EE platform natively guarantees suitable performance and
scalability to component-based and multitiered applications.

• Use of standards – Besides the use of Java EE platform, the system imple-
mentation relies on other standard languages and well-known technologies:

– PNML, to describe OCPR nets by means of standard XML files,
– javaDB, to deploy the database (which is accessible via JDBC API directly by

the Java EE component containers),

Discovering Service Compositions That Feature a Desired Behaviour 65

– Mindswap OWL-S API, to validate, marshal/unmarshal OWL-S descriptions,
– PNML framework API, to marshal/unmarshal PNML descriptions.

The domain logic of SAM is implemented by three Java libraries: SamFeedLog-
ics, which implements the OWL-S2PNML and hypergraph builder components
of Figure 3, SamFunctionalLogics, that implements the functional analyser com-
ponent, and SamBehaviouralLogics, which implements the behavioural analyser
component. It is worth noting that each library is connected to the rest of the
architecture by facade EJB (Enterprise Java Beans) components, that automat-
ically retrieve other components’ references by Java EE server injection. Hence,
each functional component is totally independent from the overall architecture,
and it can be tested in a Java SE 5 environment by employing suitable stubs and
drivers. Furthermore, facade components declaratively instruct the application
server (by means of Java 5 annotations included in the class files) to expose
relevant methods as (WSDL described) Web services.
The implementation of SAM is completed by the following Java EE components.

• SamPersistence – which, by abstracting from the actual data representation,
provides two interfaces to respectively view and modify (only upon autho-
rization) the data contained in the local registry of SAM.

• SamDBBrowser – which implements a simple database browsing tool (viz.,
the service browser component).

• SamAccountMgmt – which grants (or denies) access to SamFeedLogics com-
ponent. In particular, the current security management allows only registered
users to submit new OWL-S descriptions and new ontologies. Moreover, it
keeps trace of every submission to discourage any abuse. Future improve-
ments of security management may be implemented in order to prevent
possible leaks in quality of service.

• SamGWTServlet – which provides SAM with a friendly Web interface, devel-
oped with the Google Web Toolkit.

Extending the Implementation
For testing the system concisely presented in this section, we manually produced
several OWL-S service descriptions. Although the behaviour of each single part
of the system has been properly checked, currently, we are not able to provide
a serious experimental assessment of the system. Please, note that no standard
test collection for OWL-S service retrieval does exist, yet. To be more exact, by
accurately scanning the Web, we found two OWL-S repositories2, both generated
with semi-automatic WSDL annotators. However, as one may expect, WSDL
annotators generate very simple OWL-S process models, typically a list of atomic
operations, as no behavioural information is available in WSDL descriptions.
Obviously, such process models are not useful for testing the system.

To overcome this problem, a brute force (time-consuming and error-prone) so-
lution could be to manually create a test collection of OWL-S services. Yet, given
2 http://moguntia.ucd.ie/repository/owl-ds.html

http://www-ags.dfki.uni-sb.de/ klusch/owls-mx/index.html

66 F. Benigni, A. Brogi, and S. Corfini

that WS-BPEL [9] has been recently approved as an OASIS standard, we plan to
extend our system in order to cope with WS-BPEL services. For instance, a possi-
ble solution is to translate BPEL processes into OWL-S services, by plugging into
the system the BPEL2OWL-S 3 translator developed by Aslam et al. in [10]. Yet,
there is still a prominent problem, namely, the lack of ontological information in
WS-BPEL descriptions. Hence, when a provider adds a WS-BPEL process into
the system, firstly, the WS-BPEL process is translated into a “rough” OWL-S
service, and secondly, the provider is asked to complete the OWL-S description,
by annotating the service parameters with ontology concepts (e.g., by employing
some friendly ontology editor, such as Protégé (http://protege.stanford.edu).
The new OWL-S service can be then registered into the system as described in
the previous subsections.

Finally, given the high computational (viz., exponential) complexity of the
functional and behavioural analysers, another important line for future work is
to develop indexing and/or ranking techniques (as search engines do for Web
pages) in order to sensibly improve the efficiency of the discovery methodology.

4 Concluding Remarks

In this paper, we have introduced an automated composition-oriented, ontolo-
gy-based methodology for discovering (semantic) Web services. We have also
presented a matchmaking system, called SAM, which prototypically implements
such a methodology. SAM is the first matchmaker – at the best of our knowledge
– that takes properly into account functional, semantic and behaviour informa-
tion provided by service descriptions. More precisely, given as input a query
specifying inputs, outputs and expected behaviour of the service to be found
(viz., a behavioural query), SAM returns an ordered list of (compositions of)
services, each of them (1) requiring as input a subset of the query inputs, (2)
providing as output all the query outputs (or more), (3) featuring a behaviour
equivalent to the query. In particular, it is important to observe that feature
(3) makes our system suitable to be employed to address emerging issues of the
Service-oriented Computing area, such as service replaceability.

Recently, automatic matchmaking of Web services has gained prominent im-
portance and new approaches are frequently introduced. For the lack of space,
we briefly discuss hereafter only some of the widely known approaches.

The first effort towards the automation of Web service discovery has been
put forward by some of the authors of OWL-S in [11]. Their algorithm performs
a functionality matching between service requests and service advertisements
described as DAML-S (the predecessor of OWL-S) service profiles. This approach
was the first at introducing the notion of an automatic and flexible matching
by suitably considering subsumes and plug-in relationships among the ontology-
annotated attributes of services and service requests. Yet, the algorithm proposed
in [11] does not deal with the ontology crossing problem, that is, it is not able to
determine relationships between attributes annotated with concepts of separate
3 http://bpel4ws2owls.sourceforge.net

Discovering Service Compositions That Feature a Desired Behaviour 67

ontologies. To this aim, it is worth mentioning the service matchmaking approach
presented by Klusch et al. in [12], which employs both logic based reasoning and
IR techniques to properly relate concepts of different ontologies.

A common drawback of [11,12] is that they search for a single service capable
of satisfying a client query by itself. However, as previously described, compos-
ing functionalities of different services may be necessary to satisfy a query. An
approach to a composition-oriented discovery is presented by Benatallah et al. in
[13], where the matchmaking problem is reduced to a best covering problem in
the domain of hypergraph theory.

With respect to the approach presented in this paper, it is important to stress
that none of the mentioned proposals takes into account behavioural aspects of
services. Indeed, our matchmaker – differently from [11,13,12] – is capable of
solving behavioural queries, guaranteeing, as well, some behavioural properties
of the returned (compositions of) services.

Behavioural aspects of services are partially taken into account by the ap-
proach of Agarwad and Studer, that proposed in [14] a new specification of Web
services, based on description login and π-calculus. Their algorithm consider se-
mantic and temporal properties of services, yet, their matchmaking approach is
limited to a single service discovery.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 24–28 (2003)

2. OWL-S Coalition: OWL-S: Semantic Markup for Web Service (2004),
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

3. Brogi, A., Corfini, S., Aldana, J., Navas, I.: Automated Discovery of Compositions
of Services Described with Separate Ontologies. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 509–514. Springer, Heidelberg (2006)

4. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A behavioural congruence for Web
services. In: Arbab, F., Sarjani, M. (eds.) Fundamentals of Software Engineering.
LNCS, Springer, Heidelberg (2007) (to appear)

5. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions.
International Journal of Web Services Research 4(3) (2007) (to appear)

6. Brogi, A., Corfini, S., Aldana, J., Navas, I.: A Prototype fot Discovering Composi-
tions of Semantic Web Services. In: Tumarello, G., Bouquet, P., Signore, O. (eds.)
Proc. of the 3rd Italian Semantic Web Workshop (2006)

7. Fernandez, J.C., Mounier, L.: “On the Fly” verification of behavioural equivalences
and preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp.
181–191. Springer, Heidelberg (1992)

8. Navas, I., Sanz, I., Aldana, J., Berlanga, R.: Automatic Generation of Semantic
Fields for Resource Discovery in the Semantic Web. In: Andersen, K.V., Deben-
ham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 706–715. Springer,
Heidelberg (2005)

9. BPEL Coalition: WS-BPEL 2.0 (2006), http://docs.oasis-open.org/wsbpel/

2.0/wsbpel-v2.0.pdf

http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/ 2.0/wsbpel-v2.0.pdf

68 F. Benigni, A. Brogi, and S. Corfini

10. Aslam, M.A., Auer, S., Shen, J., Herrmann, M.: Expressing Business Process Mod-
els as OWL-S Ontologies. In: Eder, J., Dustdar, S. (eds.) Business Process Man-
agement Workshops. LNCS, vol. 4103, pp. 400–415. Springer, Heidelberg (2006)

11. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matchmaking of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

12. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: AAMAS’06, pp. 915–922. ACM Press, New York (2006)

13. Benatallah, B., Hacid, M.S., Léger, A., Rey, C., Toumani, F.: On automating Web
services discovery. VLDB J. 14(1), 84–96 (2005)

14. Agarwal, S., Studer, R.: Automatic Matchmaking of Web Services. In: IEEE Int.
Conference on Web Services, pp. 45–54. IEEE Computer Society Press, Los Alami-
tos (2006)

An Hybrid, QoS-Aware Discovery of Semantic

Web Services Using Constraint Programming�

José Maŕıa Garćıa, David Ruiz, Antonio Ruiz-Cortés, Octavio Mart́ın-D́ıaz,
and Manuel Resinas

Universidad de Sevilla
Escuela Técnica Superior de Ingenieŕıa Informática

Av. Reina Mercedes s/n, 41012 Sevilla, España
josemgarcia@us.es

Abstract. Most Semantic Web Services discovery approaches are not
well suited when using complex relational, arithmetic and logical expres-
sions, because they are usually based on Description Logics. Moreover,
these kind of expressions usually appear when discovery is performed in-
cluding Quality-of-Service conditions. In this work, we present an hybrid
discovery process for Semantic Web Services that takes care of QoS con-
ditions. Our approach splits discovery into stages, using different engines
in each one, depending on its search nature. This architecture is exten-
sible and loosely coupled, allowing the addition of discovery engines at
will. In order to perform QoS-aware discovery, we propose a stage that
uses Constraint Programming, that allows to use complex QoS condi-
tions within discovery queries. Furthermore, it is possible to obtain the
optimal offer that fulfills a given demand using this approach.

Keywords: Discovery Mechanisms, Quality-of-Service, Semantic Match-
ing, Constraint Programming.

1 Introduction

Most approaches on automatic discovery of Semantic Web Services (SWS) use
Description Logics (DLs) reasoners to perform the matching [7,13,15,18,26,27].
These approaches have limitations regarding with the expressiveness of searches,
especially when there are Quality-of-Service (QoS) conditions integrated within
queries. For instance, a condition like “find a service which availability ≥ 0.9,
where availability = MTTF/ (MTTF + MTTR)”1 can not be expressed in
DLs. Although there are proposals that extend traditional DLs with concrete
domains in many ways [9], they still have limitations on expressing complex
conditions [1,14], as in the previous example. These complex conditions usually

� This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project Web-Factories (TIN2006-00472).

1 MTTF stands for “Mean Time To Failure”, while MTTR stands for “Mean Time To
Repair”. Both of them are QoS parameters often used to define service availability.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 69–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 J.M. Garćıa et al.

appear when performing a QoS-aware discovery, so in this case DLs reasoning
is not the most suitable choice.

QoS conditions are contemplated in several SWS discovery proposals. For
instance, Wang et al. extend wsmo framework to include QoS parameters that
allow to discover the best offer that fulfills the demanded conditions [30]. Ben-
bernou and Hacid propose the use of constraints, including QoS-related ones,
to discover SWS [3]. Moreover, Ruiz-Cortés et al. model the QoS conditions as
Constraint Satisfaction Problems (CSPs) [23], but in the context of non-semantic
Web Services.

Our proposal is an hybrid architecture to discover SWS. Discovery may be
split into different stages, each of them using the best suited engine depending
on the features of the corresponding stage. We identify at least two stages in this
process: QoS-based discovery and functional (non-QoS) discovery. The former
may be done using Constraint Programming (CP), as proposed in the case of
non-semantic Web Services in [23], while the latter is usually performed by DLs
reasoners, although it is not restricted to use other techniques.

Our approach allows to filter offers, stage by stage, using a proper search
engine until the optimal offer that fulfills a demand is found. This optimization
is accomplished due to the proposed use of CP in the QoS-aware discovery stage,
also enabling the definition of more complex conditions than defined ones using
DLs. Furthermore, our proposed architecture is loosely coupled and extensible,
allowing the addition of extra discovery engines if necessary.

The rest of the paper is structured as follows. In Sec. 2 we introduce related
works on discovering SWS, discussing their suitability to perform a QoS-aware
discovery. Next, in Sec. 3 we present our hybrid discovery proposal, explaining
the proposed architecture and how CP can be used in a QoS-aware semantic
discovery context. Finally, in Sec. 4 we sum up our contributions, and discuss
our conclusions and future work.

2 Discovering Semantic Web Services

In this Section, we discuss related work on discovering SWS, describing the
different approaches and analyzing their suitability to handle QoS parameters
and conditions, in order to perform a QoS-aware discovery.

2.1 Preliminaries

Each proposal uses its own terminology to refer to the entities involved in the dis-
covery process, especially its descriptions of the requested and provided services.
For the sake of simplicity, we use one single notation along this paper.

We refer to a demand (denoted by the Greek letter delta, i.e. δemand) as a
set of objectives that clients want to accomplish by using a service that fulfills
them. It may be composed of functionality requirements and QoS conditions
that the requested service must fulfill, such as“find a service which availability ≥
0.9, where availability = MTTF/ (MTTF + MTTR)”. The different proposals

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 71

refer to demands as goals [22], queries [2,3,13], service request [7,19,27] or user
requirements [30].

An offer (denoted by the Greek letter omega, i.e. ωffer) of a service is the
definition of a SWS that is publicly available from a service provider. An offer
may be composed of functionality descriptions, orchestration, choreography, and
QoS conditions of the given service. For instance, an offer can consist in a QoS

condition like “MTTF is from 100 to 120 inclusive and MTTR is from 3 to 10
also inclusive”. Different approaches refer to offers as advertisements [2,13,30],
service capabilities [19,22,27], or service profiles [7,15,16].

Most proposals on discovering SWS are built upon one of the following de-
scription frameworks. Firstly, owl-s [16] is a DARPA Agent Markup Language
program initiative that defines a SWS in terms of an upper ontology that contains
concepts to model each service profile, its operations and its process model. It is
based on owl standard to define ontologies, so it benefits from the wide range of
tools available. Secondly, the Web Service Modeling Ontology (wsmo) [22] is an
European initiative whose goal, as owl-s, is to develop a standard description
of SWS. Its starting point is the Web Service Modeling Framework [6], which
has been refined and extended, developing a formal ontology to describe SWS
in terms of four core concepts: ontologies, services, goals and mediators. Finally,
the meteor-s project from the University of Georgia takes a completely differ-
ent, but aligned approach than the others. Its main target is to extend current
standards in Web Services adding semantic concepts [25], among others contri-
butions discussed here. These extensions make use of third party frameworks,
including the previous two, to semantically annotate Web Service descriptions.
These proposals have extensions to take care of QoS parameters.

2.2 Related Work

In the context of daml-s (the owl-s precursor), Sycara et al. show how se-
mantic information allows automatic discovery, invocation and composition of
Web Services [27]. They provide an early integration of semantic information
in a uddi registry, and propose a matchmaking architecture. It is based on a
previous work by Paolucci et al., where they define the matching engine used
[19]. This engine matches a demand and an offer when this offer describes a
service which is “sufficiently similar” to the demanded service, i.e. the offered
service provides the functionality demanded in some degree. The problem is how
to define that degree of similarity, and the concrete algorithm to match both
service descriptions. They update their work to owl-s in [28].

Furthermore, there are proposals that perform the matchmaking of SWS using
DLs [7,13,15]. Particularly, González-Castillo et al. provide an actual matchmak-
ing algorithm using the subsumption operator between DLs concepts describing
demands and offers [7]. They use existing DLs reasoners, as RACER [8] and
FaCT [11], to perform the matchmaking. On the other hand, Lutz and Sattler
[15] do not provide an algorithm, but give the foundations to implement it us-
ing subsumption, like Li and Horrocks [13], who also give hints to implement a
prototype using RACER.

72 J.M. Garćıa et al.

These three works define different matching degrees as in [27], from exactly
equivalents to disjoint. All of them perform this matching by comparing inputs
and outputs. Apart from that, neither of them can obtain the optimal offer
using QoS parameters. However, Benatallah et al. propose to use the degree of
matching to select the best offer in [2], but it results to be a NP-hard problem,
as in any optimization problem [4].

On the other hand, Benbernou and Hacid realise that some kinds of con-
straints are necessary to discover SWS, including QoS related ones, so they
formally discuss the convenience of incorporating constraints in SWS discovery
[3]. However, instead of using any existing SWS description framework, their
proposal uses an ad-hoc Services Description Language, in order to be able to
define complex constraints. In addition, the resolution algorithm uses constraint
propagation and rewriting, but performed by a subsumption algorithm, instead
of a CSP solver.

Concerning wsmo discovery, Wang et al. propose an extension of the ontology
to allow QoS-aware discovery [30]. The matchmaking is done by an ad-hoc algo-
rithm to add QoS conditions to offers and demands. Their implementation has
some limitations, as the algorithm can only be applied to real domain attributes,
and is restricted to three types of relational operators.

Ruiz-Cortés et al. provide in [23] a framework to perform QoS-aware discov-
ery by means of CP, in the context of non-semantic Web Services. They show the
soundness of using CP to improve the automation of matchmaking from both
theoretical and experimental points of view. Although CP solving is a NP-hard
problem, the results of their experimental study allow to conclude that CP-based
matchmakers are practically viable despite of its, theoretical, combinatorial na-
ture. This work is the starting point of our approach on using CP to perform
QoS-related stages of our hybrid SWS discovery proposal.

2.3 Frameworks

As an application of their previous work, Srinivasan et al. present an implemen-
tation to development, deployment and consumption of SWS [26]. It performs
the discovery process using the proposals introduced in [19,27]. They show per-
formance results and detail the implementation of owl-s and uddi integration,
so it can be used as a reference implementation to owl-s based discovery, but
without QoS conditions.

irs-ii [18] is an implemented framework similar to wsmf [6], that is able
to support service discovery from a set of demands. It uses descriptions of the
reasoning processes called Problem Solving Methods (PSM), similar to owl.
Moreover, irs-iii [5] updates this previous implementation, using wsmo ontology
to model SWS, and providing an architecture to discovery, composition and
execution SWS. All of them can not handle with QoS conditions, although they
are extensible so they may support them.

Another interesting proposal is done in [24], where Schlosser et al. propose a
graph topology of SWS providers and clients, connected between them as in a
peer-to-peer (P2P) network. In this scenario, searching, and specially publishing,

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 73

are done very efficiently, without the need of a central server acting as a register
of offers and demands. In addition, the network are always updated, due to an
efficient topology maintenance algorithm. This structure of decentralized reg-
istries is proposed in meteor-s for semantic publication and discovery of Web
Services [29]. The semantic matching algorithm uses templates to search inputs
and outputs of services described with ontological concepts, without the use of
a specific reasoner, or the possibility to express QoS conditions. Although the
matchmaking is too simple, the idea of a P2P network can be adopted in our
proposal without troubles.

Our proposal is open to be implemented in the context of any of the presented
frameworks in this section. The proposed architecture that we present in the
following section does not impose any restriction on the SWS framework used
(i.e. owl-s, wsmo or meteor-s), and can be composed of any number of the
discovery engines discussed in Sec. 2.2, due to its hybrid nature. Furthermore, it
can be materialized as the discovery component of implementations like irs-iii

[5] or owl-s ide [26].

3 Our Proposal

The addition of constraints, specially QoS-related ones, to SWS descriptions,
turns most approaches on discovering SWS insufficient, because they mainly
use DLs, which are usually limited to logical and relational expressions when
describing QoS conditions. CP becomes necessary to manage more complex QoS

conditions, so a demand can be matched with the best available offer. Instead
of using solely CP to perform the discovery, we present an hybrid solution that
splits the discovery into different stages.

3.1 Hybrid Semantic Discovery Architecture

An abstract architecture of our proposal is sketched in Fig. 1, where we show
how the different components are connected between them. Here, the dashed line
defines the boundaries of our hybrid discovery engine.

Q document corresponds to the query that a client wants to use to discover
services, i.e. the demand. This query may be expressed in any desired language
that the scheduler can handle, such as a SPARQL query [21], a wsmo goal, a
faceted search [20], or even it may be defined visually using a GUI.

R is the result set of offers that fulfill the query Q. It is the output of the
discovery process, possibly being an empty set, the best offer, or an ordered list
of offers by an optimality criterion. The format of this output should conform
the specification of a concrete SWS framework in order to successfully invoke
the discovered service(s).

The different stages of the hybrid discovery are performed by the best suited
discovery engine. In Fig. 1, E1...En represent the engines to be used in each
corresponding stage. The core component of our proposed architecture is re-
sponsible to send the input data to each engine, by decomposing the query Q

74 J.M. Garćıa et al.

Fig. 1. Architecture of our hybrid discovery proposal

in subqueries (Qi), and to recover its corresponding output (Ri), joining all of
them to output the final result R. These input and output formats depend on
the concrete engine of each stage. Thus, if we are performing a QoS-aware stage,
the input must be modeled as a CSP, so CP can be applied to perform this kind
of stage. Additionally, it is possible to use a DLs engine to perform non-QoS

discovery, or a template matchmaker [29], for instance.
Offers have to be published in some kind of repository so they can be matched

with demands by means of the different discovery engines used in our approach.
This SWS repository may be implemented in different ways: as a semantically-
extended UDDI registry [26], as a decentralized P2P registry [29], or as a wsmo

repository [5], for instance.
In addition, our architecture takes care of the NP-hard nature of optimization

[4], so we propose to include a knowledge-base (KB) that cache already performed
discoverings, so the execution of the discovery process becomes faster. Thus, we
store executed queries related with their result set of SWS from the repository
component, into the KB. irs-ii implementation uses a similar idea to accelerate
discovery [18].

Finally, the core component of our proposal is the scheduler. It has to an-
alyze the query Q, split the discovery task into stages, and communicate with
discovery engines, in order, providing them with a correct input, and obtaining
a corresponding output. These different outputs are processed stage by stage, so
the set of matching offers from the SWS repository are gradually made smaller.
Each discovery stage may be concurrently or sequentially launched in order, de-
pending on the query nature. Moreover, the scheduler update the KB using the
results of discovery process, which is output as R.

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 75

Scheduler

Split
Query

Engine 1 Engine 2

Matchmaking

Q

Q1 Q2

SWS

Process
Partial
Results

R1

Matchmaking

SWS1

R2

Process
Results

R

Fig. 2. Activity diagram of our discovery process

Fig. 2 shows the activity diagram of an hybrid discovery process performed
in two stages using two different engines. This diagram can be easily extended if
we need more stages. For instance, using a similar format from [13], a query Q =
(ServiceProfile ∩ A ≥ 0.9), where A corresponds to availability, is split by the
scheduler into two subqueries: QDL = (ServiceProfile) being the part expressed
in DLs, and QCP = ({A}, {[0..1]}, {A ≥ 0.9, A = MTTF/(MTTF + MTTR)})
the part modeled by a CSP.2 ServiceProfile corresponds to the definition of a
demand in terms of the owl-s profile of a service. In this scenario, the scheduler
perform a matchmaking firstly using a DLs engine with QDL, obtaining the
offers that satisfy this subquery. Then, with this resulting subset of SWS from
the registry, the scheduler performs a matchmaking using a CP engine and QCP ,
so the final result is the optimal offer that satisfies the whole query Q. For the
sake of simplicity we do not contemplate the KB role in Fig. 2, because it only
provides a way to speed up the process.

This hybrid discovery architecture has many advantages. It is loosely coupled,
due to the possibility to use any discovery engine. Also, the input query format
is not restricted, as the scheduler can analyze a given query, so it can infer the

2 A CSP consists in a three-tuple of the form (V, D, C) where V is a finite, non-empty
set of variables, D is a finite, non-empty set of domains (one for each variable) and C
is a set of constraints defined on V . The solution space of a CSP is a set composed of
all its possible solutions, and if this set is not empty, the CSP is said to be satisfiable.

76 J.M. Garćıa et al.

concrete engines to use and their order. Moreover, our proposed architecture
can be applied to any existing SWS framework and corresponding repositories,
taking benefit of the wide range of tools already implemented. Our proposal is
able to use the best suited engine to perform the corresponding search of a part
of the input query, being used in most cases CP for QoS-related part, and DLs
for non-QoS discovery, but without restrictions on adding more engines.

3.2 QoS-Aware Semantic Discovery

Focusing on the QoS-aware discovery stage, the scheduler sends the QoS-related
part of the query to a CSP solver, so the set of offers that fulfills the requirements
of a given demand can be obtained, or even obtain the optimal offer. To do so,
QoS conditions and their involved QoS parameters, defined in demands and
offers, must be mapped onto constraints in order to use a CSP solver.

Thus, each parameter must be mapped onto a variable (with its corresponding
domain), and each condition must be mapped onto a constraint. At this point,
we have to extend the demand and offer concepts previously presented because
both of them may contain complementary information. We consider they are
composed of two parts: requirements and guarantees. On the one hand, a demand
δ is composed of two parts: δγ , which asserts the conditions that the client meets
(i.e. γuarantees), and δρ, which asserts the conditions that the provider shall
meet (i.e. ρequirements). Similarly, an offer ω can also be considered composed
of ωγ (what it guarantees) and ωρ (what is required from its clients).

For example, consider the demand “The availability shall be less than 0.9,
where A = MTTF/ (MTTF + MTTR)” (δρ); and the offer “The mean time
to failure is from 100 to 120 minutes inclusive, while the mean time to repair
is from 3 to 10 minutes inclusive” (ωγ). Assuming that MTTF , MTTR and A
range over real numbers, their corresponding CSPs are defined as follows:

δρ = ({A, MTTF, MTTR}, {[−∞, +∞], [0, +∞], [0, +∞]},
{A ≥ 0.9, A = MTTF/ (MTTF + MTTR)})

ωγ = ({MTTF, MTTR}, {[0, +∞], [0, +∞]},
{100 ≤ MTTF ≤ 120, 3 ≤ MTTR ≤ 10})

Additionally, the demand may also contain the condition “My host is in Spain”
(δγ); and the offer “For American and British clients only” (ωρ), so the offer
provider requires from its clients some guarantees. Consequently, assuming that
COUNTRY variable ranges over the powerset of Λ = {ES, US, UK, FR}, i.e.
P(Λ), their corresponding CSPs are defined as follows:3

δγ = ({COUNTRY }, {P(Λ)}, {COUNTRY = {ES}})
ωρ = ({COUNTRY }, {P(Λ)}, {COUNTRY ⊆ {UK, US}})

3 Note QoS parameters can be linked together in order to express more complex condi-
tions, such as {COUNTRY = {ES, UK, FR} ⇒ 5 ≤ MTTR ≤ 10, COUNTRY =
{US} ⇒ 5 ≤ MTTR ≤ 15}. These conditions can be interpreted as “the MTTR
is guaranteed to be between 5 and 10 if client is Spanish, British, or French, else
between 5 and 15 if client is American”.

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 77

The conditions previously expressed in natural language should be expressed in a
semanticway,usingQoSontologies suchas theoneproposedbyMaximilienet al. in
[17]. Thus, semanticallydefiningQoSparameters that takepart in such conditions,
and integrating these descriptions in any SWS framework, they can be interpreted
later as a CSP so a solver can process them in the corresponding discovery stage.

These CSPs allow to check for consistency and conformance of offers and
demands. A demand or an offer is said to be consistent if the conjunction of
its corresponding CSPs (of requirements and guarantees) are satisfiable. On the
other hand, an offer ω and a demand δ are said to be conformant if the solution
space of the CSP of the guarantees of the offer (denoted by ψγ

ω) is a subset of
the solution space of the CSP of the requirements of the demand (ψρ

δ), and vice
versa (ψγ

δ ⊆ ψρ
ω) [23]. In the previous example, ω and δ are consistent, but they

are not conformant, because COUNTRY is guaranteed to be ES, but the offer
requires it to be UK or US.

Finally, the ultimate goal of the matchmaking of offers and demands is to find
a conformant offer that is optimal from the client’s point of view. To do so, it
becomes necessary to model the optimization task as a CSP, as with consistency
and conformance checks. More specifically, finding the optimal can be interpreted
as a Constraint Satisfaction Optimization Problem (CSOP), which requires to
explicitly establish a preference order on the offer set. This order can be defined
using a weighted composition of utility functions, which can be taken as a global
utility function for the client.

Thus, each QoS parameter can have a utility function defined, and an asso-
ciated weight to successfully describe how important the values that can take
are for the client. Fig. 3 shows an example of how to discover optimal offers.
In this case, we are assuming that the demand only specifies its requirements
(Fig. 3a) and the offer only specifies what it guarantees (Fig. 3b), so the offer
is conformant with the demand. The corresponding utility functions of the QoS

parameters involved, i.e. MTTF and MTTR, ranging over [0, 1], are shown in
Fig. 3c and 3d, respectively.

Theutility function forMTTF (Fig. 3c) is apiecewise linear function thatdefines
aminimumutility ifMTTF is below60minutes; theutilitygrows linearly ifMTTF
is between60 and 120minutes, and the utility reaches its maximum value ifMTTF
is above 120. On the other hand, the utility function for MTTR showed in Fig. 3d is
a decreasing piecewise linear function. In order to obtain a global utility function of
the offer, we consider that MTTF has a weight of 70% and MTTR 30%.

The offer from Fig. 3b must be checked for conformance with the demand
from Fig. 3a, supposing that both descriptions have been previously checked
for consistency, and that both are based on same QoS parameters, or they
are defined using a compatible ontology. In this case, there is only one offer
conformant, but there could be more than one, being necessary to obtain the
optimal offer. To do so, utility functions for each offer have to be computed in
order to compare them and get the maximum utility value, which corresponds
with the optimal offer. In Fig. 3e we show the OPL [10] model for the computing
of the utility function of the showed offer.

78 J.M. Garćıa et al.

δρ ≡ A ≥ 0.9 ∧

A =
MTTF

MTTF + MTTR

(a) Demand requirements.

ωγ ≡ 100 ≤ MTTF ≤ 120 ∧
3 ≤ MTTR ≤ 10

(b) Offer guarantees.

(c) MTTF utility function. (d) MTTR utility function.

//variables

range TYPE_MTTF 0..255;

var TYPE_MTTF MTTF;

range TYPE_MTTR 0..255;

var TYPE_MTTR MTTR;

range TYPE_UTILITY 0..100;

var TYPE_UTILITY U_MTTF;

var TYPE_UTILITY U_MTTR;

var TYPE_UTILITY UTILITY;

minimize

UTILITY

subject to {

// Offer guarantees

100<=MTTF<=120;

3<=MTTR<=10;

// Utility function of MTTF

MTTF<=60 => U_MTTF=0;

60<MTTF<=120 =>60*U_MTTF=MTTF-60;

MTTF>120=> U_MTTF=1;

// Utility function of MTTR

MTTR<=5 => U_MTTR=1;

5<MTTR<=15 => 10*U_MTTR=15-MTTR;

MTTR>15 => U_MTTR=0;

// Utility aggregate of matching

UTILITY = 70*U_MTTF + 30*U_MTTR;

};

(e) OPL model for computing utility.

Fig. 3. An example on obtaining optimal offers

Note that we compute the minimum value of the utility function, taking the
worst-case scenario. This way, we say that an offer ω is optimal with regard
to a utility function U if the minimum value of this function is the maximum
among minimum values of all conformant offers. It is also possible to take other
approaches when computing the utility function, like using the maximum value, a
mean value, or the more general case of a weighted composition of the maximum
and minimum value [12].

4 Conclusions and Future Work

In this work, we show that using a unique engine to discover SWS is not appro-
priate, due to each engine is usually designed for a concrete kind of search. For

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 79

instance, DLs reasoners are well suited when discovering SWS in terms of con-
cepts and relations, but they can not handle complex numerical QoS conditions.
Although there are extensions to allow concrete domains in DLs, reasoners have
to implement them, and they may bring undecidability results.

We present an hybrid solution that consists in a n-stages discovery process,
where each stage is performed using the most appropriate technique. Further-
more, we propose to use CP to perform QoS-aware discovery stages, so the
optimal service(s) offered that fulfills a given demand can be found. In addition,
our proposed architecture is extensible and loosely coupled, allowing to define
complex QoS conditions, and to use utility functions based on QoS parameters
to obtain the optimal offer. This architecture does not impose any restriction
on the SWS framework and repository to use, allowing its materialization as a
discovery component for current SWS implementations.

For future work, we are considering to define more precisely the scheduler and
its interaction with the rest of the components. The query split mechanism has
to be characterized, so do the results merging for each engine. Thus, a catalog
of stages would be defined, including their order of execution. Moreover, we
are considering to extend current SWS frameworks using a QoS ontology to
define QoS parameters and conditions, allowing to express complex arithmetic,
relational, and logical expressions in demands and offers.

Acknowledgments. The authors would like to thank the reviewers of the 5th

International Conference on Service Oriented Computing, whose comments and
suggestions improved the presentation substantially.

References

1. Baader, F., Sattler, U.: Description logics with aggregates and concrete domains.
Information Systems 28(8), 979–1004 (2003)

2. Benatallah, B., Hacid, M., Rey, C., Toumani, F.: Semantic reasoning for web ser-
vices discovery. In: WWW Workshop on E-Services and the Semantic Web (2003)

3. Benbernou, S., Hacid, M.: Resolution and constraint propagation for semantic web
services discovery. Distributed and Parallel Databases 18(1), 65–81 (2005)

4. Bonatti, P., Festa, P.: On optimal service selection. In: 14th international conference
on World Wide Web, pp. 530–538 (2005)

5. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Tanasescu, V., Pedrinaci, C.,
Norton, B.: IRS-III: A broker for semantic web services based applications. In:
International Semantic Web Conference, pp. 201–214 (2006)

6. Fensel, D., Bussler, C.: The web service modeling framework WSMF. Electronic
Commerce Research and Applications 1(2), 113–137 (2002)

7. González-Castillo, J., Trastour, D., Bartolini, C.: Description logics for matchmak-
ing of services. Technical Report HPL-2001-265, Hewlett Packard Labs (2001)

8. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

9. Haarslev, V., Möller, R.: Practical Reasoning in RACER with a Concrete Domain
for Linear Inequations. In: Int. Workshop on Description Logics (2002)

80 J.M. Garćıa et al.

10. Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS Jour-
nal on Computing 14(4), 345–372 (2002)

11. Horrocks, I.: FaCT and iFaCT. In: Int. Workshop on Description Logics (1999)
12. Kritikos, K., Plexousakis, D.: Semantic QoS metric matching. In: ECOWS 2006,

pp. 265–274. IEEE Computer Society Press, Los Alamitos (2006)
13. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web

technology. In: Int. World Wide Web Conference, pp. 331–339 (2003)
14. Lutz, C.: Description logics with concrete domains – a survey. In: Advances in

Modal Logic, pp. 265–296 (2002)
15. Lutz, C., Sattler, U.: A proposal for describing services with DLs. In: Int. Workshop

on Description Logics (2002)
16. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., et al.: OWL-S:

Semantic Markup for Web Services. Technical Report 1.1, DAML (November 2004)
17. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services

selection. IEEE Internet Computing 8(5), 84–93 (2004)
18. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II: A framework and in-

frastructure for semantic web services. In: Fensel, D., Sycara, K.P., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 306–318. Springer, Heidelberg (2003)

19. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web ser-
vices capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
pp. 333–347. Springer, Heidelberg (2002)

20. Prieto-Dı́az, R.: Implementing faceted classification for software reuse. Commun.
ACM 34(5), 88–97 (1991)

21. Prudh́ommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
Report Working Draft, W3C (March 2007)

22. Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO).
Technical Report D2 v1.3 Final Draft, WSMO (October 2006)

23. Ruiz-Cortés, A., Mart́ın-Dı́az, O., Durán Toro, A., Toro, M.: Improving the auto-
matic procurement of web services using constraint programming. Int. J. Cooper-
ative Inf. Syst. 14(4), 439–468 (2005)

24. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P
infrastructure for semantic web services. In: Peer-to-Peer Computing, pp. 104–111
(2002)

25. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web
services standards. In: Intl. Conference on Web Services, pp. 395–401 (2003)

26. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the
OWL-S IDE. In: Hawaii International Conference on Systems Science (2006)

27. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

28. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic discovery and co-
ordination of agent-based semantic web services. IEEE Internet Computing 8(3),
66–73 (2004)

29. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., et al.: METEOR-S WSDI: A
scalable P2P infrastructure of registries for semantic publication and discovery of
web services. Inf. Tech. Management 6(1), 17–39 (2005)

30. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-aware selection model for
semantic web services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 81–93, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architectural Decisions and Patterns
for Transactional Workflows in SOA

Olaf Zimmermann1, Jonas Grundler2, Stefan Tai3, and Frank Leymann4

1 IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
olz@zurich.ibm.com

2 IBM Software Group, Schönaicher Strasse 220, 71032 Böblingen, Germany
jonas.grundler@de.ibm.com

3 IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
stai@us.ibm.com

4 Universität Stuttgart, IAAS, Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. An important architectural style for constructing enterprise applicati-
ons is to use transactional workflows in SOA. In this setting, workflow activi-
ties invoke distributed services in a coordinated manner, using transaction
context-propagating messages, coordination protocols, and compensation logic.
Designing such transactional workflows is a time-consuming and error-prone
task requiring deep subject matter expertise. Aiming to alleviate this problem,
we introduce a new analysis and design method that (a) identifies recurring ar-
chitectural decisions in analysis-level process models, (b) models alternatives
for these decisions as reusable, platform-independent patterns and primitives,
and (c) maps the patterns and primitives into technology- and platform-specific
settings in BPEL and SCA. Our method accelerates the identification of
decisions, empowers process modelers to make informed decisions, and auto-
mates the enforcement of the decisions in deployment artifacts; tool support is
available. We demonstrate value and feasibility of our method in an industry
case study.

Keywords: BPEL, BPM, patterns, transactions, MDA, SCA, SOA, workflow.

1 Introduction

Service-Oriented Architecture (SOA) with transactional workflow support is a state-
of-the-art architectural style for constructing enterprise applications. In this context,
enterprise resources such as databases and message queues are exposed as distributed
services, which are invoked concurrently by diverse service consumers including end
user applications and executable workflows. The integrity of the enterprise resources
must be preserved at all times [4]. System-level transaction techniques such as Ato-
micity, Consistency, Isolation, and Durability (ACID) transactions and business-level
solutions such as compensation-based recovery are two ways of addressing this re-
quirement [8]. However, defining transaction boundaries and implementing com-
pensation logic are complex, time-consuming, and error-prone tasks requiring deep
subject matter expertise. Neither reusable architectural patterns nor methodological

82 O. Zimmermann et al.

support exist today; development tools do not guide process modelers sufficiently.
This lack of support is diametrically opposed to SOA design goals such as increased
agility, flexibility, and reusability – in our opinion, a key inhibitor for real-world
adoption of transactional workflows in SOA.

In this paper, we introduce a new analysis and design method that aims to eliminate
this inhibitor by combining architectural decision modeling techniques, reusable pat-
terns composed of primitives, and mappings of the primitives to concrete technologies
such as the Business Process Execution Language (BPEL) and the Service Component
Architecture (SCA). Our method covers the entire lifecycle from analysis to conceptual
design to technology selection and runtime engine configuration. This end-to-end
coverage speeds up the identification of design alternatives for transactional workflows
in SOA and helps to make the decision making process repeatable; architectural know-
ledge can be shared across project and technology boundaries. Pattern-aware design
tools can map the primitives to platform-specific technology specifications and
deployment artifacts, e.g., in BPEL/SCA engines and other middleware.

The remainder of this paper is organized in the following way. Section 2 defines
the context for our work. Section 3 scopes the problem to be solved by identifying
recurring architectural decisions in a real-world case study. Section 4 defines three
conceptual transaction management patterns and three underlying primitives, along
with an exemplary technology- and asset-level transformation. Section 5 discusses
related work, and Section 6 concludes with a summary and an outlook to future work.

2 Background

The objective of our work is to support the design and development of enterprise
applications that require transactional semantics. An example is a Customer Relation-
ship Management (CRM) system that serves many concurrent users via multiple
access channels and processes, including an Internet self-service and a call center. In
this CRM, business-relevant customer profile information is persisted in databases
and accessed via Web-accessible services; external systems also have to be integrated.

SOA and Web services. SOA reinforces general software architecture principles
such as separation of concerns and logical layering. A defining element of SOA as an
architectural style is the possibility to introduce a Service Composition Layer (SCL)
[18], which promises to increase flexibility and agility and to provide better responsi-
veness to constantly changing business environments. (Re-)assembling workflows in
the SCL does not cause changes on the underlying service and resource layers; com-
putational logic and enterprise resource management are separated from the service
composition. We refer to a SOA with such a SCL as a process-enabled SOA.

XML-based Web services are a state-of-the-art implementation option for process-
enabled SOAs [19]. The Web Services Description Language (WSDL) [15] describes
service interfaces, SOAP [12] service invocation messages. BPEL [14] is a workflow
language with operational semantics that can be used to realize the SCL. Component
models for the implementation of services are emerging; SCA is such a model [9].
Service components in SCA are defined from several perspectives: an interface
describing the input and output parameters of the operations of a component,
references to other components, and component implementations. Via imports, a
component implementation can reference external services.

 Architectural Decisions and Patterns for Transactional Workflows in SOA 83

In the CRM example, let us assume that process-enabled SOA has been chosen as
the architectural style. The business processes to be implemented are modeled expli-
citly during requirements analysis; their execution as SCL workflows is later automa-
ted using a BPEL engine. The tasks in the processes are realized as atomic and
composed Web services, which have a WSDL interface and can be invoked at run-
time through transport protocol bindings, e.g., SOAP/HTTP. We further assume that
these services are implemented as SCA components or integrated via SCA imports.

Transactional workflows. In the CRM system, relational database tables and messa-
ge queues provided by integration middleware [5] serve as enterprise resources persi-
sting and exchanging customer profiles. Concurrent and distributed access to
transactional enterprise resources can be coordinated by transaction managers, which
are in charge of ensuring the ACID properties; Relational Database Management
Systems (RDBMS) and queue managers then take a local resource manager role
subordinate to a transaction manager [8].

The SCL in a process-enabled SOA can be seen as a workflow application. If a
BPEL engine in the SCL serves as a transaction manager, its process flows become
transactional workflows [8]. Transactional workflows coordinate the outcome of the
local and remote service invocations that access and manipulate the enterprise resour-
ces. Transactional workflows in process-enabled SOA are particularly challenging to
design due to the potentially long-lived nature of processes, the loose coupling and
autonomy of services, the existence of non-transactional resources, and the diversity
in coordination and communication protocols (synchronous and asynchronous mes-
sage exchange patterns). Traditional system transactions alone are not directly
applicable in a SOA setting; a more decentralized coordination model and applica-
tion-level compensation strategies have to be added. To address these needs,
WS-Coordination, WS-AtomicTransaction (WSAT), and WS-Business Activity Frame-
work (WBAF) complement the Web services specifications introduced above [17].

3 Recurring Architectural Decisions in Process-Enabled SOA

Today’s SOA tools use default transaction management settings when translating ana-
lysis-level process models into BPEL workflows, Web services and SCA components
[20]. Often, these settings are inappropriate and have to be changed during the later
development steps. This is error-prone, platform-specific work; software quality
issues arise and technical project risk increases. This problem can be overcome by:

A method for the systematic design of transaction management settings in process-
enabled SOA, which (a) identifies the required architectural decisions in analysis-
level process models, (b) captures proven design options as patterns which facilitate
the decision making, and (c) transforms the patterns to platform-specific settings.

Sample process. Refining our CRM example, we now discuss the SOA enablement
of an existing system of a telecommunication service provider that is organized into
several Lines of Business (LOB), including wireline and wireless telephony. The
business event triggering the sample process is a customer requesting an upgrade
from prepaid to regular wireless service, e.g., by calling a call center agent.

84 O. Zimmermann et al.

Figure 1 outlines this key business process in the CRM system, Upgrade Customer:

Fig. 1. Sample CRM process: analysis-level BPM including enterprise resources

The analysis-level Business Process Model (BPM) specifies that first the customer
status has to be determined (Determine Wireless Customer Status), so that the custo-
mer profile, an enterprise resource spread over several repositories, can be retrieved
(Retrieve Wireless Customer Profile). Next, a tentative Upgrade Wireless Customer
Profile task is executed; however, the status change can only be finalized if a subse-
quent Reconcile Profile Upgrade task completes successfully. This task sends appro-
val request messages to the two CRM systems of the wireline LOB. If any of these
CRM systems declines the upgrade or does not respond within a working day, the
upgrade process has failed, and the wireless customer profile must remain unchanged.
Other business processes work with the customer profile while this process is running.

An analysis-level BPM such as Figure 1 is typically created by a business domain
expert, not a software architect or workflow technology specialist. Such a BPM is not
directly executable in a workflow engine; typically it does not cover design concerns
such as data flow, resource protection, and error handling sufficiently. In the CRM
example, the customer profiles are the enterprise resources to be protected with
system and/or business transactions.1 Another transactional enterprise resource might
be the process instance state maintained by the engine; a BPEL engine in transaction
manager role may have to roll back process parts when handling errors, even if

1 Not all resources have to be protected by transactions, e.g. immutable resources meet the

ACID characteristics trivially. On the other hand, not all resources worth protecting can
actually be protected by transaction managers, e.g., due to legacy system constraints.

 Architectural Decisions and Patterns for Transactional Workflows in SOA 85

activities that do not participate in the same transaction (the one in which the BPEL
process runs) have been committed on the system level already.

Recurring architectural decisions. It is technically feasible to transform the analy-
sis-level BPM from Figure 1 into a design-level process model, e.g., via basic
BPEL/SCA export utilities provided by commercial SOA tools [7]. However, such
predefined transformations do not obey any architectural decisions that are made in
response to project-specific requirements [20]. Many of these architectural decisions
must be made for any process-enabled SOA, not just our CRM example: Which com-
position paradigm and resource protection approach should be selected? Who coordi-
nates the transactions? Which invocation protocols are best suited to invoke services
from the process activities in the SCL? Should the process activities and the service
invocations run in separate transaction islands or form a transaction bridge? Which
compensation technology should be used, and where should it be placed?

As step (a) of our method, Figure 2 organizes these recurring decisions by their ab-
straction level and scope. The abstraction level refines from conceptual issues such as
selection of a composition paradigm (here: workflow) to technology and asset selecti-
on (here: BPEL language and BPEL engine). The scope of a decision assigns it to de-
sign model elements; in the CRM example, the activity transactionality has to be
decided for Reconcile Profile Upgrade and the other four tasks shown in Figure 1.

Transactionality

O

Q

Transaction Islands

(Section 4.1)

O
Transaction Bridge

(Section 4.1)
Composition

Paradigm

O

Q

Workflow

(SCL)

O
Custom

Code

Workflow

Language

O

Q

BPEL

O
None

BPEL Engine

Selection

O

Q

IBM WPS

(Section 4.2)

O
Other

Component

Technology

O
Q

SCA

O J2EE

Transactional Activity

Behavior in WPSQ O
(Section 4.2)

Project Scope (e.g., CRM) Process Scope (Upgrade Customer) Activity/Operation Scope (5 Tasks in BPM)

T
e

c
h

n
o

lo
g

y
 L

e
v
e

l

Resource

Protection

O
Q

System Transactions

(Global Transaction)

O
Compensation (Busi-

ness Transaction)

Compensation

Technology

O

Q

BPEL handler

(and/or WBAF)

O
Engine-specific

compensation

O Custom code

Transaction

Coordinator

O

Q

Process Engine in

SCL

OC
o

n
c

e
p

tu
a

l
L

e
v
e
l

A
s

s
e
t

L
e

v
e

l

Q – Question (Architectural Decision)

O – Option (Architecture Alternative)

RMI – Remote Message Invocation

IIOP – Internet Inter-ORB Protocol

JMS – Java Messaging Service

MOM – Message-Oriented Middleware

J2EE – Java 2 Enterprise Edition

O
Stratified Stilts

(Section 4.1)

SCA Interface

Qualifier OQ
(Section

4.2)
SCA Reference

Qualifier OQ
(Section

4.2)

SCA Import

Qualifier OQ
(Section

4.2)
SCA Implemen-

tation Qualifier OQ
(Section

4.2)

External Coordinator

(Third Party)

O
SOAP/HTTP with

WS-AT enabled

O RMI/IIOP

O JMS, other MOM

Service Invocation

ProtocolQ

O SOAP/HTTP

WPS – WebSphere Process Server

Compensation

Placement

O

Q

External

processing

O
BPEL

scope

O
BPEL

activity
EJB Transaction

Attribute OQ
Related

work

Fig. 2. Architectural decisions and alternatives for transactional workflows in SOA

4 Architectural Patterns as Decision Alternatives

As step (b) of our method, we now introduce three conceptual patterns as solution
options (architecture alternatives) for the activity transactionality decision from

86 O. Zimmermann et al.

Figure 2. These conceptual patterns comprise of platform-independent primitives that
we map to BPEL and SCA technology and engine deployment artifacts in step (c).
The primitives are designed in such a way that other mappings can also be provided.

4.1 Conceptual Patterns and Primitives

The tasks from Figure 1 require different transactional treatment: Determine Wireless
Customer Status does not change any enterprise resource; transactional execution is
not required. The retrieval should execute as fast as possible. Upgrade Wireless
Customer Profile updates wireless customer profiles; the service operation is co-
located with that realizing the Retrieve Wireless Customer Profile task. Changes must
be executed with all-or-nothing semantics. The CRM systems contacted in Reconcile
Profile Upgrade offer messaging interfaces and may take days to respond. Still, all-or-
nothing semantics is required; if any of the reconciliation request messages returns an
error or times out, the updates to the wireless customer profile made by Upgrade
Wireless Customer Profile must be undone.

TRANSACTION ISLANDS, TRANSACTION BRIDGE, and STRATIFIED STILTS are three
patterns commonly used to address resource protection requirements such as those in
the CRM. In theory, more design options exist; however, faithful to established
pattern capturing principles, we only present patterns observed and proven in practice.

Figure 3 illustrates the patterns on an abstract level; a more detailed pattern de-
scription follows later. The SCL is represented by the white boxes. It implements the
tasks in the analysis-level BPM as process activities that are part of executable
workflows; two invoke activities I1 and I2 enclose a third activity U, which for
example may be a BPEL assign activity or another utility. S1 and S2 represent service
providers exposing operations. Service operation invocations are displayed as dotted
lines. A contiguous light grey area represents a single global transaction as defined in
[8], which may be extended if it is not enclosed by a solid black line.

(1) Process
activities in SCL

(2) Communicati-
ons infrastructure

(3) Service
providers

S1 S2

I2UI1

Pattern 1:

TRANSACTION ISLANDS

S2

I2UI1

S1

Pattern 2:

TRANSACTION BRIDGE

U

S1 S2

I2I1

 Pattern 3:

STRATIFIED STILTS

Fig. 3. Transaction context sharing options between process activities and service operations

These patterns comprise of three types of primitives that correspond to the
architectural layers from Figure 3: (1) Process Activity Transactionality (PAT) primi-
tives for the process activities in the SCL. (2) Communications Transactionality (CT)
primitives modeling the capabilities of the communications infrastructure (invocation

 Architectural Decisions and Patterns for Transactional Workflows in SOA 87

protocol, component technology). (3) Service provider Transactionality (ST) primi-
tives stating the capability and willingness of service providers to join a transaction.

These primitive types are conceptual, platform-independent abstractions of
concepts for example found in today’s BPEL/SCA technology, and can be viewed as
design time statements of architectural intent. Figure 4 illustrates the primitives:

(1) PAT – Process Activity (3) ST – Service Provider(2) CT – Communication

S S

(S
T

-J
)

J
o

in

(S
T

-N
)

N
e

w

(P
A

T
-J

)
J
o
in

I2UI1

I2UI1

(P
A

T
-N

)
N

e
w

T
ra

n
s
a
c
ti
o
n

S

I

S

I

(C
T

-S
T

)

S
y
n
c
h
ro

n
o
u
s
 T

ra
n
s
a
c
ti
o
n
a
l

(C
T

-A
S

)

A
s
y
n
c
h
ro

n
o
u
s
 S

tr
a
ti
fi
e
d

(C
T

-S
N

T
)

S
y
n
c
h
ro

n
o
u
s
 N

o
n
-T

ra
n
s
a
c
ti
o
n
a
l

S

I

Fig. 4. Conceptual primitives as pattern building blocks (notation same as in Figure 3)

To elaborate upon the defining characteristics of the patterns and the primitives, we
now present them in a format commonly used in the design patterns literature.

Intent. All patterns and primitives share the objectives motivated in Sections 2 and 3:
To protect enterprise resources against integrity and correctness threats that may
occur during concurrent process execution, e.g., when multiple processes and acti-
vities in the SCL invoke distributed services via a SOA communication infrastructure.

Pattern 1. Decoupled TRANSACTION ISLANDS (PAT-J+CT-SNT+ST-N in Figure 3)

Problem. How to isolate SCL process activities from service operation execution?

Solution. Do not propagate the transaction context from the SCL to the service.

Example. In the CRM case study, this pattern is applicable for Determine Wireless
Customer Status. This analysis-level task is realized as a process activity that invokes
a read-only operation which in this example should execute non-transactionally.

Forces and consequences. If a service operation fails, the process navigation in the
SCL is not affected, and vice versa. If a service works with shared enterprise re-
sources, its operations must be idempotent, as they may be executed more than once
due to the transactional process navigation in the SCL. In many cases, the service
provider must offer compensation operations, and higher-level coordination of the
compensation activities is required (e.g., via business transactions; various models
have been proposed). In practice, this pattern is often selected as a default choice.

Pattern 2. Tightly coupled TRANSACTION BRIDGE (PAT-J+CT-ST+ST-J shown in
Figure 3); MULTIPLE BRIDGES variant (PAT-N+CT-ST+ST-J).

Problem. How to couple process activity execution in the SCL and service operation
execution from a system transaction management perspective?

88 O. Zimmermann et al.

Solution. Configure process activities, communications infrastructure, and service
providers in such a way that the SCL transaction context is propagated to the service.

Example. In the CRM case study, this pattern addresses the all-or-nothing require-
ments stated for Retrieve/Upgrade Wireless Customer Profile (co-located services).

Forces and consequences. Process activities and the service operations invoked by
them execute in the same transaction. As a result, several service operations can also
participate in the same transaction. Therefore, a natural limit for their response times
exists (“tens of seconds to seconds at most” [8]). If a service-internal processing error
occurs, previous transactional work, which can include process navigation in the SCL
and the invocation of other services, has to be rolled back. This pattern meets resource
protection needs well on the system level, but often is not applicable, e.g., when
processes and operations run for days or months. Hence, a common variation of this
pattern is to split an SCL process up into several atomic spheres [8], creating
MULTIPLE BRIDGES for selected process activity/service operation pairs. Executing
the process activities in a small number of transactions (single TRANSACTION BRIDGE)
reduces the computational overhead for process navigation; splitting the process up
into several atomic spheres (MULTIPLE BRIDGES) increases data currency.

Pattern 3. Loosely coupled STRATIFIED STILTS (PAT-J+CT-AS+ST-J in Figure 3)

Problem. How to realize asynchronous, queued transaction processing in SOA?

Solution. Use message queuing as SOA communication infrastructure.

Example. In the CRM case study, this pattern must be applied for Reconcile Profile
Upgrade, as the wireline CRM systems only provide messaging interfaces (e.g., JMS);
additional compensation logic is required. In Figure 3, I1 and S1 use stratified transac-
tions (as defined in [8]) during service invocation; on the contrary, service S2 reads
the request message and sends the response message within a single transaction.

Forces and consequences. Services do not have to respond immediately; the delivery
of the messages is guaranteed by the communications infrastructure. If the execution
of the service operation fails, the process may not get an immediate response; additi-
onal error handling is required, often involving compensation logic. This pattern often
is the only choice in process-enabled SOA, e.g., when integrating legacy systems.

PAT primitives. As Figure 4 shows, Process Activity Transactionality (PAT) defines
two primitives for the SCL, transaction context sharing or Join (J), and transaction
context separation or New (N). If set to PAT-J, a process activity executes in the same
transaction context as the adjacent activities in the same process; it joins an existing
context. As a consequence, the process activity’s work might be rolled back if any
other process activity or service operation that participates in the same transaction
fails. With PAT-N, a process activity is executed in a new transaction context. Both
PAT-J and PAT-N are valid choices in all three composite patterns; PAT-J is shown
in Figure 3 and commonly used in practice. In TRANSACTION BRIDGE, PAT-N models
the MULTIPLE BRIDGES variant. Deciding for PAT-N is justified if two process activi-
ties should be independent from each other from a business requirement point of
view. Furthermore, some process models contain loops that are too complex to fit into

 Architectural Decisions and Patterns for Transactional Workflows in SOA 89

a single, short-lived system transaction (e.g., due to retries, refinement/completion
cycles, and service provider limitations).

CT primitives. We model three Communication Transactionality (CT) primitives,
Synchronous Non-Transactional (CT-SNT), Synchronous Transactional (CT-ST),
and Asynchronous Stratified (CT-AS). CT-SNT is used in the TRANSACTION ISLANDS

pattern. It represents a synchronous service invocation from the process activity with-
out propagation of the transaction context. As a consequence, the activity waits until
the call to the service returns. Once the service has been called, there is no possibility
to influence the work the service conducts. For example, the CT-SNT service invoca-
tion may cause the transaction to exceed the maximum duration configured in the
SCL, which may result in a transaction timeout and a subsequent rollback. With CT-
SNT, undoing the work of the service can not be included in this rollback.

CT-ST is required to build a TRANSACTION BRIDGE. It models a synchronous ser-
vice invocation with transactional context propagation. As a consequence, the process
activity waits until the call to the service returns; a rollback may occur after the
service execution has completed (the service participates in the SCL coordination).

CT-AS is part of the STRATIFIED STILTS pattern. It represents an asynchronous
service invocation without transaction context propagation. In CT-AS, long-running
services can be invoked without loosing transactional behavior, as the process
navigation is part of a stratified transaction [8]. At least three transactions are
involved in the invocation of a long-running service: the request message is sent in a
first transaction; in a second transaction, the message is received by the service
provider and the response message is sent; in a third transaction, the process activity
receives the response from the service. As shown in Figure 3, depending on the
service implementation, the second transaction (provider side) may be split up into
two transactions: receive the message and commit, and later on, send the response in a
new transaction. Such stratification details are described further in [8].

ST primitives. Two choices and corresponding primitives exist for the Service
Provider Transactionality (ST): join an incoming transaction (ST-J) or create a new
one (ST-N). ST-J is used in TRANSACTION BRIDGE, ST-N in TRANSACTION ISLANDS.
In ST-J, the service provider participates in the transaction of the caller (if a transacti-
on exists). As a consequence, process activity execution in the SCL and the invoked
service operation influence each other, e.g., when causing a rollback. In ST-N, the
service provider does not participate in the incoming transaction. As a consequence, if
the transaction in which the process activity runs is rolled back and the activity is
retried later (e.g., due to process engine-specific error handling procedures), the servi-
ce may operate on enterprise resources that have been modified in the meantime.

4.2 Sample Mapping of Primitives to BPEL/SCA Technology and Engine

As step (c) of our method, we now map the three PAT, CT, and ST primitives to
BPEL and SCA and other technology platforms. We expect that BPEL engines
provide settings that allow configuring the transactional behavior at least for invoke
activities. Services are invoked via protocols such as SOAP/HTTP, IIOP and JMS,
which differ in their support for transaction context propagation and (a)synchrony.
The transactional behavior of SCA components is defined by SCA qualifiers.

90 O. Zimmermann et al.

Qualifiers specify the behavior desired from the point of view of the service consumer
(SCA reference and SCA import) and the service provider (SCA interface, SCA
implementation).

(1) The PAT primitive from Figure 4 does not have a direct BPEL realization; typi-
cally, BPEL engine vendors add proprietary support for it. Furthermore, additional
standardization work is underway; for example, the BPEL for Java (BPEL4J) specifi-
cation introduces ACID scopes [2]. The exact semantics are BPEL engine-specific.
For example, during a rollback an engine may let the entire process fail, request reso-
lution by a human operator, or retry one or more activities at a later point in time (po-
tentially with a different transactional scope). While this is engine-specific behavior
outside of the scope of the BPEL specification, the process modeler must be aware of
it when selecting between PAT-J and PAT-N. (2) CT-SNT as a synchronous
invocation not propagating the transactional context maps to SOAP/HTTP or IIOP as
transport protocol. CT-ST maps to SOAP/HTTP with WS-AtomicTransaction support
or to IIOP. CT-AS can be implemented with JMS; however, no standardized WSDL
bindings exist at present. CT also determines the SCA qualifiers on reference, import,
and interface level, e.g., SuspendTx and JoinTx. (3) ST can be mapped to the SCA
qualifier Transaction on component implementation level.

Table 1 maps the three conceptual patterns from Section 4.1 to CT and ST
primitives and corresponding SCA qualifiers. At the time of writing, these qualifiers
resided in a non-standard namespace [7], not yet in one of the emerging SCA
standards [9]. The full mapping reference can be provided.

Table 1. Mapping of conceptual patterns to primitives and SCA qualifiers

 Primitive CT CT CT ST
 Qualifiers

Patterns

SCA reference
(BPEL process as com-
ponent invoking
others)

SCA import
(reference to
external ser-
vice)

SCA inter-
face (service
provider
component)

SCA implemen-
tation
(service provider
component)

TRANSACTION

ISLANDS
CT-SNT
DeliverAsyncAt=n/a
SuspendTx=true

CT-SNT
JoinTx
=false

CT-SNT
JoinTx
=false

ST-N (or ST-J)
Transaction
=local|
global|any

TRANSACTION

BRIDGE
CT-ST
DeliverAsyncAt=n/a
SuspendTx=false

CT-ST
JoinTx
=true

CT-ST
JoinTx
=true

ST-J
Transaction
=global

STRATIFIED
STILTS

CT-AS
DeliverAsyncAt
=commit
SuspendTx=false

CT-AS
JoinTx
=n/a

CT-AS
JoinTx
=n/a

ST-J
Transaction
=global

Mapping to IBM WebSphere Process Server (WPS). WPS [7] provides a BPEL
engine, which exposes processes and services as SCA components; in WPS, a BPEL-
based SCL connects to the underlying architectural layers via SCA. The SCA quali-
fiers from Table 1 govern the transactional context propagation and behavior.
Furthermore, PAT translates into a proprietary invoke activity configuration attribute
called transactionalBehavior which can be set to requiresOwn (PAT-N) and
participates (PAT-J). Two additional vendor-specific values exist, which we did
not model as primitives, commitBefore and commitAfter [7]. We implemented

 Architectural Decisions and Patterns for Transactional Workflows in SOA 91

this PAT mapping in a decision injection tool prototype. The tool reads the conceptual
pattern selection decision in and configures the WPS process model accordingly.

5 Related Work

Transactional workflows and business-level compensation have been studied extensi-
vely. However, existing work primarily focuses on advancing transaction middleware,
runtime protocol, and programming model design. Methodological and modeling
aspects for engineering transactional workflows from business requirements to concep-
tual design to low-level implementation details, however, are covered only insuffici-
ently. SOA-specific challenges such as logical layering (e.g., SCL) and loose coupling
are not addressed in detail. Reusable decision models or pattern catalogs do not exist.

Papazoglou and Kratz [10] propose a design approach for business transactions
based on standard business functions such as payment and delivery in supply chains.
Our approaches are complementary as they focus on different design decision points.

Witthawaskul and Johnson [16] use unit-of-work modeling to express transactional
primitives in a Model-Driven Architecture (MDA) context; they provide sample
transformers to Hibernate and J2EE (but not SOA). Our PAT and ST primitives are
inspired by their platform-independent transactionAttribute (UnitOfWork stereotype).

The WS-BPEL specification [14] defines operational semantics for executable
business processes, touching upon well-known transactional behavior without going
into details. For instance, it provides the concept of isolated scopes in order to
support exclusive access to particular resources. However, the BPEL specification
does not define which coordination protocols and service component models should
be used in order to comply with the specification; this is left to BPEL engine
implementations.

SOA patterns have begun to emerge over recent years. For example, Zdun and
Dustar define a pattern language for process-driven SOA [18]. In enterprise applica-
tion architecture literature, we find a service layer pattern and general coverage of
transaction management issues, but no coverage of workflow applications [3]. Hoh-
pe and Woolf introduce a PROCESS MANAGER mainly concerned with message
routing; their TRANSACTIONAL CLIENT allows sharing a transaction context over a
message queue, but does not cover forces and consequences in process-enabled
SOA [5]. The Patterns for e-business initiative [6] provides top-down design
guidance, but does not cover transaction management details of the EXPOSED PRO-
CESS MANAGER. There are workflow patterns [13], transactional workflow patterns
[1], and service integration patterns [11], which focus on control flow and
interaction structure, but do not address system transaction or business compensati-
on design. These patterns also do not cover SOA implementation technology details
such as WSDL transport bindings or BPEL and SCA deployment settings. Even if
the existing patterns do not cover transaction management design aspects in detail,
our decision and pattern-centric method leverages the pattern vocabulary and given
design advice as background information.

92 O. Zimmermann et al.

6 Summary and Outlook

In this paper, we introduced a new analysis and design method leveraging architectural
decision models and patterns in support of the full lifecycle of designing transactional
workflows, a particularly challenging problem in the construction of process-enabled
SOA. We motivated the need for such an approach by (a) identifying recurring,
reusable architectural decisions. We then (b) defined three conceptual patterns,
TRANSACTION ISLANDS, TRANSACTION BRIDGE, and STRATIFIED STILTS, consisting of
platform-independent primitives modeling system transactionality on (1) process
activity, (2) communications infrastructure, and (3) service provider level. We (c) de-
fined and implemented a mapping from the conceptual primitives to known technical
uses in BPEL and SCA and one particular BPEL/SCA engine. Such a full-lifecycle
analysis and design method allows sharing conceptual architectural knowledge across
technology and platform boundaries, but also takes platform-specific aspects into
account. This is required because legacy systems limitations constrain the decision ma-
king in practice, for example the transaction boundaries of existing software assets and
commercial packages implementing parts of the business process.

Future work includes documenting more variations and pattern selection guidance
for our three patterns. The three primitives can be mapped to more runtime platforms
such as the Spring framework. To extend the method, architectural patterns for other
recurring decisions, for example business-level compensation, should be documented.
Finally, we plan to investigate whether our design-time patterns can be represented as
runtime policies in emerging SOA runtimes, for example future versions of SCA.

References

[1] Bhiri, S., Gaaloul, K., Perrin, O., Godart, C.: Overview of Transactional Patterns:
Combining Workflow Flexibility and Transactional Reliability for Composite Web
Services. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM
2005. LNCS, vol. 3649, Springer, Heidelberg (2005)

[2] BPELJ: BPEL for Java, ftp://www.software.ibm.com/software/developer/library/ws-
bpelj.pdf

[3] Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley, Reading
(2003)

[4] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufman
Publishers, San Francisco (1993)

[5] Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison Wesley, Reading (2004)
[6] IBM Patterns for e-business: Exposed Serial Process application pattern,

http://www.ibm.com/developerworks/patterns/b2bi/at8-runtime.html#soa
[7] IBM WebSphere Business Modeler: Integration Developer, Process Server,

http://www.ibm.com/developerworks/websphere/zones/businessintegration
[8] Leymann, F., Roller, D.: Production Workflow. Prentice Hall, Upper Saddle River (2000)
[9] Open Service Oriented Architecture, http://www.osoa.org/display/Main/Home

[10] Papazoglou, M., Kratz, B.: A Business-aware Web Services Transaction Model. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

[11] Service Integration Patterns, http://sky.fit.qut.edu.au/~dumas/ServiceInteractionPatterns

 Architectural Decisions and Patterns for Transactional Workflows in SOA 93

[12] SOAP 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508
[13] v.d. Aalst, W.M.P., ter Hofstede, A.: Workflow Patterns, www.workflowpatterns.com
[14] Web Services Business Process Execution Language (BPEL), http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel
[15] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-

wsdl-20010315
[16] Witthawaskul, W., Johnson, R.: Transaction Support Using Unit of Work Modeling in the

Context of MDA. In: Proc. of EDOC 2005, IEEE Press, Los Alamitos (2005)
[17] WS-AtomicTransaction: WS-Business Activity Framework, WS-Coordination,

http://www.ibm.com/developerworks/library/specification/ws-tx
[18] Zdun, U., Dustdar, S.: Model-Driven and Pattern-Based Integration of Process-Driven

SOA Models, http://drops.dagstuhl.de/opus/volltexte/2006/820
[19] Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture

and Business Process Choreography in an Order Management Scenario. In: OOPSLA
2005 Conference Companion, ACM Press, New York (2005)

[20] Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: Overhage, S.,
Szyperski, C. (eds.) Proc. of QoSA 2007. LNCS, Springer, Heidelberg (2007)

Bite: Workflow Composition for the Web

Francisco Curbera, Matthew Duftler, Rania Khalaf, and Douglas Lovell

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
{curbera, duftler, rkhalaf, dclo}@us.ibm.com

Abstract. Service composition is core to service oriented architectures.
In the Web, mainstream composition is practiced in client-side or server-
side mashups, such as providing visual widgets on top of Google Maps re-
sults. This paper presents an explicit, workflow based composition model
for Web applications called Bite. In contrast with prior attempts to bring
workflow capabilities to the Web environment, Bite can deal with data
integration as well as interactive, asynchronous workflows with multi-
party interactions, and is architected to support protocols currently in
use by Web applications. The Bite development model is designed for
simplicity and short development cycle by taking a scripting approach
to workflow development.

1 Introduction

It is probably fair to say that service oriented architectures [1] deliver two main
values: extended interoperability (runtime as well as tools) and service compo-
sition. It is hard to argue at this point with the success of the SOC approach,
as its wide adoption by enterprises and public organizations demonstrates.

In the last few years, however, questions have been raised from Web-centric
developers about the complexity and overhead of the SOA and Web services
models [2]. Interoperability, it is argued, was delivered by the Web years ago
and at a much lower overhead to both runtime systems and developers. While
failing to address the need for end-to-end quality of service and tools in enterprise
settings, this argument is certainly appropriate in the context in which it is made:
Web application development. This paper is not concerned with this debate, but
with the related question of how to bring composition capabilities like those at
the heart of SOA to a Web-centric environment.

Composition is of course not new to the Web. The resource oriented archi-
tecture of the Web has favored data-centric composition models such as those
underlying most “mashups.” Mashups [3] can be supported at both the client
and the server sides, but in either case the focus is consistently on data ag-
gregation. In contrast, SOA composition focuses on behavioral aggregation of
services. This paper presents an approach to deliver composition capabilities in
a resource-centric environment, such that data and behavioral compositions are
seamlessly supported by a common workflow oriented model.

The approach taken is to adapt well known workflow techniques to the
resource-centric model, and to extend it beyond simple resource interactions

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 94–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bite: Workflow Composition for the Web 95

to cover fully asynchronous, interactive processes. However, since our goal is to
deliver native Web workflow composition, matching the interaction and model-
ing principles of the Web is not enough. This research also paid special attention
to lowering the development overhead of existing workflow models in order to ad-
dress the short-cycle, highly iterative development model prevalent in the Web.

The result of this work is “Bite,” a minimalist choreography language and run-
time built to support the Web. Bite offers a workflow based development model
for server-side scripting of all kinds of applications that interact with browser
clients, e-mail clients, REST resources, remote functions available through URL
encoded RPC, JSON-RPC, and local functions available through Java or
JavaScript method invocations. Bite supports low overhead development by en-
abling a script oriented approach in which developers can choose what advanced
capabilities to use according to the problem requirements. Variable and interface
typing are not required, but are supported. Likewise, simple data flows can be
created with the use of just a few constructs of the language, which is also able
to support powerful long-running asynchronous processes including conditional
and parallel processing.

A significant base of internet applications accessible through HTTP interfaces
is currently available from Web sites such as Google, Yahoo, EBay, PayPal Ama-
zon and many others, demonstrating a significant body of practice and commerce
built around straightforward Web protocols. Bite provides a simple to use, solid
composition model to leverage this growing trend.

The rest of this paper is organized as follows. Section 2 reviews prior work
in the area. Section 3 presents an overview of the Bite language and its design
principles. Section 4 explains how the Bite model addresses two major forms of
Web composition, data and interactive flows. In Section 5 a sample Bite process
is discussed in detail, and in Section 6 we discuss the implementation of the
Bite runtime. Finally we present the conclusions of this work and new research
directions in Section 7.

2 Related Work

The most relevant source of related work refers to Web-based workflows. We
use the BPEL language [4] as our reference for service oriented process models.
For a full survey of other approaches in Web services composition, see [5]. In
this section, we focus on workflows that operate using the Web in a first class
manner. Prior research can be summarized in the five categories below.

– State machine based workflow. A finite state machine is used in [6] to
provide REST-centric, workflows that interact with a browser. The goal is
to support single browser applications in which clicking on a link or posting
a form results in the state machine transitioning to a new state.

– Continuations. A continuation [7] is a low-level programming primitive
that stores execution context at a pre-determined location in the code, al-
lowing different mechanisms to restore it later. A continuation point is as-
sociated with a wait state in the “flow” and with an event (such as an

96 F. Curbera et al.

incoming HTTP request) that will trigger restoration of context and allow
execution to continue. Continuations are available in several languages such
as Ruby[8] and Scheme, and externally supported for others such as Cocoon’s
FlowScript API [9] or JavaFlow[10]. Continuations support “flow-like” pro-
gramming in traditional Web programming languages. One can send a user a
form that contains a unique identifier of the continuation while maintaining
a ”continuations repository” [11,12]. Once the user fills out the form, the
application knows exactly which continuation to go to. Anton van Straaten
[13] advocates making the continuation itself a REST resource, giving each
a URI.

– Web Services Derivations. In [14], the authors introduce a BPEL-like
workflow for browser interaction in a REST-centric manner. Factories and
process entry points are associated with externally visible URIs, and spe-
cialized semantics are provided for certain HTTP operations. It provides a
single client model. Other proposed workflow models that use Web-centric
interactions, but extend the HTTP verbs with additional commands, include
SWAP, ASAP and Wf-XML.

– Meta-data driven. Another approach is to overlay meta-data on top of
a service’s implementation, such that the metadata describes the workflow
semantics and directs the interaction with a browser. The Web Calculus [15]
defines a directed graph where the nodes are document nodes and the edges
may have closures. A client interacts with the service described by such a
graph using a combination of graph-traversal and closure invocations.

– Data Flows. Examples of pure data flow approaches include Yahoo Pipes
[16] and XProc [17]. However, they focus on manipulating data in response
to a single incoming request. They are not geared to aggregating user inter-
actions.

Bite shares certain aspects of its interaction model with [14], but extends an
array of capabilities that make it particularly well adapted to the Web interaction
model (including multi-protocol support) and different types of workflows (multi-
party asynchronous flows and also data flows). The next Section describes the
Bite approach in detail.

3 The Design of a Web-Centric Flow Language

Designing a process language for a REST oriented environment like the Web
requires adapting the two-level programming model underlying workflow devel-
opment to the resource-centric view. In addition, any programming model for
Web applications needs to support the short-cycle, highly iterative development
practice enabled by such systems as PHP and Ruby. In this paper we investigate
the adaptation of BPEL’s composition model to satisfy these two requirements.
The goal is to leverage the accumulated experience of process-centric composi-
tion in SOA environments to deliver process composition in a Web environment.

We consequently need to address two major concerns: how a process exe-
cutes within a REST environment, and how to support the Web’s fast paced,

Bite: Workflow Composition for the Web 97

lightweight development model. Before explaining how this is done, we present
a brief overview of the Bite language.

3.1 Bite Language Summary

As with most workflow languages, Bite contains two main constructs: activities
and links. Activities define units of work and links define dependencies between
activities. As in BPEL, activities have a “joinCondition” based on the status
of the incoming links and links have a “transitionCondition.” The execution
semantics of links and activities is the same as <flow> in BPEL with “sup-
pressJoinFailure” set to “yes,” which itself is derived from FDL [18].

The language comes with a predefined set of basic constructs, shown in Ta-
ble 1. The small set of built–in activities was chosen to embody basic actions in
Web workflow, as described in the Notes column. However, additional activity
types can easily be added by the user/developer community: the activity set is
extensible as explained in section 3.2. The rest of this paper will elaborate on
the different aspects of these constructs, with examples in Section 5.

Table 1. Overview of Bite Constructs

Activities Notes
<receive>, <reply>,<receive-reply> Receiving and replying to messages. Optional relative

url attribute may be used to match incoming message.
<receive-reply> shorthand for the two activities linked
together, for the common pattern of callers just retriev-
ing data

<invoke> Call to an external party. Mandatory “invocationTarget”
attribute, whose value is an expression, inlines service lo-
cation and must resolve to a URI. Optional content-type
and httpMethod attributes.

<local> Call local code, such a static Java method or a script.
<wait>, <empty>, <terminate> Utility activities: wait for fixed time, no–op, terminate the

process instance.
<assign> Basic data manipulation.
<pick> External choice: contains an ordered list of external re-

quest and/or timer “choice” elements.
<while> Loop as long as a condition is true.
Other Constructs Notes
<source> Control link. Also behaves as a data link if the “input”

attribute is set to “yes.”
<variable> Optional variable declaration. May contain a “content-

type” attribute, among others.

3.2 Deep Integration with the Web

Processes as active resources. In a SOA-centric model, a deployed business
process interacts with its environment by invoking external services and by of-
fering itself to requesters as a service over one or more service endpoints [4].
Likewise, in a REST oriented environment a process should interact with other
entities as resources, and be itself exposed as a resource.

There is a deep similarity between the BPEL implicit factory model (in which
a startable receive generates a new process instance for an incoming message),
and the ATOM protocol by which a POST request creates items in an ATOM

98 F. Curbera et al.

collection [19]. We thus model a deployed process as a logical collection whose
members are process instances. The process itself is exposed as a collection
resource whose URL address corresponds to the startable receive of the process
(see [4]). An HTTP POST against the process URL results in the creation of a
new logical “item”– a process instance in the process collection. Following [19],
a new URL is assigned to the newly created instance (resource), and returned
in the HTTP Location header.

REST interactions on the new process instance URL have a specific meaning,
providing process management calls not available to regular clients. GET and
DELETE verbs respectively retrieve a representation of the process’s state and
terminate the running instance. A PUT request is not defined in Bite. Bite
process instances are “active” resources with lifecycle and termination controlled
by the internal logic of the process execution.

To support interaction between external requesters, a process instance exposes
one or more URLs as logical addresses of the instance’s nested resources. POST
requests directed to these URLs are dispatched to the individual <receive>
activities in the process model using the relative URLs defined in the activities’
url attribute.

In BPEL, the partner link construct represents external partners (applica-
tions or people, see [20]). Bite represents external partners using their resource
identifiers. Requests initiated by the process create HTTP requests (usually but
not strictly GET or POST) directed at one of these external resources.

One note of caution is in order. The operation of the Web relies on more than
REST interactions. Other protocols, in particular e-mail exchanges, are fun-
damental components of most complex Web interactions. For that reason, any
workflow language directed at Web applications must be able to support alter-
native interaction protocols, and e-mail in particular. Bite’s <invoke> activity,
described in Section 3.1, enables processes to send generic invocations in differ-
ent protocols identified by the scheme of the invocation target URI: “mailto:”
sends an e-mail over SMTP and “http:” sends an HTTP request.

Dynamic data types. One characteristic of web interactions is the runtime
discovery of request metadata, of which content-type [21] is particularly impor-
tant. HTTP requests and responses carry content-type information used by the
requestor’s application to interpret the response. Bite supports dynamic content-
type for incoming messages as well as optional statically defined content-type
for outgoing requests (<invoke>).

Bite variables are associated with a content-type. The content-type of a vari-
able used to save an incoming request is automatically set to the content type of
the incoming message. As the variable gets used by the process, the content type
is carried with the data. It is set in the corresponding HTTP header when the
data is sent out. The result is that a flow may be designed to operate with differ-
ent incoming content-types (such as XML and JSON), as long as no dependency
on the specific data format is built into the code.

Content type can be statically set in the process definition for both variables
(if the variable is declared) and <invoke> activities. An error is generated when

Bite: Workflow Composition for the Web 99

a content-type mismatch is detected between data copied into a variable and a
static content-type declaration.

Extensible activity set. Bite’s activity set is extensible, enabling communities
of users to define domain specific activities in addition to Bite’s built–in ones. Such
new activities may capture well known actions such as data sort, append, etc. Bite
provides for extensions by a tag library model similar to that of Java Server Pages
([22]). To define a new activity, developers register an XML parsing class and as-
sociate it with an execution class in the tag library registry. The parsing class will
read the information provided in the activity definition within a process model
and make it available to the execution class. At runtime, the Bite engine invokes
the execution class providing access to the activity definition. The execution class
gets its input from the process and writes its output back to the process; it is not
given read or write access to any other part of the process state.

3.3 Lightweight Process Model

The workflow development model provides significant advantages over tradi-
tional procedural and object oriented implementation languages. Foremost is its
ability to capture the end-to-end business logic of an application in a single def-
inition. With long-running, asynchronous flows, traditional development models
(such as servlets) necessarily fracture the application logic into multiple separate
code artifacts. The result is the obfuscation of the coordination mechanisms by
programming constructs such as hash tables, state machines, etc.

In order to deliver this value to Web developers it is crucial to offer a radically
simplified workflow model and development process. In this section we examine
how these two aspects are addressed by the Bite language.

Flat graph model. Much of the barrier to entry for BPEL is in its combination
of flat and structured programming models. Bite’s process model is a graph
model with no nesting (except for loops), but with rich execution semantics
similar to BPEL activities within a BPEL flow activity. Because of the lack of
scope nesting, exception handling in Bite is fundamentally different from BPEL’s
[23]. Exceptions may be handled at the activity level through exception-labeled
outgoing links as in [18]. Otherwise, they may be handled at the process level
with an exception handler block.

Two of BPEL’s structured activities find their way into Bite: <while> and
<pick>. Structured iteration loops (<while>) significantly simplify the defi-
nition of correct iterative flows (as opposed to unstructured loops built using
backward links). An example is shown in section 5.

The <pick> activity allows the flow to react to an exclusive choice from a set
of different possible external inputs. External choice is a required feature [24] of
interactive processes. Bite adapts the pick construct to the “flat graph” model
by turning it into a flat activity whose output variable contains: which choice
was taken (using an index or the choice’s name if provided), and the received
message data. The process may use the variable like any other, especially in link
transition conditions to go down a different branch based on the selected choice.

100 F. Curbera et al.

Workflow scripting. Most of today’s workflow languages are strongly typed
with respect to both data and behavior (interfaces). There is a clear rationale for
strongly typed languages in general (ability to detect errors, overall consistency,
etc.) and workflows in particular. From the practice of Web application develop-
ment, however, we have learned that the overhead imposed by typing and other
forms of required artifacts external to the workflow logic itself creates a barrier
of entry that excludes most Web developers. (See [2] for a good discussion on
the topic.)

With this consideration in mind, Bite takes a “scripting” approach to workflow
definition. By this we specifically mean:

1. The principle of “use implies definition:” Variables can be directly used with-
out requiring prior declaration or explicit typing. This is similar to the use
of variable in languages like JavaScript. However, a developer may choose to
explicitly define and type a variable using the optional <variable> element.

2. The principle of “convention over configuration.” Bite conventions dictate
that the output of an activity is contained within an implicitly defined vari-
able with the same name as the activity. Additionally, a control link may
also specify that the output data of its source activity be used as part of the
input of its target activity.

3. Radical reduction of extraneous constructs while eliminating levels of indi-
rection. Invocation targets on invoke activities are encoded as literal URLs
or as data variables (see section 5) No typing of the resource being accessed
is required (i.e.: message types). Contrast this with the BPEL model, where
an invocation must reference a partner link construct that is in turn typed
by a predefined partner link type, which in turn depends on WSDL port
types and XML Schema definitions, and which is finally bound to physical
service endpoint by an implementation dependent mechanism that is out of
the scope of the BPEL language.

Flexible configurability. Bite processes provide configurability by enabling
values of variables to be set outside of the workflow definition. This is similar
to “properties” in Java. This capability may be used for actions such as: late
binding of partner URLs, or turning paths of a process on or off by setting values
of variables used on transition conditions or the condition of a while loop.

4 Web Workflow Scenarios

We focus on two scenarios for which Web workflow provides significant value
added— data-centric flows and interactive flows.

4.1 Web Data Flows

The resource-centric nature of many Web applications makes data integration
common for simple Web integration scenarios. The approach is well illustrated by

Bite: Workflow Composition for the Web 101

the Yahoo Pipes tool [16], and its model is also captured by the XProc language
[17]. The common pattern is a set of processing steps connected by explicitly
stated data dependencies. Execution of a step takes place as soon as all required
inputs are available.

This model is natively supported in Bite, taking advantage of the fact that a
data dependency always implies a (direct or indirect) control dependency. The
execution semantics of Bite imply that an activity targeted by a link, defined
using <source> in Bite, waits for completion of the link’s source before proceed-
ing. An activity may contain <input value=“. . . ”> subelements that explicitly
provide it with data. The value is an expression that of course may refer to
any of the process’s variables. The <source> element provides an “input” at-
tribute that enables one to treat it as a combined control link and <input>.
The source’s “name” attribute refers to the link’s source activity. If “input” is
set to “yes,” it indicates that the output of the source activity (contained in an
implicit variable with the same name, see Section 3.3) is treated as one of the
inputs of the target activity. Therefore, an activity’s input data set consists of
the ordered list of <source input=“yes”> and <input> elements. The following
code snippet shows a data flow connection between two activities, as do lines
2-9 of the example in section 5.

<invoke name="getBBCTopStories"
invocationTarget="’http://rss.news.yahoo.com/rss/topstories’"/>

<local name="sort" invocationTarget="’java:util.Sort’" operation="sort">
<source name="getBBCTopStories" input="yes"/>

</local>

Data flow composition is thus a particularly simple application of Bite’s gen-
eral workflow model. Data flows are typically executed synchronously in response
to a single external request for data retrieval (such as through a GET request),
and they have very limited error handling capabilities (see [17]).

The main value of encoding a data flow as a workflow lies in explicitly ex-
posing data dependencies. Bite’s support for more complete workflow execution
semantics (including error handling and asynchronous execution) allows seamless
extension of data flow logic into more functional workflows.

4.2 Interactive Flows

Most Web applications are highly interactive. Beyond delivering information to
end users, they often receive customer data through HTML forms and contact
customers back via e-mail. They often involve several parties and potentially
back–end applications. Many typical Web transactions are potentially long run-
ning (resolved in the course of days or weeks) and asynchronous, involving a
combination of synchronous HTTP interactions and asynchronous e-mail mes-
sages.

Bite’s model is particularly well suited to support these types of applications.
Remaining fundamentally Web centered, both in protocols and interactions mod-
els, it has significant advantages over other development approaches:(1) the ap-
plication logic is defined in a single file where the interaction with all the parties

102 F. Curbera et al.

and their relationships are explicitly encoded; (2) the workflow model natively
supports asynchronous execution, as opposed to object or procedural models;
(3) multi-protocol capabilities support seamless integration of traditional Web
interaction models, e-mail, and back-end interactions. In addition, Bite sup-
ports multi-party interactions natively since it supports a Web-centric version
of BPEL’s partner link model.

5 Example Bite Workflow: Special Order

The following example illustrates Bite’s salient features. It demonstrates a mix
of automatic and human interaction in a scenario involving multiple parties and
agents. A customer requests a special order item at a high–end store as shown in
Figure 1. The employee submits the order to the process (order) and gets back
a URL of where to go to confirm receipt once the order arrives in the store. The
process sends the order to an automated authorization service (autoApprove).
If it is not approved, it goes to a manager via e-mail (rqstApproval) for a deeper
evaluation. The manager gets a link in the e–mail notifying her of the order and
approves or rejects the order (authorize). If the manager does not approve, the
process ends. If either the service or the manager had approved the order, the
process sends an e-mail to the designer to create the item (makeItem). Then,
a loop is entered that waits until the employee confirms receipt of the item. In
the pick (pick1), the employee has 7 days (reminder) to confirm (confirmation)
after which he gets an e–mail reminder (remind) to find out why the item is
delayed. If he confirms, he gets a reply acknowledging that (confirm). Once the
process is notified that the item is in store, the customer is notified via e-mail
(itemArrived).

We now look at the complete Bite process, shown below, and containing nearly
all the language elements. Activity names match the labels in the figure, so we
focus on highlighting interesting aspects of the script. Consider the receive-reply
(lines 2–6). It receives the order from the client, at which time a process instance
is created and the value of ProcessId is set, and replies with the value inlined in
“input.” ProcessId is a reserved variable available to every Bite process instance
containing the id of that instance. The full URL is also available in the reserved
Location variable. The reply contains a URL that is routable back exactly to
this process instance: notice the “ProcessId.”

The activity “autoApprove” (line 7–9) shows an example of a service invo-
cation as well as a control link that transmits data. The “source” element has
“input” set to yes, meaning that the message sent to the service is the mes-
sage received from “order.” The next invoke, “rqstApproval” (line 10–16) shows
an e–mail style invoke. Notice the “mailto” scheme in the URL. The “invoca-
tionTarget” attribute takes an expression so one can build the value directly
from the received message in “order.” Recall that the default output variable of
an activity has the same name as the activity. Therefore, the order, containing
the manager’s e–mail, is in the variable “order.” Notice the URL used for the
manager to send back a response: it will be received by “authorize” (line 17–20).

Bite: Workflow Composition for the Web 103

Fig. 1. Sample Bite process for a special order. Icons by activities represent the person
or service the activity interacts with.

From here, an interesting part is the pick activity (line 29–32). It has a
message–based choice (line 30) that waits for the employee to confirm an alarm
(line 31). Notice how one uses the selected choice in the transition condition of
the links entering “confirm” (line 34) and “remind” (line 39).

1. <process name="orderItemPlus">
2. <receive-reply name="order" url="/initiateCase">
3. <input value=
4. "’When the item arrives, confirm here: http://localhost:8080/demo/order/’
5. + ProcessId + ’/confirm’"/>
6. </receive-reply>
7. <invoke name="autoApprove" invocationTarget="’http://example.com/orderAuthorization">
8. <source name="order" input="yes"/>
9. </invoke>
10. <invoke name="rqstApproval" invocationTarget=
11. "’mailto:’+ order.managerEmail[0]" operation="Manager Approval">
12. <source name="autoApprove" condition="autoApprove==’no’"/>
13. <input value=
14. "’Please go here to approve an order: http://localhost:8080/demo/approvalform/’
15. + ProcessId"/>
16. </invoke>
17. <receive-reply name="authorize" url="/approvalResponse">
18. <input value="’Thank you for responding.’"/>
19. <source name="rqstApproval"/>
20. </receive-reply>
21. <invoke name="makeItem" invocationTarget="’mailto:’ + order.designerEmail[0]"
22. operation="Manufacturer Request">
23. <source name="authorize" condition="authorize.approved[0]==’yes’"/>
24. <source name="autoApprove" condition="autoApprove==’yes’"/>
25. <input value="order"/>
26. </invoke>
27. <while name="loop" condition="!confirmed">
28. <source name="makeItem"/>

104 F. Curbera et al.

29. <pick name="pick1">
30. <choice name="confirmation" url="/confirm" outputVariable="confirmed"/>
31. <choice name="reminder" for="’P7D’"/>
32. </pick>
33. <reply name="confirm" url="/confirm">
34. <source name="pick1" condition="pick1.choice==’confirmation’"/>
35. <input value="’Thank you for confirming that this order has arrived.’"/>
36. </reply>
37. <invoke name="remind" invocationTarget="’mailto:’ + order.employeeEmail[0]"
38. operation="Employee Reminder">
39. <source name="pick1" condition="pick1.choice==’reminder’"/>
40. <input value="order"/>
41. </invoke>
42. </while>
43. <invoke name="itemArrived" invocationTarget="’mailto:’ + order.customerEmail[0]"
44. operation="Customer Notification">
45. <input value="’Your order is ready for pickup at the store.’"/>
46. <source name="loop"/>
47. </invoke>
48. </process>

6 Implementation

The Bite language has been implemented as a set of embeddable Java compo-
nents. A “BiteManager” (referred to simply as manager) implements the lan-
guage’s core execution semantics. A servlet is used to service incoming HTTP
requests, forwarding them to the manager. This servlet has been tested through
deployment into Jetty installations.

We now briefly describe the runtime operation of the Bite engine. Incoming
requests to URLs matching the <receive> activities in the process model are
mapped to execution events. The target process instance is identified from the
request’s URL, and its instance data is retrieved from a map of process context
data. The manager uses a thread pool to serve requests to multiple concur-
rent process instances. The hand-over of events between worker threads in the
thread pool and the servlet thread associated to the incoming request is sup-
ported using event queues stored as part of the instance data. In addition to
<receive>, wait, pick, and invoke also wait for events coming from the manager
notifying them, respectively, of when the alarm has gone off, a message or alarm
matching a ’choice’ has occured, or the response to the invocation has arrived.
A worker thread navigates a process instance until all paths block, or the pro-
cess completes. A path blocks when a receive, invoke, pick, or wait activity is
encountered and there is no suitable event queued that can matches the activity.
Such an activity is then added to a list of waiting activities for new events.

7 Conclusion and Future Work

This paper has presented the Bite Web–centric flow composition model through
a discussion of its main design points and an overview of the language and
implementation. Devlivering an composition mechanism for the development of
Web applications and leveraging their workflow model, Bite supports explicit
encoding of compositional logic in a single programming artifact.

Bite: Workflow Composition for the Web 105

The Bite model is aligned with the resource-centric view of the Web, but is
not limited to REST interactions alone, in line with current practice in the Web.
Bite supports sophisticated asynchronous, multi-part workflows as well as simple
data composition ones. In Bite, workflows are developed with minimal up-front
overhead, aligning the development model with fast paced development practices
of Web scripting languages. The runtime has been developed in Java and tested
on the Jetty servlet engine, but is designed as an embeddable component that
can be used in other runtimes.

To fully exploit the potential of Web–centric compositions, we are starting
new work in several areas. We are exploring a dedicated scripting syntax, as an
alternative to Bite’s current use of XML. While XML ensures wide familiarity
among developers, a scripting alternative can improve readability and usability.
We are also planning to identify and support well known interaction patterns,
such as the e-mail and form interaction shown in Section 5, using Bite’s tag
library mechanism. We are considering a <choice-reply> under <pick> to mirror
the <receive-reply> shortcut, and investigating whether a simplified form of
BPEL correlation would be a useful addition. The difficulty there is in simplifying
the definition of a correlation set especially for the case of untyped messages.
Finally we are extending our effort to provide increased transparency and control
with respect to the use of interaction protocols by exposing HTTP and e-mail
artifacts such as protocol headers directly in the flow language.

Since the submission for publication, a later version of the Bite language and
runtime, under the title “the Project Zero assembly flow language,” has become
publicly available [25].

Acknowledgement. The authors would like to thank Marc-Thomas Schmidt
for his comments and advice regarding the general design of the Bite language
and Xin Sheng Mao for his input on the use of Bite for data flows.

References

1. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice-Hall, Englewood Cliffs (2005)

2. Bosworth, A.: ICSOC 2004 keynote talk. Adam Bosworth’s Weblog (2004),
http://www.adambosworth.net/archives/000031.html

3. Anonymous: ProgrammableWeb.com (2007), http://www.programmableweb.com/
4. OASIS: Web Services Business Process Execution Language Version 2.0. (2007),

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

5. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and
Grid Services 1(1) (2005)

6. Kuhlman, D.: Workflow and REST how-to. Personal Web site (2003),
http://www.rexx.com/~dkuhlman/workflow_howto.html

7. Ruby, S.: Continuations-for-curmudgeons. Blog post (2005),
http://www.intertwingly.net/blog/2005/04/13/Continuations-for-

Curmudgeons

http://www.adambosworth.net/archives/000031.html
http://www.programmableweb.com/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.rexx.com/~dkuhlman/workflow_howto.html
http://www.intertwingly.net/blog/2005/04/13/Continuations-for-Curmudgeons
http://www.intertwingly.net/blog/2005/04/13/Continuations-for-Curmudgeons

106 F. Curbera et al.

8. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic Guide, 2nd
edn. Addison-Wesley, Reading (2004)

9. Apache: Apache Cocoon, Control Flow. (2006),
http://cocoon.apache.org/2.1/userdocs/flow/index.html

10. Apache Jakarta: Javaflow (2006),
http://jakarta.apache.org/commons/sandbox/javaflow

11. Tate, B.: Crossing borders: Continuations, web development, and java
programming (2006), http://www-128.ibm.com/developerworks/java/library/
j-cb03216/?ca=dgr-jw22StatelessWeb

12. Belapurkar, A.: Use continuations to develop complex web applications. IBM
developerWorks (2004),
http://www-128.ibm.com/developerworks/library/j-contin.html

13. Straaten, A.V.: Continuations continued: the REST of the computation (2006),
http://ll4.csail.mit.edu/slides/rest-slides.pdf

14. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards - the case of REST vs. SOAP. Decision Support Systems 37
(2004)

15. Waterken Inc.: Web-Calculus. (2005), http://www.waterken.com/dev/Web/

Calculus/

16. Yahoo Inc.: Yahoo pipes (2007), http://pipes.yahoo.com
17. Walsh, N., Milowski, A.: XProc: An XML pipeline language. Working draft, W3C

(2007), http://www.w3.org/TR/xproc/
18. Leymann, F., Roller, D.: Production Workflow. Prentice Hall, New York (2000)
19. Gregorio, J., de hOra, B.: The atom publishing protocol. Internet

draft, IETF Network Working Group (2007), http://bitworking.org/projects/
atom/draft-ietf-atompub-protocol-15.html

20. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG: WS-BPEL extension for
people (BPEL4People). IBM developerWorks (2007),
http://www.ibm.com/developerworks/webservices/library/specification/

ws-bpel4people/

21. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Mastinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – http/1.1. Request for Comments 2616,
IETF Network Working Group (1999), http://www.ietf.org/rfc/rfc2616.txt

22. Sun Microsystems: JSR-000245 JavaServer PagesTM 2.1. (2004),
http://jcp.org/aboutJava/ communityprocess/final/jsr245/index.html

23. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Exception handling in the
BPEL4WS language. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, Springer, Heidelberg (2003)

24. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

25. IBM: Project zero (2007), http://www.projectzero.org/

http://cocoon.apache.org/2.1/userdocs/flow/index.html
http://jakarta.apache.org/commons/sandbox/javaflow
http://www-128.ibm.com/developerworks/java/library/j-cb03216/?ca=dgr-jw22StatelessWeb
http://www-128.ibm.com/developerworks/java/library/j-cb03216/?ca=dgr-jw22StatelessWeb
http://www-128.ibm.com/developerworks/library/j-contin.html
http://ll4.csail.mit.edu/slides/rest-slides.pdf
http://www.waterken.com/dev/Web/Calculus/
http://www.waterken.com/dev/Web/Calculus/
http://pipes.yahoo.com
http://www.w3.org/TR/xproc/
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-15.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-15.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.ietf.org/rfc/rfc2616.txt
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://www.projectzero.org/

Stochastic Modeling of Composite Web Services
for Closed-Form Analysis of Their Performance and

Reliability Bottlenecks

N. Sato1 and K.S. Trivedi2

1 IBM Research
2 Duke University

Abstract. Web services providers often commit service-level agreements
(SLAs) with their customers for guaranteeing the quality of the services. These
SLAs are related not just to functional attributes of the services but to performance
and reliability attributes as well. When combining several services into a compos-
ite service, it is non-trivial to determine, prior to service deployment, performance
and reliability values of the composite service appropriately. Moreover, once the
service is deployed, it is often the case that during operation it fails to meet its SLA
and needs to detect what has gone wrong (i.e., performance/reliabilty bottlenecks).

To resolve these, we develop a continuous-time Markov chain (CTMC) for-
mulation of composite services with failures. By explicitly including failure states
into the CTMC representation of a service, we can compute accurately both its
performance and reliability using the single CTMC. We can also detect its per-
formance and reliability bottlenecks by applying the formal sensitivity analysis
technique. We demonstrate our approach by choosing a representative example
of composite Web services and providing a set of closed-form formulas for its
bottleneck detection.

1 Introduction

Composition of multiple Web services is growing in popularity as a convenient way of
defining new services within a business process. By combining existing services using
a high-level language such as BPEL [13], service providers can quickly develop new
services. When deploying these services, service providers often commit service-level
agreements (SLAs) with their customers, which include performance and dependability-
related metrics. For example, the mean response time and the service reliability for each
incoming request are guaranteed. Since a composite Web service may have complex
application logic, it is non-trivial to check whether or not the composed service will
meet its SLA. In this paper, we develop an analytical approach to determining the overall
performance and reliability of composed Web services.

As an example of such a Web service, we consider a business process, called TravelA-
gent (Figure 1). Figure 2 shows a concrete implementation of this process in BPEL. An
interesting part of this process is that it tries to make the airline reservation in a unique
manner: First, it looks up two different airlines for vacancy in parallel. When they re-
spond, it chooses one of the airlines based on some criterion such as fare, schedule, etc.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 107–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 N. Sato and K.S. Trivedi

Customer
operation check

operation check

operation check

 Airline1

 Airline2

Hotel

operation reserve

operation reserve

operation reserve

Hotel reservation

Airline reservation

Travel Agent

Checking of Airline1 Checking of Airline2

 Airline Selection

1. Airline selection
 Check the airlines in parallel
 - Choose one if both replies
 - Proceed if either replies
 - Abort if none replies
2. Airline reservation
3. Hotel reservation

Airline1 offers
a better deal

Airline1 reserved

Airline1 reserved

Fig. 1. TravelAgent process

Otherwise, when either of the two airlines fails to respond, it chooses the other airline.
In case both fail to respond, then it gives up and aborts. Any other Web service may fail
to respond, from which we attempt to recover by means of a restart.

initialize

check Airline1 check Airline2

reserve Airline

reserve Hotel

notify customer

Airline reservation
Note one of the two airlines is
selected according to
he customer preference

AND

Hotel reservation

 scope

result1 ← success result2 ← success
 assign

 invoke invoke

 assign
result1 ← failure

 catch
result2 ← failure

 scope

 flow

 catch

join condition

 receive

 invoke

 invoke

 reply

Check the airlines in parallel

throw fault

abort
 throw

[result1 = success OR result2 = success]

 switch

Fig. 2. TravelAgent process (BPEL)

Issues we observe here are summarized as follows: (1) Before starting the service, the
provider needs to estimate what can be guaranteed to its customers. (2) During operation,
it needs to keep its SLA, and in case something goes wrong and the system suffers from
degradation, it needs to detect the bottleneck and resolve the problem.

To resolve these issues, we develop a set of Markov models, for computing the per-
formance and the reliability of Web services and detecting bottlenecks. In so doing, we
address the following specific challenges: (1) Web services are defined using a rich set
of control constructs. These include switch, while, flow, and scope. Our model will

Stochastic Modeling of Composite Web Services 109

include all the control constructs allowed in BPEL. (2) Restarts in failed activity is al-
lowed in BPEL via fault handlers. We will include restarts in our model. (3) We will
discuss parameterization based on experiments and monitoring. (4) We will primarily
be concerned with bottleneck detection, based on sensitivity functions and optimization.

Our contributions are four fold: First, we provide a continuous-time Markov chain
(CTMC) formulation of composite Web services with failures. Then, closed form ex-
pressions of the mean response time and the reliability of TravelAgent are derived.
Thirdly, bottleneck detection using the formal sensitivity analysis is carried out. Lastly,
outline of a solution in the general case is also given.

There are several research efforts related to ours. The IBM BPM engine [4] supports
performance simulation of BPEL processes. In contrast, we take an analytic approach
and we introduce failures and recoveries from failures. In addition, we also consider
sensitivity analysis. Our reliability model is related to a paper by Laprie [7]. But ours
is cast in the BPEL context and sensitivity analysis that we carry out is new. The paper
by Sharma and Trivedi [14] is the closest to current effort. But we find closed form
results and carry out formal sensitivity analysis. The computation method for the mean
response and reliability we use is described in the paper by Wang [21] and in the book
by Trivedi [18]. The computation of sensitivity functions is discussed in [1,8].

2 CTMC Formulation of Composite WS

We assume throughout that times to complete all individual Web services are exponen-
tially distributed. Similarly we assume that the the overhead time to conduct a restart is
also exponentially distributed. If desired, these restrictions can be removed, as presented
in [19].

2.1 CTMC for a Process with Concurrency

We start with a simple case where we never encounter failures. In such a case, the BPEL
process in Figure 1 can be encoded to the CTMC in Figure 3(a). The parallel invocation
in Figure 1 gets translated into 3 states [9]. In the state labeled Airline selection (1,2),
both activities are ongoing. After one of them finishes, only the other one is active.
Finally, when both finish, we proceed to make the reservation.

We note here that the model here assumes no contention for hardware or software
resources. In future, we will introduce contention for resources using a product-form
queueing network [18] or a non-product-form network [2,22].

2.2 CTMC with Failures

Each execution of a BPEL process may fail. Thus, for example, we suppose that the
invocations of the airlines may result in failures. To take account of these possibilities,
we add a single failure state to the CTMC. When failure states are added to a CTMC, we
need to modify the transition rates of the CTMC in the following manner. Suppose an
operation q1 takes λ−1 on average and it has a probability of R for successful completion
(i.e., (1−R) for failure). Then, the successful transition now has a rate λ ·R, while the

110 N. Sato and K.S. Trivedi

initialization

Airline
selection (2)

complete

Airline
selection (1)

1/mrspi

Airline selection (1|2)

Customer notification

Airline reservation

Hotel reservation

1/mrspa21/mrspa1

1/mrspa2 1/mrspa1

1/mrspai

1/mrspht

1/mrsprep

Airline Selection
 and Reservation

(1-Ra2)/mrspa2

 +(1-Ra1)/mrspa1

initialization

Airline
selection (2)

complete

Airline
selection (1)

Ri/mrspi

Airline selection (1|2)

Customer notification

Airline reservation

Hotel reservation

Ra2/mrspa2Ra1/mrspa1

Ra2/mrspa2

Rai/mrspai

Rht/mrspht

Rrep/mrsprep

(1-Ri)/mrspi

Ra1/mrspa1 (1-Ra2)/mrspa2

(1-Ra1)/mrspa1

failed

(1-Rai)/mrspai

(1-Rht)/mrspht

(1-Rrep)/mrsprep

(a) With no failure (b) With a single failure state

Fig. 3. CTMCs for the TravelAgent process

other transition (to the failure state) has a rate λ · (1 − R). Figure 3(b) is the revised
CTMC with failures introduced in the CTMC of Figure 3(a). Note that only if both
airline invocations return successfully then we continue, otherwise we abort.

2.3 CTMC with Restarts

For high reliability, BPEL processes often specify recovery procedures, called fault-
handlers, which are invoked for restarting failed invocations [13]. Figure 4 shows the
CTMC with failures and restarts. We have assumed that restart may be successful with
probability C while it fails with probability 1 − C. We also allow for an overhead time
for restart. Thus, for instance, upon the failure of the hotel invocation, a restart attempt
is made with the mean overhead time of mrspht and probability of success as Cht. We
assume that there is no restart for the airline invocation. Further that if either one or both
airlines invocation is successful, we proceed further in the flow. Upon the failure of both
invocations, we abort.

2.4 Response Time and Service Reliability

Now, we are ready to compute the mean response time and the service reliability based
on the CTMCs we have developed in the preceding sections. We derive closed form
expressions for the mean response time and service reliability based on the CTMCs we
have developed in Figure 3(a), 3(b), and 4.

Response Time. We start with the simple CTMC in Figure 3(a). In this case, the mean
response time can easily be computed as follows.

Stochastic Modeling of Composite Web Services 111

Reply to customerfailed

Initialization

A1 | A2

A 2 (A 1 done)A 1 (A 2 done)A 2 (A 1 failed)A 1 (A 2 failed)

A resv

1/ mrspa21/ mrspa1

Ra1

mrspa1

HT resv

complete

1 - R A1
mrspA1

Airline selection / reservation

1 - Rht

mrspht

1 - Ra2

mrspa2

1 - Rai

mrspai

Ra2

mrspa2

1 - Ra2

mrspa2

1 - Ra1

mrspa1

Ra2

mrspa2

Rai

mrspai

Rht

mrspht

Hotel reservation

RIni

RAinv

RHt

RRep

Ri

mrspi

1 - Ri

mrspi

Ci

mri

1 - Ci

mri

1 - Cainv

mrainv

1 - Cht

mrht

1 - Crep

mrrep

Rrep

mrsprep

Crep

mrrep

Cht

mrht

1 - Rrep

mrsprep

Ra1

mrspa1

Cainv

mrainv

Fig. 4. CTMC with restarts

mrspsys = mrspi +

�
���mrspa1 + mrspa2 −

1
1

mrspa1

+
1

mrspa2

�
���+ mrspai + mrspht + mrsprep

(1)
The expression in the parentheses above is a well-known one for the parallel con-
struct [16].

For the second case (CTMC of Figure 3(b)), the system mean response time can be
shown to be:

mrspsys = mrspi

+Ri ·

�
��� 1�

1

mrspa1

+
1

mrspa2

� ·
�

1 + Ra2 ·
mrspa1

mrspa2

+ Ra1 ·
mrspa2

mrspa1

�

+ Ra1 · Ra2 ·
	
mrspai + Rai · (mrspht + Rht · mrsprep)

��
(2)

Note that the mean response time will reduce due to failures since some fraction of
requests will not traverse the graph to completion. Also, notice that the above expression
(2) reduces to the expression (1) when all reliability values are set to 1.

112 N. Sato and K.S. Trivedi

For the third case (CTMC of Figure 4), the system mean response time can be shown
to be:

mrspsys = vi · mrspi + v1|2 · 1
1

mrspa1

+
1

mrspa2
+va2 · mrspa2 + vf1 · mrspa2 + va1 · mrspa1 + vf2 · mrspa1

+vainv · mrspai + vht · mrspht + vrep · mrsprep

+vrinit · mri + vrainv · mrai + vrht · mrht + vrrep · mrrep

(3)

where the average number of visits to the states are:

vi =
1

1 − Ci(1 − Ri)

vRinit = (1 − Ri) · vi

v1|2 = Ri · vi

va1 =
Ra2 · v1|2

mrspa2 · (1
mrspa1

+ 1
mrspa2

)

va2 =
Ra1 · v1|2

mrspa1 · (1
mrspa1

+ 1
mrspa2

)

vF1 =
(1 − Ra1) · v1|2

mrspa1 ·
�

1
mrspa1

+ 1
mrspa2

�
vF2 =

(1 − Ra2) · v1|2

mrspa2 ·
�

1
mrspa1

+ 1
mrspa2

�

vainv =
va1 + Ra2 · vF1 + va2 + Ra1 · vF2

1 − Cai · (1 − Rai)

vRainv = (1 − Rai) · vainv

vht =
Rai · vainv

1 − Cht · (1 − Rht)

vRht = (1 − Rht) · vht

vrep =
Rht · vht

1 − Crep · (1 − Rrep)

vRrep = (1 − Rrep) · vrep

Check again that when all Rk’s are set equal to 1, the above expression reduces to
Expression 1. Note also that the mean response time in this case will tend to be larger
due to: (1) multiple executions of the same activity and (2) overheads of restarts.

For the general case, it will be impossible to find closed-form answers. After first
generating CTMC, we can numerically solve for the overall mean response time using
a package such as SHARPE [10]. Alternatively, we can first construct a stochastic Petri
net from the BPEL description and then automatically generate and solve the underlying
CTMC using a software package such as SPNP [17] or SHARPE. Equations to compute
the mean time to absorption in a CTMC can be found in [18,21].

Service Reliability. The service reliability is computed in closed form using the equations
provided in [21,18]. Refer also to [11] for the reliability computation. In the case without
failures (CTMC of Figure 3(a)), overall service reliability is 1.

In the case with failures (CTMC of Figure 3), the overall service reliability can be easily
written down as:

Rsys = Ri · Ra1 · Ra2 · Rai · Rht · Rrep (4)

Finally, in the case with failures and restarts (CTMC of Figure 4), the overall service
reliability in closed-form can be shown to be:

Rsys =
Ri

(1 − Ci · (1 − Ri))
· (Ra1 + Ra2 − Ra1 · Ra2) · Rai

(1 − Cai · (1 − Rai))

· Rht

(1 − Cht · (1 − Rht))
· Rrep

(1 − Crep · (1 − Rrep))

(5)

Stochastic Modeling of Composite Web Services 113

We note that Expression (5) above does not reduce to Expression (4) if we set each of
the coverage probability to 0. In fact, in that case we obtain the lower bound of Rsys as
follows:

Rsys = (Ra1 + Ra2 − Ra1 · Ra2) · Rai · Rht · Rrep (Ck = 0 for all k) (6)

The reason is that our fault handling procedure says that if either airline succeeds
we proceed. Also note that if all Cj are set equal to 1, the upper bound turns out as
follows:

Rsys = Ra1 + Ra2 − Ra1 · Ra2 (Ck = 1 for all k) (7)

This is the best case reliability we can obtain.

2.5 Parameterization

To compute performance/reliability metrics of TravelAgent, we need to specify the
rate parameters of the CTMC for TravelAgent. Specifically, these rate parameters are
computed from the following types of primitive values:

1. Execution time of each activity (i.e., mean response time of each activity)
2. Reliability (i.e., success probability) of each activity
3. Overhead time for restart of each activity
4. Success probabilities for each restart
5. Branching probabilities in the original BPEL graph (if any)

Note that in our particular example, there are no branches in the original BPEL graph.

Execution time of an activity. From a collected sample of n values, the sample mean
and sample variance can be computed. We can then use the Student t distribution to
compute the interval estimate of the mean response time of each activity. We can either
use the expression for this together with critical values of the t-distribution from a text
such as [12,15,18], or use a statistical analysis package such as R [5].

Reliability. Since we are concerned only with software failures, the service reliability
can also be measured through execution. Actual measurements give us counts of the
number of successful tries ns out of a total of given number of trials n. The ratio ns/n
is the sample mean. We can also determine confidence intervals, using formulas based
on the Bernoulli sampling [18] or using a statistical analysis package.

Overhead time for restarts. The same method as in execution time of each activity.

Success probabilities for restarts. Same method as in the reliability above.

Branching Probabilities. Since BPEL process definitions often include conditional
branches (switch) and loops (while), it turns out that we need to transform these
parts of the definitions into probabilistic forms. Same method as in the execution time
above.

114 N. Sato and K.S. Trivedi

3 Bottleneck Detection

In order to detect bottlenecks to pinpoint the particular activity or parameter that is the
cause of bad behavior, we carry out a formal sensitivity analysis. This can be used at
design time to point out the activity/parameter that needs to be improved. We can also
use this in a realtime setting during the operational phase.

The basic idea is to compute the derivatives of the measure of interest with respect to
all the input parameters. These derivatives can then be used to pinpoint the bottleneck [1].

For the Overall Response Time mrspsys. We can argue that scaled sensitivities are the
relevant quantities in this case so that bottleneck device I is obtained, using the sensitivity
Sk (k ranges over the activities), as follows.

Bottleneck I = argmaxk |Sk| (i.e. |SI | = max
k

{|Sk|})

Sensitivity Sk =
mrspk

mrspsys
·
∂mrspsys

∂mrspk

For the first case (CTMC of Figure 3(a)), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys
·
∂mrspsys

∂mrspa1
=

mrspa1

mrspsys
·
(

1 −
(

mrspa2

mrspa1 + mrspa2

)2
)

Sht =
mrspht

mrspsys

For the second case (CTMC of Figure 3(b)), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys

· Ri ·
�

mrspa2
2

(mrspa1 + mrspa2)
2

+Ra2 ·
mrspa1

2 · mrspa2 + 2 · mrspa1 · mrspa2
2

(mrspa1 + mrspa2)
2 − Ra1 ·

mrspa2

(mrspa1 + mrspa2)
2

�

Sht =
mrspht

mrspsys

· (Ri · Ra1 · Ra2 · Rai)

For the third case (CTMC of Figure 4), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys

·

v1|2 ·
�

mrspa2

mrspa1 + mrspa2

�2

+

�
∂va2

∂mrspa1

+
∂vf1

∂mrspa1

�
· mrspa2

+

�
∂va1

∂mrspa1

· mrspa1 + va1

�
+

�
∂vf2

∂mrspa1

· mrspa1 + vf2

�

+
∂vainv

∂mrspa1

· mrspai +
∂vht

∂mrspa1

· mrspht +
∂vrep

∂mrspa1

· mrsprep

+
∂vRainv

∂mrspa1

· mrai +
∂vRht

∂mrspa1

· mrht +
∂vRrep

∂mrspa1

· mrrep

�

Sht =
mrspht

mrspsys

· vht

Stochastic Modeling of Composite Web Services 115

where

∂va1

∂mrspa1

= Ra2 · v1|2 · mrspa2

(mrspa1 + mrspa2)
2

∂va2

∂mrspa1

= Ra1 · v1|2 · −mrspa2

(mrspa1 + mrspa2)
2

∂vf1

∂mrspa1

= (1 − Ra1) · v1|2 · −mrspa2

(mrspa1 + mrspa2)
2

∂vf2

∂mrspa1

= (1 − Ra2) · v1|2 · mrspa2

(mrspa1 + mrspa2)
2

∂vainv

∂mrspa1

=
1

1 − Cai · (1 − Rai)
·
�

∂va1

∂mrspa1

+ Ra1 · ∂vf1

∂mrspa1

+
∂va2

∂mrspa1

+ Ra2 · ∂vf2

∂mrspa1

�

∂vrainv

∂mrspa1

= (1 − Rai) ·
∂vainv

∂mrspa1

∂vht

∂mrspa1

=
Rai

1 − Cht · (1 − Rht)
· ∂vainv

∂mrspa1
∂vRht

∂mrspa1

= (1 − Rht) · ∂vht

∂mrspa1

∂vrep

∂mrspa1

=
Rht

1 − Crep · (1 − Rrep)
· ∂vht

∂mrspa1
∂vRrep

∂mrspa1

= (1 − Rrep) · ∂vrep

∂mrspa1

For the Overall Reliability Rsys. For this case, we can argue that unscaled derivatives can
be used to pinpoint the bottleneck: The bottleneck J should be determined as follows.

Bottleneck J = argmaxk |Sk|

Sensitivity Sk =
∂Rsys

∂Rk

Applying this to the second case (CTMC of Figure 3), we obtain the following formula:

∂Rsys

∂Rk
=

Rsys

Rk

For the third case (CTMC of Figure 4), we show some of its sensitivity values as
follows.

∂Rsys

∂Ra1
= α · (1 − Ra2) · Rai

(1 − Cai · (1 − Rai))

∂Rsys

∂Rht
= β · 1 − Cht

(Cht · Rht + (1 − Cht))
2

where

α =
Ri

(1 − Ci · (1 − Ri))
· Rht

(1 − Cht · (1 − Rht))
· Rrep

(1 − Crep · (1 − Rrep))

β =
Ri

(1 − Ci · (1 − Ri))
· (Ra1 + Ra2 − Ra1 · Ra2) · Rai

(1 − Cai · (1 − Rai))
· Rrep

(1 − Crep · (1 − Rrep))

By definition, the sensitivity metric for an activity tells us about the potential contri-
bution of its improvement to the overall improvement. Thus, it is natural to identify the
activity with the highest sensitivity as the bottleneck.

4 Evaluation

We have evaluated the effectiveness of our approach, using the example in Figure 1: We
have defined a BPEL process for the example and run it on IBM WebSphere Process

116 N. Sato and K.S. Trivedi

Table 1. MRSP Results

1a 1b 1c 2a 2b 2c 3a 3b 3c

Computed, using the closed-form expressions
(mrspi = mrsprep = 1, Ri = Rrep = 1, Cai = 1, Cht = 0, mrai = 0.15)

MRSP
mrspa1 2.000 1.000 2.000 2.000 1.000 2.000 2.000 1.000 2.000
mrspa2 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
mrspai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mrspht 2.000 2.000 1.000 2.000 2.000 1.000 2.000 2.000 1.000

Reliability
Ra1/a2/ai/ht 0.9/0.9/0.9/0.9 0.1/0.9/0.9/0.9 0.1/0.1/0.9/0.9

mrspsys 8.002 7.336 7.012 7.679 7.012 6.769 4.768 4.101 4.578

Sa1 0.187 − − 0.196 − − 0.315 − −
Sht 0.247 − − 0.237 − − 0.080 − −

Measured on WPS
MRSP

mrspi 1.000 1.066 0.976 0.975 0.938 0.932 0.930 1.075 1.054
mrspa1 1.855 0.954 1.886 2.061 1.159 1.936 1.866 0.959 1.826
mrspa2 2.072 1.964 2.177 1.947 1.857 1.999 2.028 1.890 1.960
mrspai 1.028 1.029 1.032 1.031 1.029 1.028 1.029 1.030 1.028
mrspht 2.045 2.044 1.053 2.043 2.042 1.043 2.047 2.046 1.044

mrsprep 1.029 1.028 1.032 1.029 1.027 1.026 1.035 1.033 1.030

mrspsys 8.081 7.425 7.171 7.751 6.991 6.825 4.670 4.083 4.530

† Between (a) and (b) / (c), only the colored parameters have
intentionally been changed

Table 2. Reliability Results

1a 1b 1c 2a 2b 2c 3a 3b 3c

Computed, using the closed-form expressions (Ri = Rrep = 1, Cai = Cht = 1)

Ra1 0.800 0.900 0.800 0.100 0.200 0.100 0.100 0.200 0.100
Ra2 0.800 0.800 0.800 0.800 0.800 0.800 0.100 0.100 0.100
Rai 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900
Rht 0.800 0.800 0.900 0.800 0.800 0.900 0.800 0.800 0.900

Rsys 0.768 0.784 0.864 0.656 0.672 0.738 0.152 0.224 0.171
Sa1 0.160 − − 0.160 − − 0.720 − −
Sht 0.960 − − 0.820 − − 0.190 − −

Measured on WPS
Ra1 0.804 0.903 0.807 0.103 0.199 0.102 0.099 0.200 0.101
Ra2 0.803 0.801 0.797 0.804 0.801 0.797 0.099 0.101 0.101
Rai 0.805 0.800 0.804 0.800 0.805 0.809 0.809 0.803 0.812
Rht 0.800 0.802 0.905 0.800 0.806 0.901 0.796 0.799 0.895

Rsys 0.768 0.786 0.868 0.660 0.679 0.736 0.150 0.224 0.171

Server (v6.0). As for the reliability parameters, we have artificially caused failures in the
4 service invocations, namely Airline1/2 (for selection), Airline (for reservation), and
Hotel. We have assumed perfect reliability for the other activities (Ri = Rrep = 1), and

Stochastic Modeling of Composite Web Services 117

chosen Cai = Cht = 1 for the coverage parameters. Our evaluation is divided into two
parts, and the results are summarized in Table 1 and 2.

First, we focused on performance bottlenecks / improvement in 3 different cases, in
each of which we changed either mrspa1 or mrspht and evaluated its effect on mrspsys
(Table 1). For example, in Case 1a, mrsps are set to mrspa1 = mrspa2 = mrspht =
2.0, mrspai = 1.0, and Ri, Ra1, Rht are all set to 0.9. Then, in Case 1b (1c), mrspa1
(mrspht) are improved to 1.0. As its result, mrspsys is improved from 8.002 to 7.336
(7.012). Notice that the higher contribution of the improvement of mrspht parallels the
fact that Sht is larger than Sa1 (0.247 > 0.187). This applies to the other two cases as
well.

Subsequently, we evaluated effects of improvements of reliability values. Since the
service reliability does not depend of the mrsp values, we do not mention their values.
Again, as shown in Table 2, the sensitivity values Sa1 and Sht successfully suggest
which service should be chosen for improving the overall service reliability.

5 Conclusion

We have developed an approach to computing the overall mean response time and the
overall reliability of composite Web services. We find closed-form expressions in a
typical example. We show how sensitivity functions can be used to detect bottlenecks.
Experimental results are used to validate our theoretical expressions. We have also devel-
oped an availability model (not shown in this paper) of the system under consideration.
We plan to extend our work by providing a tool to carry out such an analysis in the
general case. We plan to remove several assumptions made here such as: no contention
for resources. We could also remove several distributional assumptions. We plan to use
the sensitivity function in a formal optimization setting. We will consider our scheme in
a realtime control theoretic setting. We propose to also extend the availability model to
include hardware redundancy and software replication as in [6] and consider interactions
between the availability model and performance model as in [14],[20], or [3].

References

1. Blake, J., Reibman, A., Trivedi, K.: Sensitivity analysis of reliability and performability
measures for multiprocessor systems. In: ACM SIGMETRICS, pp. 177–186. ACM Press,
New York (1988)

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications, 2nd edn. Wiley-
Interscience, New York, NY, USA (2006)

3. Chimento, P., Trivedi, K.: The completion time of programs on processors subject to failure
and repair. IEEE Trans. Comput. 42(10), 1184–1194 (1993)

4. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S., Dikun, M.,
Lei, H., Jeng, J., Kapoor, S., Lang, C.A., Mihaila, G., Stanoi, I., Zeng, L.: Model driven
development for business performance management. IBM Systems Journal 45(3) (2006)

5. Fox, J.: An R and S-Plus Companion to Applied Regression. Sage Publications, Thousand
Oaks (2002)

118 N. Sato and K.S. Trivedi

6. Garg, S., Kintala, C., Yajnik, S., Huang, Y., Trivedi, K.: Performance and reliability evalua-
tion of passive replication schemes in application level fault tolerance. In: the 29th Annual
International Symposium on Fault-Tolerant Computing, p. 322 (1999)

7. Goseva-Popstojanova, K., Trivedi, K.: Architecture-based Approach to Reliability Assess-
ment of Software Systems. Performance Evaluation 45(2/3), 179–204 (2001)

8. Goyal, A., Lavenberg, S., Trivedi, K.: Probabilistic Modeling of Computer System Availabil-
ity. Annals of Operations Research 8, 285–306 (1987)

9. Heidelberger, P., Trivedi, K.: Analytic Queueing Models for Programs with Internal Concur-
rency. IEEE Transactions on Computers 32(1), 73–82 (1983)

10. Hirel, C., Sahner, R., Zang, X., Trivedi, K.: Reliability and Performability Modeling using
SHARPE 2000. In: Haverkort, B., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000.
LNCS, vol. 1786, Springer, Heidelberg (2000)

11. Littlewood, B.: A reliability model for systems with markov structure. Applied Statistics 24(2),
172–177 (1975)

12. Meeker, W., Escobar, L.: Statistical Methods for Reliability Data. John Wiley & Sons, West
Sussex, England (1998)

13. OASIS: Specification: Business Process Execution Language for Web Services (1.1) (2004)
14. Sharma, V., Trivedi, K.: Reliability and performance of component based software systems

with restarts, retries, reboots and repairs. In: International Symposium on Software Reliability
Engineering (2006)

15. Tobias, P., Trindade, D.: Applied Reliability, 2nd edn. Kluwer, Dordrecht (1995)
16. Towsley, D., Browne, J., Chandy, K.: Models for Parallel Processing within Programs: Ap-

plication to CPU:I/O and I/O:I/O Overlap. CACM 21(10), 821–831 (1978)
17. Trivedi, K.: SPNP User’s Manual Version 6.0. Duke University (September 1999)
18. Trivedi, K.: Probability and Statistics with Reliability, Queuing, and Computer Science Ap-

plications. John Wiley & Sons, West Sussex, England (2001)
19. Wang, D., Fricks, R., Trivedi, K.: Dealing with Non-Exponential Distributions in Depend-

ability Models. In: Performance Evaluation and Perspectives, pp. 273–302 (2003)
20. Wang, D., Trivedi, K.: Modeling User-Perceived Service Availability. In: Malek, M., Nett, E.,

Suri, N. (eds.) ISAS 2005. LNCS, vol. 3694, pp. 107–122. Springer, Heidelberg (2005)
21. Wang, W., Choi, H., Trivedi, K.: Analysis of Conditional MTTF of Fault-Tolerant Systems.

Microelectronics and Reliability 38(3), 393–401 (1998)
22. Whitt, W.: The queueing network analyzer. Bell System Technical Journal 62(9), 2779–2815

(1983)

SLA-Based Advance Reservations with

Flexible and Adaptive Time QoS Parameters

Marco A.S. Netto1, Kris Bubendorfer2, and Rajkumar Buyya1

1 Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
ICT Building, 111 Barry Street, Carlton, VIC 3053

{netto, raj}@csse.unimelb.edu.au
2 School of Mathematics Statistics and Computer Science

Victoria University of Wellington
Wellington 6140, New Zealand

kris@mcs.vuw.ac.nz

Abstract. Utility computing enables the use of computational resources
and services by consumers with service obligations and expectations
defined in Service Level Agreements (SLAs). Parallel applications and
workflows can be executed across multiple sites to benefit from access to
a wide range of resources and to respond to dynamic runtime require-
ments. A utility computing provider has the difficult role of ensuring that
all current SLAs are provisioned, while concurrently forming new SLAs
and providing multiple services to numerous consumers. Scheduling to
satisfy SLAs can result in a low return from a provider’s resources due
to trading off Quality of Service (QoS) guarantees against utilisation.
One technique is to employ advance reservations so that an SLA aware
scheduler can properly manage and schedule its resources. To improve
system utilisation we exploit the principle that some consumers will be
more flexible than others in relation to the starting or completion time,
and that we can juggle the execution schedule right up until each execu-
tion starts. In this paper we present a QoS scheduler that uses SLAs to
efficiently schedule advance reservations for computation services based
on their flexibility. In our SLA model users can reduce or increase the
flexibility of their QoS requirements over time according to their needs
and resource provider policies. We introduce our scheduling algorithms,
and show experimentally that it is possible to use flexible advance reser-
vations to meet specified QoS while improving resource utilisation.

1 Introduction

Service Level Agreements (SLAs) are an important element of the service ori-
ented computing paradigm and define a mutually agreed upon set of consumer
expectations and provider obligations. Typically SLAs encode Quality of Service
(QoS) parameters such as resource availability, response time and completion
deadlines. The role of the consumer is usually limited to specifying their QoS
parameters and perhaps revising those parameters if an SLA cannot be agreed.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 119–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 M.A.S. Netto, K. Bubendorfer, and R. Buyya

We assume a scenario where access to a utility computing provider’s com-
putational resources is acquired through agreed SLAs [1]. The SLAs define the
time and quantity of computation along with other QoS parameters, in return
for a certain price. Access to computational resources may require consideration
of external constraints, such as the need for access to simultaneous multiple re-
sources (co-allocation for parallel computation) or to reflect timing dependencies
when computing a workflow. In order to meet such external constraints, a QoS
scheduler must allow consumers to reserve resources in advance.

When a provider accepts an advance reservation, the consumer expects to
be able to access the agreed resources at the specified time. However, changes
may occur in the scheduling queue between the time the consumer submits the
reservation to the time the consumer receives the resources. There are a number
of reasons for such changes including: consumers cancelling requests, consumers
modifying requests, resource failures, and errors in estimating usage time in
the consumer requests. Therefore, from the resource provider’s perspective, a
good time-slot for the consumer at the time the SLA was agreed may be a
bad time-slot in the future due to increased fragmentation. This fragmentation
reduces the potential scheduling opportunities and results in lower utilisation.
Indeed, even finding a free time-slot can be a challenging task since fixed advance
reservations fragment the resource’s availability, and limit the positions in which
other jobs can be scheduled. In order to minimise low system utilisation due to
advance reservations, researchers on this area have introduced and investigated
the impact of flexible time intervals for advance reservations [2,3,4,5,6].

We extend the existing solutions and contribute to the research field in the
following ways: (i) we introduce the concept of adaptive time QoS parameters,
in which the flexibility of these parameters are not static but adaptive accord-
ing to the user needs and resource provider policies (Sect. 2); (ii) we present
heuristics for scheduling the advance reservations (Sect. 3); and (iii) we perform
experiments through extensive simulations to evaluate the advance reservations
with flexible and adaptive time QoS parameters (Sect. 4). We show the results
on the impact of system utilisation using different scheduling heuristics, work-
loads, time intervals, inaccurate estimation of execution times, and other input
parameters. Moreover we investigate cases when users accept an alternative offer
from the resource provider on failure to schedule the initial request.

2 SLA Specification from Execution Time QoS Scenarios

This section defines the set of parameters that we need in addition to any normal
SLA parameters such as incentives and penalties, security or trust requirements,
etc. Following are the three different time requirement scenarios:

1. Strict start and completion time: Consumers require the resource at
exactly this time, and for the duration specified. There is no flexibility per-
mitted to the scheduler. This scenario maps well to the availability of a
physical resource that may need to be booked for a specific period.

SLA-Based Advance Reservations 121

2. Relaxed start time, strict completion time: Consumers require that
the execution completes prior to a deadline. This scenario typically applies
when there are subsequent dependencies on the results of this computation.

3. Flexible interval: There is a strict start time and a defined finish time, but
the time between these two points exceeds the length of the computation.
This scenario fits well with forward and backward timing dependencies, such
those encountered in a workflow computation.

2.1 Scheduling Issues and Incentives

These cases as given above are simplistic; however scheduling them is com-
plicated. Consider both cases 2 and 3, as the actual deadline approaches, the
apparent priority of scheduling must increase to ensure that the execution com-
pletes prior to the deadline. Also early acceptance of SLA requests of rigid ad-
vance reservations fragments the availability of the resource, which may result
in wasted computation time, increased rejections, reduced utilisation and conse-
quently reduced revenue.

The idea of having flexible intervals for advance reservations is to make it
possible to modify or reallocate existing advance reservations when new jobs are
submitted to the scheduler. Once an SLA has been agreed upon, the scheduler
may schedule the workload within those flexible constraints. We would expect
that any pricing model would reward more flexible consumers with a lower price
and in turn penalise consumers with less flexibility by charging a higher price. In
addition, the SLA itself could be renegotiated (adaptive) if the resource provider
needs to solve a scheduling impasse or consumer needs to react to a change in
circumstance. In this case a consumer who accepts a resource providers SLA
adaptation request for more flexibility would expect some form of incentive pay-
ment, whereas a consumer who requests a less flexible SLA adaptation should
expect some penalty.

2.2 SLA Parameters

The advance reservations are defined in the SLA by a set of timing constraints,
budget and computational resources. Following is the notation and parameter
definitions for a job j, which can be either rigid or moldable (parallelism versus
execution time trade off):

– Rmin
j and Rmax

j , where 1 ≤ Rj ≤ m: minimum and maximum number of
resources (e.g. cluster nodes or bandwidth) required to execute the job;

– fmol
j : Rj → T e

j : moldability function which specifies the relation between
number of resources and execution time T e

j ;
– T s

j : job starting time—time determined by the scheduler;
– T r

j : job ready time—minimum starting time determined by the user;
– T c

j : job completion time—defined as T s
j + T e

j ;
– Dj : job deadline;
– Bj : job budget—maximum amount of money that the user is willing to spend

to execute the job with the required QoS;

122 M.A.S. Netto, K. Bubendorfer, and R. Buyya

– Cj : job cost—the cost determined by the resource provider in order to exe-
cute the job j with the above specifications.

3 Job Scheduling

The scheduling of a job consists on finding a free time-slot that meets the job re-
quirements. Rather than providing the user with the resource provider’s schedul-
ing queue, we assume that the user asks for a time-slot and the resource provider
verifies its availability. This is sensible in competitive environments where re-
source providers do not want to show their workloads, as consumers and other
resource providers may exploit this commercially sensitive information. We also
consider the scheduling to be on-line, where users submit jobs to the resource
provider’s scheduler over time and the scheduler makes its decisions based only
on the currently accepted jobs.

Scheduling takes place in two stages. Firstly all jobs that are currently await-
ing execution on the machine (and therefore have accepted SLAs) are sorted
based on some criteria. Then this list is scheduled in order, and if the new job
can be scheduled, the SLA is accepted. If the job cannot be scheduled, then the
scheduler can return a set of scheduleable alternative times.

3.1 Sorting

Firstly we separate the jobs currently allocated into two queues: running queue
Qr = {o1, ..., ou} | u ∈ � and waiting queue Qw = {j1, ..., jn} | n ∈ �. The
first queue contains jobs already in execution and cannot be rescheduled. The
second queue contains jobs that can be rescheduled. The approach we adopt
here is to try to reschedule the jobs in the waiting queue by sorting them first
and then attempting to create a new schedule. We use five different sorting
techniques in this paper: Shuffle, First In First Out (FIFO), Biggest Job First
(BJF), Least Flexible First (LFF), and Earliest Deadline First (EDF). The only
sorting criteria that needs explanation is LFF, which sorts the jobs according to
the flexibility terms of starting time and deadline. This approach is based on the
work of Wu et al [7], but considers only the time intervals. We define the time
flexibility of a job j as follows:

Δj =

{
Dj − max(T r

j , CT) − T e
j : for advance reservation jobs

Dj − CT − T e
j : for jobs with deadline

Obviously other potential criteria can be used to perform this sort, one that
we will be exploring in the future is sorting based on expected revenue. In the
evaluation Sect. 4 we present results comparing these sorting techniques.

3.2 Scheduling

Algorithm 1 gives the pseudo-code for scheduling a new job jk at the current time
CT , returning true if it is possible to scheduled it, or false and a list of optional

SLA-Based Advance Reservations 123

possible schedulings. Before the scheduling of a new job, the state of the system
is consistent, which means that the current scheduling of all jobs meets the
users QoS requirements. Therefore, during the scheduling process, if a job ji is
rejected there are two options: (i) ji = jk, the new job could not be scheduled;
or (ii) ji �= jk, the new job was scheduled but generated a scheduling problem
for another job ji ∈ Qw. In the second case we change the positions of jk with
ji and all jobs between jk and ji go back to the original scheduling—function
that we call fixqueue. In our current implementation, each job is scheduled
by using first fit approach—the first available time-slot is assigned to the job.
For jobs with deadline the scheduler looks for a time-slot between the interval
[CT, Dj − T e

j] and for advance reservations the scheduler looks for a time-slot
within the interval [T r

j , Dj − T e
j].

Algorithm 1. Pseudo-code for scheduling a new job jk.
Qw ← Qw�{jk}
sort Qw according to some criteria (e.g. EDF or LFF)
k ← new index of jk

jobscheduled ← true
for ∀ji ∈ Qw | i ≥ k and jobscheduled = true do

if schedulejob (j, Qw, Qr) = false then
jobscheduled ← false

end if
end for
if jobscheduled = false then

if i �= k then
fixqueue(Qw, i, k) { update index of jk (k ← i)}

end if
return reschedule ∀ji ∈ Qw | i ≥ k

end if
return true

When job jk is rejected, all the jobs in Qw after jk, including jk itself, must be
rescheduled (Algorithm 2). However, in this rescheduling phase, other options are
used to reschedule jk. The list of options Ψ is generated based on the intersection
of the new job jk, the jobs in the running queue and the jobs in the waiting
queue that are before jk. For each job ji that intersects jk, job jk is tested
before T r

i and after Di. Once the list of options Ψ is generated, it is possible
to sort it according to the percentage difference φ between the original T r

j and
Dj values and the alternative scheduler suggested options OPTT r

j and OPTDj :

φopt =

⎧⎨
⎩

OPTDj−Dj

T e
j

: option generated by placing jk after ji

OPTT r
j −T r

j

T e
j

: option generated by placing jk before ji

Once defined the possible positions of the new job jk, all jobs in Qw after jk

(including it) are rescheduled. If a job ji is rejected, we have again two options:
(i) ji = jk, the new job could not be scheduled; or (ii) ji �= jk, the new job
was scheduled but generated a scheduling problem for a another job ji ∈ Qw.

124 M.A.S. Netto, K. Bubendorfer, and R. Buyya

Algorithm 2. Pseudo-code for rescheduling rejected part of Qw using the list
of options Ψ for the rejected new job jk.

OT r
k ← T r

k , ODk ← Dk {keep original values}
while ∀OPT ∈ Ψ do

jobscheduled ← true
for ∀ji ∈ Qw | i ≥ k and jobscheduled = true do

if ji = jk then
set T r

k and Dk with option OPT
end if
jobscheduled ←schedule(ji)

end for
if jobscheduled = false then

if i �= k then
fixqueue(Qw, i, k)
T r

k ← OT r
k , Dk ← ODk {restore original values}

return reschedule ∀ji ∈ Qw | i ≥ k
else

return false {already tested new options for jk}
end if

else
{valid option OPT in Ψ—inform user about this possibility}

end if
end while
if ∃ OPT ∈ Ψ | OPT generates a possible scheduling then

return true
end if
return false

In constrast to Algorithm 1, in Algorithm 2, when ji = jk, it means that the
scheduler has already tried all the possibilities to fit jk in the queue, and hence,
jk will not be rescheduled again. However, if jk �= ji, then the queue Qw is fixed,
the index of jk is updated, T r

k and Dk are set to the original values, and the
rest of Qw is again rescheduled. This process finishes when there are no more
scheduling options to test. For a consumer who does not require an advance
reservation, the first successful option should be enough.

4 Evaluation

The basis for the design of the scheduling algorithms and the improvement in
utilisation, is predicated on the idea that scheduling advance reservations with
some specified flexibility will allow better scheduling decisions to be made. The
experimental results in this section demonstrate that the principle is sound.

4.1 Experimental Configuration

We evaluated the use of flexible QoS parameters for advance reservation on an
extended version of the PaJFit (Parallel Job Fit) simulator [8]. We used the work-

SLA-Based Advance Reservations 125

load trace from the IBM SP2 system, composed of 128 homogeneous processors,
located at the San Diego Supercomputer Center (SDSC)1 as a realistic workload
to drive the simulator. This workload contains requests performed over a period
of two years. However, for reasons of tractability we conducted our experiments
using 15 day intervals. We also removed any requests with a duration of less
than one minute.

As the workload has no deadline specifications, and there are no traces with
this information available, we modelled them as a function of the execution
time. We observe that many workload distributions exhibit Poisson lifetimes
and assume that this would also be true for deadlines. Therefore, for each job j,
Dj = T sub

j +T e
j ∗p, where p is a random number defined by a Poisson distribution

with λ=5, and T sub
j is the request submission time defined in the workload traces.

As we are working with advance reservations, we defined the release time of jobs
as T r

j = Dj −T e
j . To model higher loads and the subsequent performance of the

scheduler, we increased the frequency of request submissions from the trace by
25% and 50%.

We also analysed four different flexible interval sizes, which we again define
as a Poisson distribution: fixed interval, short interval (λ ← φ = 25%), medium
interval (λ ← φ = 50%), long intervals (λ ← φ = 100%). For all experiments
using flexible intervals, we modified only half of each workload, the other half
continues to have fixed intervals. We believe a portion of users would continue to
specify strict deadlines even though the resource provider would probably reduce
the price for more flexible and therefore easier consumers.

4.2 Results and Analysis

For the first experiment we evaluated the importance of sorting the jobs in the
waiting queue according to specific criteria. Figure 1 shows the results, comparing
LFF, BJF (sorted by the job’s size = T e∗R), EDF, and FIFO, against a random
shuffle; all of them with backfilling strategy. The results are presented as the
difference in utilisation from the random baseline. In all cases, EDF with flexible
intervals produced a schedule with the highest utilisation. It is worth noting that
the results are not load sensitive, shown as the load increases — from normal
(top graph) to high (bottom graph) in Fig. 1. As in our experiments we show
comparative results, it is important to mention the system utilisation values
to have an idea of the magnitude of these results. The values for the original
workload and the two modifications on the frequency of request submissions,
using FIFO approach, are: 46.8 ± 3.3 %, 50.9 ± 3.5 %, and 54.7 ± 3.7 %.

Using the EDF heuristic, we next evaluated the impact of the flexible time
interval duration on resource utilisation. We observe in Fig. 2 that the longer the
interval size, the higher the utilisation. This is because longer interval sizes pro-
vide the scheduler with more options for fitting (juggling) advance reservations
and thereby minimising the resource fragmentation.

1 We used the version 3.1 of the IBM SP2 - SDSC workload, available at the Parallel
Workloads Archive: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

126 M.A.S. Netto, K. Bubendorfer, and R. Buyya

-6
-4

-2
 0
 2
 4

 6
 8

 10

S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

) LFF
BJF
EDF

FIFO

-6
-4

-2
 0
 2
 4

 6
 8

 10

S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

) LFF
BJF
EDF

FIFO

-8
-6
-4

-2
 0
 2
 4

 6
 8

 10

fix interval short interval medium interval long interval

S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

) LFF
BJF
EDF

FIFO

Fig. 1. Impact of sorting criteria on system utilisation

 0

 5

 10

 15

 20

 25

 30

Original arrival time Arrival time with red. of 25% Arrival time with red. of 50%S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

)

Short interval
Medium interval

Long interval

Fig. 2. Impact of time interval size on resource utilisation

 0

 5

 10

 15

 20

 25

 30

 35

Original arrival time Arrival time with reduction of 25% Arrival time with reduction of 50%

S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

) Short interval
Medium interval

Long interval

Fig. 3. Impact of time interval size on resource utilisation with inaccurate estimation
time

In a real scenario, users may not estimate their execution time accurately. To
understand the impact of incorrect execution time estimates we performed the
following experiment. We modified the actual execution time in the workload
trace by a factor determined from a Poisson distribution with λ=80—we assume
the users in general overestimate the execution time [9,10].

Compared to the results in Fig. 2, we can observe in Fig. 3 that the flexible
intervals have more impact when users overestimate their execution time, since

SLA-Based Advance Reservations 127

otherwise the requests create small fragments that cannot be used by rigid time
QoS requirements.

Consumers may want to know with some assurancewhen their jobs will execute.
They can ask the resource provider to fix their jobs when the time to receive the
resources gets closer, i.e. remove the time interval flexibility by renegotiating the
SLA. We evaluated the system utilisation by fixing the T r

j and Dj of each job
j when 25%, 50%, and 75% of the waiting time has passed. We compared these
results with an approach that fixes the schedule immediately the job is accepted.

As in the first set of experiments (Fig. 1) we performed runs for different work-
loads. However in this case the results for all workloads were similar, therefore
we only present the graph for the medium workload in Fig. 4. We observe that
the longer a user waits to fix their job, the better is the system utilisation. This
is a pleasing result as this is indeed what we would expect because the scheduler
has more opportunities to reschedule the workload.

 0

 2

 4

 6

 8

 10

short interval medium interval long interval

S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

)

Flexibility on the time interval

25% of waiting time
50% of waiting time
75% of waiting time

Fig. 4. The longer a job remains flexible, the better the utilisation—premature fixing
of a job’s place in the schedule consistently has an adverse effect on resource utilisation

 0

 5

 10

 15

 20

 25

Original arrival time Arrival time with red. of 25% Arrival time with red. of 50%S
ys

te
m

 u
til

is
at

io
n

ga
in

 (
%

)

 φ = 25%
φ = 50%

φ = 100%

Fig. 5. System utilisation using suggested option from resource provider

 10
 20
 30
 40
 50
 60
 70
 80

Original arrival time Arrival time with red. 25% Arrival time with red. 50%A
ve

ra
ge

 φ
 fo

r
ac

ce
pt

. j
ob

s

Max φ = 25%
Max φ = 50%

Max φ = 100%

Fig. 6. Average actual φ of jobs accepted through suggestion by resource provider

Instead of using flexible intervals to meet time QoS requirements of users,
we wanted to see what would happen when the resource provider offered an

128 M.A.S. Netto, K. Bubendorfer, and R. Buyya

alternative slot to the consumer. When the resource provider cannot schedule a
job j with the required starting time, it provides the user with other options (if
possible) before and after the interval [T r

j , Dj]. We selected the lowest difference
φ of the options for each job j, given a threshold of 25%, 50% and 100%. Figure
5 shows that while this approach does increase the system utilisation, it does
not perform as well as the flexible interval technique. Nevertheless, the approach
of returning to the consumer with an alternative option is a useful technique for
users who cannot accept flexible intervals.

We also measured the difference between the actual and the thresholds φ for
the jobs accepted through the option suggested by the resource provider. From
Fig. 6 we observe that in average case, the value of φ is not significantly less
than the maximum φ defined by the resource provider.

5 Related Work

Advance reservation is an important technique for aggregating resources from
multiple places in such a way as to provide Quality-of-Service for users in a
distributed computing environment. The interest in this technique has increased
alongside with increasing popularity of Grid Computing.

Snell et al [11] discuss the importance of using advance reservations for exe-
cuting meta jobs in multi-site environments and the problem of fragmentation
generated in the computing environment due to these reservations. In their study
they assume that advance reservations are strictly rigid in terms of time QoS
requirements.

More recently researchers have become interested on how to improve system
utilisation by including flexibility factors in advance reservations. Naikasatam
and Figueira defined elastic reservations in a context of network bandwidth
management in LambdaGrids [2]. These elastic reservations are malleable re-
quests (time X bandwidth) and they can be rescheduled over time. The goal
of their approach is to minimise the problem of rejecting requests due to many
users requiring data transfer channel at the same time-slot, and the problem of
bandwidth fragmentation. In contrast to their work, we focus on the flexibility
on the requests time intervals and not on the request malleability.

Chen and Lee [3] propose a flexible reservation model based on flexible inter-
vals for starting time of advance requests. They handle the problem of optimising
the scheduling by representing the advance reservations as a multistage digraph,
and then finding the shortest path on the digraph. They explore the fact that
there is a period between resource reservation and the real allocation, i.e. when
the user starts accessing the resources, in which the scheduler rearranges the
requests before they start. In contrast to their work, we consider that users may
decide to fix their time schedule. That is, the flexibility is allowed until a cer-
tain period of time, since users may need to know the exact starting time to be
reported some time in advance. Furthermore they do not consider requests for
multiple resources.

SLA-Based Advance Reservations 129

Kaushik et al [4] study the use of flexible time intervals, which they call flexible
time-windows, for advance reservations. They investigate the relation between
the time-window size and the request waiting time, assuming that the request
inter-arrival time follows the Pareto distribution. In our experiments we relied on
inter-arrival requests from real workload from a supercomputing centre, and the
Poisson distribution for defining the minimum starting time. We also consider
that requests can come out of order. Furthermore they do not consider requests
for multiple resources.

Castillo et al [12] use concepts of computational geometry to handle resource
fragmentation caused by advance reservations. In their study they consider only
jobs with strict time intervals, and as in the other related work, only jobs re-
quiring a single resource.

Röblitz et al [5] present an algorithm for reserving computing resources that
allows users to define an optimisation criteria (e.g. cost and completion time)
when multiple candidates match the minimum users’ requirements. They use
a flexible advance reservation model where start and end time, duration and
number of requested CPUs are flexible. Unlike our work they do not explore the
rescheduling of existing flexible advance reservations.

Farooq et al [6] evaluate a set of algorithms for mapping advance reserva-
tions. They allow advance reservations to be flexible in terms of starting time
and deadline. They also introduce an algorithm called Minimum Laxity Impact,
in which rescheduling can be performed each time a new job arrives, but the
scheduler minimises the extent to which existing jobs are pushed closer to their
deadlines. The principle is to create more space for incoming jobs with more
difficult scheduling options.

None of the related projects evaluate returning other scheduling options on
failure to schedule the initial request. Moreover, the existing studies on flexible
advance reservations assume that the parameters for flexibility are static, and in
our case are adaptive according to the user needs and resource provider policies.

6 Conclusions and Further Work

In this paper we outlined consumer scenarios for advance reservations with flex-
ible and adaptive time QoS parameters and presented the benefits for resource
providers in terms of system utilisation. We evaluated these flexible advance
reservations by using different scheduling algorithms, and different flexibility
and adaptability QoS parameters. We investigated cases where users do not or
can not specify the execution time of their jobs accurately. We also examined
resource providers that do not utilise flexible time QoS parameters, but rather
return alternative scheduling options to the consumer when it is not possible to
meet the original QoS requirements.

In our experiments we observed that system utilisation increases with the flex-
ibility of request time intervals and with the time the users allow this flexibility
while they wait in the scheduling queue. This benefit is mainly due the ability of
the scheduler to rearrange the jobs in the scheduling queue, which reduces the

130 M.A.S. Netto, K. Bubendorfer, and R. Buyya

fragmentation generated by advance reservations. This is particularly true when
users overestimate the execution time of their jobs.

For future work we can draw useful conclusions from these results. In partic-
ular the results can be used as a solid foundation for a utility computing pricing
model as we have quantified the effects of varying degrees of flexibility on the
utilisation of the provider’s resources. Our work will include a pricing system
for charging consumers for resources and give incentives or discounts for those
users who are willing to provide flexibility within their QoS requirements and
therefore include time flexible SLA parameters. We believe that this approach
will allow resource providers to satisfy the full range of QoS timing requirements
and in particular add a new option for some difficult scheduling domains such
as workflow applications and resource co-allocation.

Acknowledgments

We would like to thank Marcos Dias de Assunção and the anonymous reviewers
for their valuable comments. This work is partially supported by research grants
from the Australian Research Council (ARC) and Australian Department of
Education, Science and Training (DEST).

References

1. Auyoung, A., Grit, L., Wiener, J., Wilkes, J.: Service contracts and aggregate utility
functions. In: HPDC. Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing, Paris, France, June 19–23 2006, pp.
119–131. IEEE Computer Society Press, Los Alamitos (2006)

2. Naiksatam, S., Figueira, S.: Elastic reservations for efficient bandwidth utilization
in lambdagrids. Future Generation Computer Systems 23(1), 1–22 (2007)

3. Chen, Y.T., Lee, K.H.: A flexible service model for advance reservation. Computer
Networks 37(3/4), 251–262 (2001)

4. Kaushik, N.R., Figueira, S.M., Chiappari, S.A.: Flexible time-windows for advance
reservation scheduling. In: MASCOTS. Proceedings of the 14th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, Monterey, USA, September 11–14 2006, pp. 218–225 (2006)

5. Röblitz, T., Schintke, F., Reinefeld, A.: Resource reservations with fuzzy requests.
Concurrency and Computation: Practice and Experience 18(13), 1681–1703 (2006)

6. Farooq, U., Majumdar, S., Parsons, E.W.: A framework to achieve guaranteed QoS
for applications and high system performance in multi-institutional grid computing.
In: ICPP. Proceedings of the 35th International Conference on Parallel Processing,
Columbus, USA, August 14–18 2006, pp. 373–380. IEEE Computer Society Press,
Los Alamitos (2006)

7. Wu, Y.L., Huang, W., Lau, S.C., Wong, C.K., Young, G.H.: An effective quasi-
human based heuristic for solving the rectangle packing problem. European Journal
of Operational Research 141(2), 341–358 (2002)

8. Netto, M.A.S., Buyya, R.: Impact of adaptive resource allocation requests in utility
cluster computing environments. In: CCGRID. Proceedings of the 7th IEEE Inter-
national Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil,
14-17 May 2007, IEEE Computer Society Press, Los Alamitos (2007)

SLA-Based Advance Reservations 131

9. Chiang, S.H., Arpaci-Dusseau, A.C., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002)

10. Lee, C.B., Snavely, A.: On the user-scheduler dialogue: Studies of user-provided
runtime estimates and utility functions. International Journal of High Performance
Computing Applications 20(4), 495–506 (2006)

11. Snell, Q., Clement, M.J., Jackson, D.B., Gregory, C.: The performance impact
of advance reservation meta-scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPDPS-WS 2000 and JSSPP 2000. LNCS, vol. 1911, pp. 137–153. Springer, Hei-
delberg (2000)

12. Castillo, C., Rouskas, G., Harfoush, K.: On the design of online scheduling al-
gorithms for advance reservations and QoS in grids. In: IPDPS. Proceedings of
the 21st IEEE International Parallel & Distributed Processing Symposium, Long
Beach, USA, March 26–30 2007, IEEE Computer Society Press, Los Alamitos
(2007)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 132–144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Monitoring the QoS for Web Services

Liangzhao Zeng, Hui Lei, and Henry Chang

IBM T.J. Watson Research Center Yorktown Heights, NY 10598
lzeng,hlei,hychang@us.ibm.com

Abstract. Quality of Service (QoS) information for Web services is essential to
QoS-aware service management and composition. Currently, most QoS-aware
solutions assume that the QoS for component services is readily available, and
that the QoS for composite services can be computed from the QoS for
component services. The issue of how to obtain the QoS for component services
has largely been overlooked. In this paper, we tackle this fundamental issue.
We argue that most of QoS metrics can be observed/computed based on service
operations. We present the design and implementation of a high-performance
QoS monitoring system. The system is driven by a QoS observation model that
defines IT- and business-level metrics and associated evaluation formulas.
Integrated into the SOA infrastructure at large, the monitoring system can
detect and route service operational events systemically. Further, a model-
driven, hybrid compilation/interpretation approach is used in metric
computation to process service operational events and maintain metrics
efficiently. Experiments suggest that our system can support high event
processing throughput and scales to the number of CPUs.

1 Introduction

Web services are autonomous software systems identified by URIs which can be
advertised, located, and accessed through messages encoded according to XML-based
standards such as SOAP, WSDL and UDDI. Web services encapsulate application
functions and information resources, and make them available through programmatic
interfaces, as opposed to the human-computer interfaces provided by traditional Web
applications. Since they are intended to be discovered and used by other applications
across the Web, Web services need to be described and understood in terms of both
functional capabilities and non-functional, i.e., Quality of Service (QoS) metrics.

Given the rapidly increasing number of functionally similar Web services available
on the Internet, there is a need to be able to distinguish them using a set of well-
defined QoS metrics. Further, in situations where a number of component services are
aggregated to form a composite service, it is necessary to manage the QoS for the
composite service based on the QoS for individual component services. Most systems
for QoS-aware service selection [2][4][5][6] and management [22][23] assume that
the QoS information for component services is pre-existing. How to obtain this QoS
information is largely overlooked. In this paper, we try to address this fundamental
issue.

 Monitoring the QoS for Web Services 133

In general, QoS metrics can be classified into three categories, based on the
approaches to obtaining them:

• Provider-advertised metrics. This type of metrics is usually provided by service
providers, which is subjective to service providers. One example is the execution
prices advertised by service providers.

• Consumer-rated metrics. This type of metrics can be computed based on service
consumer's evaluations and feedback, which is therefore subjective to service
consumers. For example, the service reputation is considered average according to
service consumers' evaluations.

• Observable metrics. This type of metrics can be observed, i.e., computed, based on
monitored service operational events, which is objective to both service providers
and consumers. Majority of QoS metrics in fact can be observed, including those
of IT level and of business level. IT-level metrics include service execution
duration, reliability, and etc. At business level, metrics are usually domain-specific
and require some modeling efforts to define the formulas [5]. For example, the
metric "forecast accuracy" for forecast services in supply chain management is
usually defined as:

0

| |n
i i

i i

actualDemand forecastDemand

actualDemand=

−∑

In order to compute such a metric value, both actual demand and forecasted
demand need to be monitored. It should be noted that the metric value needs to be
recomputed whenever the execution of a service instance is completed.

In this paper, we focus on these observable metrics. We adopt a model-driven
approach to the definition and monitoring of Web service QoS metrics. We introduce
an observation metamodel that specifies a set of standard building blocks for
constructing various QoS observation models. An observation model defines the
specific QoS metric types that are of interest, as well as rules on when and how the
metric values are computed.

An observation model has to be executed by a QoS monitoring system. There are
two main issues in designing and implementing such a monitoring system:

• Service monitoring architecture. To detect service operational events, service
monitoring needs to be integrated into the SOA infrastructure at large. It is
important to leverage existing components in the SOA infrastructure, and to enable
detection and routing of the service operational events systematically.

• QoS metric computation. There are three main challenges in designing an efficient
computation runtime:
• High volume of service operational events. In large-scale SOA solutions, there

can be thousands of business process instances concurrently running. Even if
each process instance generates only one operational event per second, there
may be thousands of events that need to be processed per second. It is thus
important for the runtime to support high event-processing throughput.

• Complexity of metric computation. The ECA rules for metric computation
actually create a workflow representable as statecharts. The complexity of
metric computation stems from two aspects: the topology of the statecharts and

134 L. Zeng, H. Lei, and H. Chang

the formulas for computing the metric values. For example, hundreds of
expressions may be triggered directly or indirectly to update a series of metric
values due to the occurrence of a single service operational event. Unlike most
complex event processing systems that focus on event filtering and composite
event detection, metric computation is concerned with the expression evaluation
triggered by events. The potentially large number of expressions that need to be
evaluated significantly increases the overall complexity of the system.

• Metric value persistence. QoS metric values need to be saved in persistent
storage after they are computed/updated, in order to make them available for
other components (e.g., service selectors). Given the high volume of service
operational events and the complexity of metric networks, an appropriate
persistence mechanism is required, in order to support both efficient metric
value persistence and queries.

Given QoS metrics are time-critical and time-sensitive information, it is important
to develop a high performance metric computation engine that can compute/update
metric values in real time.

In order to tackle the above challenges, we design and implement a service QoS
monitoring system. It provides a user-friendly programming model that allows users
to define the QoS metrics and associated ECA rules. It enables declarative service
QoS monitoring in the SOA infrastructure. It employs a collection of model-analysis
techniques to improve the performance of metric computation. In a nutshell, the main
contributions of this paper are:

• Monitoring-enabled SOA Infrastructure. Building upon our previous work on
semantic service mediation [21] and semantic pub/sub [18] that enables flexible
interoperation among Web services, we further enrich the SOA infrastructure to
enable declarative event detection and routing in dynamic and heterogeneous
environments. Such an extension allows the QoS for Web services to be monitored
with small programming efforts.
• Efficient QoS computation. We present a novel hybrid compilation-
interpretation approach to QoS metric computation. A series of model-analysis
techniques is applied to improve event processing throughput. At build time,
custom executable code is generated for each ECA rule. The custom code is more
efficient to execute than generic code driven by ECA rules. At runtime, model-
driven mediators interpret a transformed observation model to invoke generated
code at appropriate points. Also, model-driven planning is adopted to enable wait-
free concurrent threads for metric computation, which eliminates the overhead of
concurrency control. Our experiments suggest that the system not only can support
high event throughput but also can scale to the number of CPUs.

The rest of this paper is organized as follows. Section 2 presents the QoS

observation metamodel. Section 3 illustrates the SOA infrastructure that enables
service QoS monitoring. Section 4 discusses the design of a high performance metric
computation engine. Section 5 briefly describes the implementation and
experimentation. Following discussion on related work in Section 6, Section 7
provides concluding remarks.

 Monitoring the QoS for Web Services 135

2 QoS Observation Model

In the presence of multiple Web services with overlapping or identical functionality,
service requesters need some QoS metrics to distinguish one service from another.
We argue that it is not practical or sufficient to come up with a standard QoS model
that can be used for all Web services in all domains. This is because QoS is a broad
concept that encompasses a large number of context-dependent and domain-specific
nonfunctional properties. Therefore, instead of trying to enumerate all possible
metrics, we develop a QoS observation metamodel which can be used to construct
various QoS observation models. The observation models in turn define the generic or
domain-specific QoS metrics.

Fig. 1. Simplified Class Diagram of the Observation Metamodel

As indicated by the metamodel in Figure 1, an observation model can include three
types of monitor contexts. Each type of monitor context corresponds to a type of
entity to be monitored. A ProcessMonitorContext corresponds to a business process
and specifies how a composite service should be observed. A ServiceMonitorContext
(resp. ServiceInterfaceMonitorContext) corresponds to a service (resp. service
interface). These two kinds of monitor contexts specify how component services
should be observed. Users can define a collection of QoS metrics in a monitor
context. A QoS metric can be of either a primitive type or a structure type, and can
assume a single value or multiple values. For the computation logic, we adopt Event–
Condition-Action (ECA) rules (c.f. Expression 1) to describe when and how the
metric values are computed. Such a rule-based programming model frees users from
the low-level details of procedural logic.

Event(eventPattern)[condition]|expression (1)

In an ECA rule, the event pattern component indicates either a service operational
event or the value change of a metric value. For example, when a service instance starts
execution, a service activation event can be detected. The condition component in a rule
is a Boolean expression specifying the circumstance to fire the computation action
described in the expression component. The expression consists of an association

136 L. Zeng, H. Lei, and H. Chang

predicate and a value assignment expression. The association predicate identifies which
monitor context instance should receive the event. The operators allowed in the
predicate expressions include relational operators, event operators, vector operators, set
operators, scalar operators, Boolean operators and mathematical operators, etc. An
example ECA rule for metric computation is given in equation (2).

1 2 1 1 2 1
()[. 12] | (. .) . : () ::Event E e a MC serviceID e serviceID MC m f ee > == =

(2)

In the above example, when an instance of event E1,
denoted as e, occurs, if e..a2

>12, then the event is delivery to the instance of MC1 whose serviceID metric
matches the serviceID field of event instance e, and the metric value of m2 is
computed by function f1(e). When there is no matching context instance, a new
monitor context instance is created. It should be noted that the monitor context
represents the entity that is being monitored, which is a service instance in this case.
Another example ECA rule is given in equation (3). In the example, when the value of
metric MC1.m2 changes, the value of metric MC1.m3 is updated by function
f2(MC1.m1,MC1.m2).

1 2 1 3 2 1 1 21((.)[] | . : (, .) .Event changeValue MC m MC m f MC m MC m=

(3)

3 Monitoring-Enabled SOA Infrastructure

Figure 1 illustrates the proposed monitoring-enabled SOA infrastructure. Basing on
the generic SOA infrastructure, three specific components that enable QoS monitoring
are introduced. The Web Service Observation Manager provides interfaces that allow
users to create observation models. The Metric Computation Engine generates
executable code, detects service operational events and computes and saves metric
values. The QoS Data Service provides an interface that allows other SOA
components to access QoS information via a Service Bus. In this section, we mainly
focus on the creation of observation models and the detection of service operational
events. The details of metric computing and saving are presented in next section.

3.1 Observation Model Creation

We start with the observation model creation. When importing a process schema, the
Web Service Observation Manager generates a ProcessMonitorContext first. For each
service request in the process, it creates a ServiceInterfaceMonitorContext definition,
in which two types of event definitions are also created, namely execution activation
event and execution completion event. For example, if a service request is defined as
R (TaskName, Cin, Cout), where Cin (Cin=<C1, C2,…, Cn >) indicates input types and
Cout (Cout=<C1, C2,…, Cm >) indicates excepted output types, then the execution
activation event can be defined as Es(PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…, Cn>), where the PID is the process instance ID and
the SID is the service ID. The execution completion event is defined as Ec(PID, SID,
TimeStamp, TaskName, ServiceName, ServiceInterfaceName, <C1,C2,…,Cm>). Based
on these service operational event definitions, the designers can further define the
QoS metrics and their computation logic by creating ECA rules.

 Monitoring the QoS for Web Services 137

Fig. 2. Simplified QoS Monitoring-enabled SOA infrastructure

3.2 Detection and Routing of Service Operational Events

Given that the observation model is an event-driven programming model, there are
two main steps before processing the events to compute the QoS metric values: event
detection and event routing. If we assume that the data types are standardized across
different process schemas and service interfaces, these two steps can be performed
based on the syntactic information on service interfaces and service operational
events.

However, such an assumption is impractical. Since services are operated in
heterogeneous and dynamic environments, it is inappropriate to assume that all the
service providers adopt the same vocabulary to define service interfaces. To improve
the flexibility of SOA solutions, we have introduced semantics in service mediation
[3], wherein service interfaces can be semantically matched with service requests.
Therefore, when there are not any syntactically matched service interfaces for a
service request, semantic match is applied to identify service interfaces. In cases of
semantic matches, the data format transformations are required when invoking the
matched service and returning the execution results to service consumers. In such
cases, semantic matching is also required between the event definitions in observation
models and the actual operational events detected. Fortunately we can leverage the
same semantic-mapping capability provided by semantic service mediation to
transforms operational events into formats that conform to the event definitions in the
observation model.

If we assume that a service request is defined as R(TaskName, Cr
in, Cr

out) and
Cr

out=<C1,C2,…,Cm>, the generated service activation event definition in the
observation model is then Ec(PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName,<C1,C2,…,Cm>). We also assume that the matched service
interface is defined as i (serviceInterfaceName, Ci

in, Ci
out), and that the execution

138 L. Zeng, H. Lei, and H. Chang

output is <o1,o2,…,ol>. If <o1,o2,…,ol> does not exactly match <C1,C2,…,Cm>, but is
semantically compatible (see Definition 1),, a semantic transformation that converts
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is needed. Similarly, if the detected service
completion event ec(pID, sID, timeStamp, taskName, serviceName, <o1,o2,…,ol>)
dose not exactly match the event definition Ec, same semantic transformation from
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is also required before the service completion event is
emitted.

Definition 1. (Semantic Compatibility) <o1,o2,…,ol> is semantically compatible
with <C1,C2,…,Cm>, if for each Ci, there is a oj that is either an instance of Ci or an
instance of Ci's descendant class.

In our design, the Metric Computation Engine takes observation models as input and
generates event detection requests to the Semantic Service Mediator. The Semantic
Service Mediator maintains a repository of service event detection requests (not
shown in the Figure 1). Whenever a service execution is activated or completed, it
searches the repository to determinate whether a service activation (or completion)
event needs to be emitted. The search is done by semantically matching the service
input and output with entries in the event detection request repository.

Similarly, it is impractical to assume that different process schemas use
standardized data types and service interfaces. Therefore, when the event definitions
in observation models are derived from service requests, it is necessary to consolidate
those semantically matched monitored events. For example, consider two service
requests R1(TaskName1, C1

in, C1
out) and R2(TaskName2, C2

in, C2
out) in two process

schemas PS1 and PS2. Two execution activation event definitions can be generated as
Es

1 (PID, SID, TimeStamp, TaskName, ServiceName ServiceInterfaceName, <C1,
C2,…,Cn>) and Es

2 (PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…,Cm>) in two observation models OM1 and OM2
respectively. If <C1, C2,…,Cn > is semantically matched with <C1, C2,…,Cm>, then
the service operational events detected when executing PS1 (resp. PS2) should also be
transformed and delivered to context instances in OM2 (resp. OM1). These
transformations are performed by a semantic pub/sub engine [4]. Specifically, the
Metric Computation Engine takes observation models as input and generates event
subscriptions for the semantic pub/sub engine, relying on the latter to perform event
transformation and event routing. For example, given OM1, the Metric Computation
Engine subscribes to event Es

1 (PID, SID, TimeStamp, TaskName, ServiceName,
ServiceInterfaceName, <C1, C2,…,Cn>). When an event es

2 (pID, sID, timeStamp,
taskName, serviceName, serviceInterfaceName,<o1,o2,…,om>) (an instance of Es

2) is
published from the service mediator, the event is transformed to es

1(pID, sID,
timeStamp, taskName, serviceName, serviceInterfaceName, <o'1,o'2,…,o'n>) by
semantic pub/sub and delivered to the appropriate context instances of OM1.

4 High Performance Metric Computation Engine

Given a monitoring-enabled infrastructure to detect and route service operational
events, it is imperative that these events be processed efficiently, and that the QoS
metric values be computed and saved efficiently as well. The main challenges of the

 Monitoring the QoS for Web Services 139

system design are tri-fold: high volume of service operational events, complexity of
expressions involved in metric computation and persistence of metric values.
Although most complex event processing systems [12][13][14][15] support high
throughput of events, they primarily focus on event filtering and compound event
detection. They do not address metric computation, where event data triggers and
contributes to a complex flow of computation. Further, they don’t consider the issue
of state persistence. In this paper, we advocate a series of model analysis techniques
to improve event throughput in a monitoring environment. In this paper, we only
sketch out the high-level design but omit more detailed descriptions, due to the
limitation of space. More complete descriptions of these techniques can be found in
[11].

4.1 Model Transformation and Execution Framework

As we discussed earlier, event-driven rule-based programming is user friendly,
particularly for business integration developers. However, because of the overhead in
locating rules to be executed at runtime, the event-driven model does not lend itself to
efficient execution, especially when the number of rules is very large, such as in the
case of service QoS monitoring. In our design, the rule-based model is transformed to
a state-based model, wherein statecharts are adopted to reorganize the rules. The
rationale for such a model transformation is that statecharts organize the rules by
states, which can greatly reduce the overhead in locating rules at runtime.

The construction of statecharts is based on user-defined ECA rules: a state
represents either an event or a metric, while a transition between two states represents
the triggering relationship (see Table 1). For example, if the event pattern is a service
operational event in an ECA rule (see expression 2 for an example), then there is a
transition from the event state to the metric state. In another case, the event pattern is
the value change of a metric (see expression 3 as an example), and the corresponding
transition is from one metric state to another metric state.

Table 1. Transforming the ECA rules to Statecharts

With the above transformation, each service operational event initiates a statechart.
Thus, the execution of the ECA rules is converted to the execution of statecharts. An
example of transformation is shown in Figure 3. In the example, three statecharts are
generated from twelve ECA rules. The advantage of executing statecharts is that the
overhead of a full rule set scan is eliminated when identifying the rules to be executed
at runtime, as the next rules that need to be executed can be located via the outgoing
transitions of the current state.

There are two approaches to executing statecharts, compilation and interpretation.
Both approaches have their own advantages and drawbacks. We discuss the

140 L. Zeng, H. Lei, and H. Chang

interpreting approach first. In order to execute the statecharts, the interpreter not only
interprets the state transition logic, but also interprets the expressions in the rules.
Given that the operators that appear in expressions can be relational, set, vector,
scalar, and etc., interpretation is less efficient than compilation [9]. With a
compilation approach, executable code is generated from a statechart. As custom code
is generated at buildtime for the execution of statecharts, this reduces CPU cycles at
runtime. However, the compilation approach entails another potential performance
issue. When using multi-threads to process events, thread scheduling relies on the
lock-based scheduling mechanism provided by either the operating system or
language runtime (e.g., JVM). Such lock-based scheduling usually results in high
system overhead [10], especially in multiple CPUs systems.

We take advantages of both approaches and propose a hybrid approach. In the
hybrid approach, state transition logic is interpreted, while the expression in a rule is
compiled into standalone executable code. The advantages of such a hybrid approach
are twofold. On the one hand, by interpreting the state transition logic, the
computation engine can plan the execution of rules in finer granularity, i.e., at the
transition level instead of the statechart level. For example, information about the
dataflow among the rules can be used to plan the wait-free execution of the
expressions (details can be found in next subsection). On the other hand, the
execution of an individual expression is done by executing pre-complied code, which
enjoys the efficiency of the compilation approach.

Adopting the hybrid approach, we further develop a queuing network to execute
the statecharts, in order to enable dynamic CPU allocation at runtime. At deployment
time, the ECA rules in different statecharts are distributed to a collection of mediators.

Fig. 3. Execution Model Transformation

 Monitoring the QoS for Web Services 141

Each mediator in the network possesses a work item queue, an interpreter and a thread
pool. The queue buffers available work items. The interpreter executes the complied
code of expressions in the rules. The thread pool enables multi-thread concurrent
processing on work items, wherein the number of thread can be configured
dynamically. The threads in different thread pools have the same level of priority. The
CPU resource allocation for a mediator is determined by the size of its thread pool.
By configuring the size of the thread pool dynamically, CPU resource can be
dynamically allocated.

The collection of mediators forms a queuing network, wherein the number of
mediators and the topology of the network are determined by the topologies of
statecharts. The strategies for constructing the queuing network are: (i) The order of
rule execution is preserved by the network topology. This is achieved by first sorting
the rules based on the execution sequence in each statechart and then distributing the
rules to an ordered collection of mediators based on the rules’ execution order. (ii)
The communication cost among mediators is minimized by eliminating data access
contention among the threads in different mediators. This can be done by distributing
rules that access the same data into the same mediator. An example of queuing
network is shown in Figure 3.

4.2 Execution Planning

One of the key techniques for improve event processing throughput is multi-threaded
concurrent processing. However, event throughput normally is not proportionate with
the number of concurrent threads deployed, because of the runtime overhead incurred
by the concurrency control mechanism. QoS monitoring requires that QoS metric
values be persistent and we use a relation database for this purpose. In order to reduce
the amount of I/O between the Metric Computation Engine and the datastore, a cache
is also instituted. Therefore, either the datastore or the cache needs to provide
concurrency control. Although modern RDBMs support row-level locking, such an
option substantially deteriorates database performance. On the other hand, if
concurrency control is implemented in the cache, a rollback segment needs to be
maintained for each transaction. Given the large volume of events and that each event
occurrence initiates a transaction, a large number of rollback segments need be
managed by the cache. These rollback segments occupy significant memory and
eventually impair performance. Therefore, an approach of supporting concurrent
threads without locking, such as a lock-free approach, is more appealing [16][17].
However, these lock-free approaches rely on either the hardware or programming
language support on for compare-and-swap [3]. Aiming at a solution that is
independent of hardware or programming languages, we plan the execution ahead of
time using information in the observation model The basic idea is that we plan the
rule execution in each mediator: if the execution of two rules update the same metric
or one rule produces operands for another rule, then these two rules need to be
executed sequentially; otherwise these two rules can be executed concurrently. It
should be noted that the execution order relationships between the rules are derived
before the runtime. Therefore, there is not much runtime overhead involved when
planning the executions.

142 L. Zeng, H. Lei, and H. Chang

5 Implementation and Experimentation

Our implementation leverages the Websphere Process Server (WPS) [24]. WPS is a
SOA solution platform that contains a BPEL engine and provides a service bus for
Web services. The proposed Metric Computation Engine uses a message driven bean
to receive service operational events routed from the semantic pub/sub engine. We
have also developed a dashboard to display the metric values from the QoS Data
Service. We have conducted a series of experiments to demonstrate the functionality
of Web service QoS monitoring. We first created a business process called "patient
visit" (see Figure 4) and deployed it on WPS. From the service request definitions in
the process, a skeleton observation model was generated by the Web Service
Observation Manager that consisted of one process monitor context, six service
interface monitor contexts and twelve service operational event definitions. Given the
skeleton model, we then created about forty metric definitions and ECA rules. We
deployed the complete model into the Metric Computation Engine, wherein the model
information was transformed and executable Java classes were generated. These
generated Java classes were distributed to five mediators. When the process "patient
visit" is executed, the related service operational events are detected and published to
the Semantic Pub/Sub engine. When these events are routing to the Metric
Computation Engine, the metric values are computed and saved. Eventually, the
computed metric values are displayed on the dashboard in realtime fashion.

To test the system throughput, we designed an event emitter that sends simulated
service operational events to the Metric Computation Engine with a given sending
rate (i.e., number of events per second). On an Intel CPU Linux server, the Metric
Computation Engine can process 660 events/sec. In order to test its salability, we
deployed the Metric Computation Engine on multiple CPU hardware platforms (2 and
4 CPUs). The experiment results (1210 events/sec and 2012 events/sec respectively)
demonstrate that our system is scaled to the number of CPUs.

Fig. 4. An Example of Business Process

6 Related Work

In this section, we review work in the areas of QoS management and event processing
systems. QoS management has been widely studiesd in the context of middleware
systems [18][19][20]. These efforts have addressed the following issues: QoS
specification to allow description of application behavior and QoS parameters, QoS
translation and compilation to translate specified application behavior into candidate
application configurations for different resource conditions, QoS setup to
appropriately select and instantiate a particular configuration, and QoS adaptation to

 Monitoring the QoS for Web Services 143

runtime resource fluctuations. Most efforts in QoS-aware middleware, however, are
focused on the network transport and system level. Little work has been done at the
application and business process levels.

QoS-Aware service composition [1][2][4][5][6][7][8][19][20] aims for selecting
component services to optimize the overall QoS of a business process. In [2][7], the
system assumes that the QoS information of components is pre-existing, and
therefore, the overall QoS of composite service can be computed based on formulas.
In [8], the formulas that compute the QoS of a workflow based on both the QoS of
component services and the workflow schemas are discussed. However, it only
focuses on the QoS at IT level. In [5], a QoS-aggregation system is presented. It
provides an editor for the QoS aggregation function that allows users to specify QoS
attributes and their aggregation formulas. It also provides an interpreter that evaluates
a workflow's global QoS. Again, it assumes that the QoS information of component
services is pre-existing. Further, it does not provide the details on how to compute the
aggregation formulas efficiently. Different from above works, this paper tries to
tackle the fundamental issue: monitor and compute the QoS of component/composite
services, both at IT and business level. Further, it discusses the design and
implementation of a high performance metric computation engine.

Complex event processing systems [12][13][14] focus on event filtering and
compound event detections However, in service QoS monitoring, event filtering logic
is relatively simple. Complicated computation happens after the events are filtered,
i.e., when the event data is used to compute/update a collection of metrics. rFurther,
most of the complex event processing systems do not support state persistence, even
though it is a critical requirement for a service QoS monitoring system to save metric
values.

7 Conclusion

In this paper, we advocate computing the QoS metrics of services by monitoring the
executions. An observation model is proposed, which allows users to define the
metric types and formulas. We design a monitoring-enabled SOA infrastructure to
enable the systematic detection and routing of service operational events. Further, we
implement a high performance metric computation engine that can support high event
throughput. Our further work includes supporting the metric network (i.e.,
probabilistic, system dynamics and extensible user-defined dependency) and a careful
study of the system.

References

1. Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6) (2002)
2. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web

Services Composition. In: WWW 2003 (2003)
3. Prakash, S., Lee, Y.H., Johnson, T.: A Nonblocking Algorithm for Shared Queues Using

Compare-and-Swap. IEEE Transactions on Computers 43(5) (1994)

144 L. Zeng, H. Lei, and H. Chang

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware
Service Composition based on Genetic Algorithms. In: GECCO 2005, ACM Press, New
York (2005)

5. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service Composition
(re)Binding Driven by Application-Specific QoS. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

6. Nguyen, X.T., Kowalczyk, R., Han, J.: Using Dynamic asynchronous aggregate search for
quality guarantees of multiple Web services compositions. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

7. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering 30(5) (2004)

8. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.J.: Modeling quality of service
for workflows and web service processes. Web Semantics Journal: Science, Services and
Agents on the World Wide Web Journal 1(3), 281–308 (2004)

9. Rao, J., Pirahesh, H., Mohan, C., Lohman, G.M.: Compiled query execution engine using
jvm. In: ICDE 2006 (2006)

10. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concurrency in
Practice. Addison-Wesley Professional, Reading (2006)

11. Zeng, L., Lei, H., Chang, H.: Model-analysis for Business Event Processing. IBM Systems
journal (2007) (to appear)

12. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
SIGMOD 2006 (2006)

13. Wang, F., Liu, P.: Temporal management of RFID data. In: VLDB 2005 (2005)
14. Complex Event Processing, http://en.wikipedia.org/wiki/Complex_event_processing
15. Luckham, D.: Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, 1st edn. Addison-Wesley Professional, Reading (2002)
16. Ennals, R.: Efficient Software Transactional Memory, Intel Research Cambridge Technical

Report: IRC-TR-05-051 (2005)
17. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free Synchronization: Double-ended

Queues as an Example. In: ICDCS (2003)
18. Zeng, L., Lei, H.: A Semantic Publish/Subscribe System. In: IEEE CEC (East) (2004)
19. Gillmann, M., Weikum, G., Wonner, W.: Workflow Management with Service Quality

Guarantees. In: SIGMOD 2002 (2002)
20. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-Aware Middleware for Ubiquitous and

Heterogeneous Environments. IEEE Comm. Magazine 39(11) (2001)
21. Zeng, L., Benatallah, B., Xie, G.T., Lei, H.: Semantic Service Mediation. In: Dan, A.,

Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)
22. Zeng, L., Lei, H., Jeng, J.-J., Chung, J.-Y., Benatallah, B.: Policy-Driven Exception-

Management for Composite Web Services. In: IEEE CEC 2005 (2005)
23. Zeng, L., Jeng, J.-J., Kumaran, S., Kalagnanam, J.: Reliable Execution Planning and

Exception Handling for Business Process. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003.
LNCS, vol. 2819, Springer, Heidelberg (2003)

24. Websphere Process Server, http://www-306.ibm.com/software/integration/wps/

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 145–156, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Q-Peer: A Decentralized QoS Registry Architecture for
Web Services*

Fei Li, Fangchun Yang, Kai Shuang, and Sen Su

State Key Lab. of Networking and Switching, Beijing University of Posts and
Telecommunications

187#,10 Xi Tu Cheng Rd., Beijing,100876, P.R. China
pathos.lf@gmail.com, {fcyang, shuangk, susen}@bupt.edu.cn

Abstract. QoS (Quality of Service) is the key factor to differentiate web
services with same functionality. Users can evaluate and select services based
on their quality information. Traditionally, run-time QoS of web services is
collected and stored in centralized QoS registry, which may have scalability and
performance problem. More importantly, centralized registry can not operate
across business boundaries to support global scale application of web services.
In this paper, we propose a P2P (Peer-to-Peer) QoS registry architecture for
web services, named Q-Peer. The architecture is a Napster-like P2P system,
where query of QoS is naturally achieved by getting QoS storage address from
service registry. Q-Peer employs object replication mechanism to keep load-
balance of the whole system. We present two types of replication schemes and
conduct comparison study. A prototype of Q-Peer has been implemented and
tested on Planet-lab. Experimental results show that Q-Peer can automatically
balance load among peers in different circumstances, so the system has good
performance and scalability.

1 Introduction

Using web service to integrate business applications is one of the major trends in
distributed computing. Web service, which specified by a set of XML (eXtensible
Markup Language) based standards[1], is a standard way to improve interoperability
between software running on different platforms over internet[2]. Web services can
be published by providers and discovered by requesters based on their description.
Services1 can further be composed to a more powerful service to improve reusability.
When using a certain web service, user experience is largely depends on quality of the
service, so QoS information is essential in web service framework and should be
properly processed.

* This work is supported by the National Basic Research and Development Program (973

program) of China under Grant No.2003CB314806; the Program for New Century Excellent
Talents in University (No:NCET-05-0114); the Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT); the Hi-Tech Research and Development
Program (863 Program) of China under Grant No.2006AA01Z164; Collaboration Project
with Beijing Education Committee.

1 In this paper, we use web service and service interchangeably.

146 F. Li et al.

Quality of service is non-functional properties of service, such as response time,
availability, and price. It is a commonly accepted procedure that service requesters
discover services by functional description and select services by QoS. Generally,
service function is relatively stable throughout service lifetime, while QoS can change
frequently with system status, load, network condition, etc. Maintaining the two types
of information has different system requirements and design considerations. Thus
service discovery and service selection are often accomplished on two entities
respectively, called service registry and QoS registry. Currently, service registry in
P2P manner is a hot research topic, but most of the published QoS registry works are
still in centralized manner. They are sharing common shortcomings of centralized
systems, like scalability, performance and single point failure. More importantly,
because of business boundaries between different regions or management domains, a
centralized system may not be able to support global scale web service
interoperations.

In this paper, we propose a P2P QoS registry system for web services, named Q-
Peer. The basic idea and a preliminary load-balance approach has been published as a
work-in-progress paper in[3]. This work expanded our previous study by improving
the load-balance approach and analyzing system performance in a series of
experiments. Q-Peer is a P2P system which provides large-scale QoS storage,
monitoring, collecting and query services. It can work with either centralized or
decentralized service registries like UDDI (Universal Description, Discovery and
Integration)[4] and other P2P service discovery system[5]. Every peer has its own
policy to decide whether to accept a QoS registration request or a load-balance
request. Q-Peer solves QoS object query problem by adding peer address into service
registration information. User gets a peer address which storing the requested QoS
object and accesses the peer directly, so that it does not need a query routing
mechanism internally. QoS data of similar or identical services is clustered together,
which makes query and comparison of QoS very efficient. Peers find other light-
loaded peers to be neighbors by an autonomous load information dissemination
scheme. Neighbors are expected to share load when needed. Data replication
mechanism is applied on all peers to adjust load and improve availability. We propose
two replication mechanisms and compare their effect by experiments. We have
implemented the Q-Peer prototype and tested it on Planet-lab[6]. Experimental results
show that Q-Peer has very good scalability and performance.

The rest part of this paper is organized as follows: Section 2 reviews some related
works. Section 3 introduces the general model and design consideration of Q-Peer.
Section 4 presents how to disseminate QoS and load information in Q-Peer. Section 5
proposes the load balancing approaches in Q-Peer. Section 6 presents the detail of
experiments and analyzes the results. The paper is concluded in Section 7.

2 Related Works

QoS information processing is an important issue in web service framework. Most of
the previous works are focused on how to evaluate and select web services, although
they all mentioned certain kinds of QoS registries. Centralized QoS registry
architecture has been proposed before. Maximilien et al. [7] proposed an agent based

 Q-Peer: A Decentralized QoS Registry Architecture for Web Services 147

architecture for processing QoS information. An ontology framework is builded to
represent QoS knowledge. Serhani et al. [8] presented a QoS broker architecture and
clarified its relationship with other entities in web service. Liu et al. [9] designed a
QoS registry for a hypothetical phone service market place. The registry collect QoS
information from two sources: one is active monitoring on service provider, another is
user feedback. The registry can execute their QoS computation algorithm to rank
services. Yu et al. [10] presented a broker based framework for QoS-aware web
service composition. It maintains QoS information and integrates services on user’s
behalf. As far as we know, the only work mentioned a distributed QoS registry
architecture is by Gibelin et al. [11]. They use hash-table based QoS indexing which
is not efficient for QoS query problem. No detailed design information could be found
in the paper.

In past several years, peer-to-peer paradigm has gained considerable momentum as
a new model of distributed computing. P2P systems are created for file sharing at
first, as Napster[12], Gnutella[13] and Kazaa[14]. P2P systems can be roughly
divided to two categories by content distribution approach: structured and
unstructured[15]. They have different query mechanisms, which should be chosen for
different application scenarios. For scalability, autonomy and robustness of P2P
systems, the P2P model has been introduced into distributed storage and information
retrieving[16]. Some applications of P2P have already contributed to web service
research, as distributed service discovery[17]. Replication is an important approach to
improve P2P system performance. Cohen et al.[18] analyzed search efficiency by
different replication strategies in unstructured P2P systems. Otherwise, we adopt
replication mechanism to balance-load in Q-Peer.

3 System Model

Q-Peer is a peer-to-peer database system for register, storage and query of web
service QoS. QoS data is recorded in XML documents. QoS query in Q-Peer is not
conducted by query routing among peers, but by the support of service registry. For
each service, service registry stores its functional description and at least one peer
address containing its QoS. Users get QoS by directly access the address. This query
mechanism can work with either centralized or decentralized service registry. The
mechanism is suitable for QoS query, although different to common P2P database
system. To query QoS without service description is meaningless, because no service
user cares about service quality without known its function. The query mechanism in
Q-Peer is similar to the most original P2P system-Napster[12], by a centralized index
server cluster.

Services can be classified by their functionality, so corresponding QoS is naturally
classified to QoS classes. QoS in a same class have same QoS metrics[7]. In Q-Peer, a
QoS class is stored at one peer at first, but QoS data could be replicated when needed.
Organizing storage by QoS class can improve efficiency because users often retrieve
QoS of functional-identical services to compare and select from them. Different
service selection algorithm can be deployed on peers to assist users[9][19]. If a
service stored its QoS at a certain peer, the peer acts as its run-time monitor.

148 F. Li et al.

All peers are equal in Q-Peer. We do not use super-peer[20] because super-peer
often intends to improve query efficiency, which is not a problem in our system. Peers
employ a replication based load-sharing policy which utilizing spare resource on light
loaded peers. Every QoS record may have several replicas on different peers. Service
registry has a list of candidate peers for every service and chooses a random one when
user query QoS. Peers have an autonomic mechanism to exchange run-time load
information. Every peer keeps several other light-loaded peers as its neighbors for
load sharing. The detailed mechanism will be presented in following sections.

Service Registry

P1 P2

P4P3

Q(S5)
Q(S7)

Q(S6)

Q(S4)

Q(S3)Q(S2)

Q(S8)

Q(S1)

S5 S7S6 S8

S1 S2 S3 S4
Service

Requester
1.QoS Request

2.QoS Address

4.QoS

3.Get QoS

Fig. 1. General model of Q-Peer

Figure.1 illustrates a sample Q-Peer system containing 4 peers and 8 classes of
services. Replicas are hided for illustrating our model clearly. Service registry in the
figure can be either centralized or decentralized architectures. iS is a service class
which contains a number of same or similar service description. The QoS data set of a
service class iS is ()iQ S . Each peer stores several QoS classes. Every service
description contains the address of its QoS, as a pointer. When a service user needs to
query QoS of a certain service, it sends a QoS request to service registry, then the
registry will reply with a peer address. Service user can get QoS by direct accessing
the peer.

4 Information Dissemination

In Q-Peer, two types of information change frequently which should be constantly
updated and properly disseminated in the system. The first is service QoS. The second
is load status of peers.

 Q-Peer: A Decentralized QoS Registry Architecture for Web Services 149

4.1 QoS Update

For a service s to be registered, which belongs to service class S, the service has
functional and non-functional properties—service description D(s) and quality of the
service Q(s). D(s) is registered at service registry. If no service of S has been
registered before, service registry will choose a random peer to store its QoS
information. The selected peer is the main peer of Q(S) and the QoS data stored in
this peer is the main replica of Q(S). If S has been registered, Q(s) is added to its main
peer. As soon as a peer decided to accept Q(s) of a new service, the peer contacts with
the service and get current QoS for the first time.

For sharing load and improving availability, any Q(s) may have several replicas at
different peers (The replication mechanism is presented in next section). These peers
are called replica peers of Q(s). Every time a service update its QoS, it only updates
to the main peer. Then the other replicas are passively updated by the main peer.

4.2 Load Update

In Q-Peer, peer’s load and capacity are characterized by the QoS access frequency on
a peer. We assume every peer always has enough storage space for the cost of
increasing storage is much lower than which of increasing CPU power or network
bandwidth. QoS access comes from two major operations: one is update of QoS;
another is query of QoS. For a peer P storing n services’ quality
information: () () (){ }1 2, ,..., nQ s Q s Q s , each service has an updating
frequency ()u

if s and a query frequency ()q
if s , the load of the peer is:

() ()()
1

()
n

u q
i i

i

L P f s f s
=

= +∑ (1)

The estimated maxim allowed access frequency of P is the maxim
capacity ()MC P . The available capacity ()AC P is: () () ()A MC P C P L P= − .

Every peer has a list of several other peers’ address, called Neighbor List (NL).
The peers in NL are candidate peers to accept replication request of the NL owner. A
neighbor item in NL is () (), , 1... , ,0A

i i iN P C P i m a m b a b= = ≤ ≤ < < ,
where m is the total neighbor number, a and b are the lower and upper limit of m.
Neighbor list is sorted by AC in descent order. Items in NL can be dynamically added
and deleted according to load change. When a new peer P adds to Q-Peer system, it
will get a random list of peers as neighbors. P periodically sends its own ()AC P to
neighbors and update NL by getting neighbors’ AC back from reply messages. If any
peer received an unknown peer’s AC which was better than the last item in its NL or
the NL was not full, the new peer is inserted as a neighbor. If NL exceeded the maxim
number limit b, the last item is removed. A peer has a lowest capacity limitation l to
take another peer as its neighbor. For any Pi in NL which ()A

iC P l< , it is deleted. If
item number in NL were lower than a, peer initiates a random walk process to find
new neighbors. The random walk begins from a random peer in its NL. Random walk
message contains the initiator’s AC for other peers to update NL if satisfied. For any

150 F. Li et al.

peer walked through, it sends a random item in its NL back to the initiating peer and
forwards message to the item. The random walk stops for TTL limitation.

By this load information exchange approach, peers tend to take light-loaded peers
as neighbors which are more likely to be able to accept replication requests. For peers
with less available capacity which have not been taken as neighbor of any other peers,
they still have chance to use other peers’ resource. When they have more available
capacity, they are added to its neighbor’s NL.

5 Replication and Load Sharing

If a peer found itself under load pressure, it can request other peers to replicate some
of its data for load-sharing. We present two replication schemes in this section:
Replicating QoS Class(RQC) and Replicating QoS Object(RQO).

5.1 Replicating QoS Class

Replicating QoS class considers load status of a whole QoS class and takes QoS
classes as operation unit. This replication scheme makes service selection can be done
at any peer containing a replica, because every replica is a whole class of QoS.

Every QoS class has ()1r r K≤ ≤ replicas including the original one, where K is
the maxim allowed replica number for a QoS class. If a peer’s load were approaching
threshold, it tries to replicate the most popular QoS class to the neighbor with most
available capacity, which is the first neighbor in NL. A peer accepts replication
request when all of the three conditions hold: the QoS class has less than K replicas,
the spared capacity of the neighbor can satisfy load requirement, the neighbor has not
stored this QoS class. Assume P1 is the replication target peer, and ()iQ S is the class
to replicate, the load satisfaction condition is:

() ()() ()()
1 1

q
iA u

i

r f Q S
C P f Q S

r

×
> +

+
 and r K< (2)

In (2), we can find that by replicating a QoS class, replication peer can share
1 1r + of the class’ query load, but update load can not be leveraged because all
replicas should keep consistency. With the growing of replica number, load sharing
by replication can have less and less effect because 1r r + is approaching 1.
Furthermore, keeping more replicas consistent adds more load on the system. Thus, K
should be a small number to make the approach effective.

If the available capacity of first neighbor ()1
AC P could not satisfy the replication

requirement, the random walk process will be initiated to refresh the neighbor list. As
soon as a replication peer is found, a replication request of ()iQ S is sent to new peer.
Service registry is informed that a new replica can be selected to query QoS after
replication is successfully performed.

If all QoS class in a peer had K replicas but it was still under load pressure, a
random replica is chosen to delete. Service registry is informed before deletion, so
that it would not get the class of QoS from this peer. Main peer of the QoS class is

 Q-Peer: A Decentralized QoS Registry Architecture for Web Services 151

also informed so that it would not update QoS to this peer. If the deleted replica was
the main replica of the service class, another replica would be chosen as main replica
and related service providers would be informed to update QoS to the new main peer.

5.2 Replicating QoS Object

The scheme of replicating QoS object replicates only one service’s quality data every
time. This replication scheme would not affect service selection function because a
complete replica of a QoS class is still exists at the main peer which is responsible for
updating QoS to all replicas.

When a peer finds itself under load pressure, it tries to replicate the most loaded
QoS object. If the peer were still heavy loaded after a replication (This is highly
possible if only one QoS object is replicated), it replicates the most loaded QoS object
again. The new most loaded QoS object may or may not be the previous replicated
one. This replication process would repeat until the peer’s load is under predefined
threshold. Every replication request is sent to the neighbor with most available
capacity. We do not limit the replica number of a QoS object in this scheme, because
for a single heavy loaded QoS object, its access frequency is always much higher than
its update frequency.

In replication process, neighbor list may run out of neighbors because neighbor’s
available capacity is consumed. Random walk will be initiated when neighbor number
is lower than limitation.

If neighbor list had been updated and run out again, and the peer were still under
load pressure, peer begins to delete QoS object by descent order of object access
frequency. Another deletion scheme is always taken periodically at all peers: if the
query frequency of a QoS object was lower than its update frequency, it is deleted no
matter what the peer status is. Only objects which are not main replica can be deleted.

6 Experiments

The Q-Peer prototype is developed in JAVA. We deploy our prototype on Planet-lab
platform to test the performance and effectiveness of the system. “Planet-lab is a
global research network that supports the development of new network services.”[6]
The platform can provide us nearly realistic distributed network environment.

6.1 Experiment Environment

The experiment environment is illustrated in Fig.2. Service registry is only a
simulation program for testing the Q-Peer prototype, providing service classification
and QoS address query function. Test agent simulates QoS access operations of
service providers and requesters, which generates load to Q-Peer. We allocate a
number of hosts in Planet-lab and deploy Q-Peer prototype on every host.

6.2 Evaluation Methodology

We expect that by replication, we can balance load among peers in Q-Peer which will
result in better system performance. We characterize the Q-Peer performance by
system utility, balance degree, and request loss ratio.

152 F. Li et al.

Fig. 2. Experiment environment

• System utility: the percentage of total successful query frequency to the total
allowed capacity of all peers.

• Balance degree: the standard deviation of utility at all peers.
• Request loss ratio(RLR): the percentage of refused requests to total requests. A

peer will refuse QoS access request when the load achieves allowed capacity.

The performance have been evaluated in three replication schemes: without
replication, QoS class replication and QoS object replication. We allocated 50 hosts
as 50 peers. Each host had a maxim allowed capacity randomly set from 500 to
10,000 (access/minutes). QoS data was added by the service provider simulator from
test agent. Every provider updated its QoS once a minute. QoS query requests was
simulated following Zipf distribution[21]. That is, a small portion of the QoS objects
is queried much frequently.

Different scenarios was tested to find out the effect of replication schemes in
different system status: 1, fixed QoS object number with growing request; 2, different
QoS object number and class number with growing request; 3, different parameter
configuration and their effect on load-balance. In the first scenario, 200 classes of
QoS was generated and randomly distributed in peers. There were randomly 100-500
QoS objects in each class. Average request frequency was set at 50,000
requests/minutes., and grew 1000 every minute. The maxim replica number in RQC
was set at 5. In the second scenario, two cases were tested. One was that we tested the
performance when total QoS object number increased with a step of 1,000, but
keeping the total class number at 200. The other was that we increased total class
number by adding new classes to the system, but average QoS object number in each
class did not change. In both cases, we grew requests frequency until RLR achieves
10%. The third scenario tested the effect of different system configuration. The
maxim neighbor list length was set from 6 to 20 with a step of 2. Random walk TTL
was set at 10. For the sake of peers’ policy, not every peer is so generous to accept
replication request. We tested the system utility when 10%-70% of peers would refuse
other peers’ replication request. In each configuration, we still tested system utility
with growing request frequency until RLR achieves 10%.

 Q-Peer: A Decentralized QoS Registry Architecture for Web Services 153

6.3 Results and Analysis

In Fig.3, we illustrate the Q-Peer performance in different replication schemes. Figure
3(a) shows request loss ratio when request frequency grows. The no replication case
has a linear growth of RLR because some of the peers are unable to response all the
request at the beginning. With the request frequency growing, more and more peers
are reaching capacity limits and more requests will be dropped. Obviously, replication
cases can make the system scale up easily. The RQO case has better scalability
because it balance load more accurately. Only the QoS object which needs replication
will be replicated in RQO while the RQC replicates some light-loaded QoS object
with the whole class. Figure 3(b) also shows that RQO has better balance degree. The
balance degree keeps high at the beginning because requests are not evenly
distributed in all peers and most of the peer has no need to replicate. When request
frequency increases to system limit, the balance degree is decreased under 0.1 by
RQO.

60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

55

R
eq

ue
st

 lo
ss

 r
at

io
(%

)

k Requests/Minute

 No replication
 Replicate QoS Class
 Replicate QoS Object

(a)

60 80 100 120 140 160 180
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

B
al

an
ce

 d
eg

re
e

k Requests/Minute

 No replication
 Replicate QoS Class
 Replicate QoS Object

(b)

Fig. 3. (a) Request loss ratio with request frequency growing. (b) Balance degree with request
frequency growing.

60 70 80 90 100 110 120
10

20

30

40

50

60

70

S
ys

te
m

 u
til

ity
(%

)

k QoS objects

 No replication
 Replicate QoS Class
 Replicate QoS Object

(a)
200 220 240 260 280 300 320 340

10

20

30

40

50

60

70

S
ys

te
m

 u
til

ity
(%

)

QoS class

 No replication
 Replicate QoS Class
 Replicate QoS Object

(b)

Fig. 4. (a)System utility with different QoS object number. (b) System utility with different
QoS class number.

154 F. Li et al.

The total QoS number and its classification also has significant impact on Q-Peer
performance because when QoS number growing, the QoS update operation will
consume a significant part of total system capacity. Replications will increase update
operations because we have to keep consistency of all replicas. In Fig 4, we can find
that no replication case keeps a very low system utility at 20%-30%. The RQO case’s
system utility decreases with QoS number growth and drops to about 40% when QoS
object number achieves 120,000. Considering our total system capacity is about
250,000, the system utility is still very good. A problem of ROC is illustrated in Fig
4(a). The system utility drops rapidly with total QoS number growing by expanding
every class. The reason is that RQC has to replicate more QoS object when QoS
number in each class growing. Surprisingly, system utility of RQC is worse than no
replication case when total QoS number is approaching 110,000.

6 8 10 12 14 16 18 20
40

44

48

52

56

60

64

68

72

S
ys

te
m

 u
til

ity
(%

)

Maxim neighbor list length

 Replicate QoS class
 Replicate QoS Object

(a)

10 20 30 40 50 60 70
25

30

35

40

45

50

55

60

65
S

ys
te

m
 u

til
ity

(%
)

Refuse ratio(%)

 Replicate QoS Class
 Replicate QoS Object

(b)

Fig. 5. System utility with different configuration

Figure 5 illustrates the impact of neighbor list length and refuse ratio. With
neighbor list length growing, system utility can be improved. But long neighbor list
can generate more network overhead for neighbor load update. And system
performance improves slowly when neighbor list is long enough, because the
neighbors in last part of the list can not provide much capacity for replication. The
refuse ratio has obvious impact on system utility but this case is similar to realistic
environment, where some of the registries have their own serving area.

While our experiments show that the RQO can give system better utility and
balance peers, the RQO also has a problem that it balances system slower than RQC.
Because RQC replicates a large number QoS objects every time, it can response to
load change rapidly, which is important for burst requests.

7 Conclusion and Future Works

The web service infrastructure is evolving, so as the QoS registration architecture of
web services. Most of the early works are centralized systems, but we believe that
decentralized system is more suitable for global service oriented environment. In this
paper, we presented a distributed web service QoS registry—the Q-Peer architecture.

 Q-Peer: A Decentralized QoS Registry Architecture for Web Services 155

The architecture is based on Napster-like unstructured peer-to-peer model. Every QoS
object address is stored in service registry with its service description. Same or similar
services’ QoS is clustered together to conveniently expand other QoS operation like
service selection. We designed simple but effective mechanisms to exchange load
information between peers. Every QoS has several replicas to share load on different
peers. Replication is based on load status exchange mechanism among peers. We
presented two replication schemes—replicating QoS class and replicating QoS object,
which have different granularity of replication. We tested the system performance
with two replication schemes. RQO showed good load-balance effect in various
system statuses.

We are still improving Q-Peer on the replication scheme. A more accurate and
rapid load sharing approaching is needed. We are conducting theoretical analysis on
replication behavior and effect of different configurations, which will make the
system more adaptive on different scale and network status.

References

1. Tsalgatidou, A., Pilioura, T.: An Overview of Standards and Related Technology in Web
Services. Distributed and Parallel Databases 12(2), 135–162 (2002)

2. Web Services Architecture, W3C (February 2004)
3. Li, F., Yang, F.C., Shuang, K., et al.: Peer-to-Peer based QoS Registry Architecture for

Web Services. In: DAIS 07. The Proceedings of the 7th IFIP International Conference on
Distributed Applications and Interoperable Systems. LNCS, vol. 4531, Springer,
Heidelberg (2007)

4. UDDI version 3.0, OASIS
5. Verma, K., Sivashanmugam, K., Sheth, A., et al.: METEOR-S WSDI: A Scalable P2P

Infrastructure of Registries for Semantic Publication and Discovery of Web Services.
Information Technology and Management 6(1), 17–39 (2005)

6. Planet-Lab Homepage, http://www.planet-lab.org/
7. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services

Selection. IEEE Internet Computing 8(5), 84–93 (2004)
8. Serhani, M.A., Dssouli, R., Hafid, A., et al.: A QoS broker based architecture for efficient

Web services selection. In: ICWS’05. Proceedings of IEEE International Conference on
Web Services, pp. 113–120. IEEE Computer Society Press, Los Alamitos (2005)

9. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS computation and policing in dynamic web service
selection. In: Proceedings of the 13th International Conference on World Wide Web, pp.
66–73. ACM Press, New York (2004)

10. Yu, T., Lin, K.J.: A Broker-based Framework for QoS-Aware Web Service Composition.
In: EEE-05. Proceeding of IEEE International Conference on e-Technology, e- Commerce
and e-Service, Hong Kong, China, IEEE Computer Society Press, Los Alamitos (2005)

11. Gibelin, N., Makpangou, M.: Efficient and Transparent Web-Services Selection. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 527–532.
Springer, Heidelberg (2005)

12. Napster Homepage, http://www.napster.com
13. Gnutella Homepage, http://www.gnutella.com
14. KaZaA Homepage, http://www.kazaa.com

156 F. Li et al.

15. Lua, E.K., Crowcroft, J., Pias, M., et al.: A Survey and Comparison of Peer-to-Peer
Overlay Network Schemes, IEEE Communications Survey and Tutorial (March 2004)

16. Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data: issues and research
challenges. In: ACM SIGMOD Record, vol. 34(2), ACM Press, New York (2005)

17. Schmidt, C., Parashar, M.: A peer-to-peer approach to Web service discovery. In:
Proceedings of the 13th International Conference on World Wide Web, pp. 211–229
(2004)

18. Cohen, E., Shenker, S.: Replication Strategies in Unstructured Peer-to-Peer Networks. In:
Proceedings of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 177–190. ACM Press, New York (2002)

19. Li, F., Su, S., Yang, F.C.: On Distributed Service Selection for QoS Driven Service
Composition. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS,
vol. 4082, Springer, Heidelberg (2006)

20. Nejdl, W., Wolpers, M., Siberski, W., et al.: Super-peer-based routing and clustering
strategies for RDF-based peer-to-peer networks. In: Proceedings of the 12th international
conference on World Wide Web, pp. 536–543. ACM Press, New York (2003)

21. Adamic, L.A., Huberman, B.A.: Zipf’s Law and the Internet. Glottometrics 3, 143–150
(2002)

Business Process Regression Testing

Hehui Liu, Zhongjie Li, Jun Zhu, and Huafang Tan

IBM China Research Laboratory, Beijing 100094, China
{hehuiliu, lizhongj, zhujun, tanhuaf}@cn.ibm.com

Abstract. Business Process Execution Language(BPEL) has been
recognized as a standard for the service orchestration in Service Ori-
ented Architecture(SOA). Due to the pivotal role played by BPEL in
service composition, the reliability of a business process becomes critical
for a SOA system, especially during its evolution.

Regression testing is well known as an effective technology to ensure
the quality of modified programs. To reduce the cost of regression test-
ing, a subset of test cases is selected to (re)run, known as regression
test selection. Previous work addressing this problem will fail in the
presence of concurrent control flow, which is an important and widely
used feature of BPEL in describing service orchestration. In this paper,
a regression testing approach for BPEL business processes is presented.
In this approach, an impact analysis rule is proposed to identify the
test paths affected by the change of BPEL concurrent control struc-
tures. Based on the impact analysis result and process changes identi-
fication, the impacted test paths are classified into reusable, modified,
obsolete and new-structural paths. Experiments show that our approach
is feasible.

1 Introduction

Service Oriented Architecture (SOA) is continually gaining more application in
software industry for the automation of business processes and the integration of
IT systems. In SOA, the service orchestration that combines several web services
into a more complex one is a crucial building block [2]. Business Process Execu-
tion Language(BPEL) is a standard for describing such service orchestration. For
the pivotal role played by BPEL in service composition, the reliability of busi-
ness processes becomes especially critical for a SOA system. More importantly,
the dynamic and adaptive nature of SOA also requires the business processes
evolve more quickly and meanwhile puts forward more rigorous demand on the
quality of the processes during the maintenance of a SOA system.

Regression testing is well known as an effective technology for verifying the
behavior of modified programs [5]. After a program has been changed, obviously,
the simplest way is to rerun all test cases, which is called as retest-all strategy
[5] in regression testing. However, this strategy is expensive for executing unnec-
essary tests. Another strategy called as selective strategy [5] is applied to select
only a subset of test cases to (re)run. Two problems have to be addressed in this

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 157–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 H. Liu et al.

strategy: (1) the problem of selecting impacted tests from the test suite of origi-
nal program and (2) the problem of determining where additional test cases may
be required and generating them. A lot of work has been done around the first
problem [7, 1, 4, 9, 3], which is known as regression test selection problem. An
earlier work proposed a test path comparison approach to select the impacted
test cases [1]. In this approach, the test paths of the original and the new pro-
grams are compared one by one, test paths not included in the new paths are
selected out as impacted paths, and all test cases attached with the impacted
paths should be rerun. This path comparison approach could only be used when
white box test paths exist. Whereas, in real projects, test cases may be black
box and are no associated white box test paths, and the test paths are not al-
ways generated. So more generally and widely used approaches are based on the
comparison of control flow graphs or source codes [7, 4, 9]. These approaches
are based on the assumption that when a node/edge on the control flow or a
statement of the source code is changed, only the test cases that could cover this
node/edge or statement will be impacted. This assumption is true for programs
without concurrent control flow. However, in the presence of concurrent control
flow, even a minor change to the synchronization condition may affect many
concurrent execution paths that don’t contain the changed condition. Further-
more, the impact is not only related with the changed synchronization condition,
but also with other synchronization conditions. So, in the presence of concurrent
control flow, the traditional work [7, 4, 9] will fail and cannot be applied directly.
While in BPEL, the concurrent control flow is used as an important feature and
is widely used in business processes.

In previous work [6, 8], the authors have implemented a test path generation
tool for a BPEL business process under the path coverage criteria. This tool
can generate test paths automatically, and the generated test paths need to be
further refined manually into runnable test cases by adding complete test data
and so on. The application of this tool in real cases leads to the requirement on
the regression testing of a business process under the path coverage criteria. To
meet such requirement, in this paper we propose a regression testing approach
to select the (re)run test cases for a modified business process. Suppose that we
have two sets of test paths, one for the old process, one for the new process, and
an old test case set. Our goal is to work out a new test case set and select a test
case subset to (re)run. All test paths can be classified into four categories with
regression test selection technique:

- reusable paths: not impacted by the process changes, representing common
test paths of the old and new processes;
- modified paths: impacted, in the sense that conditional branches on the test
paths are the same but activity attributes or non-conditional activities are some-
how changed, representing old and new test paths that have minor differences;
- obsolete paths: only valid for the old process, representing old test paths
that will not exist for the new process;
- new-structural paths: only valid for the new process, representing new test
paths having no correspondence in the old process.

Business Process Regression Testing 159

Once we have this classification performed on the old and the new test paths,
we can take actions to get the new test cases. Old test cases of the reusable
paths are added to the new test case set; old test cases of the modified paths
are updated into new test cases; and new-structural test cases are derived from
the new-structural paths. Then all modified and new-structural test cases are
selected to (re)run. In order to do the test path classification, in this paper, the
differences between the old and the new processes are firstly identified. An im-
pact analysis rule is proposed to analyze the affected test paths by the changes
of concurrent control structures. Based on the process change information and
impact analysis result, a test path selection algorithm is used to select the test
paths, (re)run test cases. Different with previous work [1], we select the im-
pacted test paths based on the business processes comparison instead of path
comparison. Therefore, even if the test paths of the business processes are not
generated, our approach could still be applied to select the impacted test cases
via the linkage of source codes with test cases. The rest of this paper is orga-
nized as follows: section 2 gives some background of BPEL. Section 3 introduces
our regression testing approach for business processes. Section 4 presents related
work and section 5 closes this paper with conclusion and future work prediction.

2 Business Process Execution Language

A BPEL process is composed of BPEL activities, which can be either atomic
or structured. Atomic activities define constructs for web service interactions
and data handling, such as receive (wait to receive an event), reply (return an
response to its caller), assign (assign a value to a variable). Like other program-
ming languages, BPEL has typical control structures including sequence, switch,
while, etc. In addition, BPEL uses the flow construct to provide concurrency and
synchronization. These are called structured activities, which will be the con-
tainer for atomic activities. A BPEL activity could have some attributes like
name, invoked service and variable name.

Inside a flow construct, synchronization between concurrent activities is pro-
vided by means of links. Each link has a source activity and a target activity.
Furthermore, a transition condition (a boolean expression) is associated with
each link and is evaluated when the source activity terminates. Only after the
source activity has terminated, the transition condition is evaluated. And only
if the transition condition is true, the target activity could be executed. In this
paper, activities that allow control logic divergence (e.g. switch, link with a
transition condition) are called decision points. As the link activity has special
meaning for regression analysis, we’ll take it as a special kind of activity, and
call all the other activities ”general activities”.

Figure 1 gives an example loan process. This process begins by receiving a
loan request. The InvokeAssessor and InvokeApprover are two invoke activi-
ties to invoke risk assessment and loan approval services respectively. All the
activities of this process are contained within a flow, and their (potentially con-
current) behavior is staged according to the dependencies expressed by links. The

160 H. Liu et al.

Fig. 1. The Loan Process

transition conditions on the links determine which links get activated. Finally
the process responds with either a ”loan approved” or a ”loan rejected” message.

3 BPEL Regression Testing

The objective of regression test selection of a business process is to identify the
impact of business process changes to test cases, and then take proper test case
update actions accordingly and determine the subset of test cases to (re)run.

In this paper, we classify the test paths for the original process and the new
process into four categories: reusable, obsolete, modified and new-structural, as
is shown in figure 2. The exact meaning of this classification has been explained
in the introduction section. Take the processes in figure 2 as an example, for
the three test paths in the old process, path 1 is reusable as it is not impacted
by the process changes, path 2 is obsolete, path 3 is modified into a new test
path by adding a new activity 10 and modifying the activity 6. The new process
introduces two new test paths: path 4 and path 5.

Fig. 2. The test paths classification and process change scenario

Business Process Regression Testing 161

3.1 Regression Test Selection Problems Introduced by Concurrent
Control Flow

Based on the path classification, the mission of path selection is to identify the
reusable, obsolete, new-structural and modified test paths after a business pro-
cess has been changed. For different types of activities, the change impact to
test paths is different. For a general activity change, only test paths contain-
ing this activity will be impacted. According to the activity type and change
information, the category(modified, obsolete, and new-structural) of impacted
test paths could be determined. For example, if a while activity is deleted, all
test paths containing this activity in the original path set will become obsolete.
However, for a link activity, the problem becomes complex and this simple rule
is not true any more. Once a link activity is changed, the impacted test paths
will not be limited to those containing the changed link. For example, if the tran-
sition condition of link2 in the process of figure 1 is modified to the condition
showed in the process of figure 3(1), the path with request.amount >= 1000 not
containing link2 in figure 1 will be modified(the condition of this path becomes
request.amount >= 2000). At the same time, two new-structural test paths are
introduced into the new process(the path with 1000 <= request.amount < 2000
and riskAssessment.risk != ’low’ and the path with 1000 <= request.amount <
2000 and riskAssessment.risk = ’low’). Whereas, if the transition condition of
link2 is changed to request.amount >= 1000, as showed in the process in figure
3(2), all the test paths in the original process will become obsolete, and two
new-structural paths will be generated in the new process.

Fig. 3. The modified processes of loan process

Actually, the problems here are caused by the concurrent characteristic of the
flow activity. Potentially, all the elements contained in a flow could execute con-
currently. Just for the existence of link activities, some activities are prohibited
to run, consequently not included in some test paths. For the test path with
request.amount >= 1000 in figure 1, as the condition of link 2 is false, both

162 H. Liu et al.

InvokeAssessor and Assign activity are prohibited to be executed, not including
in this test path. Further more, the activation of link 2 is related with link 1,
consequently the change of link 1 could affect both the test paths covering link
1 and those covering link 2. So, in order to select the modified, obsolete and
new-structural paths impacted by a link activity change, we have to solve two
problems: 1, analysis the impact of the link activity changes to test paths; 2,
select the relevant test paths(modified, obsolete, new-structural paths) from the
impacted test paths.

3.2 BPEL Diff

In order to select the impacted test paths, we need firstly identify the changes of
a business process upon modification, and by the inclusion relationship between
activities and test paths, the impacted test paths could be selected and classified.
A change table is used to record all the changed activities here, as is shown in
table 1. Therein, each row represents a change item. IsDecisionPoint indicates
whether the changed activity is a decision point. ChangeType indicates the type
of the change action: M, D, and A. M is modification action, D is deletion action,
A is addition action. Activities in old process refers to the changed activity in
the original process, and Activities in new process refers to the changed activity
in the new process. For the deletion action, because the deleted activity does
not exist in the new process, the previous activity of the deleted activity is put
in Activities in new process column. Similarly, for the addition action, Activities
in old process will point to the previous activity of the added activity. Such as
for the process in figure 2, we could get the change table showed as table 1.

Table 1. The structure of change table

Activities in old
process

IsDecisionPoint Change
Type

Activities in new
process

4 false D 3

6 false M 6’

3 true A 7

As a BPEL process is represented in XML format, we could use an XML parser
to get a model that contains all the activities and their structure information
of this process. In the model of original process and that of new process, in
order to identify the same activity, the activity name is used as the unique
identifier in this paper. In the BPEL process model coming from two processes,
by comparing the activities in the original and the new process, we could get
all the change information, and fill them into the change table. Link activity is
special as it connects source and target activities. We use the following rules for
the comparison of link activities. Only when the source activity name, the target
activity name and the transition condition of two links are all the same, the link
activities are considered as same. If either the source or the target activities are

Business Process Regression Testing 163

different, the link activities are considered as different entities (this case will be
broken down into a link delete action and a link addition action); if the transition
condition is modified, this link is considered as modified.

3.3 Path Selection

For the new business process, based on our previous work [8], its test paths
can also be generated automatically. So, in this paper, our test path selection
algorithm is applied on these two test path sets to classify the reusable, modified,
obsolete and new-structural paths. In order to record the relationship between
test paths and activities, a test path table is used, as is shown in table 2. Therein,
the value in column j and row i represents whether activity j is on test path i.
When this value is 1, the activity j is on the test path i; when the value is 0, the
activity j is not on the test path i. We call this value as indicator in this paper.
Table 2 is the test path table of the loan process in figure 1.

Table 2. The test path table of the loan process

Test
Path

ReceiveLink1 Link2 Invoke
Assessor

Link3 Link4 Invoke
Approver

Assign Link5 Link6 Reply

path 1 1 1 0 0 0 0 1 0 1 0 1

path 2 1 0 1 1 1 0 1 0 1 0 1

path 3 1 0 1 1 0 1 0 1 0 1 1

Impact Analysis for Concurrent Control Structure Change. From the
change table, we could get all the change information of a business process, and
for the different types of activities, the impact to test paths is definitely different.
For a decision point, its deletion will cause all test paths passing this activity
in original test path set become obsolete, and at the same time introduces new
test paths that could cover the previous activity of this decision point into new
path set. The addition of a decision point will generate new paths covering this
activity in the new path set, and at the same time could make all test paths
containing its previous activity in the original test path set become obsolete
paths. For a branch activity of a decision point, its deletion could also make the
test paths passing it in the original path set become obsolete, and its addition
could generate new-structural paths passing it in the new path set. For a non-
decision-point activity, its addition, deletion and modification could only make
all test paths passing it become modified paths.

For the change of a link activity, the test paths covering the changed link ac-
tivity are only a subset of the impacted test paths. Just as explained in section
3.1, its impact to the test paths is far beyond this. In fact, based on the char-
acteristic of the target activity of a changed link activity, there are two types
of impact results. One is that the target activity of a changed link activity is a
start activity of a flow activity in the opposite process (we say the original and
new process as opposite process), we call this change as first type of link change;

164 H. Liu et al.

the other type is that the target activity is not a start activity, and we call this
change as second type of link change.

First type of link change: in this type, because in current process, the target
activity of the changed link activity is a start activity of a flow in the opposite
process, all test paths passing this flow activity will include the activity. While in
current process, for the existence of the link activity, only some test paths contain
the target activity and it can not be a start activity in the flow activity. So all
test paths passing this flow in the original and the new process will be impacted
by the change. See the example in figure 4, which is another changed process
of the loan process. In this process, link 4 is deleted from the original process,
and Assign activity becomes the start activity of the flow activity (although
in semantics, this cannot happen for this process, here we just use it as an
example). It could be seen that all the test paths passing the flow activity in
the new process have the Assign activity as a start activity of this flow. While
in the original process, no matter for which path, Assign activity is not a start
activity. That is to say, no matter in the original or the new process, all the
paths passing the flow activity are impacted.

Fig. 4. Another changed process of the loan Process

Second type of link change: in this type, suppose in the original process, the
links using the source activity of the changed link as source activity are link1,
link2, ... , linkn, and the corresponding transition conditions are C1, C2, ... ,
Cn, the intersections they generate could be expressed as C1

⋂
C2

⋂
...
⋂

Cn, it is
obviously that each branch of this source activity is a region of this expression.
For a condition Ci, if it has no intersection with the other conditions Cj(i!=j),
its deletion or addition will not impact other regions of this expression, but only
reduce or increase one region. See the process showed in figure 1, the transition
conditions of link3 and link4 have no intersection, so the deletion of link3 could
only reduce the branches of activity InvokeAssessor by one. In this case, only
the test paths containing the changed link activity are impacted. At the other
extremity, if Ci has intersection with all the other conditions Cj(i!=j), its deletion
or addition definitely can impact all other intersections, such as Ci == true. In

Business Process Regression Testing 165

this case, all the test paths passing the source activity will be impacted. In
general cases, when the link transition condition is changed, the impacted test
paths will have a scope between the above two extremity cases. In this paper,
for this change type, we consider all the test paths covering the source activity
as impacted paths.

So, for the changes of link activities, an impact analysis rule could be applied
to select out all the impacted test paths. This rule can be described as follows.
Firstly, based on the information of a changed link activity, judge which change
type it belongs. Secondly, following the conclusion of relevant impact analysis,
select out the impacted test paths caused by the change of this link activity. By
this rule, we could solve the first problem introduced by concurrent control flow.

Path Selection Based on Test Path Table. Based on the impact analysis,
we could get the regression test selection process as follows. Firstly, based on
the change table, the non-impacted test paths could be selected as reusable
paths. Secondly, the obsolete and new-structural paths caused by general activity
changes could be selected out from the original and the new path set. Thirdly, the
impacted test paths caused by link activity changes could be selected respectively
from the original and the new path set. Finally, the remaining paths is modified
paths. In this paper, we call the test paths impacted by link activity changes
special path sets.

In the special path sets, for two test paths p and p
′

that come from the
original path set and the new path set respectively, if p

′
is modified from p, they

must execute the same link activities. If in the original path set, there is no
test path that could execute the same link activities with p

′
, p

′
must belongs to

new-structural path set. Oppositely, if there is no test path that could execute
the same link activities with p in the new path set, p must belong to obsolete
path set. So, for a test path p

′
in the special path set coming from new path

set, following the rule that whether there is a path p in the original path set has
the same link activities with it, we could decide p

′
as a modified path or new-

structural path. If p
′
is a modified path, p should also be a modified path. Finally,

all the remaining paths in the special path set coming from the original path set
are obsolete paths. Consequently, the test paths impacted by the changes of link
activities could be classified into modified, obsolete, and new-structural paths,
solving the second problem introduced by concurrent control flow.

In summary, the path selection algorithm is shown as below. In this algorithm,
each path is labeled with a symbol from (R, M, O, N, R). In the symbol for path
pi, R represents pi is reusable, M represents pi is modified, O represents pi is
obsolete, N represents pi is new-structural, and S represents pi belongs special
path sets.

PathSelection(Change Table: C, Test Path Table of Original
Process: T, Test Path Table of new Process: T

′
)

1 Label all paths in original and new path set as R
2 for each modified activity a in C do
3 get impacted test paths I and I’ from T and T

′

166 H. Liu et al.

4 if a is a decision point or a branch activity of a decision point
5 label the paths in I as O and the paths I’ as N
6 else if a is not a link activity
7 for the paths in I and I’ are labeled with R, label them as M
8 else
9 if the change type of a is addition or deletion
10 label all paths containing a in I as O and those in I’ as N
11 end if
12 label other impacted test paths being labeled with R or M in I and I’
as S
13 end if
14 end if
15 end for
16 classify the test paths are labeled with S into modified, obsolete and new-
structural paths.

Table 3. The test path table of modified loan process

Test
Path

ReceiveLink1 Link2 Invoke
Assessor

Link3 Link4 Invoke
Approver

Assign Link5 Link6 Reply

path 1 1 1 1 1 1 0 1 0 1 0 1

path 2 1 1 1 1 0 1 1 1 0 1 1

In the identification of the special test path sets, because the paths executing
the added or deleted link activities have been selected out(shown in the 9 and
10 lines of PathSelection algorithm), in the special test path sets, all the link
activities contained in the paths are modified or non-changed, which exist in
original and new process at the same time. We represent this link activities set
as Slink. In the original path table, for a test path in the special test path set,
from top to down, all the indicator values of link activities contained in Slink

could form a 0 and 1 string, which in deed indicates the link activities that a
test path contains. In the new path table, from top to down, by tuning the order
of link activities contained in Slink to keep the same order with that of original
path table, for a test path in the special test path set of new path set, all the
indicator values of link activities contained in Slink also could form a 0 and 1
string. By judging whether this string is contained in the 0 and 1 string set of
original path set, we could select this path into relevant path set. Finally, all the
remaining paths in the special path set in the original path set are obsolete paths.
Such as for the original process in figure 1 and the new process in figure 3(2),
table 3 shows the test paths of the process in figure 3(2). By impact analysis,
we could learn that all test paths in test path table 2 and 3 are special paths.
Firstly, we could get the 0 and 1 strings for the special path set of original path
set as {path 1: 100010, path 2: 011010, path 3: 010101}(from left to right, the
link activities are: link1, link2, link3, link4, link5, link6). The 0 and 1 strings for
the special path set of this new process are: {path 1:111010, path 2: 110101}.

Business Process Regression Testing 167

Because 111010 and 110101 are neither contained in {100010, 011010, 010101},
the test paths of table 3 are new-structural paths, and the remaining paths in
table 2 are obsolete.

After the test paths are selected, the regression testing actions are taken as
follows: the test cases of reusable paths are added to new test case set, those
of modified paths are updated, and new test cases are generated for the new-
structural paths. Then the updated and new test cases are selected to (re)run.

The tool of this paper is built as an Eclipse plugin tool, making it could
easily integrated with other SOA develop or testing tool, such as WebSphere
Integration Developer or Rational Architectural Develop.

4 Related Work

Regression testing has been recognized as an effective technology to ensure the
quality of software after a system has been changed. Lots of previous work has
been done around the regression test selection problem, and the test selection
based on control flow is widely applied [7, 4, 9]. In these approaches, after a
program has been changed, the control flow graphs of the original and the new
program are obtained by analyzing the source codes of original and new pro-
gram. Based on the control flow graphs, a graph comparison algorithm is used
to identify the changed nodes or edges. Consequently, the test cases covering the
changed nodes or edges are selected as impacted cases. In the face of the new
characteristic introduced by the object-oriented programs and aspect-oriented
programs, the control flow graph is extended by [4, 9] respectively to support
the new characteristic of new programming language. Then based on the ex-
tended control flow graph, the test selection algorithm is applied to select the
impacted test cases [4, 9]. So far as we know, [1] is the only work that also selects
the impacted test cases under the path coverage criteria. In this paper [1], all
test paths are represented by a special expression-algebraic expression. Based
on the representation, a test path comparison approach was proposed to select
the impacted test cases. However, this approach is limited by the expression ca-
pability of test path model, and only could be applied to selected the impacted
test cases when the test paths are generated. While the approach of our paper
not only could be applied to the select the (re)run test cases via test paths, but
also could be applied to select the (re)run test cases when test paths are not
generated.

5 Conclusions and Future Work

Service Oriented Architecture (SOA) is recognized as a good solution for the
integration of diverse IT systems. BPEL as a standard for the service orchestra-
tion has been widely used in SOA to compose multiple services to accomplish a
business process. The pivotal role of BPEL in a SOA system makes its reliabil-
ity become especially critical in the maintenance of a SOA system. Regression
testing has been recognized as an effective technology to ensure the quality of

168 H. Liu et al.

modified programs. In this paper, to address the special problems introduced by
the concurrent control structure of BPEL, a regression test selection approach
for BPEL is proposed. In this approach, the changed activities are identified by
BPEL Diff. The impact of concurrent control structure changes to test paths is
classified into two types. Based on the analysis for these two types, an impacted
analysis rule for the changes of concurrent control flow is proposed. By consid-
ering all the link activities on a test path, the test paths impacted by a link
activity changes are classified into modified, obsolete and new-structural paths.
Consequently, the reusable, modified, obsolete and new-structural path sets are
selected out. Finally the related test cases are selected and updated. In future,
we will study a more precise selection algorithm to select the test paths impacted
by link activity changes, and further validate our technology in more real cases.

References

[1] Benedusi, P., Cimitile, A., Carlini, U.D.: Post-maintenance testing based on path
change analysis. In: ICSM’ 88. Proceedings of the Conference on Software Mainte-
nance, Scottsdale, AZ, USA, pp. 352–361 (October 1988)

[2] Chen, L., Wassermann, B., Emmerich, W., Foster, H.: Web service orchestration
with bpel. In: ICSE’06. Proceeding of the 28th International Conference on Software
Engineering, Shanghai, China, pp. 1071–1072 (May 2006)

[3] Vokolos, F.I., Frankl, P.G.: Pythia: A regression test selection tool based on textual
differencing. In: ENCRESS’ 97. Porceedings of the 3th International Conference on
Reliability, Quality, and Safety of Software Intensive Systems, Athens, Greece, pp.
3–21 (May 1997)

[4] Harrold, M.J., Jones, J.A., Li, T., Liang, D.: Regression test selection for java soft-
ware. In: OOPSLA’01. Proceedings of the ACM Conference on OO Programming,
Systems, Languages, and Applications, Tampa Bay, FL, USA, pp. 312–326. ACM
Press, New York (October 2001)

[5] Li, Y., Wahl, N.J.: An overview of regression testing. ACM SIGSOFT Software
Engineering Notes 24(1), 69–73 (1999)

[6] Li, Z., Sun, W.: Bpel-unit: Junit for bpel processes. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 415–426. Springer, Heidelberg (December
2006)

[7] Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology 6(2), 173–210 (1997)

[8] Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to bpel4ws test gen-
eration. In: ICSEA’06. Proceedings of the International Conference on Software
Engineering Advances, Papeete, Tahiti, French Polynesia, p. 14 (October 2006)

[9] Zhao, J., Xie, T., Li, N.: Towards regression test selection for aspectj programs.
In: WTAOP06. Proceedings of the 2nd workshop on Testing Aspect-Oriented Pro-
grams, Portland, Maine, pp. 21–26 (July 2006)

Auditing Business Process Compliance

Aditya Ghose and George Koliadis

Decision Systems Laboratory
School of Computer Science and Software Engineering

University of Wollongong, NSW 2522 Australia
{aditya, gk56}@uow.edu.au

Abstract. Compliance issues impose significant management and reporting re-
quirements upon organizations. We present an approach to enhance business
process modeling notations with the capability to detect and resolve many broad
compliance related issues. We provide a semantic characterization of a minimal
revision strategy that helps us obtain compliant process models from models that
might be initially non-compliant, in a manner that accommodates the structural
and semantic dimensions of parsimoniously annotated process models. We also
provide a heuristic approach to compliance resolution using a notion of compli-
ance patterns. This allows us to partially automate compliance resolution, leading
to reduced levels of analyst involvement and improved decision support.

1 Introduction

Compliance management has become a significant concern for organizations given
increasingly onerous legislative and regulatory environments. Legislation such as the
Sarbanes-Oxley Act imposes stringent compliance requirements, and organizations are
increasingly having to make heavy investments in meeting these requirements (arguably
evaluated to approx. US$15 billion in year 2005 US corporate cost and $1.4 trillion
in market costs [1]). Thus, we address the problem of auditing business processes for
compliance with legislative/regulatory frameworks, as well as the problem of appropri-
ately modifying processes if they are found to be non-compliant. We focus primarily on
early-phase analysis and design (or model) time compliance analysis and resolution.

We will use Figure 1: a simple BPMN (see Section 1.2) “Screen Package” process
owned by a CourierOrganization as a motivating example. This process is concerned
with scanning packages upon arrival to the organization to establish their Status and
ensure that they are screened by a RegulatoryAuthority to determine if they should be
Held. One simple (and critical) compliance rule imposed by a RegulatoryAuthority
may state that: (CR1) “Packages Known to be Held by a Regulatory Authority must not
be Routed by a Sort Officer until the Package is Known to be Cleared by the Regulatory
Authority”.

Our challenge in this paper is to determine whether a process violates compliance
requirements and to decide how to modify the process to ensure it complies. Several
alternative approaches exist for the former - we therefore devote much of our atten-
tion to the latter. In particular we note that ad-hoc changes to processes in the face of
non-compliance can lead to significant downsides, including additional inconsistencies,

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 169–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 A. Ghose and G. Koliadis

Fig. 1. Package Screening Process (O)

unwarranted side-effects as well as changes within the model and subsequent organiza-
tion upon deployment.

We provide a conceptual framework that can be relatively easily implemented in
decision-support tools that audit process models for compliance and suggest modifica-
tions when processes are found to be non-compliant. A key challenge with BPMN is
that it provides relatively little by way semantics of the processes being modeled. An-
other challenge is that there is no consensus on how the semantics of BPMN might be
defined, although several competing formalisms have been proposed. Since compliance
checking clearly requires more information than is available in a pure BPMN process
model, we propose a lightweight, analyst-mediated approach to semantic annotation of
BPMN models, in particular, the annotation of activities with effects. Model checking is
an alternative approach, but it requires mapping BPMN process models to state models,
which is problematic and ill-defined.

We encode BPMN process models into semantically-annotated digraphs called Se-
mantic Process Networks (or SPNets). We then define a class of proximity relations
that permit us to compare alternative modifications of process models in terms of how
much they deviate from the original process model. Armed with these tools we are
able to resolve non-compliance by identifying minimally different process models (to
the original) that satisfy the applicable compliance requirements. We are also able to
focus analyst attention on the minimal sources of inconsistency (with the applicable
rules) within a process model - appropriately modifying each of these is an alternative
approach to restoring compliance. In addition to laying the semantic groundwork for
reasoning about resolutions to process non-compliance, we also introduce the notion
of process compliance patterns. These patterns provide heuristic guidance for detecting
and resolving process non-compliance. This research lays the foundations for a new
class of tools that would help analysts determine, using design-time artefacts, whether a
process model satisfies the applicable compliance requirements and how best to modify
these processes if they are found to be non-compliant.

1.1 Related Work

In [2], logic-based contractual formalisms are provided for specifying and evaluating
the conformance of business process designs with business contracts. In comparison,
we present a framework that permits the semi-automated alteration of non-compliant
process models in a minimal, structure and semantics preserving manner. In [3], an
approach for checking semantic integrity constraints within the narrative structure of

Auditing Business Process Compliance 171

web documents is proposed. Description logic extensions to Computational Tree Logic
(CTL) are provided for specifying a formal model of a documents conventions, criteria,
structure and content. In most cases, the ‘high-level’ nature of most business process
models may not lead directly to detailed fine grained execution and interaction models
used in model-checking based approaches to static analysis [4]. Furthermore, techniques
employing model checking have limited support for localizing errors and inconsistencies
to specific (or range of) elements on process models. In [5], an approach for integrating
business rule definitions into process execution languages is presented. In addition, [6]
have recently proposed a method for verifying semantic properties of a process w.r.t.
execution traces once model change operations have been applied. Finally, heuristic
change strategies have been used to provide additional guidance for scoping business
process change requirements. For example, [7] present approx. thirty workflow redesign
heuristics that encompass change in task assignment, routing, allocation, communication
to guide performance improvement. [6] also define insertion, deletion and movement
process change primitives to limit the scope of verifying semantic correctness of models.

1.2 Some Preliminaries

The Business Process Modeling Notation (BPMN) has received strong industry interest
and support [8], and has been found to be of high maturity in representing the con-
cepts required for modeling business process, apart from some limitations regarding the
representation of process state and possible ambiguity of the swim-lane concept [9].
Processes are represented in BPMN using flows: events, activities, and decisions; con-
nectors: control flow links, and message flow links; and lanes: pools, and lanes within
pools. The process section in Figure 1 shows “Courier Organization” and “Regulatory
Agent” participants collaborating to achieve the screening of a package.

Business (or Compliance) Rules (BR) declare constraints governing action, their co-
ordination, structure, assignment and results, as well as the participants, their respon-
sibilities, structure, interactions, rights and decisions. [10] provide a rich taxonomy of
business rules that includes: State Constraints; Process Constraints; Derivation Rules;
Reaction Rules; and, Deontic Assignments. In addition, the formal specification of busi-
ness rules may include additional modal operators signifying the deontic (as in [2]) or
temporal (as in [11]) characteristics of desirable properties of the model. For example,
the following CTL expression refines the informal rule stated in Section 1:

(CR1) AG[Knows(RegulatoryAgent, Package, Status, Held) →
A[¬Performs(SortOfficer, Route, Package)
U Knows(RegulatoryAgent, Package, Status, Clear)]]

2 Modeling Business Processes for Compliance Auditing

Compliance of a business process is commonly concerned with the possible state of
affairs a business process may bring to bear. Activities and Sub-Processes (i.e. repre-
sented in BPMN as rounded boxes) signify such transition of state, where the labeling
of an activity (e.g. ‘Register New Customer’) abstracts one or more normal/abnormal
outcomes. In order to improve the clarity and descriptive capability of process models

172 A. Ghose and G. Koliadis

for testing compliance, we augment state altering nodes (i.e. atomic activities and sub-
processes) with parsimonious effect annotations. An effect is the result (i.e. product or
outcome) of an activity being executed by some cause or agent. Table 1 below outlines
the immediate effect of the tasks in Figure 1. Effects can be viewed as both: normative
- as they state required outcomes (e.g. goals); and, descriptive Ð in that they describe
the normal, and predicted, subset of all possible outcomes. Effect annotations can be
formal (for instance, in first order logic, possibly augmented with temporal operators),
or informal (such as simple English). Many of the examples we use in this paper rely on
formal effect annotations, but most of our observations hold even if these annotations
were in natural language (e.g. via Controlled Natural Languages - CNL). Formal anno-
tations (i.e. provided, or derived from CNL), e.g. Performs(Actor, Action, Object)
/ Knows(Actor, Object, Property, V alue), permit us to use automated reasoners,
while informal annotations oblige analysts to check for consistency between effects.

Table 1. Annotation of Package Screening Process (O) in Figure 1

Scan Package Performs(SortOfficer, Scan, Package)

Assess Package Performs(SortOfficer, Assess,Package)
∧Knows(RegulatoryAgent,Package, Status,Held)

Route Package Performs(SortOfficer, Route, Package)
∧Knows(SortOfficer, Package,Location, Forwarding)

Handle Package Performs(SortOfficer, Handle, Package)
∧Knows(RegulatoryAgent,Package,Status, Clear)

Update Status Performs(SortOfficer, Update, PackageStatus)

General Rule (GR1) ∀a : Actor Knows(a, PackageStatus,Held)
⇔ ¬Knows(a, Package,Status, Cleared)

An annotated BPMN model, for the purposes of this paper, is one in which every
task (atomic, loop, compensatory or multi-instance) and every sub-process has been
annotated with descriptions of its immediate effects. We verify process compliance by
establishing that a business process model is consistent with a set of compliance rules.
In general, inconsistencies exist when some domain / process specific rules contradict
each other. We evaluate compliance locally at sections of the process where they apply.
However, before doing this, we require that an analyst accumulates effects throughout
the process to provide a local in-context description of the cumulative effect at task
nodes in the process. We define a process for pair-wise effect accumulation, which,
given an ordered pair of tasks with effect annotations, determines the cumulative effect
after both tasks have been executed in contiguous sequence. The procedure serves as
a methodology for analysts to follow if only informal annotations are available. We
assume that the effect annotations have been represented in conjunctive normal form
or CNF. Simple techniques exist for translating arbitrary sentences into the conjunctive
normal form.

– Contiguous Tasks: Let 〈ti, tj〉 be the ordered pair of tasks, and let ei and ej be the
corresponding pair of (immediate) effect annotations. Let ei = {ci1, ci2, . . . , cim}

Auditing Business Process Compliance 173

and ej = {cj1, cj2, . . . , cjn} (we can view CNF sentences as sets of clauses, without
loss of generality). If ei∪ej is consistent, then the resulting cumulative effect is ei∪
ej . Else, we define e′i = {ck|ck ∈ ei and {ck} ∪ ej is consistent} and the resulting
cumulative effect to be e′i∪ej . In other words, the cumulative effect of the two tasks
consists of the effects of the second task plus as many of the effects of the first task
as can be consistently included. We remove those clauses in the effect annotation
of the first task that contradict the effects of the second task. The remaining clauses
are undone, i.e., these effects are overridden by the second task. In the following,
we shall use acc(e1, e2) to denote the result of pair-wise effect accumulation of
two contiguous tasks t1 and t2 with (immediate) effects e1 and e2. For example:
acc({Knows(RegulatoryAgent, Package, Status, Held)}, {Knows(Reg
ulatoryAgent, Package, Status, Clear)}) = {Knows(RegulatoryAgent,
Package, Status, Clear)} in the case that GR1 (Table 1) is considered applicable
and protected.

Effects are only accumulated within participant lanes. In addition to the effect anno-
tation of each task, we annotate each task t with a cumulative effect Et. Et is defined
as a set {es1, es2, . . . , esp} of alternative effect scenarios. Alternative effect scenarios
are introduced by OR-joins or XOR-joins, as we shall see below. Cumulative effect
annotation involves a left-to-right pass through a participant lane. Tasks which are not
connected to any preceding task via a control flow link are annotated with the cumulative
effect {e} where e is the immediate effect of the task in question. We accumulate effects
through a left-to-right pass of a participant lane, applying the pair-wise effect accumula-
tion procedure on contiguous pairs of tasks connected via control flow links. The process
continues without modification over splits. Joins require special consideration. In the
following, we describe the procedure to be followed in the case of 2-way joins only, for
brevity. The procedure generalizes in a straightforward manner for n-way joins.

– AND-joins: Let t1 and t2 be the two tasks immediately preceding an AND-join.
Let their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =
{es21, es22, . . . , es2n} respectively (where ests denotes an effect scenario, subscript
s within the cumulative effect of some task, subscript t). Let e be the immediate effect
annotation, and E the cumulative effect annotation of a task t immediately following
the AND-join. We define E={acc(es1i, e)∪acc(es2j, e)|es1i∈E1 and es2j ∈E2}.
Note that we do not consider the possibility of a pair of effect scenarios es1i and es2j

being inconsistent, since this would only happen in the case of intrinsically and ob-
viously erroneously constructed process models. The result of effect accumulation
in the setting described here is denoted by ANDacc(E1, E2, e).

– XOR-joins: Let t1 and t2 be the two tasks immediately preceding an XOR-join.
Let their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =
{es21, es22, . . . , es2n} respectively. Let e be the immediate effect annotation, and E
the cumulative effect annotation of a task t immediately following the XOR-join. We
define E = {acc(esi, e)|esi ∈ E1 or esi ∈ E2}. The result of effect accumulation
in the setting described here is denoted by XORacc(E1, E2, e).

– OR-joins: Let t1 and t2 be the two tasks immediately preceding an OR-join. Let
their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =

174 A. Ghose and G. Koliadis

{es21, es22, . . . , es2n} respectively. Let e be the immediate effect annotation, and
E the cumulative effect annotation of a task t immediately following the OR-
join. The result of effect accumulation in the setting described here is denoted by
ORacc(E1, E2, e) = ANDacc(E1, E2, e) ∪ XORacc(E1, E2, e).

We note that the procedure described above does not satisfactorily deal with loops, but
we can perform approximate checking by partial loop unraveling. We also note that some
of the effect scenarios generated might be infeasible. Our objective is to devise decision-
support functionality in the compliance management space, with human analysts vetting
key changes before they are deployed.

3 Detecting and Resolving Compliance Issues Within
Business Process Models

Compliance detection involves some machinery takes semantically annotated process
models and formal representations of compliance requirements, and generates a boolean
flag indicating compliance or otherwise. A simple detection procedure in our context
would involve exhaustive path exploration through effect-annotated BPMN models,
checking for rule violations. Due to space limitations, we do not describe this any fur-
ther. When a process model is found to violate a set of compliance requirements, it
must be modified to ensure compliance. In our semantically annotated example (Figure
1 and Table 1) we can simply determine that the “Route Package” node will induce
an effect scenario where both Knows(RegulatoryAgent, Package, Status, Held)∧
Performs(SortOfficer, Route, Package) is true upon accumulation. It is also easy
to see that our aforementioned compliance rule CR1 is violated. Figures 2 (R1) and 3
(R2) describe two simple resolutions of the inconsistent “Screen Package” process in
Figure 1 (O). Both these examples illustrate slight consistency preserving alterations to
the process models for illustrating how we may automate their selection.

Any approach to revising process models to deal with non-compliance must meet the
following two requirements. First, the revised process must satisfy the intent or goals
of the original process. Second, it must deviate as little as possible from the original
process. The requirement for minimal deviation is driven by the need to avoid designing
new processes from scratch (which can require significant additional investment) when
an existing process is found to be non-compliant.While the analysis relies exclusively on
design-time artefacts, the process in question might have already been implemented or
resources might have been allocated/configured to meet the requirements of the original

Fig. 2. Resolved Package Screening Process (R1)

Auditing Business Process Compliance 175

Fig. 3. Resolved Package Screening Process (R2)

process. By seeking minimally different processes from the original one, we are able to
avoid disruptive changes to the organizational context of the process.

We begin by describing what it means for a process model to minimally deviate from
another. This task is complicated by the fact that there is no consensus on the semantics
for BPMN (our chosen process modeling notation, selected for its widespread use in
industry). Little exists in the literature on measures of deviation for process models ([12]
provides some similarity measures, but these rely on petri net models of processes).
We address this problem by exploiting both the structure of BPMN process models
and the lightweight semantic annotations described earlier in the paper. To provide
a uniform basis for conjoint structural and semantic comparisons, we encode effect-
annotated BPMN models into semantic process networks (or SPNets).

Definition 1. A Semantic Process Network (SPNet) is a digraph (V, E), where:

– each node is of the form 〈ID, nodetype, owner, effectI, effectC〉, and
– each edge is of the form 〈〈u, v〉, edgetype〉.

Each event, activity or gateway in a BPMN model maps to a node, with the nodetype
indicating whether the node was obtained from an event, activity or gateway respectively
in the BPMN model. The ID of nodes of type event or activity refers to the ID of the
corresponding event or activity in the BPMN model. The ID of a gateway type node
refers to the condition associated with the corresponding gateway in the BPMN model.
The owner attribute of a node refers to the role associated with the pool from which the
node was obtained. The effectI of a node corresponds to the set of sentences describing
the immediate effects of that node, and effectC the cumulative effect at the node within
the network - these are only defined for nodes obtained from activities, and are empty
in other cases. Note that effectI is a set of sentences, while effectC is a set of sets
of sentences, with each element of effectC representing a distinct effect scenario. The
edgetype of an edge can be either control or message depending on whether the edge
represents a control flow or message flow in the BPMN model.

We note that a unique SPNet exists for each process model in BPMN. This can be
determined objectively by transforming BPMN models into a predetermined normal
form. The BPMN notation illustrates how certain modeling patterns can be transformed
into equivalent and far less ambiguous format.

176 A. Ghose and G. Koliadis

Definition 2. Associated with each SPNet spn is a proximity relation ≤spn such that
spni ≤spn spnj denotes that spni is closer to spn than spnj . ≤spn, in turn, is defined
by a triple

〈
≤V

spn,≤E
spn,≤EFF

spn

〉
where:

– ≤V
spn is a proximity relation associated with the set of nodes V of spn,

– ≤E
spn is a proximity relation associated with the set of edges E of spn and

– ≤EFF
spn is a proximity relation associated with the set of cumulative effect anno-

tations associated with nodes in spn. spni ≤spn spnj iff each of spni ≤V
spn

spnj , spni ≤E
spn spnj and spni ≤EFF

spn spnj holds. We write spni <spn spnj

iff spni ≤spn spnj and at least one of spni <V
spn spnj , spni <E

spn spnj or
spni <EFF

spn spnj holds.

The proximity relations ≤V
spn,≤E

spn and ≤EFF
spn can be defined in different ways to

reflect alternative intuitions. For instance, the following, set inclusion-oriented definition
might be of interest: spni ≤V

spn spnj iff (VspnΔVspni) ⊆ (VspnΔVspnj), where AΔB
denotes the symmetric difference of sets A and B. An alternative, set cardinality-oriented
definition is as follows: spni ≤V

spn spnj iff |VspnΔVspni | ≤
∣∣VspnΔVspnj

∣∣ (here |A|
denotes the cardinality of set A). Similar alternatives exist for the ≤E

spn relation. Both
≤V

spn and ≤E
spn define the structural proximity of one SPNet to another.

Take R1 (Figure 2) and R2 (Figure 3) as examples to illustrate our structural proximity
relations. Trivially, R1 and R2 share all their nodes with O, and therefore, no comparison
can be made across this structural dimension. Next, we determine a significant edge
difference between R1 and O, including the “Handle Package’ → ‘Route Package’
edge. R2 also differs with O across some edges including “Update Status” → “Route
Package”. If an inclusion-oriented definition for proximity (i.e. ≤ E

spn in Definition 2)
were applied, we would not be able to differentiate R1 and R2 w.r.t. structural proximity
to O. On the other hand, if we choose to apply the cardinality-oriented definition, we’d
determine R2 ≤ E

spnR1 as |R1ΔO| = 6 and |R2ΔO| = 4 (see Table 2). We can
comprehend that an inclusion-oriented definition would ensure less commitment and
greater control for analysts.

Defining the proximity relation ≤EFF
spn is somewhat more complicated, since it ex-

plores semantic proximity. One approach is to look at the terminating or leaf nodes in
an SPNet, i.e., nodes with no outgoing edges. Each such node might be associated with
multiple effect scenarios. The set of all effect scenarios associated with every terminating
node in an SPNet thus represents a (coarse-grained) description of all possible end-states
that might be reached via the execution of some instance of the corresponding process

Table 2. Edge Difference of R1 and R2 w.r.t. O

R1ΔO AssessPackage → HandlePackage (R1), XORjoin → RoutePackage (R1)
RoutePackage → UpdateStatus (R1), XORjoin → UpdateStatus (O)

RoutePackage → HandlePackage (O), AssessPackage → RoutePackage (O)

R2ΔO AssessPackage → HandlePackage (R2), UpdateStatus → RoutePackage (R2)
AssessPackage → RoutePackage (O), RoutePackage → HandlePackage (O)

Auditing Business Process Compliance 177

model. For an SPNet spn, let this set be represented by Tspn = {es1, . . . , esn} where
each esi represents an effect scenario. Let Diff(spn, spni) = {d1, . . . , dm}where di is
the smallest cardinality element of the set of symmetric differences between esi ∈ Tspni

and each es ∈ Tspn. In other words, let S(esi, Tspn) = {esiΔe | e ∈ Tspn}. Then
di is any (non-deterministically chosen) cardinality-minimal element of S(esi, Tspn).
Then we write spni ≤EFF

spn spnj iff for each e ∈ Diff(spn, spni), there exists an
e′ ∈ Diff(spn, spnj) such that e ⊆ e′.

The definition of ≤EFF
spn above exploited set inclusion. An alternative, cardinality-

oriented definition is as follows: spni ≤EFF
spn spnj iff

∑
d∈Diff(spn,spni)

d ≤
∑

d∈Diff(spn,spni)

d

The two approaches to defining ≤EFF
spn presented above focus on the cumulative end-

effects of processes, thus ensuring that modifications to processes deviate minimally in
their final effects. In some situations, it is also interesting to consider minimal deviations
of the internal workflows that achieve the end-effects. In part this is evaluated by the
≤V

spn and ≤E
spn proximity relations, but not entirely. Analysis similar to what we have

described above with end-effect scenarios, but extended to include intermediate effect
scenarios, can be used to achieve this. We do not include details here for brevity.

Now, we establish their semantic proximity of R1 and R2 w.r.t. O based on the final
cumulative effect scenarios at terminating nodes. In the case of the simple annotations
defined in Table 1, we can determine that the final cumulative effect of both R1 and
R2 result in two effect scenarios such that R1 actually remains identical to O in terms
of final state approximation. R2 on the other hand receives the additional effects of
Performs(SortOfficer, Route, Package) ∧ Knows(SortOfficer, Package,
Location, Forwarding) on the effect scenario now generated by placing the “Route
Package” activity in line with both process trajectories. Therefore, Diff(O, R1) = ∅
and Diff(O, R2) = {{Perf . . .}}, and R1 would be nominally chosen over R2.

Finally, consider a more detailed analysis where, say for instance, we also evaluate
non-terminating nodes using the aforementioned cardinality-oriented definition. In this
situation, only the cumulative scenario in R1 at “Handle Package” minimally differs
from the scenario in R2 at the corresponding node by {Performs(. . . , Route, . . .) ∧
Knows(. . . , Forwarding)}. R2 on the other hand differs w.r.t. a scenario at “Handle
Package” by (2), at a scenario in “Update Status” by (2), and at a scenario in “Route
Package” by (2). This in-turn reinforces the selection of R1.

Definition 3. A process model m′ is R-minimal with respect to another process model
m and a set of rules R iff each of the following hold:

– m violates R.
– m′ satisfies R.
– There exists no process model m′′ such that spn′′ <spn spn′ and m′′ satisfies R,

where spn, spn′ and spn′′ are SPNets corres. to m, m′ and m′′ respectively.

The definition of R-minimality above provides a “semantic" yardstick for evaluating
whether a process is being minimally modified to restore compliance with a set of rules. It

178 A. Ghose and G. Koliadis

also provides an outline of a procedure for dealing with compliance violations: generate
the set of R-minimal process models and select one. The selection process could be
analyst-mediated, or might involve the application of extraneously encoded preference
criteria. An alternative approach is to identify the minimal sources of inconsistency with
a given set of rules, thus focussing analyst attention to the portions of a model that require
editing to restore compliance.

Definition 4. Given a process model m that violates a set of rules R, a minimal source
of inconsistency with respect to m and R is a process model m′ such that each of the
following hold:

– spn′, (SPNet of m′), is a sub-graph of spn, (SPNet of m).
– m′ violates R.
– m′′ does not violate R for any process model m′′ whose corresponding SPNet spn′′

is a sub-graph of spn′, the SPNet corresponding to m′.

An obvious modification to restore compliance is to replace the terminal activities of the
process models that are minimal sources of inconsistency. Note that in general, every
minimal source of inconsistency must be appropriately modified to restore compliance.
Useful guidance can be provided to the analyst on what the best modifications might
be (given, for instance, a repertoire of possible alternative activities to replace a given
activity with), using analysis that involves measuring deviations of effect annotations of
activities. We ommit details for brevity. Much of our discussion above assumes only the
existence of process models and their analyst-mediated effect annotations. Sometimes,
goal-based annotations are also available, which describe the objectives that processes,
sub-processes or individual activities are designed to achieve. While effect annotations
are descriptive, goal annotations are normative. Goal annotations can impose “hard"
constraints on how process models might be modified, given that modifications must still
achieve the original goals of a process or its constituent elements, wherever possible.
Analysis of the kind that we have discussed above could be performed to support such
reasoning, but we ommit details again due to space restrictions.

4 Heuristics for Asserting and Resolving Compliance Issues

In the previous section we have provided a semantic basis for reasoning about alterna-
tive resolutions to non-compliant processes. In this section we introduce the notion of
a compliance pattern as a heuristic basis for supporting (even in partially automated
ways) the resolution of non-compliance in process moels. Informally, a compliance pat-
tern captures a commonly occurring mode of compliance violation, including both the
compliance requirement that is violated and the actions required to restore compliance.
In the following, we summarize the main types of process compliance patterns. Further
details have been omitted due to space restrictions.

Structural Patterns

– Activity/Event/Decision Inclusion. Activity, event and decision inclusion may be
defined against deontic modalities (permitted, mandatory, prohibited) and/or based

Auditing Business Process Compliance 179

on path quantifiers (as in CTL). For example: The action of receiving package
details must always occur during the screening of a package. Resolution: Add or
remove an activity. This may require co-ordination and assignment change to occur
in structured processes.

– Activity/Event/Decision Coordination. Activity coordination may be serial, con-
ditional, parallel, and/or repetitive. In the case of branching constructs, CTL [?]
assertions provide a natural means to refer to the required temporal relations be-
tween activities. Interval algebra [13] is also applicable. For example: If a package
is cleared, then it must have been screened some time in the past; If a package is held
then it should not be delivered until it is cleared, along all possible paths globally.
Resolution: Add or remove an activity. Re-order existing activities.

– Activity/Event/Decision Assignment. The assignment of an activity to a role is
defined using deontic operators. A statement making an action mandatory for some
role may or may not preclude its assignment to other roles, and vice-versa. For
example: Clearing a package must only be assigned to a Regulatory Authority role;
The customer must provide the details of the package to a Courier role (however the
courier is still able to provide package details to another role). Resolution: Add or
remove an activity. Re-assign an activity.

– Actor/Resource Inclusion. The participation of an actor or availability of a resource
within a process may also be defined using deontic operators. An actor’s existence
in a process model (e.g. using BPMN lanes) will also indicate their participation.
For example: A regulatory authority must be included in the process for screening
a package. Resolution: Add or remove a participant/resource. This may require the
addition and removal of activities and/or interactions.

– Actor/Resource Interaction. The interaction between actors and/or the transfer of
resources may be governed by security, privacy or other concerns. For example: A
Customer must never interact with a Regulatory Authority during the screening of
a package. Resolution: Add or remove a participant/resource. Add or remove an
interaction/transfer.

Semantic Patterns: To resolve the following compliance issues, almost any (or com-
bination of) changes may be required - e.g. Add or remove an action. Add or remove an
effect. Re-assign an action. Add or remove an actor. Add or remove an interaction.

– Effect Inclusion. An effect may be permitted, mandatory or prohibited to hold at a
set of final or intermediate states of the process. For example: Delivered packages
must not be held; Delivered packages must be cleared.

– Effect Coordination. The temporal relationship among the effects of a process (i.e.
declared discretely in process models such as BPMN) may also be constrained. For
example, In all possible cases, a cleared package must be delivered unless it is held
some time after clearance.

– Effect Modification. Temporal rules may also refer to allowable changes upon
intermediate effects within a process. For example: If a package is held, then it
cannot be cleared by a delivery process.

180 A. Ghose and G. Koliadis

5 Conclusion

We define a novel framework for auditing BPMN process models for compliance with
legislative/regulatory requirements, and for exploring alternative modifications to restore
compliance in the event that the processes are found to be non-compliant. This lays the
foundations for tool support in the area, which we are in the process of implementing,
but whose details we have had to omit due to space constraints. Parts of this framework
have been empirically validated, but a complete industry-scale validation remains future
work.

References

1. Zhang, I.X.: Economic consequences of the sarbanes-oxley act of 2002. AEI-Brookings Joint
Center 5 (2005)

2. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Proc. 10th Int. Enterprise Dist. Object Computing Conf. (2006)

3. Weitl, F., Freitag, B.: Checking semantic integrity constraints on integrated web documents.
In: Workshop Proc. of ER., pp. 198–209 (2004)

4. Janssen, W., Mateescu, R., Mauw, S., Springintveld, J.: Verifying business processes using
spin. In: Holzman, G., Serhrouchni, E.N. (eds.) Proceedings of the 4th International SPIN
Workshop, Paris, France, pp. 21–36 (1998)

5. Rosenberg, F., Dustdar, S.: Business rule integration in bpel - a service-oriented approach. In:
Proc. of the 7th Int. IEEE Conf. on E-Commerce Technology, IEEE Computer Society Press,
Los Alamitos (2005)

6. Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness in adaptive process management
systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer,
Heidelberg (2006)

7. Reijers, H.A.: Design and Control of Workflow Processes: Business Process Management for
the Service Industry. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM
2003. LNCS, vol. 2678, Springer, Heidelberg (2003)

8. White, S.: Business process modeling notation (bpmn), Technical report, OMG Final Adopted
Specification 1.0 (2006), http://www.bpmn.org

9. Becker, J., Indulska, M., Rosemann, M., Green, P.: Do process modelling techniques get
better? In: Proc. 16th Australasian Conf. on I.S. (2005)

10. Wagner, G.: How to design a general rule markup language. In: Proc. of the Workshop XML
Technologies for the Semantic Web (2002)

11. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proc. of the
Int. Joint Conference on R.E., Toronto, pp. 249–263. IEEE Press, Los Alamitos (2001)

12. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Proc. of the Fourth Asia-Pacific Conf. on Conceptual Modelling (2007)

13. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, Cambridge (2004)

14. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

http://www.bpmn.org

Specification and Verification of Artifact Behaviors in
Business Process Models�

Cagdas E. Gerede and Jianwen Su

Department of Computer Science
University of California at Santa Barbara

Santa Barbara, CA 93106
{gerede, su}@cs.ucsb.edu

Abstract. SOA has influenced business process modeling and management. Re-
cent business process models have elevated data representation to the same level
as control flows, for example, the artifact-centric business process models allow
the life cycle properties of artifacts (data objects) to be specified and analyzed.
In this paper, we develop a specification language ABSL based on computation
tree logic for artifact life cycle behaviors (e.g., reachability). We show that given a
business model and starting configuration, it can be decided if an ABSL sentence
is satisfied when the domains are bounded, and if an ABSL-core (sublanguage of
ABSL) sentence is satisfied when the domains are totally ordered but unbounded.
We also show that if the starting configuration is not given, ABSL(-core) is still
decidable if the number of artifacts is bounded with bounded (resp. unbounded
but ordered) domains.

1 Introduction

Business process modeling has received considerable attention from research commu-
nities in and related to computer science. This is a natural consequence of the trend that
computer and software systems have found rapidly increasing usage in all aspects of
business process management. The fundamental principle of service oriented architec-
ture (SOA) to design software systems based on composition of a flexible assembly of
services has already influenced many business operations today. We argue that the SOA
principle will continue to impact on several key aspects of business process manage-
ment, including business process modeling, design, integration, and evolution aspects.
This paper makes a significant step in advancing SOA techniques for business process
management by focusing on how to specify dynamic properties on data being processed,
and on how to verify these properties.

Business process modeling is a foundation for design and management of business
processes. Two key aspects of business process modeling are a formal framework that
well integrates both control flow and data, and a set of tools to assist all aspects of
a business process life cycle. A typical business process life cycle includes at least a
design phase where the main concerns are around “correct” realization of business logic
in a resource constrained environment, and an operational phase where a main objective
is to optimize and improve the realization during the execution (operation). Traditional
business process models emphasize heavily on control flow, leaving the data design in an

� Supported in part by NSF grants IIS-0415195 and CNS-0613998.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 181–192, 2007.
© Springer-Verlag Berlin Heidelberg 2007

182 C.E. Gerede and J. Su

auxiliary role if not as an afterthought. Recently, it has been argued that the consideration
of data design should be elevated to the same level as control flows [14,9,4,11,1]. In our
earlier efforts [9,4], we have developed artifact centric business process models and
studied verification of ad hoc properties of the models.

Intuitively, business artifacts (or simply artifacts) are data objects whose manipu-
lations define in an important way the underlying processes in a business model. Not
only the past and current practice of business process specification naturally embodies
the artifacts, recent engineering and development efforts (e.g., at IBM Services Divi-
sion) have already adopted the artifact approach in the process of design and analysis
of business models[5,12,10]. An important distinction between artifact centric models
and traditional data flow (computational) models is that the notion of the life cycle of
the data objects is prominent in the former, while not existing in the latter.

In the initial attempt [9], our main focus was on assembling together a business
process and analyzing several execution properties including reachability. In doing so,
we essentially augmented object oriented classes with states to represent artifact classes,
and use guarded finite state automata to capture (the logic of) entities that carry out the
work in a business model. In another approach [4], we focus more on the life cycle of
artifacts and evolution of business (process) logic. In that study, we used services to
model logical activities that can be executed and a declarative approach to represent a
business model as a set of business rules. The two models are closely related but different.
A detailed comparison of two models can be found in [8].

Business analysts need to verify whether artifact-centric business process models sat-
isfy certain artifact properties. These properties reflect the requirements to meet business
needs. Currently, a business analyst takes a process model and a property, and reason
about the process model to see if the model satisfies the property. This reasoning process
is not only tedious and nontrivial but it is also repetitive and can be automated. To ad-
dress this problem, in this paper we develop a logic language based on computational
tree logic [7], called Artifact Behavior Specification Language (ABSL). We also study
the verification of properties specified in ABSL. We use the model of [9] (without finite
functions and no “new" action) as the basis for the language, expecting that ABSL and
technical results developed here be easily adapted to the model of [4].

The main technical results in this paper include:

1. The temporal logic based language ABSL for specifying life cycle properties of
artifacts.

2. Decidability results of ABSL for a given operational model and a starting configu-
ration for bounded domains.

3. Decidability results of ABSL-core (a sublanguage of ABSL) for a given operational
model and a starting configuration for unbounded but ordered domains (i.e., with a
total order).

4. Decidability results of ABSL (ABSL-core) for a given operational model and a
bound for the number of artifacts, with bounded (resp. unbounded ordered) domains.

This paper is organized as follows. In Section 2, we overview artifact-centric op-
erational model proposed in [9]. In Section 3, we propose a language for specifying
artifact behaviors (ABSL). In Section 4.1, we show the decidability results of ABSL
for bounded domains. In Section 4.2, we show the decidability results of ABSL-core
for unbounded but ordered domains. In Section 4.3, we show the decidability results
of ABSL (ABSL-core) for bounded (resp., unbounded ordered) domains. We conclude

Specification and Verification of Artifact Behaviors 183

CS
Department

International
Office

Graduate
Division

pending processing

ready

rejected

approved

Change Request Artifact

States
Attributes

- Student Name
- Request
- Reason
- DepartmentSignature
- GraduateSignature
- InternationalOfficeSignature
…

pending process ing

ready

rej ected

approved

pending process ing

ready

rej ected

approved

Immigration Document
Artifact

- Name
- Type
- Expiration
…

pending process ing

ready

rej ected

approved

pending process ing

ready

rej ected

approved

- Perm No
- Amount
- Date
…

Process Payment Record
ArtifactWork

Description

Triggers state
change

pending processing

ready

reject ed

approved

pending processing

ready

reject ed

approved

Artifact

Artifact Flow

read/updates

Fig. 1. An artifact-based view of a process model

the paper in Section 5. Due to space limitations, the detailed proofs and some technical
definitions are omitted. More detailed discussion can be found in [8].

2 Overview: Artifact-Centric Operational Models

In this section, we briefly describe the terminology and the constructs in artifact-centric
modeling. More formal and detailed discussion can be found in [8]. Artifact-centric
models consist of 3 key constructs: Business artifacts, business work descriptions, and
repositories [13] (In this study, the term task type and the term task are renamed to work
description, and work).

Definition 1. A (business) artifact type T is a tuple (V, P, M) such that

– V is a set of attributes of primitive types (such as String, real, or artifact ids).
– P is a set of methods with distinct names.
– M is a finite state machine and its transitions are labeled with method names from

P .
– A method in P is a tuple (name, I, O, body) where I (input paremeters) and O

(output parameters) are pairwise disjoint set of variables of primitive types, and the
body is a sequence of statements each is of the form x := y where x ∈ V ∪ O,
y ∈ V ∪ I .

184 C.E. Gerede and J. Su

An artifact a is an instance of an artifact type and it contains the current state of the
artifact and the values of the attributes. It also has a unique id.

Repository: A repository describes a waiting shelf or a storage for an artifact.

Work Description: A (business) work description describes the work acting upon an
artifact by which a business role adds measurable business value to this artifact.

Definition 2. A work description W is a tuple (V , M) where

– V is a set of variables of primitive types (e.g., String, real, or artifact ids) and artifact
types.

– M = (Σ, S, s0, Sf , δ, l) is a deterministic finite state machine where:
• Σ is a finite set of statements (actions) where a statement has one of the follow-

ing forms:

- R.checkOut(x) - R.checkIn(x)
- R.checkOut(x) with id = y - x.m(z1, ..., zk �→ z′1, ..., z

′
n)

- read(u) - reset

where R is a repository, m is a method name, and x, y, zi, z
′
j, u ∈ V such that

x is a variable of an artifact type, y is a variable of an artifact-id type, zi’s are
variables of primitive types and constants, z′j’s are variables of primitive types,
u is a variable of scalar types, and k ≥ 0, n ≥ 0.

• S is a set of states, Sf ⊆ S is a set of final states,
• s0 ∈ Sf denotes the “initial" state,
• δ, the transition relation, is a subset of (S × (Σ − {reset}) × S) ∪ (Sf ×
{reset} × {s0}),

• l : δ → G is a labeling function where G is a set of guards.
• A guard is defined inductively as follows: false, true are guards; for every x ∈ V

of scalar type (such as String, real), and a constant c, every scalar comparison
between x, c is a guard (such as x > c, x = c, x �= c); for every x, y ∈ L of
scalar type, every scalar comparison between x, y is a guard (such as x > y,
x = y, x �= y; R.nonempty is a guard for every repository R; and g1 ∧ g2 is a
guard for every pair of guards g1 and g2.

The type of actions in a work description and their intuitive meaning is provided below:

– R.checkOut(x): check out a (random) artifact from repository R;
– R.checkOut(x) with id = y: check out an artifact from repository R with id y;
– R.checkIn(x): check an artifact in repostory R;
– x.m(z1, . . . , zk �→ z′1, . . . , z

′
n): invoke the method m of the artifact held by the

variable x with the input parameters z1, . . . , zk and expect the output in the variables
z′1, . . . , z

′
n;

– read(u): read a scalar value (such as String, real) from external environment;
– reset : uninitialize the values of all variables.

A work w (an instance of a work description) contains the values of work description
variables, and the current state of the work. There is one work for each work description
at run time.

Specification and Verification of Artifact Behaviors 185

Operational Model: An (artifact-centric) operational model O is a tuple (T, R, W)
whereT is a set of artifact types,R is a set of repositories,W is a set of work descriptions.

A configuration of an operational model can be thought as a snapshot of the process
at runtime, and it contains a set of artifacts, a set of work, and a set of repositories. Let
C, C′ be two configurations. We say C′ can be derived from C, denoted as C′ → C, if C′
can be produced as a result of a work executing an action.

A root configuration is a configuration where all the artifacts are in the repositories,
and each work is in its initial state.

An execution graph with respect to a root configuration C0 is a Kripke structure
(G0, G, H) where G0 = {C0} is the initial state, G is the set of configurations, and H
is the transition relation such that (C, C′) ∈ H if C → C′.

Example 1. The scenario in Figure 1 describes an operational model for the processing
of the Student Change Request Artifact. This artifact is used by students to request vari-
ous changes such as the addition of an emphasis to the student’s degree, or a committee
member addition, or extension of a degree deadline. The approval of this artifact requires
the signatures of the student’s department, the graduate division, and the international
office if the student holds a student visa. The processing of this artifact requires the pay-
ment of a processing fee which is tracked through Processing Payment Record Artifact.
In addition, if the student holds a student visa, then the international office requires the
verification of the student’s the Immigration Document Artifact before they approve the
change request. In addition, the graduate division and international office partially rely
on the decision of the department, therefore, they require the student’s department to
process the artifact first.

Based on the specification, some of the desirable properties of this process can be
enumerated as follows:

– Every approved change request artifact must have Department and Graduate Divi-
sion signatures. Every change request artifact submitted by international students
requires a signature from International Office.

– International Office and Graduate Division should not sign a change request artifact
until Department signs it.

– Every change request artifact that Department does not approve should not be ap-
proved by Graduate Division or International Office.

– Every change request artifact by students under 18 requires her parents’ signature.
– If a change request artifact is rejected by one authority, then the artifact shouldn’t

be processed any further by any authority.
– Every change request artifact by international students requires an encounter with

the student’s immigration document artifact at International Office.
– The approval of every change request artifact requires an encounter with a paid

processing payment record artifact at Graduate Division.
– When a change request artifact is approved, the next action on the artifact should be

the delivery to the student.

The verification of an artifact-centric process model at design time is crucial to avoid
higher costs of breakdown, debugging and fixing during runtime. The verification re-
quires a formalism to describe artifact-centric models, and a specification language to
describe the properties the model should have. Therefore, in the next section, we pro-
pose a language to specify artifact behaviors. We show how to verify an artifact-centric
process model with respect to artifact behavior specifications.

186 C.E. Gerede and J. Su

3 A Language for Specifying Artifact Behaviors: ABSL

Given an operational model O = (T,R,W), the set of symbols of ABSL consists of,
in addition to the standard logical symbols (,),∧,¬, ∀, and constants:

– variables (each is associated with a type in T or with a scalar type such as String,
real);

– propositions, one for each state of a work description
– unary predicate symbols:

• one for each work description (W(x) if x is checked out by W);
• one for each repository (R(x) if x is checked out by R);
• one for each state of each artifact type;
• two for each attribute

* a read-predicate, (ReadA(x) if the attribute A of artifact x is read);
* a defined-predicate (DefinedA(x) if the value of the attribute A of artifact

x is defined);
– binary predicates Equal, NotEqual, GreaterThan, LessThan (e.g., Equal

(x, y) if x, y are not undefined, and x equals to y);
– 0-ary function symbols one for each work description variable;
– unary function symbols:

• one for each attribute (A(x) is the value of the attribute A of artifact x);
• ID (ID(x) is id of artifact x).

A term is a constant, or a variable, or an expression of the form v, or ID(x1), or A(x2)
where v is a 0-ary function symbol, A is a unary function symbol, x1 is a variable of an
artifact type, x2 is a variable of an artifact type containing an attribute A.

An atomic formula is an expression of the following forms:
true qstate R(x) W(x)
pstate(x) ReadA(x) DefinedA(x) Equal(t1, t2)
NotEqual(t1, t2) GreaterThan(t1, t2) LessThan(t1, t2)

where qstate is a proposition corresponding to the state of a work description; pstate

is a unary predicate corresponding to the state of an artifact type; x is a variable of an
artifact type; t1, t2 are terms.

An artifact centric model describes the behaviors of all artifacts related to the un-
derlying business operations that is being designed[13]. The artifact-centric approach
reflects itself in the way the desirable process model behaviors are described, and these
descriptions “focus" on behaviors of individual artifacts. To capture this requirement in
ABSL, we propose a temporal operators based on computational tree logic (CTL) [7]
operators (also inspired by the clock operator of the temporal language Sugar[3]):

– EN@aψ (“Next" w.r.t a): requires that the formula ψholds the next time the artifact
a is involved;

– EG@a ψ (“Globally" w.r.t. a) : requires that the formula ψ holds every time the
artifact a is involved,

– Eψ1 U@a ψ2 (“Until" w.r.t. a): requires that there is a time when a is involved and
ψ1 holds, and at all preceeding times that a is involved, ψ2 holds.

The family of formulas in ABSL is the set of expressions such that if ψ1 and ψ2 are
formulas, then so are

Specification and Verification of Artifact Behaviors 187

ψ1 ∧ ψ2, ¬ψ1, ∀x1 ψ1, EN@xψ1, Eψ1U@xψ2, EG@xψ1

where x, x1 are variables, and the type of the variable x is an artifact type.
The notion of free and bounded variables are defined in the standard manner. A

sentence is a formula without any free variables.

Example 2. ABSL can formulate all the properties described in Example 1. Here we
illustrate some of them. We use F @xψ to mean true U@xψ.

– Every approved change request artifact must have the department signature.
∀x¬EF @x (approved(x) ∧ ¬DefinedDeptSignature(x))

– Any change request artifact that Department does not approve should not be approved by
Graduate Division.
∀x¬EF @x(AtDept(x)∧Equal(decision,“reject”)∧EF @xDefinedDeptSignature(x)).

– International Office should not sign a form until Department signs it.
∀x ¬E ¬DefinedDeptSignature(x) U@xDefinedIntOfficeSignature(x)

– Any form by international students requires an encounter with the student’s immigration
document at International Office. Let ψ1 ∨ ψ2 represent ¬(¬ψ1 ∨ ψ2) and ∃y represent
¬∀¬y.
∀xEqual(international(x),“false”) ∨ (EF @xAtIntOff(x) ∧ ∃yAtIntOff(y) ∧
Equal(immigrationDoc(x), ID(y))) ∨ (∃yEF @yAtIntOff(x) ∧ AtIntOff(y) ∧
Equal(immigrationDoc(x), ID(y)).

Definition 3. ABSL-core is a sub-language of ABSL consisting of formulas using only
variables of artifact types.

Before we explain the semantics of ABSL, we would like to mention the technical
differences of ABSL from computational tree logic (CTL) [7] and the temporal language
Sugar [3]. In ABSL, differently from CTL, we have the focus operator @. The focus
operator may sound similar to the clock operator of Sugar; however there is a big semantic
difference. The clock operator in Sugar causes the projection of execution paths with
respect to a clock (causes to consider only the configurations at which the clock holds).
On the other hand, the focus operator doesn’t modify the original execution path but
allows to skip configurations which are not focused.

3.1 Semantics

In order to describe the semantics of ABSL, we extend the concept of a configuration with
two more pieces of information. First, we record the artifact an action on which leads to
this configuration. This is used to point out the “artifact-focused" configurations. Second,
we record the attributes that are read. Intuition behind this is to allow the formulation of
the properties about the “usefulness" of attributes during the processing of the artifacts

These are formalized as follows:

Definition 4. (Extended Configuration) For a configuration C of an operational model
O, an extended configuration of O is a tuple D = (C, α, θ) where α is a subset of
{(a, A) | a is an artifact in C and A is an attribute of a}, θ is a constant partial function,
and if is defined it is an artifact in C (Conceptually α represents the set of attributes that
are read, and θ represents the artifact such that the configuration is reached as a result
of an action on that artifact). An extended root configuration D0 = (C, α, θ) of O is an
extended configuration of O such that C is a root configuration of O, and α is empty,
and θ is not defined.

188 C.E. Gerede and J. Su

Given two configurations C1, C2 such that C2 can be derived from C1, we say C2 focuses
on the artifact a, if the derivation is due to an action on a (i.e., a check-in or check-out
of a, or a method invocation on a).

Next we extend the concept of derivation to extended configurations. An extended
configurationD2 = (C2, α2, θ2) can be can be derived from D1 = (C1, α1, θ1), denoted
as D1 → D2, if the configuration C2 can be derived from the configuration C1, and α2

is the union of α1 and the set of attributes which are read in the derivation, and θ2 is
defined and equals to the artifact that the derivation C1 → C2 focuses on We say the
derivation D1 → D2 focuses on the artifact a, if θ equals to a.

An extended configuration D is reachable from another extended configuration D′
if there exists a finite positive number of extended configurations D1, . . . ,Dk such that
D → D1, D1 → D2, . . . , Dk−1 → Dk, Dk → D′.

Next we describe the semantics of terms of the language with an example.

Example 3. For an extended configuration D, we describe the semantics of formulas
containing no path and temporal operators on a simple example formula ∀x ready(x)
∧ AtStudent(x) → ∃y Equal(DeptSignature(x), y) ∧ ReadReason(x). Assuming
that the type of x is a change request artifact, and the type of y is String, x ranges over all
change request artifacts in D, and y ranges over all String value domain. Then, for every
artifact a, ready(a) is true when the state of a is “ready"; AtStudent(a) is true if a is
in the repository AtStudent; DeptSignature(a), if defined, evaluates to the value of
the attribute DeptSignature of a; Equal is true there exists a String value that equals
to DeptSignature of a; ReadReason(a) is true if Reason attribute of a is in the read
set. D satisfies the formula if the formula evaluates to true.

Definition 5. An extended execution graph E of an operational modelOand an extended
root configuration D0 is a Kripke structure (G0, G, H) where G0 = {D0} is the initial
state, G is the set of extended configurations, and H is the transition relation such that
(D,D′) ∈ H if D → D′, and (D,D) ∈ H if ¬∃ D′ s.t. D → D′. A path ρ in E is
an infinite sequence of extended configurations D1,D2, . . . such that for every i ≥ 0,
(Di,Di+1) ∈ H .

Next, we informally describe the semantics of formulas containing temporal operators.
Let E be an extended execution graph of an operational model O, and an extended root
configuration D0. Also, let D be an extended configuration in E , and a be an artifact in
D. Then, (E ,D) satisfies

– EN@aψ1 if there is a path from D in E on which the next a-focused extended
configuration satisfies ψ1.

– EG@aψ1 if there is a path fromD in E s.t. every a-focused extended configuration
on the path satisfies ψ1.

– Eψ1U@aψ2 if there is a path from D in E s.t. there is an extended configuration
satisfies ψ2, and ψ1 is true at all preceeding extended configurations.

(O,D0) satisfies a formula ψ, denoted as (O,D0) |= ψ, if (E ,D0) satisfies ψ.

4 Verification of Artifact Behaviors

Verifying artifact behaviors such as reachability is proven to be undecidable with the
ability of creating new artifacts[9]. Although decidability result was obtained there when

Specification and Verification of Artifact Behaviors 189

the ability of creating new artifacts is removed, extending the result to ABSL is not
obvious because of two main reasons. First, the domains of the artifact attributes, and
work description variables can be unbounded. Second, even the number of these attributes
and variables are bounded, the work descriptions can read external values and invent
infinite number of new values during the computation.

In the following sections, we develop decidability results for different cases.

4.1 Bounded Domains

The main result of this section is:

Theorem 1. For an operational modelO, an ABSL sentence ψ, an extended root config-
uration D0 of O, it is decidable to check whether (O,D0) satisfies ψ, when the domains
are bounded.

The rest of this section is devoted to prove this result.

Step 1: Given an ABSL sentence, we first eliminate the variables in the sentence. As an
example, let our sentence be ∀x pending(x) ∧ ∀y ¬Equal(signature(x), y) where
x quantifies over artifacts, and y is over scalar domain Eq (e.g. Strings). Let the ex-
tended root configuration contains three artifacts a1, a2, a3, and let Eq contains two
elements c1, c2. Then, we eliminate x by replacing it with all possible values, and we
take the conjunction of the expression since x is universally quantified. We can elimi-
nate y similarly. The variable eliminated version of the sentence becomes

∧
c1,c2

∧
a1,a2

pending(ai)∧¬Equal(signature(ai), cj). The approach is extended to the other ex-
pressions. The following can be proven:

Lemma 1. For an operational model O, an extended root configuration D0 of O, and
an ABSL sentence ψ, (O,D0) satisfies ψ iff (O,D0) satisfies the variable eliminated
version of ψ.

Step 2: For a variable eliminated sentence, we define a set of propositions. This set
depends on the formula, the operational model, and the root configuration. For instance,
for each repository R, for each artifact a appearing in the extended root configuration,
we have a proposition p[R(a)] and this proposition is true in an extended configuration
if a is located in R in the configuration. For every attribute A, every artifact a, and
every constant c appearing in the formula or in a work description of the operational
model we have a proposition p[A(a) = c] (and p[A(a) < c] if the domain of A is
ordered). p[A(a) = c] is true in an extended configuration if the value of A of a in
the configuration equals to c (resp., if it is less than c). Also, for every artifact a, we
have a proposition p[a] and it is true in an extended configuration if the configuration is
a-focused. The approach is extended to other predicates including artifact states, work
description states, and work description variables.

Step 3: We translate a variable eliminated ABSL sentence to a propositional branching
temporal logic (CTL) formula. We assume some familiarity with CTL [6]. We, first,
replace each atomic formula by a propositional formula. For example, if the atomic
formula isR(a)whereR is a predicate corresponds to a repository, andais an artifact, then
we replace it with the proposition p[R(a)]. The same technique is naturally extended to the
other atomic formulas involving unary predicates and binary predicates. For each atomic

190 C.E. Gerede and J. Su

formula involving a binary predicate, we replace the binary predicate with a propositional
formula. For instance, Equal(A1(a1), A2(a2)) is replaced by p[DefinedA1(a1)] ∧
p[DefinedA2(a2)] ∧ p[A1(a1) = A2(a2)].

For the path and temporal operators, we do the following translation:

– EN@a ψ ⇒ E X E¬p[a] U (p[a] ∧ ψ)
– EG@a ψ ⇒ (p[a] ∧ ψ ∧ EXEG(p[a] → ψ)) ∨

(¬p[a] ∧ (EXE¬p[a]U(p[a] ∧ ψ)) ∧ (EXEG(p[a] → ψ)))
– E ψ1 U@x ψ2 ⇒ E (p[a] → ψ1) U (p[a] ∧ ψ2)

As a result, we obtain a propositional CTL formula. Then, we create a labeled version
of the extended execution graph such that each extended configuration D in the graph
is labeled with the set of propositions that hold in D.

We can prove the following:

Lemma 2. For an operational model O, an extended root configurationD0 of O, Let E
be the extended execution graph of O and D0. For a variable eliminated ABSL sentence
ψ, (E ,D0) satisfies ψ iff (E L,D0) satisfies the CTL version of ψ, where E L is the labeled
version of E .

Coming back to Theorem 1, the proof idea is as follows: Since the domains are bounded,
the size of the extended execution graph is finite. Due to Lemma 1 and Lemma 2, the
problem of checking if an extended execution graph satisfies an ABSL sentence can
be translated to a CTL model checking problem. The size of the extended execution
graph is finite, and the decidability of model checking on finite structures is known[6];
therefore, the verification of an ABSL sentence is decidable.

4.2 Unbounded Domains

The main result of this section is:

Theorem 2. For an operational model O, an ABSL-core sentence ψ, an extended root
configuration D0 of O, it is decidable to check whether (O,D0) satisfies ψ, when the
domains are unbounded.

The rest of this section is devoted to prove this result.
Given an ABSL-core sentence and an extended root configuration, similar to the

bounded domains case, we eliminate the variables from the sentence and obtain a CTL
formula. Note that the CTL formula we obtain has a finite length, because the quantifiers
in the ABSL-core sentences can only be used over artifact variables and the number of
artifacts in the extended root configuration is finite.

The following can be proven:

Lemma 3. For an operational model O, an extended root configuration D0 of O, Let
E be the extended execution graph of O and D0. For a variable eliminated ABSL-core
sentence ψ, (E ,D0) satisfies ψ iff (E L,D0) satisfies the CTL version of ψ where E L is
the labeled version of E .

It is not straightforward to obtain a result like Theorem 1, because the domains are not
bounded and therefore the size of the extended execution graph is not finite. Interestingly

Specification and Verification of Artifact Behaviors 191

we show that we can obtain a finite abstraction of the infinite space and verify a given
sentence on this finite abstraction. In order to do this, we use an approach similar to the
region approach used for the decidability results of timed-automata [2]. Timed-automata
were introduced to model the behavior of real-time systems, which annotates state-
transition graphs with timing constraints using finitely many real-valued clock variables.
While in timed-automata, the infiniteness results from incrementing the clocks, in our
model, it results from reading values from external environment.

We first define a binary relation among extended configurations. For an extended root
configuration D0, let RD0 be a binary relation over extended configurations such that
two extended configurations are in the relation if they have the same set of artifacts with
D0, and they satisfy the same set of propositions (Conceptually, two configurations obey
the same total ordering of the artifact attribues and work description variables).

Lemma 4. For an extended root configuration D0, RD0 is an equivalence relation.

The equivalence class[7] of an extended configurationD, denoted as [D]D0 , with respect
to an extended root configuration D0 and the relation RD0 , is defined in the standard
manner. Note that the number of such equivalence classes is finite.

Lemma 5. For every pair of extended configurations D,D′ with [D]D0 = [D′]D0 , it
is true that for every extended configuration D′ that satisfies D → D′, there exists an
extended configuration D′

1 that satisfies both D′ → D′
1 and [D′]D0 = [D]D0 .

Definition 6. For an extended execution graph E = ({D0}, G, H), the region graph of
E is a Kripke structure ({D0}, G′, H ′) where G′ and H ′ is defined inductively as follows:
D0 is in G′; for every D1 ∈ G′, and for every D2 such that (D1,D2) ∈ H , if there does
not exist D3 such that (D1,D3) ∈ H ′ and [D2]D0 = [D3]D0 , then (D1,D2) ∈ H ′ and
D2 ∈ G.

The size of the region graph is finite, because the number of equivalence classes is finite.
We extend the region graph to a labeled region graph by labeling its configurations with
the set of atomic propositions that hold in that configuration.

Based on Lemma 4 and Lemma 5, we can show that there is a bisimulation relation[7]
between every labeled execution graph and its corresponding labeled region graph.

Lemma 6. Given an extended root configurationD0, RD0 forms a bisimulation relation
between D0’s (labeled) extended execution graph and D0’s (labeled) region graph.

Coming back to Theorem 2, the proof idea is as follows: As it is given in Lemma 6,
there is a bisimulation relation between a labeled execution graph and its labeled region
region graph. Therefore, a CTL formula is satisfied by a labeled execution graph iff it
is satisfied by its labeled region graph[6]. The size of a region graph is finite, and the
decidability of the the model checking on finite structures is known. This is combined
with Lemma 3 concludes that the verification of an ABSL-core sentence with unbounded
domains is decidable.

4.3 Verification with Bounded Number of Artifacts

An extended root configuration D0 is k-bounded if the number of artifacts in D0 is at
most k, where k is a positive integer. For an operational model O, and a positive integer

192 C.E. Gerede and J. Su

k, (O, k) satisfies an ABSL(-core) sentence ψ, if for every extended root configuration
D0, (O,D0) satisfies ψ.

The following can be proven:

Theorem 3. For an operational model O, a positive integer k,

– it is decidable to check whether (O, k) satisfies an ABSL sentence ψ with bounded
domains;

– it is decidable to check whether (O, k) satisfies an ABSL-core sentence ψ with
unbounded domains.

5 Conclusion

In this paper, we proposed a logic language based on computational tree logic [7],
to specify artifact behaviors in artifact-centric process models. We showed decidability
results of our language for different cases. While we provide key insights on how artifact-
centric view can affect the specification of desirable business properties, extensions and
refinements of our language and results will be beneficial.

References

1. Aalst, W., Weske, M., Grnbauer, D.: Case handling: a new paradigm for business process
support. Data and Knowledge Engineering 53, 129–162 (2005)

2. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 8–22. Springer, Heidelberg (1999)

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic
sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer,
Heidelberg (2001)

4. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. Business Process Management (BPM) (2007)

5. Bhattacharya, K., Guttman, R., Lymann, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu, F.,
Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrializing
discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

6. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge, Massa-
chusetts (2000)

7. Emerson, E.A.: Temporal and modal logic. In: Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B,ch. 7, pp. 995–1072. North Holland, Amsterdam (1990)

8. Gerede, C.E.: Modeling, Analysis, and Composition of Business Processes. PhD thesis, Dept.
of Computer Science, University of California at Santa Barbara (2007)

9. Gerede, C.E., Bhattacharya, K., Su, J.: Static analysis of business artifact-centric operational
models. In: SOCA. IEEE International Conference on Service-Oriented Computing and Ap-
plications, IEEE Computer Society Press, Los Alamitos (2007)

10. Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: Adoc-oriented programming. In:
Symposium on Applications and the Internet (SAINT) (2003)

11. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using business
artifacts. In: CAiSE. LNCS, vol. 4495, Springer, Heidelberg (2007)

12. Nandi, P., Kumaran, S.: Adaptive business objects a new component model for business
integration. In: Int. Conf. on Enterprise Information Systems (2005)

13. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

14. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In: Business
Process Management, pp. 285–301 (2005)

Improving Temporal-Awareness of

WS-Agreement�

C. Müller, O. Mart́ın-Dı́az, A. Ruiz-Cortés, M. Resinas, and P. Fernández

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingenieŕıa Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller, resinas, pablofm, aruiz}@us.es, octavio@lsi.us.es

Abstract. WS-Agreement (WS-Ag) is a proposed recommendation of
the Open Grid Forum that provides a schema to describe SLAs and a
protocol to create them based on a mechanism of templates. However,
although it identifies the necessity of specifying temporal-aware agree-
ment terms (e.g. the response time is 30 ms from 8:00h to 17:00h and
15 ms from 17:00h to 8:00h), to the best of our knowledge, there are
no existing proposals that deal with that necessity. We propose an ex-
tension that gives WS-Ag support to temporality. This allows describing
expressive validity periods such as those composed by several periodic
or non-periodic intervals and it applies not only to the agreement terms
themselves but also to other parts of WS-Ag such as creation constraints
and preferences about the service properties. In addition, in this paper
we propose a preference XML schema to describe preferences over any
set of service properties using any kind of utility function. In further re-
search we will study a concrete specification for those utility functions.

Keywords: Temporal-Aware, Quality of Service, Service Level Agree-
ment, WS-Agreement, Utility Functions.

1 Introduction

Service oriented architectures are based on the use of loosely coupled services to
support the requirements of business processes and users. In this context, service
level agreements (SLAs) [12,13,20] can be used to regulate the execution of the
services and to provide guarantees related to them.

A SLA usually specifies “which” service is offered and “how” it is offered.
That is to say, it includes requirements and guarantees about functional, and
non-functional properties of the services. However, another important question
about services is “when”. Temporality affects orthogonally all aspects of a SLA
because it may refer to the entire agreement (e.g. the agreement expires on
2007/05/31); to any functional property of the service (e.g. this operation of
the service is available from 8:00h to 18:00h); or to any non-functional property
� This work has been partially supported by the European Commission (FEDER) and

Spanish Government under CICYT project Web-Factories (TIN2006-00472).

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 193–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 C. Müller et al.

that appears in the SLA (e.g. the response time is 30 ms from 8:00h to 17:00h
and 15 ms from 17:00h to 8:00h). Therefore, a temporal-aware SLA allows us
to express precisely the periods of time in which its terms are valid.

The most significant language to specify SLAs is WS-Agreement (WS-Ag)
[12]. WS-Ag is a proposed recommendation of the Open Grid Forum working
group (OGF) that provides a schema for defining SLAs and a protocol for creat-
ing them based on a mechanism of templates. For compatibility and complexity,
WS-Ag only defines the general structure of the agreement. Other aspects such
as defining domain-specific extensions or specific languages for expressing con-
ditions are out of the scope of WS-Ag. For this reason the research community
has proposed several WS-Ag extensions like [1] and [21]. This is also the case
of temporality: WS-Ag recognizes that it is necessary to include temporality in
the agreement terms, but for the above mentioned reasons it does not establish
how to specify it. However, as far as we know, there is no existing extension to
WS-Ag that tackles the problem of temporality.

In this paper, we propose an extension to give WS-Ag support to temporality.
To define it, we build on a previous work [18], in which we presented operational
semantics on constraint-based temporal-aware matchmaking. We define a tem-
poral XML schema and we describe how this temporal schema can be applied
to the different elements of WS-Ag.

The advantages of our approach are the following: (i) we apply temporality
not only to the entire agreement and the agreement terms but also to other
elements of WS-Ag such as the creation constraints, which are used to create
agreements based on templates, and business values, which are used to express
preferences about the terms of the agreement; (ii) we support expressive specifi-
cations of validity periods such as composed intervals like “From 8:00h to 14:00h
and From 16:00h to 18:00h” and periodical intervals like “From Mondays to Fri-
days, from 8:00 to 18:00”, and (iii) as the extension builds on [18], we have a
sound foundation on which to develop a constraint-based implementation to give
support to the temporal extension.

Moreover, we also propose a preference XML schema to describe preferences
over any set of service properties using any kind of utility function instead of
the constant float utility function which WS-Ag specifies. The specific language
for describing those utility functions is currently open and we will study it in
further research.

This paper is structured as follows. Section 2 introduces a case study in which
temporality is an important feature. Section 3 presents the WS-Ag structure
and its temporal-awareness. Section 4 exposes our proposal of WS-Ag extension
on temporal-awareness and on preferences descriptions. Section 5 compares the
related proposals. Finally Section 6 exposes our conclusions and future work.

2 A Case Study

In general, temporal issues are present in the majority of agreements in real-
world scenarios. In this section we explore a particular case where a provider

Improving Temporal-Awareness of WS-Agreement 195

offers computing services to other organizations; i.e. customers send jobs (data
to be processed by a certain algorithm) to be executed in the provider’s infras-
tructure. This specific scenario represents a common situation in research fields
with intensive computational requirements [4,15] as it has a wide set of temporal
features that can be covered by our model.

In this scenario, a provider is likely to be looking for an optimization in the
usage of its resources; that means unused (or underused) resources represent a
lack of benefits and, therefore, a low recovery of the initial investment. In doing
so, agreement offers should vary in a certain period on the basis of two key
elements: (i) The mean time between two consecutive requests (MTBR) in the
period and (ii) SLAs already signed with other customers for that period.

Concretely, we focus our case study in the following terms:

– The global validity of the SLA is from october 1/2007 to december 30/2007.
– All Sundays at 23:00h. servers are down for an hour due to maintenance.
– The Provider needs part of its server resources for its own computing ne-

cessities from Mondays to Fridays, from 8:00h to 18:00h. Therefore, in such
time period, the provider requires that consumers specify in their service
requests a MTBR greater or equal to 20 seconds.

– At any other instant, all server resources can be offered to consumers. Thus,
at those instants the provider allows more exigent service requests over
MTBR from consumers. Concretely the MTBR can be greater or equal to 1
second.

– The service consumer (i.e. the client) must specify in his agreement offer: a
request; an algorithm for processing the request; the MTBR; and lastly the
temporal execution pattern for the request (that means an estimation about
when the service invocations are going to occur).

– The provider prefers receiving demands with a requirement of 20s or more
of MTBR from Mondays to Fridays, from 8:00h to 18:00h. Thus, demands
which require less MTBR should be satisfied when the provider has all server
resources available.

– The provider prefers satisfying only one more exigent demand over MTBR
(e.g. only one demand with MTBR=10s) rather than several less exigent
demands over MTBR (e.g. 10 demands with 100s of MTBR each one).

– In periods with high MTBR available, the provider prefers customers de-
manding the Knapsack algorithm (as first choice), or Kruskal algorithm (as
second choice). In other cases, the provider prefers demands of Dijkstra al-
gorithm, or Kruskal algorithm (in this order of preference).

On the consumer side, we consider a case where a certain customer needs to
compare two different algorithms with the same requirements on MTBR.

3 WS-Agreement in a Nutshell

3.1 Basic Description of WS-Agreement

In this section we will discuss WS-Ag, a framework for specifying electronic
agreements. Concretely, this proposed recommendation specifies an XML-based

196 C. Müller et al.

language and a protocol for advertising the capabilities of service providers,
creating agreements based on agreement offers (with the possibility of further
agreement compliance monitoring at runtime).

The interaction protocol comprises of two participants: the agreement initiator
(that triggers the beginning of the process) and the agreement responder (that
reacts to the initiator’s requests). The protocol is divided in three main stages
namely: (i) the initiator of the agreement process asks for agreement templates to
the agreement responder.(ii) The initiator sends to the responder an agreement
offer taking into account the agreement variability contained in the template.
(iii) The responder accepts or rejects the agreement offer; additionally, if the
responder rejects it, the process may start again.

WS-Ag proposes a structure of the agreement with the following elements:

Name: it identifies the agreement and can be used for reference to it.

Context: it includes information such as the name of the parties and their
roles of initiator or responder of the agreement. Additionally, it can refer to an
agreement template if needed. In this element, an agreement lifetime can be
defined by means of an element called “ExpirationTime”.

Terms: agreement terms are wrapped by term compositors, which allow simple
terms or sets of terms to be denoted by “ExactlyOne”, “OneOrMore”, or “All”.
The following are the two main types of terms:

1. Service terms: they provide information to instantiate or identify services
and operations involved in the agreement. Additionally, it can comprise in-
formation about the measurable service properties.

2. Guarantee terms: they describe the service level objectives (SLO) agreed by
the parties. They comprise a SLO specified as a target for a key performance
indicator, or as a “CustomServiceLevel” element in a customized way; it
also includes the scope of the term (e.g. a certain operation of the service or
the whole service itself); a “QualifyingCondition” that specifies the validity
conditions under which the term is applied; and information about business
properties in the “BusinessValueList” element of the guarantee term such as
“Importance”, “Penalty” or “Reward” and “Preference” defined as an utility
value pointing to a service term.

In order to create agreements, WS-Ag allows to specify templates with the
above structure, but including agreement creation constraints that should be
taken into account during the agreement creation process. These constraints de-
scribe the variability allowed by a party; they can be denoted as general “Con-
straints”, or “Items” pointing to specific locations with their own constraints.

3.2 Temporal-Awareness of WS-Agreement

Concerning temporal issues, WS-Ag identifies two locations to include temporal
awareness. On the one hand, lifetime for the entire agreement must be included in

Improving Temporal-Awareness of WS-Agreement 197

Agreement Template

Terms Compositor

Context

Name

<ServiceDescriptionTerm…>

<<RequestRequest> </> </RequestRequest> >

<<AlgorithmAlgorithm> </> </AlgorithmAlgorithm>>

<MTBR> </MTBR><MTBR> </MTBR>

<<ExecutionTimeExecutionTime> </> </ExecutionTimeExecutionTime>>

</ServiceDescriptionTerm>

<ServiceProperties…>

<Variables>

<Variable name=”MTBR”

metric=”seconds”>

<Location>

//ServiceDescriptionTerm/MTBR

</Location>

<Variable>

<Variables>

</ServiceProperties>

<GuaranteeTerm

Obligated=“ServiceProvider”..>

<SLO><SLO>””MTBR MTBR ≥≥ 2200””</SLO></SLO>

</GuaranteeTerm>

…

<ServiceProvider>initiator</ServiceProvider>

…

<<ExpirationTimeExpirationTime>31/12/2007</>31/12/2007</ExpirationTimeExpirationTime>>

<All>

</All>

…

Creation Constraints
<Item Name=<Item Name=””AlgorithmAllowedAlgorithmAllowed””>>

<Location>

//ServiceDescriptionTerm/Algorithm

</Location>

<ItemConstraint>

<xs:restriction base="xs:string">

<xs:enumeration value=“DijkstraDijkstra"/>

<xs:enumeration value=“KnapsackKnapsack"/>

<xs:enumeration value=“KruskalKruskal"/>

</xs:restriction>

</ItemConstraint>

</Item></Item>

<Item Name=<Item Name=””ExecTimeAllowedExecTimeAllowed””>>

<Location>

//ServiceDescriptionTerm/ExecutionTime

</Location>

<ItemConstraint>

<restriction base="xsd:positiveInteger">

<xsd:minInclusive value=“01"/>

<xsd:maxInclusive value=“120"/>

<!<!---- from an hour to 5 days from an hour to 5 days ---->>

</xsd:restriction>

</ItemConstraint>

</Item></Item>

(a) Agreement Template.

Agreement Offer

Terms Compositor

Context

Name

<ServiceDescriptionTerm…>

<<RequestRequest>>Sample.txtSample.txt</</RequestRequest> >

<<AlgorithmAlgorithm>>DijkstraDijkstra</</AlgorithmAlgorithm>>

<MTBR>40</MTBR><MTBR>40</MTBR>

<<ExecutionTimeExecutionTime>48 h.</>48 h.</ExecutionTimeExecutionTime> >

</ServiceDescriptionTerm>

<ServiceDescriptionTerm…>

<<RequestRequest>>Sample.txtSample.txt</</RequestRequest> >

<<AlgorithmAlgorithm>>KnapsackKnapsack</</AlgorithmAlgorithm>>

<MTBR>40</MTBR><MTBR>40</MTBR>

<<ExecutionTimeExecutionTime>48 h.</>48 h.</ExecutionTimeExecutionTime>>

</ServiceDescriptionTerm>

<ServiceProperties…>

<Variables>

<Variable name=”MTBR” metric=”seconds”>

<Location>

//ServiceDescriptionTerm/MTBR

</Location>

<Variable>

<Variables>

</ServiceProperties>

<GuaranteeTerm Obligated=“ServiceProvider”...>

<SLO><SLO>””MTBR MTBR ≥≥ 2020””</SLO></SLO>

</GuaranteeTerm>

…

<ServiceProvider>responder</ServiceProvider>

…

<<ExpirationTimeExpirationTime>30/12/2007</>30/12/2007</ExpirationTimeExpirationTime>>

<All>

</All>

…

(b) Agreement Offer.

Fig. 1. An Example of Agreement Template and a possible Agreement Offer

Context into the “ExpirationTime” element (i.e. the last instant where the agree-
ment is valid). On the other hand, WS-Ag recommends the use of “QualifyingCon-
dition” elements for describing validity periods of terms and/or the party pref-
erences. However, the specification document leaves open the specific way these
temporal awareness must be exposed for reasons of compatibility and complexity.

The case study presented in the previous section includes several issues with
little (or no) support with WS-Ag; in particular, the temporal execution pattern
has a high degree of complexity for the WS-Ag recommendation (it includes sev-
eral temporal expressions) thus we have to reduce it as denoted in the agreement
template of Figure 1(a). This implies two main simplifications: (i) specifying the
lifetime with an expiration time only (not initial time); (ii) temporal execution
pattern for the request (which in the case study is expressed as several validity
periods) has to be changed with a simple value of execution time.

Additionally, the need of restarting the server periodically could have been
described as creation constraints for the agreement (and thus consumers would
have to take these constraints into account in their agreement offers). However,
we find that WS-Ag does not allow this temporal description, and therefore we
have to reduce the example by restricting only the possible range of execution
time in hours (and in addition the algorithms allowed). The possible values for
MTBR correspond to the worst case (MTBR≥20s) and the preferences of the
provider require the validity period of the case to be included in the example,
but for the above reason it is not possible.

Figure 1(b) depicts an offer for such template describing an execution of the
same request with two different algorithms with similar MTBR.

198 C. Müller et al.

4 Our Proposal

We propose a WS-Ag extension for describing temporal properties in SLAs. At
first, we specify a generic temporal XML schema which allows to include several
forms of validity periods.

4.1 Temporal Schema

We have already studied temporality on web services in previous works. In [18]
we presented a constraint-based approach to temporal-aware web services pro-
curement. In [19] we elaborated a study about expressiveness of temporal de-
scriptions for web services. And we have reviewed the kinds of temporal periods
defined in the IETF RFC 3060 [24]. Now we can formulate that validity periods
on SLAs can be composed of one or more temporal intervals, periodic or not.
There are several types of intervals, namely non-disjoint, disjoint (both men-
tioned by Allen in [3]), and/or periodical. A non-disjoint interval is composed
of a single interval. A disjoint interval is composed of several sub-intervals, so
that it does not include all time points between its lower and upper ends. And
an interval is periodical if it is repeated regularly.

We have designed an XML schema named “twsag.xsd” for describing these va-
lidity periods in practice. An interval is the basic element; different non-disjoint
intervals can be grouped together so that more complex intervals can be com-
posed. Several authors [5,17] have proposed a more friendly representation of
XML schemas by means of UML class diagrams. Thus, Figure 2 shows an UML
class diagram which represents “twsag.xsd”; the three interfaces denote the types
of intervals above mentioned: (1) Interval: it stands for the basic element; it
is comprised of an initial time and a duration (which can be infinite) expressed
in seconds, hours, days, or months. (2) Disjoint: it stands for disjoint intervals
constituted of a set of intervals related by a logic operator (or, and, or xor). (3)
Periodical: it stands for periodic intervals, be either disjoint or non-disjoint.
Its periodicity is comprised of the number of period repetitions (which can be
infinite) and a frequency expressed in seconds, hours, days, or months, which
denotes the time between two consecutive intervals.

Our proposal allows to include temporality regarding several aspects of agree-
ments. Therefore, we comment them separately: first, temporality on agreement
terms and agreement creation constraints in Section 4.2; and later, temporality
on preferences in Section 4.3.

4.2 Temporality on Terms and Creation Constraints

Depending on the way validity periods affect the agreement terms, we classify
them in two groups: (1) global periods (GP) if validity periods wrap all agreement
terms; and (2) local periods (LP) in other cases. We have studied the inclusion
of these types of periods in the WS-Ag structure.

WS-Ag specifies the lifetime of agreements by means of an “Expiration Time”
in the context. Thus, it only allows a non-disjoint GP, starting from the current

Improving Temporal-Awareness of WS-Agreement 199

«xml-schema»
twsag.xsd

«interface»
Interval

init : DateTime
duration : float
durationMetric : {Seconds, Hours, Days, Months}

«interface»
Disjoint

op : {And, Or, Xor}

«interface»
Periodical

repetitions : float
frequency : float
frequencyMetric : {Seconds, Hours, Days, Months}

{incomplete}

1..*

list+

1 1

1

- interval

Fig. 2. Schema for Temporal Intervals

date. For a lifetime to be expressed without restrictions, we propose to use
the “Any” element, which allows to include any information in the context, for
including a new element called “GlobalPeriod” in order to describe it as an
“Interval” element of our temporal schema.

WS-Ag recommends to specify temporality regarding agreement terms in the
“QualifyingCondition” element. We propose to specify these local periods by
means of “Interval” elements of our temporal schema.

Figure 3 shows the global and local periods for the scenario described in
Section 2. Figure 4 shows a template and an offer using our WS-Ag extension
for describing the validity periods in this case study. In Figure 4(c), note that
non-disjoint intervals are put into a single periodical non-disjoint interval which
constitutes the agreement offer GP; and periodical disjoint intervals are used to
constitute the agreement offer LPs.

It is important to remark that WS-Ag only includes temporal properties in
guarantee terms. However, we also need to describe validity periods of service
terms. In Figure 4(b), functional properties described in service description terms
are active only at specific validity periods (e.g. we must use the service descrip-
tion term with MTBR≥20s, in case of periods with a minimum of 20s of MTBR
allowed). Therefore, we make use of term compositors to associate service terms
with the guarantee terms which contain the desired validity period.

We also allow to specify temporal properties regarding the agreement creation
constraints. There are two ways of describe them: either to allow validity periods
on single constraints, e.g. “Provider must allow execution tests with a minimum
MTBR of 40s, 48 hours before agreement initiation date”; or to allow several
constraints apart from the validity period definition, e.g. the previous constraints

200 C. Müller et al.

AgreementTemplate GlobalPeriod

GuaranteeTerm1 ∧ GuaranteeTerm2

MoreMTBR LocalPeriod

GuaranteeTerm1: MTBR ≥ 20

2 4 6 8 10 12 14 16 18 20 22

Daily
GMT

+1

From Oct 01/2007

to Dec 30/2007

From Oct 01/2007

to Dec 30/2007

Mon-Sat (Weekly)

Sunday (Weekly)

From Oct 01/2007

to Dec 30/2007

From Oct 01/2007

to Dec 30/2007

Mon-Fri (Weekly)

Sat-Sund (Weekly)

From Oct 01/2007

to Dec 30/2007

Mon-Fri (Weekly)

LessMTBR LocalPeriod

GuaranteeTerm2: MTBR ≥ 1

Fig. 3. Global & Local Periods for the Case Study

without validity period: “Provider must allow execution tests with 40s of MTBR”,
and also “Provider must assure a maximum execution time of 24 hours”, both
active during the validity period: “48 hours before agreement initiation date”.
For temporality in creation constraints to be allowed, we propose to describe
it as an “Interval” element of our temporal schema: (1) a new element un-
der the “Item” of creation constraints, for describing temporal periods on a
single constraint (by means of “Any” element of WS-Ag); and (2) the “Con-
straint” element for temporal periods on several constraints. Figure 5 denotes
case (1) with an example of testing requests before an agreement initiation
date.

4.3 Temporality on Preferences

In a guarantee term, a validity period described in “QualifyingCondition”
involves not only the service level objective, but also the preferences in the
“BusinessValueList” element. However, preferences in WS-Ag are described with
limitations, because we must specify a float constant value in the “Preference”
element in order to describe the utility of a concrete service description term.
That forces to define (1) several service description terms with different choices
of values in service properties according to preferences, and (2) several guaran-
tee terms, including the constant utility of each service description term on each
validity period. Therefore, we obtain constant utility functions anyway.

In order to use any utility function with any number of service properties,
we propose to extend the manner of expressing preferences in WS-Ag by using
the “CustomBusinessValue” element. Our purpose is to describe the preference

Improving Temporal-Awareness of WS-Agreement 201

Agreement Template

Terms Compositor

Context

Name

<ServiceDescriptionTerm>

<Request> </Request>

<Algorithm> </Algorithm>

<MTBR> </MTBR>

</ServiceDescriptionTerm>

<ServiceProperties>

<Variables>

<Variable name=”MTBRMTBR”

metric=”seconds”>

<Location>

////ServiceDescriptionTermServiceDescriptionTerm/MTBR/MTBR

</Location>

<Variable>

<Variable name=”AlgorithmAlgorithm”>

<Location>

////ServiceDescriptionTermServiceDescriptionTerm/Algorithm/Algorithm

</Location>

<Variable>

<Variables>

</ServiceProperties>

<ServiceProvider>responder</ServiceProvider>

…

<<GlobalPeriodGlobalPeriod>>

<!<!----Global Global PeriodPeriod DefinitionDefinition----> >

</</GlobalPeriodGlobalPeriod>>

<All>

…

Creation Constraints
<Item Name=”AlgorithmAllowedAlgorithmAllowed”>

<Location>

//ServiceDescriptionTerm/Algorithm

</Location>

<ItemConstraint>

<xs:restriction base="xs:string">

<xs:enumeration value=“DijkstraDijkstra" />

<xs:enumeration value=“KnapsackKnapsack" />

<xs:enumeration value=“KruskalKruskal" />

</xs:restriction>

</ItemConstraint>

</Item>

</All>

<Item Name=”MTBRAllowedMTBRAllowed”>

<Location>

//ServiceDescriptionTerm/MTBR

</Location>

<ItemConstraint>

<restriction base="xsd:positiveInteger">

<xsd:minInclusive value=“0101"/>

</xsd:restriction>

</ItemConstraint>

</Item>

<GuaranteeTerm Obligated=“ServiceProvider”...>

<<QualifyingConditionQualifyingCondition>>

<!<!----MoreMTBRMoreMTBR PeriodPeriod DefinitionDefinition---->>

</</QualifyingConditionQualifyingCondition>>

<SLO>”MTBR MTBR ≥≥ 20”20”</SLO>

<BusinessValueList>

<CustomBussinessValue>

<VariableReference>AlgorithmAlgorithm</…>

<UtilityFunction>FF11(U)(U)</…>

<VariableReference>MTBRMTBR</…>

<UtilityFunction>FF33(U)(U)</…>

</CustomBussinessValue>

</BusinessValueList>

</GuaranteeTerm>

<GuaranteeTerm Obligated=“ServiceProvider”...>

<<QualifyingConditionQualifyingCondition>>

<!<!----LessMTBRLessMTBR PeriodPeriod DefinitionDefinition---->>

</</QualifyingConditionQualifyingCondition>>

<SLO>”MTBR MTBR ≥≥ 11””</SLO>

<BusinessValueList>

<CustomBussinessValue>

<VariableReference>AlgorithmAlgorithm</…>

<UtilityFunction>FF22(U)(U)</…>

<VariableReference>MTBRMTBR</…>

<UtilityFunction>FF44(U)(U)</…>

</CustomBussinessValue>

</BusinessValueList>

</GuaranteeTerm>

(a) Agreement Template.

Agreement Offer

Terms Compositor

Context

Name

<ServiceProvider>responder</ServiceProvider>

…

<<GlobalPeriodGlobalPeriod>>

<!<!----Global Global PeriodPeriod DefinitionDefinition---->>

</</GlobalPeriodGlobalPeriod>>

<All>

…

</All>

<ServiceProperties…> … </ServiceProperties>

<<ExactlyOneExactlyOne>>

<All><All>

<ServiceDescriptionTerm…>

<Request>Sample.txt</Request>

<<AlgorithmAlgorithm>>KnapsackKnapsack</</AlgorithmAlgorithm>>

<MTBR>20</MTBR><MTBR>20</MTBR>

</ServiceDescriptionTerm>

<GuaranteeTerm Obligated=“ServiceProvider”...>

<<QualifyingConditionQualifyingCondition>>

<!<!----MoreMTBRMoreMTBR PeriodPeriod DefinitionDefinition---->>

</</QualifyingConditionQualifyingCondition>>

<SLO>”MTBR MTBR ≥≥ 2020””</SLO>

…<!--The same BussinessValue and Utility-->

</GuaranteeTerm>

</All></All>

<All><All>

<ServiceDescriptionTerm…>

<Request>Sample.txt</Request>

<<AlgorithmAlgorithm>>KnapsackKnapsack</</AlgorithmAlgorithm>>

<MTBR>1</MTBR><MTBR>1</MTBR>

</ServiceDescriptionTerm>

<GuaranteeTerm Obligated=“ServiceProvider”...>

<<QualifyingConditionQualifyingCondition>>

<!<!----LessMTBRLessMTBR PeriodPeriod DefinitionDefinition---->>

</</QualifyingConditionQualifyingCondition>>

<SLO>”MTBR MTBR ≥≥ 11””</SLO>

…<!--The same BussinessValue and Utility-->

</GuaranteeTerm>

</All></All>

</</ExactlyOneExactlyOne>>

(b) Agreement Offer.

<<GlobalPeriodGlobalPeriod>>

<<PeriodicalPeriodical frequencyfrequency=”=”1.01.0””

frequencyMefrequencyMettricric=”=”HoursHours””

repetitionsrepetitions=”13.0”> =”13.0”>

<<IntervalInterval initinit=”2007=”2007--1010--01T00:00:00+01:00” 01T00:00:00+01:00”

durationduration=”=”167.0167.0””

durationMetricdurationMetric=”=”HoursHours”/>”/>

</</PeriodicalPeriodical> >

</</GlobalPeriodGlobalPeriod>>

From Monday 0:00

to Sunday 23:00

From 10/01/2007

to 12/30/2007

(13 weeks)

<<PeriodicalPeriodical frequencyfrequency=”62.0”=”62.0”

frequencyMefrequencyMettricric=”=”HoursHours””

repetitionsrepetitions=”13.0”>=”13.0”>

<<PeriodicalPeriodical frequencyfrequency=”=”14.014.0””

frequencyMefrequencyMettricric=”=”HoursHours””

repetitionsrepetitions=”5.0”>=”5.0”>

<<IntervalInterval initinit=”2007=”2007--1010--01T08:00:00+01:00” 01T08:00:00+01:00”

durationduration=”=”10.010.0””

durationMetricdurationMetric=”=”HoursHours”/>”/>

</</PeriodicalPeriodical>>

</</PeriodicalPeriodical>> From 8:00

to 18:00

From 18:00

to 8:00

From Monday

to Friday

More

MTBR

Period

From 18:00 to 24:00
+

Weekend
+

From 0:00 to 8:00

Weekend

<<PeriodicalPeriodical frequencyfrequency=”0.0”=”0.0”

frequencyMefrequencyMettricric=”=”SecondsSeconds””

repetitionsrepetitions=”13.0”>=”13.0”>

<<DisjointDisjoint opop=“=“AndAnd”>”>

<<PeriodicalPeriodical frequencyfrequency=”=”57601.0057601.00””

frequencyMefrequencyMettricric=”=”SecondsSeconds””

repetitionsrepetitions=”5.0”>=”5.0”>

<<IntervalInterval initinit=”2007=”2007--1010--01T00:00:00+01:00” 01T00:00:00+01:00”

durationduration=”=”28799.0028799.00””

durationMetricdurationMetric=”=”SecondsSeconds”/>”/>

</</PeriodicalPeriodical>>

<<PeriodicalPeriodical frequencyfrequency=”=”64801.0064801.00””

frequencyMefrequencyMettricric=“=“SecondsSeconds””

repetitionsrepetitions=”5.0”>=”5.0”>

<<IntervalInterval initinit=”2007=”2007--1010--01T18:00:01+01:00” 01T18:00:01+01:00”

durationduration=”=”21599.0021599.00””

durationMetricdurationMetric=”=”SecondsSeconds”/>”/>

</</PeriodicalPeriodical>>

<<IntervalInterval initinit=”2007=”2007--1010--06T00:00:00+01:00” 06T00:00:00+01:00”

durationduration=”=”2.02.0””

durationMetricdurationMetric=”=”DaysDays”/>”/>

</</DisjointDisjoint>>

</</PeriodicalPeriodical>>

From 0:00:00

to 7:59:59

in Seconds

From 7:59:59

to 24:00:00

in Seconds

From 18:00:01

to 24:00:00

in Seconds

From 0:00:00

to 18:00:01

in SecondsLess

MTBR

Period

Global

Period

(c) Period Definitions.

Fig. 4. Agreement Template and Agreement Offer

202 C. Müller et al.

<template...>
...
<CreationConstraints>

<Item Name="TestPrevious">
<Location>

//ServiceDescriptionTerm/MTBR
</Location>
<ItemConstraint>

<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="40"/>

</xsd:restriction>
</ItemConstraint>
<Interval init="2007-09-29T00:00:00+01:00"

duration="2.0"
durationMetric="Days"/>

</Item>
</CreationConstraints>
...

</template>

Fig. 5. Example of Creation Constraints with Temporality

of one or more service properties in a concrete validity period with any kind
of utility function. Figure 6 shows the structure of our preference XML schema
for describing the “CustomBusinessValue” element. It defines utility functions
pointing to one or a group of variables, which are described in the corresponding
“ServiceProperties” element of WS-Ag.

«interface»
CustomBussinessValue

«xml-schema»
prefwsag.xsd

«interface»
UtilityFunction

«interface»
VariableReference1 1..*

- variablereference

1 1..*

- utilityfunction

1..*
- variablereference

1
- utilityfunction

Fig. 6. Schema for Preferences

Figure 4(a) shows the utility function with its name; currently the way for
expressing the function is open. For simplicity, in the example we only describe
utility functions over one variable. To represent the utility functions, we have
to take into account the provider preferences included in the case study. Those
preferences are several criteria on the algorithms, on satisfying demands in con-
crete validity periods, and on satisfying one more exigent demand in MTBR (e.g.
a lower value) than several less exigent demands. Figure 7 denotes the utility
functions referenced in Figure 4(a).

Improving Temporal-Awareness of WS-Agreement 203

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

[Utility]

101 20 30 40 50 60 70 80 90 100

MoreMTBR

Period
LessMTBR

Period
F3(U)F4(U)

Dijkstra Knapsack Kruskal

[Algorithm]

MoreMTBR

Period

LessMTBR

Period

F1(U)

F2(U)

...

Fig. 7. Utility Functions from the Case Study

5 Related Work

Several authors have studied temporal-awareness on service descriptions. In Ta-
ble 1 we show a comparative of their proposals, including this paper (those of
traditional web at left side, and those of semantic web at right).

Concerning temporal-aware terms, the table denotes that authors who con-
sider GPs, only mention “Non-Periodical” and “Non-Disjoint” intervals, but nei-
ther “Periodical” nor “Disjoint” intervals. On the other hand, authors who take
into account LPs mention “Periodical” and “Non-Disjoint”, but only METEOR-
S and WSMO/WSML show interest in “Non-Periodical” intervals. The other
authors don’t even mention “Non-Periodical” or “Disjoint” intervals in their
works. The reason for that lack of “Disjoint” intervals may be due to the fact
that they can be expressed by means of several “Non-Disjoint” intervals, though
this solution is less expressive. We emphasize WSML(HP) and WSOL because
these proposals concern both GPs and LPs in their works. Other proposals like
QoSOnt, METEOR-S, and WSMO/WSML have declared that they will study
GPs and LPs in their future work.

Only a few of the proposals, among those which are temporal-aware, have
taken preferences into account. However, to the best of our knowledge, none of
them have studied temporality on preferences and creation constraints. We dis-
tinguish two ways to declare the preferences: (1) by comparing the “degree of
similarity” between values of service properties from different agreement offers
and templates; for example, if a provider specifies in the agreement template that
it prefers a value of MTBR of 30s, an agreement offer which requires a MTBR
of 32s will be more similar to the template than another offer requiring 20s; and
(2) by comparing utility values given by utility functions defined on the service
properties, just as we have described above. Both alternatives use weights as a
means of incorporating the degree of importance among service properties to the

204 C. Müller et al.

Table 1. Comparative between Traditional & Semantic Web Proposals

P
ro

p
o
sa

ls

O
u
r

P
ro

p
o
sa

l.

L
o
d
i
e
t

a
l.

[1
5
]

W
S
-Q

o
S

[2
5
]

E
W

S
D

L
[6

]

U
D

D
Ie

[2
]

W
S
M

L
(H

P
)

[2
3
]

W
S
O

L
[2

6
]

W
S
L
A

[1
6
]

G
o
u
sc

o
s

e
t

a
l.

[1
1
]

T
ra

st
o
u
r

e
t

a
l.

[2
7
]

D
A

M
L
-Q

o
S

[7
]

G
o
n
z
a
le

z
.
e
t

a
l.

[1
0
]

L
i
&

H
o
rr

o
ck

s
[1

4
]

Q
o
S
O

n
t

[9
]

W
S
M

O
/
W

S
M

L
[8

]

M
E
T

E
O

R
-S

[2
1
]

TEMPORAL-AWARENESS ON TERMS

GP/NP
√ √ √ √ √ √ √ √ √ √ √ ∼ ∼ ∼

GP/P
√

GP/ND
√ √ √ √ √ √ √ √ √ √ √ ∼ ∼ ∼

GP/D
√

LP/NP
√ ∼ ∼ ∼

LP/P
√ √ √ √ √

LP/ND
√ √ √ √ √ ∼ ∼ ∼

LP/D
√

PREFERENCES

DoS
√ √ ∼ ∼ ∼ √

UF
√ ∼ ∼ ∼

D=Disjoint, ND=Non-Disjoint, P=Periodical, NP=Non-Periodical

DoS=Degree of Similarity, UF=Utility Functions.
√

=feature included, ∼=feature identified as future work.

preferences. EWSDL, UDDIe, and METEOR-S have based their preferences on
the degree of similarity, whereas other proposals have only mentioned their inter-
est. Regarding utility functions, Gonzalez et al., WSMO/WSML, and METEOR-
S are currently working on incorporating this feature to their proposals.

6 Conclusions and Future Work

In this paper, we have shown how a temporal domain-specific language (DSL)
can be used to incorporate validity periods into WS-Ag descriptions, such as
qualifying conditions associated to SLOs, template creation constraints during
agreement creation process, or preferences over service properties. In order to ex-
press these validity periods, we have define a schema which includes several kinds
of temporal intervals, from disjoint to periodical. Our temporal DSL would have
a very large domain of applications, apart from WS-Ag. In addition we propose
another schema which allows the definition of preferences over service proper-
ties using any utility function instead of constant float functions as described in
WS-Ag. Currently, we abstain from defining a specific language for describing
the utility functions.

Improving Temporal-Awareness of WS-Agreement 205

For future work, we are considering several open issues. First, our temporal
DSL should be validated in different scenarios to prove its soundness. In order
to do so, it would be needed to develop a proof-of-concept prototype from op-
erational semantics on temporal-aware matchmaking defined in previous works
[18,22]. Another future improvement would be defining a concrete DSL to spec-
ify advanced utility functions, in order to complete our improvement for the
preferences description in WS-Ag.

Acknowledgements

The authors would like to thank the reviewers of the 5th International Conference
on Service Oriented Computing, whose comments and suggestions improved the
presentation substantially.

References

1. Aiello, M., Frankova, G., Malfatti, D.: What’s in an Agreement? An Analysis and
an Extension of WS-Agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 424–436. Springer, Heidelberg (2005)

2. Ali, A.S., Al-Ali, R., Rana, O., Walker, D.: UDDIe: An Extended Registry for Web
Services. In: Proc. of the IEEE Int’l Workshop on Service Oriented Computing:
Models, Architectures and Applications at SAINT Conference, IEEE Press, Los
Alamitos (2003)

3. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11) (1983)

4. Balaziska, M., Balakrishnan, H., Stonebraker, M.: Contract-Based Load Manage-
ment in Federated Distributed Systems. In: Proc. of the ACM Symposium on
Networked Systems Design and Implementation, San Francisco, California, ACM
Press, New York (2004)

5. Bernauer, M., Kappel, G., Kramler, G.: Representing XML Schema in UML - A
Comparison of Approaches. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE
2004. LNCS, vol. 3140, pp. 440–444. Springer, Heidelberg (2004)

6. Chen, Y., Li, Z., Jin, Q., Wang, C.: Study on QoS Driven Web Services Composi-
tion. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb
2006. LNCS, vol. 3841, pp. 702–707. Springer, Heidelberg (2006)

7. Chen, Z., Liang-Tien, C., Bu-Sung, L.: Semantics in Service Discovery and QoS
Measurement. In: IT Pro - IEEE Computer Society, pp. 29–34 (2005)

8. de Bruijn, J., Feier, C., Keller, U., Lara, R., Polleres, A., Predoiu, L.: WSML
Reasoning Survey (November 2005)

9. Dobson, G., Sánchez-Macián, A.: Towards Unified QoS/SLA Ontologies. In: Proc.
of the 3rd IEEE International ICWS/SCC Workshop on Semantic and Dynamic
Web Processes, Chicago, IL, pp. 169–174. IEEE Press, Los Alamitos (2006)

10. González-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Match-
making of Services. Technical Report HPL-2001-265, Hewlett-Packard (2001)

11. Gouscos, D., Kalikakis, M., Georgiadis, P.: An Approach to Modeling Web Ser-
vice QoS and Provision Price. In: Proc. of the IEEE Int’l Web Services Quality
Workshop (at WISE’03), pp. 121–130. IEEE Computer Society Press, Los Alamitos
(2003)

206 C. Müller et al.

12. OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG): Web
Services Agreement Specification (WS-Agreement) (v. gfd.107) (2007)

13. IBM: Web Service Level Agreement (WSLA) Language Specification (2003)
14. Li, L., Horrocks, I.: A Software Framework for Matchmaking based on Semantic

Web Technology. In: Proc. of the 12th ACM Intl. Conf. on WWW, pp. 331–339.
ACM Press, New York (2003)

15. Lodi, G., Panzieri, F., Rossi, D., Turrini, E.: SLA-Driven Clustering of QoS-Aware
Application Servers. IEEE Transactions on Software Engineering 33(3), 186–196
(2007)

16. Ludwig, H., Keller, A., Dan, A., King, R.P.: A Service Level Agreement Language
for Dynamic Electronic Services. Technical Report 22316 W0201-112, IBM (2002)

17. Marcos, E., de Castro, V., Vela, B.: Representing Web Services with UML: A Case
Study. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.M.P., Yang, J. (eds.)
ICSOC 2003. LNCS, vol. 2910, pp. 17–27. Springer, Heidelberg (2003)

18. Mart́ın-Dı́az, O., Ruiz-Cortés, A., Durán, A., Müller, C.: An approach to temporal-
aware procurement of web services. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 170–184. Springer, Heidelberg (2005)

19. Müller, C., Mart́ın-Dı́az, O., Resinas, M., Fernández, P., Ruiz-Cortés, A.: A WS-
Agreement Extension for Specifying Temporal Properties in SLAs. In: Proc. of the
3rd Jornadas Cient́ıfico-Técnicas en Servicios Web y SOA (2007)

20. OASIS and UN/CEFAT: Electronic business using XML (ebXML) (2007)
21. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Part-

ner Selection. In: 15th International WWW Conf., ACM Press, New York (2006)
22. Ruiz-Cortés, A., Mart́ın-Dı́az, O., Durán, A., Toro, M.: Improving the Automatic

Procurement of Web Services using Constraint Programming. Int. Journal on Co-
operative Information Systems 14(4), 439–467 (2005)

23. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA Moni-
toring for Web Services. Research Report HPL-2002-191, HP Laboratories (2002)

24. The Internet Society: Policy Core Information Model - v1 Specification (2001)
25. Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller, J.: A Concept for QoS

Integration in Web Services. In: Proc. of the IEEE Int’l Web Services Quality
Workshop (at WISE’03), pp. 149–155. IEEE Computer Society Press, Los Alamitos
(2003)

26. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B.: Management Applications of the
Web Service Offering Language (WSOL). In: I. Systems, pp. 564–586 (2005)

27. Trastour, D., Bartolini, C., González-Castillo, J.: A Semantic Web Approach to
Service Description for Matchmaking of Services. Technical Report HPL-2001-183.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 207–219, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Maintaining Data Dependencies Across BPEL Process
Fragments

Rania Khalaf1, Oliver Kopp2, and Frank Leymann2

1 IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

2 University of Stuttgart, Universitätsstr.38,70569 Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

Abstract. Continuous process improvement (CPI) may require a BPEL process
to be split amongst different participants. In this paper, we enable splitting
standard BPEL - without any extensions or new middleware. We present a
solution that uses a BPEL process, partition information, and results of data
analysis to produce a BPEL process for each participant. The collective
behavior of these participant processes recreates the control and data flow of the
non-split process. Previous work presented process splitting using a variant of
BPEL where data flow is modeled explicitly using ‘data links’. We reuse the
control flow aspect from that work, focusing in this paper on maintaining the
data dependencies in standard BPEL.

Keywords: Web services, fragments, business process, BPEL.

1 Introduction

When outsourcing non-competitive parts of a process or restructuring an organization,
it is often necessary to move fragments of a business process to different partners,
companies, or simply physical locations within the same corporation. We provided a
mechanism in [8] that takes a business process and a user-defined partition of it
between participants, and creates a BPEL [16] processes for each participant such that
the collective behavior of these processes is the same as the behavior of the unsplit
one. The process model given as input was based on a variant of BPEL, referred to as
BPEL-D, in which data dependencies were explicitly modeled using ‘data links’.

Our work in this paper aims to study splitting a process specified in standard
compliant BPEL, in which data dependencies are – by definition – implicit. We want
to do so while maintaining transparency and without requiring additional middleware.
Transparency here means that (1) the same process modeling concepts/language are
used in both the main process and the processes created from splitting it; (2) process
modifications made to transmit data and control dependencies are easily identifiable
in these processes, as are the original activities. This enables the designer to more
easily understand and debug the resulting processes, and enables tools to provide a
view on each process without the generated communication activities.

208 R. Khalaf, O. Kopp, and F. Leymann

Data analysis of BPEL processes returns data dependencies between activities. On
a cursory glance, it seems that it would provide enough information to create the
necessary BPEL-D data links. In fact, that was the assumption made in [8] when
discussing how the approach could be used for standard BPEL. While for some cases
that would be true, section 2 will show that the intricacies of the data sharing behavior
exhibited by BPEL’s use of shared variables, parallelism, and dead path elimination
(DPE) in fact require a more sophisticated approach. DPE [16] is the technique of
propagating the disablement of an activity so that downstream activities do not hang
waiting for it. This is especially needed for an activity with multiple incoming links,
which is always a synchronizing join.

Our work explains the necessary steps required to fully support splitting a BPEL
process based on business need without extending BPEL or using specialized
middleware. A main enabler is reproducing BPEL’s behavior in BPEL itself.

2 Scenario and Overview

Consider the purchasing scenario in Figure 1: It provides a 10% discount to members
with ‘Gold’ status, a 5% discount to those with ‘Silver’ status, and no discount to all
others. After receiving the order (A) and calculating the appropriate discount (C, D, or
neither), the order status is updated (E), the order is processed (F), the customer
account is billed (G), and a response is sent back stating the discount received (H).
We will show how data is appropriately propagated between participant processes,
created by splitting this example, using only BPEL constructs.

orderInfo

response

pymtInfo

orderInfo.status==”silver”orderInfo.status==”gold”

orderInfo.orderStatus=”price calculated”

response

response.text+= “ 10% discount”
pymtInfo.amt = pymtInfo.amt*0.9

response.text+= “ 5% discount”
pymtInfo.amt =pymtInfo.amt*0.95

pymtInfo.amt = orderInfo.itemPrice
pymtInfo.actNum = orderInfo.accountNumber

response.text= “Dear customer, ... ”

orderInfo

processPayment(pymtInfo)

A

B

C

E

D

G

processOrder(orderInfo) F
H

variables: KEY:
receive

reply

invoke
assign

Fig. 1. Sample: an ordering process that provides discounts to Gold and Silver customers

Activity F reads data from A and E. In BPEL-D [8], data links from different
activities were allowed to write to the same location of the target activity’s input
container with a fixed conflict resolution policy of ‘random’. Data was considered
valid if the activity that wrote it had completed successfully. For cases where data is
needed from only one activity (e.g.: A to B, C, D above), data links suffice. However,

 Maintaining Data Dependencies Across BPEL Process Fragments 209

consider G. It reads pymtInfo, whose value of amt comes from B, and possibly from C
or D. If one had drawn a data link from all three and the status is gold, then B and C
would have run successfully but not D. There would be a race between B and C’s
writes of amt, when only C should have won. A different resolution policy, such as
‘last writer wins’, is needed here. However, this cannot be realized using the order of
the incoming messages carrying the required data: they may get reordered on the
network. Even if synchronized clocks [5] are used, BPEL does not have constructs to
handle setting variable values based on time stamps.

A high level overview of the approach we propose is: Given a BPEL process, a
partition, and the results of data analysis on that process, we produce the appropriate
BPEL constructs in the process of each participant to exchange the necessary data.
For every reader of a variable, writer(s) in different participants need to send both the
data and whether or not the writer(s) ran successfully. The participant’s process that
contains the reader receives this information and assembles the value of the variable.
The recipient uses a graph of receive and assign activities reproducing the
dependencies of the original writers. Thus, any writer conflicts and races in the non-
split process are replicated.

In more detail, the steps of our approach are: (1) Create a writer-dependency-graph
(WDG) that encodes the control dependencies between the writers. (2) To reduce the
number of messages, use information about a particular partition: Create a participant-
writer-dependency-graph (PWDG) that encodes the control dependencies between
regions of writers whose conflicts can be resolved locally (in one participant). (3)
Create Local Resolvers (LR) in the processes of the writers to send the data. (4) Create
a ‘receiving flow’ (RF) in the process of the reading activity that receives the data and
builds the value of the needed variable.

Criteria: The criteria we aim to maintain is that conflicting writes between multiple
activities are resolved in a manner that respects the explicit control order, as opposed
to runtime completion times, in the original process model.

Restriction: We assume that data flow follows control flow. We disallow splitting
processes in which a write and a read that are in parallel write to the same location.
BPEL does allow this behavior, but it is a violation of the Bernstein Criterion [1,12].
The Bernstein Criterion states that if two activities are executed sequentially and they
do not have any data dependency on each other, they can be reordered to execute in
parallel.

3 Background

Our work builds on [8], for which we now provide an overview. We reuse the parts of
the algorithm that create the structure of the processes, the endpoint wiring, and
splitting of control links. In order to enable splitting standard BPEL (i.e. without
explicit data links) we need to specify (1) how data dependencies are encoded without
appropriate BPEL extensions (see partition dependent graphs introduced below) and
(2) how data dependencies are reflected in the generated BPEL processes by using
just standard BPEL constructs.

A designer splits a process by defining a partition of the set A of all its simple
activities. Consider P, a set of participants. Every participant, p 2 Pp 2 P , consists of a

210 R. Khalaf, O. Kopp, and F. Leymann

participant name and a set of one or more activities such that: (i) a participant must
have at least one activity, (ii) no two participants share an activity or a name, and (iii)
every simple activity of the process is assigned to a participant. The result is one
BPEL process and one WSDL file per participant, as well as a global wiring
definition. Figure 2 shows a partition of the process in Figure 1.

P1 = f pw = (w; f Gg); px = (x; f A; B ; H g); py = (y; f E ; Cg); pz = (z; f D ; F g)gP1 = f pw = (w; f Gg); px = (x; f A; B ; H g); py = (y; f E ; Cg); pz = (z; f D ; F g)g

Fig. 2. A partition, P1, of the process in Figure 1

The subset of BPEL constructs that our algorithm, in both [8] and this paper, can
actually consume is: (i) processes with ‘suppressJoinFailure’ set to ‘yes’ (DPE on),
(ii) exactly one correlation set, (iii) any number of partnerLinks, (iv) a single top level
‘flow’ activity, (v) links, (vi) simple BPEL activities (except ‘terminate’, ‘throw’,
‘compensate’, and endpoint reference copying in an ‘assign’). Additionally, (vii) a
‘receive’ and its corresponding ‘reply’ are disallowed from being placed in different
participants. The single correlation set restriction is to enable properly routing inter-
participant messages that transmit control and data dependencies.

C
on

tr
ol

 L
in

k
D

at
a

Li
nk

Fig. 3. Summary of link splitting in [8]: the rectangle is a fault handler that catches the BPEL
‘joinFailure’ fault. Dashed line is a message

The main idea of [8] is to split of control and data links by adding activities in the
participant processes as shown in Figure 3. The top row shows splitting a control link
with a transition condition q between M and N. To transmit the value of the link to N
in participant 2, a scope with a fault handler for ‘joinFailure’ is used in participant 1.
The body of the scope contains an invoke with ‘suppressJoinFailure’ set to ‘no’. The
invoke sends ‘true()’ if the link from M evaluates to true. If not, then that invoke
throws a joinFailure, because DPE is off at the invoke (suppressJoinFailure=no). The

 Maintaining Data Dependencies Across BPEL Process Fragments 211

joinFailure is caught by the fault handler, which contains an invoke that sends
‘false()’. Participant 2 receives the value of the link, using a ‘receive’ activity that is
in turn linked to N with a transition condition set to the received value. This is the
status, determined at runtime, of the link from M to N in the original process.

The bottom row shows splitting a data link between P and O. We use, in
participant 1, a similar construct to that of a split control link. ‘true()’ is used as the
transition condition and the data is sent if O completes successfully. If O fails or is
skipped, the invoke in the fault handler sends ‘false()’ and an empty data item is sent.

In participant 2, a receiving block is created. Such a receiving block consists of (1)
a receive activity receiving the data into a uniquely named variable r, (2) an assign
activity copying from r.data to the desired variable, and (3) a link between them
conditional on r.status. The message from participant 1 is written in xtmp. If the status
is true, the assign writes the data to x. Otherwise the assign is skipped. P must wait for
the data but does not depend on whether x was written, so the join condition of P is
modified to ignore this new incoming link.

4 Related Work

There is a sizable body of work on splitting business processes, covered in more
details in [8]. The most relevant using BPEL is [6] where a process is broken down
into several BPEL processes using program analysis and possibly node reordering,
with the aim of maximizing the throughput when multiple instances are running
concurrently. They claim data analysis on BPEL can lead to enough information to
easily propagate data. However, they support a limited set of dependencies because
they do not handle faults – in particular those needed for Dead-Path-Elimination.

Alternative approaches for maintaining data dependencies across processes are
those that do not require standard BPEL, use new middleware, or tolerate
fragmentation obfuscation. In the non-BPEL arena, the most relevant in splitting
processes are the use of BPEL-D [8] (explicit data links) which is a simpler case of
this paper’s algorithms, van der Aalst and Weske’s P2P approach [19] for multi-party
business processes using Petri Nets, and Muth et. al’s work on Mentor [15] using
State Charts. In the P2P work, a public workflow is defined as a Petri Net based
Workflow Net, with interactions between the parties defined using a place between
two transitions (one from each). Then, the flow is divided into one public part per
party. Transformation rules are provided to allow one the creation of a private flow
from a single party’s public one. In Mentor, a state and activity chart process model is
split so that different partners can enact its different subsets. Data flow in activity
charts, however, is explicitly modeled using labeled arcs between activities - much
simpler to split than BPEL’s shared variables.

For new middleware instead of our approach, one could explore a wide variety of
other ways of propagating data. Examples include: shared data using space-based
computing [11]; distributed BPEL engines like the OSIRIS system [18]; modifying a
BPEL engine to support using data from partially ordered logical clocks [5] along
with write conflict resolution rules.

Dumas et. al [4] translate a process into an event based application on a space-
based computing runtime, to enable flexible process modeling. While not created for

212 R. Khalaf, O. Kopp, and F. Leymann

decomposition, it could be used for it: the process runs in a coordination space and is
thus distribution-friendly. The SELF-SERV Project [3] provides a distributed process
execution runtime using state-charts as the process model. In both these works, the
result is not inline with our goals: the use of a non-BPEL model (UML Activity
diagrams, state charts), the requirement of new middleware (coordination space,
SELF-SERV runtime), and lack of transparency because runtime artifacts are in a
different model (controllers, coordinators) than the process itself.

Mainstream data flow analysis techniques are presented in [14], but BPEL presents
special challenges due to parallelism and especially Dead-Path-Elimination. The
application of the Concurrent Single Static Assignment Form (CSSA, [10]) to BPEL
is shown in [13]. The result of the CSSA analysis is a possible encoding of the use-
definition chains, where the definitions (write) of a variable for every use (read) are
stated. Thus, the CSSA form can be transformed to provide a set of writers for each
reading activity which can be in turn used as one of the inputs to our approach.

We are not aware of any work that propagates data dependencies among fragments
of a BPEL process in the presence of dead-path elimination and using BPEL itself.

5 Encoding Dependencies

In this section, we describe how the necessary data dependencies are captured and
encoded. The Figure 1 scenario is used throughout to illustrate the various steps. The
presented algorithms require the results of a data analysis on the process. In parallel,
we are working on such an algorithm (in preparation for publication), optimized for
our approach, but whose details are out of scope for this paper. Any data analysis
algorithm on BPEL is usable provided it can handle dead path elimination,
parallelism, and provide the result (directly or after manipulation) explained below.

One challenging area is in handling writes to different parts of a variable. Our
approach handles not only writes to an entire variable, but can handle multiple queries
of the form that select a named path (i.e.: (/e)*, called lvalue in the BPEL
specification) and do not refer to other variables. For example, consider w1 writes x.a,
then w2 writes x.b, then r reads x; r should get data from both writers and in such a
way that x.b from w1 does not overwrite x.b from w2 and vice versa for x.a. However,
if they had both written to all of x, r would need x from just w2. On the other hand,
whether an activity reads all or part of a variable is treated the same for the purposes
of determining which data to send.

The data algorithm result should provide for each activity a, and variable x read by
a (or any of the transition conditions on a’s outgoing links), a set Qs(a,x). Qs(a,x)
groups sets of queries on x with writers which may have written to the same parts of x
expressed in those queries by the time a is reached in the control flow. Thus, Qs(a,x)

is a set of tuples, each containing a query set and a writer set. Consider w1, w2, and w3
that write to x such that their writes are visible to a when a is reached. Assume they
respectively write to f x:b; x:cgf x:b; x:cg, f x:b; x:c; x:dgf x:b; x:c; x:dg, and f x:d; x:egf x:d; x:eg. Then
Qs(a; x) = f (f x:b; x:cg; f w1; w2g); (f x:dg; f w2; w3g); (f x:eg; f w3g)Qs(a; x) = f (f x:b; x:cg; f w1; w2g); (f x:dg; f w2; w3g); (f x:eg; f w3g). Consider Ad(a; x)Ad(a; x)
to provide the set of all writers that a depends on for a variable x that it reads. In other
words, using ¼i (t)¼i (t) to denote the projection to the ii th component of a tuple tt ,
Ad(a; x) =

S
qs 2 Qs (a;x) ¼2(qs)Ad(a; x) =

S
qs 2 Qs (a;x) ¼2(qs).

 Maintaining Data Dependencies Across BPEL Process Fragments 213

5.1 Writer Dependency Graph (WDG)

We define a writer dependency graph (WDG) for activity a and variable x to be the
flow representing the control dependencies between the activities in Ad(a; x)Ad(a; x). As we
are dealing with the subset of BPEL that is a flow with links, the structure is a
Directed Acyclic Graph. We have: WDGa ;x = (V; E)WDGa ;x = (V; E) where the nodes are the writers:

V = Ad(a; x) ½ AV = Ad(a; x) ½ A

As for the edges, if there is a path in the process between any two activities in Ad that
contains no other activity in Ad, then there is an edge in the WDG connecting these
two activities. Consider a function Paths(a,b) that returns all paths in the process
between a and b. A path is expressed as an ordered set of activities. Formally, and
where f v1; v2g 2 Vf v1; v2g 2 V :

(v1 ; v2) 2 E , jPaths(v1 ; v2)j > 0 ^ 8p 2 Paths(v1 ; v2); p \ V = f v1 ; v2 g(v1 ; v2) 2 E , jPaths(v1 ; v2)j > 0 ^ 8p 2 Paths(v1 ; v2); p \ V = f v1 ; v2 g

A WDG is not dependent on a particular partition. Consider F in Figure 1.
Ad (F; order Info) = f A ; E gAd (F; order Info) = f A ; E g. E is control-dependent on A; therefore, WDG F ;order I nfoWDG F ;order I nfo
= (f A; E g; f (A ; E)g)= (f A; E g; f (A ; E)g). Another example is WDG G ;pymt I nfoWDG G ;pymt I nfo= (f B ; C; D g; f (B ; C); (B ; D)g)= (f B ; C; D g; f (B ; C); (B ; D)g).

To reduce the number of messages exchanged between partitions to handle the split
data, one can: (i) use assigns for writers in the partition of the reader; (ii) join results
of multiple writers in the same partition when possible. The next section shows how
to do so while maintaining the partial order amongst partitions.

5.2 Partitioned Writer Dependency Graph (PWDG)

The partitioned writer dependency graph for a given WDG is the graph representing
the control dependencies between the sets of writers of x for a based on a given
partition of the process. A PWDG node is a tuple, containing a partition name and a
set of activities. Each node represents a ‘region’. A region consists of activities of the
same partition, where no activity from another partition is contained on any path
between two of the region’s activities. The regions are constructed as follows:

1) Place a temporary (root) node for each partition, and draw an edge from it to
every WDG activity having no incoming links in that partition. This root node is
needed to build the proper subgraphs in step 2.

2) Form the largest strongly connected subgraphs where no path between its
activities contains any activities from another partition.

3) The regions are formed by the subgraphs after removing the temporary nodes.

Each edge in the PWDG represents a control dependency between the regions. The
edges of the PWDG are created by adding an edge between the nodes representing
two regions, r1 and r2, if there exists at least one link whose source is in r1 and whose
target is in r2.

Consider the partition P1in Figure 2. The PWDG for F and variable orderInfo, and
the PWDG of G and variable pymtInfo would therefore be as follows:

PWDGF ;order I nfo ;P 1 = (f n1 = (x; f Ag); n2 = (y; f Eg)g; f (n1; n2)g)PWDGF ;order I nfo ;P 1 = (f n1 = (x; f Ag); n2 = (y; f Eg)g; f (n1; n2)g)
PWDGG;pymtI nfo;P 1 = (f n1 = (x; f Bg); n2 = (y; f Cg); n3 = (z; f Dg)g; f (n1; n2); (n1; n3)g)PWDGG;pymtI nfo;P 1 = (f n1 = (x; f Bg); n2 = (y; f Cg); n3 = (z; f Dg)g; f (n1; n2); (n1; n3)g)

214 R. Khalaf, O. Kopp, and F. Leymann

Next, consider a different partition, P2, similar to P1 except that C is in pzpz with D,
instead of pypy , then the PWDG of H and response has only two nodes:

PWDGH ;response;P 2 = (f n1 = (x; f B g); n2 = (z; f C; D g)g; f (n1; n2)g)PWDGH ;response;P 2 = (f n1 = (x; f B g); n2 = (z; f C; D g)g; f (n1; n2)g)
If all writers and the reader are in the same partition, no PWDG is needed or

created. Every PWDG node results in the creation of constructs to send the data in the
writer’s partition and some to receive it in the reader’s partition. The former will be
the Local Resolvers (section 5.3). The latter will be part of the Receiving Flow for the
entire PWDG (section 5.4).

5.3 Sending the Necessary Values and the Use of Local Resolvers

A writer sending data to a reader in another participant needs to send both whether or
not the writer was successful and if so, also the value of the data. We name the pattern
of activities constructed to send the data a Local Resolver (LR).

CREATE-LOCAL-RESOLVER-MULTIPLE-WRITERS(Node n, String x)

1 Q = Qs(n; x)Q = Qs(n; x)
2 If p=pr
3 Add b=new empty, v=new variable, v.name = idn(n)
4 t = idn(n)
5 If jQj = 1jQj = 1, let Q = f qsgQ = f qsg
6 If p!=pr
7 b=CREATE-SENDING-BLOCK(x)
8 8w 2 ¼2(qs)8w 2 ¼2(qs)
9 Add link l = (w; b; tr ue())l = (w; b; tr ue())
10 Else // more than one query set
11 If p!=pr
12 Add b = new invoke, v = new variable
13 b.inputVariable=v, b.toPart=(“data”,x), b.joinCondition=”true()”
14 t=name(v)
15 8qs 2 Q8qs 2 Q
16 s = CREATE-ASSIGN-SCOPE(t,qs)
17 Add link l1 = (s; b; tr ue())l1 = (s; b; tr ue())

CREATE-ASSIGN-SCOPE(String t, Set qs):
 Add s= new scope
 s.addFaultHandler(‘joinFailure’,
 a_sf=new assign)
 s.setActivity(a_s=new assign),
 a_s.suppressJoinFailure=’no’
 a_sf.addCopy(QSTATUS-STR(t,qs),false())
 a_s.addCopy(QSTATUS-STR(t,qs), true())
 8w 2 ¼2(qs 2 Q)8w 2 ¼2(qs 2 Q)
 Add link l = (w; as ; tr ue())l = (w; as ; tr ue())
 Return s

QSTATUS-STR (String t, Set qs)
 Return t + “.status” + id(qs)

CREATE-SENDING-BLOCK(String x)
 Add s= new scope
 s.addFaultHandler(“joinFailure”,
 invf=new invoke)
 Add v = new variable
 invf.inputVariable=v
 invf.toPart=(“status”,false())
 s.setActivity(inv=new invoke)
 inv.inputVariable=v
 inv.toPart=(“status”,true())
 inv.toPart=(“data”,x)
 inv.suppressJoinFailure=”no”
 Return inv

 Maintaining Data Dependencies Across BPEL Process Fragments 215

If there is only one writer in a node of a PWDG, then: if the node is in the same
partition as the PWDG, do nothing. Otherwise, the Local Resolver is simply a sending
block as with an explicit data link (Figure 3, partition 1).

If there is more than one writer, the algorithm below is used. Basically, conflicts
between writers in the same PWDG node, n=(p,B), are resolved in the process of
p: An activity waits for all writers in n and collects the status for each set of
queries.

Assume a PWDG for variable x, and the reader in partition pr. Consider id to be a
map associating a unique string for each set of queries in Q, and idn to do the same
for each PWDG node. For each PWDG node, n=(p,B), with more than one writer, add
the following activities to the process of participant p:

If the reader is in the same partition as the writers in this node, then we wait with
an ‘empty’ (line 3). If all writers write to the same set of queries, and the node is not
in the reader’s participant, use a sending block. Create a link from every writer to b,
which is either the empty or the sending block’s invoke (line 6-9). Figure 4 shows
such use of an invoke for C and D in partition y.

If there is more than one query set, the status for each one needs to be written. If
the reader is in another participant we create an invoke that runs regardless of the
status of the writers (line 11-16). For each query, use a structure similar to a sending
block (i.e.: scope, fault handler) to get the writers’ status (line 16), but using assigns
rather than invokes. The assigns write true or false to a part of the status variable
corresponding to the query. Create links from each writer of the query set to the
assign in the scope. Create a link (line 17) from the scope to either the empty from
line 3 or the invoke from line 12.

Fig. 4. Snippets from processes from the process in Fig. 1 w/ partition P2

5.4 Receiving Flow (RF)

A Receiving Flow, for a reader a and variable x, is the structure created from a
PWDG that creates the value of x needed by the time a runs. It contains a set of
receive/assign activities, in a’s process, to resolve the write conflicts for x.

Consider pr to be the reader’s partition, and G to be the PWDG from WDG(a,x).
An RF defines a variable, vtmp, whose name is unique to the RF. The need for
vtmp is explained in the next section. A receiving flow is created from G as
follows:

216 R. Khalaf, O. Kopp, and F. Leymann

 CREATE-RF(PWDG G)
1 Create a <flow> F
2 For all n = (p; B) 2 ¼1(G)n = (p; B) 2 ¼1(G)
3 PROCESS-NODE(n)
4 For all e = (n1; n2) 2 ¼2(G)e = (n1; n2) 2 ¼2(G)
5 For all d 2 ean 1d 2 ean 1
6 Add a link l=(d, ban2 true())
7 Add af =new assign
8 af :addCopy(vtmp ; x)af :addCopy(vtmp ; x)
9 Add links l f = (F; af ; true())l f = (F; af ; true()) and l r = (af ; a; true())l r = (af ; a; true())
10 joinCondition(a) = joinCondition(a) ^ (lr _ : lr)joinCondition(a) = joinCondition(a) ^ (lr _ : lr)

Create a flow activity (line 1). For each node (line2-3), we will add a block of

constructs to receive the value of the variable and copy it into appropriate locations
in a temporary, uniquely named variable vtmp. Link the blocks together (line 4-6) by
connecting them based on the connections between the partitions, using ba and ea
as the first and last activities of a block, respectively. The subscript is used to
identify which node’s block they are for (i.e.: ean1 is the ea set created in
PROCESS-NODE(n1)). Link the flow to an assign (line 7-9) that copies from vtmp
to x. Link the assign to a and modify a’s join condition to ignore the new link’s
status (line 10).

 PROCESS-NODE(Node n) //recall n=(p,B)

1 Q = Qs(n; x)Q = Qs(n; x), ea = ;ea = ;
2 //All activities added in this procedure are added to F
3 If p = prp = pr
4 If jQj = 1jQj = 1, let Q = f qsgQ = f qsg
5 ba =new assign,
6 For all q 2 qsq 2 qs, ba:addCopy(vtmp :q; x + " :" + q)ba:addCopy(vtmp :q; x + " :" + q)
7 If jB j = 1jB j = 1, Add link l0 = (b 2 B ; ba; true())l0 = (b 2 B ; ba; true())
8 ea Ã ea [f bagea Ã ea [f bag
9 Else
10 ba =new empty
11 For all qs 2 Qqs 2 Q
12 CREATE-Q-ASSIGN(qs ; " x" ; QSTATUS-STR(idn(n); qs))(qs ; " x" ; QSTATUS-STR(idn(n); qs))
13 If jB j 6= 1jB j 6= 1
14 Add link l0 = (em; ba; tr ue())l0 = (em; ba; tr ue()), where em=empty from LR
15 joinCondition(ba)=status(l0)
16 Else //p is not pr
17 Add rrb= new receive, joinCondition(rrb)=true(), rrb.variable=ri
18 ba = rrb //note that ea will be created in lines 20,23
19 If jQj = 1jQj = 1, let Q = f qsgQ = f qsg
20 CREATE-Q-ASSIGN(qs ; " r i :data" ; " r i :status")(qs ; " r i :data" ; " r i :status")
21 Else
22 For all qs 2 Qqs 2 Q
23 CREATE-Q-ASSIGN(qs ; " r i :data" ; QSTATUS-STR(r i ; qs))(qs ; " r i :data" ; QSTATUS-STR(r i ; qs))

 Maintaining Data Dependencies Across BPEL Process Fragments 217

And the creation of the assigns for each query is as follows:

CREATE-Q-ASSIGN(Set qs, String var, String statusP)
 c.1 Add act =new assign
 c.2 ea Ã ea [f actgea Ã ea [f actg
 c.3 Add link l = (ba; act ; statusP)l = (ba; act ; statusP)
 c.4 For all q 2 qsq 2 qs, act:addCopy(vtmp :q; var + " :" + q)act:addCopy(vtmp :q; var + " :" + q)

For each node: If the node is in the same participant as a and has, one query set,
add an assign copying from the locations in x to the same locations in vtmp (line 3-6).
If the node has only one writer, link from the writer to the assign (line 7). If it has
more than one writer, an ‘empty’ was created in the Local Resolver (LR), so link from
that empty to the assign (line 13-14). If the node has more than one query set, create
an empty instead of an assign and (line 11-12) create one assign per query set. Create
links from the empty to the new assigns whose status is whether the query set was
successfully written (line c.3). Add a copy to each of these assigns, for every query in
the query set, from the locations in x to the same locations in vtmp (line c.4). Then,
(line 15) set the joinCondition of the empty or assign to only run if the data was valid.

If the node is another partition, create a receiving block (line 17) instead of an
assign. Set the joinCondition of the receive to true so it is never skipped. Again copy
the queries into a set of assigns (line 19-23).

Figure 5 shows two examples for partition P1 of our scenario. The top creates
pymtInfo for G: The value of amt may come from B,C, or D but actNum always from
B. The bottom creates orderInfo for F. Notice how A’s write is incorporated into the
RF even though A and F are in the same participant.

Note that receiving flows reproduce the building of the actual variable using BPEL
semantics. Thus, the behavior of the original process is mirrored, not changed.

Fig. 5. Two RFs using partition P1. Top: pymtInfo to G in w. Bottom: orderInfo to F in z.

Multiple RFs and the Trailing Assign
Consider multiple readers of the same variable placed in the same participant Each RF
writes to its local temporary variable, and only copies to the shared variable when the
trailing assign at the end of the RF is reached. This temporary variable is used so that
messages arriving out of order or to multiple RFs concerned with the same variable
do not incorrectly overwrite each other’s values. The algorithms require that the

218 R. Khalaf, O. Kopp, and F. Leymann

original process adhere to the Bernstein Criterion; otherwise, one cannot guarantee
that RFs with overlapping WDGs don’t interfere with each other’s writes.

6 Conclusion and Future Work

We provided an algorithm for splitting BPEL processes using BPEL itself for proper
data communication between participants; furthermore, splits are transparent, i.e. it is
clear where the changes are and they are done in the same modeling abstractions as
the main process model. This has been achieved by use of LRs and RFs as long as the
original process respects the Bernstein Criterion. If not, one would have to take into
consideration actual completion times of activities, which goes beyond BPEL’s
capabilities. Having placed the activities that handle data and control dependencies at
the boundaries of the process and used naming conventions on the operations, we
enable graphical/text-based filters to toggle views between the activities of the non-
split process and the ‘glue’ activities we have added. The difficulty in maintaining
data dependencies in BPEL is due to unique situations (section 2), such as the ability
to ‘revive’ a dead path with an ‘or’ join condition, resulting from dead-path
elimination and parallelism.

The complexity, in number of messages exchanged and activities added, depends
on two factors: The amount of inter-participant data dependencies and the quality of
the data algorithm. Poor data analysis leads to larger writer sets. At most one ‘invoke’
is added for each PWDG node, so the number of message exchanges added is at most
the total number of PWDG nodes: O(nPW D G) = O(n)O(nPW D G) = O(n). For the number of added
activities, the upper bound is quadratic, O(nPW D G £ max(jQsj)) = O(n2)O(nPW D G £ max(jQsj)) = O(n2).

Our future work includes optimizations such as merging overlapping RFs and
targeted data analysis. A first step for optimization is the application of the work
presented in [2,7,17] to BPEL. Also of interest is enabling transmitting (some) data
dependencies for split loops and scopes, whose control is split in [9], by grafting
activities in the participant processes. Other directions include effects of toggling
DPE, and using the information of whether a split is exclusive or parallel by analyzing
link transition conditions. Another aspect is to provide an implementation of the
algorithm and perform quantitive evaluation on the process fragments it outputs.

Acknowledgement. Jussi Vanhatalo, for suggesting local resolution with one invoke,
inspiring the current Local Resolver. David Marston, for his valuable review.

References

1. Baer, J. L.: A Survey of Some Theoretical Aspects of Multiprocessing. ACM Computing
Surveys, Vol. 5 No. 1 (1973) 31-80

2. Balasundaram, V., Kennedy, Ken: A Technique for Summarizing Data Access and Its Use
in Parallelism Enhancing Transformations. In: Proceedings of the ACM SIGPLAN ’89
Conference on Programming Language Design and Implementation. SIGPLAN Notices,
Vol. 24 No. 7 (1989) 41-53

3. Benatallah, B., Dumas, M., Sheng, Q.Z.: Facilitating the Rapid Development and Scalable
Orchestration of Composite Web Services. Journal of Distributed and Parallel Databases,
Vol. 17 No. 1 (2005) 5-37

 Maintaining Data Dependencies Across BPEL Process Fragments 219

4. Dumas, M., Fjellheim, T., Milliner, S., Vayssiere J.: Event-based Coordination of Process-
oriented Composite Applications. Proceedings of the 3rd International Conference on
Business Process Management (BPM). Lecture Notes in Computer Science, Vol. 3649.
Springer-Verlag, (2005) 236-251

5. Fidge, C.: Logical Time in Distributed Computing Systems. IEEE Computer, Vol. 24 No. 8
(1991) 28-33

6. Gowri, M., Karnik, N.: Synchronization Analysis for Decentralizing Composite Web
Services. International Journal of Cooperative Information Systems, Vol. 13 No. 1 (2004)
91-119

7. Kennedy, K., Nedeljkovi'c, N.: Combining dependence and data-flow analyses to optimize
communication. In: Proceedings of the 9th International Parallel Processing Symposium
(1995) 340-346

8. Khalaf, R., Leymann, F.: Role Based Decomposition of Business Processes Using BPEL.
In: Proceeding of the IEEE 2006 International Conference on Web Services (ICWS 2006),
Chicago, Il, (2006) 770-780

9. Khalaf, R., Leymann, F.: Coordination Protocols for Split BPEL Loops and Scopes.
University of Stuttgart, Technical Report No. 2007/01, March 2007

10. Lee, J., Midkiff, S.P., Padua D.A.: Concurrent Static Single Assignment Form and Constant
Propagation for Explicitly Parallel Programs. In: Proceedings of the 10th International
Workshop on Languages and Compilers for Parallel Computing. Lecture Notes in Computer
Science, Vol. 1366. Springer-Verlag, (1997) 114-130

11. Lehmann, T.J., McLaughry, S.W., Wyckoff, P.:T Spaces: The Next Wave. Proceedings of
the 32nd Hawaii International Conference on System Sciences (HICSS ’99), Maui, Hawaii,
Jan. 1999

12. Leymann, F., Altenhuber, W.: Managing Business Processes as Information Resources,
IBM Systems Journal, Vol. 33 No. 2. (1994) 326-348

13. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced Verification of
Distributed WS-BPEL Business Processes Incorporating CSSA-based Data Flow Analysis.
IEEE International Conference on Services Computing (SCC 2007). (2007) 98-105

14. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann. 1997
15. Muth, P., Wodkte, D., Wiessenfels, J., Kotz, D.A., Weikum, G.: From Centralized

Workflow Specification to Distributed Workflow Execution, Journal of Intelligent
Information Systems, Vol. 10 No. 2 (1998) 159-184

16. OASIS: Web Services Business Process Execution Language Version 2.0, 11 April 2007
Online at http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

17. Sarkar, V.: Analysis and Optimization of Explicitly Parallel Programs Using the Parallel
Program Graph Representation. In: Li, Z. et al. (eds.): 10th Workshop on Languages and
Compilers for Parallel Computing (LCPC). Lecture Notes in Computer Science, Vol. 1366.
Springer-Verlag (1997)

18. Schuler, C., Weber, R., Schuldt, H., Scheck, H.J.: Peer-to-Peer Process Execution with
OSIRIS. In: 1st International Conference on Service Oriented Computing (ICSOC 2003).
Lecture Notes in Computer Science, Vol. 2910. Springer-Verlag (2003) 483-498

19. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflow. In:
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE 2001). Lecture Notes in Computer Science, Vol. 2068. Springer-
Verlag (2001) 140-156.

Supporting Dynamics in Service Descriptions -

The Key to Automatic Service Usage

Ulrich Küster and Birgitta König-Ries

Institute of Computer Science, Friedrich-Schiller-Universität Jena
D-07743 Jena, Germany

ukuester,koenig@informatik.uni-jena.de

Abstract. In realistic settings, service descriptions will never be precise
reflections of the services really offered. An online seller of notebooks,
for instance, will most certainly not describe each and every notebook
offered in his service description. This imprecision causes poor quality
in discovery results. A matcher will be able to find potentially matching
services but can give no guarantees that the concrete service needed
will really be provided. To alleviate this problem, a contract agreement
phase between service provider and requester following the discovery has
been suggested in the literature. In this paper, we present an approach
to the automation of this contracting. At the heart of our solution is
the possibility to extend service descriptions with dynamically changing
information and to provide several means tailored to the abilities of the
service provider to obtain this information at discovery time.

1 Introduction

In recent years two trends – the Semantic Web and Web Services – have been
combined to form Semantic Web Services, services that are semantically anno-
tated in a way that allows for fully or semi automated discovery, matchmaking
and binding. At the core of Semantic Web Services is an appropriate service de-
scription language that is on the one hand expressive enough to allow for precise
automated matchmaking but on the other hand restricted enough to support ef-
ficient processing and reasoning. Several frameworks have been proposed (among
them WSMO[1] and OWL-S[2]) but overall there is no consensus about the most
suitable formalism yet.

One of the challenges in the design of semantic service description languages
and matchmaking tools is the granularity at which services are to be described
and thus the precision that can be achieved during discovery. Most efforts de-
scribe services at the interface level, e.g. a service that sells computer parts will
be described exactly like that. This is fine to service requests that are given at
the same level of detail, like ”I’m looking for a service that sells notebooks”. Such
a description is sufficient, if the aim of discovery is to find potentially match-
ing services. In this case, the user or her agent will be presented with a list of
notebook sellers and will then browse through their inventory or use some other
mechanisms to obtain more precise information about available notebooks, their

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 220–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Supporting Dynamics in Service Descriptions 221

configurations and prices. The user will then have to make a decision which note-
book to buy and call the service to actually do so. This works fine, as long as the
user is in the loop during the process. It does not work anymore if complete au-
tomation is expected. Take for instance a fine grained and precise request like ”I
want to buy a 13 - 14 inch Apple MacBook with at least 1 GB RAM and at least
2.0 GHZ Intel Core 2 Duo Processor for at most $1500”. Such a request might
be posed by a user, but might as well be posed, e.g., by an application run by
the purchasing department of a big company with the expectation that matching
services will be found, the best one selected and then invoked autonomously by
the discovery engine. To handle such requests successfully, detailed information
about available products, their properties and their price is needed in the offer
descriptions.

In [3] Preist writes about this issue. He distinguishes abstract, agreed and
concrete services. A concrete service is defined as ”an actual or possible perfor-
mance of a set of tasks [...]” whereas an abstract service is some set of concrete
services and described by a machine-understandable description. Ideally, these
descriptions are correct and complete. Correct means that the description cov-
ers only elements that the service actually provides. The description ”This is
a notebook selling service” is not correct, since the service will typically not
be able to deliver all existing notebooks. Complete means, that everything the
service offers is covered by the description. While completeness of descriptions
is rather easy to achieve, correctness is not. To achieve this characteristic much
more information would have to be included in the static descriptions published
to the service repositories than is usually feasible for several reasons. Typical
services will sell hundreds of products and big players may even sell thousands
of thousands of different articles. Regardless of whether one creates few compre-
hensive descriptions each including many products or many specific descriptions
each comprising only few closely related articles: The overall amount of informa-
tion that needs to be sent to the registry and that needs to be maintained and
updated will be forbiddingly big. Scalability issues will become increasingly bad
when properties of articles like availability, predicted shipping time or prices
change dynamically, which will often be the case. Furthermore, many service
providers will not be willing to disclose too much information to a public reposi-
tory. First, a huge up-to-date database of information about products constitutes
a direct marketing value that providers will not be willing to share. Second, in-
formation about the availability of items may give bargaining power to potential
buyers (think of the number of available seats on a certain flight). In these cases
– again – the provider will be unwilling to reveal such information.

Preist suggests a separate contract agreement phase following the discovery
to determine whether a matching abstract service is really able to fulfill a given
request and to negotiate the concrete service to provide. We argue, that similar to
discovery, contracting can be automated, if enough information is made available
to the matchmaker. To enable such an extension of a matchmaker, a flexible
way to represent dynamically changing information in service descriptions and

222 U. Küster and B. König-Ries

to obtain this information during discovery is needed. Existing frameworks for
semantic web services offer little if any support for this step.

In this paper we extend our previous work on semantic service description lan-
guages and semantic service matchmaking in this direction. We propose means to
enable fully automated yet flexible and dynamic interactions between a match-
maker and service providers that are used during the matchmaking process to
gather dynamic information that is missing in the static service description (like
the availability and the current price of certain articles). We then illustrate how
this is used to enable contracting within the discovery phase.

The rest of the paper is organized as follows: In Section 2 we provide some
background information about the service description language and the match-
making algorithm used to implement our ideas. Building on that we present
the above mentioned extensions to the language and matchmaking algorithm
in Section 3. There, we also illustrate and motivate our extensions via a set of
examples. In Section 4 we give more details on the implementation of our ideas
and how we evaluated it. Finally, we provide an overview of the related work in
Section 5 and summarize and conclude in Section 6.

2 DIANE Service Description

In this section we provide some background information about the DIANE Ser-
vice Description (DSD) that we used to implement our ideas and the DIANE
middleware built around it to facilitate the efficient usage of the language.

DSD is a service description language based on its own light-weight ontol-
ogy language that is specialized for the characteristics of services and can be
processed efficiently at the same time. In the following an intuitive understand-
ing of DSD and the DSD matchmaking algorithm is sufficient for this paper.
We will therefore include only the necessary aspects of DSD to make this pa-
per self-contained. The interested reader is referred to [4,5,6] for further details.
Figure 1 shows relevant excerpts of a DSD request to buy a notebook roughly
corresponding to the one mentioned in the introduction in an intuitive graphical
notation.

The basis for DSD is standard object orientation which is extended by addi-
tional elements, two of which are of particular importance in the context of this
paper.

Aggregating Elements: A service is typically able to offer not one specific effect,
but a set of similar effects. An internet shop for instance will be able to offer
a variety of different products and will ship each order to at least all national
addresses. That means, services offer to provide one out of a set of similar effects.
In Preist’s terminology, these are abstract services. Requesters on the other hand
are typically looking for one out of a number of acceptable services, but will have
preferences for some of these. (Our notebook buyer might prefer a 13-inch, 1.5
GB RAM notebook over a 14-inch, 1 GB RAM notebook – or the other way
round.) Thus, DSD is based on the notion of sets. Sets are depicted in DSD
by a small diagonal line in the upper left corner of a concept. This way, offers

Supporting Dynamics in Service Descriptions 223

upper

req : Service
upper.profile

: ServiceProfilepresents

effect
Owned

Product entity Notebook
price

Price
OUT,x,1

producer
Company

== apple
display

Displaysize

processor

LengthMeasure

value unit

Double

>= 13.0; <= 14.0

LengthUnit

== inch

memory

Memory

size

DataCapacityMeasure

unitvalue

DataCapacityUnit

== mb

Double

>= 1024

currency

Currency
== usd

amount

Double
<= 1500

hdd

...

...

entity

Fig. 1. Simplified DSD request

describe the set of possible effects they can provide and requests describe the
set of effects they are willing to accept together with the preference among the
elements of this set. Like all DSD concepts sets are declaratively defined which
leads to descriptions as trees as seen in Figure 1. This request asks for any
one service that sells a notebook that is produced by Apple, has a display size
between 13.0 and 14.0 inches, at least one gigabyte RAM and costs at most
$1500. Fuzzy instead of crisp sets may be used in requests to encode preferences,
e.g., for more RAM or lower cost or to trade between different attributes, e.g.
between cost and memory size [6].

Variables: While a service will offer different effects, upon invocation, the re-
quester needs to choose or at least limit which of these effects the service should
provide in this specific instance. This step is referred to by Preist as contract
agreement and negotiation. Meanwhile, after service execution the requester
might need to receive results about the specific effect performed by the invo-
cation. In DSD, variables (denoted by a grayed rectangle) are used to support
this. In offers, variables are used to encode input and output concepts, in re-
quests (as in in Figure 1) they can be used to require the delivery of certain
outputs of the service invocation (like the exact price of the purchased notebook
in the example) or to enable configurable request templates.

In our envisioned setting we use a request-driven paradigm for semantic ser-
vice discovery and matchmaking and assume the need for complete automation.
Service providers publish their offer descriptions to some kind of repository. Ser-
vice users create request descriptions that describe desired effects. The task to
find, bind and execute the most suitable service offer for a given request is then
delegated to a fully automated semantic middleware that works on behalf of the
requester.

Since the semantic middleware is supposed to work in a fully automated fash-
ion up to the invocation of the most suitable offer (if there is one), matchmaking
is not limited to identifying potential matches. Instead it has to prepare the in-
vocation by configuring the offers (i.e. choosing values for all necessary inputs) in

224 U. Küster and B. König-Ries

a way that maximizes their relevance to the request and it has to guarantee that
any identified match is indeed relevant. Note, that this means that we have to
carry out contracting in an automated fashion. Because of complete automation
the matchmaker has to act conservatively and dismiss the offer in case they are
underspecified (for instance if a computer shop doesn’t precisely state whether
it can provide a particular notebook). The extensions proposed in this paper
ensure, that this will happen as seldom as possible.

We use a request-driven approach to matchmaking. Our matchmaker traverses
the request description and compares each concept with the corresponding con-
cept from the offer at hand. The degree of match (matchvalue) of two particular
concepts is determined by applying any direct conditions from the request to
the offer concept and combining the comparison of their types with the match-
values of the properties of the concepts. These are determined recursively in the
same fashion. When the matchmaker encounters a variable in the offer during
its traversal of the descriptions it determines the optimal value for this variable
with respect to the request. Due to space limitations please refer to [4,6] for
further detail.

3 Dynamic Information Gathering for Improved
Matchmaking

In this section we will present how we integrated an automated contracting
phase into our matchmaking algorithm. We will illustrate our approach by means
of offer descriptions for three fictitious providers that are potentially relevant
for a user seeking to buy a notebook with particular properties. Note that for
reasons of simplicity and due to space limitations all examples shown in this
sections have been simplified and show relevant excerpts of the offer descriptions
only. In particular all aspects related to actually execute any service operations
(grounding to SOAP, lifting and lowering between DSD and XML data, etc.)
have been omitted1.

In order to interact with services, DSD supports a two-phase choreography: An
arbitrary number of so-called estimation steps is followed by a single execution
step. The execution step is the final stateful service invocation that is used to
create the effect that is desired by the requester. It will be executed for the most
suitable offer after the matchmaking is completed. Contrary, the estimation steps
will be executed on demand for various offers during the matchmaking process
to gather additional information, i.e. to dynamically obtain a more specific and
detailed offer description where necessary. Since they may be executed during
the matchmaking process for various providers they are expected to be safe as
defined in Section 3.4. of the Web Architecture [8].

Concepts in an offer description may be tagged as estimate n out variables,
thereby specifying that they can be concretized and detailed by invoking the

1 Information about the automated invocation of services described using DSD can
be found in [7].

Supporting Dynamics in Service Descriptions 225

operation(s) associated with the nth estimation step providing the values of the
concepts tagged as estimate n in variables as input. In order to be able to
invoke the corresponding operation, it has to be assured that those variables
have already been filled by the matchmaker. Thus our matchmaking algorithm
uses a two phase approach2:

The first phase is used to filter irrelevant offers, fill variables in the remaining
offer descriptions and in particular to collect information about whether a certain
estimation step needs to be performed at all. We are able to do this by exploiting
the fact that our structured approach to matchmaking (see Section 2) allows us
to precisely determine those parts (or aspects) of two service descriptions that
did not match. If the matcher encounters a concept that is tagged as estimate
out variable three cases can be distinguished:

– A perfect match can be guaranteed using the static description alone: A
provider states that the shipping time for all offered products does not exceed
one week and that the precise shipping time of a particular product can be
obtained dynamically. If the request does not require the shipping time to be
faster than one week, there is no need to inquire the additional information.

– A total fail is unavoidable from the static description alone: A provider states
that the notebooks offered have a price range from $1500 to $2500 and that
the precise price can be inquired dynamically. If the requester is seeking a
notebook for less than $1500 this offer will not match in any case and may
be discarded.

– In all other cases the estimation operation needs to be performed. Even
in cases where an imperfect match can be guaranteed based on the static
description alone, more precise information obtained dynamically might im-
prove the matchvalue of the service.

After the first phase the necessary estimation operations for all remaining
offers will be performed. It is important to stress again that our matchmaking
algorithm allows us to determine whether a particular estimation operation offers
useful information for a given matchmaking operation. Thus we are able to
reduce the expensive execution of estimation operation to the absolute minimum.
Once the estimation operation have been executed the corresponding service
descriptions will be updated with the newly obtained information. Based on
the completed offer descriptions the matchmaker computes the precise matching
value of each offer in a second matching phase. This procedure is used in the
following example.

Midge, a small internet-based merchant, is specialized on delivering highly
customized notebooks. Customers may choose the various components (display,
CPU, RAM, HDD, . . .) to select a machine that corresponds most closely to
their specific requirements. The available components are precisely described in
the static offer description but the price depends on the chosen configuration
and can be obtained by calling a specific endpoint with the configuration’s key
data as input.
2 Actually it uses three phases due to issues related to automated composition but

this is not relevant for this paper. Please refer to [6] for further details.

226 U. Küster and B. König-Ries

upper

midge : Service
upper.profile

: ServiceProfilepresents

Product Notebook

entity

entity

hardDisc

DataCapacity
IN,e,1

price

Length
IN,e,1

display

displaySize

Owned

SDRAM

Currency

== usd
Double

currencyval
Display

Price
OUT,e,1

DataCapacity
IN,e,1

HDD

effect

memory

hddSize memorySize

Fig. 2. Relevant parts of Midge’s offer description

The relevant part of the offer description of Midge is shown in Figure 2.
Midge simply declares the concepts corresponding to the sizes of display, RAM,
HDD, . . . as estimate in variables and the price concept as estimate out con-
cept. The matcher will assure to provide single concrete values for the neces-
sary input variables. This way Midge’s grounding can be kept extremely simple
thereby minimizing the effort involved for Midge to create the service imple-
mentation. Note however that the matchmaker will first choose values for dis-
play, RAM, HDD, . . . and then inquire the corresponding price. Since a general
matchmaker does not know typical dependencies between those properties (more
RAM usually results in a higher price) it cannot always find the best value for
the money. Thus Midge’s attempt is lightweight, but not suitable for all cases.

In order to provide greater flexibility and cope with the different requirements
of different providers, in this paper, we additionally propose an extended concept
of variables to be used in the context of estimation steps. DSD variables – as
introduced in [5] – link the inputs and outputs of service operations with concepts
in the service descriptions.

For different tasks we suggest four increasingly complex types of binding (or
filling) of variables.

– A variable that supports only simple binding needs to be filled with a con-
crete instance value. Examples include the instance Jena for a variable of
type Town or < P1Y 2MT 2H > for a variable of type XSD Duration.

– A variable that supports enumerated binding can be filled with a a list of
concrete instances.

– A variable that supports declarative binding can be filled with a crisp, declar-
ative DSD set like the set of all towns that are at most 300 km away from
Jena or the set of notebooks with a 13 inch display, an Intel Duo Core pro-
cessor and more than one GB RAM.

– A variable that supports fuzzy declarative binding can be filled with a fuzzy
declarative DSD set. This way preferences can be expressed in a variable
filling.

Which type of binding is used in a given service description may depend
on a number of factors, including the kind of service, the number of instances

Supporting Dynamics in Service Descriptions 227

upper

albatross : Service
upper.profile

: ServiceProfilepresents effect

Product
enum
OUT,e,1Notebook

fuzzy decl
IN,e,1

entity

entity

Owned

Company

== apple

producer

Fig. 3. Relevant parts of Albatross’s offer description

associated with certain variables, the willingness of the service provider to share
information and its ability to process the more complex bindings. Midge for in-
stance used simple variables, thereby minimizing its effort to create its service
implementation but failing to deliver the most suitable offer in all cases. This ap-
proach is unsuitable for our next example that will be based on fuzzy declarative
and enumerated bindings.

Albatross operates a huge online shop for all kind of electronic products. In-
cluding the offers of third party sellers that Albatross’s online shop integrates as
a broker, hundreds of thousands of articles are available. Human customers can
browse the catalogue data through Albatross’s website and for the envisioned
automated usage Albatross plans to list the most suitable products for a request
in a similar fashion. However, in order to limit network bandwidth consumption
and to avoid to reveal all the catalogue data, Albatross decided to never list
more than thirty items in reply of a single request. It is therefore important for
Albatross to carefully select those thirty listings in a way that maximizes the
relevance to the request at hand. Since the overall range of available articles is
fairly stable, Albatross decided to create a single offer description for each type
of article (printer, monitor, notebooks, servers, . . .). Depending on the range of
articles and the granularity chosen for the descriptions, a fair deal of static infor-
mation can be included in the descriptions and Albatross’s endpoint will not be
called for obviously unsuitable requests. To retrieve a maximum of information
about the interests of the user, Albatross uses fuzzy declarative binding for the
in variables of the necessary estimation operation and will retrieve all informa-
tion available at all about the users preferences. It is up to the implementation
of Albatross’s endpoint how much of that information is then really evaluated
to select the thirty most relevant products (see Section 4 for further detail). The
list of these products will be returned in the out variable of the corresponding
estimation operation, that is therefore declared as an enumerated variable.

The relevant parts of Albatross’s offer description for notebooks can be seen
in Figure 3. Note that the displayed parts are still very generic. To avoid to be
called too many times Albatross could just as well decide to further specialize
its descriptions by statically adding further restrictions (e.g. restrict the offer to
notebooks produced by Apple as indicated in grey in Figure 3).

One disadvantage of Albatross’ descriptions is that due to the broad nature
of Albatross’ catalogue they can not reveal a whole lot of information statically.
This motivated another extension that will be demonstrated with the following
example.

228 U. Küster and B. König-Ries

upper

vulture : Service
upper.profile

: ServiceProfilepresents

Product
dynamic

entityOwned

effect

Fig. 4. Relevant parts of Vulture’s offer description

Vulture is a reseller of remaining stock and similar extraordinary items.
Available items change from day to day and range from hightech servers to
wooden lawn seats. Vulture’s main interest is to limit maintenance (i.e. pro-
gramming) cost and to quickly sell any items currently on stock.

The relevant part of the offer description of Vulture is shown in Figure 4.
Due to the dynamically changing range of available articles, Vulture cannot
provide much information in the static offer description (basically all it states
is that Vulture is a vending service). Since such an offer is not very meaningful
we created a special operation: Concepts tagged as dynamic sets may have an
associated estimation operation that will be evaluated right at the beginning of
the first phase of the matching process. Since it cannot be assured that input
values have been determined by the matchmaker already, the corresponding
operation must not have any specific in variables. Instead the corresponding
concept description from the request will be given as input. In the case of Vulture,
Vulture’s implementation (see Section 4) simply extracts the type of Product
seeked by the requester and returns a listing of all related available products
that will be used to complete the offer description during matchmaking. This
operation is basically syntactic sugar, the main difference to using standard
estimation operations is the time the estimation operation will be evaluated. We
chose to add this option since it can pay off to minimize the number of remaining
offers early in the matching process (e.g. in cases where automated composition
takes place [6]).

4 Implementation and Evaluation

The concepts illustrated above have been implemented in our matchmaker and
the supporting DIANE middleware [6]. For the sake of much greater objective-
ness we sought to have our ideas and techniques evaluated by a greater com-
munity in addition to our own evaluation. We believe the ongoing Semantic
Web Services Challenge3 [9] to be an ideal setting for this task. The challenge
presents sets of increasingly difficult problem scenarios4 and evaluates solutions
to these scenarios at a series of workshops. It specifically aims at developing a
certification process for semantic service technology.

A basic example similar to the case of Midge has been used in the solutions for
the first Shipment Discovery Scenario of the SWS-Challenge to
3 http://sws-challenge.org
4 http://sws-challenge.org/wiki/index.php/Scenarios

Supporting Dynamics in Service Descriptions 229

dynamically obtain the price of a shipping operation depending on the prop-
erties of the parcel[10,11]. Our solution including dynamic gathering of the price
was successfully evaluated at the second SWS-Challenge workshop in Budva,
Montenegro5. Since then we improved the integration of the estimation step
handling into the matchmaking algorithm in order to avoid the execution of
unnecessary estimation operations whereas in our original solution for the SWS-
Challenge scenario all available estimation operations were executed. This was
motivated by the fact that the inevitable communication cost for the estimation
operations quickly dominates the cost of the whole matching process.

We submitted a new scenario6 to the SWS-Challenge that meanwhile has been
accepted as an official scenario by the SWS-Challenge Programm Committee.
This scenario deals among other things with the dynamic retrieval of a listing of
available products from given web service endpoints to perform service discovery
for very specific purchasing requests. We used offer descriptions similar to that
of Vulture to model the services and successfully solved the relevant goals A and
B of the scenario. At the fourth SWS-Challenge workshop in Innsbruck, Austria
our current solution [12] to both scenarios was evaluated as the most complete
discovery solution7. It can be downloaded from the SWS Challenge web site8.

To test our solution under more realistic settings in terms of the number of
available products we simulated the Albatross service. We gathered about 2500
structured descriptions of notebook offerings with a total of more than 100.000
attributes from the Internet and stored it in a relational product database simi-
lar to one that a service like Albatross might have. We created a corresponding
offer description and a service implementation that operates on our database.
We applied the restriction that no more than thirty offers will be listed for any
request and created a grounding of our service description to our implementa-
tion that queries our product database and uses the fuzzy information taken
from the request to select the thirty notebooks expected to be most relevant.
We ran a series of requests against the Albatross offer and measured the time
needed to gather the relevant notebooks. We ran the experiment locally and
did not measure communication cost. On an Intel Pentium 1.8 GHz machine it
took about 500 ms to query the product database and convert all 2500 note-
book descriptions including their attributes into ontological DSD instances. On
average it then took another 950 ms to determine the precise matchvalue of all
these notebooks with respect to the fuzzy description taken from the request.
Based on that we returned the 30 top-ranked products and could be sure that
these were the most relevant with regard to the request as determined by the
matchmaker on behalf of the user. These results show the practical applicability
of our approach for the given setting. This is particular true since there is much
room for optimization left. One could, e.g., include hard restrictions from the

5 http://sws-challenge.org/wiki/index.php/Workshop Budva#Evaluation
6 http://sws-challenge.org/wiki/index.php/

Scenario: Discovery II and Simple Composition
7 http://sws-challenge.org/wiki/index.php/Workshop Innsbruck#Evaluation
8 http://sws-challenge.org/wiki/index.php/Solution Jena

230 U. Küster and B. König-Ries

request (like a price limit or a limitation to specific brands) in the query to the
database, thereby drastically reducing the number of notebooks that need to be
converted to DSD instances and dealt with in the first place.

5 Related Work

To the best of our knowledge, none of the matchmaking algorithms based on
ontological reasoning like the ones proposed by Kaufer and Klusch [13], Klusch
et al. [14], Li and Horrocks [15] or Sycara et al. [16] support an automated
contracting phase with dynamic information gathering as we propose in this
paper.

Keller et al. [17,18] propose a conceptual model for automated web service
discovery and matchmaking that explicitly distinguishes between abstract ser-
vice discovery and service contracting. The latter refers to inquiring the dynamic
parts of service descriptions and negotiating a concrete contract. Unfortunately,
only an abstract model is presented and no details or ideas about an implemen-
tation are provided.

Similar to our approach [19] acknowledges the need to support highly config-
urable web services but focuses on algorithms for the optimal preference-based
selection of configurations for such web services and not on how to dynamically
explore the value space of possible configurations.

As mentioned in Section 4 the two discovery scenarios of the SWS-Challenge
require the dynamic inquiry of price information and product listings. At the first
workshop in Budva9 DIANE was the only submission able to dynamically inquire
price information. Meanwhile two teams successfully improved their technology
to address this issue10 [20,21]. Both solutions are similar to ours in that they
complement service descriptions with information about operations that can
be executed in order to dynamically gather additional information. However,
both do not automatically evaluate whether a particular information needs to
be gathered and therefore execute all available information retrieval operations.
They are also lacking an equivalent of our concept of binding types for variables
to accommodate for different information needs.

The work that is most closely related to the work in this paper is the Web Ser-
vices Matchmaking Engine (WSME) proposed by Facciorusso et al. [22]. Like
our approach, WSME allows to tag properties of a service description as dy-
namic, to provide means to dynamically update those properties by calling the
service provider’s endpoint and to pass properties from the request in that call
to allow the provider to tailor the response. However, dynamic service properties
are always evaluated whereas in our work we are able to detect whether a par-
ticular evaluation is needed or not. Furthermore, service descriptions in WSME
are flat (based on simple name-value property pairs) and do not support fine-
grained ranking as DSD does, therefore the WSME does not aim at complete

9 http://sws-challenge.org/wiki/index.php/Workshop Budva#Evaluation
10 http://sws-challenge.org/wiki/index.php/Workshop Innsbruck#Evaluation

Supporting Dynamics in Service Descriptions 231

automation and leaves the user in the loop. To avoid this was one of the main
motivations of our work.

6 Summary and Conclusion

In order to allow for fully automated usage of service oriented architectures, it
must be possible to automatically select, bind, and invoke appropriate services
for any given request. This automation is hampered by the unavoidable impre-
cision in offer descriptions. Typically, discovery will only be able to find possibly
matching services. It needs to be followed by a contracting phase that makes
sure that the required service can indeed be rendered. In this paper, we have
presented an approach that allows for the integration of the contracting into the
discovery phase and for its complete automation. The approach is based on aug-
menting service descriptions with dynamic parts. Information about this parts
can be obtained from the service provider at discovery time.

References

1. de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,
D., Scicluna, J., Stollberg, M.: Web service modeling ontology (WSMO) (W3C
Member Submission June 3, 2005)

2. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic markup for web services (W3C Member Submission Novem-
ber 22, 2004)

3. Preist, C.: A conceptual architecture for semantic web services (extended version).
Technical Report HPL-2004-215 (2004)

4. Klein, M., König-Ries, B.: Coupled signature and specification matching for auto-
matic service binding. In: Zhang, L.-J(L.), Jeckle, M. (eds.) ECOWS 2004. LNCS,
vol. 3250, Springer, Heidelberg (2004)

5. Klein, M., König-Ries, B., Müssig, M.: What is needed for semantic service de-
scriptions - a proposal for suitable language constructs. International Journal on
Web and Grid Services (IJWGS) 1(3/4) (2005)

6. Küster, U., König-Ries, B., Klein, M., Stern, M.: Diane - a matchmaking-centered
framework for automated service discovery, composition, binding and invocation
on the web. International Journal of Electronic Commerce (IJEC), Special Issue
on Semantic Matchmaking and Retrieval (2007) (to appear)

7. Küster, U., König-Ries, B.: Dynamic binding for BPEL processes - a lightweight
approach to integrate semantics into web services. In: Second International Work-
shop on Engineering Service-Oriented Applications: Design and Composition (WE-
SOA06) at ICSOC06, Chicago, Illinois, USA (2006)

8. Walsh, N., Jacobs, I.: Architecture of the world wide web, volume one. W3C
recommendation, W3C (2004), www.w3.org/TR/2004/REC-webarch-20041215/

9. Petrie, C.: It’s the programming, stupid. IEEE Internet Computing 10(3) (2006)
10. Küster, U., König-Ries, B., Klein, M.: Discovery and mediation using diane service

descriptions. In: Second Workshop of the Semantic Web Service Challenge 2006,
Budva, Montenegro (2006)

www.w3.org/TR/2004/REC-webarch-20041215/

232 U. Küster and B. König-Ries

11. Küster, U., König-Ries, B.: Discovery and mediation using diane service descrip-
tions. In: Third Workshop of the Semantic Web Service Challenge 2006, Athens,
GA, USA (2006)

12. Küster, U., König-Ries, B.: Service discovery using DIANE service descriptions
- a solution to the SWS-Challenge discovery scenarios. In: Fourth Workshop of
the Semantic Web Service Challenge - Challenge on Automating Web Services
Mediation, Choreography and Discovery, Innsbruck, Austria (2007)

13. Kaufer, F., Klusch, M.: WSMO-MX: a logic programming based hybrid service
matchmaker. In: ECOWS2006. Proceedings of the 4th IEEE European Conference
on Web Services, Zürich, Switzerland, IEEE Computer Society Press, Los Alamitos
(2006)

14. Klusch, M., Fries, B., Khalid, M., Sycara, K.: OWLS-MX: Hybrid OWL-S Service
Matchmaking. In: Proceedings of the First International AAAI Fall Symposium on
Agents and the Semantic Web, Arlington, Vriginia, USA (2005)

15. Laukkanen, M., Helin, H.: Composing workflows of semantic web services. In: Work-
shop on Web Services and Agent-based Engineering, Melbourne, Australia (2003)

16. Sycara, K.P., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems 5(2) (2002)

17. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location of
services. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
Springer, Heidelberg (2005)

18. Fensel, D., Keller, U., Lausen, H., Polleres, A., Toma, I.: WWW or what is wrong
with web service discovery. In: W3C Workshop on Frameworks for Semantics in
Web Services, Innsbruck, Austria (2005)

19. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW2007. Proceedings of the 16th Interna-
tional World Wide Web Conference, Banff, Alberta, Canada (2007)

20. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Valle, E.D., Facca, F., Tziviskou, C.:
Improvements and future perspectives on web engineering methods for automating
web services mediation, choreography and discovery: SWS-Challenge phase III. In:
Third Workshop of the SWS Challenge 2006, Athens, GA, USA (2006)

21. Zaremba, M., Tomas Vitvar, M.M., Hasselwanter, T.: WSMX discovery for SWS
Challenge. In: Third Workshop of the Semantic Web Service Challenge 2006,
Athens, GA, USA (2006)

22. Facciorusso, C., Field, S., Hauser, R., Hoffner, Y., Humbel, R., Pawlitzek, R.,
Rjaibi, W., Siminitz, C.: A web services matchmaking engine for web services. In:
EC-Web2003. 4th International Conference on E-Commerce and Web Technologies,
Prague, Czech Republic (2003)

Grid Application Fault Diagnosis Using

Wrapper Services and Machine Learning

Jürgen Hofer and Thomas Fahringer

Distributed and Parallel Systems Group
Institute of Computer Science, University of Innsbruck

Technikerstrasse 21a, 6020 Innsbruck, Austria
{juergen,tf}@dps.uibk.ac.at

Abstract. With increasing size and complexity of Grids manual di-
agnosis of individual application faults becomes impractical and time-
consuming. Quick and accurate identification of the root cause of failures
is an important prerequisite for building reliable systems. We describe a
pragmatic model-based technique for application-specific fault diagnosis
based on indicators, symptoms and rules. Customized wrapper services
then apply this knowledge to reason about root causes of failures. In ad-
dition to user-provided diagnosis models we show that given a set of past
classified fault events it is possible to extract new models through learn-
ing that are able to diagnose new faults. We investigated and compared
algorithms of supervised classification learning and cluster analysis. Our
approach was implemented as part of the Otho Toolkit that ’service-
enables’ legacy applications based on synthesis of wrapper service.

1 Introduction

A portion of todays applications used in High-Performance and Grid environ-
ments belongs to the class of batch-oriented programs with command-line in-
terfaces. They typically have long lifecycles that surpass multiple generations
of Grid and Service environments. Service Oriented Architectures and Web ser-
vices became a widely accepted and mature paradigm for designing loosely-
coupled large-scale distributed systems and can hide heterogeneity of underlying
resources. As re-implementation of application codes is frequently too expensive
in time and cost, their (semi-)automatic adaptation and migration to newer envi-
ronments is of paramount importance. We suggest an approach with tailor-made
wrapper services customized to each application. Mapping the functionality of
applications to wrapper services requires not only to map input and output ar-
guments, messages and files but also to ensure that the applications behavior
is well-reflected. For instance the occurrence of faults may lead to errors that
need to be detected, diagnosed propagated via the wrapper services interface,
such that clients may react appropriately and handled to prevent larger sys-
tem failures. In order to recover from failures root causes have to be identified,
e.g. unsatisfied dependencies, invalid arguments, configuration problems, expired
credentials, quota limits, disk crashes, etc. With increasing complexity of Grids

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 233–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 J. Hofer and T. Fahringer

- growing in size and heterogeneity - this tasks becomes increasingly difficult.
Several abstraction layers conveniently shield the user from lower level issues.
However these layers also hide important information required for fault diagno-
sis. Users or support staff are forced to drill down through layers for tracking
possible causes. For larger number of failures it then quickly becomes impractical
and time-expensive to manually investigate on individual causes by hand.

2 Diagnosing Application Faults

Normally software has been extensively tested before released to production.
Nevertheless in large-scale deployments and complex environments such as Grids
applications are likely to fail1. Common reasons are improper installations or
deployments, configuration problems, failures of dependent resources such as
hosts, network links, storage devices, limitations or excess on resource usage,
performance and concurrency issues, usage errors, etc. Our goal is to provide
a mechanism to automatically identify and distinguish such causes. The fault
diagnosis process consists of the tasks of error detection, hypothesizing pos-
sible faults, identification of actual fault via analysis of application, applica-
tion artifacts and environment and finally reporting of diagnosis results. Two
applications are used throughout this paper: the raytracer POV-Ray [29], an
open-source general-purpose visualization application and the GNU Linear Pro-
gramming Toolkit (GLPK) [28] a software package for solving linear program-
ming and mixed integer programming problems.

2.1 Building Fault Diagnosis Models

Instead of requiring a full formal system specification we provide a set of easy-
to-use elements for building fault diagnosis models. They allow developers to
describe cases in which their programs may fail and users to describe cases in
which their programs have failed in the past. As no knowledge on formal system
specification techniques is required we believe our approach is practical and more
likely to be applied in the community of Grid users. The diagnosis models are
rule-based case descriptions that allow services to perform automated reasoning
on the most-likely cause of failures of the wrapped application. Results are then
reported to clients. Such diagnosis models are constructed as follows.

1. Indicators are externally visible and monitorable effects of the execution of
a certain application. We distinguish boolean-valued predicates, e.g. the ex-
istence of a certain file or directory, indicators returning strings (StringInd)
such as patterns in output, error or log-files, indicators returning reals (Re-
alInd) and indicators performing counting operations (CountInd) such as
the number of files in a directory. A few examples are given below

1 In accordance with Laprie [18] we define a fault as the hypothesized or identified
cause of an error, e.g. due to a hardware defect; an error as a deviation from the
correct system state that, if improperly handled or unrecognized, may lead to system
failures where the delivered service deviates from specified service.

Grid Application Fault Diagnosis 235

(∃file)file extract stdout(regexp) extract real stdout(regexp)
(∃file)dir extract file(file, regexp) extract real stderr(regexp)
(∃regexp)pattern stdout count pattern stdout(regexp) exitCode()
(∃file)((∃regexp)pattern file) count files(regexp) wall time()

Next to the set of predefined indicators we allow the use of custom user-
provided indicators specific to certain applications, e.g. to verify functional
correctness via result checks, error rates, data formats, etc. In some cases
runtime argument values are needed as parameters for indicators, e.g. to
refer to an output file named via a program argument. Formally we use the
Θ(argname) notation to refer to runtime arguments.

2. A symptom is a set of indicators describing an undesirable situation, more
concretely the existence of a fault. Symptoms are comparisons of indicators
with literal values or comparative combinations of indicators evaluating to
boolean values.

symptom
 CountInd|RealInd{< | ≤ | = | ≥ | >}{r|r ∈ R}
symptom
 CountInd|RealInd{< | ≤ | = | ≥ | >}CountInd|RealInd
symptom
 StringInd{= | =}{s|s ∈ string}
symptom
 StringInd{= | =}StringInd
symptom
 Predicate|¬symptom|symptom ∧ symptom

Examples for symptoms would be if a coredump file was created, occurrence
of the string ’Segmentation fault’ in stderr, programs exit code other than
zero, output values above some threshold, number of output files below a
certain number, etc.

3. Rules built on the basis of symptoms allow to reason about fault types. We
define rules as implications of the form (s1 ∧ s2 ∧ . . . ∧ sn) ⇒ u. Example
diagnosis rules for the POV-Ray application are given below.

exit=0 ∧∃file(Θ(sceneout)) ∧ ¬∃pattern stdout(”Failed”) ⇒ done successful
exit=249 ⇒ failed illegal argument
exit=0 ∧∃file(Θ(sceneout)) ∧ filesize(Θ(sceneout)) = 0 ∧

∃pattern stdout(”Disk quota exceeded.”) ⇒ failed quota
exit=0 ∧filesize(Θ(sceneout)) = 0 ⇒ failed disk quota exceeded
exit=0 ∧¬∃file(Θ(sceneout)) ∧

∃pattern stdout(”File Error open”) ⇒ failed file writing error
exit=0 ∧∃pattern stdout(”Got 1 SIGINT”) ⇒ failed received sigint
exit=137 ∧∃pattern stdout(”Killed”) ⇒ failed received sigkill
gramExit=1 ∧∃pattern gram log(’proxy is not valid long enough’) ⇒ failed proxy expires soon
gramExit=1 ∧∃pattern gram log(’couldn’t find a valid proxy’)∧

∃pattern gram log(’proxy does not exist’) ⇒ failed no proxy
gramExit=1 ∧∃pattern gram log(’proxy does not exist’) ⇒ failed proxy expired

E.g. the second rule states that the return code 249 unambiguously iden-
tifies an illegal argument fault. Failures caused by exceeded disk quota are
recognized by an apparently successful return code however in combination
with a zero-size outputfile and a certain error message.

4. Finally a set of rules builds a fault diagnosis model. The rules are meant to
be evaluated post-mortem, i.e. immediately after the execution terminated,
in the specified ordering. If no rule evaluates to true, the fault cannot be
identified. Depending on the desired behavior the diagnosis can continue
the evaluation if multiple rules are satisfied. The fault is then considered to
belong to all found classes.

236 J. Hofer and T. Fahringer

3 Creating Diagnosis Models Using Machine Learning

With increasing utilization both variety and frequency of faults will increase.
Our hypothesis is that given a set of past classified fault events diagnosis models
can be learned that are able to correctly classify even unseen novel faults. Fault
events are analyzed using he superset of the indicators to build a comprehensive
knowledge as trainingset for machine learning. For this purpose an initial set of
services is created and deployed. At runtime each fault is analyzed to form a
fault event. We investigated on two different learning techniques. In supervised
classification learning each fault event in the trainingset has be classified a priori.
This is a manual step done by users, service provider or developers. Now the
classified training set is used as input to the machine learning procedure that
creates new models which are then used to classify faults. The second technique
is cluster analysis where the faults do not have to be tagged with class labels
but the algorithm partitions the trainingset into groups of fault events that have
some degree of similarity.

In order to build the knowledge base each fault incidence has to be analyzed
using the superset of indicators. For each detected fault event a tuple of the
form ((I ∪ T) × (S ∪ F)) is generated and added to a repository. The tuple con-
tains all relevant information characterizing a certain fault incidence specific to
a given application. A set of boolean or numeric indicators ii ∈ I such as exis-
tence, modification, size, open for reading/writing as detailed above and a set of
boolean indicators ti ∈ T whether certain regular expression-based patterns (er-
ror messages, codes) can be found, are applied to a given set of artifacts created
during applications runs. Those artifacts include the standard input/output files
associated with each process of and application and the execution environment
by si ∈ S, i.e. stdout, stderr, system log and log files of resource management
system and application-specific input and output files fi ∈ F . The latter set has
to be provided by the user and may be a function of the program arguments.

We selected a set of six well-known supervised classification techniques and
three different cluster analysis algorithms [6,21,32] listed in Table 1 and Table 2.
The techniques were chosen based on their capabilities to analyze all aspects of

Table 1. Overview on Utilized Classification Techniques

Supervised Classification Learning
OneR (OR) is an algorithm that produces one-level classification rules based on single

attributes. A classification rule consists of an antecedent that applies tests
to reason about the consequent.

DecisionStump (DS) produces simple one-level decision trees. Decision trees follow the divide-
and-conquer principle where the problem space is partitioned by outcome
of tests until all examples belong to the same class.

Logistic (LG) is a statistical modeling approach based on logistic regression where coeffi-
cient are estimated using the maximum log-likelihood method.

BayesNet (BN) is a statistical modeling approach producing Bayesian networks in forms of
directed acyclic graphs with probabilities over relevant attributes.

DecisionTable (DT) denotes an algorithm that produces a table consisting of relevant attributes,
their values and the prediction class.

J48 is an improved version of the C4.5 decision tree machine learning algorithm.
in a decision tree each internal node represents a test on an attribute,
branches are the outcomes and leaf nodes indicate the class

Grid Application Fault Diagnosis 237

Table 2. Overview on Utilized Cluster Analysis Techniques

Cluster Analysis
k-means (SK) the number of clusters being sought is defined in the parameter k. then k

points are chosen as random cluster centers and instances assigned to closest
center. then the new mean is calculated for each cluster. this is repeated
until the cluster memberships stop changing.

expectation-
minimization (EM)

same basic procedure as k-means algorithm, but calculates the probabilities
for each instance to belong to a certain cluster, then calculate the statistical
distribution parameters

FarthestFirst (FF) implements the Farthest First Traversal Algorithm [7] which is a heuristic
for approximation of cluster centers designed after procedure of k-means

our trainingsets, their acceptance within the machine learning community and
past experience of the authors for similar problems.

4 Implementation

In previous work we discussed the semi-automatic transformation of legacy ap-
plications to services for integration into service-oriented environments [8,9,10].
We focused on resource-intensive, non-interactive command-line programs as
typically used in HPC and Grid environments and presented the Otho Toolkit,
a service-enabler for Legacy Applications LA. Based on formal LA descriptions
it generates tailor-made wrapper services, referred to as Executor Services XS.
They provide a purely functional interface hiding technical details of the wrap-
ping process on a certain execution platform, the Backend BE. Input and out-
put arguments, messages to standard input and output, consumed and produced
files are mapped to the XS interface. Multiple views on the same LA can be
defined to reflect different needs or to ease usage of complex interfaces. The
Otho Toolkit generates wrapper service source codes including a build system.
Multiple service environments can be targeted and the services may be equipped
with application-specific features and generic extensions.

Wrapper services, and especially Executor Services XS synthesized by the
Otho Toolkit, already possess detailed knowledge on the application structure
and behavior, control its execution and lifecycle and are aware of input and
output arguments, messages and files. Moreover they have the necessary prox-
imity to the execution host for fault investigation. Therefore we chose to address
and implement the fault diagnosis as part of the Otho Toolkit and the XS it
creates. All indicators were implemented as generic Bash and Python scripts.
We extended Otho Toolkits LA description to include fault diagnosis models.
The Otho Toolkit then generates a custom diagnosis program that evaluates
each case using the generic indicator scripts immediately after termination of
the application. The diagnosis program evaluates the diagnosis model rule by
rule. Indicator results are cached to prevent redundant evaluations. If the XS
uses job submission to a resource management systems the LA and the fault
diagnosis script are submitted as one job to ensure execution on the same re-
source. In addition to the formal notation introduced before we developed a
simple XML-based syntax for representing fault diagnosis models.

238 J. Hofer and T. Fahringer

<fdiag>
<cause name="successful" status="DONE">
<exitCode value="0" />
<fileExists name="|sceneout|" />
<not><regexpStdout value="Failed" /></not>

</cause>
<cause name="illegal argument" status="FAILED">
<exitCode value="249" />

</cause>
</fdiag>

This shortened example lists two root causes each named and tagged with a post-
execution status value. A set of indicators sequentially evaluated with logical
conjunction can be given. Elements may be negated by adding a ’not’ tag.

Fig. 1. XS Interface Adaptations for providing Fault Diagnosis

The fault diagnosis capabilities and states need to be represented in the service
interface. Figure 1 shows a partial graphical rendering of the services WSDL
interface [31] of synthesized wrapper services for the POV-Ray application and
the Axis2 [27] XS platform. The request type contains the input argument values
for the wrapped LA. Operations allow to query service state and fault diagnosis
both of which are represented by enumeration values. Obviously the interface
differs depending on the service platform used. Axis2 webservice operations for
instance carry a job identifier whereas WSRF GT4 services rely on stateful
resource properties.

5 Evaluation

For evaluation we used our implementation based on the Otho Toolkit and the
XS it synthesizes. The machine learning techniques described above were im-
plemented as part of XS using an existing machine learning library [30]. We

Grid Application Fault Diagnosis 239

deployed both case study applications on the AustrianGrid [26] and injected sev-
eral types of faults. The resulting training set was used in its raw state (’failed
noise’), in a cleaned state (’failed clean’) and to allow our classifier to also identify
correct behaviour with added successful runs (’failed/succ clean’).

The performance or accuracy of classifier is commonly evaluated in terms
of their success rates which is the proportion of true and false predictions. An
important issue in classification is the question about which set of instances to
learn from and which set to evaluate against, as classifiers tend to show better
performance if evaluated against the training set than against unseen examples.
Therefore we applied three evaluation techniques. First we used the full dataset
(’ts’) for learning and evaluation. Second we used two-third for learning one-third
for evaluation (’66-sp’). Third we used 10-fold cross-validation (’10-cv’) where
metrics are averaged from ten iterations with 9/10 of examples used for training
and 1/10 for evaluation. The set of examples not used for training but to which
the classifier is tested against represent unseen fault cases. As we had all fault
incidences tagged with class labels the evaluation of the clustering techniques
was straightforward. During the learning phase we ignored the classes and then
compared the instances in a cluster with their labels counting wrong assignments.

Clustering a trainingset with k attributes spawns a k-dimensional space in
which aggregation of examples are to be found. Figure 2 depicts a 2-dimensional
subspace with two indicators used in the cluster analysis for faults of the POV-
Ray application, namely its exit code and whether a certain pattern occurs in
stdout. Elements have been slightly scattered for visualization purposes. The
plot nicely illustrates four clusters, three of which are homogeneous. Elements
aligned at return code of 137 indicate a ’failed sigkill’ or a ’failed sighup’ signal,
depending on the outcome of the second indicator. The ’failed illegalargument’
examples group in this particular view around a return code of 249. Contrarily
the other fault incidences cannot be clearly assigned to clusters in this subspace.
Figure 3 contains parts of the results of our experiments with the classification
learning. Vertical axes show the accuracy. In general it can be observed that pre-
diction accuracy for the GLPK application case study were better than those for
the POV-Ray application in most cases. The overall quality apparently strongly

F

T

 249 137 0

in
di

ca
to

r[
2]

: p
at

te
rn

_s
td

ou
t(

ki
lle

d)

indicator[1]: exit code

POV-Ray Fault Diagnosis Cluster Example

F_SIGKILL
F_ILLARG
F_SIGHUP
F_SIGINT

F_DISKQU
SUCCESS

Fig. 2. Visualization of 2-Indicator subspace of SimpleK Means Clustering

240 J. Hofer and T. Fahringer

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: OR

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: DS

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: Logistic

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: BN

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: DT

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

POV-Ray Prediction Accuracy: J48

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: OR

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: DS

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: LG

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: BN

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: DT

f/s clean
f noise

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

66-sp10-cvts

GLPK Prediction Accuracy: J48

f/s clean
f noise

Fig. 3. Evaluation of Machine Learning Algorithms per Algorithm

depends not only on the machine learning technique but also on the concrete ap-
plication, the indicators used and the corresponding structure of the training set.
The second observation is that even on the cleaned datasets the algorithms OR
and DS show significantly lower prediction accuracy than LG, DT, BN and J48.
For POV-Ray using 10-fold cross-validation DS has an accuracy of only 0.429
and OR of 0.635 on the succ/failed compared to an observed 0.837 lower bound
accuracy for the other algorithms. Both methods produce rather simplistic clas-
sifier clearly unsuited to capture complex fault events. Nevertheless for trivial
diagnostics, e.g. exit code unambiguously identifies fault case, they may be use-
ful as part of meta-models. The remaining four algorithms LG, DT, BN and J48
show comparable performance without significant differences among each other.
For the cleaned datasets ’failed/succ cleaned’ and ’failed cleaned’ all four provide
outstanding performance, correctly classifying up to 100% of unseen instances.
For instance for the POV-Ray application J48 has on the ’failed uncleaned’ raw
dataset slightly better performance of 0.898 compared to 0.837 of DT and 0.857
of BN and LG on average on the unseen data. During evaluation we observed

Grid Application Fault Diagnosis 241

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 F
F

 E
M

 S
K

re
la

tiv
e

nu
m

be
r

clustering algorithm

POV-Ray: Incorrectly Clustered Instances

noise
nonoise

done

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 F
F

 E
M

 S
K

re
la

tiv
e

nu
m

be
r

clustering algorithm

GLPK: Incorrectly Clustered Instances

noise
nonoise

done

Fig. 4. Evaluation of Clustering Algorithms

that the statistical models BN and LG tend to capture also noise, whereas J48
tree pruning prevented such undesired behavior.

Figure 4 plots some of the results of our evaluation on the clustering algo-
rithms. The plots compares the relative number of incorrectly clustered instances
for the algorithms SK, EM and FF for three trainingsets. In general the relative
number of errors varied between 0 and 0.5. On the POV-Ray cleaned dataset
the EM algorithm was able to perfectly assign all faults to the correct classes.
Lower error rates varied up to 0.2. As with our classification algorithms the
noisy trainingsets caused major disturbance with error rates between 0.4 and
0.5. In our experiments we could not identify a clustering algorithm significantly
outperforming the others. Nevertheless clustering techniques proved to provide
good suggestions and valuable guidance for building groups of similar faults.
Such otherwise difficult to acquire knowledge and understanding on the nature
of faults of applications in a particular setting are of great help to people de-
signing fault-aware application services.

6 Service Evolution for Fault Diagnosis Improvement

The process of lcontinuous diagnosis improvement as realized with the Otho
Toolkit and XS is depicted in Figure 5. Initially a set of services is created
and deployed by the Otho Toolkit. At runtime each fault is analyzed, tagged
and added to the knowledge base. This is a manual step done by users, service
provider or developers. Now the classified training set is used as input to the
machine learning procedure that creates new models which enable the classifica-
tion of unseen fault events that are similar to past faults. The updated or newly
learned model is then fed into the Otho Toolkit that creates and redeploys an
improved revision of the XS. Additional events are then again collected, learning
is re-triggered, followed by synthesis and redeployment and so forth. As the XS
evolves along this cycle its capabilities to diagnose application faults correctly
are continuously improved.

242 J. Hofer and T. Fahringer

XS Client

XS
Provider

request

BE

Execution
Management

Control
LA

successful

Fault
Detection

yes

IF A AND
B THEN C
IF D AND
E THEN F
IF G AND

KB

return results

synthesize and replace

add

no

classification hints

Learning Fault
Diagnosis Model

Unidentified
Fault

IF A AND
B THEN C
IF D AND
E THEN F
IF G AND

classify

Identified
Fault

add class label

Otho Toolkit
updated inputself-reconfiguration

 trigger
 re-learning

learn

XS

Fig. 5. Service Evolution for Fault Diagnosis Improvement

7 Related Work

Monitoring and failure detection systems [12,14,25] are important Grid compo-
nents however they discriminate faults no further than into generic task-crashes
and per-task exceptions. On the other hand a variety of systems has been sug-
gested for building fault tolerant applications and middleware [13,16] which could
benefit from accurate and detailed diagnosis of faults and their causes. Common
approaches for fault diagnosis start from formal system specifications [1,15,22]
or from its source code [4,17] to derive test cases. Instead neither source code
availability nor a formal system specification are prerequisites to our approach.
Fault diagnosis in Grids however still is a largely manual time-consuming task.
Efforts include an approach for fault localization through unit tests [5] that
however requires manual implementation of test cases and frameworks for verifi-
cation of software stacks and interoperability agreements [24]. Instead we use a
model-based description and to automatically generate diagnosis code. The use
of machine learning has been successfully applied to many kinds of different clas-
sification problems [3,23], e.g. to classify software behavior based on execution
data [2] or to locate anomalies in sets of processes via function-level traces [20].
The use of Bayesian Belief Networks for fault localization was proposed [19] but
provides neither implementation nor experimental evaluation.

8 Conclusion

With increasing size and complexity of Grids manual application fault diagnosis
is a difficult and time-expensive task. We developed a model-based mechanism
allowing users, support staff or application developers to formulate precise, rule-
based fault diagnosis models evaluated immediately after program termination.
Such diagnosis models are used by services to provide accurate and reliable re-
ports. Our approach was implemented as part of application wrapper services
synthesized by the Otho Toolkit. In addition we suggest the use of machine learn-
ing to semi-automatically create fault diagnosis models based on past classified

Grid Application Fault Diagnosis 243

fault events. Our evaluation showed that the learned diagnosis models were able
to classify novel fault situations with high accuracy. The overall performance of
the learned classifier was good but depends on the quality of the dataset. We
observed significant perturbation caused by noisy or falsely labeled examples.
Ideally developers, service providers and knowledgeable users therefore regu-
larly remove unclean examples from the training set. Our results motivate us to
continue with the presented work. We plan to use a larger set of applications
to get access to a larger variety of faults. Moreover we intend to investigate on
overheads and scalability of our fault diagnosis and machine learning approach.

Acknowledgements

This paper presents follow-up work to a preceding workshop contribution [11].
The presented work was partially funded by the European Union through the IST
FP6-004265 CoreGRID, IST FP6-031688 EGEE-2 and IST FP6-034601 Edu-
tain@Grid projects.

References

1. Abrial, J.-R., Schuman, S.A., Meyer, B.: A specification language. In: McNaughten,
R., McKeag, R.C. (eds.) On the Construction of Programs, Cambridge University
Press, Cambridge (1980)

2. Bowring, J., Rehg, J., Harrold, M.J.: Active learning for automatic classification
of software behavior. In: ISSTA 2004. Proc. of the Int. Symp. on Software Testing
and Analysis (July 2004)

3. Chen, M., Zheng, A., Lloyd, J., Jordan, M., Brewer, E.: Failure diagnosis using
decision trees. In: ICAC. Proc. of Int. Conf. on Autonomic Computing, York, NY
(May 2004)

4. Millo, R., Mathur, A.: A grammar based fault classification scheme and its appli-
cation to the classification of the errors of tex. Technical Report SERC-TR-165-P,
Purdue University (1995)

5. Duarte, A.N., Brasileiro, F., Cirne, W., Filho, J.S.A.: Collaborative fault diagno-
sis in grids through automated tests. In: Proc. of the The IEEE 20th Int. Conf.
on Advanced Information Networking and Applications, IEEE Computer Society
Press, Los Alamitos (2006)

6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2001)

7. Hochbaum, Shmoys,: A best possible heuristic for the k-center problem. Mathe-
matics of Operations Research 10(2), 180–184 (1985)

8. Hofer, J., Fahringer, T.: Presenting Scientific Legacy Programs as Grid Services via
Program Synthesis. In: Proceedings of 2nd IEEE International Conference on e-
Science and Grid Computing, Amsterdam, Netherlands, December 4-6, 2006, IEEE
Computer Society Press, Los Alamitos (2006)

9. Hofer, J., Fahringer, T.: Specification-based Synthesis of Tailor-made Grid Service
Wrappers for Scientific Legacy Codes. In: Grid’06. Proceedings of 7th IEEE/ACM
International Conference on Grid Computing (Grid’06), Short Paper and Poster,
Barcelona, Spain, September 28-29, 2006 (2006)

244 J. Hofer and T. Fahringer

10. Hofer, J., Fahringer, T.: The Otho Toolkit - Synthesizing Tailor-made Scientific
Grid Application Wrapper Services. Journal of Multiagent and Grid Systems 3(3)
(2007)

11. Hofer, J., Fahringer, T.: Towards automated diagnosis of application faults using
wrapper services and machine learning. In: Proceedings of CoreGRID Workshop
on Grid Middleware, Dresden, Germany, June 25–26, 2007, pp. 25–26. Springer,
Heidelberg (2007)

12. Horita, Y., Taura, K., Chikayama, T.: A scalable and efficient self-organizing failure
detector for grid applications. In: Grid’05. 6th IEEE/ACM Int. Workshop on Grid
Computing, IEEE Computer Society Press, Los Alamitos (2005)

13. Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid.
Journal of Grid Computing 1(3), 251–272 (2003)

14. Hwang, S., Kesselman, C.: Gridworkflow: A flexible failure handling framework for
the grid. In: HPDC’03. 12th IEEE Int. Symp. on High Performance Distributed
Computing, Seattle, Washington, IEEE Press, Los Alamitos (2003)

15. Jones, C.: Systematic Software Development using VDM. Prentice Hall, Englewood
Cliffs (1990)

16. Kola, G., Kosar, T., Livny, M.: Phoenix: Making data-intensive grid applications
fault-tolerant. In: Proc. of 5th IEEE/ACM Int. Workshop on Grid Computing,
Pittsburgh, Pennsylvania, November 8, 2004, pp. 251–258 (2004)

17. Kuhn, D.R.: Fault classes and error detection in specification based testing. ACM
Transactions on Software Engineering Methodology 8(4), 411–424 (1999)

18. Laprie, J.-C.: Dependable computing and fault tolerance: Concepts and terminol-
ogy. In: Proc. of 15th Int. Symp. on Fault-Tolerant Computing (1985)

19. Meshkat, L., Allcock, W., Deelman, E., Kesselman, C.: Fault location in grids us-
ing bayesian belief networks. Technical Report GriPhyN-2002-8, GriPhyN Project
(2002)

20. Mirgorodskiy, A.V., Maruyama, N., Miller, B.P.: Problem diagnosis in large-scale
computing environments. In: Proc. of ACM/IEEE Supercomputing’06 Conference
(2006)

21. Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)
22. Ortmeier, F., Reif, W.: Failure-sensitive Specification - A formal method for finding

failure modes. Technical report, University of Augsburg (January 12, 2004)
23. Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.:

Automated support for classifying software failure reports. In: Proc. of 25th Int.
Conf. on Software Engineering, Portland, Oregon, pp. 465–475 (2003)

24. Smallen, S., Olschanowsky, C., Ericson, K., Beckman, P., Schopf, J.M.: The inca
test harness and reporting framework. In: Proc. of the ACM/IEEE Supercomput-
ing’04 Conference (November 2004)

25. Stelling, P., Foster, I., Kesselman, C., Lee, C., von Laszewski, G.: A fault detection
service for wide area distributed computations. In: Proc. 7th IEEE Symp. on High
Performance Distributed Computing, pp. 268–278. IEEE Computer Society Press,
Los Alamitos (1998)

26. AustrianGrid, http://www.austriangrid.at
27. Apache Axis2, http://ws.apache.org/axis2/
28. GNU Linear Programming Kit (GLPK), http://www.gnu.org/software/glpk/
29. POV-Ray, http://www.povray.org
30. Weka, http://www.cs.waikato.ac.nz/ml/weka
31. Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl
32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

http://www.austriangrid.at
http://ws.apache.org/axis2/
http://www.gnu.org/software/glpk/
http://www.povray.org
http://www.cs.waikato.ac.nz/ml/weka
http://www.w3.org/TR/wsdl

Stochastic COWS�

Davide Prandi and Paola Quaglia

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract. A stochastic extension of COWS is presented. First the for-
malism is given an operational semantics leading to finitely branching
transition systems. Then its syntax and semantics are enriched along the
lines of Markovian extensions of process calculi. This allows addressing
quantitative reasoning about the behaviour of the specified web services.
For instance, a simple case study shows that services can be analyzed
using the PRISM probabilistic model checker.

1 Introduction

Interacting via web services is becoming a programming paradigm, and a number
of languages, mostly based on XML, has been designed for, e.g., coordinating,
orchestrating, and querying services. While the design of those languages and of
supporting tools is quickly improving, the formal underpinning of the program-
ming paradigm is still uncertain.

This calls for the investigation of models that can ground the development of
methodologies, techniques, and tools for the rigorous analysis of service prop-
erties. Recent works on the translation of web service primitives into well-
understood formal settings (e.g., [2,3]), as well as on the definition of process
calculi for the specification of web service behaviours (e.g., [6,8]), go in this
direction. These approaches, although based on languages still quite far from
WS-BPEL, WSFL, WSCI, or WSDL, bring in the advantage of being based on
clean semantic models. For instance, process calculi typically come with a struc-
tural operational semantics in Plotkin’s style: The dynamic behaviour of a term
of the language is represented by a connected oriented graph (called transition
system) whose nodes are the reachable states of the system, and whose paths
stay for its possible runs. This feature is indeed one of the main reasons why
process calculi have been extensively used over the years for the specification
and verification of distributed systems. One can guess that the same feature
could also be useful to reason about the dynamic behaviour of web services.
The challenge is appropriately tuning calculi and formal techniques to this new
interaction paradigm.

In this paper we present a stochastic extension of COWS [8] (Calculus for
Orchestration of Web Services), a calculus strongly inspired by WS-BPEL which
combines primitives of well-known process calculi (like, e.g., the π-calculus [9,16])
with constructs meant to model web services orchestration. For instance, besides
� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 245–25 , 2007.
c© Springer-Verlag Berlin Heidelberg 2007

6

246 D. Prandi and P. Quaglia

the expected request/invoke communication primitives, COWS has operators to
specify protection, delimited receiving activities, and killing activities. A number
of other interesting constructs, although not taken as primitives of the language,
have been shown to be easily encoded in COWS. This is the case, e.g., for fault
and compensation handlers [8].

The operational semantics of COWS provides a full qualitative account on the
behaviour of services specified in the language. Quantitative aspects of compu-
tation, though, are as crucial to SOC as qualitative ones (think, e.g., of quality
of service, resource usage, or service level agreement). In this paper, we first
present a version of the operational semantics of COWS that, giving raise to
finitely branching transition systems, is suitable to stochastic reasoning (Sec. 2).
The syntax and semantics of the calculus is then enriched along the lines of
Markovian extensions of process calculi [11,5] (Sec. 3). Basic actions are associ-
ated with a random duration governed by a negative exponential distribution.
In this way the semantic models associated to services result to be Continu-
ous Time Markov Chains, popular models for automated verification. To give a
flavour of our approach, we show how the stochastic model checker PRISM [14]
can be used to check a few properties of a simple case study (Sec. 4).

2 Operational Semantics of Monadic COWS

We consider a monadic (vs polyadic) version of the calculus, i.e., it is assumed
that request/invoke interactions can carry one single parameter at a time (vs
multiple parameters). This simplifies the presentation without impacting on the
sort of primitives the calculus is based on, and indeed our setting could be gen-
eralized to the case of polyadic communications. Some other differences between
the operational approach used in [8] and the one provided here are due to the fact
that, for the effective application of Markovian techniques, we need to guarantee
that the generated transition system is finitely branching. In order to ensure
this main property we chose to express recursive behaviours by means of service
identifiers rather than by replication. Syntactically, this is the single deviation
from the language as presented in [8]. From the semantic point of view, though,
some modifications of the operational setting are also needed. They will be fully
commented upon below.

The syntax of COWS is based on three countable and pairwise disjoint sets:
the set of names N (ranged over by m, n, o, p, m′, n′, o′, p′), the set of variables V
(ranged over by x, y, x′, y′), and the set of killer labels K (ranged over by k, k′).
Services are expressed as structured activities built from basic activities that
involve elements of the above sets. In particular, request and invoke activities
occur at endpoints, which in [8] are identified by both a partner and an operation
name. Here, for ease of notation, we let endpoints be denoted by single identifiers.
In what follows, u, v, w, u′, v′, w′ are used to range over N ∪V , and d, d′ to range
over N ∪V ∪K. Names, variables, and killer labels are collectively referred to as
entities .

Stochastic COWS 247

The terms of the COWS language are generated by the following grammar.

s ::= u ! w | g | s | s | {|s|} | kill(k) | [d]s | S(n1, . . . , nj)
g ::= 0 | p ? w. s | g + g

where, for some service s, a defining equation S(n1, . . . , nj) = s is given.
A service s can consist in an asynchronous invoke activity over the endpoint u

with parameter w (u ! w), or it can be generated by a guarded choice. In this case
it can either be the empty activity 0, or a choice between two guarded commands
(g + g), or an input-guarded service p ? w. s that waits for a communication
over the endpoint p and then proceeds as s after the (possible) instantiation of
the input parameter w. Besides service identifiers like S(n1, . . . , nj), which are
used to model recursive behaviours, the language offers a few other primitive
operators: parallel composition (s | s), protection ({|s|}), kill activity (kill(k)),
and delimitation of the entity d within s ([d]s).

In [d]s the occurrence of [d] is a binding for d with scope s. An entity is free
if it is not under the scope of a binder. It is bound otherwise. An occurrence of
one term in a service is unguarded if it is not underneath a request.

Like in [8], the operational semantics of COWS is defined for closed services,
i.e. for services whose variables and killer labels are all bound. Moreover, to
be sure to get finitely branching transition systems, we work under two main
assumptions. First, it is assumed that service identifiers do not occur unguarded.
Second, we assume that there is no homonymy either among bound entities or
among free and bound entities of the service under consideration. This condition
can be initially met by appropriately refreshing the term, and is dynamically kept
true by a suitable management of the unfolding of recursion.

The labelled transition relation α−→ between services is defined by the rules
collected in Tab. 1 and by symmetric rules for the commutative operators of
choice and of parallel composition. Labels α are given by the following grammar

α ::= †k | † | p ? w | p ! n | p ? (x) | p ! (n) | p · σ · σ′

where, for some n and x, σ ranges over ε, {n/x}, {(n)/x}, and σ′ over ε, {n/x}.
Label †k (†) denotes that a request for terminating a term s in the delimi-

tation [k]s is being (was) executed. Label p ? w (p ! n) stays for the execution
of a request (an invocation) activity over the endpoint p with parameter w (n,
respectively). Label p · σ · σ′ denotes a communication over the endpoint p. The
two components σ and σ′ of label p · σ · σ′ are meant to implement a best-match
communication mechanism. Among the possibly many receives that could match
the same invocation, priority of communication is given to the most defined one.
This is achieved by possibly delaying the name substitution induced by the in-
teraction, and also by preventing further moves after a name substitution has
been improperly applied. To this end, σ′ recalls the name substitution, and σ
signals whether is has been already applied (σ = ε) or not. We observe that
labels like p · {(n)/x} · σ′, just as p ? (x) and p ! (n), have no counterpart in [8].
These labels are used in the rules for scope opening and closure that have no
analogue in [8] where scope modification is handled by means of a congruence

248 D. Prandi and P. Quaglia

Table 1. Operational semantics of COWS

kill(k)
†k−→ 0 (kill) p ? w. s

p ? w−−−→ s (req) p ! n
p ! n−−→ 0 (inv)

g1
α−→ s

g1 + g2
α−→ s

(choice)
s

α−→ s′

{|s|} α−→ {|s′|}
(prot)

s1
p ! n−−→ s′1 s2

p ? n−−−→ s′2

s1 | s2
p·ε·ε−−−→ s′1 | s′2

(com n)

s1
p ! n−−→ s′1 s2

p ? x−−−→ s′2 (s1 | s2) �↓p ? n

s1 | s2
p·{n/x}·{n/x}−−−−−−−−−→ s′1 | s′2

(com x)

s1
p·σ·σ′
−−−−→ s′1 σ′ = {n/x} ⇒ s2 �↓p ? n

s1 | s2
p·σ·σ′
−−−−→ s′1 | s2

(par conf)
s

p·{n/x}·{n/x}−−−−−−−−−→ s′

[x]s
p·ε·{n/x}−−−−−−→ s′{n/x}

(del sub)

s1
†k−→ s′1

s1 | s2
†k−→ s′1 | halt(s2)

(par kill)
s1

α−→ s′1 α �= p · σ · σ′ α �= †k
s1 | s2

α−→ s′1 | s2

(par pass)

s
†k−→ s′

[k]s
†−→ [k]s′

(del kill)
s

α−→ s′ d �∈ d(α) s ↓d ⇒ (α = † or α = †k)

[d]s
α−→ [d]s′

(del pass)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s{m1 . . . mj/n1 . . . nj} α−→ s′ S(n1, . . . , nj) = s

S(m1, . . . , mj)
l dec(α)−−−−−→ s dec(α, s′)

(ser id)

s
p ? x−−−→ s′

[x]s
p ? (x)−−−−→ s′

(op req)

s1
p ! (n)−−−−→ s′1 s2

p ? (x)−−−−→ s′2 (s1 | s2) �↓p ? n

s1 | s2
p·ε·{n/x}−−−−−−→ [n](s′1 | s′2{n/x})

(cl nx)

s
p ! n−−→ s′

[n]s
p ! (n)−−−−→ s′

(op inv)

s1
p ! (n)−−−−→ s′1 s2

p ? x−−−→ s′2 (s1 | s2) �↓p ? n

s1 | s2
p·{(n)/x}·{n/x}−−−−−−−−−−−→ s′1 | s′2

(cl n)

s
p·{(n)/x}·{n/x}−−−−−−−−−−−→ s′

[x]s
p·ε·{n/x}−−−−−−→ [n]s′{n/x}

(del cl)
s1

p ! n−−→ s′1 s2
p ? (x)−−−−→ s′2 (s1 | s2) �↓p ? n

s1 | s2
p·ε·{n/x}−−−−−−→ s′1 | s′2{n/x}

(cl x)

relation. Their intuitive meaning is analogous to the one of the corresponding
labels p · {n/x} · σ′, p ? x, and p ! n. The parentheses only record that the scope
of the entity is undergoing a modification.

Notation and auxiliary functions. We use [d1, . . . , d2] as a shorthand for [d1] . . .
[d2], and adopt the notation s{d′

1 . . . d′
j/d1 . . . dj} to mean the simultaneous sub-

stitution of dis by d′is in the term s . We write s ↓p ? n if, for some s′, an un-
guarded subterm of s has the shape p ? n. s′. Analogously, we write s ↓k if some
unguarded subterm of s has the shape kill(k). The predicates s �↓p ? n and s �↓k are
used as negations of s ↓p ? n and of s ↓k, respectively. Function halt(), used to de-
fine service behaviours correspondingly to the execution of a kill activity, takes a

Stochastic COWS 249

service s and eliminates all of its unprotected subservices. In detail: halt(u ! w) =
halt(g) = halt(kill(k)) = 0, and halt({|s|}) = {|s|}. Function halt() is a homo-
morphism on the other operators, namely: halt(s1 | s2) = halt(s1) | halt(s2),
halt([d]s) = [d]halt(s), and halt(S(m1, . . . , mj)) = halt(s{m1 . . . mj/n1 . . . nj})
for S(n1, . . . , nj) = s. Finally, an auxiliary function d() on labels is defined. We
let d(p · {n/x} · σ′) = d(p · {(n)/x} · σ′) = {n, x} and d(p · ε · σ′) = ∅. For the
other forms of labels, d(α) stays for the set of entities occurring in α.

Tab. 1 defines α−→ for a rich class of labels. This is technically necessary to get
what is actually taken as an execution step of a closed service:

s
α−→ s′ with either α = † or α = p · ε · σ′.

The upper portion of Tab. 1 displays the monadic version of rules which are
in common with the operational semantics presented in [8]. We first comment
on the most interesting rules of that portion.

The execution of the kill(k) primitive (axiom kill) results in spreading the killer
signal †k that forces the termination of all the parallel services (rule par kill) but
the protected ones (rule prot). Once †k reaches the delimiter of its scope, the killer
signal is turned off to † (rule del kill). Kill activities are executed eagerly: When-
ever a kill primitive occurs unguarded within a service s delimited by d, the service
[d]s can only execute actions of the form †k or † (rule del pass).

Notice that, by our convention on the use of meta-entities, an invoke activity
(axiom inv) cannot take place if its parameter is a variable. Variable instanti-
ation can take place, involving the whole scope of variable x, due to a pending
communication action of shape p · {n/x} · {n/x} (rule del sub). Communication
allows the pairing of the invoke activity p ! n with either the best-matching ac-
tivity p ? n (rule com n), or with a less defined p ? x action if a best-match is not
offered by the locally available context (rule com x). A best-match for p ! n is
looked for in the surrounding parallel services (rule par conf) until either p ? n
or the delimiter of the variable scope is found. In the first case the attempt to
establish an interaction between p ! n and p ? x is blocked by the non applicability
of the rules for parallel composition.

The rules in the lower portion of Tab. 1 are a main novelty w.r.t. [8]. In order
to carry out quantitative reasoning on the behaviour of services we need to base
our stochastic extension on a finitely branching transition system. This was not
the case for the authors of [8] who defined their setting for modelling purposes,
and hence were mainly interested in runs of services rather than on the complete
description of their behaviour in terms of graphs. Indeed, in [8] the operational
semantics of COWS is presented in the most elegant way by using both the
replication operator and structural congruence. The rules described below are
meant to get rid of both these two ingredients while retaining the expressive
power of the language.

As said, we discarded the replication operator in favour of service identifiers.
Their use, just as that of replication, is a typical way to allow recursion in
the language. When replication is out of the language, the main issue about
simulating the expressivity of structural congruence is relative to the manage-
ment of scope opening for delimiters.

250 D. Prandi and P. Quaglia

As an example, the operational semantics in [8] permits the interaction be-
tween the parallel components of service [n]p ! n | [x]p ? x. 0 because, by struc-
tural congruence, that parallel composition is exactly the same as [n][x](p ! n |
p ? x.0) and hence the transition [n]p ! n | [x]p ? x.0

p·ε·{n/x}−−−−−−→ [n](0 | 0) is
allowed.

Except for rule ser id , all the newly introduced rules are meant to manage
possible moves of delimiters without relying on a notion of structural congruence.
The effect is obtained by using a mechanism for opening and closing the scope
of binders that is analogous to the technique adopted in the definition of the
labelled transition systems of the π-calculus.

Both rules op req and op inv open the scope of their parameter by removing
the delimiter from the residual service and recording the binding in the transition
label. The definition of the opening rules is where our assumption on the non-
homonymy of entities comes into play. If not working under that assumption,
we should care of possible name captures caused when closing the scope of the
opened entity. To be sure to avoid this, we should allow the applicability of the
opening rules to a countably infinite set of entities, which surely contrasts with
our need to get finitely branching transition systems.

The idea underlying the opening/closing technique is the following. Opened
activities can pass over parallel compositions till a (possibly best) match is found.
When this happens, communication can take place and, if due, the delimiter is
put back into the term to bind the whole of the residual service.

The three closing rules in Tab. 1 reflect the possible recombinations of pairs of
request and invoke activities when at least one of them carries the information
that the scope of its parameter has been opened. In each case the parameter of
the request is a variable. (If it is a name then, independently on any assumption
on entities, it is surely distinct from the invoke parameter.) Recombinations have
to be ruled out in different ways depending on the relative original positions of
delimiters and parallel composition.

Rule cl nx takes care of scenarios like the one illustrated above for the ser-
vice [n]p ! n | [x]p ? x.0. Delimiters are originally distributed over the parallel
operator, and their scope can be opened to embrace both parallel components.
The single delimiter that reappears in the residual term is the one for n.

Rule cl x regulates the case when only variable x underwent a scope opening.
The delimiter for the invoke parameter, if present, is in outermost position w.r.t.
both the delimiter for x and the parallel operator. An example of this situation is
p ! n | [x]p ? x. 0. The invoke can still find a best matching, though. Think, e.g., of
the service (p ! n | p ? n.0) | [x]p ? x.0. If such matching is not available, then the
closing communication can effectively occur and the variable gets instantiated.

Rule cl n handles those scenarios when the delimiter for the invoke is within
the scope of the delimiter for x, like, e.g., in [x](p ? x. 0 | [n]p ! n). Communica-
tion is left pending by executing p · {(n)/x} · {n/x} which is passed over possible
parallel compositions using the par conf rule. Variable x is instantiated when
p · {(n)/x} · {n/x} reaches the delimiter for x (rule del cl). On the occasion, [x]
becomes a delimiter for n.

Stochastic COWS 251

NS(p1,m1) | NS(p2,m2) | ES(p,p1,p2) | US(p,n)

where

NS(p,m) = [x] p?x. [k,o]({|NS(p,m)|} | x!m | o!o | o?o. kill(k))

ES(p,p1,p2) = [y,n1,n2,z1,z2] p?y.

(p1!n1 | p2!n2 | n1?z1.(y!z1|ES(p,p1,p2)) + n2?z2.(y!z2|ES(p,p1,p2)))

US(p,n) = p!n | [z] n?z.0

Fig. 1. COWS specification of a news/e-mail service

Rule ser id states that the behaviour of an identifier depends on the behaviour
of its defining service after the substitution of actual parameters for formal pa-
rameters. The rule is engineered in such a way that the non-homonymy condition
on bound entities is preserved by the unfoldings of the identifier. This is obtained
by using decorated versions of transition label and of derived service in the con-
clusion of the ser id rule. Function l dec(α) decorates the bound name of α,
if any. Function s dec(α, s) returns a copy of s where all of the occurrences of
both the bound names of s and of the bound name possibly occurring in α
have been decorated. The decoration mechanism is an instance of a technique
typically used in the implementation of the abstract machines for calculi with
naming and α-conversion (see, e.g., [12,15]). Here the idea is to enrich entities
by superscripts consisting in finite strings of zeros, with d staying for the entity
decorated by the empty string. Each time an entity is decorated, an extra zero is
appended to the string. Entities decorated by distinct strings are different, and
this ensures that the non-homonymy condition is dynamically preserved.

Fig. 1 displays the COWS specification of a simple service adapted from the
CNN/BBC example in [10]. The global system, which will be used later on to
carry on simple quantitative analysis, consists of two news services (NS(p1,m1)
and NS(p2,m2)), the e-mail service ES(p,p1,p2), and a user US(p,n). The user
invokes the e-mail service asking to receive a message with the latest news. On
its side, ES(p,p1,p2) asks them to both NS(p1,m1) and NS(p2,m2) and sends
back to the user the news it receives first. The sub-component o!o|o?o.kill(k)
of the news service will be used to simulate (via a delay associated to the invoke
and to the request over o) a time-out for replying to ES(p,p1,p2).

3 Stochastic Semantics

The stochastic extension of COWS is presented below. The syntax of the basic
calculus is enriched in such a way that kill, invoke, and request actions are asso-
ciated with a random variable with exponential distribution. Since exponential
distribution is uniquely determined by a single parameter, called rate, the above
mentioned atomic activities become pairs (μ,r), where μ represents the basic
action, and r ∈ R

+ is the rate of μ. In the enriched syntax, kill activities, invoke
activities, and input-guarded services are written:

(kill(k), λ) (u ! w, δ) (p ? w, γ). s

252 D. Prandi and P. Quaglia

Table 2. Apparent rate of a request

req(p; (kill(k), λ)) = req(p; (u ! w, δ)) = req(p;0) = 0

req(p; (p′ ? w, γ). s′) =
γ if p = p′

0 oth.
req(p; s1 | s2) = req(p; s1) + req(p; s2)

req(p; g1 + g2) = req(p; g1) + req(p; g2) req(p; {|s|}) = req(p; s)

req(p; [d]s) =
0 if p = d or s ↓d

req(p; s) oth.
req(p; S(m1, . . . , mj)) = req(p; s{m1 . . . mj/n1 . . . nj}) if S(n1, . . . , nj) = s

T bl A f

where the metavariables λ, δ and γ are used to range over kill, invoke and re-
quest rates, respectively. The intuitive meaning of (kill(k), λ) is that the activity
kill(k) is completed after a delay Δt drawn from the exponential distribution
with parameter λ. I.e., the elapsed time Δt models the use of resources needed
to complete kill(k). The meaning of both (u ! w, δ) and (p ? w, γ) is analogous.

Whenever more than one activity is enabled, the dynamic evolution of a ser-
vice is driven by a race condition: All the enabled activities try to proceed, but
only the fastest one succeeds. Race conditions ground the replacement of the
non-deterministic choice of COWS by a probabilistic choice. The probability of
a computational step s

α−→ s′ is the ratio between its rate and the exit rate of
s which is defined as the sum of the rates of all the activities enabled in s. For
instance, service S = [x][y]((p ? x, γ1). s1 + (p ? y, γ2). s2) has exit rate γ1 + γ2

and the probability that the activity p ? x is completed is γ1/(γ1 + γ2).
The exit rate of a service is computed on the basis of the so-called commu-

nication rate, which is turn is defined in terms of the apparent rate of request
and invoke activities [13,7]. The apparent rate of a request over the endpoint p
in a service s, written req(p; s), is the sum of the rates of all the requests over
the endpoint p which are enabled in s. Function req(p; s) is defined in Tab. 2 by
induction on the structure of s. It just sums up the rates of all the requests that
can be executed in s at endpoint p. As an example, we show in the following the
computation of the apparent rate of a request over p for the above service S.

req(p; S) = req(p; (p ? x, γ1). s1 + (p ? y, γ2). s2)
= req(p; (p ? x, γ1). s1) + req(p; (p ? y, γ2). s2) = γ1 + γ2

The apparent rate of an invoke over p in a service s, written inv(p; s), is defined
analogously to req(p; s). It computes the sum of the rates of all the invoke
activities at p which are enabled in s. Its formal definition is omitted for the sake
of space. The apparent communication rate of a synchronization at endpoint p
in service s is taken to be the slower value between req(p; s) and inv(p; s), i.e.
min(req(p; s), inv(p; s)).

All the requests over a certain endpoint p in s compete to take a communica-
tion over p. Therefore, given that a request at p is enabled in s, the probability
that a request (p ? x, γ) completes, is γ/req(p; s). Likewise, when an invoke at p
is enabled in s, the probability that the invoke (p ! n, δ) completes is δ/inv(p; s).
Hence, if a communication at p occurs in s, the probability that (p ? x, γ) and
(p ! n, δ) are involved is γ/req(p; s) × δ/inv(p; s).

Stochastic COWS 253

Table 3. Apparent rate of α in service s

�(α; s) =

�����
����

req(p; s) if α = p ? w, p ? (x)

inv(p; s) if α = p ! n, p ! (n)

[req(p; s), inv(p; s)] if α = p · σ · σ′

0 oth.

The rate of the communication between (p ? x, γ) and (p ! n, δ) in s is given by
the following formula:

γ

req(p; s)
δ

inv(p; s)
min(req(p; s), inv(p; s)) (1)

namely, it is given by the product of the apparent rate of the communication
and of the probability, given that a communication at p occurs in s, that this is
just a communication between (p ? x, γ) and (p ! n, δ).

The stochastic semantics of COWS uses enhanced labels in the style of [4].
An enhanced label θ is a triple (α, ρ, ρ′) prefixed by a choice-address ϑ. The α
component of the triple is a label of the transition system in Tab. 1. The two
components ρ and ρ′ can both be either a rate (λ, γ, or δ) or a two dimensional
vector of request-invoke rates [γ, δ]. We will comment later on upon the usefulness
of the choice-address component ϑ.

The enhanced label ϑ(α, ρ, ρ′) records in ρ the rate of the fired action. Axioms
kill , req, and inv become respectively:

(kill(k), λ)
(†k,λ,λ)−−−−−→ 0 (p ? w, γ) . s

(p ? w,γ,γ)−−−−−−→ s (p ! n, δ)
(p ! n,δ,δ)−−−−−−→ 0 .

The apparent rate of an activity labelled by α is computed inductively and
saved in the ρ′ component of the enhanced label ϑ(α, ρ, ρ′). Accordingly, rule
par pass takes the shape shown below.

s1
ϑ(α,ρ,ρ′)−−−−−−→ s′1 α �= p · σ · σ′ α �= †k

s1 | s2
ϑ(α,ρ,ρ′+�(α;s2))−−−−−−−−−−−→ s′1 | s2

(par pass)

Function �(α; s), defined in Tab. 3, computes the apparent rate of the activity α
in the service s. If α is a request (an invoke) at endpoint p, then function �(α; s)
returns req(p; s) (inv(p; s)). In case of a communication at p, function �(α; s)
returns the vector [req(p; s), inv(p; s)] of the request apparent rate and of the
invoke apparent rate. Rules par conf and par kill are modified in a similar way.

An example of application of the par pass rule follows.

(p ! n, δ1)
(p ! n,δ1,δ1)−−−−−−−→ 0 (inv)

(p ! n, δ1) | (p ! m,δ2)
(p ! n,δ1,δ1+	(p ! n;(p ! m,δ2)))−−−−−−−−−−−−−−−−−−−→ 0 | (p ! m, δ2)

(par pass)

The enhanced label (p ! n, δ1, δ1 + �(p ! n; (p ! m, δ2))) records that the activity
p ! n is taking place with rate δ1, and with apparent rate δ1 +�(p ! n; (p ! m, δ2)) =
δ1 + δ2.

254 D. Prandi and P. Quaglia

To compute the rate of a communication between the request (p ? n, γ) in s1

and the invoke (p ! n, δ) in s2 with apparent rates γ′′ and δ′′, respectively, the
enhanced label keeps track of both the rates γ and δ, and of both the apparent
rates γ′′ + �(p ? n; s2) and δ′′ + �(p ! n; s1). Rule com n is modified as follows.

s1
ϑ(p ? n,γ,γ′′)−−−−−−−−→ s′1 s2

ϑ′(p ! n,δ,δ′′)−−−−−−−−→ s′2

s1 | s2
(ϑ,ϑ′)(p·ε·ε,[γ,δ],[γ′′+�(p ? n;s2),δ′′+�(p ! n;s1)])−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s′2

(com n)

Notice that the enhanced label in the conclusion of rule com n contains all
the data needed to compute the relative communication rate which, following
Eq. (1), is given by (γ/γ′)(δ/δ′) min(γ′, δ′) where γ′ = γ′′ + �(p ? n; s2) and δ′ =
δ′′ + �(p ! n; s1). From the point of view of stochastic information, rules com x ,
cl nx , cl x , and cl n behave the same as rule com n . Indeed their stochastic
versions are similar to the one of com n.

Rules prot , del sub, del kill , del pass , ser id , op req, op inv , and del cl are
transparent w.r.t. stochastic information, i.e., their conclusion does not change

the values ρ and ρ′ occurring in the premise s
ϑ(α,ρ,ρ′)−−−−−−→ s′. We report here only

the stochastic version of del kill , the other rules are changed in an analogous
way.

s
ϑ(†k,ρ,ρ′)−−−−−−→ s′

[k]s
ϑ(†,ρ,ρ′)−−−−−→ [k]s′

(del kill)

Rule choice deserves special care. Consider the service (p ! n, δ) | (p ? n, γ).0+
(p ? n, γ).0, and suppose that enhanced labels would not comprise a choice-
address component. Then the above service could perform two communications
at p, both with the same label (p ·ε ·ε, [γ, δ], [γ+γ, δ]) and with the same residual
service 0 | 0. If the semantic setting is not able to discriminate between these two
transitions, then the exit rate of the service cannot be consistently computed.
This calls for having a way to distinguish between the choice of either the left
or the right branch of a choice service. Indeed, the stochastic rules for choice
become the following ones.

g1
ϑ(α,ρ,ρ′)−−−−−−→ s

g1 + g2
+0ϑ(α,ρ,ρ′+�(α;g2))−−−−−−−−−−−−−→ s

(choice0)
g2

ϑ(α,ρ,ρ′)−−−−−−→ s

g1 + g2
+1ϑ(α,ρ,ρ′+�(α;g1))−−−−−−−−−−−−−→ s

(choice1)

By these rules, the above service (p ! n, δ) | (p ? n, γ).0+(p ? n, γ).0 executes two
transitions leading to the same residual process but labelled by +0(p, [γ, δ], [γ +
γ, δ]) and by +1(p, [γ, δ], [γ + γ, δ]), respectively.

We conclude the presentation of the stochastic semantics of COWS by pro-
viding the definition of stochastic execution step of a closed service:

s
ϑ(α,ρ,ρ′)−−−−−−→ s′ with either α = † or α = p · ε · σ′.

Stochastic COWS 255

4 Stochastic Analysis

The definition of stochastic execution step has two main properties: (i) it can
be computed automatically by applying the rules of the operational semantics;
(ii) it is completely abstract, i.e., enhanced labels only collect information about
rates and apparent rates. For instance, it would be possible to compute the com-
munication rate using a formula different from Eq. (1). This makes the modelling
phase independent from the analysis phase, and also allows the application of
different analysis techniques to the same model.

In what follows, we show how to apply Continuous Time Markov Chain
(CTMC) based analysis to COWS terms. A CTMC is a triple C = (Q, q,R)
where Q is a finite set of states, q is the initial state, R : Q × Q → R

+ is the
transition matrix. We write R(q1, q2) = r to mean that q1 evolves to q2 with rate
r. Various tools are available to analyze CTMCs. Among them there are prob-
abilistic model checkers: Tools that allow the formal verification of stochastic
systems against quantitative properties.

A service s′ is a derivative of service s if s′ can be reached from s by a finite
number of stochastic evolution steps. The derivative set of a service s, ds(s),
is the set including s and all of its derivatives. A service s is finite if ds(s) is
finite. Given a finite service s, the associated CTMC is C(s) = (ds(s), s,R),
where R(s, s′) =

∑
s

θ−→s′
rate(θ). Here the rate of label θ, rate(θ), is computed

accordingly to Eq. (1):

rate(θ) =
{

(γ/γ′)(δ/δ′)min(γ′, δ′) if θ = ϑ(p, [γ, δ], [γ′, δ′])
ρ if θ = ϑ(†, ρ, ρ′)

After the above definition, we can analyse COWS services exploiting available
tools on CTMCs. As a very simple example, we show how the news/e-mail service
in Fig. 1 can be verified using PRISM [14], a probabilistic model checking tool
that offers direct support for CTMCs and can check properties described in
Continuous Stochastic Logic [1]. A short selection of example properties that
can be verified against the news/e-mail service follows.

– P ≥ 0.9[true U≥ 60(NS1 | NS2)]: “With probability greater than 0.9
either NS(p1,m1) or NS(p2,m2) are activated in at most 60 units of time”;

Fig. 2. Probability that US(p,n) receives either the message m1 or m2 within time T

256 D. Prandi and P. Quaglia

– P ≥ 1 [true U (m1|m2)]: “The user US(p,n) receives either the message
m1 or m2 with probability 1”;

– P=?[trueU[T,T](m1|m2)]: “Which is the probability that the user US(p,n)
receives either the message m1 or m2 within time T?” Fig. 2 shows a plot gener-
ated by PRISM when checking the news/e-mail service against this property.

5 Concluding Remarks

We presented a stochastic extension of COWS, a formal calculus strongly in-
spired by WS-BPEL, and showed how the obtained semantic model can be used
as input to carry on probabilistic verification using PRISM.

The technical approach presented in this paper aims at producing an inte-
grated set of tools to quantitatively model, simulate and analyse web service
descriptions.

Acknowledgements. WethankRosarioPugliese,FrancescoTiezzi,andananony-
mous referee for their useful comments and suggestions on a draft of this work.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continuous-time
markov chains. ACM TOCL 1(1), 162–170 (2000)

2. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: POPL ’05, pp. 209–220 (2005)

3. Bruni, R., Melgratti, H.C., Tuosto, E.: Translating Orc Features into Petri Nets
and the Join Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 123–137. Springer, Heidelberg (2006)

4. Degano,P.,Priami,C.:Enhancedoperationalsemantics.ACMCS33(2),135–176(2001)
5. Gilmore, S.T., Tribastone, M.: Evaluating the scalability of a web service-based

distributed e-learning and course management system. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer,
Heidelberg (2006)

6. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, Springer, Heidelberg (2006)

7. Hillston, J.: A Compositional Approach to Performance Modelling. In: CUP (1996)
8. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services.

In: Proc. ESOP’07. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007) (full
version available at), http://rap.dsi.unifi.it/cows/

9. Milner, R.: Communicating and mobile systems: the π-calculus. In: CUP (1999)
10. Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-area Com-

puting. SoSyM 6(1), 83–110 (2007)
11. PEPA (2007), http://www.dcs.ed.ac.uk/pepa/
12. Pottier, F.: An Overview of Cαml. ENTCS 148(2), 27–52 (2006)
13. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)
14. PRISM (2007), http://www.cs.bham.ac.uk/∼dxp/prism/
15. Quaglia, P.: Explicit substitutions for pi-congruences. TCS 269(1-2), 83–134 (2001)
16. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. In: CUP

(2001)

http://rap.dsi.unifi.it/cows/
http://www.dcs.ed.ac.uk/pepa/
http://www.cs.bham.ac.uk/~dxp/prism/

Service License Composition and

Compatibility Analysis

G.R. Gangadharan1, Michael Weiss2, Vincenzo D’Andrea1,
and Renato Iannella3

1 Department of Information and Communication Technology
University of Trento

Via Sommarive, 14, Trento, 38100 Italy
{gr,dandrea}@dit.unitn.it

2 School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, K1S 5B6, Canada

weiss@scs.carleton.ca
3 National ICT Australia

Level 19, 300 Adelaide Street, Brisbane, Queensland, 4000 Australia
renato@nicta.com.au

Abstract. Services enable the transformation of the World Wide Web
as distributed interoperable systems interacting beyond organizational
boundaries. Service licensing enables broader usage of services and a
means for designing business strategies and relationships. A service li-
cense describes the terms and conditions for the use and access of the
service in a machine interpretable way that services could be able to
understand. Service-based applications are largely grounded on compo-
sition of independent services. In that scenario, license compatibility is
a complex issue, requiring careful attention before attempting to merge
licenses. The permissions and the prohibitions imposed by the licenses
of services would deeply impact the composition. Thus, service licens-
ing requires a comprehensive analysis on composition of these rights and
requirements conforming to the nature of operations performed and com-
pensation of services used in composition. In this paper, we analyze the
compatibility of service license by describing a matchmaking algorithm.
Further, we illustrate the composability of service licenses by creating
a composite service license, that is compatible with the licenses being
composed.

1 Introduction

Service oriented computing (SOC) represents the convergence of technology
with an understanding of cross-organizational business processes [1]. Services
enhance the World Wide Web not only for human use, but also for machine use
by enabling application level interactions. Services have an important advance
over stand-alone applications: they intend to make network-accessible operations
available anywhere and at anytime. Thus, services deliver complex business pro-
cesses and transactions, allowing applications to be constructed on-the-fly and
to be reused [2].

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 257–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

258 G.R. Gangadharan et al.

In a dynamic market environment, the usage of services is governed by bilat-
eral agreements that specify the terms and conditions of using and provisioning
the services. A license is an agreement between parties in which one party receives
benefits by giving approximately equal value to the other party in exchange. Li-
censing [3] includes all transactions between the licensor and the licensee, in
which the licensor agrees to grant the licensee the right to use and access the
asset under predefined terms and conditions.

The trend of software transforming to a service oriented paradigm demands
for a new way of licensing for services [4]. Different types of licenses exist for
software. As the nature of services differs significantly from traditional soft-
ware and components, services prevent the direct adoption of software and
component licenses. As services are being accessed and consumed in a num-
ber of ways, a spectrum of licenses suitable for services with differing license
clauses can be definable. We have formalized the license clauses for services in
[5].

As services are composed with one another, the associated service licenses are
also to be composed. The license of a composite service should be compatible
with the licenses of the services being composed. In this paper, we propose an
environment for composing licenses and analyzing the compatibility between the
licenses in case of service composition. The salient feature of our approach is a
matchmaking algorithm for compatibility analysis of licenses (at license clause
level). We also discuss the creation of a composite service license based on the
compatibility of candidate service licenses.

The paper is organized as follows: In Section 2, we briefly describe the rep-
resentation of service licenses using ODRL Service Licensing Profile. Section 3
provides details of a matchmaking algorithm and analyzes the compatibility be-
tween licenses at the level of elements. The process of service license composition
based on the compatibility of candidate service licenses is illustrated in Section
4. Section 5 discusses related work in this field, showing the distinct contribution
of this paper.

2 ODRL Service Licensing Profile (ODRL-S)

A service license describes the terms and conditions that permit the use of and
access to a service, in a machine readable way, which services can understand.
Licensing of services raises several issues, including:

1. What rights should be associated with services and how should the rights
be expressed?

2. How can the composite service license be generated being compatible with
the licenses in composition?

We have developed a language ODRL-S [6] by extending the Open Digital
Rights Language (ODRL) [7] to implement the clauses of service licensing (see

Service License Composition and Compatibility Analysis 259

Fig. 1. Conceptual mapping of service license clauses

Figure 1). The complete syntax and semantics of ODRL-S can be found in [6].
The anatomy of a service license in ODRL-S is as follows.

– The Subject model of a service license directly adopts the ODRL Asset Model
[7]. The subject of the license relates to the definition of the service being
licensed. This defines some related information about the service and may
include a unique identification code for the service, service name, service
location, and other relevant information.

– The Scope of Rights, as explained in detail in [5], comprise the extended
ODRL Permission, Requirement, and Constraint Models. Composition is the
right of execution with the right of interface modification. Derivation is the
right of allowing modifications to the interface as well as the implementation
of a service. Furthermore, derivation requires independent execution of the
service where composition is dependent on the execution of services being
composed. Adaptation refers to the right of allowing the use of interface
only (independent on the execution of services). ODRL-S reuses the concept
of sharealike and non-commercial use from the ODRL Creative Commons
profile [8]. Attribution to services is facilitated by the ODRL attribution
element.

– We adopt the ODRL payment model for representing the Financial model
of services. However, Free/Open Services [9] could be represented without a
payment model.

– The WIL model defines warranties, indemnities and limitation of liabilities
associated with services.

– The Evolution model specifies modifications in future releases or versions.

260 G.R. Gangadharan et al.

3 Service Licenses Matchmaking and Compatibility
Analysis

A license L(S) in ODRL-S for a service S is a finite set of models (generally
referred as license clauses), each of which further consists of a set of elements.
Elements can be specified with value or without value (having the element type
only). Elements can have subelements (referred as subentity in ODRL). Ele-
ments can also be nested within other elements. Elements are not specified with
attributes. Each subelement is specified with an attribute, a value for attribute,
and a value for subelement. The structure of a license clause is modelled in
ODRL-S as shown in Figure 2. An example of a service license (L1) is shown in
Figure 3.

Fig. 2. ODRL-S license clause structure

There are certain elements of licenses which are broader in scope of operation
than certain other elements. Assume two services with different license elements
say, composition and derivation. If a consumer is looking for a service allow-
ing composition, a service license allowing derivation can also be used, because
derivation subsumes composition. For this reason, we say that derivation and
composition are compatible. For a complete compatibility analysis, the match-
making algorithm must know about the possible subsumptions. The concept of
subsumption (at the element level) is similar to the concept of redefinition of
a method in a sub-class [10]. Subsumption implies a match that should occur,
if the given license element is more permissive (accepts more) than the corre-
sponding element in the other license. The subsumption rules for Scope of Rights
are given below (see Table 1):

Service License Composition and Compatibility Analysis 261

Table 1. Subsumption rules over Scope of Rights elements

Element1 Element2 Comparison Redefinition

Composition Adaptation Composition ⊃ Adapta-
tion

Composition

Derivation Adaptation Derivation ⊃ Adaptation Derivation
Composition Derivation ⊃ Composition Derivation

There could also be a scenario when analyzing the compatibility of service
licenses where one of the licenses contains clauses that the other license does not.
In certain cases, the absence of one or several of these clauses does not affect the
compatibility with the other license. Table 2 lists rules used by the matchmaking
algorithm to determine the compatibility of specified against unspecified (“don’t
care”) elements.

Table 2. Compatibility with unspecified Scope of Rights and Financial Terms elements

Element1 Element2 Compatibility Rationale

Adaptation Unspecified Compatible Adaptation is the right for interface
reuse only.

Composition Unspecified Incompatible A license denying composition can
not be compatible with a license al-
lowing composition.

Composition Adaptation Compatible Based on subsumption (Table 1)

Derivation Unspecified Incompatible Derivation requires the source code
of interface and implementation to
be ‘Open’.

Derivation Adaptation
or Composi-
tion

Compatible Based on subsumption (Table 1)

Attribution Unspecified Compatible The requirement for specification of
attribution will not affect the com-
patibility when unspecified.

Sharealike Unspecified Compatible Sharealike affects the composite li-
cense requiring that the composite
license should be similar to the li-
cense having Sharealike element.

Non-
CommercialUse

Unspecified Incompatible Commercial use is denied by Non-
CommercialUse.

Payment Unspecified Compatible Payment elements do not affect
compatibility directly, if unspecified.
The license elements related to pay-
ment and charging are dependent on
service provisioning issues.

The matchmaking algorithm compares a license clause of a license with an-
other license clause of another license. The algorithm analyzes the compatibility

262 G.R. Gangadharan et al.

of licenses at the element level. The algorithm performs the compatibility anal-
ysis between any two given licenses1 to decide whether they are compatible. A
license is compatible with another license if all license clauses are compatible
(as defined by the matchmaking algorithm). Service licenses can be combined,
if they are found compatible by the matchmaking algorithm, allowing the corre-
sponding services to be composed.

Assuming that semantics inside a license are agreed by service providers and
consumers, the algorithm for matching a license SLα (with subscript α) with
another license SLβ (with subscript β) is given as follows. In the following, we
use the symbol ⇔ to denote compatibility. Two licenses are compatible (that is:
SLα ⇔ SLβ), if all the respective models in both the licenses are compatible.

(∀mα : mαεSLα ∃mβ : mβεSLβ ⇒ (mα ⇔ mβ))
∧ (∀mβ : mβεSLβ ∃mα : mαεSLα ⇒ (mα ⇔ mβ))

A model mα is compatible with another model mβ , if the model types are same
(represented by ≡) and their elements are compatible.

(mα ≡ mβ)
∧ (∀eα : eαεElements(mα) ∃eβ : eβεElements(mβ) ⇒ (eα ⇔ eβ))
∧ (∀eβ : eβεElements(mβ) ∃eα : eαεElements(mα) ⇒ (eα ⇔ eβ))

Now, an element eα is compatible with another element eβ, if:

– eα and eβ have same type (represented by ≡) or eα can be redefined as eβ

using Table 1 or in case of unspecification of either eα or eβ , use Table 2 for
looking the compatible element;

– eα and eβ have equal value;
– all subelements of eα and eβ are compatible.
– for all nested elements, corresponding elements are compatible.

((eα ≡ eβ) ∨ Redefinition(eα, eβ) ∨ Unspecification(eα, eβ))
∧ (V alue(eα) = V alue(eβ))

∧ (∀sα : sαεSubelements(eα) ∃sβ : sβεSubelements(eβ) ⇒ (sα ⇔ sβ))
∧ (∀sβ : sβεSubelements(eβ) ∃sα : sαεSubelements(eα) ⇒ (sα ⇔ sβ))

∧ (∀eα : eαεElements(eα) ∃eβ : eβεElements(eβ)) ⇒ (eα ⇔ eβ))
∧ (∀eβ : eβεElements(eβ) ∃eα : eαεElements(eα)) ⇒ (eα ⇔ eβ))

A subelement sα is compatible with another subelement sβ , if the values of
subelements are equal and if their attributes are of same type (represented by
≡) and the associated values of attributes are equal.

1 The described algorithm does not support service consumer and service provider
relationship between the given licenses, thus bypassing the directional issues of com-
patibility.

Service License Composition and Compatibility Analysis 263

(V alue(Seα) = V alue(Seβ))
∧ (∀hα : hαεAttributes(Seα) ∃hβ : hβεAttributes(Seβ)

⇒ (hα ≡ hβ) ∧ (V alue(hα) = V alue(hβ))
∧ (∀hβ : hβεAttributes(Seβ) ∃hα : hαεAttributes(Seα)

⇒ (hα ≡ hβ) ∧ (V alue(hα) = V alue(hβ))

Consider the example of a restaurant service R, composed of a resource allo-
cation service (I) and a map service (M). Assume that I allows derivation and
costs 1 euro per use of the service. Furthermore, the service requires attribution.
The license (say L1) for the service I is represented in ODRL-S as follows (shown
in Figure 3).

Fig. 3. Example license L1

Assume that the map service M allows composition and requires attribution.
However, this service denies commercial use. The license (say L2) for the service
M is represented in ODRL-S as follows (shown in Figure 4).

Assume we now want to analyze the compatibility between license L1 and
another license L2.

Following the matchmaking algorithm, we compare licenses at the model level.
Line 2 of both licenses are <o-ex:permission> models. The elements in line 3
of L1 (<ls:derivation>) and line 3 of L2 (<ls:composition>) are not of the
same type, but we can redefine one (composition) as the other (derivation) by
applying a rule from Table 1 (derivation subsumes composition).

In lines 5, 6, and 7 of L1 and L2, we compare the model <o-ex:requirement>
with the element <o-ex:attribution>. As the models are of the same type and
the elements are of the same type, the model is compatible.

264 G.R. Gangadharan et al.

Fig. 4. Example License L2

Then, in line 8 of L1, the <o-ex:requirement> model contains the element
<o-dd:peruse>, which contains <o-dd:payment> element, and in turn, contains
<o-dd:amount>. The corresponding payment term specifications are not spec-
ified in L2. (The service offered by L2 can be made available free of charge,
without specifying the payment model.)

The <o-ex:constraint> model of license L2 (in lines 8 and 9) specifies the
element <o-cc:noncommercialuse>. When the algorithm looks for the element
<o-cc:noncommercialuse> in L1, the algorithm is unable to find as the element
is unspecified. This indicates that the service with L1 can be used for commercial
purposes. From Table 2, the algorithm finds that these clauses are incompatible,
and thus the licenses become incompatible.

4 Service License Composition

Service composition combines of independently developed services into a more
complex service. The license of the composite service should be consistent with
the licenses of the individual services. Composability of licenses refers to the
generation of the composite service license from the given service licenses for the
services being composed. A pre-requisite for composability of licenses is that the
licenses are to be compatible.

A lookup in a service directory for services with a given functionality may
result in multiple candidate services. Each candidate service may be provided
under a different license. When the services are composed, there can be several
licenses for the composite service. The process of a license selection for a service is
depicted in Figure 5. The service consumer/aggregator could manually select one
of the services with the desired functionality and the desired license. Otherwise
the process assigns a license to the composite service (may be most permissible).

Consider our example of a restaurant service R, composed of a map service
and a resource allocation service. The search for a map service in the service
directory might return several services with the same functionality, but different
licenses, say M , M ′, and M ′′. The search for resource allocation results in services

Service License Composition and Compatibility Analysis 265

Fig. 5. Process of a service license selection with the service functionality

with different licenses, I, I ′, and I ′′. The composite service R could be licensed
under a variety of licenses, but then must be compatible with the licenses of M
or M ′ or M ′′ and I or I ′ or I ′′ (see Figure 6). Each combination could lead to
the creation of a distinct license for R.

Fig. 6. Service license composition scenario by license generation and selection

Consider the case where M allows composition and requires attribution, when
M is used by other services. The license of M in ODRL-S may look like this:

<!-- Namespace declarations go here-->

1 <o-ex:offer>

2 <o-ex:permission>

3 <sl:composition/>

4 </o-ex:permission>

266 G.R. Gangadharan et al.

5 <o-ex:requirement>

6 <o-dd:attribution/>

7 </o-ex:requirement>

8 </o-ex:offer>

Assume that I allows access to the source code of the service (derivation) and
requires a fee of 1 Euro per use and thus license of I is same as the license shown
in Figure 3.

As the licenses M and I are compatible using the matchmaking algorithm
illustrated in previous section, they can be composed. The composition of these
service licenses could generate a set of licenses that R may select. Assume that
R has the following license (one of the licenses in the set of compatible licenses),
compatible with the licenses of M and I:

<!-- Namespace declarations go here-->

1 <o-ex:offer>

2 <o-ex:permission>

3 <sl:derivation/>

4 </o-ex:permission>

5 <o-ex:requirement>

6 <o-dd:attribution/>

7 </o-ex:requirement>

8 <o-ex:requirement>

9 <o-dd:peruse>

10 <o-dd:payment>

11 <o-dd:amount o-dd:currency="EUR">1.00</o-dd:amount>

12 </o-dd:payment>

13 </o-dd:peruse>

14 </o-ex:requirement>

15 </o-ex:offer>

The composition of candidate service licenses requires to be compatible among
themselves. Furthermore, for composition, each of the candidate service licenses
should also be compatible with the resulting composite service license. Following
the matchmaking algorithm, it is possible to demonstrate the compatibility of
the composite license (R) with each of the candidate licenses (M and I). Space,
however, does not allow us to show the details of executing the matchmaking
algorithm for the example.

5 Related Work and Discussion

Though there are examples of service licenses in practical use (by Amazon,
Google, Yahoo!), to the best of our knowledge, there appears to be no con-
ceptualization of service licensing in general. The business and legal contractual
information are not described at a detailed level by the services research com-
munity, either in industry or academia. Though the design of service licenses
seems to be an initiative of the software industry, there is no active involvement

Service License Composition and Compatibility Analysis 267

in this topic by industry. One of the primary causes for this could be fear still
faced by industries over the lack of standardization of technologies surrounding
service oriented computing. The need for a language defining both the internal
business needs of an organization and its requirements on external services, and
for a systematic way of linking them to business processes is proposed in [11].
As the mechanism of technology transfer, licensing addresses how a process is
related to and affects business requirements and needs, describing the legal re-
quirements. Licenses affect the design of business strategies and relationships,
linking the business processes across boundaries.

In the business domain, consumer confidence is established through a contract
with the service provider. In SOC, service level agreements (SLA) and policies
support these contractual terms. A service license primarily focuses on the usage
and provisioning terms of services. A service license may include the SLA terms.
Thus, a service license is broader than the scope of SLA, protecting the rights
of service providers and service consumers. In general, an agreement is negoti-
ated between the service provider and the service consumer and agree upon a
SLA that covers a service (or a group of services). The agreement is terminated
when either of the party terminates or violates the agreement. If one of the
partners violates the agreement, the agreement might be renegotiated (in case
of recoverable violation). In case of a service license, there is a service provider
that plays the main role of the licensor. There could be many service consumers
(the licensees) binded by the service license. The agreement between the service
provider and a consumer is bound to comply with license clauses, but the license
itself is generally not part of the negotiation. If a license is modified, it leads to
the creation of a new version of the license. A new invocation of a service might
use the modified version of the license. However, the unmodified version of the
license, if it is implemented and executed by a service, will remain active and
will not be overridden by the new version [12].

Current SLA and policies specifications for services (WSLA [13], SLANG
[14], WSOL [15], WS-Agreement [16], WS-Policy [17]) define what to mea-
sure/monitor and describe payments/penalties. Generally, all the specifications
focus on the QoS and the terms and conditions agreed by the provider and
consumer. License clauses [18] are unexplored by current service description
standards and languages (as mentioned above). We have proposed ODRL-S as a
language to represent a service license concretely in a machine interpretable form
so that any services can automatically interpret license clauses. Using ODRL-S,
a service license can be described in service level and feature level [6].

Compatibility between services is one of the active research areas in service
oriented computing. The present researches on the compatibility of services have
been focused on the matching of functional properties of services [19,20]. A se-
lection processes for commercial-off-the-shelf components using some of the non-
technical features is addressed in [21], vaguely related to our work. An interesting
approach for matching non-functional properties of Web services represented us-
ing WS-Policy is described in [22]. The most comprehensive work on automated
compatibility analysis of WSLA service level objectives is elaborated in [23].

268 G.R. Gangadharan et al.

However, license clauses are not simple as in the case of service level objectives
of WSLA or policies of WS-Policy and the algorithm presented in [23] can not
be parse service license clauses. The problem of licensing compatibility is diffi-
cult to resolve automatically as license clauses are generally written in a natural
language (like English) and contains highly legalized terms, sometimes even dif-
ficult for the end users to understand. A comprehensive semantic approach for
digital rights management based on ontologies is proposed in [24]. However, the
framework does not describe the rights expression for services and their com-
position. To the best of our knowledge, there is no research on a framework for
composing licenses (at least semi-automatically) for services. Not only have we
developed an algorithm for matchmaking of service licenses, but we have also
proposed the way of composing candidate service licenses. The illustrated com-
patibility analysis of service licenses in the element level can be applicable to
analyze the compatibility of licenses in any digital assets. We position our work
as a complementary approach in service license composition.

6 Concluding Remarks

The full potential of services as a means of developing dynamic business so-
lutions will only be realized when cross organizational business processes can
federate in a scale-free manner. Today, services offer programmatic interfaces to
applications. However, many available services are not even considered to pro-
vide relevant business value. As a way of managing the rights between service
consumers and service providers, licenses are of critical importance to services.
In this paper, we have analyzed the compatibility between licenses by describing
a comprehensive service license matchmaking algorithm. Further, we have de-
scribed the composition of service licenses. In our ongoing work, we are describ-
ing license conflicts during service composition and resolving them by feature
interactions.

References

1. Paulson, L.: Services Science: A New Field for Today’s Economy. IEEE Com-
puter 39(8), 18–21 (2006)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures, and Applications. Springer, Heidelberg (2004)

3. Classen, W.: Fundamentals of Software Licensing. IDEA: The Journal of Law and
Technology 37(1) (1996)

4. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: ICIW’06.
Proceedings of the IEEE Web Services Based Systems and Applications, Guade-
loupe, French Caribbean, pp. 142–147. IEEE Computer Society Press, Los Alamitos
(2006)

5. Gangadharan, G.R., D’Andrea, V.: Licensing Services: Formal Analysis and Im-
plementation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 365–377. Springer, Heidelberg (2006)

Service License Composition and Compatibility Analysis 269

6. Gangadharan, G.R., D’Andrea, V., Iannella, R., Weiss, M.: ODRL Service Licens-
ing Profile. Technical Report DIT-07-027, University of Trento (2007)

7. Iannella, R. (ed.): Open Digital Rights Language (ODRL) Version 1.1 (2002),
http://odrl.net/1.1/ODRL-11.pdf

8. Iannella, R. (ed.): ODRL Creative Commons Profile (2005),
http://odrl.net/Profiles/CC/SPEC.html

9. Gangadharan, G.R., D’Andrea, V., Weiss, M.: Free/Open Services: Conceptual-
ization, Classification, and Commercialization. In: OSS. Proceedings of the Third
IFIP International Conference on Open Source Systems, Limerick, Ireland (2007)

10. Jezequel, J.M., Train, M., Mingins, C.: Design Patterns and Contracts. Addison-
Wesley, Reading (1999)

11. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.: Service Ori-
ented Computing Research Roadmap. In: Dagstuhl Seminar Proceedings 05462
(SOC) (2006)

12. Gangadharan, G.R., Frankova, G., D’Andrea, V.: Service License Life Cycle. In:
CTS 2007. Proceedings of the International Symposium on Collaborative Tech-
nologies and Systems, pp. 150–158 (2007)

13. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. IBM Coporation (2003)

14. Skene, J., Lamanna, D., Emmerich, W.: Precise Service Level Agreements. In:
ICSE. Proc. of 26th Intl. Conference on Software Engineering (2004)

15. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language. In: Eder, J., Missikoff, M. (eds.) CAiSE
2003. LNCS, vol. 2681, Springer, Heidelberg (2003)

16. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specifica-
tion (WS-Agreement) Version 2005/09 (2005), http://www.gridforum.org

17. Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez,
T., Yalcinalp, U.: Web Services Policy (WS-Policy) Framework (2007),
http://www.w3.org/TR/ws-policy

18. World Intellectual Property Organization: WIPO Copyright Treaty (WCT) (1996),
http://www.wipo.int/treaties/en/ip/wct/trtdocs wo033.html

19. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web Service Discovery. In:
Proc. of the Fourth Intl. Conf. on Web Information Systems Engineering (2003)

20. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Ser-
vices Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
Springer, Heidelberg (2002)

21. Vega, J.P.C., Franch, X., Quer, C.: Towards a Unified Catalogue of Non-Technical
Quality Attributes to Support COTS-Based Systems Lifecycle Activities. In: IC-
CBSS. Proc. of the IEEE Intl. Conference on COTS Based Software Systems, IEEE
Computer Society Press, Los Alamitos (2007)

22. Verma, K., Akkiraj, R., Goodwin, R.: Semantic Matching of Web Service Policies.
In: Second Intl. Workshop on Semantic and Dynamic Web Processes (2005)

23. Yang, W., Ludwig, H., Dan, A.: Compatibility Analysis of WSLA Service Level Ob-
jectives. Technical Report RC22800 (W0305-082), IBM Research Division (2003)

24. Garcia, R., Gil, R., Delgado, J.: A Web Ontologies Framework for Digital Rights
Management. Journal of Artificial Intelligence and Law Online First (2007),
http://springerlink.metapress.com/content/03732x05200u7h27

http://odrl.net/1.1/ODRL-11.pdf
http://odrl.net/Profiles/CC/SPEC.html
http://www.gridforum.org
http://www.w3.org/TR/ws-policy
http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html
http://springerlink.metapress.com/content/03732x05200u7h27

Dynamic Requirements Specification for

Adaptable and Open Service-Oriented Systems

Ivan J. Jureta, Stéphane Faulkner, and Philippe Thiran

Information Management Research Unit, University of Namur, Belgium
iju@info.fundp.ac.be, sfaulkne@fundp.ac.be, pthiran@fundp.ac.be

Abstract. It is not feasible to engineer requirements for adaptable and
open service-oriented systems (AOSS) by specifying stakeholders’ expec-
tations in detail during system development. Openness and adaptability
allow new services to appear at runtime so that ways in, and degrees
to which the initial functional and nonfunctional requirements will be
satisfied may vary at runtime. To remain relevant after deployment, the
initial requirements specification ought to be continually updated to re-
flect such variation. Depending on the frequency of updates, this pa-
per separates the requirements engineering (RE) of AOSS onto the RE
for: individual services (Service RE), service coordination mechanisms
(Coordination RE), and quality parameters and constraints guiding ser-
vice composition (Client RE). To assist existing RE methodologies in
dealing with Client RE, the Dynamic Requirements Adaptation Method
(DRAM) is proposed. DRAM updates a requirements specification at
runtime to reflect change due to adaptability and openness.

1 Introduction

To specify requirements, the engineer describes the stimuli that the future system
may encounter in its operating environment and defines the system’s responses
according to the stakeholders’ expectations. The more potential stimuli she an-
ticipates and accounts for, the less likely a discrepancy between the expected
and observed behavior and quality of the system. Ensuring that the require-
ments specification is complete (e.g., [17]) becomes increasingly difficult as sys-
tems continue to gain in complexity and/or operate in changing conditions (e.g.,
[15,10]). Adaptable and open service-oriented systems (AOSS) are one relevant
response to such complexity. They are open to permit a large pool of distinct
and competing services orignating from various service providers to participate.
AOSS are adaptable—i.e., an AOSS coordinates service provision by dynamically
selecting the participating services according to multiple quality criteria, so that
the users continually receive optimal results (e.g., [7,8]).

A complete requirements specification for an AOSS would include the descrip-
tion of all relevant properties of the system’s operating environment, and of all
alternative system and environment behaviors. All services that may participate
would thus be entirely known at development time. Following any established

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 270–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Requirements Specification for AOSS 271

RE methodology (e.g., KAOS [4], Tropos [3]), such a specification would be con-
structed by moving from abstract stakeholder expectations towards a detailed
specification of the entire system’s behavior. As we explain in Section 2, applying
such an approach and arriving at the extensive specification of an AOSS is not
feasible. In response, this paper introduces concepts and techniques needed to
(1) determine how extensive the initial specification ought to be and what parts
thereof are to be updated at runtime to reflect system adaptation, and (2) know
how to perform such updates. The specification can then be used to continually
survey and validate system behavior. To enable (1), this paper separates the
requirements engineering (RE) of AOSS depending on the frequency at which
the requirements are to be updated (§2): RE executed for individual services
or small sets of services (Service RE), RE of mechanisms for coordinating the
interaction between services (Coordination RE), and RE of parameters guiding
the runtime operation of the coordination mechanisms (Client RE). To address
(2), this paper focuses on Client RE and introduces a method, called Dynamic
Requirements Adaptation Method (DRAM) for performing Client RE for AOSS
(§3). We close the paper with a discussion of related work (§4), and conclusions
and indications for future effort (§5).

Motivation. The proposal outlined in the remainder resulted from the diffi-
culties encountered in engineering requirements for an experimental AOSS, call
it TravelWeb, which allows users to search for and book flights, trains, hotels,
rental cars, or any combination thereof. Services which perform search and book-
ing originate from the various service providers that either represent the various
airlines and other companies, so that TravelWeb aggregates and provides an in-
terface to the user when moving through the offerings of the various providers.
Each provider can decide what options to offer to the user: e.g., in addition to
the basics, such as booking a seat on an airplane, some airlines may ask for seat-
ing, entertainment, and food preferences, while others may further personalize
the offering through additional options. We have studied elsewhere [7,8] the ap-
propriate architecture and service composition algorithms for TravelWeb. Here,
we focus on the engineering of requirements for such systems.

2 Service, Coordination, and Client RE

To engineer the requirements for TravelWeb, a common RE methodology such
as Tropos [3] would start with early and late requirements analyses to better
understand the organizational setting, where dependencies between the service
providers, TravelWeb, and end users would be identified, along with the goals,
resources, and tasks of these various parties. Architectural design would ensue
to define the sub-systems and their interconnections in terms of data, control,
and other dependencies. Finally, detailed design would result in an extensive
behavioral specification of all system components. While other methodologies,
such as KAOS [4] involve a somewhat different approach, all move from high-
level requirements into detailed behavioral specifications. The discussion below,
however, concludes that such an approach is not satisfactory, because:

272 I.J. Jureta, S. Faulkner, and P. Thiran

1) TravelWeb is open. Various hotels/airlines/rental companies may wish to of-
fer or retract their services. Characteristics of services that may participate in
TravelWeb at runtime is thus unknown at TravelWeb development time. Individ-
ual services are likely to be developed outside the TravelWeb development team,
before or during the operation of TravelWeb. It is thus impossible to proceed
as described for the entire TravelWeb—instead, it is more realistic to apply an
established RE methodology locally for each individual service, and separately
for the entire TravelWeb system, taking individual services as black boxes of
functionality (i.e., not knowing their internal architecture, detailed design, etc.).

2) Resources are distributed and the system adapts. All services may or may not
be available at all times. Moreover, individual services are often not sufficient
for satisfying user requests—that is, several services from distinct providers may
need to interact to provide the user with appropriate feedback. Adaptability in
the case of TravelWeb amounts to changing service compositions according to
service availability, a set of quality parameters, and constraints on service inputs
and outputs (see, [8] for details). RE specific to the coordination of services
carries distinct concerns from the RE of individual services.

3) Quality parameters vary. Quality (i.e., nonfunctional) parameters are used by
the service composer as criteria for comparing alternative services and service
compositions. Quality parameters are not all known at TravelWeb development
time, for different services can be advertised with different sets of quality pa-
rameters. As the sets of quality parameters to account for in composing services
change, (a) different sets of stakeholders’ nonfunctional expectations will be con-
cerned by various service compositions and (b) there may be quality parameters
that do not have corresponding expectations in the initial specification. Obser-
vation (a) entails that initial desired levels of expectations may not be achieved
at all times, making the initial specification idealistic. Deidealizing requirements
has been dealt through a probabilistic approach by Letier and van Lamsweerde
[11] where requirements are combined with probability of satisfaction estimates.
In an adaptable system, the probability values are expected to change favor-
ably over time (see, e.g., our experiments on service composition algorithms for
AOSS [7,8]), so that updating the initial requirements specification to reflect the
changes seems appropriate if the specification is to remain relevant after system
deployment. Observation (b) relates to the difficulty in translating stakehold-
ers’ goals into a specification: as March observed in a noted paper [12], both
individual and organizational goals (which translate into requirements) tend to
suffer from problems of relevance, priority, clarity, coherence, and stability over
time, all of which relate to the variability, inconsistency, and imprecision, among
other, of stakeholder preferences. Instead of assuming that the initial set of ex-
pectations is complete, the specification can be updated at runtime to reflect
new system behaviors and to enable the stakeholders to modify requirements as
they learn about the system’s abilities and about their own expectations.

Having established that updates are needed, we turn to the question of what to
update. A requirements specification for an AOSS involves requirements that are

Dynamic Requirements Specification for AOSS 273

of different variability over time. Our experience with AOSS [7,8] indicates that a
particular combination of service-oriented architecture and service coordination
algorithm enables adaptability, whereby the architecture and the algorithm act
as a cadre in which various requirements can be specified. Since adaptability
does not require change in the architecture and algorithm, requirements on these
two remain reasonably stable. This observation, along with the localization of
service-specific RE to each individual service or small service groups leads to a
separation of AOSS RE effort as follows:

Service RE involves the engineering of requirements for an individual service,
or a set of strongly related services (e.g., those obtained by modularization of a
complex service). Depending on whether the service itself is adaptable, a classical
RE methodology such as Tropos or KAOS can be applied. As the coordination
mechanism selects individual services for fulfiling user requests, requirements
on an individual service do not change with changes in service requests (inputs
and/or outputs and constraints on these and quality parameters change with
variation in requests).

Coordination RE takes services as self-contained functionality and focuses
on the requirements for the coordination of services. In an AOSS, this typically
involves the definition of the architecture to enable openness, service interaction,
service selection, and service composition for providing more elaborate, compos-
ite services to fulfil user requests. As noted above, these requirements vary less
frequently than those elicited as a result of Client RE.

Client RE assumes a coordination mechanism is defined and is guided by
constraints to obey, and quality parameters to optimize (e.g., QoS, execution
time, service reputation). This is the case after a service-oriented architecture
is defined in combination with an algorithm for service composition (see, e.g.,
[7,8]). The aim at Client RE is to facilitate the specification of service requests at
runtime. This involves, among other expressing constraints on desired outputs,
quality criteria/parameters for evaluating the output and the way in which it is
produced. This can be performed by traditional RE methodologies. In addition,
Client RE ought to enable the definition of mechanisms for updating the service
requests specification according to change in AOSS’s behavior at runtime. The
set of constraints and quality parameters is likely to vary as new services ap-
pear and other become unavailable. Quality parameter values will vary as well,
as the system adapts to the availability of the various services and change in
stakeholders’ expectations.

3 Using DRAM at Client RE

We arrived above at the conclusion that there are two tasks to perform at Client
RE: (a) specification of requirements that result in service requests, and (b) the
definition of mechanisms for keeping these requirements current with behaviors
of the AOSS and degrees of quality it can achieve over the various quality pa-
rameters defined in the requirements. We focus now on Client RE, assume the
use of an established RE methodology for accomplishing (a), and introduce the

274 I.J. Jureta, S. Faulkner, and P. Thiran

Dynamic Requirements Adaptation Method (DRAM) to perform (b). DRAM is
thus not a standalone RE methodology—it does not indicate, e.g., how to elicit
stakeholder expectations and convert these into precise requirements. Instead,
DRAM integrates concepts and techniques for defining mappings between frag-
ments of the requirements specification produced by an existing RE methodol-
ogy and elements defining a service request (SReq). Mapping requirements onto
SReqs aims to ensure that the stakeholders’ expectations are translated into
constraints and quality parameters understood by the AOSS. Mapping in the
other direction—from SReqs onto requirements—allows the initial (also: static)
requirements specification to be updated to reflect runtime changes in the sys-
tem due to adaptability and openness. The specification obtained by applying
DRAM on the initial, static requirements specification is referred to as the dy-
namic requirements specification.

Definition 1. Dynamic requirements specification S is 〈R,R,Q,P ,U ,A〉,
where: R is the static requirements specification (Def.2); R the set of ser-
vice requirements (Def.3); Q the set of quality parameters (Def.4); P the
preferences specification (Def.5); U the set of update rules (Def.6); and A
the argument repository (Def.7).

The aim with DRAM is to build the dynamic requirements specification. Mem-
bers of R are specifications of nonfunctional and functional requirements, taking
the form of, e.g., goals, softgoals, tasks, resources, agents, dependencies, scenar-
ios, or other, depending on the RE methodology being used. Service requests
submitted at runtime express these requirements in a format understandable to
service composers in the AOSS. Nonfunctional requirements from R are mapped
onto elements of Q and P , whereas functional requirements from R onto service
request constraints grouped in R. As equivalence between fragments of R and
R,Q,P can seldom be claimed, a less demanding binary relation is introduced:
the justified correspondence “�” between two elements in S indicates that there
is a justification for believing that the two elements correspond in the given
AOSS, at least until a defeating argument is found which breaks the justifica-
tion. In other words, the justified correspondence establishes a mapping between
instances of concepts and relationships in the language in which members of R
are written and the language in which members of R,Q,P are written. The
preferences specification P contains information needed to manage conflict and
subsequent negotiation over quality parameters that cannot be satisfied simulta-
neously to desired levels. Update rules serve to continually change the contents
of R according to system changes at runtime. Finally, the argument repository
A contains knowledge, arguments, and justifications used to construct justified
correspondences and at other places in S, as explained below.

S is continually updated to reflect change in how the service requests are
fulfilled. Updates are performed with update rules: an update rule will automat-
ically (or with limited human involvement) change the R according to the quality
parameters, their values, and the constraints on inputs and outputs character-
izing the services composed at runtime to satisfy service requests. An update
rule can thus be understood as a mapping between fragments of R and those of

Dynamic Requirements Specification for AOSS 275

R,Q,P. Consequently, an update rule is derived from a justified correspondence.
It is according to the constraints on inputs/outputs and quality parameter values
observed at runtime that fragments of requirements will be added or removed
to R. Update rules work both ways, i.e., change in R is mapped onto service re-
quests, and the properties of services participating in compositions are mapped
onto fragments of R.

Building fully automatic update rules is difficult for it depends on the pre-
cision of the syntax and semantics of languages used at both ends, i.e., the
specification language of the RE methodology which produces R and the speci-
fication language employed to specify input/output constraints on services and
quality parameters. Due to a lack of agreement on precise conceptualizations of
key RE concepts (e.g., [17]), DRAM makes no assumptions about the languages
employed for writing R, R, and Q. Hence the assumption that languages at
both ends are ill-defined, and the subsequent choice of establishing a “justified”
correspondence (i.e., a defeasible relation) between specification fragments. An
unfortunate consequence is that update rules in many cases cannot be estab-
lished automatically—a repository of update rules is built during testing and
at runtime. S integrates the necessary means for constructing update rules: to
build justified correspondences between elements of R and R,Q,P , arguments
are built and placed in the argument repository A. Update rules are automati-
cally extracted from justified correspondences. As competing services will offer
different sets of and values of quality parameters at service delivery, and as
not all will be always available, trade-offs performed by the AOSS need to be
appropriately mapped to R. Moreover, stakeholders may need to negotiate the
quality parameters and their values. P performs the latter two roles. DRAM
proceeds as follows in building the dynamic requirements specification (concepts
and techniques referred to below are explained in the remainder).

Building the dynamic requirements specification with DRAM

1. Starting from the static requirements specification R (Def.2), select a fragment
r ∈ R of that specification that has not been converted into a fragment in R
(Def.3), Q (Def.4), and/or P (Def.5).

2. Determine the service requirement and/or quality parameter information that can
be extracted from r as follows:

(a) If r is a functional requirement (i.e., it specifies a behavior to perform), focus is
on building a justified correspondence (see, Def.6 and Technique 1) between r
and elements of service requirements. Consider, e.g., the following requirement:
Each user of TravelWeb expects a list of available flights for a destination to
be shown within 5 seconds after submitting the departure and destination city
and travel dates.

available(depC, depD, arrC, arrD, flight)∧correctFormat(depC, depD, arrC, arrD)
⇒ �5sshown(searchResults, flight)

Starting from the above functional requirement:

i. Identify the various pieces of data that are to be used (in the exam-
ple: depC, depD, arrC, arrD, flight) and those that are to be produced
(searchResults) according to the requirement.

276 I.J. Jureta, S. Faulkner, and P. Thiran

ii. Find services that take the used data as input and give produced data at
output (e.g., FlightSearch Serv, s.t. {depC, depD, arrC, arrD, flight} ⊆
I ∧ searchResults ∈ O).

iii. Determine whether the service requirements available on inputs justifi-
ably corresponds to the conditions on input data in the requirement, and
perform the same for output data (i.e., check if there is a justified cor-
respondence between input/output service requirements and conditions
in the relevant requirements in R—i.e., use Def.6 and Technique 1). If
constraints do not correspond (justified correspondence does not apply),
map the conditions from the requirement in R into constraints on inputs
and/or outputs, and write them down as service requirements. If there
is no single service that satisfies the requirement (i.e., step 2(a)i above
fails), refine the requirement (i.e., brake it down into and replace with
more detailed requirements)—to refine, apply techniques provided in the
RE methodology.

iv. Use step 2b to identify the quality parameters and preferences related to
the obtained service requirement.

(b) If r is a nonfunctional requirement (i.e., describes how some behavior is to be
performed, e.g., by optimizing a criterion such as delay, security, safety, and
so on), the following approach is useful:

i. Find quality parameters (Def.4) that describe the quality at which the
inputs and outputs mentioned in a particular service requirement are being
used and produced. In the example cited in the DRAM process, the delay
between the moment input data is available and the moment it is displayed
to the user can be associated to a quality parameter which measures the
said time period.

ii. Following Def.4, identify the various descriptive elements for each quality
parameter. Use R as a source for the name, target and threshold value, and
relevant stakeholders. If, e.g., Tropos is employed to produce R, softgoals
provide an indication for the definition of quality parameters.

iii. For each quality parameter that has been defined, specify priority and
preferences. Initial preferences data for trade-offs comes from test runs.

3. Write down the obtained r ∈ R, q ∈ Q, and/or p ∈ P information, along with
arguments and justifications used in mapping r into r and/or q. Each justified
correspondence obtained by performing the step 2. above is written down as an
update rule u ∈ U .

4. Verify that the new arguments added to A do not defeat justifications already in
A; revise the old justifications if needed.

Definition 2. The static requirements specification R is the high-level re-
quirements specification obtained during RE before the system is in operation.

R is obtained by applying a RE methodology, such as, e.g., KAOS [4] or Tropos
[3]. The meaning of “high-level” in Def.2 varies accross RE methodologies: if
a goal-oriented RE methodology is employed, R must contain the goals of the
system down to the operational level, so that detailed behavioral specification in
terms of, e.g., state machines, is not needed. If, e.g., KAOS is used, the engineer
need not move further than the specification of goals and concerned objects, that
is, can stop before operationalizing goals into constraints. If Tropos is used, the

Dynamic Requirements Specification for AOSS 277

engineer stops before architectural design, having performed late requirements
analysis and, ideally, formal specification of the functional goals.

Example 1. When a RE methodology with a specification language grounded
temporal first-order logic is used1, the following requirement r ∈ R for TravelWeb
states that all options that a service may be offering to the user should be visible
to the first time user:

1stOpt ≡ (hasOptions(servID) ∧ firstTimeUser(servID, userID)
⇒ �1sshowOptions(all, servID, userID))

Definition 3. A service requirement r ∈ R is a constraint on service inputs
or outputs that appears in at least one service request and there is a unique r ∈ R
such that there is a justified correspondence between it and r.

Example 2. Any service that visualizes to the TravelWeb user the options that
other services offer when booking obeys the following service requirement:

r = (input:servID ∈ userID.visited ∧ servID.options = ∅; output:thisService.show = servID.options)

Definition 4. A quality parameter q ∈ Q is a metric expressing constraints
on how the system (is expected to) performs. q = 〈Name, Type, Target, Threshold,
Current, Stakeholder〉, where Name is the unique name for the metric; Type indi-
cates the type of the metric; Target gives a unique or a set of desired values for
the variable; Threshold carries the worst acceptable values; Current contains the
current value or average value over some period of system operation; and Stake-
holder carries names of the stakeholders that agree on the various values given
for the variable.

Example 3. The following quality parameters can be defined on the service from
Example 2:

q1 = 〈ShowDelay, Ratio, 500ms, 1s, 780ms, MaintenanceTeam〉
q2 = 〈OptionsPerScreen, Ratio, {3,4,5}, 7, (all), UsabilityTeam〉
q3 = 〈OptionsSafety, Nominal, High, Med, Low, MaintenanceTeam〉
q4 = 〈BlockedOptions, Ratio, 0, (≥ 1), 0, MaintenanceTeam〉

As quality parameters usually cannot be satisfied to the ideal extent simultane-
ously, the preference specification contains information on priority and positive
or negative interaction relationships between quality parameters. Prioritization
assists when negotiating trade-offs, while interactions indicate trade-off direc-
tions between parameters.
1 Assuming, for simplicity, a linear discrete time structure, one evaluates the formula

for a given history (i.e., sequence of global system states) and at a certain time point.
The usual operators are used: for a history H and time points i, j, (H, i) |= ◦φ iff
(H,next(i)) |= φ; (H, i) |= �φ iff ∃j > i, (H, j) |= φ; (H, i) |= �φ iff ∀j ≥ i, (H, j) |=
φ. Mirror operators for the past can be added in a straightforward manner. Operators
for eventually � and always � can be decorated with duration constraints, e.g.,
�≤5sφ indicates that φ is to hold some time in the future but not after 5 seconds.
To avoid confusion, note that → stands for implication, while φ ⇒ ψ is equivalent
to �(φ → ψ). For further details, see, e.g., [16].

278 I.J. Jureta, S. Faulkner, and P. Thiran

Definition 5. The preferences specification is the tuple P = 〈�,P�,P±〉.
“�” is a priority relation over quality parameters. The set P� contains partial
priority orderings, specified as (qi � qj , Stakeholder) ∈ P� where qi carries higher
priority than qj, and Stakeholder contains the names of the stakeholders agreeing
on the given preference relation. Higher priority indicates that a trade-off between
the two quality parameters will favor the parameter with higher priority. The set
P± contains interactions. An interaction indicates that a given variation of the
value of a quality parameter results in a variation of the value of another quality
parameter. An interaction is denoted (q1

b1⇒b2←→ q2)@φ. q1
b1⇒b2←→ q2 indicates that

changing the value of the quality parameter q1 by or to b1 necessarily leads the
value of the parameter q2 to change for or to b2. As the interaction may only
apply when particular conditions hold, an optional non-empty condition φ can
be added to indicate when the interaction applies. The condition is written in
the same language as service requirements. When the relationship between the
values of two quality parameters can be described with a function, we give that
functional relationship instead of b1 ⇒ b2.

Example 4. Starting from the quality parameters in Ex.3, the following is a
fragment of the preferences specification:

p1 =
�
OptionsPerScreen

+1⇒+60ms←→ ShowDelay
�

@(OptionsPerScreen > 4)

p1 indicates that increasing the number of options per screen by 1 increases the
delay to show options to the user by 60ms, this only if the number of options to
show is above 4.

Definition 6. A justified correspondence exists between φ ∈ R and ψ ∈
R ∪Q ∪ P, i.e., φ � ψ iff there is a justification 〈P, φ � ψ〉.

Recall from the above that the justified correspondence is a form of mapping
in which very few assumptions are made on the precision and formality of the
languages being mapped. This entails the usual difficulties (as those encountered
in ontology mapping, see, e.g., [9]) regarding conversion automation and the
defeasibility of the constructed mappings, making DRAM somewhat elaborate
to apply in its current form. Defeasibility does, however, carry the benefit of
flexibility in building and revising mappings.

Definition 7. A justification 〈P, c〉 is an argument that remains undefeated
after the justification process.2

2 Some background [14]: Let A a set of agents (e.g., stakeholders) and the first-order
language L defined as usual. Each agent a ∈ A is associated to a set of first-order
formulae Ka which represent knowledge taken at face value about the universe of
discourse, and Δa which contains defeasible rules to represent knowledge which can
be revised. Let K ≡

�
a∈A Ka, and Δ ≡

�
a∈A Δa. “|∼” is called the defeasible

consequence and is defined as follows. Define Φ = {φ1, . . . , φn} such that for any
φi ∈ Φ, φi ∈ K ∪ Δ↓. A formula φ is a defeasible consequence of Φ (i.e., Φ |∼ φ) if

Dynamic Requirements Specification for AOSS 279

Up to this point, the concepts needed in DRAM have been introduced. The
remainder of this section describes the techniques in DRAM that use the given
concepts in the aim of constructing the dynamic requirements specification.

Technique 1. The justification process [14] consists of recursively defining and
labeling a dialectical tree T 〈P, c〉 as follows:
1. A single node containing the argument 〈P, c〉 with no defeaters is by itself a
dialectical tree for 〈P, c〉. This node is also the root of the tree.
2. Suppose that 〈P1, c1〉 , . . . , 〈Pn, cn〉 each defeats3 〈P, c〉. Then the dialectical
tree T 〈P, c〉 for 〈P, c〉 is built by placing 〈P, c〉 at the root of the tree and by
making this node the parent node of roots of dialectical trees rooted respectively
in 〈P1, c1〉 , . . . , 〈Pn, cn〉.
3. When the tree has been constructed to a satisfactory extent by recursive
application of steps 1) and 2) above, label the leaves of the tree undefeated (U).
For any inner node, label it undefeated if and only if every child of that node is
a defeated (D) node. An inner node will be a defeated node if and only if it has
at least one U node as a child. Do step 4 below after the entire dialectical tree
is labeled.
4. 〈P, c〉 is a justification (or, P justifies c) iff the node 〈P, c〉 is labelled U .

Example 5. Fig.1 contains the dialectical tree for the justified correspondence
1stOpt � r, where r is from Ex.1 and r from Ex.2. To simplify the presentation
of the example, we have used both formal and natural language in arguing. More
importantly, notice that the correspondence 1stOpt � r is unjustifed, as it is de-
feated by an undefeated argument containing information on a quality parameter
and a fragment of the preferences specification. A justified correspondence such
as, e.g., firstTimeUser(servID, userID) � servID �∈ userID.visited, becomes an
update rule, i.e., (firstTimeUser(servID, userID) � servID �∈ userID.visited) ∈
U . Having established that justified correspondence, the service requirement is
taken to correspond to the given initial requirement until the justified corre-
spondence is defeated. Elements of the argument repository correspond to the
argument structure shown in Fig.1.

and only if there exists a sequence B1, . . . , Bm such that φ = Bm, and, for each Bi ∈
{B1, . . . , Bm}, either Bi is an axiom of L, or Bi is in Φ, or Bi is a direct consequence
of the preceding members of the sequence using modus ponens or instantiation of a
universally quantified sentence. An argument 〈P, c〉 is a set of consistent premises P
supporting a conclusion c. The language in which the premises and the conclusion
are written is enriched with the binary relation ↪→. The relation ↪→ between formulae
α and β is understood to express that “reasons to believe in the antecedent α provide
reasons to believe in the consequent β”. In short, α ↪→ β reads “α is reason for β”
(see, [14] for details). Formally then, P is an argument for c, denoted 〈P, c〉, iff: (1)
K ∪ P |∼ c (K and P derive c); (2) K ∪ P �� ⊥ (K and P are consistent); and (3)
� ∃P ′ ⊂ P, K ∪ P ′ |∼ c (P is minimal for K).

3 Roughly (for a precise definition, see [14]) the argument 〈P1, c1〉 defeats at c an
argument 〈P2, c2〉 if the conclusion of a subargument 〈P, c〉 of 〈P2, c2〉 contradicts
〈P1, c1〉 and 〈P1, c1〉 is more specific (roughly, contains more information) than the
subargument of 〈P2, c2〉.

280 I.J. Jureta, S. Faulkner, and P. Thiran

Fig. 1. Output of the justification process related to Examples 1 and 2

4 Related Work

Engineering requirements and subsequently addressing completeness concerns
for AOSS has only recently started to receive attention in RE research. Berry
and colleagues [1] argue in a note that, while much effort is being placed in
enabling adaptive behavior, few have dealt with how to ensure correctness of
software before, during, and after adaptation, that is, at the RE level. They
recognize that RE for such systems is not limited to the initial steps of the sys-
tem development process, but is likely to continue in some form over the entire
lifecycle of the system. Zhang and Cheng [19] suggest a model-driven process for
adaptive software; they represent programs as state machines and define adap-
tive behaviors usually encountered in adaptable systems as transitions between
distinct state machines, each giving a different behavior to the system. Being sit-
uated more closely to the design phase of development than to RE, Zhang and
Cheng’s process has been related [2] to the KAOS RE methodology by using
A-LTL instead of temporal logic employed usually in KAOS. In the extended
KAOS, a requirement on adaptation behavior amounts to a goal refined into
two sequentially ordered goals, whereby the first in the sequence specifies the
conditions holding in the state of the system before adaptation while the second
goal gives those to hold in the state after adaptation. This paper differs in terms
of concerns being addressed and the response thereto. The suggested separation

Dynamic Requirements Specification for AOSS 281

onto Service, Coordination, and Client RE for AOSS usefully delimits the con-
cerns and focus when dealing with AOSS. The notion of dynamic requirements
specification, along with the associated concepts and techniques is novel with
regards to the cited research.

5 Conclusions and Future Work

This paper presents one approach to addressing the difficulties in the RE of
AOSS. We argued that the RE of AOSS involves the specification of requirements
that may vary at runtime. We consequently identified the most variable class of
AOSS requirements and proposed DRAM, a method for specifying these within
dynamic requirements specifications. The method has the benefit that it can
be combined to any RE methodology. Its principal limitation at this time is
the lack of automated means for defining or facilitating the definition of update
rules. Automation of the DRAM process by reusing results in defeasible logic
programming is the focus of current work.

References

1. Berry, D.M., Cheng, B.H., Zhang, J.: The four levels of requirements engineering
for and in dynamic adaptive systems. In: REFSQ’05 (2005)

2. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented Specification of
Adaptation Semantics in Adaptive Systems. In: SEAMS@ICSE’06 (2006)

3. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Info. Sys. 27(6) (2002)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comp. Progr. 20 (1993)

5. Jennings, N.R.: On Agent-Based Software Engineering. Artif. Int. 117 (2000)
6. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: Justifying Goal Models. In: RE’06

(2006)
7. Jureta, I.J., Faulkner, S., Achbany, Y., Saerens, M.: Dynamic Task Allocation

within an Open Service-Oriented MAS Architecture. In: AAMAS’07 (2007) (to
appear)

8. Jureta, I.J., Faulkner, S., Achbany, Y., Searens, M.: Dynamic Web Service Com-
position within a Service-Oriented Architecture. In: ICWS’07 (2007) (to appear)

9. Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: The State of the Art. In:
Dagstuhl Seminar Proceedings (2005)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–52 (2003)

11. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. ACM Sigsoft Softw. Eng. Notes 29(6) (2004)

12. March, J.: Bounded Rationality, Ambiguity, and the Engineering of Choice. The
Bell J. Econonomics 9(2) (1978)

13. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Comm.
ACM 46(10) (2003)

14. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its
implementation. Artif. Int. 53 (1992)

282 I.J. Jureta, S. Faulkner, and P. Thiran

15. Tennenhouse, D.: Proactive Computing. Comm. ACM 42(5) (2000)
16. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. Softw. Eng. 26(10) (2000)
17. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.

In: RE’01 (2001)
18. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: Dehne, F., López-

Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, Springer, Heidelberg
(2005)

19. Zhang, J., Cheng, B.H.C.: Model-Based Development of Dynamically Adaptive
Software. In: ICSE’06 (2006)

High Performance Approach for Multi-QoS

Constrained Web Services Selection

Lei Li1,2, Jun Wei1, and Tao Huang1,2

1Institute of Software, Chinese Academy of Sciences, Beijing, China
2University of Science and Technology of China, Anhui Hefei, China

{lilei,wj,tao}@otcaix.iscas.ac.cn

Abstract. In general, multi-QoS constrained Web Services composition,
with or without optimization, is a NP-complete problem on computa-
tional complexity that cannot be exactly solved in polynomial time. A lot
of heuristics and approximation algorithms with polynomial- and pseudo-
polynomial-time complexities have been designed to deal with this prob-
lem. However, they suffer from excessive computational complexities that
cannot be used for service composition in runtime. In this paper, we
propose a high performance approach for multi-QoS constrained Web
Services selection. Firstly, a correlation model of candidate services are
established in order to reduce the search space efficiently. Based on the
correlation model, a heuristic algorithm is then proposed to find a feasi-
ble solution for multi-QoS constrained Web Services selection with high
performance and high precision. The experimental results show that the
proposed approach can achieve the expecting goal.

1 Introduction

With the integration of Web services as a business solution in many enterprise
applications, the QoS presented by Web services is becoming the main concern of
both service providers and consumers. Providers need to specify and guarantee
the QoS in their Web services to remain competitive and achieve the highest
possible revenue from their business. On the other hand, consumers expect to
have a good service performance. A service composition system that can leverage,
aggregate and make use of individual component’s QoS information to derive the
optimal QoS of the composite service is still an ongoing research problem.

Since many available Web Services provider overlapping or identical function-
ality, albeit with different QoS, a choice needs to be made to determine which
services are to participate in a given composite service. In general, multi-QoS
constrained Web Services selection, with or without optimization, is an NP-
complete problem that cannot be exactly solved in polynomial time [1], [2].
Heuristics and approximation algorithms with polynomial- and pseudo-
polynomial-time complexities are often used to deal with this problem. However,
existing solutions suffer from excessive computational complexities, and cannot
be used for dynamic service selection at runtime. The complexity of multi-QoS
constrained Web Services selection problem is reflected by the following factors:

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 283–29 , 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4

284 L. Li, J. Wei, and T. Huang

(i) the huge number of the atomic candidate services that may be available to
use; (ii) the large number of QoS constrained required by user; (iii) the differ-
ent possibilities of composing an individual service into a service set which can
satisfy the user’s demand. The above difficulties make the problem very hard to
solve.

In this paper, we propose a high performance approach for multi-QoS con-
strained Web Services composition. The correlations of all the candidate services
are collected to construct a constrained model, which can reduce the search space
efficiently. By using the constrained model, we propose a heuristic algorithm to
find the feasible solution with high performance and high precision. We per-
formed experiments to evaluate the validity and efficiency of the model in the
final of the paper.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the related works. A service correlation model is then presented in
Section 3. Section 4 proposes our algorithm and experimental results are shown
in Section 5. Section 6 concludes the paper and introduces our future work.

2 Related Works

QoS support for Web services is among the hot topics attracting researchers
from both academia and industry. Until recently, considerable efforts have been
conducted to work on QoS for Web services. Multi-QoS constrained selection is
a typical problem in many other research areas.

2.1 QoS Routing

QoS routing is very similar to multi-QoS constrained Web Services selection
problem. In the last ten years, large numbers of studies have been proposed
to address this issue. [3], [4], [5], [6] all present their approaches to solve this
problem. In essential, the QoS routing problem is to create a feasible path from
a given node to the destination so that the QoS requirements of the path are
satisfied and the cost of the path is minimized. [5] proposes several optimal and
heuristic algorithms for QoS partitioning, which assume that all nodes in the
network have full topology and cost information, and then apply approximation
algorithms to realize QoS partitioning. Though QoS routing is similar to multi-
QoS constrained Web Services selection problem, there still remains tremendous
distinction between the two. Compare to QoS routing multi-QoS constrained
Web Services selection problem is based on the workflow model and the topology
is immutable, consequently we only need to select a candidate service from each
task node to keep user-defined constraints satisfied and make the QoS of the
selected services optimal.

2.2 Multi-QoS Constrained Web Services Selection

QoS support in Web Services plays a great role for the success of this emerg-
ing technology. Essentially, the Multi-QoS Constrained Web Services Selection

High Performance Approach 285

is an NP-complete problem that cannot be exactly solved in polynomial time.
If the QoS attributes are all multiplicative or minimal attributes, the multi-QoS
constrained services selection can be solved in polynomial time [8]. Hence, in
order to simplify the problem, we only discuss the additive QoS attributes in
this paper. Before analyzing,let’s give a formal description of the problem.

Multi-QoS Constrained Web Services Selection(MCWS). For a com-

posite service CS, its structure is specified as CS
�
= (N, E), where N is the set

of task nodes and E is the set of edges. Each task node ni ∈ N has |ni| candidate
services and each candidate services sj has K additive attributes which value is
denoted as wj

k, k∈[1,K]. Given K constraints {ck, k∈[1,K]}, the problem is to
select one service from each task node and aggregate all the selected services to
form a specific service set S, c(S) is a cost function about S, S should satisfy the
following two constraints:
(i) wS

k ≤ ck, wS
k =

∑
si∈S wi

k, k ∈ [1,K]
(ii) ∀ S

′
, c(S) ≤ c(S

′
), S

′
is also a selected service set

The above problem is known with NP-complete computational complexity.
In [7], [8], the authors propose a quality driven approach to select component
services during execution of a composite service. They consider multiple QoS
attributes such as price, duration, reliability, take into account of global con-
straints, and use the integer linear programming method to solve the service
selection problem, which is too complex for run time decisions. [1] defines the
problem as a multi-dimension multi-choice 0-1 knapsack problem or the multi-
constraint optimal path problem. [2] describes an approach for QoS-aware service
composition, based on composition of the QoS attributes of the component ser-
vices and on genetic algorithms. Similar to [2], [9] uses genetic algorithms to
determine a set of concrete services to be bound to abstract services contained
in a orchestration to meet a set of constraints and to optimize a fitness crite-
rion on QoS attributes. Compared with linear Integer Programming, GA can
deal with QoS attributes with non-linear aggregation functions. [10] proposes an
approach to trigger and perform composite service replanning during execution.

These studies can solve the Multi-QoS Constrained Web Services Selection
problem; however, they suffer from excessive computational complexities, which
make these solutions infeasible in many scenarios. Moreover, most of these stud-
ies assume that the same service interface definition is used by all atomic service
candidates for a specific service component, i.e. these studies are not concerned
about the compatibility issue among services. However, whether services are
compatible is a major issue in the automatic composition of Web Services.

3 Service Correlation Model

A variety of approaches have been proposed to solve multi-QoS constrained ser-
vice selection problem. As we mentioned, whether services are compatible is a
major issue in the automatic composition of Web Services. Because incompat-
ibility can lead to some collaboration mistakes, if the selected services are not

286 L. Li, J. Wei, and T. Huang

compatible to each other, the service set can not be a feasible solution even
though its overall QoS value is optimal. Moreover, the correlation of services is
very useful in the search space reduction. Therefore, the correlation of services is
very useful to improve the precision and performance of the selected services. In
this section, we will describe our service correlation model and illuminate how
to use it to reduce the search space.

3.1 Analysis of Correlations

There are lots of researches focusing on analysis of compatibility of Web Services
interface [11], [12], seldom considering the multifaceted service correlation, which
may lead to mistake in some situations. For example, si is a service to book a
ticket. sn and sm are Visa and Master credit card payment services respectively.
Service si can only be paid by Master, i.e. si is mutually exclusive to sn. Our
approach is to specify not only the interface compatibility but also more relations
between services, and utilize these relations to reduce the search space.

Borrowing from some temporal operators defined in [13], we define that oper-
ator X(s) outputs the service set next to s, operator F (s) outputs the service set
following s in the future. The operator comp(x, y) means x and y are interface
compatible.

Definition 1 (Sequence Relation). If sj ∈ X(si), then si and sj have the
sequence relation, seq(si, sj).
Definition 2 (Fork Relation). If (sj /∈ F (si))∨(si /∈ F (sj)), then si and sj

have the fork relation, Fork(si, sj).
Definition 3 (Adjoined Compatibility Relation). If seq(si, sj) ∧ comp
(si, sj), then si and sj have the adjoined compatibility relation, adj comp(si, sj).
Definition 4 (Mutually Exclusion Relation). If si has been executed, sj

should never be executed and vice verse, then si and sj have the mutually ex-
clusion relation, MuExcl(si, sj).

The above correlation between services must be analyzed before selecting the
composite services, because these analyses can help program to avoid choosing
some incompatible services. Moreover, these analyses can help program to ac-
celerate the selection. There are also many other correlations, however in this
paper we do not enumerate them all.

3.2 Service Correlation Model

Definition 5 (Incompatible Service set, ISS). Each service si has an in-
compatible service set S∅

i , which means if the service si has been selected, then
any service in S∅

i should not be selected at the same time. How to construct the
incompatible service set will be described below.

R1: If sj ∈ X(si) ∧ ¬adj comp(si, sj) then S∅

i ← S∅

i ∪ {sj}

High Performance Approach 287

Rule 1 means if sj is the next service executed after si and si is incompatible
with sj , then sj will be included in S∅

i .
R2: If sj ∈ F (si) ∧ MuExcl(si, sj) then S∅

i ← S∅

i ∪ {sj}
Rule 2 means if sj will be executed after si and sj is mutually exclusive to

si, then sj will be included in S∅

i .
R3: If Fork(si, sj) then S∅

i ← S∅

i ∪ {sj}
Rule 3 means if si and sj have fork relation, then sj will be included in S∅

i .

Rules 1-3 are backward compatible, which guarantee the service sj executed
after si should be compatible to si. Using rules 1-3, we can construct an incom-
patible service set of si.

Assuming algorithm is considering selecting a candidate service from the task
node nj. Let S∅ be the incompatible services found in selecting round, i.e.
S∅ =

⋃
1≤i<j S∅

i . Obviously if |S∅| = 0, then every service is available to
be selected. We can create the overall incompatible service set by the following
rules. Assuming Sni is the service set bound to task node ni.

R4: ∀s ∈ Sni , If s ∈ S∅, then set sj as the unavailable service.
Rule 4 means that a service is unavailable service when it is in the incompatible

service set.
R5: If ((∀s ∈ Sni)→ (s ∈ S∅)), then no available service can be selected.

Rule 5 means if all the services belong to task node ni are in S∅, then the
selecting program will terminate the searching of current round and begin a new
round searching.

The incompatible service set S∅can be created within O(
∑

1≤i<j |ni|) time .
S∅ can help algorithm to reduce the search space efficiently and in the next sub-
section, we will analyze the efficiency of the correlation model. The efficiency of
this model is determined by the size of incompatible service set, i.e. the bigger the
size of incompatible service set, the more space reduction we can get.

4 The Proposed Algorithm

In this section, we present our proposed algorithm H MCWS, which attempts to
find a feasible service set subject to K additive user’s constraints and minimize
the cost of that service set.

4.1 Theoretical Foundation

First, we design a nonlinear cost function to evaluate the QoS value of the
selected service set. The same nonlinear cost function was also used in [3] and
[14] to develop algorithm for the Multiple Constrained Path problem. Assuming
S is the selected service set. Consider the following cost function for S.

gλ(S) = (
wS

1

c1
)λ + (

wS
2

c2
)λ + ... + (

wS
K

cK
)λ, where λ ≥ 1 (1).

288 L. Li, J. Wei, and T. Huang

From the cost function, we can get the following theorems. (Other character-
istics of the nonlinear function can be found in [3])

Theorem 1: If λ=1, the minimal g1S can be found in polynomial time.

Proof: When λ=1, then the cost function is g1(s) = (wS
1

c1
) + (wS

2
c2

) + ... + (
wS
K

cK
).

Hence, we only need to select a service with the minimal cost from each node.
Therefore, the complexity is

∑
ni∈N |ni|, i.e. O(|S|). �

Theorem 2: When λ is close to ∞, it is guaranteed to find a feasible service
set if one exists.

Proof: Let S be a service set that minimizes the cost function gλ→∞. Assuming
there is a feasible service set S∗. Therefore, gλ→∞(S) ≤ gλ→∞(S∗). If S is not
a feasible service set, then ∃k ∈ [1,K], wS

k > ck. When λ → ∞, gλ→∞(S) is
dominated by the largest term. Hence, gλ→∞(S) → ∞ and gλ→∞(S∗) → 0, i.e.
gλ→∞(S) >gλ→∞(S∗). Since this contradicts, we must have wS

k ≤ ck for each k.
Therefore, S is a feasible service set. �

When we set λ=1, the algorithm can find the minimal cost in polynomial time.
But unfortunately, the selected service set may not be the feasible service set.
Theorem 2 can guarantee to find a feasible service set when λ → ∞. But un-
fortunately, when λ ≥ 2, it is impossible to provide an exact polynomial time
algorithm. So, a heuristic algorithm must be proposed to solve this problem.

4.2 Proposed Algorithm

In this section, we present our algorithm H MCWS, which attempts to find a
feasible service set which satisfies all the users’ constraints and simultaneously
minimize the cost of that service set. H MCWS is similar to the H MCOP [3].
The differences of them are that H MCWS is used to select the composite ser-
vices and faster than H MCOP. First, H MCWS traverses all the services to
eliminate the service which does not satisfy the multiplicative attributes and
minimal attributes and create incompatible service set for each candidate ser-
vice. This traversing process will be completed with O(|S |) complexity. Second,
the algorithm first finds the best service set with g1. If the service set satisfies all
the constraints, it is exactly the result and will be returned to user. Otherwise,
H MCWS finds the best temporary service set from each task node nu to nt. It
then starts from task node ns and discovers each task node nu based on the min-
imization of gλ(S), where the service set S is from task node ns to nt and passing
through task node nu. S is determined at task node nu by concatenating the
already traveled segment from task node ns to nu and the estimated remaining
segment from task node nu to nt. A pseudo code of H MCWS is shown below. ns

represents the start task node, nt represents the end task node and nu represents
the middle task node.

High Performance Approach 289

H MCWS Algorithm
1. Deal non additive Attributes(N)
2. Create ISS Set(N)
3. Reverse Relax(N,nt)
4. if ∀si ∈ Sns , t[si] >K, then return error
5. Look Ahead(N)
6. if ∃si ∈ Snt , Gk[si] ≤ ck, k ∈ [1, K], then return this services set
7. return error

The algorithm uses the following notations. t [nu]/t [si] represent the minimal
cost of the selected services from task node nu/service si to nu. Notation Rk[nu],
k∈[1,K] represents the individually accumulated link weights along the above
selected services. Notation g[nu] represents the cost of a foreseen complete ser-
vice set that goes from task node ns to nt. Notation Gk[nu], k∈[1,K] represents
the individually accumulated cost of services weights from task node ns to nu.
c[nu] represents the cost along the already selected segment of this service set
from task node ns to nu. Deal non additive Attributes(N algorithm is used to
handle the non-additive QoS attributes and Create ISS Set(N) algorithm is used
to create the incompatible service set for each candidate services. There are two
directions in H MCWS: backward to estimate the cost of the remaining segment
using λ=1 and forward to find the most promising service set in terms of feasibil-
ity and optimality using λ >1. The backward algorithm and forward algorithm
are shown in Reverse Relax algorithm and Look Ahead algorithm respectively.

Reverse Relax(nu, nv) Algorithm

1. t[nu]=t[nv]+min1≤i≤|nu|{
∑

1≤k≤K
wi

k

ck
}

2. t[si]=t[nv]+c[si] (for i=1 to | nu |, si ∈ nu)
3. Rk[nu]=Rk[nv]+min1≤i≤|nu|{wi

k} (for k=1 to K)
4. Rk[si]=Rk[nv]+wi

k (for k=1 to K)

Look Ahead(nu) Algorithm
1. for each service si ∈ nu begin
2. ifsi ∈ S∅ then continue
3. ifλ < ∞ then g[si] = max{Gk[πp[nu]]+wi

k+πs[nu]
ck

, k ∈ [1,K]}
4. Gk[si] = Gk[πp[nu]] + wi

k (for k=1 to K)
5. Rk[si]=Rk[πs[nu]]+wi

k (for k=1 to K)
6. sb = Choosing Best Service(nu)
7. c[nu] = c[πp[nu]] + c[sb]
8. end

In the backward direction, the Reverse Relax algorithm finds the optimal ser-
vice set from every task node nu to nt using λ. The complexity of the backward
direction is O(| S |). πp[nu] and πs[nu] represent the predecessor and successor

290 L. Li, J. Wei, and T. Huang

of task node nu respectively. Look Ahead algorithm is executed in the forward
direction. This procedure uses the information provided by the Reverse Relax
algorithm. Look Ahead algorithm explores the whole workflow by choosing the
next services in specific task nodes based on the rule below.

Choosing Best Service(nu) Algorithm
1. Let sv be a virtual service in nu

2. c[sv]=∞, Gk[sv] = ∞, Rk[sv] = ∞
3. for each service si ∈ nu begin
4. if (c[si] < c[sv])&(∀k(Gk[si] + Rk[si]) ≤ ck), then
5. sv = si, c[sv] > c[si], Gk[sv] = Gk[si], Rk[sv] = Rk[si]
6. else if (c[si] > c[sv])&(∀k(Gk[sv] + Rk[sv]) ≤ ck), then continue
7. else if g[si] < g[sv] then
8. sv = si, c[sv] = c[si], Gk[sv] = Gk[si], Rk[sv] = Rk[si]
9. end
10.return sv

The above preference rule can choose the best service from the specific task
node nu. In the end, H MCWS returns a service set using λ > 1. As λ increases,
the likelihood of finding a feasible service set also increases. When λ is close to
∞, H MCWS can guarantee to find a feasible service set if one exists.
Lemma 1: If there are one additive QoS attributes, we can find k -minimal cost
services set with the complexity O(k | S |).

Proof: If there are only one additive QoS attributes, we can get the best can-
didate services from each node by | ni | comparisons. So, we can find the best
services set within

∑
1≤i≤|N| | ni | comparisons, i.e. O(|S |). Let w(s) represent

the additive QoS value of service s. Assuming si is the selected service from task
node ni, si ∈ S and s

′

i represent the service with the second minimal QoS value,
i.e. if (∀s∗i , s

∗
i �= si), then w(s∗i) ≥ w(s

′

i). Assuming s
′

j satisfies the following rule:
if ∀si, s

′

i ∈ ni, then (w(s
′

i) − w(si))≥(w(s
′

j) − w(sj)). Let S
′
= S − {sj} ∪ {s′

j},
then S

′
is the second minimal cost services set. Finding the specific service s

′

j

needs O(|S |) times comparisons at the worst case. Hence, we can find 2 minimal
cost services set with the complexity O(2|S |). According to the same procedure,
we can find k -minimal cost services set with the complexity O(k | S |). �
Theorem 3: The MCWS problem can be solved by H MCWS algorithm in time
O((k+1)|S|).

Proof: The algorithm can be executed within . Similar to H MCOP, the for-
ward direction of H MCWS can also be used with the k -shortest algorithm (in
MCWS problem, the algorithm is k -minimal cost service set algorithm). As we
proved in lemma 1, it needs time to find k -minimal cost service set. Hence, the
overall complexity of H MCWS algorithm is O((k+1)| S |). �

High Performance Approach 291

Although H MCWS is similar to H MCOP, it is more efficient to solve the MCWS
problem. Theorem 3 did not consider the influence of the correlation of services.
In real practice, H MCWS can get more performance improvement.

5 Experiments and Evaluation

In this section, we investigate the performance of H MCWS algorithm and com-
pare it to the most promising algorithms selected from the ones surveyed in
section 2. The simulations environments are: Pentium IV 2.8G CPU, 1024M
RAM, and the operation system is Windows XP SP2. In our study, two im-
portant aspects are considered, one is computation time and the other is the
excellence in approximating the optimal solution.

5.1 Comparison of H MCWS with H MCOP

To study the performance of H MCWS, we randomly create a composite services
structure with 20 task nodes and each node has several candidate services. We
analyze the impact of i) varying the number of constraints; (ii) varying the num-
ber of candidate services. In these test groups, we did not consider the influence
of the correlation of services.

(i) Analysis the impact of the number of constraints

In this test case, we generate 30 candidate services for each task node, and
we set the number of additive constraints from 2 to 10 and use λ = 20.

(a) computation time (b) approximation ratio

Fig. 1. Impact of the Number of Constraints

From Figure 1(a) we can find that H MCWS performs much better than
H MCOP. Figure 1(b) demonstrates the probabilities of finding optimal ser-
vice set for the two algorithms with the different number of constraints. This
experiment results show H MCWS achieves higher performance while keeping
approximately the same precision comparing to H MCOP.

292 L. Li, J. Wei, and T. Huang

(a) computation time (b) approximation ratio

Fig. 2. Impact of the number of candidate services

(ii) Analysis of the impact of the number of candidate services

In this test case, we generate [10, 100] candidate services for each task node.
The number of the additive constraints is 5 and use λ = 20.

Figure 2 depicts that with the increase of the number of candidate services,
the precision and performance of the algorithm drop slightly. For H MCOP algo-
rithm, the complexity is O(n log(n)+km log(kn)+(k2+1)m), where n represents
the number of task nodes and m is the number of links. In MCWS problem, the
m =

∏
1≤i≤|N | | ni |, which is a very huge number. For example, if there are 20

task nodes and each node has 20 candidate services, then m=2020. Therefore,
H MCOP is not suitable to solve this problem directly.

5.2 Analysis of Impact of Service Correlation

To study the impact of service correlation model, we randomly create a composite
services structure with 20 task nodes and each node has 30 candidate services.
Each candidate service has an ISS set and we set the size of this set from 10 to
100. The number of the additive constraints is 5 and use λ = 20.

Figure 3 shows the performance and precision of the algorithm increase dra-
matically with the increasing of the size of ISS. This illuminates the service
correlation model proposed in this paper is effective. The above experiments
demonstrate the service correlation model and H MCWS algorithm proposed in
this paper is feasible.

5.3 Evaluation and Comparison

In this subsection, we analyze and compare four different algorithms: Integer
Programming in [7], WS HEU in [15], Genetic Algorithm in [9] and our approach
H MCWS. Figure 4 presents the comparison results.

From Figure 4, we can see that four different algorithm have the different
properties and are suitable to the different scenarios. Integer programming is one

High Performance Approach 293

(a) computation time (b) approximation ratio

Fig. 3. Impact of the service correlation

Fig. 4. Comparison of Algorithms

of the most adopted tools to solve a QoS-aware composition problem. Integer
programming can find the optimal solution, but unfortunately the running time
is very slow which makes it only can be used in very small size problem. Genetic
algorithm can represent a more scalable choice and are more suitable to handle
generic QoS attributes. However, the genome size of GA is bound to the number
of services, which makes GA slow when the number of candidate services is large.
WS HEU and H MCWS have no limitations and can be used in every situation.
H MCWS consider the correlation of service and use it to reduce the search
space. Hence, although it is near-optimal, it performs very well in practice.

6 Conclusions and Future Work

Web Services selection subject to multi-QoS constraints is an NP-complete prob-
lem. Previously proposed algorithms suffer from excessive computational com-
plexities and are not concerned about the compatibility issue among services,
which makes that these approaches can not be used in many applications. In this
paper, we proposed an efficient approach for Web Services selection with multi-
QoS constraints. The complexity of the algorithm is lower and the simulation
results show the algorithm can find the feasible solution with high performance
and high precision. We believe the proposed models and algorithms provide a
useful engineering solution to multi-constrained Web Services selection problem.

294 L. Li, J. Wei, and T. Huang

User preference is an important factor in the service selection. It can help
algorithm to find a more satisfying composite services for user. Moreover, user
preference can help algorithm to reduce the search space. In the future, we will
introduce the user preference into the selecting algorithm to further reduce the
search space and gain more precision improvement.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their invaluable feedback. This Work is supported by the National Natural
Science Foundation of China under Grant No. 60673112, the National Grand
Fundamental Research 973 Program of China under Grant No.2002CB312005
and the High-Tech Research and Development Program of China under Grand
No. 2006AA01Z19B.

References

1. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services
with Multiple QoS Constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A lightweight approach for
QoS-aware service composition. In: ICSOC (2004)

3. Korkmaz, T., Krunz, M.: Multi-Constrained Optimal Path Selection. In: INFO-
COM 2001. Proceeding of 20th Joint Conf. IEEE Computer and Communications,
pp. 834–843 (2001)

4. Wang, B., Hou, J.: Multicast routing and its QoS extension: Problems, algorithms,
and Protocols. IEEE Network 14(1), 22–36 (2000)

5. Vogel, R., et al.: QoS-based routing of multimedia streams in computer networks.
IEEE Journal on Selected Areas in Communications 14(7), 1235–1244 (1996)

6. Lorenz, D.H., Orda, A., Raz, D., Shavitt, Y.: Efficient QoS partition and routing
of unicast and multicast. In: Proc. IEEE/IFIP IWQoS, pp. 75–83 (2000)

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW. Proc. 12th Int’l Conf. World Wide Web (2003)

8. Liang-Zhao, Z., Boualem, B., et al.: QoS-aware middleware for web services com-
position. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

9. Canfora, G., Di Penta, M., Esposito, R., et al.: An Approach for QoS-aware Service
Composition based on Genetic Algorithms. In: GECCO’05 (2005)

10. Liu, Y., Ngu, A.H., Zeng, L.: QoS computation and policing in dynamic web service
selection. In: WWW. Proceedings of the 13th International Conference on World
Wide Web, pp. 66–73. ACM Press, New York (2004)

11. Megjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing Web Services on
the semantic Web. The VLDB Journal (2003)

12. Lamparter, S., Ankolekar, A., Grimm, S.: Preference-based Selection of Highly
Configurable Web Services. In: WWW. Proceedings of International Conference
on World Wide Web (2007)

13. Huth, M., Ryan, M.: Logic in Computer Science: Modeling and Reasoning about
Systems, 2nd edn. Cambridge University Press, Cambridge (2004)

14. DeNeve,H.,VanMieghem,P.:AmultiplequalityofserviceroutingalgorithmforPNNI.
In:Proceedings of theATMWorkshop, pp. 324–328. IEEEPress, LosAlamitos (1998)

15. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. ACM Transaction on Web (May 2007)

Negotiation of Service Level Agreements: An

Architecture and a Search-Based Approach

Elisabetta Di Nitto1, Massimiliano Di Penta2, Alessio Gambi1,
Gianluca Ripa1, and Maria Luisa Villani2

1 CEFRIEL - Politecnico di Milano
Via Fucini, 2 20133 Milano

2 RCOST - Research Centre on Software Technology
University of Sannio – Palazzo ex Poste, Via Traiano 82100 Benevento, Italy

dinitto@elet.polimi.it, dipenta@unisannio.it, alessiogambi@gmail.com,

ripa@cefriel.it, villani@unisannio.it

Abstract. Software systems built by composing existing services are
more and more capturing the interest of researchers and practitioners.
The envisaged long term scenario is that services, offered by some com-
peting providers, are chosen by some consumers and used for their own
purpose, possibly, in conjunction with other services. In the case the con-
sumer is not anymore satisfied by the performance of some service, he can
try to replace it with some other service. This implies the creation of a
global market of services and poses new requirements concerning valida-
tion of exploited services, security of transactions engaged with services,
trustworthiness, creation and negotiation of Service Level Agreements
with these services. In this paper we focus on the last aspect and present
our approach for negotiation of Service Level Agreements. Our architec-
ture supports the actuation of various negotiation processes and offers a
search-based algorithm to assist the negotiating parts in the achievement
of an agreement.

Keywords: Quality of Service, Service Level Agreements, Negotiation,
Optimization Heuristics.

1 Introduction

Software systems built by composing existing services are more and more cap-
turing the interest of researchers and practitioners. The envisaged long term
scenario is that services, offered by some competing providers, are chosen by
some consumers and used for their own purpose, possibly, in conjunction with
other services. If the consumer is not anymore satisfied by the performance of
some service, s/he can try to replace it with some other service. This implies the
creation of a global market of services and poses new requirements concerning
validation of exploited services, security of transactions engaged with services,
trustworthiness, creation and negotiation of Service Level Agreements (SLAs).

This paper focuses on SLA negotiation. While this issue has been deeply
studied within the domain of e-commerce, there are not many approaches that

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 295–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

296 E. Di Nitto et al.

focus specifically on the domain of services. In such a context, the subject of
the negotiation is the definition of so called SLAs, that is, more or less formal
contracts that discipline the way services are provided to consumers and, in turn,
the obligations to be fulfilled by the consumer in order to obtain the service. Such
SLAs can either be negotiated on a per service usage basis, or they can have a
longer term validity. This last one is actually the most common situation, but
the other should be possible as well, even if to be effective it requires a fast
execution of negotiation.

Negotiation can either be performed directly by the interested stakeholders or
it can be automatic. In this second case, human beings are replaced by automated
negotiators that try to achieve the objective that has been suggested to them.
Automated negotiation is particularly important when the consumer of a service
is a software systems that has to negotiate on the fly (part) of the SLA with
the service. In the following we present our approach for negotiation of SLAs.
Our architecture supports the actuation of various negotiation processes (one to
one negotiations, auctions, many-to-many negotiations) and offers an efficient
search-based algorithm to assist the negotiating parts in the achievement of an
agreement.

The paper is structured as follows. Section 2 provides some definitions that
will be used through the rest of the paper. Section 3 presents an overview of
the architecture of our system. Section 4 focuses on the negotiation search-based
approach while Section 5 presents some preliminary simulation results that show
the advantages of this approach. Finally, Section 6 provides a comparison with
the related literature and Section 7 draws the conclusions.

2 Definitions

According to Jennings et al. [6], a negotiation can be defined as: “the process
by which a group of agents come to a mutually acceptable agreement on some
matter”. We argue that a negotiation process requires the following key elements:

1. The negotiation objectives, i.e., the set of parameters over which an agree-
ment must be reached. These can include the price of the service usage, its
availability, the nature of the operations the service will make available, etc.

2. The negotiation workflow, i.e., the set of steps that constitute the negotiation;
they depend on the kind of negotiation that is actually executed (bilateral
bargaining, auctions, reverse auctions, etc).

3. The negotiation protocol, i.e., the set of conditions that indicate the validity
of all information concerning the negotiation and provided by the negotiation
participants. For instance, if the adopted negotiation process is an English
auction, the negotiation protocol will define as acceptable only those offers
that improve the values associated to the negotiation objectives.

4. The agent decision model, i.e., the decision making apparatus the partici-
pants employ to act in line with the negotiation protocol in order to achieve
their objectives. For example, this can be based on (i) the acceptable ranges
for the negotiation parameters (definition of sub-domains); (ii) functions to

Negotiation of SLAs: An Architecture and a Search-Based Approach 297

evaluate the offers; (iii) the goal to pursue, e.g., maximize one ore more util-
ity functions; and (iv) a strategy to pursue that goal, that is, the algorithm
to decide the moves, in reply to the move by some other participant.

The agents may use both a cooperative or competitive approach to come to an
agreement. This is determined by the kind of the interdependence of the respec-
tive interests [5] and has an impact on the process they follow to come to an
agreement.

In a Service Oriented Architecture (SOA) context, the negotiation partici-
pants are essentially service providers and service consumers, although an over-
parts mediator could be included to provide conciliation mechanisms or help
setting up cooperative strategies. In automated negotiations, (part of) these
participants are replaced by software agents that act on behalf of them.

Negotiation objectives, workflow, protocol, and decision models depend on
the multiplicity of the participating agents:

– 1-1: it is the most known approach and requires that a consumer bargains
with a provider for the definition of the SLA of the specific service;

– 1-N: a consumer bargains with a set of providers. These providers can either
compete among each other to reach the agreement with the consumer (this
approach is applicable when the consumer needs to obtain a binding to a
single service) or they can cooperate to share the service provisioning, e.g.,
for example, split the service availability interval.

– M-1: several consumers bargain with a single provider. Consumers in this
case can either compete to acquire an SLA with the provider (in an auction
style) or they can obtain a single SLA with the provider to share its resources
(e.g., the bandwidth).

– M-N: combining the previous two multi-party negotiation types, at one side,
service providers could cooperate to reach an integrated SLA. On the other
side, consumers may fight to get the best Quality of Service (QoS) guarantees
for that service.

Differently from many works in literature that support specific negotiation
processes, we aim at developing an infrastructure that can be tailored depend-
ing on the multiplicity, workflow, protocol, and decision model that fit a specific
application domain. Furthermore, we exploit optimization techniques to speed
up the search for agreements in (semi)automatic negotiations.

3 Negotiation Architecture

The architecture of our negotiation framework, shown in Figure 1, is composed
of a Marketplace and various Negotiation MultiAgent Systems, each associated
with a specific negotiation participant, and including various Negotiators, one
for each negotiation that involves the participant at that given time. Negotiators
either interface human beings with the negotiation framework through proper
GUIs that allow him/her to place offers and counter offers, or they encapsulate

298 E. Di Nitto et al.

Fig. 1. The negotiation framework architecture

a decision model (see Section 4) that enables automatic negotiation to be exe-
cuted. This allows us to support not only manual or automatic negotiations, but
also hybrid negotiations where some participants are represented by automated
agents, and some others are human beings.

Given that each negotiation participant has limited resources available, the
result of one negotiation can impact on the participant ability to place an offer
in another negotiation. For instance, if a telecom provider is negotiating with
a consumer a high availability of its services, it might not be able to offer high
availability to other consumers with which it has engaged other negotiations.
In turn, if a consumer that is composing several services is accepting low level
of performance from a service, it should be careful not to accept low level of
performance from other services as well, otherwise the whole QoS of the resulting
composition could become lower than required. In order to regulate these kinds
of situations, each participant may exploit a Negotiation Coordinator that has
the role of coordinating the action taken by the various Negotiators of the same
participant. As regular Negotiators, the Negotiation Coordinator has a decision
model that allows it to take decision at a higher level of abstraction.

The Marketplace defined in our framework is composed of two main parts,
one taking care of the execution of the negotiation workflow and the second
one controlling the correctness of the negotiation protocol. In particular, the
Marketplace acts as an intermediary in all interactions among the participants,
providing validity checks for the offers exchanged (through the Protocol Engine),
based on their structure and the current state of the negotiation workflow. To
make the search for agreements more efficient, the Marketplace is enhanced with
a mediation function to guide the generation of the offers towards convergence
of the individual objectives, based on the reactions of the participants. For ex-
ample, in the one-to-one bargaining process whose implementation is described
in Section 4, the mediator iteratively issues proposals to the parties. At each
step, the given proposal is evaluated by the Negotiators, and if it is accepted by
both, the negotiation ends successfully. Otherwise, a new proposal is generated
based on the Negotiators evaluation. The mediator is implemented by an opti-
mization algorithm, which will stop when no joint improvement is observed, i.e.,
at convergence to some offer, or if interrupted by the negotiation timeout.

Negotiation of SLAs: An Architecture and a Search-Based Approach 299

Admission

Setup

Prenegotiation ChangeProposals

AgreementFormation

Negotiation Process

Fig. 2. The generic negotiation workflow

Our negotiation framework allows designers of negotiation to define the nego-
tiation workflow as a Statechart using ArgoUML, and the negotiation protocol
as a set of rules in the JBoss1 Rule sintax. Figure 2 shows the Statechart as-
sociated to the most generic negotiation workflow. It can of course be replaced
by more specific definitions. The framework, besides offering some predefined
implementations of the decision model for Negotiators and Negotiator Coordi-
nators, also allows the designer to define new decision models and to execute
them. In the following sections we describe how the search-based optimization
technique can be used to mediate one-to-one negotiation processes, and present
an agent decision model.

4 Search-Based Negotiation Approach

As we have mentioned in the previous section, each Negotiator implements some
decision model of the negotiation party, which can be arbitrarily configured
beforehand. This usually implies to:

– define QoS attribute boundaries, expressed by constraints;
– identify the objectives to pursue, e.g., maximize one ore more utility func-

tions expressed in terms of QoS attributes;
– prioritize the objectives and evaluate possible trade-offs among them;
– decide what information to make public, e.g., one of the above.

Negotiators may be equipped with a strategy, i.e., the algorithm to decide the
reaction to a received offer at the given stage of the negotiation. In our approach,
the strategy defines whether and how some of the above decision data, like the
priorities of the attributes or the constraints, must change during the negotiation
1 http://www.jboss.org/

300 E. Di Nitto et al.

at some pre-defined milestones. The idea is that low-priority attributes at the
beginning of the negotiation may have their priority increased later, for example,
prefer availability over the response time if the latter cannot be improved so
far. Similarly, some constraints can be relaxed of some factor, representing the
concession made by the Negotiator on some values for the attributes, to try to
achieve a SLA when the timeout is about to expire.

Over a generated SLA proposal, each Negotiator reacts with a feedback. The
feedback value for a proposal o = (oi)i=1,...n (n is the number of attributes
and oi the proposed value for attribute i), consists of a pair (u = U(o, t), d =
D(o, t)), where 0 ≤ u ≤ 1 represents the overall value (or degree of satisfac-
tion) given to the proposal, and 0 ≤ d ≤ 1 is a measure of the distance of
the proposal from the acceptance region. These values may be computed as:
U(o, t) = (pi(t) · ui(oi))i=1,...,n, where ui(oi) is the utility value for the attribute
i and pi(t) is the priority of the attribute at time t. Instead, given the con-
straint set at time t, represented as cli(g, t) ≤ 0, i = 1, . . . , n, the distance from
constraint satisfaction, is:

D(g, t) =
n∑

i=1

cli(g, t) · yi, (1)

where: yi = 0 if cli(g, t) ≤ 0 and yi = 1 if cli(g, t) > 0.
In case of the one-to-one negotiation exploiting the mediation capabilities of

the Marketplace (see Section 3), when the negotiation starts, the number of
attributes and their domains are specified to identify the search space. Hence,
according to the protocol in place, the mediation algorithm produces one or
more proposals, to which fitness values will be attached. For the purpose of
experimentations presented in this paper, the following fitness function (to be
minimized) has been considered: F (o, t) = eu · (1+ ed1·d2), where, if (u1, d1) and
(u2, d2) are the feedback values for offer o at time t received from the Negotiators
1 and 2, eu represents the Euclidean distance of u1 and u2. The rationale of this
fitness is to equally accommodate the Negotiators preferences and to impose
the offer to fall into the intersection area of the acceptance regions of the two
Negotiators.

For the optimization problem, we propose to use meta-heuristic search al-
gorithms, such as Hill-Climbing, Genetic Algorithms, and Simulated Annealing
(SA). From the experiments we conducted, the latter outperformed the others,
above all in terms of number of solutions required to converge. SA is a variant
of the hill-climbing local search method (further details on these heuristics can
be found in [8]). The SA approach constructed for the negotiation algorithm
proposed in this paper works as follows: (i) it starts from a random solution;
(ii) a neighbor solution of the current one is selected, by randomly choosing one
QoS attribute and randomly changing its value within the admissible domain.
The solution is then accepted if p < m, with: p a random number in the range
[0 . . . 1], and m = eΔfitness/T . The temperature T was chosen as:

T = Tmax · e−j·r,

Negotiation of SLAs: An Architecture and a Search-Based Approach 301

Tmax being the maximum (starting) temperature, r the cooling factor and j the
number of iterations. The process iterates until T < Tmin.

5 Empirical Study

This section reports the empirical assessment of the search-based negotiation
approach described in Section 4. In particular, the empirical study aims at an-
swering the following research questions:

1. RQ1: To what extent the proposed negotiation approach is able to achieve
feasible solutions for the different stakeholders?

2. RQ2: How do results vary for different QoS range overlaps?
3. RQ3: How do results vary for different utility functions?
4. RQ4: Are the performance of the proposed approach suitable for a run-time

negotiation?

In the following we describe the experimentation context and setting, and
then we report and discuss the obtained results.

5.1 Context and Settings

To assess the proposed negotiation approach, we set up a number of mediated
one-to-one negotiation scenarios between a service provider and a consumer,
bargaining over the average values of: price, response time and availability of a
service. Although an SLA is usually concerned with ranges of values for each at-
tribute, the empirical study focuses on negotiation of single values (representing
the average, least, or maximum values), typical scenario that can be envisaged
for the run-time binding of a service composition. Of course, our approach is
also applicable to searching for agreements on QoS ranges, by specifying, in that
case, the variability domains for the minimum and maximum values for each
range or else the length of such ranges.

For these experiments, the global domain for the optimization algorithm was
specified as in Table 1 (Domain column), where the price is expressed in Euro, the
response time in seconds and the availability as a percentage. This domain may
be agreeded by the Negotiators beforehand to limit the automatic generation
of offers within realistic values, based on the type of service. We set up three
different negotiation scenarios with different QoS acceptance sub-domains for the
participating Negotiators, so to have sub domains of different negotiating agents
— in particular of three providers negotiating with a consumer — overlapping
by 80%, 50%, and 20%. An example of such a setting is given in Table 1.

Having fixed a negotiation timeout to a maximum 1200 generated offers, SA
was configured as follows: Tmax = 0.30, Tmin = 0.01, r = 0.0025, Number of
restarts = 3. For the fitness, we used the function F (0, t) described in Section 4,
which was reformulated in order to be maximized (e.g, replacing each constraint
distance di with 1 − di and eu with

√
3 − eu). As the focus of this empirical

evaluation is on the effectiveness of the search-based approach, we considered

302 E. Di Nitto et al.

Table 1. Search domain and constraints of the negotiating agents

Domain Consumer Provider1 Provider2 Provider3
Min Max Min Max Min Max Min Max Min Max

Price 0.10 5.50 0.10 3.40 0.76 4.06 1.75 5.05 2.74 5.50
Response Time 1.50 120.00 32.00 65.99 38.80 72.79 48.99 82.98 59.20 93.18
Availability 50.00 99.90 0.70 0.99 0.64 0.93 0.55 0.84 0.50 0.76

Table 2. Offers variability according to constraints overlapping percentage

80% Overlap 50% Overlap 20% Overlap
Min Max Av Min Max Av Min Max Av

Price 1.63 1.66 1.64 1.75 1.77 1.76 2.74 2.76 2.74
Response Time 38.73 38.93 38.84 48.71 49.60 49.11 59.07 59.46 59.24
Availability 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.74

(i) the Negotiator’s feedback functions as fixed during the negotiation, with a
priority vector [pprice, prtime, pavailability] = [0.4, 0.4, 0.2] for both providers and
Consumer and (ii) fixed constraints. In this model, the feedback value of an offer
from each Negotiator consists of a pair (u, d) where u is the vector of the at-
tributes utility values, normalized in the interval [0,1] with respect to the overall
domain of Table 1, and d is the normalized distance from constraints satisfac-
tion. Experiments were performed on a Intel Core Duo T2500 2.0 GHz machine,
with 1 GB of RAM. To avoid bias introduced by randomness, analyses were
performed by replicating each run 10 times. Finally, a random search algorithm
(i.e., offers are randomly generated) has been implemented in order to perform
a sanity check of the SA-based approach.

5.2 Results

Question RQ1 is concerned with the capability of the search-based approach to
find one (or a set of) sub-optimal solution(s), according to the offer evaluating
functions and constraints of the two Negotiators. Given the constraints setting
of Table 1, the negotiation has been executed between Consumer and Provider1,
Consumer and Provider2, and Consumer and Provider3, using linear utility func-
tions. Figure 3 reports, for each negotiation scenario, the fitness function evo-
lution for SA (averaged over 10 runs), for each negotiation scenario. For these
runs, we computed that 99% of the maximum fitness value was reached, respec-
tively, after: 155, 137 and 200 generated offers in the worse case. The outcome of
negotiations for different levels of overlap between the QoS admissible ranges of
Provider and Consumer, is shown in Table 2. The final offers, although signifi-
cantly different (according to the Kruskal-Wallis test, p-value=2.5 ·10−6), satisfy
both negotiating agents’ constraints and, when the overlap between Provider
and Consumer domains decreases, the Consumer must expect higher cost and
response times and lower availability (this answers to RQ2).

To answer RQ3, negotiation runs between Consumer and Provider1 have been
performed by using different utility function shapes, i.e., linear, exponential, and
logarithmic. Minimum, maximum and average of the QoS attributes negotiated
values with respect to the utility shapes are shown in Table 3.

Negotiation of SLAs: An Architecture and a Search-Based Approach 303

2

3

4

5

6

7

0 50 100 150 200 250

Offer no.

F
itn

es
s

80% 50% 20%

Fig. 3. Evolution of the negotiation for different overlap percentages of the QoS do-
mains

Table 3. Offers variability according to utility shapes

Linear Exponential Logarithmic
Min Max Av Min Max Av Min Max Av

Price 1.63 1.66 1.64 3.38 3.40 3.39 0.80 0.84 0.82
Response Time 38.73 38.93 38.84 40.03 65.49 55.24 38.74 39.00 38.85
Availability 0.75 0.75 0.75 0.78 0.78 0.78 0.73 0.734 0.732

In the exponential case, convergence is towards the boundary values of the
Consumer’s subdomain. Indeed, the Consumer’s utility-based evaluations of the
offers in the specified domain are much higher (for response time and cost,
lower for availability) than those by the Provider (for response time, these could
only be higher for values greater than the intersection point of the two utility
curves, which is about of 119.30 s), and the Euclidean distance is minimal at the
boundaries. Also, quite a high variation of the resulting response time can be
observed across the different runs, as the normalized Consumer feedback values
(which lead the fitness improvement as just explained) of offers of that region
are all close to 1.0, thus they are all equally acceptable solutions.

Finally, to answer RQ4, we compared the performance of SA with that of a
random-search (RS) algorithm. From all our experiments, it turned out that SA
is both more efficient (in terms of best fitness reached) and faster. Also, we could
observe that the difference increases for lower size acceptance sub-domains on the
search space and/or low overlapping percentage. Figure 4 shows the outcomes
of SA and RS when carrying out negotiations with a domain overlap of 20%.
Although both SA and RS reach very similar values (SA final value is only 3% of
that of RS), SA was able to converge significantly quicker to the 99% of the final
value (p-value=0.0001 according to the Mann-Whitney test). Also, for random
search, Negotiators’ constraints were met only for the 30% of the runs, against
100% of SA. This indicates the soundness of choosing SA to drive the automatic,
search-based SLA negotiation.

304 E. Di Nitto et al.

2.5

3.5

4.5

5.5

6.5

0 200 400 600 800 1000 1200

Offer no.

F
itn

es
s

RS SA

Fig. 4. Performance of SA vs Random Search (RS)

6 Related Work

Research works on automated negotiation are mainly related to architectural
solutions for negotiation or algorithms and models for protocols and Negotiators
strategies. In [3] a multi-agent framework with a two-layered architecture is pre-
sented, where local QoS negotiations for finding a binding to the same invoke
activity are coordinated to satisfy global QoS constraints of a composition. Lo-
cal constraints have to be inferred from the global ones and from the workflow
topology. The model presented in [4] consists of a negotiation broker carrying
out one-to-one negotiations on behalf of both service consumers and providers.
The decision model of the negotiators is expressed by a hard-coded parametric
function, which needs to be instantiated by the parties before negotiation starts.
Instead, a marketplace-based architecture is presented in [12], where the mar-
ketplace mediates all the communication among negotiation parties, but it does
not take part, itself, in the negotiations. In [9], the multi-agent system paradigm
is combined with the web service technology to enable distributed online bar-
gaining applications. However, only two negotiation processes are supported,
bilateral and trilateral. The last uses a third entity to authenticate the trading
agents and to validate the deals.

On the negotiation algorithms side, the existing approaches are generally con-
cerned with two aspects: definition of decision models for the agents, and search
for the near-optimal strategy, i.e., leading to Pareto optimal solutions. In [7] a
strategy is defined as a weighted sum of tactics. Also, machine learning tech-
niques can be used by the agents to learn decision rules from historical ne-
gotiation data ([10]). With respect to finding the optimal strategy, in [1], the
Q-learning algorithm is used to select strategies as linear combinations of tac-
tics, and convergence to optimality is proved to be reached after each action
has been tried sufficiently often. Instead, in [11] Genetic Algorithms are used to
evolve strategies whose fitness is computed according to their outcomes in nego-
tiation runs. Finally, in [2], evolutionary methods are combined with cooperative

Negotiation of SLAs: An Architecture and a Search-Based Approach 305

game theory to first explore possible agreements spaces and then to distribute
the payoffs and find an optimized point.

In our work, we focus on the applicability of automated negotiation ap-
proaches to the web services world. We use heuristic-based optimization al-
gorithms to try to speed up the process of finding possible agreements. Our
approach can be integrated with other decision models and strategy evolution
methods as part of the agents’ implementations. Moreover, we present a strategy
model, taylored for negotiation to support the dynamic binding of a composi-
tion, so that the single negotiation objectives can be tuned on the run, to try to
obtain the best possible QoS at global level.

7 Conclusions

In this paper we have presented an architecture that supports the actuation of
various negotiation processes and offers an efficient search-based algorithm to
assist the negotiating parts in the achievement of an agreement. The interesting
aspect of the architecture is the possibility of instantiating negotiation work-
flows and protocols defined by the designer as well as various decision models
for Negotiators. As future work we plan to perform more experiments with dif-
ferent workflows, protocols (including also optimization strategies), and decision
models to try to understand which of them is more interesting in the specific
application domains we are considering in the SeCSE project. Also, we plan to
experiment with real SLAs that will be provided by our industrial partners in
the project.

Acknowledgments

This work is framed within the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No.
511680.

References

1. Cardoso, H., Schaefer, M., Oliveira, E.: A Multi-agent System for Electronic Com-
merce including Adaptive Strategic Behaviours. In: Barahona, P., Alferes, J.J.
(eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 252–266. Springer, Heidelberg
(1999)

2. Chen, J.-H., Chao, K.-M., Godwin, N., Soo, V.-W.: A Multiple-Stage Cooper-
ative Negotiation. In: EEE’04. Proc. International Conference on e-Technology,
e-Commerce and e-Service, Taipei, Taiwan, pp. 131–138. EEE (March 2004)

3. Chhetri, M., Lin, J., Goh, S., Zhang, J., Kowalczyk, R., Yan, J.: A Coordinated
Architecture for the Agent-based Service Level Agreement Negotiation of Web
service Composition. In: ASWEC’06. Proc. of the Australian Software Engineering
Conference, Washington, DC, USA, pp. 90–99. IEEE Computer Society Press, Los
Alamitos (2006)

306 E. Di Nitto et al.

4. Comuzzi, M., Pernici, B.: An Architecture for Flexible Web Service QoS Nego-
tiation. In: EDOC’05. Proc. of the Ninth IEEE International EDOC Enterprise
Computing Conference, Washington, DC, USA, pp. 70–82. IEEE Computer Soci-
ety Press, Los Alamitos (2005)

5. Deutsch, M.: Cooperation and competition. The Handbook of Conflict Resolution:
Theory and Practice (22), 21–40 (2000)

6. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:
Automated Negotiation: Prospects Methods and Challenges. Group Decision and
Negotiation 10(2), 199–215 (2001)

7. Matos, N., Sierra, C., Jennings, N.: Determining Successful Negotiation Strategies:
An Evolutionary Approach. In: ICMAS 1998. Proc. 3rd International Conference
on Multi-Agent Systems, Paris, FR, pp. 182–189. IEEE Press, Los Alamitos (1998)

8. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn.
Springer, Berlin (2004)

9. Ncho, A., Aimeur, E.: Building a Multi-Agent System for Automatic Negotiation
in Web Service Applications. In: Proc. of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, New York, pp. 1466–1467. IEEE
Computer Society Press, Los Alamitos (2004)

10. Oliveira, E., Rocha, A.: Agents Advanced Features for Negotiation in Electronic
Commerce and Virtual Organisations Formation Processes. In: Sierra, C., Dignum,
F.P.M. (eds.) Agent Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, pp.
78–97. Springer, Heidelberg (2001)

11. Oliver, J.: On Artificial Agents for Negotiation in Electronic Commerce. PhD the-
sis, Univ. of Pennsylvania (1996)

12. Rolli, D., Luckner, S., Momm, C., Weinhardt, C.: A Framework for Composing
Electronic Marketplaces - From Market Structure to Service Implementation. In:
WeB 2004. Proc. of the 3rd Workshop on e-Business, Washington, DC, USA (2004)

Byzantine Fault Tolerant Coordination for

Web Services Atomic Transactions�

Wenbing Zhao

Department of Electrical and Computer Engineering
Cleveland State University, Cleveland, OH 44115

wenbing@ieee.org

Abstract. In this paper, we present the mechanisms needed for Byzan-
tine fault tolerant coordination of Web services atomic transactions. The
mechanisms have been incorporated into an open-source framework im-
plementing the standard Web services atomic transactions specification.
The core services of the framework, namely, the activation service, the
registration service, the completion service, and the distributed commit
service, are replicated and protected with our Byzantine fault tolerance
mechanisms. Such a framework can be useful for many transactional Web
services that require high degree of security and dependability.

Keywords: Reliable Service-Oriented Computing, Service-Oriented
Middleware, Distributed Transactions, Byzantine Fault Tolerance.

1 Introduction

The bulk of business applications involve with transaction processing and re-
quire high degree of security and dependability. We have seen more and more
such applications being deployed over the Internet, driven by the need for busi-
ness integration and collaboration, and enabled by the latest service-oriented
computing techniques such as Web services. This requires the development of
a new generation of transaction processing (TP) monitors, not only due to the
new computing paradigm, but because of the untrusted operating environment
as well.

This work is an investigation of the issues and challenges of building a Byzan-
tine fault tolerant (BFT) [1] TP monitor for Web services, which constitutes
the major contribution of this paper. We focus on the Web services atomic
transaction specification (WS-AT) [2]. The core services specified in WS-AT are
replicated and protected with BFT mechanisms. The BFT algorithm in [3] is
adapted for the replicas to achieve Byzantine agreement. We emphasize that the
resulting BFT TP monitor framework is not a trivial integration of WS-AT and
the BFT algorithm. As documented in detail in later sections, we proposed a
number of novel mechanisms to achieve BFT with minimum overhead in the
� This work was supported in part by Department of Energy Contract DE-FC26-

06NT42853, and by a Faculty Research Development award from Cleveland State
University.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 307–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 W. Zhao

context of distributed transactions coordination, and the experimental evalua-
tion of a working prototype proves the optimality of our mechanisms and their
implementations.

2 Background

2.1 Byzantine Fault Tolerance

Byzantine fault tolerance refers to the capability of a system to tolerate Byzan-
tine faults. It can be achieved by replicating the server and by ensuring all server
replicas reach an agreement on the input despite Byzantine faulty replicas and
clients. Such an agreement is often referred to as Byzantine agreement [1].

The most efficient Byzantine agreement algorithm reported so far is due to
Castro and Liskov (referred to as the BFT algorithm) [3]. The BFT algorithm
is executed by a set of 3f + 1 replicas to tolerate f Byzantine faulty replicas.
One of the replicas is designated as the primary while the rest are backups. The
normal operation of the BFT algorithm involves three phases. During the first
phase (called pre-prepare phase), the primary multicasts a pre-prepare message
containing the client’s request, the current view and a sequence number assigned
to the request to all backups. A backup verifies the request message and the
ordering information. If the backup accepts the message, it multicasts to all other
replicas a prepare message containing the ordering information and the digest of
the request being ordered. This starts the second phase, i.e., the prepare phase. A
replica waits until it has collected 2f matching prepare messages from different
replicas before it multicasts a commit message to other replicas, which starts
the third phase (i.e., commit phase). The commit phase ends when a replica
has received 2f matching commit messages from other replicas. At this point,
the request message has been totally ordered and it is ready to be delivered to
the server application. To avoid possible confusion with the two phases (i.e., the
prepare phase and the commit/abort phase) in the two-phase commit (2PC)
protocol [4], we refer the three phases in the BFT algorithm as ba-pre-prepare,
ba-prepare, and ba-commit phases in this paper.

2.2 Web Services Atomic Transactions Specification

In WS-AT [2], a distributed transaction is modelled to have a coordinator, an
initiator, and one or more participants. WS-AT specifies two protocol (i.e., the
2PC protocol and the completion protocol), and a set of services. These protocols
and services together ensure automatic activation, registration, propagation, and
atomic termination of Web-services based distributed transactions. The 2PC
protocol is run between the coordinator and the participants, and the completion
protocol is run between the initiator and the completion service. The initiator is
responsible to start and end a transaction. The coordinator side consists of the
following services:

BFT Coordination for Web Services Atomic Transactions 309

– Activation Service: It is responsible to create a coordinator object (to handle
registration, completion, and distributed commit) and a transaction context
for each transaction.

– Registration Service: It is provided to the transaction participants and the
initiator to register their endpoint references for the associated participant-
side services.

– Coordinator Service: This service is responsible to run the 2PC protocol to
ensure atomic commitment of a distributed transaction.

– Completion Service: This service is used by the transaction initiator to signal
the start of a distributed commit.

The set of coordinator services run in the same address space. For each trans-
action, all but the Activation Service are provided by a (distinct) coordinator
object. The participant-side services include:

– CompletionInitiator Service: It is used by the coordinator to inform the
transaction initiator the final outcome of the transaction, as part of the
completion protocol.

– Participant Service: The coordinator uses this service to solicit votes from,
and to send the transaction outcome to the participants.

The detailed steps of a distributed transaction using a WS-AT conformant
framework are shown with a banking example (adapted from [5] and used in our
performance evaluation) in Fig. 1. In this example, a bank provides an online
banking Web service that a customer can access. The transaction is started due
to a single Web service call from the customer on the bank to transfer some
amount of money from one account to the other.

3 System Models

We consider a composite Web service that utilizes Web services provided by
other departments or organizations, similar to the example shown in Fig. 1. We
assume that an end user uses the composite Web service through a Web browser
or directly invokes the Web service interface through a standalone client appli-
cation. In response to each request from an end user, a distributed transaction is
started to coordinate the interactions with other Web services. The distributed
transactions are supported by a WS-AT conformant framework such as [5].

For simplicity, we assume a flat distributed transaction model. We assume
that for each transaction, a distinct coordinator is created. The lifespan of the
coordinator is the same as the transaction it coordinates.

The composite Web service provider serves as the role of the initiator. We as-
sume that the initiator is stateless because it typically provides only a front-end
service for its clients and delegates actually work to the participants. All trans-
actions are started and terminated by the initiator. The initiator also propagates
the transaction to other participants through a transaction context included in
the requests.

310 W. Zhao

2. Create
transaction context

3. Transaction context

12. Register

13. Register Response

14. Commit
15. Prepare

19. Commit

16. Prepare

20. Commit

17. Prepared

21. Committed

18. Prepared

22. Committed
23. Committed

SOAP Message Private Method Call

5. Register

9. Register

6. Register Response

10. Register Response

4. Debit

7. Debit Response

11. Credit Response

1. Fund transfer
request

24. Fund transfer
Succeeded

8. Credit

Bank

Banking
Service

Completion
Initiator

Client

Activation
Service

Registration
Service

Completion
Service

Coordinator
Service

Coordinator
Account A

Account
Service

Participant
Service

Account B

Account
Service

Participant
Service

Fig. 1. The sequence diagram of a banking example using WS-AT

We assume that the transaction coordinator runs separately from the initiator
and the participants.1 Both the coordinator and the initiator are replicated. For
simplicity, we assume that the participants are not replicated. We assume that
3f + 1 coordinator replicas are available, among which at most f can be faulty
during a transaction. Because the initiator is stateless, we require only 2f + 1
initiator replicas to tolerate f faulty initiator replicas. There is no limit on the
number of faulty participants.

We call a coordinator/initiator replica correct if it does not fail during its
lifetime, i.e., it faithfully executes according to the protocol prescribed from the
start to the end. However, we call a participant correct if it is not Byzantine
faulty, i.e., it may be subject to typical non-malicious faults such as crash faults
or performance faults.

1 Even though it is a common practice to collocate the initiator with the coordinator
in the same node, it might not be a desirable approach, due to primarily two reasons.
First, collocating the initiator and the coordinator tightly couples the business logic
with the generic transaction coordination mechanism (also observed in [6]), which is
desirable neither from the software engineering perspective (it is harder to test) nor
from the security perspective (it is against the defence-in-depth principle). Second,
the initiator typically is stateless, which can be rendered fault tolerant fairly easily,
while the coordination service is stateful. This naturally calls for the separation of
the initiator and the coordinator.

BFT Coordination for Web Services Atomic Transactions 311

The coordinator and initiator replicas are subject to Byzantine faults, i.e., a
Byzantine faulty replica can fail arbitrarily. For participants, however, we have
to rule out some forms of Byzantine faulty behaviors. A Byzantine faulty par-
ticipant can always vote to abort, or it can vote to commit a transaction, but
actually abort the transaction locally. It is beyond the scope of any distributed
commit protocol to deal with these situations. Rather, they should be addressed
by business accountability and non-repudiation techniques. Other forms of par-
ticipant faults, such as a faulty participant sending conflicting votes to different
coordinator replicas, will be tolerated.

All messages between the coordinator and the participants are digitally signed.
We assume that the coordinator replicas and the participants each has a pub-
lic/secret key pair. The public keys of the participants are known to all coordina-
tor replicas, and vice versa, while the private key is kept secret to its owner. We
assume that the adversaries have limited computing power so that they cannot
break the encryption and digital signatures of correct coordinator replicas.

4 Byzantine Fault Tolerance Mechanisms

4.1 Activation

Figure 2 shows the mechanisms for the activation process. Upon receiving a
request from a client, the initiator starts a distributed transaction and sends an
activation request to the activation service. The client’s request has the form
<creq, o, t, c >σc , where o is the operation to be executed by the initiator, t is
a monotonically increasing timestamp, c is the client id, and σc is the client’s
digital signature for the request. A correct client sends the request to all initiator
replicas. An initiator accepts the request if it is properly signed by the client, and
it has not accepted a request with equal or larger timestamp from the same client.
If the request carries an obsolete timestamp, the cached reply is retransmitted
if one is found in the reply log.

The activation request has the form <activation, v, c, t, k>σk
, where v is

the current view, k is the initiator replica id. The request is sent to the primary
replica of the activation service. The primary initially logs the activation request
if the message is correctly signed by the initiator replica and it has not accepted
a request with equal or larger timestamp from the initiator in view v. Only
when f + 1 such messages are received from different initiator replicas with
matching c and t, does the primary accept the activation request. This is to
ensure the request comes from a correct initiator replica. The primary then
sends a ba-pre-prepare message to the backup replicas. The ba-prepare message
has the form <ba-pre-prepare, v, r, uuidp, p>σp , where r is the content of the
activation request, p is the primary id, uuidp is a universally unique identifier
(uuid) proposed by the primary.

The uuid is used to generate the transaction id, which will be used to identify
the transaction and its coordinator object. To maximize security, the uuid should
be generated from a high entropy source, which means the activation operation
is inherently nondeterministic, and the uuid proposed by one replica cannot be

312 W. Zhao

Replica0

Activation Service

Ba-commit
Phase

Ba-prepare

Ba-commit

Ba-pre-prepare

Ba-pre-prepare-update

Replica1

Request

Activate

Activate Response
(with transaction context)

Ba-prepare
Phase

Ba-pre-prepare
Phase

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Client

Ba-pre-prepare-reply

Fig. 2. Byzantine fault tolerance mechanisms for the activation of a transaction

verified by another. This calls for the collective determination of the uuid for
the transaction.2 This is achieved during the ba-pre-prepare phase.

A backup activation replica accepts the ba-prepare message if it is in view v,
the message is properly signed, r is a correct activation request, and it has not
accepted the same message before. The backup then sends a ba-pre-prepare-reply
message in the form <ba-pre-prepare-reply, v, d, uuidi, i>σi to all replicas,
where d is the digest of the ba-prepare message, i is the replica id and uuidi is
i’s uuid proposal. When the primary collects 2f ba-prepare-reply messages from
different backups, it sends a ba-prepare-update message in the form <ba-pre-

prepare-update, v, d, U, p>σp to the backup replicas, where U is the collection
of the digests of the 2f ba-pre-prepare-reply messages.

A backup accepts a ba-pre-prepare-reply message if it is in view v, the mes-
sage is properly signed and d matches the digest of the ba-pre-prepare message.
It accepts the ba-pre-prepare-update message if it is in view v, d matches that
of the ba-pre-prepare message, and the digests in U match that of the ba-pre-
prepare-reply messages. It is possible that a backup has not received a particular
ba-pre-prepare-reply message, in which case, the backup asks for a retransmis-
sion from the primary. Upon accepting the ba-pre-prepare-update message, a
backup sends a ba-prepare message to all replicas. The message has the form
<ba-prepare, v, d, uuid, i>σi , where uuid is the final uuid computed determin-
istically based on the proposals from the primary and 2f backups (we choose to
use the average of the group of uuids as the final uuid, but other computation
method is possible). A replica accepts a ba-prepare message if it is in view v, the

2 One might attempt to replace the high entropy source with a deterministic source to
ensure the replica consistency. However, doing so might result in an easy-to-predict
transaction identifier, which opens the door for replay attacks. An alternative to our
approach is the coin-tossing scheme [7], however, it requires an additional phase to
securely distribute the private key shares to the replicas.

BFT Coordination for Web Services Atomic Transactions 313

Replica0

Registration Service

Registration
Response

Process
Request

Normal
Response

Replica1

Request
(with transaction context)

Register

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Participant

Fig. 3. Byzantine fault tolerance mechanisms for the registration of a participant

message is properly signed, d is the digest of the ba-pre-prepare message, and
uuid matches its own.

When an activation replica has accepted 2f ba-prepare messages from differ-
ent replicas (including the message it sent), in addition to the ba-pre-prepare
and ba-pre-prepare-update messages it has accepted or has sent (if it is the pri-
mary), it sends a ba-commit message in the form <ba-commit, v, d, uuid, i>σi

to all other replicas. The verification of the ba-commit message is similar to that
of the ba-prepare message. When a replica accepts 2f + 1 matching ba-commit
messages from different replicas (including the message it has sent), it calculates
(deterministically) the transaction id tid based on uuid, creates a coordinator
object with the tid, and sends the activation response to the initiator replicas.
The response has the form <activation-response, c, t, C, i>σi , where c and t
are the client id and the timestamp included in the activation request, C is the
transaction context. Note that if the primary is faulty, it can prevent a correct
replica from completing the three phases, in which case, the replica suspects the
primary and initiates a view change.

An initiator replica logs the activation response if it is properly signed, and c
and t match those in its activation request. The replica accepts the message if it
has collected f +1 matching responses from different activation service replicas.

4.2 Registration and Transaction Propagation

To ensure atomic termination of a distributed transaction, it is essential that
all correct coordinator replicas agree on the set of participants involved in the
transaction. This can be achieved by running a Byzantine agreement algorithm
among the coordinator replicas whenever a participant registers itself. However,
doing so might incur too much overhead for the coordination service to be prac-
tical. In this work, we defer the Byzantine agreement on the participants set
until the distributed commit stage and combine it with that for the transac-
tion outcome. This optimization is made possible by the mechanisms shown in
Fig. 3. In addition, we assume that there is proper authentication mechanism in
place to prevent a Byzantine faulty process from illegally registering itself as a
participant at correct coordinator replicas.

314 W. Zhao

A participant does not accept a request until it has collected f + 1 matching
requests from different initiator replicas. This is to prevent a faulty initiator
replica from excluding a participant from joining the transaction (e.g., by not
including the transaction context in the request), or from including a process
that should not participate the transaction. Since at most f initiator replicas
are faulty, one of the messages must have been sent by a correct initiator replica.

To register, a participant sends its registration request to all coordinator repli-
cas and waits until 2f +1 acknowledgments from different replicas have been col-
lected. Since at most f replicas are faulty, at least f +1 correct replicas must have
accepted the registration request. If the participant can register successfully and
complete its execution of the initiator’s request, it sends a normal reply to the ini-
tiator replicas. Otherwise, it sends an exception back (possibly after recovery from
a transient failure). If an initiator replica receives an exception from a participant,
or times out a participant, it should choose to abort the transaction.

The initiator replicas also register with the coordinator replicas prior to the
termination of the transaction. It follows a similar mechanism as that of the
participants. Because at most f initiator replicas are faulty, at least f+1 replicas
can finish the registration successfully.

4.3 Completion and Distributed Commit

The Byzantine fault tolerant transaction completion and distributed commit
mechanisms are illustrated in Fig. 4. When an initiator replica completes all
the operations successfully within a transaction, it sends a commit request to
the coordinator replicas. Otherwise, it sends a rollback request. A coordinator
replica does not accept the commit or rollback request until it has received f +1
matching requests from different initiator replicas.

Upon accepting a commit request, a coordinator replica starts the first phase
of the standard 2PC protocol. However, at the end of the first phase, a Byzantine
agreement phase is conducted so that all correct coordinator replicas agree on the
same outcome and the participants set for the transaction. This will be followed
by the second phase of the 2PC protocol. If a rollback request is received, the
first phase of 2PC is skipped, but the Byzantine agreement phase is still needed
before the final decision is sent to all participants. When the distributed commit
is completed, the coordinator replicas inform the transaction outcome to the
initiator replicas. An initiator replica accepts such a notification only if it has
collected f + 1 matching messages from different coordinator replicas. Similarly,
a participant accepts a prepare request, or a commit/rollback notification only if
it has collected f + 1 matching messages for the same transaction from different
coordinator replicas. Again, this is to ensure the request or notification comes
from a correct replica.

As shown in Fig. 4, the Byzantine agreement algorithm used for distributed
commit is similar to that in Sect. 4.1, except that no ba-pre-prepare-reply and
ba-pre-prepare-update messages are involved and the content of the messages
are different. Due to space limitation, we only describe the format and the veri-
fication criteria for each type of messages used.

BFT Coordination for Web Services Atomic Transactions 315

Replica0

Completion and Coordinator Service

Ba-commit
Phase

Ba-prepare

Ba-commit

Ba-pre-prepare

Replica1

Commit

Response

Committed

Notify
Participants

Ba-prepare
Phase

Ba-pre-prepare
Phase

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Client

Collect
Votes from

Participants

Prepare
Phase (2PC)

Commit
Phase (2PC)

Fig. 4. Byzantine fault tolerance mechanisms for completion and distributed commit

The ba-pre-prepare message has the form <ba-pre-prepare, v, tid, o, C>σp ,
where o is the proposed transaction outcome (i.e., commit or abort), C is the
decision certificate, and σp is the primary’s signature for the message. The de-
cision certificate contains a collection of records, one for each participant. The
record for a participant j contains a signed registration Rj = (tid, j)σj and a
signed vote Vj = (tid, vote)σj if a vote from j has been received by the primary.
The tid is included in each registration and vote record so that a faulty pri-
mary cannot reuse an obsolete registration or vote record to force a transaction
outcome against the will of some correct participants.

A backup accepts a ba-pre-prepare message provided it is in view v, it is
handling tid, the message is signed properly, the registration records in C are
identical to, or form a superset of, the local registration records, and it has not
accepted another ba-pre-prepare message for tid in view v. It also verifies that
every vote record in C is properly signed by its sending participant and the tid
in the record matches that of the current transaction, and the proposed decision
o is consistent with the registration and vote records.

The ba-prepare message takes the form <ba-prepare, v, t, d, o, i>σi , where
d is the digest of the decision certificate C. A coordinator replica accepts a
ba-prepare message provided it is in view v, it is handling tid, the message is
correctly signed by replica i, the decision o matches that in the ba-pre-prepare
message, and the digest d matches that of the decision certificate in the accepted
ba-pre-prepare message.

The ba-commit message has the form <ba-commit, v, tid, d, o, i>σi . The ba-
commit message is verified using the same criteria as those for ba-prepare mes-
sages. When a replica collects 2f + 1 matching ba-commit messages from dif-
ferent replicas, it sends the decision o to all participants of transaction tid. If a
replica i could not reach an agreement, it initiates a view change when a timeout
occurs.

316 W. Zhao

0.0

0.5

1.0

1.5

2.0

2.5

 2 3 4 5 6 7 8

L
at

en
cy

 (
Se

co
nd

s)

Number of Participants in Each Transaction

End-to-End (with BFT Support)
End-to-End (without BFT Support)
2PC (with BFT Support)
2PC (without BFT Support)
Activation (with BFT Support)

(a)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

on
d)

Number of Concurrent Clients

2 Participants (no BFT support)
2 Participants
3 Participants
4 Participants
5 Participants
6 Participants
7 Participants
8 Participants

(b)

Fig. 5. (a) Various latency measurements under normal operations (with a single
client). (b) End-to-end throughput under normal operations.

5 Implementation and Performance Evaluation

We have implemented the core Byzantine fault tolerance mechanisms (with the
exception of the view change mechanisms) and integrated them into Kandula [5],
a Java-based open source implementation of WS-AT. The extended framework
also uses WSS4J (an implementation of the Web Services Security Specifica-
tion) [8], and Apache Axis (SOAP Engine) 1.1 [9]. Due to space limitation, the
implementation details are omitted.

Our experiment is carried out on a testbed consisting of 20 Dell SC1420 servers
connected by a 100Mbps Ethernet. Each server is equipped with two Intel Xeon
2.8GHz processors and 1GB memory running SuSE 10.2 Linux.

The test application is the banking Web services application described in
Sec. 2.2. The initiator is replicated across 3 nodes, and the coordination services
are replicated on 4 nodes. The participants and the clients are not replicated, and
are distributed among the remaining nodes. Each client invokes a fund trans-
fer operation on the banking Web service within a loop without any “think”
time between two consecutive calls. In each run, 1000 samples are obtained. The
end-to-end latency for the fund transfer operation is measured at the client.
The latency for the transaction activation and distributed commit are measured
at the coordinator replicas. Finally, the throughput of the distributed commit
service is measured at the initiator for various number of participants and con-
current clients.

As can be seen in Fig. 5(a), the end-to-end latency for a transaction is in-
creased by about 400-500 ms when the number of participants varies from 2
to 8. The increase is primary due to the two Byzantine agreement phases in
our mechanisms (one for activation, the other for 2PC). The latencies for trans-
action activation and for 2PC are also shown in Fig. 5(a). While the latency
for 2PC increases with the number of participants, the activation latency re-
mains constant because the participants are not involved with activation. As
shown in Fig. 5(b), the throughput for transactions using our mechanisms is

BFT Coordination for Web Services Atomic Transactions 317

about 30% to 40% lower than those without replication protection, which is
quite moderate considering the complexity of the BFT mechanisms. (To avoid
cluttering, only the 2-participants case is shown for the no-replication configu-
ration.)

6 Related Work

There are a number of system-level work on fault tolerant TP monitors, such as
[10,11]. However, they all use a benign fault model. Such systems do not work if
the coordinator is subject to intrusion attacks. We have yet to see other system-
level work on Byzantine fault tolerant TP monitors. The work closest to ours
is Thema [12], which is a BFT framework for generic multi-tiered Web services.
Even though some of the mechanisms are identical, our work contains specific
mechanisms to ensure atomic transaction commitment.

The problem of BFT distributed commit for atomic transactions has been of
research interest in the past two decades [13,14]. The first such protocol is pro-
posed by Mohan et al. [13]. In [13], the 2PC protocol is enhanced with a Byzan-
tine agreement phase on the transaction outcome among the coordinator and all
participants in the root cluster. This approach has several limitations. First, the
atomicity of a transaction is guaranteed only for participants residing in the root
cluster under Byzantine faults. Second, it requires every participant within the
cluster knows the cluster membership, which may not be applicable to Web ser-
vices atomic transactions because a participant is not obligated to know all other
participants. Our work, on the other hand, requires a Byzantine agreement only
among the coordinator replicas and hence, allows dynamic propagation of transac-
tions. Rothermel et al. [14] addressed the challenges of ensuring atomic distributed
commit in open systems where participants may be compromised. However, [14]
assumes that the root coordinator is trusted. This assumption negates the neces-
sity to replicate the coordinator for Byzantine fault tolerance. Apparently, this
assumption is not applicable to Web services applications.

7 Conclusion and Future Work

In this paper, we presented Byzantine fault tolerance mechanisms for distributed
coordination of Web services atomic transactions. We focus on the protection of
the basic services and infrastructures provided by typical TP monitors against
Byzantine faults. By exploiting the semantics of the distributed coordination
services, we are able to adapt Castro and Liskov’s BFT algorithm [3] to ensure
Byzantine agreement on the transaction identifiers and the outcome of trans-
actions fairly efficiently. A working prototype is built on top of an open source
distributed coordination framework for Web services. The measurement results
show only moderate runtime overhead considering the complexity of Byzantine
fault tolerance. We believe that our work is an important step towards a highly

318 W. Zhao

secure and dependable TP monitor for Web services.3 We are currently working
on the implementation of the view change mechanisms and conducting experi-
ments in the wide-area network configurations.

Acknowledgement. We wish to thank the anonymous reviewers for their in-
sightful comments on an earlier draft of this paper.

References

1. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

2. Cabrera, L., et al.: WS-AtomicTransaction Specification (August 2005)
3. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems 20(4), 398–461 (2002)
4. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, CA (1983)
5. Apache Kandula project, http://ws.apache.org/kandula/
6. Erven, H., Hicker, H., Huemer, C., Zapletal, M.: Web Services-BusinessActivity-

Initiator (WS-BA-I) Protocol: an extension to the Web Services-BusinessActivity
specification. In: Proceedings of the IEEE Internaltion Conference on Web Services,
Salt Lake City, Utah (July 2007)

7. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography. In: Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing, pp. 123–132. ACM
Press, New York (2000)

8. Apache WSS4J project, http://ws.apache.org/wss4j/
9. Apache Axis project, http://ws.apache.org/axis/

10. Frolund, S., Guerraoui, R.: e-Transactions: End-to-end reliability for three-tier
architectures. IEEE Transactions on Software Engineering 28(4), 378–395 (2002)

11. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Unification of transactions and repli-
cation in three-tier architectures based on CORBA. IEEE Transactions on De-
pendable and Secure Computing 2(2), 20–33 (2005)

12. Merideth, M., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan, P.:
Thema: Byzantine-fault-tolerant middleware for web services applications. In: Pro-
ceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 131–142.
IEEE Computer Society Press, Los Alamitos (2005)

13. Mohan, C., Strong, R., Finkelstein, S.: Method for distributed transaction commit
and recovery using Byzantine agreement within clusters of processors. In: Proceed-
ings of the ACM symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, pp. 89–103. ACM Press, New York (1983)

14. Rothermel, K., Pappe, S.: Open commit protocols tolerating commission failures.
ACM Transactions on Database Systems 18(2), 289–332 (1993)

3 In the current stage, due to the high redundancy level required and the high degree of
complexity imposed by the BFT mechanisms, the solutions proposed in this paper
are useful only for those applications that are so mission critical that the cost of
doing so is well justified.

http://ws.apache.org/kandula/
http://ws.apache.org/wss4j/
http://ws.apache.org/axis/

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 319–329, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Syntactic Validation of Web Services Security Policies

Yuichi Nakamura1, Fumiko Sato1, and Hyen-Vui Chung2

1 IBM Research, Tokyo Research Laboratory
1623-14 Shimo-tsuruma, Yamato, Kanagawa

242-0001 Japan
{nakamury, sfumiko}@jp.ibm.com

2 IBM Software Group, Web Service Security Development
11501 Burnet Road, Austin, TX

78758-3400 USA
hychung@us.ibm.com

Abstract. The Service-Oriented Architecture (SOA) makes application devel-
opment flexible in such a way that services are composed in a highly distributed
manner. However, because of the flexibility, it is often hard for users to define
application configurations properly. Regarding the security concerns we address
in this paper, though WS-SecurityPolicy provides a standard way to describe
security policies, it is difficult for users to make sure that the defined policies
are valid. In this paper, we discuss the validation of WS-SecurityPolicy in the
context of Service Component Architecture, and propose a method called syn-
tactic validation. Most enterprises have security guidelines, some of which can
be described in the format of Web services security messages. There also exist
standard profiles for Web services such as the WS-I Basic Security Profile that
also prescribes message formats. Since those guidelines and profiles are based
on accepted best practices, the syntactic validation is sufficiently effective for
practical use to prevent security vulnerabilities.

1 Introduction

Many enterprises are undertaking development using the Service-Oriented Architec-
ture (SOA) [1] because their business models are changing more frequently. SOA
makes application development easier because technology-independent services can
be coupled over intranets and via the Internet. Meanwhile, the underlying computing
environments on which the applications are running are becoming complex, because
computers can be networked in complicated topologies, including firewalls and in-
termediate servers. Consequently, the proper configuration of non-functional aspects
such as security requires a fairly deep understanding of such complex environments.

We believe that security must be unified with the software engineering process
from the beginning, and thus security engineering [2, 3] is important. Unfortunately,
security is considered as an afterthought in most actual development in the sense that
security is added after the functional requirements are implemented. It is well known
that finding defects downstream greatly increases the costs of removal and repair.

Recently, Service Component Architecture (SCA) [4] is being standardized as a
component model for SOA. More importantly, the SCA Policy Framework [5] is also
being discussed in which intentions for non-functional requirements such as security

320 Y. Nakamura, F. Sato, and H.-V. Chung

and transaction are specified at an abstract level, and the intentions are later mapped
onto concrete policies such as WS-SecurityPolicy [6]. The concept of the SCA Policy
Framework is quite similar that of the Model-Driven Security (MDS) architecture we
have been developing [7, 8]. Where we added security intentions to UML [9] con-
structs such as classes and methods in MDS, we instead add intentions to SCA com-
ponents and composites.

In this paper, we describe syntactic validation of WS-SecurityPolicy in the context
of the SCA Policy Framework. According to the SCA Policy, we need to prepare in
advance a collection of WS-SecurityPolicy documents so that we will retrieve the
policies from the security intentions attached to the SCA composites. Therefore, it is
important to define valid policy documents. Most enterprises have security guidelines,
some of which can be described in the format of Web services security messages.
There also exist standard profiles on Web services security [10] such as WS-I Basic
Security Profile [11] that also prescribe message formats. Based on those guidelines
and profiles, we think that we can prevent the security vulnerabilities in a highly prac-
tical way by means of syntactic validation which performs syntax checks of policies
against guidelines and profiles.

Our main contribution is to show a practical way to validate WS-SecurityPolicy
based on a solid foundation of predicate logic. While semantic validation which in-
cludes formal security analysis is often too complicated for practical situations, syn-
tactic validations based on best practices can be realistic and sufficiently useful in
many situations. We also describe a framework to transform WS-SecurityPolicy into
predicate logic rules in an orderly fashion.

The rest of this paper is organized as follows: Section 2 introduces Web services
security and Web services security policy, and discusses the problems in defining
security policies. In Section 3, we begin by SCA Policy Framework, and describe the
details of syntactic validation and show examples. Section 4 discusses related work.
In Section 5, we conclude this paper.

2 Reviewing Web Services Policy

Here we introduce Web policy (WS-Policy) [12] and discuss the issues of defining
WS-Policy, mainly focusing on Web services security (WSS) [10]. We begin by in-
troducing WSS, giving a summary of the concepts and showing its XML message
format. Then WS-Policy is presented, including a security-specific policy language
called WS-SecurityPolicy [6]. Since the message format of WSS is complex, WS-
SecurityPolicy naturally tends to become complex. As a result, it is often hard for
policy developers to define security policies using WS-SecurityPolicy. Some prob-
lems are discussed in more detail in Section 2.3.

2.1 Web Services Security

The WSS specification [10] defines a format including security tokens and mechanisms
to protect SOAP messages. Digital signatures serve as integrity checks to ensure message
protection, and encryption guarantees confidentiality. In addition, WS-Security provides
a flexible mechanism to include various claims in SOAP messages using security tokens.
With message protection and security tokens, WSS can provide a basis for other specifi-
cations such as WS-Trust [13] and WS-SecureConversation [14].

 Syntactic Validation of Web Services Security Policies 321

WSS messages includes three types of elements: a Signature element (defined in
the XML Digital Signature specification [15]), an encryption-related element such as
EncryptedKey (defined in the XML Encryption specification [16]), and security to-
kens such as UsernameToken (defined in WSS UsernameToken Profile [17]). Listing
1 shows an example of a WSS message that includes an X.509 certificate as a security

Listing 1. WSS Message Example. In this example, we omit namespace declarations, and use
abbreviated notations for URIs such as algorithm names in order to save space

<soap:Envelope>
<soap:Header>

<wsse:Security>
<wsse:BinarySecurityToken
 ValueType="X509v3" wsu:Id="X509Token" EncodingType="Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...
</wsse:BinarySecurityToken>

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="xml-exc-c14n"/>
<ds:SignatureMethod Algorithm=" rsa-sha1"/>

<ds:Reference URI="#body">
<ds:Transforms>

<ds:Transform
Algorithm=" xml-exc-c14n"/>

</ds:Transforms>
<ds:DigestMethod

Algorithm="sha1"/>
<ds:DigestValue>LyLsF094hPi4wPU...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>Hp1ZkmFZ/2kQLXDJbchm5gK...</ds:SignatureValue>
<ds:KeyInfo>

<wsse:SecurityTokenReference>
<wsse:Reference URI="#X509Token"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soap:Header>
 <soap:Body wsu:Id="body">

<tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads">
QQQ

</tru:StockSymbol>
</soap:Body>
</soap:Envelope>

2.2 WS-Policy and WS-SecurityPolicy

WS-Policy [12] provides a framework to describe policies which are associated with
particular services. It defines a set of logical operators such as conjunction, All[. . .],

322 Y. Nakamura, F. Sato, and H.-V. Chung

and disjunction, OneOrMore[. . .] so as to formulate domain-specific assertions. WS-
SecurityPolicy is a domain-specific language to represent policies for message protec-
tion based on WSS and SSL. For example, we can describe our desired policy in such
a way that a signature is required on a particular element or so that a particular ele-
ment must be encrypted.

Listing 2 shows an example of WS-SecurityPolicy [6] that can be used for verify-
ing or generating the WSS message shown in Listing 1. WS-SecurityPolicy has a
number of sections for integrity and confidentiality assertions, bindings, and support-
ing tokens. Integrity and confidentiality assertions indicate which particular parts of
the message should be signed and encrypted, respectively. A binding specifies de-
tailed information to sign and encrypt some parts of messages such as signatures and
gives encryption algorithms, security token information, and a layout for the WSS
elements. Supporting tokens are additional tokens that are not described in a binding
section. Listing 2 only includes an integrity assertion which appears as a SignedParts
element, and a binding section which appears as an AsymmetricBinding element.

Listing 2. WS-SecurityPolicy Example. Actual representation requires inserting logical opera-
tors such as All and ExactlyOne that are all omitted here

 <sp:AsymmetricBinding>
 <sp:InitiatorToken>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <sp:WssX509V3Token10/>
 </sp:X509Token>
 </sp:InitiatorToken>
 <sp:RecipientToken> </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <sp:Basic256/>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <sp:Strict/>
 </sp:Layout>
 </sp:AsymmetricBinding>

 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>

2.3 Issues in Defining Policies

Since WS-SecurityPolicy is extremely flexible, it is often hard for users to define
valid policies with it. We can consider two kinds of validations: syntactic and seman-
tic validations. Syntactic validation is concerned with validating the format of the
messages. For example, we may have a syntactic rule such that a BinarySecurityTo-
ken must appear before Signature element. On the other hand, semantic validation
means formal methods prove that the defined policy ensures no security vulnerability
exists. For example, we may want to guarantee that attackers cannot alter messages
during message transmission.

 Syntactic Validation of Web Services Security Policies 323

In our research, we focus on syntactic validation. Obviously, semantic validation is
important since one of the ultimate goals is to prevent security vulnerabilities in a
systematic manner. However, considering the complexity of WS-SecurityPolicy, it is
hard to establish a theoretical foundation for semantic validation. In contrast, while
syntactic validation does not provide security analysis in a theoretical sense, it can
still be useful for security validation in real situations.

Most enterprises have security guidelines, which often describe detailed security
requirements. For example, a requirement might say that when customer information
is sent over a network, it should be encrypted with the RSA Encryption Standard
Version 1.5 using a 1,024-bit key. This rule can be checked against the WS-
SecurityPolicy by checking a certain element. Also, the format of WSS will be in-
cluded in such guidelines, again taking account of various security considerations.
With a good set of rules for WSS formats, syntactic validation can be sufficiently
effective.

WS-I Basic Security Profile (BSP) provides several good examples. The following
is one of them, C5543:

• When the signer's SECURITY_TOKEN is an INTERNAL_SECURITY_TOKEN,
the SIGNED_INFO MAY include a SIG_REFERENCE that refers to the signer's
SECURITY_TOKEN in order to prevent substitution with another
SECURITY_TOKEN that uses the same key

This indicates that Listing 1 may not be secure since the BinarySecurityToken is not
signed. This rule can be checked with syntactic validation.

In addition to security checking based on guidelines, interoperability is a major
concern for WSS. Since WS-I BSP provides a set of rules for message formats, we
can also improve interoperability by means of syntactic validation.

3 Policy Validation

Here, we describe syntactic policy validation. We first introduce a framework for
developing applications for the Service Component Architecture (SCA), and ex-
plain how policies are defined and used in the framework. Then we discuss a theo-
retical foundation for performing syntactic validation using WS-SecurityPolicy. In
our research, we use predicate logic to represent WS-SecurityPolicy, profiles such
as WS-I BSP, and security guidelines. On the basis of the predicate logic, we can
perform validations as inferences over the predicates. In this framework, we must
transform WS-SecurityPolicy expressions to predicates, so the transformation is
also described.

3.1 Policy Development for Service Component Architecture

Security should be considered from the beginning, though in most actual development
it is considered as an afterthought. Our thesis is that users should be able to specify
abstract security intentions at an initial stage, and the intentions can be refined toward
a detailed security policy. This idea can be easily implemented based on the Service
Component Architecture (SCA) [4] and the SCA Policy Framework [5].

324 Y. Nakamura, F. Sato, and H.-V. Chung

Figure 1 illustrates how abstract policies are specified and refined. The assem-
bler creates the SCA composite, combining the primitive components, and adds the
abstract security intentions such as confidentiality and integrity to that composite.
Policy developers define concrete policies typically represented in WS-Policy,
specifying which intentions can be realized with each concrete policy. In our
framework, a Policy deployer deploys the concrete policies to the SCA runtime in
advance. When the SCA composites are deployed in the SCA runtime, appropriate
concrete policies are retrieved based on the intentions attached to the SCA com-
posites..

In our framework, it is important to make sure that valid concrete policies are
deployed on the SCA runtime. Otherwise, even if the security intentions are appropri-
ately added to SCA composite, the intentions will no be realized correctly, and secu-
rity vulnerabilities may result.

3.2 Validation Based on Predicate Logic

We understand that a WS-Policy document prescribes a set of Web services messages
based on predicate logic. For example, the WSS message in Listing 1 is a representa-
tive of the WSS messages that are prescribed by the WS-SecurityPolicy in Listing 2.
Extending this notion, we see that security guidelines and profiles can be represented
using predicate logic, and thus we can prescribe sets of messages.

ComponentComponent

Composite

SCA Application

Concrete Policy
WS-PolicyConcrete Policy

WS-PolicyConcrete Policy
WS-PolicyConcrete Policy

(WS-Policy)

SCA Runtime

Deploy

Deployer

Assembler

Policy
Deployer

Deploy
Policy

IntegrityConfidentiality

Assemble,
Add intentions

Policy
Developer

Define Policy

Fig. 1. Policy Configuration and Development for SCA

Figure 2 shows that validation can be viewed as a set operation between predicates.
In the figure, WSSP1, WSSP2, and WSSP3 are WS-SecurityPolicy documents. Be-
cause the sets of WSSP1 and WSSP2 are both included in the set of BSP, we can say
that WSSP1 and WSSP2 conform to BSP. In contrast, WSSP3 does not conform to
BSP, since WSSP3 is not included in BSP.

 Syntactic Validation of Web Services Security Policies 325

Universe Set (U) of WSS Messages

WS-I BSP Guideline WSSP1 WSSP2 WSSP3

Intermediate
Representation in
Predicate Logic

Transformation

Fig. 2. Concept of WS-Policy Formalization Based on Predicate Logic

In our approach, WS-SecurityPolicy is represented using predicate logic, and thre-
fore we can adopt Prolog [12] as a concrete representation and a calculation founda-
tion. Listing 3 shows a Prolog program that is equivalent to the WS-SecurityPolicy

Listing 3. Prolog Program for a WS-SecurityPolicy Document

myPolicy0(E):-
E=env(H,B),
H=h(Sec),
Sec=
sec(

bst('@ValueType'('#X509v3'),
'@EncodingType'('#Base64Binary'),
'@id'(TokenID),
bstValue),
sig(
sigInfo(
c14nMethod('@Algorithm'('xml-exc-c14n#')),
sigMethod('@Algorithm'('xmldsig#rsa-sha1')),
ref('@URL'(BodyID),

transforms(
transform(
'@Algorithm'('xml-exc-c14n#')),
digestMethod('@Algorithm'('xmldsig#sha1')),
digestValue(dVal))),

 sigValue(sVal),
 keyInfo(
 str(reference('@URI'(TokenID))))))),
 B=body('@id'(BodyID),bodyValue).

326 Y. Nakamura, F. Sato, and H.-V. Chung

example in Listing 2. The right hand side primarily represents the structure of the
WSS messages. We introduce a notation in which each tree structure is represented
with a functor and its arguments. For example, “env” indicates an Envelop element,
and it has the child elements header and body that are represented by the variables
“H” and “B” in the program.

3.3 Transformation to Predicate Logic

WS-SecurityPolicy must be transformed into a predicate logic representation as indi-
cated by the internal representation in Fig 2. Because of the complexity of WS-
SecurityPolicy, the transformations are complex. In our approach, we classify the
transformation into three types of rules, primitive rules, structure rules, and merging
rules. Here are examples:

Primitive rules transform policy assertions into Prolog fragments. For example,
the X509Token assertion in Listing 2 is transformed into this fragment in Listing 3:

 bst('@ValueType'('#X509v3'),
 '@EncodingType'('#Base64Binary'),
 '@id'(TokenID),
 bstValue),

In the same manner, SignedPart assertion is transformed into “sig” and its child ele-
ments in Listing 3.

Structure rules order the elements of the header elements, and optionally change
the order of processing. For example, a Layout assertion defines the order of elements
in a SOAP header, and an EncryptBeforeSigning assertion requires that encryption
must be performed before signing.

Merging rules define how to merge the Prolog fragments created by primitive
rules. With only primitive and structure rules, the constructed messages may have
redundant elements or may lack necessary associations between elements. Figure 3
illustrates how a transformation is performed. The Primitive rules for X509Token and
SignedPart construct “bst” and “sig” elements, respectively. In addition, two merging
rules are applied. First, Basic256 under AlgorithmSuite is used to specify an algo-
rithm in the signature. Second, we associate an X.509 token and the signature, apply-
ing the rule that the signature element created by SignedPart must refer to a token
created by InitiatorToken.

We have defined a set of rules classified into these three categories. Using these
rules, we can transform WS-SecurityPolicy documents into our internal representation
as Prolog programs.

3.4 Performing Validation

Since profiles and guidelines can be represented in Prolog, validation can be per-
formed by executing the Prolog formulas. Let’s consider C5443 of WS-I BSP as in-
troduced in Section 2.3. Listing 4 shows a Prolog program for C5443. Since this is
similar to Listing 3, most of it is omitted and the crucial difference is emphasized in
bold. The key difference is that C5443 requires signing on a security token, and there-
fore the reference to the token is included in the signature element.

 Syntactic Validation of Web Services Security Policies 327

<sp:AsymmetricBinding>
<sp:InitiatorToken>

<sp:X509Token
sp:IncludeToken="AlwaysToRecpt">

<sp:WssX509V3Token10/>
</sp:X509Token>

</sp:InitiatorToken>
<sp:AlgorithmSuite>

<sp:Basic256/>
</sp:AlgorithmSuite>

</sp:AsymmetricBinding>

<sp:SignedParts>
<sp:Body/>

</sp:SignedParts>

bst(@ValueType(...#X509v3),
@EncodingType(...#Base64Binary),
@id(X509Token), BstVal),

sig(
sigInfo(

c14nMethod(@Algorithm(.../xml-exc-c14n#)),
sigMethod(@Algorithm(.../xmldsig#rsa-sha1)),
ref(@URL(BodyID),

transforms(
transform(

@Algorithm(.../xml-exc-c14n#))),
digestMethod(@Algorithm(.../xmldsig#sha1)),
digestValue(dVal)))

sigValue(sVal),
keyInfo(

str(Reference(@URI(#X509Token)))))
body(@id(BodyID))

WSSP

IR

X509Token

X509Token

Used for specifying
algorithm

Associated

Fig. 3. Merging Token and Signature Elements

Listing 4. Predicate for the C5443 of WS-I BSP

c5443(E):-

 sec(
 sig(...
 ref('@URL'(BodyID), ...)
 ref('@URL'(TokenID), ..)
 ….
),
 B=body('@id'(BodyID),bodyValue).

Let us consider validation using myPolicy0 in Listing 3 and c5443 in Listing 4.

One of the easiest ways is to perform the following formula:

~c5443(E),myPolicy0(E).

The result must always be “false” if myPolicy0 conforms to C5443. This formula
indicates that there exists an envelope E that does not satisfy C5443, but satisfies
myPolicy0. In this way, once the predicates have been represented as Prolog, the
validations can be performed easily.

In addition to the validations, we can derive counterexamples by executing the
formula. If the formula returns true, we should receive a substitution value, an enve-
lope instance. The returned envelope is a counterexample in the sense that it can be
derived from myPolicy0, but does not conform to C5443. As we mentioned, it is dif-
ficult for users to check if a WS-SecurityPolicy document is valid. On the other hand,
counterexamples are often helpful for users seeking to understand the nature of bugs
in the policy definitions.

Here is an example of how a user might apply this function. Listing 1 is shown as a
counterexample and the user is informed that C5443 is not satisfied. When she com-
pares the listing and C5443, she can see that the security token is not signed. In order
to fix the bug, she needs to add a ProtectToken assertion that indicates the security
token should be signed. Though we cannot yet programmatically offer suggestions
about how to fix problems, such counterexamples can be good hints for users to help
them fix such bugs by themselves.

328 Y. Nakamura, F. Sato, and H.-V. Chung

4 Related Work and Discussion

While there has only a small amount of work on SCA security, there are several ap-
proaches for including security in the application models, especially for UML.
SecureUML [20] is an attempt to integrate security into business application devel-
opment. Addressing Role-Based Access Control (RBAC), it demonstrates a means to
combine application models with security annotations. Security annotations are access
controls on particular classes and additional support for specifying authorization con-
straints. This approach is quite different from ours, since we assume that application
developers only add abstract intentions to the application models.

Deubler et al. [21] proposed an interesting approach to developing secure SOA ap-
plications. Using state transition diagrams and system structure diagrams (both similar
to UML diagrams), they built application models, including security functions such as
authentication. Then they perform model checking [22] to find security problems.
Compared to our approach, they represent the mechanisms for security explicitly. For
example, authentication and permission services are defined, specifying their behav-
iors. On the other hand, we think that such detailed security mechanisms should not
be a concern of the application developers. In our tooling architecture, application
developers only add security intentions that are associated with detailed security poli-
cies during deployment.

Bhargavan et al. [23] proposed formal semantics for WS-SecurityPolicy1. Con-
cerned with XML rewriting attacks, their tool can automatically check whether or not
the security goals of the formal model are vulnerable to any XML rewriting attacks.
We regard such validation as semantic validation, since the model represents how to
send, receive, and process security primitives such as tokens, timestamps, nonces,
signatures, and encryption requests. While such semantic validation can prove that a
given policy is secure, there are limitations in practical situations. For example, a
formal model may address only limited types of security attacks, or may not represent
all of the semantics of the security processing due to the complexity of WSS. As long
as we cannot provide a complete solution, we think that the syntactic validation we
are proposing should be useful. Since they provide a collection of guidelines and
profiles, we can leverage them in order to reduce security risks.

5 Concluding Remarks

Since applications are becoming more complex in the SOA environment, it is becom-
ing harder to configure their security. Addressing this issue, we introduced a security
configuration framework based on the SCA policy concept, and discussed how to
define valid WS-SecurityPolicy documents, since such valid definitions are critical
when preparing valid security policies.

Syntactic validation of WS-SecurityPolicy is the key idea in this paper. Since most
enterprises have security guidelines and best practices, we can leverage them to vali-
date the security policies. Because guidelines can be described in the format of Web
services security messages, we can eliminate security vulnerabilities in a highly prac-
tical way by means of syntax checking of the security policies against the guidelines,
what we call syntactic validation. We can implment this idea using predicate logic,

1 This work is based on an older version of WS-SecurityPolicy [24].

 Syntactic Validation of Web Services Security Policies 329

where the policies and guidelines are represented as Prolog programs. We also have
described a framework to transform WS-SecurityPolicy into predicate logic rules in
an orderly fashion.

While semantic validation is effective in theory, it requires formal security analysis
that is often too complicated for practical situations. Still, syntactic validations based
on best practices can be realistic and sufficiently useful in many situations. We will
continue investigating this approach, accumulating and representing more guidelines
using predicate logic.

References

1. A CBDI Report Series – Guiding the Transition to Web Services and SOA,
http://www.cbdiforum.com/bronze/downloads/ws_roadmap_guide.pdf

2. Devanbu, P., Stubblebine, D.: Software Engineering for Security: a Roadmap. In: ICSE
2000 (2000)

3. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, Chichester (2001)

4. SCA Service Component Architecture: Assembly Model Specification, Version 1.00,
(March 15, 2007)

5. SCA Policy Framework: Version 1.00 (March 2007)
6. WS-SecurityPolicy v1.2, Committee Specification (April 30, 2007), http://www.oasis-

open.org/committees/download.php/23821/ws-securitypolicy-1.2-spec-cs.pdf
7. Tatsubori, M., Imamura, T., Nakamura, Y.: Best Practice Patterns and Tool Support for

Configuring Secure Web Services Messaging. In: ICWS 2004 (2004)
8. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-Driven Security Based on a Web

Services Security Architecture. In: International Conference on Service Computing (2005)
9. Unified Modeling Language, http://www.omg.org/technology/documents/formal/uml.htm

10. Web Services Security: SOAP Message Security 1.1
11. Basic Security Profile Version 1.0, Final Material (March 30, 2003)
12. W3C Candidate Recommendation “Web Services Policy 1.5 –Framework” (February 28,

2007), http://www.w3.org/TR/2007/CR-ws-policy-framework-20070228/
13. WS-Trust 1.3 OASIS Standard (March 19, 2007)
14. WS-SecureConversation 1.3 OASIS Standard (March 1, 2007)
15. Eastlake, D., Solo, J.R., Bartel, M., Boyer, J., Fox, B., Simon, E.: XML Signature Syntax

and Processing, W3C Recommendation (February 12, 2002)
16. XML Encryption Syntax and Processing, W3C Recommendation (December 10, 2002)
17. Web Services Security, UsernameToken Profile 1.1
18. Web Services Security: X.509 Certificate Token Profile 1.1
19. Prolog :- tutorial, http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html
20. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for

Model-Driven Security. In: Proceedings of UML2002 (2002)
21. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound Development of Secure Ser-

vice-based Systems. In: ICSOC (2004)
22. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)
23. Bhargavan, K., Fournet, C., Gordon, A.D.: Verifying policy-based security for web ser-

vices. In: CCS ’04. Proceedings of the 11th ACM conference on Computer and communi-
cations security, pp. 268–277. ACM Press, New York (2004)

24. Web Services Security Policy Language (WS-SecurityPolicy) (December 18, 2002)
http://www-106.ibm.com/developerworks/library/ws-secpol/

An Agent-Based, Model-Driven Approach for

Enabling Interoperability in the Area of
Multi-brand Vehicle Configuration�

Ingo Zinnikus2, Christian Hahn2, Michael Klein1, and Klaus Fischer2

1 CAS Software AG, Karlsruhe (Germany)
michael.klein@cas.de

2 DFKI GmbH, Saarbrücken (Germany)
{ingo.zinnikus, christian.hahn, klaus.fischer}@dfki.de

Abstract. With the change of EU regulations in the automotive mar-
ket in 2002, multi-brand car dealers became possible. Despite the high
economical expectations connected with them, the existing IT infrastruc-
ture does not provide satisfying support for these changes as it had been
developed independently by each brand for many years. In this paper,
we describe a solution which supports rapid prototyping by combining a
model-driven framework for cross-organisational service-oriented archi-
tectures (SOA) with an agent-based approach for flexible process exe-
cution. We discuss advantages of agent-based SOAs and summarize the
lessons learned.

1 Introduction

In cross-organisational business interactions such as multi-brand vehicle configu-
ration, the most desirable solution for integrating different partners would suggest
to integrate their processes and data on a rather low level. However, the internal
processes and interfaces of the participating partners are often pre-existing and
have to be taken as given. Furthermore, in cross-organisational scenarios part-
ners are typically very sensitive about their product data and the algorithms that
process it. In many cases, private processes are only partially visible and hidden
behind public interface descriptions [1]. This imposes restrictions on the possible
solutions for the problems which occur when partner processes are integrated.

Thus, a service-oriented architecture (SOA) is the most appropriate approach.
It enables partners to offer the functionality of their systems via a public service
interface (WSDL) and hide the sensitive parts behind it. As usual in a SOA, the
communication is performed by the exchange of messages between the partners.

A very important second advantage of SOA is the possibility of a loose cou-
pling of partners. New partners can enter the system with little effort whereas

� The work published in this paper is (partly) funded by the E.C. through the
ATHENA IP. It does not represent the view of E.C. or the ATHENA consortium,
and authors are solely responsible for the paper’s content.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 330–341, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Agent-Based, Model-Driven Approach for Enabling Interoperability 331

obsolete partners are able to leave it easily. Especially in the case where addi-
tional smaller non-OEM manufacturers providing vehicle parts like radios or tires
are integrated in the sales process, the system needs to become robust against
temporary unavailable partners.

Despite the advantages of a SOA, several difficulties arise especially in the case
where the systems of the partners have evolved independently for several years:

– The philosophies of the systems differ, e.g. one partner service uses a strict
sequential run through the product space whereas another service allows e.g.
randomly browsing through the products and product features.

– The granularity of operations of the various partner services differs.
– Non-functional aspects such as exception handling, session management,

transactional demarcation, which differ from partner to partner, supersede
the core functionality of the services.

– Structural differences in the payload data of the exchanged messages stem-
ming from data models used by the different partners’ sites are present.

– Semantical misunderstandings within the exchanged messages may arise due
to different tagging of business data, different conventions etc.

The European project ATHENA (Advanced Technologies for interoperability
of Heterogeneous Enterprise Networks and their Applications) provides a com-
prehensive set of methodologies and tools to address interoperability problems
of enterprise applications in order to realize seamless business interaction across
organizational boundaries. In this paper, we present the results of a pilot applica-
tion of the ATHENA approach to interoperability and the supporting technology
in a real-world scenario of a multi-brand vehicle dealer.

The paper is organized as follows. In Section 2 we will sketch the business case
of our pilot application and discuss the current and the to-be scenario for multi-
brand vehicle dealers. Sections 3 and 4 are devoted to our technical approach.
Here, we present the approach developed in ATHENA and used within our pilot
for the integration of cross-organizational processes. We discuss the advantages
of this approach in Section 5 and conclude the paper by taking a look at the
lessons learned in Section 7.

2 Scenario

In 2002, due to new laws in EU legislation, the market of car distribution changed
fundamentally. Instead of being limited to selling only one brand, vending vehi-
cles of different brands under one roof was facilitated. Dealers now can reach a
broader audience and improve their business relations for more competitiveness.
As a consequence, many so-called multi-brand dealers have appeared.

Today, multi-brand dealers are confronted with a huge set of problems. Rather
than having to use the IT system of one specific car manufacturer, multi-brand
dealers are now faced with a number of different IT systems from their dif-
ferent manufacturers. One specific problem is the integration of configuration,
customization and ordering functionality for a variety of brands into the IT
landscape of a multi-brand dealer.

332 I. Zinnikus et al.

In this paper, the business cases we are looking at are such multi-brand deal-
ers. Multi-branding seamlessly offers products of different brands in one coherent
sales process. This establishes a certain level of comparability among products
of different brands and provides added value to the customers, thus strengthens
the competitiveness of multi-brand dealers. However, multi-branding calls for an
increased level of interoperability among the dealer on one side and the different
manufacturers on the other side.

Today, however, systems for car configuration and order processing of different
car manufacturers are isolated systems and not integrated into the dealer specific
IT landscape. Thus, multi-brand dealers are faced with a simple multiplication
of IT systems to support their pre-sales, sales and after-sales processes. As a con-
sequence, one of the desired advantages of multi-branding, namely to seamlessly
offer cars of different car manufactures and to establish comparability among the
different products is seriously put at stake. We rather observe the phenomenon
of what we call early brand selection, i.e. a customer has to choose his desired
brand at the beginning and than go all the way through its brand-specific prod-
uct configuration and order process. Changing the brand later means starting
the process all over from the beginning.

In this paper, we propose an integrated scenario, where multi-brand dealers
use services provided by the different car and non-OEM manufactures and plug
them into an integrated dealer system. In the following section, we will describe
our solution in more detail.

3 Our Solution

The desired to-be-scenario with its general architecture is depicted in Figure 1.
The solution consists of two parts which are necessary to provide an integrated
solution for a multi-brand dealer:

– An integration of the manufacturers (lower part of the figure). The systems
of the different car and non-OEM manufacturers are integrated via an inte-
grator component. This integrator enables the dealer to access the software

Fig. 1. Overview over the architecture of the solution

An Agent-Based, Model-Driven Approach for Enabling Interoperability 333

of the manufacturers in a uniform manner. For the sake of the pilot applica-
tion, the car configurator CAS Merlin by CAS Software AG currently used
for order processing and sales support applications by a leading German car
manufacturer was used.

– An integration of the customers (upper part of the figure). The interaction
of customers and the dealer is harmonized by integrating their different pro-
cesses within a CRM system. In the pilot setting, the CRM system CAS

genesisWorld was used.

In the following, we give an overview of our approach of the pilot application.
However, the paper will focus on the manufacturer integration (see Section 3
and 4) and present the model-driven, agent-based integration approach for cross-
organizational processes modeling. The customer integration has already been
presented in detail in [2].

Manufacturer Integration

The integrator in the overall architecture in Figure 1 can be seen as a service
integrator performing message transformations.

The messages that are exchanged between the dealer and the manufacturers
are (conceptually) transformed in three steps. The resulting three layers of the
architecture of our service integrator are shown in Figure 2 (left hand side).

In the top most component, a message entering the component from the dealer
is analyzed by the CAS Instance Distributor and routed to the set of manufacturers
that need to process this request. If the dealer e.g. wants to find a suitable family
car for his customer, typically all (or many) of the manufacturers will receive the
message. If the dealer however wants to configure and order a car of a certain
brand, only this specific system will be addressed. In the inverse direction, i.e.
when the results of the different manufacturers reach the component, the CAS
Instance Aggregator comes into play: by applying metrics of equality, similarity

Fig. 2. Integration of car and non-OEM manufacturers

334 I. Zinnikus et al.

and equivalence, it tries to combine the different partial results to one meaningful
integrated result.

The middle layer is responsible for harmonizing the data models of the differ-
ent manufacturers with the common data model of the dealer. Thus, the business
objects extracted from the incoming messages are remodeled and put into the
outgoing messages. It is important to mention that for this step in certain cases
several messages must be processed together in order to be able to rebuild a
business object and its dependent objects.

The task of the lower layer is to mediate between the integrator and the
different processes offered by the manufacturers, i.e. to adapt the sequence of
messages that is expected by a manufacturer system with the sequence that is
sent out by the dealer. Furthermore, the process adaptor reacts to unavailable
services e.g. by invoking alternative services.

All three components have been developed with a model-driven approach. In
a first step during design-time, platform independent models have been created
for each component. E.g., for the process adaptor, the metamodel PIM4SOA
(Platform Independent Model for Service Oriented Architectures) [3] was used
to define a connection between the processes of the dealer and manufacturer; for
the schema adaptor, Semaphore1 was used to graphically map the entities and
attributes of one data model to the corresponding entities and attributes in the
other model. From these models, executables were generated, which have been
applied in a second step during run-time to process the data on a concrete plat-
form. E.g., for the process adaptor, the generated process models are executed
as software agent on Jack [4], an agent platform based on the BDI-agent theory
(belief-desire-intention, [5]).

In the following, we will describe this approach in detail and discuss advan-
tages and problems.

4 Mediating Services for Cross-Organisational Business
Processes

As can be seen from the description of the scenario, the setting includes a com-
plex interaction between the partners. The design of such a scenario implies a
number of problems which have to be solved:

– the different partners (may) expect different atomic protocol steps (service
granularity)

– the partners expect and provide different data structures
– changing the protocol and integration of a new partner should be possible

in a rapid manner (scalability)
– the execution of the message exchange should be flexible, i.e. in case a partner

is unavailable or busy, the protocol should nevertheless proceed

These are typical interoperability problems occuring in cross-organisational
scenarios which in our case have to be tackled with solutions for SOAs. A core
1 http://www.modelbased.net/semaphore

An Agent-Based, Model-Driven Approach for Enabling Interoperability 335

idea in the ATHENA project was to bring together different approaches and
to combine them into a new framework: a modelling approach for designing
collaborative processes, a model-driven development framework for SOAs and an
agent-based approach for flexible execution. It turned out that these approaches
fit nicely together, as e.g. the PIM4SOA metamodel and the agents’ metamodel
bear a striking resemblance to each other.

Hence, the first problem is solved by specifying a collaborative protocol which
allows adapting to different service granularities. The mediation of the data is
tackled with transformations which are specified at design-time and executed
at run-time by transforming the exchanged messages based on the design-time
transformations.

Scalability is envisaged by applying a model-driven approach: the protocol is
specified on a platform-independent level so that a change in the protocol can
be made on this level and code generated automatically.

Finally, flexibility is achieved by applying a BDI agent-based approach. BDI
agents provide flexible behaviour for exception-handling in a natural way (com-
pared to e.g. BPEL4WS where specifying code for faults often leads to compli-
cated, nested code).

PIM4SOA: A Platform-Independent Model for SOAs

The PIM4SOA is a visual platform-independent model (PIM) which specifies
services in a technology independent manner. It represents an integrated view
of SOAs in which different components can be deployed on different execution
platforms. The PIM4SOA model helps us to align relevant aspects of enterprise
and technical IT models, such as process, organisation and products models. The
PIM4SOA metamodel defines modelling concepts that can be used to model four
different aspects or views of a SOA:

Services are an abstraction and an encapsulation of the functionality provided
by an autonomous entity. Service architectures are composed of functions
provided by a system or a set of systems to achieve a shared goal. The
service concepts of the PIM4SOA metamodel have been heavily based on
the Web Services Architecture as proposed by W3C [6].

Information is related to the messages or structures exchanged, processed and
stored by software systems or software components. The information con-
cepts of the PIM4SOA metamodel have been based on the structural con-
structs for class modelling in UML 2.0 [7].

Processes describe sequencing of work in terms of actions, control flows, in-
formation flows, interactions, protocols, etc. The process concepts of the
PIM4SOA metamodel have been founded on ongoing standardization work
for the Business Process Definition Metamodel (BPDM) [8].

Non-functional aspects can be applied to services, information and processes.
Concepts for describing non-functional aspects of SOAs have been based
on the UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms [9].

336 I. Zinnikus et al.

Fig. 3. PIM4SOA Model for Pilot (part)

Via model-to-model transformations, PIM4SOA models can be transformed
into underlying platform-specific models (PSM) such as XSD, Jack BDI-agents
or BPEL.

The business protocol between dealer (dealer software), integrator and manu-
facturers is specified as PIM4SOA model (see Figure 3). In order to execute
collaborative processes specified on the PIM level, the first step consists of
transforming PIM4SOA models to agent models that can be directly executed
by specific agent execution platforms. In our case, the Jack Intelligent agent
framework is used for the execution of BDI-style agents. The constructs of the
PIM4SOA metamodel are mapped to BDI-agents represented by the Jack meta-
model (JackMM). For detailed information on JackMM we refer to [10].

In this service-oriented setting, the partners provide and exhibit services. Part-
ner (manufacturer etc.) services are described as WSDL interfaces. The WSDL
files are used to generate integration stubs for the integrator. We use a model-
driven approach for mapping WSDL concepts to agent concepts, thereby inte-
grating agents into a SOA and supporting rapid prototyping.

The partner models are transformed to a Jack agent model with the model-
to-model transformation developed in ATHENA. The following sketch outlines
the metamodel mappings (see Figure 4, for more details, cf. e.g. [10]).

A ServiceProvider (i.e. ServiceIntegratorProvider in Figure 3) is assigned to
a Team (which is an extension of an Agent). The name of the ServiceProvider
coincides with the name of the Team, its roles are the roles the Team performs.
Furthermore, the team makes use of the roles specified as bound roles in the
CollaborationUse (i.e. Dealer and Manufacturer), in which it participates. For
each of these roles, we additionally introduce an atomic Team. The Process of
the ServiceProvider is mapped to the TeamPlan of the non-atomic Team. This
TeamPlan defines how a combined service is orchestrated by making use of the
services the atomic Teams (i.e. ManufacturerTeam and DealerTeam in Figure 5)
provide. Finally, Messages that are sent by the roles we already have transformed
are mapped to Events in JackMM.

The process integrator and the manufacturers are modelled as Web services.
Their interface is described by WSDL descriptions publishing the platform as

An Agent-Based, Model-Driven Approach for Enabling Interoperability 337

Fig. 4. PIM4SOA and WSDLMM to JackMM transformation

Web service. In the pilot, only the process integrator is executed by Jack agents
which are wrapped by a Web service, whereas the manufacturers and other
partner services are pure Web services. For integrating Web services into the
Jack agent platform, we map a service as described by a WSDL file to the
agent concept Capability which can be conceived of as a module. A capability
provides access to the Web services via automatically generated stubs (using
Apache Axis). A capability comprises of plans for invoking the operations as
declared in the WSDL (it encapsulates and corresponds to commands such as
invoke and reply in BPEL4WS).

By executing the model transformations we automatically derive the JackMM
model illustrated in Figure 5 (for more details, cf. [10]). It should be stressed
that these model transformations and the respective code generation can be done
automatically if (i) the PIM4SOA model is defined properly and (ii) the WSDL
descriptions are available. The only interventions necessary for a system designer
are the insertion of the proper XSLT transformations and the assignment of the
capabilities to the agents/teams responsible for a specific Web service invocation.

5 Advantages of Agent-Based SOAs

The similarities between agent architectures and SOAs have already been recog-
nized (e.g. [11]). In fact, the strong correspondence between the PIM4SOA and
the JackMM confirms this observation. In the following we will briefly discuss
advantages of applying BDI-agents in a service-oriented environment.

In order to compare an agent-based approach with other standards for Web
service composition, the distinction introduced in [12] between fixed, semi-fixed,
and explorative composition is useful. Fixed composition can be done with

338 I. Zinnikus et al.

Fig. 5. Jack Model generated from PIM4SOA (part)

e.g. BPEL4WS, but also by applying BDI agents. Semi-fixed composition might
also be specified with BPEL4WS: partner links are defined at design-time, but
the actual service endpoint for a partner might be fixed at run-time, as long
as the service complies with the structure defined at design-time. Late bind-
ing can also be done with the Jack framework. The service endpoint needs to
be set (at the latest) when the actual call to the service is done. Explorative
composition is beyond of what BPEL4WS and a BDI-agent approach offer (at
least if they are used in a ’normal’ way). To enable explorative composition, a
general purpose planner might be applied which dynamically generates, based
on the service descriptions stored in a registry, a plan which tries to achieve the
objective specified by the consumer [13].

It might seem as if BPEL4WS and BDI-style agents offer the same features.
However, there are several advantages of a BDI-style agent approach. An impor-
tant question is how the availability of a partner service is detected. This might
be checked only by actually calling the service. If the service is not available or
does not return the expected output, an exception will be raised. BPEL4WS
provides a fault handler which allows specifying what to do in case of an excep-
tion. Similarly, an agent plan will fail if a Web service call raises an exception,
and execute some activities specified for the failure case.

However, the difference is that a plan is executed in a context which specifies
conditions for plan instances and also other applicable plans. The context is
implicitly given by the beliefs of an agent and can be made explicit. If for a
specific goal several options are feasible, an agent chooses one of these options
and, in case of a failure, immediately executes the next feasible option to achieve
the desired goal. This means that in a given context, several plan instances
might be executed, e.g. for all known services of a specific type, the services
are called (one after another), until one of the services provides the desired
result. An exception in one plan instance then leads to the execution of another
plan instance for the next known service. Additionally, BDI-style agents permit
’meta-level reasoning’ which allows choosing the most feasible plan according to
specified criteria.

An Agent-Based, Model-Driven Approach for Enabling Interoperability 339

In our car configuration scenario, agents have to react to service unavailability
and the protocols for e.g. selecting a non-OEM supplier involve auctions or first
come - first served mechanisms which can be modelled in an very elegant manner
with a BDI-agent approach. The BDI-agent approach supports this adaptive
behaviour in a natural way, whereas a BPEL4WS process specification which
attempts to provide the same behaviour would require awkward coding such as
nested fault handlers etc.

Furthermore, since it is in many cases not possible to fully specify all necessary
details on the PIM level, a system engineer must add these details on the PSM
level. Hence, customizing the composition is facilitated since the different plans
clearly structure the alternatives of possible actions. Since the control structure
is implicit, changes in a plan do not have impact on the control structure, reduc-
ing the danger of errors in the code. Another advantage is that extending the
behaviour by adding a new, alternative plan for a specific task is straightforward.
The new plan is simply added to the plan library and will be executed at the
next opportunity.

Finally, business process notations allow specifying unstructured processes. To
execute these processes with BPEL, unstructured PIM4SOA process descriptions
normally are transformed to block-structured BPEL processes. In doing so, most
approaches restrict the expressiveness of processes by only permitting acyclic
or already (block-)structured graphs [14]. In the case that any unstructured
processes shall be executed, an approach like described in [15] has to be followed.
The idea is to translate processes with arbitrary topologies to BPEL by making
solely use of its Event Handler concept. The result is again cumbersome BPEL
code, whereas the Jack agent platform naturally supports event-based behaviour.

6 Related Work

Apart from the wealth of literature about business process modelling, enterprise
application integration and SOAs, the relation between agents and SOAs has
already been investigated. [11] cover several important aspects, [16] propose the
application of agents for workflows in general. [17] and [18] present a technical
and conceptual integration of an agent platform and Web services. However, the
model-driven approach and the strong consideration of problems related to cross-
organisational settings have not been investigated in this context. Furthermore,
our focus on tightly integrating BDI-style agents fits much better to a model-
driven, process-centric setting than the Web service gateway to a JADE agent
platform considered by e.g. [17].

7 Conclusions and Summary

From a research transfer point of view, the following lessons could be learned:

– Evidently, a model based approach is a step in the right direction as design-
time tasks are separated from run-time tasks which allows performing them

340 I. Zinnikus et al.

graphically. Moreover, it is easier to react to changes of the different inter-
acting partners as only the models have to be adapted but not the run-time
environment.

– The PIM4SOA metamodel is sufficient for modelling basic exchange patterns
but needs to be more expressive.

– A model-driven, agent-based approach offers additional flexibility and ad-
vantages (in general and in the scenario discussed) when agents are tightly
integrated into a service-oriented framework.

In this paper, we presented a pilot developed within the EU project ATHENA
in the area of multi-brand automotive dealers. For its realization, several integra-
tion problems on different levels had to be solved. We described a solution which
supports rapid prototyping by combining a model-driven framework for cross-
organisational service-oriented architectures with an agent-based approach for
flexible process execution. We argued that agent-based SOAs provide additional
advantages over standard process execution environments.

References

1. Schulz, K., Orlowska, A.: Facilitating cross-organisational workflows with a work-
flow view approach. Data and Knowledge Engineering 51(1), 109–147 (2004)

2. Klein, M., Greiner, U., Genßler, T., Kuhn, J., Born, M.: Enabling Interoperability
in the Area of Multi-Brand Vehicle Configuration. In: I-ESA 2007. 3rd International
Conference on Interoperability for Enterprise Software and Applications (2007)

3. Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A., Friess, M.: A
Platform Independent Model for Service Oriented Architectures. In: I-ESA 2006.
2nd International Conference on Interoperability of Enterprise Software and Ap-
plications (2006)

4. JACK Intelligent Agents: The Agent Oriented Software Group (AOS) (2006),
http://www.agent-software.com/shared/home/

5. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) KR91. 2nd International Conference
on Principles of Knowledge Representation and Reasoning, pp. 473–484. Morgan
Kaufmann publishers Inc., San Mateo, CA, USA (1991)

6. W3C: Web Services Architecture, World Wide Web Consortium (W3C), W3C
Working Group Note (February 11, 2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

7. OMG: UML 2.0 Superstructure Specification, Object Management Group (OMG),
Document ptc/03-08-02 (August 2003),
http://www.omg.org/docs/ptc/03-08-02.pdf

8. IBM: Adaptive, Borland, Data Access Technologies, EDS, and 88 Solutions, ”Busi-
ness Process Definition Metamodel - Revised Submission to BEI RFP bei/2003-01-
06”, Object Management Group (OMG), Document bei/04-08-03 (August 2004),
http://www.omg.org/docs/bei/04-08-03.pdf

9. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms, Object Management Group (OMG), Document ptc/04-
09-01 (September 2004), http://www.omg.org/docs/ptc/04-09-01.pdf

http://www.agent-software.com/shared/home/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.omg.org/docs/ptc/03-08-02.pdf
http://www.omg.org/docs/bei/04-08-03.pdf
http://www.omg.org/docs/ptc/04-09-01.pdf

An Agent-Based, Model-Driven Approach for Enabling Interoperability 341

10. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesæter, B., Berre, A.J., Zinnikus, I.:
Meta-models, Models, and Model Transformations: Towards Interoperable Agents.
In: Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS
(LNAI), vol. 4196, Springer, Heidelberg (2006)

11. Singh, M., Huhns, M.: Service Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons, Chichster, West Sussex, UK (2005)

12. Yang, J., Heuvel, W., Papazoglou, M.: Tackling the Challenges of Service Com-
position in e-Marketplaces. In: RIDE-2EC 2002. 12th International Workshop on
Research Issues on Data Engineering: Engineering E-Commerce/E-Business Sys-
tems (2002)

13. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web
Service composition using SHOP2. J. Web Sem. 1, 377–396 (2004)

14. Mendling, J., Lassen, K., Zdun, U.: Transformation Strategies between Block- Ori-
ented and Graph-Oriented Process Modelling Languages. In: Lehner, F., Nekabel,
H., Kleinschmidt, P. (eds.) Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), Berlin (2006)

15. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.: Translating Standard
Process Models to BPEL. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, Springer, Heidelberg (2006)

16. Vidal, J.M., Buhler, P., Stahl, C.: Multiagent systems with workflows. IEEE In-
ternet Computing 8(1), 76–82 (2004)

17. Greenwood, D., Calisti, M.: Engineering Web Service – Agent Integration. In: IEEE
Systems, Cybernetics and Man Conference, the Hague, Netherlands, October 10-
13, 2004, pp. 10–13. IEEE Computer Society Press, Los Alamitos (2004)

18. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: Considering
BDI agents and web services. In: SOCABE. AAMAS 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (2005)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 342–352, 2007.
© Springer-Verlag Berlin Heidelberg 2007

User-Driven Service Lifecycle Management – Adopting
Internet Paradigms in Telecom Services

Juan C. Yelmo1, Rubén Trapero1, José M. del Álamo1,
Juergen Sienel2, Marc Drewniok2, Isabel Ordás3, and Kathleen McCallum3

1 DIT, Universidad Politécnica de Madrid, Ciudad Universitaria s/n,
28040 Madrid, Spain

{jcyelmo, rubentb, jmdela}@dit.upm.es
http://www.dit.upm.es

2 Alcatel-Lucent Deutschland AG,
70435 Suttgart, Germany

{Juergen.Sienel, Marc.Drewniok}@alcatel-lucent.de
www.alcatel-lucent.com

3 Telefónica I+D, Emilio Vargas 6,
28043 Madrid, Spain

{ioa, kmc352}@tid.es
http://www.tid.es

Abstract. The user-centric service creation paradigm set out in Web 2.0
technologies on the Internet allows users to define and share their new content
and applications. Open services and interfaces provided by Google et al can be
used to build easily, and quickly deploy exciting applications. User-centric
service creation provides a cheap solution in contrast with the huge engineering
effort that has to be spent both on development and marketing in order to get a
new telecom service running and deployed in the market. Adopting Internet
paradigms in telecom services requires major flexibility and dynamicity in
managing service lifecycle compared to current service management systems.

This paper proposes an approach to user-centric service lifecycle
management in telecom-oriented platforms. It allows users to drive their
services' lifecycle, e.g. when and for how long they must be available, as well
as automating the process between the creation and the execution of the
services.

1 Introduction

In an IP world, new competitors such as mobile virtual network operators (MVNO) or
Internet companies threaten the traditional business models of telecom operators by
providing their services directly to the operators' customers. They use the operator's
network as a kind of bit pipe [1], without returning any benefit to it in exchange for
the use of those services.

Moreover, end users are also putting on pressure by increasingly requiring
innovative and attractive new services: They would like to have the advanced model
they use on the Internet which allows users to define new contents and applications

 User-Driven Service Lifecycle Management 343

(mashups) using open services and interfaces that could be quickly and easily built
and deployed e.g. Yahoo Pipes [2].

User-centric service creation refers to this process. It enables end-users (not
necessarily the very technically skilled) to create their own services and manage the
lifecycle of those services autonomously. It also allows users to share these services
within a community which will promote the most interesting ones at a minimum cost
(viral marketing1).

In order to support the aforementioned approach, it has become imperative for
telcos to change their rigid business and provisioning models, replacing them with
much more agile processes. This could be accomplished by identifying the operators'
assets that can be provided only in the core network such as end-user location and
presence information, and then abstract and offer them through well defined
interfaces. Users may use these resources to create new or personalized services, thus
generating a powerful and self-increasing ecosystem around the telecom operators'
core business - their networks.

Service Oriented Architecture (SOA) is the main approach to opening up these
network resources with initiatives such as ParlayX [3] or Open Mobile Alliance
(OMA) enablers [4], which converge in the use of Web Services as the middleware
allowing third parties to access and control network resources.

Nonetheless, operators still have to cope with some difficulties that arise from the
openness of their networks and the reduction of the time to market in the lifecycle of
new services. Furthermore, in order to apply the user-centric model telcos must also
deal with a huge set of short-lived user-generated services each one having its own
user-driven lifecycle and orchestrating a subset of telecom based services.

The Open Platform for User-centric service Creation and Execution (OPUCE) [5]
allows users to create, manage and use their own telecom-based services in an
Internet style. In this article we introduce some of the early results within the OPUCE
project, focusing on the lifecycle of these services. We pay special attention to user-
driven lifecycle management of user-centric services as well as the automation of the
related processes.

The following sections introduce the fundamentals of the OPUCE project stressing
the importance of having a structured way of describing user-generated services and
their lifecycles in such an open service ecosystem. The paper continues by setting out
the model that supports user-driven service lifecycles in a user-centric telecom
environment. Section 5 concludes the paper.

2 The OPUCE Project

The OPUCE project is a research project within the European Union Sixth
Framework Programme for Research and Technological Development. OPUCE aims
to bridge advances in networking, communication and information technology

1 Viral marketing refers to marketing techniques that use pre-existing social networks to

produce increases in brand awareness, through self-replicating viral processes, analogous to
the spread of pathological and computer viruses. It can be word-of-mouth delivered or
enhanced by the network effects of the Internet. [Source: Wikipedia].

344 J.C. Yelmo et al.

services towards a unique service environment where personalized services are
dynamically created and provisioned by the end-users themselves.

The general objective of OPUCE is to leverage the creation of a user-centric
service ecosystem giving users the chance to create their own personalized services as
is currently done on the Internet.

Within this approach, service concepts are redefined. In OPUCE, services are
envisioned as short-lived telecom services that end-users will create by orchestrating
simpler services called base services. Base services are considered as functional units
deployed by the operator or authorized third parties, available at the OPUCE platform
and offered to end users through Web Services interfaces.2

Figure 1 introduces a detailed diagram of the OPUCE architecture. Its main
elements are:

 A Service Creation Environment with a set of tools to be used by people or
third parties to dynamically create services [6]. It can be seen as a portal
through which users can create, deploy and share services. It consists on two
portals: a user portal, to manage social networks, service subscriptions and
configurations, etc; and a service portal, to manage the service edition, test,
simulation, monitoring, etc. The Service Creation Environment also includes
other general functions (access control, registration) and administration tools.

 A Context Awareness module to manage the adaptation and customization of
services to the users’ ambience conditions. In OPUCE two types of context
aware adaptations are supported: explicit, when it is the service creator who
specifies the service behavior taking into account user context information;
and implicit, when the platform itself analyzes the service and adapts
dynamically the execution.

 A User Information Management module to control the user’s personal
information (agenda, buddy list, presence information, device capabilities,
potential use of certain services, etc.) identity management and AAA.

 A Subscription Management module to keep control of the user subscriptions
to services. The information that this module stores is mainly consumed by
other OPUCE modules (such as the context awareness or the user information
modules).

 A Service Lifecycle Manager module which manages the lifecycle of all
services created within the OPUCE platform. Section 4 describes in depth this
module.

 A Service Execution Environment which manages the execution of services
and orchestrates base services following the logic created by the users when
composing them. A BPEL (Business Process Execution Language) [7] engine
is used to orchestrate them, thus it is necessary to wrap those base services
with Web Services interfaces. This module also supports events, managed by
an event handler. Those events are generated by other OPUCE modules, such
as the context awareness module.

2 This definition is still coherent with the extended idea of service: Services are autonomous,

platform-independent computational elements that can be described, published, discovered,
orchestrated and programmed using standard protocols for the purpose of building networks
of collaborating applications distributed within and across organizational boundaries. [Source:
ICSOC 2005].

 User-Driven Service Lifecycle Management 345

Fig. 1. The OPUCE architecture

This architecture has been validated with the creation of an intelligent email
service. It forwards an incoming email according to the situation of the user and the
device he has connected to the platform. For example, if the user is driving the service
will set-up a call to read the email. If the user is not logged in his office PC, the
service may also send an SMS containing the email subject and sender. The base
services combined by the user creator are an email service, an SMS service, a text-to-
speech call service and a user-context service.

Since this paper is focused on the service lifecycle of these user-centric services,
we concentrate on both the Service Lifecycle Manager and the Service Execution
Environment. The following sections will detail how user’s can indirectly interact
with these platform modules when creating services.

3 Supporting User-Centric Services: Service Description

A user-centric based service ecosystem requires major flexibility and dynamicity in
managing service lifecycle compared to current service management systems. In order
to automate the process between the creation and the execution of the services, the
OPUCE platform needs a common way to completely describe the services.

The concept of service description has already been addressed in projects such as
SPICE [8] and SeCSE [9]. Some of the results of these projects have been considered
in OPUCE to create a service specification model completely. More precisely, the
faceted approach [10] of the service description defined by the SeCSE project has
been extended to support the user-centric features of OPUCE services, including the

346 J.C. Yelmo et al.

user-driven lifecycle management of user-centric services. Figure 2 depicts the
faceted specification followed in OPUCE.

Therefore, in OPUCE, services are described using a service specification which
contains all aspects of a service. Each aspect, called a facet, is further described in a
separate XML-based specification. With a view to all the functionalities available in
the OPUCE platform we have considered three sets of facets:

• Functional facets, which include service logic facets, service interface facets,
service semantic information facet, etc.

• Non-functional facets, which include service level agreement (SLA) facets, quality
of service facets, etc.

• Management facets, which include service lifecycle schedule and deployment
facets.

In this article we focus on the management facets and describe how their contents
allow users to interact with various aspects of the lifecycle of services, such as the
service scheduling, and how to automate the deployment of services.

Fig. 2. Faceted approach used to describe services

4 Service Lifecycle Management in User-Centric Telecom
Platforms

One of the major constraints in today’s telecommunication services is the huge
engineering effort that has to be spent both on development and marketing, in order to
get a service running and deployed in the market. On the other hand, the Internet

 User-Driven Service Lifecycle Management 347

model provides a quite different and cheaper approach through user-centric service
creation, e.g. mashups and viral marketing.

In order to transfer the advantages of the Internet model to telecom environments
the platform must be able to cope with a huge set of user generated services each one
orchestrating a subset of telecom-oriented base services. The requirements for the
lifecycle management of these new services are:

1. to allow users to decide when and for how long their services must be
available i.e. the lifecycle schedule. Since we encourage end-users to create
services, the lifetime of services may be very short including even a one-
time usage of a service. This means the overheads for users and platform
administrators to deploy the services must be limited to an absolute
minimum, which brings us to the second requirement;

2. to be able to provision base services and platform elements automatically,
and to register and publish new services in order to be available to end-
users.

As each service is compound of a different subset of base services and has its own
dynamicity, lifecycle management processes in user-centric telecom platforms cannot
be completely set beforehand and will depend both on the base services used and the
user needs. However, there is at least one set of common activities a service always
goes through in a telecom platform: creation, deployment, maintenance, and
withdrawal.

• Service Creation. End users compose their own services by orchestrating a set of
telecom base services. At the end of this process a service description is generated
and stored in a service repository.

• Service Deployment. This is a platform supported process to make a service
available in the communications environment. It usually includes physical
installation, provisioning, registration, publication and activation. These tasks must
be carried out in a given order. Whenever something fails, the steps already carried
out must be undone. Deployment finishes when the service is up and running and
ready to be subscribed to by end users.

• Service Maintenance. After the service has been properly deployed, this step will
help the service provider to analyze the service execution status. This information
will help to improve the service based on monitoring and usage statistics, to
optimise the resource usage spent on that service and to identify errors and other
runtime problems.

• Service Withdrawal. If the service is going to be substituted or evolved, or will not
be used for a while, it must be stopped. Then, when it is no longer needed it must
be cleared up from the platform. Service withdrawal consists of undoing the steps
carried out during deployment phase; i.e. deactivation, withdraw the publication
(unpublishing), deregistration, unprovisioning and physical uninstallation. Again,
these tasks must be carried out in a given order.

The whole process a service goes through during its lifecycle can be formalized in
a UML state diagram (Figure 3). Within OPUCE we consider that the execution
platform exists and provides enough resources to provision all components and
deploy the service. For this reason the physical installation and uninstallation will not

348 J.C. Yelmo et al.

be taken into account. For later stages of the project we will provide virtualized
resources which can be set-up on demand with appropriate functionality. This
virtualisation will provide not only the means to adapt the platform dynamically to the
specific needs of the services running on top, but also provide a secured sand-box for
testing and running services in a separate environment.

The activities associated to the other sub-states within the service deployment and
service withdrawal depend on the base services used and the one that is composed:
reservation of network resources, provision of base services, deployment of the new
service, and so on. This information is implicitly obtained during the creation process.
Therefore once the platform knows the set of base services that are used, and how the
creator orchestrates them, it automatically generates the description of the activities
associated to the management of the service lifecycle. Finally this information is
stored as a set of facets within the service description: deployment and provisioning
facets.

On the other hand, in order to allow users to drive the lifecycle of their new
services, the Service Creation Environment explicitly collects information about the
desired activation and deactivation events. This information, which allows the
schedule of the service to be known, is also stored as a facet within the service
description: lifecycle schedule facet.

Fig. 3. The Service Lifecycle in OPUCE

Therefore, the service description includes all the information needed to carry out
automated user-driven service lifecycle in its facets.

The following subsections detail this service lifecycle. First we explain how
service creators can modify some aspects of the service lifecycle, scheduling the
activation and deactivation of services. Then, the deployment process is described and
how the service description contributes to making this process automatic. Finally, we
close with the description of the lifecycle detailing the service withdrawal.

 User-Driven Service Lifecycle Management 349

4.1 User-Driven Service Lifecycle

Within a user-centric service lifecycle model, users would like to decide, depending
on their own preferences, when, where and how their services must be active. For
example, an SMS service sending messages of the results of the local football team
should only be available every weekend from Friday afternoon to Sunday evening, or
a personal friend finder will be activated based on the location context.

Since activation in telecom platforms means the real allocation of resources, and
therefore expenses to the platform providers, the deployment activities must be
planned based on the initial schedule that the creator has decided for the service. On
the other hand, at the end of the lifecycle the operator needs to be sure that all
allocated resources are released and can be re-used for other services. Therefore
withdrawal activities must be carried out after the service has been deactivated,
whether the service is going to be activated again (following the user schedule) or if it
is going to be definitely removed.

Within the OPUCE architecture the entity that controls and monitors the lifecycle
activities is the Service Lifecycle Manager. This subsystem knows the current state of
a service lifecycle, how to make a transition, and how to carry out the activities inside
each transition. This entity also knows the user-driven transitions, monitors their
occurrence, and triggers the related events. This entity must also set the policy for the
other events within the lifecycle.

4.2 Service Deployment

Automatic deployment is nothing new in the Telco world, however the traditional
deployment, automatic or not, has always been instigated and determined by
operators. In OPUCE we go a step further; letting the service creators (the users) take
control of some aspects of the deployment, such as the service scheduling.

There are more aspects that make the difference between OPUCE deployment
concepts and traditional ones: the nature of the services. It is the user himself who
triggers the deployment of the services until it is activated and finally available to
users. In OPUCE, services are also created from outside the operator’s administration
domain, either from a computer, PDA or cellular phone and from different places
such as the users’ living room, a taxi or from their workplace.

Therefore, in OPUCE there is no human intervention from the operator either when
triggering the service deployment process or during the deployment itself. Thus the
service description must contain all the data that is necessary to deploy the service in
each of the activities that make up the service deployment. As we will see, with the
faceted approach the information needed to be handled by each activity can be clearly
separated.

In the intelligent email service, once the creator has finished the composition the
service must be deployed and provisioned to the platform. The Service Creation
Environment will generate the service description including the facets needed for the
deployment, i.e. service logic description, service deployment facet, service
provisioning facet and the service lifecycle schedule. The deployment process is
initialized and the following steps are executed in the OPUCE Platform:

350 J.C. Yelmo et al.

 Service Provisioning. In OPUCE service provisioning is carried out automatically
contrary to traditional provisioning which often requires a manual participation to
create accounts for users, reserve resources, etc. We have identified three
provisioning tasks, each one affecting different elements of the OPUCE architecture.

o Component Provisioning, which considers the provisioning tasks to be
done in those base services that the user creator has combined. These
activities include the reservation of resources or configuration of
permissions to use the base services. In the intelligent mail service, one
of the component provisioning tasks is the creation of an email account
for the user in the email base service.

o Platform Provisioning, which considers the provisioning tasks to be
carried out in the OPUCE platform components such as updating billing
systems, updating service repository. These tasks are common for all the
services created.

o User Provisioning, which considers the provisioning tasks to be carried
out on the user side at subscription time, such as installing a dedicated
application in the user’s mobile device. In our example, the user context
base service requires that a module for generating the location
information is provisioned on the client device. This provisioning task
also involves the Subscription Management module to control
subscriptions of end-users to services.

Each type of provisioning is a compound of different tasks. Thus separate facets
for each type of provisioning are nested within the provisioning facet so as to be
easily separated and distributed to the provisioning module within the Service
Lifecycle Manager. Figure 4 depicts the service description structure for this facet and
the relationship of each type of provisioning with the corresponding OPUCE
architecture module.

Fig. 4. Service provisioning and deployment in OPUCE

 User-Driven Service Lifecycle Management 351

 Service Registration. In this activity the platform registers all the information
needed to access the service once activated, such as endpoints if it is a Web
Services-based access. In our service prototype, it consists of registering the
email address as the way to access to the service.

 Service Publication. In this activity the service is officially published including
all associated attributes, e.g. service type, descriptions, terms and conditions of
use, etc, making service discovery easier. Some of these data are taken from the
service description, such as the service name, the semantic facet, etc. Publication
is done via a service advertiser to which other users can subscribe specific
keywords describing the service instance like “intelligent email”, “email
forward” or “email reading”.

 Service Test. The aim of this activity is to ensure that a new service is ready to be
subscribed to and consumed by end-users. Nonetheless, this activity has not been
considered in the first stages of the OPUCE project. It might be included in the
second iteration of the project.

 Service Activation. This is the last step of the service deployment process. Once
the service has been activated it becomes publicly available and ready for
subscription. This activity is triggered by using the information included within
the service lifecycle schedule facet of the service description. This is done by
connecting the email system to forward the emails to our receiving component
and thus initializing the service logic flow. So it can be configured that the
service is only active Monday to Friday between 8 am and 8 pm.

4.3 Service Withdrawal

Basically, the service removal consists of undoing the steps carried out while
deploying the service (except for testing the service). Most of them are automatic, and
there is no intervention from the user. As well as the service description containing
information on the correct deployment and provisioning of a service, it also contains
information about the undeployment and unprovisioning activities. This information
is automatically included in the service description by the service creation
environment.

On the other hand, the user-centricity capabilities of OPUCE services imply that
the service description must also include some information about when the users
would like the services to be deactivated. Just as with the activation activity, this
information is explicitly introduced by the service creator when scheduling the service
from the service creation environment and is stored in the lifecycle schedule facet.

5 Conclusions

The user-centricity of services is gaining momentum in the current opening up of
telecom service ecosystems. Within this approach, services are created and managed
by the end-users themselves, even if they are not technically skilled.

The OPUCE project aims to create a complete platform to support the creation,
management and execution of user-centric services. Its initial results have been
summarized in this paper, especially those focused on the service lifecycle
management of user-centric services and the architecture that supports it. This service
lifecycle is also driven by users since service creators can interact with some of its

352 J.C. Yelmo et al.

aspects: they trigger the deployment process and can schedule the activation and
deactivation of the services they have created.

The role of the service description in such an automatic and customizable lifecycle
has also been described. We have used a faceted service specification to describe
different aspects of the service: the deployment tasks, the scheduling of services, etc.
Each one is used at a certain stage of the lifecycle and by a specific architecture
module of the platform.

In order to validate the suitability of the service description in conjunction with the
user-driven service lifecycle considered in OPUCE, we have developed a simple, but
realistic and relevant, prototype. It consists of a simple service which orchestrates
several base services (an email service, messaging service, a text to speech service
and a user context service). It allows users to receive the content of an incoming email
either as an SMS or as a voice message, depending on user’s situation. This prototype
validates the service description and some stages of the service lifecycle, such as the
user-driven automatic deployment.

Further work considers a potential contribution to the OMA Service Provider
Environment specification [11], which is currently under development, with some
aspects of this user-driven lifecycle of user-centric services.

Acknowledgments

This work is framed within the IST European Integrated Project OPUCE (Open
Platform for User-centric service Creation and Execution), 6th Framework
Programme, Contract No. 34101. We thank all our partners in the project for their
valuable comments and proposals aiming at improving the conceptual model.

References

1. Cuevas, A., Einsiedler, H., Moreno, J.I., Vidales, P.: The IMS Service Platform: A
Solution for Next-Generation Networks Operators to Be More than Bit Pipes. IEEE
Commun. Mag. 44(8), 75–81 (2006)

2. Yahoo Pipes Website (2007), http://pipes.yahoo.com/pipes
3. ETSI Standard: Open Service Access (OSA); Parlay X Web Services; Part 1: Common

(Parlay X 3). ES 202 504-01 (2007)
4. OMA Specification: OMA Web Services Enabler (OWSER): Core Specification. Version

1.1 (2006)
5. OPUCE Website (2007), http://www.opuce.eu
6. Caetano, J., et al.: Introducing the user to the service creation world: concepts for user

centric creation, personalization and notification. International Workshop on User
centricity – state of the art. Budapest, Hungary (2007)

7. Andrews, T., et al.: Business Process Execution Language for Web Services. Version 1.1
(2003)

8. SPICE Website (2007), http://www.ist-spice.org
9. SeCSE Website (2007), http://secse.eng.it

10. Sawyer, P., Hutchison, J., Walkerdine, J., Sommerville, I.: Faceted Service Specification. In:
Proceedings of Workshop on Service-Oriented Computing Requirements, Paris, France (2005)

11. OMA Specification: OMA Service Provider Environment Requirements. Candidate
Version 1.0 (2005)

Run-Time Monitoring for Privacy-Agreement
Compliance�

S. Benbernou, H. Meziane, and M.S. Hacid

LIRIS, University Claude Bernard Lyon1, France
{sbenbern,mshacid}@liris.univ-lyon1.fr,meziane has@yahoo.fr

Abstract. This paper addresses the problem of monitoring the compliance of
privacy agreement that spells out a consumer’s privacy rights and how consumer
private information must be handled by the service provider. A state machine
based model is proposed to describe the Private Data Use Flow (PDUF) toward
monitoring which can be used by privacy analyst to observe the flow and capture
privacy vulnerabilities that may lead to non-compliance. The model is built on
top of (i) properties and timed-related privacy requirements to be monitored that
are specified using LTL (Linear Temporal logic) (ii) a set of identified privacy
misuses.

1 Introduction

Numerous web services targeting consumers have accompanied the rapid growth of the
Internet. Web services are available for banking, shopping, learning, healthcare, and
government online. Most of these services require the consumer’s personal information
in one form or another which makes the service provider in the possession of a large
amount of consumer private information along with the accompanying concerns over
potential loss of consumer privacy. While access control aspect of security and privacy
is well understood, it is unclear of how to do usage control. In response to the pri-
vacy concerns quoted above, in [4] we proposed a privacy agreement model that spells
out a set of requirements related to consumer’s privacy rights in terms of how service
provider must handle privacy information. The properties and private requirements can
be checked at a design time prior to execution, however, the monitoring of the require-
ments at run-time has strong motivations since those properties can be violated at run
time. Thus, checking at run-time the compliance of the requirements defined in the pri-
vacy agreement is a challenging issue. That issue must be properly addressed otherwise
it could lead to agreement breaches and to lower service quality. Indeed, the private
data use flow must be observed which means monitoring the behaviour of the privacy
agreement. From the results of the observations, analysis can be done to come up to an
understanding, why the non-compliance took place and what remedy will be provided
enhancing the privacy agreement.

� This work is partially supported by the French National Research Agency (ANR) - Pro-
gram “Jeunes chercheurs:Servicemosaic” a part of the international project ServiceMosaic;
http://servicemosaic.isima.fr/.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 353–364, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 S. Benbernou, H. Meziane, and M.S. Hacid

The common approach developed to support requirements monitoring at run-time as-
sumes that the system must identify the set of the requirements to be monitored. In fact,
as part of the privacy agreement model, the set of privacy requirements to be monitored
are needed from which monitoring private units are extracted and their occurrences at
run-time would imply the violation of the requirements. Besides the functional proper-
ties (e.g operations of the service), the time-related aspects are relevant in the setting of
the privacy agreement. In addition, the non-compliance or failing to uphold the privacy
requirements are manifested in terms of vulnerabilities must be identified.

In this paper, we propose an approach for the management of privacy data terms
defined in the privacy agreement at run-time. The approach features a model based on
state machine which is supported by abstractions and artifacts allowing the run-time
management. Our contribution articulates as follows:

1. From the privacy requirements defined in the privacy agreement, we extract a set
of monitoring private units specified by the means of Linear Temporal logic (LTL)
formulas,

2. The set of privacy misuses is most likely met throughout the private data use is
provided. That set is not limited and can be enriched by those promptly revealed
when they occur in run-time and captured by the analysis,

3. A state machine based model is provided in order to describe the activation of
each privacy agreement clauses, that is, it spells out the Private Data Use Flow
(PDUF). The state machine supports abstractions and by the means of previous
artifacts, the behaviour observations are expressed. It will observe which and when
a clause is activated, or which and when a clause is violated and what types of
vulnerabilities happened, or which clause is compliant and etc. Such observations
lead to do reasoning to enhance the privacy agreement and enrich the knowledge
on misuses.

The remainder of the paper is structured as follows. We start by presenting an over-
view of the privacy agreement developed in our previous work in Section 2. In Section 3,
we describe the architectural support for privacy data use flow monitoring. Section 4
proposes an LTL-based approach to specify the monitoring private units and presents
a set of privacy misuses. In Section 5, we present the private data use flow model. We
discuss related work in Section 6 and conclude with a summary and issues for future
work in Section 7.

2 Privacy Agreement Model

To make the paper self containing, in this section we recall the privacy agreement model
specified in our previous work [4,5]. We proposed a framework for privacy management
in Web services. A privacy policy model has been defined as an agreement supporting a
lifecycle management which is an important deal of a dynamic environment that char-
acterizes Web services based on the state machine, taking into account the flow of the
data use in the agreement. Hence, WS-Agreement has been extended including privacy
aspects. In this setting, the features of the framework are:

Run-time Monitoring for Privacy-Agreement Compliance 355

– The privacy policy and data subject preferences are defined together as one ele-
ment called Privacy-agreement, which represents a contract between two parties,
the service customer and the service provider within a validity. We provided ab-
stractions defining the expressiveness required for the privacy model, such as rights
and obligations.

– The framework supports lifecycle management of privacy agreement. We defined
a set of events that may occur in the dynamic environment, and a set of change
actions used to modify the privacy agreement. An agreement-evolution model is
provided in the privacy-agreement.

– An agreement-negotiation protocol is provided to build flexible interactions and
conversations between parties when a conflict happens due to the events occurring
in the dynamic environment of the Web service.

Informally speaking the abstraction of privacy model is defined in terms of the following
requirements:

• data-right, is a predefined action on data the data-user is authorized to do if he
wishes to.

• data-obligation, is the expected action to be performed by service provider or third
parties (data- users) after handling personal information in data-right. This type of
obligation is related to the management of personal data in terms of their selection,
deletion or transformation.

Formally speaking, we defined data-right rd as a tuple (u, d, opd, pd), with u ⊆ U and
d ⊆ D and opd ⊆ PO and Rd = {{ri

d}j / i > 0 j > 0} , where U is the ontology of
data users and D is the ontology of personal data and PU is the ontology of purposes
PO is the set of authorized operations identifying purposes of the service and pd is the
period of data retention (the data-right validity), and Rd is the set of data-rights.

We defined data-obligation od as a tuple (u, d, ad, μd) with u ⊆ U and d ⊆ D and
ad ∈ Ao and Od = {{oi

d}j / i > 0 j > 0}, where U is the ontology of data users and
D is the ontology of personal data and Ao a set of actions that must be taken by the data
user and μd is an activated date of the obligation, and Od is the set of data-obligations.

Based on those requirements, we formalized a privacy data model Pd as a couple
< Rd,Od >, where Rd is the set of data-rights and Od is the set of data-obligations.
By means the proposed privacy model, we extended current WS-Agreement specifica-
tions which do not support the privacy structure and do not include the possibility to
update the agreement at runtime. The proposed extension is reflected in a new compo-
nent in a WS-Agreement called Privacy-agreement,

A privacy-agreement structure is represented in two levels :

(1) policy level, it specifies the Privacy-Data term defined as a set of clauses of
the contract denoted by C between the provider and the customer. The description of
the elements defined in the privacy-data model is embedded in this level, including
guarantees dealing with privacy-data model.

(2) negotiation level, it specifies all possible events that may happen in the service
behavior, thus evolving the privacy guarantee terms defined in the policy level. Negoti-
ation terms are all possible actions to be taken if the guarantee of privacy terms is not
respected, then a conflict arises. They are used through a negotiation protocol between

356 S. Benbernou, H. Meziane, and M.S. Hacid

the service provider and the customer. We also defined in this level the validity period
of the privacy agreement and a set of penalties when the requirements are not fulfilled.
In the rest of the paper, we are interested by the first level. We will present a way to
observe the use of the private data throughout the run time, and how to capture the
compliance of the agreement related in the privacy data terms.

3 Overview of the Monitoring Framework

We devise a privacy-compliance architecture for monitoring. It incorporates three main
components discussed in this paper, they are depicted in Figure1 and are namely a
private requirements specification, a PDUF Observer, a monitor. The figure assumes
the web service executes a set of operations using private data. While executing the
operations of the service, the process generates events stored in a database as logs.

In order to check the privacy compliance, the monitoring private units are extracted
from the private requirements specification defined in the privacy agreement. Monitor-
ing private units are specified by the means of LTL formulas taking into account the
privacy time-related requirements using a set of clocks.

The monitor collects the raw information to be monitored regarding the monitoring
private units from the event logs database. The collected data and private data misuses
stored in a database are fitted together in the PDUF Observer component in order to
check the non-compliance.

The PDUF observer observes the behaviour of the private data use flow. The privacy
agreement clauses are observed, which means, when a clause is activated, or which

Fig. 1. Monitoring framework

Run-time Monitoring for Privacy-Agreement Compliance 357

and when a clause is violated and what types of vulnerabilities happened, or which
clause is compliant etc. A model to represent such behaviour is provided. At the end
of the observations the observation results report is generated to the Analysis process
depicted in the figure.

From the previous observed results and reasoning facilities, the analysis process will
provide diagnosis of violations, for instance understanding why the non-compliance
took place and what remedy will be provided enhancing the privacy agreement. It can
also enrich the database of misuses by those promptly revealed when they occur at run-
time. Finally, the detection misuses component consumes the misuses recorded in the
database and identify the violation types from compliant usage behaviour. We will not
give more details about the analysis and detection components, they are out of the scope
of the paper.

4 Requirements for Monitoring Privacy

One of the key aspects for the reliability of the service is the trustworthiness of the
compliance of its collected private data use to the agreement. To ensure the privacy
agreement compliance, the observation of the service behaviour and its private data
use becomes a necessity. For making the compliance happen, keep track of all uses
is a fact, that is, from the result of the observations, if needed when violations are
detected, the revision of the agreement can be held and relaxed. Indeed, to make the
observation effective, two essential ingredients are required, we need to define what
kind of knowledge must be monitored and the knowledge which makes the agreement
not compliant. In this section we discuss the two aspects.

4.1 Monitoring Units for Privacy

We distinguish four types of unit to be monitored: private data unit, operation unit,
temporal unit and role unit.

• Private data unit. The private data unit d is the core of our monitoring framework. In
fact, from the log, we need to observe only the private data and its behaviour.

• Operation unit. We distinguish two types of actions (i) actions used to complete the
service activity for the current purpose for which it was provided and are denoted by
Opcurrent (ii) actions used by a service to achieve other activities than those for which
they are provided, called Opextra−activity . Those two kinds of operations are proposed
in order to know when a compliance is compromised, while the service is running for
which it was provided or for some operations else. The set of the operations is denoted
Op.

• Role unit.We need to observe who will use the private data.

• Temporal unit. The analysis of time-related aspects of the privacy monitoring requires
the specification of operation durations and timed requirements. The instance monitor
i.e. temporal unit is defined as a temporal formula using Linear Temporal Logic (P,S,H,
operators) [10]. We identify four types of temporal units, and we denote the set of
temporal units by T :

358 S. Benbernou, H. Meziane, and M.S. Hacid

Definition 1. (Right triggering time). For each collected private data d, the right trig-
gering time denoted ε is the activation time of the operation associated to the right:
∀Ri

d ∈ C → ∃εi
d ∈ T | (opi

d.R
i
d)

εi
d is activated, where i is the i th right associated to

the private data d, C is a set of clauses in the agreement, and T is a domain of time val-
ues, and the LTL formula using P the past temporal operator is |=εi

d
P opi

d.R
i
d, which

means in the past at εi
d time the operation is true.

Definition 2. (Right end time). For each collected private data d, the right end time
denoted β is the end time of the data use (operation) associated to the right:
∀Ri

d ∈ C → ∃βi
d ∈ T | (opi

d.R
i
d)

βi
d is finished, and the LTL formula is |=βi

d
P¬opi

d.R
i
d

at β time the operation is not valid.

Definition 3. (Obligation triggering time). For each collected private data d, the obli-
gation triggering time denoted μ is the activation time of the action associated to the
obligation: ∀Od ∈ C → ∃μd ∈ T | (ad.Od)μd is activated, the LTL formula using S
since operator, |=μd

(ad.Od)S(¬opd.Rd), which means ad.Od is true since ¬opd.Rd

(The formula is valid for the last occurrence of each right in which the obligation is
associated to).

Definition 4. (Obligation end time). For each collected private data d, the obligation
end time denoted α is the end time of the action associated to the obligation:
∀Od ∈ C → ∃αd ∈ T | (ad.Od)αd is ended, the LTL formula is |=αd

P ¬ad.Od at α
time the action is not valid.

4.2 Privacy Misuses

In this section, we identify the non-compliance or failing to uphold the agreement man-
ifested in terms of vulnerabilities or misuses. We provide a privacy misuses which
is most likely met throughout the private data use. We have classified them into two
classes explicit and implicit misuses. The former one can be visualized in our private
data use flow model whereas the latter can not be identified. For instance, security on
data, accountability can not be identified in our model, so it is not in the scope of the
paper. We classified three types of explicit misuses, Temporal misuses, operation mis-
uses and role misuses. Table 1 summarizes such misuses. However, the listed misuses
are not unique, while run-time, some new misuses can be detected and come to enrich
the misuse database. How to detect such misuses is not discussed in this paper.

5 Monitoring Private Data Use Flow

In order to describe the lifecycle management privacy data terms defined in the agree-
ment, we need to observe the data use flow. Such observations will allow us to make
analysis, diagnosis and to provide reasoning on violations, for instance why the viola-
tions happen, what we can improve in the agreement for making the compliance of the
agreement happens etc. The analysis aspect is not handled in this paper.

We propose to express the Private Data Use Flow (PDUF) as a state machine because
of its formal semantic, well suited to describe the activation of different clauses of the

Run-time Monitoring for Privacy-Agreement Compliance 359

Table 1. Misuses identification through privacy data use flow

Requirement Compliance
Category

Misuses Type of
misuses

Data-right Use no-authorized operation opd [wrong-use];
the misuse happens when the following
formula is not valid: �|= Hopd.Rd,

Explicit

in all the past opd is not admitted.
Retention time violation of data retention period: the mis-

use happens when the formula
Explicit

|= P ((βd − εd) > pd) is valid.
Disclose-To a [wrong collector] as third party; the fol-

lowing formula is not valid: �|= Hud.Rd,
Explicit

in all the past ud is a wrong user.
Data-obligation Obligation Activa-

tion date
violation of the obligation activation, the
misuse happens when the formula

Explicit

|= P (βd > μd) is valid.
Security on data
(delete, update,
hide, unhide,...)

Lack or failure of mechanism or proce-
dure.

Implicit

Security / 1)loss of confidentiality and integrity of
data for flows from the Internet, 2) exter-
nal attacks on the processes and platform
operating systems since they are linked
to the Internet, 3) external attacks on the
database,...

Implicit

privacy agreement. It is an effective way to identify privacy vulnerabilities, where a ser-
vice ’s compliance to privacy regulations may be compromised. It will show which and
when a clause is activated toward the monitoring or which and when a clause is violated.
The time-related requirement properties set in the agreement are depicted explicitly in
the state machine. It will specify the states of each activated clause in the policy level. The
semantic of the state machine is to define all the triggered operations involving private
data from the activation of the agreement (initial state) to the end of the agreement (final
state) . We need to keep track of all private data use with or without violations. Figure 2
shows an example of the privacy data term activation for the purchase service provider.

We have identified several abstractions in relation to private data flow, private data
use abstractions and authorization abstractions. The first abstractions describe the dif-
ferent states in which the agreement is -which private data is collected and when it is
used and for what and who use it- . The authorization abstractions provide the condi-
tions that must be met for transitions to be fired.

In this formalism, the fact that the private data has a time retention for a right (re-
spectively the activation time of an obligation) called fixed guard time, the private data
use time is represented by time increment in the state, followed by the end of the right
(respectively obligations) with success or a violation of that time. Intuitively, PDUF is a

360 S. Benbernou, H. Meziane, and M.S. Hacid

Fig. 2. Private Data Use Flow (PDUF)

finite state machine for which a set of clock variables is assigned denoted by Δ. A vari-
able is assigned for each activation of the clauses (rights and obligations). The values
of these variables increase with passing the time. The transition will take place when an
operation is activated or monitoring time units are triggered. If the temporal units are
compliant to the guard times, it will happen the transition will take place with success
and no violation is recorded in that state. However, if non-compliance is detected, the
transition will take place with violation, then the state is marked as violated.

Definition 5. (PDUF.) A PDUF is a tuple (S, s0, sf ,M,R,Q)

• S is a set of states;
• s0 ∈ S is the initial state, and sf ∈ S is the final state ;

Run-time Monitoring for Privacy-Agreement Compliance 361

• M is a set of monitoring private units: set of triggered operations and/or set of
temporal units, M = {OP, T };

• R ⊆ S2 × M × 2Δ is a set of transitions with a set of operations or a set of
triggering time and a set of clocks to be initialized δd−init ∈ Δ;

• Q : S → {δi | δi ∈ Δ, i ≥ 1} assigns a set of clocks to the states.

The effect of each transition R(s, s
′
, m, c) from the source state s to the target state

s
′
is to set a status of the clauses in the agreement which means to perform an operation

op ∈ OP using a private data or a monitoring time unit t ∈ T is activated.
Let’s define the semantic of PDUF through the following example for the agreement

with a set of clauses (rights and obligations).

Example 1. Let us consider the example of a purchase service without giving details
about transactions between the customer and the service. An agreement has been signed
between them setting up a set of clauses with a validity period denoted by validity-date.
Those clauses are specified as follows: at the date date() the agreement is activated
and the service collects email address (email) and Credit card number (ccn). Those
private data are used for two types of operations (1) to complete the service activity
for the current purpose i.e. the email is used to send invoices and Credit card num-
ber for the payment of invoices. The operation are expressed by the following rights
r1
email(role, email, send invoice, p1email) and rccn(role, ccn, payment invoice,

pccn) (2) to achieve other activities than those for which they are provided, for instance
marketing purpose i.e. the email is used to send the available products and their prices,
that clause is expressed by the right r2

email(role, email, send offer, p2email).
When the retention times of the private data email and ccn (β1email, β2email, βccn)

are elapsed, the corresponding obligations are triggered, Oemail(role, email, hide,
μemail) and Occn(role, ccn, delete, μccn). Those obligations specifying the role must
hide (respectively delete) as soon as the activation date μemail (respectively μccn) is
reached.

In what follow, due to the space limitation we will not comment on all the state machine,
and for the sake of clarity, we omit some details about it, such as the clocks on the states
and all the misuses etc.

States: we define four types of states:

– The initial state si represents the activation of the agreement where the first private
data of the customer is collected. In Figure 2, si is defined by A.

– The intermediary states represent the flow of the collected private data use. By
entering a new state, a private data is used.
• to complete the activity of the service for which it was provided, identified in

Figure 2 by Opcurrent. In the state B, the current operations are SendInvoice
and payment. In this state, the clocks δ1email and δccn are activated respectively
to r1

email and rccn and incremented passing the time.
• and/or to achieve an extra activity as depicted in Figure 2 by Opmarketing . The

right r2
email is activated in the state C as soon as the marketing operation is

triggered. The same operation can be activated as many times as the data time
retention pemail is valid. It is represented by a loop in the state C. The privacy
agreement remains in the same state.

362 S. Benbernou, H. Meziane, and M.S. Hacid

• and the data use is finished (the right). For instance, the agreement will be in
the state C1 since the data retention guard time is reached, which means the
finishing time of the right is over and is denoted by βccn.

• and/or to activate an operation dealing with the security (e.g. obligations) when
the retention time of the private data defined as a fixed time in the right is
elapsed and the time for triggering the obligations starts. For instance, such
case is depicted in Figure 2 in the state C2, where occn is activated when the
usage time of the date βccn is reached and the obligation time starts defined in
the transition by μccn.

– The virtual state labeled Failure agreement will be reached when a private data
is used to achieve the operation misuse, and/or role misuse and/or time misuse
happens regarding the clock variable values and fixed times. For instance, the first
type of misuse is identified by Opwrong−use/Forward[email] between state B and
Failure agreement state. We call this state as a virtual state because it is considered
only like a flag of misuses.

– The final state sf represents the end of the agreement which means the validity of
the agreement is over, and either the data use in all its shapes is compliant to the
agreement or the agreement is not respected due to the misuses. The best case is to
reach the end of the agreement without any misuses as depicted in the figure from
the state E to the end-agreement state.

Transitions: Transitions are labeled with conditions which must be met for the transi-
tion to be triggered. We have identified three kinds of authorization abstractions:

– Activation conditions. We define two types of activation (i) an operation has the
authorization to collect private data to achieve the current aim of the service, for
instance, opcurrent condition on the transition from the state A to the state B, an
operation dealing with an extra activity of the service has the authorization to be
triggered. For instance, the operation opmarketing from the state B to the state C.

– Temporal conditions. The transition is called timed transition. Regarding the tem-
poral monitoring unit, we define four types of timed transitions (1) right triggering
time ε, for instance from the state B to the state C the timed transition is labeled by
ε2email along with the activation of the clock δ2email assigned to the right r2

email

(2) Right end time β, from the state C to state C1 the transition is labeled βccn,
which means the ccn use is over (3) Obligation triggering time μ, the authorization
to keep the private data is finished and the obligation is triggered, for instance from
the state C1 to C2, the transition is labeled μccn, the operation of security must be
fired (4) Obligation end time α, the obligation is over, for instance from the state E
to the end-agreement state, we calculate the maximum of the two end times αemail

and αccn, in our case it is the best way to finish the compliance of the agreement.
– Misuse Conditions. The transition can be labeled by all the misuses identified in

section 4.2. For the misuse dealing with the operations , the target state of the
transition is failure-agreement and Back to the previous state, for instance, the op-
eration opwrong−use/forward on the transition between the state B and the failure-
agreement state, and back to the state B. For the temporal misuse the target state
of the transition is failure-agreement and no back to the previous state rather to the

Run-time Monitoring for Privacy-Agreement Compliance 363

next state, for instance, a time violation happens in D2 and the system passes to the
next state E.

6 Related Work

The literature is very scarce on works dealing with monitoring the privacy compliance
in web service. However, the problem of web services and distributed business pro-
cesses monitoring is investigated in the works [2,3,9,12,1,7]. The research in [9,12] is
focusing on monitoring of service-based software (SBS) systems specified in BPEL.
They use event calculus for specifying the requirements that must be monitored. The
run-time checking is done by an algorithm based on integrity constraint checking in
temporal deductive databases. Barezi et al in [2,3], developed a tool that instruments
the composition process of an SBS system in order to make it call external monitoring
services that check assertions at runtime. The work in [1] is close to the previous works,
the authors present a novel approach to web services described as BPEL processes. The
approach offers a clear separation of the service business logic from the monitoring
functionality. Moreover, it provides the ability to monitor both the behaviours of single
instances of BPEL processes, as well as behaviours of a class of instances. Lazovik et
al. [8] propose an approach based on operational assertions and actor assertions. They
are used to express properties that must be true in one state before passing to the next, to
express an invariant property that must be held throughout all the execution states, and
to express properties on the evolution of process variables. While providing facilities
for the verification of processes these approaches do not take privacy requirements into
account.

In terms of privacy compliance, there exist few works including [6,13,11]. In [6], the
authors examine privacy legislation to derive requirements for privacy policy compli-
ance systems. They propose an architecture for a privacy policy compliance system that
satisfies the requirements and discuss the strengths and weaknesses of their proposed
architecture. In [13] the author proposes a graphical visualization notation to facilitate
the identification of private information vulnerabilities that can lead to privacy legisla-
tion non-compliance. In [11], the authors automate the management and enforcement of
privacy policies (including privacy obligations) and the process of checking that such
policies and legislation are indeed complied with. This work is related to enterprise.
While providing tools for privacy compliance in the previous works, however, these
approaches do not take private data use flow into account and no formal method along
with reasoning and also no time-related properties are discussed.

7 Conclusion

This work has proposed an effective and formal approach to observe and verify the pri-
vacy compliance of web services at run-time. We have emphasized private data use flow
monitoring of privacy-agreement requirements, which is an important issue to date has
not been addressed. It is a state machine based approach, that allows to take into account
the timed-related properties of privacy requirements and to facilitate the identification
of private information misuses. The privacy properties to be monitored are specified

364 S. Benbernou, H. Meziane, and M.S. Hacid

in LTL. The monitored units are extracted from the privacy agreement requirements.
The approach supports the monitoring of a set of identified misuses that lead to non-
compliance, and which can be enriched from the observation diagnosis. The approach is
still under development. Our ongoing work and a promising area for the future include:
(1) The development of reasoning facilities to provide a diagnosis of misuses, (2) The
development of tools for detecting the misuses (3) The development of tools along with
metrics for enhancing the privacy-agreement from the observations (4) Expanding the
approach to handle the composition of the services.

References

1. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: ICWS’06. Proceedings of the IEEE International
Conference on Web Services, pp. 63–71. IEEE Computer Society Press, Chicago (2006)

2. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC ’04.
Proceedings of the 2nd international conference on Service oriented computing (2004)

3. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

4. Benbernou, S., Meziane, H., Li, Y.H., Hacid, M.: A privacy agreement model for web ser-
vices. In: SCC’07. IEEE International Conference on Service Computing, IEEE Computer
Society Press, Salt Lake City, USA (2007)

5. Guermouche, N., Benbernou, S., Coquery, C.E, Hacid, M.: Privacy-aware web service pro-
tocol replaceability. In: ICWS’07. IEEE International Conference on Web Services, IEEE
Computer Society Press, Salt Lake City, USA (2007)

6. Yee, G., Korba, L.: Privacy policy compliance for web services. In: ICWS’04. Proc. of the
IEEE International Conference on Web Services, IEEE Computer Society Press, San Diego,
USA (2004)

7. Kazhamiakin, R., Pandya, P., Pistore, M.: Representation, verification, and computation of
timed properties in web. In: ICWS’06. Proceedings of the IEEE International Conference on
Web Services, IEEE Computer Society Press, Los Alamitos (2006)

8. Lazovik, A., Aiello, M., Papazoglou, M.: Associating assertions with business processes and
monitoring their execution. In: ICSOC ’04. Proceedings of the 2nd international conference
on Service oriented computing (2004)

9. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems composed
of web-services: Initial implementation and evaluation experience. In: ICWS. 2005 IEEE
International Conference on Web Services, IEEE Computer Society Press, Orlando, Florida,
USA (2005)

10. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems:Specification. Springer, Heidelberg (1992)

11. Mont, M.C., Pearson, S., Thyne, R.: A systematic approach to privacy enforcement and pol-
icy compliance checking in enterprises. In: Fischer-Hübner, S., Furnell, S., Lambrinoudakis,
C. (eds.) TrustBus 2006. LNCS, vol. 4083, pp. 91–102. Springer, Heidelberg (2006)

12. Spanoudakis, G., Mahbub, K.: Non intrusive monitoring of service based systems. Interna-
tional Journal of Cooperative Information Systems (2006)

13. Yee, G.: Visualization for privacy compliance. In: VizSEC ’06. Proceedings of the 3rd inter-
national workshop on Visualization for computer security, Fairfax, USA (2006)

Task Memories and Task Forums: A Foundation

for Sharing Service-Based Personal Processes

Rosanna Bova1,2, Hye-Young Paik3, Boualem Benatallah3, Liangzhao Zeng4,
and Salima Benbernou1

1 LIRIS, University of Lyon 1, France
{rosanna.bova,sbenbern}@liris.cnrs.fr

2 LIESP, University of Lyon 1, France
3 CSE, University of New South Wales, Australia

{hpaik,boualem}@cse.unsw.edu.au
4 IBM T. J. Watson Research Center Yorktown Heights, NY 10598

lzeng@us.ibm.com

Abstract. The growing number of online accessible services call for ef-
fective techniques to support users in discovering, selecting, and aggre-
gating services. We present WS-Advisor, a framework for enabling users
to capture and share task memories. A task memory represents knowl-
edge (e.g., context and user rating) about services selection history for a
given task. WS-Advisor provides a declarative language that allows users
to share task definitions and task memories with other users and com-
munities. The service selection component of this framework enables a
user agent to improve its service selection recommendations by leverag-
ing task memories of other user agents with which the user share tasks
in addition to the local task memories.

1 Introduction

The recent advances in ICT comprising Web services, pervasive computing, and
Web 2.0 promise to enable interactions and efficiencies that have never been
experienced before. Users will have ubiquitous access to a network of services
along with computing resources, data sources, and user friendly tools [1]. The
concerted advances in services oriented computing [2] and pervasive systems [1]
provide the foundations for a holistic paradigm in which users, services, and
resources can establish on-demand interactions, possibly in real-time, to realize
useful and context-aware experiences.

Service oriented architecture and Web services propose abstractions, frame-
works, and standards to facilitate integrated access to heterogeneous applications
and resources. There has been major progress in terms of services description,
interaction protocols, services discovery and composition [2]. More specifically,
services composition languages and frameworks foster agile integration by sim-
plifying integration at the communication, data or business logic layers. Fur-
thermore, by leveraging efforts in semantic web services [3], service composition
frameworks made a forward step in enabling automated support for service de-
scription matching [3].

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 365–376, 2007.
� Springer-Verlag Berlin Heidelberg 2007

366 R. Bova et al.

Although existing composition techniques have produced promising results
that are certainly useful, they are primarily targeted to professional programmers
(e.g., business process developers). Composition languages are still procedural in
nature and composition logic is still hard to specify [4]. Specifying even simple per-
sonal processes is still time consuming. Most of the time, if the needed integrated
service is not available, users need to access various individual services to become
self-supported. For example, a driver might need to use several services includ-
ing location, travel route computation, traffic information, and road conditions
services to get timely information regarding a trip in progress [1].

The emerging wave of innovations in Web 2.0 promotes a new paradigm in
which both providers and end users (including non-expert users) can easily and
freely share information and services over the Web [5]. For instance, users pub-
lish and share information (e.g., URLs, photos, opinions) via personal blogs,
social networks and Web communities. Portals such as YouTube, Flickr and Deli-
cious flourished over the years as user-centric information sharing systems. These
systems offer more simple and ad-hoc information sharing techniques (e.g., free
tagging and flexible organization of content) [6]. We argue that applying such
easy-and-free style of information sharing to service oriented paradigm would
offer tremendous opportunities for automating information management, in par-
ticular for the area of managing data from a variety of end-user processes (or
referred to as personal processes [16]). Such processes are apparent in office,
travel, media, or e-government. For example, travellers will script personal travel
arrangement tasks and office workers will script purchasing processes, etc.

In this direction, we propose the WS-Advisor framework. WS-Advisor provides
a declarative language and an agent-based architecture for sharing task defini-
tions and services selection recommendations among users.

In our previous work [7,8], we proposed task memories. In a nutshell, a task
memory represents the knowledge about services that have been selected in past
executions of the task and contexts in which these services have been selected
(i.e, the information about the contexts in which certain combination of services
were considered most appropriate by users). Task memories are used during
service selection to recommend most relevant candidate services. By applying
continuous feedback on the on-going usage of services, the system is able to
maintain and evolve the task memories, resulting in more fine-tuned service
selection.

In this paper, we focus on task definitions and task memories sharing in the
WS-Advisor framework. More specifically, we make the following contributions:

– To simplify task information sharing, WS-Advisor provides a metadata model
and a declarative (SQL-like) language. Together, they provide an effective
management platform for a task repository. The language is used for spec-
ifying task sharing policies. which includes what a user is willing to share
about a task repository and with whom.

– We propose the concept of task forums to maintain task repositories (e.g.,
task definitions and task memories) that may be of interests to several indi-
viduals or communities. Essentially a task forum provides a means to collect

Task Memories and Task Forums 367

and share domain specific task definitions and task memories among users.
This allows users to reuse and customize shared definitions instead of de-
veloping definitions of tasks from scratch. In addition a task forum uses
publish/subscribe interaction model to support service selection recommen-
dations for the “masses”.

We briefly overview the basic concepts in Section 2. Section 3 introduces
the meta-data model and task sharing policies. Section 4 presents task forums.
Section 5 describes the implementation architecture and finally discussion and
concluding remarks are presented in Section 6.

2 Preliminaries

In this section, we summarize some background concepts used in the remainder
of this paper, namely task, task memories and context summary queries, to keep
the paper self-contained. Details about these concepts are presented in [7,8].

Task Definition. A task in WS-Advisor represents a set of coordinated activities
that realize recurrent needs. For example, a frequent business travel task may
include activities such as hotel booking, car rental, flight reservation, meeting
scheduling and attendee’s notification. We assume a service ontology in which
service categories, service attributes and operations for each service category are
defined. A task is described in terms of services ontologies and is defined using
UML state charts. A state can be basic or composite. Each basic state is labeled
with an activity that refers to either an operation or a service. A task definition
can be translated to executable processes such BPEL. Also, the administrator
associates each task with its relevant contexts (e.g., for a travel booking task, the
user’s timezone, local currency, smoking preferences, type of Web browser, may
be relevant). Therefore, when a user chooses a task, any relevant contexts can
be determined. This enables WS-Advisor to consider context information during
service selection and such context forms the basis for making recommendations.

Context Summary Queries. A context summary query (CSQ) represents a
context to be considered by the service selection process. It is specified using
a conjunctive query of atomic comparisons involving context attributes, service
attributes, service operation inputs/outputs, and constants. How the context
summary queries are generated and associated with a task is explained in [7]. For
example, for a flight booking task, relevant context attributes may be origin,
destination, price, seat class, currency, etc. and a CSQ for a task could
be expressed as a set of pairs (c,v) where c is an context attribute and v is the
value (e.g., {(origin, “Sydney”),(destination,“Paris”),(seat class, “Economy”)}).
Task Memory. A task memory is a data structure which captures the informa-
tion about the contexts and combinations of services that have been successfully
used in the past to execute a given task. The service selection process considers
task memories so that the selection is not only based on the description or con-
tent of services but also on how likely they will be relevant in a given context.

368 R. Bova et al.

The design of task memories is independent of the different service selection
strategies as presented in [8]. A task memory is associated with each task and is
gradually built overtime using the context and service selection history.

3 Metadata Model for Sharing Tasks and Task Memories

We first present a set of metadata abstractions designed for sharing tasks, task
memories and task categories, as well as a simple declarative SQL-like language
for manipulating them. Most attributes of metadata are self-explanatory. Hence,
we will mainly elaborate the ones that need clarifications.

3.1 Representing Task Categories, Tasks and Task Memories

Users: Users represent a group of contacts with whom a single user maintains
some relationships. Each user has their own Users table which contains infor-
mation about his her contacts. We assume that the user will add/delete contacts
from this table as appropriate 1.

Users.

user id user relationship user type

Luc friend individual

Jazz music common interest group

user relationship specifies the nature of relationships. Possible values are
business, family, friend, common interest. user type specifies the type of
user id which can be either individual or group (i.e, a community of users with
special interests).

Tasks: As metadata for managing task definitions, we define Tasks with the
attributes shown below. task annotation tags represents a collection of keywords
that characterize a task. The attribute task query schema is a collection of at-
tributes that could be used to query a task. For example, attributes origin, desti-
nation, travel start, travel end could be the ones for the Sydney trip plan task.

Tasks.

task name task annotation tags task query schema

Sydney Trip sydneytrip, australia, 2007trip,
holiday

origin,destination, travel start,
travel end

Visa Trip international, 2006trip, business origin, destination, period,
VISA number

Task Memories: We represent task memories with the attributes: tm name,
context summary and recommendations.

1 This is very much like the way Internet users are finding their “friends” in social
networks.

Task Memories and Task Forums 369

Task Memory.

tm name context summary recommendations

biz tripAug06 {(origin,“Lyon”), (destina-
tion,“London”), (price, <500)}

{[(AustrianAirline, Ibis), 0.7,
Luc]; [(Qantas, Hilton),0.5,
Moby]}

hol tripApr07 {(origin,“Lyon”), (destination,
“Sydney”), (price, >1000 &&
<2000)}

{[(VirginAirline, Stamford), 0.8,
Luc]; [(Qantas, Ibis),0.4, Luc]}

We have explained context summary earlier. The attribute recommendations rep-
resents the most preferred combinations of services to execute a given task. In
fact, for each context summary query, the task memory maintains the K(K >=
0) most preferred services to execute for the given activity. Each service is asso-
ciated with a positive weight value, called Global Affinity (GA), exceeding a
predefined threshold 1. The global affinity of a service measures the relevance of
the service in performing the activity in the given context in the task. More pre-
cisely, this value represents a weighted average of the values that measures the
level of satisfaction of users, about the service, with respect to all the possible
services that have been selected in that context2.

We represent recommendations as a set of triple (sc, score, p), where sc is
itself a combination of web services, score represents GA for the combination
and p denotes the provenance of the recommendation which references the user
or group Users. The issue of trusting the provenance of a recommendation and
whether a user is allowed to share outsourced recommendations is interesting by
itself and is outside the scope of this paper.

Task Categories: For intuitive manipulation, browsing, and querying of tasks
we provide the notion of task category (similar to folders and files abstractions
desktop user interfaces). A task category is defined as a view (in the database
terminology) over tasks and other task categories.

Task Category.

category
name

category tags sub categories tasks

Travel Q2, Q3, trip, tourism,
travelogue, lodging

International Travel Visa Trip, Sydney Trip

Q2: SELECT task_annotation_tags FROM Task

WHERE task_name = ’Sydney_Trip’

Q3: SELECT task_annotation_tags FROM Task

WHERE task_name = ’Visa_Trip’

The attribute category tags represents a collection of keywords that characterize
a category (e.g. for the category Travel, the keywords can be, trip, lodging etc).
The attribute sub categories represents a collection of categories that are linked

1 This could be a parameter set by a system administrator.
2 How to compute GA is presented in [9].

370 R. Bova et al.

to a category via the specialization relationship (e.g., for the category Travel,
one sub category can be International Travel). Each tuple of this relation is a
container of tasks (and categories) of a specific domain. Some attributes of this
table may be explicitly provided by the user of specified using relational views
(e.g., Q2 and Q3).

Task Repositories: With the metadata described aboved, WS-Advisor can
provide what we refer to as Task Repository, that is, a repository of tasks, task
memories and task categories. Users can interact with the task repository in a
number of ways. This includes:

– Task Repository Browsing: The task query language of WS-Advisor allows
a user to browse a task repository. Users can navigate through the task
categories hierarchy, select, a display information about specific categories
and tasks.

– Task Repository Querying: The task query language of WS-Advisor supports
both SQL-like querying over the schema of the task repository (i.e, Tasks,
Task Categories, Task Memories, and Users relations) and keywords based
querying. It also supports task signature queries. Task signature queries are
useful to find tasks that can accept given input or output parameters (i.e,
queries over task schemas).

– Task Repository Sharing: The task definition language of WS-Advisor sup-
ports the definition of views for sharing information about tasks (e.g, task
categories, task definitions, and task memories) of a given task repository
with users in social networks. It also supports the definition views for out-
sourcing information from other task repositories which are accessible
through user social networks. We will illustrate the main features of this
language through examples in the next Section.

3.2 Representing Sharing Policies

Besides the metadata representation needed for the sharing, there is a need
for a simple and effective language for specifying the “sharing policies” for
a task repository. We propose the following set of metadata for the purpose:
Shared Categories, Shared Tasks, and Shared Recommendations. One thing to note
is that the values of the attributes in the metadata are both conventional data
types and “query-types”. That is, the values of the attributes may be queries
which are to be evaluated3.

Shared Categories: This includes the attributes C To Share and C With. A
tuple (cq,uq) of Shared Categories is created by two queries:

– cq is a query over Task Category and selects a collection of categories to be
shared

– uq is a query over Users and selects a set of users who will have access to the
categories selected by cq.

3 This is similar to the work proposed in [10].

Task Memories and Task Forums 371

Shared Tasks: It is defined to define tasks to be shared. It has attributes
T To Share and T With. A tuple (tq,uq) of Shared Tasks is created by tq which
is a query over Tasks and selects a collection of tasks which are to be shared.
Same as Shared Categories, uq represents a query over Users.

In fact, Shared Tasks enables the user to refine the sharing policies in the sense
that s/he can identify a subset ot tasks within a category for sharing instead of
all tasks in a shared category.

Shared Recommendations: To share task memories, we use the attributes
R To Share and R With. A tuple (rq,uq) in Shared Recommendations is created
by rq is a query over Task Memories and selects task memories to be shared and
uq is a query over Users.

3.3 Importing and Mapping Views

Similar to browsing task repositories, a user can browse and search the views
created by other users. Once a user finds a view that is useful to fulfilling her
task, she can do one of the followings:

Remote View Importation: View importation provides a means for users to
copy task categories and task definitions from the shared views of other users. Def-
initions can be imported and stored in Imported Categories and Imported Tasks
tables. The schema of the Imported Categories (respectively, Imported Tasks) in-
cludes the following attributes: I Categories (respectively, I Tasks) and I User. The
attribute I Categories (I Tasks) represents a collection of categories (respectively,
tasks) that are imported from the repository of the user identified by the attribute
I User. Defining new tasks could be demanding to end users. This allows users to
share, not only recommendations, but also definitions of tasks. More, importantly
the importation provides a practical means for easy definitions of tasks.

View Mapping and Query Forwarding: In addition to directly importing a
shared view, users can also create a mapping between a local repository and a re-
mote repository.Via the mapping, a query (i.e., query over task categories, tasks or
task memories) can be forwarded from one to another. In order to forward queries,
there is a need to align the terminologies used in these repositories so that queries
expressed over one repository could be translated to queries expressed over the
other repository. For such mapping, we presented a peer-to-peer schema mapping
approach in [11]. The mapping can be complete (that is, all attributes in shared
categories, tasks and task memories views are mapped) or partial (that is, only
some of the attributes in the views are mapped. For the ones without mapping,
synonyms are to translate the terms). The complete description of the mapping
and query forwarding process is outside the scope of this paper.

4 Task Forums

In WS-Advisor, a user forms “links” with other users based on the sharing poli-
cies they create (i.e., sharing tasks and task memories). These links can be

372 R. Bova et al.

considered as views over remote task repositories and can used to forward queries
for the purpose of outsourcing service selection recommendations (i.e., obtaining
recommendations from remote task repositories).

Based on the foundation of sharing tasks, in this section, we put forward a
concept of Task Forums to promote what we call ”mass sharing”. Creating or
importing views provide a mechanism for sharing tasks among a relatively small
number of individuals (e.g., friends in your Skype contact list). Task forums aim
to take the paradigm to a larger scale.

To explain the idea behind the task forums, we would like to draw an analogy
from the Internet user groups (e.g., Google groups). In user groups, users share
the same domain of special interests. They come to the group with different
levels of skills and expertise in the domain. Inside an active group, we would see
a novice user posting questions like “How do I do X”, “Where can I find X” or
“What is X”, etc., and experts providing answers or appropriate recommenda-
tions. There would be some feedback mechanism to keep track of the quality of
the answers or recommendations. Therefore, overtime, the wealth of high quality
knowledge is accumulated and shared by the users in the group.

Task forums operate on the similar idea, but they provide a unique and inno-
vative concept in that their focus is on facilitation of sharing recurrent personal
processes (i.e., tasks) and recommendations for services that realise such pro-
cesses. We envisage that a community of individuals or interest groups will form
a task forum, which is specialised in a particular domain and various tasks within
it (e.g., task forum of travel plans, task forum of small businesses or task forum
of financial plans). Each task forum has a set of peers who are task forums
themselves, forming a network of task forums.

In each task forum, there are task definitions, task memories and a set of
metadata for storing necessary mapping data for querying peer task forums.
Expert users can provide various task definitions and even bind them to a specific
execution language such as BPEL. For example, a task forum for small businesses
may have task definitions such as issuing a business registration number, filing
an insurance claim, search for a tax agent near your area, etc. A novice user can
easily import such task definitions and execute them in her own task execution
engine. The users can discover and import tasks from other forums and provide
mappings so that queries can be forwarded.

Although users can browse and search task definitions and task memories for
recommendations, there is a need for effectively managing the communication of
interests (similar to posting a question and providing an answer). Inside a task
forum, users can use a query publication/subscription mechanism to manage the
communication.

Query Publication and Subscription: The concept of shared views allows
peers (individuals or communities) to publish information that they are will-
ing to share and with whom. This mechanism allows for importation and query
forwarding as discussed earlier. In addition, we use the concept of query sub-
scription to allow a peer to receive relevant recommendations from other peers
in a proactive manner. This is similar to the concept of continuous queries in

Task Memories and Task Forums 373

publish/subscribe systems [12]. While, any peer can use the mechanism of query
subscriptions, we will focus on how a community exploit this mechanism to pro-
vide a kind of a mass sharing of service selection recommendations. In order to
facilitate such sharing, WS-Advisor models subscriptions using a relation called
Query Subscriptions. This relation includes the following attributes: S Query, Pub-
lishers, S Mode. The S Query attribute represents a query over a task schema or
a context summary query as in the Task Memories relation. The attribute Pub-
lishers represents a collection of peers (e.g.,community members) with whom the
query is subscribed. The S Mode attribute represents the subscription mode.
Currently, our approach supports two subscription modes: push mode and pull
mode. In a push mode, a peer identifies the publishers and explicitly subscribe
by specifying the relevant subscription queries. In a push mode, a peer in fact
publish a subscription and other members register for it. For instance, a com-
munity may use an internal monitoring mechanism to identify relevant query
or context summary query and publish them. Members of a community may
subscribe to provide recommendations about these queries.

In a nutshell, a pull subscription query has the same meaning as a subscription
in traditional publish-subscribe systems. A push subscription query is in fact a
publication of subscription query. We assume that peers also forward feedback
to each other and this especially important for communities, but this issue is
outside the scope of this paper.

5 Implementation Aspects

It should be noted, that a detailed description of the WS-Advisor framework
and the supporting platform is outside the scope of this paper. Here, we briefly
overview the system architecture and describe components that support the con-
cepts and techniques presented in this paper. We adopt a layered architecture
for the design and implementation WS-Advisor system. Figure 1 shows the el-
ements of this architecture. The user layer consists of three components. The
task manager allows expert users to create task definitions using a state-chart
based modelling notation or directly using BPEL. The implementation of this
component relies on the services composition editor of the Self-Serv platform
[13]. The view manager allows both expert users and non experts users to share
information about their task repositories. It also allows users to reuse both task
definitions and task memories from task repositories of other users or task fo-
rums. The query manager allows users to browse and query task repositories
as well as executing individual tasks. The agent layer consists of three agents,
namely; the advisor, builder and social network agents. These agents implements
the processes related to providing service selection recommendations, building
task memories, and maintaining the relationships that a user may have with
other users and task forums. More detailed description of this agents is pre-
sented in [8].

The service layer consists a gateway to access underlying meta-data and ser-
vices from both user and agent layers. It provides a number of infrastructure

374 R. Bova et al.

Fig. 1. Implementation Architecture

services that we reuse from our existing work on Web services platforms includ-
ing service discovery and context management engines [13]. In addition to that,
to support the task representation and manipulation facilities presented in this
paper, we propose the use of data services as a foundation to access the informa-
tion required to manage task repositories. These data services provide operations
to query, browse, and update task repositories and event buses. These also pro-
vide operations to query and browse service ontologies and service registries. In
order to support the publish and subscribe model of task forums, the data ser-
vices rely on a semantic publish subscribe event bus. The event bus allows social
network agents representing individuals or task forums to: (i) publish requests
for service selection recommendations, (ii) register with other agents and notify
them when relevant service selection recommendations become available, (iii)
subscribe with other agents for relevant service recommendation recommenda-
tions, (iv) send notifications about relevant service selection recommendation to
interested agents. The implementation of the service bus is in progress and will
rely on the Semantic Pub/Sub techniques developed in [12].

6 Discussion and Conclusions

Our work builds upon results in services oriented architectures and semantic
Web services to provide a foundation for sharing personal processes. We lever-
age techniques from the areas of services discovery and composition to cater for
the specification and provisioning of user tasks. We leverage results in ontologies
and schema mapping in peer-to-peer architectures [11] to support interaction

Task Memories and Task Forums 375

among different task repositories. The above techniques are used in a compo-
sition framework called WS-Advisor to allow experienced users to define tasks
and build mappings among different and possibly related task repositories. In
our previous work [8], we presented an agent-based framework that leverages
knowledge about past experiences to improve the effectiveness of Web service
selection.

Inspired by advances in Web 2.0 and personal information management and
sharing [14,15,5], the WS-Advisor framework aims at providing a foundation
for easy sharing of users tasks and task memories (i.e, knowledge about past
services selection experiences) among individual users and communities. Work in
personal data management and sharing [14,15] focuses on uniform management
and sharing of personal data stored in files and databases. As mentioned in the
introduction of this paper, systems such such as Flickr and Delicious allow easy
and ad-hoc sharing of information such as URLs and photos over the Web [5].
To the best of our knowledge there is no previous work that focuses on sharing
personal processes. [6] introduces the concept of service clubs as service-based
middleware for accessing e-market places. The Self-Serv framework [13] features
the concept of service communities as a mechanism for integrating a large number
of possibly dynamic services. Early work on personal processes [16] focuses on
providing modelling notations and operators for querying personal processes.
This work focuses specifically on catering for the requirements of travelling users
when accessing personal processes. Although these efforts produced results that
are certainly useful for sharing services and specifying tasks, more advanced
techniques that cater for simple and declarative exploration and sharing of task
repositories are needed. These techniques are necessary to transition composition
systems from the realm a static and elite developer type of business processes
to composition systems which are end user-centric.

Our work builds upon these efforts and provides complementary and in-
novative contributions to facilitate personal processes sharing. We provided a
meta-data model and declarative language for sharing task repositories. The
meta-data model captures a minimal set of abstractions that are useful for rep-
resenting tasks, task memories, and user relationships. The proposed language
hides the complexity of managing processes by providing an SQL-like language
and a number of pre-defined functions for browsing, querying, and sharing task
repositories. We proposed the concept of task forums to facilitate the sharing of
task definitions and task memories. Task forums act as containers of task defini-
tions and task memories for a specific domain. Non experienced users can out-
source task definitions from task forums by using simple importation mechanism
(aka file copying). Task forums also provide means for gathering and dissemina-
tion of task memories among individual users or communities. We rely on data
services to provide uniform access to task repositories. These data services are
used to develop applications and interfaces for main functionality of the WS-
Advisor (i.e, services selection, personal processes management and sharing).
The proposed framework is an important step toward easy and effective sharing
of personal processes. Ongoing work includes developing case studies in specific

376 R. Bova et al.

domains such as travel and personal finance to further study the added value of
the proposed foundation.

References

1. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. CACM 48(3),
49–53 (2005)

2. Alonso, G., et al.: Web services: Concepts, Architectures, and Application.
Springer, Heidelberg (2004)

3. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

4. Carey, M.J.: Data delivery in a service-oriented world: the BEA aquaLogic data
services platform. In: SIGMOD, pp. 695–705 (2006)

5. Ankolekar, A., Krotzsch, M., Tran, T., Vrandecic, D.: The two cultures: Mashing
up Web 2.0 and the Semantic Web. WWW, position paper (2007)

6. Tai, S., Desai, N., Mazzoleni, P.: Service communities: applications and middleware.
In: SEM, pp. 17–22 (2006)

7. Bova, R., Paik, H.Y., Hassas, S., Benbernou, S., Benatallah, B.: On Embedding
Task Memory in Services Composition Frameworks. In: ICWE (2007) (to appear)

8. Bova, R., Paik, H.Y., Hassas, S., Benbernou, S., Benatallah, B.: WS-Advisor: A
Task Memory for Service Composition Frameworks. In: IC3N (2007) (to appear)

9. Bova, R., Hassas, S., Benbernou, S.: An Immune System-Inspired Approach for
Composite Web Service Reuse. In: Workshop on AI for Service Composition (in
conjunction with ECAI 2006)

10. Srivastava, D., Velegrakis, Y.: Intentional Associations Between Data and Meta-
data. In: SIGMOD (2007) (to appear)

11. Benatallah, B., Hacid, M.S., Paik, H.Y., Rey, C., Toumani, F.: Towards semantic-
driven, flexible and scalable framework for peering and querying e-catalog commu-
nities. Inf. Syst. 31(4-5), 266–294 (2006)

12. Zeng, L., Lei, H.: A Semantic Publish/Subscribe System. In: Proc. of the Interna-
tional Conference on E-Commerce Technology For Dynamic E-Business (2004)

13. Sheng, Z., Benatallah, B., Dumas, M., Mak, E.: SELF-SERV: A Platform for Rapid
Composition of Web Services in a Peer-to-Peer Environment. In: VLDB, pp. 1051–
1054 (2002)

14. Geambasu, R., Balazinska, M., Gribble, S.D., Levy, H.M.: HomeViews: Peer-to-
Peer Middleware for Personal Data Sharing Applications. In: SIGMOD (2007) (to
appear)

15. Dittrich, J.P., Salles, M.A.V.: IMEX: iDM: A Unified and Versatile Data Model
for Personal Dataspace Management. In: VLDB, pp. 367–378 (2006)

16. Hwang, S.Y., Chen, Y.F.: Personal Workflows: Modeling and Management. In:
Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003.
LNCS, vol. 2574, pp. 141–152. Springer, Heidelberg (2003)

Addressing the Issue of Service Volatility in

Scientific Workflows

Khalid Belhajjame

School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
Khalid.Belhajjame@cs.man.ac.uk

Abstract. Workflows are increasingly used in scientific disciplines for
modelling, enacting and sharing in silico experiments. However, the reuse
of an existing workflow is frequently hampered by the volatility of its
constituent service operations. To deal with this issue, we propose in
this paper a set of criteria for characterising service replaceability using
which substitute operations can be automatically located for replacing
unavailable ones in workflows.

1 Introduction

The wide adoption of web services, as a means for delivering both data and com-
putational analysis, together with the use of workflow technology, as a mecha-
nism for loosely aggregating services, has dramatically revolutionised the way
many scientists conduct their daily experiments. Using a workflow, a scientific
experiment is defined as a series of analysis operations connected together using
links that specify the flow of data between them. Enacting the specified workflows
allows scientists to gather evidence for or against a hypothesis or demonstrate a
known fact. Once tried-and-tested, the specifications of scientific workflows can
be, just like with web services, stored in public repositories to be shared and
reused by other scientists. For example, the myExperiment project1, launched re-
cently, aims to provide a public repository for sharing workflows (and thus the
experiments these workflows model) between life scientists.

In practice, however, the reuse of an existing workflow is frequently hampered
by the fact that certain of its constituent service operations are no longer avail-
able. Because of this, the workflow cannot be executed nor used as a building
block for composing new experiments. This is not surprising; the service opera-
tions composing the workflows are supplied by independent third party providers
and there is no agreement between service providers and users that compel the
providers to continuously supply their services.

A solution that can be adopted to deal with the issue described above would
consist in substituting each of the unavailable operations with an operation that
is able to fulfil the same role as the unavailable one within the workflow. This
1 http://myexperiment.org/

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 377–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

378 K. Belhajjame

raises the key question as to what operation is suitable for substituting a given
unavailable one. In this paper, we formally characterise service operation re-
placeability in workflows. We begin (in Section 2) by presenting the semantic
annotations of web services that are used for characterising service replaceabil-
ity. We then present the criteria that we identified for characterising service
replaceability in Section 3 and conclude in Section 4.

2 Semantic Annotations for Characterising Replaceability

For the purposes of this work, we use the workflow definition that we adopted
in an earlier work for the detection of mismatches [4]. We define a scientific
workflow wf as a set of operations connected together using data links. Formally
wf = 〈nameWf, OP, DL〉, where nameWf is a unique identifier for the workflow,
OP is the set of operations from which the workflow is composed, and DL is the
set of data links connecting the operations in OP.

A service operation is associated with input and output parameters. A param-
eter is defined by the pair 〈op, p〉, where op denotes the operation to which the
parameter belongs and p is the parameter’s identifier (unique within the opera-
tion). An operation parameter is characterised by a data type. We assume the
existence of the function type(), which given a parameter returns its data type.

A data link describes a data flow between the output of one operation and
the input of another. Let IN be the set of all input parameters of all operations
present in the workflow wf and OUT the set of all their output parameters.
The set of data links connecting the operations in wf must then satisfy, DL ⊆
OUT × IN. In the rest of the paper, we use OPS to denote the domain of service
operations, INS the domain of input parameters and OUTS the domain of output
parameters.

To be able to locate the service operations able to substitute an unavailable
one, we need information that explicitly describes, amongst others, the task per-
formed by the unavailable service operation and the semantics of its input and
outputs. This information is commonly encoded in the form of annotations that
relates the service elements (i.e., operation, inputs and outputs) to concepts
from ontologies that specify the semantics of the service elements in the real
world. An ontology is commonly defined as an explicit specification of a con-
ceptualisation [6]. Formally, an ontology θ can be defined as a set of concepts,
θ = {c1,. . .,cn}. The concepts are related to each other using the sub-concept
relationship, which links general concepts to more specific ones. For example,
ProteinSequence is a sub-concept of Sequence, for which we write ProteinSequence

� Sequence. The concepts can also be connected by other binary relationships,
depending on the specific semantics encoded by the ontology.

To characterise service replaceability we assume that the web services are
annotated using the following ontologies.

Task ontology, θtask: This ontology captures information about the action car-
ried out by service operations within a domain of interest. In bioinformatics,
for instance, an operation is annotated using a term that describes the in silico

Addressing the Issue of Service Volatility in Scientific Workflows 379

analysis it performs. Example of bioinformatics analyses include sequence align-

ment and protein identification. To retrieve the task annotation of service opera-
tions we consider the function task() defined as follows: task: OPS → θtask.

Resource ontology, θresource: This ontology contains concepts that denotes public
bioinformatics data sources used by analysis operation for performing their task.
For example, the bioinformatics service operation getUniprotEntry() provided by
the DDBJ2 uses the Uniprot3 database for fetching the protein entry having the
accession number given as input. From the point of view of replaceability, it is
sometimes important to specify the external data source used by the operation as
well as its task. Two operations that perform the same task can deliver different
outputs depending on the underlying data source they are using. Therefore,
the user should be informed with this difference before taking the decision of
whether to accept the located operation as a substitute of the unavailable one or
not. To know the resource used by a given service operation we use the function
resource(): resource: OPS → θresource

Domain ontology, θdomain: This ontology captures information about the appli-
cation domains covered by the operations, and enables us to describe the real
world concepts to which each parameter corresponds. An example of such an
ontology is that developed by the TAMBIS project [2] describing the domain of
molecular biology. Examples of domain concepts include Protein, DNA and RNA.
In this work, we assume the existence of a function domain() with the following
signature: domain: (INS ∪ OUTS) → θdomain

3 Service Operation Replaceability

The semantic annotations of service operations presented in the previous section
can be used to deal with the problem of service unavailability in workflows by
supporting the user in the task of locating the service operations candidates
for substituting the unavailable ones. We will use an example of a real in silico

experiment that we have developed in ISPIDER, and e-Science project4. The
experiment is used for performing value-added protein identification in which
protein identification results are augmented with additional information about
the proteins that are homologous to the identified protein [3]. Figure 1 illustrates
the workflow that implements this experiment.

The workflow consists of three operations. The IdentifyProtein operation takes
as input peptide masses obtained from the digestion of a protein together with
an identification error and outputs the Uniprot accession number of the “best”
match. Given a protein accession, the operation GetHomologous performs a ho-
mology search and returns the list of similar proteins. The accessions of the
homologous proteins are then used to feed the execution of the GetGOTerm

2 DNA Data Bank of Japan
3 http://www.pir2.uniprot.org/
4 http://www.ispider.man.ac.uk/

380 K. Belhajjame

Term
IdentifyProtein GetGOTermsGetHomologous

Legend

Service operation

Data link

Operation input

Operation output

Masses

Error

Protein AC ACResult AC

Fig. 1. Example workflow

operation to obtain their corresponding gene ontology term5. We have con-
structed this workflow two years before the time of writing. Recently, we received
a request from a bioinformatician to use the workflow. However, because the op-
eration GetHomologous that we used for performing the protein homology search
does no longer exist, the user was unable to execute the workflow. Therefore, we
had to search for an available web service that performs homology searches and
that we can use instead. This operation turned out to be time consuming. We
found several web services for performing homology searches and that are pro-
vided by the DNA Databank of Japan6, the European Bioinformatics Institute7

and the National Centre for Biotechnology Information8. Nonetheless, we had
to try several service operations before locating an operation that can actually
replace the GetHomologous operation within the protein identification workflow.
The reason is that even though the service operations we found fulfil the task
that the unavailable one does (i.e., protein homology search), they require and
deliver parameters different from those that the unavailable operation has: some
of the operations that we tried to use have input and output parameters that
are mismatching with the input of IdentifyProtein operation and the input of the
operation GetGOTerm. Moreover, some of the candidate operations were found
to be using data sources that are different from that required by the unavailable
operation and as a such were judged inappropriate. For example, we were unable
to use the Blastx operation provided by the NCBI as it uses a nucleotide sequence
data sources whereas the unavailable operation relies on a protein database for
identifying similar proteins.

To support the user and facilitate the process of locating the service operations
able to substitute the unavailable operations in a workflow (as illustrated in the
example workflow presented above), we use the replaceability criteria presented
in the following.

Task Replaceability. In order for an operation op2 to be able to substitute an
operation op1, op2 must fulfil a task that is equivalent to or subsumes the task
op1 performs. Formally, task(op1) � task(op2).

For instance, in the protein identification workflow illustrated in Figure 1, the
unavailable operation GetHomologous performs a protein sequence alignment. An
example of an operation that can replace GetHomologous in terms of task is the
5 http://www.geneontology.org/
6 http://www.ddbj.nig.ac.jp/
7 http://www.ebi.ac.uk/
8 http://www.ncbi.nlm.nih.gov/

Addressing the Issue of Service Volatility in Scientific Workflows 381

operation SearchSimple provided by the DDBJ and which aligns bioinformatics
sequences: ProteinSequenceAlignment � BioinformaticsSequenceAlignment.

Resource Replaceability. If an operation uses an external data source for per-
forming its task, then the operation that replaces it within the workflow must
uses the same data source. Formally, an operation op2 can replace an operation
op1 in terms of resource iff resource(op1) = resource(op2)

Resource replaceability can be of extreme importance when locating substi-
tutes for a service operation in scientific workflows. Indeed, workflows are being
recognised as a mean for validating the results claimed by their authors (sci-
entists) and which may, for instance, be demonstrating a certain scientific fact.
To verify the claims of the authors of the workflow, other scientists execute the
same workflow and examine the execution results to see whether it is compatible
with the authors’ conclusions or not. Therefore, it is important that the workflow
execution reproduces the same results as those obtained by the authors of the
workflow in the first instance. For the workflow execution to reproduce the same
results, the substitute operations in the workflow should use the same resource
as their counterpart unavailable operations.

Parameter Compatibility. When substituting an operation op1 in a workflow wf

with another operation op2, new data links must be defined to connect the input
and output parameters of op2 to operation parameters that were previously
connected to op1’s parameters within the workflow wf. These data links are
established by using parameter compatibility rules that ensure that a defined
data link connects an output parameter to an input able to consume the data
produced by that output. We adopt two parameter compatibility rules that we
used in a previous work to identify mismatches in workflows [4].

Data type. Two connected output and input parameter are compatible in terms
of data type iff the data type of the output is the same as or a subtype of
the data type required by the input parameter. Formally, the output (op,o)

is compatible with the input (op’,i) in terms of data type iff9: type(op,o) �
type(op’,i)

Domain compatibility. In order to be compatible, the domain of the output
must be equivalent to or a sub-concept of the domain of the subsequent in-
put. Formally, the output parameter (op,o) is domain compatible with the input
parameter (op’,i) iff: domain(op,o) � domain(op’,i)

The parameter compatibility criteria just presented are used to draw the
correspondences between the parameters of the operation op2, a candidate for
substituting an operation op1 in a workflow wf, and the operations parameters
previously connected to op1 in wf. If for every mandatory input of op2, there ex-
ists a corresponding operation output in the workflow wf, and for every output
parameter that were previously connected to the unavailable operation op1, there
exists a corresponding operation input in the workflow wf, then the operation
op2 is added to the list of substitutes of op1 in the workflow wf.
9 The symbol � stands for subtype of.

382 K. Belhajjame

4 Conclusions

The volatility of web services is one of the main issues that hinder the sharing
and the reuse of scientific workflows. To our knowledge, there does not exist any
work that attempted to address this issue. However, there are some proposals
that address problems that are closely related. For example, Benatallah et al
presents replaceability as a means for adapting a web service to different appli-
cations [5]. The problem they tackle is, however, different from ours: they focus
on the replaceability of a web service from the business protocol perspective
(i.e., the series of interactions with the service operations). Akram et al defined
a framework for detecting changes in web services and reacting to those changes
by redirecting the requests to the unavailable service to another service [1]. Using
this framework, however, the discovery query used for locating the substituting
service is manually specified by the service user. The method presented here
compile the aspects considered by these proposals for characterising service op-
erations and considers additional characteristics that are peculiar to the analysis
operations that compose scientific workflows, e.g., the data source used by the
service operation for performing the analysis.

References

1. Akram, M.S., Medjahed, B., Bouguettaya, A.: Supporting dynamic changes in web
service environments. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 319–334. Springer, Heidelberg
(2003)

2. Baker, P.G., Goble, C.A., Bechhofer, S., Paton, N.W., Stevens, R., Brass, A.: An
ontology for bioinformatics applications. Bioinformatics 15(6), 510–520 (1999)

3. Belhajjame, K., Embury, S.M., Fan, H., Goble, C.A., Hermjakob, H., Hubbard, S.J.,
Jones, D., Jones, P., Martin, N., Oliver, S., Orengo, C., Paton, N.W., Poulovassilis,
A., Siepen, J., Stevens, R., Taylor, C., Vinod, N., Zamboulis, L., Zhu, W.: Proteome
data integration: Characteristics and challenges. In: UK All Hands Meeting (2005)

4. Belhajjame, K., Embury, S.M., Paton, N.W.: On characterising and identifying mis-
matches in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS
2006. LNCS (LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)

5. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE
2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

6. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

Facilitating Mobile Service Provisioning

in IP Multimedia Subsystem (IMS)
Using Service Oriented Architecture

Igor Radovanović1, Amit Ray2, Johan Lukkien1, and Michel Chaudron1

1 Technische Universiteit Eindhoven, Den Dolech 2,
5600MB Eindhoven, The Netherlands

2 Atos Origin Technical Automation Nederland B.V., De Run 1121,
5503LB Veldhoven, The Netherlands

{i.radovanovic,j.j.lukkien,m.r.v.chaudron}tue.nl
amit.ray@atosorigin.com

Abstract. This paper presents an extension of the IMS software archi-
tecture using a service orientation, which provides flexibility of mobile
service provisioning. The suggested extension facilitates composition of
new mobile services in run-time based on the existing services and en-
ables the end users to become mobile service providers. Moreover, it
enables addition of new mobile services with plug-n-play similar to an
addition of an end user device to the network. With this extension, the
core system architecture of IMS is not affected. The extension is real-
ized by introducing Web services in combination with the SIP protocol.
Using SIP will enable operators to remain in control of mobile service
provisioning as they are the owners of the IMS networks. This property
of the extension may also facilitate its acceptance by the operators. A
proof-of-concept prototype is discussed to demonstrate feasibility of the
proposed extension.

Keywords: Service Oriented Architecture, IP Multimedia Subsystem,
SIP, Web services.

1 Introduction

The mobile systems beyond 3G in Europe are aiming at providing enhanced user
experience using various mobile applications anytime, anyplace using any type
of end user devices [1]. The main motivation is to meet user’s wishes to be able
to choose among variety of mobile services (applications) and to communicate
in an intuitive way.

However, the new systems will also give a boost to operators as their net-
works will not be used as bit pipes only by the service providers providing the
mobile applications. With the new system in place, they will get the possibility
to provide mobile applications to the end users as well. These mobile applications
comprise the information retrieval services (e.g. weather forecast, stock reports
and car navigation), the multimedia services (e.g. video-on-demand) and the
communication services (e.g. messaging, voice).

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 383–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 I. Radovanović et al.

To enhance the user experience, operators intend to introduce and exploit
the IP Multimedia Subsystem (IMS) SIP-based technology [2,3] that provides
flexible IP media management and a session control platform, which they can lay
on top of their current IP-based and (virtual) circuit-switched infrastructures.
In Fig. 1, the basic elements of the IMS architecture are shown [4]. The SIP

Fig. 1. The IMS system architecture

signalling is used during session establishment, maintenance and termination.
The application servers (AS) provide mobile applications to the end users and
the other AS’s belonging to the same network administrative domain. The CSCF
(Call Session Control Function) elements play a role during a user registration
and a session establishment and form a SIP routing machinery in IMS. The
HSS (Home Subscriber Server) is the main data storage for all subscriber- and
service-related data of IMS in an operator’s network. BGCF (Border Gateways)
are used for connecting IMS to the circuit-switched telephone network. Other
elements of the IMS infrastructure (like Resource List Server, Presence Server
etc.) are not shown for the sake of clarity of representation.

2 The Effect of Limitations of the IMS Architecture

A lack of the proposed IMS architecture is that it does not provide remote access
to mobile services provided by the third parties from a different administrative
domain as the interfaces for using those mobile services are not standardized
across different network administrative domains and there is no standard way
of publishing these services. This is also important if the mobile services offered
to the end users are to be built from other mobile services at run-time. For
example, if we consider a car navigation service, it could be possible that an
operator providing this service to the end users actually needs to compose it

Facilitating Mobile Service Provisioning in IMS Using SOA 385

from other services like a location service and a map service, possibly offered by
the operators in different network domains.

One consequence of these drawbacks is the loss of revenue for the operators
that lose opportunity to offer enabling services to other operators. Another one
is a limited possibility to enhance user’s experience as the system is unable to
provide the tailor-made services to the end users that are particularly suitable
to support their needs. Finally, a mobile service user might have a different
experience when using mobile services provided in different network domains.

The current IMS architecture also fails to provide end users with a possibility
to share their services over the network, just like they can do that over the In-
ternet (e.g. using peer-to-peer technology [5]). The cellular terminals are mostly
statically provisioned with a fixed number of services, and there is little possi-
bility for an easy upgrade of services, which is traditionally done in the Internet.
Another drawback of the current IMS architecture is that information conveyed
in the SIP protocol does not inherently provide separation of mobile services and
devices on which those are running.

To overcome these drawbacks, an architecture that (1) increases flexibility
of mobile service provisioning, (2) allows end users to become service providers
and (3) incrementally extends the IMS architecture, should be used. A solution
in this paper is based on using a Service Oriented Architecture overlayed on
the existing IMS infrastructure. By introducing web services on top of the SIP
protocol, it is shown that new mobile services could be dynamically introduced
from an end user device and that these services could easily become accessible
outside the operators’ domain. The operators still retain control of the system,
owing to their ownership of the respective SIP based networks. This work is an
extension of the work done by other authors ([6], [7]) who discussed combining
SIP protocol (a part of IMS technology) with Web services, but not in the context
of IMS.

3 Extended Software Architecture

Fig. 2 shows that a new Web service layer is placed between the top Application
layer and the SIP connection layer. This results in a slightly modified software
architecture in the end user devices. The Web service layer will represent the
mobile services from a remote AS. In cases when the end user also acts as an AS,
the Application layer will have its own web service part, which will expose its
local services to the Web service layer. The Web service layer will in turn, expose
the local services to the outside world by sending out the WSDL information
through the NOTIFY (or PUBLISH) message of the SIP stack. For the SOAP
request messages received from the Application layer, the Web service layer will
forward these SOAP requests through the SIP stack. With this architecture, the
services from a value added AS (VAS) would be available to users outside the
operators domain. However, usage of the services of an existing AS would still
be restricted, and might be used primarily for control of the network by the
operator. The IMS core network infrastructure is not affected by this proposed

386 I. Radovanović et al.

Fig. 2. A modified end-user software architecture in SOA-enabled IMS

architecture. However, if there are services provided by the existing ASs that are
not used for network control purposes, these might better be moved over to the
plug-n-play VASs under the operators control. This way the services would be
available to a broader section of users.

4 Implementation

The interaction between the Application layer and the Web service layer will
be in both directions. The Application layer asks for remote services from the
Web service layer and the Web service layer asks for local services from the
Application layer. In addition to the usual service and proxy components in the
Application and the Web service layers, the Web service layer contains elements
for (un-) wrapping the SOAP messages (from) to the SIP messages. For this,
the design from [6] is extended to suit the proposed IMS architecture.

In the representation of the IMS end user in Fig. 3, the ”Proxy for Remote
services” in the Application layer is an object locally representing web services
from the Web service layer. There is a corresponding object in the Web service
layer representing the service(s) from the remote AS, and it acts like a call for-
warder by forwarding all SOAP requests from the end user to the remote AS.
The ”SOAP message constructor” component in the Web service layer remem-
bers the origin of the SOAP requests and the WSDL messages by maintaining a
table of remote AS versus a SIP message ID. Additionally, this component has
the responsibility to combine the received WSDL messages from various external
sources and present a composite web service interface for the currently available
remote services. There are tools available to build the proxy class automati-
cally from the WSDL description of a web service. For example, in Microsoft’s
ASP.NET, a tool named WSDL.exe can build the proxy class. However, to realize

Facilitating Mobile Service Provisioning in IMS Using SOA 387

Fig. 3. The IMS End-user Module

the availability feature to its full potential, it is required that update of service
states is done at run-time. In order to have this feature, the relevant compo-
nents in the Application layer and the Web service layer should be dynamically
updated based on the WSDL from the Web service layer. The dynamic creation
and update of classes is possible with many of today’s high level programming
languages (.NET, Java) using a feature called ”Reflection”. A general guideline
from [8] is adapted here for implementing this with Microsoft’s .NET framework
tool for ASP.NET development.

There are 3 implantation constraints at the terminal. The terminal should be
equipped with all the features required to communicate as an IMS end user device
(SIP-UA). Additionally, it must contain a running web server that can send and
receive http messages and it must have the run-time environment for a high level
language that supports reflection (e.g. Java runtime, .NET Framework).

5 Experiments

As a proof of concept, we built two software based IMS end user modules (UserA
and UserB) with layered structures, similar to that shown in Fig. 3. Both modules
offer a ”Text” (i.e. messaging) service that can be turned on and off through a
checkbox control in the UI. Although, this is a very simplistic interpretation of
the ”Text” service, this is done in order to simplify the implementation of the

388 I. Radovanović et al.

Fig. 4. Experimental setup

prototype without diluting the concept behind it. The experimental set-up is
shown in Fig. 4. For the SIP protocol stack, the third party freeware named
PJSIP is used, that provides the SIP protocol implementation in a C library.
The two Microsoft .NET based user interface applications (UserA and UserB)
are also created to enable activities like sending out a text message and displaying
messages received from the remote user. The prototype User Interface (Fig. 5)
has the text boxes to specify the address of the other end user it wants to connect
to. A green color button indicates the availability of the “Text” service at the
other end. If UserA starts to type in some characters in the box “Msg to User

Fig. 5. An UserA console

X” (X being either A or B), the same characters start to appear in the box
“Msg to User Y” (Y being either B or A) at the UI on the other machine. In
the meanwhile, the boxes designated “SIP messages sent” and “SIP messages
recd” display the SIP message exchanges between the two ends. The SIP message
“MESSAGE” is used here to send text messages to the other user.

Facilitating Mobile Service Provisioning in IMS Using SOA 389

The ”SIP messages recd” box shows the media type information received from
the other user (User B) in SDP protocol format. The experiments are performed
with the simple text here, but the same could be extended to any data, including
video. When the check-state of the “Enable Text Service” checkbox of a user is
changed, the other user’s UI immediately reflects this changed service availability
state. This illustrates the possibility of service availability as opposed to device
availability only. Fig. 6 shows the scenario for the experimental set-up. Note that

Fig. 6. A scenario for the experimental setup

there is no distinction made between an end user and an Application server. From
the principle of web service applications, a web service from an end user can be
reused by other web service applications. Moreover, a new end user (with a new
web service) could be added to the service infrastructure as easily (flexibly) as
plugging in a new IMS end user device to the network.

6 Conclusions

The extension of the IMS capabilities through a service orientation presented
facilitates composition of new mobile services from the existing ones and intro-
duction of new mobile and enabling services. It also enables the end users to
become service providers. The new IMS software architecture does not require
changes in the core IMS architecture, and provides a solution to the SIP message
extension, including SIP version mismatch.

References

1. COnverged MEssaging Technology (2007), https://www.comet-consortium.org
2. SIP Architecture: (2007), http://www.protocols.com/pbook/sip arch.htm

3. IETF working group on SIP/SIMPLE web page (2007), http://www.ietf.org/

html.charters/simple-charter.html

https://www.comet-consortium.org
http://www.protocols.com/pbook/sip_arch.htm
http://www.ietf.org/html.charters/simple-charter.html
http://www.ietf.org/html.charters/simple-charter.html

390 I. Radovanović et al.

4. Poikselkä, M., Mayer, G., Khartabil, H.: Niemi: The IMS – IP Multimedia Concepts
and Services, 2nd edn. John Wiley & Sons, Ltd., West Sussex, England (2006)

5. Milojicic, D.S., et al.: Peer-to-Peer Computing, tech. report HPL-2002-57, Hewlett-
Packard Laboratories, Palo Alto, Calif. (2002)

6. Liu, F., et al.: WSIP – Web Service SIP Endpoint for Converged Multime-
dia/Multimodal Communication over IP. In: ICWS’2004. Proceedings of IEEE Inter-
national Conference on Web Services, pp. 690–697. IEEE Computer Society Press,
Los Alamitos (2004)

7. Liscano, R., Dersingh, A.: Projecting Web Services using Presence Communication
Protocols for Pervasive Computing. In: MCETECH2005 Web Services Workshop,
Montreal, Canada (2005)

8. Google discussion group item on Microsoft dot net framework web service (2007),
http://groups.google.nl/group/microsoft.public.dotnet.framework.aspnet.

webservices/

http://groups.google.nl/group/microsoft.public.dotnet.framework.aspnet.webservices/
http://groups.google.nl/group/microsoft.public.dotnet.framework.aspnet.webservices/

eServices for Hospital Equipment

Merijn de Jonge1, Wim van der Linden1, and Rik Willems2

1 Healthcare Systems Architecture
Philips Research, The Netherlands

2 Strategy and Innovation Management/Technical Infrastructure
Philips Corporate IT, The Netherlands

Merijn.de.Jonge@philips.com, Wim.van.der.Linden@philips.com
Rik.Willems@philips.com

Abstract. In this paper we explore the idea that by combining different
sources of information in a hospital environment, valuable e-services can
be developed for reducing cost and improving quality of service.

Companies, like Philips Medical Systems, may have a competitive
advantage, because they have a large installed base which may provide
valuable information already, and because they can change their products
to provide additional information.

To optimally benefit from this advantage, we created a platform that
enables quick development of e-services. The platform enables uniform
access to data, combines static with live data, and supports transparent
composition of existing, into new services.

We discuss the requirements, design, and implementation of the plat-
form, and we show its use in a case study that addresses asset manage-
ment and utilization services for mobile medical equipment.

1 Introduction

E-services for hospital equipment are a means to add functionality on top of ex-
isting products. They can serve to improve the operation of individual devices, to
improve the cooperation between devices, or to analyze/improve hospital work-
flow in general. They are promising because they can help to reduce cost (e.g.,
by increasing patient throughput) and to improve quality of service (including
improving patient safety).

Promising in e-services is that with Philips we expect quick return on invest-
ment (because developing a service is far less expensive than developing e.g., an
MR scanner), and that the value of e-services can be increased by combining
different sources of information (e.g., equipment data, log data, workflow data,
etc.). Threats are that we expect a significant need for change (to make services
fit smoothly in different hospital environments), a strong competition, and quick
market changes. Hence, there is a clear potential for flexible e-services, which
combine different information sources, have a manageable development process,
and a short time to market.

Services in hospital environments operate by processing and analyzing infor-
mation. This information can come from equipment itself or from other infor-
mation sources, like databases. By having more, diverse data available, more

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 391–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

392 M. de Jonge, W. van der Linden, and R. Willems

intelligent services can be offered. By integrating multiple information sources,
the value of services can therefore be increased. Philips has a large hospital
installed base. Via its diverse product portfolio, many different forms of infor-
mation can be produced that can be used for innovative e-services. Philips can
therefore take a strong position in developing e-services for hospital equipment.

Philips already collects information for (some of) its medical products. Al-
though this information is not used for e-services yet, it forms a huge source
of information, ready to be used. Most equipment, however, does not provide
equipment data. Although this equipment might contain valuable information,
it is simply not prepared for exposing it. The aim of our project is therefore
to expose information from equipment and from (existing) data sources, and in
combining these into discrimating e-services.

To that end, we have developed a platform for hospital equipment services.
It has a service oriented architecture (SOA) that combines state of the art web
services and thin client technology. The platform is structured around push data
(events generated by equipment), pull data (information stored in databases),
and data filters (which massage data for different use). In a case study we demon-
strate the development of value added services for mobile medical equipment.

This article is structured as follows. In Sections 2 and 3 we discuss different
forms of data sources and how they can be massaged by data filters. In Sec-
tions 4 and 5 we discuss the architecture and implementation of our platform.
In Section 6 we address service development for mobile medical equipment. In
Section 7 we discuss our results and contributions, and we mention directions
for future research.

2 Equipment Data

We realized that existing data sets may contain valuable information for other
purposes than maintenance, for which they where intended, and that our equip-
ment could be extended to produce additional valuable information. We therefore
distinguish two kinds of data: i) data that is already available in some database,
ii) data that is produced by particular devices. We called these pull data and
push data, respectively.

Pull data. Pull data is static data that is stored in e.g. a database. It is typically
log-type information that serves maintenance activities. It is called pull data,
because the data needs to be pulled out of the corresponding databases. This
data might be very useful for developing new e-services. However, there are two
bottlenecks for efficiently using this data: i) data access is difficult because data
models are implicit and not standardized within and across products; ii) data
processing is inefficient because data sets are huge. In section 4 we describe how
we address these bottlenecks in our architecture for e-services development.

Push data. At any moment in time a device can inform the environment about
itself. We call this push data, because the device takes the initiative to provide

eServices for Hospital Equipment 393

information, rather than a service having to ask for it. All equipment data orig-
inates from push data, but once it is stored in e.g., a database it becomes pull
data.

Push data fits in an event driven environment and enables real time responses
to events, for instance in case of critical errors. In addition to maintenance related
data (e.g. log messages), equipment can be adapted to provide other kinds of
push data as well. This may give rise to numerous new services (see Section 6).

3 Data Filters

In Section 2 we argued that pull data is difficult to access because data sets are
huge and have implicit data models. To address these problems, we introduce
the concept of data filters. Data filters are elements in our architecture, which i)
provide a consistent interface to data sets; ii) control data visibility; iii) provide
virtual databases; iv) improve overall performance. These roles will be discussed
below.

Explicit data models. Data filters can transform data from one format into an-
other. One key application of a filter is to transform an unstructured data set
into a structured data set, according to an explicit data model.

Control data visibility. Incorporating existing data sets for the development of
(new) e-services, should not imply that all data is exposed, or that arbitrary
data can be modified. To that end, we do not support direct access to databases
(e.g., by supporting direct SQL queries). Instead, data filters precisely define
which data is exposed by means of explicit interfaces.

Virtual databases. A filter implements a particular query on one or more data-
bases. The resulting data set is a derived database, with its own data model. Fil-
ters can be seen as virtual databases, because they appear as ordinary databases,
although they are created on the fly.

Performance. Filters can be used to optimize data for particular services, which
can then operate more efficiently (e.g., because they have to process less data, or
queries on the data become simpler). This form of optimization, creates partic-
ular views on data sets. Additionally, performance can be improved by caching.
Instead of executing filters real time when the data is needed, they are executed
at particular moments in time. The resulting data sets are stored for later access.
This enables balancing resource consumption, and can lead to an improved and
predictable overall performance.

4 Architecture

The architecture for our platform is designed to support push and pull data, to
enable connectivity between equipment, and to support operation heterogeneous
hospital environments.

394 M. de Jonge, W. van der Linden, and R. Willems

Hospital environments are highly distributed environments, which bring to-
gether a huge variety of products and vendors. The market of e-services for
medical equipment is quickly emerging. To efficiently deal with these complicat-
ing factors, we adopt a service oriented architecture (SOA) [7]. All parts of our
architecture are services and have well-defined interfaces to the environment.

Data from databases is also made available through services. Observe that
this gives a transparent view on data and data composition because databases
and filters cannot be distinguished. The architecture supports push data in the
form of events together with a subscribe mechanism (see Section 5).

Services are accessed from different types of terminal devices and from dif-
ferent locations. Consequently, we can make little assumptions about the equip-
ment from which services are accessed and about the type of connection of this
equipment to the hospital network. To that end, e-services are accessed via web
applications, separating resource-intensive computations from user interaction.
Only a web-browser is needed to make use of our e-services.

5 Implementation

For the implementation of our platform, we adopt state of the art technology. We
base our SOA on web services [11] and use SOAP [10] as messaging framework.
We used Java as programming language, but this is no prerequisite.

Web services are defined in terms of the Web Services Description Language
(WSDL) [6]. Axis2 [4] is the SOAP stack for web services. Axis2 uses AXIOM [3]
as object model, which performs on demand object building using pull parsing [9]
technology. Both techniques significantly improve performance and reduce mem-
ory foot print, which is important for processing huge hospital data sets.

We use the Extensible Messaging and Presence Protocol (XMPP) as eventing
mechanism [12]. XMPP serves as a distributed message broker. Event groups are
defined for particular types of messages, such as for equipment status informa-
tion. Events are generated by sending messages to these communities. Joining a
group implies subscribing to corresponding events. Any entity in our architecture
can create or receive events.

The Google Web Toolkit (GWT) is used for web applications development.
GWT [8] enables programming AJAX [2] based web applications (almost) purely
in Java. This significantly simplifies web application development.

We use the Central Authentication Service (CAS) system from Yale Univer-
sity [5] as the Single Sign On (SSO) solution for web applications. The CAS
system enables users to log in once from their web browser, and be automati-
cally authenticated to all web portals and web applications.

6 Case Study

In this section we discuss the development of a particular class of e-services
for hospital equipment: web based asset management and utilization services
for mobile equipment. These services build on top of existing asset tracking

eServices for Hospital Equipment 395

Fig. 1. Architecture of asset management and utilization services

technology, which is becoming a common technique in hospitals to monitor the
location of (mobile) equipment. One promising technology for asset tracking is
based on WiFi connectivity. Based on signal strength at multiple WiFi receivers,
an accurate location of a device can be determined. Since WiFi is entering the
hospital environment anyway, this tracking technology is relatively cheap and can
easily be integrated and adopted. There are already several commercial solutions
to asset tracking available (see e.g. [1]). Therefore, we do not concentrate on asset
tracking itself, but we show that the combination with additional equipment
data is a big step forward and significantly improves the usability of services for
mobile equipment.

To that end, we develop services that combine location information, equipment
data, and data from databases. The demonstrator shows how realistic services
can be developed with our platform, although equipment is still simulated and
data is generated. We focus on asset management and utilization services.

6.1 Implementation

In Figure 1, the structure of the demonstrator is depicted. Grey boxes denote
web services, arrows indicate directions of method invocation, boxes with a thick
border indicate data filters. The demonstrator consists of a web portal with two
web applications, an event generator (which simulates mobile medical equip-
ment), an XMPP server, and a number of web services.

The first web application provides asset management services. The second
web application provides utilization services. The applications consist of a client

396 M. de Jonge, W. van der Linden, and R. Willems

part, which can run in any web browser, and a corresponding server part, which
runs as a servlet in an Apache Tomcat application server.

Mobile hospital equipment is simulated using a generator. It generates events
at regular intervals for a predefined set of devices. These events contain loca-
tion information and information about the status of the equipment. Events are
broadcast via an XMPP service.

The “XMPP server” forms the heart of our event driven architecture. We
group different types of messages in event groups. For instance, an equipment
group is used for equipment events. The “asset management” service subscribes
to equipment events in order to send location and status information of equip-
ment to its corresponding web application. The latter visualizes this information
in a hospital floorplan. The “xmpplogger” service saves equipment events for
later use using the log service.

The services “log2summary” and “needs-service” are filters. The first trans-
forms log data (which is a chronological list of equipment events) into daily
summaries per device. This structure is useful for several utilization services.
The second uses this summary data to determine whether a device needs pre-
ventive maintenance (see below).

Static information about equipment and floorplans are available through the
“HIB” (Hospital Installed Base) and the “floorplan” services, respectively.

6.2 Asset Management and Utilization Services

The collection of services and the XMPP event mechanism depicted in Figure 1
form the ingredients for building services that go beyond plain asset tracking
services. The real time status information that equipment provides in the form
of XMPP messages is used directly in the “asset management” application to
display equipment status. For instance, the load information of a device forms
an indicator whether the device is available for use. The “log” service stores
equipment events over time. This data is used for utilization services. For in-
stance, we synthesize in what areas of a hospital particular equipment is used,
how equipment is moved around, and what the average load of each device is.
The “needs-service” is an example of a composite service. To determine whether
a device needs preventive maintenance, the summaries of a device are analyzed
to synthesize the uptime of a device, its average load, and its quality of service.
Together with information about when it was last serviced (available through
the “maintenance log” service), the predicate “needs service” can be derived.

7 Concluding Remarks

This article addressed e-services for hospital equipment. E-services provide func-
tionality on top of or cross cutting existing equipment. We focused on e-services
combining different information sources, such as databases with logging type of
information, or equipment providing real time device and location information.

eServices for Hospital Equipment 397

Contributions. We explained that by having access to large and diverse data
sets and by having control over which data is provided by equipment, compa-
nies like Philips may take a lead in e-service development. We identified two
sources of information: information stored in databases (which we called pull
data), and real time data generated by equipment (which we called push data).
Further, we proposed data filters to combine data sources, and to control what
data comes available and in what structure. Next, we discussed the design and
implementation of a platform for e-services, which adopts state of art technol-
ogy. Finally, we performed a case study where we developed e-services for mobile
medical equipment. In particular, we focused on asset management and utiliza-
tion services for mobile medical equipment. The case study showed that the
combination of information (i.e., location information, log type information, and
equipment information) enables more advanced services than plain equipment
tracking services can offer today.

Future work. We are in discussion of using our technology in a concrete pi-
lot using real, instead of simulated equipment. Furthermore, together with our
product groups we have plans to further explore the area of asset management
and utilization services. Next, we can extend our approach for hospital equip-
ment to also include people, enabling patient tracking and throughput services.
Finally, we want to explore the options to enable third party integration, e.g.,
by corporatively defining a standard for e-services in hospital environments.

References

1. AeroScout (2007), Available at: http://www.aeroscout.com/
2. AJAX – asynchronous JavaScript and XML (2007), Available at: http://

en.wikipedia.org/wiki/AJAX

3. Apache axiom (2007), Available at: http://ws.apache.org/commons/axiom/
4. Apache Axis2 (2007), Available at: http://ws.apache.org/axis2/
5. Central authentication service: single sign-on for the web (2007), Available at:

http://www.ja-sig.org/products/cas/

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) 1.1 (2001), Available at http://www.w3.org/TR/wsdl

7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

8. Google Web Toolkit (2007), Available at: http://code.google.com/webtoolkit/
9. Slominski, A.: Design of a pull and push parser system for streaming XML. Tech-

nical Report 550, Indiana University, Bloomington, Indiana (May 2001)
10. Simple object access protocol (SOAP) (2003), Available at: http://www.w3.org/

TR/soap/

11. Web services activity (2007), Available at: http://www.w3.org/2002/ws/
12. XMPP standards foundation (2007), Available at: http://www.xmpp.org/

http://www.aeroscout.com/
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://ws.apache.org/commons/axiom/
http://ws.apache.org/axis2/
http://www.ja-sig.org/products/cas/
http://www.w3.org/TR/wsdl
http://code.google.com/webtoolkit/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/2002/ws/
http://www.xmpp.org/

Using Reo for Service Coordination

Alexander Lazovik� and Farhad Arbab

CWI, Amsterdam, Netherlands
{a.lazovik,farhad.arbab}@cwi.nl

Abstract. In this paper we address coordination of services in complex
business processes. As the main coordination mechanism we rely on a
channel-based exogenous coordination language, called Reo, and inves-
tigate its application to service-oriented architectures. Reo supports a
specific notion of composition that enables coordination of individual
services, as well as complex composite business processes. Accordingly,
a coordinated business process consists of a set of web services whose
collective behavior is coordinated by Reo.

1 Introduction

The current set of web service specifications defines protocols for web service
interoperability. On the base of existing services, large distributed computa-
tional units can be built, by composing complex compound services out of simple
atomic ones. In fact, composition and coordination go hand in hand. Coordinated
composition of services is one of the most challenging areas in SOA. A number
of existing standards offer techniques to compose services into a business pro-
cess that achieves specific business goals, e.g., BPEL. While BPEL is a powerful
standard for composition of services, it lacks support for actual coordination
of services. Orchestration and choreography, which have recently received con-
siderable attention in the web services community and for which new standards
(e.g., WS-CDL) are being proposed, are simply different aspects of coordination.
It is highly questionable whether approaches based on fragmented solutions for
various aspects of coordination, e.g., incongruent models and standards for chore-
ography and orchestration, can yield a satisfactory SOA. Most efforts up to now
have been focused on statically defined coordination, expressed as compositions,
e.g., BPEL. To the best of our knowledge the issues involved in dynamic coordi-
nation of web services with continuously changing requirements have not been
seriously considered. The closest attempts consider automatic or semi-automatic
service composition, service discovery, etc. However, all these approaches mainly
concentrate on how to compose a service, and do not pay adequate attention to
the coordination of existing services.

In this paper we address the issue of coordinated composition of services in
a loosely-coupled environment. As the main coordination mechanism, we rely

� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 398–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Reo for Service Coordination 399

on the channel-based exogenous coordination language Reo, and investigate its
application to SOA. Reo supports a specific notion of composition that enables
coordinated composition of individual services as well as composed business pro-
cesses. In our approach, it is easy to maintain loose couplings such that services
know next to nothing about each other. It is claimed that BPEL-like languages
maintain service independence. However, in practice they hard-wire services
through the connections that they specify in the process itself. In contrast, Reo
allows us to concentrate only on important protocol decisions and define only
those restrictions that actually form the domain knowledge, leaving more free-
dom for process specification, choice of individual services, and their run-time
execution. In a traditional scenario, it is very difficult and cost-ineffective to
make any modification to the process, because it often has a complex structure,
with complex relationships among its participants. We believe having a flexi-
ble coordination language like Reo is crucial for the success of service-oriented
architectures.

The rest of the paper is organized as follows. In Section 2 we consider Reo as a
modeling coordination language for services. A discussion of coordination issues,
together with a demonstrating example and tool implementation discussion ap-
pears in Section 3. We conclude in Section 4, with a summary of the paper and
a discussion of our further work.

2 The Reo Coordination Language

The Reo language was initially introduced in [1]. In this paper, we consider adap-
tation of general exogenous coordination techniques of Reo to service-oriented
architecture. In our setting, Reo is used to coordinate services and service pro-
cesses in an open service marketplace.

Reo is a coordination language, wherein so-called connectors are used to co-
ordinate components. Reo is designed to be exogenous , i.e. it is not aware of
the nature of the coordinated entities. Complex connectors are composed out
of primitive ones with well-defined behavior, supplied by the domain experts.
Channels are a typical example for primitive connectors in Reo. To build larger
connectors, channels can be attached to nodes and, in this way, arranged in a
circuit. Each channel type imposes its own rules for the data flow at its ends,
namely synchronization or mutual exclusion. The ends of a channel can be ei-
ther source ends or sink ends. While source ends can accept data, sink ends are
used to produce data. While the behavior of channels is user-defined, nodes are
fixed in their routing constraints. It it important to note, that the Reo connec-
tor is stateless (unless we have stateful channels introduced), and its execution
is instantaneous in an all-or-none matter. That is, the data is transferred from
the source nodes to sink nodes without ever being blocked in the middle, or not
transferred at all. Formally, a Reo connector is defined as follows:

Definition 1 (Reo connector). A connector C = 〈N ,P , E, node, prim, type〉
consists of a set N of nodes, a set P of primitives, a set E of primitive ends
and functions:

400 A. Lazovik and F. Arbab

(a) (b) (c)

(i) (ii) (iii)

(i) (ii) (iii)

A

F G
E

C D

B

Fig. 1. Reo elements: (a)–nodes; (b)–primitive channels; (c)–XOR connector

– prim : E → P, assigning a primitive to each primitive end,
– node : E → N , assigning a node to each primitive end,
– type : E → {src, snk}, assigning a type to each primitive end.

Definition 2 (Reo-coordinated system). R = 〈C,S, serv〉, where:

– C is a Reo connector;
– S is a set of coordinated services;
– serv : S → 2E attaches services to primitive ends E of the connector C.

Services represent web service operations in the context of Reo connectors. Ser-
vices are black boxes, Reo does not know anything about their internal behavior
except the required inputs and possible outputs that are modeled by the serv
function. By this definition, services are attached to a Reo connector through
primitive ends: typically to write data to source ends, and read from sink ends.
Note that although we consider services as a part of a coordinated system, they
are still external to Reo. Services are independent distributed entities that uti-
lize Reo channels and connectors to communicate. The service implementation
details remain fully internal to individual elements, while the behavior of the
whole system is coordinated according to the Reo circuit.

Nodes are used as execution logical points, where execution over different
primitives is synchronized. Data flow at a node occurs, iff (i) at least one of
the attached sink ends provides data and (ii) all attached source ends are able
to accept data. Channels represent a communication mechanism that connects
nodes. A channel has two ends which typically correspond to in and out. The
actual channel semantics depends on its type. Reo does not restrict the possible
channels used as far as their semantics is provided. In this paper we consider
the primitive channels shown in Figure 1-(b), with (i)–communication channels;
(ii)–drain channels; and (iii)–spout channels. The top three channels represent
synchronous communication. A channel is called synchronous if it delays the
success of the appropriate pairs of operations on its two ends such that they can
succeed only simultaneously. The bottom three channels (visually represented as
dotted arrows) are lossy channel, that is, communication happens but the data
can be lost if nobody accepts it. For a more comprehensive discussion of various
channel types see [1]. It is important to note that channels can be composed
into a connector that is then used disregarding its internal details. An example
of such composed connector is a XOR element shown in Figure 1-(c). It is built
out of five sync channels, two lossy sync channels, and one sync drain. The
intuitive behavior of this connector is that data obtained as input through A is

Using Reo for Service Coordination 401

delivered to one of the output nodes F or G. If both F and G is willing to accept
data then node E non-deterministically selects which side of the connector will
succeed in passing the data. The sync drain channel B -E and the two C -E, D -E
channels ensure that data flows at only one of C and D, and hence F and G.

More details on the intuitive semantics of Reo is presented in [1] and in an
extended version of this paper [5]. Various formal semantics for Reo are presented
elsewhere, including one based on [2], which allows model checking over possible
executions of Reo circuit, as described in [3].

3 Building Travel Package in Reo

To illustrate our ideas we use a simple example that is taken from the standard
travel domain. We consider reserving a hotel and booking transportation (flight
or train in our simplified setting). This process is simple, and works for most
users. However, even typical scenarios are usually more complicated with more
services involved. Our simple process may be additionally enriched with services
that the average user may benefit from, e.g., restaurants, calendar, or museum
services. However, it is difficult to put all services within the same process:
different users require different services sharing only a few common services.

Traditionally, when a process designer defines a process specification, he must
explicitly define all steps and services in their precise execution order. This
basically means offering the same process and the same functionality to all users
that potentially need to travel. This makes it difficult to add new services, since
only a limited number of users are actually interested in the additional services.
We first consider some particular user’s travel expectations:

A trip to Vienna is planned for the time of a conference; a hotel is desired
in the center or not far from it; in his spare time, the client wishes to
visit some museums; he prefers to have a dinner at a restaurant of his
choice on one of the first evenings.

Hard-coded business process specifications cannot be used effectively for such a
complex yet typical goal with a large number of loosely coupled services. The
problem is that the number of potential additional services is enormous, and
every concrete user may be interested in only a few of them. Having these con-
siderations in mind, the business process is designed to contain only basic services
with a number of external services (or other processes) that are not directly a
part of the process, but a user may want them as an added value, e.g., museum
and places to visit, or booking a restaurant.

One of the possible Reo representations is provided in Figure 2. Box A cor-
responds to the process with basic functionality. The client initiates the process
by issuing a request to the hotel service. If there are no other constraints, the
process non-deterministically either reserves a flight or a train and proceeds to
payment. Note, that the hotel service is never blocked by the location synchro-
nization channels (between the hotel and the XOR (see Figure 1-(c)) element)
since they all are connected by lossy channels. In Figure 2 the flight service is

402 A. Lazovik and F. Arbab

Hotel

Flight Train

XOR

Payment

Restaurant

Info

Wikipedia

Government
Regulations

Sport events

Calendar

Museum

A

B

C

Fig. 2. A travel example in Reo

additionally monitored by a government service, that is, a flight booking is made
only if the government service accepts the reservation.

Box B corresponds to the user request for visiting a restaurant located not far
from the hotel. It is modeled as follows. The restaurant service itself is connected
to the hotel using the location synchronization channel, that is, the restaurant
service is invoked only if the hotel location is close. The location synchronization
channel is a domain-specific example of a primitive channel supplied by the
domain designers. It models a synchronization based on a physical location [5].
The synchronization is unidirectional: the hotel is reserved even if there are no
restaurants around. We also use a calendar service to check if the requested time
is free, and if it is, then the calendar service fires an event, that is, through the
synchronization channel, enables the restaurant service.

Box C shows a possible interactive scenario for requesting a museum visit.
If the user issues the corresponding request, the museum service is checked if it
is close to the hotel. Then it may show additional information from the tourist
office, or, if the user is interested, point to corresponding information from the
Wikipedia service. User interaction is modeled via a set of synchronization chan-
nels, each of which defines whether the corresponding service is interesting to the
user. Finally the payment service is used to order the requested travel package.
In this example the payment service is used as many times as it has incoming
events. For the real world application, it is practical to change the model to
enable the user to pay once for everything.

Using our example, we have just shown how Reo can be used to coordinate
different loosely-coupled services, and, thereby, extending the basic functionality
of the original basic process. An advantage of Reo is that it allows modeling to
reflect the way that users think of building a travel package: for each goal, we just
have to add a couple of new services, add some constraints in terms of channels
and synchronizations, and we have a new functionality available.

Using Reo for Service Coordination 403

The Reo coordination tool [4] is developed to aid process designers who are
interested in complex coordination scenarios. It is written in Java as a set of plug-
ins on top of the Eclipse platform (www.eclipse.org). Currently the framework
consists of the following parts: (i) graphical editors, supporting the most common
service and communication channel types; (ii) a simulation plug-in, that gener-
ates Flash animated simulations on the fly; (iii) BPEL converter, that allows
conversion of Reo connectors to BPEL and vice versa; (iv) java code generation
plug-in, as an alternative to BPEL, represents a service coordination model as
a set of java classes; (v) validation plug-in, that performs model checking of
coordination models represented as constraint automata.

4 Conclusions and Future Work

In this paper we presented an approach for service coordination based on the
exogenous coordination language Reo. It focuses on only the important protocol-
related decisions and requires the definition of only those restrictions that ac-
tually form the domain knowledge. Compared to traditional approaches, this
leaves much more freedom in process specification. Reo’s distinctive feature is a
very liberal notion of channels. New channels can be easily added as long as they
comply with a set of non-restrictive Reo requirements. As a consequence of the
compositional nature of Reo, we have convenient means for creating domain-
specific language extensions. This way, the coordination language provides a
unique combination of language mechanisms that makes it easy to smoothly
add new language constructs by composing existing language elements.

In this paper we assumed that services support a simplified interaction model.
While this is acceptable for simple information providers such as map or calen-
dar services, this assumption is not true in general. We plan to investigate the
possibility of using Reo in complex scenarios where services have extended lifecy-
cle support. Reo is perfect in defining new domain-specific language extensions.
However, we lack specific extensions to the coordination language that support
various issues important to services, e.g., temporal constraints, preferences, and
extended service descriptions.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Structures in CS 14(3), 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

3. Klueppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. In: FOCLASA’06 (2006)

4. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
ICSOC-07, Demo Session (2007)

5. Lazovik, A., Arbab, F.: Using Reo for service coordination. Technical report, CWI
(2007)

www.eclipse.org

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 404–409, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Context-Aware Service Discovery Framework Based
on Human Needs Model

Nasser Ghadiri, Mohammad Ali Nematbakhsh, Ahmad Baraani-Dastjerdi,
and Nasser Ghasem-Aghaee

Department of Computer Engineering,
University of Isfahan

Isfahan, Iran
{ghadiri, nematbakhsh, ahmadb, aghaee}@eng.ui.ac.ir

Abstract. In this paper we have proposed an approach to extend the existing
service-oriented architecture reference model by taking into consideration the
hierarchical human needs model, which can help us in determining the user's
goals and enhancing the service discovery process. This is achieved by
enriching the user's context model and representing the needs model as a
specific ontology. The main benefits of this approach are improved service
matching, and ensuring better privacy as required by users in utilizing specific
services like profile-matching.

1 Introduction

During the past few years, semantic web services have been a major research area for
making service-oriented architecture (SOA) more usable in real applications.
Numerous efforts are undergoing both research and standardization, including OWL-
S, WSMO, WSDL-S, IRS-III, SWSF [5,6] and SAWSDL [14]. Their common goal is
exposing the capabilities of web services in a machine-understandable way, by
annotating and adding semantics to web services advertisements, to be used by other
services and clients for automated service discovery and composition.

However, automated composition of services is in its early stages. More adaptation
to changes in customers and more dynamic service composition methods are required
[13]. One of the primary reasons of service-orientation is fulfillment of the user's
requirements. From the SOA point of view, user's goals, motivations and
requirements are important factors to be taken into account. In the SOA reference
model [12], these aspects form a major part of the architecture (Figure 1). This model
says SOA is not done in isolation but must account for the goals, motivation, and
requirements that define the actual problems being addressed. Also in OWL-S, user's
goals are considered as a part of service profile [2], and in WSMO, user's desires are
taken into account, but working on the user's needs, desires and expectations and
mapping them to goal descriptions is a difficult step and is mostly neglected in the
current web service discovery models [4].

The main question here is how user's needs are to be satisfied by selecting and
composing the semantically annotated services? So we will require a deeper insight

 A Context-Aware Service Discovery Framework Based on Human Needs Model 405

into user's needs, desires and goals, generally as the user's behavioral context, to
improve the overall service matching quality. Although many of existing approaches
towards service composition largely neglect the context in which composition takes
place [13], two types of context-orientation in web services have been proposed:
service context [8] which is used for orchestration of distributed services in service
composition, and user context [5], which is discussed and extended in this paper.

Fig. 1. Goals and motivation in SOA reference model [12]

The rest of the paper is organized as follows. Section 2 motivates the reader with
giving a couple of example scenarios which demonstrate the need to model the user's
needs. Section 3 introduces the human needs model. Our service discovery model
based on human needs is presented in section 4. Section 5 contains some use cases
and application areas, followed by a conclusion in section 6.

2 Motivating Examples

For a better understanding of the role of human needs, imagine these scenarios.

• Scenario 1: The need for security can be seen as an emerging dominant need.
Suppose that you are using a virtual travel agency (VTA) [4] as a service-oriented
application to plan your vacation by giving your preferences and constraints for
selecting the most suitable services that fit your conditions. Meanwhile, suppose a
security problem, for example a credit card fraud happens to you. It will draw all your
attention to solving it first. You will probably suspend your travel planning, since the
credit card problem is more important to you. You next efforts will be dominated by
your personal criteria for selecting services that will potentially help you to solve the
fraud problem. You will suspend your travel planning until returning to your secure
position that was satisfying you before.

406 N. Ghadiri et al.

• Scenario 2: Finding a good job and keeping it. If the user or service requester is
unhappy with his/her job, detected explicitly or implicitly by the service-oriented
application, the service composition must be switched to a context for ensuring the
user of his/her job security, as it might be more important than other needs, at least in
current context of the user.

We can see that knowing more about the user's needs, might help us to understand
why a client pays little attention to what we offer and prefers to follow other services,
or to analyze the real causes of canceling or suspending the previous service requests
an so on.

3 Modeling the Human Needs

Several approaches have been proposed for modeling human needs and motivation,
mostly in 1950 to 1970. Among them, Maslow's hierarchy of needs [9][10] is a
widely accepted model [7]. Despite some criticisms on Maslow's theory, there is little
debate around the main concepts of this model, such as the hierarchical nature of
needs and the dominance of a need which we will use for our SOA enhancement.

Fig. 2. Maslow's hierarchy of needs [11]

According to Maslow, human needs arrange themselves in hierarchies of pre-
potency. That is to say, the appearance of one need usually rests on the prior
satisfaction of another, more prepotent need [9]. Maslow's hierarchical classification
is consisted of five layers as presented in Figure 2. There are at least five sets or
layers of needs, which are grouped as physiological, safety, love, esteem, and self-
actualization needs. The lowest layer represents our physiological needs such as
warmth, shelter, food, etc. The next layer contains safety needs or security needs

 A Context-Aware Service Discovery Framework Based on Human Needs Model 407

which means protection from danger. Social needs such as love, friendship and
comradeship are above it and the fourth layer is about esteem needs for self-respect,
or self-esteem, and for the esteem of others. When lower layer needs are satisfied to
an acceptable level, higher layer needs will emerge. The highest layer contains self-
actualization needs, which are also called growth needs. Growth needs are satisfied by
finding the way to "What a man can be, he must be" [9].

A nice and complex feature of human needs is the dynamic behavior which
governs our needs. According to Maslow, as higher priority needs (lower level in
hierarchy) are emerging, these needs will dominate our behavior until they are
satisfied. If all the needs are unsatisfied, and the human is then dominated by the
physiological needs, all other needs may become simply non-existent or be pushed
into the background. A similar concept to dominance of a need is context dominance,
which describes the concept of ordering context information according to importance,
and is expressed as a set of rules that are restricted to a device, a user, or are globally
applied to all participating services involved in fulfilling a given task [3]. The needs
model can be used as those set of rules which restrict a user in context dominance, i.e.
dominance of a need can determine context dominance from a user's perspective.

4 Service Discovery Model Based on Human Needs

Our user context model is the result of extending the object-oriented context model in
[5]. The proposed context model is depicted in Figure 3. The general context includes
location or spatial context, time or temporal context, environment context, device
context user context, etc. Our proposed needs context is part of the user context,
reflecting those parameters which directly present the user's needs and desires. As
noted above, the other parts of context may also affect needs context. For instance,
being in a certain geographic location, defined as part of spatial context, might trigger
some of our needs, or educating as an undergraduate student, defined as part of
temporal context, can be a basis for user needs model to be copied from a generic
needs context of such a student.

We also briefly introduce our work towards formalizing the needs model for
handling this extended user context. For knowledge representation about the needs
model, we defined an ontology for needs. We used Protégé to build the required
ontology based on the Maslow's hierarchical model. Our needs ontology defines every
layer in Maslow's model as a class, with different types of needs in each layer as the
subclasses. The ontology is designed to support other models of needs as well. The
concept of satisfiers is also defined, as the services and others entities which can
fulfill the needs and the relationship between needs and satisfiers are modeled by
using attributes.

For reasoning based on the above representation, we propose using the service
matchmaking algorithm in [1], slightly modifying it to handle the needs context.
Considering their matchmaking algorithm, we can add the layers in Maslow's needs
hierarchy at each layer with Σli(a1, a2, …, an) which means the activities in layer i can
be done in any order.

408 N. Ghadiri et al.

Doing the matchmaking this way, ensures a match adapted with user's current
status of satisfaction of needs, which is a more stable matching and closer to the goals
and requirements of the user.

Fig. 3. Partial hierarchy of context focusing on needs as a part of user context

5 Applications Areas

Service composition process can be improved by using the needs model. Discovering
the pre-requisites of each service is an important step in service composition. Based
on our model, before executing any service for a user, all services which can satisfy
lower layer needs must be selected and executed. The human needs model also can
improve web service personalization process [6] by increasing the quality of
similarity measurement. In other words, two users with similar status of their
hierarchy of needs, might have similar contexts, which makes the personalization and
recommendation more efficient. Another application area is profile matching, for
example between two or more mobile users, which can be improved by taking the
human needs model into account. Profile matching is generally based on comparing
the contexts of users which are geographically or temporally near to each other, and
ranking the potential users for establishing a relationship and so on. This process can
use an enriched profile similarity measure, by taking into account the needs status of
parties. The main benefits of adding the needs dimension to context-aware profile
matching for the user are:

• Enhanced matchmaking, due to higher quality matching based on needs and
filtering out those services which are far from current user's needs context

• Better privacy, by rejecting the people with unmatched needs from accessing
user's profile and other private context information.

 A Context-Aware Service Discovery Framework Based on Human Needs Model 409

6 Conclusion and Future Work

In this paper we introduced an approach to extend current service selection methods
by using the human needs model. The main contribution of this work is adding a new
dimension to context-aware service selection and composition, by presenting a model
which enables service selection algorithms to consider human behavior, needs and
motivations in the reasoning process. Our approach is based on extending an object-
oriented context model by Maslow's hierarchy of needs, which potentially can be used
in every semantic web services model. Modeling the human's core needs, could also
be a sound conceptual integration point between the different available semantic web
services models.

Our future works will include building a proof-of-concept prototype for our
proposed architecture and evaluating the modified matchmaking algorithm. We also
plan to improve our approach by using inexact reasoning, since the needs model is an
aspect of human behavior, which inherently contains some type of uncertainty and
will benefit from inexact knowledge representation and reasoning techniques.

References

1. Agrawal, S., Studer, R.: Automatic Matchmaking of Web Services. In: ICWS ’06.
Proceedings of the International Conference on Web Services, pp. 45–54 (2006)

2. Davis, J., Suder, R., Warren, P.: Semantic Web Technologies: Trends and Research in
Ontology-based Systems. John Wiley & sons ltd, West Sussex, England (2006)

3. Dorn, C., Dustdar, S.: Sharing hierarchical context for mobile web services. Distributed
Parallel Databases 21, 85–111 (2007)

4. Fensel, D., Lausen, H., Polleres, A., Bruijn, J.d., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services. Springer, Heidelberg (2007)

5. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J.: Context-
Awareness on Mobile Devices - the Hydrogen Approach. In: HICSS’03. Proceedings of
36th Annual Hawaii International Conference on System Sciences, pp. 292–302 (2003)

6. Huhns, M.N., Singh, M.P.: Service-Oriented Computing- Key Concepts and Principles.
IEEE Internet Computing 9(1), 75–81 (2005)

7. Lee, A.: Psychological Models in Autonomic Computing Systems. In: DEXA.
Proceedings of the 15th International Workshop on Database and Expert Systems
Applications (2004)

8. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: Toward an agent-based and context-oriented
approach for Web services composition. IEEE Transactions on Knowledge and Data
Engineering 17(5), 686–697 (2005)

9. Maslow, A.H.: A Theory of Human Motivation. Psychological Review 50, 370–396
(1943)

10. Maslow, A.H.: Motivation and Personality, 2nd edn. Harper & Row, New York (1970)
11. Maslow’s Hierarchy of Needs, http://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs
12. OASIS Org. : Reference Model for Service Oriented Architecture 1.0, Committee

Specification 1, http://www.oasis-open.org
13. Papazoglou, M.P., Traverso, P., Dustdar, S., Leyman, F.: Service-Oriented Computing

Research Roadmap, Report/vision paper on Service oriented computing EU-IST (2006)
14. Verma, K., Sheth, A.: Semantically Annotating a Web Service. IEEE Internet

Computing 11(2), 83–85 (2007)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 410–415, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Weight Assignment of Semantic Match Using User
Values and a Fuzzy Approach

Simone A. Ludwig

Department of Computer Science
University of Saskatchewan

Canada
ludwig@cs.usask.ca

Abstract. Automatic discovery of services is a crucial task for the e-Science
and e-Business communities. Finding a suitable way to address this issue has
become one of the key points to convert the Web into a distributed source of
computation, as it enables the location of distributed services to perform a
required functionality. To provide such an automatic location, the discovery
process should be based on the semantic match between a declarative
description of the service being sought and a description being offered. This
problem requires not only an algorithm to match these descriptions, but also a
language to declaratively express the capabilities of services. The proposed
matchmaking approach is based on semantic descriptions for service attributes,
descriptions and metadata. For the ranking of service matches a match score is
calculated whereby the weight values are either given by the user or estimated
using a fuzzy approach.

1 Introduction

Dynamic discovery is an important component of Service Oriented Architecture
(SOA) [1]. At a high level, SOA is composed of three core components: service
providers, service consumers and the directory service. The directory service is an
intermediary between providers and consumers. Providers register with the directory
service and consumers query the directory service to find service providers. Most
directory services typically organize services based on criteria and categorize them.
Consumers can then use the directory services' search capabilities to find providers.
Embedding a directory service within SOA accomplishes the following, scalability of
services, decoupling consumers from providers, allowing updates of services,
providing a look-up service for consumers and allowing consumers to choose between
providers at runtime rather than hard-coding a single provider.

However, SOA in its current form only performs service discovery based on
particular keyword queries from the user. This, in majority of the cases leads to low
recall and low precision of the retrieved services. The reason might be that the query
keywords are semantically similar but syntactically different from the terms in service
descriptions. Another reason is that the query keywords might be syntactically
equivalent but semantically different from the terms in the service description.

 Weight Assignment of Semantic Match Using User Values and a Fuzzy Approach 411

Another problem with keyword-based service discovery approaches is that they
cannot completely capture the semantics of a user’s query because they do not
consider the relations between the keywords. One possible solution for this problem is
to use ontology-based retrieval.

A lot of related work on semantic service matching has been done [2,3,4,5,6]
however, this approach takes not only semantic service descriptions into account but
also context information. Ontologies are used for classification of the services based
on their properties. This enables retrieval based on service types rather than
keywords. This approach also uses context information to discover services using
context and service descriptions defined in ontologies.

The structure of this paper is as follows. The next section describes in detail the
matching algorithm, match score calculation with weight values and the fuzzy weight
assignment. In section 3, a summary of the findings and directions for future work are
described.

2 Matching Algorithm

The overall consideration within the matchmaking approach for the calculation of the
match score is to get a match score returned which should be between 0 and 1, where
0 represents a “mismatch”, 1 represents a “precise match” and a value in-between
represents a “partial match”. The matchmaking framework [3] relies on a semantic
description which is based on attributes, service descriptions and metadata
information. Therefore, the overall match score consists of the match score for service
attributes, service description and service metadata respectively:

3
MDA

O
MMM

M
++

= , whereby OM , AM , DM , MM are the overall, attribute,

description and metadata match scores respectively.
Looking at the service attributes first, it is necessary to determine the ratio of the

number of service attributes given in the query in relation to the number given by the
actual service. To make sure that this ratio does not exceed 1, a normalization is
performed with the inverse of the sum of both values. This is multiplied by the sum of
the number of service attributes matches divided by the number of actual service
attributes shown below. Similar equations were derived for service descriptions and
service metadata respectively. The importance of service attributes, description and
metadata in relation to each other is reflected in the weight values.

AS

MA

AS

AQ

ASAQ

A
A n

n

n

n

nn

w
M ⋅⋅

+
=

)(
,

DS

MD

DS

DQ

DSDQ

D
D n

n

n

n

nn

w
M ⋅⋅

+
=

)(
,

MS

MM

MS

MQ

MSMQ

M
M n

n

n

n

nn

w
M ⋅⋅

+
=

)(

whereby Aw , Dw and Mw are the weights for attributes, description and metadata

respectively; AQn , ASn and MAn are the number of query attributes, service attributes

and service attribute matches respectively; DQn , DSn and MDn are the number of

query descriptions, service descriptions and service description matches respectively;

412 S.A. Ludwig

MQn , MSn and MMn are the number of query metadata, service metadata and service

metadata matches respectively.

Match Score with User Weight Assignment (UWA)
The user defines the weight values for service attributes, descriptions and metadata
respectively, based upon their confidence in the “search words” used.

Match Score with Fuzzy Weight Assignment (FWA)
Fuzzy weight assignment allows for uncertainty to be captured and represented, and
helps the automation of the matching process.

Fuzzy logic is derived from fuzzy set theory [7,8,9,10] dealing with reasoning that
is approximate rather than precisely deduced from classical predicate logic. It can be
thought of as the application side of fuzzy set theory dealing with well thought out
real world expert values for a complex problem. [11]. Fuzzy logic allows for set
membership values between and including 0 and 1, and in its linguistic form,
imprecise concepts like "slightly", "quite" and "very". Specifically, it allows partial
membership in a set.

A fuzzy set A in a universe of discourse U is characterized by a membership
function]1,0[: →UAμ which associates a number)(xAμ in the interval]1,0[with

each element x of U . This number represents the grade of membership of x in the
fuzzy set A (with 0 meaning that x is definitely not a member of the set and 1
meaning that it definitely is a member of the set).

This idea of using approximate descriptions of weight values rather than precise
description is used in this approach. First, we have to define a member-
ship function each for Aw , Dw and Mw . The fuzzy subset of the membership

function for service attributes can be denoted as such)}(,{(xxA Aμ=

]1,0[:)(, →∈ XxXx Aμ . The fuzzy subset A of the finite reference super

set X can be expressed as)}(,{)},...,(,{)},(,{ 2211 nAnAA xxxxxxA μμμ= ; or

}/)({},...,/)({},/)({ 2211 nnAAA xxxxxxA μμμ= where the separating symbol / is

used to associate the membership value with its coordinate on the horizontal axis. The
membership function must be determined first. A number of methods learned from
knowledge acquisition can be applied here. Most practical approaches for forming
fuzzy sets rely on the knowledge of a single expert. The expert is asked for his or her
opinion whether various elements belong to a given set. Another useful approach is to
acquire knowledge from multiple experts. A new technique to form fuzzy sets was
recently introduced which is based on artificial neural networks, which learn available
system operation data and then derive the fuzzy sets automatically.

Fig. 1 shows the membership functions for service attributes, description and
metadata respectively. The comparison of the three membership functions shows that
it is assumed that service attributes are defined in more detail and therefore there is
less overlapping of the three fuzzy sets weak, medium and strong. However, for
service description and also metadata the overlap is significantly wider allowing the
user a larger “grey area” where the weight values are defined accordingly.

 Weight Assignment of Semantic Match Using User Values and a Fuzzy Approach 413

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Attributes

D
eg

re
e

o
f

m
em

b
er

sh
ip

low medium high

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Descriptions

D
eg

re
e

o
f

m
em

b
er

sh
ip

low medium high

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Metadata

D
eg

re
e

o
f

m
em

b
er

sh
ip

low medium high

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Match score

D
eg

re
e

o
f

m
em

b
er

sh
ip

poor average good great

Fig. 1. Membership function of the fuzzy sets for service attributes, descriptions, metadata and
match score

In order to do the mapping from a given input to an output using the theory of
fuzzy sets, a fuzzy inference must be used. There are two fuzzy inference techniques –
Mamdani [12] and Sugeno [13]. The Mamdani method is widely accepted for
capturing expert knowledge. It allows describing the expertise more intuitive.
However, Mamdani-type inference entails a substantial computational burden. On the
other hand, the Sugeno method is computationally effective and works well with
optimization and adaptive techniques, which makes it very attractive in control
problems. For this investigation, the Mandami inference was chosen because of the
fact that it better captures expert knowledge. In 1975, Mandami built one of the first
fuzzy systems to control a steam engine and boiler combination by applying a set of
fuzzy rules supplied by experienced human operators. The Mamdani-style inference
process is performed in four steps which are fuzzification of the input variables, rule
evaluation, aggregation of the rule outputs and finally defuzzification.

The four fuzzy rules for service attributes (A), description (D), metadata (M) and
match score (MS) are defined as:

R1: IF A=low AND D=low AND M=low THEN MS=poor
R2: IF A=medium AND D=low AND M=medium THEN MS=average
R3: IF A=medium AND D=medium AND M=medium THEN MS=good
R4: IF A=high AND D=high AND M=high THEN MS=great

Let us assume a user’s query results in the match values AM =0.4, DM =0.5

and MM =0.7 with Aw = Dw = Mw =1.

414 S.A. Ludwig

1. Fuzzification:

6.0

8.0

1

8.0

2.0

)(

)(

)(

)(

)(

=

=

=

=

=

=

=

=

=

=

highm

mediumm

mediumd

mediuma

lowa

μ
μ
μ
μ
μ

2. Rule Evaluation:
)](),(),(min[)(xxxx MDAMDA μμμμ =∩∩

R1: 2.0=μ

R2: 8.0=μ

R3: 0.1=μ

R4: 6.0=μ

3. Aggregation 4. Defuzzification using centroid
technique:

614.0

)(

)(

==

∫

∫
b

a
A

b

a
A

dxx

xdxx

COG

μ

μ

The evaluated match score is 0.614 for the given example.

3 Conclusion

The contextual information enhances the expressiveness of the matching process, i.e.
by adding semantic information to services, and also serves as an implicit input to a
service that is not explicitly provided by the user. The introduction of match scores
serves as a selection criterion for the user to choose the best match. Two different
approaches to calculate the match score were shown whereby one used precise weight
values assigned to service attributes, description and metadata, and the second
approach showed the usage of fuzzy descriptions for the weight values. The first
approach is semi-automatic as the user needs to provide the weight values by entering
the query, resulting in a confidence value of how good the user thinks the entered
query attributes were chosen. The second approach with the fuzzy weight assignment
allows for uncertainty to be captured and represented. The benefit of the second
approach is that user intervention is not necessary anymore which helps the
automation of the matching process.

For further research, an evaluation will be conducted by an experiment to calculate
precision and recall rates for both approaches. Furthermore, an investigation will be
done to compare how predefined and hard coded weight values influence the
precision and recall values. In addition, due to the computational burden of the
Mamdani inference, the Sugeno inference might work better in this area where quick
response times are important. However, the advantage of capturing expert knowledge
might be compromised. This also needs to be explored further.

 Weight Assignment of Semantic Match Using User Values and a Fuzzy Approach 415

References

1. McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: The Java Series Books - Java Web
Services Architecture, Ch. 2, Service Oriented Architecture (2003)

2. Tangmunarunkit, H., Decker, S., Kesselman, C.: Ontology-based Resource Matching in
the Grid - The Grid meets the Semantic Web. In: Proceedings of the International
Semantic Web Conference, Budapest, Hungary (May 2003)

3. Ludwig, S.A., Reyhani, S.M.S.: Semantic Approach to Service Discovery in a Grid
Environment. Journal of Web Semantics 4(1), 1–13 (2006)

4. Bell, D., Ludwig, S.A.: Grid Service Discovery in the Financial Markets Sector. Journal of
Computing and Information Technology 13(4), 265–270 (2005)

5. Ludwig, S.A., Rana, O.F., Padget, J., Naylor, W.: Matchmaking Framework for
Mathematical Web Services. Journal of Grid Computing 4(1), 33–48 (2006)

6. Gagnes, T., Plagemann, T., Munthe-Kaas, E.: A Conceptual Service Discovery
Architecture for Semantic Web Services in Dynamic Environments. In: Proceedings of the
22nd International Conference on Data Engineering Workshops (April 2006)

7. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–383 (1965)
8. Cox, E.: The Fuzzy Systems Handbook, AP Professional (1995)
9. Tsoukalas, L.H., Uhrig, R.E.: Fuzzy and Neural Approaches in Engineering. John Wiley &

Sons Inc., New York (1996)
10. Kosko, B.: Fuzzy Engineering. Prentice Hall, Upper Saddle River, New Jersey (1997)
11. Klir, G.J., St. Clair, U.H., Yuan, B.: Fuzzy Set Theory: Foundations and Applications.

Prentice-Hall, Englewood Cliffs (1997)
12. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic

controller. International Journal of Man–Machine Study, 1–13 (1975)
13. Sugeno, M.: Industrial Applications of Fuzzy Control. North-Holland, Amsterdam (1985)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 416–421, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Grounding OWL-S in SAWSDL

Massimo Paolucci1, Matthias Wagner1, and David Martin2

1 DoCoMo Communications Laboratories Europe GmbH
{paolucci,wagner}@docomolab-euro.com

2 Artificial Intelligence Center, SRI International

martin@ai.sri.com

Abstract. SAWSDL and OWL-S are Semantic Web services languages that
both aim at enriching WSDL with semantic annotation. In this paper, we
analyze the similarities and differences between the two languages, with the
objective of showing how OWL-S annotations could take advantage of
SAWSDL annotations. In the process, we discover and analyze representational
trade-offs between the two languages.

1 Introduction

Semantic Web services have emerged in the last few years as an attempt to enrich
Web services languages with ontological annotations from the Semantic Web. Overall,
the goal of such efforts is to facilitate Web services interaction by lowering
interoperability barriers and by enabling greater automation of service-related tasks
such as discovery and composition. A number of proposals, such as OWL-S 0,
WSMO 0 and WSDL-S 0, have been on the table for some time. They provide
different perspectives on what Semantic Web services ought to be, and explore
different trade-offs. Each of these efforts is concerned with supporting richer
descriptions of Web services, but at the same time each has made an effort to tie in
with WSDL, and through it to Web service technology. In the case of OWL-S, an
ontology-based WSDL Grounding is provided, which relates elements of an OWL-S
service description with elements of a WSDL service description.

Recently, Semantic Web services reached the standardization level with SAWSDL
0, which is closely derived from WSDL-S. A number of important design decisions
were made with SAWSDL to increase its applicability. First, rather than defining a
language that spans across the different levels of the WS stack, the authors of
SAWSDL have limited their scope to augmenting WSDL, which considerably
simplifies the task of providing a semantic representation of services (but also limits
expressiveness). Second, there is a deliberate lack of commitment to the use of OWL
0 or to any other particular semantic representation technology. Instead, SAWSDL
provides a very general annotation mechanism that can be used to refer to any form of
semantic markup. The annotation referents could be expressed in OWL, in UML, or
in any other suitable language. Third, an attempt has been made to maximize the use
of available XML technology from XML schema, to XML scripts, to XPath, in an
attempt to lower the entrance barrier to early adopters.

 Grounding OWL-S in SAWSDL 417

Despite these design decisions that seem to suggest a sharp distinction from OWL-
S, SAWSDL shares features with OWL-S’ WSDL grounding: in particular, both
approaches provide semantic annotation attributes for WSDL, which are meant to be
used in similar ways. It is therefore natural to expect that SAWSDL may facilitate the
specification of the Grounding of OWL-S Web services, but the specific form of such
Grounding is still unknown, and more generally a deeper analysis of the relation
between SAWSDL and OWL-S is missing. To address these issues, in this paper we
define a SAWSDL Grounding for OWL-S. In this process we try to identify how
different aspects of OWL-S map into SAWSDL. But we also highlight the
differences between the two proposals, and we show that a mapping between the two
languages needs to rely on fairly strong assumptions. Our analysis also shows that
despite the apparent simplicity of the approach, SAWSDL requires a solution to the
two main problems of the semantic representation of Web services: namely the
generation and exploitation of ontologies, and the mapping between the ontology and
the XML data that is transmitted through the wire.

The result of this paper is of importance for pushing forward the field of Semantic
Web services by contributing to the harmonization of two proposals for the annotation
of Web services. In the paper, we will assume some familiarity with OWL-S and
SAWSDL, neither of which is presented. The rest of the paper is organized as
follows. In section 2 we will analyze the similarities and differences between OWL-S
and SAWSDL. In section 3, we will introduce an OWL-S grounding based on
SAWSDL, with analysis of its strengths and weaknesses. In section 4 we will discuss
the finding and conclude.

2 Relating SAWSDL to OWL-S

The first step toward the definition of a SAWSDL Grounding for OWL-S is the
precise specification of the overlap between the two languages. Since the two
languages have a very similar goal: provide semantic annotation to WSDL, they have
some similarities. The first one is that both OWL-S and SAWSDL express the
semantics of inputs and outputs of WSDL operations. SAWSDL does it via a direct
annotation of the types and elements while the OWL-S Grounding maps the content
of inputs and outputs to their semantic representation in the Process Model. The
second similarity is that both languages support the use of transformations, typically
based on XSLT, to map WSDL messages to OWL concepts. These transformations
allow a level of independence between the message formats and the semantic
interpretation of the messages, allowing developers to think of the implementation of
their application independently of the semantic annotation that is produced. The third
similarity is that both OWL-S and SAWSDL acknowledge the importance of
expressing the category of a service within a given taxonomy. SAWSDL provides
category information by annotating interface definitions. OWL-S provides this
information in the Profile through its type specification or through the property
serviceCategory.

Despite their similarities, the two languages have also strong differences. The first
one is in the use of WSDL. OWL-S uses WSDL exclusively at invocation time;
therefore the WSDL description relates directly to atomic processes in the Process

418 M. Paolucci, M. Wagner, and D. Martin

Model; hence, in OWL-S, there is no direct relation between WSDL and the service
Profile, which is used during the discovery phase. Instead SAWSDL uses WSDL
both at both discovery and invocation time. Therefore, SAWSDL needs to relate to
both the OWL-S Profile and the Process Model. The distinction is important since
WSDL and the OWL-S Profile express two very different perspectives on the service:
WSDL describes the operations performed by the service during the invocation; on
the other hand, the OWL-S Profile takes a global view of the service independent of
how this function is realized by the service. From the WSDL perspective, the Profile
compresses the Web service to only one operation and it does not specify how this
operation can be decomposed to more refined ones. The second difference is in
SAWSDL agnostic approach toward semantics. In contrast to OWL-S, which is very
committed to OWL and Semantic Web technology, SAWSDL does not make any
commitment regarding the representational framework for expressing semantics. The
authors of the SAWSDL specification explicitly state that semantics can be expressed
in many different ways and languages. Such an agnostic approach extends the
applicability of SAWSDL at cost of creating interoperability problems by mixing
different annotation frameworks. The third difference is that SAWSDL, on the
opposite of OWL-S, allows partial annotation of services. For example, it is possible
to annotate the semantics of the attributes of a message, but not the semantics of the
whole message. In turn the corresponding OWL-S Grounding will have to define the
semantics of the elements that were not described.

Because of these differences, in order to be able to exploit the SAWSDL semantic
annotations in the OWL-S Grounding we need to make three assumptions. The first
one is that SAWSDL annotations are in OWL since OWL-S does not handle any
other type of semantic annotation. The second assumption is that the semantic type of
the complete message types is specified. This assumption is required since SAWSDL
supports the specification of a schema mapping without a modelReference. In
such a case, it may be known how to perform the mapping, but not the semantic type
of the input or output. Finally, whole description needs to be semantically annotated.
If these conditions are violated, then the semantic annotation of parts of the WSDL
description will not be available, and therefore the grounding will have to be
compiled manually.

3 Grounding OWL-S in SAWSDL

When the previous three assumptions are satisfied, we can take advantage of the
SAWSDL semantic annotations in the definition of the mapping of the OWL-S
Grounding. To define the OWL-S Grounding, we first need to specify which element
of OWL-S maps to the corresponding element in SAWSDL. The class
WsdlAtomicProcessGrounding, see Figure 2, specifies the
correspondence between the Atomic Process and the WSDL operations through the
two properties owlsProcess and wsdlOperation. The two properties
inputMap and outputMap map the inputs and the outputs of OWL-S processes
and WSDL operations.

 Grounding OWL-S in SAWSDL 419

Fig. 1. Definition of ModelRefMap

As first approximation, OWL-S inputs and outputs can be mapped directly to the
results of the concepts representing the semantics of the message types. This way we
can take advantage of the lifing elements of SAWSDL. The class ModelRefMap,
shown in Figure 1 performs this mapping by defining the two properties
owlsParameter and modelRef. The first property specifies the OWL-S
parameter to be used, the second property points to the URI of the semantic markup
of the message type. One complicating factor in the input and output mapping is that
whereas a WSDL operation has only one input and one output, the corresponding
Atomic Process in OWL-S may have multiple inputs and outputs. Therefore the
straightforward mapping defined above needs a mechanism to select the portions of
the input or output that derive from the semantic markup of the message. This can be
achieved with rules that specify how the modelRef of a message type maps to and
from an OWL-S Parameter. Such a rule could be expressed in a rule language such as
SWRL 0. The property mapParam of ModelRefMap is defined to store such a
rule. The cardinality restriction of at most 1 allows for the property not to be used in
the grounding, in such case the mapping between the OWL-S parameter and the
SAWSDL message is expected to be 1:1.

The last aspect of the grounding is to deal the SAWSDL annotation on the
interface. Unlike the previous mappings, in this case there is no need to explicitly
add information to the Grounding because first, the expression of service categories is

<owl:Class rdf:ID="ModelRefMap">
 <owl:Restriction>
 <owl:onProperty rdf:resource="owlsParameter"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1
 </owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="modelRef"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1
 </owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="mapParam"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1
 </owl:cardinality>
 </owl:Restriction>
</owl:Class>

<owl:datatypeProperty rdf:ID="owlsParameter">
 <rdfs:domain rdf:resource="#ModelRefMap"/>
 <rdfs:range rdf:resource="&xsd;#anyURI"/>
</owl:datatypeProperty>

<owl:datatypeProperty rdf:ID="modelRef">
 <rdfs:domain rdf:resource="#ModelRefMap"/>
 <rdfs:range rdf:resource="&xsd;#anyURI"/>
</owl:datatypeProperty>

<owl:datatypeProperty rdf:ID="mapParam">
 <rdfs:domain rdf:resource="#ModelRefMap"/>
 <rdfs:range rdf:resource="&xsd;#literal"/>
</owl:datatypeProperty>

420 M. Paolucci, M. Wagner, and D. Martin

Fig. 2. SAWSDL to OWL-S Grounding

equivalent in OWL-S and SAWSDL; and second, the Profile of the service can be
found through the Service specification of OWL-S. Therefore, it is possible to
stipulate a fixed mapping between the two service descriptions. Such mapping first
identifies the Profile corresponding to the Grounding under definition, and then
proceeds with a one-to-one mapping between the interface annotation in SAWSDL
and the ServiceCategory of OWL-S.

4 Conclusions

The analysis performed in this paper reveals the relation between OWL-S and
SAWSDL with the objective of deriving automatically OWL-S Grounding from
SAWSDL annotations. The results of our analysis is that whereas in principle such
derivation is possible, a number of assumptions on the use of WSDL and the style of
annotations are satisfied. When the assumptions are not satisfied, the Grounding can
still be defined, but such a mapping has to be derived manually by programmer that
understands the semantics of the WSDL specification.

The result of the derivation is a skeletal OWL-S specification that contains a
Process Model in which only the atomic processes are specified, and a Profile in

<owl:Class rdf:ID=”WsdlAtomicProcessGrounding”>
 <owl:Restriction>
 <owl:onProperty rdf:resource="owlsProcess"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="wsdlOperation"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
</owl:Class>

<owl:objectProperty rdf:ID="owlsProcess">
 <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/>
 <rdfs:range rdf:resource="&owlsProcess;#AtomicProcess"/>
</owl:objectproperty>

<owl:datatypeProperty rdf:ID="wsdlOperation">
 <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/>
 <rdfs:range rdf:resource="&xsd;#anyURI"/>
</owl:datatypeProperty>

<owl:objectProperty rdf:ID="inputMap">
 <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/>
 <rdfs:range rdf:resource="#ModelRefMap"/>
</Owl:objectproperty>

<owl:objectProperty rdf:ID="outputMap">
 <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/>
 <rdfs:range rdf:resource="#ModelRefMap"/>
</Owl:objectproperty>

 Grounding OWL-S in SAWSDL 421

which only the service category is specified. The atomic processes themselves will
also be partially specified since SAWSDL does not provide any information on their
preconditions and effects. An additional modeling problem is the handling of WSDL
faults. In principle, they can be represented in OWL-S with conditional results, but
the problem is that there is no knowledge in SAWSDL of what are the conditions of a
fault since SAWSDL specifies only the annotation of the semantics of content of the
message, instead of the conditions under which the fault occurs. These problems
could be addressed by adding a specification of preconditions and effects to
SAWSDL.

References

1. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.:
Web Service Semantics - WSDL-S. Technical report, W3C Member (submission November
7, 2005) (2005)

2. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema, W3C
Candidate Recommendation (January 26, 2007), http://www.w3.org/TR/sawsdl/

3. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic Web rule language combining OWL and RuleML

4. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO). W3C
Member (2005) (submission), http://www.w3.org/Submission/WSMO/

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. W3C Member Submission (2004)

6. McGuinness, D.L., Harmelen, F. v.: OWL Web Ontology Language overview – W3C
recommendation (February 10, 2004)

A Declarative Approach for QoS-Aware Web

Service Compositions�

Fabien Baligand1,2, Nicolas Rivierre1, and Thomas Ledoux2

1 France Telecom - R&D / MAPS / AMS,
38-40 rue du general Leclerc, 92794 Issy les Moulineaux, France
{fabien.baligand,nicolas.rivierre}@orange-ftgroup.com

2 OBASCO Group, EMN / INRIA, Lina
Ecole des Mines de Nantes,

4, rue Alfred Kastler, F - 44307 Nantes cedex 3, France
thomas.ledoux@emn.fr

Abstract. While BPEL language has emerged to allow the specification
of Web Service compositions from a functional point of view, it is still left
to the architects to find proper means to handle the Quality of Service
(QoS) concerns of their compositions. Typically, they use ad-hoc tech-
nical solutions, at the message level, that significantly reduce flexibility
and require costly developments. In this paper, we propose a policy-
based language aiming to provide expressivity for QoS behavioural logic
specification in Web Service orchestrations, as well as a non-intrusive
platform in charge of its execution both at pre-deployment time and at
runtime.

1 Introduction

BPEL language provides abstractions and guarantees to easily specify safe ser-
vice compositions, but its expressivity is limited to functional concerns of a
composition, implying that architects have to handle other concerns, such as
QoS management, by other means. QoS management, in the context of Web
Services, relates to a wide scope of properties such as performance, availability,
price or security. To guaranty the QoS of a relationship between a customer and
a service provider, a Service Level Agreement (SLA) that contains guarantees
and assumptions is negotiated.

Dealing with QoS in service compositions faces numerous challenges both at
pre-deployment time and at runtime. At pre-deployment time, architects have
to guaranty the QoS properties of the composite services and have to find local
services whose QoS satisfies to the global QoS. As discussed in [5], dealing with
the QoS properties combinatory is a complex task. Current works [2,4] focus
either on a bottom-up approach, that deduces the QoS of the composite service
out of local services QoS and the composition structure, either on a top-down

� This work was partially supported by the FAROS research project funded by the
French RNTL.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 422–428, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Declarative Approach for QoS-Aware Web Service Compositions 423

approach, that aims to find a set of local services satisfying to the QoS of the
composite. However, both ways do not take into account architects advanced
requirements. For instance, the architects may want to specify QoS of some parts
of their orchestrations and may require that some local services are discovered
to match the global QoS. At runtime, QoS of local services is likely to vary,
and the orchestration client may use various paths in the BPEL flow execution.
Such variations lead to QoS variations of the composite service that need to be
dynamically counterbalanced. Also, QoS mechanisms such as security, reliable
messaging or transaction, which rely on WS-* protocols, are major features that
must be addressed.

Because BPEL language does not provide expressivity for QoS management,
architects cannot easily specify QoS requirements and behavioural logic in their
orchestrations. Instead, they handle QoS management at the message level, us-
ing different frameworks and languages: some specific platforms take care of
SLA documents, while SOAP filters contain QoS mechanisms implementation
and that BPEL engines may offer basic QoS features. Making all these frame-
works work together leads to code that lacks flexibility and portability, that
decreases loose coupling nature of the composition, and which is error-prone. To
provide the required expressivity for QoS management at the composition level,
we propose a language accurately targeting parts of the BPEL orchestrations.

In this paper, we present our approach that aims to be non-intrusive with
already existing infrastructures and languages. This approach offers a policy-
based language, called “QoSL4BP” (Quality of Service Language for Business
Processes), and a platform, namely “ORQOS” (ORchestration Quality Of Ser-
vice). The latest version of ORQOS platform has not been fully implemented yet,
but already existing components of previous versions have been used for proof
of concept purposes. The remainder of the paper is organized as follows: Sec-
tion 2 describes QoSL4BP language structure and primitives, Section 3 details
the three steps of ORQOS platform process, Section 4 illustrates our approach
with a scenario and Section 5 discusses the related works.

2 QoSL4BP Language

Design. To allow a seamless integration with BPEL language, and to increase
reusability and portability of our language, QoSL4BP language was designed as
a policy-based language. A policy consists in a declarative unit containing the
adaptation logic of a base process. It is commonly agreed that a policy contains
objectives to reach and actions to perform on a system. In our context, the
BPEL orchestration is divided into sub-orchestrations (called scopes), each scope
being addressed by a specific QoSL4BP policy, in order to allow the architect
to address well-delimited systems of the orchestration, to decompose the QoS
aggregation computation problem (described in section 3), and also to increase
policies reusability. Thus, QoSL4BP policies contain both static and dynamic
QoS behavioural logic, hence allowing architect to specify QoS constraints and
adaptation logic over scopes of the orchestration.

424 F. Baligand, N. Rivierre, and T. Ledoux

Structure. The structure of a QoSL4BP policy is composed of three sections,
as shown on Figure 1: The “SCOPE” section specifies the BPEL activity (basic
or structured) targeted by the policy, “INIT” section contains the initial QoS
settings of the scope, used at pre-deployment time, and “RULE” section embod-
ies Event-Condition-Action (ECA) rules. This section is performed at runtime
while the composition performs within the scope targeted by the policy.

POLICY policy name = {
SCOPE = { BPEL activity targeted by the policy }
INIT = { scope initial QoS settings }
RULE = {

(Condition)? -¿ (Action)+
}

}

Fig. 1. QoSL4BP Policy Template

Primitives. QoSL4BP language offers a limited set of context access and action
primitives, as illustrated on Figure 4. Conditions of rules are formed by test-
ing the context access primitives and can be composed with the usual boolean
operators. Context access primitives returns QoS data collected both at the
service and at the composition levels: REQUIRE and PROVIDE primitives
give information about the QoS mechanisms required and provided by a service;
SLAVIOLATION and SCOPEVIOLATION primitives respectively detect
if a SLA is violated and if the scope QoS initial settings are violated; USER,
EXCEPTION, RATE and LOOP primitives respectively returns informa-
tion about the user, QoS exceptions, branch rate of use in a switch activity, and
number of loops in a while activity. Action primitives allow the architect to spec-
ify QoS behavioural logic of the orchestration: PERFORM and PROCESS
primitives enforce QoS mechanisms for outbound and inbound SOAP messages;
SELECT, RENEGOTIATE and REPLANNING primitives respectively
enable to select a concrete service to use for an abstract service, to renegotiate a
concrete service to match an abstract service, and to perform QoS replanning to
satisfy to the scope QoS initial settings; FAIL and THROW primitives allow
to throw QoS exceptions to the customer and inside the orchestration.

3 ORQOS Platform Process

ORQOS platform process includes three steps. First, ORQOS platform stati-
cally singles out a set of concrete services to match the abstract services of
the orchestration whose QoS aggregation satisfies to the SLA of the composite
service, then it modifies the BPEL document to introduce monitoring activi-
ties at pre-deployment time, and finally ORQOS performs QoS adaptation at
runtime.

A Declarative Approach for QoS-Aware Web Service Compositions 425

QoS Planning. Let k be the number of services of the orchestration, and let n
be the number of potential concrete services that can implement each of services
of the orchestration, then the number of potential configurations to evaluate is
nk, making the problem NP-hard [5]. To bring answers to these issues, ORQOS
decomposes, using policies scopes, the computation of the composite service into
multiple computations at some “sub-composite” levels, and recomposes the so-
lutions afterwards. For decomposition, QoS initial settings of QoSL4BP policies
are considered both as expectations (for the local services contained in policies
scopes) and as guarantees (when evaluating the global QoS of the orchestration).
Thus, as shown in Figure 2, smaller aggregations are tested against the QoS ini-
tial settings of QoSL4BP policies, then the QoS aggregations of sub-composite
services are tested against the SLA of the composite service. Therefore, let p be
the number of policies, let ci(i ∈ [1; p]) be the number of services included in the
scope of policy i, and let c0 be the number of services which are not included
in any scope of policies, then the number of potential configurations ORQOS
has to evaluate is

∑p
i=0 nci , which is in Θ(nmax(ci)), meaning that, with a set of

appropriate scopes, testing each configuration with aggregation techniques, such
as presented in [2], becomes affordable.

Monitoring Sensors Insertion into BPEL. The second step of ORQOS plat-
form processing consists in inserting sensor activities at relevant places into the
BPEL document, to monitor performance of orchestration scopes and to inform
ORQOS at runtime. Such sensors are standard “invoke” activities that monitor
scope QoS, BPEL execution paths, and exceptions. They call an ORQOS sen-
sor manager interface, hence allowing ORQOS to collect data at runtime. As
shown on Figure 2, sensors are inserted into the BPEL document according to
the instructions specified in the “RULE” section of QoSL4BP policies. After this
transformation step, the BPEL document can be deployed on any BPEL engine.

Fig. 2. Pre-deployment Process Steps

426 F. Baligand, N. Rivierre, and T. Ledoux

QoS Adaptation at Runtime. Once the orchestration is deployed, the BPEL
engine exposes both a WSDL interface and an SLA offer for customers to in-
voke the composite service. As can be seen on Figure 3, a proxy layer has been
added for SLA monitoring, for WS-* mechanisms enactment, and for flexible
dynamic service binding. Thus, the proxy acts both as a sensor and an actuator
in partnership with ORQOS platform. Meanwhile, ORQOS platform is in charge
of processing the rules contained in QoSL4BP policies. It receives information
both from the proxy (SLA violation, usage of orchestration customers) and from
the BPEL engine via the sensors inserted at pre-deployment time . Upon satis-
faction of any of the rules conditions, the corresponding actions are performed,
hence allowing QoS to be readjusted at runtime.

Fig. 3. Runtime QoS Adaptation Step

4 Illustrative Scenario

Depicted in Figure 4, the “Personal Medical Records” scenario illustrates a Web
Service orchestration called by a doctor to get medical records of a patient.
Upon reception of the request, some registry services are called in parallel. Next,
a records management service that stores the medical records is called. Then,
a “while” activity calls a “fetcher” service to collect the corresponding medical
items. Finally, a folder containing the list of items is assembled by an “archiver”
service, and is sent by an FTP delivery or a mailing service.

Policy “guarantyFlow” targets the flow(“registry”) activity, describes the
QoS settings of the scope (response time below three seconds per request,
throughput exceeding one hundred of requests per second) and specifies message
encryption (using WS-Security) as well as a rule specifying scope QoS replan-
ning if any service SLA is violated. Policy “adapt2loop” specifies a number
of loops (five) for static computation. Depending on the number of loops per-
formed at runtime, it renegotiates with the “fetcher” service or throws an ex-
ception in the orchestration. The “archiver” service can be implemented by two
services (“ZIPService” and “RARService”) that do not come with SLA. Policy
“noSLA” specifies the expected QoS for static computation, and implements
the service selection logic (“ZIPService” can hold a forty requests per second
throughput while “RARService” shows better performance) depending on the

A Declarative Approach for QoS-Aware Web Service Compositions 427

Fig. 4. “Personal Medical Records” Orchestration and QoSL4BP Policies

usage of orchestration customers. Also, it specifies that an exception should be
thrown if the static QoS properties are violated. Policy “branching” con-
tains the initial rates of use of the “switch” branches for static computation
(“FTPSender” service is initially called four times more than the “MailSender”
service). At runtime, WS-ReliableMessaging protocol is specified for each service
of the scope and the QoS of services has to readjust according to the rates of
use of the branches.

5 Related Works

In [3], the authors have elaborated a language named “Aspect Oriented for
Business Process Execution Language” (AO4BPEL) that allows BPEL aspects
specification calling non functional mechanisms, such as security (using infras-
tructural services that modify SOAP messages). This work is different from
ours because the framework requires a purposely built BPEL engine, it uses an
imperative language to specify extra-functional requirements, and it does not
address performance requirements. In [1] the authors propose a policy assertion
language, “WS-CoL” (Web Services Constraint Language), based on WS-Policy
and specifically designed to be used in monitoring BPEL processes. The approach
is similar to ours in that a non intrusive manager, in charge of the evaluation
of policies, is called by standard BPEL invoke activities. However, the authors
focus on monitoring and only consider security assertions (WS-SecurityPolicy).

In [2] the authors propose a QoS prediction algorithm consisting of a set of
graph reduction rules applied to the composite constructs of a workflow. Upon
only one atomic service remains, QoS properties corresponding to the process
are exposed. We use a similar reduction approach as it enables fast workflow
QoS estimation, but we adapt it to take into account dynamic replanning and

428 F. Baligand, N. Rivierre, and T. Ledoux

objective functions, such as architects constraints. In [4] the authors propose a
method allowing to select concrete services so that QoS aggregation is optimized
and that the global constraints are satisfied, either by a local optimal selection
for each individual abstract service, either by global planning optimization of
the composite service as a whole but at the price of higher computational cost.
As discussed in [6,5], such solution cannot be considered when the number of ab-
stract or candidate services is large. Our approach is similar but takes advantage
of the orchestration decomposition process to apply global planning to limited
parts of the workflow. Although such decomposition might lead to suboptimal
solutions, it significantly improves the performances.

6 Conclusion

Although QoS management in service compositions is crucial, architects still lack
means to address this concern in a flexible and reusable manner. Our solution
aims to provide expressivity to address the QoS management concerns of service
compositions. Our first contribution is the QoSL4BP language, allowing to spec-
ify QoS policies over scopes of BPEL orchestrations. Execution of the QoSL4BP
language is performed by the ORQOS platform, designed to be non intrusive
with already existing infrastructures. At pre-deployment time, ORQOS guaran-
tees the static QoS properties of the orchestration and singles out a relevant set
of concrete services. At runtime, ORQOS platform monitors the execution en-
vironment and processes policies rules enabling QoS mechanisms management,
SLA renegotiation and QoS exception handling.

References

1. Baresi, L., Guinea, S., Plebani, P.: Ws-policy for service monitoring. In: Bussler,
C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidelberg
(2006)

2. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. J. Web Sem. (2004)

3. Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, secure, and trans-
acted web service compositions with ao4bpel. In: ECOWS. Proceedings of the 4th
IEEE European Conference on Web Services, December 2006, IEEE Computer So-
ciety Press, Los Alamitos (2006)

4. Zeng, L., et al.: Qos-aware middleware for web services composition. IEEE Trans.
Softw. Eng. 30(5), 311–327 (2004)

5. Jaeger, M.: Optimising Quality-of-Service for the Composition of Electronic Ser-
vices. PhD thesis, Berlin University of Technology (January 2007)

6. Yu, T., Lin, K.-J.: Service selection algorithms for web services with end-to-end qos
constraints. In: CEC’04. CEC ’04: Proceedings of the IEEE International Conference
on E-Commerce Technology, Washington, DC, USA, pp. 129–136. IEEE Computer
Society Press, Los Alamitos (2004)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 429–434, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Supporting QoS Negotiation with Feature Modeling

Marcelo Fantinato1, Itana Maria de S. Gimenes2, and Maria Beatriz F. de Toledo1

1 Institute of Computing, University of Campinas, Brazil
2 Department of Computer Science, University of Maringá, Brazil

mfantina@ic.unicamp.br, itana@din.uem.br, beatriz@ic.unicamp.br

Abstract. Feature modeling is a technique that has been widely used for
capturing and managing commonalities and variabilities of product families in
the context of software product line. This paper presents a feature-based
approach to be applied in QoS negotiation during the establishment of a Web
services e-contract. Its motivation is that the e-negotiation process, aiming at
defining attributes and levels for QoS – in a particular business domain, usually
involves a set of well-defined common and variation points.

Keywords: e-contracts; Web services; QoS; information reuse; features.

1 Introduction

E-contracts are used to describe details of the supply and the consumption of
e-services within a business process [1], [2]. An important part of e-contracts are the
levels for QoS attributes agreed between the involved parties [3], [4]. The current
complexity involved in e-contract establishment and QoS negotiation include aspects
such as: great amount of necessary information; increasing number of parameters to
be considered; potential long-duration of e-negotiations; and involvement of different
profiles (business and development teams) of distinct organizations.

In order to overcome these drawbacks, it is necessary to tackle information
structuring and reuse, which is normally tried using e-contract templates [2], [5]–[10].
Templates are commonly treated as simple documents that have empty fields to be
fulfilled with some value, usually from a pre-defined list. In general, existing template
approaches do not offer suitable mechanisms to manage common and variable
elements in similar e-contracts. Therefore, they provide a limited potential for
information reuse between similar e-contracts.

In this paper, a new approach to reduce the complexity of QoS negotiation, inside a
process to establish e-contracts for Web services, is proposed. It is based on the
feature modeling technique [11], which was developed inside the software product
line (PL) [12]-[13] context. Its major contribution is to offer a systematic and efficient
way for information structure and reuse, thus optimizing the QoS negotiation process.
The approach provides a mean to represent QoS attributes and levels, besides other e-
contract elements, in feature models that can be transformed into e-contract templates.
This paper extends two previous works on e-contract establishment [14], [15] with: a
new e-contract metamodel and emphasis on QoS negotiation.

430 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

In brief, the proposed approach consists of a set of five stages. Feature modeling
allows the representation of abstract e-services and possible levels for QoS attributes.
The activities of the e-contract establishment process, including QoS negotiation, will
be oriented by the feature model and feature model configurations. The generic
contracted e-services will be mapped to the Web services implementing them, in a
one-to-one relationship. These Web services will be referred to in the resulting
e-contract, for which specific levels for some QoS attributes can be defined.

This paper covers the following information: e-contract and feature modeling
background concepts; proposed approach; related work; conclusions and references.

2 Electronic Contracts

A contract is an agreement between two or more parties interested in creating mutual
relationships on business or legal obligations. It defines an activity set to be carried
out by each party, which must satisfy a set of terms and conditions – known as
contract clauses. An e-contract is an electronic document used to represent an
agreement between organization partners carrying out business using the Internet, in
which the negotiated services are e-services, currently implemented as Web services.

An e-contract consists of [2]: parties – representing the organizations involved in a
business process; activities – representing e-services to be executed throughout the e-
contract enactment; and contractual clauses – describing constraints to be satisfied
throughout the e-contract enactment. Contractual clauses can represent three different
types of constraints [1]: obligations – what parties should do; permissions – what
parties are allowed to do; and Prohibitions – what parties should not do.

Obligations include QoS clauses associated with e-services which define attributes
related to non-functional properties. They affect the definition and execution of an
e-service, regarding to, for example: availability, integrity, reliability, performance,
security and reply time [3], [4], [10]. For each QoS attribute, a value must be defined
to be used as a tolerable level (e.g. a minimum, a maximum or an exact value).

3 Feature Modeling

Feature modeling is a type of computing ontology that has been applied for capturing
and managing commonalities and variabilities in software PL [12]. It was originally
proposed in the domain engineering context, as part of the Feature-Oriented Domain
Analysis (FODA) [11], and has been applied in a range of domains including telecom
systems, template libraries, networks protocols and embedded systems.

In general, a feature model is a description of the relevant characteristics of some
entity of interest. A feature can be defined as a system property that is relevant to
some stakeholder and is used to capture commonalities or discriminate systems in a
family. They may denote any functional or non-functional characteristic at the
requirement, architectural, component, platform, or any other level. According to the
original FODA method, features can be mandatory, optional or alternative.

A feature model describes the configuration space of a system family. A member
of the family can be specified by selecting the desired features from the feature model
within the variability constraints defined by the model. This process is called feature

 Supporting QoS Negotiation with Feature Modeling 431

configuration. The rules to elaborating features models or diagrams can be specified
by feature metamodels. The one being used here is proposed by Czarnecki at. al. [12].

Features can be organized in a feature diagram, which is a tree-like structure where
each node represents a feature and each feature may be described by a set of sub-
features represented as children nodes. Feature diagrams offer a simple and intuitive
notation to represent variation points without delving into implementation details. The
diagrams are especially useful to drive the feature configuration process.

4 QoS Negotiation and e-Contracts Establishment

This section presents the process to negotiate QoS attributes, inside a global process
to establish WS-contracts (Web services e-contract) between two organizations. The
global process consists of five stages, adapted from the FORM method [13]:

1. Feature model elaboration: two feature models are elaborated to represent the e-
services and QoS attributes from each organization;

2. WS-contract template creation: having two feature model as the basis, a WS-
contract template is created;

3. Web services development and publication: Web services that implement the e-
services must be developed and published – which is out of this paper scope;

4. Feature model configuration: the two feature models are then configured to
represent the exact e-services and QoS levels for a particular business process;

5. WS-contract establishment: a WS-contract is produced by refining the WS-contract
template, based on the previously defined pair of feature model configurations.

Fig. 1 represents, as a class diagram, the artifacts produced throughout the stages
above. The feature model is the basic artifact from which a unique WS-contract
template is generated and one or more feature model configurations are derived. For
each feature model configuration, a particular WS-contract is established. The WS-
contracts are established based on the same WS-contract template. Each Web service
implementing an abstract e-service of the feature model is referred to by the WS-
contract template. Only the Web services implementing e-services of the feature
model configuration are referred to by the corresponding WS-contract.

WS-contract
template

WS-contractfeature model
configuration

feature
model

Web service

* *

*

*

12

12 1

1 1

1

Fig. 1. Artifacts relationship

The QoS attributes, associated to the e-services, are treated as common points and
variabilities in feature models. They can be specified by mandatory, alternative and
optional features. A feature metamodel [12] was chosen to drive the modeling of this
information as features. And a specific feature diagram structure for e-services and
QoS attributes representation is being developed, since the inherent flexibility of the
metamodel would allow the definition QoS attributes in too many ways.

432 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

A WS-contract metamodel was defined to represent rules to create both WS-
contracts and templates. The metamodel was created by unifying the main concepts
related to: (i) Web services – described by WSDL language; (ii) business processes
involving Web services – described by WS-BPEL language; and, (iii) QoS of Web
services – described by WS-Agreement language.

The creation of the WS-contract template is carried out in two steps: at first, the
WSDL and WS-Agreement sections are created directly from the e-services feature
models. For the first step, there is a mapping from elements of the feature metamodel
to elements of the WS-contract metamodel. In the second step, the WS-BPEL section
is created from WSDL definitions and further information is defined during this stage.

To enable contract instantiation, the WS-contract template is instrumented with a
set of annotations linking the contract elements to the respective features used as basis
for its creation. During contract instantiation, the feature model configurations are
used by a parser in a removal process. This process is driven by the mandatory
features and the optional/alternative features that have been selected or not.

A support tool is being developed to aid the proposed process. The tool, named
FeMoWS-Contract (Feature Modeling WS-Contract establishment tool), includes a
series of software components related to different stages of the approach. One of the
component part of the tool is FeaturePlugin tool [16], used for specification of feature
models and support theirs configurations.

An approach evaluation was undertaken on a pseudo-scenario to evaluate the
approach proposed here. It is concerned with the integration between two business
and operation support systems, in the telecom context: customer relationship
management (CRM) and dunning systems. The success on its has made possible to
demonstrate the feasibility of the approach.

As a result from the approach evaluation, some developed artifacts are presented.
Fig. 2 presents an example of a feature model configuration for a system providing
information for another one. The right side of the figure models some e-services
whereas the left side of it models some levels for a QoS attribute. In both cases, a set
of optional features is already selected. Fig. 3 presents a part of the WS-contract
template related to this features model. Since only the level “15” was chosen during
configuration, all the other options will be removed from the contract model to
instantiate the resulting WS-contract – through a annotation removal process.

5 Related Work

In relation to e-contract establishment – in a general way, there are several projects
involved in this research field. However, most of them use only metamodels as a
basic and limited way to achieve information reuse. In some few cases, they also use
e-contract templates as a more efficient way to achieve information reuse. Examples
of such projects are [2], [5]–[9]. There are also some projects that work directly with
QoS attributes, including [3], [4], [10].

Some works focus on the negotiation phase before specifying the business process,
but they are commonly concerned with the process to be followed and the tools to be
used during the negotiation between the parties. Some projects related to
e-negotiation are presented in [17]–[20]. In these and other similar approaches, there is
little emphasis in information reuse compared to the approach proposed by this work.

 Supporting QoS Negotiation with Feature Modeling 433

Fig. 2. Example of feature model configuration

<wsag:GuaranteeTerm Obligated="ServiceProvider">
 <wsag:ServiceScope ServiceName="applyChargeAction">
 </wsag:ServiceScope>
 <wsag:QualifyingCondition>…</wsag:QualifyingCondition>
 <wsag:ServiceLevelObjective>
 replayTimeSecond IS_LESS_INCLUSIVE
 None <!-- f:Reply_Time_No_Control_ID -->
 5 <!-- f:Reply_Time_level_5_ID -->
 15 <!-- f:Reply_Time_level_15_ID -->
 30 <!-- f:Reply_Time_level_30_ID -->
 Other <!-- f:Reply_Time_level_Other_ID -->
 </wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>…</wsag:BusinessValueList>
</wsag:GuaranteeTerm>

Fig. 3. Example of WS-contract template

6 Conclusions and Future Work

In this paper, a new approach to support QoS negotiation, as a step for establishing e-
contracts for Web services, is proposed. Its main contribution is allowing a better
management of common and variable points found in similar WS-contracts, including
the QoS attributes and levels for different e-services; and information structure and
reuse in a systematic way. Such improvement is achieved by the use of e-contract
templates associated with feature models representing e-services and QoS attributes.

Future work includes: (i) finishing the development of a prototype tool to automate
the establishment of WS-contract templates and resulting WS-contracts; (ii) searching
for new ways to analyze the proposed approach effectiveness and compare it to other
approaches to establish WS-contracts and QoS negotiation; and (iii) evaluating the
approach extension for QoS negotiation between more than two parties.

434 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

References

[1] Marjanovic, O., Milosevic, Z.: Towards Formal Modeling of e-Contracts. In: Proc.
EDOC, Seattle, pp. 59–68. IEEE Computer Society, Los Alamitos (2001)

[2] Hoffner, Y., Field, S., Grefen, P., Ludwig, H.: Contract-Driven Creation and Operation of
Virtual Enterprises. Computer Networks 37, 111–136 (2001)

[3] Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA
Monitoring for Web Services. In: Proc. DSON, Montreal, pp. 28–41 (2002)

[4] Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75
(2002)

[5] Chiu, D.K.W., Cheung, S.-C., Till, S.: A Three Layer Architecture for E-Contract
Enforcement in an E-Service Environment. In: Proc. HICSS, Big Island, p. 74 (2003)

[6] Rouached, M., Perring, O., Godart, C.: A Contract Layered Architecture for Regulating
Cross-Organisational Business Processes. In: van der Aalst, W.M.P., Benatallah, B.,
Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 410–415. Springer,
Heidelberg (2005)

[7] Krishna, P.R., Karlapalem, K., Dani, A.R.: From Contract to E-Contracts: Modeling and
Enactment. Information Technology and Management 6(4), 363–387 (2005)

[8] Berry, A., Milosevic, Z.: Extending Choreography with Business Contract Constraints.
IJCIS journal 14(2/3), 131–179 (2005)

[9] Hoffner, Y., Field, S.: Transforming Agreements into Contracts. IJCIS journal 14(2/3),
217–244 (2005)

[10] Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. JNSM journal 11(1), 57–81 (2003)

[11] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Tech. Report CMU/SEI-90-TR-021, SEI/CMU
(1990)

[12] Czarnecki, K., et al.: Staged Configuration through Specialization and Multi-Level
Configuration of Feature Models. Software Proc.: Improv. and Prac. 10(2), 143–169
(2005)

[13] Kang, K.C., et al.: FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering 5, 143–168 (1998)

[14] Fantinato, M., de Toledo, M.B.F., Gimenes, I.M.S.: A Feature-based Approach to
Electronic Contracts. In: Proc. IEEE CEC EEE, San Francisco, pp. 34–41 (2006)

[15] Fantinato, M., Gimenes, I.M.S., de Toledo, M.B.F.: Web Services E-contract
Establishment Using Features. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006.
LNCS, vol. 4102, pp. 290–305. Springer, Heidelberg (2006)

[16] Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature Modeling Plug-in for Eclipse. In:
Proc. eTX workshop, Vancouver, pp. 67–72. ACM Press, New York (2004)

[17] Streitberger, W.: Framework for the Negotiation of Electronic Contracts in E-Business on
Demand. In: Proc. IEEE CEC, Munich, pp. 370–373. IEEE Computer Society, Los
Alamitos (2005)

[18] Rinderle, S., Benyoucef, M.: Towards the Automation of E-Negotiation Processes Based
on Web Services - A Modeling Approach. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold,
E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 443–453.
Springer, Heidelberg (2005)

[19] Jertila, A., Schoop, M.: Electronic Contracts in Negotiation Support Systems: Challenges,
Design and Implementation. In: Proc. IEEE CEC, Munich, pp. 396–399 (2005)

[20] Kaminski, H., Perry, M.: SLA Automated Negotiation Manager for Computing Services.
In: Proc. IEEE CEC EEE, San Francisco, pp. 47–54 (2006)

[21] Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement), http://
www. ogf.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecification

A Multi-criteria Service Ranking Approach Based on
Non-Functional Properties Rules Evaluation

Ioan Toma1, Dumitru Roman1, Dieter Fensel1, Brahmanada Sapkota2,
and Juan Miguel Gomez3

1DERI Innsbruck, University of Innsbruck, Austria
firstname.lastname@deri.at

2 DERI Galway, National University of Ireland, Galway, Ireland
brahmananda.sapkota@deri.org

3 Carlos III University, Madrid, Spain
juanmiguel.gomez@uc3m.es

Abstract. Service oriented architectures (SOAs) are quickly becoming the de-
facto solutions for providing end-to-end enterprise connectivity. However real-
izing the vision of SOA requires, among others, solutions for one fundamental
challenge, namely service ranking. Once a set of services that fulfill the requested
functionality is discovered, an ordered list of services needs to be created ac-
cording to users preferences. These preferences are often expressed in terms of
multiple non-functional properties (NFPs). This paper proposes a multi-criteria
ranking approach for semantic web services. We start by briefly introducing onto-
logical models for NFPs. These models are used to specify rules which describe
NFP aspects of services and goals/requests. The ranking mechanism evaluates
these NFPs rules using a reasoning engine and produces a ranked list of services
according to users preferences.

1 Introduction

Service-Oriented Architectures (SOAs) are becoming a widespread solution for realiz-
ing distributed applications. Empowered by semantic technologies these solutions are
evolving in what is known as Semantically Enabled Service Oriented Architectures
(SESAs) [1] bringing more automatization and accuracy to various service related tasks,
such as discovery, composition, ranking and selection. Among these tasks discovery,
ranking and selection are core building blocks. As with most of the search products
available on the market, it is not only important to determine the relevant results, but it
is as well extremely important to provide the results in a relevant order. This is exactly
the purpose of service ranking process, which complements the discovery process.

While problems such as discovery([6], [9], etc.) and composition([2], etc.) for Seman-
tic Web Services have been intensively studied, the service ranking problem, has rather
gathered not so much attention. However, we argue that service ranking in an important
task in the overall service usage process and thus it needs to be treated accordantly. Any
solution for this task is directly influence by how services are described. Three differ-
ent aspects must be considered when describing a service: (1) functional, (2) behavior
and (3) non-functional. The functional description contains the formal specification of

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 435–441, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

436 I. Toma et al.

what exactly the service can do. The behavior description contains the formal specifica-
tion of how the functionality of the service can be achieved. Finally, the non-functional
descriptions captures constraints over the previous two [3]. Among these aspects, non-
functional properties need to be addressed given the high dynamism of any SOA- and
SESA- based system. Furthermore, these descriptions are highly relevant for many of the
service related tasks. For ranking especially, they are fundamental input data that need
to be considered when building sorted sets of services. In this paper we present a service
ranking approach which uses semantic descriptions of non-functional properties.

The paper is organized as follows: Section 2 briefly introduces our approach for
modeling and attaching non-functional properties descriptions to services along with
concrete examples. This solution is an integrated part of the Web Service Modeling
Ontology (WSMO) [7] and its language Web Service Modeling Language (WSML) [4].
Section 3 provides a detailed description of the proposed service ranking approach.
Section 4 presents initial experimental results and finally, Section 5 concludes the paper
and points out perspectives for future research.

2 Non-Functional Properties

This section briefly introduce our approach on how to semantically describe NFPs of
services. Furthermore concrete examples from a shipping scenario are provided. As
a model and language for semantically describe services we adopt the Web Service
Modeling Ontology (WSMO) [7], respectively Modeling Language (WSML) [4], due
to its clean modeling solution and rule-based support.

The core of our modeling approach is a set of ontologies1, in WSML, based on the
models provided in [5]. These ontologies, provide the NFP terminology, used to specify
NFPs aspects of services. Once otological models for NFPs are available, a second chal-
lenge that has to be address is how to attach NFPs descriptions to services and goals.
Non-functional properties of services or goals are modelled in a way similar to which
capabilities are currently modelled in WSMO/WSML [7]. Non-functional properties
are defined using logical expressions same as pre/post-conditions, assumptions and ef-
fects are being defined in a capability. The terminology needed to construct the logical
expressions is provided by non-functional properties ontologies (c.f. [8]).

For exemplification purposes we use services and goals from the SWS Challenge2

Shipment Discovery scenario. We have extended the initial scenario by augmenting
services description with non-functional properties aspects such as discounts and oblig-
ations3. The shipping services allows requestors to order a shipment by specifying,
senders address, receivers address, package information and a collection interval during
which the shipper will come to collect the package.

Listing 2 displays a concrete example on how to describe one non-functional property
of a service (i.e Runner), namely obligations. Due to space limitations the listing contains
only the specification of obligations aspects without any functional, behavioral or any
other non-functional descriptions of the service. In an informal manner, the service

1 http://www.wsmo.org/ontologies/nfp/
2 http://sws-challenge.org/
3 http://wiki.wsmx.org/index.php?title=Discovery:NFPUseCase

A Multi-criteria Service Ranking Approach Based on NFPs Rules Evaluation 437

obligations can be summarized as follows: (1) in case the package is lost or damaged
Runner’s liability is the declared value of the package but no more than 150$ and (2)
packages containing glassware, antiques or jewelry are limited to a maximum declared
value of 100$.

Listing 1.1. Runner’s obligations
� �

namespace { ”WSRunner.wsml#”,
runner ”WSRunner.wsml#”, so ”Shipment.wsml#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”, up ”UpperOnto.wsml#”}

webService runnerService
nonFunctionalProperty obligations
definition
definedBy

//in case the package is lost or damaged Runners liability is
//the declared value of the package but no more than 150 USD
hasPackageLiability(?package, 150):− ?package[so\#packageStatus hasValue ?status] and
(?status = so\#packageDamaged or ?status = so\#packageLost) and
packageDeclaredValue(?package, ?value) and ?value>150.

hasPackageLiability(?package, ?value):− ?package[so\#packageStatus hasValue ?status] and
(?status = so\#packageDamaged or ?status = so\#packageLost) and
packageDeclaredValue(?package, ?value) and ?value =< 150.

//in case the package is not lost or damaged Runners liability is 0
hasPackageLiability(?package, 0):− ?package[so\#packageStatus hasValue ?status] and
?status != so\#packageDamaged and ?status != so\#packageLost.

//packages containing glassware, antiques or jewelry
//are limited to a maximum declared value of 100 USD
packageDeclaredValue(?package, 100):−
?package[so\#containesItemsOfType hasValue ?type, so\#declaredValue hasValue ?value] and
(?type = so\#Antiques or ?type = so\#Glassware or ?type = so\#Jewelry) and ?value>100.

packageDeclaredValue(?package, ?value):−
?package[so\#containesItemsOfType hasValue ?type, so\#declaredValue hasValue ?value] and
((?type != so\#Antiques and ?type != so\#Glassware and ?type != so\#Jewelry) or ?value<100).

capability runnerOrderSystemCapability
interface runnerOrderSystemInterface

� �

Following our model for NFPs, Runner’s obligations are expressed as logical rules
in WSML. In a similar way other non-functional properties can be described. Further
on, consider the concrete goal of shipping one package (GumblePackage) to a specified
address (GumbleAddress) of a specific receiver (Gumble). A goal in WSMO is described
in a similar manner to a Web service. Our concrete goal is specified in Listing 2.

User preferences are part of the goal. For example the user can specify which non-
functional property will be used as a ordering dimension during the ranking process. In
this case the ordering dimension is the obligations non-functional property (up#nfp
hasValue obl#Obligation). Furthermore the user can specify how the results
should be ordered (i.e. ascending or descending), in this case ascending (up#order
hasValue pref#ascending), the importance of the non-functionalproperties e.g.
for a user the price is less important than the execution time and the number of best
services to be selected (up#top hasValue "1"). The background knowledge used
during the selection and ranking process is usually extracted from the capability section
of the goal.

438 I. Toma et al.

Listing 1.2. Goal description

� �

namespace { ”Goal.wsml#”,
so ”Shipment.wsml#”,up ”UpperOnto.wsml#”, pref ”Preferences.wsml#”,
obl ”http://www.wsmo.org/ontologies/nfp/obligationsNFPOntology.wsml}

goal Goal1
annotations

up#order hasValue pref#ascending
up#nfp hasValue obl#Obligation
up#top hasValue ”1”

endAnnotations

capability requestedCapability
postcondition
definedBy
?order[so#to hasValue Gumble,so#packages hasValue GumblePackage] memberOf so#ShipmentOrder and
Gumble[so#firstName hasValue ”Barney”, so#lastName hasValue ”Gumble”,
so#address hasValue GumbleAddress] memberOf so#ContactInfo and
GumbleAddress[so#streetAddress hasValue ”320 East 79th Street”,
so#city hasValue so#NY, so#country hasValue so#US] memberOf so#Address and
GumblePackage[so#length hasValue 10, so#width hasValue 2, so#height hasValue 3,
so#weight hasValue 10, so#declaredValue hasValue 150] memberOf so#Package.

� �

3 Ranking Services

Service Ranking is the process which generates an ordered list of services out of the
candidate services set according to user’s preferences. As ranking criteria, specified by
the user, various non-functional properties such as Service Level Agreements (SLA),
Quality of Services (QoS), etc. can be obtained from the goal description. On the ser-
vice side the requested non-functional properties values are either directly specified in
the service description or are provided (computed or collected) by a monitoring tool.
Non-functional properties specified in goal and service descriptions are expressed in
a semantic language (i.e WSML), by means of logical rules using terms from NFP
ontologies.

Our solution for service ranking combines two aspects types of ranking, namely
semantic ranking and multi-criteria ranking. By semantic ranking we understand any
ranking mechanism which uses ontological representations of non-functional properties
aspects. A multi-criteria ranking mechanism on the other hand considers multiple non-
functional properties dimensions.

Non-functional properties of services and goals used in the prototype are semantically
described as presented in Section 2. The logical rules used to model NFPs of services are
evaluated, during the ranking process, by a reasoning engine. Additional data is required
during the rules evaluation process. This data represents mainely user preferences and
includes: (1) which NFPs user is interested, (2) the level of importance of each of these
NFPs, (3) how the list of services should be ordered (i.e. ascending or descending) and (4)
concrete instances data extracted from the goal description. The NFPs values obtained
by evaluating the logical rules are sorted and the order list of services is built.

The algorithm for multi-criteria ranking based on non-functional properties is pre-
sented in listing Algorithm 1.

A Multi-criteria Service Ranking Approach Based on NFPs Rules Evaluation 439

Data: Set of services SSer, Goal G.
Result: Order list of services LSer.
begin0.1

Ω ←− ∅, where Ω is a set of tuples [service,score];0.2

λ = extractNFPs(G), where λ is a set of tuples [nfp, importance];0.3

GKnow = extractInstancesKnowledge(G);0.4

d = extractOrderingSense(G);0.5

β ←− ∅, is a set of quadruples [service,nfp,nfpvalue,importance];0.6

for s ∈ SSer do0.7

for nfp ∈ λ do0.8

imp = lambda.getImportance(nfp);0.9

if nfp ∈ s.nfps then0.10

rule = extract(nfp, s);0.11

nfpvalue = evaluateRule(rule, GKnow);0.12

β = β ∪ [s, nfp, nfpvalue, imp];0.13

end0.14

else0.15

β = β ∪ [s, nfp, 0, 0];0.16

end0.17

end0.18

end0.19

for s ∈ β do0.20

scores = 0;0.21

for nfp ∈ β do0.22

nfpvalue = β.getNFPV alue(s, nfp);0.23

nfpvaluemax = max(β.npf);0.24

scores = scores + imp ∗ nfpvalue
nfpvaluemax

;0.25

end0.26

Ω = Ω ∪ [s, scores];0.27

end0.28

LSer ←− sort(Ω, d);0.29

end0.30

Algorithm 1. Multi-criteria ranking

First a set of tuples containing non-functional properties and their associated impor-
tance is extracted out of the goal description (line 0.3). Considering the goal example
provided in Listing 2 the list contains only one non-functional property, namely obliga-
tions. If no importance is specified the default value is consider to be 0.5 which specify
a moderate interest in the non-functional property. The importance is a numeric value
ranging from 0 to 1, where 1 encodes the fact that the user is extremely interested in
the non-functional property and 0 encodes the fact that the non-functional property is
not of interest for the user. Further on instance data from the goal is extracted (line 0.4)
and a knowledge base is created. In our example the extracted instance data containers

440 I. Toma et al.

information about the receiver, the package and the destination address. The last step
in extracting relevant information for the ranking process is to identify how the results
should be ordered i.e. ascending or descending (line 0.5).

Once the preprocessing steps are done, each service is checked if the requested non-
functional properties specified in the goal are available in service description. In case of a
positive answer the algorithm the corresponding logic rules are extracted (line 0.11) and
evaluated (line 0.12) using a reasoning engine which support WSML rules (e.g. MINS4,
KAON25 or IRIS6). A quadruple structure is built (line 0.13 and 0.16) containing for
each service and non-functional property the computed value and the its importance.
An aggregated score is computed for each service by summing the normalized values
(line 0.24) of non-functional weighted by importance values (line 0.25). The results are
collected in a set of tuples, where each tuple contain the service id and the computed
score(line 0.27). Finally the scores values are sorted according to the ordering sense
extracted from the goal and the final list of services is returned(line 0.29).

4 Experiments

To evaluate the ranking algorithm proposed in Section 3 we have implemented it as part
of the WSMX 7 execution environment. The ranking of services is performed on two
NFP dimensions: obligations and discounts, but it can easily support a higher number
of NFPs. The set of services used in the experiments are from SWS Challenge.

Table 1. Experimental Results

NFP/WebService Weasel Walker Muller Racer Runner
Obligation 0.66 0.00 0.93 0.81 0.57
Discounts 0.0 0.23 0.85 0.47 0.64
Total Score 0.71 0.19 1.76 1.16 1.03

A set of 50 goals having the same structure with the goal presented in Section 2,
but with randomly generated concrete values which influence obligations and discounts
values have been used to test the algorithm. Table 1 shows the average score results
obtained by running the algorithm with the given input data. An empiric comparison of
sample results with ideal results shows a good behavior of our algorithm.

5 Conclusions and Future Work

In this paper a service ranking approach based on semantic descriptions of services non-
functional properties was proposed. We briefly introduce our approach for modeling
and attaching non-functional properties descriptions to services and goals. The proposed

4 http://tools.deri.org/mins/
5 http://kaon2.semanticweb.org/
6 http://sourceforge.net/projects/iris-reasoner/
7 http://www.wsmx.org

A Multi-criteria Service Ranking Approach Based on NFPs Rules Evaluation 441

ranking mechanism makes use of logical rules describing non-functional properties of
services and evaluates them using a reasoning engine. As a last step it builds an ordered
list of services considering the values computed during the rules evaluation step.

As future work we plan to specify and implement other types of ranking approaches
namely social and context-aware ranking. Further on, a set of open issues and improve-
ments need to be addressed and integrated with the current ranking solution. These in-
clude but are not limited to: how to integrate non-functional properties values collected
by monitoring tools with the service ranking, how to predict non-functional values of
services, which are the best solutions to collect and incorporate user feedback and last
but not least to consider trust and reputation issues.

References

1. Anicic, D., Brodie, M., de Bruijn, J., Fensel, D., Haselwanter, T., Hepp, M., Heymans, S., Hoff-
mann, J., Kerrigan, M., Kopecky, J., Krummenacher, R., Lausen, H., Mocan, A., Scicluna, J.,
Toma, I., Zaremba, M.: A semantically enabled service oriented architecture. In: WImBI 2006.
WICI International Workshop on Web Intelligence (WI) meets Brain Informatics, Beijing,
China (December 2006)

2. Cardoso, J., Sheth, A.P.: Introduction to semantic web services and web process composition.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 1–13. Springer,
Heidelberg (2005)

3. Chung, L.: Non-Functional Requirements for Information Systems Design. In: Andersen, R.,
Solvberg, A., Bubenko Jr., J.A. (eds.) CAiSE 1991. LNCS, vol. 498, pp. 5–30. Springer,
Heidelberg (1991)

4. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., Fensel, D.,
Toma, I., Steinmetz, N., Kerrigan, M.: The Web Service Modeling Language WSML. Techni-
cal report, WSML, WSML Final Draft D16.1v0.3 (2007), http://www.wsmo.org/TR/
d16/d16.1/v0.3/

5. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: Formal description of non-functional service
properties. Technical report, Queensland University of Technology, Brisbane (2005), Available
from http://www.service-description.com/

6. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capabil-
ities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer,
Heidelberg (2002)

7. Roman, D., Lausen, H., Keller, U. (eds.): Web service modeling ontology (WSMO). Working
Draft D2v1.4, WSMO (2007), Available from http://www.wsmo.org/TR/d2/v1.4/

8. Toma, I., Foxvog, D.: Non-functional properties in Web services. Working draft, Digital Enter-
prise Research Insitute (DERI) (August 2006), Available from http://www.wsmo.org/
TR/d28/d28.4/v0.1/

9. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.: Meteor-s wsdi: A scalable p2p infrastruc-
ture of registries for semantic publication and discovery of web services. Journal of Information
Technology and Management (2004)

http://www.wsmo.org/TR/d16/d16.1/v0.3/
http://www.wsmo.org/TR/d16/d16.1/v0.3/
http://www.service-description.com/
http://www.wsmo.org/TR/d2/v1.4/
http://www.wsmo.org/TR/d28/d28.4/v0.1/
http://www.wsmo.org/TR/d28/d28.4/v0.1/

A Development Process for

Self-adapting Service Oriented Applications

M. Autili, L. Berardinelli, V. Cortellessa, A. Di Marco, D. Di Ruscio,
P. Inverardi, and M. Tivoli

Dipartimento di Informatica
Università degli Studi di L’Aquila,

67100 L’Aquila, Italy
{autili,berardinelli,cortelle,dimarco,diruscio,inverard,

tivoli}@di.univaq.it

Abstract. Software services in the near ubiquitous future will need to
cope with variability, as they are deployed on an increasingly large diver-
sity of computing platforms, operate in different execution environments,
and communicate through Beyond 3G (B3G) networks. Heterogeneity
of the underlying communication and computing infrastructure, physi-
cal mobility of platform devices, and continuously evolving requirements
claim for services to be adaptable according to the context changes with-
out degrading their quality. Supporting the development and execution
of software services in this setting raises numerous challenges that in-
volve languages, methods and tools. However these challenges taken in
isolation are not new in the service domain. Integrated solutions to these
challenges are the main targets of the IST PLASTIC project.

In this paper we introduce the PLASTIC development process model
for self-adapting context-aware services, in which we propose model-
based solutions to address the main issues of this domain in a comprehen-
sive way. We instantiate the process model by providing methodologies
to generate Quality of Service models and adaptable code from UML
service models. All these methodologies are supported by an integrated
framework which is based on an UML profile that we have defined for
the PLASTIC domain.

1 Introduction

Nowadays, software services need to cope with variability, as services get de-
ployed on an increasingly large diversity of computing platforms and operates in
different execution environments. Heterogeneity of the underlying communica-
tion and computing infrastructure, mobility inducing changes to the execution
environments (and therefore changes to the availability of resources) and con-
tinuously evolving requirements require services to be self-adaptive according to
the context changes. At the same time, a service should be dependable in the
sense that it should meet the user’s Quality of Service (QoS) requirements and
needs. Moreover, satisfying user expectations is made more complex given the
highly dynamic nature of service provision.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 442–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Development Process for Self-adapting Service Oriented Applications 443

Supporting the development and execution of such adaptable services raises
numerous challenges that involve models, methods and tools. However these
challenges, taken in isolation, are not new in the service domain. Integrated
solutions to these challenges are the main targets of the IST PLASTIC project,
whose main goal is the rapid and easy development/deployment of self-adapting
services for B3G networks [20].

Broadly speaking, a “standard” development process focuses on activities that
are traditionally divided into development-, deployment- and run-time activities.
Each activity works on suitable system artifacts, which can be coupled with
models suitable for development purposes. The evolutionary nature of services
in the near ubiquitous future makes unfeasible a standard development process
since dealing with self-adaptiveness would require to predict the functional and
non-functional system behavior before the system is in execution. Whenever a
change occurs, if service evolution has to be supported by means of adaptation,
all the artifacts/models might be exploited also by the deployment and run-time
activities, hence leading to a “non-standard” development process view. Thus,
the main challenges in this direction are related to the support that can be offered
to service developers to satisfy the user expectations in a such heterogeneous and
dynamic environment.

In this paper we introduce the PLASTIC development process that relies on
model-based solutions to build self-adapting context-aware services. The intro-
duced process encompasses methodologies to generate QoS models and adaptable
code from UML-based specifications. All these methodologies are supported by
an integrated framework which is based on an UML profile of the PLASTIC
domain.

The work described in this paper relates to multiple research areas of the
existing literature, that are: (i) web-service development technologies, (ii) model-
driven development, (iii) performance and reliability analysis techniques, and
(iv) (self-)adapting software. For sake of space, we obviously cannot address all
the recent related work in the above areas, thus in the following we shortly
discuss and provide major references for each area.

Current (web-)service development technologies, e.g. [7,8,19,22,23] (just to
cite some), address only the functional design of complex services, that is they do
not take into account the extra-functional aspects (e.g., QoS requirements) and
the context-awareness. Our process borrows concepts from these well assessed
technologies and builds on them to make QoS issues clearly emerging in the
service development, as well as to take into account context-awareness of services
for self-adaptiveness purposes.

The PLASTIC development process adheres to the Model Driven Develop-
ment (MDD) approach which claims to shift the focus of software development
from coding to modeling [21]. In this respect, problems can be precisely de-
scribed using specific terms and concepts more familiar to experts working in
the considered domain and technological details which are unnecessary for the
service description can be neglected. Model transformations are devised in our
process in two directions: (i) to glue the different levels of abstractions and, by

444 M. Autili et al.

encoding the knowledge about the technological assets, to permit the automated
generation of the service code, (ii) to generate QoS models, at the same level of
abstraction of the service models, that allow to validate extra-functional issues
during the service development.

With regard to the latter point, up today performance and reliability models
have been integrated in the PLASTIC process to support QoS validation. In this
domain interesting progresses have been made in the last ten years due to the
introduction of automated techniques and tools that allow to generate extra func-
tional models from annotated software models (see, for example, [3] for perfor-
mance and [6] for reliability). We have embedded some of these techniques in our
service development process. Obviously some effort has been necessary to adapt
the techniques to the specific domain of context-aware self-adapting services.

This work exploits also notions and concepts in the area of (self-)adaptation
of software entities and self-healing system development, spanning adaptation of
communication/interaction [15], performance [11], real-time behaviours [5], and
synthesis of coordination/composition behaviour among semantic services [13].

The remainder of the paper is structured as follows: Sect. 2 describes the
proposed development process and outlines the adopted technologies supporting
it. Sect. 3 draws some conclusions and perspective works.

2 PLASTIC Development Process

In this section we introduce the PLASTIC development process for self-adapting
context-aware services. By recalling Section 1, the main issues that this process
addresses are: (a) service self-adaptiveness and context-awareness, and (b) ser-
vice satisfaction of QoS requirements.

To address the former, at design time the possible contexts in which the
service will run are specified. Models for context description are introduced to
support this activity. At development time, the context specification is exploited
to automatically derive, through model-to-code transformation, “generic” code
that embodies a certain variability degree. Hereafter, we refer to it as adaptable
code. Obviously, only the skeleton is automatically derived, i.e., its logic has
to be coded by hand. At deployment time the adaptable code is processed to
automatically extract, through adaptable code instantiation, the code that better
fits a certain context.

The latter is addressed in two steps: (i) by allowing the designer to annotate
the service model with QoS related information (i.e. QoS parameters and require-
ments), and (ii) by elaborating the annotated information at both design- and
run-time through analysis tools whose aim is to predict and solve QoS models
within the possible different contexts. The adopted QoS analysis tools use a large
variety of models, from behavioral to stochastic, that can represent the system at
very different levels of abstraction from requirements specification to code.

As already anticipated in Section 1, the ever growing complexity of software
has exacerbated the dichotomy development/static/compile time versus execu-
tion/dynamic/interpret time thus concentrating as many analysis and validation

A Development Process for Self-adapting Service Oriented Applications 445

Fig. 1. The PLASTIC process for service development

activities as possible at development time. As opposite, if QoS has to be preserved
through adaptation whatever the change mechanism is, at the time the change
occurs, a validation mechanism must be devised at run-time. This means that
models used at development time to support design decisions must be available
at run-time for additional validation activities.

In Fig. 1 we illustrate the PLASTIC development process, where square boxes
represent software artifacts/models and ellipses represent activities. Lifecycle
time goes from the top to the bottom of the figure. All the process activities orig-
inate from a Conceptual Model where entities and relationships of the context-
aware service domain are defined [2,16]. Based on these entities, a Service Model
can be specified in terms of its Functional Specification and its Service Level
Specification (SLS). The former describes behavioral aspects of the modelled
service, whereas the latter its QoS characteristics.

The Service Model is specified by means of a UML2 [14] profile whose aim is to
extend UML2 to cope with adaptable, context aware and component based soft-
ware services both from structural and behavioral viewpoints along the entire soft-
ware lifecycle, from requirements specification to deployment. This profile is an
implementation of the Conceptual Model, and it is supported by the customiza-
tion of an UML 2 tool environment (i.e. Magic Draw) that we have developed and
described in [17]. For the sake of space, we do not describe here the profile.

Two main streams of activities originate from a Service Model, each addressing
one of the issues introduced above.

446 M. Autili et al.

In one stream of activities, Model-to-Model transformations are devised in
order to derive models for performance and reliability analysis. In particular,
Bayesian Reliability Models, Queueing Networks, Timed Automata, and Sym-
bolic State Machines are considered in the current implementation of the pro-
cess. Some of the Model-to-Model transformations are performed by means of
the ATLAS Transformation Language (ATL) [10] that has been developed in
the context of the MODELWARE European project [12].

In Fig. 1 we have reported some of the model transformation and analysis
techniques that we have integrated within the PLASTIC process. As an exam-
ple, SAP•one/XPRIT starts from annotated UML diagrams and generates a
performance model that may be either a Queueing Network (QN) that repre-
sents a Software Architecture, if no information about the executing platform
is available, or an Execution Graph (representing the software workload) and a
Queueing Network (representing the executing platform) in the other case. The
model solution provides performance indices that are parametric in the first case
and numerical in the second one. A QN solver, like SHARPE, can provide val-
ues of performance indices. As another example, COBRA is a tool that, starting
from annotated UML diagrams, generates a reliability model for component-
based or service-based systems that takes into account the error propagation
factor. COBRA embeds a solver that performs reliability analysis on the basis
of the generated model.

Bayesian Reliability Models and Queueing Networks can also be analyzed
at development time to refine/validate the Service Model characteristics that
the analysis addresses. Timed Automata, Symbolic State Machines (SSM), and
possibly the previous models will be made available at deployment- and run-time
to allow the adaptation of the service to the execution context and for service
validation. In particular, we are able to perform two kinds of validations, i.e., on-
line and off-line validation (see [18] for details). Off-line validation is performed
to generate test cases, before the service execution, by taking into account both
the service model (in particular its SSM) and the service code. On-line validation
is performed whilst the service is running and uses the generated test cases.

In the other stream of activities, Model-To-Code transformations are used to
build both the core and the adaptable code of a service. The core code is the
frozen unchanging portion of the service. The adaptable code portion can evolve
in the sense that, basing on contextual information and possible changes of the
user needs, the variability can be solved with a set of alternatives. A particular
alternative might be suitable for a particular execution context and specified
user needs. Each alternative can be selected by exploiting the analysis models
available at run-time and the service capabilities performing the Run time Anal-
ysis/SLA Monitoring and the Evolution Policies Selection (see Fig. 1). When a
service is invoked, the run-time analysis is performed (on the available models)
and, basing on the analysis results, a new set of alternatives is synthesized and
a new alternative is selected. The development of the adaptable service code is
based on CHAMELEON [9], that is a resource-aware framework for adaptable
Java applications.

A Development Process for Self-adapting Service Oriented Applications 447

Model-To-Code transformations are performed by means of a code genera-
tor based on the Eclipse Java Emitter Template framework (part of the EMF
framework [4]). JSP-like templates explicitly define the code structure and get
the data they need from the UML model of the specified service exported into
EMF. With this generation engine, the generated code can be customized and
then re-generated without losing already defined customizations.

We like to remark that one of the main novelties of this process is to consider
SLS as part of a Service Model, as opposite to existing approaches where SLS con-
sists, in best cases, in additional annotations reported on a (service) functional
model. This peculiar characteristic of our process brings several advantages: (i)
SLS embedded within a Service Model better supports the model-to-model trans-
formations towards analysis models (in particular, the target model parametriza-
tion) and, on the way back, better supports the feedback of the analysis (i.e.,
reporting the analysis results on the Service Model); (ii) in the path to code gen-
eration, the SLS can drive the adaptation strategies.

3 Conclusions and Future Work

This paper proposed a development process defined in the context of the IST
EU PLASTIC project [20] which aims at offering a comprehensive provision-
ing platform for context-aware and adaptable software services deployed over
B3G networks. In particular, this work describes the instantiation of the process
within an UML world. Models and techniques for developing, in UML, adaptable
code of context-aware services which have to show optimal QoS within differ-
ent contexts have been integrated. The approach is supported by languages and
tools conceived to increase the automation in all the process steps. Service mod-
eling is based on a PLASTIC UML profile that we have defined and whose main
concepts have been inherited from other existing UML profiles and meta-models
(e.g. see [1]).

Due to space limitation, in this paper, we have given an overall description of
the thorough approach that supports the whole service lifecycle. The approach
has been applied to a real-life example concerning the service-oriented develop-
ment of an e-Health system. The treatment of this example is described in [17].

The instantiation of our process within UML can be improved by integrating
a wider number of analysis techniques that may address other dimensions of
QoS, such as availability and security. Besides, from a functional viewpoint, we
intend to study how to tackle dynamic composition of context-aware services. We
are also investigating the usage of non-UML methodologies and tools within the
process, such as formal (functional and non-functional) specification of services.
This would allow us to introduce in the process formal refinement and analysis
techniques, such as model checking.

The application of the approach other real world case studies would obviously
allow us to refine and validate the whole framework.

Acknowledgments. This work has been partially supported by the IST EU
project PLASTIC (www.ist-plastic.org).

448 M. Autili et al.

References

1. SeCSE Project, http://secse.eng.it
2. Autili, M., Cortellessa, V., Di Marco, A., Inverardi, P.: A Conceptual Model for

Adaptable Context-aware Services. In: WS-MATE (2006)
3. Bernardi, S., Donatelli, S., Merseguer, J.: From uml sequence diagrams and stat-

echarts to analysable petri net models. In: 3rd ACM Workshop on Software and
Performance, ACM Press, New York (2002)

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley, Reading (2003)

5. Cortadella, J., Kondratyev, A., Lavagno, L., Passerone, C., Watanabe, Y.: Quasi-
static scheduling of independent tasks for reactive systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24(10) (2005)

6. Cortellessa, V., Singh, H., Cukic, B., Gunel, E., Bharadwaj, V.: Early reliability
assessment of uml based software models. In: 3rd ACM Workshop on Software and
Performance, ACM Press, New York (2002)

7. Eclipse.org. Eclipse Web Standard Tools, http://www.eclipse.org/webtools
8. IBM. BPEL4WS, Business Process Execution Language for Web Services, version

1.1 (2003)
9. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable

applications in heterogeneous environments. In: ACM SAC, ACM Press, New York
(2004)

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, Springer, Heidelberg (2006)

11. Menascé, D.A., Ruan, H., Gomaa, H.: A framework for QoS-aware software com-
ponents. In: WOSP ’04, ACM Press, New York (2004)

12. ModelWare: IST European project 511731, http://www.modelwareist.org
13. Nezhad, H.R.M., Benatallha, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions. In: WWW 2007 Web Services Track
(2007)

14. OMG: UML 2 Superstructure. formal/2007-02-03 (February 2007)
15. Passerone, R., de Alfaro, L., Heinzinger, T., Sangiovanni-Vincentelli, A.L.: Con-

vertibility verification and converter synthesis: Two faces of the same coin. In:
Proc. of ICCAD 2002 (2002)

16. PLASTIC IST STREP Project: Deliverable D2.1: SLA language and
analysis techniques for adaptable and resource-aware components, http://

www-c.inria.fr/plastic/deliverables/plastic-d2 1-finalpdf.pdf/download
17. PLASTIC IST STREP Project: Deliverable D2.2: Graphical design lan-

guage and tools for resource-aware adaptable components and services, http://
www-c.inria.fr/plastic/deliverables/plastic-d2 2-finalpdf.pdf/download

18. PLASTIC IST STREP Project: Deliverable D4.1: Test Framework Spec-
ification and Architecture, http://www-c.inria.fr/plastic/deliverables/

plastic d4 1final.pdf/download
19. A-MUSE Project: Methodological Framework for Freeband Services Development

(2004), https://doc.telin.nl/dscgi/ds.py/Get/File-47390/
20. PLASTIC Project: Description of Work (2005), http://www.ist-plastic.org
21. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5),

19–25 (2003)
22. W3C: Web Service Definition Language, http://www.w3.org/tr/wsdl
23. Yun, H., Kim, Y., Kim, E., Park, J.: Web Services Development Process. In: PDCS

(2005)

 http://secse.eng.it
http://www.eclipse.org/webtools
http://www.modelwareist.org
http://www-c.inria.fr/plastic/deliverables/plastic-d2_1-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_1-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_2-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic-d2_2-finalpdf.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic_d4_1final.pdf/download
http://www-c.inria.fr/plastic/deliverables/plastic_d4_1final.pdf/download
https://doc.telin.nl/dscgi/ds.py/Get/File-47390/
http://www.ist-plastic.org
http://www.w3.org/tr/wsdl

Automated Dynamic Maintenance of Composite

Services Based on Service Reputation

Domenico Bianculli1, Radu Jurca2, Walter Binder1,
Carlo Ghezzi3, and Boi Faltings2

1 Faculty of Informatics – University of Lugano
via G. Buffi 13 - CH-6900, Lugano, Switzerland

domenico.bianculli@lu.unisi.ch, walter.binder@unisi.ch
2 Artificial Intelligence Lab – Ecole Polytechnique Fédérale de Lausanne

Station 14 - CH-1015, Lausanne, Switzerland
radu.jurca@epfl.ch, boi.faltings@epfl.ch

3 Dipartimento di Elettronica e Informazione – Politecnico di Milano
Via Ponzio 34/5, I-20133, Milano, Italy

ghezzi@elet.polimi.it

Abstract. Service-oriented computing promotes the construction of ap-
plications by composing distributed services that are advertised in an
open service market. In such an environment, individual services may
change and evolve dynamically, requiring composite services to adapt to
such changes. The prevailing strategy is to react on failures and replace
the defective component of the composite service. However, this reactive
approach does not fully exploit the opportunities of a dynamic market
where older services may be replaced by better ones.

In this paper we promote a novel architecture for automated, dynamic,
pro-active, and transparent maintenance and improvement of composite
services. We leverage fine-grained client-side monitoring techniques to
generate information regarding functional and non-functional properties
of service behavior. A reputation manager is responsible for collecting
and aggregating this information, and provides economical incentives for
honest sharing of feedback. Composite services can thus use reliable rep-
utation information to pro-actively improve their aggregate performance.

1 Introduction

The need for businesses to integrate corporate resources in a flexible and efficient
way can be addressed by designing complex software solutions as collaboration of
contractually defined services. Building applications by integrating standardized
services promises to bring many benefits, such as reduced development effort and
cost, ease of maintenance, extensibility, and reuse of services. Service-oriented
architectures (SOAs) maximize decoupling between services and create well-
defined interoperation semantics based on standard protocols.

In the following we consider service-oriented applications built from web ser-
vices.1 The composition of individual services into an added-value, composite
1 In this paper, we use the terms web service and service interchangeably.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 449–455, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

450 D. Bianculli et al.

service is usually represented as a workflow. We assume that service compositions
are described in BPEL [1], the de-facto standard for web service orchestrations.

Web services support a dynamic architectural style where the binding among
components may change at runtime. New services may be developed and pub-
lished in registries, and then discovered by possible clients. Previously available
services may disappear or become unavailable. This situation has been charac-
terized by the term open-world software [2], describing a situation where applica-
tions are composed out of parts that may change unpredictably and dynamically.
It has been observed that open-world software introduces the requirement of con-
tinuous validation. Since a software architecture evolves dynamically, validation
must extend from development time to runtime.

In order to ensure that composite services are executing as expected, it is
necessary to monitor the interactions of individual services within a workflow.
Monitoring involves both service functional behavior and non-functional prop-
erties, such as Quality-of-Service (QoS) parameters. If services are advertised
by Service-Level Agreements (SLAs) that regulate service cost and QoS (e.g.,
maximum response time), monitoring delivered QoS allows clients to verify that
they actually receive the QoS they are expecting and paying for.

When clients executing workflows observe failures or SLA violations of individ-
ual services, they have to replace the failing or badly behaving services. However,
finding a replacement may take some time, resulting in reduced availability of
the composite service. Moreover, there are no guarantees that the replacement
will work better than the replaced service.

In this paper, we promote the sharing of service monitoring information
amongst clients in order to enable the pro-active replacement of misbehaving
services in workflows. The original contribution of the paper is an integrated
infrastructure for service monitoring and maintenance of composite services. We
promote novel techniques for monitoring composite services and introduce an
incentive-compatible Reputation Manager (RM) to share reliable service quality
information among clients. The RM is integrated with a UDDI service directory
and employs a publish/subscribe mechanism to disseminate reputation informa-
tion to clients.

RMs have emerged as efficient tools for service discovery and selection [3]. When
electronic contracts cannot be enforced, users can learn to trust good providers
by looking at their past behavior [4]. Maximilien and Singh [5] describe a concep-
tual model for reputation using which reputation information can be organized
and shared and service selection can be facilitated and automated. Lie et al. [6]
present a QoS-based selection model that takes into account the feedback from
users as well as other business related criteria. Both [7] and [8] propose concrete
frameworks for service selection based on the reputation of the service provider.

Several works (see [9] for a detailed comparison of the approaches) have inves-
tigated monitoring of service compositions. However, to the best of our knowl-
edge, this is the first attempt to use the result of observations deriving from
monitoring to build service reputations and make use of the latter to dynami-
cally maintain service compositions.

Automated Dynamic Maintenance of Composite Services 451

2 Architecture

In this section we focus on the interaction between clients and services, on the
collection of data about the behavior of services, and on the dissemination of in-
formation on service reputation from the registry to the clients. The architecture
illustrated in Fig. 1 describes a client workflow which monitors the behavior of
the invoked services and communicates the results of monitoring to the registry.
The registry comprises the following components:

– Reputation Manager (RM): its task is to collect feedback reports from the
clients, to aggregate them, and to compute an estimate of the reputation of
a service.

– Subscription Manager : this component handles dissemination of the infor-
mation provided by the RM. We choose to design the communication infras-
tructure of our architecture using a publish/subscribe mechanism. Services
may subscribe to two different kinds of events:
• Notification by the RM when the reputation of a given service falls under

a certain threshold;
• Notification that a better service has become available, having either the

same interface (exact-match) or a compatible interface (plugin-match)
w.r.t. a given service.

– Extended Service Directory: with respect to its standard counterpart, this
directory extends the registry by including information on the current esti-
mated reputation of each registered service, as conveyed by the RM. Further-
more, the directory service is in charge to notify the Subscription Manager
about the registration of new services.2 We have explored techniques for
efficient matchmaking in service directories in prior work [10].

Fig. 1. System architecture

2 Note that for a newly registered service, the RM will not publish an associated
reputation value before sufficient client feedback has been collected.

452 D. Bianculli et al.

Figure 1 illustrates a BPEL service, sketched in the figure as a workflow
containing two invoke activities, each one interacting with an external service,
ServiceA1 (assumed to implement interface A) and ServiceB1 (assumed to imple-
ment interface B). The architecture also shows three kinds of message exchanged
between the components:

– After each invocation of an external service, the BPEL service sends a feed-
back message back to the RM, which collects feedback from all the clients of
a certain service. This message is labelled “feedback on service-name” and
it is drawn in the figure by using a dashed line.

– Whenever the RM computes a new value of the reputation of a service, the
Subscription Manager notifies all the subscribed clients if the reputation of
the service dropped below the threshold set by each client. In our example,
we assume that the BPEL service has subscribed to the drop-down of the
reputation of the two used services and we show the case of A1’s reputation
drop-down. This message is labelled “service-name reputation drop-down”
and it is depicted in the figure by using a dotted line.

– A third type of message, labelled “new interface-name service available”,
notifies all interested clients that a new service implementing a certain
interface and with a better reputation became available. In the figure, a
dash/dotted line depicts a message that notifies the client that a service im-
plementing the interface B (in the example, ServiceB2), and having a better
reputation, has been published in the directory.

The frequency of both monitoring and feedback reporting to the RM can be
selected and tuned by the client. For simplicity, the architecture illustrated in
Fig. 1 ignores how the workflow can dynamically adapt to the changes in service
reputation through dynamic binding.

3 Monitoring

Some of the authors have previously explored the issue of monitoring web service
compositions [9]. Under the assumption that the local workflow is correct, the
hot spots where to place monitoring probes correspond to receive, invoke,
and pick activities, i.e., to activities which represent interactions with external
services.

Our specification language for monitoring, called Timed WSCoL, supports
both functional and non-functional properties. In this particular context, we
require each property to refer to only one service. This constraint guarantees that
a violation of the property can be immediately mapped to a violation/failure of
the service involved in the property.

Our monitoring infrastructure is based on an open-source BPEL engine, Ac-
tiveBPEL3. We have extended the engine using an aspect-oriented programming
(AOP) approach [11], by implementing all the monitoring logic using AspectJ.

3 http://www.activebpel.org

Automated Dynamic Maintenance of Composite Services 453

The architecture of the monitoring infrastructure includes (1) a data collector
and aggregator, which gathers sequences of timestamped messages from the in-
teractions with external services, and (2) a Timed WSCoL analyzer, which is
actually in charge of checking the validity of a property. The output of this an-
alyzer is binary, stating if the property has been violated or not. This output is
then sent to the RM, together with the identifier of the service being “evaluated”.

AOP is also used to instrument the engine to perform subscription to messages
delivered by the Subscription Manager, each time an instance of a BPEL process
is started. For each service x the BPEL service interacts with, it can make
two subscriptions: (1) notification upon drop-down of the reputation of service
x below a certain threshold τx, and (2) notification of the availability of new
services with an interface equal or compatible to the one of service x.

A third instrumentation is required to make the BPEL workflow respond to
reputation notifications. We achieve this by modifying how the engine behaves
when a new BPEL process is deployed into it. The basic requirement is that the
BPEL process should be able to bind dynamically a partner link to a new service,
either because of a misbehavior of the service it is currently bound to or because
a new service with a better reputation became available. Dynamic binding is
achieved by updating the end-point reference of a partner link. Our AOP-based
instrumentation of the engine modifies the BPEL process by inserting an event
handler in the global scope (or by modifying the handler, if it already exists)
for the two kinds of message that the Subscription Manager can send. Message
“new service available” triggers the handler to update the end-point reference
of the partner link representing the service to be replaced, whereas message
“reputation drop-down” triggers a query to the registry to retrieve a substitute
service with better reputation.

4 The Reputation Manager

The Reputation Manager is an important component of our framework, that
collects feedback from the clients, and output quality measurements for the web
services. Clients are required to submit a binary report: positive if the service
met the quality constraints set in the SLA, negative otherwise. The reports
submitted by the clients also contain the timestamp of the interaction with the
service.

We model the behavior of web services by a Hidden Markov Model with
two states: the good state describing the normal functioning mode when client
requests are successfully satisfied with the unknown probability pG, and the bad
state describing a failure mode where the quality of the service is very low. The
probability of transition from the good state into the bad state is assumed fixed
and known, characterizing the different hazards the service is subject to.

Given the sequence of N binary feedback reports, (ri)i=1...N , about the same
web service, the RM can (a) estimate the parameter pG of the web service, and
(b) output the probability Pr[B|(ri)] that the web service is in the bad state. pG

is computed by likelihood maximization, while the probability that the service

454 D. Bianculli et al.

is in the bad state can be computed using standard HMM tools like the Viterbi
algorithm [12]. As the quality can change in time, the RM only uses the most
recent N feedback reports. The estimates published by the RM can be used by
future clients to optimize their workflows, or to dynamically replace defective
services.

An important requirement for the reputation manager is to ensure honest
feedback. Since clients may tamper with the default monitoring code in order
to manipulate reputation information, special incentives must guarantee that
lying, even if technically feasible, is economically uninteresting. The RM pays
submitted reports an amount that depends on the feedback provided by other
clients about the same web service. The payments can be designed such that
truthful reporting maximizes the expected revenue (due to feedback payments)
of a client, and honesty thus becomes an equilibrium of the mechanism. The
budget for these payments can be raised by the RM from fixed participation fees
that service providers and/or clients have to pay.

For example, a report is being paid only if it has the same value as another
randomly chosen report. Intuitively, this simple mechanism encourages honest
reporting because the private experience of a client changes her belief regarding
the reputation of the service, and consequently, her expectation for the value
of the report used to compute her payment. If the experience is positive, the
client expects with slightly higher probability to be rewarded for a matching
positive report. Likewise, if the experience is negative, the client expects with
slightly higher probability to be rewarded for a matching negative report. This
asymmetry in beliefs can be used to scale the payments for matching positive
or negative reports so that honesty becomes optimal. The formal details and
algorithms for computing these reward mechanisms are given in [13]. In the
same time, measures can be taken to discourage collusion.

5 Conclusions

In this paper we have presented an architecture supporting automated, dynamic,
pro-active, and transparent maintenance and improvement of composite services.
Our architecture leverages monitoring techniques in order to generate feedback
on the quality of service (from both a functional and a non-functional point of
view) perceived by clients. This feedback is collected and aggregated by a reputa-
tion manager which computes services reputation; information on the reputation
is then transmitted to clients that can pro-actively maintain and improve their
composite services. Our reputation manager provides economical incentives for
honest sharing of feedback.

We are currently focusing on optimizing our registry for queries involving
functional properties (to support selecting plugin matches) and non-functional
properties (to support ranking according to a user-defined utility function involv-
ing QoS parameters, services cost, and service reputation). Future work includes
1) verification of the approach, in terms of measurements of improvement by
deployment and simulation; 2) the development of a new model that considers

Automated Dynamic Maintenance of Composite Services 455

more precise reports on QoS observations (e.g., a response time violated within
a 10% bound may concur in a minor way to a decrease of the service reputation);
3) investigation on behavioral reflection mechanisms for workflow languages so
as to better support dynamic re-binding within BPEL processes.

Acknowledgements. Part of this work has been supported by the EU project
“PLASTIC” (contract number IST 026995), and the EU project “Knowledge
Web” (FP6-507482).

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1 (2003)

2. Baresi, L., Di Nitto, E., Ghezzi, C.: Towards Open-World Software. IEEE Com-
puter 39, 36–43 (2006)

3. Singh, M.P., Huhns, M.N.: Service-Oriented Computing. Wiley, Chichester (2005)
4. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Ap-

plied Artificial Intelligence (14), 881–907 (2000)
5. Maximilien, E.M., Singh, M.P.: Conceptual model of web service reputation. SIG-

MOD Rec. 31(4), 36–41 (2002)
6. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web

service selection. In: WWW Alt. ’04. Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pp. 66–73. ACM Press,
New York, NY, USA (2004)

7. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: ICSOC ’04. Proceedings of the 2nd international conference on Service oriented
computing, pp. 212–221. ACM Press, New York, NY, USA (2004)

8. Alunkal, B., Veljkovic, I., Laszewski, G., Amin, K.: Reputation-Based Grid Re-
source Selection. In: Proceedings of AGridM (2003)

9. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: A timed extension
of WSCoL. In: ICWS 2007. Proceedings of the IEEE International Conference on
Web Services, pp. 663–670. IEEE Computer Society Press, Los Alamitos (2007)

10. Constantinescu, I., Binder, W., Faltings, B.: Flexible and efficient matchmaking
and ranking in service directories. In: ICWS 2005. Proceedings of the IEEE In-
ternational Conference on Web Services, pp. 5–12. IEEE Computer Society Press,
Los Alamitos (2005)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

12. Forney, G.: The Viterbi algorithm. Proceedings IEEE 61, 268–278 (1973)
13. Jurca, R., Faltings, B., Binder, W.: Reliable QoS monitoring based on client feed-

back. In: WWW ’07. Proceedings of the 16th international conference on World
Wide Web, pp. 1003–1012. ACM Press, New York, NY, USA (2007)

Verifying Temporal and Epistemic Properties of

Web Service Compositions�

Alessio Lomuscio, Hongyang Qu, Marek Sergot, and Monika Solanki

Department of Computing, Imperial College London, UK
{alessio, hongyang, mjs, monika}@doc.ic.ac.uk

Abstract. Model checking Web service behaviour has remained lim-
ited to checking safety and liveness properties. However when viewed
as a multi agent system, the system composition can be analysed by
considering additional properties which capture the knowledge acquired
by services during their interactions. In this paper we present a novel
approach to model checking service composition where in addition to
safety and liveness, epistemic properties are analysed and verified. To
do this we use a specialised system description language (ISPL) paired
with a symbolic model checker (MCMAS) optimised for the verification
of temporal and epistemic modalities. We report on experimental results
obtained by analysing the composition for a Loan Approval Service.

1 Introduction

Web services are now considered as one of the key paradigms underlying appli-
cation integration. Several research efforts – both from industry and academia
– have addressed varied aspects of service composition including verification via
model checking. Most of the approaches [11, 13] take BPEL [9] as the language
for development and use model checkers such as SPIN [6] and NuSMV [3] for
checking safety and liveness properties. These model checkers are limited to tem-
poral modalities in the scope of properties they can analyse. However as we argue
below, in addition to verifying temporal properties it is also necessary to predict
and verify the knowledge gained by services during the composition.

In this paper we propose an alternative yet complementary approach to veri-
fying service behaviour. As proposed by the W3C consortium: “ A Web service
is an abstract notion that must be implemented by a concrete agent. The agent
is the concrete piece of software or hardware that sends and receives messages.”,
a composition of Web services can be viewed as a multi agent system [12].

There is a tradition in the multi agent systems (MAS) community to use
rich logic-based languages to analyse the behaviour of agents in the system. In
particular not only is temporal logic used but also, among others, epistemic (to
reason about knowledge of the processes), deontic (to reason about obligation of
the processes), cooperation (to reason about strategies of the agents) modalities.

� The research described in this paper is partly supported by the European Commis-
sion Framework 6 funded project CONTRACT (IST Project Number 034418).

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 456–461, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying Temporal and Epistemic Properties of Web Service Compositions 457

These logic-based languages can be used to specify formally and unambiguously
the behaviour of the system. Recent developments in the verification of MAS
via model checking techniques [10, 2] allow for the first time the verification of
not only plain temporal languages but also a variety of modalities describing the
informational and intentional state of the agents. In particular reasoning about
the agents’ knowledge is demonstrably of interest in a variety of applications, in-
cluding coordination, security, communication, fault-diagnosis, networking, etc.
This work has not yet been extended to the challenges of service composition.
The aim of this paper is to make a step in this direction. In particular in this
paper we show how MCMAS [8] can be used to model check rich specifications
based on temporal-epistemic logic representing compositions of web-services.

The rest of the paper is organised as follows. In Section 2 we introduce the
trace-based semantics of interpreted systems. Section 3 introduces a motivating
example and some of its key specifications. In Section 4 we introduce MCMAS,
a symbolic model checker for semantics of interpreted systems. The encoding
of the example in a specialised language is also shown in this section, its key
properties are checked automatically, and experimental results are discussed.
We discuss related work in Section 5 and conclude in Section 6.

2 Preliminaries

The first class citizen within an interpreted system as applied to Web services is
an agent that represents the concrete counterpart of a service in the composition.
Below we summarise the framework of interpreted systems [4] as implemented
in MCMAS. Every agent i (i ∈ {1, . . . , n}) is characterised by a finite set of local
states Li for the service and a finite set of actions Acti that the agent performs on
behalf of the service. A Protocol defines the actions that may be performed by an
agent in each of its local states and is defined as Pi : Li → 2Acti . The environment
is modelled as a special agent with a set of local states (Le), a set of actions (Ae)
and a protocol (Pe). The set of global states of the composition can be defined
as a non-empty subset of the Cartesian product L1 × L2 × L3 . . . × Ln × Le. A
global state of the system at a particular instant in time is therefore represented
by a tuple (l1, l2, . . . ln, le).

The evolution (transition) of the agents’ local states is described by a function
ti : Li × . . . × Ln × Le × Acti × . . . × Actn × Acte → Li that defines the next
local state of an agent given the current local state and the action(s) that are
performed in that state as per the protocol. The evolution of all the agents’ local
states describes a set of runs over the set of reachable states. It is assumed that
in every state the agents perform simultaneous actions. Note that some agents
may perform “null” actions. The evolution of the global states of the system is
described by a function t : S × Act → S where S = L1 × . . . × Ln × Le and
Act = Act1× . . .×Actn×Acte. Given a set I ⊆ S of possible initial global states,
the set G ⊆ S of reachable global states is generated by all possible runs of the
system. Finally, the definition includes a set of atomic propositions AP together
with a valuation function h : AP → S.

458 A. Lomuscio et al.

We adopt the syntactical constructs and semantic model for the interpretation
of temporal-epistemic formulae in interpreted systems as presented in [8] to
analyse composite Web services. Of particular interest to us is the formula Kiϕ
for expressing epistemic properties. The formula is read as “Agent i knows ϕ”.
Epistemic properties capture knowledge that the agents and their environment
acquire as the system evolves. Verification of epistemic properties ensures the
correctness of this knowledge at various states within the system as interaction
progresses. In terms of verification via model checking, in our approach, this can
be defined as establishing whether or not Ms � Kiϕ. We can also verify complex
specifications like KiKjϕ which informally expresses “Agent i knows that agent
j knows ϕ”.

3 A Motivating Example

We take as our reference example a composition of services for Loan Approval
as outlined in the WSBPEL specification [9]. Figure 1 shows the interaction
protocols for the various services. At a high level of abstraction, these protocols
can be viewed as individual BPEL representations of the processes. For simplicity
in this paper, we do not model explicit communication between the agents.
We assume that the underlying network for sending and receiving messages is
reliable, communication is synchronous and message delivery is instantaneous.
Asynchronous communication can be easily modelled by allowing the agents to

Fig. 1. Protocols for Agents in the Loan Approval Service

Verifying Temporal and Epistemic Properties of Web Service Compositions 459

“wait” or do “nothing”. It is also possible in our framework to model channels
as environment for the agents in the systems and reason about their correct
behaviour for e.g. coordination and synchronisation. However in this paper we
abstract from modelling these.

3.1 Formalisation

We represent the above example using the formalism of interpreted systems. In
order to verify a system with MCMAS, we need to translate the system into a
model written in ISPL, which includes the following components:

– The definition of agents which describes the local behaviour of every agent,
such as states, actions and protocols.

– The global evaluation function of the system which define atomic proposi-
tions held over global states, the combinations of local states.

– The local initial state of agents.
– Specifications to be checked. They are expressed as temporal-epistemic for-

mulae.

In the example, we define four agents “Loan Requester (LRA)”, “Loan Service
(LSA)”,“Risk Assessor (RAA)” and “Loan Expert (LEA)”. Each of them is mod-
elled using their local states, local actions, protocols and transition functions.

For example, for the LRA the local states are {s0, s1, s2, s3, s4, s5}. The set of
actions for the LRA includes setLoanRequest, invokeLoanRequest1, invokeLoan-
Request2, ack, nack, nothing, return1, among which invokeLoanRequest1 repre-
sents a request with amount less than 10,000 GBP, invokeLoanRequest2 one with
amount greater than 10,000 GBP, nothing is just a dummy action (corresponding
to no-op) and return1 is used to move to the initial state. The Protocol function
in the definition explicitly specifies possible actions at each state: for example, at
state s1, only invokeLoanRequest1, invokeLoanRequest2 are possible. If no action
can be enabled, nothing is assigned to the state.

Finally the evolution function defines the behaviour of the agent, i.e., when
and how the agent moves to another state. For example, LRA proceeds to the
state s1 if and only if it is in the state s0 and executes the action setLoanRequest.
In addition, the agent can jump to other states without firing a “local” action.
This is done by following actions of other agents. For instance, LRA moves
to state s3 from state s2 when agent LSA executes action sendFail. In this
way, we can easily model synchronisation between agents. A typical scenario of
synchronisation is when an agent sends a request to another and the latter has
to receive it. Moreover, this mechanism allows us to reduce the total number of
actions and thus the number of Boolean variables needed to encode the system
which speeds up the verification. Asynchronous communication can be easily
modelled as explained earlier. The Loan Service may choose not to receive the
request sent by the Loan requester till the send operation is complete. In this
case, the transition of the Loan service from state w0 to state w1 happens only
after the transition invokeLoanRequest1 of the loan requester from state s1 to
state s2.

460 A. Lomuscio et al.

As observed, the evolution function provides a simple means of modelling
coordination and synchronisation/asynchronisation between agents for the pur-
poses of the paper. It also allows us to reduce complexity, while focusing on our
core objective of verifying temporal-epistemic properties. More elaborate models
of coordiantion and synchronisation are possible but will not be presented here.

4 Model Checking the Loan Approval Composition

MCMAS [8] is an OBDD based symbolic Model Checker for Multi Agent Sys-
tems. In addition to temporal modalities MCMAS allows the verification of epis-
temic, correctness and cooperation modalities. Input to the model checker is
defined in ISPL. The evaluation function in ISPL maps atomic propositions to
states, which specifies for every atomic proposition the set of states in which the
proposition holds. For example the proposition loanApproved holds if the loan
requester is in state s4 or it is in state s5.

We check the following epistemic properties: (1) if the loan request is approved
by LAA, then LRA knows the fact that LSA knows that the request of LRA has
low risk; (2) if the amount of the loan requested is greater than 10,000, the
customer knows that his request will be directed to a Loan Expert. They are
formalised as follows:

AF loanApproved → (amountLess10000 → KLRAKLSALowRisk1)
∧(amountGreater10000 →KLRAKLSALowRisk2)

AF amountGreater10000 → KLRAexpertInvoked

We also tested two CTL formulae: AF (loanFail ∨ loanSucceed), which
stands for eventually in all paths, a loan request would fail or succeed, i.e., LSA
must make decision for every load request, and AF amountGreater10000 →
EF loanReject which means that for all paths in which the loan amount is
greater than 10,000 GBP, the request would fail in some paths.

MCMAS used 13 Boolean variable to encode local states, 12 for actions. It
returned the result immediately, as the model is not complex. It is obvious that
the four properties are true for the model. It is easy to produce a false property
as well, for example, change “EF” into “AF” in the fourth formula. Due to
space restrictions we do not present the complete ISPL code for the example; it
is available on request.

5 Related Work

Several research efforts have addressed the problem of model checking Web ser-
vice specification, however to the best of our knowledge this is one of the first
papers to address the verification of epistemic properties of agents that repre-
sent Web services. Pistore et al [11] present a technique based on “Planning
as Model Checking” for planning under uncertainty for composition and mon-
itoring of BPEL4WS processes. The Model checking approach uses the MBP

Verifying Temporal and Epistemic Properties of Web Service Compositions 461

Planner [1]. Fu et al [5] presents a framework where BPEL specifications are
translated to an intermediate representation, using guarded automata as XPath
expressions. This is followed by the translation of the intermediate representa-
tion to a verification language “Promela”, input language of the model checker
SPIN. Hu Huang et al [7] presents an approach using the BLAST model checker
to verify the process models of OWL-S

6 Conclusions

In this paper we show that along with temporal modalities, epistemic properties
for agents representing the services can be verified. We use the symbolic model
checker MCMAS and verify temporal-epistemic properties for Loan Approval
composition. As part of our future work we intend to investigate the explicit
modelling of coordination and synchronisation between agents which are ab-
stracted in this paper.

References

1. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: MBP: a model based
planner. In: Proc. of the IJCAI’01 (2001)

2. Bordini, R., Fisher, M., Pardavila, C., Visser, W., Wooldridge, M.: Model checking
multi-agent programs with CASP. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 110–113. Springer, Heidelberg (2003)

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW’04,
pp. 621–630. ACM Press, New York (2004)

6. Holzmann, G.J.: The model checker SPIN. IEEE Trans. on Software Eng. 23(5),
279–295 (1997)

7. Huang, H., Tsai, W.-T., Paul, R., Chen, Y.: Automated model checking and testing
for composite web services. In: ISORC ’05, pp. 300–307. IEEE Computer Society,
Los Alamitos (2005)

8. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920,
pp. 450–454. Springer, Heidelberg (2006)

9. OASIS Web service Business Process Execution Language (WSBPEL) TC: Web
service Business Process Execution Language Version 2.0 (2007)

10. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)

11. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: AIMSA, pp. 106–115 (2004)

12. Wooldridge, M.: An introduction to multi-agent systems. John Wiley, England
(2002)

13. Fu, X., Bultan, T., Su, J.: Conversation Protocols: A Formalism for Specification
and Verification of Reactive Electronic Services. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 188–200. Springer, Heidelberg (2003)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 462–473, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Research and Implementation of Knowledge-Enhanced
Information Services

Bo Yang1, Hao Wang1, Liang Liu1, Qian Ma1, Ying Chen1, and Hui Lei2

1 IBM China Research Laboratory, Beijing, 100094, China
{yangbbo, wanghcrl, liuliang, maqian, yingch}@cn.ibm.com

2 IBM T. J. Watson Research Center, Hawthorne, NY, USA
hlei@us.ibm.com

Abstract. Information isolation has been identified as a big challenge in IT
Service Management (ITSM). Existing ITSM practices mostly rely on
configuration information and are geared towards individual applications and
processes. However, information available in complicated IT infrastructure
goes beyond data from the configuration management domain. How to
efficiently extract and integrate the hidden knowledge from a wide variety of
information sources is a major pain point for ITSM. In this paper, a threading
strategy (TS) with KPI mark and knowledge-enhanced information services is
proposed to improve ITSM quality. The essential contribution of this work is to
organize the highly complex IT service information with KPI mark and to build
a knowledge repository for accumulateing and reusing experts’ knowledge. In
addition, a prototype called BIANCHIN is implemented to explore this
knowledge-enhanced information services framework. Finally, a real business
application of Cisco VoIP system is used as a case study for evaluating the
effectiveness and efficiency of the knowledge-enhanced information services
framework.

Keywords: IT service management, information services, configuration
management database, knowledge database.

1 Introduction

Information services are critical to IT infrastructure management. They provide
diverse information to users or other service components in an IT service
management (ITSM) environment [1]. Information services constitute a new level of
services that offer added value to information contained in data sources across an
organization [2]. They integrate information to provide a unified view of information,
add business context to raw information, and expose insightful relationships in
information that in turn facilitate better decision-making.

Treating information as a service, organizations can improve the relevance and cost
effectiveness of their information by reusing integration logic, making information
available to people, processes and applications across the business, and improving the
operational impact of information on driving innovation.

 Research and Implementation of Knowledge-Enhanced Information Services 463

Many approaches have been proposed to improve the utility of information
services. Jie, W. et al.[3] proposed an information service architecture model for
information management in a Grid Virtual Organization, which is a hierarchical
structure that consists of a VO layer, a site layer and a resource layer. In order to
satisfy customers’ individual demands based on their personal differences, Wang, J. et
al. introduced a decision-tree approach of data mining to get special information
demands, used agent technology to establish the model of an information service
terminal and defined the functions of the components [4]. Zou, H. et al.[5] proposed a
hybrid resource information service architecture based on the grid-monitoring
architecture to promote the validity of the resource information service with low
system cost. Lu, X.D. proposed a distributed information service system architecture
[6]; Lu also defined the ratio of correlation and the degree of satisfaction and
proposed the autonomous integration and optimal allocation of information services
for heterogeneous Faded Information Fields. Zang, T. et al. presented an architecture
of the information service and the models of information organization [7]. The main
functionality of this information service is the provisioning of information essential to
applications running in a distributed environment such as resource information, job
status, resource workload, service meta-information, and queue status.

However, information management and organization in complicated ITSM
environments with frequent changes is a challenging issue [8]. Information coming
from different sources is characterized as diverse, dynamic, heterogeneous, and
geographically distributed. In IT infrastructure management, change is much more
accelerated, and what actually defines an enterprise is indeed morphing, becoming
more fractured and distributed, engaging more third parties and stakeholders within
their respective business value chains expanding across the globe. Effective
collaboration within and beyond the various information has become both necessary
and more difficult to manage. Information as a service needs to be more readily
accommodated in an integrated and proactive fashion rather than via one-off efforts.

Our work focuses on a high-level information service which is enhanced by
introducing key performance indicator (KPI) mark and knowledge database (KDB). It
provides information essential to applications running in a complex IT infrastructure
environment including resource information, service status and service dependence.
This information is organized in relational models based on a threading strategy with
time thread. The information service works with data capture and analysis systems to
support resource discovery, job scheduling, and management visibility.

The rest of the paper is organized as follows. The problems confronted by
information services are analyzed in Section 2. In Section 3, we illustrate the
framework of our Threading Strategy for ITSM (TS-ITSM). Section 4 describes the
implementation issues. An experiment with a real application is discussed in Section
5. Finally, the conclusions and future work are presented in Section 6.

2 Problem Analysis

ITSM has received growing attention from both the academia and the industry. An
important and challenging subject in ITSM is information as a service. Information
services are characterized by their wide distribution, high fault tolerance and dynamic
functions as well as diversified forms.

464 B. Yang et al.

A recent survey by IDC with corporate executives reveals that the executives
require access to trusted and reliable information in a timely manner [8]. However,
most enterprises are flooded with large scale data and content scattered in many
systems and sources, and in multiple forms. The volume and variability of such
information continues to increase, including application configurations, network
configurations, OS configurations, service status, CPU usage, memory usage,
transaction workload, transaction response time, etc. Sharing information and
ensuring that the most appropriate views are discovered and used for their intended
and changing purposes can be daunting given the many layers of hard-coded and
semantic dependencies built within typical applications and systems. Furthermore, it
is quite inefficient and disconcerting that different applications apply their respective
approaches in a very fragmented, redundant, and inconsistent manner.

Fig. 1. Typical IT information architecture of distributed business applications

A critical step towards improving ITSM involves creating solutions geared for
discrete applications or processes, this evaluation involves creating and instantiating
the core elements and functions of the business in a fashion where they can be utilized
in multiple ways. It allows one to view all of the components of the environment in a
logical organization, as shown in Fig. 1, that is not constrained by any particular
physical implementation or use scenario. To maintain an application, all related
information need to be captured for performance analysis or problem diagnosis. Each
information source is useful in context to its particular initial use case yet can

 Research and Implementation of Knowledge-Enhanced Information Services 465

potentially provide tremendous added value when it is combined and utilized for
multiple purposes.

For centralizing configurations control, the configuration management database
(CMDB) [9-11] has been proposed that focuses on how organizations are positioned
to extract value and raise competencies to address their unique information
requirements. The concepts underlying CMDB include information governance,
change management, as well as the development and maintenance of a flexible
information infrastructure. CMDB is intended to be an infrastructure approach to
coordinating data-oriented service and integration functions in a dedicated fashion. It
provides connectivity to a vast amount of data and delivers relevant information,
consolidating these functions in a unified fashion as shown in Fig. 2.

Fig. 2. Configurations management database for information service

However, applying a common form to all information sources within an enterprise
is an impossible task, especially in large and changing environments [8]. Given
uncertainties on the exact information that may be needed in the future, who will need
it, and how it will be used, it is critical to build an information foundation that is open,
flexible, and scalable. Furthermore, it is not sufficient simply to record all the
information on systems and operations in CMDB. Without the assistance of domain
knowledge, ITSM personnel can easily get confused and be lost in low-level
redundant details.

466 B. Yang et al.

3 Threading Strategy for ITSM

When studying how to provide real-time information, we must consider how to satisfy
diverse demands from disparate applications. The concept of advanced information
services has been put forward from the aspect of services. Without a common
foundation of usable information, service-oriented architecture is just a loose
confederation of abstract business processes.

Since information from a complicated IT infrastructure is not the only data needed
for configuration management, in this paper, we advocate a threading strategy (TS)
with KPI mark and knowledge-enhanced information services. The KPI mark
represents the performance status of system. To organize a large body of information
coming from diverse sources, TS introduces time-thread based data management to
coordinate all information in an open, flexible, and scalable style. Each source can be
added or removed from the information foundation by changing it on the time thread.
Every information chip is classified into a version according to its capture time. As
shown in Fig. 3, all information around a time point is regarded as a version of related
system description.

Fig. 3. Threading strategy with KPI mark and knowledge-enhanced information services

In particular, for a version, the KPI mark of the system performance provides
tremendous added value to other application services such as capability planning,
performance analysis and problem diagnosis etc. It is almost impossible for a
traditional CMDB containing only configuration information to provide such added
value. KPI mark also provides the change trace of system performance, which can
indicate what configurations should be used to meet special business requirements
when the KPI mark is combined with configuration information.

 Research and Implementation of Knowledge-Enhanced Information Services 467

Moreover, a knowledge database is introduced to store not only the KPI rank of
system versions, but also extended patterns and rules that ITSM operators define in
the course of their work. In a distributed environment, this strategy enables ITSM
operators to share their domain knowledge for different application services. The
reuse of experts’ knowledge will be effective in reducing the labor cost for
complicated IT service management.

4 Implementation of the Information Service

In this section, a proof of concept (POC) project BIANCHIN is developed to validate the
Threading Strategy for information services. It is built on the Eclipse Toolkit with Java
technology, and implements a container for information capture, data organization,
pattern definition, rule and policy definition, and the GUI of using knowledge.

Fig. 4. Prototype framework about knowledge enhanced information service

In the following subsections, we will discuss some key issues involved in the
implementation of our information service. These issues include the implementation
of the information capture mechanism, the implementation of the data organization
mechanism, the implementation of the knowledge accumulation and so on.

4.1 Threading Strategy for Information Coordination

The framework of BIANCHIN is shown in Fig. 4, in which a data capture platform, a
data synchronization & analysis platform, and a data presentation platform are
constructed to provide information services.

468 B. Yang et al.

After data is captured from target systems, it needs to be coordinated to represent
the target systems. For data coming from diverse sources with different capture
schedule, a loose composite data model is proposed to synchronize data by timeline,
compose the diverse data, and store the composed data in a data repository. A
synchronized data model in xml is introduced in the prototype. All of the data in a
version represents the system status at the time point. Thus it provides a
comprehensive, synchronized view of the target business-IT infrastructure by aligning
diverse information.

4.2 Knowledge-Enhanced ITSM

Moreover, and most importantly, the knowledge repository provides fundamental
analysis functions upon the synchronization of data to facilitate knowledge generation.
Frequently used data analysis functions such as comparison and change tracking, pattern
detection and search, statistical data correlation, and KPI mark are provided as utility
libraries. Comparison makes it possible to discover what is common among all the
situations where the system can meet the SLA requirement, based on historical versions
of system status. Change checking helps problem diagnosis when a specific service goes
down from a healthy state. Pattern detection will improve problem analysis by
recognizing the change in configuration items that cause a known problem. And
statistical data correlation analysis computes the possibility that a change in configuration
items (CIs) will impact the availability of the system.

When an expert diagnoses or solves a problem successfully, he can use “pattern
definition” to file his solution in knowledge repository. Based on the xml data model
in the BIANCHIN prototype, an XPath like the one below could be used in pattern
definition:

//ServiceState:Adapter/ServiceState:Service_States/Service[Display_Name='Cisco
CallManager' and State='Stopped']

where the XPath has two conditions: one is that the “Display_Name” element should
equal a string “Cisco CallManager” and the other is that the “State” element should
equal a string “Stopped”. The conjunctions in pattern could be “and”, “or”, or “!”.
And the conditions could be any of “=”, “>”, “<”, “>=”, “>=”, and “contains ()”.

With fundamental analysis functions, the expert’s knowledge of problem resolution
is stored in the knowledge repository. This allows for effective knowledge reuse on
performance analysis, configuration recommendation and problem diagnosis etc., and
will add business value to other information services.

In our system, data analysis not only can track system status changes in the form of
a configuration change, but also those in the form of KPI fluctuation at business level.
That will be powerful to analyze the relationships between IT infrastructure and
business requirement, and will be helpful to diagnose a problem’s root cause.

5 Experiment Result and Analysis

The purpose of the experiments is to evaluate the efficiency of problem determination
using Threading Strategy for ITSM, when TS is used for problem diagnosis on a real

 Research and Implementation of Knowledge-Enhanced Information Services 469

business application of Cisco VoIP system. The VoIP system contains a complicated
services topology, as shown in Fig. 5, where the system is supported by VoIP
application services, database application services and OS services. And there are
many relationships between services; for example, Cisco CDR Insert (CCI) service
and Cisco Database Layer Monitor (CDLM) service depend on MSSQLSERVER
service, Distributed Transaction Coordinator (DTC) service and Remote Procedure
Call (RPC) service. Any related service that is blocked will influence the performance
of the overall VoIP system. The information sources in our experiment include VoIP
application configurations, OS configurations and services status.

Fig. 5. Part of service relationships in the Cisco VoIP system

The experiment is designed to include 15 troubleshooting cases, Part of the cases
are frequent cases cited in the Cisco CallManager trouble-shooting manual [12] and
the others are summarized by experienced VoIP administrators. The cases covered
both system problems, such as service operation error, and VoIP configuration
problems such as improper device settings.

For each case, we examined the efficiency of Problem Determination and problem
Remediation (PDR)[13-15] efficiency. The efficiency was measured in terms of the
time cost of PDR. For comparative analysis, each troubleshooting case is performed
using two methods: one is the traditional method which is purely manual diagnosis by
a VoIP system administrator, and the other is diagnosis with assistance from our TS-
ITSM prototype system, BIANCHIN. The experiments results are summarized in
Table 1 and Figure 6.

470 B. Yang et al.

Table 1. Summary of all the experiment results

 PURE MANUAL DIAGNOSIS DIAGNOSIS WITH BIANCHIN
UNSOLVED PROBLEMS 3 0

SUCCESS RATES (%) 80 100
MAX PDR TIME (MIN) 55.63 18.1
MIN PDR TIME (MIN) 1.13 1.12
AVERAGE TIME (MIN) 20.46 7.82

Table 1 summarizes the respective experiment results of problem diagnosis by a

VoIP administrator with and without the use of BIANCHIN. The columns represent
the two diagnosis methods for the same problem, and the rows involve 2 main
performance measures that are of interest to us: the success rate of PDR and the
average time cost of PDR. The number of solved problems and the time cost for each
case are recorded, as shown in Figure 6. For comparison, the number of solved
problems as well as the maximum, minimum, and average of the time costs are
presented in Table 1. We can observe that the percentage of problem diagnosis
success rate is rather high when BIANCHIN is used by an administrator for PDR, and
that the average time cost for PDR is lower than that for purely manual diagnosis.
This indicates that information on the changes of CIs in the system is very helpful for
an administrator to determine and resolve problems.

The MAX time costs summarized in Table 1 are very different across experiment
cases, but the MIN time costs are very close to each other. This may be due to the fact
that the MIN time costs correspond to situations where the problems can be very
quickly diagnosed and the time costs are primarily time spent on fixing the problem,
which is more or less the same for different cases. When problem determination is
more complicated, the time cost will rise accordingly, resulting in disparities in the
MAX time costs.

Figure 6 displays a diagram that compares the efficiency between purely manual
problem diagnosis and BIANCHIN-assisted diagnosis. The diagram shows the
distribution of the time cost for each of the 15 cases. The cases that cannot be solved
in 1 hour (3600 seconds) were marked as unsolved problems in the experiments.

As shown in Figure 6 and summarized in Table 1, 3 problems cannot be resolved
in purely manual diagnosis experiments, which are cases No. 11, No. 14 and No. 15.
In comparison, the root cause of the problems was successfully determined and the
problem resolved with BIANCHIN. Note that although the change management of
CIs improves the success rate of problem determination (PD), it does not always
improve the efficiency of PD. Cases 5, 8, 9, 12 and 13 indicate that the change
management of CIs may increase the time cost of PD for an experienced administrator
because he has to analyze a large amount of information about configuration changes
to determine which change is the right root cause for the current problem. This
process could be time-consuming. However, the cases can be solved efficiently when
patterns of the problem has been accumulated in the knowledge repository, such as in
case 2, 3 and 15. In those cases, BIANCHIN determined the problem root cause
accurately according to pre-defined problem patterns, and provided refined
information to the administrator leading to very efficient PDR.

 Research and Implementation of Knowledge-Enhanced Information Services 471

Fig. 6. PDR time cost for each tested case

Among the successfully resolved problems, case 2 is the most time-consuming one.
It is a problem where services of VoIP such as CCM, CTI Manager, Extended
Functions, and Voice Media Streaming have failed. When such a problem occurs, a
VoIP phone user only observes that the IP phone is not working; and a VoIP
administrator may observe that the administration page of VoIP does not display and
some services cannot be started. In general, there are 3 possibles causes for such
symptoms: the system user SQLSvc has been deleted unexpectedly, the password of
user SQLSvc has been changed, or the hostname of the VoIP server has been changed.

In purely manual diagnosis, the administrator had to check every cause for PDR
because there was no change management tool available to track changes of CIs.
Unfortunately, testing SQLSvc password change was a long operation in the VoIP
system. And it turned out that the real reason was that hostname of the VoIP server
had been changed. It also took some time for the administrator to determine the
changes on hostname as the difference between the names was subtle.

When there is no prior knowledge in the knowledge base as is the case with
traditional ITSM, the administrator will be presented with excessive change
information to make his decision. The information includes the states of services that
are different, the change of application functions for the applications depending on the
services, the error and warning events recorded in system and application log files,
and of course, the configuration change of the hostname. Such information is useful to
the administrator for PDR, but it is not time or cost efficient to manually extract the
problem root cause from the large volume of information.

Given the same problem, BIANCHIN provides a more advanced approach to
leveraging experts’ knowledge. There are often repetitive use cases in the experiments.
Patterns are defined in the knowledge base when the problem has been resolved
successfully or when the case reveals critical insight on troubleshooting. In our
experiment, the case about hostname change and its symptoms has been defined as a
pattern in the BIANCHIN knowledge base. When the pattern about hostname change

472 B. Yang et al.

occurs in case 2, BIANCHIN will list the applicable patterns for the problem in the
control panel automatically. It highlights the pertinent information to help the
administrator to determine the problem root cause quickly. If the unsolved problem is
excluded, our knowledge-enhanced method has the largest improvement in case 2, an
81.2% improvement comparing to pure manual method. And the PDR time cost has
also been improved through pattern matching, as in cases 2, 3 and 15 shown in Figure 6.

6 Conclusion and Future Work

IT is not just about providing computing technologies, but also about providing
services to end users. Such recognition is drving the development of IT service
management, which has become an ever important discipline. To materialize the
notion of ITSM, concrete methods need to be defined and their effectiveness
evaluated. Our investigation of an ITSM architecture contributes to this rapidly
growing area and suggests new possible research directions.

In this paper, we have analyzed and evaluated the performance of ITSM when it is
used in problem determination. From the problem-determination experiments on the
VoIP system, we can conclude that knowledge-enhanced ITSM is effective and
efficient, and provides significant improvent on experts knowledge reuse and problem
root-cause determination. Once the information analysis phase has been completed,
additional knowledge is available to suggest solutions for other services. When a
special business requirement entails a change of configurations, a version of the
configurations will be extracted from the configuration repository if the KPI is likely to
meet the requirement. This method could also be used for system disaster recovery,
where the system is restored to a specific state in history that is stable and controllable.

Moreover, for those more complicated problems that reference a large amount of
configuration data, TS-ITSM may be suitable to filter out information irrelevant for
system diagnosis and remediation. Obviously, knowledge-enhanced ITSM needs to be
further developed and refined for applications in a wide variety of cases. This paper
represents our initial effort. Further investigation will be conducted and reported in
the future.

Acknowledgments. This work was developed in the Distributed Computing and
System Management department of IBM China Reseach Lab. The authors would like
to thank Kewei Sun, Xuefeng Tang and Jian Ma for their comments and support on
the experiments in this paper.

References

1. Information Technology Service Management (ITSM) (2005), Available:
 http://www.cce.umn.edu/professionalcertification/itil/

2. IBM Information On Demand - The Role of Information in a Service Oriented
Architecture: IBM Global CFO Study (2006), Available: http://www-306.ibm.com/
software/data/information-on-demand

 Research and Implementation of Knowledge-Enhanced Information Services 473

3. Jie, W., Hung, T., Turner, S.J., Cai, W.: Architecture Model for Information Service in
Large Scale Grid Environments. In: Sixth IEEE International Symposium on Cluster
Computing and the Grid, vol. 1, pp. 107–114. IEEE Computer Society Press, Los Alamitos
(2006)

4. Wang, J., Ding, Z.F., An, S.: An agent-based study on personalized travel information
service. In: 1st International Symposium on Systems and Control in Aerospace and
Astronautics, p. 4 (2006)

5. Zou, H., Jin, H., Han, Z.F., Shi, X.H., Chen, H.H.: HRTC: hybrid resource information
service architecture based on GMA. In: IEEE International Conference on e-Business
Engineering, pp. 541–544. IEEE Computer Society Press, Los Alamitos (2005)

6. Lu, X.D., Mori, K.: Autonomous information services integration and allocation in agent-
based information service system. In: IEEE/WIC International Conference on Intelligent
Agent Technology, pp. 290–296 (2003)

7. Zang, T.Y., Jie, W., Hung, T., Lei, Z., Turner, S.J., Cai, W.T.: The design and
implementation of an OGSA-based grid information service. In: IEEE International
Conference on Web Services, pp. 566–573. IEEE Computer Society Press, Los Alamitos
(2004)

8. Rogers, S.: Information as a Service to the Enterprise. White paper (December 2006)
9. Van Bon, J., Kemmerling, G., Pondman, D.: IT Service Management: An Introduction,

Van Haren Publishing (September 1, 2002)
10. Berkhout, M., Harrow, R., Johnson, B., Lacy, S., Lloyd, V., Page, D., van Goethem, M.,

van den Bent, W.G.: Service Support: Service Desk and the Process of Incident
Management, Problem Management, Configuration Management, Change Management
and Release Management, London: The Stationery Office (2000)

11. Chen, P.Y., Kataria, G., Krishnan, R.: On Software Diversification, Correlated Failures
and Risk Management. SSRN (April 8, 2006), Available: http://ssrn.com/abstract=906481

12. Troubleshooting Guide for Cisco CallManager, Release 4.2, Corporate Headquarters,
Cisco Systems, Inc. (2006)

13. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic Internet services. In: International Conference on
Dependable Systems and Networks, pp. 595–604 (2002)

14. Hoi, C., Kwok, T.: An Autonomic Problem Determination and Remediation Agent for
Ambiguous Situations Based on Singular Value Decomposition Technique: In:
International Conference on Intelligent Agent Technology, pp. 270–275 (2006)

15. Agarwal, M.K., Gupta, V.M., Sachindran, N., Anerousis, N., Mummert, L.: Problem
Determination in Enterprise Middleware Systems using Change Point Correlation of Time
Series Data. In: Network Operations and Management Symposium, pp. 471–482 (2006)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 474–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Model and Rule Driven Approach
to Service Integration

with Eclipse Modeling Framework

Isaac Cheng, Neil Boyette, Joel Bethea, and Vikas Krishna

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, U.S.A
{isaacc, nboyette, bethea, vikas}@us.ibm.com

Abstract. BPEL is fast becoming the most widely-adopted standard for
business processes involving web services; however BPEL is geared mainly at
the higher level processes and is not well suited for the lightweight, short-lived
“micro-processes” that share the same service space. Such processes require
the advantages of interoperability and asynchronicity offered by an SOA
approach but at a more granular logical level. This paper details a way to use a
declarative approach to define the micro-processes that occur in the services
called by an SOA based application. Using the context of a global call center
workflow application framework named CCF, for Custom Call Flows, this
paper describes how micro-processes (call flows) can be defined, and how
declaratively defined rules can be used to integrate these micro-processes with
other services to build a flexible service system.

Keywords: architecture, call center, call flow, script, CRM, IT, Web, labor,
asset, business transformation, customer, enterprise, global, infrastructure,
inference, integrate, internet, leverage, logic, management, offshore, outsource,
reasoning, rich client, rule, thin client, workflow, worldwide, support, EMF,
XML, UML, BPEL, SOA.

1 Introduction

In an engagement with the call management team of a global enterprise, the authors
introduced the Custom Call Flow (CCF) framework that enabled the enterprise to
compose services from legacy mainframe-based back-ends to newly introduced third-
party systems in a service-oriented architecture (SOA). Using this framework,
business analysts can visually design models and declarative rules without requiring
any programming skills. At the time application programmers can develop
applications independent of business processes and workflows. CCF enables
businesses and technical people to work independently and productively. It also
enables enterprises to strategically outsource and offshore efficiently and effectively.

The first real-world deployment of CCF was for improving a call center, where
customers call for services. A call flow, a special type of workflow, describes the
steps that systematically guide a call-taker to solve a customer problem in multiple
scenarios. Call flows are essential to enable customer service representatives to

 A Model and Rule Driven Approach to Service Integration 475

support products, and as the products evolve, the associated call flows need to be
updated with an authoring tool (see Fig. 1). In the existing Call Management System,
the authoring tool was tightly coupled with the rest of the system, which posed
significant challenges both in evolving the tool and updating the call flows
themselves. In particular, enabling the authoring tool to keep up with the current
user-interface (UI) technologies proved to be extremely difficult due to the
interconnected nature of the UI with the rest if the system. This lack of a modern UI
in turn made it hard for a business architect to get a holistic view of a call flow to
understand the design. Since the information that can be displayed on the UI is
extremely limited (see Fig. 1), the business architect is likely to make local changes
that may have unexpected side effects globally. Therefore, updating call flows using
the existing tool was often error-prone as each change required both a business
analyst to define the change, and a programmer to implement the change in code.
Finally, there were also limitations in the proprietary protocol used between the
authoring tool and the call flow repository, which made supporting foreign languages
and cultural information impossible.

The runtime components also suffered from problems stemming from the tightly
coupled nature of the architecture. Similar to the authoring tool, the runtime UI could
not keep up with modern technologies which resulted in usability problems., In
addition, changing or upgrading algorithms used in the call flows such as those used
for business-rule inference, was quite difficult, if not impossible.

Fig. 1. The Authoring Tool of the Existing Call Management System

2 Related Work

In the service-oriented computing (SOC) area, frameworks and adaptation technologies
have been developed for composing and integrating heterogeneous services and
processes [2], [7], [11]. A model-driven development approach and its technology
elements for SOA were described in [6]. A state-of-the-art model-based framework for
developing and deploying data aggregation services was described in [10]. The design
of this framework hides the complexity of web-service development, but nevertheless

476 I. Cheng et al.

requires programming skills to use. Many people we worked with who compose
services and design business processes do not have programming skills. To address their
business needs, we introduced the CCF framework [3], which is based on the Eclipse
Modeling Framework [5]. The CCF architecture features an authoring environment
based on Eclipse Rich Client Platform which allows business users to design, test, and
deploy workflows visually using a subset of Unified Modeling Language without
requiring any traditional programming. The runtime component provides agility by
making it possible for business processes to change independent of application changes.
The work described in this paper focuses on how a variety of BPEL and non-BPEL
processes can integrate seamlessly using the CCF framework.

In the service-rule processing area, a rule driven approach for service development
for collaboration exists [9]. Facilitated by the Business Collab175oration Development
Framework, our authoring tool allows business users to specify rules in the service
design perspective and the task design facet. An intelligent runtime for rule processing
using Agent Building and Learning Environment is described in [4]. A declarative
pattern-based approach is introduced in [8] that supports the specification and use of
service interaction properties in the service description and composition process. We
also found that a declarative pattern-based approach is more natural to business users
than a procedural program-based approach. However, unlike in [8], the pattern part of
our service rules is data-oriented rather than operation-oriented.

3 System Architecture

 The software system that implements the CCF framework consists of four major
components: an authoring tool, an administration tool, a repository, and a runtime
environment.

The authoring tool allows a business analyst to create, modify and test call flows.
Call flows are presented in a graphical workflow editor which allows non-
programmers to easily work with the call flow objects. The (integrated)
administration tooling lets administrators manage call flows. Both tools communicate
with a call flow repository via a web service. The repository stores the call flows and
provides an interface to search, publish and retrieve the call flows. The runtime
consists of an ABLE-based execution engine which provides an API for clients to
retrieve and execute call flows from the repository.

Fig. 2 describes the CCF system architecture. A typical scenario would begin with
a call flow author using the authoring tool to create or update a call flow. The
administrator would then publish this call flow in the repository, making it available
to the runtime. An end user can contact the service center in a number of ways
including voice (telephone), email, web, etc. The end-user can interacts with the
runtime engine through either a self-help application or a customer service
representative who interacts with a call management application instead. The runtime
environment interacts with the repository to retrieve, display, and execute the
appropriate call flows to the end users. As shown in Fig. 2, the ABLE [1] based
runtime component enables the runtime to interact with other services by dynamically
generating the required web service client interfaces. These interfaces are then used
to communicate over the Enterprise Service Bus. This loose coupling allows the
business processes and rules to evolve over time without requiring code changes.

 A Model and Rule Driven Approach to Service Integration 477

Runtime Engine (JCFI)

Rich Client

Repository

Author Admin

WebIM

End UserCSR

ABLEEMF

Java XML

Legacy Back-end

Enterprise Service Bus (ESB)

Third-party Back-end

Authoring and
Administration Tooling

Fig. 2. CCF Architecture

4 Call Flow Authoring Tool

The Call Flow Architect (CFA) tool enables the authoring and administration of call
flows. The tool allows business analysts to work with the call flows without requiring
any programming skills. The main interface used by a call flow author is the call flow
editor which visually displays a given call flow. CFA also provides an interface for
searching and browsing the repository, which enables existing call flows (including
all versions and locales) to be checked out for editing.

To integrate call flows with external services the CFA application provides a UI to
define service rules. A service rule describes a service to be called, as well as the
conditions that should be satisfied before calling the service. Each time a field in a
call flow’s dataset is changed, the CCF runtime examines the available service rules,
and if one’s conditions are satisfied it automatically calls the specified service.

Once the user has submitted the call flow to the repository, it enters a draft state.
An administrator verifies the call flow and then publishes it. Published call flows can
now be activated and thus become available to the runtime. Before a call flow can
transition to a new state (except rejected or deleted) it will first undergo syntactic and
semantic validation by the system. This ensures that the collection of call flows
remains valid.

478 I. Cheng et al.

5 Call Flow Repository

The call flow repository provides storage, search, and retrieval of call flows from a
distributed set of authoring tools and runtimes. Since the call flows are persisted in
XML, the repository implementation is based on a database that natively supports
XML. This has three major advantages:

• Direct storage of XML documents without the overhead of shredding them into
data elements

• In-place update of elements and attributes of the XML document i.e. call flow
• Search by a constituting element or attribute

All of these features are heavily leveraged by our framework as call flows are often
updated on a frequent basis due to additions or changes in locale or service level
agreement, or the evolution of the supported products.

In order to support access to the repository from a distributed set of clients, a web
service is used to provide an abstraction layer for hiding database level details and
database specific client-side libraries. This makes the repository truly interoperable
with both the current and future sets of clients in an SOA manner along with
providing all the other benefits that SOA facilitates
6 Call Flow Runtime Engine

The runtime engine executes call flows. A major advantage of the runtime engine is
agility. As shown in Fig. 2, the runtime engine leverages the fact that the call flows do
not contain any UI information (or assume any UI knowledge for that matter) by
using the Java Call Flow Interface (JCFI) API. In applying the classic Model-View-
Controller design pattern to this system, the call flow is the Model; the client
application is the View; and the CCF runtime engine is the Controller. JCFI is the
programming interface between the View and the Controller. This UI agnostic design
enables a wide variety of applications to invoke the runtime engine. These
applications can in turn implement various user interfaces. The advantage is similar to
that of decoupling application development from data management. CCF decouples
process management from application development resulting in process
independence. This greatly enhances the agility of the service system by enabling
business analysts to work productively independent of application developers.

7 Call Flow Runtime Sample Applications

A few client applications have been developed to explore the opportunities presented
by this design. Each application is independent of the business process under which it
is used and demonstrates the agility that results from process independence.

7.1 Web Client

Web clients demonstrate the traditional thin-client model by providing access to the
powerful features in the runtime engine via a Web browser.

 A Model and Rule Driven Approach to Service Integration 479

Fig. 3. A Web-based User Interface

7.2 Instant Messaging Client

Instant messaging clients (also known as chat programs) can be used to have a text-
based conversation in real-time. Usually the conversation is between two humans, but
there are also applications which can provide automated information. These are
known as chat bots. In this case, a chat bot is used as the interface to the runtime
engine, translating call flow prompts into chat responses in real-time.

Fig. 4. An Instance Messaging (IM) User Interface

480 I. Cheng et al.

8 CCF, BPEL, and Web Services

Process independence is also a feature of Business Process Execution Language
(BPEL), which is becoming the most widely-adopted standard for business processes
involving Web services. Like CCF, BPEL provides a means to formally specify
business processes and interaction protocols. The main difference between BPEL and
CCF is that BPEL is used to specify macro processes, where as CCF is used to specify
micro processes. In addition, CCF provides complete end to end tool support for
process developers. This is not present in the state of the art on the BPEL front at the
time of writing of this paper.

While BPEL can be used to specify any type of process, it is especially good at
supporting long-running conversations with business partners. These high-level
interactions, or macro processes, make use of Web services to implement the logic of
business processes. CCF on the other hand, is geared towards shorter-running
processes. In these micro-processes, business functions are specified as a series of
actions where some interact with other systems, some interact with end users and
some are self contained. CCF thus fills a niche by supporting fully-featured business
processes at a smaller granularity of logic.

With this relationship CCF and BPEL complementing each other, they can be used
together when building larger frameworks. BPEL is used to define the overall
architecture and interaction between different functions/services. CCF is used to
define how a given business function accomplishes its task. CCF in turn can interact
with the BPEL defined process by exposing itself as a service and call other services
in the BPEL process when needed.

CCF Process A

CCF Process D

CCF Process C

Service B

Service E

BPEL
Process

Fig. 5. Interactions between CCF and BPEL

 A Model and Rule Driven Approach to Service Integration 481

The relationship between CCF and BPEL is analogous to other technologies that
partially overlap but still complement each other. An example would be Bluetooth
and Wifi wireless technologies. Both can be used to wirelessly connect two devices,
but each has its own unique strengths. Wifi is faster but requires more electrical and
processing power on the device. Bluetooth is more efficient in terms of electrical and
processing power but has a slower speed. The two technologies co-exist because they
complement each other. For instance a remote control can connect to a receiver using
Bluetooth to request a song. The receiver then connects using Wifi to a home media
server to retrieve the song and play it. The remote could have connected using Wifi to
the receiver and the receiver could have connected using Bluetooth to the home media
server, but that would not have been the most efficient use of technologies.

In a call center scenario, BPEL can be used to specify the interaction between all
the services. When for example it requires a customer’s information it can contact a
CCF service. The CCF service would then gather the information in different ways
for different customers. For instance, for preferred customers it may only ask for a
customer number; then contact another service (using the BPEL framework) to
retrieve the customer data from a database. For new customers it may ask a series of
questions to gather the name, address, etc. Using a BPEL process to ask a series of
questions is not very efficient so delegating to a CCF service is preferred. Conversely,
using a CCF process to orchestrate connections between a set of services is not very
efficient either, so having it call a service in the BPEL process is preferred.

In the call center engagement the difference between the CCF micro-processes and
BPEL’s macro processes was especially evident. This call center had in excess of
80.000 customizations to the standard process in just the United States. In addition
hundreds of these customizations are changing every day; new customizations are
added, others are removed and others again are changed. The system has to be
flexible enough to handle both this level of customizations and this level of daily
changes, without effecting system performance and without requiring a large
workforce to manage the changes. The current state of BPEL application servers
simply can not handle this. Updating the servers with the daily changes would be a
full-time job for several people. Alternatively, the CCF framework loosely couples
the call flows together to make up the larger process. As it is geared for micro-
processes it is designed from the start to support large quantities of smaller processes,
while still allowing integration into the larger BPEL processes. The CCF framework
also allows changes to be made and call flows to be activated or deactivated by the
business analysts themselves. As there is no complex deployment, supporting
hundreds, even thousands of changes daily poses no significant workload.

9 Composing Heterogeneous Services with Declarative Rules

One of the challenges in our deployment was that there are many database back-ends.
Many of them come from the legacy system, and some of them are newly acquired
from third-party vendors. In the original system, supporting such a broad and ever
changing collection of data sources proved to be extremely difficult, as call flows
essentially were hard-coded at design time with decision-making for invoking
every possible operation. This difficulty was then compounded further by the

482 I. Cheng et al.

tightly-coupled nature of the call flow and UI displayed on the runtime client, which
entangled call flow logic with UI logic, and frustrated efforts to update the existing UI
or support additional types of client application.

With CCF, one possible solution to this problem involved granting call flow
authors the ability to minimize decision-making complexity by encapsulating the
invocation of operations as script nodes. This would then allow client UI applications
to avoid the headache of hard-coding service invocation by instead designing the call
flow to instead link to pre-defined script nodes. This approach still has the drawback
however, that the call flow author is forced to predict in advance exactly when each
particular service operation needs to be invoked within a call flow. Since there can
often be many places within a call flow where it might be appropriate to invoke a
given operation (or combination of operations), this approach makes the call flows
complex, inflexible, and hard to maintain.

To address this issue, CFA provides a better alternative in the form of service rules.
These service rules allow specific conditions to be linked to an operation, such that
when the conditions are satisfied the operation is invoked. At design time, call flow
authors specify conditions declaratively as if-then rules in a view separate from the
call flow. The exact point of invocation within a call flow is then determined at
runtime as guided by the design rules. This method is further enhanced by the use of a
reasoning engine. When executing a call flow, the CCF runtime engine infers
knowledge behind the scenes by sending the rules and its currently known facts to a
forward-chaining reasoning engine, which has been implemented efficiently by
scaleable Rete-style pattern matching in ABLE [1]. Although a Prolog-style
backward-chaining reasoning engine may be more efficient, it would force the author
to come up with a search goal per rule set at design time. This is often a difficult task
because it is unlikely that the author can predict what knowledge will be useful to be
inferred until runtime. In contrast, a forward-chaining engine can infer new facts
based on the currently known facts and a set of rules. This desirable characteristic
allows CCF to optimize the execution paths of call flows intelligently at runtime,
removing the burden from the call flow authors and client application developers, and
making it possible to keep the call flows and the client applications as reusable and
maintainable as possible. Another advantage is that since the CCF runtime is
determining when service rules are called, it can optimize this behavior and the system
would not experience slow downs because of the business analysts adding too many
rule calls at once, or in the non-optimal location. The call center owners can be assured
that business analysts are shielded to an extent from specifying low-level execution
details that do not carry out their intent. This is especially important as the call flows
are componentized and thus a business analyst may not be aware of all the contents in
which a particular call flow may execute, but the call flow runtime engine will be.

Although getting business owners to accept runtime choices may appear to be
challenging when one looks at it in the abstract, it can be quite straightforward in
many cases in practice. For instance, consider the service rule in Figure 6. It is
straightforward for a business owner to specify that if any of the attributes, such as a
customer’s phone number and email is set at runtime, invoke the web service
SearchForContact. It would be more difficult for the business owner to specify
particular points in a call flow at which the web service needs to be invoked. With
CCF, business owners still have the control of making important business decisions,
such as the conditions by which certain services should be invoked. The runtime

 A Model and Rule Driven Approach to Service Integration 483

system executes the business decisions by employing an efficient pattern-matching
algorithm to perform logical inference on the rules.

Service rules consist of the description of the service to be called, the mapping of
the service’s parameters to data elements in the call flow, and the specification of the
condition that governs the rule’s execution. As the authoring tool is geared towards
business analysts (i.e., non-programmers), service rules are configured in an intuitive
and easy to understand UI as shown below in Figure 6.

Fig. 6. Editing a Service Rule with CFA

Since CCF allows for the componentization of call flows, this concept was also
extended to the service rules. Each service rule has an associated visibility which acts as
the scope the service rule is valid for. Visibility can be set only for the call flow which
specifies it, for the call flow and any call flows that it references, or for the entire session.
The runtime engine takes the visibility into account when it generates the code used by
the forward-chaining reasoning engine. The advantage of using componentization in this
manner is that different rules can be applied at different times in the problem resolution
session. Some rules may only apply during a given call flow, whereas others may apply
during the whole session. For instance, the call flow may have a rule which looks up the
address information based on the customer’s last name. If the name is changed anytime
during the session, the address information should be updated.

10 Conclusion

As an initial technology deployment, 40.000 users will use the suggested framework
to process 10.000.000 service requests annually. The current systems for defining and
handling call flows and supporting calls are mainframe based. This requires
mainframe programmers to maintain the calls flows and a certain degree of
mainframe expertise on the part of customer service representatives to handle the
calls. Both of these factors result in huge costs to the corporation to maintain skills in

484 I. Cheng et al.

these areas. The new CCF framework moves the definition and handling of the call
flows to the easier to use graphically driven Eclipse platform. With the CCF
framework, a system has been designed to handle more than 80.000 customizations to
each standard process per country when hundreds of these customizations are
changing every day. This is beyond the limit that the current state of BPEL
application servers can practically handle. The transformation will result in significant
cost savings to the enterprise in managing and running its call centers.

Acknowledgments. The authors would like to thank Dawn Fritz for communicating the
business value of CCF to many key initiatives in IBM and thank Priyanka Jain for
developing a thin-client application as an important part of the proof of concept for CCF.*

References

1. ABLE Rule Language: User’s Guide and Reference, Version 2.3.0. ABLE Project Team,
IBM T. J. Watson Research Center (2006)

2. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. Service-Oriented
Computing - ICSOC, pp. 27–39 (2006), http://dx.doi.org/10.1007/11948148_3

3. Cheng, I., Boyette, N., Krishna, V.: Towards a Low-Cost High-Quality Service Call
Architecture. In: IEEE International Conference on Services Computing – SCC, pp. 261–
264. IEEE Computer Society Press, Los Alamitos (2006), http://doi.ieeecomputersociety.org/
10.1109/SCC.2006.106

4. Cheng, I., Srinivasan, S., Boyette, N.: Exploiting XML technologies for intelligent
document routing. In: Proceedings of the 2005 ACM Symposium on Document
Engineering, Bristol, United Kingdom, November 02 - 04, 2005, pp. 26–28. ACM Press,
New York, NY (2005), http://doi.acm.org/10.1145/1096601.1096609

5. EMF: Eclipse Modeling Framework (2006), http://www.eclipse.org/emf/
6. Johnson, S., Brown, A.: A Model-Driven Development Approach to Creating Service-

Oriented Solutions. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
624–636. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11948148_60

7. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented Framework
for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 15–26. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11948148_2

8. Li, Z., Han, J., Jin, Y.: Pattern-Based Specification and Validation of Web Services
Interaction Properties. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005.
LNCS, vol. 3826, pp. 73–86. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/
11596141_7

9. Orriens, B., Yang, J., Papazoglou, M.: A Rule Driven Approach for Developing Adaptive
Service Oriented Business Collaboration. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 61–72. Springer, Heidelberg (2005), http://
dx.doi.org/10.1007/11596141_6

10. Soma, R., Bakshi, A.K.V., Da, W.: A Model-Based Framework for Developing and
Deploying Data Aggregation Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 227–239. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/
11948148_19

11. Zhao, H., Doshi, P.: A Hierarchical Framework for Composing Nested Web Processes. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 116–128. Springer,
Heidelberg (2006), http://dx.doi.org/10.1007/11948148_10

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 485–496, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Semantic Web Services in Action - Enterprise
Information Integration

Parachuri Deepti and Bijoy Majumdar

Setlabs, Infosys Technologies Ltd., Bangalore
{Deepti_parachuri and Bijoy_majumdar}@infosys.com

Abstract. With the development and maturity of Service Oriented
Architectures (SOA) to support business-to-business transactions, enterprises
are using Web services to expose the public functionalities associated with
internal systems and business processes. Semantic Web service infrastructure
achieves automatic data integration to enable enterprises to collaborate and
compete effectively in a dynamic global environment. In this paper, we deal
with two important aspects of enterprise information integration, namely
process integration and data convergence. This paper talks about solution
strategies for global enterprise system which provides unified information and
agile solution with greater ease and simplicity. Today’s Web data lacks
machine understandable semantics making it impossible to achieve data
integration with the Web service. Hence, the semantic Web services in action to
overcome the limitations of information finding, information extracting,
information representing, information interpreting and information maintaining.
This paper takes you through a case study simulating semantic Web paradigm
(and semantic Web services) over a leasing business system. It also portrays the
various advantages and explains the hurdles in accepting the semantic Web
technology.

Keywords: Semantic Web, Web Services, RDF, OWL, OWL-S, Agent
Technologies, SOA, Information Integration, Semantic Web Services.

1 Introduction

Machines cannot easily make sense of most of the information on the Web. Web data
is chiefly designed for human consumption. Almost all metadata (e.g., HTML)
describing Web documents is about where and how to present a piece of information.
Many attempts have been made to automate and improve the gathering and use of
information (by means of “spiders” and “wrappers”) on the Web, but these
technologies still only scratch the surface.

With the evolution of SOA and semantic Web services, automated processing and
integration of data and application became easier. Externalization of atomic business
capabilities is achieved through Web services by making the business interfaces
transparent. Effective and automatic communication with in and between the
organizations also raised the need for Web services. The mandate for the semantic
data and Web services is the onset of distributed computing model SOA, to provide
seamless integration not just for the services but also for the information sent across.

486 P. Deepti and B. Majumdar

Current business scenario needs a global enterprise system which provides unified
and required information with a greater ease and simplicity. And also should be able
to cater the requirements of a constantly changing environment (business environment
changes, user requirement changes and technical environment changes etc.) which is
the major drawback in traditional data integration systems [1, 2, 3] and data
warehouses [4, 2]. Many organizations use Web services for managing distributed
applications, such as health care, agricultural management system, insurance claim
processing, etc.

Using software as a service helps in sharing of resources in the constantly sharing
environment. Web Services (WS) evolved as a solution for publishing, discovering
and invoking the software component as services. WS help in integrating
interoperable distributed heterogeneous Web services. WS and Service-oriented
architecture (SOA) are emerging distributed computing paradigms and are well suited
for enterprise information integration. SOA is software architecture which provides
interoperable integration of scattered services by using services as components. WS
are based on standard internet protocol like XML for data representation, WSDL for
binding and to define interface, UDDI for discovery and SOAP for message exchange
and are accessible with the help of wide range of computing devices [5, 6]. Beside
these advantages it also has drawbacks such as standards and specifications are syntax
based, not matured enough, not machine process able, and not sufficient for certain
kinds of applications where composition, security, state, transaction management and
scalability are highly recommended [7,8].

Semantic [10] is a solution for finding meaningful information and integrating with
related information. Semantic approach helps in searching, discovery, selection,
composition and integration of WS and also in automation of invocation, composition
and execution of services. Ontology [9] is the key technology behind Semantic Web
for making information more meaningful, by adding more knowledge. Rules are the
next development area in semantic Web to specify declarative knowledge, constraints
and to enforce policy. Delivery of personalized context and location based
information [11].

The major motivation behind this paper is to organize data of an enterprise in a
well defined manner thereby enabling the machines to understand, interact and
retrieve the content with a greater ease. In our work, we present a case study on
Leasing Business Enterprise wherein we model the data using semantic technologies,
RDF and OWL, at the data level. Next we model a service level using OWL-S, which
can be processed by machine automatically. Interaction between services is provided
using agent technologies.

2 Gaps Resulted by Distributed Computing

Many traditional solutions are available for information integration. One such solution
is shown in Fig. 1. An enterprise consists of various processes and when the
communication is between few processes then the existing framework catered the
needs of the enterprise. But with the advent of business and technology, the need to
interact with customers became important, existing solutions failed to handle the
complexity in real time. Some of the shortcomings of the existing solutions are
mentioned below.

 Semantic Web Services in Action - Enterprise Information Integration 487

 Integration is performed in the applications
o Embedded, peer-to-peer integration
o No reuse

 The integration process is heavy
o Low reactivity to changes in requirements and processes
o Low reactivity to changes in data sources

 Information is locked into proprietary formats

o Difficult to integrate with external applications

 Integration is performed asynchronously
o Out-of-date data
o No access to operational data

Fig. 1. Information Exchange across the Enterprise

About 80% of the Information Systems in Production Suffer from the following
drawbacks

 Require IT assistance for end-user access
 Difficult for end users to identify relevant information
 Overload of information delivery
 Provide only partial answers to questions
 Often present out-of-date information
 Contain enormous amounts of redundant information
 Expensive to develop and maintain

We were delivering data but not information which can be consumed directly with
out requirement of any processing.

488 P. Deepti and B. Majumdar

The architectural framework of the proposed information integration as shown in
Fig. 2 adopts a mediated ontology approach to data integration in which each data
source is described by its own ontology and translations between different ontologies
are by means of mediation.

Fig. 2. Semantic based Enterprise system

3 Semantic at Data Level

3.1 Introduction

The semantic Web service has the potential of becoming the most powerful
technology for information integration. It deals with two important and
complementary aspects of information integration, namely data integration and
service integration for effective discovery, automation, integration and reuse across
various applications. Automatic data integration on a global scale is important for
enterprises operating in a dynamic global market. The large number of data sources
needed to access for an application and the changing business requirements make
manual integration of data infeasible. With the use of Web services the data is made
available for public access. But today’s Web is human interpretable not machine
understandable. Web data lacks machine understandable semantics making it
impossible to achieve data integration with the Web service. Hence, the semantic
Web services in action to overcome the limitations.

The idea of the Semantic Web is to refine the existing Web incrementally, inserting
machine-readable “semantic” tags into Web documents or other data-streams. These

 Semantic Web Services in Action - Enterprise Information Integration 489

tags are supposed to provide more information regarding the concepts within the data
and their relationships to each other. The implications of such added semantic
information could be far-reaching: Rather than being restricted to the Web, it would
encompass virtually every aspect of life. “The two major business benefits are the
promise for tremendously improved search capabilities and — in the long term —
improved systems interoperability, potentially enabling machines to reach new
levels of automation.” [Berners-Lee,2001] Such semantic tags will be increasingly
used across many domains, but whether this will stretch across the whole Web in the
near- to mid-term is still uncertain.

3.2 Advantages

The key standards for the development of semantic Web are RDF, RDF-S and OWL.
Many resemblances have been noted between RDF and ER diagrams. When entities
can be represented by URIs, RDF makes ideal candidate for storing ER diagram as
machine readable text. RDF is actually more flexible than classical ER diagrams,
because in RDF we can make one of the relationships that is one of the predicates as
represented by its URI the subject or object of triples. The ability to treat predicates as
first-class objects provides advantages. By using the W3C’s Web Ontology Language
(OWL), equivalences between predicates makes it easier to combine databases
without revising one database to have the same schema as the other. For example, if
product_id and product_code are defined as equivalent, a search on products with
product_id value of 101 will also get the details written under product_code value
101. This feature of RDF is an attractive approach to aggregating distributed data not
controlled by a central authority. If we can define ontology to manage data then RDF
triples are the best way to track entries into the ontology.

3.3 Challenges

Semantic technologies drive business value by providing superior capabilities
(increased capacity to perform) in five critical areas [14]:

 Development — Semantic automation of the “business-need-to capability-
to-simulate-to-test-to-deploy to-execute” development paradigm solves
problems of complexity, labor-intensively, time-to-solution, cost, and
development risk.

 Infrastructure — Semantic enablement and orchestration of core resources
for transport, storage, and computing helps solve problems of infrastructure
scale, complexity, and security.

 Information — Semantic interoperability of information and applications in
context, powered by semantic models makes “killer apps” of semantic
search, semantic collaboration, semantic portals and composite applications.

 Knowledge — Knowledge work automation and knowledge worker
augmentation based on executable knowledge assets enable new concepts of
operation, super-productive knowledge work, enterprise knowledge-
superiority, and new forms of intellectual property.

490 P. Deepti and B. Majumdar

 Behavior — Systems that learn and reason as humans do, using large
knowledge bases, and reasoning with uncertainty and values as well as logic
enable new categories of hi-value product, service, and process.

4 Semantic at Service Level

4.1 Introduction

The major motivation for using Web services is to reduce cost, effort and time in
integrating enterprise applications but Web service usability and integration needs to
be inspected manually. There is no semantically marked up content / services. Only
syntactical descriptions are present. Hence requires people to locate services and
create interfaces. Semantic Web Services emerged as integrated solution for realizing
the vision of the next generation of the Web. Service ontologies provide a way to
automatically integrate and manage the integration thereby reducing the total cost of
integration.

DAML-S (OWL-S) is a DAML+OIL-based Web service ontology, which supplies
Web service providers with a core set of markup language constructs for describing
the properties and capabilities of their Web services in unambiguous, computer-
interpretable form. DAML-S markup of Web services facilitates the automation of
Web service tasks including automated Web service discovery, execution,
composition and interoperation. In particular, it provides language primitives for
technical, business-related and process-based facts about services. Thus, DAML-S
can be regarded as a semantics-based substitution of the above-mentioned Web
service languages for service description, service publication, and service flow.

4.2 Advantages

Semantic Web would provide greater access to not only content but also services on
the Web. Users and software agents can discover, invoke, compose and monitor Web
resources offering particular services and properties.

4.3 Challenges

A service ontology language should enable the following tasks

1. Automatic Web service discovery
2. Automatic Web service invocation
3. Automatic Web service composition and interoperation
4. Automatic Web service execution monitoring

5 Case Study

5.1 Overview

The case study used here, to depict the various challenges and semantic strategies, is
the process driven in leasing business for a multi region and multi vendor system.

 Semantic Web Services in Action - Enterprise Information Integration 491

Fig 3 shows the process flow across various departments and systems that not only
spans the organization but also other vendor entities. Applications that need to merge
or synchronized with other exiting applications in different administrative domains
require complying with the semantic platform to have a robust and agile business
system. The lease process is defined in brief in the figure with the various business
products and data being passed across systems.

Fig. 3. Part of flow diagram of Leasing Business

5.2 AS-IS TO-BE

The purpose of this exercise is to transform the manual operated leasing business with
discrete applications carried out in discrete departments to automated business
process with optimal manual intervention maintaining business agility. Up to date,
million dollars are spent to develop enterprise architectures as a basis for IT
modernization have largely resulted in manual compliance exercises, producing
reference documentation, disconnected from operations and management systems,
and delivering no capability to business users (which is the AS-IS scenario). The goal
is to provide a semantic based integration platform which avoids manual indulgence
to an extent and provides a flexible and agile business process (which is termed as the
TO-BE scenario).

5.3 Information Perspective

In this section, we present a case study on leasing business to provide a deeper insight
for designing of ontologies and conceptual modeling. It also aims at providing
solution strategies for global enterprise system. Information integration provides
benefits and challenges for different domain and application areas. In order to have
synchronization in data representation in various vendor system or for any future
acquired business, data convergence and knowledge management is a challenge that
needs to be tackled. This will give way to many data format or data nomenclature

492 P. Deepti and B. Majumdar

differentiation that occur due to various administrative / ownership domains involved.
Few key data convergence strategies and its significance are mentioned in the
following sub sections. Each key area have enhanced the information definition and
helped the leasing system.

Enterprise data integration: RDF
Enterprises comprises of many processes for e.g. Leasing business consists of many
processes like sales, order processing, product catalog, credit analyst, Hr etc.
Different departments need to share data, but the lack of an interoperable, integrated
solution prevents this. Even if the companies want to cooperate with partner
companies to exchange data across applications, the need for compliance to emerging
standards and government regulations arises. Another scenario where the need for
standard data format arises is when there is a merger or acquisition where the
disparate software infrastructure and underlying content and functions of two
companies need to be integrated. Fig. 4 shows a domain ontology stored in RDF
format and provides mappings between various processes.

Fig. 4. Data integration within a Leasing Business enterprise application environment

Data Aggregation
An aggregator is an entity that collects and analyzes information from different data
sources. Aggregation defines a new landscape in information retrieval for goods and
services on the Internet. Aggregators provide access to comparisons of information
and pricing that have not been possible in the past. In addition, after-aggregation
information provides tremendous market intelligence whose value has yet to be
realized.

Different data providers use different ways to structure their data, they use
different identifiers to reference the same entities, there is acronym collision between
the data sets. Even data is present in different formats namely file formats, XML
schemas and relational models. RDF comes out as a better solution to overcome these
problems. Fig 5 shows an example where prospect id and prospect code are alias
names and refer to the same thing. RDF data format makes it easier to store the alias
names and retrieves the data from both the processes if the query is “Get all details of
prospect with prospect id: 10”.

 Semantic Web Services in Action - Enterprise Information Integration 493

Company A

Prospect Code: 10

Owns

OwnedBy

Prospect Id: 10

Owns

OwnedBy

Vendor A Vendor B

Fig. 5. Prospect Id alias Prospect Code

Content Aggregation
Content aggregation is done thorough Web 0ntology Language (OWL). Owl is for
processing and interpreting the content on the Web.

Enterprise Search
The increase of both published and internal information presents a challenge in
enterprises. Traditional search-based methods are unable to find relevant information
in the required time scales.

Fig. 6. Graph representation of RDF

As every relation in RDF is binary search becomes easier. Data is RDF is stored as
directed graphs.

Managing Grid Resources
RDF refers to Resources, identified by URLs. This means that information about a
single resource can come from many sources. Hence, having distributed data is easier
in RDF format.

Mapping of ER diagram to RD
Most of the enterprises store data in relational model databases. It is not possible to
model the data in RDF format from scratch, hence need for conversion of relational
model databases into RDF formats arises. Fig. 9 shows one such conversion taking a
part of ER diagram from leasing business using the method proposed in paper [13].

494 P. Deepti and B. Majumdar

W

Fig. 9. An RDF equivalent of an ER diagram

5.4 Process Perspective

Once data or information has been streamlined to be understood by machine and
across systems, now comes the part of automating the process to execute without any
minimal manual intervention and smooth operation with available resources. As
mentioned in earlier sections, OWL is a language that defines the best possible flow
for a process enabled with knowledge and feedback system. But to productize such
scenario in an optimal manner, software agents can come handy to choreograph the
whole process.

Today the business market is buzzing with lots of BPEL standard based process
engine. BPEL coupled with rules engine provides most automation with auto decision
making and direction change in the flow. In addition to the system mentioned,
embedding a grid engine is another option to pick the most optimal and best-of-breeds
service.

Most of the other integration platform supports Service Component Architecture,
which by and large, emulates the choreography strategy of process flow. This solution
does not depend on one centralized component or a conductor to decide the route of a
process but mediates through the services by intelligence and knowledge derived or
calculated during the course of a process execution.

5.5 Positive Thought

The semantic EI approach includes semantic auto-discovery and mapping of legacy
IT artifacts and documentation. This gives visibility and eliminates cost of as-is
modeling, compliance auditing, and maintenance projects. Semantic discovery
applied to IT artifacts gives the capability to scan source libraries, data schemas, and
documentation, comments, etc. in order to identify unique artifacts, link and map
dependencies, and do latent semantic indexing of the "as-is" world. The result is a
repository of metadata (RDF/OWL), a very flat ontology that enables semantic

 Semantic Web Services in Action - Enterprise Information Integration 495

(concept) search using business terms, without having to know the (often cryptic) as-
built naming established by programmers. This could be thought of as a sort of
"Google for IT" process that works bottom up, and also allows mapping linkages to
enterprise architectures, or other governing models.

6 Assisting Technologies

6.1 Data Level

We have used RDF for data modeling and OWL for creation of ontologies. SPARQL
is used as query language. Many publicly available editors are present for ontology
creation and data modeling like

 Protégé: free open source editor and knowledge base framework.
 Webnoto: a tool providing Web-based visualization, browsing and editing

support for developing and maintaining ontologies and knowledge models
specified in OCML (an operational knowledge modeling language).

 OilEd: an ontology editor allowing the user to build ontologies using
DAML+OIL. For further details and information about DAML+OIL.

We have used protégé to implement our case study.

6.2 Service Level Languages

We have used OWL-S to implement service level ontologies. We have used OWL-S
plugin in protégé editor to model the ontologies. BPEL4WS has been used for service
orchestration. Structurally, a BPEL4WS file describes a workflow by stating whom
the participants are, what services they must implement in order to belong to the
workflow, and what are the various orders in which the events must occur. The
BPEL4WS process model is built on top of the WSDL 1.1 service model and assumes
all primitive actions are described as WSDL port Types. That is, a BPEL4WS
description describes the orchestration of a set of messages all of which are described
by their WSDL definitions.

7 Future Work

We plan to use agent-based workflow management for service orchestration. The
emergence of Web services and semantic Web facilitate the modeling of agent based
system. In effect agent-based technologies provide the mechanism for components to seek
work, enter into cooperative agreements and thus otherwise address the requirements of
dynamic, heterogeneous environments.

8 Conclusions: Removal of Human Agents

The vision of Semantic Web has been to enable computer software to locate for us,
relevant resources on the Web and also extract, integrate and index the information
contained in the resources. Basically, make computers work on our behalf that is

496 P. Deepti and B. Majumdar

removing the human agents. In this paper, we have partially shown how information
integration can be done in an enterprise using Semantic Web Services. We have used
publicly available protégé tool to model the ontologies and store data in RDF Schema
and OWL format. OWL-S is used for service aggregation and SPARQL is used for
querying the data. We would like to extend our work by using agents for service
aggregation and negotiation.

References

[1] Sheth, A., Larson, J.: Federated database systems for managing distributed,
heterogeneous and autonomous databases. ACM Computing Surveys 22(3), 183–236
(1990)

[2] Jakobovits, R.: Integrating Autonomous Heterogeneous Information Sources (1997)
[3] Raman, V., Narang, I., Crone, C., Haas, L., Malaika, S., Mukai, T., Wolfson, D., Baru,

C.: Data Access and Management Services on Grid (2002)
[4] Franconi, E.: Introduction to Data Warehousing
[5] Newcomer, E., Lomow, G.: Understanding SOA with Web Services, Addison Wesley,

Reading (2004)
[6] Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions.

In: Proceedings of the Fourth International Conference on Web Information Systems
Engineering, pp. 3–12 (December 2003)

[7] Birman, K.: Can Web Services Scale Up? IEEE computer (October 2005)
[8] Wang, H., Huang, J.Z., Qu, Y., Xie, J.: Web Services: problem and future directions.

Journal of Web Semantics 1(3), 309–320 (2004)
[9] Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications.

Knowledge Engineering Review 11(2), 93–115 (1996)
[10] Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web. In:

Advanced Information and Knowledge Processing, Springer, Heidelberg (2005)
[11] Laliwala, Z., Sorathia, V., Chaudhary, S.: Semantic and Rule Based Event-driven

Services-Oriented Agricultural Recommendation System. In: ICDCSW’06. Proceedings
of the 26th IEEE International Conference on Distributed Computing Systems
Workshops, IEEE Computer Society Press, Los Alamitos (2006)

[12] Kabbaj, M.Y.: Strategy and Policy Prospects for Semantic Web Services Adoption in US
online travel industry. MS thesis Submitted to Masters of Science in technology and
policy at MIT

[13] Krishna, M.: Retaining Semantics in Relational Databases by Mapping them to RDF. In:
IEEE/WIC/ACM (2006)

[14] Davis, M.: Semantic Wave: Executive guide to billion dollors

B. Kr\"{a}mer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 492–500, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Policy Based Messaging Framework

Martin Eggenberger1,2, Nupur Prakash1, Koji Matsumoto1, and Darrell Thurmond3

1 Delta Dental of California, San Francisco, CA, USA
2 SpinergyGroup, Piedmont, CA, USA

3 KoolKode Technologies, LLC, Santa Monica, CA, USA
martin@spinergygroup.com,

nprakash@delta.org, kmatsumoto@delta.org
koolkode@architect-alchemist.com

Abstract. Due to integration complexities to legacy as well as new systems, a
Common Messaging Framework has been developed that is based on policies to
control the behavior of the various enterprise services. These policies include
both internal and external Quality of Service Policies as well as constraint based
business process policies. This paper proposes and identifies a policy based
messaging framework for both intranet and extranet services, upon which
individual policies can be injected during runtime for individual messages,
domains and or processes. Further more these policies can be customized on a
per actor basis and dynamically changed during runtime by a console user
without having to stop the process.

Keywords: Service Oriented Architecture, QoS, Policy, Dependency Injection,
Adaptive Services, Ontologies, Queuing.

1 Introduction

Although there has been considerable attention been devoted in both industry and
academia to the design and implementation of new services, little headway has been
made to enable legacy systems to truly take advantage of a Service Oriented
Architecture. Specifically, non–functional requirements within the Quality of Service
(QoS) arena need to be further researched. In essence we found three problems
associated with legacy integration using SOA.

First off, most legacy integrations are built using Point to Point integration
solutions. Most large scale organizations use batch processes and batch transfers to
exchange data between various point solutions and the primary communication
channel is file based. Since the individual records in these files do not contain QoS
policies and the rewriting of the code is not feasible, no policy enforcement is
feasible.

Secondly, the error handling of legacy applications and processes are using
different solutions such as log files, databases and simple process return codes. Since
these applications were built over the last 20 years, we are faced with various
problems in the application logging/monitoring and auditing policies. Specifically, the
auditing policies have changed over the years; and therefore, we require an adaptive
policy system to adjust to the changing regulatory requirements.

 Policy Based Messaging Framework 493

And lastly, the process orchestration used is mostly based on scheduling
technology [1][2]; and therefore, only temporal properties are used for process
orchestration. The nature of this orchestration limits the introduction of QoS policies,
hence a new event driven processing mechanism was explored that enable policies for
legacy and new systems.

To address these problems, we have developed a policy based messaging
framework that support QoS policies. Our approach is based on a comprehensive
messaging model for description, discovery, policy injection and policy enactment
that are suited for a Service Oriented Architecture [3]. The messaging model defines a
semantic model of the messages’ purpose as well as the policy associated within the
semantic model. To that end, a message consists of a set of processing instructions
related to the domain and process it is used in, as well as a set of policies that are
related to the domain, the process or the message itself. Further more we described
the relationship between the caller’s context (e.g. security context) and the associated
policies. For example, a system user may define an Auditing Policy based on a
specific computing domain such as Claim Processing. In the above example, the
system user requesting such a service would specify what elements within the
message have to be auditable.

Given such a description framework, we also required a message discovery
framework [4][5] that allows us to apply and inject domain and process information
into the individual message. To that end, we developed and implemented a domain
and process ontology, that is used as the basis for domain and process discovery
purposes. Having obtained the messages’ domain and process, the policy set can be
injected given the callers credentials.

Since all user and system credentials are stored in an enterprise directory, the
individual policies can also be stored in the same directory as part of the user profile.
Therefore, if a user authenticates him/herself we can cache the policy set associated
with the user and apply case - based reasoning for injecting policies based on the
message, process or domain. In general this injection occurs using a set of policy rules
(e.g. business rules) that specify the injection behavior of the policies.

Once, all policies have been injected we need to worry about the enactment [5] of
the specified policies as well as the monitoring of these policies.

2 Messaging Framework

The messaging framework is a conceptual model that describes messages within the
enterprise. It not only allows us to model message payloads, but also message related
processing information such as domain, process and policy information. This
relationship between the individual messages’ domain and process has an advantage
over other frameworks [6][7][8] insofar that it allows policy granularity not only on
the message, but also on the domain and process level. For example, when dealing
with healthcare information during Claims Processing, all data access has to be
auditable; and therefore an Audit Policy on the domain will be sufficient to control
the auditing behavior. To that end any message received during processing that is
correlated to the Claims domain will have the policy propagated to each message.

The relationship between a message, process, domain and policy is shown in Fig.1.
A message must belong to a domain and a process at all times. Further more a process

494 M. Eggenberger et al.

class Message Framework

Domain

Policy

Process

Message

DomainPolicy ProcessPolicy MessagePolicy

+sub
process
0..*

+primary 1

1..*

1..*

1..*

1..*

+primary 1

+sub-domain
0..*

1..* 1..*

Fig. 1. Simplified Message Framework Model

must belong to at least one domain and vice versa. All three primary objects may
depend on one or more policies that can be message, domain or process centric.

2.1 Policy Definition Model

The policy definition model can be defined as a set of individual policies that define
non-functional processing aspects related to the message itself. Before delving further
into the definition model it is necessary to clearly define the difference between a
policy and a rule. From our perspective a policy is an atomic enforceable constraint
on a system [9] whereas a rule is a conceptualization of a business need. This
distinction is necessary to both understand and use this framework. To that end, rules
[10] [11] maybe used to implement and enforce policies similar to assertions being
used in application programming.

Fig. 2 shows a simplified Domain and Process Ontology and the relationship
between the three different kinds of policies. The domain may subscribe to a domain
policy and subsequently all messages related to that domain will use policy
propagation from the domain. Similarly, a process may subscribe to a specific process
policy, and finally a message itself can subscribe to specific message policy.

Below are two examples of defining policies; the first one defines an Auditing
policy on the claims domain that specifies to audit every interaction, the second one
defines a logging policy on the Adjudicate Claim Process that specifies that a log
must be written on every message participating in the process.

<SOA.Policy.Audit.Domain Audit.Event="All">
 <SOA.Common.Domain
 Common.Domain.ID="1”
 Common.Domain.Type="Claim"/>
</SOA.Policy.Audit.Domain>

<SOA.Policy.Logging.Process Logging.Level="Debug">
 <SOA.Common.Process
 Common.Process.ID="1”
 Common.Process.Type="AdjudicateClaim"/>
</SOA.Policy.Logging.Process>

 Policy Based Messaging Framework 495

object Domain Objects

Enterprise :Domain

Claims :Domain Eligibility :Domain CheckEligibility :
Process

Enterprise :Process

ProccesClaim :
Process

AuditPolicy :
ProcessPolicy

LoggingPolicy :
DomainPolicy

Claim :Message

ExceptionPolicy :
MessagePolicy

«subscribe»«subscribe» «subscribe» «subscribe» «subscribe»

Fig. 2. Domain, Process Ontology with Policy Relationships

2.2 Policy Injection Model

Having defined the overall message model and their relationship with individual
policies we now need understand how policies are injected. To that end we developed
several policy injection scenarios: Static Injection and Dynamic Injection.

Static Injection allows the provider of the message to programmatically specify the
policies on the message itself. This approach requires a set of services to access the
policy store for domain, process and policies.

Dynamic injection on the other hand is based on the domain and process ontology
that allows case-based reasoning on the message content and its relationship with the
domain or process.

2.3 Policy Processing Model

The policy processing model is based on the translation of the policy definition
language into a policy execution language as well as the execution of each policy. The
policy execution language essentially invokes a service either synchronously or
asynchronously to validate or enrich the message itself. For example, a logging policy
may specify that a message is logged whenever it is being passed between business
processes; and therefore, it will be executed asynchronously. A data field encryption
policy on the other hand, will enrich the message by encrypting a data filed upon
sending and decrypting upon receiving.

3 Message Model Formalization

In order to define and process policies we require a more formalized approach. In this
section, we provide a brief introduction to the formalisms used in this research. This
framework consists of a mathematical description to specify policies, domains, processes
and messages. Further more we describe the mathematical relationship between the
individual sets and provide a mathematical induction proof to validate the model.

496 M. Eggenberger et al.

Definition 1 (Execution Definition). A message is used within a service S to perform
an atomic operation. To that end we define a function f:M M that takes as input an
element of the Message Set M and returns a different element of the Message Set M.

Definition 2 (Message Definition). A single message is defined as a four- tuple that
contains a payload subset P’, a domain subset D’, a process subset X’ and a
constraint subset C’. Therefore a single message is defined as follows.

{ }',',',' CXDPmi = NNii ⊂∈> ';0

Given this definition we can define the space of all messages M that are
permutations of all individual instances of the above definition. Since the number of
permutations does not span a proper vector space we will prove that there exists a
subset M’⊂ M that represent a valid vector space.

Definition 3 (Payload Definition). The payload is defined as the data element to be
processed within the message. We define the payload as follows:

∅∪⊆ PP'

Definition 4 (Domain Definition). The domain is defined as the processing domain
the payload is associated. We define the domain as follows:

∅∪⊆ DD'

Definition 5 (Process Definition). The process is defined as the process (activity) the
payload is associated. We define the process as follows:

∅∪⊆ XX '

Definition 6 (Policy Definition). The policy is defined as the policy (constraint)
associated with the payload.

∅∪⊆ CC '

Proposition 1 (Policy Injection Rule). All policies are derived/defined from a
domain, process, or the payload itself; and therefore we can define a function G, that
maps a message M to a policy C.

CMG →:

We need to remember that the domain, process and payload are part of each
message; and therefore, for each domain di there exists at least one constraint ci (∀di
∈ D { ∃ ci ⊆ C’}). Similarly for each process xi there exist a constraint (policy) ci
(∀xi ∈ X {∃ci ⊆ C’}). And finally for all messages mi there exist a constraint
(policy) ci (∀mi ∈ M {∃ci ⊆ C’}).

Proposition 2 (Policy Execution Rule). Since all policies are based on a message,
we can define a function that H that maps the policy C back to a Message M. This is
essentially an inverse function of G.

MCH →:

 Policy Based Messaging Framework 497

Theorem 1 (Completeness of Execution). Let mi be a message hat defines policies
from n=0 .. m, we can proof by induction that the reverse function will exist on the
subset M’ of all messages.

If no policies have been defined within a message mi (n=0), the message will
remain unchanged after injecting and executing the policy.

))((ii mGHm =

If a single policy n=1 is injected into the message mi, the outcome of injection and
executing the rule results in a message mj that is part of the message set M’ that will
have no policies defined (n=0).

))((ij mGHm =

Since we defined the policy to be executable and computable on the message, we
have proven by induction that the reverse function exists for all messages that have a
computable policy set.

4 Architecture

The overall architecture we have chosen is based on highly scalable enterprise service
bus (ESB) that acts as the intermediary for messaging [12][13]. The service bus
provides asynchronous processing queues for primary business processes and domain
activities that are implemented using BPEL[10]. In addition to these orchestrated
services a set of utility services for data retrieval and cross-cutting concerns are
registered on the bus. Using an enrichment pattern on the message bus, allows the
individual messages to be extended and the policy and domain information to be
added, and subsequently transformed into BPEL for the policies to be executed. Fig. 3
depicts the conceptual architecture of the solution. The core of the system is the
Message Bus and the Policy control framework responsible for policy injection,
policy definition and policy execution. The Policy Control framework uses a policy
store to retrieve policies given the context of the message (domain and process).
Additionally, the diagram also shows the primary business process, Claim Processing,
and the individual domain activities, Data Receiving, Data Pre – Processing, Data
Validation and Data Adjudication.

Since each individual activity is a collaboration of data services that are based on
our message model we can use a pipeline execution model to inject, transform and
execute the policies using an interrupt pattern on the activity process flow.

4.1 Message Processing

Given that we use an enterprise service bus, the policy control framework will inspect
the message while executing the business process orchestration. To that end the policy
control framework will subscribe to the policy service queue that is invoked by the
BPEL process. At that point the message is inspected, the domain, process and policy
information injected. Once the message is complete the policies will be transformed
into executable code and subsequently called based on the context. Once the policy

498 M. Eggenberger et al.

enactment stage is complete, control is returned to the calling context. In other words,
the pipeline execution model is guided by the policy control model. The typical flow
of a message, once it is put onto a process or domain queue involves the following
steps:

cmp Components

Message Bus

ClaimProcessQueue

Uti li tyServices

ClaimProcessServ ice

Policy Control

Pol icyInjection

PolicyEnactment

Util ityService Proxy

Pol icyDefintion

«BPEL»
Claim Process

PolicyStore

«process»
Data Receive

«process»
Data Pre-Process

«process»
Data Val idation

«process»
Claim Adjudication

PolicyTranslation

Fig. 3. Conceptual Architecture used by the messaging framework

• The Message is published onto the primary/main flow queue.
• The Message is inspected synchronously by the policy control framework.
• The Policy Control Framework executes the policy set on the message.
• The Main Process Flow is resumed upon execution/scheduling of all

policies.

As can be seen by the scenario above, the policy control will interrupt the main

process flow until all policies have been evaluated or processed; and therefore, special
care has to be taken on the execution times of the aspects that are being injected. To
that end, there are two distinct ways to execute these policies: asynchronously and
synchronously. Logging, Auditing and other high volume aspects, are all
asynchronous requests to perform a certain action on the message, where the return
result is not necessary for the main process to continue. Synchronous policies on the
other hand, such as Check Policies and Encryption policies will have to execute
synchronously and publish the result message back onto the main process queue.

 Policy Based Messaging Framework 499

5 Related Work

A lot of work has been devoted in both industry and academia to policy enforcement,
little industrial progress has been made to allow the business stakeholders to define
such constraints. The SCA initiative [14] defined a policy framework [8] which
allows developers to use doclets and annotations to define policies during
development which does not allow a quick adoption to changing policies. Other
approaches such as [9], use a constraint based methodology for web services, but
leave little room for change.

6 Conclusion and Future Work

Policy definition and policy enactment is an important issue in any successful
implementation of a Service Oriented Architecture. In this paper we described an
approach that allows various stakeholders in the ecosystem to define policies that will
be executed during the execution of a business process or activity. Further more, we
showed that policies can be defined coarse grained for optimal usability. Because our
approach is unique insofar as the definition and execution of policies is concerned we
provide adaptability to changing requirements and let the business and operational
stakeholders constrain the business processes. In doing so we reduce the total cost of
ownership as no further development effort is necessary, unless new processes have to
be built. Our model could easily be extended to include the governance of any
processes as it represents a way to constrain processes with policies, although our
focus was based on an adaptable messaging model.

This work is at an early stage, and much more has to be done. The policy definition
language, as well as the policy translation and execution language must be refined and
evaluated. The performance of the policy control framework has to be considered and
tuned as there are many times the injection and enactment algorithm has to be
executed.

References

1. Brucker P. Scheduling algorithms, Berlin: Spring; 2001.
2. J. Leon Zhao, Edward A. Stohr, “Temporal workflow management in a claim handling

system”, ACM SIGSOFT Software Engineering Notes, Proceedings of the international
joint conference on Work activities coordination and collaboration WACC '99, March
1999

3. Paul Fremantle, Sanjiva Weerawarana, Rania Khalaf, “Enterprise Services, Examining the
emerging field of Web Services and how it is integrated into existing enterprise
infrastructures”, Communication of the ACM, Volume 45, Issue 20, October 2002

4. Wolfgang Hoschek, The Web Service Discovery Architecture, Proceedings of the 2002
ACM/IEEE conference on Supercomputing, p.1-15, November 16, 2002, Baltimore,
Maryland

5. A. Kozlenkov, V. Fasoulas, F. Sanchez, G. Spanoudakis, A. Zisman, Service discovery
and binding: A framework for architecture-driven service discovery, Proceedings of the
2006 international workshop on Service-oriented software engineering SOSE '06

500 M. Eggenberger et al.

6. A. Anderson, “An Introduction to the Web Services Policy Language”, Fifth IEEE
International Workshop on Policies for Distributed Systems and Networks (POLICY’04),
June 2004.

7. Web Services Policy Framework (ws-policy). Technical Report, IBM, BEA Systems,
Microsoft, SAP AG, Sonic Software, VeriSign, March 2006

8. Micheal Beisiegel, Nickolas Kavantzas, Ashok Malhorta, Greg Pavlik and Chris Sharp,
“SCA Policy Association Framework”, In proceedings of the 4th International Conference
on Service Oriented Computing (ICSOC’06), pages 613-623, Chicago, USA, December
2006.

9. R. Aggarwl, K. Verma, J. Miller, and W. Milnorm, “Constraint driven web service
composition in METEOR-S”. IEEE Conference on Service Computing (SCC’04), pages
23-30, Shangahi China, Sept. 2004.

10. T. Andrews, F. Cubera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process execution
language for web services version 1.1. Technical report, OASIS,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

11. ILog JRules, http://www.ilog.com/products/jrules
12. M. Fowler, “Patterns of Enterprise Application Architecture”, Addison-Wesley

Professional; ISBN 0321127420, November 2002
13. G. Hohpe, B. Woolf, “Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions”, Addison-Wesley Professional, ISBN 0321200683, October 2003.
14. Service Component Architecture (SCA) Specifications, http://www.osoa.org/display/

Main/Service+Component+Architecture+Specifications

Policy Based Messaging Framework

Martin Eggenberger1,2, Nupur Prakash2, Koji Matsumoto2,
and Darrell Thurmond3

1 SpinergyGroup, Piedmont, CA, USA
2 Delta Dental of California, San Francisco, CA, USA

3 KoolKode Technologies, LLC, Santa Monica, CA, USA
martin@spinergygroup.com, nprakash@delta.org, kmatsumoto@delta.org,

koolkode@architect-alchemist.com

Abstract. Due to integration complexities to legacy as well as new
systems, a Common Messaging Framework has been developed that is
based on policies to control the behavior of the various enterprise ser-
vices. These policies include both internal and external Quality of Service
Policies as well as constraint based business process policies. This paper
proposes and identifies a policy based messaging framework for both
intranet and extranet services, upon which individual policies can be in-
jected during runtime for individual messages, domains and or processes.
Further more these policies can be customized on a per actor basis and
dynamically changed during runtime by a console user without having
to stop the process.

Keywords: Service Oriented Architecture, QoS, Policy, Dependency In-
jection, Adaptive Services, Ontologies, Queuing.

1 Introduction

Although there has been considerable attention been devoted in both industry
and academia to the design and implementation of new services, little headway
has been made to enable legacy systems to truly take advantage of a Service Ori-
ented Architecture. Specifically, non–functional requirements within the Quality
of Service (QoS) arena need to be further researched. In essence we found three
problems associated with legacy integration using SOA.

First off, most legacy integrations are built using Point to Point integration
solutions. Most large scale organizations use batch processes and batch transfers
to exchange data between various point solutions and the primary communica-
tion channel is file based. Since the individual records in these files do not contain
QoS policies and the rewriting of the code is not feasible, no policy enforcement
is feasible.

Secondly, the error handling of legacy applications and processes are using
different solutions such as log files, databases and simple process return codes.
Since these applications were built over the last 20 years, we are faced with
various problems in the application logging/monitoring and auditing policies.
Specifically, the auditing policies have changed over the years; and therefore, we

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 497–505, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

498 M. Eggenberger et al.

require an adaptive policy system to adjust to the changing regulatory require-
ments.

And lastly, the process orchestration used is mostly based on scheduling tech-
nology [1,2]; and therefore, only temporal properties are used for process orches-
tration. The nature of this orchestration limits the introduction of QoS policies,
hence a new event driven processing mechanism was explored that enable policies
for legacy and new systems.

To address these problems, we have developed a policy based messaging frame-
work that support QoS policies. Our approach is based on a comprehensive mes-
saging model for description, discovery, policy injection and policy enactment
that are suited for a Service Oriented Architecture [3]. The messaging model
defines a semantic model of the messages’ purpose as well as the policy asso-
ciated within the semantic model. To that end, a message consists of a set of
processing instructions related to the domain and process it is used in, as well as
a set of policies that are related to the domain, the process or the message itself.
Further more we described the relationship between the caller’s context (e.g.
security context) and the associated policies. For example, a system user may
define an Auditing Policy based on a specific computing domain such as Claim
Processing. In the above example, the system user requesting such a service
would specify what elements within the message have to be auditable.

Given such a description framework, we also required a message discovery
framework [4,5] that allows us to apply and inject domain and process informa-
tion into the individual message. To that end, we developed and implemented
a domain and process ontology, that is used as the basis for domain and pro-
cess discovery purposes. Having obtained the messages’ domain and process, the
policy set can be injected given the callers credentials.

Since all user and system credentials are stored in an enterprise directory, the
individual policies can also be stored in the same directory as part of the user
profile. Therefore, if a user authenticates him/herself we can cache the policy set
associated with the user and apply case - based reasoning for injecting policies
based on the message, process or domain. In general this injection occurs using
a set of policy rules (e.g. business rules) that specify the injection behavior of
the policies.

Once, all policies have been injected we need to worry about the enactment
[5] of the specified policies as well as the monitoring of these policies.

2 Messaging Framework

The messaging framework is a conceptual model that describes messages within
the enterprise. It not only allows us to model message payloads, but also message
related processing information such as domain, process and policy information.
This relationship between the individual messages’ domain and process has an
advantage over other frameworks [6,7,8] insofar that it allows policy granularity
not only on the message, but also on the domain and process level. For example,
when dealing with healthcare information during Claims Processing, all data

Policy Based Messaging Framework 499

access has to be auditable; and therefore an Audit Policy on the domain will
be sufficient to control the auditing behavior. To that end any message received
during processing that is correlated to the Claims domain will have the policy
propagated to each message. The relationship between a message, process, do-
main and policy is shown in Fig.1. A message must belong to a domain and a
process at all times. Further more a process must belong to at least one domain
and vice versa. All three primary objects may depend on one or more policies
that can be message, domain or process centric.

Fig. 1. Simplified Message Framework Model

2.1 Policy Definition Model

The policy definition model can be defined as a set of individual policies that
define non-functional processing aspects related to the message itself. Before
delving further into the definition model it is necessary to clearly define the
difference between a policy and a rule. From our perspective a policy is an atomic
enforceable constraint on a system [9] whereas a rule is a conceptualization of
a business need. This distinction is necessary to both understand and use this
framework. To that end, rules [10,11] maybe used to implement and enforce
policies similar to assertions being used in application programming. Fig. 2 shows
a simplified Domain and Process Ontology and the relationship between the three
different kinds of policies. The domain may subscribe to a domain policy and
subsequently all messages related to that domain will use policy propagation
from the domain. Similarly, a process may subscribe to a specific process policy,
and finally a message itself can subscribe to specific message policy. Below are
two examples of defining policies; the first one defines an Auditing policy on the
claims domain that specifies to audit every interaction, the second one defines
a logging policy on the Adjudicate Claim Process that specifies that a log must
be written on every message participating in the process.

500 M. Eggenberger et al.

<SOA.Policy.Audit.Domain Audit.Event="All">
<SOA.Common.Domain

Common.Domain.ID="1"
Common.Domain.Type="Claim"/>

</SOA.Policy.Audit.Domain>
<SOA.Policy.Logging.Process Logging.Level="Debug">

<SOA.Common.Process
Common.Process.ID="1"
Common.Process.Type="AdjudicateClaim"/>

</SOA.Policy.Logging.Process>

Fig. 2. Domain, Process Ontology with Policy Relationships

2.2 Policy Injection Model

Having defined the overall message model and their relationship with individual
policies we now need understand how policies are injected. To that end we devel-
oped several policy injection scenarios: Static Injection and Dynamic Injection.
Static Injection allows the provider of the message to programmatically specify
the policies on the message itself. This approach requires a set of services to
access the policy store for domain, process and policies. Dynamic injection on
the other hand is based on the domain and process ontology that allows case-
based reasoning on the message content and its relationship with the domain or
process.

2.3 Policy Processing Model

The policy processing model is based on the translation of the policy definition
language into a policy execution language as well as the execution of each policy.
The policy execution language essentially invokes a service either synchronously

Policy Based Messaging Framework 501

or asynchronously to validate or enrich the message itself. For example, a logging
policy may specify that a message is logged whenever it is being passed between
business processes; and therefore, it will be executed asynchronously. A data
field encryption policy on the other hand, will enrich the message by encrypting
a data filed upon sending and decrypting upon receiving.

3 Message Model Formalization

In order to define and process policies we require a more formalized approach.
In this section, we provide a brief introduction to the formalisms used in this re-
search. This framework consists of a mathematical description to specify policies,
domains, processes and messages. Further more we describe the mathematical
relationship between the individual sets and provide a mathematical induction
proof to validate the model.

Definition 1. (Execution Definition). A message is used within a service S to
perform an atomic operation. To that end we define a function f:M’M that takes
as input an element of the Message Set M and returns a different element of the
Message Set M.

Definition 2. (Message Definition). A single message is defined as a four- tuple
that contains a payload subset P’, a domain subset D’, a process subset X’ and
a constraint subset C’. Therefore a single message is defined as follows.

mi = {P ′, D′, X ′, C′} i > 0; i ∈ N ′ ⊂ N (1)

Given this definition we can define the space of all messages M that are permu-
tations of all individual instances of the above definition. Since the number of
permutations does not span a proper vector space we will prove that there exists
a subset M’ M that represent a valid vector space.

Definition 3. (Payload Definition).The payload is defined as the data element
to be processed within the message. We define the payload as follows:

P ′ ⊆ P ∪ ∅ (2)

Definition 4. (Domain Definition). The domain is defined as the processing
domain the payload is associated. We define the domain as follows:

D′ ⊆ D ∪ ∅ (3)

Definition 5. (Process Definition). The process is defined as the process (ac-
tivity) the payload is associated. We define the process as follows:

X ′ ⊆ X ∪ ∅ (4)

Definition 6. (Policy Definition). The policy is defined as the policy (con-
straint) associated with the payload.

C′ ⊆ C ∪ ∅ (5)

502 M. Eggenberger et al.

Proposition 1. (Policy Injection Rule). All policies are derived/defined from a
domain, process, or the payload itself; and therefore we can define a function G,
that maps a message M to a policy C.

G : M → C (6)

We need to remember that the domain, process and payload are part of each
message; and therefore, for each domain di there exists at least one constraint ci

(∀di ∈ D → { ∃ ci ⊆ C’}). Similarly for each process xi there exist a constraint
(policy) ci (∀xi ∈ X → {∃ci ⊆ C’}). And finally for all messages mi there exist
a constraint (policy) ci (∀mi ∈ M → {∃ci ⊆ C’}).

Proposition 2. (Policy Execution Rule). Since all policies are based on a mes-
sage, we can define a function that H that maps the policy C back to a Message
M. This is essentially an inverse function of G.

H : C → M (7)

Theorem 1. (Completeness of Execution). Let mi be a message hat defines
policies from n=0 .. m, we can proof by induction that the reverse function will
exist on the subset M’ of all messages.
If no policies have been defined within a message mi (n=0), the message will
remain unchanged after injecting and executing the policy.

mi = H(G(mi)) (8)

If a single policy n=1 is injected into the message mi, the outcome of injection
and executing the rule results in a message mj that is part of the message set
M’ that will have no policies defined (n=0).

mj = H(G(mi)) (9)

Since we defined the policy to be executable and computable on the message, we
have proven by induction that the reverse function exists for all messages that
have a computable policy set.

4 Architecture

The overall architecture we have chosen is based on highly scalable enterprise
service bus (ESB) that acts as the intermediary for messaging [12,13]. The service
bus provides asynchronous processing queues for primary business processes and
domain activities that are implemented using BPEL [10]. In addition to these
orchestrated services a set of utility services for data retrieval and cross-cutting
concerns are registered on the bus. Using an enrichment pattern on the message
bus, allows the individual messages to be extended and the policy and domain
information to be added, and subsequently transformed into BPEL for the poli-
cies to be executed. Fig. 3 depicts the conceptual architecture of the solution.

Policy Based Messaging Framework 503

The core of the system is the Message Bus and the Policy control framework re-
sponsible for policy injection, policy definition and policy execution. The Policy
Control framework uses a policy store to retrieve policies given the context of
the message (domain and process). Additionally, the diagram also shows the pri-
mary business process, Claim Processing, and the individual domain activities,
Data Receiving, Data Pre – Processing, Data Validation and Data Adjudication.

Fig. 3. Conceptual Architecture used by the messaging framework

Since each individual activity is a collaboration of data services that are based
on our message model we can use a pipeline execution model to inject, transform
and execute the policies using an interrupt pattern on the activity process flow.

4.1 Message Processing

Given that we use an enterprise service bus, the policy control framework will
inspect the message while executing the business process orchestration. To that
end the policy control framework will subscribe to the policy service queue that
is invoked by the BPEL process. At that point the message is inspected, the
domain, process and policy information injected. Once the message is complete

504 M. Eggenberger et al.

the policies will be transformed into executable code and subsequently called
based on the context. Once the policy enactment stage is complete, control is
returned to the calling context. In other words, the pipeline execution model is
guided by the policy control model. The typical flow of a message, once it is put
onto a process or domain queue involves the following steps:

– The Message is published onto the primary/main flow queue.
– The Message is inspected synchronously by the policy control framework.
– The Policy Control Framework executes the policy set on the message.
– The Main Process Flow is resumed upon execution/scheduling of all policies.

As can be seen by the scenario above, the policy control will interrupt the
main process flow until all policies have been evaluated or processed; and there-
fore, special care has to be taken on the execution times of the aspects that
are being injected. To that end, there are two distinct ways to execute these
policies: asynchronously and synchronously. Logging, Auditing and other high
volume aspects, are all asynchronous requests to perform a certain action on
the message, where the return result is not necessary for the main process to
continue. Synchronous policies on the other hand, such as Check Policies and
Encryption policies will have to execute synchronously and publish the result
message back onto the main process queue.

5 Related Work

A lot of work has been devoted in both industry and academia to policy enforce-
ment, little industrial progress has been made to allow the business stakeholders
to define such constraints. The SCA initiative [14] defined a policy framework [8]
which allows developers to use doclets and annotations to define policies during
development which does not allow a quick adoption to changing policies. Other
approaches such as [9], use a constraint based methodology for web services, but
leave little room for change.

6 Conclusion and Future Work

Policy definition and policy enactment is an important issue in any successful
implementation of a Service Oriented Architecture. In this paper we described
an approach that allows various stakeholders in the ecosystem to define policies
that will be executed during the execution of a business process or activity.
Further more, we showed that policies can be defined coarse grained for optimal
usability. Because our approach is unique insofar as the definition and execution
of policies is concerned we provide adaptability to changing requirements and let
the business and operational stakeholders constrain the business processes. In
doing so we reduce the total cost of ownership as no further development effort
is necessary, unless new processes have to be built. Our model could easily be
extended to include the governance of any processes as it represents a way to

Policy Based Messaging Framework 505

constrain processes with policies, although our focus was based on an adaptable
messaging model.

This work is at an early stage, and much more has to be done. The policy
definition language, as well as the policy translation and execution language must
be refined and evaluated. The performance of the policy control framework has
to be considered and tuned as there are many times the injection and enactment
algorithm has to be executed.

References

1. Brucker, P.: Scheduling algorithms. Springer, Berlin (2001)
2. Zhao, J.L., Stohr, E.A.: Temporal workflow management in a claim handling sys-

tem. In: ACM SIGSOFT Software Engineering Notes, Proceedings of the interna-
tional joint conference on Work activities coordination and collaboration WACC ’99
(March 1999)

3. Fremantle, P., Weerawarana, S., Khalaf, R.: Enterprise Services, Examining the
emerging field of Web Services and how it is integrated into existing enterprise
infrastructures. Communication of the ACM 45(2) (October 2002)

4. Hoschek, W.: The Web Service Discovery Architecture. In: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, Maryland, November 16,
2002, pp. 1–15 (2002)

5. Kozlenkov, A., Fasoulas, V., Sanchez, F., Spanoudakis, G., Zisman, A.: Service
discovery and binding: A framework for architecture-driven service discovery. In:
SOSE ’06. Proceedings of the 2006 international workshop on Service-oriented
software engineering

6. Anderson, A.: An Introduction to the Web Services Policy Language. In: POL-
ICY’04. Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks, IEEE Computer Society Press, Los Alamitos (2004)

7. Web Services Policy Framework (ws-policy). Technical Report, IBM, BEA Systems,
Microsoft, SAP AG, Sonic Software, VeriSign (March 2006)

8. Beisiegel, M., Kavantzas, N., Malhorta, A., Pavlik, G., Sharp, C.: SCA Policy
Association Framework. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 613–623. Springer, Heidelberg (2006)

9. Aggarwl, R., Verma, K., Miller, J., Milnorm, W.: Constraint driven web service
composition in METEOR-S. In: SCC’04. IEEE Conference on Service Computing,
Shangahi China, pp. 23–30. IEEE Computer Society Press, Los Alamitos (2004)

10. Andrews, T., Cubera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Busi-
ness process execution language for web services version 1.1. Technical report,
OASIS, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-bpel/ws-bpel.pdf

11. ILog JRules, http://www.ilog.com/products/jrules
12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-

fessional, Reading (2002)
13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2003)
14. Service Component Architecture (SCA) Specifications, http://www.osoa.org/

display/Main/Service+Component+Architecture+Specifications

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.ilog.com/products/jrules
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 506–517, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Contextualized B2B Registries

U. Radetzki, M.J. Boniface, and M. Surridge

IT Innovation Centre
2 Venture Road

Chilworth
Southampton, SO16 7NP, UK

{ur,mjb,ms}@it-innovation.soton.ac.uk

Abstract. Service discovery is a fundamental concept underpinning the move
towards dynamic service-oriented business partnerships. The business process
for integrating service discovery and underlying registry technologies into busi-
ness relationships, procurement and project management functions has not been
examined and hence existing Web Service registries lack capabilities required
by business today. In this paper we present a novel contextualized B2B registry
that supports dynamic registration and discovery of resources within manage-
ment contexts to ensure that the search space is constrained to the scope of au-
thorized and legitimate resources only. We describe how the registry has been
deployed in three case studies from important economic sectors (aerospace,
automotive, pharmaceutical) showing how contextualized discovery can sup-
port distributed product development processes.

Keywords: Registry, discovery, B2B, SOA, SLA.

1 Introduction

Service discovery is a fundamental concept underpinning the move towards dynamic
service-oriented business partnerships. Existing Web Service registries lack the possi-
bility to register and discover resources in the context of dynamic business relation-
ships. Business to Business (B2B) collaboration demands not only discovery of appli-
cation resources based on available metadata, but also discovery of these resources in
the context of agreed contracts, like Service Level Agreements (SLAs).

In this paper we present a novel contextualized B2B registry that supports users in
querying resources based on management contexts like SLAs or trade accounts. The
registry enables clients to ask queries like “Find SLAs providing MSC.NASTRAN
applications where the CPU seconds of SLA is greater than 1000 and the Usage of
SLA with respect to the used disk space is lower than 500MB”. The registry is able to
cope with any business context, resource and metadata as far as they can be repre-
sented in XML and identified by a WS-Addressing Endpoint Reference (EPR) [15]. It
supports the dynamical adding of new business contexts and new relationships be-
tween these contexts. This information is defined in the registry domain model
(RDM) of the contextualized B2B registry. The registry is provided as part of an
overall service-oriented infrastructure (SOI) and has been deployed in case studies
within key industrial sectors such as aerospace, automotive and pharmaceutical.

 Contextualized B2B Registries 507

2 Contextualized B2B Registries

An analysis of the business model for registration and discovery of software services
unveils that the discovery process has different phases and actors that participate in
establishing trusted business relationships, providing SLA offerings and procuring
SLAs as well as demanding concrete resources. We have identified four different
types of registries supporting each phase providing capabilities to constrain the search
space based on the actor’s context and business context within the discovery process.

2.1 Registries in B2B Collaborations

Service registration and discovery is an essential capability of service-oriented archi-
tectures (SOA). Service discovery ensures loose coupling between customers and
service providers by allowing many service providers to publish service descriptions
in a registry independently of customers, yet allowing the customers to connect
directly to their selected service at the point of use. Registries can contain multiple
services ensuring scalability and resilience is provided through redundancy of service
provision to the customer. The principles of service discovery can be described in
three stages 1) service providers publishing service descriptions 2) customers discov-
ery available services based on some criteria 3) customers binding to discovered
services at the point of use.

There are many service discovery initiatives ranging from high-level business reg-
istries [14, 3] through to low-level soft state registries [18] for dynamic resource in-
formation. UDDI, although part of the WS-I Basic Profile [17], has never been an
appropriate registry for Web Service metadata due to its awkward TModel informa-
tion structure. ebXML provides a better information model, however, the ebXML
activity is not widely supported by all major middleware vendors. WSRF-SG supports
the aggregation of arbitrary XML metadata but the relationship between XML docu-
ments is not supported and security is not considered. Recent initiatives [16] are
looking more promising and the initial scope of WS-ResourceCatalog addresses tax-
onomies of resources but the specifications are evolving and no compliant registry
service exists today. Other approaches combine matchmaking and information
retrieval (IR) techniques. Service information based on WSDL is analyzed and ser-
vice profiles are extracted which are matched against user requirements [12]. These
profiles can contain, beside syntactic information, context information about location
of services etc. allowing to retrieve services based on user contexts, like user location
[8]. Recent research highlighted also that context information of services can change
over time [2]. The context models, however, of these approaches are static and the IR
approaches do not allow to search for business contexts, like SLAs, but only for
ranked list of services. Nevertheless adding a fuzzy approach into contextualized
discovery is quite promising.

The challenge for current registry developments is to understand the overall busi-
ness model for registration and discovery in a market-based SOI. Many SOI users
today imagine that an engineer, working for an aerospace company for instance, can
search a registry to find and use services based their requirements. For example, find
service provider that can provision an Aero-Acoustics service based on a 10 node
cluster running against dataset A, B and C. However, the decision to trust and

508 U. Radetzki, M.J. Boniface, and M. Surridge

potentially pay for a service is not typically the responsibility of the engineer but
rather a project or senior manager within their organization. The engineer may be able
to find a service, but they may not be authorized to use it within their design activity
because the service provider may not be trusted or maybe there is insufficient project
budget available. Therefore, for the SOI to support dynamic service composition,
discovery needs to include the actor’s context and the business context to constrain
the scope of the search space to authorized and legitimized services only.

Most customers and service providers assume that a SOI provides a central registry
to support service discovery, however, the business model for operating such a regis-
try has yet to be proved viable. On the web today, discovery businesses such as
Google and Yahoo operate successfully providing discovery services to customers
with a variety of business models such as advertising (Click-through Text-Ads, Ban-
ner Ads) and brokering (market-makers bringing buyers and sellers together and
facilitate transactions). Therefore, for the SOI to facilitate market-based service provi-
sion business models need to be developed for central registry operators.

Market-based SOI extends the registration and discovery process to include
interactions with key actors and incorporates business models for participating
organizations. Fig. 1 illustrates actors and business contexts in the life cycle of B2B
collaborations. This life cycle starts with the advertisement of business services by
marketing managers. The business service presents information about the business
area, company details, contact persons etc in its corresponding metadata, i.e. business
metadata, service provider details, relationship details etc. This information is used as
a starting point to establish trust between service providers (SPs) and service

Fig. 1. Registration and discovery in B2B collaborations

 Contextualized B2B Registries 509

consumers (customers). A business registry provided by a third party business registry
service provider acts like an open market place similar to Yellow Pages.

Customer procurement experts, e.g. relationship managers, discover SPs based on
business advertisements. They decide which SP to trust and manage these relation-
ships in approved supplier lists (e.g. ISO9000 accredited businesses) stored in a pro-
curement registry. After establishing trust, e.g. based on trade accounts and granted
credit limits, the procurement registry collects SLA offerings from approved SPs’
product registries, which are maintained by SPs product managers. It can also collect
resource metadata used within the SLA offering. We assume that contracts between
business partners are based on bi-lateral SLAs agreed between the customer and SP.

The procurement registry is used by project managers to identify resources and
purchases resources through SLAs within the context of an organizations approved
supplier list. Resources can be entire resource bundles containing other resources or
they can be specific resources, like applications or databases (there might be other
resources like laboratory equipment). Every resource is specified by resource meta-
data, containing details of the resource, like EPR, names, arguments, semantics etc.
Project resources are registered by a project management within the project resource
registry. Finally project users, like engineers, can discover and use resources within
the context of a specific project, to which they have access to. This registry can also
pull other information, like usage report spend on specific SLAs that can be aug-
mented with other metadata stored in the project resource registry.

This life cycle demonstrates that registries in B2B collaborations require storing
resources and relating them to different contexts as well as they have to support dif-
ferent user roles. In the following we will focus on these contextual aspects of B2B
registries.

2.2 Registry Domain Model

We assume that contextualized B2B registries provide a registry domain model
(RDM) that defines the different business contexts used within the registry, like

Fig. 2. Example RDM for a project resource registry

510 U. Radetzki, M.J. Boniface, and M. Surridge

SLAs, projects, trade accounts etc. Business contexts are defined in terms of business
concepts and relationships between these concepts. Objects (in general XML
documents) are registered and can be retrieved with respect to these concepts and
relationships. Relationships define dependencies between concepts that can be used
for specifying ‘join’-like queries. They allow users to navigate through the RDM in
an object-oriented way. A special ‘is-a’ relationship is introduced for specifying
hierarchies of concepts. Sub concepts inherit relationships from their super concepts.
However, there is no assumption about the XML documents registered under a
specific concept. Therefore schemas of objects of sub concepts belonging to the same
super concept could be different. Even though this is possible, the situation should be
avoided, or appropriate schema matching approaches have to be applied, but this topic
is beyond the scope of this paper.

Fig. 2 depicts an example RDM we are using for a project resource registry (see
Section 3.2). There are two top level concepts: ‘Resource’ and ‘Reference’. Under the
concept ‘Reference’ EPRs of resources are registered. Depending on the type of EPR
new concepts as sub types of ‘Reference’ are dynamically added to the RDM, for
instance a concept ‘ReferenceSLA’ for EPRs belonging to the SLA resources.

The concept ‘Resource’ is used to register data and metadata of resources, like
WSDL documents, application metadata, SLAs, trade accounts etc. We divide re-
sources into managed resources like applications or services and unmanaged re-
sources like usage reports. Some resources like SLAs or trade accounts are used to
manage other resources, like job or data services. These resources are specified by the
concept ‘Manager-Resource’. Relationships are represented in Fig. 2 as arrows be-
tween concepts. For instance the bidirectional relationship ‘isUsageOf / hasUsage’
combines usages reports with SLAs they belong to.

We suggest using the Web Ontology Language (OWL) [11] as a language for
modeling of RDMs. However, OWL Lite already provides the mechanisms we re-
quire for such specifications. Concepts are specified using ‘owl:Class’, sub concepts
are specified using ‘rdfs:subClassOf’ etc.; relationships are defined by
‘owl:ObjectProperty’, bidirectional relationships through ‘owl:inverseOf’ etc.

2.3 Query Languages

For contextualized discovery a query language is required that on the one hand can
cope with the concepts and relationships between documents defined within the
RDM, but on the other hand supports standards for querying and filtering of those,
like XQuery or XPath. We address this issue by developing an object-oriented XML-
based query language (ooXmlQL) acting as a wrapper query language that allows
other standard query languages to be nested inside. ooXmlQL is designed especially
to support join-like queries and sub queries based on concepts and relationships of the
underlying RDM. The grammar is similar to languages like SQL, HQL or SPARQL.
However, selection and filter statements in ooXmlQL are defined language
independently. For instance, the current implementation of our project resource
registry supports XPath and XQuery expressions but others such as SPARQL could
be integrated. In addition, ooXMLQL offers a more traditional query structure than
the programmatic style provided by XQuery.

 Contextualized B2B Registries 511

Fig. 3. Query primitives of ooXmlQL

The example of Fig. 3 illustrates a query in ooXmlQL. This query expresses “Find
EPRs ($epr) of job services that both support ‘BLAST’ applications and are managed
by manager resources having the type SLAService”. The keywords of ooXmlQL are
represented in bold, upper case letters, like SELECT, FROM, JOIN etc.

Variables within ooXmlQL are sound, if they follow the XQuery specification, e.g.
they have to have a leading ‘$’. From- and join-parts (FROM, JOIN) are expressed
using concepts of the RDM. Joins are created using relationships defined within the
RDM. A join expression is valid, if the relationship used (ON) is defined between the
concept of the previous join- or from-part and the concept within the join (OF). For
instance, the relationship hasParent(Application, Service) has to be defined within the
RDM, in order to have a valid join ‘JOIN ON hasParent OF Service AS $jobService’.
This join is valid, because the concepts Service and Application are sub concepts of
the concept Resource and hasParent is defined as hasParent(Resource, Resource).

Fig. 4. Declaration of variables and namespaces in ooXmlQL

A similar validation strategy is applied on restrictions (RESTRICT). Restrictions
specify sub queries on objects of one concept defined by a variable. A restriction on a
variable is valid, if the relationship defined in the sub query (RETURN) is defined
between the concept used in the from-part of the sub query and the concept the vari-
able belongs to. For instance, the restriction on job services ($jobService) uses the
relationship manages. $jobServices defines objects of the concept Service through
‘JOIN ON hasParent OF Service AS $jobService’. Therefore, this restriction is valid,
if manages(Manager-Resource, Service) is defined within the RDM, which is the
case, because Service is a sub concept of Managed-Resource. Selection (SELECT)
and filtering (WHERE) of XML resources is based on standard XQuery/XPath
expressions following their specifications as shown in Fig. 3.

512 U. Radetzki, M.J. Boniface, and M. Surridge

Further features of ooXmlQL contain the definition of namespaces and variables.
Fig. 4 shows a corresponding example. Variable declarations, for instance, allow
defining aggregate functions that can be used later on within filtering statements.

3 Inter-enterprise Service-Oriented Infrastructure

The design and development of the registry service has been driven by case studies
from three important industrial sectors aerospace, automotive and pharmaceutical, as
part of the EU IST SIMDAT Project [13]. Each of these sectors is exploring how
dynamic SOIs can be used to integrate software services and expertise provided by
external suppliers into product design processes. Typical processes in each of these
sectors are represented by complex scientific workflows developed in a variety of
sector specific problem solving environments such as [6, 7, 10].

The aerospace case study simulates the multi-disciplinary collaborative design of a
low-noise, high-lift aircraft landing system. The prime contractor dynamically builds
a distributed design team from service providers offering specialized engineering
services such as optimization (University of Southampton), aerodynamics (BAE
SYSTEMS), aero-acoustics (EADS) and structures (MSC) that are incorporated into
an overall parameterized design optimization workflow. The automotive case study
demonstrates how a car manufacturer (Renault) can collaborate with design suppliers
(IDEStyle) for the purpose of designing a car that conforms to safety regulations. A
trusted-third party service provider hosts an integrated simulation infrastructure that
allows the participants to manage and orchestrate the design process whilst protecting
the intellectual property rights associated with each component. The pharmaceutical
case study focuses on the use of bioinformatics during the target identification phase
of the drug discovery pipeline. Workflows developed by scientists at GlaxoSmith-
Kline can now access both internal resources and augment these with high-value
services procured from biotechnology service providers. For example, Inphar-
matica/Galapagos has offered their Bioclips product [1] to provide detailed annotation
of protein data supporting similarity searching based on structure, ligand binding sites
and annotations.

The case studies show how inter-enterprise capabilities can be procured from ser-
vice providers and integrated into design processes through SOIs. Contextualized
discovery and selection is an essential part of this process from relationship manage-
ment through to service procurement and use. For example, within the aerospace case
study the prime contractor builds a distributed design team by selecting service pro-
viders from their approved suppliers list and procuring service through the negotiation
of SLAs. The resulting SLAs are added to a project resource registry that is available
to engineers who are developing and executing the design optimization workflows.

3.1 GRIA

The registry service forms part of the client management package distributed with the
GRIA middleware [5]. GRIA is a SOI designed to support B2B collaborations
through service provision across organizational boundaries in a secure, interoperable
and flexible manner.

 Contextualized B2B Registries 513

GRIA supports business relationship management through conventional business
procurement models. When a consumer wants to buy services from a provider, they first
have to open a trade account with the service provider. This trade account represents a
trust relationship between a customer and service provider, based on the customer's
willingness to pay for services provided. The two sides can constrain the level of trust by
specifying a credit limit for each trade account, which represents the maximum amount
of service the provider is willing to deliver before being paid, or the maximum amount of
service the consumer is willing to pay for, whichever is the smaller.

GRIA allows service providers and customers to trade resources (applications,
data, processing, and storage) under the terms of bilateral SLAs. An SLA describes
quality of service (QoS) and other commitments by a service provider in exchange for
financial commitments by a customer against an agreed schedule of prices and pay-
ments. GRIA allows service providers to advertise SLA offerings that are proposed by
customers during SLA negotiation. Service providers deploy application services
appropriate to their business operation. These services generate usage reports using
their own QoS criteria which may be qualitative (e.g. error conditions) or quantitative
(e.g. processing time, data transferred). GRIA uses these reports to monitor customer
usage and the level of commitments from existing agreements compared with avail-
able capacity.

3.2 GRIA’s Project Resource Registry

The contextualized project resource registry (PRR) allows project managers to regis-
ter different kinds of services and business data required in their project. Project
members, if they have the appropriate access rights, can use this information later
on for discovering required services in the context of business constraints, like CPU

Fig. 5. Project Resource Registry Architecture

514 U. Radetzki, M.J. Boniface, and M. Surridge

provided by an SLA, usage reports of services, etc. Furthermore, project managers
can use the registered information to keep track of signed SLAs, established trust
relationships based on approved trade accounts, services provisioned by signed SLAs,
etc. Thus, the PRR can act as a basis for business analysis and future business
strategies and decisions.

Fig. 5 depicts the software architecture of the PRR which consists out of five major
building blocks: configuration component, query translation component, life cycle
component, context extraction component and XML database backend.

The XML database backend stores all the registered information as XML docu-
ment and builds on the open source native XML database eXist[4]. eXist supports
performing queries in XPath or XQuery format and is used as the foundation for
ooXmlQL queries when discovering contextualised resources. We decided to use an
XML database, due to the fact that most resources in the context of SOI are described
already using XML. Although semantic representations are more expressive, the cost
of data translation and reliability of semantic technologies within an industrial context
remains to be proven.

The query translation component is required to translate ooXmlQL queries into
XQuery-based queries. In order to perform this task the translation component
demands knowledge of the RDM of the PRR. The configuration component is
responsible for setting up the RDM of the registry service. As explained in Section
2.1 different business scenarios require different RDMs. In the case of the PRR we
use the RDM which is represented in Fig. 2 containing business concepts we
described throughout this paper. However, if new concepts and relationships are
required, like new managed or unmanaged resources or new reference types, they can
be dynamically added to the existing RDM. Removal or modifications of concepts or
relationships, which leads to RDM evolution, is currently not supported and topic of
future work.

Fig. 6. Registry snapshot after SLA registration

 Contextualized B2B Registries 515

The life cycle component periodically makes updates and pulls data from regis-
tered entities. Especially usage record spend on SLAs and information about trade
accounts are important to be updated and pulled in order to allow project managers to
carry out business analysis and project members to select services which are appro-
priate for their current task. Further, the status of a resource could change over time as
well, for instance if a trade account is closed or a service becomes unavailable. Dif-
ferent policies could be applied to handle these status changes as well as the status
information could be used in queries, for instance to select only trade account which
are currently open.

The context information of a resource and the relationship to other resources en-
tirely depends on the type of resource a user registered. Therefore, we applied the
concept of dynamical selection of pluggable context extraction strategies. The context
extraction component is fulfilling the task of selecting an appropriate strategy for a
given resource. If a new resource type emerges, a new strategy can easily be discov-
ered and plugged in. However, if no specialized strategy can be found, a default strat-
egy will be automatically applied, which for instance stores the endpoint reference
(EPR) of the resource. In future, we also plan to define default strategies for accessing
and storing metadata based on standards like MEX[9] or WS-RT[19].

3.3 Registration and Discovery: A Business Use Case

In the following use case scenario we assume a project manager who registers an SLA
signed with a trusted SP and afterwards discovers SLAs in a specific business context.
The registration process starts with the EPR of the SLA which will be registered using
the registration interface of the PRR. In a first step, based on the EPR an appropriate
SLA context extraction strategy is selected. This strategy stores the EPR and the ac-
tual SLA under the corresponding business concepts as well as it establishes a rela-
tionship between these two objects (has/holdBy). Subsequent additional relationships
between objects of trade accounts (manages/managedBy), parent services (hasPar-
ent/hasChild), and usage reports (isUsageOf/hasUsage) are inserted. The final snap-
shot of the registered objects and relationships is presented in Fig. 6.

Depending on the kind of policy applied to the PRR it is also possible that a con-
text extraction strategy automatically registers missing objects, if a relationship exists
but the target object is missing. For instance, assume the object aService of Fig. 6 is
missing, but the relationship hasParent is identified by the SLA context extraction
strategy, then the corresponding service could be contacted and the required informa-
tion requested and inserted into the registry. To be able to register the information
about the service another context extraction strategy will be selected. This kind of
registration process cascades until all the required objects are registered by the differ-
ent strategies and the relationships are inserted.

Knowing the RDM the project manager can start formulating queries fulfilling
business requirements. One standard request is finding SLAs fulfilling different con-
straints. For instance the project manager might want to know, which SLAs provide
the specific application MSC.NASTRAN but the disc space spend on the SLAs in
their usage reports is not higher than 0.0. This might lead to SLAs which are not used
in the project at all and trigger an analysis of the circumstances why this kind of SLAs
is not used. The corresponding query of this request is illustrated in Fig. 7.

516 U. Radetzki, M.J. Boniface, and M. Surridge

Fig. 7 shows also how joins are used to navigate through the RDM and sub queries
are used to restrict these elements. The query starts with application metadata (con-
cept Application) and navigates through different relationships until it reaches the
EPR of an SLA (concept ReferenceSLA). The SLA as well as the EPR is returned
using SELECT. SLAs and applications are further constraint. The difference between
these two is that one use sub queries (RESTRICT) whereas the other use WHERE.
WHERE clauses are directly applied to documents which are represented by the cor-
responding variable. Sub queries restrict documents belonging to a specific variable
by restricting other documents that are related to this variable.

4 Conclusion

In this paper we presented a novel contextualized B2B registry that supports dynamic
registration and discovery of resources within management context to ensure that the
search space is constrained to the scope of authorized and legitimate resources only.
This kind of business-related contextualized discovery is a fundamental requirement
to move towards dynamic service-oriented business partnerships. The main contribu-
tion of our registry is twofold: an OWL-based Registry Domain Model (RDM)
supporting the specification of business concepts and relationships and a query

Fig. 7. Example query finding SLAs with specific business constraints

 Contextualized B2B Registries 517

language enabling contextualized query resources based on the RDM. We described
how the registry has been deployed in three case studies from important economic
sectors (aerospace, automotive, pharmaceutical) showing how contextualized
discovery can support distributed product development processes.

Acknowledgements

The SIMDAT project has received research funding from the EC's Sixth Framework
Programs (project EU IST-2002-511438 STP under the Information Society Tech-
nologies Programs).

References

[1] BioClip<Superscript>TM_</Superscript> an Annotation Express<Superscript>TM
</Superscript> Module, Inpharmatica (Galapagos), http://www.inpharmatica.co.uk/
BioClip/bioclip.htm

[2] Cuddy, S., Katchabaw, M., Lutfiyya, H.: Context-Aware Service Selection Based on
Dynamic and Static Service Attributes. In: IEEE Int. Conf. on WiMob, vol. 4, pp. 13–20.
IEEE Computer Society Press, Los Alamitos (2005)

[3] Electronic Business using eXtensible Markup Language (ebXML),
 http://www.ebxml.org/

[4] eXist - Open Source Native XML Database, http://exist.sourceforge.net/
[5] GRIA - A Grid For Today, IT Innovation Centre, http://www.gria.org/
[6] InforSense KDE (Knowledge Discovery Environment), InforSense Ltd., http://

www.inforsense.com/
[7] iSIGHT-FD, Engineous software, http://www.engineous.com/
[8] Kuck, J., Reichartz, F.: A collaborative and feature based approach to Context-Sensitive

Service Discovery. In: 16th Int. WWW Conf., 5th WWW Workshop on Emerging
Applications for Wireless and Mobile Access, Banff, Alberta, Canada (2007)

[9] Web Services Metadata Exchange (WS-MetadataExchange) - Version 1.1 (August 2006),
http://specs.xmlsoap.org/ws/2004/09/mex/

[10] Model Center, Phoenix Integration, http://www.phoenix-int.com/
[11] OWL Web Ontology Language, W3C Recommendation (Febuary 10, 2004),

http://www.w3.org/TR/owl-features/
[12] Radetzki, U., Leser, U., Schulze-Rauschenbach, S.C., Zimmermann, J., Lüssem, J., Bode,

T., Cremers, A.B.: Adapters, shims, and glue - service interoperability for in silico
experiments. Bioinformatics 22(9), 1137–1143(7) (2006)

[13] SIMDAT - Grids for Industrial Product Development, www.simdat.eu
[14] Universal Description: Discovery, and Integration (UDDI), http://www.uddi.org
[15] Web Services Addressing (WS-Addressing): W3C Member Submission (August 10,

2004), http://www.w3.org/Submission/ws-addressing/
[16] Toward converging Web service standards for resources, events, and management,

Version 1.0, http://devresource.hp.com/drc/specifications/wsm/index.jsp
[17] WS-I Basic Profile Version 1.0 (April 2004), http://www.ws-i.org/Profiles/BasicProfile-

1.0.html
[18] Web Service Group 1.2 (WS-ServiceGroup) (June 2004), http://docs.oasis-open.org/

wsrf/2004/06/ wsrf-WS-ServiceGroup-1.2-draft-02.pdf
[19] Web Service Resource Transfer (WS-ResourceTransfer) (August 2006), http://

schemas.xmlsoap.org/ws/2006/08/resourcetransfer/

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 518–529, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Bridging Architectural Boundaries
Design and Implementation of a Semantic

BPM and SOA Governance Tool

Christoph F. Strnadl

Software AG (Austria), Guglgasse 7–9, A-1030 Wien, Austria
christoph.strnadl@softwareag.com

Abstract. In order to increase IT and business agility or to improve IT systems
and business processes integration many organizations are currently
implementing business process management systems (BPMS) or adopting a
service-oriented architecture (SOA) paradigm. However, in doing so, IT
complexity will admittedly increase and IT managers then are in need of
effective governance techniques covering both strategic initiatives, BPM and
SOA. This contribution re-examines the problem domain in the novel Enhanced
Process-Driven Architecture (ePDA) model in order to systematically derive
the requirements for combined BPM and SOA governance. We then formulate
a semantic meta model capable of capturing necessary artifacts and describe its
technical implementation in Software AG's and Fujitsu's joint CentraSite
governance registry/repository. As "lessons learned" from several projects we
systematically derive governance benefits using the Analytic Hierarchy Process
(AHP) and highlight measures on software deployment issues.

Keywords: SOA Governance, BPM Governance, Business Process Manage-
ment, IT Governance, Analytic Hierarchy Process (AHP).

1 Introduction

Currently many IT organizations of large enterprises face mounting pressure towards
increasing IT and business agility and/or improving the integration of IT systems with
business processes. This has already enticed several IT departments to either
implement business process management systems (BPMS) or to adopt a service-
oriented architecture (SOA) paradigm. While each of these strategies is certainly
viable in itself, IT leaders now discover that, when implementing these initiatives, IT
complexity has increased noticeably. This situation is exacerbated by the fact that
quite a few IT executives lack effective management and governance processes and
tools for dealing with that growing amount of complexity.

This has prompted some IT departments to implement first generation (IT)
governance tools which either are rather IT system focused (the corresponding
attitude often called "Business Systems Management," BSM), or to remain with
classic "SOA registries". In both cases IT management now recognizes the limitations

 Bridging Architectural Boundaries 519

of these isolated approaches due to their lack of integration with each other: SOA
registries being agnostic about business process management (systems), and BSM
being ignorant about SOA and BPMS systems. This situation is aggravated by current
best practices acknowledging the need for a converging BPM and SOA ecosystem as
opposed to disentangled and separated implementation strategies, viz. a BPMS project
alone or a SOA strategy alone.

This paper addresses this disparate state of affairs and proposes methods and an
actual implementation architecture capable of bridging the currently isolated
architectural boundaries between BPM and SOA regarding their holistic
governance.

The organization of the paper is as follows: In Section 2 we first re-examine the
problem domain and the mission of combined SOA/BPM governance. Section 3
introduces a semantical model and the technical implementation chosen by
Software AG and Fujitsu to fulfill the requirements posited in Section 2. We
highlight our experiences from implementing or testing this solution in several
large organizations in Section 4 including a systematic benefits analysis based on
the Analytic Hierarchy Process (AHP) and a demonstration how software
deployment and lifecycle issues may (and must) be addressed as well by a holistic
governance solution.

2 Governance Requirements

2.1 Governance Definition

While we acknowledge that no universal and concordant definition of (SOA/BPM)
governance currently exists we have found the following pragmatic definition to
provide a good basis for further "customizing" an organization's governance
framework [1]–[3]:

SOA/BPM Governance specifies the decision rights and accountability framework
to encourage desirable behavior in the context of SOA and BPM. This consists of
leadership, organizational structure and processes to direct and control the
enterprise in order to sustain and extend the organization's strategies and
objectives by utilizing SOA and BPM methodologies and tools.

In a nutshell, SOA/BPM governance answers the following three questions:

1. Who decides and enforces
2. which SOA or BPM relevant questions
3. according to which decision making and enforcement processes?

We also urge the reader to take notice how this definition elegantly introduces both
design-time (arg. notions linked to decision making) and run-time (arg. concepts
linked to enforcement) related aspects of governance.

520 C.F. Strnadl

2.2 Enhanced Process-Driven Architecture (ePDA)

In order to capture all relevant (but not more) architectural layers and tiers we extend
the original Process-Driven Architecture (PDA) model [4] into the Enhanced
Process-Driven Architecture (ePDA). While the original PDA stays at a somewhat
superficial level sufficient to address the issues of bridging the business / IT divide on
a business executive level, we clearly admit the necessity of an additional level of
detail in order to effectively address IT governance issues.

Experiences from our projects strongly suggest that the resulting (limited)
complexity of the ePDA suffices to conduct even technical discussions (cf. Fig. 1).

July 2007ICSOC 2007 Software AG4

Business
Process
Layer

EXISTING IT SYSTEMS

Presentation
Layer

Technical
Integration
Layer

Service
Layer

H
U

M
A

N

PR
O

CE
SS

ES

«screen activity»
User Activity 1

«screen activity»
User Activity 2

BPMS

«activity»
Activity 1

«activity»
Activity 3

«activity»
Activity 2

EAI

«web service»
Application Service

«web service»
Application Service

«web service»
Application Service

ESB

«web service»
WS 2

«web service»
WS 3

«web service»
WS 4

Governance
Tier

Registry
Repository

TE
CH

N
IC

A
L

W
O

RK
FL

O
W

S

Fig. 1. Enhanced Process-Driven Architecture (ePDA) Model

On top of the existing IT systems and infrastructure layer the ePDA recognizes
four conceptually independent layers emphasizing different elements of a full-fledged
SOA including explicit business process management using business process
management systems (BPMS) and workflow management systems (WfMS) [5]–[7].

We would like to highlight the fact that the horizontal and conceptually
independent layers are explicitly linked by a vertical Governance Tier.

This architectural diagram already captures and depicts two fundamental
questions of SOA/BPM governance:

1. Which artifacts exist on a given layer, both at design-time and at run-time?
2. How are different artifacts linked to each other — not only within a single layer

but also to artifacts of a different layer?

 Bridging Architectural Boundaries 521

We take particular notice of issue (2) which is brought about by the necessary
orchestration (or, vice versa, decomposition) of functionality embodied in one
layer by artifacts from another (higher/lower) layer: Business processes utilize
different screen templates and forms and, simultaneously, consist of a suitably
structured set of activities which, in turn may be composed by appropriately
"orchestrated" or "choreographed" (Web) services wrapped around modules of
existing applications. We also observe that the notion of "linkage" of services also
explicitly encompasses run-time interactions and dependencies, situations of
service availability (or, rather, unavailability) and service level agreements (SLA)
and SLA management

Contrary to question (1), which may be addressed within a simple registry
approach (viz. by employing a directory), issue (2) requires a different — and as we
demonstrate, a semantic — Ansatz.

2.3 Domain Meta-model

Based on the ePDA and the observations in Subsection 2.2 above we have extended
the model introduced by [8] to develop the following Domain Meta-Model (cf. Fig. 2,
abridged).

July 2007ICSOC 2007 Software AG5

Atomic Activity

Activity

Sub Process
Control Flow

Data Flow

Information Resource

Data Repository

Software

Resource

Traditional Resource

Application

Event

Process Participant

Internal

External

Human

RoleOrganizational Unit

«association»
Process Hierarchy

«association»
Org’l Hierarchy

«association»
Orchestration

Business Description

Technical Description

WSDLService

SIMPLIFIED
Process

Fig. 2. Domain Meta-Model

522 C.F. Strnadl

This model not only captures relevant entities or concepts within a particular layer
of the ePDA but also explicitly incorporates associations between artifacts
irrespective of their layer. We also like to point out how named associations are used
to specify a hierarchy or taxonomy within artifacts of the same "type" (e.g., the
«association» "Process Hierarchy" classifying artifacts of "type" Process).

2.4 SOA and BPM Specific Governance Requirements

Based on the definitions and ePDA architecture given above our SOA/BPM
implementation pilots and projects suggest the following system-level and
organizational requirements for a holistic SOA and BPM governance. In all
circumstances these requirements would apply to design time and, mutatis mutandis,
run-time environments equally.

• identification and description of artifacts (e.g., services, business processes,
activities, resources, roles, etc.) in the sense of a registry

• search & locating capabilities (during run-time this also involves the detection of
rogue, i.e., unregistered, services)

• service discovery, binding, and (service) endpoint management
• SOA service and process lifecycle management support
• means for dynamically invoking services
• extensible data model (i.e., capability to add user-defined new types of artifacts to

one's model)
• classification of artifacts within user-defined taxonomies
• association of artifacts with other artifacts across architectural layers or tiers
• repository functionalities (in the sense of providing a data store)
• notification mechanisms for actors involved in SOABPM Governance processes
• validation capabilities (e.g., adherence to certain standards and policies)
• policy definition, monitoring, and enforcement mechanisms (emphasis here is on

run-time monitoring, enforcement and security aspects)
• general administrative aspects including accounting functionality, monitoring of

service level agreements (SLAs), and customizable views to partition access to
stored artifacts

• reporting and analysis mechanisms supporting continuous improvement processes
and optimization)

3 Technical Implementation

3.1 Implementation Meta-model

In order to satisfy SOA/BPM governance requirements as specified in Section 2
Software AG and Fujitsu have chosen the following Implementation Meta-Model
when developing the CentraSite™ SOA/BPM Governance solution (cf. Fig 3. below).
The meta-model is based on the JAXR standard (Java API for XML Registries [9],
[10]).

 Bridging Architectural Boundaries 523

While it is evident that the domain meta-model (cf. Fig. 2) is ill-suited to be
natively implemented in a strict relational (database) model requiring tedious
normalization steps the power of an entity-relationship model (ER) should, in
principle, suffice. There are two reasons, though, which have prompted us to go
beyond traditional ER models towards higher level semantics:

• language and technology proximity of the meta-model to the field of semantics;
• preparation for the Semantic Web or Semantic Web Services

When comparing the conceptual power of our implementation meta-model with
other initiatives in the "Semantic Web" or "Semantic Web Services" (SWS) areas we
clearly observe that our model is neither as rich as pure RDF or OWL [11] nor does it
fully address requirements or capabilities of SWS like WSMO (Web Services
Modeling Ontology [12]) or SWSL (Semantic Web Services Language, [13]–[15]).
On the "ontology spectrum" [16], though, the expressive power of CentraSite's
information model clearly exceeds any pure thesaurus or taxonomy and nearly
reaches the level of a "Conceptual Model".

July 2007ICSOC 2007 Software AG6

ExtensibleObject

Slot

name : String
type : String
values: Collection

RegistryObject Concept

parentConcept childrenConcepts

Classification

ClassificationSchemeRegistryEntry

classifiedObject

classifications 0..*

concept concept

classificationScheme

*

*

0..1

0..* 0..* targetObject

Association

sourceObject

0..*
associations

associationType
1

restricted to 15 standard
association types of JAXR

Fig. 3. CentraSite's information model

Identity of different artifacts is maintained through a unique UUID for every
RegistryObject (implemented as JAXR Key interface; not shown in Fig. 3). This
allows correlation of CentraSite objects to other management level systems that have
their own identity schemes for the "same" entity.

524 C.F. Strnadl

We also note that the CentraSite's current information model does not (yet) include
ad hoc classification schemes such as tagging or social bookmarking
(http://del.icio.us style).

3.2 Implementation Architecture

The actual implementation architecture of CentraSite is illustrated in Fig. 4 below.
Software AG's native XML database TAMINO serves as the underlying data store

providing security, versioning, and the basic metadata manager. From point of view
of any user of CentraSite, though, TAMINO is completely transparent and hidden by
the generic CentraSite API for SOA/BPM Governance activities, and a set of
administrative APIs either utilizing Software AG's proven SMH (System
Management Hub) technology or the Java Management Extension (JMX).

The CentraSite APIs are principally based on open international standards, namely

• Registry functionality: JAXR (Java API for XML Registries, [9], [10])
• Repository functionality: WebDAV (Web Distributed Authoring and

Versioning, [17])

For convenience one can also access the registry functionality by UDDI 3.0 [18].

July 2007ICSOC 2007 Software AG2

Security
Versioning

CentraSite™
Data Store

Metadata Manager

CentraSite™
Administration APIs CentraSite™ APIs

JMX API SMH

Administrative
Client

JMX Client

System
Management

Hub

WebDAV UDDI 3.0

XQuery for Java

JAXR

3rd Party
Tools

Products & Tools – Community, Software AG, Fujitsu

Fujitsu & Software AG
Suite Components

Java Registry
Browser (Applet)

3rd Party Tools

L
O

O
S

E
 C

O
U

P
L

IN
G

T
IG

H
T

C
O

U
P

L
IN

G

Eclipse
Registry
Browser

Eclipse
Reporting

GUI

CentraSite™
Control

(WebGUI)

Fig. 4. CentraSite implementation architecture

Initially, our implementation has been biased somewhat towards design time
governance functionality at the expense of run time governance. With the successful
completion of Software AG's acquisition of webMethods Inc. (USA) per July 2007

 Bridging Architectural Boundaries 525

we are currently working on extending CentraSite with run time governance
functionality based on webMethods' Infravio product, notably in the areas of policy
management and enforcement.

4 Experiences

In this Section we want to highlight experiences and "lessons learned" from
several large-scale implementations, pilot projects, or proof-of-concept situations
with CentraSite. In order to preserve anonymity of our CentraSite customers
individual "lessons learned" are not attributed to a particular client and have been
disguised.

4.1 Governance Benefits Analysis

When attempting to measure the benefit of (good) governance or management
practices and processes, many if not all traditional, mostly accounting oriented
methods such as ROI (return on investment) or DCF (discounted cash flow) analysis
miserably fail.

July 2007ICSOC 2007 Software AG3

OPTION

ORGANIZATION

PROCESSES

Sub processes

sub process
objectives

ROLES & ACTORS

Objectives

Activities

FEATURES

OBJECTIVES Cost efficiency Customer satisfaction Flexibility

Analyst/
Designer Architect Tester

complexity
reduction

extensible
data model

classifications
taxonomies

simple
usage

visibility
transparency

search

APIs &
interfaces

user defined
Views

metadata

external links

versioning

associationsend to end
Management

Development

Requirements
analysis
Change Management

Service Reuse
Software quality

Operations

Incident Mgmt
Problem Mgmt
Change Management

operational excellence
availability

Management

Governance (IT,
Corp.)
Account Management

cost efficiency
service quality

Support

Invoicing
Controlling

accuracy
timeliness

Developer
Resource
Manager

CentraSite™

notifications

documentation

reporting

Security

System Mgmt

Policy Def.

auditing

analysis

SLA Definition

Reuse
Search
Find

Design
Reuse
Portfolio Mgt
Lifecycle
Mgmt

Reuse
Error
localization

error search
test
coverage
test case
generation
search
documen-
tation

Service
Management

Deployment
Management

Management
(in general)

plan
monitor
control

monitoring
reporting
controlling
assessment of
impacts

Error localization

Impact analysis

Determination of
responsible people

plan

monitoring
reporting

IT Function

Other Tool

Fig. 5. AHP benefits hierarchy of a SOA/BPM Governance tool

Obviously, this is due to the fact that governance in itself does not create business
value on its own (that is achieved through value-adding business processes), but only
indirectly contributes to organizational efficiency and effectiveness.

526 C.F. Strnadl

In our projects we have been very successful in applying the Analytic Hierarchy
Process (AHP) [20], [21] in order to capture qualitatively and quantitatively the
indirect manner in which governance operates.

Within the AHP we use the so-called Forward Planning in the following 4-level
hierarchy as shown in Fig. 5:

• Features — focusing on the particular features or properties of a SOA/BPM
governance tool;

• Roles & Actors including their objectives and activities;
• Processes of the IT organization including suitable sub processes and process

objectives. Note that the five horizontal separately displayed processes ("Error
Localization", "Impact Analysis" through "Monitoring & Reporting") apply to
all actors equally);

• objectives of the corporate IT function

As usual within the AHP a pair-wise comparison process of lower level elements
with respect to their influence on upper level "criteria" lets one determine a ranking of
positive contributions of SOA/BPM Governance (not shown in Fig. 4). In addition,
the very same AHP hierarchy could be used to compare and select different
SOA/BPM Governance tools on the OPTIONS Layer (the "Other Tool" in Fig. 5).

4.2 Software Deployment Processes

This Subsection deals with the question how to integrate the demands of a
coordinated software deployment and lifecycle process into the proposed governance
solution.

In our projects the differentiation of 4 separate service lifecycle stages with a total
of 12 states turned out to be sufficient in order to control large SOA implementations
at a size of several thousands services (cf. Fig. 6).

For extremely large SOA implementations at a range of 104 or more services the
deep functional specialization of the IT organizations often requires an additional
level of (and an order of magnitude more) SOA service lifecycle stages, though. For
instance, in one of our largest SOA governance projects at a global financial services
company with over 25,000 deployed SOA services the ARCHITECTURE stage alone
comprised about 15 different states.

However, we had to supplement the traditional roles in the software development
lifecycle by three additional, SOA specific roles: SOA Librarian, SOA Service
Designer, and SOA Architect. These roles suffice to effectively cover the most
relevant use cases in (SOA) service lifecycle management:

• match business requirements
• design new service
• develop (new) service
• deploy (new) service
• test system

• set service productive
• apply temporary production change
• conduct run-time analysis
• conduct impact analysis
• undeploy service
• retire service

 Bridging Architectural Boundaries 527

In that connection we also have found the role of an SOA Architect to be much
stronger (i.e., endowed with more formal decision authority) than that of a traditional
Software or IT Systems Architect.

May 2007ICSOC 2007 Software AG7

ARCHITECTURE DEVELOPMENT TEST PRODUCTION

Requested

Designing

Designed Implementing

Implemented

Testing

Tested
Productive

Productive
disabled

Retired

Design approved

Handover to
Production

4 DEVELOPMENT STAGES

12
 S

T
A

T
E

S

Fig. 6. Service lifecycle states and stages

The full set of lifecycle specific roles is depicted in Table 1 below.

Table 1. SOA Roles

Role Responsibilities
SOA
Librarian

• service registry and consistency
• establishes rules and guidelines for services
• approves additions and changes to service registry content

Business
Analyst

• owns business requirements
• represents potential service consumers
• ensures business requirements are met

SOA Service
Designer

• creates technical service design from business requirements for
the application developer to implement

528 C.F. Strnadl

Table 1. (continued)

SOA Architect • logical and physical architecture of the SOA/BPM landscape
• approves application architectures

Infrastructure
Architect

• planning and organizing the network, server, and
communications infrastructure

Application
Developer

• implements applications from specifications by business
analysts and service designers.

• this includes deployment packages for the applications.
Tester • tests the application provided by the application developer,

possibly with assistance from the administrator
Administrator • SOA/BPM runtime environment

• installs and uninstalls applications and infrastructure
components

Operator • day-to-day operation of applications
• starts and stops applications
• handles exceptional circumstances, possibly by acquiring

assistance from administrators and application developers.

5 Conclusions

This contribution demonstrates how different requirements of holistic SOA/BPM
governance can be successfully addressed by current technology standards, practices
and actual products.

Based on the Enhanced Process-Driven Architecture (ePDA) we show that a
commonly tried "registry" Ansatz alone is not sufficient to bridge the different and
necessary layers of the architecture but needs to be complemented by suitable
semantic methods at a sophistication level of a "Conceptual Model".

Building on Software AG's and Fujitsu's implementation of the corresponding
information model in their CentraSite™ SOA/BPM Governance tool we highlight
experiences and lessons learned when implementing SOA/BPM governance in large
and complex organizations. Specifically, we derive a fairly generic SOA/BPM
benefits hierarchy using the Analytic Hierarchy Process (AHP), and define a suitable
Service Lifecycle Model comprising four stages and 12 states.

Finally, and concluding from our implementation projects, we want to stress the
fact that SOA/BPM Governance is definitely more an organizational challenge than a
technical one — as long as organizations use sufficiently advanced information
technology, such as CentraSite.

Acknowledgments. The author wants to acknowledge the stimulating and intriguing
discussions within Software AG’s (global) SOA Infrastructure & Governance Group
headed by Javier Camara Melgosa.

Special thanks (again) go to Javier Camara (Software AG Spain) for meticulously
and thoroughly reading and commenting an earlier version of this paper (key word:
run-time governance) and Christian Schultes (Software AG Austria) for providing en
passent valuable information about international real-life SOA Governance projects.

 Bridging Architectural Boundaries 529

We also appreciate the comments of the anonymous reviewers which helped in
sharpening certain aspects of this paper.

References

1. Weill, P., Broadbent, M.: IT Governance. How Top Performers Manage IT Decision
Rights for Superior Results, pp. 30–34. Harvard Business School Press, Boston, MA
(2004)

2. IT Governance Institute (ITGI), CobIT Executive Summary Version 3, p. 3 (July 2000)
3. IT Governance Institute (ITGI), CobIT Version 4. Rolling Meadows, IL: IT Governance

Institute, p. 5
4. Strnadl, C.F.: Aligning Business and IT. The Process-Driven Architecture Model. Inf.

Syst. Manage 23(4), 235–241 (Fall 2006)
5. Smith, H., Fingar, P.: Business Process Management. In: The Third Wave, Meghan-Kiffer

Press, Tampa, FL (2003)
6. Weske, M., van der Aalst, W.M.P., Verbeek, H.M.W.: Advances in business process

management. Data & Knowledge Eng. 50, 1–8 (2004)
7. van der Aalst, W., van Hee, K.: Workflow Management. In: Models, Methods, and

Systems, ch. 5, MIT Press, London, UK (2004)
8. List, B., Korherr, B.: An Evaluation of Conceptual Business Process Modeling Languages.

In: Proc. 21st Annual ACM Symposium on Applied Computing, Dijon, France, 23-27
April, 2006, pp. 1532–1539. ACM Press, New York (2006)

9. Najmi (ed.): Java<Superscript>TM</Superscript> API for XML Registries (JAXR)
Specification 1.0. SUN JSR-093 (April 10, 2002)

10. Perrone, P.J., Chaganti, V.S.R.R., Schwenk, T.: J2EE Developer’s Handbook, ch. 13.
Sams Publishing Developer’s Library, Indianapolis, IN (2003)

11. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M., Boekstra, J., Erdmann,
M., Horrocks, I.: The Semantic Web: The Role of XML and RDF. IEEE Internet
Comp. 4(5), 63–73 (2000)

12. See directly: www.wsmo.org
13. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M.N., Paolucci, M., Sheth, A.P.,

Williams, S.: A Semantic Web Services Architecture. IEEE Internet Comp. 9(5), 72–81
(2005)

14. Hepp, M.: Semantic Web and Semantic Web Services. Father and Son or Indivisible
Twins? IEEE Internet Comp. 10(2), 85–88 (2006)

15. Zhou, C., Chia, L-T., Lee, B-S.: Semantics in Service Discovery and QoS Measurement.
IT Professional 7(2), 29–34 (2005)

16. Daconta, M.C., Obrst, L.J., Smith, K.T.: The Semantic Web. A Guide to the Future of
XML, Web Services, and Knowledge Management. Indianapolis, IN: Wiley, p. 157 (2003)

17. See directly, www.webdav.org
18. Clement, L., Hately, A., von Riegen, C., Rogers, T. (eds.): UDDI Version 3.0.2. UDDI Spec

Technical Committee Draft Dated 20041019. OASIS, http://uddi.org/pubs/uddi_v3.htm
19. Shapiro, R. (ed.): XML Process Definition Language Version 2. Lighthouse Point, FL:

Workflow Management Coalition, Doc. Nr. WFMC-TC-1025 (version 2) (October 3, 2005)
20. Saaty, T.: The Analytic Hierarchy Process. Planning, Priority Setting, Resource

Allocation, McGraw-Hill, New York, NY (1980)
21. Saaty, T.: Decision Making for Leaders.The Analytic Hierarchy Process for Decisions in a

Complex World, 3rd edn. 2001, Lifetime Learning Publications, Belmont, CA (1982)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 530–545, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SOA and Large Scale and Complex Enterprise
Transformation

Mansour Kavianpour

Executive Architect, Unisys Corp USA
Mansour.Kavianpour@Unisys.com

Abstract. Service-oriented architecture (SOA) is an architectural approach to
development that turns traditional techniques upside down. SOA encourages
organizations to think in terms of actual business services and the associated
data, rather than low level technology details. Instead of developing
applications from the ground up, SOA frees organizations to start with high
level business definitions for data, interfaces, documents, and processes. SOA
then maps these high level service definitions onto new or existing
infrastructure, regardless of the details, location, or programming language in
which the systems were written1,2.

In this paper we share our practical experience regarding application of SOA
to a very large and complex enterprise transformation. By transformation we
mean modernization of legacy applications, operating systems, server
components, development of new applications, and business process
automation with incremental deployment option using either a traditional
distributed heterogeneous environment or a set of Virtual machines deployed on
a set of utility computing platforms (on-demand computing).

Transforming a large and complex enterprise requires digital visibility into
the holistic view of the enterprise. This holistic view is captured as a set of
interrelated models. Models are digital representations of the enterprise
business architecture, the associated technology architecture, and their semantic
dependencies. Models are stored in a living and manageable repository with
impact analysis capability to accommodate for SOA modernization to be driven
by the business needs.

We describe our 3D Visible Enterprise (3D-VE)3 modeling methodology as
the analysis phase of our SOA approach. We then describe how such analysis
guided us through modernization styles, where each style prescribes the
transformation of a legacy entity into its modernized form while following our
SOA governance. In this approach the modernization requirements are mapped
into the appropriate transformation styles and finally to technical
implementation. The mapping follows our SOA governance, a set of guidelines

1 Principles of SOA Design, A whitepaper from Cape Clear Software Inc.
2 Best Practices for SOA with Cape Clear ESB.
3

 3D VE (3 Dimensional Visible Enterprise) is the Unisys modeling approach to creating a more
visible enterprise. It's a proven business and systems modeling framework and methodology
that integrates business vision with IT execution to create organizational visibility
(www.unisys.com).

 SOA and Large Scale and Complex Enterprise Transformation 531

regarding transformation style selection, and the SOA design & run time
governance.

Relevant SOA standards and products supporting modernization
implementation are used to carry the implementation. In particular, some aspect
of modernization approach and Unisys SOA governance are described as well.

In this paper we tried to describe three important areas of our overall SOA
solution methodology, namely the 3D VE modeling, the Architecture Driven
Modernization and applied SOA governance to the ADM style. Our plan is to
publish subsequent papers each describing the details of our SOA solution
methodology, specifically the modeling phase, the tools and methods used to
implement the applied ADM styles, criteria selecting ADM style, the SOA
governance and the associated SOA standards and products.

The paper concludes with lessons learned through such a complex
transformation, especially the importance of the front-end business process
analysis leading us to identify the components or a subset of the enterprise
computing environment for systematic and incremental SOA transformation.
Finally we discuss some of the pros and cons of the transformation applying
SOA.

1 Introduction

To protect our contractual obligation we would like to avoid to reveal the name of our
client organization instead we use the term “the enterprise”. The enterprise subject to
the transformation is a multi billion dollar global pharmaceutical company with
distributed IT infrastructures supporting its daily businesses. A modest inventory of
such a complex environment includes more than 600 applications, over 3000 window
stations, 3000 UNIX stations, 10s of VAX machines, mainframe computers and
numerous data sources, middlewares, massive storage and network installations,
proprietary securities, with software-enforced US government policies, and
regulations with complex existing firewalls, numerous business and employee portals,
web and complex financial applications.

The transformation asks for replacement of old computers, consolidation of
applications, data sources, and middleware into a secure SOA environment. The
transformation further asks for enterprise architecture with a deployment option on an
on-demand computing platform using virtualization technology. The overall
transformation will take 5 years with multiple phases.

Transformation can not be performed in isolation. For such a large and complex
enterprise the transformation requires digital visibility into the holistic view of the
enterprise. This holistic view a) allows systematic identification of hosted
applications, and b) facilitates for business impact and risk analysis of the hosted
applications running on the retired VAX machine. Similarly other platforms like
MVS, HP-3000, AS400 and the like will eventually require to be modernized and
therefore their business impact must be known before any modernization activities.
Similar to a large scale, distributed software development where the design phase
plays the critical role in success of the project, capturing holistic views of the existing
enterprise for analysis is the key to the successful transformation. It is this level of

532 M. Kavianpour

visibility that allows for systematic impact analysis, modernization and consolidation
planning, the associated risk assessment and mitigation and project planning. Section
Unisys 3D VE Methodology briefly introduces the Unisys 3D VE transformation
methodology. This section sets the stage for our next step in our road map, the actual
modernization.

Once the elements of the enterprise are selected for the modernization, the
modernization itself requires a proven method. Unisys adopted Architecture Driven
Modernization (ADM) which is an IT Modernization discipline using a model-driven
approach. Unisys ADM is based on the Object Management Group (OMG) Model
Driven Architecture (MDA)4. We apply this method to each step of transformation to
implement the required modernization. Section Architecture Driven Modernization
briefly describes our ADM transformation approach.

Our target enterprise architecture must address some challenging requirements. For
example the client wanted an agile architecture to allow non intrusive application
replacement, integration, data migration, application modernization, server
modernization, and middleware and database consolidation. We adopt SOA with
supporting governance. Without architecture governance ad-hoc transformation will
soon create a costly IT chaos. Section SOA Architecture and Governance briefly
describes the SOA governance we applied to each transformation styles.

The final SOA environment accommodates for two radically different deployment
architectures, namely a traditional distributed network computing, or an on-demand
Real Time Infrastructure (RTI) computing platform. The Unisys RTI approach is not
discussed in this paper. We believe, due to its complex nature, a separate paper should
be allocated to this topic. It is worth to mention that our RTI approach takes the on-
demand computing to a new level where the demand for resources are detected at
runtime and dynamically allocated.

Section Conclusion highlights the lesson we learned during the design and the
description of the road map of the transformation. Some specific application of SOA
technology that helped us during the transformation design is highlighted as well.

2 Unisys 3D VE Methodology

Transforming large and complex environments require modeling and blueprinting of
enterprise subject to transformation in form of digital models that provide risk free,
predictable, repeatable and cost effective transformation.

The 3D Visible Enterprise (3D-VE) is the Unisys modeling approach. 3D-VE
makes visible the relationships between the business and the technology that supports
it. It reveals the connections business strategy, business process, infrastructure and
traceability. It shows how infrastructure applications, hardware and management
processes work together. And it anticipates the results through impact analysis and
"what-if" simulation of proposed changes.

4 Model Driven Architecture (MDA) is a framework based on the Unified Modeling Language

(UML) and other industry standards for visualizing, storing, and exchanging software designs
and models. MDA promotes the creation of machine-readable, highly abstract models that are
developed independently of the implementation technology and stored in standardized
repositories.

 SOA and Large Scale and Complex Enterprise Transformation 533

Our methodology takes a holistic view across all dimensions of an enterprise. This
holistic view includes modeling of Enterprise’s Business Architecture and Technology
Architecture. Modeling the business architecture includes modeling the Enterprise’s
Business Strategy and Business Process while modeling the technology architecture
includes modeling of the Enterprise Applications and Infrastructure components.

Blueprinting provides a unique, four layered structure that reveals the complex
relationships between business strategies, business processes, applications, and the IT
infrastructure. By making these relationships visible, a high degree of traceability is
achieved — making response to change a reality. This approach enables capture of
Enterprise’s’ organization knowledge and end-to-end dependencies in a number of
artifacts which continuously maintained in a Repository.

The processes involved in building the relevant Blueprints (aka knowledge
repository) take two paths. The first path captures the Enterprise’s business models in
a number of logically related layers using existing documentations and SMEs. These
layers, as defined below, are abstracting the Enterprise overall operations. Artifact
models specific to each layer will be developed using Unisys 3D Blueprinting tools.
A quick summary of sample Blueprints are given below. These models are all
developed using ProVision5.

 Business Visions and Operations Models -- Layer1 artifacts: At this level we
capture the Enterprise’s organizations, goals and business opportunity models.
The data is gathered using organization charts, company goals and interview
with management.

 Business Process Models – Layer2 artifacts: At this level we capture the
business processes fulfilling organizations’, goals’ and opportunities’ captured
in Layer1. These models are captured as Business Swim Lanes and the Business
Interaction Model. The data regarding business processes are gathered via
interview with business people and subject mater expert.

 Functional and Application Models – Layer3 artifacts: At this level we
capture Business Use Case Model, Cost Model, and Deployment Model related
to business processes capture in Layer2. In most cases we discovered that
business use cases for identified processes must be developed from scratch.
Similarly we have to develop the cost model and deployment model. The data
for creating these models usually do not exits and has to be developed.

 Infrastructure Models – Layer4 artifacts: At this level we capture
Infrastructure Service Architecture Model, Infrastructure Service Usage
Specification model supporting IT components captured in Layer3. These
models capture application and node topology (the actual IT components
topology). The data required to develop this model is gathered using our
network agent toolset. Metadata about applications, their locations, IP address of
servers, etc. are all gathered and used as input to develop the infrastructure
models.

These models once are captured are the foundation for delivering an intelligent
infrastructure vision. They are used to abstract and represent data and metadata

5 We have customized Proforma Provision modeling tool with Unisys Meta schema to allow

the development of 3D VE models.

534 M. Kavianpour

describing the various IT components, their dependencies and relationships needed
for transformation as well as a knowledgebase to realize a real-time infrastructure.
The models are kept and managed in a repository. A graphical representation of the
3D VE is illustrated in the following diagram, the layer and the dependencies are high
lighted.

If you can’t model it you can’t fully understand or predict
behavior

If you can’t model it you can’t fully understand or predict
behavior

Business operations are formally modelled in order to
share and scale best practices

Strategic Goal Model,
Measurement Model

Process & Organization
Models

Information & Component
Models

Infrastructure & Topology
Models

• Traceability is the
backbone for
maintaining and
managing the
alignment
between business
and IT.

Business and IT Alignment

Models were used for impact analyses. For example, the organization artifact
model (organization model captured at layer1) is traced to one or more associated
business processes (business process swimlane captured in layer2). The dependency
implies that the Enterprise organization uses certain business processes. Similarly,
each business process will be traced to its business use cases (business use case model
captured in layre3), and finally each business use case artifact will be traced to
application and computing node (Infrastructure Service Architecture Model captured
in layer4).

We needed this level of visibility in order to decide on partitioning and isolating
the legacy entities to be transformed into the new SOA environment. This living and
maintainable repository of models and multi dimension traceability provided a
complete enterprise view to the subject Enterprise business operation.

We used the business process workflow analysis (a top down analysis) to improve
the existing business processes, identify processes creating backlogs, identify
unwanted processes, etc. These activities are ProVision specific and are not discussed
here. Once improvement identified, we used the Impact Analysis tool to identify risks,

 SOA and Large Scale and Complex Enterprise Transformation 535

formulate risk mitigation, estimate cost before starting the modernization project. We
used Impact Analysis for removing server, or application(s) to assess and measure the
impact on the Enterprise’s business operation (a bottom up analysis).

In summary, the repository of models helped us with modernization
implementation planning, prioritizing and planning for retirement of the existing
components, consolidation, and preparation of knowledge extraction, and application
of our Architecture Driven Modernization (ADM) aka Enterprise Modernization
methodology.

The captured as-is models are enhanced with more related data during
modernization analysis phase. We applied our ADM methodology to actually make
the implementation decision which transforms a legacy entity into the desired target
SOA component following our SOA governance.

In summery the repository of models, among others, provided numerous
advantages. For example:

• Better strategic decision making for new modernization projects such as a
legacy application replacement, server, database, and middleware consolidation.

• Helping with phasing and incremental transformation planning.
• Allowed the organization to identify, across the whole portfolio; exactly what

processes, business rules, and application code are impacted by a change
(market, legislative or otherwise). A process we used to identify and select
applications subject to modernization, the respective project plan, risk and risk
mitigation plan associated with the modernization.

• The repository became a key business asset, maintained and upgraded just as
key operational and decision support systems are.

• It used as the source for Business Process Improvement and automation.
• It enabled for systematic identification of data sources, applications, external

systems used internally or externally collectively called “touch points” to help
with integration architecture, estimating and managing integration cost, risks
and overall project management.

• Used as a secure repository for generating reports for government regulatory
such as Sarbanes-Oxley.

• Used as a decision making for the overall consolidation.

Next section takes us into the ADM method and describes how we applied ADM to
each entity subject to modernization.

3 Architecture Driven Modernization

Management of enterprise critical business knowledge starts with capture of the
business architecture/organization knowledge in form of several models – both the
current architecture and the new one as it is created. Business models in support of
the model driven approach are the best way to do this. As modernization process
starts and a particular process and its corresponding application(s) are selected, the

536 M. Kavianpour

impact to the existing business model and propagation of such change must be
analyzed. Model-driven approach supports automated forward engineering of the
business rules into services that can ultimately be hosted and executed in a .NET
framework, a J2EE app server, a Web server, an ORB server, a JVM, or any
proprietary runtime environments.

Unisys IT Modernization Framework is based on the Object Management Group
(OMG) MDA standard. It is a framework that helps to define and analyze major
enterprise transformation styles. Each transformation style requires Knowledge
Mining and Abstraction (KMA). We used the ADM (1 + 5)6 mutually complimentary
transformation styles to address the enterprise modernization requirements. In this
approach the modernization requirements are mapped to the appropriate ADM
transformation styles and finally to technical implementation. Relevant standards and
products addressing modernization requirements are used but not discussed here. The
Technical Implementation is actually the fruit of the ADM analysis which helped us
to formulate standard SOA solutions based on available widely used vendor products.

Unisys IT Modernization Framework
Enterprise IT Modernization includes understanding, monitoring, maintaining,
upgrading and replacement of the existing Enterprise applications. It relies on mining
knowledge from existing applications and its abstraction to the level required for the
specific modernization project. All IT Modernization styles utilize the outcome of the
KMA effort in one way or another. The IT Modernization Framework is organized
along two dimensions:

1- Scenario – a scenario is a distinct type of IT Modernization effort. The major
IT transformation styles, also known as 1 + 5 ADM building blocks are:

o One
• Discovery

o Five
• Refactoring/Consolidation
• Translation/Porting
• Wrapping
• Replacement – Redesign/COTS
• Orchestration

2- Purview – a purview is a collection of artifacts at a given level of abstraction.
All ADM building blocks involve effort in Knowledge Mining and
Abstraction (KMA).

The outcome of the KMA building block is a set of artifacts in the form of a
model or a less formal description of the existing application at required level
of abstraction. These artifacts are used as an input for each of other 5 ADM
building blocks. These models also provide a single point of maintenance, a
place that captures the business rules in business-like structured English and
business processes in easily readable formats.

The following diagram gives an abstract view of the Unisys ADM Framework.

6 They are (Discover) + (Refactor, Translate, Wrap, Replace and Orchestrate).

 SOA and Large Scale and Complex Enterprise Transformation 537

ADM Definition

The many scenarios can be represented by combinations of six
basic modernization building blocks (a.k.a. Unisys ADM Style)

Architecture-Driven Modernization is the process of understanding
& evolving existing software assets for purposes of

Translate

Wrap Replace Orchestrate

Refactor

Discover

• application portfolio management
• code improvement
• programming language translation
• integration
• platform migration
• data migration

— Object Management Group ADM Task Force

• consolidation
• data warehousing
• reuse
• package selection
• service-oriented architecture (SOA)
• model-driven architectures (MDA)

The ADM building blocks are orthogonal in the sense that they require different
models produced as a result of the KMA effort and are complimentary. For example,
knowledge discovery process may apply to business applications running on the VAX
Open VMS, while Orchestration applies to ready-to-go application services. These
building blocks serve as implementation selection category for our Enterprise
modernization.

The ADM building blocks allow composing styles with the following common
characteristics - at the beginning of scenario execution, the existing Enterprise’s
applications are analyzed and at the end – a target application is created. The target
application replaces the existing application and satisfies the same (or enhanced/
modified) requirements as the existing application.

Styles or their combinations may apply to any modernization. For example, a
typical modernization may require Discovery of existing environment and
applications, Refactoring/Consolidation of existing applications (packaged app or
custom app), Translation/Porting of an old system, Wrapping of legacy systems,
Replacement/ Redesign of legacy components with some COTS, exposing existing
and new applications as services and Orchestration of these services, or combination
of the above. Our SOA governance has been used as an enforceable set of guidelines
for development of the target application in each scenario.

The detail of “how” each ADM style are implemented will be published in future
and do to space limitation are not discussed in this paper. Instead the high level
descriptions of each transformation style are introduced below. Due to diversity of
different Enterprise Modernization requirements, Unisys has established partnerships
with a large number of translation and migration tool vendors. We purposely avoid
naming any vendor in this paper.

538 M. Kavianpour

Discovery – Remember the 3D VE analysis helped us to pinpoint the application
components of the old architecture subject to modernization. This process as
described above is driven by the business needs. The Discovery phase is about
analysis of application component subject to modernization. The following diagram
shows the high level process using Unisys Rule Modeler7.

Knowledge
Discovery

Documents
Applications

codeSMEs

New Rules

New Process

Unsupported
Current needs

Requirement
Analysis

“As-Is” Model
Processes

Rules
Vocabulary

To-Be Model
Processes

Rules
Vocabulary

Implementation
Strategy

The “As-Is” Model will be extracted from the legacy application. The source for
knowledge discovery is the existing application source code, existing documentation
as well as SME (if is available). The main information captured at this level is the
existing business processes, the existing business rules and the existing business
vocabulary. A business process may include one or more automated and manual
activities to perform a business function (e.g., fulfill an Order). A business rule
specifies conditions/terms which must be satisfied (e.g., government legislation, etc).
A vocabulary represents a business term such as “employee”, “address”, “salary”, etc.
This data elements form the As-Is model.

In next step, the As-Is Model will be augmented with new requirements to produce
the To-Be Model. This activity usually includes client requirements analysis, addition
of new rules, new business processes and the associated vocabularies. Models are
kept and managed in a technology independent abstract representation (not shown in
the diagram). Solution Modeler captures these in an Abstract Syntax Tree Metamodel
(ASTM – defined by OMG). The abstract representation is used by proper tools

7 Unisys Rules modeler is an integrated part of Unisys Solution modeler capable of extracting

business rules, business terms and business vocabulary from the legacy application
components.

 SOA and Large Scale and Complex Enterprise Transformation 539

(not discussed here) for generation of application component (modernized app) as
well as generation of test scripts. For example, the discovered business Vocabulary is
used to automatically generate the required database schema. The business rules and
processes are used to generate the application code. This step requires Unisys
Rules/Solution Modeler and Unisys consultant to perform the Discovery task. Rules
Modeler and details of transformation are not discussed due to space limitation in this
paper. In average we experienced 80% of the process above driven by the tool
(automated) while 20% required manual activities.

Refactoring/Consolidation -- This style includes all types of existing application
improvements such as rewriting data definitions, removing data redundancies, data
consolidation and migration to relational databases, code streamlining, removing code
redundancies, performance improvements, etc. Refactoring does not include
improvements which significantly enhance or modify the set of requirements. Modern
translation technique, including OMG-like Knowledge Mining and Abstraction
techniques are used to semi-automate the Refactoring process. For example, a code
fragment representing a sub-tree structure of an Abstract Syntax Tree (AST)
generated during discovery can be map to re-factored code and new re-factored code
can be generated using the same AST. There are few vendor tools that allow re-
factoring and re-architecting to be exercised at AST level before generating the target
code. Some advanced tools provide rule based AST generation. The rules include
code patterns that need to be defined manually. We found AST to AST re-factoring
much efficient than code level re-factoring. Code level re-factoring complicates the
version management and maintenance.

Enforced SOA Governance -- The final re-factored application architecture follows
Unisys SOA Design Time Application Governance.

Translation/Port -- This building block involves automated or semi-automated
porting of the existing system, packaged or custom applications to the new platform
or its translation to a modern (usually object-oriented) language. In most legacy
modernization vendor products and tools are used to perform automatic translation.
Unisys has specified a number of translation tools. Based on application
implementation language and operating systems, specific tools will be used for
translation. This scenario well suited for applications where direct translation results
in better ROI. This scenario applied to all applications running on the VAX VMS
platforms. Almost all translated apps needed re-factoring. There are few vendor tools
that includes modern compiler technique in generation of language parser, rule based
AST generation, and complete separation of data migration from code migration. We
found rule based AST translation much more efficient than direct code translation. In
direct code translation data and code migration can not be separated due to one-on-
one dependency of code to data at transformation time.

Enforced SOA Governance -- The final Translated application architecture follows
Unisys SOA Design Time Application Governance.

Wrapping -- This building block breaks the existing monolithic application into
multiple parts, each represented as service using SOA techniques (mostly exposing
the parts as Web Services). This style is an essential part of one of the most occurring

540 M. Kavianpour

styles used in most modernization and is used for those applications where the
Enterprise has made significant investment. SOA tool vendors almost all provide
support for wrapping of applications written in .NET and J2EE. The real challenge is
legacy languages. Very few SOA vendors provide IDE environment for wrapping
legacy components written in languages like COBOL, C, C++ and others. Selection
of right SOA tools plays important role in success of transformation. Wrapping
techniques exist for exposing CORBA, COBOL, .NET, J2EE, Java, and C++
components as Web Services.

Enforced SOA Governance -- The final application architecture follows Unisys SOA
Design Time Application Governance.

Replacement – Redesign/COTS -- This style includes a comprehensive
transformation using Unisys Solution Modeler application generation. Note that To-
Be Model is a technology-independent model. For this style of transformation we will
perform feature gap analysis verses packaged or COTS products. If match found we
will use the COTS app, if match not found and cost analysis (not discussed here)
suggest to develop a new application, we then use our solution modeler application
generation. Applications can be generated for either .NET or J2EE platform. The gap
analysis is a great exercise (we used Rational RequisitePro for gap analysis) for
specifying configuration parameters if COTS component if we decide to use COTS.
We found rule based AST translation approach is the best fit when COTS component
replacing a large portion of the existing legacy applications. The interface to the
COTS component is modeled in the translation rules, providing semantically correct
AST generation as well as final target language code generation.

Enforced SOA Governance -- The final application architecture must follow Unisys
SOA Design Time Application Governance. The COTS selection follows Unisys SOA
COTS selection guidelines.

Orchestration – Applying any style of transformation discussed above finally
produces a modernized component adhering to Web Services standard architecture,
i.e., Service components with WSDL as its interface. This orchestration assumes that
the To-Be Model has already been developed. Part of the To-Be Model includes the
To-Be processes. Solution Molder is used to generate the corresponding orchestration
in BPEL (Business Process Execution Language) standards. BPEL script is loaded
into a COTS orchestration engine. The BPEL engine finally executes the
orchestration, according to the business processes defined in the to-be Model, while
invoking the modernized components using their corresponding WSDL interface.

The orchestration may include other components such as security interceptors,
transformation components, auditing and more. This style is an essential part of the
modernization with requirement for business process automation. It is applied once
and maintained after.

Enforced SOA Governance -- Orchestration is a native architectural aspect of Unisys
SOA Governance which follows the industry standard, i.e., Web Services and other
related open standards. BPEL applies to those application components that have
already confirmed to SOA Governance, i.e., they are transformed into first class Web
Service.

 SOA and Large Scale and Complex Enterprise Transformation 541

As we have stated in the introduction to this paper, the detail of transformation, the
technique and tooling, and the translation processes deserve a complete separate
paper. We plan to publish subsequent papers regarding the overall transformation and
SOA techniques used in this project.

We now very briefly describes our SOA Governance, a set of guidelines helped us
during transformation, i.e., design and implementation of services, service policy and
runtime governance. This is indeed an introduction only. We plan to publish a
separate paper discussing for example how we deploy the Enterprise Service Bus to
manage runtime policy and governance.

At the time of writing this paper we have completed a successful pilot project to
demonstrate our overall Enterprise Modernization methodology, tools and technique.
Large scale modernization planned to follow.

4 SOA Architecture and Governance

The Enterprise Modernization style briefly described in the Unisys MDA section form
the mechanisms for our transformation. These mechanisms followed the Unisys SOA
Governance. Our governance includes SOA reference models, the corresponding
SOA reference architectures and our SOA maturity model (none discussed in this
paper).

The scenario driven (ADM) uses this governance guidelines during implem-
entation. The following diagram summarizes our Governance.

SOA Lifecycle

542 M. Kavianpour

Our SOA Governance is an agile and efficient decision and accountability
framework that provides the capability to organize, understand, and manage SOA
information to govern the planning, building and managing of a SOA system. In
support of this goal, our SOA governance works to enable the success of the
following key assets in delivering SOA:

• Prioritized enterprise and business unit service roadmaps
• Service lifecycle (specification, design, development, deployment, operation)
• Best practices, standards selection, and enforcement
• Funding models, financial metrics
• Reference architecture
• Change management to control services and registry sprawl

The governance also enables and tracks the following cultural and team
transformation activities:

• Education and skills development for both business and technology groups
• Organization structure alignment for SOA, including clear roles and

responsibilities for stakeholders
• Removal of organizational issues around joint ownership of processes and

assets, clarified communication channels, and processes
• Enablement of successful cross-functional collaboration throughout the service

lifecycle
• Individual incentive and measurement changes for SOA

It’s important to establish both the organizational aspects of SOA governance, such
as those outlined above, concurrent with technology enablers to enforce governance at
both design and runtime. The technology aspect of the governance includes Design
time and Runtime governance.

From a run-time aspect, there are requirements such as service level agreements
(SLAs), routing, transformation and security that require different infrastructure
elements for enforcement. Some of the technology components required to enforce
Runtime Governance listed below:

• Guideline for SOA product selection to support Runtime management and
monitoring of policies and SLA’s.

• Repositories for version control, change management, impact analysis
• Registries for bridging of heterogeneous design-time environments to runtime

infrastructure, controlled provisioning of services, and associations of runtime
policies to provisioned services

• Management of contract metadata and enforcement of service contracts
• Messaging intermediary for enforcement of runtime policies such as routing,

transformation, SLA, and security policies
• SOA management for runtime SLA enforcement and gathering of metrics for

evolution to the next level of SOA maturity

From a design & implementation time governance aspect, the following
governance is enforced:

 SOA and Large Scale and Complex Enterprise Transformation 543

• Design Governance
– 3D VE guidelines for capturing business and technology

architectures of as-is models. Impact analysis to guide through
selection of the existing IT elements for modernization.

– ADM guidelines for Knowledge Mining and Abstraction (KMA) of
the identified IT elements.

– ADM guidelines for discovery and scenario selections and analysis
of the identified IT elements.

– Standard Tools to support lifecycle processes -- capture of as-is
models, and capture of to-be models.

– Business service governance
• Implementation Governance

– Guideline for use of SOA IDE (pluggable to Eclipse)
– Guidelines for service granularity
– Design Guideline for exposing legacy components, legacy data,

legacy applications
– Guideline for building services and orchestrations
– Guideline for Service Registry
– Guideline for Test the services and orchestrations
– Guideline for deploying services and orchestrations
– Standard Repositories of service assets and all the associated

documentations that goes along with it
– Guideline for Quality assurance
– Guideline for Discovery mechanism for service consumers and

orchestrations

And finally from the Management aspect the following governance is enforced:

• A distributed secure SOA console providing features such as:
– Policy Management
– Service security management
– Service Registry
– Service configuration and customization
– Protocol management
– Service Quality Assurance and Validation

Additional technologies were also utilized to facilitate non-policy facets around
SOA governance. Some of the technologies considered are:

• Portals for centralized dissemination of SOA information and access control of
SOA assets such as reference architecture documentation

• Dashboards for graphical representation of SOA metrics
• Business intelligence to enable SOA metrics trend analysis and scenario

forecasting
• Workflow to automate SOA governance processes and enable quality and

control gateways
• Service and project portfolio management to enable a holistic and more

informed decision process around service candidate selection, service
versioning, service retirement, and SOA investment decisions.

544 M. Kavianpour

We found the governance a necessary element for the successful and consistent
transformation into the SOA. Adhering to the underlying principle of SOA, SOA
governance spans both organizational and technical boundaries. It is the critical
element to enabling an organization to successfully manage and control the cross-
divisional, distributed nature of SOA. Successful SOA governance ensures that an
organization is prepared to respond to changing market requirements in a more agile
manner. This is dependent upon the establishment and enforcement of SOA
organization and governance practices via all elements outlined above—structure,
process, and technology.

5 Conclusion

Having access to holistic view of the enterprise provided us with systematic but
business driven transformation selection. Gathering holistic views of the enterprise as
a set of interrelated models helped us with modernization implementation planning,
prioritizing and planning for retirement of the existing components, consolidation,
and preparation of knowledge extraction, and application of ADM. Prioritizing
implicitly help with incremental modernization. Legacy components are modernized
in a logical order as defined in the captured 3D VE models.

We believe ad-hoc selection of old application components without knowing the
business impacts will cause the SOA modernization to fail. ROI is a vital part of large
scale modernization and having a systematic methodology to help with selecting,
prioritizing and planning of the old IT touch points for modernization significantly
reduces the risks while guarantee the SOA project to succeed.

In a large and complex environment without a transformation framework like
MDA, the modernization will become almost impossible. We believe ad-hoc selection
of old application components, with ad-hoc SOA implementation strategy for the
required transformation will hardly succeed. MDA styles guided with supporting
SOA governance are the key to success of large scale SOA transformation. The
governance specific to each styles removes any ambiguities regarding implementation
approach.

SOA governance spans both organizational and technical boundaries. It is the
critical element to enabling an organization to successfully manage and control the
cross-divisional, distributed nature of SOA. Successful SOA governance ensures that
an organization is prepared to respond to changing market requirements in a more
agile manner. This is dependent upon the establishment and enforcement of SOA
organization and governance practices via all elements outlined above—structure,
process, and technology.

SOA like any other technological innovation requires proper skills. SOA implicitly
must meet a set of challenging requirements, and that is the integration and
interoperation of disparate applications, systems, databases, middlewares, and more.
This vast area of integration technology opens numerous opportunities for SOA
vendors to inject their own proprietary, none-interoperable features. Uneducated
selection of SOA vendor products could quickly produce yet another proprietary
(legacy) environment! Likely numerous Web Services standards have been produced
by standard bodies and implemented by a number of SOA vendors. To move into real

 SOA and Large Scale and Complex Enterprise Transformation 545

SOA environment, we strongly recommend the use of SOA products that adhere to
the open standards. For example an Enterprise Service Bus without using XML
standards, the de-facto messaging, routing, transformation, and security mechanisms
and more, will fall into EAI category, where each EAI hub used to introduce their
own proprietary messaging scarifying interoperability and therefore orchestration.
Service granularity, design time decisions, runtime policies must some how be
defined before any service being designed and implemented. This is where SOA
Governance plays a key role in success of solid design, test, deployment and
maintenance of a large SOA environment.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 546–557, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Run-Time Adaptation of Non-functional Properties of
Composite Web Services Using Aspect-Oriented

Programming

N.C. Narendra1, Karthikeyan Ponnalagu1, Jayatheerthan Krishnamurthy2,
and R. Ramkumar2

1 IBM India Research Lab, Bangalore, India
{narendra, karthik.ponnalagu}@in.ibm.com

2
 IBM India Software Lab, Bangalore, India

{jayatheerthan, ramkumar_rj}@in.ibm.com

Abstract. Existing web service composition and adaptation mechanisms are lim-
ited only to the scope of web service choreography in terms of web service selec-
tion/invocation vis-à-vis pre-specified Service Level Agreement constraints. Such a
scope hardly leaves ground for a participating service in a choreographed flow to
re-adjust itself in terms of changed non functional expectations and most often
these services are discarded and new services discovered to get inducted into the
flow. In this paper, we extend this idea by focusing on run-time adaptation of non-
functional features of a composite Web service by modifying the non-functional
features of its component Web services. We use aspect-oriented programming
(AOP) technology for specifying and relating non-functional properties of the Web
services as aspects at both levels of component and composite. This is done via a
specification language for representing non-functional properties, and a formally
specifiable relation function between the aspects of the component Web services
and those of the composite Web service. From the end users’ viewpoint, such up-
front aspect-oriented modeling of non-functional properties enables on-demand
composite Web service adaptation with minimal disruption in quality of service.
We demonstrate the applicability and merits of our approach via an implementation
of a simple yet real-life example.

1 Introduction and Motivation

Web services have emerged as a major technology for deploying automated interac-
tions between heterogeneous systems. They possess certain key properties [8, 12],
viz., independent from specific platforms and computing paradigms, developed pri-
marily for inter-organizational situations, and composable into composite Web ser-
vices. Web service composition primarily concerns requests of users that cannot be
satisfied by any atomically available Web service, but satisfied by a composite service
obtained by combining a set of available Web services [13]. The dynamic nature of
the business world highlights the continuous pressure to reduce expenses, to increase
revenues, to generate profits, and to remain competitive. This requires Web services
to be highly reactive and adaptive to business centric changes. In particular, compos-
ite Web services should be equipped with mechanisms to ensure that their constituent
component Web services are able to adapt to meet changing requirements.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 547

In this paper1, we consider the important research issue of engineering adaptations
on component Web services based on changed non-functional requirements imposed
on the composite Web service, such as improved security, better scalability, etc. In
particular, we focus on how non-functional requirements changes in the composite
Web service can be met via appropriate pre declared modifications to the component
Web services code, without affecting their core functionality. Our approach uses dis-
tributed aspect-oriented programming (AOP) technology [1, 4, 5] to dictate these
modifications in component Web services in a non-intrusive manner. In addition,
from the viewpoint of the users of the composite Web service, such an approach en-
ables on-demand adaptation with minimal disruption. To the best of our knowledge,
this is the first non-intrusive distributed AOP mechanism, especially applied to Web
services. Hence our main contributions are the following: a distributed system archi-
tecture for non-functional adaptation of Web services via AOP (implemented on top
of PROSE [2,3], a well-known AOP implementation environment2), a specification
language for specifying non-functional properties of Web services, a formally specifi-
able relation function between the non-functional properties of the component and
composite Web services, and a non-intrusive concern extraction and manipulation
implementation for component Web services based on the relation function.

Our paper is organized as follows. We review related work in section 2. Section 3
introduces our approach and conceptual architecture. We then describe our running
example in Section 4, and then use it to explain our approach in detail. In Section 5,
we describe our specification language for describing non-functional properties of
component and composite Web services. In Section 6, we discuss how multiple as-
pects can be weaved together, via a discussion of their inter-relationships. The
detailed implementation of our running example is presented in Section 7. Finally,
Section 8 concludes the paper with suggestions for future work.

2 Related Work

Aspect-oriented programming (AOP) [1,4,5] is an extension of other software devel-
opment paradigms; it allows capturing and modularizing concerns called aspects that
crosscut a software system. AOP makes very powerful program transformations pos-
sible, through a composition process where aspect advices are woven into the core
program at locations called pointcuts. Members and methods can also be inserted in
classes through an aspect construct called introduction. Aspects have the ability to
introduce functionality in a core program in a non-invasive way, making it possible to
alter the behavior of a system a posteriori. This aspect weaving can be done at any
time – compile time, load time or run time.

Regarding Web services, existing web service composition and adaptation mecha-
nisms are limited only to the process of web service choreography in terms of web
service selection/invocation vis-à-vis pre-specified (Service Level Agreement) SLA
constraints. Such a technique has many deficiencies, such as inability to manage ad-

1 This is an expanded version of a paper that will appear in WS-Testing Workshop (co-located

with SCC 2007).
2 We have used version 1.3.0 of PROSE.

548 N.C. Narendra et al.

aptation, code duplication, inability to invoke an alternate Web service in case of
failure, etc. To that end, several researchers are investigating AOP for improving the
manageability of Web service compositions. For example, Cibrán and Verheecke
propose a method for modularizing Web services management with AOP [11].

Charfi et. al. have approached this problem from a different direction [10]. They
have proposed an extension to the BPEL language, which they called aspect-oriented
BPEL (AO4BPEL). Their language brings in modular and dynamic adaptability to
BPEL, since mid-flight adaptations can be implemented via advices in AO4BPEL.
Ortiz et al. develop an aspect-oriented solution for Web services composition (of type
orchestration) and for interaction patterns [6]. Orchestration is, here, defined as the
process by which the Web services interactions are monitored and managed. The
authors’ work is motivated by the lack of standards associated with composition.
More particularly, Ortiz et al. raised multiple questions related to the possibility of
reusing interaction patterns previously implemented, and the efforts to put in for
modularizing these patterns rather than scattering the code.

One recent approach towards service adaptation via AOP methods is described in
[15]. In that paper, however, the authors have primarily focused on a template-based
approach that enables the selection of the appropriate advice to be weaved into the
Web service code based on mismatches with other participating Web services in the
composite Web service. The focus in our paper, on the other hand, is on joint model-
ing and sharing of non-functional properties expressed as cross-cutting concerns via
aspects. Hence we view the ideas in [15] as being complementary to our work. Simi-
lar to [15], our earlier work [14] proposes a method for decoupling security concerns
in Web services via aspects, by expressing these concerns as contextual information
separate from the core Web services functionality. This too, is complementary to the
work reported in this paper.

One of the most well-known AOP implementations available today, is PROSE
[2,3]. PROSE works by implementing methods – known as “hooks” – that intercept
method calls in the Java Virtual Machine (JVM) at the point where the aspects are to
be executed. Hence PROSE uses a modified version of the Java just-in-time compiler
to insert code that checks for the presence of aspect advice at every possible join
point, so as to implement system behavior modification at runtime. However, PROSE
is not a distributed implementation, and works only to alter the behavior of a single
component. Our system, therefore, seeks to extend PROSE for the distributed envi-
ronment of web service composition and execution. Our system is also different from
other distributed AOP systems [9], since it does not directly manipulate the source
code of the individual component Web services; instead, it works by specifying ad-
vices to the individual component Web services so that they can change their func-
tionality themselves.

Our solution approach uses WS-Policy and WSLA for implementing the negotia-
tion of service requirements and capabilities between the service provider and the
consumer, rather than using an enterprise service bus (ESB)-based approach. An ESB
solution by itself does not provide native support for implementing negotiation of
service requirements, but instead works in conjunction with WS-Policy and WSLA to
implement the negotiation between the participating web services.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 549

3 Solution Architecture and Approach

The composite web service model is extended to contain the list of its cross-cutting
concerns that have a bi-directional mapping to those of the participating individual
component web services. Each of these concerns, in turn, will have a mapping to the
SLA constraints representing the different non-functional requirements. Hence there
are two mappings to be established and maintained (These mappings need to be estab-
lished between the composite and component Web services by prior agreement during
the build time phase of the composite web service):

• The mapping between the non-functional requirements and the different cross
cutting aspects of the composite web service

• The mapping (also known as relation function) between each aspect of the com-
posite web service and the individual aspects of the component web services

The overall solution architecture is depicted in Figure 1.

JVM
Web Service

JVM
Web Service

PROSE

Aspects

JVM
Web Service

PROSE

Aspects

PROSE

Aspects

1

2

3

4

6

7

Concern integration via relation function

5

Crosscutting concerns

Composite Web service

Component Web services

Fig. 1. Solution Architecture & Approach

Briefly, our system works as follows: at run time, in response to a change in a non-
functional requirement imposed on the composite Web service by its user (1), the
composite web service determines the appropriate aspect changes needed (2) to meet
the change. The composite Web service makes this determination using the relation
function (depicted via the “concern integration” rectangle in Figure 1) which it main-
tains. The composite Web service will therefore invoke the relation function (3, 4) to
determine those aspects of the individual web services that need to be modified. It
will then send messages (5) to the component web services, asking them to “re-
weave” their functionalities in order to meet the changed requirements (6, 7). In case
a component web service is not able to do so, it will send a reply to the message, upon
which the composite web service will need to implement the appropriate exception
handling mechanisms, for responding back to the initial user request.

550 N.C. Narendra et al.

We model the composite web service comprising aspects A1 through An. Each
component Web service Wi also possesses aspects ai1 through ain. Each aspect Ai in
the composite web service is related to the aspects aij, via the relation function:

Ai = fi(aij, 1 <= i <= m, 1 <= j <= n)

Of course, not all aspects aij will be affected by Ai, hence the relation function for
each Ai would be different. Indeed, at its most elementary level, the relation function
fi is merely a mapping between Ai and the individual aij aspects, where each mapping
could be suitably annotated with machine-readable information encoded in an XML
formatted file.

It is to be stressed that our solution approach is not dependent on the choice of
PROSE as an implementation mechanism. Different component Web services can
have their own aspect-oriented implementation mechanisms (of which several exist in
the literature3), as long as they can interoperate on sending/receiving advices for non-
functional adaptation.

4 Illustrative Example

Figure 2 shows a simple example of a learning service. The application consists of a
Learning Network Manager modeled as a composite web service, with the typical
methods for clients to read/create the books that the Learning Network Manager of-
fers from various publishers (each modeled as a component web service) offering
books for various subjects according to the grade of the user. The Learning Network
Manager allows the user to carry out various operations like reading books online,
pick-and-choose topics from various publishers, maintain user history etc.

Fig. 2. Learning Network Manager and Associated Component Web Services

In this distributed environment, the Publishers and Learning Network Manager are
required to customize their code to accommodate various kinds of customers with
dynamic requirements. We have identified some of the important cross-cutting con-
cerns. For example, the Publisher and Learning Network Manager need to accommo-
date the timing property in order to calculate the time taken by the customer to access
the Web services. This function is important for tracking the performance of the sys-
tem, especially under heavy load conditions. The second important concern is

3 http://en.wikipedia.org/wiki/Aspect-oriented_programming#Implementations

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 551

scalability - in order for the Learning Network Manager to support a larger user base,
it may expect the publishers also to support the same. Also, maintaining the history of
each user, for future reference, is another important cross-cutting concern, which
needs to be maintained by each publisher. Finally, security is needed for ensuring
access to only authorized users.

The above cross-cutting concerns can also be used to identify their respective
pointcuts, viz., Timing, System Tuning (for scalability), User History and Security.

5 Specification Language for Non-functional Properties

In order for a composite web service to locate a component web service at runtime,
based on its ‘capabilities’ to adapt to a changing non-functional requirement, the
component web service must declare its capabilities in a program readable format,
which could be interpreted by the composite web service to make a decision at run-
time whether or not to invoke a particular component web service. Hence in this sec-
tion, we discuss a specification language for representing non-functional properties
that is built on existing standards such as WS-Policy4 and WSLA5. While we use the
WS-Policy framework to represent the capabilities and requirements of a Web ser-
vice, WSLA is used to publish the QoS and related parameters that a web service can
offer to its clients.

5.1 WS-Policy Based Specification of Non-functional Properties

WS-Policy provides a general purpose XML model to define capabilities and re-
quirements of a Web Service. A policy is a collection of policy alternatives, which are
in turn a collection of policy assertions. A policy assertion represents an individual
requirement, capability or other property of behaviour. In our model, we extend the
WS-Policy grammar by adding the policy-assertion and NonFunctional-
Property tag elements as illustrated below.

<wsp:Policy
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:nfp=”http://www.ibm.com/schemas/nfp”>
 <wsp:All> <!-- policy alternative -->
 <nfp:policy-assertion name=”…” type=”…” category=”…”>
 <nfp:NonFunctionalProperty name=”…”>
 <nfp:Attribute name=”…” value=”…”/>
 <nfp:Parameter name=”” value=”” mandatory=”(true | false)”/>
 <nfp:custom-tags/>
 </nfp:NonFunctionalProperty>
 </nfp:policy-assertion>
 </wsp:All>
</ws:Policy>

Each policy-assertion has the following attributes:

4 http://www.w3.org/Submission/WS-Policy/
5 http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf/

552 N.C. Narendra et al.

• name: A qualified name for the policy assertion that could be referred to by another
element in the policy document.

• type: Type specifies whether this policy assertion represents the ‘requirement’ or the
‘capability’ of the web services defining the policy.

• category: Domain specific category name of the assertion. Example: Security,
Performance etc.

While the <Attribute> tag would be used to provide more description about the
<NonFunctionalProperty>, the <Parameter> tag accepts input parameters
to be passed to the target application (component service or an aspect implementa-
tion). For example, the non-functional property ‘ResponseTime’ may have an
attribute called ‘units’ that may specify the unit of time that would be used to
track the response time (like seconds, milliseconds etc), while at the same time, may
accept a parameter called ‘round-off-digits=nnn’ with which a composite
service may inform to the component service as to how many digits should the Re-
sponse time output be rounded off to. The <custom-tags/> in the policy speci-
fication above provides flexibility for the participating web service to specify any
domain specific custom tags that would be required to define the non-functional prop-
erties in a more detailed manner. However, please note that the XML schema defini-
tion and the interpretation of the <custom-tags/> is to be exchanged between
the participating web services a priori.

Given below is an example of how the above mentioned model would be instanti-
ated. The example below depicts a component web service that declares its capability
of supporting ‘Authentication’ as a non-functional property. Please note that the
policy-assertion type is ‘capability’ since the component web service exposes
its ability to support ‘authentication’ as one of its non-functional properties.

<wsp:Policy
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:nfp=”http://www.ibm.com/schemas/nfp”>
 <wsp:All> <!-- policy alternative -->
 <nfp:policy-assertion name=”SecurityAuthSpec”
 type=”capability” category=”Security”>
 <nfp:NonFunctionalProperty name=”authentication”>
 <nfp:Parameter name=”username” mandatory=”true”/>
 <nfp:Parameter name=”password” mandatory=”true”/>
 </nfp:NonFunctionalProperty>
 </nfp:policy-assertion>
 </wsp:All>
</ws:Policy>

Please note that our specification language differs from WS-CoL [18] in that WS-

CoL extends WS-Policy to define 'constraints' to be imposed during the execution of
web services as well as to retrieve external data required to evaluate a constraint ex-
pression whereas our extension of WS-Policy provides a facility to specify the 'capa-
bilities' and 'requirements' of a service. Our specification is domain independent due
to the support of a generic <NonFunctionalProperty> tag as well as the
<custom-tags/> place holder to support domain specific extensions and represen-
tations of non-functional properties.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 553

5.2 Service Level Agreement

A service level is used to define the expected performance behavior of a deployed Web
service, where the performance metrics are, for example, average response time, supported
throughput, service availability, etc. During deployment of a Web service, the resources of
an underlying Web service container can be reconfigured to provide a certain service
level. Even the same Web service can be offered at different service levels to different
clients by dynamically allocating resources for execution of individual Web service re-
quests. Hence, to receive assurances on the service level, a client creates a priori a service
level agreement (SLA) associated with this Web service with the service provider.

In our running example, a Publisher’s web service would have an SLA defined for
‘ResponseTime’ using WSLA, representing the Timing pointcut introduced in Section
4. Given below is a sample SLA document defining an SLAParameter called ‘Re-
sponseTime’ and the metric used to measure it.

<OperationGroup name="ReadOperations">

 <Operation name="WSDLSOAPGetChapter">
 <SLAParameter name="ResponseTime" type="float"
 unit="seconds">

 <Metric>AverageResponseTime</Metric>
 </SLAParameter>
 </Operation>

</OperationGroup>

An SLAObligation for the above mentioned example may be defined as below:

<ServiceLevelObjective name=”SLO_for_ResponseTime”>
 <Obliged>McGrawHillPublisher</Obliged>
 <Expression>
 <Predicate xsi:type="Less">
 <SLAParameter>ResponseTime</SLAParameter>

 <Value>2</Value> <!-- 2 seconds -->
 </Predicate>
 </Expression>
</ServiceLevelObjective>

6 Aspects and Their Relationships

We relate each of the above identified point-cuts to an aspect. An aspect of a compo-
nent web service is affected by zero or more aspects of the composite web service.
Aspect interactions can be complex, subtle and very difficult to identify. Please note
that finding such interactions is outside the scope of our research. In our work we
assume a fixed ontology of aspects, with all interactions explicitly identified ahead of
time. We provide an XML file representation for specifying the aspect interaction and
conflicts. Our model is extensible and hence we can contain any level of complex
relationships here. Our model of aspect interactions is leveraged from [7]), and fea-
tures the following: Orthogonal – if the combined contribution of both aspects is
equal to the sum of their individual contributions (e.g., user-history aspect of compo-
nent & composite Web services); Complementary – if their combined contribution is
greater than the sum of their individual contributions (e.g., authentication and timing
aspect), Depends – if they can only be deployed along with each other (e.g., timing

554 N.C. Narendra et al.

aspect of composite Web service and timing aspects of component Web service);
Conflict – if their combination has a negative effect on the behavior of the composite
Web service (e.g., timing and user-history aspect may conflict, especially if the policy
of charging the customer is based on the content accessed); Prevents – if the applica-
tion of one aspect prevents the application of the other (e.g., if one aspect measures
the response time with respect to a threshold, which would deactivate other aspects
such as caching, security and logging); Equivalent – if their individual effects are the
same (e.g., different logging types such as CBELogging, JTraceLogging, etc.)

7 Implementation Details

Our learning network manager is modeled as a composite web service, with operations
such as authenticateUser, showBooks, showSubjects, showTopics, showContents and
createBook exposed for clients to read/create the books that the Learning Network Manager
offers from various publishers (see Figure 3). Each publisher is modeled as a component
web service offering books for various subjects through their exposed operations. (We have
not displayed the details of the WSDL-based interfaces of the Web services in this Section,
since we have chosen to focus on the non-functional property modeling aspects.)

Fig. 3. Service Operations

The timing aspect relationship between the Learning Network Manager and any of
the publishers is depicted in Figure 4.

Fig. 4. Timing aspect relationship between component and composite services

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 555

Given below is the Timing Aspect implementation for McGrawPublisher service in
PROSE.

Figure 5 depicts a snapshot of WS-Policy declared by LearningNetworkMan-
ager Web Service stating that it ‘expects’ the component services (Mc-GrawHill and
Pearson publishers) to support the tracking of ‘Response Time’ of ShowBooks()
service. The component service would also weave an aspect code dynamically into its
AOP runtime system to handle the change in non-functional requirement.

Fig. 5. WS-Policy defining composite service’s Non Functional Property requirement

In response to the above mentioned requirement, the component service (eg., Mc-
GrawHill publisher), would generate an SLA and publish it to the requesting service.
Section 5.2 above shows a snapshot of the SLA published by the component service.

Given in Figure 6 below is a self-explanatory sequence of screen shots that explain
the flow of the implementation. The Figure shows the ShowBooks() service of the
McGrawHill and Pearson publisher services, before and after the invocation of the
Timing aspect.

556 N.C. Narendra et al.

(a) Invocation of ShowBooks() opera-
tion

(b) ShowBooks() returns no as-
pect message

(c) Enabling of Timing Aspect

(d) Invoking ShowBooks() after enabling
aspect

(e) Due to dynamic weaving of aspects, component service responds back to composite
service with Response time details

Fig. 6. Screenshots of Implementation

8 Future Work

Future work will involve integrating our work with self-healing Web services envi-
ronments as modeled in [16]. Additionally, we will also evaluate the recent work of a
joinpoint inference technique based on behavioral specifications of state machine
specifications [17], and investigate how it can be used to provide a formal specifica-
tion of aspect interactions between the composite and component Web services.

Acknowledgement. The authors wish to thank Sumanth Vepa, Zakaria Maamar,
Dipayan Gangopadhyay and the anonymous ICSOC reviewers for their feedback.

References

[1] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

[2] Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect Oriented Program-
ming. In: Proceedings of 1st International Conference on Aspect-Oriented Software De-
velopment, Enschede, The Netherlands (2002)

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 557

[3] Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. Department of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH Zurich), CH-8092 Zurich, Switzer-
land, accessible from http://prose.ethz.ch/

[4] Popovici, A., Alonso, G., Gross, T.: Just in Time Aspects: Efficient Dynamic Weaving
for Java. In: Proceedings of 2nd International Conference on Aspect-Oriented Software
Development, Boston, USA (2003)

[5] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Over-
view of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 18–22.
Springer, Heidelberg (2001)

[6] Ortiz, G., Hernandez, J., Clemente, P.J.: Decoupling Non-Functional Properties in Web-
Services: As Aspect-Oriented Approach. In: ICSOC’2004. Proceedings of The 2nd Inter-
national Conference on Service Oriented Computing, New-York, USA (2004)

[7] Wohladter, E., Tai, S., Thomas, A., Rouvellou, I., Devanbu, P.: GlueQoS: Middleware to
Sweeten Quality-of-Service Policy Interactions. In: ICSE. Proceedings of International
Conference on Software Engineering, Edinburgh, UK (2004)

[8] Ma, K.J.: Web Services: What’s Real and What’s Not. IEEE IT Professional 7(2) (2005)
[9] Nishizawa, M., Chiba, S., Tatsubori, M.: Remote Pointcut – A Language Construct for

Distributed AOP. In: AOSD’04. Proceedings of International Conference on Aspect-
Oriented Software Development, Lancaster, UK, March 22-26, pp. 7–15. ACM Press,
New York (2004)

[10] Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, Secure and Transacted
Web Service Compositions with AO4BPEL. In: ICSOC’2004. Proceedings of The 2nd
International Conference on Service Oriented Computing, New-York, USA (2004)

[11] Cibrán, M.A., Verheecke, B.: Modularizing Web Services Management with AOP. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003)

[12] Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., Dumas, M.: Declarative Composition and Peer-
to-Peer Provisioning of Dynamic Web Services. In: ICDE. Proceedings of International
Conference on Data Engineering (2002), also available from http://csdl.computer.org/
comp/proceedings/icde/2002/1531/00/15310297abs.htm

[13] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: A Foundational
Vision for E-Services. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
Springer, Heidelberg (2003)

[14] Kouadri Mostefaoui, G., Maamar, Z., Narendra, N.C., Sattanathan, S.: Decoupliing Secu-
rity Concerns in Web Services Using Aspects. In: ITNG 2006. Proceedings of Informa-
tion Technology – New Generations, IEEE Computer Society Press, Los Alamitos (2006)

[15] Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented Frame-
work for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, Springer, Heidelberg (2006)

[16] Kouadri Mostefaoui, G., Maamar, Z., Narendra, N.C., Thiran, Ph.: On Modeling and De-
veloping Self-Healing Web Services Using Aspects. In: COMSWARE 2007. Proceedings
of 2nd International Conference on Communication Software and Middleware, IEEE
Communications Society, Los Alamitos (2007)

[17] Cottenier, T., van den Berg, A., Elrad, T.: Joinpoint Inference from Behavioral Specifica-
tion to Implementation. In: ECOOP. Proceedings of European Conference on Object-
Oriented Programming (2007) (to appear)

[18] Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Proceedings of
TES 2005 (September 2005)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 558–569, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software as a Service: An Integration Perspective

Wei Sun1, Kuo Zhang1, Shyh-Kwei Chen2, Xin Zhang1, and Haiqi Liang1

1 IBM China Research Lab
2IBM T.J Watson Research Lab

{weisun, zhangkuo, zxin, lianghq}@cn.ibm.com, {skchen}@us.ibm.com

Abstract. Software as a Service (SaaS) is gaining momentum in recent years
with more and more successful adoptions. Though SaaS is delivered over
Internet and charged on per-use basis, it is software application in essence. SaaS
contains business data and logics which are usually required to integrate with
other applications deployed by a SaaS subscriber. This makes Integration be-
come one of the common requirements in most SaaS adoptions. In this paper, we
analyze the key functional and non-functional SaaS integration requirements
from an industry practitioner point of view; and summarize the SaaS integration
patterns and existing offerings; then point out the gaps from both technology and
tooling perspectives; finally we introduce a SaaS integration framework to ad-
dress those gaps. Considering there is no much academic work on SaaS service
modeling, we come up with a SaaS service description framework as an exten-
sion of Web Service description, so as to model SaaS unique features in a unified
way. With the supported tooling and runtime platform, the framework can fa-
cilitate the SaaS integration lifecycle in a model-driven approach.

1 Introduction

Software as a Service (SaaS) is a software delivery model, which provides customers
access to business functionality remotely (usually over the internet) as a service [1, 2].
The customer does not specially purchase a software license. The cost of the infra-
structure, the right to use the software, and all hosting, maintenance and support ser-
vices are all bundled into a single monthly or per-use charging. As SaaS brings lower
Total Cost of Ownership (TCO) and better Return On Investment (ROI), SaaS services
achieve a prosperous development and cover most of the well-known application areas,
e.g. Customer Relationship Management(CRM) service from Salesforce.com, Human
Resource Management(HRM) service from Employease.com [3, 4].

The functionalities of services delivered through SaaS may vary. Complete or
full-blown solutions can be costy and hard to configure. Simple services normally
provide specific functionalities, but a need exists to integrate several services together
to achieve a desired business operation [7]. There are no standards or guidelines for
clients to make technical decision. It becomes a critical problem when disparate ser-
vices come from different software providers, through different service protocols and
with various functionalities. The integration requirement of SaaS customers has been
studied by different SaaS market research efforts. According to the survey of 639
companies by AMR research, more than 70% companies expect that the SaaS solution
can be integrated with their on-Premises legacy applications or other SaaS solutions

 Software as a Service: An Integration Perspective 559

they subscribed/plan to subscribe [8]. IDC conducted a SaaS solution adoption trend
study in 2004 and found that more than 50% of the survey respondents selected “Better
integration with in-house applications” as one of the top 3 drivers, making SaaS solu-
tion more attractive [9].

There are many industry players and offerings addressing the SaaS integration is-
sues. AppExchange from Salesforce.com provides a hosting platform and web based
programming tools for third party vendors to develop/integrate add-on SaaS services on
top of its CRM service [4]. Jamcracker enables a hosted SaaS integration hub [10]. IBM
SaaS showcase provides a portal of different SaaS services which can be subscribed
and integrated [11]. OpenKapow focuses on wrapping SaaS services’ capability with
Web user interface into a standardized component called “Robot”, and leverages
Mashup technologies to facilitate the composition of “Robot” come from different
SaaS services and Web Services [29]. However, there are few academic works in this
area. Seltsikas explored the integration challenges for application service providers
from business model point of view [12]. Elfatatry studied SaaS from contract negotia-
tion point of view [13]. Turne summarized SaaS related Web Services technologies
[14]. Ottinger from Mule open source group [30] analyzed some SaaS integration re-
quirements, which highlighted several SaaS integration unique issues around corporate
firewall, network latency of the integration. However there is not a relatively complete
and deep analysis about the SaaS integration requirements as well as the demand for
any new technologies in a holistic view.

In this paper, we analyze and identify the SaaS integration requirements and tech-
nology gaps, and then propose reference architecture of the SaaS integration framework,
which includes a SaaS Description Language (SaaS-DL) to support model driven inte-
gration approach, tooling and runtime components as well as different configurations.
SaaS can cover very broad areas of Web Services, in this paper, SaaS specially focuses on
those business applications (e.g. CRM [4, 16]) delivered in Web Services model. The rest
of the paper is organized as follows. Firstly, we will analyze the SaaS integration re-
quirements, common patterns as well as challenges in section 2; based on these analysis,
a SaaS-DL and integration framework reference architecture will be introduced in Sec-
tion 3; then in section 4 prototype implementation of the framework is presented; a case
study is introduced in Section 5 to illustrate how the integration framework works; fi-
nally, conclusions and future work will be summarized in section 6.

2 SaaS Integration Requirements and Patterns

Most SaaS service subscribers, especially those medium to large companies, have
certain applications already deployed on their premises. This makes the application
environments of those companies become a hybrid model illustrated in the figure 1.
SaaS service is usually a web application which can be accessed by different customers
through Internet. Just like normal web based business application, SaaS application is
composed by three major layers: user interface, business logic, and data. On the other
hand, the SaaS application is special. It usually involves the metering and billing for the
usage of the service consumer. Its Quality of Service (QoS) should achieve Service
Level Agreement (SLA) between the service provider and consumer according to the
service contract. In this section, we will explore the SaaS integration requirements from
both functional and non-functional perspectives.

560 W. Sun et al.

SaaSSaaS

SaaS Provider

SaaS Provider

SaaS Subscriber Premise

SaaS

SaaS

Fig. 1. SaaS Consumption Environment and Integration Requirements

2.1 SaaS Integration Functional Requirements and Patterns

SaaS subscriber leverages SaaS services to support certain business functions, e.g.
CRM, HRM. However any business function cannot be isolated from others in most
cases. For example, the sales person’s commission calculation in HRM should be
supported by the sales’ performance data managed in CRM. Therefore the different
applications/services a company deployed/subscribed should be integrated together.
The integration will happen in all the three layers of the SaaS application.

a) User Interface(UI) Integration
Every application has its own user interface and related access control. So the SaaS
subscribers should switch among different user interfaces with different user identity
and password information required by SaaS services and on-premise applications. As
illustrated in figure 2, pattern U-I, Single Sign On (SSO), is a very common UI inte-
gration requirement. SSO can enable users log on once and then access all the author-
ized user interfaces from different applications/SaaS services. Pattern U-II, Mash-up
[7, 15], can enable users to access one application/SaaS service’s data through another
SaaS service/application’s user interface.

b) Process Integration
A business process supported by a SaaS service usually can trigger business process
supported by another SaaS service or on-premise application. For example, an order
process from CRM service should trigger an order fulfillment process managed by ERP
application. Therefore process integration can automate the end to end business process
transaction span across multiple SaaS services and on-premise applications. There are
four key process integration patterns that are usually required. Pattern P-I and P-III can
support invoking another process or receiving an invocation through Web Services
technology. P-II can support scheduled process invocation in pulling mode. Pattern
P-IV can support complex process integration scenario using workflow, in which dif-
ferent people and applications will be involved to link different processes.

c) Data Integration
There are two types of data in a SaaS service: master data and transactional data. As
illustrated in Pattern D-I and D-II, these data should be synchronized or migrated from

 Software as a Service: An Integration Perspective 561

SaaS services to on-premise applications or vice versa. One type of data in a company’s
application environment should have only one master data source. The master data
source should populate or synchronize the data to other applications/SaaS services
timely that need to store that data locally. For example, if a company subscribed a CRM
SaaS service, the customer information related data should be a type of master data
maintained by CRM SaaS service, though ERP application need to store customer in-
formation as well to support fulfillment processes (scheduling, shipping, billing, etc),
these data should be always synchronized from CRM service.

Fig. 2. SaaS Integration Common Patterns

2.2 SaaS Integration Non-Functional Requirements(NFR) and Patterns

SaaS services can be treated as Web Services from both macro level (services delivered
over web) and micro level (leverage web services technologies to support integration).
Most the NFR requirements brought by Web Services exist in SaaS domain as well, e.g.
Security and Privacy. Here we point out the following three important requirements in
the integration point of view.

a) Security and privacy
In most cases, all the SaaS subscribers’ business data are centrally stored and managed
by SaaS provider in a remote side over Internet. In the integration scenario, business
data of every SaaS subscribers flow back and forth among the SaaS service and their
on-premise applications over Internet. The integration technology should guarantee the
subscriber’s data should not be hacked and accessed by any third party.

b) Bill reporting and management
SaaS services are charged by usage. A bill is usually issued to the SaaS subscriber in
certain timeframe by SaaS provider. As different SaaS providers issue different bills in
terms of format and delivery method, the ideal integration scenario related with bill is
illustrated in pattern NFR-I: different bills from different SaaS providers use same

562 W. Sun et al.

format or can be transformed into same format, then could be centrally managed and
fed into subscriber’s finance and accounting application.

c) QoS reporting and reconciliation with SLA
SLA is usually included in a SaaS service contract between SaaS provider and SaaS
subscriber. SLA often states the QoS related performance indicators, e.g. availability,
response time. Most SaaS providers do provide QoS reports, however the reports are
generated from service provider point of view only. As shown in pattern NFR-II, if the
QoS of the SaaS services can be metered by the SaaS subscriber and generate report
from consumer point view, then the QoS can be reconciled between service provider
and service consumer so as to guarantee the SLA fulfillment.

2.3 SaaS Integration Design and Development Requirements

As illustrated in the following figure, the SaaS integration design and development
process starts from business process review to analyze the key functional and NFR
requirements; based on which to design and implement UI, process, data and NFR re-
lated integrations; then migrate/populate related data from master data source; finally
test and go on production. This process is similar as the traditional application inte-
gration. However there are several SaaS unique issues we highlight as follows.

Fig. 3. SaaS Integration Design and Development Process

a) SaaS related policies’ visibility
SaaS services have many policies which should be considered and utilized during the
integration design and development process, e.g. configuration and customization
policies. SaaS service usually serves many customers in multi-tenancy mode. Most
customers usually have personalized requirements on the SaaS service. However the
business model of SaaS is fundamentally about economic scale, which can only allow
service configuration and customization within certain scope supported by self-service
mode. Therefore the integration specialist should be instructed for the service con-
figuration and customization policies during the integration design and development
lifecycle. However, there is no related industry standard to support the definition of
service’s configuration and customization policies. Furthermore, to support those SaaS
NFR integration requirements, the NFR policies of SaaS should be visible in the inte-
gration design and development environment.

b) Accommodation of different SaaS services in a unified environment
Currently different SaaS vendors have different toolkits to support integration, and
System Integrators (SI) use different tools as well [4, 17]. However, a unified tooling
environment can standardize the SaaS integration approach, so as to improve integra-
tion productivity, efficiency and accelerate the SaaS adoption accordingly. Since most
SaaS services adopt Web Services technologies, it provides a very good foundation to
accommodate different SaaS services in a unified tooling environment.

 Software as a Service: An Integration Perspective 563

For most SaaS subscribers, functional integration requirements always have higher
priority, NFR integration requirements can be value add features. In the following
sections, a SaaS integration framework will be presented. This framework aims to
streamline the SaaS integration design and development process for SI, supports the
functional and NFR integration requirements accordingly.

3 SaaS Integration Framework

To address those SaaS integration requirements, in this section we introduce a SaaS
integration framework reference architecture based on model driven integration ap-
proach [18], including SaaS-DL, tooling and runtime components.

3.1 SaaS-DL

SaaS can be treated as a kind of complex Web Services. Though Web Services De-
scription Language (WSDL) can be used to describe interface related information,
other information of SaaS services should be captured to support model driven SaaS
integration. WS-Policy [19] represents a set of specifications that describe the
capabilities and constraints of the security (and other business) policies on in-
termediaries and end points, and how to associate policies with services and end
points. However, it does not address customization policy and some specific NFR
policies clearly, which is strongly required in integration perspective. In this section,
we will introduce the design of SaaS-DL that is an extension to WSDL standards. The
overall structure of SaaS-DL is depicted in figure 4. It leverages the
WS-Policyattachment specification to bind itself to WSDL and XSD schemas; WSDL
is also referenced in SaaS-DL, which describes the integration programming interfaces
of the SaaS service. Three additional aspects are included. They are Customization
Policy, Billing Policy, and Data Object Relationship Model.

S a S - S e r v i c e

C u s t o m i z a t i o n P o l i c i e s
- r e fW S D L : W S D L D e f
- r e fW S D L U R I : s t r i n g

R e f e r e n c e W S D L N F R

C u s t o m i z a t i o n P o l i c y

1

*

B i l l i n g P o l i c y

D a ta O b je c t R e l a t i o n s h i p s

-R e f e r e n t i a l In t e g r i t y : R e fe r e n t i a l I n t e g r i t y E n u m
-N a m e : s t r i n g

D a ta O b jR e l a t i o n S h i p

1

*
1

*

1

* 1
0 . .1

1
0 . .1

1

0 . . 1

SaaS-DL

Fig. 4. Structure of SaaS-DL

Customization Policy
As analyzed in Section 2, SaaS services usually need to be customized to satisfy spe-
cific subscriber’s requirements. Current Research topics on web services customization
usually focus on semantic discovery or virtual wrappers [20, 21]; we propose a novel

564 W. Sun et al.

approach by defining customization policy in SaaS-DL, and consuming it through SaaS
integration lifecycle. Customization policy can be defined by SaaS provider, which
annotates the SaaS service’s customization capability to its subscribers; customization
policy, customization process and related enablement technologies can streamline a
standardized approach for the collaboration between providers and subscribers for the
entire service customization lifecycle, the detailed design is discussed in paper [22].

Billing Policy
Billing is one of the most important NFR technologies required by SaaS. Many re-
search works have been done on metering and accounting for Web Services [23, 24].
However, Web Services accounting is only one factor of SaaS billing concerns. Other
factors should be considered, such as storage usage, and the membership types of SaaS
subscribers. How to reasonably reflect the composite values, and consolidate different
bills from different providers with different formats and styles, are important concerns.
Therefore, a structuralized hierarchical model is proposed to organize the bill items and
their relationships in a billing policy. Bill item is an atomic unit to describe the rule of
billing, while the relationships in billing policy provide the power to specify how to
compose a complex bill by combining atomic items recursively. The billing policy can
be used to guide the metering of service usage so as to generate bill. Based on the
policy, bill report structure can be standardized, so the bill reports from different SaaS
providers can be easily consolidated into one bill for the SaaS subscriber.

Data Relationship Model
A SaaS service generally depicts a relatively complex service that involves many
business objects (or data types) and their operations. As data relationship is not covered
in WSDL, incorrect data manipulation can easily happen, for example, deleting one
data object will bring major influence to another data. We propose to depict the data
relationships of SaaS data in the SaaS-DL. This data relationship model in SaaS-DL is
very much like that Entity Relationship(ER) diagram[25], where a data relationship is a
triple of three elements: source object, target object, and its cardinality. Representing
data relationships in SaaS-DL will also help SaaS customization process by analyzing
and populating the impact of the customization to one data to another data.

3.2 Integration Framework

Here we introduce SaaS integration accelerator (SaaSia), which is reference archi-
tecture of SaaS integration framework. As shown in figure 5, the framework enables a
collaborative integration environment for SaaS service provider and SI. It covers all the
major aspects of the integration requirements and processes from design, development,
deployment, and down to runtime support.

On the SaaS service provider side, the SaaS-DL Composer provides a tool for the
service provider to describe the service information in a SaaS-DL, and then to publish it
into the service registry to share with service subscribers. The Customization Engine
provides a standardized interface to fulfill the customization requests. Through vali-
dating, analyzing, and decomposition, the Customization Engine weaves these requests
into existing SaaS services, updates its implementation/configuration, and dynamically
loads the upgraded service for the requestor. The NFR Reporting Service offers web
services interfaces for subscribers to access NFR reports, e.g. bill, QoS report.

 Software as a Service: An Integration Perspective 565

Fig. 5. SaaSia Framework Reference Architecture

On the SaaS service subscriber side, SI can use the design-time integration tool to
design/develop the SaaS integration artifacts and deploy them into runtime environ-
ment, then automates the execution of integration logics on the runtime platform to
meet its customer’s needs. The SaaS-DL Manager component retrieves SaaS-DL from
service registry and manages it in local repository. Customization Design Utility pro-
vides the customization controller for SI to handle the customization requirements in
the whole integration lifecycle. The requirements are controlled within the scope de-
fined by customization policy in SaaS-DL. The utility generates customization requests
and send to SaaS service’ Customization Engine to fulfill. The Bill Consolidation De-
sign Utility can be used to design how the bills are retrieved from SaaS providers and
then consolidated as one bill. QoS Metering Design Utility is used to define how the
SaaS service’s usage is metered so as to generate QoS report locally. Beside the core
components introduced above, SaaSia design-time leverages common PI/UI/DI Design
Utilities(e.g. BPEL[26]). The Deployment Service packages all the integration artifacts
and deploys the package to runtime environment.

SaaSia runtime provides fundamental services and integration capabilities from
different perspectives. The SaaS Repository manages the SaaS-DL and provides in-
terface for runtime usage. NFR Services include two key services: QoS Metering
service meters the SaaS services' utilization(transaction numbers, response time, ex-
ception rate, etc); the Bill Retrieval and Consolidation service fetches the bill reports
from SaaS provider, transform and consolidate multiple bills into one integrated bill.
The NFR Dashboard component provides a visualized presentation about the bill and
service utilization information. The Adaptor is a runtime framework to enable the in-
tegration with on-premise application using required network protocol and program-
ming interfaces.

The SaaSia runtime architecture can be implemented in two different deployment
modes illustrated in figure 6. If the SaaS subscribers have strong integration require-
ments about security and privacy, they should select the local deployment mode which
provides dedicated SaaSia runtime; If the SaaS subscribers prefer to get the integration
capability as hosted services, they should use the remote deployment mode. In this

566 W. Sun et al.

mode, SaaSia adapter should be deployed at SaaS subscriber’s premise to connect with
on-premise application, the functional and NFR integration logics should be deployed
to a hosted SaaS integration hub which provides integration services in multi-tenancy
mode for many SaaS subscribers.

S a a S ia T o o l

S a a S ia T o o l

S a a S ia R u n tim e

S a a S ia R u n tim e
a s In te g ra t io n
S e rv ic e

S a a S ia
A d a p te r

S a a S ia
A d a p te r

S a a S
S e rv ic e

S a a S
S e rv ic e

Fig. 6. SaaSia Deployment Mode

3.3 SaaSia Prototype

According to the reference architecture, a SaaSia prototype is built. The tooling pro-
totype embraces the lightweight and open Eclipse platform. It also benefits from the
full functionalities brought by the Eclipse projects, e.g., web tool by Eclipse WTP, data
transformation by Eclipse DTP, dashboard by Eclipse BIRT, and BPEL programming
by Eclipse BPEL [27]. There are also pre-built assets to accelerate the integration de-
sign/development, including Common Services (e.g., scheduling, logging), Integration
Adapters(e.g. Adapter for SAP, Quickbooks) and Integration Templates(e.g. CRM
opportunity to ERP order fulfillment). As illustrated in figure 7, SaaS-DL Manager,
SaaS Customization, NFR Dashboard Design Utilities and Deployment Utility can
integrate with these Eclipse components as a SaaS integration design and development
toolkit.

SaaS Vendor

SaaS-DL Editor

SaaS Customization

SaaS-DL

SaaS Customer

Fig. 7. SaaSia Design-Time Prototype

The SaaSia Runtime prototype adopts the local deployment mode. It focuses on
lightweight integration capability at SaaS subscriber premise environment. SaaS run-
time is an integrated platform built by leveraging open source and existed components
as much as possible. As shown in figure 8, SaaS runtime provides three key modules:
administration console, integration platform, and SaaS utilization dashboard. The

 Software as a Service: An Integration Perspective 567

integration module provides integration related capabilities such as BPEL engine, ETL
engine, and legacy application integration through JCA adaptor. SaaS NFR dashboard
demonstrates the result of SaaS usage metering and bill consolidation. Administration
components offer the SSO and SaaS-DL management services.

S a a S ia T o o l i n g P l a t f o r m (E c l i p s e)

S a a S - D L R e p o s i t o r y

S a a S - D L M a n a g e r

Fig. 8. SaaSia Prototype Architecture

4 Case Study

In this section, a case about integrating CRM SaaS service and ERP on-premise ap-
plication is studied. The customer company has hundreds of employees and 4 offices in
different cities in China. An ERP application has been deployed for several years to
support manufacturing related business. Recently the company subscribed a SaaS CRM
service to better support their customer related business. Though they started to use the

Table 1. Business Requirements and corresponding pattern and actions

Business Requirements Pattern Integration Actions
“Product” information synchronization from
ERP to CRM service; “Account” information
synchronization from CRM service to ERP

D-II Customize the “Product” & “Account” data
structure on CRM service to map with ERP;
Leverage Scheduling service and CRM service
& ERP application api to synchronize data

Pass new “Order” information from CRM
service to ERP

P-III Customize the “Product” & “Account” data
structure on CRM service to map with ERP;
Leverage Scheduling service and CRM service
& ERP application api to synchronize data

Pass new “Shipping Notice” and “Invoice”
information from ERP to CRM service and
update original “Order”’s status

P-I Create new data structure “Shipping Notice”
and “Invoice” and build relationship with “Or-
der” using Order_ID; Develop new web service
to feed the data into CRM services

Sales Person creates a new “Product” request
according to customer’s special requirements,
the request will be sent to Product Manager to
approve, and then feed into ERP system to
guide fulfillment.

P-IV Create a workflow and link the workflow with
CRM service/ERP application api

Have an integrated user interface to access
both CRM service & ERP application

U-I Create a new web page to accommodate the
ERP & CRM service with UI supported by SSO.

Collect the usage statistical information of the
CRM service

NFR-II Configure NFR dashboard based on web service
metering capability

568 W. Sun et al.

SaaS service as a standalone application, they eventually found that it had to be inte-
grated with their on-premise ERP application. The detailed requirements, patterns ap-
plied and developed integration actions are listed in the following table1.

As illustrated in figure 9, the requirements listed above have been fulfilled by SaaSia
prototype technologies. There are two important lessons gained through our practice:

SaSia QOS Dashboard

Webservices Invocation Successful Ratio/by method Webservices Invocation number historigram /by week

SaaSia QOS Dashboard

Fig. 9. Integrated Solution based on CRM SaaS and ERP on-Premise Application

a) Most SaaS services don’t provide programmatic interfaces for customer to retrieve
QoS and Billing reports. Different SaaS services use their own tools to describe cus-
tomization capability and perform customization actions. So SaaS related standards
should include these perspectives to benefit the SaaS growth.

b) As currently most SaaS services’ subscribers are SMBs [6]. They strongly -expect
integration to be done with very small footprint in agile way. The current SaaSia pro-
totype is standard based, e.g. Eclipse, BPEL. But to gain SMB adoption we need to
explore more lightweight approach including browser based integration tool and pro-
gramming model based on Web 2.0 technologies [12, 28].

5 Conclusions and Future Work

In this paper, we analyzed the key requirements for SaaS integration and presented
several integration patterns. A SaaS integration framework, SaaSia, is proposed to
address those requirements. Also a prototype and corresponding case study is intro-
duced. We learned two valuable lessons. Firstly, most SaaS integration functional re-
quirements can be fulfilled by existing SOA integration technologies [5]; Secondly
SaaS involves some NFR requirements which should be addressed by extending exiting
integration technologies. We plan to pursue future work in two directions. As there
lacks of industry standards to streamline SaaS integration, we will conduct more re-
search around the concept of SaaS-DL [22] in Enterprise Application Integration,
leverage and Enhance BPEL or ESB; we will also dive into the latest Web2.0 tech-
nology [12, 28], e.g. apply SaaS-DL in Mash-up description languages, to explore a
more lightweight and generic SaaS integration platform for SMB.

References

[1] Knorr, E.: Software as a Service: The Next Big Thing, http://www.infoworld.com/
article/06/03/20/76103_12FEsaas_1.html

 Software as a Service: An Integration Perspective 569

[2] Summit Strategy Report: The Future of Software as Service-And the Partners ISVs will
Need to Get There (2004)

[3] Web Site, http://www.employease.com
[4] Web Site: Salesforce.com AppExchange, [Online]: http://www.salesforce.com
[5] Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-Wesley,

Reading (2004)
[6] Baumol, W.: Small Firms: Why Market-Driven Innovation Can’t Get Along Without Them.,

The Small Business Economy: A Report to the President, Ch. 8, pp. 183–206 (2005)
[7] Web Site: Mashups and the Web as Platform, http://www.programmableweb.com/
[8] AMR Research Report: Software as a Service: Managing Buyer Expectations as We Pass

the Tipping Point from Novelty to Necessity (2005)
[9] IDC report: Software as a Service in the Mid-market: Adoption Trends and Customer

Preferences (2004)
[10] Web Site, [Online]: http://www.jamcracker.com
[11] Web Site, SaaS Showcase, [Online]: http://www-19.lotus.com/wps/portal/showcase/SaaS
[12] Seltsikas, P., Currie, W.L.: Evaluating The Application Service Provider (ASP) Business

Model: The Challenge of Integration. In: Proceedings of the 35th Hawaii International
Conference on System Sciences (2002)

[13] Elfatatry, A.: Software As A Service: A Negotiation Perspective. In: COMPSAC’02. Proceed-
ings of the 26th Annual International Computer Software and Applications Conference (2002)

[14] Turne, M.: turning Software into a Service, Computer (October 2003)
[15] O’Reilly: What is Web 2.0, Design Patterns and Business Models for the Next Generation

of Software (2005)
[16] Web Site: NetSuite Small Business, [Online]: http://www.netsuite.com/
[17] Web Site, [Online] available: http://www.aboveall.com
[18] OMG: An Architecture for Modeling, http://www.omg.org/mda
[19] W3C WS-Policy standard: http://schemas.xmlsoap.org/ws/2004/09/policy/
[20] Mandell, D., McIlrait, S.: Automating Web Service Discovery, Customization, and Se-

mantic Translation with a Semantic Discovery Service. The Twelfth International World
Wide Web (2003) (reference 26)

[21] Rykowski, J.: Virtual Web Services - Application of Software Agents to Personalization of
Web Services. In: 6th International Conference on Electronic Commerce ICEC 2004: En-
gineering the New Landscape, pp. 419–428. ACM Publishers, New York (2004)

[22] Zhang, K., Sun, W., Zhang, X., Liang, Hq., Huang, Y., Liu, X.: A Policy-Driven Approach
for SaaS Customization. In: The 9th IEEE Conference on E-Commerce Technology, IEEE
Computer Society Press, Los Alamitos (2007)

[23] Aboda, B., Arkko, J., Harrington, D.: Introduction to Accounting Management, RFC2975
(October 2000)

[24] Agarwal, V., Karnik, N., Kumar, A.: Metering and Accounting for Composite e-Services.
In: CEC’03. Proceedings of the IEEE International Conference on E-Commerce, IEEE
Computer Society Press, Los Alamitos (2003)

[25] Web Site, [Online] available, http://www.umsl.edu/~sauter/analysis/er/er_intro.html
[26] IBM: BEA Systems, Microsoft, SAP AG, Siebel Systems, Business Process Execution

Language for Web Services version 1.1
[27] Web Site, [Online] available, http://www.eclipse.org
[28] Gross, C.: Ajax Patterns and Best Practices, Apress (2006)
[29] Web Site, OpenKapow, http://openkapow.com/
[30] Ottinger, J.: Software as a Service Integration via Mule, http://www.theserverside.com/

news/thread.tss?thread_id=44456

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 570–581, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Building Data-Intensive Grid Applications
with Globus Toolkit

– An Evaluation Based on Web Crawling

Andreas Walter1, Klemens Böhm2, and Stephan Schosser2

1 IPE, FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131 Karlsruhe
awalter@fzi.de

2 IPD, Universität Karlsruhe, Am Fasanengarten 5, 76131 Karlsruhe
{boehm, schosser}@ipd.uka.de

Abstract. Nowadays, there is a trend to create resource-consuming applications
without building heavy computer centers, but to use resources on computer sys-
tems distributed over the internet. Grid middleware is a framework to access
these resources. The concern of this paper is the evaluation of a specific grid
middleware, namely Globus Toolkit, for data-intensive applications. As a test
case, we have designed and implemented a service-based distributed web
crawler on top of this middleware: A web crawler is a complex application con-
sisting of many nodes. It imposes significantly higher demands on grid middle-
ware regarding administrative flexibility compared to grid applications that
allocate computing power of grid nodes. We have observed that some compo-
nents of Globus Toolkit are flexible enough to provide the control functionality
necessary for a web crawler, while others are not. For these other components,
we propose possible extensions. Since we expect the combination of those
characteristics to occur with many other grid applications as well, our study is
of broader interest, beyond web crawling.

Keywords: Globus Toolkit, Grid-Services, Complex Grid Applications, Usabil-
ity of grid-services, requirements for data intensive grid applications.

1 Introduction

Grid middleware facilitates the creation of a “grid” to develop and run distributed
applications (aka. grid applications). It contains components for the coordination,
allocation and management of resources in a grid. Different grid-middleware solu-
tions exist, which help to implement such applications. In this paper we focus on
Globus Toolkit (GT4) [10], the de-facto standard for grid middleware. GT4 – in con-
trast to other grid middleware – uses a service-oriented approach to manage
resources: It uses a kind of web service, the grid service. Grid services serve two
purposes: First, they provide high-level functionality that is needed frequently (e.g.,
user management). Second, they make operating-system-specific functionality such as
security features transparent. The concern of this paper is to evaluate GT4, in combi-
nation with grid services, as a platform for data-intensive applications.

 Building Data-Intensive Grid Applications with Globus Toolkit 571

Grid applications typically make excessive use of resources on computer systems
connected to the internet, in contrast to arbitrary distributed systems which may also
run in a local network. Existing evaluations focus on grid applications which perform
complex computations or transfer large data sets [8]. In this paper we choose a differ-
ent focus: To evaluate that middleware, we have developed a highly distributed web
crawler. One reason why we have used web crawling as an application is its relatively
high complexity. A crawler loads web pages from the internet. It has a high consump-
tion of bandwidth and memory. In addition, it requires a control system that can han-
dle a list of addresses of web pages. A crawler will request such addresses (aka. jobs)
and then load the web pages. It should not process a job more than once. This calls for
bookkeeping by the control system. In our case, we have designed a control system
that can fulfill these requirements. In addition, this control system is distributed to
guarantee high availability and scalability. Its nodes must communicate extensively.
All this leads to strong requirements on resources and coordination. Using our web
crawler for illustration, we also describe our experiences in designing and implement-
ing a complex application in GT4 and missing features that can help in creating such
an application flexibly. Many grid applications in real world setups run on systems
that share their resources among several applications running in parallel. Therefore,
our evaluation puts a focus on usability, performance and stability of GT4, by running
our service-based web crawler in shared environments.

Paper outline: Chapter 2 gives an overview of GT4 and its concepts for integrating
services. In Chapter 3, we describe related work and extensions of GT4 that can help
in building grid-based applications. Chapter 4 introduces our crawler architecture. In
Chapter 5 we use this architecture to develop a web crawler based on GT4. We then
report on our experiences in Chapter 6. Chapter 7 concludes.

2 Services in Globus Toolkit

Grids allow the creation of distributed applications with high resource requirements.
Grid participants share resources, e.g., CPU or memory on their computers, which
communicate via the internet [7]. Grid middleware simplifies application develop-
ment. It consists of tools frequently needed in a grid scenario. The objective of GT4 is
to let individuals share computing power, databases and other tools securely online,
without sacrificing local autonomy. As grid nodes are connected over the internet, the
requirements exceed those on a local network. The requirements and the design of the
components go back to Foster et al [6, 7]. The requirements are safety, fairness, con-
trol, flexibility and a common runtime. [16] discusses these requirements in detail.
Besides these requirements concerning the functionality offered, grid middleware has
to integrate heterogeneous resources. This heterogeneity should be transparent to the
users and their applications. To accomplish this, GT4 uses a service-based approach
based on XML. Services in GT4 are called grid services.

Grid services are similar to web services. Service containers solve the problem of
heterogeneity: All grid services are executed within the service container, which is
adaptable to different operating systems. For the integration of resources, there are
standardized mechanisms to describe services and exchange objects between them [4,
12]. Grid services communicate using standard WWW protocols, e.g., http and https.

572 A. Walter, K. Böhm, and S. Schosser

Besides the security infrastructure, grid services are the most important concept in
GT4 [9]. All of its components are implemented as grid services. We will use grid
services as well to realize our distributed web crawler.

3 Related Work

Current grid applications focus on the allocation of computing power and the transfer
of large data sets. A grid-based crawler needs components that address the require-
ments of data-intensive applications with a large control overhead. The standard ser-
vice for the allocation and management of resources in GT4 is not flexible. It cannot
handle clusters of computers and does not allow for the definition of complex rules
for resource allocation [9]. A distributed web crawler mainly consumes the resources
bandwidth and memory. There are several GT4 extensions for the management and
allocation of CPU time. Condor [5] for instance allocates jobs in clusters of com-
puters. Sun Grid Engine [14] extends the resource management with accounting func-
tionality, to limit CPU consumption. Both extensions are not suitable to manage
bandwidth usage.

Web crawlers require a resource-management system that can either define the
maximal bandwidth that a user is willing to share or the maximal amount of data that
may be transferred over his internet connection. The resource allocation and man-
agement in the ‘Distributed Aircraft Maintenance Environment’ (DAME) [1] controls
the analyses of errors in airplanes. This is a complex task with high safety require-
ments. They extend GT4 with a resource management and an allocation service that
allows the definition of service-level agreements. One can reuse their extended con-
trol service for tasks with high safety requirements, but not for bandwidth-intensive
tasks such as ours. The middleware OGSA DAI (Data access and integration) [15]
aims to integrate heterogeneous database systems in a grid. DRS (Data Replication
Service) [10] can help in replicating data. For the evaluation of our web crawler, we
will integrate the repositories needed with a service of our own. The reason is that it
has to fulfill additional tasks, such as the filtering of web pages already processed. So
we cannot use OGSA-DAI. Further, we leave aside replication in our study, i.e., we
did not use DRS either.

Other grid middleware like BOINC [3] and UNICORE [19] is based on a frame-
work to create grid applications. They do not contain any features that address the
heterogeneity problem. This is in contrast to GT4, which uses grid services to this
end. We have deemed GT4 the most promising platform for a crawler application
because of its service concept and its advantages for heterogeneous environments.

4 Structure of a Highly Distributed Web Crawler

A web crawler has very high demands regarding resources (bandwidth and CPU) and
coordination: The web consists of billions of web pages. Most of them change fre-
quently. Thus, a good web crawler must analyze pages fast and revisit them in time
intervals of a few days. Large computer centers can do this fast [3]. But grid-based
web crawlers might accomplish this as well. We expect that the more nodes there are,

 Building Data-Intensive Grid Applications with Globus Toolkit 573

the more web pages can be processed per time unit. We will present a service-based
crawler architecture which benefits from the advantages of GT4 (we hypothesize).

Web crawlers contact web servers, download web pages, and send the results to
repositories. A crawler needs components to load pages, extract links, and store
pages. In addition, a control system is required. It assigns the next URLs to process to
the crawler. [13] proposes a reference architecture for a distributed web crawler. Its
control overhead increases with the number of crawlers and repositories and becomes
a bottleneck. Hence, the control system should be distributed as well, and [13] sug-
gests an extension of the reference architecture for a high degree of distribution. The
crawlers and the repositories are assigned evenly to the distributed components of the
control system. If one of these components breaks down, other components can take
over its crawlers and repositories. With our distributed web crawler, we will follow
this suggestion. To ensure that each node of the distributed control system handles
roughly the same number of crawlers and repositories, a component management is
needed, as a further extension of the distributed control system.

The bandwidth of most internet connections is not as high as in a local environ-
ment. The transfer of data takes more time and is more expensive [11]. Thus, the
repositories themselves should analyze the data, instead of sending it to a control
system. In contrast to the reference architecture, our distributed control system per-
forms coordination tasks instead of filtering links to web pages. Each repository is
responsible for a number of web sites. The repositories have to communicate with
each other to locate the node responsible for a web site. We do not describe the com-
munication of the nodes and the allocation of web sites to them in detail. This is be-
cause the issue is orthogonal to the concern of this paper. We refer the interested
reader to [16]. We only mention that the allocation principle is based on characteris-
tics of the link structure in web sites: More than 75 percent of the links are intra links
[2]. They do not require any additional communication between the repositories. The
crawlers load web pages and extract new links from them before sending both to the
repositories. In a local network environment, there is a direct view and control over
the components. In contrast, components in a highly distributed grid environment are
not as easy to control. Unauthorized access to the highly distributed web crawler has
to be avoided. The owners of each node must be able to specify the bandwidth and the
memory they are willing to provide. Thus, we have two aspects of control. One is the
allocation of resources by the owners. The other one is the control over all shared
resources in the context of our web crawler. The control system of the reference archi-
tecture described before only deals with the second aspect. We therefore extend the
reference architecture to fulfil grid-specific requirements, as described next.

5 Mapping the Web Crawler to Globus Toolkit

Using GT4, all components have to be implemented as grid services. Our first ap-
proach for the design of the data-intensive crawler application was to use standard
services provided by GT4 – these are a directory service, resource management, con-
trol services and a monitoring service. Standard services address requirements of
many grid applications and reduce design and implementation time. While this is
promising in our context as well, it has turned out to be insufficient: Most of the

574 A. Walter, K. Böhm, and S. Schosser

standard services for control and coordination tasks focus on applications with a high
demand on computing power. When we designed the grid-based web crawler, it
turned out that the standard services lack functionality for the coordination of such an
application. In particular, the assignment of jobs to nodes must be more flexible than
with current GT4 control services. Hence, we implemented missing functionality with
own grid services. Figure 1 gives an overview of our architecture. To control the
crawler components, the standard service ‘resource management and allocation’ pro-
vided by GT4 becomes part of the architecture. To observe the current usage of the
resources in the grid, the monitoring service is included, too, as is the directory ser-
vice in GT4. It promises scalability, since new components can be added dynamically.

Fig. 1. Overview of our grid-based crawler architecture

Directory Service

The directory service in GT4 allows discovering available services. New services can
be added dynamically. Grid applications must know the addresses of the nodes run-
ning the directory services. GT4 requires specifying these addresses in configuration
files on each node that wants to publish grid services. The GT4 directory service has
three drawbacks when applied to a distributed web crawler.

First, the number of entries in the directory service is large if there are many ser-
vices in the grid. This calls for a distributed service. To add a new directory service,
the configuration files of GT4 would have to be updated. Hence, it is not possible to
add a new node for the distributed directory service dynamically. The second problem
is that we need to find an efficient way to partition the distributed directory service
evenly. Each directory service should be responsible for some of the services in the
grid. Third, the directory service in GT4 always returns the complete list of services
requested. The requestor then chooses one service from the list. This does not exactly

Resource management

Repository services

Crawler

Hierarchical directory service

Directory service: layer 2

Directory service: Layer 1

Grid Services based on Globus Toolkit

Controller service

Monitoring service

Repository services

Crawler

Controller service

Monitoring service

Directory service: layer 2

Authentification and authorisation

 Building Data-Intensive Grid Applications with Globus Toolkit 575

help to achieve a balanced load of the grid nodes. To eliminate these problems, we
have designed a directory service of our own. It has a hierarchical structure. If the
number of entries in a node is too large, it is split into a new layer of the hierarchy. If
a node breaks down, nodes in the same hierarchy level or in a higher one take over its
services. Instead of returning a list of services of a type requested, the directory ser-
vice already performs load balancing among crawlers and repository services and
returns only the service to be used by the requestor.

Monitoring Service

The monitoring service controls the services by querying their states periodically. The
queried values can then either be displayed to users of the grid, or extensions can
process them further. Such extensions can trigger error handling or notify users in
cases of errors. In GT4 there is no standalone service for monitoring. The functional-
ity for the directory and monitoring are part of one service named ‘Monitoring and
Discovery Service’. Because our directory service is proprietary, we cannot use the
standard monitoring service either. We had to develop a monitoring service that is
distributed as well. Its basic tasks are to query the states from the repository services,
e.g., memory available. The control services and the participants of the grid can then
query the monitoring services for these values.

Repository Service

GT4 contains standard services for reliable file transfer, but no repository service.
Hence, we had to build such a service that can be configured to store web pages. In
addition, it needs to filter web pages, as described before. Each node of our distrib-
uted repository service is connected to a relational database. For fast communication,
the database system lies in the local network where the service is installed. The tasks
of the repository services are to store the web pages and the links. Each repository
service is responsible for a number of web sites. For each web site, it knows the web
pages already processed and the ones waiting to be crawled.

Resource Management and Control Service

To meet the requirements fairness and control, GT4 contains an independent service
for resource allocation and management. When a user offers resources, he can define
rules how these may be used. The standard service in GT4 allows limiting the CPU
usage allowed. More complex rules about CPU usage, e.g., user groups and budgets
allowed, are definable with extensions like Sun Grid Engine. The resource-allocation
component then controls the resource usage. It can choose resources in the grid and
allocate the requests evenly. It can also choose alternative resources in case of execu-
tion errors.

Our web crawler requires the resources bandwidth, CPU time, and memory. The
resource allocation must be able to distribute the requests to nodes with sufficient
resources of all three kinds. With the standard service in GT4 and with extensions like
Condor, only the even allocation of CPU time is possible. As the standard resource
allocation and management service is not applicable to our scenario, we have devel-
oped a ‘control service’ which integrates the functionality of both of them. It handles

576 A. Walter, K. Böhm, and S. Schosser

the requirements of the control system of a web crawler. Each node of this service
knows some repository services as allocated through the directory service responsible.
For quick responses to requests from crawlers for new addresses of web pages, each
control service maintains a stack. When it is empty, the control service queries the
repository services for new addresses to process.

6 Experiences with Globus Toolkit

Running a crawler application on a grid middleware requires a stable service infra-
structure for the grid services implemented. For the success of GT4 in practice, three
requirements are essential. First, the benefits of grid services, especially the integrated
security infrastructure and resource management, must go beyond the ones of plain
web services. Second, GT4 as a service infrastructure (i.e., the platform where the
services run) must be comparative to other infrastructures, e.g., Apache Tomcat [17],
both with regard to resource consumption and ease of installation. Third, GT4 must be
stable when running grid services. (For us, data intensive applications are in the center
of interest.)

In real-world setups, a grid application can run on many nodes – each one sharing
many applications, e.g., file sharing, communication and office applications. In such
environments, it is not possible to use the entire CPU and memory of the nodes.
Therefore, our evaluation does not focus on comparing our grid-based crawler with
crawler benchmarks [15] using high end systems. Rather, we are interested in the
benefits of grid services and the minimal requirements for running them on shared
systems.

Our evaluation focuses on three aspects: the runtime of grid services compared to
web services, the performance of GT4 when running web-crawler-specific services
that generate and transfer a lot of data, and the stability of GT4. Note that a single grid
node is sufficient to evaluate these characteristics of GT4. For our experiments, we
used a simple standard PC, a Pentium Centrino with 1.600 MHz CPU and 512 MB
RAM.

Installation

Version 4 of Globus Toolkit requires a UNIX-based operation system for installation.
Hence, it cannot be installed on Windows systems without emulation of UNIX
specific functions. This is not exactly in line with the requirement that a grid should
support as many environments as possible. Installation of Globus Toolkit is more
complex than the installation of the web-service environment Apache Tomcat: First,
for the installation, the toolkit requires the configuration of the desired location. Af-
terwards, GT4 runs without security options. Second, to enable authentification and
authorization, SSL certificates need to be created. Third, description files, containing
the name of the grid and information about the security policies, need to be created.
These files are required on each node participating in the grid. Finally, the standard
services need to be configured, e.g., one needs to specify the address of a directory
service for publishing grid services. When following these steps, we observed several
problems: Using all standard services proposed, Globus Toolkit throws a lot of errors

 Building Data-Intensive Grid Applications with Globus Toolkit 577

on start up. The reason is that the services are not configured correctly. Further, errors
concerning security arise, even when the platform is started following the second step,
i.e., security is deactivated. We also had problems of different behavior of the mid-
dleware on different systems. We encountered different, uncommented errors on
different UNIX distributions. The complete installation requires a lot editing of con-
figuration files with the correct parameters. We hope for an installation dialogue
which handles the desired features to allow for a faster installation of Globus Toolkit,
so that installing GT4 can be as easy as installing web-services containers.

Runtimes of Grid Services

We were interested in the runtimes of grid services compared to web services, to
assess the current grid infrastructure. Therefore we compared the runtimes of grid
services with Globus Toolkit 4.0.1 to simple web services with Tomcat 5.5. In each
run, the control service counts the time passed between the first request of a web page
and the end of the process. Each test ends when 5,000 jobs were processed. A job in
our context is defined as a set of two addresses. The first one is the web page that will
be loaded, and the second one is the address of the repository that will store the
results. Each service container can be started using an unsecured or a secured connec-
tion. The secured connections of both web services and grid services use SSL certifi-
cates to identify the server and client side on the standard port 443 for secured
connections. We expect runtimes of services to be different with and without such
data encodings. Hence, the comparison of runtimes consists of four different setups:
each combination of ‘web service’ or ‘grid service’ on the one hand and of ‘secured’
and ‘unsecured’ on the other hand. Normally, the service container for grid services is
started using a secure connection. Only then authorization and authentification are
possible. We expect that this type of connection is slightly slower than the one for
web services, because of more components in GT4. Table 1 shows the results. Web
services with an unsecured connection are the fastest. The unsecured connection with
GT4 is only slightly slower than the unsecured connection of web services running in
Tomcat. The secure connection with web services took about 20 percent longer than
the unsecured one. The secure connection for GT4 takes more time than the secure
connection for web services. The general (albeit expected) conclusion is that there is a
difference in the runtimes of grid services and web services. In more detail, we think
that the (not so much) slower performance of a grid service is acceptable. The reason
is that, unlike web services, grid services are integrated in a grid infrastructure featur-
ing security, resource allocation and resource management and allowing a fast
implementation of all requirements that are requested to a grid based application.

Table 1. Runtimes of grid services compared to web services

Tomcat/Unsecured Tomcat/Secure GT4/Unsecured GT4/Secure

2.130 sec 2.610 sec 2.390 sec 3.130 sec

578 A. Walter, K. Böhm, and S. Schosser

Running Globus Toolkit

After the comparison of web services and grid services, we now focus on features of
GT4. With the following experiment, we measure the time overhead that is required
to exchange data. We modified our test setup with different numbers of jobs requested
by the crawler from the control service in parallel. Even though crawler and control
service run on the same node in our experiment, this is intended: Data is exchanged
using the communication channels of GT4. In contrast to an evaluation using multiple
nodes, latency based on other network components will not affect the outcome of the
experiment. The crawler sends the parameter “number of jobs” to the control service.
It returns this number of web pages to the crawler. The control service measures the

0

200

400

600

800

1000

1200

0 100 200 300 400 500
Seconds

Jo
b

s

1 Job 2 Jobs

4 Jobs 8 Jobs

16 Jobs

Fig. 2. Overhead on requesting jobs

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500
Seconds

Jo
b

s

1600 MhZ
1400 Mhz
1200 MHz
1000 MHz
800 MHz
600 MHz
400 MHz
200 MHz

Fig. 3. Number of jobs with limited CPU

0

200

400

600

800

1000

1200

0 100 200 300 400 500
Seconds

Jo
b

s

512 MB 256 MB

128 MB 64 MB

32 MB 16 MB

Fig. 4. Number of jobs with limited RAM

time that the crawler needs to process one thousand web pages for different numbers
of jobs requested. It may be obvious that the request of every single job generates the
highest overhead of data transfer for requests. Too many jobs per request in turn
would give way to inflexibility and redundancy. We are now interested in the number
of jobs that should be requested in parallel to achieve optimal run times. At the same
time we try to keep the data overhead for requesting new jobs very low. Figure 2
shows the results. While the run times of 16 requested jobs and 8 parallel requested
jobs are nearly equal, 4 parallel jobs take some more time to exchange the data

 Building Data-Intensive Grid Applications with Globus Toolkit 579

needed. Hence, to arrive at acceptable runtimes of the web crawler, at least 4 jobs in
parallel should be requested. As a general conclusion, a lower number of requests
with more content can be performed faster than a high number of requests with less
content. For data intensive applications, this means the following: one should keep the
number of calls to coordination nodes as low as possible and request a large number
of new jobs with every call.

Stability

A data-intensive grid application requires a stable grid middleware. To test the stabil-
ity of GT4 with limited resources, we reduced the system resources of our computer
system step by step. We want to verify that GT4 also runs stable in environments
shared by a lot of applications – that is often the case in real-world setups. A reason
for instable behavior of GT4 could be that it requires a minimum amount of CPU. To
verify this, we started GT4 (and four parallel crawlers as clients on a different system)
with 100% of CPU Power (1600 MHz). Then we reduced the CPU power step by step
in intervals of ten percent down to ten percent of CPU power remaining. The services
were still running, albeit slowly, and we noticed no error (Figure 3). Thus, GT4 is
able to run on machines where little CPU time is allocated. Our next test focused on
the RAM required for our setup. We expected that the platform will stop with an error
when the available RAM is not sufficient for running the platform correctly. There-
fore, we reduced the RAM that the container may use – starting with 512 MB down to
16 MB. GT4 and the grid services also started with 16 MB RAM (Figure 4). With
only 16 MB of RAM, the services stopped working after about one minute with the
error ‘Out of memory’. The platform itself was still running and available. Hence,
insufficient memory lets grid services crash, while the platform itself is still running.
For a highly distributed grid application with many nodes, this is a problem. Nodes
different from the one where GT4 is running cannot detect such an error caused by
RAM limitations. Thus, we would like to see a suitable error handling inside of GT4,
e.g., automatic generation of an email to a system administrator. Currently, there is no
such error handling by GT4. Our test with 16 MB showed the behavior when a grid
service has problems with RAM limitations. The same reaction would occur when a
RAM-consuming service reaches its limit. This is a weakness since errors based on a
lack of memory cannot be detected outside of the platform. The experiments concern-
ing RAM and CPU requirements lead to the following conclusion: There is an insuffi-
cient error handling in GT4 when a grid service has insufficient memory. A solution
to this problem is urgent. This is because those errors cannot be detected outside of
GT4.

7 Conclusions

During the last years, different implementations of grid middleware have emerged. A
prominent one is Globus Toolkit. In this paper we evaluated its Version 4 using an
implementation of a distributed web crawler. In contrast to other grid applications, a
web crawler has significantly higher demands concerning administrative flexibility
and is therefore a realistic test case.

580 A. Walter, K. Böhm, and S. Schosser

Grid services allow to reuse standard services for resource management, monitor-
ing, directory of given nodes and control services to develop grid applications, to
reduce implementation and testing time. The grid services in GT4 are designed to
fulfill Foster’s grid requirements [9]. The focus of current grid applications is the
allocation of distributed CPU power. The resource-management service of GT4 does
not allow for the management and allocation of other resources, e.g., bandwidth. Ide-
ally, however, it should even allow for an integrated perspective on different re-
sources. To investigate the issue, we have proposed a highly distributed web-crawler
architecture based on grid services and extensions of the standard services, in order to
fulfil the requirements of data-intensive applications with a large control overhead.

We have shown that data intensive, complex applications can be developed using
GT4 and have advantages over standard web services that run in simple service envi-
ronments, e.g. regarding security issues. Our setting however required a reimplemen-
tation of most of the standard services of GT4. We expect such extensions to be part
of newer versions of Globus Toolkit. Its standard services should be more flexible
concerning the integration of many different resources and complex control require-
ments. As soon as this is the case, the framework should be reevaluated.

References

1. Austin, J.: DAME - Distributed Aircraft Maintenance Environment: (last visited 2006-07-
24) (2004) http://www.cs.york.ac.uk/dame/

2. Bharat, K., et al.: Who links to whom: Mining linkage between web sites. In: ICDM ’01.
Proceedings of the IEEE, International Conference on Data Mining, San Jose, USA, IEEE
Computer Society Press, Los Alamitos (2001)

3. BOINC, http://boinc.berkeley.edu
4. Brin, S., Page, L.: The anatomy of a large-scale hyper textual Web search engine. In:

Computer Networks and ISDN Systems, vol. 30 (1998)
5. Chinnici, R., et al.: Web Services Description Language (WSDL) Version 2.0, W3C

Whitepaper last visited (2006-07-24) (March 2006), http://www.w3.org/TR/2006/CR-
wsdl20-20060327/

6. Condor – High Throughput Computing, http://www.cs.wisc.edu/condor
7. Foster, I., Kesselman, C.: The Anatomy of the Grid. In: Sakellariou, R., Keane, J.A., Gurd,

J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)
8. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid, Global Grid

Forum (June 2002)
9. Foster, I., Kesselman, C.: The Grid. Blueprint for a New Computing Infrastructure, 2nd

edn. Morgan Kaufmann Publishers, San Francisco (2003)
10. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: Jin, H.,

Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, Springer, Heidelberg (2005)
11. Globus Toolkit, http://www.globus.org
12. Gray, J., Szalay, A.: The World Wide Telescope. Science Bd. 293 (2002)
13. Gudgin, et al.: Web Services Addressing 1.0 – SOAP Binding, W3C Whitepaper, (March

2006)
14. Planet Lab, http://www.planet-lab.org

 Building Data-Intensive Grid Applications with Globus Toolkit 581

15. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance distributed
Web crawler. In: Proceedings of the 18th International Conference on Data Engineering,
San Jose, pp. 357–368 (2002)

16. Sun N1 Grid Engine, http://www.sun.com/software/gridware/
17. Tomcat 5.5, tomcat.apache.org
18. The OGSA-DAI Project, http://www.ogsadai.org.uk
19. UNICORE, http://www.unicore.com
20. Walter, A., Schosser, S., Böhm, K: Überlegungen zur Entwicklung komplexer Grid-

Anwendungen mit Globus Toolkit. In: Proceedings of the GI Fachtagung für Datenbank-
systeme, Technologie und Web (BTW), Aachen, Germany (2007)

QoS-Aware Web Service Compositions Using

Non-intrusive Policy Attachment to BPEL

Anis Charfi1, Rania Khalaf2, and Nirmal Mukhi2

1 SAP Research CEC Darmstadt
Darmstadt, Germany

2 IBM TJ Watson Research Center
Hawthorne, New York, USA

Abstract. Supporting Quality of Service properties in BPEL processes
is essential to enable Web Service based production workflows. In fact,
when implementing a Web Service composition with a BPEL process,
appropriate means are needed to express and enforce various QoS prop-
erties such as security, reliable messaging, and transactions.

In this paper, we present a generic and non-proprietary approach to
express QoS properties in BPEL processes using policies. This approach
uses XPath, WS-Policy, and the external policy attachment mechanism
of WS-PolicyAttachment to enable a separate and non-intrusive specifi-
cation of both the messaging-level and process-level QoS requirements in
BPEL processes. We also present a prototype implementation on top of
the Colombo BPEL engine, which supports the enforcement of policies
that are attached to BPEL activities.

1 Introduction

Several Quality of Service requirements arise when defining a Web Service com-
position in BPEL such as security, reliable messaging, and transactions. In
[5], these requirements were presented and classified into messaging-level and
process-level requirements. For instance, message encryption is a QoS property
that may be required for an interaction with a partner via an invoke activity.
Message delivery with exactly-once semantics is another example of messaging-
level requirements. Moreover, a set of activities that are nested in a sequence
activity may require transactional execution either as an atomic transaction or
as a business activity [18]. Supporting all these requirements is essential to enable
Web Service based production workflows [14].

With respect to the expression of QoS requirements, the BPEL specification
leaves out QoS issues for several good reasons such as keeping language simplic-
ity, separation of concerns, and interoperability. Moreover, it is widely assumed
that QoS concerns are deployment issues that the BPEL engine should deal
somehow with. However, most state of the art BPEL engines lack appropriate
means for the expression and the enforcement of many important QoS proper-
ties. A few engines support the expression of certain requirements either at the
partner link level as in [7] and [17] or by introducing specific language extensions

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 582–593, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

QoS-Aware Web Service Compositions 583

as in [12]. Both approaches suffer from problems. In the first one, granularity
is an issue as it is not possible to define different QoS properties for different
interactions with the same partner. In the second approach, concern-specific lan-
guage extensions are needed for each concern, which increases the complexity of
the BPEL language and breaks its portability.

With respect to the enforcement of QoS requirements, current BPEL en-
gines rely on implementations of WS-* specifications such as WS-Security and
WS-ReliableMessaging, which are provided through some message handlers or
through an Enterprise Service Bus. That is, the enforcement of the QoS require-
ments is done outside and independently of the BPEL interpreter. Consequently,
process-level requirements such as the transactional execution of a sequence ac-
tivity cannot be supported because they require knowledge about the process
structure, BPEL semantics, and the process execution state. Moreover, such an
approach does not allow to distinguish different messaging activities that call
the same operation on the same partner.

Some work has been done by the authors on the expression of QoS require-
ments in BPEL. In [18], policies were used to specify the transactional behavior
of BPEL processes by attaching policies to scopes. The policy attachments are
inlined within the BPEL file, i.e., the specification of QoS requirements is not
separated from the specification of the process business logic. In [5], a proprietary
deployment descriptor was introduced to express QoS properties of BPEL activ-
ities such as security and reliable messaging separately from the BPEL process.
However, matching the requirements expressed in that descriptor with the real
policies of the live partner Web Services (generally published using WS-Policy)
is quite difficult.

To support a generic, fine-grained, non-intrusive, and non-proprietary expres-
sion of QoS properties in BPEL, we introduce a novel approach that leverages
our previous works. This approach is based on XPath, WS-Policy, and WS-
PolicyAttachment [4]. It introduces external policy attachment files that use
XPath based selectors to refer to the activities to which a certain policy must be
attached. Our approach is generic as it works for various QoS concerns (e.g., se-
curity, reliable messaging, transactions) by using the respective policy assertion
languages. Moreover, it uses the widely accepted WS-Policy specification rather
than introducing proprietary and engine-specific deployment descriptors.

In addition, we will show how our approach was implemented by extending the
Colombo [9] BPEL engine. To enforce the requirements of the process activities,
that engine was modified in an event-driven manner so that the policy handling
component is notified about different events in the execution of process activities.
Such a design can be easily incorporated in other BPEL engines that would adopt
our approach.

The remainder of this paper is organized as follows: Section 2 gives some
background knowledge and motivates the need for policy attachment to BPEL.
Section 3 presents the proposed policy attachment syntax and Section 4 describes
our prototype implementation within the Colombo framework. Section 5 reports
on related work and Section 6 concludes the paper.

584 A. Charfi, R. Khalaf, and N. Mukhi

2 Motivation

This section provides some background knowledge. Then, it motivates the need
for the external attachment of policies to BPEL.

2.1 Background

BPEL [10] is a workflow-based Web Service composition language, i.e., a work-
flow process specifies the Web Services that participate in the composition, the
ordering of their interactions, and the flow of data between them. The main
building blocks of BPEL processes are called activities, which can be primitive
such as invoke or structured such as sequence.

WS-Policy [13] is a specification that provides a generic model and an XML-
based syntax for Web Services to publish their policies, i.e., their requirements,
capabilities, and preferences. A policy is a collection of policy assertions that can
be combined using several operators. There are many domain-specific assertion
languages for different purposes such as WS-SecurityPolicy [3], which defines
typical security assertions such as message confidentiality and message integrity.
Listing 1 shows an example policy that defines a security assertion requiring
message encryption using the triple DES algorithm and a reliable messaging
assertion requiring ordered message delivery with the at-most-once semantics.

<wsp:Policy xmlns:wsp=”http://schemas.xmlsoap.org/ws/2002/12/policy/”
xmlns=”http://schemas.xmlsoap.org/ws/2002/12/policy/”
Name=”RMConfidentialityPolicy”
TargetNamespace=”http://www.research.ibm.com/colombo/”>

<wsp:All xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2004/03/rm/”
xmlns:wsse=”http://schemas.xmlsoap.org/ws/2002/04/secext/”>

<wsse:Confidentiality wsp:Usage=”Required”>
<wsse:Algorithm Type=”wsse:AlgEncryption”
URI=”http://www.w3.org/2001/04/xmlenc#tripledes−cbc”/>

</wsse:Confidentiality>
<wsrm:IsReliable assurance=”wsrm:AtMostOnce” inOrder=”true”

wsp:usage=”Required”/>
</wsp:All>

</wsp:Policy>

Listing 1. An example of WS-Policy

Web Service Policies are typically attached to elements of WSDL bindings
e.g., to an interface as a whole or to a particular binding operation. Attachments
to other WSDL structures such as interface or message definitions, though not
typical, are also possible. WS-PolicyAttachement [4] defines a general-purpose
mechanism for associating policy expressions with subjects such as WSDL doc-
uments, UDDI entries, or any other resources. It provides two association ap-
proaches: internal attachment where the policy is defined as part of the definition
of the subject and external attachment where the policy is defined independently
of the subject and associated to it through an external binding.

QoS-Aware Web Service Compositions 585

2.2 Quality of Service Requirements in BPEL

In [5], QoS requirements in BPEL are classified into messaging-level require-
ments, which are associated with messaging activities and process-level require-
ments, which are associated with higher-level language constructs such as the
composite activities sequence and scope. In the following, we illustrate QoS re-
quirements in BPEL processes using the loan approval process that is presented
in the BPEL 1.1 specification [10]. Then, we motivate the need for a new ap-
proach to expressing QoS requirements in Web Service compositions.

The loan approval process composes two partner Web Services: a risk assessor,
which decides on the risk level of the loan application and a loan approver, which
approves or rejects the loan request in risky cases. If the requested loan amount is
small (below a certain value) then the loan is approved directly without invoking
the loan approver. Interactions of the loan approval process with the risk assessor
and the loan approver via messaging activities go through the Internet, which
poses several risks w.r.t security and reliable messaging.

For example, a malicious third-party could see the exchanged messages and
even modify them or claim to be the loan approver Web Service and resend client
messages to the BPEL process (replay attacks), etc. In addition, the messages
exchanged during the execution of the BPEL process could be lost, delivered
several times, or in the wrong order.

As an example of a process-level requirement, consider a sequence activity
that constrains the order in which three invocations of partner Web Services
are performed. If these invocations represent an atomic unit of work, it may be
necessary to execute the sequence using a distributed atomic transaction [18].

Moreover, if these invocations are asynchronous one-way interactions, it may
be necessary to guarantee that the corresponding messages are received by the
partners without any reordering. This requirement of ordered multi-party mes-
sage delivery [5] is not guaranteed even if the invocations are performed in order.

2.3 Why Should Policies Be Used to Define QoS Properties?

In a previous work, we introduced an XML-based deployment descriptor to define
QoS properties in BPEL processes as part of the process container framework
[5], in which an aspect-based process container is generated automatically from
the deployment descriptor to enforce QoS requirements.

A major advantage of that deployment descriptor over the usage of policies
is that it provides means to define the necessary parameters to enforce a certain
requirement. Policies are too declarative (focus on what) and they do not provide
any means to pass parameters. That is another way to pass parameters should be
found. On the other hand, the requirements specified in the deployment descrip-
tor may conflict with the real policies of the partner Web Services, which can
be defined using WS-Policy and policy attachment to WSDL. For instance, the
deployment descriptor may specify that authentication with username tokens is
required for certain messaging activities that interact with a certain partner Web
Service whilst the published policy of that Web Service states that only binary

586 A. Charfi, R. Khalaf, and N. Mukhi

tokens are supported. This example shows that using policies to define the QoS
properties of the BPEL process would allow a combined policy to be calculated
out of the required policies (defined at the composition side) at the real partner
policy (defined at the partner service side). Moreover, conflicts between the QoS
requirements of the process and the policy of the partners will be detected easily.

2.4 Why Is Policy Attachment to WSDL Not Sufficient?

Colombo is a light-weight platform for service-oriented applications. Several
messaging-level requirements are supported by attaching policies to the WSDL
of the composition or its partner Web Services (i.e., the association of policies to
elements of the WSDL document such as operations, messages, and port types).
However, this approach does not allow two different messaging activities with the
same attributes to have different policies. For example, consider a process with
two receive activities that run sequentially. Clients of this Web Service should
call a certain operation twice and then cause some business logic to be executed.
Policy attachment to WSDL does not allow to differentiate the two receive to ex-
press, e.g., that the first receive requires authentication and the second requires
encryption because they match one same WSDL operation. A finer attachment
granularity in the case of BPEL processes is needed.

Moreover, process-level requirements cannot be supported with policy attach-
ment to WSDL because these requirements arise from higher-level language con-
structs such as composite activities and variables.

Composite activities in BPEL such as sequence and scope can be used to
group a set of interactions. WSDL merely defines the service interface, making
it impossible to specify a QoS requirement that spans multiple interactions.
For example, one cannot use policy attachment to WSDL to express that three
invocations of partner Web Services have a shared coordination context. WSDL
does not provide means to specify the transaction boundaries across different
operations. Moreover, the two operations that are called by the BPEL process
may be defined in different WSDL files.

2.5 Why Should Policies Be Separated from Process Definitions?

The idea of using policies with BPEL was first presented in [18], where policies
are used to specify transactional behavior for BPEL processes. In that work,
transaction policies are attached to scopes and policy attachments are inlined
within the BPEL file, which is quite intrusive. To enforce these policies, an
implementation of WS-AtomicTransaction and WS-BusinessActivity is used.

As QoS policies address concerns often orthogonal to the business logic of a
BPEL process such as security and reliable messaging, we advocate an even more
loosely coupled approach to specifying them: the business logic of the process
and the technical details about QoS policies should be defined in separate files,
which would bring several benefits:

– It supports the principle of Separation of Concerns as the specification of the
process business logic is separated from the specification of technical QoS

QoS-Aware Web Service Compositions 587

properties. Thus, the policies and the BPEL file can be modified indepen-
dently of each other and the policies can be even modified at runtime.

– It reduces the complexity of the resulting process definition and makes it
easier to understand, to maintain, and to evolve.

– It increases reuse as the process can be deployed with various QoS settings
in different environments. Rather than several versions of the process, one
would have one process (bpel file) and different policy configuration files.

– More flexible attachments schemes can be enabled: one could select a set of
activities first (e.g., all invoke activities on a partner foo) and then attach a
policy to the whole selection (quantification). One could also attach a policy
to specific process instances. Without this separation, one would have to find
all the invoke activities and then attach the policies to them manually.

3 Policy Attachment to BPEL

In this section, we present our assumptions and the proposed syntax for policy
attachment to BPEL. Then, we illustrate our approach using an example.

3.1 Assumptions About the BPEL Design and Runtime System

At development time, we assume that the developer is working with a set of
Web service definitions (described using WSDL) that are being composed using
BPEL. Note at this time that the composition is abstract, i.e. no live services need
to exist in order for the composition to be created. Once the BPEL definition
of the composition is complete, the developer can begin to meet non-functional
requirements by adding policies. Policies may be specified by annotating WSDL
definitions, which is the standard practice. However, our system additionally
allows those non-functional requirements associated with the composition itself
to be specified along with the BPEL definition.

At deployment time, the set of WSDL definitions, BPEL definition and poli-
cies is mapped into a live service composition, with an endpoint for accessing the
BPEL process and live partner Web services. During deployment, actual service
endpoints are chosen for the Web Services being composed. The policies specified
at development time may not match with those required by the selected services.
In that case, deployment fails. Our system does not perform matchmaking of any
kind; it only computes required policies for the services that are expected to be
met by the chosen endpoints.

At runtime, message exchanges and process state may trigger policy handling,
i.e. some action by the system middleware to support a QoS requirement such as
atomicity or reliable messaging. Here again our system differs from traditional
approaches where message exchanges are the only trigger to such actions.

3.2 Syntax of Policy Attachment to BPEL

In WS-PolicyAttachement [4], a syntax is presented for external policy attach-
ment to arbitrary resources. We use that syntax to associate externally defined

588 A. Charfi, R. Khalaf, and N. Mukhi

policies to BPEL activities and to partner links. In the last case, the semantics
is that the policy applies to all interactions of the process with the partner [18].

We introduce policy attachment files (.pat files for short), which are XML files
that contain an appliesTo element with a nested selector element. The content
of the latter is an XPath expression for selecting a set of activities. In addition,
the .pat file contains either a policy or a policy reference.

Inspired by the quantification concept [11] that is introduced by Aspect-
Oriented Programming, the usage of XPath expressions in the activity selectors
enables a flexible and advanced attachment mechanism. In fact, a set of activi-
ties that may be defined in different processes can be selected based on certain
attribute values (e.g., all interactions with a certain partner or all calls to oper-
ations of a given port type) and the policy will be attached to the whole set in
one go.

If some policy should be applied only to the request message or response
messages of an invoke activity then the inputVariable attribute (respectively
the outputVariable attribute) should be used in the XPath expression.

<wsp:PolicyAttachment
xmlns:wsp=”http://schemas.xmlsoap.org/ws/2002/12/policy/”
xmlns:bpat=”http://www.research.ibm.com/bpel−attachment/”
xmlns:bpel=”http://schemas.xmlsoap.org/ws/2003/03/business−process/”>

<wsp:AppliesTo>
<bpat:selector>
//bpel:process[@name=”loanapproval”]//bpel:reply[@operation=”approve”]

</bpat:selector>
</wsp:AppliesTo>
<wsp:PolicyReference
URI=”http://www.research.ibm.com/colombo/RMConfidentialityPolicy”/>

</wsp:PolicyAttachment>

Listing 2. Syntax of policy attachment to BPEL

Listing 2 shows an example .pat file that associates a confidentiality policy
to the reply activity contained in the BPEL process loan approval by using a
policy reference. This .pat file contains a reference to the policy that was shown
in Listing 1.

3.3 Policy Enforcement

In the following, we explain in a generic way how policies attached to BPEL ac-
tivities are enforced. To support QoS policies defined in this manner, the system
needs to first read and load the policy attachment files and the attached policies.
The system may choose to load the .pat file, interpret the context and configure
the middleware at deployment time (i.e. when the BPEL process is deployed
to the system with associated policy attachment files), or even at runtime by
checking dynamically for new policy attachments.

Then, the system needs to identify the processes to which the policy is at-
tached and establish a mapping between the activities selected by the AppliesTo
element and the respective policies. For example, for the policy attachment file

QoS-Aware Web Service Compositions 589

shown in Listing 2, the system will locate all instances of the business process
named loanapproval and load the policy referenced by the policyReference ele-
ment in the .pat file (shown in Listing 1). Next the system establishes a mapping
between the selected reply activity and that policy.

Consider a BPEL system with a policy handler mechanism for Web services,
which supports policy attachment to WSDL. If one aims to add support for poli-
cies attached to BPEL constructs in such as system, then the BPEL engine and
the policy handlers need to interact to exchange state information relevant to the
BPEL activities being executed. For example, if a process has some transaction
policy attachments to a sequence activity then the transaction policy handlers
need to be notified about relevant events in the execution of that activity such
as start, completion, and the execution of nested messaging activities.

Figure 1 shows how various reliable messaging and security policies are at-
tached to the activities of the loan approval process. In this figure, three different
policies are used for interacting with each partner of the process (via the activ-
ities receive, reply, and invoke.

Fig. 1. A secure and reliable loan approval process

4 Implementation

Colombo [9] is a light-weight platform for developing, deploying, and executing
service-oriented applications. It offers native and optimized runtime support for
the service-oriented computing model, as opposed to approaches layering service-
oriented applications on a legacy runtime.

Colombo provides a multi-language service programming model supporting
Java and BPEL. The deployment and discovery models of Colombo are based
on declarative service descriptions in WSDL and WS-Policy. The unit of de-
velopment and deployment is called servicelet. The Colombo platform consists
basically of a SOAP message processing engine: messages flow into the system
via channels and are examined and dispatched to the intended recipient accord-
ing to a set of predefined rules to the respective servicelet manager (one for

590 A. Charfi, R. Khalaf, and N. Mukhi

BPEL and one for Java). The latter provides the connective layer between the
servicelet implementation and the system’s infrastructure. Colombo also comes
with a set of middleware services such as security, transaction, persistence, etc.
In addition, there is a policy framework responsible for collecting, interpreting,
and enforcing policies.

The deployment of BPEL servicelets in Colombo looks for .car files that
contain the servicelet definition files and the WSDLs of the partner Web Services.
If some policies are attached, e.g., to some operations in the WSDL of the partner
Web Services, these policies are parsed and a mapping is established between
the SOAP message corresponding to these operations and the respective policies.
To support policy attachment to BPEL, the deployment process also looks for
.pat files in the car file. Once those files are found, the BPEL activities that are
matched by the XPath selectors are computed, the attached policies are parsed,
and a mapping is established between the activities and the respective policies.

Colombo’s policy enforcement model is based on a set of triggering events
that result in policy handlers being executed. A policy handler is responsible
for the enforcement of a specific policy, for example supporting confidentiality
by performing the encryption of a message. The triggering events supported by
Colombo were limited to message exchanges, so for example a policy handler can
be made to execute based on a request message for an external service leaving
the Colombo system, or based on a response message from a service entering
the system. Using this infrastructure, Colombo provides support for security,
reliable messaging, and transactions for policies defined at the WSDL level.

To support the enforcement of policies attached to both messaging and non-
messaging activities, we extended the triggering model of Colombo with activity
trigger events. Moreover, we modified the BPEL interpreter of Colombo to fire
appropriate events during the execution of the process activities. For instance,
messaging activities notify the policy handlers when they are about to consume
an incoming message (as it is done when interpreting receive and invoke ac-
tivities), or they have generated an outgoing message (in the case of reply and
invoke). Structured activities such as scopes notify the policy handlers when
they are entered, exited, and when the lifecycle of their child activities changes.
When the policy handlers receive such events, they check the list of activity-to-
policy mappings that was established at deployment time. If the source activity
of the events is found in one of those mappings, the respective policy is enforced
by the appropriate policy handler.

The version of Colombo modified in this manner is now able to support ac-
tivity triggers in addition to message triggers. Moreover, policies are applied
on SOAP messages (e.g., encryption), on activities (e.g., creation of a sequence
when a scope with reliable messaging policy is entered), or on a combination of
both (e.g., creation of a transaction context at the beginning of a scope).

If a certain policy p1 is defined for a messaging activity via policy attachment
to BPEL and a policy p2 is defined via policy attachment to WSDL, both policies
are combined into an effective required policy that is calculated as described

QoS-Aware Web Service Compositions 591

in [15]. When the partners are matched with real Web Services, the effective
required policy should be matched with the policy of the real Web Service.

5 Related Work

In [6], Charfi and Mezini presented AO4BPEL, which extends BPEL with aspect-
oriented concepts. Unlike other aspect-oriented extensions to BPEL, which allow
only the modularization of process-level concerns such as [8] and [2], AO4BPEL
aspects support also middleware-related QoS concerns [5] because AO4BPEL
provides suitable language concepts for that such as internal join points, cross-
layer pointcuts, and appropriate context collection constructs that the advice
can use to access the SOAP messaging layer.

Based on AO4BPEL, Charfi et al. presented a process container framework
that also addresses QoS requirements in BPEL processes in [5]. Unlike the
current proposal, the process container framework introduces a declarative XML-
based deployment descriptor to express QoS requirements. To enforce QoS re-
quirements, a set of AO4BPEL container aspects is generated automatically from
the deployment descriptor using XSLT. These aspects intercept the execution of
the process activities and call dedicated middleware Web Services to enforce the
requirements. The current paper uses WS-Policy to define QoS requirements,
which allows an easier matching of the QoS requirements of the BPEL process
with the real policies of partner Web Services. Another important difference is
that the logic for enforcing requirements is part of the policy handler in Colombo
(i.e., how policies are enforced is hidden) whilst that logic is part of the container
aspects in AO4BPEL (i.e., it is visible to the user).

The work presented in this paper is also aspect-oriented to some extent. The
XPath expressions used in the policy attachment file are similar to the pointcut
concept in AO4BPEL. The attached policy is similar to the advice but it is
more declarative as it specifies what should be done but not how it should be
done. Note however, that policies and aspects can complement each other as it
is possible for example to use AO4BPEL aspects to enforce certain policies.

The idea of using aspects to enforce policies is also mentioned in [16]. In that
work, Ortiz and Leymann use WS-Policy [13] to describe the requirements of
Web Services and propose generating AspectJ aspects to enforce the policies.
The use of aspects in that proposal allows for a more modular and reusable
implementation of the Java based Web Service. However, no implementation is
provided on how aspects can be generated. Moreover, Web Service compositions
that are implemented in BPEL are not supported as the approach is specific to
Java-based Web Services.

In [12], the authors defined transactions support to BPEL in a way that is
extremely tightly coupled with the process definition: They directly extended the
BPEL language by new constructs and proposed adding the extensions to the
specification. This approach breaks the portability of BPEL and makes it very
complex. Moreover, with such an approach, one would have a specific language
extension for transactions, for security, for reliable messaging, and so on. We

592 A. Charfi, R. Khalaf, and N. Mukhi

choose to attach policies in a non-intrusive manner that distinguishes our work
from this and other works.

The idea of using policies with BPEL was first presented in [18], where
policies are used for specifying transactional behavior for BPEL processes by
attaching them to scopes and partner links. That work focuses on the issues
of supporting specifically transactions in BPEL (policy syntax, programming
model, middleware implications). That is, how one can combine coordination
(WS-Coordination) and composition (BPEL). It does not delve into policy at-
tachment mechanisms and granularities for general non-coordination related
QoS. As a result, that work itself is not concerned with how one attaches these
policies. In the current paper, our focus is on the issues of a generic, flexible,
external attachment mechanism of policies to BPEL processes and constructs,
e.g., to an invoke, a sequence, etc. We enable one to use quantification for policy
attachment and our approach can be used for all BPEL constructs.

The design of Colombo’s policy framework is described in [9] and [15]. One of
the design goals is to support policy attachment and enforcement independently
of the service implementation. This goal is consistent with the Web Services
middleware layer being viewed as a veneer to facilitate interaction with the
business logic as a service. However, as we have seen, this goal causes problems
when the business logic and QoS properties are related to each other so that it
is impossible to specify QoS as a wrapper to a black box implementation.

6 Conclusion

In this paper, we used policies to specify the QoS properties of BPEL processes.
We introduced a syntax for attaching policies to BPEL activities using WS-
PolicyAttachment and XPath activity selectors. We also explained how policies
that are attached in that way can be enforced by the BPEL runtime. Moreover,
we presented a prototype implementation based on the Colombo framework.

As future research, one could extend the AppliesTo element for policy attach-
ment with an endpoint reference (EPR) [1]. This would allow the attachment of
a policy to a specific process instance. In the current implementation, the policy
is attached to the selected activities in all instances of the process. Second, one
could develop a command line tool for the dynamic modification of policies. This
tool will take a .pat file as parameter and support attaching policies to running
BPEL processes.

Acknowledgments

The authors acknowledge Francisco Curbera for the inception of this project,
and the discussions and ideas during its creation. Moreover, the first author
thanks Mira Mezini for enabling this collaboration.

QoS-Aware Web Service Compositions 593

References

1. Box, D., Curbera, F. (eds.): Web Services Addressing (WS-Addressing) (August
2004)

2. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten,
R., Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using
padus. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102,
Springer, Heidelberg (2006)

3. Kaler, C., Nadalin, A. (eds.): Web Services Security Policy Language (WS-
SecurityPolicy) Version 1.1 (July 2005)

4. Sharp, C. (ed.): Web Services Policy Attachment (WS-PolicyAttachment) (Sep-
tember 2004)

5. Charfi, A.: Aspect-Oriented Workflow Languages: AO4BPEL and Applications.
PhD thesis, Darmstadt University of Technology, Darmstadt, Germany (2007)

6. Charfi, A., Mezini, M.: Ao4bpel: An aspect-oriented extension to bpel. World Wide
Web Journal: Recent Advances in Web Services (March 2007)

7. Cape Clear. Cape clear orchestrator 6.5
8. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings

of ICSE, pp. 69–77 (May 2005)
9. Curbera, F., Duftler, M.J., Khalaf, R., Nagy, W.A., Mukhi, N., Weerawarana, S.:

Colombo: Lightweight middleware for service-oriented computing. IBM Systems
Journal 44(4), 799–820 (2005)

10. Curbera, F., Goland, Y., Klein, J., et al.: Business Process Execution Language
for Web Services (BPEL4WS) Version 1.1 (May 2003)

11. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and
obliviousness. In: Workshop on Advanced Separation of Concerns in conjunction
with OOPSLA 2000 (October 2000)

12. Flechter, T., Furniss, P., Green, A., Haugen, R.: BPEL and Business Transaction
Management, Choreology submission to OASIS (2003)

13. Schlimmer, J. (ed.): Web Services Policy Framework (September 2004)
14. Leymann, F., Roller, D.: Production Workflows. Prentice-Hall, Englewood Cliffs

(2000)
15. Mukhi, N.K., Plebani, P.: Supporting policy-driven behaviors in web services: ex-

periences and issues. In: Proc. of ICSOC, pp. 322–328. ACM Press, New York
(2004)

16. Ortiz, G., Leymann, F.: Combining ws-policy and aspect-oriented programming.
In: Proceedings of AICT-ICIW ’06, Washington, DC, USA, p. 143. IEEE Computer
Society Press, Los Alamitos (2006)

17. OpenLink Software. Virtuoso universal server 4.5
18. Tai, S., Khalaf, R., Mikalsen, T.: Composition of coordinated web services. In:

Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 294–310. Springer,
Heidelberg (2004)

Execution Optimization for Composite Services

Through Multiple Engines�

Wubin Li1, Zhuofeng Zhao1, Jun Fang1, and Kun Chen2

1 Research Centre for Grid and Service Computing
Institute of Computing Technology, Chinese Academy of Sciences

P.O.Box 2704, 100080, Beijing, China
2 Department of Computer Science and Technology

Shandong University of Science and Technology, Qingdao 266510, China
{liwubin, zhaozf, fangjun, chenkun}@software.ict.ac.cn

http://sigsit.ict.ac.cn/

Abstract. Web services are rapidly emerging as a popular standard for
sharing data and functionality among heterogeneous systems. We pro-
pose a general purpose Web Service Management System (WSMSME)
that enables executing composite services through multiple engines. This
paper tackles a first basic WSMSME problem: execution optimization for
composite services through multiple engines. Our main result comprises
two dynamic programming algorithms. One helps minimizes the number
of engines required to complete a composite service when computational
capability of each engine is relatively changeless; the other optimally min-
imizes the heaviest load of engines by segmenting a pipelined execution
plan into sub-sequences before they are dispatched and executed; Both
of the two can obtain optimal solutions in polynomial time. Experiments
with an initial prototype indicate that our algorithms can lead to signif-
icant performance improvement over more straightforward techniques.

Keywords: Web Services, Execution Optimization, Multiple Engines,
Dynamic Programming.

1 Introduction

Web services [1] are becoming a standard method of sharing data and func-
tionality among loosely-couple, heterogeneous systems. Many organizations and
enterprises are considering exposing their existing data and business logic as Web
services (to both internal and external audiences). On the other hand, the com-
position of Web services to handle complex transactions such as finance, billing,
and traffic information services is gaining considerable momentum as a way to
enable business-to-business (B2B) collaborations. There has been a consider-
able amount of recent work [2, 3] on the challenges associated with discovering
� This work is supported in part by the National Science Foundation of China (Grant

No. 90412010), the National Basic Research Program of China (973 Program) (Grant
No. 2007CB310805), and the China R&D Infrastructure and Facility Development
Project (Grant No. 2005DKA64201).

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 594–605, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://sigsit.ict.ac.cn/

Execution Optimization for Composite Services Through Multiple Engines 595

Fig. 1. A Web Service Management System with Multiple Engines (WSMSME)

and composing web services to solve a given problem. We are interested in the
more basic challenge of providing scheduler-like capabilities when scheduled jobs
are composite services. To this end we propose the development of a Web Ser-
vice Management System with Multiple Engines WSMSME : a general-purpose
system that enables clients to execute composite services simultaneously in a
transparent and integrated fashion.

Overall, we expect a WSMSME to consist of three major components; see
Figure 1. The Metadata component deals with metadata management, regis-
tration of new web services, and mapping their schemas to an integrated view
provided to the client. Given an integrated view of the schema, a client can re-
quest the WSMSME through a client interface. The Execution Processing and
Optimization component handles optimization and execution of such declarative
request, i.e., it chooses and executes a plan whose operators invoke the relevant
composite service which comprise several web services. The Profiling and Sta-
tistics component profiles web services for their response time characteristics,
spatial cost; and maintains relevant statistics over the web service data, to the
extent possible. This component is used primarily by the execution optimizer
for making its optimization decisions.

What make WSMSME different from other congeners [13] are the number of
execution engines and the locations of them. We argue that, multiple execution
engines and distribution could be exploited to achieve parallelism in execution
and reduce the response time to the user. One can expect a reasonable speedup
and cost-like load balancing because of the following reasons:

– A single Engine might be incapable to finish the whole process especially
when computational capability and resources are insufficient in a separate
machine.

– Architecture with multiple engines distributed in different systems is usu-
ally a preferable solution. Distributing the query makes more computational
power available for the execution of the composite service.

596 W. Li et al.

– Cutting the composite service into execution segments could achieve paral-
lelism and spatial cost balance over multiple engines.

– Multiple Engines could provide reliability guarantee in a certain degree.
Composite services could be executed in K-1 engines when one of the K
engines is crashed.

– A large number of third-party businesses make money out of service exe-
cution. They either charge money on per execution basis (micro money) or
through advertising. Such businesses, very likely, would run an execution
engine on their machine and make it available to users to send requests to.
They would either charge money for each execution or embed advertising in
the result XML documents. E.g., if a user wants a search on all sites that
keep the old car sales data, the only way a query engine can execute this
query is by distributing sub queries to each of these sites [13].

Moreover, our WSMSME architecture is similar to mediators in distributed
data integration system [16, 17, 18, 19, 20];

2 Related Work

2.1 Parallel and Distributed Execution Processing

In our setting of execution processing over web services, only data shipping is
allowed, i.e., dispatching data to web services that process it according to their
preset functionality. In traditional distributed or parallel execution processing,
each of which has been addressed extensively in previous work [4,5,6], in addition
to data shipping, code shipping also is allowed, i.e., deciding which machines are
to execute which code over which data. Due to lack of code shipping, techniques
for parallel and distributed execution optimization, e.g., fragment-replicate joins
[6], are inapplicable in our scenario. Moreover, most parallel or distributed execu-
tion optimization techniques are limited to a heuristic exploration of the search
space whereas we provide provably optimal plans for our problem setting.

2.2 Web Service Composition and Choreography

A considerable body of recent work addresses the problem of composition (or
orchestration) of multiple web services to carry out a particular task, e.g. [7,
8]. In general, that work is targeted more toward workflow-oriented applications
(e.g., the processing steps involved in fulfilling a purchase order), rather than
applications coordinating execution optimization through multiple engines, as
addressed in this paper. Although these approaches have recognized the benefits
of pipelined processing, they have not, as far as we are aware, included formal
cost models or techniques that result in provably optimal pipelined execution
strategies.

Languages such as BPEL4WS [9] are emerging for specifying web service
composition in workflow-oriented scenarios. While we have not yet specifically
applied our work to these languages, we note that BPEL4WS, for example, has

Execution Optimization for Composite Services Through Multiple Engines 597

constructs that can specify which web services must be executed in a sequence
and which can be executed in parallel. But there is no consideration about run-
ning environments, nor optimal execution plans - no specification relative about
how to complete the executions through multiple engines. We are hopeful that
the optimization techniques developed here will extend to web-service workflow
scenarios as they become more standardized, and doing so is an important di-
rection for future work.

3 Preliminaries

Consider a WSMSME as shown in Figure 1 that provides an integrated interface
to invoke a composite service which involves n web services WS1,...WSn. We
assume that each web service possesses a property (referred to as C) which
represents how much cost that is required to finish executing it. C might include
time, memory sizes, money, etc. consequently, we write WSi (Ci) to denote that,
treating WSi as a program whose running cost is Ci. An important direction
of future work is to provide more sophisticated mechanisms to describe those
requirements, because every-way, the notion of a single cost factor C is overly a
little bit simplistic.

3.1 Composite Pattern Considered

The composite patterns of service we consider for optimization are sequential
services over one or more web services WS1,...WSn. We assume that the corre-
spondence among various inputs of services is tracked by the Metadata compo-
nent of the WSMSME (Figure 1).

DEFINETION 3.1 (SEQUENTIAL SERVICES).

Where inputs of WSi+1 come from the outputs of WSi ,where i ∈ [1,2...n-1].
We assume in Definition 3.1 that all web services run in order: In a given

process, WSi+1 can not be executed before WSi has been executed. We also
assume that inputs of each web service can be delivered accurately without any
other consideration about how it can be.

EXAMPLE 3.1. Suppose a credit card company wishes to send out mailings for
its new credit card offer. The company continuously obtains lists of potential
recipients from which it wants to select only those who have a good payment
history on a prior credit card, and who have a credit rating above some threshold.
For processing this query, the company has the following three web services at
its disposal.

598 W. Li et al.

WS1 : name (n) → credit rating (cr)
WS2 : name (n) → credit card numbers (ccn)
WS3 : card number (ccn) → payment history (ph)

With a WSMSME, one possible way of executing the query is as follows: The
Company’s initial list of names (we assume names are unique) is first processed
by WS1 to determine the corresponding credit ratings, and those below threshold
are filtered out (either by WS1 itself or by the WSMSME). The remaining names
are then processed by WS2 to get the corresponding credit card numbers. Each
card number is then processed by WS3, and if the card is found to have a good
payment history, then the name is output in the result of the query, as below.

Fig. 2. Plan for Example 3.1

Other patterns mentioned in previous works [12] are left out of in this paper,
and would be kept for the future work.

3.2 Problem Definition

There are two basic scenarios involved in this paper, and we try to solve problems
related with those scenarios. Such problems are all about execution optimization
through multiple execution engines in WSMSME.

3.2.1 Scenario A: Minimize the Number of Execution Engines
In this scenario, we suppose that there are K execution engines available in
WSMSME, and client requests arrive in chunks. Web service WSi of a composite
service requires Ci-weighed resources so that it can be executed correctly. In
order to keep the number of available execution engines as great as possible,
we try to minimize the number of execution engines required when a request of
a composite service arrives, then allocate the chosen engines to the composite
service being invoked. Suppose there are 8 execution engines available when a
request of composite service CS comes, we can allocate 5 engines to complete
this request; but if 2 is ok, then we choose 2 and thereby 6 is left before others
become available again. Currently, we also simply assume that the computational
capability of each engine is equivalent relatively, and we write a value L to denote
this.

EXAMPLE 3.2.1. Consider the plan in Figure 2. Let the requirement of the web
services and L to be as follows:

i 1 2 3
Requirement of WSi (Ci) 4 2 3

Value of L 6

Execution Optimization for Composite Services Through Multiple Engines 599

Then if we dispatch each service to a different execution engine (it is possible
because L is greater than Ci), 3 execution engines are needed. Obviously, it is
not the optimal solution. At least, we have two more plans for this problem: (a)
allocate an execution engine to run WS1 and WS2, and another for WS3; (b)
allocate an execution engine to run WS1 and another for WS2 and WS3.

Now we can not tell which is better, because plan a and b both need 2 exe-
cution engines. To evaluate how a plan is different from another that needs the
same number of execution engines, we introduce a dissatisfaction index func-
tion(referred to as DI) to calculate how bad the plan is. Suppose two different
plans both need M engines (referred to as EE1, EE2,...EEM), then:

Dissatisfaction Index =

√∑M
i=1

(L −
∑

EEi is allocated to WSk
Ck)2

M

In this scenario, we treat Ci as a random variable, whose dissatisfaction is
the standard deviation. The standard deviation is the root mean square (RMS)
deviation of values from their arithmetic mean, and it is most common measure
of statistical dispersion, measuring how widely spread the values in the data set
{C1,C2,...} are. The less that standard deviation is, the better the solution is.
Concretely, if dissatisfaction index is large, that means many Ci are far from the
mean, and correspondingly,vast sum of resources of engines are wasted.

We can now calculate which is better in Example 3.2.1, because

DI(a) =
√

(6−4−2)2+(6−3)2

2 = 3
√

2
2 , DI(b) =

√
(6−4)2+(6−2−3)2

2 =
√

10
2 .

Apparently, Dissatisfaction Index(a)>Dissatisfaction Index(b) which tells
that plan b is more optimal than plan b, then we choose the preferable one.

3.2.2 Scenario B: Load Balancing Through Multiple Engines
In this scenario, which is independent with scenario A, we try to dispatch K web
services (which comprise a composite service) to M available engines and obtain
load balancing over those M engines.

EXAMPLE 3.2.2. Consider the plan in Figure 2. Let the requirement of the web
services and L to be as follows:

i 1 2 3
Requirement of WSi (Ci) 4 2 3

Value of L 7
Number of Engines Allocated 2

And now we have two plans for this problem: (a) allocate an execution engine
M1 to run WS1 and WS2, and another M2 for WS3; (b) allocate an execution
engine M1 to run WS1 and another M2 for WS2 and WS3. In this scenario, we
can easily tell that plan (a) is better, because the maximum load among M1 and
M2 is 6 (the sum of C1 and C2), which is less than that of plan (b). In other

600 W. Li et al.

words, we redefine the dissatisfaction index function(calculate the maximum load
of engines) in this scenario to be as follows:

Dissatisfaction Index = max
M

{∑
EEi is allocated to WSk

Ck

∣∣∣i ∈ [1, 2...M]
}

For EXAMPLE 3.2.2, we get

DI(a) = max {(2 + 4), 3} = 6, DI(b) = max {2, (4 + 3)} = 7

Which shows that plan (a) is preferable.

4 Algorithms for Execution Plans in the Two Scenarios

4.1 Optimal Execution Plans for Scenario A

To solve the problem described in scenario A, we use the optimal substructure
to show that we can construct an optimal solution from optimal solutions to
subproblems. Firstly, we make two denotations as follows:

� F (k):The minimum number of execution engines to complete the first k web
services in a composite service.

� D(k):The value of dissatisfaction index when the first k web services are
optimally scheduled.

Thus, the minimum number of execution engines to complete the first k+1 web
services F (k + 1) is either of

1. F (k) + 1, that is to say, allocate a new engine to the web services WSk+1.
2. F (j)+1,when allocating services WSj+1, WSj+2,...WSk+1 the same engine.

Using this we get:

F (k + 1) = Min{F (k) + 1, F (j) + 1
∣∣j < k + 1&

∑k+1
i=j+1 Ci ≤ L}

Moreover, we can update D(k) when computing F (k).

Algorithm Dynamic Programming A
1. F (1) ← 1, D(1) ←

√
(L − C1)2, k ← 1, T ← number of webservices

2. While(k + 1<T)
3. F (k + 1) ← ∞, D(k + 1) ← ∞
4. While(j<k + 1&

∑k+1
i=j+1 Ci ≤ L)

5. if(F (k + 1)>F (j) + 1)
6. F (k + 1) ← F (j) + 1
7. Re−calculate D(k+1) using Dissatisfaction Index Function.
8. elseif(F (k + 1) = F (j) + 1)
9. Re−calculate D(k+1) using Dissatisfaction Index Function.
10. ReturnF (T), D(T).

Execution Optimization for Composite Services Through Multiple Engines 601

4.2 Optimal Execution Plans for Scenario B

Conditions involved in scenario B are different from that of scenario A, but the
solution is similar. And we still using dynamic programming algorithms to solve
that problem. We write F (i, j) to denote the maximum load among j engines
when executing i web services through those j engines. Thus, considering the
definition of F , we get

F (i, j) = Min

{
Max

{
F (i − 1, t − 1),

i∑
k=t

Ck

}∣∣∣t ≥ i

}
.

Using the equation above, we get algorithm as follows:

Algorithm Dynamic Programming B
1. k ← number of available execution engines, n ← number of web services
2. for(i = 1; i ≤ n; i + +)
3. F (1, i) = SUM(C1, C2...Ci)
4.for(i = 2; i ≤ k; i + +)
5. for(j = i; j<n; j + +)
6. for(t = j; t ≥ i; t −−)
7. tem = Max{F (i, t − 1),

∑i
k=t Ck}

8. if(tem<F (i, j))
9. F (i, j) ← tem
10. ReturnF (k, n).

4.3 Analysis of Algorithms

See the algorithms above, algorithm A computes an optimal plan in O(n2) time
where n is the number of web services involved in the composite service which is
invoked; algorithm B computes an optimal plan in O(kn2) time where n is the
number of web services and k is the number of engines.

5 Implementation and Experiments

We implemented an initial prototype WSMSME, described inSection 5.1. Here
we report on a few experiments with it. Not surprisingly, in our experiments,
plan execution performance of composite service reflects our theoretical results
(thereby validating our cost model). Using minimum number of execution en-
gines on demand and maximum load among execution engines as metrics, we
compared the execution plan produced by our optimization algorithm (referred
to as Optimizer) against the plans produced by the following simpler algorithms:

1. Greedy: This algorithm attempts to exploit the minimum possible number of
execution engines by dispatching services to execution engine whenever pos-
sible. For example, if a subsequent service WSi is supposed to require 40M
memories, and the available computational capability of execution engine

602 W. Li et al.

EEk is 46M (which is greater than 40M), then WSi would be dispatched to
execution engine EEk, and that would decrease the available computational
capability of EEk to be 6M. Thereby, if the following service WSi+1 re-
quires more than 6M to complete, an additional execution engine is needed.
Greedy is used to finish a comparison with our algorithm in the first scenario
(scenario A) that mentioned before.

2. Random: Segmenting a composite service into K sub-sequences can be ob-
tained randomly. Random is used to finish a comparison with our algorithm
in the second scenario (scenario B) that mentioned.

We first describe our WSMSME prototype and the experimental setup in Section
5.1. We then describe our experiments for scenarios mentioned before.

5.1 Prototype and Experimental Setup

The experimental setup consists of two parts: the client side, consisting of our
WSMSME prototype, and the server side, consisting of web services set up by us.

Our WSMSME prototype is a multithreaded system written in Java [14].
It implements the two core dynamic programming algorithms we proposed in
this paper. For communicating with web services using SOAP, our prototype
uses Codehaus XFire [11] tools. Given a description of a web service in the
Web Service Definition Language [15], Xfire generates a class such that the web
service can be invoked simply by calling a method of the generated class. The
input and out types of the web service are also encapsulated in generated classes.
The function of executing a web service is realized inside Execution Engines.
Execution engine here is a little bit ”virtual” within our prototype, and it is
implemented to be a common multi-threaded object (ExecutionEngine) which
possesses of one special property (ComputationalCapability) that specifies its
computational capability, which means we can create and delete an engine that
has specific computational capability on demand.

We use Apache Tomcat [10] as the application server and Codehaus XFire
[11] tools for web service deployment. Each of our experimental web services
WSi runs on a different machine, and has a table Ti (int a, int b, primary key a)
associated with it. Given a value for attribute a, WSi retrieves the corresponding
value for attribute b from Ti (by issuing a SQL query) and returns it. The tables
Ti are stored using the lightweight MySQL DBMS. Since attribute a is the
primary key, MySQL automatically builds an index on a.

For our experiments, we needed web services with different costs and require-
ments. To obtain different costs, we introduce a delay between when a web
service obtains the answer from its database and when it returns the answer
to the caller of the web service. The web service cost is varied by varying this
delay. The WSMSME is run on a different machine from the ones on which the
web services were running. Each composite service is compromised by a series of
web services sequentially (other types of composite patterns are left out of our
discussion currently).

Execution Optimization for Composite Services Through Multiple Engines 603

150 200 250 300 350 400 450
50

60

70

80

90

100

110

120

130

140

150

160

Computational Capability of Each Engine

T
o

ta
l D

is
sa

ti
sf

ac
ti

o
n

 In
d

ex
 o

f
A

lg
o

ri
th

m

OPTIMIZER
GREEDY

Fig. 3. Comparison of Total Dissatisfaction Index in Scenario A

5.2 Scenario A: Minimize the Number of Engines

In this experiment, given a composite service comprised by a sequence of web
services with certain costs, we try to minimize the number of engines required
to complete a composite service when computational capability of each en-
gine is relatively changeless and equivalent. Furthermore, if there are multiple
schedules with the minimum number of engines, we also minimize the Total
Dissatisfaction Index. We developed 19 web services, and make them a com-
posite service. Costs of the web service ranges from 50 to 180. When running
this composite service, we dynamically increased the computational capability
of engine from 170 to 460. Surprisingly, we found that the minimum possible
number of engines required is nearly the same when using OPTIMIZER and
GREEDY, while the Total Dissatisfaction Index is completely different as Fig-
ure 3 shows.

Figure 3 shows that, the advantage of OPTIMIZER mounts up as the compu-
tational capability of each engine (referred to as cmp) increases. Only when the
cmp is small do the GREEDY obtain the similar schedule plan as OPTIMIZER.

5.3 Scenario B: Minimize the Heaviest Load of Engines

In this experiment (independent with the last one), we try to minimize the heav-
iest load of engines by segmenting a pipelined execution plan into subsequences
before they are dispatched and executed. Namely, it is an experiment about
load balancing among multiple engines. We use the services we’ve mentioned in
Section 5.2, and increased the number of execution engines from 1 to 15.

See the performances produced . Not surprisingly, the maximum load among
execution engines descends as the number of engines increase, no matter which
algorithms were applied. Nevertheless, results obtained from OPTIMIZER were
always more excellent than that from RANDOM.

604 W. Li et al.

0 2 4 6 8 10 12 14 16

20

40

60

80

100

120

140

160

180

200

220

Number of Available Execution Engines

M
ax

iu
m

 L
o

ad
 A

m
o

n
g

 E
n

g
in

es

OPTIMIZER
RANDOM

Fig. 4. Maximum Load among Engines in Scenario B

6 Conclusions and Future Works

Web services have received significant attention and there is a great deal of in-
dustry excitement around the opportunities afforded by them. While most of
this attention has focused on middle-tier Web services, an increasing interest in
composite service has recently emerged as organizations encapsulate their ex-
isting legacy services to be web services. In this paper, we focus on execution
optimization issues that arise in a WSMSME. Towards two basis scenarios, we’ve
devised new algorithms to: (a) help minimize the number of engines required to
execute a composite service when computational capability of each engine is
relatively changeless and (b) optimally minimizes the heaviest load of engines
(namely load balancing) by segmenting a pipelined execution plan into subse-
quences before they are dispatched and executed. While the algorithms in this
paper form the basis of a WSMSME execution optimizer, we believe they only
scratch the surface of what promises to be an exciting new research area. There
are several interesting directions for future work:

– An important next step is to extend our algorithms to support composite
services which are comprised in more complicated patterns such as those
mentioned in [12].

– We have not considered web services with monetary costs or other special
types of costs. In those scenarios, we may wish to use optimization algorithms
that minimize the running of a composite service to a certain budget limit.
Moreover, it is also interesting to achieve load balancing when costs of web
services are monetary or else.

– Our algorithms currently do not take much consideration about the metric
of each execution engine’s computational capability. We just simply expect

Execution Optimization for Composite Services Through Multiple Engines 605

that it is equivalent the same. However, as the case stands, computational
capability of executions might obviously vary.

– More work on service composite languages such as BPEL4WS is needed;
Extension of our algorithms to such specifications is an interesting direction
of future work.

References

1. Web services (2002), http://www.w3.org/2002/ws
2. Florescu, D., Grunhagen, A., Kossmann, D.: XL: A platform for web services. In:

CIDR. Proc. First Biennial Conf. on Innovative Data Systems Research (2003)
3. Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Com-

puting 8(2), 34–44 (2004)
4. DeWitt, D., et al.: The Gamma Database Machine Project. IEEE Trans. on Knowl-

edge and Data Engineering 2(1), 44–62 (1990)
5. Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in

XPRS. In: Proceedings of the First Intl.Conf. on Parallel and Distributed Infor-
mation Systems, pp. 218–225 (1991)

6. Ozsu, M., Valduriez, P.: Principles of distributed database systems. Prentice-Hall,
Inc, Englewood Cliffs (1991)

7. Florescu, D., Grunhagen, A., Kossmann, D.: XL: A platform for web services. In:
CIDR. Proc. First Biennial Conf. on Innovative Data Systems Research (2003)

8. Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Com-
puting 8(2), 34–44 (2004)

9. BPEL4WS: Business Process Execution Language for Web Services,
ftp://www6.software.ibm.com/software/developer/library/wsbpel.pdf

10. Apache Tomcat, http://tomcat.apache.org/
11. Codehaus XFire, http://xfire.codehaus.org/
12. Russell, N., ter Hofstede, A.H.M.: WORKFLOW CONTROL-FLOW PATTERNS-

A Revised View, http://workflowpatterns.com/documentation/documents/

BPM-06-22.pdf

13. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over
web services. In: Proceedings of the 32nd international conference on Very large
data bases, vol. 32, pp. 355–366 (2006)

14. Java API, http://java.sun.com/j2se/1.5.0/docs/api/
15. Web Services Description Language, http://www.w3.org/TR/wsdl
16. Casati, F., Dayal, U. (eds.): Special Issue on Web Services, IEEE Data Eng. Bull.,

vol. 25(4) (2002)
17. Garcia-Molina, H., et al.: The TSIMMIS approach to mediation: Data models and

languages. Journal of Intelligent Information Systems 8(2), 117–132 (1997)
18. Miller, R. (ed.): Special Issue on Integration Management, IEEE Data Eng. Bull.,

vol. 25(3) (2002)
19. Roth, M., Schwarz, P.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy

Data Sources. In: Proc. of the 1997 Intl. Conf. on Very Large Data Bases, pp. 266–
275 (1997)

20. Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-join
queries over streaming information sources. In: Proc. of the 2003 Intl. Conf. on
Very Large Data Bases, pp. 285–296 (2003)

http://www.w3.org/2002/ws
ftp:// www6.software.ibm.com/software/developer/library/wsbpel.pdf
http://tomcat.apache.org/
http://xfire.codehaus.org/
http://workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://java.sun.com/j2se/1.5.0/docs/api/
http://www.w3.org/TR/wsdl

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 606–617, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Service Design Process for Reusable Services: Financial
Services Case Study

Abdelkarim Erradi1,3, Naveen Kulkarni2, and Piyush Maheshwari3

1 School of Computer Sc. and Eng. University of New South Wales, Sydney, Australia
2SetLabs Infosys Technologies Ltd, Bangalore, India

3IBM India Research Lab (IRL), New Delhi, India
aerradi@cse.unsw.edu.au, Naveen_Kulkarni@infosys.com,

pimahesh@in.ibm.com

Abstract. Service-oriented Architecture (SOA) is an approach for building
distributed systems that deliver application functionality as a set of business-
aligned services with well-defined and discoverable contracts. This paper
presents typical a service design process along with a set of service design
principles and guidelines for systematically identifying services, designing them
and deciding the service granularity and layering. The advocated principles
stem from our experiences in designing services for a realistic Securities
Trading application. Best practices and lessons learned during this exercise are
also discussed.

1 Introduction

Service Oriented Architecture (SOA) is a promising architectural approach to
integrate heterogeneous and autonomous software systems. It promises effective
business-IT alignment, improved business agility and reduced integration costs
through increased interoperability and reuse of shared business services. SOA
decomposes a system in terms of loosely coupled and replaceable services that
interact via the exchange of messages conforming to well defined contracts [5]. SOA
principles place a strong emphasis on decoupling the service consumers from the
service providers via: (1) strict separation of service interface description,
implementation and binding, thus allowing service changes to occur without impact
on service users (2) declarative constraints and policies to govern the service behavior
and the interactions between collaborating services (3) message-centric and standards-
based interactions between participating services, thus allowing easier interoperability
between systems inside and across enterprise boundaries. The perceived value of
SOA is that it provides a flexible model that allows new applications/services to be
created through the assembly of existing internal/third party services. Additionally,
some of the new business requirements can be realized by re-composition of
component services rather than by changing the services implementation. Therefore,
SOA can help reduce the integration costs via eliminating the redundancy of
overlapping and duplicate functionality as well as the consolidation and reuse of
services across processes, lines of business, or the enterprise.

 Service Design Process for Reusable Services: Financial Services Case Study 607

Technology and standards are important in building service-oriented distributed
applications but they are not sufficient on their own. Moving to service-orientation is
a non trivial one and requires far more than simply wrapping software entities with
Web services interfaces. An effective approach for modeling and designing services is
crucial for achieving the full benefits of SOA. In this paper, we present the set of
design principles and processes for identifying, designing and layering services in a
repeatable and non-arbitrary fashion. These have been derived from an elaborate SOA
example involving the modeling of financial services for Securities Trading domain.
The rationale behind design decisions is captured and the lessons learned are reported.

The rest of the paper is organized as follows. In Section 2 we provide an overview
of the securities domain focusing on the pain points inherent in this area.
Subsequently, in Section 3 we briefly discuss our suggested service-based
decomposition framework. Section 4 details the suggested service design for our case
study. Section 5 presents the lessons learned and the key service design
considerations. The last section concludes the paper and provides some directions for
future work.

2 Background and Problem Area

Despite the wide range of advocated advantages associated with the introduction of
SOA, comprehensive SOA implementation case studies continue to be scarce in the
literature. This paper aims to present a practical service design process along with key
design principles derived from a Stock Trading service enablement case study.

For our case study, the key issues that SOA adoption aims to address are: (i)
Heterogeneous IT portfolio with proprietary and brittle point to point connections that
impact flexibility, (ii) Redundant and overlapping functionality leading to cost
overheads and increased time to market. A specific example may be the use of
individual pricing engines along with individual market data servers for multiple
trading instruments, (iii) Inflexible and costly legacy applications portfolio.

The main business drivers for adopting service-orientation for our case-study are:
(i) accelerate the securities trade processing towards Straight Through Processing
(STP) allowing the final settlement to happen on the day of transaction, (ii) Make the
securities trading accessible from various channels such the Web and mobile devices.

Many researches from academia and industry are suggesting various approaches to
guide the service modeling and design. One of the outstanding efforts is this space is
IBM’s Service-Oriented Modeling and Architecture (SOMA) [1]. SOMA is a
methodology for the identification, modeling and design of services that leverages
existing systems. It consists of three steps: identification, specification and realization
of services. However, SOMA lacks openly available detailed description of the
methodology, which makes it difficult to further analyze its capabilities.

3 Service Oriented Decomposition Process

Service-based decomposition is an iterative process for arriving at an optimal
partitioning of business capabilities into services. The first step is to first establish

608 A. Erradi, N. Kulkarni, and P. Maheshwari

clear and well-defined boundaries between collaborating systems, followed by
reduction of interdependencies and limiting of interactions to well-defined points. The
key tasks in the service oriented decomposition process include identification of
services along with deciding service granularity and appropriate layering of services.

3.1 Service Identification

As shown in Figure 1, for service identification we advocate a hybrid approach
combining top-down domain decomposition along with bottom-up application
portfolio analysis. This yields a list of candidate services that further need to be
rationalized and consolidated. The top-down analysis of a business may be
decomposed into products, channels, business processes, business activities and use
cases. The business activities are often good candidates for business services. For
example, the activity of obtaining a price for a specific security during an equity
trading business process may be a logical candidate service. On the other hand, a
broker could offer equity trading as a product which requires instantiating order
placement and settlement processes, whose activities could be realized by services
harvested from functionalities embedded in existing applications. The harvesting can
be facilitated by reverse-engineering techniques and tools to extract data and control
flow graphs that provide different views of abstraction of operational systems.

Fig. 1. Service identification framework

Our proposed service identification framework is initiated by a top-down capture
and comprehension of key business processes as well as the mapping of the business
processes to the existing application portfolio. This is followed by defining the To-be
business process models (BPM) so that business services can be properly identified.
BPM consists of the decomposition of the business domain into functional areas and
business use cases. The level of functional decomposition of business processes
depends on the level of complexity, for example a business process could be
decomposed into business sub-processes, which in turn are decomposed into high-
level business use cases comprised of a set of activities. For instance, the registration
of a new customer is a business use case in a Trade Order process. The coarse grained
business services are then defined on the basis of logical business activities. It needs
to be noted that the services identified here may be applicable across use cases and
business processes. Once the To-be BPMs are captured, a Process-to-Application
Mapping (PAM) is required to examine existing software assets in order to discover

 Service Design Process for Reusable Services: Financial Services Case Study 609

candidate application functionality (e.g., APIs, sub-systems and modules from legacy,
custom and packaged applications) for realizing identified business services. The
mapping is performed between the business activities and the operational
applications. This provides the basis for identifying applications that support a
particular business process. Also the PAM helps to highlight possible redundancies
and overlaps in the application portfolio, and to identify applications that offer
potential shared services across channels and LOBs. In addition gaps and services that
need new development can be uncovered. The important aspect of this exercise is that
we end up with a conceptual map of the business services and maintain the
association with the systems that may fulfill those services based on the existing IT
portfolio. This is an important artifact that is essential towards matching the required
services with existing services and to plan for new services that need to be built or
acquired.

Apart from top down modeling, our framework also identifies functionality
existing in the current enterprise IT portfolio. This can be accomplished by a
combination of tools as well as interviews with application stakeholders. The outputs
of this activity are typically fine-grained functional modules such as: updating
customer’s personal information, updating a customer’s financial information,
updating accounting entries for a cash payment transaction, etc. Collating all these
functional activities will provide a comprehensive list of all the fine-grained activities
performed by the application portfolio. This list of functionalities must be
consolidated in a meaningful way to come up with reasonably coarse level activities
that may be used to align with the services identified from the top down business
process modeling effort.

The service identification also covers identifying reusable infrastructure services,
currently supporting non-service oriented applications, which may be leveraged to
support business services. For example security services providing authentication,
authorization and secure communication, message delivery services to send messages
and alerts to a variety of devices, such as email, SMS and fax. Another example might
be provisioning services that manage subscriptions, SLAs, provisioning contracts,
monitoring, metering and billing.

Figure 2 shows the meta-model we defined to guide service based decomposition
activities. First the identification of candidate services starts with the services
representing communication points between the parties involved. This is followed by
capturing and describing the externally observable behavior of the identified services.
In the current case study, the meta-model shown in Figure 2, provided the framework
to identify the different types of services and their granularity.

An illustration of service-based decomposition of the Securities Trading
application is depicted in Figure 3. During the service identification the primary view
point should be towards achieving a common business goal through a single service.
The business processes usually are modeled to achieve a single goal and hence would
provide a natural boundary. For example a Trade Settlement service would aggregate
various correlated activities like allocation matching, trade billing (commission, tax,
fees etc) to achieve the goal of trade settlement.

610 A. Erradi, N. Kulkarni, and P. Maheshwari

Fig. 2. Service conceptualization Meta-model

The identified services can be classified and grouped in a variety of ways. The
services can be classified according to their scope into cross-business services, cross
Line of Business (LOBs)/channels services, and LOB/channel specific services. The
classification can also be based on their degree of reuse such as core enterprise
services used by all (like a Customer Information Service), common services, or
services unique to a specific application. The service classification activity is crucial
to guide the non-functional aspects of services design, for example core and common
services need to be designed and deployed with more emphasis on scalability and
high availability.

Fig. 3. High-level view of key Securities Trading services and their choreography

3.2 Service Granularity

The service granularity is considered a key design decision for service enablement.
Services may be offered at different layers with different granularity. Service
granularity refers to the service size and the scope of functionality a service exposes.

 Service Design Process for Reusable Services: Financial Services Case Study 611

The service granularity can be quantified as a combination of the number of
components/services composed through a given operation on a service interface as
well as the number of resources’ state changes like the number of database tables
updated. The service should have the right granularity to accomplish a business unit
of work in a single interaction. If the service is too coarse-grain, the size of exchanged
messages grows and sometimes might carry more data than needed. Also it yields
more complex interfaces and represents more possibilities to be affected by change.
On the other hand if the service is too fine grained multiple round trips to the service
may be required to get all the required data/functionality.

Hence a balance is struck, depending upon the level of abstraction, likelihood of
change, complexity of the service, and the desired level of cohesion and coupling. A
tradeoff needs to be made while taking into account non-functional requirements
particularly performance.

Deciding the appropriate service granularity remains a challenge, but generally
speaking services exposed to other systems should provide operations that correspond
to business functions and they should be sufficiently generic to allow their reuse in
different processes and/or by different users. Fine-grained component services may be
used within a business service, but should not be exposed to other systems.

We have employed a business driven approach guided by the meta-model
presented earlier to arrive to pragmatic granularity. The identified services, such as
Trade Order Service and Trade Settlement Service, are business meaningful services
that offer a single operation to fulfill a complete business task. Notice that we refer to
the services as nouns, not verbs. In the contrary, focusing on the actions (verbs) rather
than the service (nouns), such as Add Trade Order, often yields fine grained services.

There is no theory-founded method for deciding the correct level of granularity.
The following guidelines can help in defining an acceptable level of granularity:

• Reusability: the optimal service design with respect to reusability is to provide a
generalized set of services, compared to the development of a specific service for a
specific consumer application. This enables the users to assemble a wide array of
business applications using these services. Increased reusability stems mainly from
accurate, complete and generalized service contract design capturing all possible
message variants. This allows covering a larger number of usage scenarios through
altering the service behavior simply by supplying varying message instances
conforming to a subset of a super-schema defined by the service contract. For
example designing an Insurance Quote Service based on a comprehensive schema
definition like ACORD [2] allows the service to serve Quotes for individual as well as
corporate users regarding various life insurance products and their variants. In the
current case study, the process services such as Order Placement Service or Trade
Settlement Service were envisioned to be reused across various products.

• Business-alignment: exposed business services need to add tangible business
value and support a business use case. A service could be designed to represent a
single important business concept, like a customer information service, thus forming
clear traceability to the business model.

• Design for assembly: it is important that a service interface is defined in a way
that its encapsulated functionality can be used and composed in different contexts
with minimal effort so as to increase the service reuse potential. Simply exposing

612 A. Erradi, N. Kulkarni, and P. Maheshwari

services directly off existing systems often yields non-optimal services that require
considerable effort by the consumer to aggregate and refine them into useful services.
Also the service interface should not be unnecessarily complicated so that it can be
used and assembled with little complexity.

• Reduce ripple-effects of applications changes: services need to be self-contained
and encapsulated in a way so that changes behind the interface can be done with no or
minimal disruption to the service consumers. This increased isolation helps reduce change
propagation and contain regression testing efforts and in turn reduces maintenance and
evolution costs. In addition existing services may be swapped by new service
implementations from potentially different providers without disturbing the service users.

• Performance and size: Services are often accessed remotely and might incur
significant overhead to making a round trip. Hence the service design should expose
coarse-grained operations covering a greater range of related functionality within a
single service invocation in order to reduce the number of Service requests necessary
to accomplish a task. In other words, a service should expose a significant business
process capability, as opposed to low-level business functions. For example, the
Trade Order Service should offer one operation (e.g., Place Order) to accept a Trade
Order in one call instead of offering multiple operations consisting of "Create Trade
Order Header" followed by a call to "Add Line Item" for each line item. However,
coarse-grained operations might yield large size messages. Hence the size of
messages should be constrained to what the service can process efficiently. So, the
optimal size of exchange messages could guide the required adjustments to the
service granularity.

4 Service Design

This Section briefly presents key service design principles. Then it discusses the main
service design decisions for our Securities Trading case study and their rationale.

4.1 Service Design Principles

The service design should take into account the basic principle of high cohesion and
low coupling among services [4] in order to minimize interdependencies and the
impact of change while facilitating reuse. This ensures that the resulting services are
self-contained, replaceable and reusable. Service Cohesion refers to the strength of
functional/semantic relatedness of activities carried out by a service to realize a
business transaction [4]. High cohesion ensures that a service represents a single
abstraction and exposed interface elements are closely related to one another. Service
Coupling refers to the extent to which a service is inter-related with other services, in
other words it measures the degree of isolation of one service from changes that
happen to another [3]. Low coupling can be achieved by reducing the number of
connections between services, eliminating unnecessary relationships between them,
and by reducing the dependencies between services to few, well-known dependencies
[4]. Additionally, the service interfaces should be defined to be as independent as
possible from the service implementation. This allows services to be independently
deployed, and allows the assembly of applications that make no assumptions about

 Service Design Process for Reusable Services: Financial Services Case Study 613

service implementation beyond the characteristics published in the service contract.
This way the service implementation can change without affecting service users so
long as the service interface is unchanged.

Another key service design principle is that of stateless service design, services
should not require context or state information of other services, nor should maintain
state from one request to another. This implies that the exchanged messages should be
self-contained with sufficient correlation information and metadata (such as links to
persisted data) to allow the destination service to establish the message context [5].
On the contrary, a stateful interface tend to increase coupling between the service
consumer and provider by associating a consumer with a particular provider instance.

Additionally, the service interface should be expressed in terms of meaningful
business operations rather than generic or fine-grained primitive methods such as
CRUD (Create, Read, Update and Delete) interfaces. The operations should
correspond to specific business scenarios such as placing an order. Additionally the
message contracts associated with the service operations should be coarse-grained
encapsulation of business domain entities.

Sound interface design has to anticipate and meet the current and future needs of
varied clients using the service in different contexts and different functional and QoS
expectations. The service interface should capture and describe externally observable
service behavior hiding the implementation details. This ensures that changes to the
implementation are localized and do not necessitate changes in the service consumer.

The Service design should also accommodate multiple invocation patterns to be
able to meet the requirement of various service consumers. A service consumer
should be able to invoke the offered services using a variety of different invocation
patterns such as synchronous invocation using SOAP over HTTP or asynchronous
invocation using SOAP over JMS.

Optimal service granularity is crucial in ensuring maximum reuse in SOA. If the
service is too coarse-grained, the size of the exchanged messages grows and
sometimes might carry more data than needed. On the other hand if the service is too
fine grained, multiple round trips to the service may be required to get the full
functionality. Usually a balance is established, depending upon the level of
abstraction, likelihood of change, complexity of the service, and the desired level of
cohesion and coupling. A tradeoff needs to be made while taking into account non-
functional requirements particularly performance. During service design, reusability
can be maximized by using generalized service schema design, where the variations
of the service behavior can be captured simply by supplying varying message
instances conforming to a subset of a super-schema defined by the service schema.

4.2 Service Design Tasks

SOA is more about assembly of an integrated whole from independent parts. Hence,
sound interface design is the essence of the integration design and it is a key tenet for
reusable services. The challenge is that the service interface design has to anticipate
and meet the current and future needs of varied clients using the service in different
context and with different functional and QoS expectations. The service interface
should capture and describe externally observable service behavior without leaking
the details of the underlying implementation nor the service inner working and
internal object model. Following this principle ensures that changes to the
implementation are localized and minimize required interface changes.

614 A. Erradi, N. Kulkarni, and P. Maheshwari

Designing service-oriented applications involves a variety of tasks that may be
enumerated as below, the aim to produce the design artifacts shown in Figure 4:

• Specifying the information model of the service as well as the structure and the data
types of exchanged messages using a schema definition language such as XML Schema.
The outcome of this task is to produce the Service Contract along with the associated
Operations Contract, Messages Contract, Data and Faults Contract.
• Defining the behavioral model of the service comprising the service operations as well
as the incoming and outgoing messages that are consumed or produced by the service. The
service interface should also specify the supported Message Exchange Patterns (MEPs),
such as one-way/notification and request-response pattern.
• Modeling of supported conversations and the temporal aspects of interacting with
service, such as defining the order in which messages can be sent and received. For
example, in the Order Placement Service, the actions available to a service consumer
include presenting credentials, then placing an order.
• Specifying the service policy to advertise supported protocols, the constraints on the
content of exchanged messages and QoS features, such as security, availability, response
time, and manageability assertions. The key service attributes that need special attention
are the transactional aspects of the service and whether the service is idempotent. These
QoS requirements also dictate the Service Bindings and the Service Hosting options.

Operation Contract

«interface»

Service Contract

Message Contract Fault Contract

Data Contract

Serv ice
Implementation

Serv ice Host

Binding Endpoint

QoS Profile

Policy

uses uses

Implements
hosts

has 1 or many

has 1 or many

has 1 or many

has

has

has

Fig. 4. Service Design Artifacts

4.3 Services for the Securities Case Study

The identified services are layered according to their granularity into four functional
layers. Each layer has a set of roles and provides services to the layers above it. The
top layer describes business processes made up of a sequence of business activities.
The second layer defines business services that automate specific business process
activities. The third level defines software components that allow the business
services to leverage enterprise-level shared resources. The operational resources layer
comprises applications, packages and databases that implement the services. For
example, the Order Placement Service is implemented through wrapping relevant
functionalities from the existing Order Management System (OMS) while the
Allocation Matching Service is provided by the Trade Processing System (TPS).

 Service Design Process for Reusable Services: Financial Services Case Study 615

Fig. 5. Equity trading key services from the Broker viewpoint

Our design considers four types of services:

• Process services represent workflows that the Broker uses to deliver products
offerings, like Equity Trading, through various channels like the Web, telephony or
direct access. Process services, like Order Placement, expose access points that allow
business partners to participate in the process. Process services also automate the
information flow across disparate systems and eliminate duplicate data entry, manual
data transfer and redundant data collection.

• Application services represent business activities that are useful across business
units. For example, services like the Securities Pricing service is required across
multiple business lines such as equity trading, fixed income trading, asset
management, mutual fund trading etc. Application services provide shared and
consolidated functional services to reduce/eliminate redundant/overlapping
implementations.

• Shared data services map multiple schemas from different data sources to a single
schema which is presented to collaborating applications. They provide the ability to
unify and hide differences in the way key business entities are represented within the
organization or between different business partners. Shared data services, like a

616 A. Erradi, N. Kulkarni, and P. Maheshwari

Customer service, can expose aggregated entities from specific data sources to
reconcile inconsistent data representations and minimize the impact of change.

• Infrastructure services provide shared functions for other services, such as
authentication, authorization, encryption, logging, etc. Often infrastructure services
can be acquired, like an LDAP directory service, rather than built in-house.

5 Discussion and Lessons Learned

This Section discussed the key lessons learned from the Securities Trading case study.
Further, key design considerations per service types are briefly presented.

5.1 Key Lessons Learned

While the SOA approach strongly reinforces well-established software design
principles such as encapsulation, modularization, and separation of concerns, it also
adds additional dimensions such as service choreography, scalable service mediation,
and service governance. Our study highlights the following:

• Business process centered top-down identification of shared business services can
lead to business aligned service design.
• An enterprise wide common information model (CIM), also known as Canonical
Schema, is important to support the consistent representation of key business entities
and to reduce syntactic and semantic mapping overheads between services. Standards
like STPML [6] for the securities industry should be leveraged.
• Moving to SOA requires more than just a simple change of programming practices,
rather a paradigm shift and mindset change is required to switch from RPC-based/object-
based architecture to a loosely-coupled, message-focused and service-oriented
architecture. A true SOA is realized when applications are built as self-contained,
autonomous business services that interact by exchanging messages that adhere to
specified contracts
• When service-enabling Mainframe CICS applications, it would be wise to expose
one service per screen flow, and avoid translating all transactions to services. This
involves identifying the required screens navigation to achieve key capabilities of the
application, like CustomerCreation for instance, and then exposing the entire screen
flow as a service.
• To ease service discovery and reuse, there is a need for clear service naming
guidelines and a services metadata management repository to support governance and
easy identification of services based on business function.

5.2 Design Considerations Per Service Type

For process services design the focus should be on the ease of modification and
customization as these services are subject to higher change frequency. Hence, they
should declaratively capture only the routing logic to manage the data and control
flow between activity services. Further, complex business rules should be abstracted
and externalized from processes so that they can be managed by a dedicated rules
engine. Further, robust exception handling/compensation design is required.

 Service Design Process for Reusable Services: Financial Services Case Study 617

Application services can have a verb-focused design by exposing key verbs as
service methods, which unfortunately require RPC like behavior and sometimes might
reveal the internal state of the service. We advocate a message-centric design to allow
message content-driven service behavior and generalized service interface that can be
used and composed in various applications. Command design pattern is used where
the service performs dynamic content-based routing to direct the received messages to
the appropriate implementation. This practice is acceptable when the resulting service
contract is coherent and deals with closely-related business concepts. For example a
generic Securities Price Lookup service could be provided to retrieve the price from
various stock exchanges using content-based routing. Services need to be idempotent
so that requests arriving multiple times are only processed once.

Shared data services uses noun-based design and usually expose CRUD interfaces
representing simple atomic operations on an entity.

Infrastructure services are usually acquired and act on messages depending on the
message context like the channel through which the message has arrived.

6 Conclusion and Future Work

Service-orientation is gaining momentum as a promising approach to deliver
increased reusability, flexibility and responsiveness to change. However, the practical
design of services requires sound engineering principles. The main contribution of
this paper is a service-enablement case study in the securities trading domain to
illustrate the issues and the challenges related to service design. The paper also
emphasized the importance of service design in a Service-Oriented Architecture as
well as the importance of focusing on the services’ business value to guide the service
requirement gathering, service identification and service design. Furthermore, we
discussed the lessons learned with respect to the service design best practices and
guidelines. Future work will focus on empirical studies of how the level of service
granularity affects cohesion and coupling. We are also looking at developing an
integrated toolset and a Domain Specific Language (DSL) supporting our service
design methodology.

References

[1] Arsanjani, A.: Service-oriented modeling and architecture (SOMA) (2004), http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/

[2] Association for Cooperative Operations Research and Development (ACORD) (2007),
http://www.acord.org

[3] Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for Coupling Measurement in
Object-Oriented Systems. IEEE Transactions on Software Engineering 25(1), 91–121
(1999)

[4] Papazoglou, M.P., van den Heuvel, W.J.: Service-Oriented Design and Development
Methodology. Int’l Journal of Web Engin. and Technology (IJWET) (2006) (to appear)

[5] Parastatidis, S., Webber, J.: Realising Service Oriented Architectures Using Web Services.
In: Service Oriented Computing, MIT Press, Cambridge (2005)

[6] Straight Through Processing Markup Language (STPML) (2007), http://www.stpml.org

UMM Add-In: A UML Extension for

UN/CEFACT’s Modeling Methodology

B. Hofreiter1, C. Huemer2, P. Liegl3, R. Schuster3, and M. Zapletal4

1 University of Technology Sydney
birgith@it.uts.edu.au

2 Vienna University of Technology
huemer@big.tuwien.ac.at
3 Research Studios Austria

{pliegl, rschuster}@researchstudio.at
4 Vienna University of Technology

marco@ec.tuwien.ac.at

1 Introduction

The tighter coupling of enterprises in regard to information system technol-
ogy has also changed the way business processes are modeled. Modeling inter-
organizational business processes is necessary in order to gain a profound and
unique representation of the processes involved. However this requires a new
methodology especially designed for modeling inter-organizational business pro-
cesses. The United Nation’s Center for Trade Facilitation and Electronic Business
(UN/CEFACT) took up the challenge and started to develop such a methodol-
ogy. The research efforts became known as UN/CEFACT’s modeling method-
ology (UMM) [1]. UMM enables the business modeler to capture the business
knowledge independent of the underlying implementation technology such as
ebXML or Web Services.

Due to the popularity of the Unified Modeling Language (UML) the UMM is
built on top of it. UMM is defined as a UML profile - i.e. a set of stereotypes,
tagged values and constraints - in order to customize the UML meta model for
the specific purpose of modeling the collaborative space in B2B.

Although the standard is well developed and documented, its complexity and
mightiness make it difficult for the novice user to perceive from scratch. Therefore
a tool, supporting the modeler in creating a valid UMM model would help those in-
experienced with UMM. We have developed such a plug-in for the UML modeling
tool Enterprise Architect 1 called UMM Add-In 2. We highlight the main features
of the Add-In and show how the tool facilitates the use of the methodology.

2 The UMM Add-In

The UMM Add-In consists of several distinctive features helping the modeler on
his way towards a valid UMM model.
1 http://www.sparxsystems.com.au
2 http://ummaddin.researchstudio.at

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 618–619, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

UMM Add-In: A UML Extension for UN/CEFACT’s Modeling Methodology 619

UMM specific toolbar. In order to create a UMM model it is convenient to drag
and drop UMM stereotypes from a toolbar onto the modeling canvas. Thus, the
stereotypes as defined in the UML profile for UMM are integrated into Enterprise
Architect and provided in a toolbar.

UMM Requirements Engineering support. While elaborating a UMM model the
business knowledge is collected during interviews between business domain ex-
perts and business analysts. The information gathered is captured in so called
UMM worksheets. Traditionally worksheets were completed using a word pro-
cessor and stored separately to the model. With the introduction of the UMM
worksheet editor in the UMM Add-In the modeler can store model and worksheet
information together which guarantees consistency and accuracy.

Semi automatic generation of UMM artifacts. Most activities while creating
a UMM model are reoccurring and follow similar patterns. One of the major
goals of the UMM Add-In is to relieve the modeler from repeating activities and
provide support for the semi automatic generation of modeling artifacts. E.g.
the creation of the initial structure of a UMM model is performed automatically
by the UMM Add-In.

Validation of the UMM model. Any UMM model is valid if it follows the con-
straints specified in the UMM specification. During the modeling process ar-
tifacts are created in an iterative manner and often errors occur. The UMM
Add-In provides a UMM validator checking the constraints specified in the spec-
ification against any given UMM model. In case of factual errors in the model
the user is provided with detailed error messages helping to correct the model.

Transformation to choreography languages. Once a valid UMM model is created,
it is envisioned to transform the business logic defined into IT-platform specifics.
Currently the UMM Add-In supports the mapping of the process definitions to
process specification languages as used in services oriented architectures namely
ebXML’s Business Process Specification Schema (BPSS) and Business Process
Execution Language (BPEL).

Modeling business documents using UN/CEFACT’s Core Components. Apart
from the business process specific extensions, the UMM Add-In also offers fea-
tures to model the business documents exchanged in a business process. For
business document modeling the current implementation supports the use of the
UML profile for UN/CEFACT’s core components (UPCC). The data model cre-
ated can then be used to automatically generate XML schema representations.

References

1. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM Meta Model
- Foundation Module. Technical Specification V1.0 (September 2006),
http://www.unece.org/cefact/umm/UMMFoundationModule.pdf

http://www.unece.org/cefact/umm/UMM Foundation Module.pdf

CP4T WS - A Prototype Demonstrating Context

and Policies for T ransactional Web Services

Sattanathan Subramanian1, Zakaria Maamar2, Nanjangud C. Narendra3,
Djamal Benslimane4, and Philippe Thiran1

1IMRU-FUNDP, University of Namur, Namur, Belgium
2CIT, Zayed University, Dubai, United Arab Emirates

3IBM India Research Lab, Bangalore, India
4LIRIS, Claude Bernard Lyon 1 University, Lyon, France

Transaction management has become important in Web services composition [1].
The goal is to guarantee the consistency of the business processes to implement
as Web services. This demo paper presents CP4T WS prototype that validates
our approach for context-driven transactional Web services using policies [2].
In this approach, context tracks Web services, policies specify Web services’
transactional behaviors, and backward/forward adaptation strategies support
Web services’ exception handling.

Fig. 1 (a) presents the running scenario, which is a composite Web service pro-
viding transportation plans to tourists. Initially, a tourist invokes Itinerary WS
that proposes routes, e.g., hotel to museum. Itinerary WS consults Weather WS
and requests Location WS for details on the origin and destination places. In case
of bad weather, a taxi booking is made for the tourist using Taxi WS. Otherwise,
the tourist uses public transport. Hotel and museum locations are submitted to
Bus Schedule WS, which returns the bus numbers to ride. Traffic jams make
Bus Schedule WS interact with Traffic WS regarding the status of the traffic
network. This status is fed into Bus Schedule WS for adjustment needs. Each
Web service in this running scenario has a dedicated state chart diagram that
reflects its transactional property (e.g., pivot, retriable, compensatable). The
diagram of a pivot Web service is given in Fig. 1 (b).

SCD-BS-WS
(Bus Schedule)SCD-LO-WS

(LOcation)

SCD-IT-WS
(ITinerary)

SCD-WE-WS
(WEather)

SCD-TA-WS
(TAxi)

SCD-TC-WS
(TraffiC)

ye
s

no

[confirmed (bad weather)]

Not activated Activated
Start Commit Done

Failure Aborted

(a) - Composition specification

(b) - Acceptable states for a pivot WS

SCD: Service Chart Diagram

WS: Web Service
 : Abortion dependency

Fig. 1. Scenario specification/Acceptable states for a pivot Web service

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 620–622, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CP4T WS - A Prototype Demonstrating Context 621

(a) (b)

Fig. 2. Some of Location WS’s policies

WS-execution
platform

Policy repository

Help repository

Context repository

Forward/backward
adaptation

Transaction
management

User interface

Workbench

JFace

SWT

Platform runtime

Eclipse platform
Java

development
tool (JDT)

Plug-in
development
environment

(PDE)

Workspace

Help

Team

Debug

Fig. 3. Architecture of CP4T WS

In this paper we only report on the forward adaptation strategy. To this
end, we consider the failure of Location WS. Fig 2 shows the policies of this
Web service. For example, WS-Retriable.Policyactivated corresponds to the policy
that would allow the retriable Location WS to bind a new state upon context
assessment and validation.

When Location WS fails, the set of the post-affected Web services consists
of {Bus Schedule WS, Traffic WS, Taxi WS, Weather WS}. If Location WS is
retried successfully, the execution will then proceed normally. If not, Location WS
will need to be aborted. While Location WS is being retried, Weather WS is kept
suspended, until Location WS either succeeds or fails. In case Location WS fails,
Weather WS will be aborted as per the abortion dependency between these two
Web services (Fig. 1 (a)). This leads to a redesign of the composition specification
starting from Itinerary WS.

Fig. 3 shows the architecture of CP4T WS. The following tools were used:
Eclipse 3.2, JDK1.4.2, W3C DOM to process XML information, XACML to
represent policies, and SWT for GUI needs. The development of CP4T WS has
called for seven plug-ins. WS-execution platform plug-in extends the workspace
in terms of project nature (i.e., contextual Web services) and builder (i.e., context
assessment, validation, and reasoning). Forward/backward adaptation plug-in
implements the adaptation strategies for Web service composition. Transaction
management plug-in executes different policies of transactional properties of Web
services by monitoring the different contexts. Context/policy repository plug-ins
store and retrieve details on contexts/policies. Finally, help repository plug-in
provides the necessary documentation for using CP4T WS.

622 S. Subramanian et al.

References

1. Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Composite
Web Services. In: WWW’2005. Proceedings of The Fourteenth International World
Wide Web Conference, Chiba, Japan (2005)

2. Maamar, Z., Narendra, N.C., Benslimane, D., Subramanian, S.: Policies for Context-
driven Transactional Web Services. In: CAiSE’2007. Proceedings of The 19th In-
ternational Conference on Advanced information System Engineering, Trondheim,
Norway (2007)

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 623–624, 2007.
© Springer-Verlag Berlin Heidelberg 2007

WSQoSX – A QoS Architecture
for Web Service Workflows

Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Steinmetz

Dept. of Computer Science, Darmstadt University of Technology, Germany
{berbner,spahn,repp,heckmann,steinmetz}@kom.tu-darmstadt.de

Web Services as a technology to enable distributed business processes gain in
importance, especially in the area of Enterprise Application Integration (EAI) and
Business Process Outsourcing (BPO). However, the support of Quality of Service
(QoS) is crucial in this context. Without any guarantee regarding QoS, no enterprise is
willing to rely on external Web Services within critical business processes. Thus, we
designed and implemented the Web Service Quality of Service Architectural
Extension (WSQoSX) as an integrated Web Service system with comprehensive QoS
support [2, 4]. WSQoSX supports the assessment of Web Services to assure that only
Web Services will be used in critical business processes that satisfy the requirements
defined by the user. The selection and execution of a certain Web Service depends on
its QoS-properties described by a Service Level Agreements (SLAs) document. The
compliance with given SLAs is monitored by WSQoSX as well. In case of a Web
Service not being able to fulfil the requirements, it can be replaced during runtime by
selecting an alternative Web Service out of a pool of similar Web Services.
Additionally, providers can register their Web Service offerings using the same Web-
based interface, making WSQoSX a marketplace for Web Services.

If a workflow managed by WSQoSX is started, the workflow engine does not invoke
a Web Service directly. Web Service invocation is managed by a Proxy Component
instead. This Proxy Component can determine which category (e.g. shipping) has been
triggered for invocation and hands this information over to the Selection Component.
The Rating Component calculates a score for each Web Service according to specific
user preferences. Based on these calculations the Selection Component chooses and
invokes the best suitable Web Service. The Accounting Component tracks detailed
information about which Web Services have been invoked and their runtime behaviour.
This data is used by the QoS Monitoring Component to detect SLA violations during
the execution of Web Services [1]. The management components (Figure 1) of
WSQoSX described above are implemented in Java.

The QoS-aware selection of Web Services is based on a QoS-model on which
selection algorithms are applied [1]. The algorithms used mainly emanated from the
operations research discipline, adapted to the special needs of Web Service selection.
For this, a utility function maximizing the overall QoS subject to particular QoS
constraints is introduced. This leads to an optimization problem that is NP-hard. Thus,
we propose a heuristic based approach to solve the QoS-aware Web Service
composition problem. For this, we design a heuristic H1_RELAX_IP that uses a
backtracking algorithm on the results computed by a relaxed integer program. The
evaluation of H1_RELAX_IP reveals that this heuristic is extremely fast and leads to

624 R. Berbner et al.

results that are very close to the optimal solution. H1_IP_RELAX outperforms the
linear integer programming based solution of a solver with regard to the computation
time, especially with increasing number of candidate Web Services and process tasks.

Due to the volatile nature of the Web Service environment the actual runtime
behaviour of Web Services may deviate from the one estimated in the planning phase.
Thus, we introduce a heuristic based replanning mechanism for adapting a workflow
to the real behaviour ensuring that its execution remains feasible, valid and optimal
subject to the preferences and constraints defined by the user [3].

Using WSQoSX enterprises are enabled to build flexible and agile business
processes, generating the foundation for future cost savings.

Fig. 1. WSQoSX – Architectural blueprint

References

1. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-aware
Web Service Composition. In: ICWS 2006. Proc. 4th IEEE International Conference Web
Services, Chicago, IL, USA, pp. 72–82. IEEE Computer Society Press, Los Alamitos
(2006)

2. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R.: An approach
for the Management of Service-oriented Architecture (SoA) based Application Systems. In:
EMISA 2005. Proc. Enterprise Modelling and Information Systems Architectures,
Klagenfurt, Austria, pp. 208–221 (2005)

3. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: An Approach for
Replanning of Web Service Workflows. In: AMCIS 2006. 12th Americas Conference on
Information Systems, Acapulco, Mexico (2006)

4. Berbner, R., Heckmann, O., Steinmetz, R.: An Architecture for a QoS driven composition
of Web Service based Workflows. In: NAEC 2005. Networking and Electronic Commerce
Research Conference, Riva Del Garda, Italy (2005)

ReoService: Coordination Modeling Tool

Christian Koehler�, Alexander Lazovik��, and Farhad Arbab

CWI, Amsterdam, Netherlands
{koehler,a.lazovik,farhad.arbab}@cwi.nl

Coordination in SOA addresses dynamic topologies of interactions among ser-
vices. Most efforts up to now have been focused on statically defined composition
of services, e.g., using BPEL. To the best of our knowledge, there are no serious
means to address the issues of dynamic coordination to accommodate contin-
uously changing requirements. While BPEL is a powerful standard for service
composition, it lacks support for typical coordination constraints, like synchro-
nisation, mutual exclusion, and context-dependency.

In this paper we present ReoService, which is a modeling tool for coordinat-
ing business processes. ReoService is based on Reo [2] – a general framework
for coordinating components in distributed systems. Reo is a channel-based ex-
ogenous coordination language wherein complex coordinators, called connectors,
are compositionally built out of simpler ones. The simplest connectors are a set
of user-defined communication channels with well-defined behavior. The empha-
sis in this model is on connectors, not on the services to connect. In this sense,
ReoService acts as a “glue” language that interconnects and coordinates services
in a distributed business process.

The Reo coordination tool is developed to aid the process designers who are
interested in complex coordination scenarios. The ReoService and its underly-
ing Reo framework are implemented in Java as a set of plug-ins [1] on top of
the Eclipse platform (www.eclipse.org). Currently the framework consists of
the following parts: (i) graphical editors, supporting the most common service
and communication channel types; (ii) a simulation plug-in, that generates flash
animated simulations on the fly; (iii) BPEL converter, that allows conversion of
Reo connectors to BPEL and vice versa; (iv) Java code generation plug-in, as
an alternative to BPEL, represents service coordination model as a set of Java
classes; (v) validation plug-in, that performs model checking over coordinations
represented as constraint automata.

We now describe the Reo framework architecture that is shown in Figure 1.
The central part of the framework is a visual editor for Reo connectors. It repre-
sents the actual coordination model with services and communication channels.
The developed tool also allows us to represent Reo in terms of constraint au-
tomata [4]–an alternative behavioral model. This is useful if additional validation
based on model checking techniques [6] is required. Q-Automata [5] is used if
� The work in this paper is supported in part by a grant from the GLANCE funding

program of the Dutch National Organization for Scientific Research (NWO), through
projectWoMaLaPaDiA (600.643.000.06N09).

�� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 625–626, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.eclipse.org

626 C. Koehler, A. Lazovik, and F. Arbab

simulation

validation

coordination modeling
BPEL

Reo Coordination

WEB
SERVICES

CLIENTS

Q- and Constraint
Automata

NON-SOAP
COMPONENTS

Fig. 1. Reo coordination framework for services

QoS aspects of communication channels are important. Along with editing, the
Reo editor maintains simultaneous conversion to BPEL. To test the coordina-
tion model, one may run an animated simulation using the animation plug-in. In
some situations it is desirable to use a coordination model in a non-web service
scenario: in this case, generation of Java code is used. In the generated code
non-SOAP components are represented by wrappers over Java threads.

However, our tools currently lack adequate support for certain concerns that
are specifically important for services, e.g., preferences, extended service descrip-
tions, and temporal constraints. While some of these concerns, e.g., temporal
constraints, are naturally supported by our coordination language [3], others as
extended service descriptions and preferences to provide users with better con-
trol over instantiated process execution require extensions that go beyond the
scope of a general purpose coordination language. Improving our tools to sup-
port temporal aspects of Reo circuits is in our agenda. We also plan to address
extended service descriptions and investigate preferences in our future work.

References

1. Eclipse coordination tools, http://homepages.cwi.nl/∼koehler/ect
2. Arbab, F.: Reo: a channel-based coordination model for component composition.

Math. Structures in CS 14(3), 329–366 (2004)
3. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed

component connectors (2004)
4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in reo

by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)
5. Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent

components. In: FOCLASA 2006 (2006)
6. Klueppelholz, S., Baier, C.: Symbolic model checking for channel-based component

connectors. In: FOCLASA’06 (2006)

http://homepages.cwi.nl/~koehler/ect

Author Index

Arbab, Farhad 398, 625
Arnold, William 1
Autili, Marco 442

Baligand, Fabien 422
Baraani-Dastjerdi, Ahmad 404
Belhajjame, Khalid 377
Benatallah, Boualem 365
Benbernou, Salima 353, 365
Benigni, Fabrizio 56
Benslimane, Djamal 620
Berardinelli, Luca 442
Berbner, Rainer 623
Bethea, Joel 474
Bianculli, Domenico 449
Binder, Walter 449
Bobroff, Norman 27
Böhm, Klemens 570
Boniface, Mike J. 506
Bova, Rosanna 365
Boyette, Neil 474
Brogi, Antonio 56
Bubendorfer, Kris 119
Buyya, Rajkumar 119

Chang, Henry 132
Charfi, Anis 582
Chaudron, Michel 383
Chen, Kun 594
Chen, Shyh-Kwei 558
Chen, Ying 462
Cheng, Isaac 474
Chung, Hyen-Vui 319
Corfini, Sara 56
Cortellessa, Vittorio 442
Curbera, Francisco 94

D’Andrea, Vincenzo 257
Deepti, Parachuri 485
de Jonge, Merijn 391
de S. Gimenes, Itana Maria 429
de Toledo, Maria Beatriz F. 429
del Álamo, José M. 342
Desai, Nirmit 13
Di Marco, Antinisca 442

Di Nitto, Elisabetta 295
Di Penta, Massimiliano 295
Di Ruscio, Davide 442
Drewniok, Marc 342
Duftler, Matthew 94

Eggenberger, Martin 497
Eilam, Tamar 1
Erradi, Abdelkarim 606

Fahringer, Thomas 233
Faltings, Boi 449
Fang, Jun 594
Fantinato, Marcelo 429
Faulkner, Stéphane 270
Fensel, Dieter 435
Fernández, Pablo 193
Fischer, Klaus 330
Fong, Liana 27

Gambi, Alessio 295
Gangadharan, G.R. 257
Garćıa, José Maŕıa 69
Gerede, Cagdas E. 181
Ghadiri, Nasser 404
Ghasem-Aghaee, Nasser 404
Ghezzi, Carlo 449
Ghose, Aditya 169
Gomez, Juan Miguel 435
Grundler, Jonas 81

Hacid, M.S. 353
Hahn, Christian 330
Heckmann, Oliver 623
Hofer, Juergen 233
Hofreiter, B. 618
Huang, Tao 283
Huemer, C. 618

Iannella, Renato 257
Inverardi, Paola 442

Jurca, Radu 449
Jureta, Ivan J. 270

Kalantar, Michael 1
Kavianpour, Mansour 530
Khalaf, Rania 94, 207, 582

628 Author Index

Klein, Michael 330
Koehler, Christian 625
Koliadis, George 169
König-Ries, Birgitta 220
Konstantinou, Alexander V. 1
Kopp, Oliver 207
Krishna, Vikas 474
Krishnamurthy, Jayatheerthan 546
Kulkarni, Naveen 606
Küster, Ulrich 220

Lazovik, Alexander 398, 625
Ledoux, Thomas 422
Lei, Hui 132, 462
Leymann, Frank 43, 81, 207
Li, Fei 145
Li, Lei 283
Li, Wubin 594
Li, Zhongjie 157
Liang, Haiqi 558
Liegl, P. 618
Liu, Hehui 157
Liu, Liang 462
Lomuscio, Alessio 456
Lovell, Douglas 94
Ludwig, Simone A. 410
Lukkien, Johan 383

Ma, Qian 462
Maamar, Zakaria 620
Maheshwari, Piyush 606
Majumdar, Bijoy 485
Mart́ın-Dı́az, Octavio 69, 193
Martin, David 416
Matsumoto, Koji 497
Maximilien, E. Michael 13
McCallum, Kathleen 342
Meziane, H. 353
Mukhi, Nirmal 582
Müller, Carlos 193

Nakamura, Yuichi 319
Narendra, Nanjangud C. 546, 620
Nematbakhsh, Mohammad Ali 404
Netto, Marco A.S. 119

Ordás, Isabel 342

Paik, Hye-Young 365
Paolucci, Massimo 416
Ponnalagu, Karthikeyan 546

Prakash, Nupur 497
Prandi, Davide 245

Qu, Hongyang 456
Quaglia, Paola 245

Radetzki, Uwe 506
Radovanović, Igor 383
Ramkumar, R. 546
Ray, Amit 383
Repp, Nicolas 623
Resinas, Manuel 69, 193
Ripa, Gianluca 295
Rivierre, Nicolas 422
Roman, Dumitru 435
Ruiz-Cortés, Antonio 69, 193
Ruiz, David 69

Sapkota, Brahmanada 435
Sato, Fumiko 319
Sato, N. 107
Schosser, Stephan 570
Schuster, R. 618
Sergot, Marek 456
Shuang, Kai 145
Sienel, Juergen 342
Solanki, Monika 456
Spahn, Michael 623
Steinmetz, Ralf 623
Strnadl, Christoph F. 518
Su, Jianwen 181
Su, Sen 145
Subramanian, Sattanathan 620
Sun, Wei 558
Surridge, Mike 506

Tai, Stefan 13, 81
Tan, Huafang 157
Tan, Wei 27
Thiran, Philippe 270, 620
Thurmond, Darrell 497
Tivoli, Massimo 442
Toma, Ioan 435
Totok, Alexander A. 1
Trapero, Rubén 342
Trivedi, K.S. 107

van der Linden, Wim 391
Vanhatalo, Jussi 43
Villani, Maria Luisa 295
Völzer, Hagen 43

Author Index 629

Wagner, Matthias 416
Walter, Andreas 570
Wang, Hao 462
Wei, Jun 283
Weiss, Michael 257
Wilkinson, Hernan 13
Willems, Rik 391

Yang, Bo 462
Yang, Fangchun 145
Yelmo, Juan C. 342

Zapletal, M. 618

Zeng, Liangzhao 132, 365

Zhang, Kuo 558

Zhang, Xin 558

Zhao, Wenbing 307

Zhao, Zhuofeng 594

Zhu, Jun 157

Zimmermann, Olaf 81

Zinnikus, Ingo 330

	Title Page
	Preface
	Organization
	Table of Contents
	Pattern Based SOA Deployment
	Introduction
	Deployment Platform
	Core Configuration Meta-model
	Deploy Platform Architecture
	Valid Deployment Models

	Pattern Platform
	Pattern Modeling Extensions
	Pattern Validation
	Automatic Pattern Realization

	Related Work
	Future Work
	References

	A Domain-Specific Language for Web APIs and Services Mashups
	Introduction
	Organization

	Background and Architecture
	What Are Mashups?
	Mashup Implementation Approaches
	Ruby on Rails
	Architecture Overview

	SwashupDSL
	What Are DSLs?
	Language Overview
	Conventions
	Examples
	Value of DSL

	Implementation
	Details

	Discussion
	Related Works
	Directions

	References

	BPEL4Job: A Fault-Handling Design for Job Flow Management
	Introduction
	BPEL4Job: A Fault-Handling Design for Job Flow Management
	Integrating Fault-Handling Policies with Job Flow Modeling
	Fault-Handling at the Flow Execution Layer in BPEL4Job
	The Generic Job Proxy
	Fault-Handling Schemes in BPEL4Job
	Cleanup
	Task Level Re-try
	Flow Re-submission and Instance Migration

	System Implementation and Case Study
	Related Works
	Conclusion and Future Work
	References

	Faster and More Focused Control-Flow Analysis for Business Process Models Through SESE Decomposition
	Introduction
	Sound Workflow Graphs
	Workflow Graphs
	Soundness

	Enhanced Control-Flow Analysis
	Decomposition into Fragments
	Heuristic for Sound Fragments
	Heuristic for Unsound Fragments

	Case Study
	The Data
	The Results

	Conclusion
	References

	Discovering Service Compositions That Feature a Desired Behaviour
	Introduction
	A Methodology for a Composition-Oriented Discovery
	The Internal Representation of Services
	Discovering Compositions of Services

	Implementation of the Methodology
	Concluding Remarks
	References

	An Hybrid, QoS-Aware Discovery of Semantic Web Services Using Constraint Programming
	Introduction
	Discovering Semantic Web Services
	Preliminaries
	Related Work
	Frameworks

	Our Proposal
	Hybrid Semantic Discovery Architecture
	QoS-Aware Semantic Discovery

	Conclusions and Future Work
	References

	Architectural Decisions and Patterns for Transactional Workflows in SOA
	Introduction
	Background
	Recurring Architectural Decisions in Process-Enabled SOA
	Architectural Patterns as Decision Alternatives
	Conceptual Patterns and Primitives
	Sample Mapping of Primitives to BPEL/SCA Technology and Engine

	Related Work
	Summary and Outlook
	References

	Bite: Workflow Composition for the Web
	Introduction
	Related Work
	The Design of a Web-Centric Flow Language
	Bite Language Summary
	Deep Integration with the Web
	Lightweight Process Model

	Web Workflow Scenarios
	Web Data Flows
	Interactive Flows

	Example Bite Workflow: Special Order
	Implementation
	Conclusion and Future Work
	References

	Stochastic Modeling of CompositeWeb Services for Closed-Form Analysis of Their Performance and Reliability Bottlenecks
	Introduction
	CTMC Formulation of CompositeWS
	CTMC for a Process with Concurrency
	CTMC with Failures
	CTMC with Restarts
	Response Time and Service Reliability
	Parameterization

	Bottleneck Detection
	Evaluation
	Conclusion
	References

	SLA-Based Advance Reservations with Flexible and Adaptive Time QoS Parameters
	Introduction
	SLA Specification from Execution Time QoS Scenarios
	Scheduling Issues and Incentives
	SLA Parameters

	Job Scheduling
	Sorting
	Scheduling

	Evaluation
	Experimental Configuration
	Results and Analysis

	Related Work
	Conclusions and Further Work
	References

	Monitoring the QoS for Web Services
	Introduction
	QoS Observation Model
	Monitoring-Enabled SOA Infrastructure
	Observation Model Creation
	Detection and Routing of Service Operational Events

	High Performance Metric Computation Engine
	Model Transformation and Execution Framework
	Execution Planning

	Implementation and Experimentation
	Related Work
	Conclusion
	References

	Q-Peer: A Decentralized QoS Registry Architecture forWeb Services
	Introduction
	Related Works
	System Model
	Information Dissemination
	QoS Update
	Load Update

	Replication and Load Sharing
	Replicating QoS Class
	Replicating QoS Object

	Experiments
	Experiment Environment
	Evaluation Methodology
	Results and Analysis

	Conclusion and Future Works
	References

	Business Process Regression Testing
	Introduction
	Business Process Execution Language
	BPEL Regression Testing
	Regression Test Selection Problems Introduced by Concurrent Control Flow
	BPEL Diff
	Path Selection

	Related Work
	Conclusions and Future Work
	References

	Auditing Business Process Compliance
	Introduction
	RelatedWork
	Some Preliminaries

	Modeling Business Processes for Compliance Auditing
	Detecting and Resolving Compliance IssuesWithin Business Process Models
	Heuristics for Asserting and Resolving Compliance Issues
	Conclusion
	References

	Specification and Verification of Artifact Behaviors in Business Process Models
	Introduction
	Overview: Artifact-Centric Operational Models
	A Language for Specifying Artifact Behaviors: ABSL
	Semantics

	Verification of Artifact Behaviors
	Bounded Domains
	Unbounded Domains
	Verification with Bounded Number of Artifacts

	Conclusion
	References

	Improving Temporal-Awareness of WS-Agreement
	Introduction
	A Case Study
	WS-Agreement in a Nutshell
	Basic Description of WS-Agreement
	Temporal-Awareness of WS-Agreement

	Our Proposal
	Temporal Schema
	Temporality on Terms and Creation Constraints
	Temporality on Preferences

	Related Work
	Conclusions and Future Work
	References

	Maintaining Data Dependencies Across BPEL Process Fragments
	Introduction
	Scenario and Overview
	Background
	Related Work
	Encoding Dependencies
	Writer Dependency Graph (WDG)
	Partitioned Writer Dependency Graph (PWDG)
	Sending the Necessary Values and the Use of Local Resolvers
	Receiving Flow (RF)

	Conclusion and Future Work
	References

	Supporting Dynamics in Service Descriptions - The Key to Automatic Service Usage
	Introduction
	DIANE Service Description
	Dynamic Information Gathering for Improved Matchmaking
	Implementation and Evaluation
	Related Work
	Summary and Conclusion
	References

	Grid Application Fault Diagnosis Using Wrapper Services and Machine Learning
	Introduction
	Diagnosing Application Faults
	Building Fault Diagnosis Models

	Creating Diagnosis Models Using Machine Learning
	Implementation
	Evaluation
	Service Evolution for Fault Diagnosis Improvement
	Related Work
	Conclusion
	References

	Stochastic COWS
	Introduction
	Operational Semantics of Monadic COWS
	Stochastic Semantics
	Stochastic Analysis
	Concluding Remarks
	References

	Service License Composition and Compatibility Analysis
	Introduction
	ODRL Service Licensing Profile (ODRL-S)
	Service Licenses Matchmaking and Compatibility Analysis
	Service License Composition
	Related Work and Discussion
	Concluding Remarks
	References

	Dynamic Requirements Specification for Adaptable and Open Service-Oriented Systems
	Introduction
	Service, Coordination, and Client RE
	Using DRAM at Client RE
	Related Work
	Conclusions and Future Work
	References

	High Performance Approach for Multi-QoS Constrained Web Services Selection
	Introduction
	Related Works
	QoS Routing
	Multi-QoS Constrained Web Services Selection

	Service Correlation Model
	Analysis of Correlations
	Service Correlation Model

	The Proposed Algorithm
	Theoretical Foundation
	Proposed Algorithm

	Experiments and Evaluation
	Comparison of H MCWS with H MCOP
	Analysis of Impact of Service Correlation
	Evaluation and Comparison

	Conclusions and Future Work
	References

	Negotiation of Service Level Agreements: An Architecture and a Search-Based Approach
	Introduction
	Definitions
	Negotiation Architecture
	Search-Based Negotiation Approach
	Empirical Study
	Context and Settings
	Results

	Related Work
	Conclusions
	References

	Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions
	Introduction
	Background
	Byzantine Fault Tolerance
	Web Services Atomic Transactions Specification

	SystemModels
	Byzantine Fault Tolerance Mechanisms
	Activation
	Registration and Transaction Propagation
	Completion and Distributed Commit

	Implementation and Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

	Syntactic Validation of Web Services Security Policies
	Introduction
	Reviewing Web Services Policy
	Web Services Security
	WS-Policy and WS-SecurityPolicy
	Issues in Defining Policies

	Policy Validation
	Policy Development for Service Component Architecture
	Validation Based on Predicate Logic
	Transformation to Predicate Logic
	Performing Validation

	Related Work and Discussion
	Concluding Remarks
	References

	An Agent-Based, Model-Driven Approach for Enabling Interoperability in the Area of Multi-brand Vehicle Configuration
	Introduction
	Scenario
	Our Solution
	Mediating Services for Cross-Organisational Business Pocesses
	Advantages of Agent-Based SOAs
	Related Work
	Conclusions and Summary
	References

	User-Driven Service Lifecycle Management – Adopting Internet Paradigms in Telecom Services
	Introduction
	The OPUCE Project
	Supporting User-Centric Services: Service Description
	Service Lifecycle Management in User-Centric Telecom Platforms
	User-Driven Service Lifecycle
	Service Deployment
	Service Withdrawal

	Conclusions
	References

	Run-Time Monitoring for Privacy-Agreement Compliance
	Introduction
	Privacy Agreement Model
	Overview of the Monitoring Framework
	Requirements for Monitoring Privacy
	Monitoring Units for Privacy

	Monitoring Private Data Use Flow
	Related Work
	Conclusion
	References

	Task Memories and Task Forums: A Foundation for Sharing Service-Based Personal Processes
	Introduction
	Preliminaries
	Metadata Model for Sharing Tasks and Task Memories
	Representing Task Categories, Tasks and Task Memories
	Representing Sharing Policies

	TaskForums
	Implementation Aspects
	Discussion and Conclusions
	References

	Addressing the Issue of Service Volatility in Scientific Workflows
	Introduction
	Semantic Annotations for Characterising Replaceability
	Service Operation Replaceability
	Conclusions
	References

	Facilitating Mobile Service Provisioning in IP Multimedia Subsystem (IMS) Using Service Oriented Architecture
	Introduction
	The Effect of Limitations of the IMS Architecture
	Extended Software Architecture
	Implementation
	Experiments
	Conclusions
	References

	eServices for Hospital Equipment
	Introduction
	EquipmentData
	Data Filters
	Architecture
	Implementation
	Case Study
	Implementation
	Asset Management and Utilization Services

	Concluding Remarks
	References

	Using Reo for Service Coordination
	Introduction
	The Reo Coordination Language
	Building Travel Package in Reo
	Conclusions and Future Work
	References

	A Context-Aware Service Discovery Framework Based on Human Needs Model
	Introduction
	Motivating Examples
	Modeling the Human Needs
	Service Discovery Model Based on Human Needs
	Applications Areas
	Conclusion and Future Work
	References

	Weight Assignment of Semantic Match Using User Values and a Fuzzy Approach
	Introduction
	Matching Algorithm
	Conclusion
	References

	Grounding OWL-S in SAWSDL
	Introduction
	Relating SAWSDL to OWL-S
	Grounding OWL-S in SAWSDL
	Conclusions
	References

	A Declarative Approach for QoS-Aware Web Service Compositions
	Introduction
	QoSL4BP Language
	ORQOS Platform Process
	Illustrative Scenario
	Related Works
	Conclusion
	References

	Supporting QoS Negotiation with Feature Modeling
	Introduction
	Electronic Contracts
	Feature Modeling
	QoS Negotiation and e-Contracts Establishment
	Related Work
	Conclusions and Future Work
	References

	A Multi-criteria Service Ranking Approach Based on Non-Functional Properties Rules Evaluation
	Introduction
	Non-Functional Properties
	Ranking Services
	Experiments
	Conclusions and Future Work
	References

	A Development Process for Self-adapting Service Oriented Applications
	Introduction
	PLASTIC Development Process
	Conclusions and Future Work
	References

	Automated Dynamic Maintenance of Composite Services Based on Service Reputation
	Introduction
	Architecture
	Monitoring
	The Reputation Manager
	Conclusions
	References

	Verifying Temporal and Epistemic Properties of Web Service Compositions
	Introduction
	Preliminaries
	A Motivating Example
	Formalisation

	Model Checking the Loan Approval Composition
	Related Work
	Conclusions
	References

	Research and Implementation of Knowledge-Enhanced Information Services
	Introduction
	Problem Analysis
	Threading Strategy for ITSM
	Implementation of the Information Service
	Threading Strategy for Information Coordination
	Knowledge-Enhanced ITSM

	Experiment Result and Analysis
	Conclusion and Future Work
	References

	A Model and Rule Driven Approach to Service Integration with Eclipse Modeling Framework
	Introduction
	Related Work
	System Architecture
	Call Flow Authoring Tool
	Call Flow Repository
	Call Flow Runtime Engine
	Call Flow Runtime Sample Applications
	Web Client
	Instant Messaging Client

	CCF, BPEL, and Web Services
	Composing Heterogeneous Services with Declarative Rules
	Conclusion
	References

	Semantic Web Services in Action - Enterprise Information Integration
	Introduction
	Gaps Resulted by Distributed Computing
	Semantic at Data Level
	Introduction
	Advantages
	Challenges

	Semantic at Service Level
	Introduction
	Advantages
	Challenges

	Case Study
	Overview
	AS-IS \rightarrow TO-BE
	Information Perspective
	Process Perspective
	Positive Thought

	Assisting Technologies
	Data Level
	Service Level Languages

	Future Work
	Conclusions: Removal of Human Agents
	References

	Policy Based Messaging Framework
	Introduction
	Messaging Framework
	Policy Definition Model
	Policy Injection Model
	Policy Processing Model

	Message Model Formalization
	Architecture
	Message Processing

	Related Work
	Conclusion and Future Work
	References

	Contextualized B2B Registries
	Introduction
	Contextualized B2B Registries
	Registries in B2B Collaborations
	Registry Domain Model
	Query Languages

	Inter-enterprise Service-Oriented Infrastructure
	GRIA
	GRIA’s Project Resource Registry
	Registration and Discovery: A Business Use Case

	Conclusion
	References

	Bridging Architectural Boundaries Design and Implementation of a Semantic BPM and SOA Governance Tool
	Introduction
	Governance Requirements
	Governance Definition
	Enhanced Process-Driven Architecture (ePDA)
	Domain Meta-model
	SOA and BPM Specific Governance Requirements

	Technical Implementation
	Implementation Meta-model
	Implementation Architecture

	Experiences
	Governance Benefits Analysis
	Software Deployment Processes

	Conclusions
	References

	SOA and Large Scale and Complex Enterprise Transformation
	Introduction
	Unisys 3D VE Methodology
	Architecture Driven Modernization
	SOA Architecture and Governance
	Conclusion

	Run-Time Adaptation of Non-functional Properties of Composite Web Services Using Aspect-Oriented Programming
	Introduction and Motivation
	Related Work
	Solution Architecture and Approach
	Illustrative Example
	Specification Language for Non-functional Properties
	WS-Policy Based Specification of Non-functional Properties
	Service Level Agreement

	Aspects and Their Relationships
	Implementation Details
	Future Work
	References

	Software as a Service: An Integration Perspective
	Introduction
	SaaS Integration Requirements and Patterns
	SaaS Integration Functional Requirements and Patterns
	SaaS Integration Non-Functional Requirements(NFR) and Patterns
	SaaS Integration Design and Development Requirements

	SaaS Integration Framework
	SaaS-DL
	Integration Framework
	SaaSia Prototype

	Case Study
	Conclusions and Future Work
	References

	Building Data-Intensive Grid Applications with Globus Toolkit – An Evaluation Based on Web Crawling
	Introduction
	Services in Globus Toolkit
	Related Work
	Structure of a Highly Distributed Web Crawler

	QoS-Aware Web Service Compositions Using Non-intrusive Policy Attachment to BPEL
	Introduction
	Motivation
	Background
	Quality of Service Requirements in BPEL
	Why Should Policies Be Used to Define QoS Properties?
	Why Is Policy Attachment to WSDL Not Sufficient?
	Why Should Policies Be Separated from Process Definitions?

	Policy Attachment to BPEL
	Assumptions About the BPEL Design and Runtime System
	Syntax of Policy Attachment to BPEL
	Policy Enforcement

	Implementation
	Related Work
	Conclusion
	References

	Execution Optimization for Composite Services Through Multiple Engines
	Introduction
	Related Work
	Parallel and Distributed Execution Processing
	Web Service Composition and Choreography

	Preliminaries
	Composite Pattern Considered
	Problem Definition

	Algorithms for Execution Plans in the Two Scenarios
	Optimal Execution Plans for Scenario A
	Optimal Execution Plans for Scenario B
	Analysis of Algorithms

	Implementation and Experiments
	Prototype and Experimental Setup
	Scenario A: Minimize the Number of Engines
	Scenario B: Minimize the Heaviest Load of Engines

	Conclusions and Future Works
	References

	Service Design Process for Reusable Services: Financial Services Case Study
	Introduction
	Background and Problem Area
	Service Oriented Decomposition Process
	Service Identification
	Service Granularity

	Service Design
	Service Design Principles
	Service Design Tasks
	Services for the Securities Case Study

	Discussion and Lessons Learned
	Key Lessons Learned
	Design Considerations Per Service Type

	Conclusion and Future Work
	References

	UMM Add-In: A UML Extension for UN/CEFACT’s Modeling Methodology
	Introduction
	The UMM Add-In
	References

	\mathcal{CP}4\mathcal{TWS} - A Prototype Demonstrating
\mathcal{C}ontext and \mathcal{P}olicies for
\mathcal{T}ransactional \mathcal{W}eb \mathcal{S}ervices
	References

	WSQoSX – A QoS Architecture for Web Service Workflows
	References

	ReoService: Coordination Modeling Tool
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

