
C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 64 – 76, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Application of Constraint Programming to
Generating Detailed Operations Schedules for Steel

Manufacturing

Andrew Davenport
1
, Jayant Kalagnanam

1
, Chandra Reddy

1
, Stuart Siegel

1
,

and John Hou2

1
IBM T.J.Watson Research Center, 1101 Kitchawan Road, Yorktown Heights,

NY 10598, USA
2

IBM Taiwan Business Consulting Services, Shong-Ren Rd, Taipei, Taiwan,
Republic of China

davenport@us.ibm.com, jayant@us.ibm.com,
creddy@us.ibm.com, ssiegel@us.ibm.com, kwhou@tw.ibm.com

Abstract. We present an overview of a system developed by IBM for generating
short-term operations schedules for a large steel manufacturer. The problem ad-
dressed by the system was challenging due to the combination of detailed
resource allocation and scheduling constraints and preferences, sequence depend-
ent setup times, tight minimum and maximum inventory level constraints between
processes, and constraints on the minimum and maximum levels of production by
shift for each product group. We have developed a domain-specific decomposi-
tion based approach that uses mixed-integer programming to generate a high-level
plan for production, and constraint programming to generate a schedule at fine
level of time granularity taking into account detailed scheduling constraints and
preferences. In this paper we give an overview of the problem domain and solu-
tion approach, and present a detailed description of the constraint programming
part of the system. We also discuss the impact the system is having with the cus-
tomer on their manufacturing operations.

1 Introduction

In this paper we present an overview of a system developed by IBM for generating
short-term detailed operations schedules for a large steel manufacturer. The problem
addressed by the system involves generating schedules subject to detailed constraints
and preferences at a fine level of time granularity (30 seconds or less). Scheduling
problems with such low-level constraints and preferences are typically handled well
by constraint programming techniques [1,3]. However the problem also contains con-
straints and objectives that are stated at a coarser level of time granularity, and might
be considered to be more at the “planning level”. Examples of such constraints and
objectives are deciding which orders to produce over the next few days from an order
pool, subject to capacity constraints on the number of orders of each product type that
can be produced within each shift, and maximizing the number of orders scheduled on
their preferred start date. This aspect of the problem is often handled well using mixed

 An Application of Constraint Programming 65

integer programming techniques. In order to combine the advantages of both
constraint programming and integer programming, we developed a hybrid solution
approach that decomposes the full problem into a high level integer programming
based planning problem to determine what orders to produce and roughly when on the
available process stages, and a low-level constraint programming based scheduling
problem to determine a detailed second-by-second schedule on specific machines at
each process. However the complex global nature of some of the detailed scheduling
constraints, combined with the requirement to achieve a high level of resource utiliza-
tion, resulted in this decomposition-based approach producing poor solutions that
were not acceptable to the customer. In order to overcome this drawback, we devel-
oped a simple integration mechanism between the planning and detailed scheduling
stages that was found to significantly improve solution quality. A detailed description
of the mixed integer programming formulations used in this decomposition-based
approach is presented in [6]. In this paper we present an overview of the application
domain and the integrated problem solving approach, and discuss in detail the con-
straint programming aspects of solving this problem.

2 The Problem

The scope of the problem addressed by the system is to produce a multi-day opera-
tions schedule for the manufacture of steel products from raw material inputs. The
main processes involved in the manufacturing of steel are illustrated in Figure 1.
The four main process areas addressed by the system are:

1. The Blast Furnace (far left in Figure 1) where iron is heated to a very high
temperature to become molten. There is a continuous flow of molten iron
from the blast furnace to the downstream processes. This flow is given as in-
put to the scheduling problem formulation specified on an hourly basis.

2. The Basic Oxygen Furnace is the first process that all production must pass
through after leaving the blast furnace. At this process, molten iron starts to
become differentiated with respect to grade and chemical composition.

3. The Refining Processes consist of a number of steps such as reheating, ladle
furnace and stirring. Not all production will pass through all of these steps,
and these steps are not ordered (the steps that are used depend on the chemi-
cal composition of the final products.)

4. The Continuous Casters (far right in Figure 1): All production passes from
the refining stage to the final continuous casting process. In this process,
molten steel is poured into a long, adjustable copper mold. As the steel
passes through the mold, it is cooled by water jets and solidifies into slabs of
a specific dimension.

Steel is usually produced on a make to order basis. Customer orders are batched
into units of production called “charges”. All distinct operations (activities in the
scheduling model) from the basic oxygen furnace and the refining process stages take
place on a single charge of steel. At the continuous casting stage, operations take
place on a sequence of (2-12) contiguous charges, which is called a “cast”. The batch-
ing of orders into charges and the sequencing of charges into casts is provided as

66 A. Davenport et al.

input to the scheduling system. These batching and sequencing steps form the basis
of a complex, multi-criteria sequencing problem, the descriptions of which are outside
of the scope of this paper, but which were part of the overall system developed by
IBM for the customer.

BOF3

BOF1

BOF2

BOF4

LF1

LF2

Refining Processes:

Reheating Ladle Furnace

(RH) (LF)

Blast Furnace Continuous
Casters

RH1

RH2

RH3

Basic Oxygen

Furnaces
(BOF)

Fig. 1. An illustration of the basic process flow for the manufacture of steel

We divide the full problem into two problem stages: the downstream cast schedul-
ing problem, which corresponds to the high-level planning problem, and the upstream
processes detailed scheduling problem. We describe each of these problems stages in
the sections which follow.

2.1 Detailed Scheduling Problem Model

Figure 2 presents a Gantt chart view illustrating how the concept of charges and casts
are reflected in the formulation of the scheduling model. The Figure shows the sched-
ule for the activities involved in the production of a single cast of steel. The interest-
ing aspects of this formulation to note are that:

1. Each set of activities, for example A1, A2, A3 and A4 represent the set of op-
erations required to produce a single charge of steel. This corresponds to a
single job in the scheduling model. All activities are non-preemptible.

2. In the final casting process a cast is produced consisting of a sequence of
contiguous charges. This sequence is given as input to the problem. The
processing of consecutive charges in a single cast on the casting processes
must be without interruption. In Figure 2, the activities A4, B3 and C2 are
scheduled as a cast on the casting process. Hence the start time of activity B3
must occur at the end time of activity A4, and the start time of activity C2
must occur at the end time of activity B3.

3. There are tight minimum and maximum time lag constraints between con-
secutive activities in the same job1, for instance the maximum time lag
between the end of activity A1 and start of activity A2 might be 20 minutes.

1 Maximum time lags arise as a result of the movement of the molten steel between processes.

If the steel cools down, it is necessary to reheat it, which is expensive in terms of energy con-
sumption. Minimum time lags arise from the transfer time of materials between processes.

 An Application of Constraint Programming 67

4. At each process stage there are a number of resources (machines) that can be
used to process an activity (between 2 and 5). The scheduling system needs
to determine which resource at each process stage each activity is assigned
to2. Each resource has different operating characteristics and a different
physical location. As a result, the processing time of an activity at a process
stage, as well as the transfer time between processes, will depend on the spe-
cific resources at each process the activity is assigned to.

5. For each charge we are given a preferred recipe specifying the sequence of
process steps that the charge must pass through. We are also given between 0
and 3 alternate recipes that can be used, should there not be sufficient capac-
ity on the preferred recipe process stages. In practice, most (85-95%) of
charges will be assigned to their preferred recipes.

Processes

Casting

LF

A3

B3A4 C2

B1 C1A1BOF

Time

B2A2

RH

Fig. 2. A Gantt chart illustration of the activities involved in manufacturing a single cast in a
steel plant, from the basic oxygen furnace (BOF) to the refining processes (reheating (RH), and
ladle furnace (LF)) to the casting process

All the scheduling resources in the problem model have unary capacity (at most
one activity at any time point can be executing on a specific resource.) However some
resources are state resources, whose state is represented by the number of activities it
has processed since the last “setup” activity on the resource. Once the resource has
processed a maximum number of activities, it is required to perform another setup
activity. Charges on a state resource have a range specifying the minimum and maxi-
mum values with respect to the resource state, within which they can be processed on
the resource.

2.2 Cast Scheduling Problem Model

We are required to schedule between 60 and 100 casts each composed of 2-12 charges
on one of a number (3-9) of distinct casting machines and upstream processes over a

2 There is an exception for the casting process, where every charge in a cast executes on the

same casting machine that is given as input to the scheduler.

68 A. Davenport et al.

1-2 day horizon. The system selects which casts to schedule within the horizon from a
pool of around 200 available casts given as input.

As mentioned earlier, there is a continuous flow of molten iron from the blast fur-
nace. The amount of this flow over time is specified as a problem input in terms of
number of tons per hour. We consider some quantity of molten iron to be consumed
by the first activity of each job when it starts processing at the basic oxygen furnace
process. Between the blast furnace and the basic oxygen furnace there is finite capac-
ity buffer, where the molten iron is stored until some activity is scheduled to consume
it. There are tight constraints on the minimum and maximum quantity of molten iron
that can be allowed to accumulate in this buffer.

The cast schedule specifies which casts are to be processed at what time on the
available casting machines, subject to the following constraints:

1. Shift level target and capacity constraints: each charge has attributes such as
product type and grade. Constraints state the target, minimum and maximum
number of charges that can be produced per shift by each attribute. (A shift is
a period of 8 hours, and there are 3 shifts per day.)

2. Each charge is associated with a preferred start date. We are required to
maximize the number of charges that are processed on their preferred start
dates.

3. Sequence dependent setup times between consecutive casts processed on the
same casting machine.

4. Minimum and maximum hot metal inventory level constraints.

Figure 3 illustrates a simple cast schedule for three casting machines. Note that
on caster-3 it is possible to schedule three casts F, G and H consecutively with no
setup time between them. Although there is no explicit objective to minimize setup
time used in the schedule, in practice the maximum hot metal inventory constraint and
constraints on the minimum number of charges to schedule per shift require us to use
as little setup time as possible.

Fig. 3.

Time

Caster-1 A B

Caster-2 D EC

G HFCaster-3

Inven-
tory Level

Fig. 3. An illustration of a Gantt chart that specifies a cast schedule

 An Application of Constraint Programming 69

3 Why CP?

The system developed by IBM was designed to be used as a decision support tool for
the scheduling department at a steel manufacturing plant. Prior to our involvement, all
scheduling was performed manually by a group of scheduling experts. The nature of
steel manufacturing is such that production planning, design and operations schedul-
ing are generally more complex than is found in other industries. In particular, opti-
mization problems in the steel industry often involve many constraints expressed at a
very low level of detail, yet the tightness of these constraints can have a major impact
on the solution at a global level. Furthermore, most steel industry problems that we
have encountered contain multiple, often competing objectives. As a result, off-the-
shelf supply chain tools, even with some customization, are usually not able to cope
with the complexity of optimization problems found in the steel industry.

The complexity of the problem model we encountered for this problem is such that
constraint programming seemed a natural choice for the detailed scheduling part of
the system. Some of the detailed constraints in the problem, such as those involving
state resources, would be quite difficult to model and maintain using an integer pro-
gramming formulation. Even so, this problem was still quite challenging to solve us-
ing constraint programming, since some aspects of the problem have received little
attention in the research literature. Examples of such aspects include scheduling with
non-substitutable resource alternatives and alternative recipes [7,9] and taking into
account detailed preferences on resource and recipe assignments for each activity or
set of activities. (One example of the source of such preferences was that if something
goes wrong during execution, the schedule should be designed in such a way that it
was easy for the human experts to take out “chunks” of the schedule to reschedule
elsewhere as quickly as possible.) As such, we were required to experiment and de-
velop solution approaches for dealing with these aspects of the problem during the
project. One advantage of using constraint programming, compared with integer pro-
gramming approaches, is the relative ease with which the constraint programming
model and solution approach could quickly and flexibly accommodate change re-
quests over the lifespan of the project.

Although constraint programming seemed like a good choice of technology for the
detailed scheduling aspect of the problem, the cast scheduling problem contains con-
straints and objectives that are more amenable to an integer programming approach.
As such, the solution approach we developed decomposes the full problem into two
sub-problems that are solved in sequence:

1. Downstream cast scheduling: Cast scheduling determines which casts we
are going to schedule and when; satisfying hot metal inventory constraints,
shift level capacity constraints, sequence-dependent setup times between
casts and preferred start times of casts. We do not consider the scheduling of
any upstream processes of casting at this stage. We model this problem using
a time-indexed integer programming formulation with a time granularity of
15-30 minutes and solve it using ILOG CPLEX3.

3 For the purposes of cast scheduling, we assume all charges will be scheduled on their pre-

ferred route. The upstream detailed scheduling stage may reassign routes.

70 A. Davenport et al.

2. Upstream process detailed scheduling: From the solution of the cast-
scheduling problem we create a constraint-programming model for schedul-
ing the processes upstream of casting, taking into account detailed schedul-
ing constraints and preferences (such as minimum and maximum time lags
between activities, resource exclusion constraints, state resource constraints,
preferences on recipe and resource assignments.) This model is formulated at
a fine level of time granularity (30 seconds.) Since the cast schedule has al-
ready been determined, we do not need to take into account any of the cast
scheduling constraints in this model4.

This solution approach exploits the fact that we have fairly tight maximum time
lag constraints between all consecutive pairs of activities in a single job for a charge
(this may be as little as 20-40 minutes.) As a result, the schedule for a single cast over
all processes will necessarily be localized in time both on the casting process and the
upstream processes.

4 How CP?

We solve the cast scheduling problem using mixed-integer programming, formulating
the problem using a time-indexed formulation and modeling the shift level capacity
constraints, the sequence dependent setup times and the hot metal inventory con-
straints as side constraints. The scheduling horizon in the time-indexed model is di-
vided into a set of contiguous time periods of equal size (between 15 and 30 minutes.)
We present the full mixed integer programming model in [6]. In the sections that fol-
low, we discuss in detail the use of constraint programming in the overall system and
give an overview of the integration between the integer programming model and the
constraint programming model.

4.1 Constraint-Programming Detailed Scheduling Solver

Given a cast schedule that specifies which casts are to be scheduled in the horizon and
an approximate starting time for each selected cast, the goal of the detailed scheduler
is to schedule all processes upstream of casting, subject to the following:

1. Select a recipe from a number of available alternate recipes for each charge in
each cast to follow in the schedule;

2. Select a resource (machine) from a number of available non-substitutable re-
sources for each job at each process stage;

3. Assign start times to activities on each resource at each process stage, subject
to unary resource capacity constraints and precedence constraints with mini-
mal and maximal time lags;

4. Take into account preferences on alternate recipe and resource assignments.

4 The detailed scheduler is based on a C++ constraint-programming library for manufacturing

scheduling developed by IBM (currently known as the “Watson Scheduling Library”).

 An Application of Constraint Programming 71

yes

Assignment of
recipes found?

no: relax problem

no: add recipe nogood

Feasible sched-
ule found?

Search for an assignment of recipes to charges
(maximizing the number of charges assigned to

their preferred recipe)

Search for a feasible schedule (assigning re-
sources and sequencing activities on each

resource)

Improve feasible schedule with respect to de-
tailed preferences using large neighborhood search

Return schedule

yes

Fig. 4. Problem solving flow for detailed scheduling

We use constraint programming to perform detailed scheduling [1]. An outline of
the constraint programming approach we use to perform detailed scheduling is pre-
sented in Figure 4.

The problem solving process takes place in several stages. Firstly, we search for a
complete feasible assignment of recipes to charges. We perform depth-first search
with chronological backtracking. We use a chronological variable ordering heuristic,
following the initial start time for each cast specified by the cast scheduling solution.
Alternate recipes for each charge are tried in order of preference. Usually we can find
an assignment of recipes that uses the most preferred recipe for each charge. In rare
cases that a feasible assignment of recipes cannot be found, we relax the problem by
selecting a cast to remove from the schedule.

The next stage is to find a feasible schedule that for each recipe, assigns a resource
to each activity at each process stage in the recipe, and sequences all activities on

72 A. Davenport et al.

each resource. The search approach for finding a feasible schedule is based on the
precedence constraint-posting framework described in [3], using chronological
backtracking and some simple texture-measurement based heuristics for resource as-
signment selection [2]. We use the timetable and disjunctive resource constraint
propagators [1,5]. The difficulty in solving this problem arises more from making the
right choices of resources to use for each activity to satisfy the precedence constraints
with tight maximal time lags, rather than in sequencing the activities on each re-
source. As such, we did not find complex constraint propagation approaches such as
edge-finding [1] to be useful for solving this problem. Temporal constraint propaga-
tion is performed using a variation of the incremental longest-paths algorithms devel-
oped in [4]. If we cannot find a feasible schedule after some backtrack limit is
reached, we identify a recipe to add as a nogood recipe and return to the recipe as-
signment stage.

Once we have a feasible schedule, we attempt to improve the quality of the solu-
tion with respect to preferences on resource and recipe assignments. For this, we have
many detailed preferences specified as rules by the user. For example, one such rule
might specify that all charges in the same cast should try to use the same resource in
the reheating process. We use constraint programming based large neighbourhood
search to perform this improvement phase [11].

In practice, the detailed scheduler is quite fast: an initial feasible schedule can usu-
ally be found in less than 5 seconds on a 1.6 GHz Pentium 4 laptop. Improving the
schedule using large neighborhood can take 2-3 minutes. The cast scheduler is the
most time consuming part of the system: finding a cast schedule within 1% of opti-
mality with CPLEX usually takes 5-10 minutes.

4.2 Integration Issues

One drawback of the decomposition-based approach we have presented arises from
not taking into account upstream processes in the formulation of the downstream cast-
scheduling problem. We sometimes encountered unforeseen bottlenecks on some of
these upstream processes during detailed scheduling based on the cast schedule solu-
tion. Sometimes this results in the solution to the cast scheduling problem found by
the integer programming solver being infeasible on the processes upstream of casting.

One solution to this problem is to extend the cast-scheduling model to perform
some scheduling of the upstream bottleneck processes. However, the time-indexed
formulation of the cast-scheduling problem is at a relatively coarse level of time
granularity (15-30 minutes), relative to the time granularity of the detailed scheduling
constraints (at the 30 second level.) Using a finer time granularity in the cast-
scheduling model in order to accommodate such constraints significantly increases
the size and complexity of the model and the time taken to find a solution.

We developed an alternative approach to avoiding upstream bottlenecks by add-
ing capacity constraints on the upstream bottleneck processes as side constraints to
the cast-scheduling integer programming model. In order to formulate such capacity
constraints, we need to be able to estimate for each cast how much capacity of the
upstream processes they are expected to utilize, and when. This is illustrated in
Figure 5, where we represent part of the time-indexed cast-scheduling formulation

 An Application of Constraint Programming 73

involving a single cast of 3 charges, A, B and C, starting in time period 5 on the Caster
and using 3 time periods (5-7) of Caster capacity. In this example if charge A in the
cast starts in period 5 on the Caster, we might estimate that it will use 1 time period of
upstream BOF capacity in period 2. Note that later detailed scheduling of the up-
stream processes may determine that the actual BOF capacity used by these charges is
somewhere else in the schedule. However, since we have tight maximum wait time
constraints between consecutive activities in a job for each charge, our working as-
sumption is that we can estimate upstream capacity utilization for each cast that is
fairly accurate with respect to the final upstream schedule.

Caster

Time Period

C

B CA

BABOF

Fig. 5. An illustration of the estimated capacity utilization profile on the upstream process BOF
for a cast startin g on the Caster process in time period 5

More specifically, for each cast and each time period t in the time-indexed integer
programming model and for each upstream bottleneck process, we estimate the capac-
ity used by the cast on the process if it starts processing in time period t on the casting
process. (In practice it is not necessary to estimate this for every time period: it is suf-
ficient to generate a single estimation for all time periods where the capacity con-
straints do not change.) We use this estimation as a basis to formulate the upstream
process capacity constraints to add to the time-indexed integer programming model.
For such an estimation to be useful, it should take into account the detailed scheduling
constraints on the upstream processes. We do this by generating a detailed schedule
for each cast on all upstream processes, independently of all other casts, using the
constraint programming scheduling solver. We use the solution generated by this
solver as the basis to estimate upstream capacity utilization for each cast.

Experiments on customer problem data show that by using capacity constraints
generated from a constraint programming solution for a single cast can improve both
the quality of the final schedule with respect to number of orders scheduled, and well
as speed up execution time of the solver. We present the exact formulation of these
capacity constraints, as well as experimental results comparing the performance of
constraint-programming generated capacity constraints to those generated using sim-
ple heuristics, in [6].

We summarize the full high-level problem solving flow used by the system for a
generating a steel-making schedule in Figure 6.

74 A. Davenport et al.

1. Generate an estimated capacity profile for each cast at each
time period, based on a detailed schedule for the cast generated
using constraint programming.

2. Generate a cast schedule, based on the solution to a time-indexed
integer programming model taking into account the estimated up-
stream capacity used by each cast calculated from step 1.

3. Generate a detailed upstream schedule for all casts based on the
cast schedule solution from step 2 using constraint program-
ming.

Fig. 6. High-level solution approach process flow using constraint programming and mixed
integer programming

5 Added Value of CP?

The scheduling system described in this paper was just one part of a large, multi-
million dollar development project that interacted with an upstream optimization
module to design the casts that are input to the system, and a downstream module to
perform hot strip mill sequencing of the production scheduled by the system. The
scheduling system module was developed by two researchers at IBM over a period of
18 months.

The users acknowledge that this scheduling problem is extremely complex, in part
due to the complexity of the manufacturing processes and the wide diversity of prod-
uct types produced. The impetus for the user to improve their scheduling processes
arose from the growing pressure from their customers to improve on-time delivery
and provide shorter ordering promising time. There were several attempts in the past
by the user to develop a scheduling system in-house. This included developing a rule-
based system and experimenting with heuristic scheduling approaches, but the results
unsatisfactory.

As of writing, the system has just started to go into use by the end user, in parallel
with their current system. Initial feedback has been very favourable. The users inter-
act with the system through a graphical user interface, allowing them to influence
aspects of the solution such as stating that some casts must be included in the sched-
ule within some specified time range. The users are very impressed that the IBM
system is able to generate schedules that achieve higher resource utilization, by
scheduling up to 10% more charges, than that of hand-generated schedules prepared

 An Application of Constraint Programming 75

by the expert human schedulers. Furthermore, the system can generate full 2-day
schedules within 5-10 minutes on a 3GHz Opteron Linux machine, as opposed to
many hours needed for the human experts to generate a schedule. This is important,
since in practice the users may use the system to perform some kind of “what-if”
analysis, experimenting with problem parameters and upstream optimization modules
to generate and select from multiple possible schedules. Since the shop floor is very
dynamic, some real-time adjustment of the schedules generated by the system is per-
formed by the users during execution.

6 Related Work

Due to the nature of the manufacturing processes, the complexity of production plan-
ning and operations scheduling is usually higher in the steel industry than in many
other industries. As a result, many commercial “off-the-shelf” tools cannot adequately
address the full scope and complexity of production planning and scheduling in the
steel industry. We believe that constraint programming can be an important compo-
nent of decision-support solutions in this area. Some other applications of constraint
programming in the steel industry include the system presented in [12] to perform
bloom sequencing at what was formerly British Steel. The bloom-sequencing problem
is an “upstream” optimization problem to the system presented in this paper: it is used
to design the casts whose production is then scheduled by the steelmaking scheduling
system. (A system to perform bloom sequencing (as well as plate and coil sequenc-
ing) was designed and implemented by IBM as part of the overall project, but is not
described in this paper. This system uses a decomposition-based approach utilizing
integer programming and specialized bin-packing heuristics [10].) Constraint pro-
gramming is also used in the COORDIAL system developed using CHIP for real-time
scheduling of the production of steel for the Sollac Group in France [13].

7 Conclusions

We have presented an overview of a system for generating detailed schedules for steel
production that has developed by IBM for a large steel manufacturer. The full sched-
uling problem addressed by the system involves solving two related problems for the
upstream and downstream processes of steel manufacturing. The downstream, cast-
scheduling problem requires the selection and sequencing of groups of contiguous
jobs (casts) on a number of machines, subject to shift-level capacity constraints, inter-
process inventory constraints and sequence-dependent setup times. The upstream
scheduling problem involves determining a detailed schedule for processes upstream
of the casting processes, taking into account preferences on how resources are allo-
cated (such as alternate recipes and resources used by each job), precedence con-
straints with tight minimum and maximum time lags and complex state resources. We
have presented an integrated, decomposition-based approach that uses mixed-integer
programming to generate a production plan for downstream cast scheduling at a
coarse level of time granularity, and constraint programming to schedule upstream
processes subject to detailed scheduling constraints at a fine level of time granularity.
Initial end-user feedback has been very favourable.

76 A. Davenport et al.

References

[1] Baptiste, P., LePape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint
Programming to Scheduling Problems. In: International Series in Operations Research
and Management Science, vol. 39. Kluwer, Dordrecht (2001)

[2] Beck, J.C., Davenport, A.J., Sitarski, E.M., Fox, M.S.: Texture-Based Heuristics for
Scheduling Revisited. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI-97), pp. 241–248. AAAI Press / MIT Press (1997)

[3] Cheng, C.C., Smith, S.F.: Applying constraint satisfaction techniques to job shop sched-
uling. Annals of Operations Research, Special Volume on Scheduling: Theory and Prac-
tice 1 (1996)

[4] Katriel, I., Van Hentenryck, P.: Maintaining Longest Paths in Cyclic Graphs. In: Proc.
11th International Conference on Principles and Practice of Constraint Programming.
Springer, Heidelberg (2005)

[5] Laborie, P.: Algorithms for propagating resource constraints in AI planning and schedul-
ing: existing approaches and new results. Artificial Intelligence Journal 143(2), 151–188
(2003)

[6] Davenport, A., Kalagnanam, J.: Scheduling steel production using mixed-integer pro-
gramming and constraint programming. In: Proceedings of the 3rd Multidisciplinary In-
ternational Scheduling Conference: Theory and Applications (2007)

[7] Beck, J.C., Fox, M.S.: Scheduling Alternative Activities. In: Proceedings of the Six-
teenth National Conference on Artificial Intelligence (AAAI-99) (1999)

[8] Kramer, L.A., Smith, S.F.: Maximizing Flexibility: A Retraction Heuristic for Over-
subscribed Scheduling Problems. In: Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-03) (2003)

[9] Focacci, F., Laborie, P., Nuijten, W.: Solving Scheduling Problems with Setup Times
and Alternative Resources. In: Proceedings of the 5th International Conference on Artifi-
cial Intelligence Planning and Scheduling Systems (AIPS 2000), pp. 92–111 (2000)

[10] Lee, H.S., Trumbo, M.: An Approximate 0-1 Edge-Labeling Algorithm for Constrained
Bin-Packing Problem. In: Proceedings of the 15th International Joint Conference on Arti-
ficial Intelligence (IJCAI-97), pp. 1402–1411 (1997)

[11] Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) Principles and Practice of Con-
straint Programming - CP98. LNCS, vol. 1520. Springer, Heidelberg (1998)

[12] Smith, A.W., Smith, B.: Constraint Programming Approaches to a Scheduling Problem
in Steelmaking. School of Computing Research Report 97.43, University of Leeds (Sep-
tember 1997)

[13] http://www.cosytec.com/constraint_programming/cases_studies/steel_industry.htm

	An Application of Constraint Programming to Generating Detailed Operations Schedules for Steel Manufacturing
	Introduction
	The Problem
	Detailed Scheduling Problem Model
	Cast Scheduling Problem Model

	Why CP?
	How CP?
	Constraint-Programming Detailed Scheduling Solver
	Integration Issues

	Added Value of CP?
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

