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Abstract. Recently, constraint-programming techniques have been used
togenerate test dataand toverify the conformity of aprogramwith its spec-
ification. Constraint generated for these tasks may involve integer ranging
on all machine-integers, thus, the constraint-based modeling of the pro-
gram and its specification is a critical issue. In this paper we investigate
different models. We show that a straightforward translation of a program
and its specification in a system of guarded constraints is ineffective. We
outline the key role of Boolean abstractions and explore different search
strategies on standard benchmarks.

1 Introduction

Constraint programming techniques have been used to generate test data (e.g.,
[6,13]) and to develop efficient model checking tools (e.g. [10,4]). SAT based
model checking platforms have been able to scale and perform well due to many
advances in SAT solvers [11]. Recently, constraint-programming techniques have
also been used to verify the conformity of a program with its specification [3,8].

To establish the conformity between a program and its specification we have
to demonstrate that the union of the constraints derived from the program and
the negation of the constraints derived from its specification is inconsistent.
Roughly speaking, pruning techniques -that reduce the domain of the variables-
are combined with search and enumeration heuristics to demonstrate that this
constraint system has no solutions.

Experimentations reported in [8] demonstrate that constraint techniques can
be used to handle non-trivial academic examples. However, we are far from the
state where this techniques can be used automatically on real applications. Mod-
eling is a critical issue, even on quite small programs. That’s why we investigate
different models in this paper.

The framework we explore in this paper can be considered as a very specific
instance of SMT solvers1

1 For short, a Satisfiability Modulo Theories (SMT) problem consists in deciding the
satisfiability of ground first-order formulas with respect to background theories such
as the theory of equality, of the integer or real numbers, of arrays, and so on [5,12,1].
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The different models and search strategies we did experiment with, showed
that a straightforward translation of a program and its specification in a sys-
tem of guarded constraints is ineffective2. These experimentations also clearly
outlined the key role of appropriate Boolean abstractions.

The verification of the conformity between a program and its specification is
highly dependant on the programming language and the specification language.
In this paper, we restrict ourseleves to Java programs and JML specifications
(for “Java Modeling Language” see www.cs.iastate.edu/˜leavens/JML).

To illustrate the advantages and limits of the models and search strategies we
introduce, we will use the following examples:

– S1 (see figure 1) : This is a very simple example of a Java program and its
JML specification : it returns 1 if i < j and 10 otherwise. S1 will help us to
understand how to introduce boolean abstractions. For each model, we will
give the complete constraint system for S1.

– S2 : This is also a very simple example derived from S1. The only difference
with S1 is that it returns the result of a calculus on input variables instead
of constant values, i.e., it returns i + j when S1 returns 1 (line 5 in figure 1)
and 2∗ i when S1 returns 10 (line 6 in figure 1). The main idea is to evaluate
the impact of arithmetic during the resolution process.

– Tritype : This is a famous example in test case generation and program
verification. This program takes three numbers that must be positive. These
numbers represent the lengths of three sides of a triangle. It returns 4 if the
input is not a triangle, 3 if it is an equilateral triangle, 2 if it is isosceles and
1 if it is a scalene triangle.

– Tri-perimeter : This program has the same control part than the tritype
program. It returns -1 if the three inputs are not the lengths of triangle sides,
else it returns the perimeter of the triangle. The specification returns i+j+k
while the program returns either 3 ∗ i, 2 ∗ i+ j, 2 ∗ i+ k, 2 ∗ j + i or i+ j + k.

The program and the specification of tritype and tri-perimeter can be found
at www.polytech.unice.fr/˜rueher/annex tritype triperimeter.pdf.

All the java programs of the examples in this paper conform to their JML
specifications. This corresponds to the much difficult problem, since the search
must be complete. Indeed, detection of non-conformity is much easier in practice
(it stops when the first solution is found) even if the difficulty from a theoretical
point of view is the same.

The rest of this paper is organised as follows. Section 2 recalls some basics on
the translation process we have implemented to generate the constraint systems.
Section 3 details the different models we propose whereas section 4 introduces
different solving strategies. Section 5 describes the experimental results and sec-
tion 6 discusses some critical issues.
2 A full translation in Boolean constraints is also ineffective as soon as numeric ex-

pression occurs in the program or in the specification. Indeed, in this case we need
to translate each integer operation into bit-vector calculus. Thus, even SMT solvers
like SMT-CBMC [2] which use specialized solver for bit-vector calculus fail to solve
some trivial problems.
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/* @ public normal_behavior
@ ensures ((i<j)=>\result=1) && ((i>=j)=>\result=10)

*/
int simple(int i, int j) {

1 int result;
2 int k=0;
3 if (i <= j) k=k+1;
4 if (k==1 && i!=j) result=1;
5 else result =10;
6 return result;
}

Fig. 1. S1 example : JML specification and Java program

2 Translation of a Program and its Specification into
Constraints

This section recalls basic techniques for translating a Java program and its JML
specification into a set of constraints.

For the sake of simplicity, we only consider here a very restricted form of Java
and JML programs. For the JML specification, we restrict ourselves to normal
behaviour, i.e., we do not consider exceptions such as overflows. We also assume
that the JML specification contains an \ensures statement, a logical expression
defining the post-condition. It may also contain a \requires statement defining
the pre-condition. Likewise, we only consider Java program where all variables
are integers and we assume that functions have only one return statement. Fi-
nally, we do not detail here the process for handling loops. Interested readers
can find details on the way we handle loops and several JML statements such
as \forall statement in [8].

2.1 Translation Process

We only recall here the basics which are required to understand this paper. More
details on SSA form can be found in [9].

Translating the Program into a Set of Constraints. We first transform the
program into its SSA ”Single State Assignment” form [9]: for each new definition
of a program variable, we introduce a fresh variable. In order to manage control
instructions, we use φ–functions for if then else statements.

Basic statements. Each assignment var = value is translated as a constraint
vari = value where i is the current number of definition of variable var. For
example, the following piece of code x = x+1; y = x ∗ y; x = x+ y; is translated
as the set of constraints : {x1 = x0 + 1, y1 = x1 ∗ y0, x2 = x1 ∗ y1}.

Conditional execution flow. Conditional execution flows are translated into
guarded constraints. Guarded constraints are conditional constraints whose eval-
uation depends upon other constraints. C0 → C1 denotes a guarded constraint
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where C0 and C1 are conjunctions of basic constraints. Relation C0 → C1 states
that constraints C1 have to be added to the current constraint store when the
solver can prove that constraints C0 hold. More precisely, let C0 be a boolean
expression and C1 a set of constraints, the guarded constraint C0 → C1 behaves
as follows:

– When the solver can prove that C0 is true, then constraints C1 are added to
the store of constraints;

– When the solver can prove that C0 is false, then the guarded constraint is
just discarded;

– When the solver can neither prove that C0 is true, nor prove that C0 is false,
that is when not enough variables of C0 are instantiated, then the guarded
constraint is suspended.

The solver tries to prove that the guard C0 of a suspended constraint holds
whenever the domain of some variable occurring in C0 has been reduced.

One major difficulty with guarded constraints is that nothing can be done
before the solver can demonstrate that the condition is either true or false. Let
us consider a very simple piece of code:

//@ ensures \result ≥ 0
public int absolute(int i, int j) {

if (i<j) return j - i;
else return i - j;

}

This code is translated into the following set of constraints:
{i < j → r = j − i, !(i < j) → r = i − j, r < 0}
A standard CSP solver cannot achieve any pruning on this system since noth-

ing is known about i and j. So a very costly enumeration process is started: the
inconsistency is only detected when the domain of i and j are reduced to one
value.

That’s why we introduce Boolean variables and handled in a better way
guarded constraints (see part 3.2).

The If then statement. For the sake of clarity, we only focus on the assign-
ment of a single variable. Trivially, the same process could be applied individually
for each variable appearing in a block with many variable assignments.

Let us consider the statement S : if (cond) {var=val}. Assume that var
has already been defined p times before this statement. S is translated into
the following set of guarded constraints where SSA(s) denotes the constraint
corresponding to the SSA form of the basic statement s.

if part : SSA(cond) → varp+1 = SSA(val)
else part : SSA(!cond) → varp+1 = varp

The else part just ensures that the varp+1 fresh variable will not remain
uninstantiated in the corresponding CSP.
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The If then else statement. Let us consider the statement S : if (cond)
{v=x1;v=x2; ...;v=xq;} else {v=y1;v=y2;...; v=yr;}. Assume that v has
already been defined p times before this statement and assume that q < r. Since
v has not the same number of definitions in the if part and the else part, we
need to introduce a guarded constraint to take the place of the φ function. So,
S is translated into the following set of guarded constraints :

// if part
SSA(cond) → (vp+1=SSA(x1))&(vp+2=SSA(x2))&...&(vp+q=SSA(xq))
// else part
SSA(!cond) → (vp+1=SSA(y1))&(vp+2=SSA(y2))&...&(vp+r=SSA(yr))
// φ function
SSA(cond) → (vp+q+1=vp+q)&(vp+q+2=vp+q)&...&(vp+r=vp+q)

Remark: if q > r the same principle is applied and the guarded constraints
of the φ function are guarded by SSA(¬ cond). If q=r then no φ function is
required. Figure 2 gives an example of translation of an overlapped if then
else.

1 if (i < j) x = 0; (i<j) --> x1=0
else {

2 if (i < 30) (!(i<j)&(i<30))-->(x1=x0+1&x2=x1+y0)
{ x = x+1;

x = x+y;}
else {

3 if (j > 43) x=2; (!(i<j)&!(i<30)&(j>43))--> x1=2
else x=3; (!(i<j)& !(i<30)& !(j>43))--> x1=3

} // phi-function for #2 if
} (!(i<j)&!(i<30)) --> x2=x1

// phi-function for #1 if
(i<j) --> x2=x1

Fig. 2. example of if then else translation

Translating theSpecification. TheJMLspecificationwehandle is decomposed
into two parts : the \requires statement and the \ensures statement. The
\requires statement is a logical expression on input variables and the \ensures
statement is a logical expression both on input variables and \result, which de-
notes in JML the value returnedby themethod.We translate the JMLspecification
in the following way :

– each logical expression is translated into the corresponding constraint,
– the \result JML variable is associated to a new variable of the CSP named

result which establishes the link between the program and the specification,
– we add the constraints issued from the \requires statement,
– we add the negation of constraints issued from the \ensures statement.
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2.2 Characteristics of a CSP for Software Validation

We define a CSP for software validation as a tuple formed with a set of integer
variables, a set of boolean variables (possibly empty) used to improve perfor-
mance of guarded constraints propagation, a set of guarded constraints issued
from the program and the specification and an abstraction table which gives the
correspondence between the boolean abstract variables and the integer expres-
sions. This is detailed in figure 3.

1. Variables
– INT VAR : set of finite variables with domain [min,max]
– BOOL VAR : set of boolean variables with domain [0,1]
– result ∈ INT VAR : the variable which makes the link between the program

(Java return statement) and the specification (\result JML statement)
2. Constraints

– PROG CONST : set of guarded constraints from the program
– REQUIRE CONST : set of guarded constraints from the JML \requires

statement
– ENSURE CONST : set of guarded constraints from the negation of the JML

\ensures statement
3. Abstraction table

– SEMANTICS(bi) provides the finite domain constraint that is modelled by
the boolean abstract variable bi.

Fig. 3. CSP for software validation

3 Modeling Issues

We present here different models –from the less abstract one to the most abstract
one– that we studied during our experiments. All the models are illustrated on
example S1 of figure 1. To help the reading, in the successive figures for example
S1 , we start by ’*’ the lines which have changed from one model to the next
one. When solving the CSPs, all the models are also evaluated on the two more
significant benchmarks tritype and tri-perimeter.

3.1 INT CSP: A Model Without Boolean Abstraction

In this model, we do not introduce any boolean variable : the guarded constraints
are couples (g,c) where g and c are expressions on integer variables. Figure 4
illustrates this model on example S1.

3.2 HYBRID CSP 1: Using Boolean Abstraction for the Program
Guards

In this model, we introduce a boolean variable for each guard involved in the
constraints of the program. The advantage is that the enumeration process be-
gins with boolean variables and so guards are evaluated first. In this way, a
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1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]
BOOL_VAR = empty
result in [min,max]

2. Constraints
PROG_CONST :
1 r_0=0
2 k_0=0
3 i<=j --> k_1=k_0+1
4 !(i<=j) --> k_1=k_0
5 k_1=1 & i!=j --> r_1=1
6 !(k_1=1 & i!=j) --> r_1=10
7 result=r_1

REQUIRE_CONST : empty
ENSURE_CONST :
8 !(((i<j) --> result=1) & ((i>=j) --> result=10))

3. Abstraction table : empty

Fig. 4. Example S1: INT CSP

constraint c can be posted even if the integer variables involved in its guard
are not instantiated. The introduction of boolean entails a non standard pro-
cessing of guarded constraints. For instance, consider the guarded constraint
i < j → k1 = k0 + 1 and assume that the boolean variable b0 is associated to
the guard i < j. When b0 is set to true, both constraints i < j and k1 = k0 + 1
are added to the constraint store.

Figure 5 shows this model on example S1. With respect to figure 4 we have
introduced two boolean variables, g 0 for the guard of constraints 3 and 4 and
g 1 for the guard of constraints 5 and 6.

3.3 HYBRID CSP 2: Using Boolean Abstraction for Expressions
Appearing in Several Guards

One drawback of the previous model is that it looses too much semantics; for
instance, it doesn’t take into account that the same logical expressions may be
involved in distinct guards. That’s why we introduce in the model HYBRID CSP 2
a boolean variable for each sub-expression which appears several times in the
guards of the program constraints or in the specification constraints.

In the previous modeling of example S1 (see figure 5), the sub-expression i < j
appears both in guard g 0 and in the specification constraints. So we introduced
a new boolean variable to abstract this expression (see figure 6).

3.4 HYBRID CSP 3: Adding Boolean Abstraction for Expressions
Involving the Variable result

In order to have a better link between the program and the specification, we ex-
tend the HYBRID CSP 2 model by introducing a boolean abstraction for each
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1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

1 r_0=0
2 k_0=0

* 3 g_0 --> k_1=k_0+1
* 4 !g_0 --> k_1=k_0
* 5 g_1 --> r_1=1
* 6 !g_1 --> r_1=10

7 result=r_1
REQUIRE_CONST : empty
ENSURE_CONST :
8 !(((i<j) --> result=1) & ((i>=j) --> result=10))

3. Abstraction table
* SEMANTICS(g_0) = i<=j
* SEMANTICS(g_1) = k_1=1 & i!=j

Fig. 5. Example S1 : HYBRID CSP 1

expression on the result variable. This variable is part both of the program and
the specification and so it can be helpful to cut some branches during the reso-
lution process. Since we can only assign variable result once, we add a constraint
which states that only one abstract variable can be true at the same time.

For example S1, we introduced two boolean variables in the model of figure 6 :
one for the expression result=1 and the other for the expression result=10; the link
between the possible values of variable result is done by constraint 7 in figure 7.

3.5 BOOL CSP: Boolean Model

In this model, we introduce a boolean variable for each expression in the program
and the specification. This is the model which is used by SAT solvers when the
expressions do not contain any arithmetic expression. If they do, basic arithmetic
operations must also be modelled with boolean constraints.

4 Solving the CSP

We have explored various strategies for solving hybrid CSP with boolean and
integer variables. These strategies are closely related to the models we presented
in the previous section. We operated with JSolver4Verif[7]: it is a Java version
of Ilog solver3 with specific propagation rules based on congruence techniques.
However, on all the examples contained in this paper the performances of JSolver
are very similar to the one of Solver.

3 See http://www.ilog.com/products/cp/.
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1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST

1 r_0=0
2 k_0=0

* 3 (g_0||g_1) --> k_1=k_0+1
* 4 !(g_0||g_1) --> k_1=k_0
* 5 g_2 --> r_1=1
* 6 !g_2 --> r_1=10

7 result=r_1
REQUIRE_CONST : empty
ENSURE_CONST

8 !((g_0 --> result=1) & (!g_0 --> result=10)))
3. Abstraction table
* SEMANTICS(g_0) = i<j
* SEMANTICS(g_1) = i=j
* SEMANTICS(g_2) = k_1=1 & !g_1

Fig. 6. S1 example : HYBRID CSP 2

4.1 Solving an Integer CSP

In order to solve INT CSP we only have to perform a search on the CSP. If a
solution is found, then it is an error test case (a data that satisfies the constraints
of the program and of the negation of its specification); otherwise the program
is conform to its specification.

4.2 Solving a Hybrid CSP Using a CSP Solver

We show here two strategies for solving hybrid CSP for models HYBRID CSP 1,
HYBRID CSP 2 and HYBRID CSP 3:

– Strategy 1 : searching for all solutions.
Roughly speaking, this strategy consists into searching a solution to the
hybrid CSP and then to construct an integer CSP which has the semantics
of the current solution of the hybrid CSP. This process is detailed in figure 9.
The goal of this strategy is to take advantage of of the forward and backward
propagation process on guarded constraints.

– Strategy 2 : enumerating on boolean variables only
This is the same algorithm as Strategy 1 except that in line 1 of figure 9 we
start the search by enumerating on boolean variables only (i.e. on B VAR
variables only).

This strategy is mandatory when we use models HYBRID CSP 2 or HY-
BRID CSP 3. In these models, some boolean variables depend from other
boolean variables and do not appear directly in the constraints of the pro-
gram and the specification. So they may remain uninstantiated during the
search on the HYBRID CSP.
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1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1\} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2,b_0,b_1} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

1 r_0=0
2 k_0=0
3 (g_0||g_1) --> k_1=k_0+1
4 !(g_0||g_1) --> k_1=k_0

* 5 g_2 --> b_0
* 6 !g_2 --> b_1
* 7 b_0 + b_1 = 1

REQUIRE_CONST : empty
ENSURE_CONST :

* 8 !((g_0 --> b_0) & (!g_0 --> b_1))
3. Abstraction table
* SEMANTICS[g_0] = i<j
* SEMANTICS[g_1] = i=j
* SEMANTICS[g_2] = k_1=1 & !g_1
* SEMANTICS[b_0] = result=1
* SEMANTICS[b_1] = result=10

Fig. 7. S1 example : HYBRID CSP 3

5 Experimental Results

5.1 Experimental Results

In this section we evaluate the various models and strategies on the S1 and S2
programs and also validate our conclusions on the two more realistic examples
tritype and tri-perimeter.

In each table, we consider signed integers and we give the time performance
according to the number of bits they are coded with. Since our purpose is to
compare different modeling issues, we use a time out limit of ten minuts (denoted
‘−’ in the tables). Nevertheless, we give the solving time required for the largest
size of integers we could handle in some cases (in italic). bool denotes the number
of boolean solutions, that’s to say the number of finite domain CSPs which
are generated, and which have to be disproved to demonstrate the conformity
between the program and its specification.

The constraint systems for these different programs have been generated au-
tomatically. Primary boolean expressions are stored on the fly in a hash map
and each expression is replaced with a boolean variable if it is used more than
once, depending on the model. All experiments were performed on a Processor
Intel Core 2 Duo E6400 (2,13 GHz, 1G memory).
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1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2,b_0,b_1,b_2,...,b_11} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

* 1 b_0
* 2 b_1
* 3 (g_0||g_1) --> b_2
* 4 !(g_0||g_1) --> b_3
* 5 g_2 --> b_4
* 6 ! g_2 --> b_5
* 7 b_2 + b_3 = 1
* 8 b_4 + b_5 = 1

REQUIRE_CONST : empty
ENSURE_CONST :

* 9 !((g_0 --> b_4) & (!g_0 --> b_5))
3. Abstraction table

SEMANTICS(g_0) = i<j SEMANTICS(g_1) = i=j
SEMANTICS(g_2) = k_1=1 & !g_1

* SEMANTICS(b_0) = r_0=0 SEMANTICS(b_1) = k_0=0
* SEMANTICS(b_2) = k_1=k_0+1 SEMANTICS(b_3) = k_1=k_0
* SEMANTICS(b_4) = result=1 SEMANTICS(b_5) = result=10

Fig. 8. Example S1 : BOOL CSP

Let HYBRID CSP={I VAR, B VAR, CONST, SEMANTICS} where I VAR is the set of integer
variables including result, B VAR the set of boolean variables, CONST is the union
of constraints from program and specification and SEMANTICS is the abstraction table
boolean conform(HYBRID CSP)
1 start a search on HYBRID CSP
2 if HYBRID CSP has no solution print program conform with its specification; return true
3 else
4 while HYBRID CSP has a solution
5 - search next solution S of HYBRID CSP
6 - build integer CSP S INT :

. for each variable I in I VAR add a variable S I in S INT
with initial domain equals to the domain of I in solution S

. add the constraints of CONST where each variable I has been renamed as S I

. for each variable Bi in B VAR,
if Bi is true in solution S add the constraint SEMANTICS(bi)
else if bi is not an abstraction of an assignement of variable result,

then add the constraint (!SEMANTICS(bi))
7 - start a search on S INT : if there is a solution it is an error test-case; return false
8 print program conform with its specification; return true.

Fig. 9. Strategy 1: solving an hybrid CSP
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5.2 INT CSP Model

As mentioned in subsection 3.2, the INT CSP model cannot achieve any filtering
as long as the integer variables involved in the guards are not instantiated. So,
the search process is very slow: table 1 shows that even for the very simple
examples, the INT CSP model cannot be solved for integers coded on 32 bits.

Table 1. CSP INT solving
# bit S1 S2 tritype tri-perimeter
8 0.577 s 0.766 s 66.582 s 406.27 s
10 5.422 s 9.255s - -
16 21663.778 s (6 hours) - - -
32 - - - -

5.3 Hybrid CSP Models

Table 2 provides the results for S1 and tritype programs.
In these programs, the returned value is a constant so the HYBRID CSP 3 is

not relevant. Indeed, in this case there is little interest to introduce a boolean
abstraction for each expression on the result variable.

Searching all solutions (strategy 1) is rather inefficient with the HYBRID CSP 1
model. Strategy 2 (searching only boolean solutions) is clearly better both with
HYBRID CSP 1 and HYBRID CSP 2.

An essential observation is that strategy 1 searches for all the solutions, that
is to say, even for solutions which differ on integer variables but are equals for
boolean variables. As said before, we evaluated this strategy because the inverse
propagation of guarded constraints may eliminate values for boolean variables
on some problems. Indeed, for a guarded constraint (g, c), if c is proved false due
to other constraints, then the negation of g is added to the constraint store; this
information may cut some branches for other guarded constraints which share
guard g.

The difference between the results for the various models highlights that in-
troducing boolean variables is a key issue when these variables are shared by
many constraints.

Table 3 compares the performances of models HYBRID CSP 2,
HYBRID CSP 3 and BOOL CSP on the S2 and tri-perimeter examples using
strategy 2.

First, let us note that the performances are weaker on these two examples.
This is due to the arithmetic operations, which occur in these two examples. In-
deed, S2 (resp. tri-perimeter) differs from S1 (resp. tritype) only on the operative
part (calculus on inputs instead of constant value).

Another essential observation is that in model BOOL CSP, we provide a con-
straint which states that the boolean variables which correspond to several as-
signements of a single variable cannot be true at the same time. This is a critical
point: if we remove this constraint for tri-perimeter with integers coded on 8 bits
there are 778240 boolean solutions and it takes 319.028s to solve the problem.
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Table 2. HYBRID CSP 1 and HYBRID CSP 2 solving

S1 and tritype
# bit HYBRID CSP 1 HYBRID CSP 1 HYBRID CSP 2

strategy 1 strategy 2 strategy 2
S1 tritype S1 tritype S1 tritype

8 57.116 s - 0.194 s 0.999 s 0.182 s 1.768 s
131072 bool 4 bool 565 bool 4 bool 4520 bool

10 - - 0.221 s 4.157 s 0.186 s 1.926 s
4 bool 565 bool 4 bool 4520 bool

16 - - 0.568 s - 0.221 s 8.522 s
4 bool 4 bool 4520 bool

32 - - - - 1520.82 s -
4 bool

Table 3. HYBRID CSP 2, HYBRID CSP 3 and BOOL CSP solving

S2 and tri-perimeter
# bit HYBRID CSP 2 HYBRID CSP 3 BOOL CSP

S2 tri-perimeter S2 tri-perimeter S2 tri-perimeter
8 0.477 s 15.056 s 0.185 s 6.57 s 0.2 s 3.42 s

8 bool 5056 4 bool 22464 bool 4 bool 6080 bool
10 2.946 s - 0.2 s 10.489 s 0.286 s 3.654 s

8 bool 4 bool 22464 bool 4 bool 6080 bool
16 - - 0.274 s - 0.292 s 4.809 s

4 bool 4 bool 6080 bool
32 - - 2516.156 s - - -

4 bool

6 Discussion

Verification and validation are two of the most critical issues in the software
engineering process. Numerous techniques, ranging from formal proofs to test-
ing methods have been used during the last years to verify the conformity of a
program with its specification. However, such a verification remains a difficult
task, even for small programs. Our experimentations [8] showed that constraint
techniques can be very efficient on some non trivial problems. Performance of
CSP techniques behave clearly better than state of art SMT solvers [8,2]

In this paper, we did investigate different CSP models on a few simple but
non-trivial academic examples. As expected, a straightforward translation of a
program and its specification in a system of guarded constraints is ineffective,
even on very simple examples. Boolean abstraction is clearly a critical issue for
efficiency. An appropriate Boolean abstraction is an essential support for the
search process.
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Of course, additional work is required before these techniques can be used on
real applications. Further work to try is on the cooperation of CSP and SAT
solvers as well as new filtering techniques.

When the set of Boolean constraints becomes larger, a collaboration be-
tween a SAT solver and CSP solver is probably more appropriate to handle
such problems. We have performed some very preliminary experimentation with
SAT4J(see www.sat4j.org) and Jsolver4Verif. A technical difficulty concerns the
enumeration of all solutions by a SAT solvesr. Indeed, the most efficient SAT
solver are not designated to enumerate all solutions. Moreover, the transfer to
the SAT solver of failure information from CSP solver –which is a key issue– is
far from being obvious.

Specific filtering techniques4 may also drastically improve the refutation of
the generated CSP over finite domains. Likewise, linear solvers or difference
constraint solvers may be used to check the consistency of constraint defining
the semantics of guards.
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