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Abstract. Various encodings have been proposed to convert Constraint
Satisfaction Problems (CSP) into Boolean Satisfiability problems (SAT).
Some of them use a logical variable for each element in each domain:
among these very successful are the direct and the support encodings.

Other methods, such as the log-encoding, use a logarithmic number of
logical variables to encode domains. However, they lack the propagation
power of the direct and support encodings, so many SAT solvers perform
poorly on log-encoded CSPs.

In this paper, we propose a new encoding, called log-support, that
combines the log and support encodings. It has a logarithmic number
of variables, and uses support clauses to improve propagation. We also
extend the encoding using a Gray code. We provide experimental results
on Job-Shop scheduling and randomly-generated problems.

1 Introduction

One methodology for solving Constraint Satisfaction Problems (CSP) relies on
the conversion into boolean satisfiability (SAT) problems. The advantage is the
wide availability of free, efficient, SAT solvers, and the possibility to exploit
advances in SAT solvers without reimplementing them in CP. SAT solvers have
reached significant levels of efficiency, and new solvers are proposed, tested and
compared every year in annual competitions [2,20]. There are both complete SAT
solvers, based on systematic search (typically, variants of the DPLL procedure
[6]), and incomplete solvers, often based on local search.

Very popular encodings [23,18] assign a SAT variable to each element of a
CSP domain, i.e., for each CSP variable i and each value v in its domain, there
is a logical variable xi,v that is true iff i takes value v. The reason for such a
representation is that it lets the SAT solver achieve pruning: if the SAT solver
infers that xi,v is false, then the corresponding CSP variable i cannot take value
v. The most popular CSP-SAT encoding is the direct [23]; DPLL applied to a
SAT encoded CSP mimics the Forward Checking on the original CSP [11,23].
The support encoding [12] has the same representation of domains, but a different
representation of constraints. Unit propagation (used in DPLL solvers) applied
to the support-encoded CSP achieves the same pruning of arc-consistency on
the original CSP. Stronger types of consistency are proven in [3,7].

On the other hand, using a SAT variable for each value in a domain generates
a huge search space. Indeed, it lets the SAT solver perform powerful propagation,
but at a cost: the search space is exponential in the number of SAT variables.

In logarithmic encodings, each domain is represented by �log2 d� SAT variables
[15,14,9,23,18,1]. Such encodings can be tailored for specific constraints, such as
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not equal [10]. In general, however, they lack the ability to remove single values
from domains, which yields less powerful propagation when compared to CSP
solvers. Constraints are usually represented as in the direct encoding.

In this paper, we propose a new encoding, called Log-Support, that uses support
clauses ina logarithmicencoding.Thecodificationofdomainscanbeeithertheusual
binary representation, or based on a Gray code, in order to maximise the propaga-
tion power of support clauses. We apply the new encodings on randomly generated
problems and on benchmark job-shop scheduling problems, and compare the per-
formances of the SAT solvers Chaff [17] and MiniSat [8] on the encoded problems.

2 Preliminaries and Notation

A CSP consists of a set of variables, ranging on domains, and subject to con-
straints. We focus on binary CSPs, where constraints involve at most two vari-
ables. We call n the number of variables, and d the maximum domain cardinality.
The symbols i and j refer to variables, while v and w are domain values.

A SAT problem contains a formula built on a set of variables, which can take
only values true (or 1) and false (or 0). We call them logical variables or SAT
variables to distinguish them from CSP variables. The formula is often required
to be in conjunctive normal form, i.e., a set of clauses, i.e., disjunctions of literals
of the logical variables. A solution to a SAT problem is an assignment of values
true/false to the logical variables, such that all clauses are satisfied.

3 A Survey on Encodings

The Direct encoding. [23] uses a logical variable xi,v for each CSP variable
i and domain value v. For each CSP variable i, a clause (called at-least-one)
imposes that i takes at least one of the values in its domain: xi,1∨xi,2∨ . . .∨xi,d.
At-most-one clauses forbid the variable i to take two values: ∀j1 �= j2 we add
¬xi,j1 ∨ ¬xi,j2 . Constraints are encoded with conflict clauses: for each pair of
inconsistent assignments i← v, j ← w s.t. (v, w) /∈ ci,j , we have ¬xi,v ∨ ¬xj,w .

For example, consider the CSP: A ≤ B, with A and B ranging on {0, 1, 2}.
The direct encoding produces the clauses:

at-least-one a0 ∨ a1 ∨ a2 b0 ∨ b1 ∨ b2

at-most-one ¬a0 ∨ ¬a1 ¬a0 ∨ ¬a2 ¬b0 ∨ ¬b1 ¬b0 ∨ ¬b2

¬a1 ∨ ¬a2 ¬b1 ∨ ¬b2

conflict ¬a1 ∨ ¬b0 ¬a2 ∨ ¬b0 ¬a2 ∨ ¬b1

The Support Encoding. [16,12] represents domains as in the direct encoding,
i.e., we have at-least-one and at-most-one clauses. Constraints are based on the
notion of support. If an assignment i ← v supports the assignments j ← w1,
j ← w2, . . . , j ← wk, we impose that xi,v → xj,w1 ∨ xj,w2 ∨ . . . ∨ xj,wk

i.e., we
impose a support clause: ¬xi,v ∨ xj,w1 ∨ xj,w2 ∨ . . . ∨ xj,wk

.
The constraints of the previous example are represented as the support clauses:

¬a1 ∨ b1 ∨ b2, ¬b0 ∨ a0, ¬a2 ∨ b2 and ¬b1 ∨ a0 ∨ a1.



The Log-Support Encoding of CSP into SAT 817

The Log Encoding. [15,23,10] uses m = �log2 d� logical variables to represent
domains: each of the 2m combinations represents an assignment. For each CSP
variable i we have logical variables xb

i , where xb
i = 1 iff bit b of the value assigned

to i is 1. At-least-one and at-most-one clauses are not necessary; however, in case
the cardinality of domains is not a power of two, we need to exclude the values
in excess, with the so-called prohibited-value clauses [18] (although the number
of these clauses can be reduced [10]). If v is not in the domain of i, and v is rep-
resented with the binary digits 〈vm−1, . . . , v0〉, we impose ¬

(∧m−1
b=0 ¬(vb ⊕ xb

i )
)

where ⊕ means exclusive-or. Intuitively, ¬(s⊕ b) is the literal b if s is true, and
¬b if s is false. We obtain the prohibited-value clause

∨m−1
b=0 vb ⊕ xb

i .
Constraints can be encoded with conflict clauses. If two assignments i ← v,

j ← w are in conflict, and vb and wb are the binary representations of v and w,
we impose a clause of length 2m:

(∨m−1
b=0 vb ⊕ xb

i

)
∨

(∨m−1
b=0 wb ⊕ xb

j

)
.

In the running example, we will have:

prohibited-value ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0 ¬a1 ∨ a0 ∨ b1 ∨ b0

¬a1 ∨ a0 ∨ b1 ∨ ¬b0

4 The Log-Support Encoding

In the log-encoding, conflict clauses consist of 2m literals; unluckily, the length
of clauses typically influences negatively the performance of a SAT solver.

The DPLL applied to a support-encoded CSP performs a propagation equiva-
lent to arc-consistency on the original CSP [12]. One could think of applying sup-
port clauses to log encodings; an intuitive formulation is the following. If an as-
signment i← v supports the assignments j ← w1, . . . , j ← wk, we could impose,
as in the support encoding, that v → w1 ∨ . . . ∨ wk, and then encode in binary
form the values v and wi. However, the binary form of a value is a conjunction, so
the formula becomes

(∧
b ¬(vb ⊕ xb

i )
)→ (∧

b ¬(wb
1 ⊕ xb

j)
)∨. . .∨(∧

b ¬(wb
k ⊕ xb

j)
)

which, in conjunctive normal form, generates an exponential number of clauses1.
We convert in clausal form only implications that have exactly one literal in

the conclusion. Let us consider, as a first case, only the most significant bit.
In our running example, the assignment A ← 2 supports only B ← 2. We can
say that, whenever A takes value 2, the most significant bit of B must be 1:
a1 ∧ ¬a0 → b1. We add the support clause ¬a1 ∨ a0 ∨ b1, that is enough to rule
out two conflicting assignments:

prohibited-values ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

support ¬a1 ∨ a0 ∨ b1

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0

Note that this transformation is not always possible: we can substitute some
of the conflict clauses with one support clause only if all the binary form of
supported values agrees on the most significant bit.
1 One could reduce the number of clauses by introducing new variables, as in [3].
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Each support clause has length m + 1 and removes d/2 conflict clauses (of
length 2m). This is a significant reduction of the number of conflict clauses when
the assignments that satisfy the constraint are all grouped in the same half of
the domain. This happens in many significant constraints (e.g, >, ≤, =).

To sum-up, this encoding has the same number (n�log2 d�) of logical variables
required by the log-encoding, with a reduced number of conflict clauses (of length
2�log2 d�), which are substituted by support clauses (of length �log2 d�+ 1).

Improvements. The same scheme can be applied to the other direction (from
B to A), and to other bits (not just to the most significant one). In the running
example, we can add the support clauses b1∨b0∨¬a0, b1∨¬b0∨a1, b1∨¬b0∨¬a1

and, in this case, remove all the conflict clauses.
Suppose that a value v in the domain of variable i conflicts with two consecu-

tive values w and w+1 in the domain of j. Suppose that the binary representation
of the numbers w and w + 1 differs only for the least significant bit b0. In this
case, we can represent both the values w and w + 1 using only the m− 1 most
significant bits, so we can impose one single conflict clause of length 2m − 1.
This simple optimization can be considered as applying binary resolution [7] to
the two conflict clauses, and can be extended to sets of consecutive conflicting
values whose cardinality is a power of two.

4.1 Gray Code

The Gray code [13] uses a logarithmic number of bits, as the binary code; how-
ever, any two consecutive numbers differ only for one bit. So, by encoding the
values in the CSP domains with a Gray code, all intervals of size 2 are repre-
sentable, while in the classical binary code only half of them are representable.
For instance, suppose that a CSP variable A has a domain represented in 4-bit
binary code, and that during DPLL search its state is 001U, i.e., the first three
bits have been assigned, while the last has not been assigned yet. We can inter-
pret this situation as the current domain of A being {2, 3}. However, there is no
combination that can represent the domain {3, 4}. In the 4-bit Gray code, {2, 3}
is represented by configuration 001U and {3, 4} by 0U10.

With a Gray representation, the running example is encoded as follows:

prohibited-values ¬a1 ∨ a0 ¬b1 ∨ b0

support ¬a1 ∨ a0 ∨ b0 b1 ∨ b0 ∨ ¬a0

¬a1 ∨ ¬a0 ∨ b0 b1 ∨ b0 ∨ ¬a1

¬a1 ∨ ¬a0 ∨ b1 b1 ∨ ¬b0 ∨ ¬a1

By using a Gray code, the number of support clauses has increased from 4 to 6
(50%), while (in this case) no conflict clauses are necessary. The intuition is that
a higher number of support clauses should allow for more powerful propagation,
but in some cases it could also increase the size of the SAT problem. However, each
support clause has one CSP value in the antecedent and one of the bits in the con-
clusion, so for each constraint there are at most 2d�log2 d� support clauses. The
number of conflict clauses in the log-encoding cannot be higher than the number
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of pairs of elements in a domain, so d2. Recall also that conflict clauses are longer
than support clauses, so we can estimate the size of the (Gray) Log-Support en-
coding to be smaller than that of the log-encoding, when d is large.

5 Experimental Results

5.1 Randomly Generated Problems

The first set of experiments is based on randomly generated CSPs. A random
CSP is often generated given four parameters [21]: the number n of variables,
the size d of the domains, the probability p that there is a constraint on a given
pair of variables, and the conditional probability q that a pair of assignments is
consistent, given that there is a constraint linking the two variables.

In order to exploit the compact representation of log-encodings, we focussed
on CSPs with a high number of domain values. In order to keep the running time
within reasonable bounds, we had to keep small the number of CSP variables.

The Log-Support encoding was developed for constraints in which the set
of satisfying assignments is connected, and we can easily foresee that a Gray
code will have no impact on randomly generated constraint matrices. Thus, we
used a different generation scheme, in which satisfying assignments have a high
probability to be grouped in clusters. Note that also real-life constraints typically
have their satisfying assignments grouped together, and not completely sparse.

For each constraint (selected with independent probability p) on variables A
and B, we randomly selected a pair of values v and w respectively from the
domains of A and B. The pair (v, w) works as an “attractor”: the probability
that a constraint is satisfied will be higher near (v, w) and smaller far from that
point. Precisely, the probability that a pair of assignments (a, b) is satisfied is
q = 1−α

√
(a− v)2 + (b− w)2, where α is a coefficient that normalises the value

of q in the interval 0..1. A posteriori, we grouped the experiments with a same
frequency of satisfied assignments, and plotted them in the graph of Figure 1.

These experiments were performed running zChaff 2004.5.13 [17] and MiniSat
1.14 [8] on a Pentium M715 processor 1.5GHz, with 512MB RAM. A memory
limit was set at 150MB, and a timeout at 1000s. Each point is the geometric
mean of at least 25 experiments, where the conditions of timeout or out of
memory are represented by 1000s. Timing results include both the time spent
for the encoding and for solving the problem; however, the encoding time was
always negligible. Note that to perform the experiments we did not generate a
DIMACS file, because the time for loading the DIMACS could have been large
(see also the discussion in the next section).

From the graphs, we see that the log encoding is the slowest when the con-
straints are tight (q is small). This could be due to the fact that in the log-
encoding we have limited propagation of constraints, which makes hard proving
unsatisfiability. On the other hand, when the constraints are loose (q near 80-
90%), the log encoding performs better than the direct and support encodings.

The support encoding is often the best option for MiniSat, while Gray was the
best in the zChaff experiments. Moreover, the Log-Support/Gray encodings are
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Fig. 1. Experiments on randomly-generated problems (n = 7, d = 512, p = 30 and q
from 10 to 100). Times in ms. Left: Chaff, Right: MiniSat.

often competitive. For high values of q, the Log-Support/Gray encodings keep the
same behaviour of the log-encoding. This is reasonable, because when q is high,
few support clauses are inserted. On the other hand, when q is small, support
clauses have a strong influence, and allow the SAT solver to detect infeasibility
orders of magnitude faster than in the log-encoding. Both the Log-Support and
the Gray encodings are typically faster than the direct encoding.

Finally, the Gray encoding is slightly faster than the Log-Support, probably
due to the fact that more support clauses are present.

5.2 Job-Shop Scheduling Problems

We applied the encodings to the set of Job-Shop Scheduling Problems taken from
the CSP competition 2006 [22] (and originally studied in [19]). These problems
involve 50 CSP variables with variable domain sizes, from 114 to 159.

The results are in Figure 2: the plots show the number of problems that were
solvable within a time limit given in abscissa (the higher the graph, the better).

Fig. 2. Experiments on Job-Shop scheduling problems. Left: Chaff, right: MiniSAT.



The Log-Support Encoding of CSP into SAT 821

The log encoding performed worst, and both Chaff and MiniSat were able to
solve only a limited subset of the problems within 500s.

In the experiments performed with Chaff, the support encoding was able to
solve some of the problems very quickly; however, given more time, the Log-
Support was typically the best choice (it was able to solve more problems). In
the experiments with MiniSat, the best encoding was the direct, possibly because
of the special handling of binary clauses implemented in MiniSat. Notice that
for both solvers the support encoding performed worse than the Log-Support
and the Gray encodings. In these instances, the Gray encoding did not provide
improvements with respect to the Log-Support.

Chaff required on average 65MB of RAM to solve a direct-encoded CSP, 56MB
to solve a support-encoded CSP, and only 19MB to solve a problem encoded with
Log-Support or Gray. The size of the generated SAT instance is also interesting.
On average, a log-encoded CSP used 107 literals, from which we can estimate a
DIMACS file of about 55MB. The Log-Support and Grey encodings needed on
average 1.7 · 106 literals, with a DIMACS of about 9.5MB. The direct encoding
used 2.3 · 106 literals (14MB), and the support 7 · 106 (45MB).

We can conclude that the Log-Support and Gray encodings are significant
improvements with respect to the log encoding, both in terms of solution time
and size of the generated SAT problem. The direct encoding is often faster than
the Log-Support, but it requires more memory for Chaff to solve them, and the
DIMACS file is much larger. Thus the Log-Support and Gray encodings could
be interesting solution methods in cases with limited memory.

6 Conclusions and Future Work

We proposed two new encodings, called Log-Support, and Gray, for mapping CSPs
into SAT. The Log-Support and Gray encodings use a logarithmic number of SAT
variables for representing CSP domains, as in the well-known log-encoding. Ex-
periments show that the new encodings outperform the traditional log-encoding,
and is competitive with the direct and support encodings. Moreover, the size of
the encoded SAT is typically a fraction of the size required by other encodings.

In future work, we plan to define a platform for defining CSPs, in the line of
[5,4]. Such architecture could be populated with a variety of the many encodings
proposed in recent years [1], and with the Log-Support/Gray encodings.

Other optimisations could be performed on the log encodings. We cite the bi-
nary encoding [9], that uses a logarithmic number of logical variables to encode
domains, and it avoids imposing prohibited value clauses by encoding a domain
value with a variable number of SAT variables. In future work, we plan to experi-
ment with a variation of the Log-Support that exploits the same idea. Finally, we
plan to experiment the various encodings with other solvers, in particular, local-
search based.

Acknowledgements. This work has been partially supported by the MIUR
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