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Abstract. When performing interval propagation on integer variables
with a large range, slow-convergence phenomena are often observed: it
becomes difficult to reach the fixpoint of the propagation. This problem
is practically important, as it hinders the use of propagation techniques
for problems with large numerical ranges, and notably problems arising
in program verification. A number of attempts to cope with this issue
have been investigated, yet all of the proposed techniques only guarantee
a fast convergence on specific instances. An important question is there-
fore whether slow convergence is intrinsic to propagation methods, or
whether an improved propagation algorithm may exist that would avoid
this problem. This paper proposes the first analysis of the slow con-
vergence problem under the light of complexity results. It answers the
question, by a negative result: if we allow propagators that are general
enough, computing the fixpoint of constraint propagation is shown to
be intractable. Slow convergence is therefore unavoidable unless P=NP.
The result holds for the propagators of a basic class of constraints.

1 Motivation and Results of the Paper

Problems with Large Discrete Ranges. Constraint propagation is probably
the most developed component of CP (Constraint Programming) solvers, and
the propagation of many constraints has been intensely studied. In this paper we
consider variables ranging over a discrete domain and focus on interval propaga-
tion techniques, which are often used when dealing with numerical constraints.
(We assume that the reader is familiar with interval propagation, otherwise see
[2,3,4,5].) The question we address, put quickly, is whether interval propagation
is effective against variables with a large range. Note that a number of applica-
tions require variables with large ranges: the best example is perhaps software
verification, an area that heavily relies on constraint solving, but in which CP
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techniques have so far failed to have a significant impact. In verification prob-
lems, the ranges of numerical variables are typically extremely large, because
the aim is typically one of the following:

– To verify a property for all integers. Typically, if the constraints are simple
enough, so-called “small-domain” properties are used to bring the problem
down to finite bounds. These properties guarantee that a solution can be
found within some finite bounds, iff the problem is satisfiable. These bounds
are however typically quite large: for instance for purely linear equality con-
straints, [13] proves that when we have m constraints over n variables, the
variables can be restricted to the range [0, n(ma)2m+1], where a is the max-
imum of the absolute values of the coefficients of the linear constraints. If
we have only 10 variables, 10 equalities and coefficients within [−10, 10], this
bound already goes as high as 10 ·10021 = 1043. These bounds can be refined
[15] but we cannot, in general, avoid the use of large numbers represented in
infinite-precision.

– To reflect machine encoding of numbers. In this case we typically compute
within bounds of about 232 or 264. Extra care typically has to be taken, so
that overflows are correctly handled (which requires “modular arithmetics”).
Here the domains are smaller, but nonetheless large enough for the slow
propagation problem to become a serious issue.

The Problem of Slow Convergence. When performing interval propagation
on numerical variables with a large range, slow-convergence phenomena have
been reported by many authors, e.g., [8,11]: propagation tends to go on for a
prohibitively long number of steps. The problem is easily understood by consid-
ering simple examples:

– Consider the problem X1 < X2 ∧ X2 < X1, with X1 and X2 ranging over
[0, 230]. Bound propagation alone detects the inconsistency. On this example,
standard propagation algorithms discover that X1 ∈ [1, 230] because 0 ≤
X2 < X1, then X2 ∈ [2, 230] because 1 ≤ X1 < X2, and propagation goes
ahead narrowing a lower or upper bound by one unit at every step. We
ultimately obtain empty intervals, but this requires about 230 operations.

– As mentioned in [11], the problem sometimes even occurs when we have a
single constraint. For instance if we take the constraint 2X1 + 2X2 = 1 with
X1 and X2 ranging over [−230, 230], we have a similar problem as before:
propagation slowly narrows the bounds of the intervals by a few units until
reaching empty intervals.

To solve these two examples, propagation will typically take several seconds.
The problem becomes much more severe whenever similar constraints are not
stated by themselves, but together with other constraints. In this case the run-
time can become arbitrarily high, as propagation may regularly reconsider many
propagators between each reduction of the bounds of X1 and X2.

It would be a mistake to consider slow convergence as a mere curiosity arising
only in annoying, yet artificial examples. Our experience is that the problem is
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unavoidable when solving problems in program verification, for instance prob-
lems from Satisfiability Modulo Theories1. In examples arising from our own
experiments in software verification, reaching the fixpoint of one propagation
step alone takes seconds or minutes on many instances, and up to 37 hours (in
finite precision!) in some of the longer examples where we waited until comple-
tion. Note that propagation is supposed to be the fast part of constraint solving:
it is done at every node of the branch & prune process, and we are supposed to
be exploring many nodes per second.

Attempted Solutions. Several solutions to the slow convergence problem have
been investigated in the literature. It was, for instance, suggested to:

– Detect some cases of slow convergence and find ways to prevent them. One
way would be to use symbolic techniques to get rid of constraints of the form
X1 < X2 ∧X2 < X1 and similar “cycles of inequalities”. A related approach
was suggested (in the continuous of real-valued intervals) in [12]. Unfortu-
nately, these methods only prevent particular cases of slow convergence.

– Reinforce interval propagation by other reasoning techniques. A noticeable re-
cent work on the issue is [11], which use congruence computations in addition
to interval propagation. Our experience, however, is that congruence reason-
ing hardly ever speeds-up propagation in practice, and that it is powerless
against very simple cases of slow convergence, e.g., X1 < X2 ∧ X2 < X1.

– Find a new algorithm that would avoid the pitfalls of the standard interval
propagation algorithm, and that would provably converge quickly. So far
no such algorithm has been proposed. (An interesting related work is [10]
which uses extrapolation methods to “guess” the possible fixpoint; this is an
exciting method but it offers, by definition, no proven guarantee.)

– Interrupt propagation after a given number of steps, for instance prevent the
propagation of variables whose width have been reduced by less than 5%.
This is a pragmatic solution that it easy to implement, its drawback is that
it leaves a search space partially reduced, relying on more branching.

– Do something else than interval propagation. For instance in [8], the authors
note the slow convergence phenomenon and introduce a method for dealing
with certain linear constraints between 2 variables; another significant ex-
ample is that state-of-the-art methods in satisfiability modulo theories use
bound reasoning methods that are not based on interval propagation, but
on linear relaxations [6].

Our Results. The approaches mentioned previously do not solve the slow con-
vergence problem: no approach allows to compute the fixpoint of interval prop-
agation while being guaranteed to avoid slow convergence. Can this problem
be circumvented, or is there an unsuspected, intrinsic reason why slow conver-
gence is unavoidable? We believe this is an important question for the field that,
surprisingly, has not been studied in the literature on CP theory.

1 www.smt-lib.org
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The authors of [8] (introduction) are perfectly right in their analyzis of slow
convergence: it is due to the fact that the number of steps is proportional to the
width of the intervals (the width of an interval is here defined as the number
of integer values in the interval). The question is whether we can reduce this
to a number of steps that grows significantly less than linearly in the width.
This can be stated precisely by saying that the complexity should be polynomial
in the number of bits of the integer values encoded in the problem i.e., poly-
logarithmic in these integer values. In contrast, existing propagation algorithms
are easily seen to be polynomial in these integer values, i.e., exponential in the
number of bits of their encodings. Following classical terminology we call an
algorithm of the first type strongly polynomial and an algorithm of the second
type pseudo-polynomial (formal definitions are to be found in Section 2). The
question is therefore whether there exists a strongly polynomial algorithm for
interval propagation. We answer this question by the negative, under the P �=
NP assumption.

Our results make assumptions on the type of constraints that are propagated.
We first state the result in the general case, where arbitrary user-defined ”interval
propagators” can be defined (Prop. 1 and 2). We next show in Prop. 3 that the
result still holds even if we restrict ourselves to a simple class of propagators,
namely linear constraints plus one simple non-linear operation (squaring). We
leave open the question whether the intractability result still holds when we deal
with purely linear constraints. However, it is clear that CP was never meant to
deal solely with linear constraints and our results therefore show what we believe
is an intrinsic problem of interval propagation methods.

The next section gives more formal definitions of interval propagation which,
following a number of authors [1], we see as a form of fixpoint computation;
Section 3 will then list our main results. The missing proofs, as well as a more
detailed presentation, can be found in the unabridged version of this paper.

2 Interval Propagation and Fixpoint Computations
Closure Operators. Interval propagation is equivalent to the problem of com-
puting certain fixpoints of functions on Cartesian products of intervals. A Carte-
sian product of intervals will be called box, for short:

Definition 1 (Box). An n-dimensional box is a tuple B = 〈B1 · · ·Bn〉 where
each Bi is an interval. Inclusion over boxes is defined as follows: B ⊆ B′ iff
B1 ⊆ B′

1 ∧ · · · ∧ Bn ⊆ B′
n.

The functions we consider must have the following properties:

Definition 2 (Closure operator). We call closure operator a function f
which, given a box B, returns a box f(B), with the following properties (for
all B, B′):

1. f is “narrowing”: f(B) ⊆ B;
2. f is monotonic: if B ⊆ B′ then we have f(B) ⊆ f(B′);
3. f is idempotent: f(f(B)) = B.
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Computational Problems related to Fixpoints. A fixpoint of a closure
operator is a box that remains unchanged after application of the operator. We
are interested in common fixpoints, defined as follows:

Definition 3 (Common Fixpoint of a set of closure operators). Given a
set of closure operators {f1 · · · fm}, a common fixpoint of the operators is a box
B satisfying f1(B) = B ∧ · · · ∧ fm(B) = B.

We are given an initial n-dimensional box B, and a set of closure operators
{f1 · · · fm}. We consider the following computational problems (the first two
are ”function problems” in which we aim at computing a result, the third is a
”decision problem” in which we just aim at determining whether a certain result
exists):

Problem 1 (Computation of Common Interval Fixpoint). Compute a
box B′ such that (1) B′ ⊆ B and (2) B′ is non-empty and (3) B′ is a common
fixpoint of f1, . . . , fm. (a special return value is used to signal the case where no
non-empty fixpoint exists.)

Problem 2 (Computation of the Greatest Common Interval Fixpoint).
Compute a box B′ such that (1) B′ ⊆ B; (2) B′ is a common fixpoint of
f1, . . . , fm and (3) no box B′′ such that B′ ⊆ B′′ ⊆ B is a common fixpoint
of f1, . . . , fm. (An empty box should be returned if no other such fixpoint exists.)

Problem 3 (Existence of Common Interval Fixpoint). Determinewhether
there exists a non-empty box B′ ⊆ B which is a common fixpoint of f1, . . . , fm.

Greatest Fixpoint Computation by ”Chaotic Iteration”. To compute a
greatest fixpoint, the standard approach is to run what [1] refers to as a ”chaotic
iteration” algorithm which, in its simplest and least optimized form, can be
presented as follows:

Algorithm 1. Standard Algorithm for Greatest Fixpoint Computation
while there exists fi such that fi(B) �= B do

Choose one such fi

B ← fi(B)

The functions f1 . . . fm are applied to the box in turn, in any order that is com-
putationally convenient, until we reach a state where nothing changes. A basic
result, which directly follows from the Knaster-Tarski theorem [16], is that this
algorithm, although non-deterministic, always converges to the greatest common
fixpoint of f1 . . . fm. (The uniqueness of this fixpoint shows in particular, that
the box satisfying the requirements of Problem 2 is unique, and allows us to
refer to it as the (unique) greatest common interval fixpoint.)



An Analysis of Slow Convergence in Interval Propagation 795

Strongly Polynomial vs. Pseudo-Polynomial Algorithms. Denoting by
n the dimension of the considered box (i.e., number of variables), m the number
of operators whose fixpoint we compute, and w the maximum of the widths, we
use the following definitions, which follow classical terminology:

– A pseudo-polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n, m, w), for some polynomial P ;

– A strongly polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n, m, log w), for some polynomial P .

It is straightforward to check that the classical “chaotic iteration” algorithm
for interval propagation, as well as all the improved versions derived from it, are
only pseudo-polynomial, and can therefore be subject to slow convergence.

3 Intractability of Interval Propagation

In this section we present our main results, which show that, under some well-
defined assumptions concerning the operators, computing the fixpoint of these
operators cannot be achieved in strongly polynomial time.

General Case. We first consider the “general case”, in which the closure oper-
ators are defined as arbitrary functions. This captures, for instance, the ability
of systems like Constraint Handling Rules (CHR) [7], in which the propagators
can be user-defined.

We assume that the propagators f1 . . . fm are defined as programs (written
in any appropriate language, like CHR), which have the additional guarantee to
run in time polynomial in the length of the problem. This is because we want to
show that the problem is intractable even when restricted to simple propagators
(a hardness result would hardly be a surprise in the case where the execution
of a propagator is itself intractable.) More precisely, the input of the fixpoint
representation problem is as follows:

Input Representation 1. The input is given as a box B = 〈B1 . . . Bn〉 together
with a set of closure operators {f1 . . . fm} which are defined as programs whose
runtime is guaranteed to be worst-case polynomial in the total input size.

Proposition 1. If the input is encoded using Representation 1, the problem of
existence of a common interval fixpoint (Problem 3) is NP-complete. 2

2 The hardness part of this result can alternatively be proven as a direct consequence
of Prop. 3. We prove Prop. 1 separately for 3 reasons: it states the membership in
NP under the more general assumptions (the closure operators need be polytime
computable); it states the NP-hardness under the least restrictive assumptions (one-
dimensional case, two operators); Prop. 2 is best presented by first presenting the
proof of Prop. 1.
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Note that the result even holds in dimension one and for only two operators. In-
deed, if we consider non-idempotent narrowing operators instead of closure oper-
ators, it is easy to show that computing the fixpoint of one single operator in one
dimension is NP-complete. One can show, by straightforward modifications of the
proof, that the corresponding function problem, computing an arbitrary fixpoint
(Problem 1), is FNP-complete3. Interestingly, propagation algorithms do not com-
pute an arbitrary fixpoint, but the largest one (Problem 2). The problem is there-
fore an optimization problem and, in fact, its complexity is higher than FNP:

Proposition 2. If the input is encoded using Representation 1, the computation
of the greatest common fixpoint (Problem 2) is OptP-complete.

OptP is a class introduced in [9] to characterize the complexity of optimization
problems (many optimization problems are FNP-hard but not in FNP because
the optimality of the result cannot be checked in polynomial time).

Basic Numerical constraints. We now refine our analysis to the case where
we have “basic propagators”: what if the user does not have the possibility to
write her own propagators, but can only use a set of predefined propagators for
basic constraints? For the sake of concreteness we now focus on a simple set of
propagators, that we now define precisely.

Variables are numbered from 1 to n; the kth variable is denoted Xk and the
interval that is associated with this variable is denoted [lk, rk]. The notation
“[lk, rk] ← rhs” denotes an operator f which, given a box B, returns a box f(B)
in which the kth interval has been modified as specified by the right-hand side
(rhs), and all other intervals are unchanged.

We consider the following operators for a constraint Xi < Xj :

[li, ri] ← [li, min(ri, rj − 1)]
[lj , rj ] ← [max(lj , li + 1), rj ]

(1)

(For readers who would have trouble with the notation: the upper bound of the
ith interval, the one associated with Xi, is updated so that it is at most rj − 1,
and the lower bound of the jth interval is updated so that it is at least lj + 1.)

We consider the following operators for a constraint Xi = X2
j :

[li, ri] ← [max(li, l2j ), min(ri, r
2
j )]

[lj , rj ] ← [max(lj , 

√

li�), min(rj , 
√

ri�)]
(2)

We consider the following operators for a constraint aXi + bXj = c, where a,
b and c are non-negative integer constants:

[li, ri] ← [max(li, 
 c−b·rj

a �), min(ri,  c−b·lj
a �)]

[lj, rj ] ← [max(lj , 
 c−a·ri

b �), min(rj ,  c−a·li
b �)]

(3)

3 FNP, or “functional” NP, is closely related to NP, the difference being that instead of
being asked whether a solution exists (say, to a SAT instance), we are asked to produce
a solution [14].
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Input Representation 2. The problem is given as a box B = 〈B1 . . . Bn〉 to-
gether with a set of constraints {c1 . . . cm} which include the following 3 forms:

1. Xj < Xj, for some i, j ∈ 1..n;
2. Xi = X2

j , for some i, j ∈ 1..n; or
3. aXi + bXj = c, for some i, j ∈ 1..n and some constants a, b and c.

Proposition 3. If the input is encoded using Representation 2, the problem of
existence of a common interval fixpoint (Section 2, Problem 3) is NP-complete.
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