
Solving the Salinity Control Problem in
a Potable Water System�

Chiu Wo Choi and Jimmy H.M. Lee

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{cwchoi,jlee}@cse.cuhk.edu.hk

Abstract. Salinity is the relative concentration of salts in water. In a city of south-
ern China, the local water supply company pumps water from a nearby river for
potable use. During the winter dry season, the intrusion of sea water raises the
salinity of the river to a high level and affects approximately the daily life of
450,000 residents of the city. This paper reports the application of constraint pro-
gramming (CP) to optimize the logistical operations of the raw water system so
as to satisfy the daily water consumption requirement of the city and to keep the
potable salinity below a desirable level for as many days as possible. CP is the key
to the success of the project for its separation of concerns and powerful constraint
language that allows for rapid construction of a functional prototype and produc-
tion system. Flexibility and adaptiveness allow us to deal with our clients’ many
changes in the requirements. Deriving good variable and value ordering heuristics,
and generating useful implied constraints, we demonstrate that branch-and-bound
search with constraint propagation can cope with an optimization problem of large
size and great difficulty.

1 Introduction

Salinity is the relative concentration of salts in water measured in parts per million (ppm).
All types of water, except distilled water, contain different concentration of salts. The
salinity of very clean water is about 50 ppm, while sea-water is about 35,000 ppm.

In a city of southern China, the local water supply company pumps water into a raw
water system from a nearby river for supplying water to the city. The pumped water is
to be stored and mixed with water in a number of reservoirs in the raw water system.
The water is also treated before supplying to the general public for daily consumption.

The geographic location of the pumping station is close to the river estuary. During
the winter dry season, the water level of the river is low due to lack of rainfall. Tidal
flows and other weather conditions lead to the intrusion of sea-water into the river. As
a result, the salinity of the water pumped from the river could drastically rise to such
levels as 2,500 ppm while the desirable salinity level of potable water is below 250 ppm.
During the salinity period, the daily life of some 450,000 residents is affected.

� We thank the anonymous referees for their insightful comments. The work described in this
paper was substantially supported by a grant (Project no. CUHK4219/04E) from the Research
Grants Council of the Hong Kong SAR.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 33–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 C.W. Choi and J.H.M. Lee

There are a number of ways to better prepare for the crisis. On the engineering side,
the water company can improve the monitoring of the salinity levels and the pumping
system. Reservoirs can be topped up with fresh water before the dry season begins.
Better leak detection at the water pipes and the reservoirs can reduce water loss.

Before attempting on larger scale engineering work, such as seawater desalination,
the water company decided to tackle the salinity issue as an optimization problem. The
idea is to carefully plan when and how much water to pump from the river using supplied
prediction information of the salinity profile at the water source, and how much water
should be transferred among the reservoirs in the raw water system. The aim is to satisfy
the daily water consumption while optimizing the number of days in which the salinity
of the potable water is below a given desirable level.

In the beginning of this project, the water supply company required us to handle at
most 90 days for the duration of the salinity period. Later, upon receiving satisfactory
preliminary results, the water supply company requested us to extend the duration to at
most 180 days, the problem model of which consists of about 4,500 variables and 9,000
constraints. The search space of such model is about (3, 612, 000)180. In addition to the
shear size, the problem consists of physical conditions expressible as a mixture of linear
and non-linear constraints, as well as ad hoc conditions which can only be modeled as
a table constraint. In view of the stringent requirements and tight production schedule,
we adopt constraint programming (CP) as the key technology of the project, following
the success of the CLOCWiSe project [1].

The rest of this paper is organized as follows. Section 2 discusses the current practice
and why constraint programming (CP) is used in this project. Section 3 details the
application domain. Operations of the raw water system, as well as the objective of the
problem, are described in length. Section 4 describes how CP is applied to model the
problem. Section 5 describes the improvements to increase search efficiency, followed
by a discussion of some testing results in Section 6. In Section 7, we discuss the added
values of CP and other possible approaches that have been tried to solve the problem.
We conclude the paper in Section 8.

2 Current Practice Versus Constraint Programming

The water supply company has developed a spreadsheet to optimize the operations of
water pumping and transfer during the salinity period. The spreadsheet approach is prim-
itive and uses manual trial-and-error method to perform optimization. The spreadsheet
consists of macros that encode equations on the law of conservation of matters. Users
of the spreadsheet have to input the given data and guess some values for the number
of pumping hours and amount of water to be transferred between reservoirs. The macro
will then compute automatically the potable salinity using the given inputs. Users have
to check whether the resulting potable salinity is satisfactory; if not, the guessed values
must be manually tuned repeatedly until a satisfactory result is obtained.

The major weakness of such manual method is that it is tedious and time consuming.
The problem on hand is usually too large and too complex for humans to perform such
manual optimization process. Users of the spreadsheet often obtain solutions that violate
some constraints of the problem, since some constraints stated above cannot be enforced

Solving the Salinity Control Problem in a Potable Water System 35

automatically using a spreadsheet. Field workers in the pumping stations and reservoirs
often lack the knowledge of operating a spreadsheet.

The water supply company would like to have an automated system with a more
realistic model and a simple interface so as to generate solutions which satisfy all the
constraints of the problem. Moreover, the system should be flexible enough to cater for
changes in the topology of the water system and additional constraints.

We propose the application of CP to develop an automated optimization engine for
solving the salinity problem. A key advantage of CP is the separation of modeling and
solving. By modeling, we mean the process of determining the variables, the associated
domains of the variable, the constraints and the objective function. The availability of
a rich constraint language allows for a constraint model relatively close to the original
problem statement, making the model easy to verify and adaptable to changes. Indeed,
during the development of the system, our client changed the constraints and require-
ments a good many times. CP allowed us to change the model quickly and meet the tight
development schedule.

Although efficient commercial constraint solvers are available, out-of-the-box exe-
cution strategies usually fail to handle even small testing instances of the problem. We
make two improvements to speed up solution search and quality of solutions. First, by
studying the problem structure and insights of human experts in depth, we devise good
search heuristics for both variables and values that allow us to find solutions faster. We
also program an opportunistic iterative improvement strategy. Second, we give a general
theorem that allows us to derive useful implied constraints from a set of linear equalities.
Adding these implied constraints into the model can increase the amount of constraint
propagation, which in turns reduces the search space substantially.

Our application exemplifies the advantage of separation of concerns offered by CP.
After the problem model was constructed, we never had to touch the model again except
when users requested changes in the requirements. The focus of the development is thus
on improving search and looking for better heuristics.

3 Application Domain Description

The entire water supply system consists of the raw water system, water treatment plant
and potable water distribution network. In the raw water system, water is pumped from
the river and carried to the treatment plant. Surplus water are stored in reservoirs for
emergency and salinity control during dry season. In order to ensure that the water
supplied to the city is safe for drinking, raw water is treated in the treatment plant
before being carried by the distribution network to general households and commercial
establishments. It is important to note that the water treatment plant is incapable of
removing salt from the raw water since salt is highly soluble and tends to stay dissolved.
In this project, we focus on optimizing the logistical operations of the raw water system
to control the salinity of potable water.

3.1 The Raw Water System

Figure 1 shows the topology of the water supply system. The raw water system consists
of 3 pumping stations (X , Y and Z) denoted by black dots, 4 reservoirs (A, B, C and

36 C.W. Choi and J.H.M. Lee

A B

C
Y ZX

E

D

To Distribution
Network

Fig. 1. The Raw Water System Model

D) denoted by cylinders and a water treatment plant (E) denoted by a rectangle. Arrows
denote connecting pipes and the direction of water flow. Raw water (from the river) is
pumped at pumping station X and carried all the way to reservoir C for storage. Surplus
water is delivered, via pumping stations Y and Z , to and stored in reservoirs A and B
respectively for future use. Water in reservoirs A and B can be transferred and mixed
with water in reservoir C for regulation of salinity of water during the dry seasons. Water
is carried from reservoir C to reservoir D for storage and to the water treatment plant E
which is connected directly to the distribution network. In the water treatment plant E,
water from reservoir C can be mixed with water from reservoir D. Water is treated in the
water treatment plant E before being supplied to the general public for consumption.

There are several (reasonable) assumptions made by the water supply company for
the raw water system to simplify the computational model. The unit of measurement
for volume is cubic meter (m3) and the unit of measurement for operation of pumps
is in hours. Salinity concentration in each reservoir is homogeneous and instantaneous
mixing occurs when water is poured in each reservoir. There is little rainfall during the dry
seasons and the river is the only source of raw water. The computational model operates
on a day-by-day basis, so that the predicted salinity data represent daily averages. Since
salinity of the raw water varies during a single day, operators at the pumping station
would use their experience to decide the best time during the day to pump water with
lower salinity.

3.2 Physical and Human Constraints

There are three types of constraints concerning the raw water system. The first type of
constraints is about the law of conservation of matters (i.e. water and salts). The general
form for the law of conservation of water of a reservoir is

volume today = volume yesterday − volume flow-out + volume flow-in. (1)

Analogously, the general form for the law of conservation of salts of a reservoir is

(salinity today × volume today) = (salinity yesterday × volume yesterday) −
(salinity flow-out × volume flow-out) + (salinity flow-in × volume flow-in) (2)

The second type of constraints is about physical limitation on the capacity of pumps,
reservoirs and pipes. Each pumping station has a maximum number of usable pumps and
each pump has a given capacity measured in cubic meters per hour. Each reservoir has a

Solving the Salinity Control Problem in a Potable Water System 37

Table 1. Constraint on Water Flowing Out of Reservoir C

Maximum Flow-out
Volume of Reservoir C (m3) Capacity of Reservoir C (m3/day)

2,345,650 – 2,454,590 211,395
...

...
1,200,000 – 1,256,250 160,445

minimum and maximum capacity. It is impossible to pump water out of a reservoir when
it is at the minimum capacity, and overflowing a reservoir at its maximum capacity for
dilution is forbidden. Each reservoir also has a volume threshold which reserves certain
amount of water above the minimum capacity for emergency use. The volume threshold
for each reservoir is different from one day to another, and the volume threshold overrides
the minimum capacity. The pipes, which connect reservoirs A and B to reservoir C and
the pipe which connects reservoir D to the treatment plant E, have a maximum capacity
measured in cubic meters per day.

Flowing from reservoir C located at a high topographical level, water is carried by
gravity to reservoir D and the water treatment plant E. Therefore, the maximum amount
of water that can flow out of reservoir C depends on the water pressure which de-
creases as the water level of reservoir C goes down. Due to the complex nature of the
physics behind the water transfer mechanism, the constraint is given in the form of a ta-
ble constructed empirically using measurement and experimentation. The water supply
company provides a table (see Table 1) to specify such constraint.

The third type of constraints is about the requirements of the general public on water
consumption. It is mandatory to have enough water supply to the general public ev-
eryday. There is a maximum level of potable salinity to ensure that water is safe for
drinking. Between any two consecutive days, the salinity level of potable water should
not increase too drastically; otherwise, the general public will feel a sudden increase
in saltiness of drinking water and that will raise public discontent. There are no cor-
responding constraints to restrict sudden decreases, since drop in salinity is generally
welcome by the public.

3.3 Problem Statement

To control the salinity of potable water, the water supply company needs to control
carefully when and how much water is pumped from the river and how much water
is transferred among the reservoirs. The aim is to satisfy all the constraints stated in
Section 3.2 and to keep the salinity of potable water below a desirable level for as many
days as possible during the salinity period. The given data include the initial volume and
salinity level of reservoirs and the prediction1 of salinity level of the river during the
salinity period.

1 The prediction of salinity level of the river is supplied to us by the water supply company. The
prediction model is beyond the scope of this project.

38 C.W. Choi and J.H.M. Lee

4 Problem Modeling

Let n denote the duration of the given salinity period, (i.e. n ≤ 180 days). Since values
in our model are defined on a day-by-day basis, we have a set of variables for each day
i ∈ {1, . . . , n}, and each set contains seven variables. The first three variables are PX

i ,
PY

i and PZ
i which denote the number of pumping hours to operate at pumping stations

X , Y and Z respectively. The other four variables are OA
i , OB

i , OC
i and OD

i which
denote the amount of water flowing out of reservoirs A, B, C and D respectively.

4.1 Domains Discretization

The associated domains of the above variables are all continuous in nature, i.e. time
for pumping hours and volume for water transfers. After consulting the water supply
company, we learn that it does not make sense to operate the pumps for a very short time
(e.g. 3 minutes) or to transfer a very small amount of water (e.g. 10 m3). Therefore, we
discretize the domains to reflect this reality and to reduce the search space. Assuming
the pumps are operated in unit of φ pumping hours (e.g. φ = 6 hours), the domains D
of the 3 pump variables are

D(PX
i) = {0, . . . , �NX · 24/φ�} D(PY

i) = {0, . . . , �NY · 24/φ�}
D(PZ

i) = {0, . . . , �NZ · 24/φ�}

where NX , NY and NZ denote the maximum number of usable pumps in pumping
stations X , Y and Z respectively. Assuming water is transferred in unit of τ m3 (e.g. τ =
5, 000m3), the domains D of the 4 flow-out variables are

D(OA
i) = {0, . . . , �FA/τ�} D(OB

i) = {0, . . . , �FB/τ�}
D(OC

i) = {0, . . . , �FC/τ�} D(OD
i) = {0, . . . , �FD/τ�}

where FA, FB , FC , and FD denote the maximum amount of water that can flow out
of reservoirs A, B, C, and D respectively. We also have a number of other variables but
they are auxiliary in the sense that the values of the auxiliary variables are fixed once
the values of the decision variables are known.

4.2 Constraints and Objective Function

To express the constraints on the law of conservation of water for the reservoirs, we
derive the following constraints from Equation 1,

V A
i = V A

i−1 − (OA
i · τ) + IA

i (3)

V B
i = V B

i−1 − (OB
i · τ) + IB

i (4)

V C
i = V C

i−1 − (OC
i · τ) + (OA

i · τ) + (OB
i · τ) + IX

i − IA
i − IB

i (5)

V D
i = V D

i−1 − (OD
i · τ) + ID

i (6)

where V A
i , V B

i , V C
i and V D

i are auxiliary variables denoting the volume of the four
reservoirs on day i ∈ {1, . . . , n}; IA

i , IB
i , IX

i and ID
i are auxiliary variables denoting

Solving the Salinity Control Problem in a Potable Water System 39

the amount of water to flow into the four reservoirs on day i ∈ {1, . . . , n}. We express
the amount of water pumps from the pumping stations using the constraints

IA
i = PY

i · φ · KY IB
i = PZ

i · φ · KZ IX
i = PX

i · φ · KX

where KY , KZ and KX denote the capacity of the pumps in pumping stations Y , Z and
X respectively. We use the following constraints to express that there is only a single
source of water flowing into reservoir D,

ID
i = (OC

i · τ) − Ui V E
i = Ui + (OD

i · τ)

where V E
i denotes the amount of water consumption on day i ∈ {1, . . . , n}, and Ui

denotes the surplus water flowing out of reservoir C after some water is supplied for
consumption .

To express the constraints on the law of conservation of salts for reservoirs A, B, C,
D, we derive the following constraints from Equation 2,

(SA
i · V A

i) = (SA
i−1 · V A

i−1) − (SA
i−1 · OA

i · τ) + (SX
i · IA

i)
(SB

i · V B
i) = (SB

i−1 · V B
i−1) − (SB

i−1 · OB
i · τ) + (SX

i · IB
i)

(SC
i · V C

i) = (SC
i−1 · V C

i−1) − (SC
i−1 · OC

i · τ) + (SA
i−1 · OA

i · τ)+
(SB

i−1 · OB
i · τ) + (SX

i · IX
i) − (SX

i · IA
i) − (SX

i · IB
i)

(SD
i · V D

i) = (SD
i−1 · V D

i−1) − (SD
i−1 · OD

i · τ) + (SC
i−1 · ID

i)

where SA
i , SB

i , SC
i , SD

i are auxiliary variables denoting the salinity level of the four
reservoirs on day i ∈ {1, . . . , n}, and SX

i is the (given) predicted value of salinity level
of the river. We also need a constraint to specify the law of conservation of salts for
potable water

(SE
i · V E

i) = (SC
i−1 · Ui) + (SD

i−1 · OD
i · τ)

where V E
i and SE

i denote the amount of water consumption and the potable salinity on
day i ∈ {1, . . . , n}. Note that the variables denoting salinity level are continuous, and
the constraints associated to these variables involve both finite domain and continuous
variables.

We can express the physical limitation on the volume of the reservoirs using the
following constraints,

V A
min + HA

i ≤ V A
i ≤ V A

max V B
min + HB

i ≤ V B
i ≤ V B

max
V C

min + HC
i ≤ V C

i ≤ V C
max V D

min + HD
i ≤ V D

i ≤ V D
max

where V A
min, V B

min, V C
min and V D

min denote the minimum capacity of the four reservoirs,
V A

max, V B
max, V C

max and V D
max denote the maximum capacity of the four reservoirs, and

HA
i , HB

i , HC
i and HD

i denote the volume threshold of the four reservoirs on day
i ∈ {1, . . . , n}.

The following set of constraints expresses the requirements given in Table 1,

OC
i ≤

⎧
⎪⎨

⎪⎩

211, 395 if 2, 345, 650 < V C
i ≤ 2, 454, 590

...
...

160, 445 if 1, 200, 000 < V C
i ≤ 1, 256, 250

40 C.W. Choi and J.H.M. Lee

We have intentionally used < and ≤ to specify the bounds on each level to avoid potential
conflict with domain discretization.

Last but not least, we have the following constraints to express the requirements of
the general public on potable salinity,

SE
i ≤ SE

max SE
i ≤ SE

i−1 + δ

where SE
max denotes the maximum level of potable salinity and δ denotes the maximum

allowable daily increase in potable salinity. Clearly, the objective of the problem is to
maximize the sum

n∑

i=1

(SE
i ≤ SE

desire)

which represents the total number of days that potable salinity is below the desirable
level SE

desire.

5 Improving Search

We implement the above model using ILOG Solver 6.0 [5]. Out-of-the-box execution
strategies used in our initial implementation fails to handle even small testing instances
of the problem. There are two important issues in applying CP to solve problems. The
first issue is to use an appropriate search strategy so that (good) solutions appear earlier
in the search. There is no definite rule for discovering what is a good search strategy.
By studying the problem structure and insights of human experts in depth, we are able
to come up with a good search strategy. The second issue is that the model should also
have strong propagation: that is, it should be able to quickly reduce the domains of the
variables of the problem. We give a theorem for deriving useful implied constraints from
a set of linear equalities to increase the amount of constraint propagation.

5.1 Variable and Value Ordering Heuristics

Since values in our model are defined on a day-by-day basis, it does make sense to label
the variables chronologically by the days. We propose to pick first the seven decision
variables for day 1, then day 2, and so on until day n. Such variable ordering has the
advantages of turning many of the non-linear constraints into linear constraints, since
constraint propagation on linear constraints is usually stronger than that on non-linear
constraints.

Within day i ∈ {1, . . . , n}, we propose to pick the variables based on the following
order: (PX

i , PY
i , PZ

i , OC
i , OD

i , OA
i , OB

i). This ordering is the best we have so far after
extensive experiments. The rationale is that the river is the only source of water, the
pumps dictate the amount of salts to take into the reservoirs and are very important in
controlling the salinity of potable water. In the raw water system, reservoirs A and B
serve only as storage for surplus water which can be used to dilute the water pumps from
the river, and hence are less important than reservoirs C and D.

Different variables represent different control parameters of the raw water system.
Rather than using a single value ordering heuristic for all variables, we have different

Solving the Salinity Control Problem in a Potable Water System 41

heuristics for different variables depending on their strategic roles in the raw water
system.

– For variable PX
i , the value ordering heuristic depends on the salinity of river SX

i

on day i ∈ {1, . . . , n}. In order to control the salinity, it is common sense to pick
lower value for PX

i (i.e. pump less water) if SX
i is high (i.e. salty river water);

and pick higher value for PX
i otherwise. We make use of a user-supplied salinity

level avoidPump to indicate when the salinity should be considered high. If SX
i

is less than avoidPump, then larger values in the domain of SX
i can be tried first;

and vice versa, otherwise. In comparing SX
i and avoidPump, the magnitude of their

difference is taken into account too.
– For variables PY

i and PZ
i , the value ordering heuristic picks the middle value first.

Pumping stations Y and Z pump the water coming from pumping station X , and we
prefer to pump more water from the river when it is less salty. We lean on pumping
more water into Reservoirs A and B for dilution, but at the same time do not want to
overdo it (since it is dangerous when the salinity of the water from pumping station
X is high).

– For variable OC
i , rather than choosing the values one-by-one from the domains, we

use bisection to perform domain splitting. Bisection divides the values in a variable
domain into two equal halves, and this process is repeated recursively forming
a binary tree with leave nodes containing only a single value. The water supply
company prefers to use more water in reservoir C for consumption. Therefore, our
heuristic prefers to visit the branch with larger domain values first each time the
domains are bisected.

– For variable OD
i , the water supply company wants to avoid using too much water

from reservoir D. If SC
i−1 ≤ SE

desire, we use bisection and visit first the branch with
smaller domain values. Otherwise, our heuristic picks the value which gives the
minimum amount of water required to satisfy SE

i ≤ SE
desire.

– For variable OA
i and OB

i , we use bisection and visit first the branch with smaller
values. The rationale is to keep more fresh water in reservoirs A and B for dilution.

For most of the test cases given by the water supply company, the above search strategy
performs well. We called this strategy the NORMAL strategy. However, there are some
stringent (unrealistic) test cases where the amount of daily water consumption is usually
higher than the maximum amount of water that can flow out of reservoir C. If we are too
frugal in supplying water from reservoirs A and B to C, reservoirs C and D alone would
not be able to handle the high daily water consumption. To deal with such situation, we
propose another set of value ordering heuristic, called the HIGH strategy, especially for
test cases with such stringent daily water consumption pattern. The only modification is
to visit first the branch with larger domain values when bisecting domains of variables
OA

i and OB
i . The rationale is to keep reservoir C as full as possible.

5.2 Greedy Search Strategy

The basic solution search technology is branch-and-bound with constraint propagation.
The avoidPump user input parameter turns out to have great impact on the quality of the
solutions generated. Since our value ordering heuristics are designed to generate good

42 C.W. Choi and J.H.M. Lee

quality solutions earlier in the search, prolonging the search effort could be fruitless. We
adopt an opportunistic iterative improvement approach.

Our search strategy encompasses trying different avoidPump values in succession
with a timeout (300 seconds) period for each value. After consultation with human
operators and extensive experimentations, we adopt to try the following avoidPump
values in sequence: 600, 700, . . . , 1500. A smaller (larger) avoidPump value implies a
more conservative (aggressive) approach to pumping water. In other words, we progress
from a more conservative to a more aggressive approach.

For every avoidPump value, we start execution with the best solution from the last
execution as guidance. After a timeout period expires, the system examines if a better
solution is found. If yes, execution continues for another timeout period; otherwise, the
next avoidPump value is tried. The rationale is that if a better solution is found within
the timeout period for a particular avoidPump value, the value is good and should be
given more chance to search for even better solution. On the other hand, a avoidPump
value failing to find any good solutions within the timeout period is probably no good
and there is probably no point to search further.

5.3 Adding Implied Constraints

Most of the constraints in our model are linear equalities denoting the law of conser-
vation of water and salts. Given a set of linear equalities sharing common terms, we
can introduce a new variable to denote the common terms and reformulate the linear
equalities in terms of the new variables. The resulting set of linear equalities can be
added as implied constraints to increase the amount of constraint propagation. Modern
constraint solvers use bounds propagation [6] for linear arithmetic constraints. We state
without proof the following theorem based on the work of Harvey and Stuckey [4] and
Choi et al. [2,3].

Theorem 1. Let c1 ≡
∑

i(ai)(xi) +
∑

j(bj)(yj) = d1 and c2 ≡
∑

j(bj)(yj) +∑
k(ck)(zk) = d2, we can reformulate c1 and c2 as c3 ≡

∑
j(bj)(yj) − v = 0,

c4 ≡
∑

i(ai)(xi) + v = d1, and c5 ≡ v +
∑

k(ck)(zk) = d2. Bounds propagation on
{c1, c2, c3, c4, c5} is stronger than bounds propagation on {c1, c2}.

For instance, observe that there is a common term −(OA
i · τ)+ IA

i between Equations 3
and 5, similarly a common term −(OB

i · τ) + IB
i between Equations 4 and 5. We can

reformulate Equations 3, 4 and 5 as follow

WA
i = −(OA

i · τ) + IA
i WB

i = −(OB
i · τ) + IB

i

V A
i = V A

i−1 + WA
i V B

i = V B
i−1 + WB

i

V C
i = V C

i−1 − (OC
i · τ) + IX

i − WA
i − WB

i

where WA
i and WB

i are auxiliary variables representing the common term. We can
add the above equalities as implied constraints to our model. Suppose τ = 5000 and
the domain D is such that: D(V A

0) = {1300000}, D(V B
0) = {1237350}, D(V C

0) =
{2450000}, D(V A

1) = {320000, . . . , 1500000}, D(V B
1) = {100000, . . . , 1260000},

D(V C
1) = {1200000, . . . , 2450000}, D(OA

1) = {0, . . . , 15}, D(OB
1) = {0, . . . , 15},

D(OC
1) = {27, . . . , 42}, D(IA

1) = {0, . . . , 36000}, D(IB
1) = {0, . . . , 36000}, and

Solving the Salinity Control Problem in a Potable Water System 43

D(IX
1) = {0, . . . , 432000}. Constraint propagation with the original set of constraints

returns the domains D′ such that D′(IX
1) = {0, . . . , 282000}, while constraint propa-

gation with the new and enlarged set of constraints returns the domains D′′ such that
D′′(IX

1) = {0, . . . , 268650}. The latter is stronger in propagation.

6 Experiments

We have tested the system using both real-life and handcrafted data provided by the
water supply company. We have chosen three representative sets of data to illustrate the
performance of our system. Each set of data has a different characteristic, aiming to test
the versatility and robustness of our engine. The three sets of data differ in terms of:

– the duration of the salinity period (n),
– the predicted salinity level of river (SX

i),
– the daily water consumption of the city (V E

i),
– the volume thresholds for the reservoirs (HA

i , HB
i ,HC

i and HD
i), and

– the initial volumes and salinity values of the reservoirs (V A
0 , SA

0 , V B
0 , SB

0 , V C
0 , SC

0 ,
V D

0 , SD
0).

Figure 2 gives the salinity curves of the prediction data.
The following experiments are executed using a Linux Workstation (Intel Pentium-

III 1GHz with 1GB memory) running Fedora Core release 3. We choose ILOG Solver
6.0 [5] as our implementation platform. The time limit for the system to run is set to one
hour. Execution is aborted when the time limit is reached, and the best solution located
so far is reported.

For this project, there is no way to do comparison with the existing manual method
based on spreadsheet. We cannot make any meaningful comparison in terms of the
quality of solution since the manual method often fails to obtain a solution satisfying
all constraints. We also cannot make any fair comparison in terms of time since one is
a manual method and the other is an automated method. Therefore, we present only the
results obtained from our system.

Table 2 shows the result of Set 1. The first two columns with heading “salinity”
indicate the different combination of desirable and maximum salinity level. The next

0
500

1000
1500
2000
2500
3000

20 40 60 80 100 120 140 160 180

m3

day

Set 1
Set 2
Set 3

Fig. 2. Salinity Prediction Curves for Data Sets 1 to 3

44 C.W. Choi and J.H.M. Lee

Table 2. Result of Set 1, Duration = 180 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 157 21 3 126 619 134,520,603 104 44 2,367
250 350 180 21 3 168 621 134,520,602 162 330 30,005
250 400 180 23 3 168 623 1,807 162 333 30,013
250 500 180 29 3 168 627 134,520,602 162 337 30,013
250 600 180 34 3 168 631 1,807 162 342 30,013
250 1,000 180 58 3 168 649 134,520,602 162 364 30,013
300 600 180 35 3 180 32 4 180 215 20,678
300 1,000 180 62 3 180 50 4 180 238 20,678

Table 3. Result of Set 2, Duration = 180 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – – – – – – –
250 500 107 1,222 269,201,686 107 1,222 134,725,593 – – –
250 600 117 926 269,080,063 117 925 134,604,570 – – –
250 1,000 117 943 269,063,234 117 943 134,582,923 73 53 520
300 600 137 952 269,096,832 129 1,225 269,196,833 – – –
300 1,000 146 647 269,041,205 146 646 78,408 114 52 605

three columns with heading “normal” indicate the results using the NORMAL strategy.
We measure the number of days for which the potable salinity is below the desirable
level (column “days”), the runtime in seconds (column “secs”) and the total number of
fails (column “fails”). The next three columns with heading “high” indicate the results
using the HIGH strategy. The last three columns with heading “old” indicate the results of
an earlier implementation without the custom heuristics and implied constraints listed in
Section 5. Our system performs very well for Set 1 and is able to fulfill all 180 days with
the potable salinity below 250 ppm in just 21 seconds. For this scenario, the NORMAL

strategy clearly works better than the HIGH strategy. This scenario represents a typical
dry season of the city that lasts only 90 days out of the 180 day period. The search is
clearly improved comparing to the “old” implementation for the NORMAL strategy is
able to find better solution much faster and lesser number of fails.

Table 3 shows the result of Set 2, which is a more difficult scenario than Set 1. Set 2
has a prolonged drought period lasting the entire 180 days, which is one of the worst in
the last 150 years for the city. For this set of data, our system can maintain the potable
salinity always below 500 ppm, but it can only fulfill 107 days out of 180 days with
the potable salinity below 250 ppm. It takes around 20 minutes for our system to find
this solution. If we can relax the desirable salinity level to 300 ppm and the maximum
salinity level to 1000 ppm, our system can return a better solution fulfilling 146 days

Solving the Salinity Control Problem in a Potable Water System 45

Table 4. Result of Set 3, Duration = 90 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – 21 2,403 404,174,730 – – –
250 500 – – – 28 1,803 269,394,622 12 4 9
250 600 – – – 28 1,803 269,480,570 12 4 9
250 1,000 – – – 28 1,805 639,731 12 6 9
300 600 – – – 45 1,803 269,441,669 24 4 5
300 1,000 – – – 45 1,805 135,072,897 24 6 5

out of 180 days with the potable salinity below 300 ppm. The system is now able to find
the solution in 10 minutes. This example illustrates the flexibility of our system. If we
allow the desirable salinity level to raise slightly higher, our system would be able to
distribute the salinity level of potable water more evenly among the days to improve the
quality of solution.

Table 4 shows the result of Set 3, which is an artificially handcrafted scenario. The
salinity level of the river for Set 3 is similar to the first 90 days of Set 1. The difficulty
of Set 3 lies in the unrealistically high daily water consumption2 comparing to Set 1
and Set 2 as shown in Figure 3. Set 1 (the bold dotted line) has constant daily water

140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000

20 40 60 80 100 120 140 160 180

m3

day

Set 1
Set 2
Set 3

Fig. 3. Daily Water Consumption (V E
i)

consumption. Set 2 (the thin line) has a fluctuating daily water consumption. Set 3 (the
bold line) has a more fluctuating daily water consumption that is usually higher than
the maximum amount of water that can flow out of reservoir C (i.e. 211,395 m3/day).
Set 3 suffers from the problem discussed at the end of Section 5.1, which makes the
NORMAL strategy fail. The HIGH strategy is able to find a solution fulfilling 28 days out
of 90 days with the potable salinity below 250 ppm and maintaining the potable salinity
always below 500 ppm. It takes about 30 minutes to find this solution.

2 The capacities of the reservoirs are: A = 1, 500, 000 m3, B = 1, 260, 000 m3, C =
2, 450, 000 m3, and D = 2, 060, 000 m3 for comparison with the daily consumption.

46 C.W. Choi and J.H.M. Lee

7 Discussions

In this project, we collaborate with the International Institute for Software Technology,
United Nations University (UNU/IIST). We are responsible for the design and implemen-
tation of the core optimization engine, while UNU/IIST is responsible for constructing a
web user interface to invoke our optimization engine. We discuss in the following issues
regarding system development and deployment.

7.1 Added Values of CP

Our client gave us the problem in late September, 2004, only a couple of months before
the beginning of the winter dry season. During that time, the city was suffering from
one of the most serious drought in the last 150 years. Due to the urgency of the problem,
we were given only 2 weeks to come up with a functional prototype, and to release a
fully functional production system in early December, 2004, just before the winter dry
season began. This version replicates and automates the functionalities and model of the
client’s spreadsheet model described in Section 2. We came up with a version to model
the table constraint (water flow limit from Reservoir C to D) plus a large number of
change requests in another month’s time. The project involves the authors coming up
with the model and techniques for improving search, and two undergraduate students
for the implementation effort. The use of CP allowed us to meet the deadline and come
up with the first fully functional production system in just 2 months of development. We
spent another 5 months to study and experiment with various search improvements.

We have delivered the system to the water supply company. Installation and user
trainings were provided, together with a 12-month maintenance and support period.
The system has passed user acceptance test and has been into full production mode
since June, 2005. We received positive feedbacks from the users of the water supply
company. The only support request was just for a re-installation because of the ILOG
product upgrade. However, due to the continuing worsening of the drought condition in
the past years, even optimizing the logistical operations of the raw water system alone
is insufficient to control the salinity problem. The water supply company is seriously
considering physical measures such as reverse osmosis, moving the pumping station to
upper stream of the river, and even purchasing fresh water from nearby provinces to
effectively handle the salinity crisis.

The optimization engine is abstracted from the web interface, the end-users do not
need to understand CP at all. Indeed, our client does not care about the optimization
methodology we use, and wanted only a practical solution for the salinity problem that
could be developed in 2 months, although our method has no guarantee for optimality.

7.2 Reasons for Choosing Finite Domain

Although the domain of the salinity problem is continuous (real numbers), a more natural
choice seems to be modeling the problem using interval constraints instead of finite
domain constraints. However, we still decided to use finite domain constraints for the
following practical considerations. First, as discussed in Section 4.1, it does not make
sense to operate the pumps for a very short time (e.g. 3 minutes) or to transfer a very small

Solving the Salinity Control Problem in a Potable Water System 47

amount of water (e.g. 10 m3). Therefore, we decided to discretize the domains. Second,
finite domain constraints have had many successful industrial applications including
scheduling, time-tabling, resource allocation, etc. Third, the development schedule was
extremely tight and opportunity cost was high. At the time we were given the problem,
we simply could not afford a lot of experimentation but had to adopt a proven technology.

7.3 Other Optimization Methodologies

Besides CP, we have investigated with UNU/IIST in applying Evolver [7], which is
a genetic algorithm based optimization engine for Microsoft R© Excel, to the project.
Experimental results show that this approach is less efficient both in terms of execution
time and quality of solution. Moreover, Evolver is only semi-automatic, requiring expert
human guidance during the search for solutions. This approach is also unstable and
unpredictable with regard to convergence. Nevertheless, such an approach is good for
fast prototyping.

We also works with the operations research (OR) colleagues in our university to
investigate the use of linear programming (LP) [8] for solving the salinity problem. The
advantage of using LP is that the domain of the salinity problem is continuous in nature
(i.e. real numbers); hence, there is no need to discretize the domains. However, the major
obstacle to the LP approach is the nonlinear constraints in the problem, i.e. constraints
on the law of conservation of salts and the table constraints on the water flowing out of
reservoir C. The idea is to construct an approximate model of the problem with only
linear constraints and objectives. Preliminary results are encouraging, outperforming
our engines in selected test cases. The possibility of combining the LP model and the
CP model is a promising research direction.

8 Conclusion

By applying CP, we have developed a fully automated optimization engine incorporating
a more realistic model for solving the salinity problem. Experimental results demonstrate
that the engine is more efficient and can produce higher quality solutions than the human
counterpart. Now, even a non-domain expert can make use of our engine to plan for water
management operations and experiment with different salinity scenarios in advance.

In summary, the choice of CP has immense impact on the successful delivery of the
project. First, the rich constraint language available in commercial constraint solvers
allows efficient modeling of the problem. Separation of concerns of CP allows us to
focus on programming search heuristics. We were thus able to complete a working
prototype and a functional production system within a tight development schedule. Sec-
ond, CP is flexible and adaptive to changes. During the course of development, our
client requested for numerous, often unreasonable, changes to the requirement speci-
fication. Without CP as the core technology, we were not sure if we could deal with
all the requests in a timely and mostly effortless manner. Third, we were also able to
adopt and generalize latest research result in propagation redundancy [4,2,3] to come up
with useful implied constraints for our implementation, thus enhancing the constraint
propagation in the salinity control engine. And this work on the model is orthogonal to
the search strategies we employ. This is again a triumph of separate of concerns.

48 C.W. Choi and J.H.M. Lee

References

1. Brdys, M., Creemers, T., Riera, J., Goossens, H., Heinsbroek, A.: Clockwise: Constraint logic
for operational control of water systems. In: The 26th Annual Water Resources Planning and
Management Conference, pp. 1–13 (1999)

2. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited.
In: Australian Conference on Artificial Intelligence, pp. 49–58 (2006)

3. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Removing propagation redundant constraints in redun-
dant modeling. ACM Transactions on Computational Logic (to appear 2007)

4. Harvey, W., Stuckey, P.J.: Improving linear constraint propagation by changing constraint
representation. Constraints 8(2), 173–207 (2003)

5. ILOG, S.A.: ILOG Solver 6.0: User’s Manual (2003)
6. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT Press, Cam-

bridge (1998)
7. Palisade Corporation: Evolver 4.0 (2005), Available from http://www.palisade.com
8. Vanderbei, R.J.: Linear Programming—Foundations and Extensions, 2nd edn. Springer, Hei-

delberg (2001)

http://www.palisade.com

	Solving the Salinity Control Problem in a Potable Water System
	Introduction
	Current Practice Versus Constraint Programming
	Application Domain Description
	The Raw Water System
	Physical and Human Constraints
	Problem Statement

	Problem Modeling
	Domains Discretization
	Constraints and Objective Function

	Improving Search
	Variable and Value Ordering Heuristics
	Greedy Search Strategy
	Adding Implied Constraints

	Experiments
	Discussions
	Added Values of CP
	Reasons for Choosing Finite Domain
	Other Optimization Methodologies

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

