
A Cost-Based Model and Algorithms for

Interleaving Solving and Elicitation of CSPs�

Nic Wilson, Diarmuid Grimes, and Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

n.wilson@4c.ucc.ie, d.grimes@4c.ucc.ie, e.freuder@4c.ucc.ie

Abstract. We consider Constraint Satisfaction Problems in which con-
straints can be initially incomplete, where it is unknown whether certain
tuples satisfy the constraint or not. We assume that we can determine
such an unknown tuple, i.e., find out whether this tuple is in the con-
straint or not, but doing so incurs a known cost, which may vary between
tuples. We also assume that we know the probability of an unknown tu-
ple satisfying a constraint. We define algorithms for this problem, based
on backtracking search. Specifically, we consider a simple iterative al-
gorithm based on a cost limit on which unknowns may be determined,
and a more complex algorithm that delays determining an unknown in
order to estimate better whether doing so is worthwhile. We show exper-
imentally that the more sophisticated algorithms can greatly reduce the
average cost.

1 Introduction

In Constraint Satisfaction Problems it is usually assumed that the CSP is avail-
able before the solving process begins, that is, the elicitation of the problem is
completed before we attempt to solve the problem. As discussed in the work on
Open Constraints and Interactive CSPs [1,2,3,4,5], there are situations where it
can be advantageous and natural to interleave the elicitation and the solving.
We may not need all the complete constraints to be available in order for us
to find a solution. Furthermore, it may be expensive, in terms of time or other
costs, to elicit some constraints or parts of the constraints, for example, in a
distributed setting. Performing a constraint check in certain situations can be
computationally very expensive. We may need to pay for an option to be avail-
able, or for the possibility that it may be available. Some constraints may be
related to choices of other agents, which they may be reluctant to divulge be-
cause of privacy issues or convenience, and so it could cost us something to find
these out. Or they may involve an uncertain parameter, such as the capacity of a
resource, and it could be expensive, computationally or otherwise, to determine
more certain information about this.
� This material is based upon works supported by the Science Foundation Ireland

under Grant No. 05/IN/I886.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 666–680, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Cost-Based Model for Interleaving Solving and Elicitation 667

In this paper we consider approaches for solving such partially-specified CSPs
which take these costs into account. Constraints may be initially incomplete:
it may be unknown whether certain tuples satisfy the constraint or not. It is
assumed in our model that we can determine such an unknown tuple, i.e., find out
whether this tuple is in the constraint or not, but doing so incurs a known cost,
which may vary between tuples. We also assume that we know the probability of
an unknown tuple satisfying a constraint. An optimal algorithm for this situation
is defined to be one which incurs minimal expected cost in finding a solution.

Example

To illustrate, consider a problem with two variables X and Y , where X takes values
1, 2, 3 and 4, so D(X) = {1, 2, 3, 4}, and the domain, D(Y), of Y is {5, 6}. There
are two incomplete constraints, the first, c1, is a unary constraint on X , and the
second, c2, is a binary constraint on the two variables. It is (currently) unknown
if X = 1 satisfies constraint c1. The probability p1 that it does so is 0.9. We can
determine (i.e., find out) if X = 1 satisfies constraint c1, but this test incurs a cost
of K1 = 50. We write c1(X = 1) = υ1, where υ1 represents an unknown boolean
value. It is also unknown if values 2, 3 and 4 satisfy c1. We have c1(X = 2) = υ2,
c1(X = 3) = υ3 and c1(X = 4) = υ4. The cost of determining unknowns υ2, υ3

and υ4 is each 70, and the probability of success of each is 0.8. Tuples (2, 6), (3, 5)
and (4, 6) all satisfy the binary constraint, whereas tuples (2, 5), (3, 6) and (4, 5)
do not. It is unknown whether tuples (1, 5) and (1, 6) satisfy the constraint. We
have c2(X = 1, Y = 5) = υ5, and c2(X = 1, Y = 6) = υ6, and c2(X = 2, Y =
6) = c2(X = 3, Y = 5) = c2(X = 4, Y = 6) = 1. The other tuples have value 0.
Unknowns υ5 and υ6 each have cost 200 and probability of success 0.1.

Consider a standard backtracking search algorithm with variable ordering
X, Y and value ordering 1, 2, 3, 4 for X and 5, 6 for Y . The algorithm will first
incur a cost of 50 in determining υ1. This unknown will be determined success-
fully with 90% chance, and if so, then X = 1 satisfies c1. After that, υ5 will be
determined, costing 200, but with only 0.1 chance of success. If both υ1 and υ5

are successfully determined then (X = 1, Y = 5) is a solution of the CSP. How-
ever, this has only chance 0.9×0.1 = 0.09 of happening, and cost 50+200 = 250
is incurred.

It can be shown that the expected cost incurred by this algorithm is approx-
imately 464 and can be written as E1 + qE2, where q = 0.1 + 0.93 = 0.829,
E1 = 50 + 0.9(200 + 0.9 × 200) = 392 and E2 = 70 + 0.2(70 + 0.2 × 70) = 86.8.
(E1 is the expected cost in the X = 1 branch, E2 is the expected cost conditional
on having reached the X = 2 constraint check, and q is the chance that the algo-
rithm fails to find a solution with X = 1.) This is far from optimal, mainly because
determining unknowns υ5 and υ6 is very expensive, and they also have only small
chance of success. An optimal algorithm for this problem (i.e., one with minimal
expected cost) can be shown to have expected cost E2+(0.23×389.5) ≈ 90, which
can be achieved with a backtracking search algorithm which determines unknowns
in the X = 2, 3, 4 branches before determining unknowns in the X = 1 branch. �

668 N. Wilson, D. Grimes, and E.C. Freuder

Algorithms with low expected cost will clearly need to consider the costs and
the probabilities. A backtracking algorithm should ideally not always determine
any unknown it meets, but allow the possibility of delaying determining an
unknown, to check whether it seems worthwhile doing so.

We define algorithms for this problem, based on backtracking search. Such
algorithms can be crudely divided into three classes:

– Type 0: determining all unknowns to begin with;
– Type 1: determining unknowns as we meet them in the search;
– Type 2: making decisions about whether it’s worth determining an unknown,

making use of cost and probabilistic information.

The normal solving approaches for CSPs fall into Type 0, where the full CSP is
elicited first and we then solve it, based on backtracking search with propagation
at each node of the search tree. Algorithms for open constraints, which don’t
assume any cost or probability information, can be considered as being Type 1.
In this paper we construct Type 2 algorithms, which make use of the cost and
probabilistic information.

We consider a simple iterative algorithm based on a limit on the costs of
unknowns that may be determined; for each cost limit value, we perform a
backtracking search; if this fails to find a solution we increment the cost limit,
and search again. With this algorithm it can easily happen that we pay a cost
of determining an unknown tuple, only to find that that particular branch fails
to lead to a solution for other reasons, as in the example, with unknown υ1.
A natural idea is to delay determining an unknown, in order to find out if
it is worth doing so. Our main algorithm, described in Section 4, usually will
not immediately determine an unknown, but explore more deeply first. The
experimental results in Section 5 strongly suggest that this can be worthwhile.

Related Work: The motivation for this work is related to part of that for Open
Constraints [1,2,3,6], and Interactive CSPs [4,5], with a major difference being
our assumption of there being cost and probabilistic information available ([2]
considers costs in optimisation problems, but in a rather different way). Although
these kinds of methods could be used for our problem, not taking costs and
probabilities into account will, unsurprisingly, tend to generate solutions with
poor expected cost, as illustrated by the example and our experimental results.

Another approach is to ignore the probabilistic information, and look for
complete assignments that will incur minimal cost to check if they are solutions.
Weighted constraints methods e.g., [7] can be used to search for such assign-
ments. If all the probabilities were equal to 1 then this would solve the problem.
However, it may well turn out that all the lowest cost assignments also have rel-
atively low probability. Consider the example with K5 (the cost of determining
υ5) changed to be 10 instead of 200. The assignment which then needs mini-
mum cost to discover if it’s a solution is (X1 = 1, X2 = 5); this again leads to a
suboptimal algorithm. Alternatively, one could search for complete assignments
which have highest probability of being a solution, as in Probabilistic CSPs [8].

A Cost-Based Model for Interleaving Solving and Elicitation 669

Although this may perform satisfactorily if all the costs are equal, with varying
costs it seems that the costs should be taken into account. Consider the example,
but where p5, the probability that υ5 = 1, is changed from 0.1 to 0.9. The as-
signment with greatest chance of being a solution is (X1 = 1, X2 = 5); however
the cost of finding this solution is 250, so trying this solution first is far from
optimal.

The next section describes the model and problem more formally. Section 3
analyses the related problem of determining if a particular complete assignment
is a solution. This analysis is important for our main algorithm, which is de-
scribed in Section 4. Section 5 describes the experimental testing and results,
and Section 6 discusses extensions.

2 A Formal Model for Interleaving Solving and
Elicitation

Standard CSPs: Let V be a set of variables, which are interpreted as decision
variables, so that we have the ability to choose values of them. Each variable
X ∈ V has an associated domain D(X). For any subset W of V , let D(W) be
the set of assignments to W , which can be written as

∏
X∈W D(X). Associated

with each (standard) constraint c over V , is a subset Vc of V , which is called its
scope. Define a (standard) constraint c over V to be a function from D(Vc) to
{0, 1}. We will sometimes refer to a set of constraints C over V as a Constraint
Satisfaction Problem (CSP) over V . Let S be an assignment to all the variables
V . S is said to satisfy constraint c if c(S′) = 1, where S′ is S restricted to Vc. S
is a solution of CSP C (or, S satisfies C) if it satisfies each constraint in C.

The Unknowns: As well as decision variables V , we consider a disjoint set of
variables U , which we call the set of unknowns. These are uncertain variables,
and we have no control over them. They are all boolean variables. We assume
that, for any unknown υ ∈ U , we can determine (i.e., discover) the value of υ,
that is, whether υ = 1 or υ = 0. So we assume we have some procedure Det(·)
that takes an unknown υ as input and returns 1 or 0. We also assume that there
is a certain cost Kυ ∈ [0,∞) for executing this procedure on υ, and that we
have probabilistic information about the success of this procedure. In particular
we assume that we know the probability pυ of success, i.e., the probability that
Det(υ) = 1.

Incomplete Constraints: An incomplete constraint c over (V,U) has an associated
subset Vc of V called its scope. c is a function from D(Vc) to {0, 1}∪U . Hence, to
any tuple t ∈ D(Vc), c assigns 1, 0 or some unknown. c is intended as a partial
representation of some standard constraint c∗ over Vc. c(t) = 1 is interpreted as
t satisfies the constraint c∗. Also, c(t) = 0 is interpreted as t doesn’t satisfies
the constraint c∗; otherwise, if c(t) ∈ U , then it is unknown if t satisfies the
constraint. We will sometimes refer to a set of incomplete constraints over (V,U)
as an incomplete CSP. An Expected Cost-based Interactive CSP (ECI CSP) is

670 N. Wilson, D. Grimes, and E.C. Freuder

formally defined to be a tuple 〈V, D,U , K, p, C〉, for set of variables V , set of
unknowns U , functions K : U → [0,∞), p : U → [0, 1], and where C is a set of
incomplete constraints over (V,U).

Associated with an incomplete constraint c are two standard constraints with
the same scope. The known constraint c is given by c(t) = 1 if and only if c(t) = 1
(otherwise, c(t) = 0). A tuple satisfies c if and only if it is known to satisfy c∗.
The potential constraint c is given by c(t) = 0 if and only if c(t) = 0 (otherwise,
c(t) = 1). A tuple satisfies c if it could potentially satisfy c∗. For a given set
of incomplete constraints C, the Known CSP is the set of associated known
constraints: C = {c : c ∈ C}, and the Potential CSP C is the set of associated
potential constraints: {c : c ∈ C}.

Suppose that c(t) = υ, and we determine υ and find out that υ = 1. Then
we now know that t does satisfy the constraint, so we can replace c(t) = υ by
c(t) = 1. Define c[υ := 1] to be the incomplete constraint generated from c by
replacing every occurrence of υ by 1. We define c[υ := 0] analogously. More
generally, let ω be an assignment to a set W ⊆ U of unknowns, and let c be an
incomplete constraint. c[ω] is the incomplete constraint obtained by replacing
each υ in W by its value ω(υ). We define C[ω] to be {c[ω] : c ∈ C}. C[ω] is thus
the incomplete CSP updated by the extra knowledge ω we have about unknowns.

Incomplete CSP C is solved by assignment S (to variables V) in the context
ω if S is a solution of the associated known CSP C[ω]. In other words, if S is
known to be a solution of C given ω. An incomplete CSP C is insoluble in the
context ω if the associated potential CSP C[ω] has no solution. In this case, even
if all the other unknowns are found to be equal to 1, the CSP is still insoluble.

Policies for Solving ECI CSPs

An algorithm for solving an incomplete CSP involves sequentially determining
unknowns until we can find a solution. Of course, the choice of which unknown
to determine next may well depend on whether previous unknowns have been
determined successfully or not. In the example in Section 1, if we determine υ1

and discover that υ1 = 0 then there is no point in determining unknown υ5.
What we call a policy is a decision making procedure that sequentially chooses

unknowns to determine. The choice of unknown to determine at any stage can
depend on information received from determining unknowns previously. The
sequence of decisions ends either with a solution to the known part of the CSP, or
with a situation in which there is no solution, even if all the undecided unknown
tuples are in their respective constraints. In more abstract terms a policy can be
considered as follows:-

Given an assignment ω to some (possibly empty) set W of unknowns, a policy
does one of the following:

(a) returns a solution of the Known CSP (given ω);
(b) returns “Insoluble” (it can only do this if the Potential CSP (given ω) is

insoluble);
(c) choose another undetermined unknown.

A Cost-Based Model for Interleaving Solving and Elicitation 671

In cases (a) and (b) the policy terminates. In case (c), the chosen unknown υ is
determined, with value b = 1 or 0. ω is then extended with υ = b, and another
choice is made by the policy, given ω ∪ [υ = b]. The sequence continues until the
problem is solved or proved unsatisfiable.

Define a scenario to be a complete assignment to all the unknowns. Let Pr(α)
be the probability of scenario α occurring. In the case of the variables U being
independent, we have Pr(α) =

∏
υ : α(υ)=1 pυ × ∏

υ : α(υ)=0(1− pυ). In a scenario
α, a policy iteratively chooses unknowns to determine until it terminates; let
Wα be the set of unknowns determined; the policy incurs a particular cost, say,
Kα, which equals

∑
υ∈Wα

Kυ. The expected cost of a policy is then equal to∑
α Pr(α)Kα, where the summation is over all scenarios α.

Evaluating Policies. We evaluate policies in terms of their expected cost. So,
we aim to define algorithms that implement policies which have relatively low
expected cost.

Using Dynamic Programming to Generate an Optimal Policy

Although the problem involves minimising expected cost over all policies, the
structure of the decisions—dynamically choosing a sequence from a (large) set of
objects—does not fit very naturally into such formalisms as Influence Diagrams
[9], Markov Decision Processes [10] and Stochastic Constraint Programming [11].
We describe below a simple dynamic programming [12] algorithm for generating
an optimal policy.

Consider ECI CSP 〈V, D,U , K, p, C〉. Let ω be an assignment to some set
of unknowns W ⊆ U . Define A(ω) to be the minimal expected cost over all
policies for solving 〈V, D,U−W , K, p, C[ω]〉, the ECI CSP updated with ω. Then
A(ω) = 0 if either the associated Known CSP C[ω] is soluble or the associated
Potential CSP C[ω] is insoluble. Otherwise, any policy chooses some unknown
υ ∈ U −W to determine, incurring cost Kυ and with chance pυ of finding that
υ = 1. If υ = 1 then we have incomplete CSP C(ω ∪ [υ := 1]) to solve, which
has minimal expected cost A(ω ∪ [υ := 1]). Therefore, A(ω) can be written as

min
υ∈U−W

(
Kυ + pυA(ω ∪ [υ := 1]) + (1 − pυ)A(ω ∪ [υ := 0])

)
.

The minimal expected cost over all policies for solving the original ECI CSP is
equal to A[
], where
 is the assignment to the empty set of variables. We can
thus find the minimal expected cost by using a simple dynamic programming
algorithm, iteratively applying the above equation, starting with all scenarios
(or from minimal assignments ω such that C[ω] is insoluble); we can also find
an optimal policy in this way, by recording, for each ω, a choice υ ∈ U − W
which minimises the expression for A(ω). However, there are 3|U| different pos-
sible assignments ω, so this optimal algorithm will only be feasible for problems
with very small |U|, i.e., very few unknowns (whereas problem instances in our
experiments in Section 5 involve more than 2,000 unknowns). More generally, it
seems that we will need to use heuristic algorithms.

672 N. Wilson, D. Grimes, and E.C. Freuder

3 Evaluating a Complete Assignment

In this section we consider the problem of testing if a given complete assignment
is a solution of an ECI CSP 〈V, D,U , K, p, C〉; the key issue is the order in which
we determine the associated unknowns. This analysis is relevant for our main
algorithm described in Section 4.

Associated with each potential solution S (i.e., solution of the associated po-
tential CSP C) is a set of unknowns, which can be written as: {c(S) : c ∈ C}∩U .
An unknown υ is in this set if and only if there exists some constraint c such
that c(S) = υ. Label these unknowns as U = {υ1, . . . , υm}; we abbreviate pυi

to pi, and Kυi to Ki. We also define ri = Ki/(1 − pi), where we set ri = ∞
if pi = 1. Assignment S is a solution of the unknown CSP if and only if each
of the unknown values in U is actually a 1. In this section we assume that the
unknowns are independent variables, so that the probability that S is a solution
of the CSP is p1p2 · · · pm, which we write as P (U).

To evaluate set of unknowns {υ1, . . . , υm}, we determine them in some order
until either we find one which fails, i.e., until Det(υi) = 0, or until we have deter-
mined them all. Associated with an unknown υi is the cost Ki and success prob-
ability pi. Suppose we evaluate the unknowns in the sequence υ1, . . . , υm. We
start by determining υ1, incurring cost K1. If υ1 is successfully determined (this
event has chance p1), we go on to determine υ2, incurring additional cost K2,
and so on. The expected cost in evaluating these unknowns in this order is there-
fore K1 + p1K2 + p1p2K3 + · · ·+ p1p2 · · · pm−1Km. Let Rπ be the expected cost
incurred in evaluating unknowns {υ1, . . . , υm} in the order π(1), π(2), . . . , π(m),
i.e., with υπ(1) first, and then υπ(2), etc. Expected cost Rπ is therefore equal to
Kπ(1) + pπ(1)Kπ(2) + pπ(1)pπ(2)Kπ(3) + · · · + pπ(1)pπ(2) · · · pπ(m−1)Kπ(m).

Proposition 1. For a given set of unknowns {υ1, . . . , υm}, Rπ is minimised by
choosing π to order unknowns with smallest ri (= Ki/(1− pi)) first, i.e., setting
ordering π(1), π(2), . . . , π(m) in any way such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(m).

For a set of unknowns U = {υ1, . . . , υm} we define R(U) to be Rπ, where π is
chosen so as the minimise the cost, by ordering the unknowns to have smallest
ri first (as shown by Proposition 1).

Imagine a situation where we are given an ECI CSP, and a complete assign-
ment S which is a possible solution. We will consider an expected-utility-based
analysis of whether it is worth determining these unknowns, to test if S is a
solution, where cost is negative utility. Suppose the utility of finding that S is a
solution is Q. The chance of finding that S is a solution is P (U), so the expected
reward is P (U) × Q. If we determine all the unknowns U (based on the mini-
mal cost order) then the expected cost is R(U). Therefore the overall expected
gain is (P (U) × Q) − R(U), so there is a positive expected gain if and only if
P (U) × Q > R(U), i.e., if and only if Q > R(U)/P (U).

A Cost-Based Model for Interleaving Solving and Elicitation 673

A natural approach, therefore, for solving an Expected Cost-based Interactive
CSP is to search for solutions whose associated set of unknowns U has relatively
low value of R(U)/P (U). In particular, we can perform iterative searches based
on an upper bound on R(U)/P (U), where this upper bound is increased with
each search. This is the basis of our main algorithm, described in the next section.

The monotonicity property, shown by the following proposition, is important
since it allows the possibility of subtrees being pruned: if a partial assignment
S has associated set of unknowns U , and we find that R(U)/P (U) is more than
our cost bound Q, then we can backtrack, since the set of unknowns U ′ associ-
ated with any complete assignment extending S will also have R(U ′)/P (U ′) > Q.
Since U is finite, it is sufficient to show the result for the case when U ′ contains
a single extra unknown (as we can then repeatedly add extra unknowns one-by-
one to prove the proposition). The result for this case follows quite easily by
expanding R(U).

Proposition 2. Let U and U ′ be any sets of unknowns with U ⊆ U ′ ⊆ U . Then
R(U)/P (U) ≤ R(U ′)/P (U ′).

4 Iterative Expected Cost-Bound Algorithm

In this section we define our main algorithm for solving a given Expected Cost-
based CSP 〈V, D,U , K, p, C〉. The key idea behind this algorithm is to allow
the possibility of delaying determining an unknown associated with a constraint
check, until it has explored further down the search tree; this is in order to see
if it is worth paying the cost of determining that unknown. The algorithm per-
forms a series of depth-first searches; each search is generated by the procedure
TreeSearch. The structure of each search is very similar to that of a standard
backtracking CSP algorithm.

The behaviour in each search (i.e., in each call of TreeSearch) depends on the
value of a global variable Q, which is involved in a backtracking condition, and
is increased with each tree search. For example, in the experiments described in
Section 5, we set Qinitial = 20 and define Next(Q) to be Q × 1.5, so that the
first search has Q set to 20, the second search has Q = 30, and then Q = 45, and
so on. The value of Q can be roughly interpreted as the cost that the algorithm
is currently prepared to incur to solve the problem.1

The procedure TopLevel first initialises the cost incurred (GlobalCost) to
zero. It then performs repeated tree searches until a solution is found (see proce-
dure ProcessNode(·) below) or until all unknowns have been determined; in the
latter case, it then performs one further tree search (which is then an ordinary
CSP backtracking algorithm).

1 Our experimental results for the main algorithm (without the size limit modifica-
tion) tally very well with this interpretation, with the average Q for the last iteration
being close to the average overall cost incurred (within 25% of the average cost for
each of the four distributions used).

674 N. Wilson, D. Grimes, and E.C. Freuder

Procedure TopLevel

GlobalCost := 0; Q := Qinitial

repeat
TreeSearch
Q := Next(Q)
until all unknowns have been determined

TreeSearch

Procedure TreeSearch

Unknownsroot := ∅;
Construct child N of root node
ProcessNode(N)

The core part of the algorithm is the procedure ProcessNode(N). Let N be
the current node, and let Pa(N) be its parent, i.e., the node above it in the
search tree. Associated with node N is the set UnknownsN of current unknowns.
At a node, if any of the current unknowns evaluates to 0 then there is no solution
below this node. Conversely, if all of the current unknowns at a node evaluate
to 1 then the current partial assignment is consistent with all constraints that
have been checked so far. If all the current unknowns at a leaf node evaluate to
1 then the current assignment is a solution.

At a search node, we perform, as usual, a constraint check for each constraint
c whose scope Vc has just been fully instantiated (i.e., such that (i) the last
variable instantiated is in the scope, and (ii) the set of variables instantiated
contains the scope). A constraint check returns either 1, 0 or some unknown.
The algorithm first determines if any constraint check fails, i.e., if it returns 0.
If so, we backtrack to the parent node, in the usual way, assigning an untried
value of the associated variable, when possible, and otherwise backtracking to its
parent node. Propagation can be used in the usual way to eliminate elements of a
domain which cannot be part of any solution extending the current assignment.

The set DirectUnknownsN , of unknowns directly associated with the node
N , is defined to be the set of unknowns which are generated by the constraint
checks at the node. The set of current unknowns at the node, UnknownsN , is
then initialised to be the union of DirectUnknownsN and the current unknowns
of the parent node.

The algorithm then tests to see if it is worth continuing, or if it is expected to
be too expensive to be worth determining the current set of unknowns. The back-
tracking condition is based on the analysis in Section 3. We view Q as represent-
ing (our current estimate of) the value of finding a solution. Then the expected
gain, if we determine all the unknowns in UnknownsN , is P (UnknownsN) × Q
where P (UnknownsN) is the chance that all the current unknowns evaluate to 1.
The expected cost of determining these unknowns sequentially is R(UnknownsN),
as defined in Section 3, since we evaluate unknowns with smallest ri first. So,
determining unknowns UnknownsN is not worthwhile if the expected gain is less
than the expected cost: P (UnknownsN) × Q < R(UnknownsN). Therefore we
backtrack if R(UnknownsN)/P (UnknownsN) > Q.

A Cost-Based Model for Interleaving Solving and Elicitation 675

We then construct a child node in the usual way, by choosing the next variable
Y to instantiate, choosing a value y of the variable, and extending the current
assignment with Y = y. If Y is the last variable to be instantiated then we
use the ProcessLeafNode(·) procedure on the new node; otherwise we use the
ProcessNode(·) procedure on the new node.

The ProcessLeafNode(·) procedure is similar to ProcessNode(·), except that
we can no longer delay determining unknowns, so we determine each current
unknown until we fail, or until all have been determined successfully. We deter-
mine an unknown with smallest ri = Ki/(1− pi) first (based on Proposition 1).
If an unknown υi is determined unsuccessfully, then there is no solution beneath
this node. In fact, if N ′ is the furthest ancestor node of N which υi is directly
associated with (i.e. such that DirectUnknownsN ′ � υi), then there is no so-
lution beneath N ′. Therefore, we jump back to N ′ and backtrack to its parent
node Pa(N ′). If all the unknowns UnknownsN have been successfully determined
then the current assignment, which assigns a value to all the variables V , has
been shown to be a solution of the CSP, so the algorithm has succeeded, and we
terminate the algorithm.

Procedure ProcessNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN

if R(UnknownsN)/P (UnknownsN) > Q
then backtrack to parent node

Construct child node N ′ of N
if N ′ is a leaf node (all variables are instantiated)

then ProcessLeafNode(N ′) else ProcessNode(N ′)

Procedure ProcessLeafNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN

if R(UnknownsN)/P (UnknownsN) > Q then backtrack to parent node
while Unknowns non-empty do:

Let υi be unknown in UnknownsN with minimal ri

Determine υi;
GlobalCost := GlobalCost+ Ki

if υi determined unsuccessfully
then Jump Back to furthest ancestor node associated with υi

and backtrack to its parent node
UnknownsN := UnknownsN − {υi}
end (while)

Return current (complete) assignment as a solution and STOP

If we apply this algorithm to the example in Section 1 (again using variable
ordering X, Y , and numerical value ordering), no unknown will be determined
until we reach an iteration where Q is set to being at least 87.5. Then the first leaf
node N that the algorithm will reach is that associated with the assignment (X =

676 N. Wilson, D. Grimes, and E.C. Freuder

1, Y = 5). UnknownsN is equal to {υ1, υ5}. r1 = K1/(1 − p1) = 50/0.1 = 500 >
r5 = 200/0.9, so R({υ1, υ5}) = K5+p5K1 = 205, and R({υ1, υ5})/P ({υ1, υ5}) =
205/(0.9 × 0.1) ≈ 2278, so the algorithm will backtrack; similarly for the leaf
node associated with assignment (X = 1, Y = 6). The leaf node corresponding
to (X = 2, Y = 6) has current set of unknowns {υ2}. Since R({υ2})/P ({υ2}) =
70/0.8 = 87.5 ≥ Q, unknown υ2 will be determined. If it evaluates to 1 then
(X = 2, Y = 6) is a solution, and the algorithm terminates. Otherwise, υ3

and υ4 will be next to be determined. In fact, for this example, the algorithm
generates an optimal policy, with expected cost of around 90.

One approach to improving the search efficiency of the algorithm is to set a
limit SizeLimit on the size of the current unknown set UnknownsN associated
with a node. If |UnknownsN | becomes larger than SizeLimit then we repeatedly
determine unknowns, in increasing order of ri, and remove the unknown from
the current set until |UnknownsN | = SizeLimit. It is natural then to change the
backtracking condition to take this into account. In particular, we can change
the test to be (CostDetSuccN + R(UnknownsN))/P (UnknownsN) > Q, where
CostDetSuccN is the cost incurred in (successfully) determining unknowns in
ancestors of the current node, which can be considered as the cost that has
already been spent in consistency checking of the current assignment.

In the algorithm whenever we determine an unknown in UnknownsN we choose
an unknown υi with minimum ri. This is in order to minimise the expected cost of
determining the set of current unknowns, because of Proposition 1. Alternatively,
one could bias the ordering towards determining more informative unknowns.
For example, suppose UnknownsN includes two unknowns υi and υj , where υi

is associated with a unary constraint, and υj is associated with a constraint of
larger arity. Even if ri is slightly more than rj , it may sometimes be better to
determine υi before υj since υi may well be directly associated with many other
nodes in the search tree.

5 Experimental Testing

The problem instances used in the experiments were generated as follows: A sol-
uble random binary extensional CSP is generated with parameters 〈n, d, m, t〉,
where n is the number of variables, d the uniform domain size, m the graph density
and t the constraint tightness, with the parameters chosen so that each instance
is likely to be fairly easily soluble. For each constraint in this CSP we randomly
select a number of the allowed tuples and randomly select the same number of the
disallowed tuples to be assigned unknown. Each such tuple is assigned a differ-
ent unknown υi, which is assigned a probability pi chosen independently from a
uniform distribution taking values between 0 and 1. Each υi is allocated its true
value (which the algorithms only have access to when they determine ui): this is
assigned 1 with probability pi, otherwise it is assigned 0 (where υi = 1 means that
the associated tuple satisfies the constraint).

We use four different distributions for cost, where costs are integers in our ex-
periments. Each distribution has minimum value 1 and has median around 50. For
k = 1, 2, 3, 4 using the kth distribution, each cost Kυ is an independent sample of

A Cost-Based Model for Interleaving Solving and Elicitation 677

the random variable: 50× (2 × rand)k rounded up to be an integer, where rand
is a random number taking values between 0 and 1 with a uniform distribution.
Therefore k = 1 has a linear distribution, k = 2 is a scaled (and truncated) square
root distribution, and so on.

The parameters for 〈n, d, m, t〉 were 〈20, 10, 0.163, 0.4〉 and 〈20, 10, 0.474, 0.3〉.
Each problem set contained 100 problems. No problem was soluble without de-
termining at least one unknown. For 〈20, 10, 0.163, 0.4〉, the first problem param-
eters, we generated four problem sets by using four different cost distributions;
for the other problem set we used the linear (k = 1) cost distribution.

The following five algorithms were tested (where, according to the terminology
in Section 1, the first is Type 1, and the others are Type 2):

Basic Algorithm: The basic algorithm works like a normal CSP depth-first search
algorithm (maintaining arc consistency, and with min domain variable ordering)
except that it determines each unknown as soon as it is encountered. As usual,
a constraint check is performed as soon as all the variables in the constraint’s
scope are instantiated. When a constraint check returns an unknown υi, we
immediately determine υi, incurring cost Ki. If υi is determined successfully,
i.e., υi is found to be 1, then the constraint check is successful.

Basic Iterative (Cost-Bound Algorithm): This algorithm performs iterative
searches, parameterised by increasing cost bound q; each search is similar to
the basic algorithm, except that all unknowns with cost greater than q are re-
moved from search for the current iteration (that is, they are set to 0, which
allows for improved pruning through propagation). If a solution is found, search
terminates; otherwise, the search is complete, after which search restarts with
q incremented by a constant, qinc. The process continues until either a solution
has been found or all unknowns have been determined and the algorithm has
proven insolubility. For the experiments reported below, q starts off with value
0, and qinc is 5.

Main Iterative (Expected Cost-Bound Algorithm): This is the main algorithm
described in Section 4. For this and the next two algorithms, Qinitial is set to
20, with a multiplicative increment of 1.5.

Main Algorithm with Size Limit: This is the adapted version of the last algorithm
discussed at the end of Section 4, which incorporates a limit SizeLimit on the
cardinality of the set Unknowns of current unknowns, so that if |Unknowns| >
SizeLimit then elements of Unknowns are determined until either one is found
to be 0 or |Unknowns| = SizeLimit. In the experiments reported below, we set
SizeLimit to 5.

Mixed Algorithm: This algorithm modifies the main Expected Cost-Bound al-
gorithm by having, for each iteration, a cost bound q on each unknown being
considered, in order to improve the search efficiency (because of additional prop-
agation), whilst maintaining cost effectiveness. It therefore is a kind of hybrid
of the main algorithm and the basic iterative cost-bound algorithm described
above. Let maxK be the maximum cost of any unknown in the current problem

678 N. Wilson, D. Grimes, and E.C. Freuder

instance. On the first search all unknowns with cost greater than 30%(maxK) are
removed from search, so that q starts at 30%(maxK); on each iteration this bound
q is incremented by qinc = 5%(maxK).
We also implemented a cost-based value ordering heuristic. The heuristic chooses
the value which has minimum total cost over the constraints between the variable
and its instantiated neighbors. The improvements for the iterative algorithms
were minimal so we only present the results for the basic algorithm with the
value ordering (“Basic Value”).

Table 1. Results For Different Cost Distributions. Costs are Averaged Over 100 Prob-
lems. Bottom row gives mean search nodes for linear problem set.

Basic Basic Basic Main Size Mixed
Value Iterative Iterative Limit

Linear
(k = 1) 3272 2625 1711 152 495 178

Square
(k = 2) 4574 3414 900 105 346 113

Cube
(k = 3) 6823 4997 566 79 231 77

Fourth
(k = 4) 11123 8401 344 50 180 52

Linear
Search Nodes 57 55 652 2.1 × 106 1.2 × 106 1.2 × 105

Notes: Problem parameters 〈20, 10, 0.163, 0.4〉.

Discussion: Table 1 gives the results for the average costs on four different prob-
lem sets. These all had the same parameters 〈n, d, m, t〉 but costs were generated
for unknowns using the distributions described above. The “main iterative” al-
gorithm performs best in terms of average cost: the basic iterative algorithm
incurs between around 7 to 11 times more cost for these instances, and the ba-
sic algorithm has average cost one or two orders of magnitude worse than the
main iterative algorithm. (Naturally, all the algorithms do much better than
determining all the unknowns prior to search, at a cost of more than 100,000.)

Unsurprisingly, the main iterative algorithm is vastly slower than the basic
algorithms, generating on average around two million total search tree nodes for
each problem instance, whereas the basic iterative generates only a few hundred.
The last two algorithms both aim to improve the efficiency somewhat. The “Size
Limit” algorithm cuts search tree nodes by more than 50% compared to the main
algorithm, but incurs roughly three or more times as much average cost. The
mixed algorithm trades off cost and search efficiency much more effectively for
these instances, with only slightly worse average costs, but generating only a
fraction of the search tree nodes, less than 6% for the linear distribution, and
less than 30% for the other distributions.

The other problem set showed similar behaviour, though even more extreme:
in the 〈20, 10, 0.0823, 0.75〉 problem set with the linear distribution, the mixed
algorithm average cost was 222, compared to 5022 for the basic iterative. The

A Cost-Based Model for Interleaving Solving and Elicitation 679

size limit algorithm average cost was 1320, and generated more than nine times
as many nodes as the mixed algorithm.

6 Extensions and Summary

Extending the algorithms: Our main algorithm can be considered as searching
for complete assignments with small values of R(U)/P (U), where U is the set of
unknowns associated with the assignment, P (U) is the probability that all of U
are successfully determined (and hence that the assignment is a solution), and
R(U) is the expected cost of checking this. There are other ways of searching
for assignments with small values of R(U)/P (U), in particular, one could use
local search algorithms or branch-and-bound algorithms. Such algorithms can be
used to generate promising assignments, which we can sequentially test to see if
they are solutions or not. If not, then we move on to the next potential solution
(possibly updating the problem to take into account determined unknowns).

The efficiency of our main algorithm and a branch-and-bound algorithm would
probably be greatly increased if one could design an efficient propagation mecha-
nism of an upper bound constraint on R(U)/P (U). Failing that, one might use a
propagation method for weighted constraints [7] to prune subtrees of assignments
with total associated cost above a threshold, or with probabilities below a thresh-
old (the latter using a separate propagation, making use of the log/exponential
transformation between weighted constraints and probabilistic constraints).

Extensions of the model: Our model of interleaving solving and elicitation is a
fairly simple one. There are a number of natural ways of extending it to cover
a wider range of situations. In particular, the framework and algorithms can be
easily adapted to situations where there is a cost incurred for determining a set
of unknowns (rather than a single unknown); for example, there may be a single
cost incurred for determining all the unknowns in a particular constraint. The
paper has focused especially on the case of the probabilities being independent;
however, the model and algorithms can be applied in non-independent cases as
well. Our model and algorithms also apply to the case where determining an
unknown may leave it still unknown; unsuccessfully determining an unknown
then needs to be reinterpreted as meaning that we are unable to find out if
the associated tuple satisfies the constraint or not. Our current model allows a
single unknown to be assigned to several tuples; although this can allow some
representation of intensional constraints, we may also wish to allow non-boolean
unknowns, for example, for a constraint X − Y ≥ λ where λ is an unknown
constant.

In many situations, it could be hard to reliably estimate the success proba-
bilities and costs, in particular, if a cost represents the time needed to find the
associated information. However, since the experimental results indicate that
taking costs and probabilities into account can make a very big difference to
the expected cost, it could be very worthwhile making use of even very crude
estimates of costs and probabilities.

680 N. Wilson, D. Grimes, and E.C. Freuder

Summary

The paper defines a particular model for when solving and elicitation are in-
terleaved, which takes costs and success probabilities into account. A formal
representation of such a problem is defined. A dynamic programming algorithm
can be used to solve the problem optimally, i.e., with minimum expected cost;
however this is only computationally feasible for situations in which there are
few unknowns, i.e., very little unknown information. We define and experimen-
tally test a number of algorithms based on backtracking search, with the most
successful (though computationally expensive) ones being based on delaying de-
termining an unknown until more information has been received.

References

1. Faltings, B., Macho-Gonzalez, S.: Open constraint satisfaction. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 356–370. Springer, Heidelberg (2002)

2. Faltings, B., Macho-Gonzalez, S.: Open constraint optimization. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 303–317. Springer, Heidelberg (2003)

3. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artificial Intelli-
gence 161(1–2), 181–208 (2005)

4. Cucchiara, R., Lamma, E., Mello, P., Milano, M.: An interactive constraint-based
system for selective attention in visual search. In: International Syposium on
Methodologies for Intelligent Systems, pp. 431–440 (1997)

5. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.: Con-
straint propagation and value acquisition: why we should do it interactively. In:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-99), pp. 468–477 (1999)

6. Lallouet, A., Legtchenko, A.: Consistencies for partially defined constraints. In:
Proc. International Conference on Tools with Artificial Intelligence (ICTAI’05)
(2005)

7. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Ar-
tificial Intelligence 159(1–2), 1–26 (2004)

8. Fargier, H., Lang, J.: Uncertainty in Constraint Satisfaction Problems: a prob-
abilistic approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 97–104. Springer, Heidelberg (1993)

9. Howard, R., Matheson, J.: Influence diagrams. In: Readings on the Principles and
Applications of Decision Analysis, pp. 721–762 (1984)

10. Puterman, M.: Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Chichester (1994)

11. Tarim, S.A., Manadhar, A., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1), 53–80 (2006)

12. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

	A Cost-Based Model and Algorithms for Interleaving Solving and Elicitation of CSPs
	Introduction
	A Formal Model for Interleaving Solving and Elicitation
	Evaluating a Complete Assignment
	Iterative Expected Cost-Bound Algorithm
	Experimental Testing
	Extensions and Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

