
Local Symmetry Breaking During Search in
CSPs

Beläıd Benhamou and Mohamed Réda Säıdi

Laboratoire des Sciences de l’Information et des Systèmes (LSIS)
Centre de Mathématiques et d’Informatique

39, rue Joliot Curie - 13453 Marseille cedex 13, France
Belaid.Benhamou@cmi.univ-mrs.fr, saidi@cmi.univ-mrs.fr

Abstract. Many research works on symmetry in CSPs appeared re-
cently. But, most of them deal only with the global symmetry1 of the
studied problem and give no strategy that can be used to detect and
eliminate local symmetry2. Eliminating global symmetry is shown to be
useful, but exploiting only these symmetries could not be sufficient to
solve some hard locally symmetrical problems. That is, a problem can
have few or no initial symmetries and become very symmetrical at some
nodes during the search. In this paper we study a general principle of
semantic symmetry and define a syntactic symmetry which is a suffi-
cient condition for semantic symmetry. We define a weakened form of
this syntactic symmetry, and show how to detect and how to eliminate
it locally to increase CSP tree search methods efficiency. Experiments
confirm that local symmetry breaking is profitable for CSP solving.

1 Introduction

As far as we know, the principle of symmetry is first introduced by Krishna-
murty [1] to improve resolution in propositional logic. Symmetries for Boolean
constraints are studied in depth in [2,3,4], the authors showed how to detect them
and proved that their exploitation is a real improvement for several automated
deduction algorithms. The notion of interchangeability in CSPs is introduced in
[5] and symmetry for CSPs are studied in [6,7].

Since that, many research works on symmetry have appeared. For instance,
the static approach used by James Crawford et al. in [8] for propositional logic
theories consists in adding constraints to break the global symmetries of the
problem. This technique has been improved in [9] and extended to 0-1 Integer
Logic Programming in [10].

Since a great number of constraints could be added, some researchers pro-
posed to add the constraints during the search. In [11,12,13], authors post some
conditional constraints which remove the symmetric of the partial interpretation

1 The symmetry of the initial problem appearing at the root of the search tree.
2 The symmetry of the resulting CSP at a node of the search tree corresponding to a

partial instantiation.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 195–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 B. Benhamou and M.R. Säıdi

in case of backtracking. In [14,15,16,17], authors proposed to use each subtree
as a no-good to avoid exploration of some symmetric interpretations and the
group equivalence tree conceptual for value symmetry elimination is introduced
in [18]. These techniques are called respectively SBDS, SBDD and GE-Tree.

Recently, a method which breaks symmetries between the variables of an
Alldiff constraint is studied in [19], a nice method which eliminates all value
symmetries in surjection problems is given in [20], and a work gathering all the
known different symmetry definitions to solution symmetry or to constraint sym-
metry is done in [21]. More recently, in [22], Puget studied a new lex constraints
symmetry breaking method in the term of dynamic lex leader solutions, and in
[23] Walsh studied various new propagators to break various symmetries among
them the one acting simultaneously on both variables and values.

One drawback of all these approaches is that only the symmetry of the initial
problem is considered (the global symmetry) and no method that allows dynamic
detection and exploitation of local symmetry is given. Recently, researchers called
this, conditional symmetry [24,25].

In this paper we developed the general concept of semantic symmetry for CSPs
that Benhamou first initiated in [7]. We also study and extend the principle of
syntactic symmetry that we prove to be a sufficient condition for semantic sym-
metry. We show how local symmetry is detected and eliminated during search,
and show how its removal simplifies the search space of tree search algorithms.

This paper is organized as following: CSP background is given in Section 2.
Semantic symmetry is defined in Section 3. Section 4 discusses the notion of syn-
tactical symmetry which is a sufficient condition for semantic symmetry. Section
5 shows how symmetry is detected and eliminated locally during search and how
a tree search method (here Forward Checking) takes advantage of symmetrical
values to reduce its search space. In section 6 we evaluate the proposed tech-
niques by experimental results and Section 7 concludes the work.

2 Background

A CSP is a quadruple P = (V, D, C, R) where: V = {v1, ..., vn} is a set of n
variables; D = {D1, . . . , Dn} is the set of finite discrete domains associated to
the CSP variables, Di includes the set of possible values of the CSP variable vi,
di denotes the fact that the value d belongs to the domain Di, C = {C1, ..., Cm}
is a set of m constraints each involving a subset of the CSP variables. A bi-
nary constraint is a constraint which involves at most two variables vi, vj , and
is denoted by Cij ; R = {r1, ..., rm} is a set of relations corresponding to the
constraints of C. ri represents the list of value tuples permitted by the con-
straint Ci ∈ C. A binary CSP P (a CSP involving only binary constraints)
can be represented by a constraint graph G(V, E) where the set of vertices
V is the set of the CSP variables and each edge (vi, vj) ∈ E connects the
variables vi and vj involved in the constraint Cij ∈ C. The microstructure
[5,26,21] of the CSP P is a graph MP(V × ∪i∈[1,n]Di, É), where each edge
of É corresponds either to a tuple allowed by a specific constraint or to an

Local Symmetry Breaking During Search in CSPs 197

allowed tuple because there is no constraints between the associated variables.
An instantiation I = (〈v1, a1〉, 〈v2, a2〉, . . . , 〈vn, an〉) is the variable assignment
{v1 = a1, v2 = a2, . . . , vn = an} where a value ai of the domain Di is assigned
to the variable vi . A constraint Ci ∈ C is satisfied by I if the projection of I
on the variables involved in Ci is a tuple of ri. The instantiation I is consistent
if it satisfies all the constraints of C, thus I is a solution of the CSP. An in-
stantiation of a subset of the CSP variables V is called a partial instantiation, it
defines a nogood when it is inconsistent. Each partial instantiation I defines a
node nI in the search tree which corresponds to the local CSP PI resulting from
P by considering I and its induced propagations. An instantiation is total if it
is defined on all the CSP variables. Given a CSP, the main question is to decide
its consistency or to find its set of solutions. We assume that the reader knows a
minimal background on permutations and groups. For the sake of simplicity we
restricted the study to binary CSPs, however, the notion of symmetry remains
valuable for non-binary CSPs as well.

3 Semantic Symmetry

Because we are interested in two problems in CSPs: the problem of finding a
solution and the problem of finding all the solutions of the CSP, we define two
levels of semantic symmetry.

Definition 1 (Semantic symmetry for consistency). Two variable-value
pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj are symmetrical for consistency iff
the following assertions are equivalent:

1. There is a solution of the CSP which assigns the value bi to the variable vi;
2. There is a solution of the CSP which assigns the value cj to the variable vj.

Variable-value pairs can be not only symmetrical for consistency, but symmetri-
cal for the set of all solutions as well. Thus, if sol(P) denotes the set of solutions
of the CSP P , then we define a second level of semantic symmetry as follows:

Definition 2 (Semantic symmetry for all solutions). Two variable-value
pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj are symmetrical for sol(P) if and
only if each solution of the CSP assigning the value bi to vi can be mapped into
a solution assigning the value cj to vj and vice-versa.

This means that the set of solutions in which the assignment vi = bi participates
is isomorphic to the one in which vj = cj participates. These are symmetrical
solutions.

Remark 1. 1. If the variables vi and vj designate a same variable, then both
previous definitions concern symmetry of values of a same domain.

2. Symmetry for all solutions implies symmetry for consistency.

Identifying semantic symmetry is clearly time consuming, since this requires
solving the problem. We study in the next section the syntactical symmetry no-
tion which is more tractable computationally and which is a sufficient condition
to handle semantic symmetry.

198 B. Benhamou and M.R. Säıdi

4 Syntactic Symmetry

In [7], the author studied syntactical symmetry of values of a same CSP domain
variable, here syntactic symmetry is extended to the possible variable-value pairs
of the CSP. This leads to a similar definition as the one of constraint symmetry
given in [21]

Definition 3. A syntactical symmetry of a CSP P = (V, D, C, R) having the
microstructure MP , is a mapping σ : V × ∪i∈[1,n]Di −→ V × ∪i∈[1,n]Di, that
preserves the edges and the non-edges of MP .

Remark 2. A syntactical symmetry of a CSP P is an automorphism of its mi-
crostructure MP . The set of syntactic symmetries of a CSP P is identical to
the set of its constraint symmetries [21] which is equivalent to the automor-
phism group Aut(MP) of its microstructure. Syntactical symmetries preserve
the solutions of the CSP.

Definition 4. Two variable-value pairs 〈vi, bi〉 ∈ V × Di and (vj , cj) ∈ V × Dj

are syntactically symmetrical iff there exists a syntactical symmetry σ of P, such
that σ(〈vi, bi〉)=〈vj , cj〉.

Theorem 1. If two variable-value pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj

are syntactically symmetrical, then they are semantically symmetrical for all
solutions of the CSP.

Proof. It is based on the fact that syntactical symmetry preserves solutions.

4.1 The Weakened Syntactic Symmetry Conditions

A weakened symmetry condition has been defined in [27,28] for the restricted
framework of Not-equals CSPs and had been shown to be useful in practice. Here,
we show how to extend this weakened condition to General CSPs. Before doing
that, we define the notion of assignment trees and failure trees corresponding to
the enumerative search method used to prove the consistency of a considered CSP.

Definition 5. We call an assignment tree of a CSP P corresponding to a given
search method and a fixed variable ordering, a tree which gathers the history of
all the variable assignments made during search, where the nodes represent the
variables of the CSP and where the edges outgoing from a node vi are labeled by
the different values used to instantiate the corresponding CSP variable vi.

The root of the tree is the first variable in the ordering. In this work, the con-
sidered search method is Forward Checking [29].

In an assignment tree of a CSP, a path connecting the root of the tree to a
node defines a partial instantiation I of the CSP. The variables of the partial
instantiation I are the nodes of the considered path. The last node nI of the
path corresponds to the last affected variable in the instantiation or to a variable
having an empty domain.

Local Symmetry Breaking During Search in CSPs 199

We associate to each inconsistent partial instantiation, corresponding to a
given path in the assignment tree, a failure tree defined as follows:

Definition 6. Let T be an assignment tree of the CSP P, I = (〈v1, a1〉, 〈v2, a2〉,
. . . , 〈vi, ai〉) an inconsistent partial instantiation of the variables v1,v2,...,vi cor-
responding to the path {v1, v2, ..., vi} in T . We call a failure tree of the instanti-
ation I, the sub-tree of T denoted by TI such that:

1. The root of the tree T and the root of the sub-tree TI are joined by the path
corresponding to the instantiation I;

2. All the CSP variables corresponding to the leaf nodes of TI have empty do-
mains.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

..... .

.

.

.

.
�

�
�

�

�
�

�
�

�
�

�
�

�
�

��
�

�
�
v3

�=
�=

a,b,c

a,b,c a,b,c

a,b,c c,d

�=

v4

v5

v2

v1

�=

�=

�=

�=

�= �� �

� � � �

� � � � � �

� �

�

�

�

�

�

. ��

��

��

��

��

��
		

		

��

��

�
��

��

�

v1

cba

v2 v2 v2

b c a c a b

v3 v3 v3 v3 v3 v3

c b c a b a

v4 v4 v4 v4 v4 v4

TI=(b,a)

Fig. 1. The constraint graph of a graph coloring instance, its assignment tree and the
failure tree of I=(〈v1, b〉, 〈v2, a〉)

Example 1. Take the CSP on the left part of Figure 1 and apply a Forward
Checking process on it w.r.t the variable ordering {v1, v2, v3, v4, v5}. The right
part of Figure 1 illustrates the assignment tree of the considered CSP. If we
take the partial instantiation I = (〈v1, b〉, 〈v2, a〉), then the failure tree TI of the
instantiation I is the part of the assignment tree shown in a box.

We can now give the weakened conditions of syntactic symmetry. The main idea
is to weaken the syntactic symmetry conditions when an inconsistent partial
instantiation is generated during the search. That is, for a local CSP PI where
the partial instantiation I is inconsistent, the conditions of syntactic symmetry
(Definition 3) are restricted to only the variables involved in the failure tree TI ,
rather than to all the un-instantiated variables.

Theorem 2. Let P(V, C, D, R) be a CSP, I0 = (〈v1, a1〉, . . . , 〈vi−1, ai−1〉) a
partial instantiation of i − 1 variables instantiated before the current variable
vi such that the extension I = I0

⋃
{〈vi, ai〉} is inconsistent, TI is the failure

tree of I and V ar(TI) the set of the variables corresponding to the nodes of
TI. If 〈vi, ai〉 is syntactically symmetrical to 〈vj , bj〉 in the CSP ṔI0 derived
from PI0 by restricting its set of variables to V ar(TI)∪{vi}, then the extension
J = I0

⋃
{〈vj , bj〉} is inconsistent.

200 B. Benhamou and M.R. Säıdi

Proof. The CSP ṔI0 is PI0 where the set of variables is restricted to V ar(TI)∪
{vi}. By the hypothesis, TI is a failure tree of I in P . This implies that the
assignment of the value ai to vi leads to a failure in ṔI0 . In other words, 〈vi, ai〉
does not participate in any solution of ṔI0 . By the hypothesis, the pair 〈vi, ai〉 is
symmetrical to 〈vj , bj〉 in ṔI0 . This implies that 〈vj , bj〉 does not participate in
any solution of ṔI0 . Thus 〈vj , bj〉 does not participate in any solution of PI0 as
well. This implies that the partial instantiation J = I0

⋃
{〈vj , bj〉} is inconsistent

in P . (QED)

Remark 3. In the case of a failure during search, the symmetry conditions are
restricted to only the variables participating in the failure.

Theorem 2 gives an interesting weakening of the conditions of syntactic sym-
metry that we can use when the current partial instantiation leads to an in-
consistency. By using the new conditions, some symmetries not captured by the
normal conditions can result from these weakened conditions. Let us consider
for instance the CSP of Figure 1. If we take the partial instantiation I0 = 〈v1, b〉
and the inconsistent extension I=I0∪ {〈v2, a〉}, then the pairs 〈v2, a〉 and 〈v2, c〉
are symmetrical. That is, the two values a and c of the domain of the current
variable v2 are symmetrical w.r.t the weakened conditions (Theorem 2) applied
on the CSP ṔI0 involving the set of variables V ar(TI)∪v2={v2, v3, v4}, whereas
the normal symmetry conditions are not verified on the CSP PI0 involving the
set of all un-instantiated variables {v2, v3, v4, v5}. The branch corresponding to
the assignment of c to v2 is not explored during search thanks to Theorem 2.
This defines a more powerfull symmetry cut that we use to shorten CSP search
trees.

Besides, this weakening property can be used in other known symmetry break-
ing methods [2,3,4]. That is, symmetry conditions have to be checked only on
the variables involved in the failure when a partial instantiation is shown to be
inconsistent.

Below we show how local symmetry is detected and eliminated, and how a
tree search method (Forward Checking) can take advantage of symmetry.

5 Local Symmetry Detection and Exploitation

5.1 Symmetry Detection and Breaking

Local symmetries have to be detected dynamically at each node of the search
tree. Dynamic symmetry detection had been studied in CSPs, a local syntactic
domain symmetry search method had been given in [7].

As an alternative to this symmetry search method, we adapted Saucy [9] to
detect local syntactic symmetries and show how to break such symmetries dur-
ing search. Saucy is a tool for computing the automorphism group of a graph.
Other tools like Nauty [30] or the most recent methods AUTOM [31] or the one
described in [32] can be adapted to search local symmetry. It is shown in [31]
that AUTOM is the best method. Because the source code of AUTOM is not

Local Symmetry Breaking During Search in CSPs 201

free, we chose Saucy. Since the syntactic symmetry group of a CSP P is identical
to the automorphism group of its microstructure MP , we can use Saucy on MP
to detect the syntactic symmetry group of P . Saucy returns a set of generators
Gen of the symmetry group from which we can deduce each symmetry. Saucy
offers the possibility to color the microstructure such that, a node is allowed to
be permuted with another node if they have the same color. This restricts the
permutations to the nodes having the same color. We use this coloration possibil-
ity to guide the symmetry search and detect local value symmetries. The source
code of Saucy can be found at (http://vlsicad.eecs.umich.edu/BK/SAUCY/).

Symmetry detection: Consider a CSP P , and a partial instantiation I of
P , defining a state in the search corresponding to the current node nI . The
main idea is to maintain dynamically the microstructure MPI of the CSP PI
corresponding to the local sub-problem defined at each current node nI , then
color the microstructure MPI and compute its automorphism group Aut(MPI).
The CSP PI can be viewed as a new problem corresponding to the unsolved part.
Computing all the automorphisms of the dynamic microstructure at each node
of the search tree may be expensive. To remedy this, two coloration strategies
of the microstructure are considered:

1. The multi-colors-strategy: A first compromise is to limit permutations
to only values of the same domains. To do that, a color is associated to each
variable. Every node of the microstructure belonging to a variable is colored
with the same color. Now by applying Saucy on this colored microstructure
we can get the generator set Gen of the symmetry sub-group existing between
values of the same domains of the CSP.

2. The two-colors-strategy: A second compromise is to associate to the cur-
rent variable vi (under instantiation) one color and all the other variables
another color. That is, we color the dynamic microstructure MPI with two
colors. All the nodes of the microstructure belonging to the current variable
vi have the first color and all the other nodes the second one. Finally ap-
ply Saucy to compute the generators of the automorphism sub-group corre-
sponding to this coloration. This returns the generators Gen of the symmetry
group allowing variable-value permutations on the other variables different
from vi, but the values of vi are permuted together.

Remark 4. The total local symmetry group is reached when using only one color
on the microstructure MPI .

Symmetry elimination: We use Theorem 2 to prune search spaces of tree search
methods. Indeed, if the assignment 〈vi, bi〉 of the current variable vi at a given node
nI of the search tree is shown to participate in no solution of the CSP P , then all
the pairs 〈vj , cj〉 which are symmetrical to 〈vi, bi〉 in PI do not (i.e. these pairs are
the ones corresponding to the orbit of the conflicted pair 〈vi, bi〉 that can be com-
puted by using only the symmetry group generators). Then we remove the value
cj from the domain of the un-instantiated variable vj , and prune the sub-space
which corresponds to its assignment to vj in the search tree.

202 B. Benhamou and M.R. Säıdi

If the variable vi and vj are the same (as in our implementation), then the
previous reasoning handles symmetries between values of the domain Di. The
domain Di of the current variable vi is partitioned into sub-sets of symmetrical
values w.r.t the detected local symmetries at the corresponding node of the
search tree. To avoid generating local symmetrical solutions, we consider one
value from each sub-set of symmetrical values in Di. If we need to check CSP
consistency only, we stop the search when a first solution is found.

5.2 Symmetry Advantage in Tree Search Algorithms

Now we are in the position to show how these symmetrical values can be used
to increase the efficiency of CSP tree search algorithms. We choose in our im-
plementation the Forward Checking method to be the baseline method that we
want to improve by local symmetry elimination. The resulting procedure called
FC-sym is given in Figure 2.

If I is an inconsistent partial instantiation in which the assignment 〈vi, di〉 of
the current variable vi is shown to participate in no solutions of the CSP P , then
according to Theorem 2, all the pairs 〈vj , dj〉 which are symmetrical to 〈vi, di〉 in
PI do not. Thus we remove dj from the domain of vj , and prune the sub-space
which corresponds to its assignment to vj .

The function orbit(〈vk+1, dk+1〉, Gen) is elementary, it computes the orbit of
the pair 〈vk+1, dk+1〉 from the set of generators Gen returned by Saucy.

6 Experiments

Now, we shall investigate the performances of our search techniques by exper-
imental analysis. We choose for our study some classical problems to show the
local symmetry behavior in CSP resolution. We expect that symmetry breaking
will be more profitable in real-life applications. Here, we tested and compared
four methods:

1. No-sym: search without symmetry breaking;
2. Global-sym: search with global symmetry breaking restricted to values of

a same domain. The same symmetries as the ones considered in the GE-
tree method, with a slight difference that we break only global symmetries
between values of a same domain;

3. Local-sym1: search with local value symmetry breaking (the weakened sym-
metry). This method implements the multi-colors strategy (see Section 5.1).

4. Local-sym2: search with restricted local variable-value symmetry breaking
(the weakened symmetry). This method implements the two-colors strategy
(see Section 5.1).

on different problems: random graph coloring problems, Dimacs graph coloring
instances and n-Queens problems. An implementation of the Local−sym1 strat-
egy in GECODE system is successfully used in [33] to break local symmetry in
the subgraph pattern matching problem. The common baseline search method

Local Symmetry Breaking During Search in CSPs 203

Procedure FC-sym(D, I, k);{I = [〈v1, d1〉, 〈v2, d2〉, . . . , 〈vk, dk〉]}
begin

if k = n then I is a solution, return(I)
else
begin

for each vi ∈ V , such that Cik ∈ C, vi ∈future(vk) do
for each value di ∈ Di do

if (di, dk) /∈ rik then
delete di from Di;

if ∀vi ∈ future(vk), Di �= ∅ then
begin

vk+1=next-variable(vk)
repeat

take dk+1 ∈ Dk+1

Dk+1 = Dk+1 − {dk+1}
I=I ∪ {〈vk+1, dk+1〉};
J =FC-sym(D, I, k + 1);
I=I-{〈vk+1, dk+1〉};
if J ∈ Sol(P) then Gen=Saucy(PI);
else Gen=Saucy(PV ar(TI)∪vk+1);
SymClass(〈vk+1, dk+1〉)=orbit(〈vk+1, dk+1〉,Gen);
Dk+1=Dk+1-SymClass(〈vk+1, dk+1〉)

until Dk+1 = ∅
end

end
end;

Fig. 2. Forward Checking method with symmetry

for the four previous methods is Forward Checking. The complexity indicators
are the number of nodes of the search tree and the CPU time. The time needed
for computing symmetries is added to the total CPU time. The source codes are
written in C and compiled on a Pentium 4, 2.8 GHZ and 1 Go of RAM.

6.1 Random Graph Coloring Problems

Random graph coloring problems are generated with respect to the following
parameters: (1) n : the number of vertices (variables), (2) Colors: the number
of colors (domain values) and (3) d: the density which is a number between 0
and 1 expressed by the ratio : the number of constraints (the number of edges
in the constraint graph) to the number of all possible constraints. For each test
corresponding to some fixed values of the parameters n, Colors and d, a sample
of 100 instances are randomly generated and the measures (CPU time, nodes)
are taken on the average.

Figure 3, shows the performances of the four methods in number of nodes of
the search tree, respectively, in CPU time (in seconds) on random graph coloring
problems, whose number of variables is fixed to n = 15 and the density to d = 0.9.
We reported here experiments on instances having hight density, because they

204 B. Benhamou and M.R. Säıdi

Fig. 3. Node and Time curves where n = 15 and d = 0.9

are the hardest instances, and symmetry presents a similar behavior for average
and weak density instances. The curves on the left are plotted in a logarithmic
scale, they represent the performances in number of nodes w.r.t the number
of colors. The ones on the right are plotted in the usual scale and express the
performances in CPU time w.r.t the number of colors. As expected, we can see
that all the methods exploiting symmetry outperform dramatically the search
without symmetry (No-sym) in both the number of nodes and the CPU time.
We can also see on the node curves that local symmetry elimination (Local-sym1
and Local-sym2) reduces more the search tree than global symmetry elimination
(Global-sym). That is, local symmetries are more frequent during the search than
the global symmetries stabilizing the partial instantiation. Both Local-sym1 and
Local-sym2 have the same behavior in number of nodes; their node curves are
almost identical. We can distinguish on the CPU time curve of No-sym a critical
region where the instances are harder. All the methods using symmetry solved
these instances in less than 0.1 seconds, then their CPU time curves are confused
with x-axis and do not appear.

Since Figure 3 does not allow a CPU time comparison of the methods ex-
ploiting symmetry, we reported in Figure 4 the practical results of the methods:
Global-sym, Local-sym1 and Local-sym2, on the random graph coloring problem
where the number of variables is increased to n = 35 and where we keep the
same density (d = 0.9) as in Figure 3.

Fig. 4. Node and Time curves of the three symmetry methods on random graph col-
oring where n = 35 and d = 0.9

Local Symmetry Breaking During Search in CSPs 205

We can see on the node curves (the curves on the left plotted in a logarithmic
scale) that both Local-sym1 and Local-sym2 detect and eliminate more sym-
metries than the Global-sym method. The reason is that the local symmetry
detected at a node during the search by both Local-sym1 and Local-sym2 in-
cludes the global symmetry stabilizing the partial instantiation at that node
exploited by Global-sym. The node curves of both Local-sym1 and Local-sym2
compare well. From the CPU time curves (the curves on the right), we can
see that both Local-sym1 and Local-sym2 are faster than Global-sym. Near the
peak of difficulty, Local-sym2 seems to be 12 times faster than Global-sym and
Local-sym1 about 24 times faster than Global-sym. Therefore, Local symmetry
elimination is profitable for solving random graph coloring instances in the hard
region and outperforms dramatically global symmetry breaking on these prob-
lems. We can also see on the CPU time that Local-sym1 improves Local-sym2,
thus the good compromise looks to be the multi-color strategy corresponding to
domain value symmetry. These remarks will be confirmed by the experiments
on Dimacs benchmarks in the next section.

6.2 Dimacs Graph Coloring Benchmarks

Here, we tested and compared the four methods on some graph coloring bench-
marks taken from the Dimacs challenge (http://mat.gsia.cmu.edu/COLOR04/).

Table 1 shows the results of the methods on some of the benchmarks. It gives
the instance, the chromatic number found (k), the number of nodes of the search
tree and the CPU time for each method. We seek for each instance the minimal
number k of colors needed to color the vertices of the corresponding graph (called
the chromatic number). The search of the chromatic number consists in proving
the consistency of the problem with k colors (the existence of a k-coloration
of the graph); and in proving its inconsistency when using k − 1 colors (not
colorable). The symbol ”-” means that the corresponding method does not solve
the instance in one hour.

Table 1. Results on some Dimacs graph coloring benchmarks

No-sym Global-sym Local-sym1 Local-sym2
Instance k Nodes T ime Nodes T imes Nodes T ime Nodes T ime

myciel4 5 30,976 0.16 2,764 0.03 1,260 0.01 1,260 0.04
myciel5 6 - - 8,040,259 59.84 2,413,556 22.21 2,406,945 25.36
anna 11 - - 3,403 0.59 168 0.05 168 0.08
david 11 - - 3,896 0.23 124 0.03 124 0.03
queen7 7 7 2,452 0.01 513 0.02 502 0.01 502 0.0
queen8 8 9 - - 10,629,131 262.54 1,399,436 29.7 1,396,774 30.16
school1 14 - - - - 76,192 17.28 75,985 17.85
school1 nsh 14 - - - - 1,487,287 257.57 1,486,523 270.4
2-Insertion 3 4 832,150 1.02 277,408 0.73 135,953 0.48 115,737 0.52
2-FullIns 3 5 2,294,396 7.63 193,347 1.14 49,202 0.59 48,076 0.65
mugg88 1 4 - - - - 2,882,284 53.91 2,882,284 93.55
mugg88 25 4 - - - - 881,784 6.74 881,784 9.4
mugg100 1 4 - - - - 3,325,453 24.85 3,325,453 40.15
mugg100 25 4 - - - - 2,727,178 17.3 2,727,178 30.92
zeroin.i.1 49 - - - - 268 7.0 268 35.49
zeroin.i.2 30 - - - - 262 0.75 262 3,675
zeroin.i.3 30 - - - - 262 0.76 262 3,675
mulsol.i.2 31 - - - - 237 0.85 237 10.14
mulsol.i.3 31 - - - - 237 0.9 237 10.14
le450 5a 5 178,753 13.88 170,123 13.75 167,787 32.0 167,703 32.23
le450 5b 5 1,349 0.11 1,110 0.09 927 0.11 927 0.19
le450 5c 5 1,984 0.15 1,984 0.17 1,983 0.31 1,975 0.34
le450 5d 5 5,795 0.54 4,563 0.34 3,452 0.62 3,452 0.68
DSJC125.1 5 55,358 0.85 43,773 1.34 40,809 1.44 40,809 1.48

206 B. Benhamou and M.R. Säıdi

Table 1 shows that both No-sym and Global-sym are not able to solve several
instances under the time limit, but Global-sym is better than No-sym in both
numbers of nodes and CPU time on these problems. We can see that both Local-
sym1 and Local-sym2 are in general better than Global-sym in both the number
of nodes and the CPU time. That is, local symmetry is more profitable than
global symmetry on these problems. We can also see that Local-sym1 eliminates
the same symmetries as the ones eliminated by Local-sym2, but Local-sym1
is faster than Local-sym2. This confirms that eliminating local domain value
symmetries by using the multi-color strategy implemented in Local-sym1 is the
best compromise on these problems.

6.3 The n-Queens Problems

Finding all solutions of the n-queens problem is still a challenge. We compared
the four methods on some instances of this problem.

Table 2 summarizes the results obtained. For each method we give the num-
ber of computed solutions (Sols), the number of nodes, and the CPU time in
seconds. Note that for the methods exploiting symmetry, the number of solu-
tions (Sols) is the number of non-symmetrical solutions found w.r.t the applied
symmetry breaking strategy. The number of solutions of No-sym is the total set
of solutions of the problem. We can see that both Local-sym1 and Local-sym2
represent the set of solutions slightly in a more compact way than Global-sym.
This means that Local-sym1 and Local-sym2 compact some local symmetrical
solutions in addition to the global symmetrical ones compacted by Global-sym.
We can also see that Local-sym2 detects some local symmetrical solutions which
are not considered by Local-sym1. This is due to some variable-value symmetries
considered in Local-sym2 that detect some local symmetrical solutions which are
not detected in Local-sym1. Now, if we compare globally the methods in number
of solutions, in the number of nodes and in CPU time, the method Global-sym
seems to be the best on the average. Indeed, global symmetry is sufficient to solve
efficiently the n-queens problems and local value symmetry does not abound like

Table 2. Results on the n-queens problem

No-sym Global-sym
n Sols Nodes Time Sols Nodes Times
8 92 1,360 0.0 46 680 0.01
9 352 5,399 0.0 179 2,800 0.0
10 724 19,744 0.03 362 9,872 0.03
11 2,680 85,939 0.1 1,382 43,958 0.07
12 14,200 416,828 0.28 7,100 208,414 0.25
13 73,712 2,154,845 2.69 37,361 1,093,606 1.99
14 365,596 11,799,746 46.95 51,726 5,899,873 20.65

Local-sym1 Local-sym2
n Sols Nodes Time Sols Nodes Times
8 45 664 0.01 45 662 0.01
9 172 2,645 0.02 168 2,625 0.05
10 355 9,656 0.07 353 9,640 0.08
11 1,309 42,154 0.25 1,305 42,078 0.31
12 6,883 204,901 2.05 6,839 203,611 2.19
13 35,525 1,055,366 11.44 35,312 1,053,053 11.58
14 44,334 5,777,244 69.6 43,257 5,765,594 75.6

Local Symmetry Breaking During Search in CSPs 207

in the graph coloring. We believe that local variable symmetry will be more prof-
itable for n-queens.

7 Discussion and Conclusions

Here, we extended symmetry detection and elimination to local symmetry. That
is, the symmetries of each sub-CSP defined at a given node of the search tree
and which is derived from the initial CSP by considering the partial instantiation
corresponding to that node. We adapted Saucy to compute this local symmetry
by maintaining dynamically the microstructure of the sub-CSP defined at each
node of the search tree. Unlike the methods using GAP tools, here local symme-
try detection is fully automated. Saucy is called with the microstructure of the
local sub-CSP as the input graph, and then return the set of generators of the
automorphism group of the microstructure which is shown to be equivalent to
the local symmetry group of the considered sub-CSP. Detecting and exploiting
all the local symmetry groups of the different nodes generated during the search
may be time consuming. To remedy this, we proposed two coloration strategies in
order to guide and restrict the symmetry search to domain value permutations
(the multi-color strategy) and to some restricted variable-value permutations
(the two color strategy). Both local symmetry strategies are implemented and
exploited in the tree search method FC to prove either CSP consistency or to
compute the not-local symmetrical solutions of the CSP. Experimental results
confirmed that local symmetry breaking is profitable for CSP solving and im-
proves global symmetry breaking in most of the considered problems.

As a future work, we are looking to implement a one-color symmetry detection
strategy, then experiment it and compare it with the two strategies studied in
this work.

An other interesting point, is to extend our approach to variable local symme-
try breaking. One can try to detect local variable symmetries and post dynamic
constraints to break them, it will be important to consider the possibilities of
combining local variable and local value symmetries.

Finally, we are interested to adapt our symmetry results for other look-ahead
CSP methods like MAC, and export local symmetry breaking to other research
domains like biology or operational research to tackle real life applications.

References

1. Krishnamurty, B.: Short proofs for tricky formulas. Acta informatica 22, 253–275
(1985)

2. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus
and application. In: Eleventh International Conference on Automated Deduction,
Saratoga Springs, NY, USA (1992)

3. Benhamou, B., Sais, L.: Tractability through symmetries in propositional calculus.
Journal of Automated Reasoning (JAR) 12, 89–102 (1994)

208 B. Benhamou and M.R. Säıdi

4. Benhamou, B., Sais, L., Siegel, P.: Two proof procedures for a cardinality based
language. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 94. LNCS,
vol. 775, pp. 71–82. Springer, Heidelberg (1994)

5. Freuder, E.: Eliminating interchangeable values in constraints satisfaction prob-
lems. In: Proc AAAI-91, pp. 227–233 (1991)

6. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689. Springer, Hei-
delberg (1993)

7. Benhamou, B.: Study of symmetry in constraint satisfaction problems. In: Borning,
A. (ed.) PPCP 1994. LNCS, vol. 874. Springer, Heidelberg (1994)

8. Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR’96. Principles of Knowledge Representation and Reason-
ing, pp. 148–159. Morgan Kaufmann, San Francisco, California (1996)

9. Aloul, F.A., Ramani, A., Markov, I.L., Sakallak, K.A.: Solving difficult sat instances
in the presence of symmetry. IEEE Transaction on CAD 22(9), 1117–1137 (2003)

10. Aloul, F.A., Ramani, A., Markov, I.L., Sakallak, K.A.: Symmetry breaking for
pseudo-boolean satisfiabilty. In: ASPDAC’04, pp. 884–887 (2004)

11. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaf-
far, J. (ed.) Principles and Practice of Constraint Programming – CP’99. LNCS,
vol. 1713. Springer, Heidelberg (1999)

12. Gent, I.P., Smith, B.M.: Symmetry breaking during search in constraint program-
ming. In: Proceedings ECAI’2000 (2000)

13. Gent, I., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking dur-
ing search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430.
Springer, Heidelberg (2002)

14. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh,
T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–82. Springer, Heidelberg (2001)

15. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–108. Springer, Heidelberg (2001)

16. Puget, J.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)

17. Gent, I.P., Hervey, W., Kesley, T., Linton, S.: Generic sbdd using computational
group theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833. Springer, Heidelberg
(2003)

18. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.A.: Tractable symmetry
breaking using restricted search trees. In: Proceedings of ECAI’04, pp. 211–215
(2004)

19. Puget, J.: Breaking symmetries in all diffrent problems. In: Proceedings of IJCAI,
pp. 272–277 (2005)

20. Puget, J.: Breaking all value symmetries in surjection problems. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

21. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry defini-
tions for constraint satisfaction problems. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 17–31. Springer, Heidelberg (2005)

22. Puget, J.: Dynamic lex constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 453–467. Springer, Heidelberg (2006)

23. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)

24. Gent, I.P., Kelsey, T., Linton, S.A., McDonald, I., Migeul, I., Smith, B.: Conditional
symmetry breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 256–270.
Springer, Heidelberg (2005)

Local Symmetry Breaking During Search in CSPs 209

25. Zampelli, S., Deville, Y., Dupont, P.: Symmetry breaking in subgraph pattern
matching. In: SymCon’06, pp. 35–42 (2006)

26. Jegou, P.: Decomposition of domains based on the micro-structure of finite con-
straint satisfaction problems. In: Proceedings AAAI’93 (1993)

27. Benhamou, B., Säıdi, M.R.: Reasoning by dominance in not-equals binary con-
straint networks. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 670–674.
Springer, Heidelberg (2006)

28. Benhamou, B., Säıdi, M.R.: Some improvements in symmetry elimination in not-
equals binary constraint networks. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 1–7. Springer, Heidelberg (2005)

29. Haralik, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence 14, 263–313 (1980)

30. McKay, B.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)
31. Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek,

P. (ed.) CP 2005. LNCS, vol. 3709, pp. 474–488. Springer, Heidelberg (2005)
32. Mears, C., de la Banda, M.G., Wallace, M.: On implementing symmetry detection.

In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 1–8. Springer, Heidelberg
(2006)

33. Zampelli, S., Deville, Y., Säıdi, M.R., Benhamou, B., Dupont, P.: Breaking local
symmetries in subgraph pattern matching. In: The International Symmetry Con-
ference (ISC 2007), Edinburgh, SCOTLAND (2007)

	Local Symmetry Breaking During Search in CSPs
	Introduction
	Background
	Semantic Symmetry
	Syntactic Symmetry
	The Weakened Syntactic Symmetry Conditions

	Local Symmetry Detection and Exploitation
	Symmetry Detection and Breaking
	Symmetry Advantage in Tree Search Algorithms

	Experiments
	Random Graph Coloring Problems
	Dimacs Graph Coloring Benchmarks
	The n-Queens Problems

	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

