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Abstract. This paper introduces a geometrical constraint kernel for handling the
location in space and time of polymorphic k-dimensional objects subject to vari-
ous geometrical and time constraints. The constraint kernel is generic in the sense
that one of its parameters is a set of constraints on subsets of the objects. These
constraints are handled globally by the kernel.

We first illustrate how to model several placement problems with the constraint
kernel. We then explain how new constraints can be introduced and plugged into
the kernel. Based on these interfaces, we develop a generic k-dimensional lexi-
cographic sweep algorithm for filtering the attributes of an object (i.e., its shape
and the coordinates of its origin as well as its start, duration and end in time) ac-
cording to all constraints where the object occurs. Experiments involving up to
hundreds of thousands of objects and 1 million integer variables are provided in
2, 3 and 4 dimensions, both for simple shapes (i.e., rectangles, parallelepipeds)
and for more complex shapes.

1 Introduction and Presentation of the Kernel

This paper introduces a constraint kernel geost(k,O,S, C) for handling in a generic
way a variety of geometrical constraints C in space and time between polymorphic
k-dimensional objects O (k ∈ N

+), where each object takes a shape among a set of
shapes described by S during a given time interval and at a given position in space.
This line of research can be seen as a continuation and generalisation of previous work
on non-overlapping parallelepipeds [1,2,3,4].

Each shape is defined as a finite set of shifted boxes, where each shifted box is
described by a box in a k-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box s = sbox(sid , t[], l[]) ∈ S is
an entity defined by its shape id s.sid , shift offset s.t[d], 0 ≤ d < k, and sizes s.l[d]
(s.l[d] > 0, 0 ≤ d < k). All attributes of a shifted box are integer values. Then, a shape
is defined as the union of shifted boxes sharing the same shape id. Each object o =
object(id , sid , x[], start , duration , end) ∈ O is an entity defined by its unique object
id o.id , shape id o.sid , origin o.x[d], 0 ≤ d < k, start in time o.start , duration in time
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o.duration (o.duration ≥ 0) and end in time o.end .1 All these attributes correspond
to domain variables.2 Typical constraints from the list of constraints C can express, for
instance, the fact that a given subset of objects from O do not pairwise overlap or that
they are all included within a given bounding box. Constraints always have two first
arguments Ai and Oi (followed by possibly some additional arguments) which resp.
specify:

– A list of distinct dimensions (integers in [0, k − 1]) that the constraint considers.
– A list of identifiers of the objects to which the constraint applies.

Example 1. Assume we have a 3D placement problem (i.e., k = 3) involving a set of paral-
lelepipedsP and one subset P ′ ofP , where we want to express the fact that (1) no parallelepipeds
of P should overlap, and (2) no parallelepipeds of P ′ should be piled. Constraints (1) and (2)
resp. correspond to non-overlapping([0, 1, 2],P) and to non-overlapping([0, 1],P ′). Within the
first non-overlapping constraint, the argument [0, 1, 2] expresses the fact that we consider a
non-overlapping constraint according to dimensions 0, 1 and 2 (i.e., given any pair of paral-
lelepipeds p′ and p′′ of P there should exist at least one dimension d (d ∈ {0, 1, 2}) where
the projections of p′ and p′′ on d do not overlap). Similarly, the argument [0, 1] of the sec-
ond non-overlapping constraint expresses the fact that, given any pair of parallelepipeds p′ and
p′′ of P ′, there should exist at least one dimension d (d ∈ {0, 1}) where p′ and p′′ do not
overlap).

geost(k,O,S, C) is defined in the following way: given a constraint ctr i(Ai,Oi) from
the list of constraints C between a subset of objects Oi ⊆ O according to the attributes
Ai, letMCi denote the sets of cliques stemming from the objects ofOi that all overlap
in time.3 The constraints of geost(k,O,S, C) hold if and only if ∀ctr i ∈ C, ∀OMCi

∈
MCi : ctr i(Ai,OMCi) holds.

Example 2. Fig. 1 presents a typical example of a dynamic 2D placement problem where one
has to place four objects, in time and within a given box, so that objects that overlap in time do
not overlap in space. Parts (A), (B), (C) and (D) resp. represent the potential shapes associated
with the four objects to place, where the origin of each object is represented by a black square �.
Part (E) shows the position of the four objects of the example as the time varies, where the first,
second, third and fourth objects were resp. assigned shapes S1, S5, S8 and S9:

– During the first time interval [2, 9] we have only object O1 at position (1, 2).
– Then, at instant 10 objects O2 and O3 both appear. Their origins are resp. placed at positions

(2, 1) and (4, 1).
– At instant 14 object O1 disappears and is replaced by object O4. The origin of O4 is fixed at

position (1, 1). Finally, at instant 22 all three objects O2, O3 and O4 disappear.

The corresponding arguments are:

1 The time dimension is treated specially since the duration attribute may not be fixed, which
is not the case for the sizes of a shifted box. Also, the geometrical constraints only apply on
objects that intersect in time.

2 A domain variable v is a variable ranging over a finite set of integers denoted by dom(v); let
v and v resp. denote the minimum and maximum possible values for v.

3 In fact, these cliques (of an interval graph) are only used for defining the declarative semantics
of geost ’s constraints.
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01 geost(2,
02 [object(1,1,[1,2], 2,12,14), object(2,5,[2,1],10,12,22),
03 object(3,8,[4,1],10,12,22), object(4,9,[1,1],14, 8,22)],
04 [sbox(1,[0,0],[2,1]), sbox(1,[0,1],[1,2]), sbox(1,[1,2],[3,1]),
05 sbox(2,[0,0],[3,1]), sbox(2,[0,1],[1,3]), sbox(2,[2,1],[1,1]),
06 sbox(3,[0,0],[2,1]), sbox(3,[1,1],[1,2]), sbox(3,[2,2],[3,1]),
07 sbox(4,[0,0],[3,1]), sbox(4,[0,1],[1,1]), sbox(4,[2,1],[1,3]),
08 sbox(5,[0,0],[2,1]), sbox(5,[1,1],[1,1]), sbox(5,[0,2],[2,1]),
09 sbox(6,[0,0],[3,1]), sbox(6,[0,1],[1,1]), sbox(6,[2,1],[1,1]),
10 sbox(7,[0,0],[3,2]), sbox(8,[0,0],[2,3]), sbox(9,[0,0],[1,4])],
11 [non-overlapping([0,1],[1,2,3,4]),included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argument 2 is the number of dimensions of the placement space we consider.
Its second and third arguments resp. describe the four objects and the shifted boxes of
the nine shapes we have. For instance, the 3 boxes of shape S1 (depicted by 3 thick
rectangles in Part (A) of Fig. 1) respectively correspond to the 3 boxes declared at
line 04 of the example. Finally, its last argument gives the list of geometrical constraints
imposed by geost : the first constraint expresses a non-overlapping constraint between
the four objects, while the second constraint imposes the four objects to be located
within the box containing all points (x, y) such that 1 ≤ x ≤ 1 + 5 − 1 and 1 ≤ y ≤
1 + 4 − 1. The constraints of geost hold since the four objects do not simultaneously
overlap in time and in space and since they are completely included within the previous
box (i.e., see Part (E) of Fig. 1).

Within the scope of geost(k,O,S, C), this paper presents a filtering algorithm that
prunes the domain of each attribute of every object o = object(id , sid , x[], start ,
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duration , end) ∈ O. All values found infeasible are deleted from the shape attribute
sid ; for the other attributes (i.e., the origin x[], the start, the duration and the end), the
minimum and maximum are adjusted.

The paper is organised as follows. Section 2 provides an overview of placement prob-
lems that can be modelled with the constraints currently available in geost . Section 3
presents the overall architecture of the geometrical kernel. It explains how to define
geometrical constraints in terms of a programming interface by the geometrical kernel.
Section 4 focusses on the main contribution of this paper: a multi-dimensional lexico-
graphic sweep algorithm used for filtering the attributes of an object of geost . Section 5
evaluates the scalability of the geost kernel as well as its ability to deal with a variety
of specific placement problems. Before we conclude, Section 6 compares geost with
related work and suggests future directions.

2 Modelling Problems with geost

As illustrated by Fig. 2 in the context of non-overlapping, geost allows to model directly
a large number of placement problems:

– Case (A) corresponds to a non-overlapping constraint among three segments.
– The second and third cases (B,C) correspond to a non-overlapping constraint be-

tween rectangles where (B) is a special case where the sizes of all rectangles in the
second dimension are equal to 1; this can be interpreted as a machine assignment
problem.

– Case (D) corresponds to a non-overlapping constraint between rectangles where
each rectangle can have two orientations. This is achieved by associating with each
rectangle two shapes of respective sizes l×h and h×l. Since their orientation is not
initially fixed, the included constraint enforces the three rectangles to be included
within the bounding box defined by the origin’s coordinates 1, 1 and sizes 8, 3.

– Case (E) corresponds to a non-overlapping constraint between more complex ob-
jects where each object is described by a given set of rectangles.

– Case (F) describes a placement problem where one has to first assign each rectangle
to a strip so that all rectangles that are assigned to the same strip do not overlap.

– Case (G) corresponds to a non-overlapping constraint between parallelepipeds.
– Case (H) can be interpreted as a non-overlapping constraint between parallelepipeds

that are assigned to the same container. The first dimension corresponds to the identi-
fier of the container, while the next three dimensions are associated with the position
of a parallelepiped inside a container.

– Case (I) describes a rectangle placement problem over three consecutive time-slots:
rectangles assigned to the same time-slot should not overlap in time. We initially
start with the three rectangles 1, 2 and 3. Rectangle 3 is no longer present at instant 2
(the triangle � within rectangle 3 at time 1 indicates that rectangle 3 will disappear
at the next time-point), while rectangle 4 appears at instant 2 (the triangle � within
rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).
Finally, rectangle 2 disappears at instant 3 and is replaced by rectangle 5.
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Fig. 2. Nine typical examples of use of geost

3 Standard Representation of Geometrical Constraints

The key idea for handling multiple geometrical constraints in a common kernel is
the following. For each type of geometrical constraint found in C (also called exter-
nal constraints), one has to provide a service that computes necessary conditions (also
called internal constraints) for a given object and shape. Given an external geometrical
constraint ectr i(Ai,Oi) (Ai ⊆ {0, 1, . . . , k − 1},Oi ⊆ O), one of its object o ∈ Oi

and one potential shape s of o, such a necessary condition generated by ectr i, o and s is
a unary4 constraint ictr(o.x) such that: o.sid = s ∧ ectr i(Ai,Oi) ⇒ ictr(o.x). Now,
the key to being able to globally treat such necessary conditions in the kernel is to give
them a uniform representation. We have chosen the following one:

– A constraint outbox(t, l) on o.x holds iff o.x is located outside the shifted box
defined by its origins point t[d], 0 ≤ d < k, and sizes l[d], 0 ≤ d < k (i.e.,
∃d ∈ [0, k − 1] | o.x[d] < t[d] ∨ o.x[d] > t[d] + l[d]− 1).

Thus, an outbox corresponds to a box-shaped set of points that are infeasible for o.x.
The purpose of the introduction of outboxes is to have a common representation for the
kernel, suitable for the k-dimensional lexicographic sweep algorithm presented in the
next section, which considers all the outboxes, for a selected object and shape, in one
run.

Consequently, for each type of external geometrical constraint, found in C a service
GenOutboxes(ectr i, o, s) : (ictrs), responsible for generating outboxes, must be pro-
vided. This service is assumed to generate outboxes that intersect the domains of the
origin coordinates of o. Also, if all attributes mentioned by ectr i belonging to objects
other than o are fixed, those outboxes are assumed to be necessary and sufficient condi-
tions, lest the kernel accept false solutions.

4 Unary, since it involves the k coordinates of a single object.
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Example of External Geometrical Constraints. We now illustrate some external geo-
metrical constraints that are currently available within the constraint kernel. As we saw
in the introduction, an external constraint always has at least two arguments that resp.
correspond to a list of distinct dimensions and to a list of object identifiers to which the
constraint applies.

The included and non-overlapping external constraints. The included(Ai,Oi, t, l)
and the non-overlapping(Ai,Oi) external constraints take as input a list of distinct
dimensions Ai in {0, 1, . . . , k − 1} and a list Oi of distinct object identifiers of geost .
In addition, the included constraint considers a shifted box defined by its origin point
t[d], 0 ≤ d < k, and size l[d], 0 ≤ d < k.

The included constraint enforces for each object o (with o.id ∈ Oi) and for any
corresponding shifted box s (with o.sid = s.sid ) the condition ∀d ∈ Ai | t[d] ≤
o.x[d] + s.t[d]∧ o.x[d] + s.t[d] + s.l[d]− 1 ≤ t[d] + l[d]− 1 (i.e., s is included within
the shifted box attribute defined by the parameters t and l of the included constraint).
Depending on which shape of an object we actually consider, the included constraint
can be translated to 2k outbox constraints.

The non-overlapping constraint enforces the following condition: given two distinct
objects o and o′ (with o.id , o′.id ∈ Oi) that overlap in time, no shifted box s (with
o.sid = s.sid ) should overlap any shifted box s′ (with o′.sid = s′.sid ); i.e. it should
hold that ∃d ∈ Ai | o.x[d] + s.t[d] + s.l[d] ≤ o′.x[d] + s′.t[d] ∨ o′.x[d] + s′.t[d] +
s′.l[d] ≤ o.x[d] + s.t[d] (i.e., there exists a dimension where they do not intersect).
While focussing on an object o we can easily generate an outbox constraint for each
object o′ that should not overlap o by reusing the results of [2].

4 The Geometrical Kernel: A Generic k-Dimensional
Lexicographic Sweep Algorithm

In this section, we first present the sweep algorithm used for filtering the coordinates of
the origin of an object o of geost when each object has one single shape. We initially
assume that time is treated exactly like the space dimensions, i.e. that the o.x array is
extended by one element. Toward the end of this section, we explain in detail how to
treat the time attributes of an object. We also assume for now that the shape attribute is
fixed, and explain later how to handle multiple potential shapes for an object (i.e., poly-
morphism). We now introduce some notation used throughout this section.

Notation. Assume v and w are vectors of scalars of k components. Then v ← w
denotes the element-wise assignment of w to v, w + d (resp. w − d) denotes the ele-
ment-wise addition of d (resp. −d) to w. Given a scalar d, 0 ≤ d ≤ k − 1, rot(v, d, k)
denotes the vector (v[d], v[(d+1) mod k], . . . , v[(d− 1) mod k]). That is, in the ro-
tated vector, v[d] is the most significant element, which is what we need when running
the sweep algorithm on dimension d.

The Sweep Algorithm. This algorithm first considers all outboxes ICo derived from
C where object o actually appears, and then performs a recursive traversal of the place-
ment space for each coordinate and direction (i.e., min or max). Without loss of gen-
erality, assume we want to adjust the minimum value of the dth coordinate o.x[d],
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0 ≤ d < k, of the origin of o. The algorithm starts its recursive traversal of the place-
ment space at point c = rot(o.x, d, k) and could in principle explore all points of the
domains of o.x, one by one, in increasing lexicographic order, until a point is found
that is not inside any outbox, in which case c[0] is the computed new minimum value.
To make the search efficient, instead of moving each time to the successor point, we
arrange the search so that it skips points that are known to be inside some outbox.5

Thus, we compute the lexicographically smallest point c′ such that:

1. c′ is lexicographically greater than or equal to c,
2. every element of c′ is in the domain of the corresponding element of o.x,
3. c′ is not inside any outbox of ICo.

If no such c′ exists, the constraint fails. Otherwise, the minimum value of o.x[d] is
adjusted to c′[0]. As we saw, the sweep algorithm moves in increasing lexicographic or-
der a point c from its lexicographically smallest potential feasible position to its lexico-
graphically largest potential feasible position through all potential points. The algorithm
uses the following data structures:

– The current position c of the sweep.
– A vector n[0..k − 1] that records knowledge about already encountered sets of

infeasible points while moving c from its first potential feasible position. The vector
n is always element-wise greater than c and maintained as follows. Let inf, sup
denote the vectors inf = rot(o.x, d, k) and sup = rot(o.x + 1, d, k):
• Initially, n = sup.
• Whenever an outbox f containing c is found, n is updated by taking the ele-

ment-wise minimal value of n and the upper boundary of rot(f, d, k), indicat-
ing the fact that new candidate points can be found beyond that value.
• Whenever we skip to the next candidate point, we reset the elements of n that

were used to the corresponding values of sup.
The following invariant holds for the vector n, and is used when advancing c to the
next candidate point. Let i be the smallest j such that n[j +1] = sup[j +1]∧ · · · ∧
n[k − 1] = sup[k − 1] and suppose c is known to be in some outbox. Then, the
next point, lexicographically greater than c and not yet known to be in any outbox,
is (c[0], . . . , c[i− 1], n[i], inf[i + 1], . . . , inf[k − 1]).

Algorithm 1 implement this idea. The algorithm prunes the bounds of each coordi-
nate of every object wrt. its relevant outboxes, iterating to fix-point.

Efficiency. The main inefficiency in this sweep algorithm lies in searching the set
of outboxes (line 4 of PruneMin). In order to make this search more efficient, we
can make the sweep algorithm more sophisticated by the following modifications to
PruneMin:

– We extend the state of the algorithm by an event point series, ordered in lexi-
cographically increasing order. These events correspond to the lexicographically
smallest (insert events) and largest (delete events) relevant infeasible point associ-
ated with each outbox ictro ∈ ICo. They are sorted in lexicographically increasing
order, and we maintain a pointer into the series in sync with point c.

5 Potential holes in the domains are reflected in outboxes.
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PROCEDURE FilterCtrs(k,O,S ,C) : bool
1: nonfix ← true // fixpoint not yet reached
2: while nonfix do
3: nonfix ← false // assumes no filtering will be done
4: for all o ∈ O do
5: I ← ⋃

e∈C GenOutboxes(e, o, o.sid) // build the set of outboxes on o
6: I ← I ∪⋃

0≤d<k possible outboxes corresponding to holes in o.x[d]
7: for d← 0 to k − 1 do
8: if ¬PruneMin(o, d, k, I) ∨ ¬PruneMax(o, d, k, I) then
9: return false // no feasible origin

10: else if o.x was pruned then
11: nonfix ← true // fixpoint not yet reached
12: end if
13: end for
14: end for
15: end while
16: return true // feasible origin

PROCEDURE PruneMin(o, d, k, I) : bool
1: b← true // b =true while we have not failed
2: c← o.x // initial position of the point
3: n← o.x + 1 // upper limits+1 in the different dimensions
4: while b ∧ ∃f ∈ I | c ∈ f do
5: n← min(n, f.t + f.l) // update vector naccording to an outbox f containing c
6: b← false // no new point to jump to yet
7: for j ← k − 1 downto 0 do
8: j′ ← (j + d) mod k // rotation wrt. d, k
9: c[j′]← n[j′] // use vector n to jump

10: n[j′]← o.x[j′] + 1 // reset component of n to maximum value
11: if c[j′] ≤ o.x[j′] then
12: b← true // jump target found
13: j ← 0 // exit for loop
14: else
15: c[j′]← o.x[j′] // reset component of c, for exhausted a dimension
16: end if
17: end for
18: end while
19: if b then
20: o.x[d]← max(o.x[d], c[d])
21: end if
22: return b

Algorithm 1: FilterCtrs is the main filtering algorithm associated with geost(k,O,S ,C),
where k, O, S and C resp. correspond to the number of dimensions, to the objects, to the
shapes and to the external geometrical constraints. PruneMin adjusts the lower bound of the
dth coordinate of the origin of object o where I is the set of outboxes associated with ob-
ject o (since PruneMax is similar to PruneMin it is omitted). The given fixpoint loop is an
over-simplification. The implementation maintains a set of objects that need filtering. Whenever
an object o is pruned, all non-fixed objects connected to o by an external constraint are added to
this set. When the set becomes empty, the fixpoint is reached.
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Fig. 3. Illustration of the lexicographic sweep algorithm for adjusting the minimum value of the
abscissa of rectangle r5

– We maintain the set of active outboxes, corresponding to all outboxes ictro ∈ ICo

such that c is between its lexicographically smallest and largest infeasible points.
This set is initially empty.

– When c is initialized in line 2 as well as when c is incremented in lines 7-17, the
relevant events up to point c from the event point series are processed, and the
corresponding outboxes are added to or deleted from the set of active outboxes.

– In line 4, only the active outboxes are considered.

Example 3. Fig. 3 illustrates the k-dimensional lexicographic sweep algorithm in the context of
k = 2. Parts (A) and (B) provide the variables of the problem (i.e., the abscissa and ordinate
of each rectangle r1, r2, r3, r4 and r5) as well as the non-overlapping constraint between the
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five previous rectangles. On Part (D) we have represented the extreme possible feasible positions
of each rectangle (i.e., rectangles r1 to r4): for instance the leftmost lower corner of rectangle
r1 can only be fixed at positions (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4),
(4, 2), (4, 3) and (4, 4). Parts (C) to (L) of Fig. 3 detail the different steps of the algorithm for
adjusting the minimum value of the abscissa of rectangle r5. Part (C) provides the outboxes
associated with the fact that we want to prune the coordinates of r5: constraints ctr1, ctr2, ctr3

and ctr4 resp. correspond to the fact that rectangle r5 should not overlap rectangles r1, r2, r3

and r4, while constraint ctr5 represents the fact that the ordinate of r5 should be different from
7. Part (D) represents the initialisation phase of the algorithm where we have all five outboxes
with their respective lexicographically smallest infeasible point (i.e., (1, 1) for ctr 1, (1, 3) for
ctr2, (1, 7) for ctr5, (1, 8) for ctr3 and (3, 1) for ctr4). Part (E) represents the first step of the
sweep algorithm where we start the traversal of the placement space at point c = (1, 1). We first
transfer to the list of active outboxes all outboxes for which the first lexicographically smallest
infeasible point is lexicographically greater than or equal to the current position of the sweep
c = (1, 1) (i.e., constraint ctr 1 = outbox([1, 1], [2, 2])). We then search through the list of
active constraints (represented on the figure by a box with the legend ACTRS on top of it) the
first constraint for which c = (1, 1) is infeasible. In fact, since ctr1 is infeasible (represented on
the figure by a box with the legend CONFLICT on top of it) we compute the vector f = (3, 3)
that tells how to get the next potentially feasible point in the different dimensions. Consequently
the sweep moves to the next position (1, 3) (see Part (F)) and the process is repeated until we
finally find a feasible point for all outboxes (i.e., point (3, 8) in Part (L)). Note that, when the
lexicographically largest infeasible point associated with an active outbox is lexicographically
less than the current position of the sweep, we remove that constraint from the list of active
outboxes. This is for instance the case in Part (I), where we remove constraint ctr3 from the list
of active outboxes (since its lexicographically largest infeasible point (2, 8) is lexicographically
less than the position of the sweep c = (3, 1)).

Complexity. Rather than analysing the complexity of the geost kernel for a fixed k,
which depends both on the type of each external constraint (i.e., the complexity of a
given external constraint for generating all its corresponding outboxes as well as their
number), we rather focus on PruneMin for adjusting the minimum value of the dth

coordinate of the origin of an object. Assuming that the maximum number of outboxes
is equal to n we give an upper bound on the maximum number of jumps of PruneMin
(i.e., the maximum number of times the sweep is moved).

First note that we always jump to an upper border (+1) of an outbox (i.e., see line 5 of
PruneMin) or that we reset some coordinates of the sweep to its minimum value (i.e.,
see line 15 of PruneMin). Consequently, all coordinates of the sweep are always equal
to an upper border (+1) of some outboxes or to a minimum possible value. Since we
want to evaluate the maximum number of jumps, let us assume that for every dimension
d (0 ≤ d < k) the upper limits of all the n outboxes are distinct. Having this in
mind we can construct a maximum of (n + 1)k points. Even if we found a systematic
construction where this number of jumps is reached, the performance evaluation of
Section 5 indicates that we can handle a reasonable number of objects for k = 2, 3, 4.

From a memory consumption point of view, the algorithm only records the coordi-
nates of the sweep from one invocation to the next, in order not to restart the search
from scratch (i.e., 2k points for each object).

Handling Time. Given an object o ∈ O of geost , the sweep algorithm that we have
introduced in the previous section can be easily adapted to handle the start in time
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o.start , duration in time o.duration and end in time o.end . Beside maintaining bound
consistency for the constraint o.end = o.start + o.duration , we add an extra time
dimension to the geometric coordinates of object o. Roughly, this new time coordinate
corresponds to o.start resp. o.end depending on whether we are adjusting the minimum
or maximum.

Handling Polymorphism. In order to handle the fact that objects can have several
potential shapes we modify the previous algorithm in the following way. For adjusting
the minimum value of the coordinate of the origin of an object that has more than one
shape we call the sweep algorithm for each potential shape of the object (i.e., for each
value of its shape variable). Then we take the smallest minimum value obtained (i.e.,
we use constructive disjunction) and prune the shape variable of an object if we did not
find any feasible point for a given potential shape of that object.

Other Internal Constraints. The standard representation of geometrical constraints
given in Section 3 is an over-simplification. For some constraints, e.g. distance con-
straints, outboxes are not a suitable representation, as the set of forbidden coordinates
cannot be covered by a small number of boxes. Therefore, the constraint kernel inter-
nally handles other representations of necessary conditions, with an appropriate internal
API. For details, see the technical report [5].

5 Performance Evaluation

We evaluate the implementation6 of the geost kernel from three perspectives:
Wanting to measure the speed and the scalability of the sweep algorithm for find-

ing a first solution on loosely constrained placement problems (i.e., 20% spare space),
we generated one set of random problem instances of m k-dimensional boxes for
k ∈ {2, 3, 4} involving t ∈ {1, 16, 256, 1024} distinct types of boxes, and for m ∈
{1024, 2048, . . . , 262144}. The results for k = 2 are shown in Fig. 4 (top left) and
indicates that the approach is sensible to the number of distinct types of boxes. It can
typically pack 1024 2D, 3D and 4D distinct boxes in at most 200 msec. The longest
time, 13694 seconds (close to 4 hours), was obtained for packing 262144 4D paral-
lelepipeds (over 1 million domain variables) with a memory consumption of 351MB.

Wanting to get an idea of the performance of the geost kernel on very tight place-
ment problems (i.e., 0% spare space), we considered the perfect squared squares prob-
lem [1,6] as well as the 3D pentominoes problem [7]:

– A perfect squared square of order n is a square that can be tiled with n smaller
squares where each of the smaller squares has a different integer size. We used the
data available (i.e., the size of the small squares to pack) from the catalogue [8] and
tested the corresponding 207 instances. The labelling strategy is roughly to repeat
the following, first for the x dimension, then for the y dimension:
1. Find the smallest position where some square can be placed.
2. Find a square to place in that position.

6 The experiments were run in SICStus Prolog 4 compiled with gcc -02 version 4.0.2 on a 3GHz
Pentium IV with 1MB of cache.
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Fig. 4. Performance evaluation. Top left: scalability, t ∈ {1, 16, 256, 1024}. Top right: Perfect
Squared Squares, runtime and backtracks. Bottom: 2D Orthogonal Packing, runtime (left) and
backtracks (right). Time in milliseconds. In each curve, the instances are ordered by increasing y
value.

– Pentominoes are pieces made of 5 connected unit cubes laid on a plane surface.
Their shapes look like the 12 letters F , I , L, P , N , T , U , V , W , X , Y and Z . We
considered the problem of finding the different ways of putting 12 distinct shapes
that can be reflected and rotated in a box having a volume of 60 unit cubes. Our
labelling strategy is roughly to repeat the following:
1. Find a slot in the space that has not yet been filled by some piece.
2. Find a piece that can fill that slot.

Fig. 4 (top right) and Table 1 respectively report, for the squared squares and the
pentominoes problems, the time and number of backtracks for exploring all the search
space7 without breaking any symmetry. For the squared squares problems the maxi-
mum time of 1585 seconds was spent on problem 48; on the other hand, 148 problems
were completely solved within 60 seconds. For the 3D pentomino packing instances,
performance results for comparison can be found in [7]. However, they stop the search
when the first 100 solutions have been found, so the results are only partly comparable.

Finally, wanting to compare the geost kernel with a recent exact state of the art
method for the 2D orthogonal packing problem [4], we reused the benchmarks pro-
posed by Clautiaux et al. [9]. This is a feasibility problem which consists in determining
whether a set of rectangles that cannot be rotated, can be packed or not into a rectangle
of fixed size. In these instances the discrepancy between the sum of the areas of the

7 Finding all solutions and proving that there is no other solution.
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Table 1. Performance evaluation. 3D pentomino packing instances. Time in milliseconds. “n/a”
corresponds to a quantity that was not available with a time-out of several hours.

configuration backtracks (1st) time (1st) backtracks (all) time (all) solutions
20 × 3 × 1 1434 1840 47381 49740 8
15 × 4 × 1 290 560 888060 939060 1472
12 × 5 × 1 1594 1850 3994455 4112870 4040
10 × 6 × 1 111 260 9688985 10726810 9356
10 × 3 × 2 1267 2370 1203511 1778980 96
6 × 5 × 2 157 730 n/a n/a n/a
5 × 4 × 3 3567 14930 n/a n/a n/a

rectangles to pack and the area of the big rectangle vary from 0% to 20%. We have 41
instances involving between 10 and 23 rectangles. Moreover, from these 41 instances,
26 instances are not feasible. In order to break symmetries between multiple rectangles
of the same shape we added lexicographic ordering constraints. All x coordinates were
labelled followed by all y coordinates, by decreasing rectangle size. Values were tried
by increasing value. Fig. 4 (bottom) compares our results with the ones reported in [4].
Note that the sequence order for the curves differs, since the instances of each curve
are ordered by increasing y value. We solved all instances and are comparable with [4],
although 8 instances are much easier for [4] and 10 instances are much easier for us.

Note that for the last three problems (i.e., Squared Squares, Pentominoes and 2D
orthogonal packing) extra filtering algorithms mostly based on cumulative relaxation
were integrated within our kernel. Since this paper focusses on the constraint kernel
and because of space limitations these methods were not detailed.

6 Related Work and Future Directions

The rectangles packing problem has been studied by Clautiaux et al. [9,4] where
scheduling-based reasoning is used [1]. The use of sweep algorithms in constraint filter-
ing algorithms was introduced in [3] and applied to the non-overlapping 2D rectangles
constraints. This paper generalizes and extends that work in several ways.

– The 2D sweep is generalized to a lexicographic sweep, independent of the number
of dimensions.

– The notion of forbidden regions for non-overlapping rectangles is generalized to
necessary conditions for general geometric constraints.

The idea of generating necessary conditions is reminiscent of indexicals [10], a.k.a.
projection constraints [11]. An indexical for a constraint c(x1, . . . , xn) computes a
unary constraint on a single variable xi, i.e. a set S of values such that c ⇒ xi ∈ S,
in reaction to domain changes in x1, . . . , xn. The constraint kernel then immediately
enforces xi ∈ S. Our kernel generalizes this in two ways:

– We compute necessary conditions in the form of k-dimensional forbidden regions.
– We treat all such forbidden regions, for a selected object and shape, in one run of

the sweep algorithm. Projecting a single forbidden region on one coordinate often
does not yield any pruning, whereas considering the union of forbidden regions is
much more effective.
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Dal Palù et al. in [12] proposed a constraint solver specialized for 3D discrete do-
mains. Their solver was targeted to the study of problems in molecular, chemical and
crystal structures. Our work, however, remains in the setting of mainstream finite do-
main constraint systems, whereas our kernel internally handles k-dimensional objects.

Even though the geost kernel has been designed over discrete domains, it could
rather easily be extended to continuous domains with the coordinates of the objects
approximated by the floating-point numbers F . Since switching from N to F may cause
rounding errors at this level, the sweep algorithm needs to handle these rounding errors
when moving the sweep out of an outbox constraint. If the projections of the forbidden
regions on all dimensions are intervals of real bounds we can proceed as follows. On
continuous domains, an outbox will have an very thin strip at the border where the
feasibility of the corresponding internal constraint is unknown. The region inside this
strip is strictly forbidden, and outside, the constraints is certainly satisfied. The outbox
must be computed including this strip, by taking lower and upper approximations of
the region’s coordinates. In that case, the solutions are guaranteed to be valid, but the
solver may not be complete, because it may (rarely) happen that the real forbidden
region allows positions that are forbidden by its approximation.

This research was conducted under the European Union project “Net-WMS”, a major
task of which is to study packing problems in warehouse management. In this context,
our constraint kernel is a step towards being able to capture a large set of packing rules
in a constraint programming setting. Future work involves extending our set of external
geometric constraints to include such packing rules.

7 Conclusion

The main contribution of this paper is a geometrical constraint kernel for handling the
location in space and time of polymorphic k-dimensional objects subject to various
geometrical and time constraints. The constraint kernel is generic in the sense that one
of its parameters is a set of constraints on subsets of the objects. These constraints are
handled globally by the kernel.

We have presented a sweep algorithm for filtering the attributes of the objects. Thanks
to its architecture, new geometric constraints can be plugged into this sweep algorithm
without modifying it. The strong point of this sweep algorithm is that it considers all
the geometrical constraints for a selected object and shape in one run. As a first result,
more deduction can be performed by combining sets of forbidden points coming from
multiple geometrical constraints. Secondly, it can handle within one single constraint
problems involving up several tens of thousands of objects without memory consump-
tion problems, which is often a weak point for constraint programming environments.
We have also shown that we could handle tight 2D or 3D placement problems, which
were traditionally solved by specific approaches.
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