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Abstract. While many real-world combinatorial problems can be advantageously
modeled and solved using Constraint Programming, scalability remains a major is-
sue in practice. Constraint models that accurately reflect the inherent structure of
a problem, solvers that exploit the properties of this structure, and reformulation
techniques that modify the problem encoding to reduce the cost of problem solving
are typically used to overcome the complexity barrier. In this paper, we investi-
gate such approaches in a geospatial reasoning task, the building-identification
problem (BID), introduced and modeled as a Constraint Satisfaction Problem by
Michalowski and Knoblock [1]. We introduce an improved constraint model, a
custom solver for this problem, and a number of reformulation techniques that
modify various aspects of the problem encoding to improve scalability. We show
how interleaving these reformulations with the various stages of the solver allows
us to solve much larger BID problems than was previously possible. Importantly,
we describe the usefulness of our reformulations techniques for general Constraint
Satisfaction Problems, beyond the BID application.

1 Introduction

Geospatial data integration aims at combining geospatial information from traditional
and non-traditional data sources to infer information that is not available in any one
source. The inadvertent bombing of the Chinese Embassy in Belgrade [2] illustrates
the importance of geospatial data integration. That event could have been avoided by
reasoning about the information that was available at the time (i.e., telephone books and
maps) to identify the buildings shown in a satellite image. More generally, the information
gained by data integration can be used to verify and augment geospatial databases (e.g.,
gazetteers), and extend the capabilities of geospatial systems (e.g., Google Maps, Google
Earth, and Microsoft VirtualEarth).

Michalowski and Knoblock [1] identified and studied the Building Identification
(BID) problem as an application of significant intelligence and civilian impact. The
task is to assign a potentially incomplete list of postal addresses, collected from various
‘phone-book’ sources, to buildings appearing in a satellite image. A map provides the
names of the streets and the positions of the buildings, but we do not know the addresses
of the buildings or, for a building located on a street corner, on which street the building’s
address lies. They modeled the problem as a Constraint Satisfaction Problem (CSP) and
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used an existing solver (CPlan [3]) to find all possible matchings of addresses to buildings
that are consistent with the phone book and with the geographical layout in the image.
Their work established the feasibility of the approach and identified an important new
area where CP techniques are useful for solving real-world problems. However, their
approach resisted scaling because their model included high-arity constraints and their
generic solver failed to take advantage of the structural information in the application
domain. While we show in this paper that the particular BID problem studied in [1] is
tractable, it is clear that only a careful theoretical study can determine whether or not
a given set of constraints in the BID problem yields a tractable problem. The value of
a CP approach is its flexibility in solving new problems with arbitrary constraints even
when the problem’s tractability is unknown. This paper addresses the scalability of the
CP approach to the BID problem with the use of reformulation techniques, and discusses
the use of the proposed reformulations to general CSPs.

First, we propose an improved constraint model that reflects the topology of the streets
layout, and accommodates the addition of new constraints locally to express variations
of street-numbering schemas around the world. Second, we introduce a custom solver,
based on backtrack search, that exploits structural properties of a problem instance, such
as identifying backdoor variables [4] and exploiting them to decompose the problem into
tractable components. Third, we introduce four reformulation techniques to reduce the
cost of problem solving. These techniques are (1) reformulating the BID problem from a
counting problem to a satisfiability one, (2) reducing the domains size of variables in the
scope of a global constraint that we identify and characterize, (3) relaxing the satisfiability
problem into a matching problem, (4) using symmetry to generate efficiently all possible
solutions of the relaxed version of the original BID counting problem. Fourth, as we
introduce each reformulation technique, we also discuss its application to general CSPs.
Fifth, we evaluate the benefits of 3 of our reformulations on the BID problem, showing
that we can now solve instances involving 206 buildings while the problem solved by
Michalowski and Knoblock included only 34 buildings.

This paper is structured as follows. Section 2 positions our adopted perspective on
reformulation. Section 3 describes the new CSP model and custom solver for the BID
problem. Sections 4, 5, 6, and 7 describe our reformulations of the BID problem and
their utility for general CSPs. Section 8 evaluates our techniques on real-world BID
instances. Finally, Section 9 describes related work and concludes the paper.

2 Background

Choueiry et al. [5] characterized a reformulation as a transformation of a problem P
from one encoding to another, where a problem is given by a formulation and a query,
P = 〈F , Q〉. The transformation may change the query and/or any of the components
of the formulation. The goal of the reformulation is to ‘simplify’ problem solving,
where the benefit of the ‘simplification’ and other effects of the reformulation are
clearly articulated in the particular problem-solving context. The reformulation tech-
niques discussed in this paper operate on various aspects of a Constraint Satisfaction
Problem (CSP) in order to improve the performance of problem solving. The problem
formulation of a CSP is given by F = (V , D, C) where V= {Vi} is a set of variables,
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Fig. 1. The general pattern of a CSP transformation

D= {DVi} the set of their respective domains, and C a set of constraints. A constraint
is a relation over a subset of the variables specifying the allowable combinations of
values for the variables in its scope. A solution is an assignment to the variables such
that all constraints are satisfied. The query is usually to find one consistent solution
or all possible solutions. In this paper, we describe a reformulation of a CSP as a
transformation of the original problem Po = 〈Fo, Qo〉 into the reformulated prob-
lem Pr = 〈Fr, Qr〉, where Fi indicates a formulation and Qi indicates a query, as
illustrated in Figure 1.

3 Modeling and Solving the BID Problem as a CSP

The task is to assign possible addresses to the buildings that appear in a satellite im-
age. Each address consists of the combination of a street name and a number. The
names of the streets are provided by a map and the positions of the buildings are
extracted from a satellite image. Thus, we know the street names and the positions
of the buildings, but we do not know the addresses of the buildings or, for buildings
located on corners, on which street the buildings are located. The addresses can be
partially retrieved from a variety of data sources such as a phone books, gazetteers, or
property records. We generically refer to the addresses given as input as phone-book
addresses regardless of their actual source. Figure 2 shows a BID instance with 10
buildings. The set of phone-book addresses may be incomplete, that is, there could be
fewer addresses than there are buildings in an image. However, we assume that the re-
verse does not hold, that is, every phone-book address must be assigned to a building
on the image. A solver must infer addresses for buildings that do not have an address
in the phone book. In addition to the phone-book addresses, we may have informa-
tion about street-numbering schemas used in a given region in the world, such as the
100-block increment in the addresses across street intersections used in the US or the
red-black numbering used in Italy. Also, we may know the exact address of one or
more landmarks, such as the residence of the Prime Minister in London.
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Fig. 2. An example of the building-identification problem
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3.1 A New Constraint Model

Below we describe the variables and constraints in our CSP model of the BID prob-
lem. Our model uses three types of variables: orientation, corner, and building. In
general, there are four orientation variables. These Boolean variables determine the
global orientation properties of the map. The first two are ordering variables and in-
dicate whether or not addresses increase in value when moving toward the north and
to the east. The remaining two are parity variables and indicate on which side of
the street odd addresses occur. The corner variables represent the possible streets on
which a corner building might be. We generate one corner variable for each corner
building, whose domain is the list of streets on which the building could lie. The cor-
ner buildings are natural ‘backdoors’ [4] in the constraint network: once the solver
assigns values to all corner buildings, the network degenerates into a set of chains
(corresponding to buildings along street segments) that can be solved in a backtrack-
free manner. Thus our solver instantiates corner variables as soon as possible. The
building variables represent the addresses (i.e., numbers) of the buildings. We gen-
erate a building variable for every building on the map. The domain of a variable is
every possible address on the building’s streets.

Our model has five types of constraints: parity, ordering, corner, phone book, and
grid. Parity constraints are binary constraints and ensure that the numbers assigned
to buildings respect the values assigned to the parity (orientation) variables. Ordering
constraints are ternary constraints, and link an ordering variable to two building vari-
ables along the same street. These constraints ensure that the addresses assigned to
the building variables respect the ordering specified by the ordering variable. Corner
constraints are binary constraints that apply to the pair of variables of each corner
building, namely, the corner variable (which determines the street), and the building
variable (which determines the address on the street). It reinforces that the address
assigned to the building is consistent with the street chosen for the building. Phone-
book constraints exist for each street on the map. These constraints ensure that the
solver assigns every address in the phone book to some building along that street.
These constraints usually have a high arity, because their scope is the set of build-
ings along the street. Grid constraints exist between buildings across certain artificial
grid-lines, depending on the region we are modeling. These constraints ensure that
the addresses of adjacent buildings across the grid-lines are in separate numeric in-
crements. For example, in many cities in the United States, addresses increase to the
next increment of 100 across intersections.

Our new model improves the original one proposed in [1] as follows. The number
of variables for non-corner buildings is reduced by half, reducing number of variables
between 37% and 43% in our test cases. Domains of the building variables in [1] were
enumerated and upper bounds chosen arbitrary. They are represented as intervals with
potentially infinite bounds in the new model. We reduced constraint arity from four to
two for parity constraints, and from six to three for ordering constraints. Corner con-
straints are new and allow early decomposition of the problem. Grid constraints are
also new and allow a more precise modeling of the real world. Interestingly, we show,
in Section 6, that in the absence of grid constraints, the BID problem is tractable. The
tractability of the BID problem in the presence of grid constraints remains an open
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question. Thus, modeling the BID problem as a CSP remains a pertinent approach
because it gives us the flexibility to represent arbitrary constraints such as grid con-
straints and other street-addressing schemas used around the world.

3.2 A Custom Backtrack-Search Solver

Our custom solver, written in Java, is a backtrack-search procedure. We adapted the
conflict-directed backjumping mechanism MAC-CBJ of [6] to handle constraints of
any arity with nFC3, a look-ahead strategy for non-binary CSPs [7], yielding nFC3-
CBJ. Key to the solver’s success are the domain representation and the variable or-
dering. Domains of building variables are represented as a list of intervals, where an
interval is a sequence of values. This representation allows us to restrict propaga-
tion to the boundaries of the intervals, as in bound consistency, whenever possible,
and iterate over the individual values only when necessary. Using intervals with ar-
bitrary large bounds is crucial when the phone book is incomplete and the smallest
or largest address number on a given street is not known. Variables are ordered as
follows: building and corner variables corresponding to landmark buildings, orienta-
tion variables, corner variables, then building variables. Because corner variables are
backdoor variables, satisfiability can be determined without instantiating the building
variables, which are instantiated only when full solutions are sought. Further, instan-
tiating the backdoor variables (corner variables) decomposes the problem into chains,
one for each entire street.

4 Query Reformulation

Michalowski and Knoblock [1] searched for all solutions in order to retrieve for each
building on the map the set of acceptable addresses. When the phone book is com-
plete, the problem has few solutions. Our solver, but not the one in [1], can easily
find all solutions for all real-world examples we tested. When the phone book is not
complete, the number of solutions quickly increases. The sheer number of solutions
to be enumerated forced us to reconsider the task and reformulate the original query
as explained below.

4.1 Per-Variable Solutions

Finding all solutions of a CSP is O(dn) where n is the number of variables and d
is the maximum domain size. In practice, this process is prohibitively expensive. We
consider the situation where we do not need to find all solutions, but only the values
that each variable takes in any solution. We call this problem finding the per-variable
solutions1. Thus, we reformulate the query from Qo= enumerating all solutions, to
Qr= finding the per-variable solutions, where Qr is “∀ Vi, x ∈ DVi , find if Po ∧
(Vi ← x) is satisfiable” as illustrated in Figure 3. This query changes the complexity
class of the problem from a counting problem to a satisfiability one.

1 Formally, this query corresponds to finding the minimal CSP. It is also equivalent to the
inverse consistency property introduced in [8], and to relational (1,|C|)-consistency defined
in [9].
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Fig. 3. Reformulation for the per-variable solution query

Algorithm 1 tests for every variable-value pair (Vi, x) if the CSP with Vi←x is
solvable. When it is, x is added to the data structure returned by the algorithm. Al-
gorithm 1 returns the set of variables along with all their values that appear in a
solution.

Input: P =(V, D, C)
Output: S, a per-variable solution
foreach Vi ∈ V do1

S[Vi] ← ∅2

end3

foreach Vi ∈ V do4

foreach x ∈ DVi do5

if P with Vi←x has a solution then6

S[Vi] ← S[Vi] ∪ {x}7

end8

end9

if |S[v]| = 0 then10

return P has no solutions11

end12

end13

return S14

Algorithm 1. Finding the per-variable solutions

The inner loop of the algorithm runs O(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appears costly, but in cases where
the original CSP has significantly more than nd solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to the CSP.

When the test in Line 6 is executed by finding a solution to the CSP, the values for
the variables in the solution found can be collected, and excluded from future calls in
the loops on Lines 1 and 5 thus reducing the number of loops2. In the BID problem,
we are not able to exploit this improvement for the following reason. A variable-
value pair in Algorithm 1 for the BID problem is a combination of a building and a
street name and number. However, the satisfiability of the BID instance is determined,
and search is terminated, after the assignment of the backdoor variables and without
instantiating the building variables (see Section 3.2). The benefit of continuing search
and generating solutions after the instantiation of the backdoor variables in order to
exploit the above improvement remains to be assessed.

2 This improvement was suggested by an anonymous reviewer.
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4.2 Application to Relational (i, m)-consistency

In non-binary CSPs, in order to enforce higher level consistency than (generalized)
arc-consistency, Dechter and van Beek [9]introduced relational (i, m)-consistency as
the consistency of m non-binary constraints over every subset of i variables in the
CSP. Dechter [10] proposed the algorithm RC(i,m) for computing relational (i, m)-
consistency. RC(i,m) works as follows. For every set Cm of m constraints in a con-
straint network, join the m constraints and project the result on each subset of i vari-
ables. The algorithm is not practical for large values of m, because the memory re-
quirements for computing and storing a join of m constraints rises exponentially with
the number of variables in the scopes of these constraints.

Algorithm 1 computes a minimal network, and the resulting network is the same
as if we had executed RC(1,m). The difference between the two algorithms is that Al-
gorithm 1 is polynomial space, whereas RC(1,m) is exponential space. We can easily
generalize Algorithm 1 to consider sets of i variables (and all tuples in the Cartesian
product of their domain) rather than a single variable (and a single variable-value
pair). This extension would allow Algorithm 1 to produce the same results as RCi,m.
The memory requirement rises exponentially with i, which quickly becomes imprac-
tical, but remains more efficient than RC(i,m) whose space complexity is exponential
in the size of the union of the m constraints scopes.

5 Domain Reformulation Using Symbolic Values

If the phone book is incomplete, we must infer the missing numbers to add to the
variables’ domains. Michalowski and Knoblock [1] proposed to enumerate all num-
bers between 1 and the largest address that appears on the street. Their approach has
two problems. First, the choice of the upper limit is arbitrary. When the largest ad-
dress is not in the phone book, this approach may yield incorrect solutions. The sec-
ond problem with this approach is that the size of the domains becomes prohibitively
large on real-world data. We propose a reformulation of the variables domains that
reduces their size using symbolic variables, thus solving both problems.

5.1 Symbolic Values in the BID Problem

Assume we have, on the even side of a street S, the set of buildings BS={B1, B2, . . .,
B5}, the set of phone-book addresses of even parity PS={S#12, S#18}, and the range
of address numbers [2,624]. Any assignment cannot use more than 3 numbers in each of
[2,12), (12,18), and (18,624]. Using symbolic values to represent an address in a solution,
we replace the domain [1,624] of each variable BS with the significantly smaller set {s1,
s2, s3, 12, s4, s5, 18, s6, s7, s8} where s1, s2, s3 ∈ [2,12), s4, s5 ∈ (12,18), and s6, s7, s8 ∈
(18,624] and si<sj for i<j. This process allows us to choose arbitrarily large bounds on
a given street. Figure 4 illustrates this transformation. More generally, when [min,max]
is the range of address numbers on the considered side of S, the address numbers
in PS partition [min,max] into consecutive convex intervals. In any such interval (i1,
i2), we cannot use more than minimum(|BS|-|PS |, � (i2−i1)−1

2 	) addresses. Below
we introduce ALLDIFF-ATMOST as a global constraint useful in such situations and
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Fig. 4. Domain reformulation for the building-identification problem

discuss how to reformulate the domains of the variables in the scope of this constraint
in order to reduce their size both for general and totally ordered domains.

5.2 The ALLDIFF-ATMOST Global Constraint

Example 1. An emerging country received an aid to build 7 hospitals on its territory,
but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint ALLDIFF-ATMOST to model this situation. Given a set
of variables A = {V1, V2, ..., Vn} with domains DVi , ALLDIFF-ATMOST(A, k, d),
where d⊆DVi for i ∈ [1, n], k∈N, and k≤|d|, requires that (1) all variables take
different values and (2) at most k variables in A have values from d. Note that while
the domains DVi may be different, d must be a subset of each one of them and DVi ,
and d and DVi may be finite or infinite3.

Example 2. Consider with the variables A={V1, V2, V3, V4} of a CSP, with Di={1,
2, . . . , 8} and the constraint ALLDIFF-ATMOST(A, 2, {1, 3, 4, 5, 8}). The assignment
V1←5, V2←2, V3←7 and V4←4 satisfies the constraint.

We can express the above described situation for the BID problem as ALLDIFF-
ATMOST(BS, ka, (i1, i2)) with ka=minimum(|BS|-|PS |, � (i2−i1)−1

2 	).

5.3 ALLDIFF-ATMOST Reformulation

Our reformulation of the domains of the variables in a ALLDIFF-ATMOST constraint
is theorem constant, in the sense that solutions to the reformulated problem map to
solutions to the original problem [12]. The benefit of this reformulation is the reduc-
tion of the domain sizes. Because the complexity of many CP techniques depends on
the sizes of the domains, the reformulation improves the solver performance.

We reformulate the domains of the variables in the scope of the constraint ALLDIFF-
ATMOST(A, k, d) by introducing k values sl that we call symbolic values as follows:

∀ Vi ∈ A DVir = {s1, s2, . . . , sk} ∪ (DVi \ d) (1)

where the symbolic values sj (1 ≤ j ≤ k) can take any distinct values in d. Applying
this reformulation on Example 2 yields the following domains for all four variables:
DVi={s1, s2, 2, 6, 7}, where s1, s2 can take any different values in {1, 3, 4, 5, 8}.

3 Many definitions of the ATMOST constraint exist (e.g., ECLiPse and on page 148 of [11]).
Our definition of ALLDIFF-ATMOST allows us to express a situation of interest to resource
allocation problems where our reformulation can be used to reduce the domain size.
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Fig. 5. The reformulation of ALLDIFF-ATMOST

In Example 1, the domains become {s1, s2} ∪ {sites in non-volcanic areas} where
s1, s2 are different and range over sites with volcanic activities.

This reformulation operates on the problem formulation and affects, strictly speak-
ing, both the ALLDIFF-ATMOST constraint and the domains of the variables in its
scope, see Figure 5. However the most significant modification is the domain refor-
mulation. We transform Do to Dr, where in Dr the domains of variables in A have
been reformulated according to Equation (1). Replacing d with k symbolic values
reduces the domains sizes by |d| − k, which is useful when d is large or infinite.

This operation is particularly useful during backtrack search where the domain values
are enumerated. If we want to assign ‘ground’ values to each symbolic value, we can do
so as a post-processing step while ensuring that two symbolic values are always mapped
back to distinct ground values. While a solution to the reformulated problem does not
map to a unique solution to the original problem, we can generate any solution to the
original problem from some solution to the reformulated problem. Of particular concern
is the interaction between this reformulation and the other constraints in the problem.
When all the constraints in a problem can be checked on the symbolic values, as in the
case of the BID problem, the reformulation is sound. When one or more constraints in
a problem must be checked on the ‘ground’ values, then propagation must run on the
appropriate representation for each constraint and, as soon as domain filtering causes
|d| ≤ k, then reformulated domains should be dropped and ALLDIFF-ATMOST replaced
with a ALLDIFF constraint, as is the case in a BID instance with a complete phone-
book. While this double representation works for constraint propagation, using it during
backtrack search requires further investigation.

5.4 Symbolic Intervals

When the values in the variables domains follow a total order, as in numeric do-
mains, the domains are commonly represented as intervals and constraint propaga-
tion is typically restricted to the endpoints of these intervals, as in box-consistency
algorithms. The reformulation of an ALLDIFF-ATMOST in the presence of totally or-
dered domains obviously remains valid. However, in order to restrict propagation to
the endpoints of the intervals representing the domains, the following is needed:

1. We require the values in d to form a convex interval.
2. We must add total ordering constraints between the symbolic values: s1 < s2 <

. . . < sk.
3. We must add total ordering constraints between the two extreme symbolic values,

s1 and sk, and their closest neighbors in the reformulated domains. Let Dl
Vir

and
Dr

Vir
be respectively the intervals of DVi\d to the left and right of, and adjacent

to, d. The right endpoint of Dl
Vir

must be less than s1, and the left endpoint of
Dr

Vir
must be greater than sk. Figure 6 illustrates this transformation.
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Fig. 6. ALLDIFF-ATMOST reformulation for totally ordered domains

4. When mapping the symbolic values back to ground values, the ground values
must respect the total ordering imposed on the symbolic values.

In the BID problem, we use this particular form of the reformulation of the ALLDIFF-
ATMOST on the building variables, which have totally ordered domains.

6 Problem Relaxation by Constraint Removal

Removing (or adding) a constraint in a problem formulation to yield a necessary (or
sufficient) tractable approximation of the problem is a typical reformulation strategy.
Examples abound and include: In AI, admissible heuristics generation for A∗ (page 107 in
[11]) and theory approximation [13]; in mathematical programming, linear relaxation of
integer programs, Lagrangian relaxation [14], and the cutting-plane method. Below, we
show that removing the grid constraint from the BID problem yields a tractable problem
that is a tractable necessary approximation of the BID problem.

6.1 A Tractable Necessary Approximation of the BID Problem

We describe a construction to efficiently solve the BID problem in the absence of
grid constraints by finding a maximum matching in a bipartite graph. We first recall
some terminology. Let G = (X ∪ Y, E) be a bipartite graph with edge set E, vertex
set V = X ∪ Y , and partitions X and Y , which are independent sets of vertices.
We define a match count for each vertex in v ∈ V , which we denote m(v), to be
a positive (non-null) integer. A matching in G is a set of edges M ⊆ E such that
for all v ∈ V there exists at most one edge e ∈ M incident to v. In this paper we
consider a matching in G to be a set of edges M ⊆ E such that for all v ∈ V there
exists at most m(v) edges e ∈ M incident to v. Further, we say that a matching M
saturates vertex v iff M has exactly m(v) edges incident to v; and a matching M
saturates a set S iff M saturates all vertices in S. A matching that saturates S can
be computed in polynomial time [15].

Given an instance of the BID problem without grid constraints, we construct a
bipartite graph G = (B ∪S, E) as follows. First, assume an assignment to the orien-
tation variables (there are 24 such assignments). For each building β in the problem,
add a vertex b to B and set its match count to 1. For each street σ in the problem,
add two vertices sodd and seven to S, one for each side of the street. Set the match
count of each si to the number of phone-book addresses on street s with parity i. For
each building β, add an edge between vertex b and the street vertex corresponding
to the street side on which β may be. (Note that corner buildings are on two streets.)
Figure 7 shows the construction of G for the map in Figure 2 where we assume that
odd numbers appear on the North and West sides of the street. We can show that a
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Fig. 7. Graph construction for Figure 2
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Fig. 8. A saturating matching for Figure 7

matching in this graph that saturates S corresponds to a satisfactory assignment of
streets to corner buildings4. We find a maximum matching using an O(n5/2) algo-
rithm by Hopcroft and Karp [16] after replacing each vertex in the bipartite graph by
as many vertices as its match count.

Figure 8 shows a saturating matching for the graph of Figure 7, where the edges of
the matching are darkened and the numbers in parentheses indicate the match count.
This matching determines the satisfiability of the relaxed BID problem, and yields
assignments to all corner variables in the corresponding CSP. For a complete solu-
tion, we still need to instantiate the building variables, which can be done in linear
time because the constraint network becomes a set of chains after the instantiation
of the backdoor (corner) variables. While the matching approach is powerful, it does
not model the grid constraint. The tractability of the problem with grid constraints
remains an open question.

6.2 Relaxing Resource Allocation Problems

At the core of many resource allocation problems lies the problem of matching be-
tween the elements of two sets: the tasks and the resources. In general, the resource
allocation problem may be complex (and likely intractable). However, we may some-
times be able to identify those constraints that, when removed, reduce the original
problem into the problem of finding a matching in a bipartite graph that saturates
one of the two partitions as described above. Figure 9 illustrates this relaxation.

Po Pr

o=(V o,Do,C )oFFormulation:
Query: Q o = Is the problem satisfiable?

Formulation:
Query: Q r = Is there a matching saturating a partition of V?

G = (V,E)

Fig. 9. Relaxing a CSP as a matching problem

6.3 Using the Relaxation in Problem Solving

We can use the above relaxation in four ways for the BID problem and for other
applications that can be relaxed as a matching problem:

1. To solve problem instances that do not have the grid constraints, e.g. [1].
2. As a first preprocessing step to quickly rule out unsatisfiable instances, i.e. before

Line 1 in Algorithm 1. Our experiments on the BID problem (not included here

4 The matching must saturate S because the BID problem assumes that all addresses in the
phone book, whether complete or incomplete, must be assigned to a building.
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for lack of space) showed that this early preprocessing is effective only on
tight problems.

3. As a second preprocessing between Line 5 and Line 6 in Algorithm 1, see
Section 8.

4. As a lookahead mechanism when using search at Line 6 in Algorithm 1. We use
the construction of [17] to filter out, from the domains of the future variables,
those values that cannot yield a solution. As such, the relaxed problem appears
as a (special version of the) all-diff constraints of [17], added to the problem as
a new but redundant constraint to enhance propagation, see Section 8.

7 Generating Solutions by Symmetry

The set of solutions to the relaxed problem of Section 6 can be obtained by enu-
merating all maximum matchings using an algorithm such as the one proposed by
Uno [18]. In this section, we characterize all maximum matchings in a bipartite graph
as symmetric to a single base matching, and proposed to use this symmetry to enu-
merate all solutions.

Our symmetry detection relies on two graph constructions described by Berge [19]:
alternating cycles (AltCyc) and even alternating paths starting at a free vertex (EvAltP).
An AltCyc or EvAltP in a graph G relative to a matching M alternate between edges
in M and edges not in M . If we take a maximum matching M and a AltCyc or EvAltP
P , we can produce another maximum matching M ′ by computing the symmetric dif-
ference of M and P , denoted MΔP . We use that mechanism to identify all maximum
matchings in a bipartite graph G as symmetric of a single maximum matching M . Let
S be the set of all AltCyc’s and EvAltP’s relative to M . We construct another maximum
matching Mi by choosing a disjoint subset Si ⊆ S and computing MΔSi. Mi is sym-
metrical to M in that it is identical to M in all edges except those in Si. In fact, for any
maximum matching Mj of G, we prove5 that there exists an Sj such that Mj = MΔSj .
We generate S by first orienting G using the construction described by Hopcroft and
Karp [16]. From the oriented graph, we enumerate the alternating paths by finding all
EvAltP’s, as defined by Berge [19]. We enumerate the AltCyc’s from the strongly con-
nected components in the oriented graph as described by Régin [17]. Thus, to store
the information necessary to enumerate all alternating paths and cycles, and therefore
all maximum matchings, we only need to store a single base matching, the set of free
vertices, and the set of strongly connected components6.

Consider the bipartite graph G = (X ∪ Y, E), where X = {x1, x2, x3, x4},
Y = {y1, y2, y3}, and E={(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), (x4, y2),
(x4, y3)}. Figure 10 (a) shows a maximum matching M in G. P = x1y1x2 is an
alternating path and C = x3y2x4y3x3 is an alternating cycle. We find other maxi-
mum matchings using the symmetric difference operator. Figure 10 (b) show MΔP ,
Figure 10 (c) shows MΔC, and Figure 10 (d) shows MΔ(C ∪ P ).

Figure 11 illustrates the two reformulations of Po, the problem of enumerating all
maximum matchings. We can reformulate Po as Pr1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reformulate the problem as Pr2,

5 The proof is omitted for lack of space.
6 An improvement suggested by an anonymous reviewer.



176 K.M. Bayer et al.

1x

x2

x3

4x

X

y3

Y

y1

y2

(a)

y3

1x

x2

x3

4x
(b)

Y

y1

y2

X

1x

x2

x3

4x

X

y3

(c)

Y

y1

y2

1x

x2

x3

4x

X

y3

(d)

Y

y1

y2

Fig. 10. Multiple matchings saturating Y

Formulation:
−A maximum matching M
−The set of strongly connected components in the oriented graph
−The set of free vertices in the oriented graph

Formulation:
Query: Q r = Enumerate all maximum matchings in G

G = (V,E)
oP Pr1

Pr2

Formulation: The set of all maximum matchings in G

Uno’s algorithm

Fig. 11. Finding all maximum matchings

a base matching and its corresponding sets of strongly connected components and
free vertices. All matchings can be enumerated from Pr2 as needed. Our construction
has the same time complexity as Uno’s, which is linear in the number of maximum
matching. However, our characterization of the solutions as symmetries has valuable
properties which we do not fully exploit:

1. It provides a more compact representation of the set of solutions. Rather than
storing all matchings, we store a single matching, a set of strongly connected
components, and a set of free vertices.

2. In case one is indeed seeking all, or a given number of, the solutions to BID prob-
lem (similarly, to a resource allocation problem that has a maximum matching re-
laxation), we can generate every symmetric matching to that known single matching
and test if it satisfies the additional constraints of the non-relaxed problem, when it
does not, the matching is a solution to the non-relaxed problem found without search.
Naturally, the number of maximum matchings can be large.

8 Experiments

We integrate our techniques in the flowchart shown in Figure 12, which implements
the instruction in Line 6 of Algorithm 1. Table 1 describes the properties of the re-
gions of the the city of El Segundo (CA), on which we ran our experiments. The
number of calls refers to the total number of calls to Line 6 of Algorithm 1. Each
call to Line 6 was timed out after one hour. We report the number of timed out exe-
cutions. The completeness of the phone book indicates what percent of the buildings
on the map have a corresponding address in the phone book. We created the com-
plete phone books using property-tax data, and the incomplete phone books using the
real-world phone-book.

Effect of domain reformulation. Table 2 shows the effect of domain reformulation by
comparing the domain sizes and the cost of BT before and after reformulation. When
the phone book is complete, the reformulation is not used as no ALLDIFF-ATMOST

constraints exist. The advantage of the reformulation increases with the incomplete-
ness of the phone book.

Effect of query reformulation. As stated in Section 4, the sheer number of solutions
made it impossible to solve problem instances with incomplete phone-books using
the query of enumerating all solutions. Thus, without the query reformulation, we
would not have been able to solve the incomplete phone-book instances.
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Fig. 12. Implementing Line 6 of Algorithm 1

Table 1. Case studies used in experiments

Case study Phone book Number of
completeness bldgs crnr bldgs blks calls

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

Table 2. Domain reformulation

Case study Avg. domain size Runtime [sec] Timeouts
Orig. Ref. Orig. Ref. Orig. Ref.

NSeg125-i 1103.1 236.1 2943.7 744.7 0 0
NSeg206-i 1102.0 438.8 14818.9 5533.8 0 0
SSeg131-i 792.9 192.9 67910.1 66901.1 18 17
SSeg178-i 785.5 186.3 119002.4 117826.7 32 29

Table 3. Solvers’ performance (no grid)

Runtime [sec]

BT Matching
Matching +

Case study
Symmetry

NSeg125-c 139.2 4.8 0.03
NSeg125-i 744.7 2.5 *
NSeg206-c 4971.2 16.3 0.06
NSeg206-i 5533.8 8.5 *
SSeg131-c 38618.3 7.3 0.26
SSeg131-i 66901.1 3.1 *
SSeg178-c 117279.1 22.5 0.41
SSeg178-i 117826.7 4.9 *
* Did not finish in 1 hour.

Effect of finding symmetrical maximum matchings. In the absence of grid constraints,
the building-identification problem can be solved in polynomial time by the matching
solver. Here we compare backtrack search, a solver that uses Algorithm 1 with a
matching solver, and a solver that uses the reformulation of symmetric matchings
from Section 7. Finding all symmetric matchings requires enumerating all matchings,
which isn’t feasible for the under-constrained incomplete phone-book problems. Thus,
those problem instances timed out and are indicated by asterisks. However, when
the number of solutions was small, such as when the phone-book is complete, the
symmetry solver had significantly better performance than the per-variable matching
solver. The benefit in terms of runtime reduction is shown in Table 3.

Effect of relaxing a CSP into a matching problem. To test the use of the matching re-
laxation as a preprocessing step and lookahead mechanism, we added grid constraints to
each region. Table 8 shows the results of these experiments, comparing the performance
of: (1) the backtrack search (BT), (2) BT with matching for preprocessing (Preproc+BT),
(3) BT with matching for lookahead (Lkhd+BT), and (4) BT with matching for both pur-
poses (Preproc+BT+Lkhd). We report runtime, number of timeouts, and number of calls
to the CSP solver saved by the preprocessing. In all cases, the same solutions were found.
Our results indicate that, in general, the integration of the matching and BT improves
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Table 4. Improvements due to preprocessing and lookahead

NSeg125-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 -

Preprocessing+BT 33.2 0 97.0%
BT+Lkhd 140.2 0 -

Preproc+BT+Lkhd 39.6 0 97.0%
NSeg125-i + grid CPU [sec] #Timeouts Calls saved

BT 1232.5 0 -
Preprocessing+BT 1159.1 0 62.6%

BT+Lkhd 726.6 0 -
Preproc+BT+Lkhd 701.1 0 62.6%
NSeg206-c + grid CPU [sec] #Timeouts Calls saved

BT 2277.5 0 -
Preprocessing+BT 614.2 0 98.9%

BT+Lkhd 1559.2 0 -
Preproc+BT+Lkhd 443.8 0 98.9%
NSeg206-i + grid CPU [sec] #Timeouts Calls saved

BT 4052.8 0 -
Preprocessing+BT 3806.7 0 87.8%

BT+Lkhd 3499.5 0 -
Preproc+BT+Lkhd 3510.0 0 87.8%

SSeg131-c + grid CPU [sec] #Timeouts Calls saved
BT 17063.3 0 -

Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 9745.8 0 -

Preproc+BT+Lkhd 4256.0 0 92.5%
SSeg131-i + grid CPU [sec] #Timeouts Calls saved

BT 114405.9 30 -
Preprocessing+BT 114141.3 29 74.2%

BT+Lkhd 107896.3 30 -
Preproc+BT+Lkhd 108646.5 30 74.2%
SSeg178-c + grid CPU [sec] #Timeouts Calls saved

BT 78528.6 14 -
Preprocessing+BT 15717.9 1 91.9%

BT+Lkhd 74172.0 14 -
Preproc+BT+Lkhd 13961.1 1 91.9%
SSeg178-i + grid CPU [sec] #Timeouts Calls saved

BT 138404.2 35 -
Preprocessing+BT 103244.7 25 72.7%

BT+Lkhd 121492.4 32 -
Preproc+BT+Lkhd 85185.9 22 72.7%

performance. There are exceptions, when the cost of the additional processing exceeds
the gains in terms of reduced search space. However, even when we saw performance
degradation, the degradation was minimal.

9 Related Work and Conclusions

Reformulation has been applied to a wide range of CSP problems with much success.
The literature also encompasses approaches to modeling, abstraction, approximation,
and symmetry detection7. Nadel studied 8 different models of the n-Queens problem,
some of which much easier to solve than others [20]. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1874 [21]. Holte and Choueiry provide a general
discussion on abstraction and reformulation in AI including CSPs [22]. Razgon et al. [23]
studied a class of problems that is similar to the one we investigate, and which they call
Two Families of Sets constraints (TFOS). They introduced a technique for reformulat-
ing TFOS problems into network flow problems. Conceptually, the relaxed problem we
study in Section 6 constitutes a special case of the TFOS problem.

An interesting feature of our work is the design of several techniques and their
integration in a comprehensive framework for solving the BID problem while high-
lighting their usefulness for general CSPs. Also, our query reformulation facilitates a
much wider use of relational consistency algorithms than was possible before. In the
future, we intend to evaluate these techniques in other application settings. For ex-
ample, we believe that many resource allocation problems have matching relaxations
like we described.

Acknowledgments. Experiments were conducted on the Research Computing Facil-
ity at UNL. This research is supported by NSF CAREER Award #0133568 and the
Air Force Office of Scientific Research under grant numbers FA9550-04-1-0105 and
FA9550-07-1-0416.

7 Some successful dedicated meetings are: Symposium on Abstraction, Reformulation and Ap-
proximation, Workshop on Modeling and Reformulation, Workshop on Symmetry in CSPs.



Reformulating CSPs for Scalability with Application to Geospatial Reasoning 179

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaction Approach to Geospatial Rea-
soning. In: AAAI 2005, pp. 423–429 (2005)

2. Pickering, T.: Speech by Under Secretary of State T. Pickering on 06/17/1999 to the
Chinese Government Regarding the Accidental Bombing of the PRC Embassy in Belgrade
(1999)

3. van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning. In:
AAAI 1999, pp. 585–590 (1999)
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