
GAC Via Unit Propagation

Fahiem Bacchus

Department of Computer Science,University of Toronto, Canada
fbacchus@cs.toronto.edu

Abstract. In this paper we argue that an attractive and potentially very general
way of achieving generalized arc consistency (GAC) on a constraint is by using
unit propagation (UP) over a CNF encoding of the constraint. This approach to
GAC offers a number of advantages over traditional constraint specific algorithms
(propagators): it is easier to implement, it automatically provides incrementality
and decrementality in a backtracking context, and it can provide clausal reasons to
support learning and non-chronological backtracking. Although UP on standard
CNF encodings of a constraint fails to achieve GAC, we show here that alternate
CNF encodings can be used on which UP does achieve GAC. We provide a generic
encoding applicable to any constraint. We also give structure specific encodings
for the regular, among, and gen-sequence constraints on which UP can achieve
GAC with the same run time bounds as previously presented propagators. Finally,
we explain how a UP engine can be added to a CSP solver to achieve a seam-
less integration of constraints encoded in CNF and propagated via UP and those
propagated via traditional constraint specific propagators.

1 Introduction

Unit propagation (UP) is a local propagation mechanism for propositional formulas
expressed in conjunctive normal form (CNF). Any constraint over finite domain variables
can be converted to CNF using the direct encoding of [17]. However, UP on that encoding
(or on the other encodings presented in [17]) does not achieve GAC—it has only the
power of forward checking. In this paper we demonstrate that alternate CNF encodings
can be constructed that allow UP to efficiently achieve GAC.

Using UP on a CNF encoding to achieve GAC has a number of advantages over
the specialized constraint specific algorithms (propagators) that are typically used. Intu-
itively, these advantages arise from the fact that propagators are procedural where as the
CNF encoding utilized by UP is declarative. In particular, the sequencing of operations
defining a propagator is typically quite rigid. Altering these operations so as to support
features like interleaving with the propagators for other constraints or incrementality
and decrementality in a backtracking context often requires non-trivial modifications.

In contrast UP can be run on a CNF encoding in flexible ways. In particular, UP can
easily interleave the propagation of multiple constraints; it is always incremental; decre-
mentality can be achieved almost without cost; and it readily supports the derivation of
new clauses (generalized nogoods [12]) that can be used to improve search performance
via learning and non-chronological backtracking. First, once encoded in CNF a con-
straint’s clauses need not be distinguished from the clauses encoding other constraints.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 133–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



134 F. Bacchus

Thus, UP can interleave its GAC propagation across different constraints in arbitrary
ways. For example, if the constraints C1 and C2 are both encoded in CNF then UP can
detect that a value for a variable has become inconsistent for constraint C1 while it is
in the middle of propagating the clauses for computing GAC on C2. Furthermore, this
pruned value will then automatically be taken into account during the rest of UP’s com-
putation of GAC on C2. Second, UP works by forcing the truth value of propositions;
the order in which these truth values are set is irrelevant to the final result. Hence, it
is irrelevant to UP if some of these propositions already have their truth value set: i.e.,
UP is always incremental. Third, the modern technique for implementing UP employs
a lazy data structure called watch literals. One of the salient features of watch literals
is that they need not be updated on backtrack. Thus, with UP decrementality can be
achieved essentially without cost: only the forced truth assignments need to be undone.
Fourth, if UP detects a contradiction, existent techniques can be used to learn power-
ful nogoods that can improve search performance. These techniques learn generalized
nogoods (clauses) which are more powerful than standard nogoods [12].

Previous work has investigated the connections between SAT propagation mecha-
nisms (including UP) and various CSP propagation mechanisms (e.g., [6,3,9,17]). Most
of this work, however, has been confined to binary constraints and thus has addressed
AC rather than GAC. However, Hebrard et al. [11] building on the work of [9] present
an CNF encoding for an arbitrary constraint that allows UP to achieve relational k-
arc-consistency. Although that paper did not directly address achieving GAC via UP,
their encoding can easily be adapted accomplish this. Furthermore, UP on this encoding
achieves GAC in the same time complexity as a generic GAC algorithm like GAC-
Schema [4] (GAC-Schema can however have a lower space complexity). Here one of
our contributions is to elaborate the connection between GAC and UP on generic con-
straints, showing how Hebrard et al.’s encoding idea can be adapted to achieve GAC and
how a more direct CNF encoding of the constraint can also allow UP to achieve GAC.

The main benefit of GAC in Constraint Programming, however, lies not so much with
generic constraints, but rather in the fact that for a number of constraints specialized
algorithms exist, called propagators, that can compute GAC in time that is typically
polynomial in the arity of the constraint. This is a significant speed up over generic GAC
algorithms which require time exponential in the arity of the constraint.

The main contribution of this paper is to demonstrate that just as some constraints ad-
mit specialized algorithms for computing GAC, some constraints also admit specialized
CNF encodings on which UP can compute GAC much more efficiently. In this paper,
we demonstrate such encodings for three different constraints: regular, among and
gen-sequence. However, UP on our encoding for gen-sequence is not quite sufficient
to achieve GAC. Nevertheless, a simple extension of UP called the failed literal test is
able to achieve GAC on this encoding. The failed literal test retains the advantages of
UP mentioned above.

An additional contribution of the paper is to explain how a CSP solver can easily
be modified to integrate a state of the art UP engine that can then be used to achieve
GAC for some constraints while the other constraints are propagated using traditional
mechanisms. It is worth noting that a UP engine does not need to be implemented from
scratch. Rather, very efficient state of the art UP engines are publically available. For
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example, the open source MiniSat SAT solver [7] (a consistent winner of recent SAT
solver competitions) contains a clearly coded UP engine that can be extracted and utilized
for this purpose—the code can be freely used even for commercial purposes.

In the sequel we first present the background properties of GAC and UP needed for
the rest of the paper, and explain what is already known about the connection between
GAC and UP. We then give a new result that elaborates on this connection. These results
illustrate how generic GAC can be accomplished by UP. We then illustrate how a UP
engine can be seamlessly integrated into a CSP solver. Turning to global constraints, we
then present encodings for the afore mentioned constraints that allow UP to achieve GAC
in polynomial time. We close with some final conclusions and ideas for future work.

2 Background

Let V = {V1, . . . , Vn} be a sequence of variables each of which has a finite domain
of possible values dom [Vi]. Corresponding to the variable sequence V is the Cartesian
product of the variable domains. We extend dom to apply to sequences of variables:
dom [V ] = dom [V1] × · · · × dom [Vn]. A constraint C is a function over a sequence
of variables scope(C). The size of scope(C) is called the arity of C. C maps tuples
from dom [scope(C)] to true/false. That is, if scope(C) = 〈X1, . . . , Xk〉 and τ ∈
dom[X1] × · · · × dom[Xk], then C(τ) = true/false. If C(τ) = true we say that τ
satisfies C, else it falsifies it. We also view τ as being a set of assignments and say that
V = d ∈ τ if τ ’s V ’th dimension is equal to d.

A constraint C is said to be GAC if for every variable X ∈ scope(C) and every value
d ∈ dom [X ] there exists a τ ∈ dom [scope(C)] with X = d ∈ τ and C(τ) = true.
A satisfying tuple τ containing X = d is called a support for X = d. A constraint
can be made GAC by simply removing every unsupported value from the domains of
its variables. If the value d ∈ dom [V ] is unsupported by C we say that the assignment
V = d is GAC-inconsistent for C.

GAC propagation is the process of making some or all of the constraints of the problem
GAC. If more than one constraint is to be made GAC, then GAC propagation will be
an iterative process as making one constraint GAC might cause another constraint to
no longer be GAC. However, since enforcing GAC (making a constraint GAC) is a
monotonic process of removing unsupported values from the domains of variables,
propagation must converge in at most a polynomial number of steps.

Unit propagation (UP) works on propositional formulas expressed in conjunctive nor-
mal form (CNF). A CNF formula is a conjunction ofclauses, each of which is a disjunction
of literals, each of which is a variable of the formula valued either positively or negatively.
Given a CNF formula F and a literal � we denote the reduction ofF by � asF

∣
∣
�
. The reduc-

tion F
∣
∣
�

is a new CNF formula obtained from F by removing all clauses of F containing
� and then removing ¬� (the negation of �) from all remaining clauses. UP works by it-
eratively identifying all unit clauses of F (i.e., clauses containing only a single literal).
Each unit clause (�) ∈ F entails that � must be true. Hence if (�) is a unit clause of F
then F is equivalent to F

∣
∣
�
. UP forces � and transforms F to F

∣
∣
�

whenever it finds a unit
clause (�). Furthermore, since F

∣
∣
�

might contain additional unit clauses UP iteratively
identifies unit clauses and continues to reduce the formula until no more units exist.
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It is not hard to demonstrate that the final formula produced by UP does not depend
on the order in which UP removes the unit clauses. Similarly, if GAC is being achieved
for a collection of constraints, the order in which these constraints are processed (and
reprocessed) has no effect on the final set of reduced variable domains. It can also be
seen that UP runs in time linear in the total size of the input formula F (the sum of
the lengths of the clauses of F ): each clause of length k need only be visited at most k
times to remove literals or force the last literal during UP. GAC also runs in time linear
in the size of a tabular representation of the constraint: by processing each satisfying
tuple of the constraint GAC can identify all supported variable values.1 However, the
tabular representation of a constraint has size exponential in the constraint’s arity. It
can be shown that when taking the arity of the constraint as the complexity parameter
achieving GAC is NP-Hard. Both UP and GAC are sound rules of inference. That is, if
d is removed from the domain of V by GAC, then no tuple of assignments satisfying C
can contain V = d. Similarly, if UP forces the literal � then � must be true in all truth
assignments satisfying F . Finally, Both GAC and UP can detect contradictions. If UP
produces an empty clause during its propagation, the initial formula is UNSAT, and if
GAC produces an empty variable domain the constraint cannot be satisfied.

UP can also be utilized for look-ahead. In particular the failed literal rule [8] involves
adding the unit clause (�) and then doing UP. If this yields a contradiction we can conclude
that ¬� is implied by the original formula.

2.1 Achieving Generic GAC with UP

In [11] a CNF encoding for a constraint was given on which UP is able to achieve
relational k-arc consistency. Although GAC was not mentioned in that paper, their idea
can be easily be adapted to allow UP to compute GAC on an arbitrary constraint.

The required encoding contains clauses for representing the variables and their do-
mains of possible values. We call these clauses the Variable Domain Encoding
(VDom). VDom consists of the following propositional variables and clauses. For every
multi-valued variable V with dom [V ] = {d1, . . . , dm}:

1. m assignment variables AV =dj one for each value dj ∈ dom [V ]. This variable is
true when V = dj , it is false when V cannot be assigned the value dj , i.e., V has
been assigned another value, or dj has been pruned from V ’s domain.

2. The O(m2) binary clauses (¬AV =d, ¬AV =d′) for every d, d′ ∈ dom [V ] such that
d �= d′, capturing the condition that V cannot be assigned two different values.

3. The single clause (AV =d1 , . . . , AV =dm) which captures the condition that V must
be assigned some value.

One important point about the VDom clauses is that although there are O(km2)
clauses, UP can be performed on these clauses in time O(km). In particular, it is easy
to modify a UP engine so that the information contained in the VDom clauses is given a
more compact O(km) representation and propagated in O(km) time (e.g., the e-clauses
described in [5]). In the sequel we will assume that this optimization to the UP engine
is used, so as to avoid an unnecessary m2 factor in our complexity results.

1 Practical GAC algorithms employ support data structures that make re-establishing GAC more
efficient and that save space when the constraint is intensionally represented.
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In addition to the VDom clauses, the encoding contains additional clauses used
to capture the constraint C. These constraint clauses utilize additional propositional
variables t1, . . . , tm, each one representing one of the m different tuples over dom
[scope(C)] that satisfies C. Let τi be the satisfying tuple represented by the proposi-
tional variable ti. Using the ti variables the clauses capturing C are as follows:

1. For the variable V ∈ scope(C) and value d ∈ dom [V ], let {s1, . . . , si} be the subset
of {t1, . . . , tm} such that the satisfying tuples represented by the si are precisely
the set of tuples containing V = d. That is, the si represent all of the supports for
V = d in the constraint C. Then for each variable and value V = d we have the
clause (s1, . . . , si, ¬AV =d), which captures the condition that V = d cannot be true
if it has no support.

2. For each satisfying tuple of C, τi, and assignment V = d ∈ τi we have the clause
(AV =d, ¬ti), which captures the condition that the tuple of assignments τi cannot
hold if V = d cannot be true.

When building this encoding, any value d ∈ dom [V ] that is unsupported in C will
yield a unit clause ¬AV =d in item 1. Thus for every value d ∈ dom [V ] pruned by GAC,
UP will force ¬AV =d. More interestingly, in a dynamic context if d is pruned (say by
GAC on another constraint), then the clauses of item 2 will allow UP to negate all tuple
variables ti such that V = d ∈ τi. Then the clauses of item 1 will allow UP to delete any
newly unsupported domain values. This propagation will continue until all unsupported
domain values have been removed and GAC has been re-established.

It can also be observed that the size of this encoding (i.e., the sum of the lengths of the
clauses) is linear in the size of the constraint’s tabular representation: O(mk) where m
is the number of satisfying tuples, and k is the constraint’s arity. In particular, ti appears
in only k clauses from item 1 (which bounds to total length of these clauses), and k
clauses from item 2 (which are all of length 2). Hence UP on this encoding will operate
in time linear in the size of the constraint’s tabular representation, i.e., the same time
complexity as a generic GAC algorithm.

3 UP for Generic GAC Revisited

We now present an new method for achieving GAC on a generic constraint via UP. Our
method does not introduce any new propositional variables (only assignment variables
are used).

In the new encoding we have the VDom clauses encoding the multi-valued variables
in scope(C), as before. Then for each falsifying tuple of assignments τ = 〈V1 =
d1, V2 = d2, . . . , Vk = dk〉 to the variables in scope(C) we add the clause (¬AV1=d1 ,
. . . , ¬AVk=dk

) which blocks this tuple of assignments. Call this set of clauses direct(C )
[17]. Let the total set of clauses encoding C be T = VDom∪direct(C). Now we replace
T with its set of prime-implicates.

Definition 1. If F is a CNF formula then the clause c is a prime implicate of F if F |= c
and for any c′ that is a sub-clause of c (c′ � c), then F �|= c′.

Letting PI (T ) be the set of prime implicates of T we have the following result.
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Theorem 1. If the constraint C is satisfied by some tuple of assignments, UP on the CNF
theory PI (T ) achieves GAC on C. That is, the assignment V = d is GAC-inconsistent
for C iff UP on PI (T ) forces ¬AV =d. If C has no satisfying tuple, UP on PI (T ) will
generate the empty clause (and GAC will generate an empty domain).

Proof: First we observe that the set of satisfying tuples of C and the set of models
of T are in 1-1 correspondence. From any model of T we must have one and only one
assignment variable AV =d being true for each variable V ∈ scope(C). Furthermore, this
set of true assignments do not correspond to any falsifying tuple, else they would falsify
one of the clauses encoding C. Similarly, from a satisfying tuple for C we can make
the corresponding assignment variables of T true, this will falsify all other assignment
variables and thus satisfy all the clauses encoding C.

Hence, if GAC prunes V = d, AV =d cannot be true in any model of T , thus T |=
(¬AV =d) and this unit clause must be part of PI (T ). On the other hand if UP on PI (T )
forces ¬AV =d then AV =d must be false in every model of PI (T ), hence false in every
model of T (since PI (T ) is logically equivalent to T ), hence V = d cannot be part of
any satisfying tuple, and hence it will be pruned by GAC. Finally, if C is unsatisfiable,
T will be UNSAT, and PI (T ) will contain only the empty clause.

Corollary 1. If after establishing GAC by running UP on PI (T ) we additionally prune
the assignment V = d (say by GAC on another constraint), then UP on PI (T ) ∪
(¬AV =d) will re-establish GAC.

This corollary can be seen to be true by observing that UP on PT (T )∪ (¬AV =d) is the
same as UP on PT (T )

∣
∣
¬AV =d

and that this is the set of prime implicates of T
∣
∣
¬AV =d

.
Computing the set of prime implicates of a theory can be expensive; in the worst

case it is exponential in the sum of the domain sizes of the variables in scope(C). Nev-
ertheless, we can make the following observations. First, the prime implicate encoding
can be computed prior to search. Furthermore, once a constraint has been converted to
its prime implicate encoding that encoding can be reused in any CSP containing the
constraint. Second, some constraints might have a special structure that permit a more
efficient computation of their prime implicates. And third even partial computation of
some of the implicates of T could allow UP to derive more consequences even if it fails
to achieve GAC.

4 Using a UP Engine in a CSP Solver

The two encodings presented above facilitate achieving GAC on an arbitrary constraint,
but the complexity remains exponential in the constraint’s arity. In the next section we
investigate encodings that exploit constraint specific structure to move from exponential
to polynomial complexity. But before presenting those results we first discuss how an
UP engine could be utilized in a CSP solver.

The architecture would be as illustrated in the figure to the right. The UP engine oper-
ates on a set of clauses encoding some of the constraintsC1, . . . , Ck. These clauses would
also include the VDom clauses encoding variable domains. The other
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Backtracking
Search Engine

UP Engine GAC Propagator

Clauses encoding Propagators forClauses encoding
constraints
C1,…,Ck and
variable domains 

Propagators for
constraints D1,…,Di

for variables in 
these constraints

constraints of the problem, D1, . . . , Di

are handled by a standard CSP propaga-
tor (e.g., a GAC propagator). Both UP
and GAC communicate with each other
and with an underlying solver. The com-
munication required is simple. When-
ever GAC (the solver) prunes a value
d from dom [V ] (assigns V = d) it in-
forms the UP engine that the associated
literal ¬AV =d (AV =d) has become true.
UP can then propagate this literal which
might result in other variables AX=a

being forced true or false. If AX=a becomes true, then the assignment X = a is forced
and all of X’s other values have been pruned. The GAC engine can then propagate the
fact that X �= d for all d �= a. If AX=a becomes false, then the GAC engine can prop-
agate the pruned value X �= a. Either engine might be able derive a contradiction, at
which point the search engine can backtrack. On backtrack the search engine will inform
the GAC and UP engines to backtrack their state. For UP this is the simple process of
unassigning all literals set to be true since the backtrack point.

Note that UP can also return a clausal reason for every assignment variable it forces.
These clausal reasons can then be utilized by the search engine to perform
non-chronological backtracking and clause learning. Since these clauses can contain
both positive and negative instances of the assignment variables they are more general
than standard nogoods (which contain only positive instances of assignment variables).
As shown in [12] this added generality can yield a super-polynomial speedup in search.
With the GAC engine, however, we have to modify each specialized propagator to al-
low it to produce an appropriate clausal reason for its pruned values. [12] gives some
examples of how this can be accomplished.

5 Constraint Specific UP Encodings

GAC propagators are one of the fundamental enablers of GAC in CSP solvers. Prop-
agators are constraint specific algorithms that exploit the special structure of a con-
straint so as to compute GAC in time polynomial in the constraint’s arity.

Our main contribution is to demonstrate that constraint specific structure can also
be exploited by a UP engine for a range of constraints. In particular, we present spe-
cialized clausal encodings for three different constraints, regular, among, and gen-
sequence, such that UP on these encodings achieve GAC as efficiently as currently
known propagators.

There has been some previous work on exploiting structure via specialized CNF
encodings of constraints, e.g., [2,15,10,1]. These works however are mostly aimed
at obtaining better performing CNF encodings for use in a SAT solver. In particular,
either UP on these encodings does not achieve GAC or when it does it is not as
efficient as standard GAC propagators.
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5.1 Regular

A regular constraint over a sequence of k variables asserts that the sequence of val-
ues assigned to those variables falls into a specific regular language. By varying the
language the regular constraint can be used to capture a number of other constraints
(e.g., the stretch constraint) [13]. It is not always possible to achieve GAC on a regu-
lar constraint in time polynomial in its arity. In particular, the complexity of achieving
GAC also depends on the complexity of the regular language being recognized. Nev-
ertheless, UP on our clausal encoding can achieve the same complexity guarantees
as the propagator given in [13].

More formally, each regular language L has an associated Deterministic Finite Au-
tomaton (DFA) M that accepts a string iff that string is a member of L. M is defined
by the tuple 〈Q, Σ, δ, q0, F 〉, where Q is a finite set of automaton states, Σ is an in-
put alphabet of symbols, δ is a transition function mapping state-input symbol pairs
to new states Q×Σ �→ Q, q0 is the initial state, and F is a set of accepting states. A
DFA takes as input a string of characters. Each character c ∈ Σ causes it to transition
from its current state q to the new state δ(q, c). The DFA starts off in the state q0
and a string S over the alphabet Σ is said to be accepted by the DFA M if S causes
M to transition from q0 to some accepting state in F .

Let L be a regular language over the alphabet of symbols
⋃k

i=1 dom [Vi], and
M be a DFA that accepts L. The regular constraint over the sequence of variables
〈V1, . . . , Vk〉 and the language L, regularL(〈V1, . . . , Vk〉) is satisfied by a sequence
of assignments 〈V1 = d1, . . . Vk = dk〉 iff the sequence of values 〈d1, . . . , dk〉 is
accepted by the DFA associated with L.

Our clausal encoding of regular utilizes the insight of [13] that GAC can be achieved
by looking for paths in a layered directed graph. The graph has k layers each of which
represents the possible states the DFA can be in after s inputs (0 ≤ s ≤ k). Any input
string generates a path in this graph, and an accepted string must generate a path starting
at q0 and ending in some state of F . Our encoding captures the structure of this graph in
such a way that UP can determine whether or not any particular value d ∈ dom [Vi] lies
on an accepting path (is part of a satisfying tuple). The encoding contains the assignment
variables AVi=d (d ∈ dom [Vi]) along with the VDom clauses encoding the variable
domains. In addition it also contains the following variables and clauses:

1. For each step s of M ’s processing, 0 ≤ s ≤ k, and each state qi ∈ Q, the state
variable qs

i . This variable is true if M is in state qi after having processed s input
symbols.

2. For each transition (qi, d) �→ qj ∈ δ and each step s, 1 ≤ s ≤ k such that
d ∈ dom [Vs], the transition variable tsqi〈d〉qj

. This variable is true if M ’s s-th
input symbol is d and on processing this symbol it transitions from state qi to qj .

3. For each transition variable the clauses (¬tsqi〈d〉qj
, qs−1

i ), (¬tsqi〈d〉qj
, qs

j ),
and (¬tsqi〈d〉qj

, AVs=d). These clauses capture the condition that if the transi-
tion tsqi〈d〉qj

is true, M must be in state qi at step s−1, qj at step s, and Vs must
be assigned the value d.

4. For each state variable qs
i let {ts+1

qi〈∗〉∗} be the set of transition variables repre-
senting transitions out of qi at step s+1 and {ts∗〈∗〉qi

} be the set of transition
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variables representing transitions into qi at step s. For each qs
i the encoding con-

tains the clauses ({ts+1
qi〈∗〉∗}, ¬qs

i ) and ({ts∗〈∗〉qi
}, ¬qs

i ), capturing the condition
that at least one incoming and one outgoing transition must be true for state qi

to hold at step s. For step 0 we omit the clauses for incoming transitions, and
for step k we omit the clauses for outgoing transitions.

5. For each assignment variable AVs=d let {ts∗〈d〉∗} be the set of transition variables
representing transitions enabled by the assignment Vs = d at step s. Then for
each assignment variable the encoding contains the clause ({ts∗〈d〉∗}, ¬AVs=d)
capturing the condition that at least one supporting transition must be true for
this assignment to be possible.

6. For each state variable q0
i such that i �= 0, the encoding contains the clause (¬q0

i ),
capturing the condition that M must start in step 0 in the initial state q0. For
each state variable qk

i such that qi is not an accepting state of M , the encoding
contains the clause (¬qk

i ), capturing the condition that M must finish in some
accepting state.

Theorem 2. If the constraint regularL(〈V1, . . . , Vk〉) is satisfied by some tuple of
assignments, UP on the above encoding achieves GAC on the constraint in time
O(km|Q|), where k is the arity of the constraint, m is the maximum sized domain,
and |Q| is the number of states of the DFA accepting L. That is, the assignment
Vi = d is GAC-inconsistent for regularL(〈V1, . . . , Vk〉) iff UP on this encoding forces
¬AVi=d. If regularL(〈V1, . . . , Vk〉) has no satisfying assignment UP will generate the
empty clause (GAC will generate an empty domain).

Proof: First we address the size of the encoding. There are |Q|k state variables (where
k is the arity of the constraint and |Q| is the number of states of M ), and if m is the
maximal sized domain of any of the variables Vi, at most km|Q| transition variables.
In particular, M is deterministic, hence for each transition variable tsqi〈d〉qj

if any two
of the three parameters qi, d, or qj are fixed the last parameter can only have a single
value (s ranges from 1 to k).

Associated with each transition variable are 3 clauses from item 3 for a total size
of O(km|Q|). Associated with each of the k|Q| state variables is a clause of length
|{ts+1

qi〈∗〉∗}| + 1 and a clause of length |{ts∗〈∗〉qi
}| + 1, from item 4. These clauses are

at most m + 1 in length (given the input symbol the other (input or output) state
is determined): again a total size of O(km|Q|). Finally, associated with each of the
O(km) assignment variables is a single clause of length |{ts∗〈d〉∗}|+1. These clauses
can be most length |Q|+1 (fixing the input or output state determines the other state):
once again a total size of O(km|Q|). Hence the total size of the clausal encoding is
O(km|Q|) which gives the space as well as the time complexity of UP (UP runs
in time linear in the total size of the encoding).2 This is the same time and space
complexity of the propagator given in [13].

Now we prove that UP achieves GAC assuming that the constraint is satisfied by
some tuple of assignments. First, if Vi = di is not pruned by GAC then UP cannot

2 As discussed Section 2.1 we are exploiting the fact that the km2 VDom clauses can be
represented and propagated in O(km) space and time.
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force ¬AVi=di . If Vi = di is not pruned by GAC it must have a supporting tuple,
〈V1 = d1, . . . , Vi = di, . . . , Vk = dk〉. This sequence of inputs to M will cause
M to transition through a sequence of states 〈qπ(0), qπ(1), . . . , qπ(k)〉 starting at the
initial state qπ(0) = q0 and ending at an accepting state qπ(k) ∈ F . Setting all of
the corresponding assignment variables AVi=di , state variables qs

π(s), and transition
variables tsqπ(s−1)〈ds〉qπ(s)

to be true, and and all other variables to be false, we observe
that all clauses become satisfied. Hence AVi=di is part of a satisfying truth assignment
and since UP is sound it cannot force ¬AVi=di . We conclude by contraposition that
if UP forces ¬AVi=di then GAC must prune Vi = di

Second, if UP does not force ¬AVi=di then GAC will not prune Vi = di, and by
contraposition we have that if GAC prunes Vi = di then UP must force ¬AVi=di .
Given that UP has been run to completion and ¬AVi=di has not been forced, then by
the clauses of item 5 there must exist some transition variable tiqh〈di〉qj

that also has
not be falsified by UP. By the clauses of item 2, it must also be the case that the state
variables qi−1

h and qi
j have not been falsified. By the clauses of item 4 there must be

corresponding transition variables ti−1
qg〈di−1〉qh

incoming to qi−1
h and ti+1

qj〈di+1〉qk
out-

coming from qi
j , neither of which have been falsified. By the clauses of item 2 the

assignment variables AVi−1=di−1 and AVi+1=di+1 cannot be falsified. Continuing this
way we arrive at a input sequence that includes Vi = di and that causes M to transi-
tion from q0 to an accepting state. That is, Vi = di has a supporting tuple, and GAC
will not prune it.

Finally, if regularL(〈V1, . . . , Vk〉) has no satisfying assignment then no value d ∈
dom [Vi] is supported (for any variable Vi). By the above UP will force ¬AVi=d for
every d ∈ dom [Vi] thus making the VDom clause (AVi=d1 , . . . , AVi=dm) empty.

Corollary 2. If after initial GAC we additionally prune the assignment Vi = di, then
adding the unit clause ¬AVi=di and again performing UP re-establishes GAC.

That is, we can incrementally maintain GAC on regularL(〈V1, . . . , Vk〉) by simply
falsifying the assignment variables for every pruned assignment and then redoing UP.
As noted in the introduction UP is inherently incremental, so no changes need to be
made to achieve an incremental propagator. This corollary can be proved by observ-
ing that the proof of the theorem continues to apply even if some of the assignment
variables have initially been set to be false.

In [14] a CNF encoding for the grammar constraint has been developed. That
encoding is based on the grammar rules view of languages, and uses CNF to encode
a dynamic programming parsing algorithm. UP on the encoding is able to achieve
GAC for context free grammar constraints. Since regular languages are a subset of
context free languages, this encoding supplies an alternate way of using UP to achieve
GAC on regular. However, as demonstrated below our encoding for regular can be
extended to provide an encoding for gen-sequence whereas the encoding of [14] does
not provide an immediate solution for gen-sequence. Furthermore, the argument that
UP might be a useful general way of achieving GAC is not put forward in that paper.
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5.2 Among

An among constraint over a sequence of k variables, 〈V1, . . . , Vk〉 asserts that at least
min and at most max of these variables can take on a value from a specific set S.
More formally, among(〈V1, . . . , Vk〉, S, min, max) is satisfied by a tuple of assign-
ments 〈d1, . . . , dk〉 iff min ≤ |〈d1, . . . , dk〉 ∩ S| ≤ max.

To simplify our notation we can consider among(〈V1, . . . , Vk〉, {1}, min, max) in
which all of the variables in 〈V1, . . . , Vk〉 have domain {0, 1} and S is {1}. Any
among constraint among(〈X1, . . . , Xk〉, S′, min, max) can be reduced to this case
by introducing the 〈V1, . . . , Vk〉 as new variables and imposing a constraint between
Xi and Vi (1 ≤ i ≤ k) such that Vi = 1 iff Xi has a value in S′. In fact, although
we omit the details here, the constraint between the original Xi variables and the
Vi variables can be captured with a CNF encoding and enforced with the same UP
engine used to enforce among.

We can specify a CNF encoding for among by constructing a DFA that has max
states, q0, . . . , qmax. The states qmin, . . . qmax are all accepting states. The input al-
phabet is the two conditions Vi and ¬Vi (the Vi are binary values thus they can be
treated as propositions with Vi ≡ Vi = 1 and ¬Vi ≡ Vi = 0). The transition func-
tion is simply defined by the condition that an Vi input causes a transition from qj

to qj+1, while a ¬Vi input causes a transition from qj back to qj . In other words,
the states of the DFA simply keep track of the number of variables taking values in
S and accepts iff the total number over all k variables lies in the range [min, max].
Thus the among constraint can be encoded as a CNF on which UP achieves GAC
by using the previously specified encoding for this DFA.

Encoding among as a CNF is not particularly practical, as among has a very sim-
ple propagator that is more efficient than UP on this CNF encoding. The real use of
the CNF encoding of among comes from applying it to conjunctions of among con-
straints. It can also be noted that [1,15] both provide CNF encodings for the Boolean
Cardinality Constraint which is equivalent to the above among constraint. Their en-
codings allow UP to achieve GAC, but as with the above encoding, their encodings
are not as efficient as the standard propagator.

5.3 Generalized Sequence Constraint

A gen-sequence constraint over a sequence of variables 〈V1, . . . , Vk〉 is a conjunction
of among constraints. However, it is not an arbitrary collection of among constraints.
In particular, all of the among constraints are over sub-sequences of the same global
sequence 〈V1, . . . , Vk〉. Furthermore, the among constraint all count membership in
a fixed subset of domain values S.3 More formally,

gen-sequence(〈V1, . . . , Vk〉, S, 〈σ1, . . . , σm〉, 〈min1, . . . , minm〉, 〈max1, . . . , maxm〉)
≡

∧m
j=1 amongj(σj , S, minj , maxj),

where each σj is a sub-sequence of 〈V1, . . . , Vk〉.
3 The algorithm provided in [16] also requires that the set S be fixed over all among

constraints.
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We present an encoding on which the failed literal test achieves GAC. That is,
with this encoding, each value of each variable can be tested to determined if it is
supported by doing a single run of UP. It is particularly important that modern imple-
mentations of UP are decremental almost without cost. Thus all that needs to be done
between testing successive variable values is to undo the truth assignments forced by
the previous run of UP. Using the failed literal test to achieve GAC on this constraint
achieves the same time complexity guarantee as the propagator given in [16].

Since the set S is fixed across all of the among constraints, we can apply the same
transformation used in the previous section to convert them to among constraints
over variables with domain {0, 1} and S = {1}. With this simplifying transformation
our CNF encoding for gen-sequence consists of the encoding generated by a simple
DFA along with some additional clauses. In particular, to obtain a CNF encoding for
gen-sequence(〈V1, . . . , Vk〉, {1}, 〈σ1, . . . , σm〉, 〈min1, . . . , minm〉,
〈max1, . . . , maxm〉) (abbreviated as gen-sequence(〈V1, . . . , Vk〉)) where S = {1}
and the variables are all have domain {0, 1}, we first generate the CNF encoding for
among(〈V1, . . . , Vk〉, S, 0, k).

This encoding captures a DFA that simply keeps track of the number of variables
in 〈V1, . . . , Vk〉 that lie in S: all states are accepting. In the CNF encoding each step
s (0 < s ≤ k) contains s state variables qs

i (0 ≤ i ≤ s) indicating that i of the
first s variables V1, . . . , Vs took a value in S. The transition variables tsqi〈Vs〉qi+1

and
tsqi〈¬Vs〉qi

capture the transitions qi → qi+1 made when Vs takes a value in S and
qi → qi made when Vs takes a value not in S.

In addition to the clauses encoding this “base” DFA, for every constraint amongj

(σj , S, minj , maxj) in the gen-sequence we have the following clauses.

1. Let σj be the subsequence of variables 〈Vg, . . . , Vh〉, for every state variable at
step g−1, qg−1

i (0 ≤ i ≤ k) we have the clause (qh
i+ minj

, . . ., qh
i+ maxj

, ¬qg−1
i )

encoding the condition that if the count by time we have reached step h does not
lie in the range [i + minj , i + maxj ] then we cannot have started with the count
at i at step g−1.

2. The clause (qg−1
i−maxj

, . . ., qg−1
i−minj

, ¬qh
i ) encoding the condition that if the count

by time we reach step h is i then we must have started off in the range [i −
maxj, i − minj ] at step g−1.

Theorem 3. If the constraint gen-sequence(〈V1, . . . , Vk〉) is satisfied by some tuple
of assignments, the failed literal test on the above encoding achieves GAC on the
constraint in time O(mk3), where k is the arity of the constraint, and m is the num-
ber of among constraints in the gen-sequence constraint. That is, the assignment Vi

(i.e., Vi = 1) is GAC-inconsistent iff the failed literal test on Vi yields a contradiction.
Similarly for the assignment ¬Vi (i.e., Vi = 0). If gen-sequence(〈V1, . . . , Vk〉) has
no satisfying assignment then UP (without use of the failed literal test) will generate
the empty clause (GAC would generate an empty domain).4

4 Note that in [16] the claim is made that their propagator runs in time O(k3). However,
a close look at their algorithm demonstrates that it in fact requires O(mk3). In par-
ticular, each time a PUSHUP operation (at most O(k2)) in their CHECKCONSISTENCY



GAC Via Unit Propagation 145

Proof: We show that Vi is GAC inconsistent iff the failed literal test on ¬Vi yields
a contradiction. The argument for ¬Vi is similar.

Consider the relevant parts of the CNF encoding of gen-sequence. These are the
clauses encoding the base DFA that counts the number of variables taking values in
S, along with the clauses of item 1 and 2 above capturing the relationship between
the initial and final counts for each among constraint.

If GAC does not prune Vi then there must be some supporting tuple of values
containing it 〈V1, . . . , Vk〉. We can then generate a path through the base DFA from
this input sequence of Vj values. As with the proof of Theorem 2 this sequence can
be used to assign true to the state, and transition lying along this accepting path, with
all other variables assigned false. It can then be observed that all clauses of the DFA
will be satisfied, and further since the sequence also satisfies all m among constraints
so will all clauses for the m among constraints (items 1 and 2 above). Thus UP
cannot not force ¬Vi since Vi is part of a satisfying assignment. Furthermore, the
failed literal test on Vi cannot yield a contradiction. By contraposition we conclude
that if the failed literal test yields a contradiction then GAC will prune the value.

To prove the other direction consider what happens after UP (but not failed literal) has
been run. There will be some set of unfalsified state variables Qs at each step s. If any
of these sets, say Qi is empty, UP must have produced an empty clause. In particular,
the clauses of item 3 of the DFA encoding (specifying that a transition cannot be true
if its final state is false) will allow UP to falsify all incoming transitions variables into
states of step s, and this in turn will allow UP to falsify both “alphabet symbols” Vi

and ¬Vi using the clauses of item 5 of the DFA. This will give rise to a contradiction
and an empty clause. By the previous paragraph this means that the constraint has no
satisfying tuple, as each satisfying tuple yields a model of the clauses.

Say that none of these sets Qs is empty, let 〈q0, qπ(1), . . . , qπ(k)〉 be the sequence
of states such that π(i) is the minimal indexed state variable of Qi. This sequence of
states corresponds to the minimal unfalsified counts in the DFA after UP. We claim
that this sequence of states corresponds to a satisfying tuple for gen-sequence. First,
we have that either π(i+1) = π(i) or π(i+1) = π(i) + 1, that is these counts can
increase by zero or one at each step. If π(i+1) < π(i), then the only transitions
into qi+1

π(i+1) are from qi
j with j < π(i). However, all such state variables have been

falsified as qi
π(i) is the minimal indexed state variable at step i, hence the clauses of

item 3 of the DFA would have falsified all transitions variables coming into qi+1
π(i−1),

and the clauses of item 4 of the DFA would falsify qi+1
π(i+1): a contradiction. Similarly,

if π(i+1) > π(i) + 1 then all outgoing transitions from qi
π(i) would be falsified and

so would qi
π(i). Second, if π(i+1) = π(i) the variable ¬Vi cannot be false and if

π(i+1) = π(i) + 1 the variable Vi cannot be false: if these variables were false
then one or both of qi

π(i) and qi+1
π(i+1) would fail to have any incoming or outgoing

transitions and would thus be falsified by UP. Finally, this sequence must satisfy each

algorithm is performed it could require first checking all m among constraints to see if
any are violated. This yields an O(mk2) complexity for CHECKCONSISTENCY and an
overall O(mk3) complexity for achieving GAC.
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among constraint because of the clauses from each of these constraints. Consider the
clauses (qh

π(g+ minj), . . ., qh
π(g+ maxj), ¬qg−1

π(g−1)) and (qg−1
π(h−maxj)

, . . ., qg−1
π(h−minj)

,

¬qh
π(h)) from among constraint j. Since qg−1

π(g−1) is the minimal indexed state variable

at step g and qh
π(h) is the minimal indexed state variable at step h, we can see that

if π(g) − π(h) lies outside of the range [minj , maxj ] then one of qg−1
π(g−1) or qh

π(h)
will be falsified by UP from these clauses. For example, if π(g)−π(h) > maxj then
all of the step h state literals in (qh

π(g+ minj), . . ., qh
π(g+ maxj), ¬qg−1

π(g−1)) would be

falsified and thus qg−1
π(g−1) would also be falsified by UP. Hence, these minimal states

and the corresponding transitions and Vj variables between them define a satisfying
tuple for gen-sequence. We also see that if the constraint has no satisfying tuple, at
least one of the sets Qs must be empty and by the previous paragraph UP yields the
empty clause. This proves the last claim of the theorem.

If we apply the failed literal test to Vi, this will force Vi and thus if there is no con-
tradiction the minimal path after UP must contain Vi in the satisfying tuple it defines.
Thus Vi is supported, and so GAC will not prune this assignment. By contraposition,
if GAC prunes Vi then the failed literal test must generate a contradiction.

Turning now to the complexity, note that the encoding for the base DFA is of size
(total length of clauses) O(k2); in particular |Q| = k and m = 2 since the base DFA
only has to symbols Vj and ¬Vj in its alphabet. The clauses encoding the among con-
straints total m (the number of among constrains) times O(k2); each among constraint
generates k clauses from item 1 and k clauses of item 2, each of these clauses is of
length O(k). So in total we have a CNF theory of total size O(mk2). At most we have
to do O(k) failed literal tests each of which runs in time O(k2). This gives us a total
complexity for achieving GAC of O(mk3) in the worst case.

Some additional comments can be made about the practicality of this approach to GAC
on gen-sequence. First, the failed literal test can be quite efficient. In particular, no work
needs to be done to reset the “data structures” (i.e., the clauses) between successive
failed literal tests. Second, UP on this encoding achieves incremental GAC, it is not
difficult to see that if we prune values from the domains of the variables Vi so as to force
the value of Vi, UP can incrementally re-establish GAC. Third, the initial UP and each
successive failed literal test yields a supporting tuple. If Vi or ¬Vi appears in any of these
tuples, we need not do a failed literal test on it: it is already supported. Furthermore,
by analogous reasoning it is not hard to see that the sequence of maximum indexed
state variables in the sets Qs also forms a satisfying tuple. Thus the initial UP and each
subsequent failed literal test can yield up to two satisfying tuples, each of which can be
used to avoid testing some as yet untested Vi literals.

6 Conclusions

In this paper we have shown that GAC can be efficiently achieved by using the ap-
proach of converting a constraint to a CNF and then employing a UP engine to do
propagation in that CNF. As discussed in the introduction this approach has a number
of advantages, including the fact that it is immediately incremental and decremen-
tal. We have also shown that special structure in a constraint can in some cases be
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exploited so that UP can achieve GAC with the same complexity as a constraint spe-
cific propagation algorithm.

A number of questions remain open. First, there is the empirical question of how
this approach performs in practice. On that front we are quite optimistic given the
highly tuned nature of publically available UP engines. Second, there is the question
of just how general is this approach; can it be applied to other well known con-
straints? One thing to note with respect to this question is that regular is already
quite a general constraint. Nevertheless, further research along this line is definitely
required. It should be noted that the CNF encodings presented here exploits struc-
ture that had already been uncovered and exploited in previous propagators. So it is
feasible that other propagation algorithms could similarly exploited.
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