
Scheduling for Cellular Manufacturing

Roman van der Krogt1, James Little1, Kenneth Pulliam2, Sue Hanhilammi2,
and Yue Jin3

1 Cork Constraint Computation Centre
Department of Computer Science

University College Cork, Cork, Ireland
{roman,jlittle}@4c.ucc.ie

2 Alcatel-Lucent System Integration Center, Columbus, Ohio
3 Bell Labs Research Center Ireland

Abstract. Alcatel-Lucent is a major player in the field of telecommu-
nications. One of the products it offers to network operators is wireless
infrastructure such as base stations. Such equipment is delivered in cabi-
nets. These cabinets are packed with various pieces of electronics: filters,
amplifiers, circuit packs, etc. The exact configuration of a cabinet is
dependent upon the circumstances it is being placed in, and some 20
product groups can be distinguished. However, the variation in cabinets
is large, even within one product group. For this reason, they are built
to order.

In order to improve cost, yield and delivery performance, lean man-
ufacturing concepts were applied to change the layout of the factory to
one based on cells. These cells focus on improving manufacturing through
standardised work, limited changeovers between product groups and bet-
ter utilisation of test equipment. A key component in the implementation
of these improvements is a system which schedules the cells to satisfy
customer request dates in an efficient sequence.

This paper describes the transformation and the tool that was
built to support the new method of operations. The implementation
has achieved significant improvements in manufacturing interval, work
in process inventory, first test yield, headcount, quality (i.e. fewer defects
are found during the testing stage) and delivery performance. Although
these benefits are mainly achieved because of the change to a cell layout,
the scheduling tool is crucial in realising the full potential of it.

1 Introduction

Alcatel-Lucent is a major player in the field of telecommunications. One of the
products they deliver to network operators is wireless infrastructure. A key com-
ponent of wireless infrastructure is the base station. Such equipment is delivered
in cabinets, an example of which is pictured in Figure 1.1 Located between the
1 Although the cabinet is only the outer casing of the equipment, this is the term the

company uses to refer to the equipment. In this paper, we will therefore also use the
term ’cabinet’ to refer to the whole item.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 105–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



106 R. van der Krogt et al.

antennae and the ground network, their function is to handle the signals the
antennae receive and send. Depending on the model, their size is roughly that
of a standard kitchen refrigerator and they are packed with various pieces of
electronics: filters, amplifiers, circuit packs, etc. The exact configuration of a
cabinet is dependent upon the circumstances it is being placed in: the type of
network (e.g. CDMA or UMTS), the frequency (the GSM standard defines eight
frequency bands, for example), physical location (inside or outside), network
density (is it expected to handle a high or low volume of calls, what is the area
the cabinet covers), etc. Some 20 product groups can initially be distinguished.
However, as one can understand from the many aspects that are taken into con-
sideration, the variation in cabinets is large, even within one product group. For
this reason, they are built to order.

Fig. 1. A cabinet

The site that we worked with, the Systems Integration Center in Columbus,
Ohio, produces several hundred cabinets per week on average. The production
takes place in three stages: assembly, wiring and testing. The durations of each
the stages depends on the particular product group of the cabinet.

Assembly. The first series of steps takes as input a partially pre-populated
cabinet. This has certain basic features such as power supplies, cooling and
the back plane. To this, they add the required amplifiers, filters, circuit packs
and other hardware according to a predetermined schema. The cabinet passes
through a number of stations. Each station is dedicated to one or more types
of modules that are fitted into the cabinet.

Wiring. The second step involves physically interconnecting the hardware that
was added during assembly. Each component has a number of input and
output ports that have to be connected with a wire to the outputs and
inputs of other modules, again according to a predefined schema.



Scheduling for Cellular Manufacturing 107

Testing. The final step involves the validation of the completed system. For
this, each cabinet is connected to a test station that subjects it to a specially
designed set of test signals. If the output of the cabinet is not according to
specifications (e.g. due to a cable that is not firmly fixed in place), the test
engineer diagnoses the system and corrects the fault.

Of the three stages, assembly is a relatively low skill operation and requires the
least amount of training. The wiring step is more complicated, because a great
number of connections has to be made between a great number of connectors
that all look identical. Moreover, there is a high degree of freedom in the way the
connections can be made. Not in terms of the inputs and outputs that have to be
connected (these are fixed), but in terms of the order in which the connections
are made (i.e. which cables run in front of other cables), the position of the
cables (e.g. along the left or the right side of the cabinet) and which cables
are tied together. The final step of testing is also complicated, as it involves
making diagnoses for the detected anomalies and repairing them. Notice that
the high variability in orders exacerbates the complexity in wiring and testing.
To address these issues, the management decided to introduce a new setup that
allows wirers and test engineers to specialise on product groups. However, this
means that production has to be matched to available operator capabilities. The
CP-based scheduling system we describe in this paper does exactly that.

The remainder of this paper is organised as follows. In the next section, we
describe this change in operations in more detail and show why the use of a
scheduling tool is necessary in the new situation. Section 3, then, describes the
system that we built in detail. The paper finishes with an evaluation on the
system itself and the use of CP in general.

2 Introducing CP

As indicated in the introduction, the wirers and test engineers face a great diffi-
culty because of the huge variety in cabinets. Part of the problem in the original
situation, as depicted in Figure 2.a, is that all wirers and all test engineers are
considered to be a pool. Assembly puts populated cabinets into a buffer, from
which the wirers take their cabinets. In their turn, wirers put finished cabinets
into a buffer for testing. In this situation, only a very crude scheduling is em-
ployed. Based on the due dates of the orders, it is decided which orders are to be
produced on a given day. The assembly stage then starts populating the required
cabinets and places them in a buffer for wiring. When a wirer finishes a cabinet,
he chooses one of the cabinets from the buffer to work on. Similarly, testers pull
a cabinet out of the buffer for testing. In this way, cabinets trickle down the three
stages on their way to completion. Aside from the selection of which orders to
produce on a given day, no scheduling is performed. This may lead to several
issues. For example, when a particular wirer has finished there is a few specific
cabinets available in the buffer. Perhaps, the only product groups available are
ones that he has no great familiarity with, which may lead to errors. As a sec-
ond example, consider that a wirer consistently makes the same mistake over a



108 R. van der Krogt et al.

particular period of time. These may be spread over several testers, all of whom
will have to diagnose the fault and may not notice the repeated nature of it.
Moreover, cabinets from product groups that are hard to wire, may have to wait
in the wiring buffer for a long time, since other, easier, cabinets are preferred by
the wirers.

Fig. 2. From assembly line to cell-based work floor

To prevent these and similar issues, management had decided to move from
what was essentially an assembly line to a (partially) cell-based work floor [6].
In particular, the company wanted to integrate the wiring and testing activities
into a cell, as depicted in Figure 2.b. Such a cell is made up of a dedicated
team consisting of wirers and testers that focuses on a limited number of prod-
uct groups. One of the key benefits that the company hopes to achieve by this
change in setup is an improved quality of wiring and hence lower testing times.
However, since the cells are dedicated to certain product groups, the order in
which cabinets are assembled becomes much more important. An incorrect se-
quence may starve certain cells, or lead to building a stock of cabinets waiting
to be processed on an already overloaded cell (or indeed both). For this reason,
a scheduling tool was required.

The choice of technology was influenced by several factors. Firstly, the prob-
lem is a scheduling one in which time needed to be represented at the minute
level. Therefore, a CP or IP based approach would be considered. There was
uncertainty about what a good schedule would look like and so we would be re-
quired to iterate through a number of search strategies and objective functions



Scheduling for Cellular Manufacturing 109

to achieve the type of schedule they needed. This required an environment to
try different options quickly, one of the reasons to work with Ilog OPL Studio.
Once we analysed the problem more we could see that here was a variety of
complex scheduling constraints which would have been too onerous to model in
IP; the high level scheduling concepts of CP-based scheduling provided the ideal
medium.

2.1 Related Work

Constraint-based scheduling is a modelling and solving technique successfully
used to solve real-world manufacturing problems in, for example, aircraft man-
ufacturing [4], production scheduling [8] and the semiconductor industry [1]. In
the area of telecommunications, Little et al. [5] have already applied CP to the
complex thermal part of the testing of circuit packs. This type of testing is not
present in the plant we are concerned with; however, the work was influential in
convincing the company of the suitability of the CP technology.

The area of cellular manufacturing is traditionally more about layout and
design; where the actual design of the cells, what they are to do, their location
and possible performance is of concern. Love [6] gives a clear overview on this
type of problem. In particular, Golany et al. [2] are concerned with identifying
the optimal level of work in progress (WIP) and the best strategy to deal with
backlogs, rather than producing a day to day schedule. Also in our case, the cells
location, number and they types of operations that they do, has been decided
in advance. Ponnabalam et al. [9] consider simulation of manufacturing through
a cell in light of uncertainty. They propose new heuristics to decide on the
allocation of jobs to machines. They are working on theoretical problems here,
but also simulating scheduling rather than creating an optimal (or near optimal)
schedule.

3 The Program

The basis of the model was developed over the course of a one week site visit. As
indicated above, the tool that we used for this was Ilog OPL Studio 3.7.1 with
the Ilog Scheduler [7]. Perhaps the most significant reason to use OPL Studio
was that we had effectively a time window of one week in which to develop
a model which would convince the company of the potential benefits. A rapid
prototyping system such as Ilog’s OPL 3.7.1 with its variety of solvers seemed a
good choice. Additionally, it offers the ability to try a variety of options quickly,
while investigating different strategies and objective functions. After the initial
model was built and verified, we returned home and finished the details of the
model and built a user interface around it. (More on our procedure is outlined
in the next section.)

The scheduling system produces a weekly schedule given the list of orders for
that week. It does so by iteratively considering each day, extending the schedule
built for the previous day(s). For each day, it first produces a schedule for each of
the cells, assuring that assembly is possible in principle. Then, in a second phase,



110 R. van der Krogt et al.

it optimises the assembly process. It then fixes this schedule and continues with
the next day. Satisfactory results are obtained with optimising each day for 60
CPU-seconds.2 The user runs the tool twice daily, computing a schedule from
scratch each time (but taking into account work in progress). This way, changes
to e.g. due dates and availability of material, and disruptions (e.g. machine
break-downs) are taken into account. If necessary, the tool can be run when a
disruption occurs to immediately take it into account.

Each order o is characterised by a product group group[o], an earliest start
time releaseTime[o], a due date dueDate[o], a measure for the availability of
components needed for the cabinet matAvailability [o], a priority priority [o] and
a partial preference ordering over the shifts preference[o].

3.1 The Model

From Figure 2.b one can see that there are essentially two processes in the new
configuration: that of assembly, and the work being carried out on the cells. As
the operations within each those processes are a sequence of steps, we opted not
to model each of the substeps, but regard each of the cells and the assembly line
as a single resource. A number of cabinets is assembled or processed at the same
time, however, so we used a discrete resource to model these.3 Unfortunately, the
semantics of a discrete resource imply that if we allow n cabinets simultaneously
on the assembly line, these might all start at the same time. Clearly this is
not the intended behaviour: although a number of cabinets can be assembled
simultaneously, these would have to be at different stations (i.e. stages in the
process). Therefore, for each discrete resource, we also create a corresponding
unary resource to regulate the flow.4 For each cabinet we now create two sets
of two of activities: one group to represent the usage of the assembly line, and
another to represent the usage of the cell. Both groups consist of an activity
for the discrete resource (with a duration equal to the complete process time),
and one activity for the unary resource (with a duration chosen according to
the desired flow through the resource). Constraints are put in place to ensure
that the activities in one group start at the same time. Figure 3 illustrates this
behaviour.Here, cellFlowAct [i ] is the unary activity on a cell for cabinet i, and
wireAndTestAct [i ] is the corresponding discrete activity. The duration of the
former activity regulates the inflow (it equals the duration of the first wiring
step); the duration of the latter equals the amount of time it takes for a cabinet
to be wired and tested. Notice that the variability in process times in all but one
of the stages is limited for all of the product groups; only the test stage has an
uncertain duration. However, the user recognised that this uncertain behaviour
2 The 60 seconds per day are required to get good results in weeks with a heavy load,

where orders have to be shifted to earlier days to achieve the requested due dates.
If this is not the case, 20 seconds per day suffice.

3 Discrete resources “are used to model resources that are available in multiple units,
all units being considered equivalent and interchangeable as far as the application is
concerned.” [3]

4 A unary resource “is a resource that cannot be shared by two activities.” [3]



Scheduling for Cellular Manufacturing 111

affects the efficiency of the cell as a whole. Therefore, they implemented a policy
to move cabinets that take more than a standard time to test to a special cell.
Hence, we are dealing with deterministic processing times, and can use fixed
durations in the schedule. In order to implement an efficient search, we make

Fig. 3. Example of using both a discrete resource and a unary resource to represent a
single entity (in this case: the cell)

use of a boolean matrix orderOnCellShift [o, c, s ]. An entry in this matrix is true
iff order o is scheduled on cell c during shift s. Let O be the set of all orders, C
the set of all cells, and S the set of all shifts, then the following constraint holds:

∀o∈O

∑

s∈S

∑

c∈C

orderOnCellShift [o, c, s ] = 1

Orders that are assigned a certain shift are started during that shift (but may
only be finished in a later shift):

∀o∈O

�

s∈S

�

c∈C

orderOnCellShift [o, c, s] × shift [s].start ≤ wireAndTestAct [o].start

∀o∈O wireAndTestAct [o].start ≤
�

s∈S

�

c∈C

orderOnCellShift [o, c, s] × shift [s].finish

Cells have an associated availability matrix which indicates during which shifts
they are active, as well as a capability matrix that specifies the product groups
that these cells can run.

∀o∈O∀c∈C

∑

s∈S

orderOnCellShift [o, c, s] ≤ capability [c, group[o]]

∀o∈O∀c∈C∀s∈S orderOnCellShift [o, c, s] ≤ availability [c, s]

Some days, not all orders can be scheduled, and some will have to be postponed
to a later date. A boolean variable delayed [o] is used to indicate that the due
date may be missed (but the order is still included in today’s schedule). Another
variable postponed [o] (which implies delayed [o]) indicates that the order will be
left for the next scheduling iteration.

∀o∈O (1 − delayed [o]) × wireAndTestAct [o].end ≤ dueDate[o]

In addition to the above constraints, there are constraints linking the activities
to their corresponding resources, precedence constraints as well as special con-
straints that keep track of the assignments that have been made so far, in order to



112 R. van der Krogt et al.

make decisions during search. The criterion is a minimisation of the makespan,
combined with the number of orders that have to be postponed. However, as
we shall see next, the search is geared towards clustering of product groups to
ensure few changeovers during a shift.

3.2 Search

A custom search procedure is used to produce the schedules for the cells, see
Algorithm 1. It considers each order in turn, ordered by their priorities, the
availability of components and their release times. It first tries to add the order
to today’s schedule, satisfying the due date constraints. To do so, it tries to assign
the order to each valid shift / cell combination. It does so following an order.
In this case, it first tries shifts with the highest preferences, and cells that have
already one or more cabinets of the same product group assigned. The latter is
to direct towards solutions that have a low number of different product groups
(and hence changeovers) that are assigned to a cell. If a shift / cell combination
is chosen, the order is assigned the earliest possible start time on that cell during
the shift.

If all these options fail, the search procedure next considers running late with
the order. This means that the order is started before it’s due time, but is only
finished after. Notice that we only have to consider the last possible shift of the
current time window in this case. Starting the processing of a cabinet during
one of the earlier shifts will result in the cabinet being finished in time, and the
previous step of the search procedure has shown that this cannot lead to a valid
solution. Finally, if neither of the previous steps result in a valid assignment for
the order, it is left for the next day’s schedule.

Once the cells have been assigned, a second search procedure is started that
optimises the assembly operations. The first stage finds ensures the existence
of a valid schedule for the assembly operations (to ensure that the schedule
for the cells is valid), but it does not try to optimise it, as the focus is on
optimising the usage of the cells. In this second phase, the schedule for the cells
is kept fixed, while the maximum time between the completion of assembly of
a cabinet and the start of the cell operations on that cabinet is minimised. The
search procedure for this stage is shown in Algorithm 2. This greedy algorithm
iteratively selects the order for which the minimum possible time that is spent in
the buffer between assembly and wiring is currently the largest.5 For this order,
it tries to assign the best possible time left, or removes it from the domain. It
does so for all orders, until all orders have been assigned a time to start the
assembly.

5 The dmax(v) function returns the maximum value in the domain of the variable
v. The function unbound(v) returns true if the variable v is unbound (i.e. has not
been assigned a value yet), and false otherwise.



Scheduling for Cellular Manufacturing 113

Algorithm 1. Search procedure for the first stage
begin

forall orders o ∈ O ordered by increasing 〈priority [o], matAvailability [o],
releaseTime[o]〉

try
// first try to schedule it for today
delayed [o] = 0
postponed [o] = 0
forall shifts s ∈ S ordered by increasing 〈preference[o], s〉

forall cells c ∈ C ordered by increasing 〈usage , s〉
try

orderOnCellShift [o, c, s] = 1
assign minimum time

or
orderOnCellShift [o, c, s] = 0

or
// consider finishing too late
delayed [o] = 1
postponed [o] = 0
select s ∈ S : s is the last shift in the current window
forall cells c ∈ C ordered by increasing 〈usage, s〉

try
orderOnCellShift [o, c, s] = 1
assign minimum time

or
orderOnCellShift [o, c, s] = 0

or
// wait for tomorrow’s schedule
delayed [o] = 1
postponed [o] = 1

end

Algorithm 2. Search procedure for the second stage
begin

while ∃o ∈ O : unbound(assemblyStart [o]) do
select o ∈ O : unbound(assemblyStart [o]) ordered by decreasing
〈cellStart [o] − dmax(assemblyStart [o]) 〉
try

assemblyStart [o] = dmax(assemblyStart [o])
or

assemblyStart [o] < dmax(assemblyStart [o])

end



114 R. van der Krogt et al.

3.3 The GUI

The user interface is built in Microsoft Excel using Visual Basic. The reason for
this is twofold. On the one hand, the users are comfortable using the Microsoft
Office suite, which means that no extra training is required. On the other hand,
it allowed for easy integration with the existing Work floor Management System
that tracks all activities and can generate reports in the Excel file format.

Fig. 4. Screenshot of the GUI

Figure 4 shows the user interface. The window in the top right (labeled “Cell
Scheduler”) forms the heart of the interface. On the left-hand side, it allows the
input of some general data (the input file for orders and the output file for the
resulting schedule, for example) and on the right-hand side there is a number
of buttons that allow the user to specify the more static input to the scheduler.
This includes things like the number of cells, their capabilities and availabilities,
changeover times between product groups, and the product groups themselves.
(This last window is shown in the foreground.)

The output of the scheduling tool is presented as an Excel file, see Figure 5. This
file consists of two sheets: one for assembly and one for the cells. On each tab, it
shows per shift which work is to be done and when and where each activity is to
take place. The rows in bold face correspond to work that was in progress when the
scheduling tool was run. Each row lists the order number, the start en finish times
of assembly (if applicable), the start and finish times of wiring and testing(i.e. the



Scheduling for Cellular Manufacturing 115

Fig. 5. Screenshot of the resulting output (censored)

activity on the cell) and the original due date. The cell sheet (which is shown in
Figure 5) groups the orders by cell, whereas the assembly sheet merely shows the
orders over time.

4 Evaluation

4.1 From Prototype to Production

The scheduling system is currently in the final stages of testing. As said before,
the project started with the authors visiting the site for a week in October 2006.
During the first two days of the week, we had meetings with the key figures
in the factory and were painted a detailed picture of the processes going on.
We then worked on a prototype model, confirming our decisions and asking for
clarifications as we needed them. Although very intense (for both sides), this
proved to be a very fruitful setup: by the end of the week we could present an
initial version of our system. After presenting our first results, the company was
confident that the CP-based scheduling approach that we proposed could deliver
the tool they needed. So confident, in fact, that they decided to buy the necessary
licenses, a considerable investment, during the course of our presentation. (The
option of re-engineering the model in another language was also considered, but
rejected because of time constraints.) We took the model home, further refined
it, and added the GUI as discussed in Section 3.3. Early January, we produced
the first schedules in parallel to the schedules the company made themselves.
Eventually, when enough confidence in the schedules was gained, the system’s
schedules were used as the basis for the company’s own schedules. From the
second half of March, the company is using the schedules as is. As all recent
issues are of a cosmetic nature, we expect to move into full production mode



116 R. van der Krogt et al.

shortly. This would mean that the project has taken roughly eight months from
the start. Note, however, that due to issues obtaining a license to OPL for the
company the project was stalled during December, and it was worked on part-
time. Taking this into account, the project has taken three to four months of
full-time work.

It is hard to quantify the direct benefit that the scheduling tool has delivered,
as it is part of the overall implementation of a different way of working. More-
over, the transition to the new setup has only recently been completed. However,
already, the user has observed significant improvements in manufacturing inter-
val, work in process inventory, first test yield, head count, quality and delivery
performance. Although these benefits are mainly achieved because of the change
to a cell layout, the scheduling tool is crucial in realising the full potential of this
layout. The feeling is that the return on investment is considerable, although
no figures have been calculated yet. Due to its success, the company consid-
ers extending the cell-based work floor concept to other areas of the factory. A
CP-based scheduler would be part of that extension.

4.2 Lessons Learned

The week that we spent on-site developing the first model was intensive (for all
parties), but great to kick start the project. By the end of the week, the outline
of the complete system could be seen, which acted as a motivator to keep things
going. However, to achieve this required commitment from the people in the
factory, who had to spend a lot of time interacting with us. The engineers at the
site had experience with the Theory of Constraints. As such, they had intuitive
notions of what a constraint is and how to identify them. This helped us greatly
in the initial modelling and getting the feedback on that model. Both these
factors were required for the success of our visit. If these requirements are met,
however, we can recommend this approach as it helps the developers to get to
grips with the problem quickly, and builds a strong relationship between the
developer and the user.

From our point of view, the main lesson learned is that it is harder than it
seems to successfully deploy a system. This may seem obvious to some, but the
amount of work it takes to go from prototype to a system robust enough to
withstand user interaction is considerable. Moreover, the variety of situations
that is encountered in practice means that the model itself has to be robust
enough to allow for very different input profiles. This either calls for a large data
set during development, or a period of building this robustness during the testing
process. As there was no data available on the new layout when we started, we
opted for the latter. In this case it is important to make the user realise that
the initial phase of testing will be slow and not not very smooth at times, as the
tool is adjusted to match the reality on the shop floor.

4.3 Final Remarks

This project shows the strength of the combination of lean manufacturing tech-
niques and (CP-based) scheduling. The former techniques allow a business to



Scheduling for Cellular Manufacturing 117

take a critical look at its operations to identify areas for improvement, whereas
the latter technique can be used to realise the potential of the improvements.
This becomes more and more an issue as businesses move to more advanced
methods of operation. As the user puts it: “The amount of constraints the pro-
gram has to handle points out the need for it. Scheduling manually would not
allow us to service our customers as well.”

Acknowledgements

Roman van der Krogt is supported by an Irish Research Council for Science,
Engineering and Technology (IRCSET) Postdoctoral Fellowship. James Little
is supported by Science Foundation Ireland under Grant- 03/CE3/I405 as part
of the Centre for Telecommunications Value-Chain-Driven Research and Grant-
05/IN/I886.

The authors would like to thank everybody at the Systems Integration Center
in Columbus, Ohio for their warm welcome and support.

References

1. Bixby, R., Burda, R., Miller, D.: Short-interval detailed production scheduling in
300mm semiconductor manufacturing using mixed integer and constraint program-
ming. In: The 17th Annual SEMI/IEEE Advanced Semiconductor Manufacturing
Conference (ASMC-2006), pp. 148–154. IEEE Computer Society Press, Los Alami-
tos (2006)

2. Golany, B., Dar-El, E.M., Zeev, N.: Controlling shop floor operations in a multi-
family, multi-cell manufacturing environment through constant work-in-process. IIE
Transactions 31, 771–781 (1999)

3. Ilog: Ilog OPL Studio 3.7.1 help files (2005)
4. Bellone, J., Chamard, A., Fischler, A.: Constraint logic programming decision sup-

port systems for planning and scheduling aircraft manufacturing at dassault avia-
tion. In: Proceedings of the Third International Conference on the Practical Appli-
cations of Prolog, pp. 111–113 (1995)

5. Creed, P., Berry, S., Little, J., Goyal, S., Cokely, D.: Thermal test scheduling using
constraint programming. In: Proceedings of the 12th IFAC Symposium on Informa-
tion Control Problems in Manufacturing (2006)

6. Love, D.: International Encyclopedia of Business and Management. In: The Design
of Manufacturing Systems, vol. 4, pp. 3154–3174. Thompson Business Press (1996)

7. Nuijten, W., Le Pape, C.: Constraint-based job shop scheduling with IILOG
SCHEDULER. Journal of Heuristics 3, 271–286 (1998)

8. Le Pape, C.: An application of constraint programming to a specific production
scheduling problem. Belgian Journal of Operations Research, Statistics and Com-
puter Science (1995)

9. Ponnambalam, S.G., Aravindan, P., Reddy, K.R.R.: Analysis of group scheduling
heuristics in a manufacturing cell. The International Journal of Advanced Manufac-
turing Technology 15, 914–932 (1999)


	Scheduling for Cellular Manufacturing
	Introduction
	Introducing CP
	Related Work

	The Program
	The Model
	Search
	The GUI

	Evaluation
	From Prototype to Production
	Lessons Learned
	Final Remarks




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




