

Lecture Notes in Computer Science 4741
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christian Bessiere (Ed.)

Principles and Practice
of Constraint
Programming – CP 2007

13th International Conference, CP 2007
Providence, RI, USA, September 23-27, 2007
Proceedings

13

Volume Editor

Christian Bessiere
LIRMM
CNRS/University of Montpellier
France
E-mail: bessiere@lirmm.fr

Library of Congress Control Number: 2007934641

CR Subject Classification (1998): D.1, D.3.2-3, I.2.3-4, F.3.2, I.2.8, F.4.1, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74969-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74969-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12124312 06/3180 5 4 3 2 1 0

Preface

The 13th International Conference on Principles and Practice of Constraint
Programming (CP 2007) was held in Providence, RI, USA, September 23–27,
2007, in conjunction with the International Conference on Automated Plan-
ning and Scheduling (ICAPS). Held annually, the CP conference series is the
premier international conference on constraint programming. The conference
focuses on all aspects of computing with constraints. The CP conference se-
ries is organized by the Association for Constraint Programming (ACP). In-
formation about the conferences in the series can be found on the Web at
http://www.cs.ualberta.ca/~ai/cp/. Information about ACP can be found
at http://www.a4cp.org/.

CP 2007 launched two calls for contributions: a call for research papers,
describing novel contributions in the field, and a call for application papers,
describing applications of constraint technology in the industrial world. The
research track received 143 submissions and the application track received 22
submissions. Research papers were reviewed under a double-blind scheme. They
received three reviews that the authors had the opportunity to see and to react
to before the papers and their reviews were discussed extensively by the members
of the Program Committee. Application papers were reviewed by a separate Ap-
plication Committee. The Program Committee and the Application Committee
then selected 43 research papers and 9 application papers to be published in full
in the proceedings, and an additional 14 research papers to be published as short
papers. The full papers were presented at the conference in two parallel tracks
and the short papers were presented in a poster session. The paper “Solution
Counting Algorithms for Constraint-Centered Search Heuristics,” by Alessan-
dro Zanarini and Gilles Pesant, was selected by a subcommittee—consisting of
Javier Larrosa, Christophe Lecoutre, Christian Schulte and myself—to receive
the best paper award. This subcommittee also selected the paper “Propagation
= Lazy Clause Generation,” by Olga Ohrimenko, Peter J. Stuckey and Michael
Codish, to receive ACP’s best student paper award.

The Program Committee invited two prominent researchers, Fahiem Bacchus
and Matt Ginsberg, to give guest lectures. Their summary is included in the
proceedings. The program also contained a talk by Rina Dechter, recipient of
the “Award for Research Excellence in Constraint Programming.” This award
was given by the ACP during the conference. The tutorial chair selected four
tutorials to be part of the program: “Ants and Constraint Programming,” by
Christine Solnon, “SAT solving,” by Inês Lynce, “ECLIPSE by example,” by
Joachim Schimpf, and a final tutorial in which recent CP solvers were presented.
The conference hosted a panel, organized by Barry O’Sullivan, where people
from the industry discussed their use of CP technology and gave feedback on
the strengths and weaknesses of current solvers. Lastly, I would like to emphasize

VI Preface

the fact that all the sessions of the conference were held in parallel to ICAPS
sessions and that CP and ICAPS participants could freely attend any session
they wanted. In addition, there were joint CP-ICAPS sessions.

CP 2007 continued the tradition of the CP doctoral program, in which PhD
students presented their work, listened to tutorials on career issues, and dis-
cussed their work with senior researchers via a mentoring scheme. This year, the
doctoral program received 37 submissions and selected 30 of them for financial
support.

The first day of the conference was devoted to satellite workshops tackling
some of the important directions of research in constraint programming. This
year, seven workshops were held, one of which was joined with ICAPS. The
complete list of workshops is provided below. Each workshop printed its own
proceedings.

In conclusion, I would like to thank all the people who, by their hard work,
made this conference a great success. Thank you to Laurent Michel and Meinolf
Sellmann, the Conference Chairs, who had the huge task of organizing, budgeting
and planning the whole event. Thank you to Brahim Hnich and Kostas Stergiou,
the Doctoral Program Chairs, for having set up a fantastic program for the stu-
dents. Thank you to Pedro Meseguer, the Workshop and Tutorial Chair, for the
energy he put into creating an excellent workshop and tutorial program. Thank
you to Carmen Gervet, the Publicity Chair, who worked hard designing a logo
and who was always mindful of the aesthetic quality of the conference Web site.
Thank you to Guillaume Verger, who helped me in the final rush of collecting
all the material for the proceedings. Thank you to Javier Larrosa, Christophe
Lecoutre and Christian Schulte, the members of the Best Paper Committee,
who accepted the intensive task of reading all candidate papers in a few days, in
addition to their work as Program Committee members. Thank you to all the
members of the Program Committee and Application Committee. Not only did
they review all their assigned papers on time, but they participated intensively in
online discussions for selecting the papers. The quality of the technical program
is largely due to their terrific work. Thank you to Barry O’Sullivan and Helmut
Simonis for their many ideas on the kind of event we could run to fill the gap
between industrial applications and academic research. We implemented only a
few of their great ideas. Thank you to Barry O’Sullivan, the Sponsor Chair and
Conference Coordinator, who worked hard in close collaboration with the Con-
ference Chairs to produce a balanced budget (thanks to the numerous sponsors
they attracted). Thank you to all the institutions (listed below) that supported
the conference. Thank you to Frdric Benhamou, Francesca Rossi and Peter van
Beek for their helpful advice on how to deal with the stressful job of being Pro-
gram Chair, and thank you to the Executive Committee of the ACP for having
chosen me to carry out this exciting job!

September 2007 Christian Bessiere

Organization

Conference Organization

Conference Chairs Laurent Michel, University of Connecticut,
USA

Meinolf Sellmann, Brown University, USA
Program Chair Christian Bessiere, LIRMM-CNRS, France
Workshop/Tutorial Chair Pedro Meseguer, IIIA-CSIC, Spain
Doctoral Program Chairs Brahim Hnich, Izmir University of Economics,

Turkey
Kostas Stergiou, University of the Aegean,

Greece
Publicity Chair Carmen Gervet, Boston University and Brown

University, USA
Sponsor Chair Barry O’Sullivan, 4C, University College Cork,

Ireland

Program Committee

Fahiem Bacchus, Canada
Roman Bartak, Czech Republic
Christopher Beck, Canada
Frdric Benhamou, France
Alexander Brodsky, USA
Mats Carlsson, Sweden
Hubie Chen, Spain
Rina Dechter, USA
Boi Faltings, Switzerland
Pierre Flener, Sweden
Thom Frühwirth, Germany
Maria Garcia de la Banda, Australia
Carla Gomes, USA
Narendra Jussien, France
Brahim Hnich, Turkey
Javier Larrosa, Spain
Christophe Lecoutre, France
Jimmy Lee, Hong Kong
Olivier Lhomme, France

Felip Manya, Spain
Joao Marques-Silva, UK
Amnon Meisels, Israel
Laurent Michel, USA
Ian Miguel, UK
Bertrand Neveu, France
Barry O’Sullivan, Ireland
Gilles Pesant, Canada
Francesca Rossi, Italy
Thomas Schiex, France
Christian Schulte, Sweden
Meinolf Sellmann, USA
Kostas Stergiou, Greece
Peter van Beek, Canada
Willem-Jan van Hoeve, USA
Gérard Verfaillie, France
Toby Walsh, Australia
Roland Yap, Singapore

VIII Organization

Application Track Committee

Barry O’Sullivan, Ireland
Jean-Franois Puget, France
Helmut Simonis, UK

Pascal Van Hentenryck, USA
Mark Wallace, Australia

Additional Referees

Slim Abdennadher
Magnus Ågren
Raffaetà Alessandra
Carlos Ansótegui
Albert Atserias
Jorge Baier
Nicolas Beldiceanu
Hariolf Betz
Ateet Bhalla
Stefano Bistarelli
Manuel Bodirsky
Simon Boivin
Eric Bourreau
Sebastian Brand
Hadrien Cambazard
Tom Carchrae
Martine Ceberio
Ondrej Cepek
Gilles Chabert
Kenil C.K. Cheng
Marc Christie
Vı́ctor Dalmau
Jessica Davies
Romuald Debruyne
Simon de Givry
Yves Deville
Bistra Dilkina
Marek J. Druzdzel
Lei Duan
Esra Erdem
Franois Fages
Hlne Fargier
Alan M. Frisch
Michel Gagnon
Jonathan Gaudreault
Hector Geffner
Ian Gent

Alfonso Gerevini
Amir Gershman
Omer Giménez
Vibhav Gogate
Alexandre Goldsztejn
Frdric Goualard
Laurent Granvilliers
Tal Grinshpon
Emmanuel Hebrard
Federico Heras
Yannet Interian
Chris Jefferson
Christophe Jermann
George Katsirelos
Tom Kelsey
Philip Kilby
Matthew Kitching
Zeynep Kiziltan
Andras Kovacs
Lukas Kroc
Oliver Kullmann
Mikael Z. Lagerkvist
Arnaud Lallouet
Yat-Chiu Law
Yahia Lebbah
Daniel Le Berre
C. Likitvivatanavong
Jiming Liu
Xavier Lorca
Inês Lynce
Santiago Macho
Vasco Manquinho
Radu Marinescu
Chris Mears
Marc Meister
Pedro Meseguer
Bernd Meyer

Jean-Nol Monette
Eric Monfroy
António Morgado
Nicholas Nethercote
Albert Oliveras
Lars Otten
Justin Pearson
Karen Petrie
Jakob Pichinger
Jordi Planes
Cdric Pralet
Nicolas Prcovic
Steven Prestwich
Riccardo Pucella
Jakob Puchinger
Luis Quesada
Claude-Guy Quimper
Frank Raiser
Philippe Refalo
Guillaume Richaud
Louis-Martin Rousseau
Ashish Sabharwal
Rida Sadek
Horst Samulowitz
Marti Sanchez Fibla
Frdric Saubion
Pierre Schauss
Tom Schrijvers
Andrew See
Uri Shapen
Eyal Shimony
Charles Siu
John Slaney
Barbara Smith
Peter Stuckey
Thomas Stutzle
Pavel Surynek

Organization IX

Radoslaw Szymanek
Sebastien Tabary
Guido Tack
Gilles Trombettoni
Charlotte Truchet
Marc R.C. van Dongen
Andrew Verden

Xuan-Ha Vu
Mark Wallace
Jean-Paul Watson
Ryan Williams
Armin Wolf
May Woo
Hui Wu

Neil Yorke-Smith
Changhe Yuan
Alessandro Zanarini
Yuanlin Zhang
Roie Zivan
Matthias Zytnicki

Administrative Council of the ACP

President Francesca Rossi, Italy
Vice-president Peter van Beek, Canada
Secretary Pedro Meseguer, Spain
Treasurer Christian Bessiere, France
Conference Coordinator Barry O’Sullivan, Ireland
Executive Committee Frédéric Benhamou, Narendra Jussien, Javier

Larrosa, Jimmy H.M. Lee, Pedro Meseguer,
Michela Milano, Barry O’Sullivan, Jean-
Charles Régin, Francesca Rossi, Christian
Schulte, Michael Trick, Peter van Beek

Workshops

Autonomous Search
Distributed Constraint Reasoning
Constraint Modelling and Reformulation
Local Search Techniques in Constraint Satisfaction
Constraint Programming for Graphical Applications
Constraint Satisfaction Techniques for Planning and Scheduling Problems
Symmetry and Constraint Satisfaction Problems

Sponsoring Institutions

Association for Constraint Programming
Brown University
Cork Constraint Computation Centre
Fidelity Investments
Google
IBM
ILOG
Intelligent Information Systems Institute, Cornell University
National ICT Australia
Nokia
Springer
University of Connecticut

Table of Contents

Invited Lectures

Caching in Backtracking Search . 1
Fahiem Bacchus

Of Mousetraps and Men: A Cautionary Tale . 2
Matt Ginsberg

Application Papers

Estimation of the Minimal Duration of an Attitude Change for an
Autonomous Agile Earth-Observing Satellite . 3

Grégory Beaumet, Gérard Verfaillie, and Marie-Claire Charmeau

Solving an Air Conditioning System Problem in an Embodiment Design
Context Using Constraint Satisfaction Techniques . 18

Raphaël Chenouard, Patrick Sébastian, and Laurent Granvilliers

Solving the Salinity Control Problem in a Potable Water System 33
Chiu Wo Choi and Jimmy H.M. Lee

Exploring Different Constraint-Based Modelings for Program
Verification . 49

Hélène Collavizza and Michel Rueher

An Application of Constraint Programming to Generating Detailed
Operations Schedules for Steel Manufacturing . 64

Andrew Davenport, Jayant Kalagnanam, Chandra Reddy,
Stuart Siegel, and John Hou

An Efficient Model and Strategy for the Steel Mill Slab Design
Problem . 77

Antoine Gargani and Philippe Refalo

Constraint-Based Temporal Reasoning for E-Learning with LODE 90
Rosella Gennari and Ornella Mich

Scheduling for Cellular Manufacturing . 105
Roman van der Krogt, James Little, Kenneth Pulliam,
Sue Hanhilammi, and Yue Jin

XII Table of Contents

Full Research Papers

A Constraint Store Based on Multivalued Decision Diagrams 118
H.R. Andersen, T.Hadzic, J.N. Hooker, and P. Tiedemann

GAC Via Unit Propagation . 133
Fahiem Bacchus

Solution Directed Backjumping for QCSP . 148
Fahiem Bacchus and Kostas Stergiou

Reformulating CSPs for Scalability with Application to Geospatial
Reasoning . 164

Kenneth M. Bayer, Martin Michalowski, Berthe Y. Choueiry, and
Craig A. Knoblock

A Generic Geometrical Constraint Kernel in Space and Time for
Handling Polymorphic k-Dimensional Objects . 180

N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet

Local Symmetry Breaking During Search in CSPs . 195
Beläıd Benhamou and Mohamed Réda Säıdi

Encodings of the Sequence Constraint . 210
Sebastian Brand, Nina Narodytska, Claude-Guy Quimper,
Peter Stuckey, and Toby Walsh

On Inconsistent Clause-Subsets for Max-SAT Solving 225
Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu-Min Li

An Abstract Interpretation Based Combinator for Modelling While
Loops in Constraint Programming . 241

Tristan Denmat, Arnaud Gotlieb, and Mireille Ducassé

Tradeoffs in the Complexity of Backdoor Detection 256
Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Model-Driven Visualizations of Constraint-Based Local Search 271
Grégoire Dooms, Pascal Van Hentenryck, and Laurent Michel

Dealing with Incomplete Preferences in Soft Constraint Problems 286
Mirco Gelain, Maria Silvia Pini, Francesca Rossi, and
K. Brent Venable

Efficient Computation of Minimal Point Algebra Constraints by
Metagraph Closure . 301

Alfonso Gerevini and Alessandro Saetti

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 317
Éric Grégoire, Bertrand Mazure, and Cédric Piette

Table of Contents XIII

An Integrated White+Black Box Approach for Designing and Tuning
Stochastic Local Search . 332

Steven Halim, Roland H.C. Yap, and Hoong Chuin Lau

Limitations of Restricted Branching in Clause Learning 348
Matti Järvisalo and Tommi Junttila

Dynamic Management of Heuristics for Solving Structured CSPs 364
Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux

A Compression Algorithm for Large Arity Extensional Constraints 379
George Katsirelos and Toby Walsh

Valid Inequality Based Lower Bounds for WCSP . 394
Mohand Ou Idir Khemmoudj and Hachemi Bennaceur

Advisors for Incremental Propagation . 409
Mikael Z. Lagerkvist and Christian Schulte

Breaking Symmetry of Interchangeable Variables and Values 423
Y.C. Law, J.H.M. Lee, Toby Walsh, and J.Y.K. Yip

Path Consistency by Dual Consistency . 438
Christophe Lecoutre, Stéphane Cardon, and Julien Vion

Exploiting Past and Future: Pruning by Inconsistent Partial State
Dominance . 453

Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and
Vincent Vidal

Scheduling Conditional Task Graphs . 468
Michele Lombardi and Michela Milano

Towards Robust CNF Encodings of Cardinality Constraints 483
Joao Marques-Silva and Inês Lynce

AND/OR Multi-valued Decision Diagrams for Constraint
Optimization . 498

Robert Mateescu, Radu Marinescu, and Rina Dechter

Parallelizing Constraint Programs Transparently . 514
Laurent Michel, Andrew See, and Pascal Van Hentenryck

MiniZinc: Towards a Standard CP Modelling Language 529
Nicholas Nethercote, Peter J. Stuckey, Ralph Becket,
Sebastian Brand, Gregory J. Duck, and Guido Tack

Propagation = Lazy Clause Generation . 544
Olga Ohrimenko, Peter J. Stuckey, and Michael Codish

XIV Table of Contents

Boosting Probabilistic Choice Operators . 559
Matthieu Petit and Arnaud Gotlieb

A Multi-engine Solver for Quantified Boolean Formulas 574
Luca Pulina and Armando Tacchella

Decomposing Global Grammar Constraints . 590
Claude-Guy Quimper and Toby Walsh

Structural Relaxations by Variable Renaming and Their Compilation
for Solving MinCostSAT . 605

Miquel Ramı́rez and Hector Geffner

Bound-Consistent Deviation Constraint . 620
Pierre Schaus, Yves Deville, and Pierre Dupont

Constructive Interval Disjunction . 635
Gilles Trombettoni and Gilles Chabert

An LP-Based Heuristic for Optimal Planning . 651
Menkes van den Briel, J. Benton, Subbarao Kambhampati, and
Thomas Vossen

A Cost-Based Model and Algorithms for Interleaving Solving and
Elicitation of CSPs . 666

Nic Wilson, Diarmuid Grimes, and Eugene C. Freuder

On Universal Restart Strategies for Backtracking Search 681
Huayue Wu and Peter van Beek

Hierarchical Hardness Models for SAT . 696
Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for
SAT . 712

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

Filtering for Subgraph Isomorphism . 728
Stéphane Zampelli, Yves Deville, Christine Solnon,
Sébastien Sorlin, and Pierre Dupont

Solution Counting Algorithms for Constraint-Centered Search
Heuristics . 743

Alessandro Zanarini and Gilles Pesant

Min-Domain Ordering for Asynchronous Backtracking 758
Roie Zivan, Moshe Zazone, and Amnon Meisels

Table of Contents XV

Short Research Papers

Answer Set Optimization for and/or Composition of CP-Nets: A
Security Scenario . 773

Stefano Bistarelli, Pamela Peretti, and Irina Trubitsyna

Uncertainty in Bipolar Preference Problems . 782
Stefano Bistarelli, Maria Silvia Pini, Francesca Rossi, and
K. Brent Venable

An Analysis of Slow Convergence in Interval Propagation 790
Lucas Bordeaux, Youssef Hamadi, and Moshe Y. Vardi

The Expressive Power of Valued Constraints: Hierarchies and
Collapses . 798

David A. Cohen, Peter G. Jeavons, and Stanislav Živný

Eligible and Frozen Constraints for Solving Temporal Qualitative
Constraint Networks . 806

Jean-François Condotta, Gérard Ligozat, and Mahmoud Saade

The Log-Support Encoding of CSP into SAT . 815
Marco Gavanelli

Groupoids and Conditional Symmetry . 823
I.P. Gent, T. Kelsey, S.A. Linton, J. Pearson, and
C.M. Roney-Dougal

Sampling Strategies and Variable Selection in Weighted Degree
Heuristics . 831

Diarmuid Grimes and Richard J. Wallace

A Case for Simple SAT Solvers . 839
Jinbo Huang

CP-Based Local Branching . 847
Zeynep Kiziltan, Andrea Lodi, Michela Milano, and Fabio Parisini

Strong Controllability of Disjunctive Temporal Problems with
Uncertainty . 856

Bart Peintner, Kristen Brent Venable, and Neil Yorke-Smith

Exploiting Single-Cycle Symmetries in Branch-and-Prune Algorithms . . . 864
Vicente Ruiz de Angulo and Carme Torras

Constraint Symmetry for the Soft CSP . 872
Barbara M. Smith, Stefano Bistarelli, and Barry O’Sullivan

Breaking Value Symmetry . 880
Toby Walsh

Author Index . 889

Caching in Backtracking Search

Fahiem Bacchus

University of Toronto
Canada

fbacchus@cs.toronto.edu

As backtracking search explores paths in its search tree it makes various infer-
ences about the problem. The inferences search computes can be very compu-
tationally expensive to compute statically. However, in most backtracking CSP
solvers this information is discarded when the search backtracks along the cur-
rent path.

In this talk we will investigate the alternative—caching these inferences and
using them to improve the efficiency of the rest of the search. Caching provides
radical improvements to the theoretical power of backtracking, and can also
yield significant improvements in practice. Sometimes, however, obtaining im-
provements in practice might not be so straightforward. We will examine CSP
caching techniques for the problem of finding a single solution, counting the
number of solutions, and finding an optimal solution. Time permitting we will
also look at caching techniques that would be useful for QCSPs.

C. Bessiere (Ed.): CP 2007, LNCS 4741, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Of Mousetraps and Men: A Cautionary Tale

Matt Ginsberg

On Time Systems, Inc.
and

Computational Intelligence Research Laboratory
University of Oregon
mginsberg@otsys.com

This talk consists of two interwoven stories. The Happy Story presents a technical
solution to the problem of optimizing for cost instead of the more normal metric
of duration. We describe a mechanism whereby the optimization problem is split
into an evaluation component, where the projected cost of a schedule is evaluated
using dynamic programming techniques, and a search component, where search
is conducted in “window space” to find a cost-efficient schedule.

The Sad Story explains what happens when you build a better mousetrap.
The people beating a path to your door are the fat cats, who are reimbursed for
their mouse catching on a cost-plus basis.

C. Bessiere (Ed.): CP 2007, LNCS 4741, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Estimation of the Minimal Duration

of an Attitude Change for an
Autonomous Agile Earth-Observing Satellite

Grégory Beaumet1, Gérard Verfaillie1, and Marie-Claire Charmeau2

1 ONERA
2 avenue Édouard Belin, BP 74025, 31055 Toulouse Cedex 4, France

{Gregory.Beaumet,Gerard.Verfaillie}@onera.fr
2 CNES

18 avenue Édouard Belin, 31401 Toulouse Cedex 9, France
Marie-Claire.Charmeau@cnes.fr

Abstract. Most of the currently active Earth-observing satellites are
entirely controlled from the ground: observation plans are regularly com-
puted on the ground (typically each day for the next day), uploaded
to the satellite using visibility windows, and then executed onboard as
they stand. Because the possible presence of clouds is the main obstacle
to optical observation, meteorological forecasts are taken into account
when building these observation plans. However, this does not prevent
most of the performed observations to be fruitless because of the unfore-
seen presence of clouds. To fix this problem, the possibility of equipping
Earth-observing satellites with an extra instrument dedicated to the de-
tection of the clouds in front of it, just before observation, is currently
considered. But, in such conditions, decision upon the observations to be
performed can be no longer made offline on the ground. It must be per-
formed online onboard, because it must be performed at the last minute
when detection information is available and because visibility windows
between Earth-observing satellites and their control centers are short
and rare. With agile Earth-observing satellites which are the next gener-
ation ones, decision-making upon observation requires the computing of
an as short as possible attitude trajectory allowing the satellite to point
to the right ground area within its visibility window. In this paper, we
show the results of an experiment consisting in using a continuous con-
straint satisfaction problem solver (RealPaver) to compute such optimal
trajectories online onboard.

1 The Problem

1.1 Applicative Context

Earth-observing satellites are placed on heliosynchronous low altitude circular
orbits around the Earth. Most of them are equipped with optical observation
instruments, with a mass memory able to record observation data, and with a
high-rate antenna able to download it towards ground mission centers. When

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 3–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

observation instrument

solar generators

antenna

Fig. 1. A PLEIADES satellite

they are not agile, that is keeping pointing to the Earth center, as the current
French SPOT satellites do, they can observe specific ground areas thanks to
mirrors placed in front of their instruments and orientable along the roll axis.
When they are agile, that is keeping controlling their attitude movement along
the roll, pitch, and yaw axes thanks to reaction wheels or to gyroscopic actuators,
as the future French PLEIADES satellites will do, this is the whole satellite which
orientates itself to observe specific ground areas (see Figure 1; for more details,
see http://smsc.cnes.fr/PLEIADES/).

The main advantage of agility is to offer more freedom in terms of observation.
With non agile satellites, the realization window of an observation is fixed, be-
cause observation is only possible when the satellite flies over the target ground
area. With agile ones, this realization window can be freely chosen within a wide
visibility window, because observation is now possible before, when, or after the
satellite flies over the target ground area. This freedom may allow more obser-
vations to be performed because observations which conflict with each other in
the context of non agile satellites may no longer conflict in the context of agile
ones. This is illustrated by Figure 2 which represents five candidate observations,
from 1 to 5. With a non agile satellite (see Figure 2(a)), observations 1 and 2
conflict with each other, because their realization windows overlap. This is also
the case with observations 3 and 4. As a result, it is only possible to perform
three observations, for example observations 1, 3, and 5. With an agile satellite
(see Figure 2(b)), all these conflicts can be resolved and the five observations
can be performed.

Agile or not, these satellites are assumed to perform observations following
observation requests emitted by users. With each request, are usually associated
a ground area, a priority, and some observation conditions. For each candidate
observation, it is then necessary to decide on whether, when, and how it will be
performed. For almost all the currently active Earth-observing satellites, these
decisions are made on the ground under the supervision of human operators
in centralized mission centers. Typically, an observation plan is built each day
for the next day, taking into account the current set of candidate observations
(see [1] for a description of the problem in the context of a non agile satellite
and [2] for a similar description in the context of an agile one). The resulting
optimization problem may be huge and hard to be solved, even when using
powerful computers and sophisticated algorithms running for tens of minutes.

Satellite Attitude Change Minimal Duration 5

observations

1

satellite
2

4

3

5 ground track

realization windowsvisibility windows

(a) Non-agile satellite

1

3

4
2

5

(b) Agile satellite

Fig. 2. Agile vs non-agile satellite

When a plan has been produced, it is uploaded to the satellite using a visibility
window and executed as it stands without any execution freedom. The only
notable exception to this organizational scheme is the US EO-1 satellite which
is equipped with onboard planning and replanning capabilities [3].

Unfortunately, optical observation is sensitive to clouds and it is very diffi-
cult to foresee the actual presence of clouds the next day over a given ground
area. Despite the use of meteorological forecasts by the planning algorithms,
many observations (until 80%) remain fruitless due to the presence of clouds.
To fix this problem, engineers are currently considering the possibility of equip-
ping Earth-observing satellites with an extra instrument dedicated to the de-
tection of the clouds in front of it, just before observation becomes possible.
But, if one wants to exploit information coming from the detection instru-
ment, it is no longer possible to decide upon observations offline each day for
the next day. Decisions must be made online at the last minute, when de-
tection information is available. Moreover, because Earth-observing satellites
are not often within the visibility of their control centers, decisions can no
longer be made on the ground. They must be made onboard the satellite. The
previously offline long-term optimization problem, using unreliable information
about cloud presence, becomes an online short-term decision problem, using
far more reliable information about cloud presence. One may hope that in-
formation reliability will compensate for a quick decision performed over a
limited temporal horizon and that globally more fruitful observations will be
performed.

This is such a scenario we are currently working on: an agile PLEIADES-like
satellite equipped with a cloud detection instrument and with autonomous de-
cision capabilities. This work can be seen as an extension to the case of agile
satellites of a similar work performed in the context of non agile ones [4]. It is

6 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

one of the pieces of the joint ONERA1-CNES2 AGATA3 project, which aims at
developing techniques for improving spacecraft autonomy [5].

1.2 Planning Problem

The global planning problem consists in optimizing the mission feedback
throughout the whole satellite life, that is the observations that are performed
and delivered to users, taking into account their number and their priorities.

One practical way of approaching this objective consists in optimizing the
mission feedback each time over a limited temporal horizon ahead, taking into
account the available information about the satellite state (orbital position, at-
titude, available energy and memory . . .), the candidate observations, the mete-
orological forecasts, and the cloud detection, and in optimizing again each time
the current temporal horizon ends or changes occur. In the particular case of an
agile Earth-observing satellite, possible actions are:

– the observation of any ground area;
– the downloading of any observation data by pointing the satellite and thus

its antenna to any ground station;
– the detection of clouds in front of the satellite by pointing the satellite 30

degrees ahead;
– the recharge of its batteries by orienting its solar generators towards the Sun;
– a geocentric pointing when it “has nothing to do” or must remain in a safety

mode;
– an orbital manoeuvre when the drift of its orbital trajectory from the refer-

ence orbit becomes too important.

All these actions impose strong constraints on the satellite attitude and on
its attitude speed. They are thus systematically in conflict with each other and
must be executed sequentially, with a necessary attitude movement between two
successive ones.

The basic decision problem is thus to decide before the current action ends
which action to perform next. To make such a decision, one must be able to assess
the feasibility and the effects of each candidate action, including the attitude
movement necessary to start it.

In planning problems, assessing the feasibility and the effects of a candidate
action is usually easy and what is difficult is to make the right choice among all
the feasible candidates. In our problem, this assessment is itself difficult, because
it requires reasoning on the attitude movement necessary to start the candidate
action and then to perform it.

Considering only the attitude movement necessary to start a candidate action a
and only temporal constraints enforcing that a must start within a given temporal
1 ONERA: the French Aerospace Lab, http://www.onera.fr
2 CNES: the French Space Agency, http://www.cnes.fr
3 AGATA: Autonomy Generic Architecture, Tests and Applications,

http://www.agata.fr

Satellite Attitude Change Minimal Duration 7

window w, one must be able to check whether or not a can start within w. If this
is possible, it may be moreover useful to compute the minimal time t at which a
can start within w. This is the planning subproblem we focused on.

1.3 Attitude Change Subproblem

This attitude change subproblem can be formulated as follows. Let be:

– an initial state specified by the attitude and the attitude speed at the end
of the current action;

– a goal state specified by constraints on the time, the attitude, and the atti-
tude speed at the beginning of the next action;

– constraints on the attitude movement such as maximal moments and torques
in terms of attitude.

The decision problem consists in checking if a goal state is reachable. If the
answer is positive, the associated optimization problem consists in computing
the minimal time at which this is possible.

Constraints on the goal depend on the nature of the next action to be per-
formed. For example, if the next action is a Sun pointing, the goal must be
reached before the satellite be in eclipse, the goal attitude is fixed, and the as-
sociated speed is consequently null (see Section 3.2). If the next action is a data
downloading towards any ground station, the goal must be reached before the
end of the visibility window between the satellite and the station, and the goal
attitude and attitude speed are functions of the time at which the goal is reached
because the satellite is moving on its orbit and the Earth is rotating on itself. In
fact, the problem can be seen as the problem of tracking a mobile target from
a mobile engine. Things are similar if the next action is an observation of any
ground area a, with only extra constraints on the goal attitude and attitude
speed to allow the line of sensors of the observation instrument to scan a in the
right direction at the right speed (see Section 3.3).

To simplify the problem, we decompose the attitude movement into three
parallel movements, each one performed along one axis (roll, pitch, or yaw) using
one actuator. Moreover, we enforce that each of these movements be decomposed
into three successive phases (see Figure 3):

– a first phase with a constant torque T1;
– a second phase with a constant moment L2;
– a third phase with a constant torque T3.

Such a strategy can be justified as follows. To get a given goal attitude as soon
as possible, it is necessary to start with an acceleration until a maximum speed
(first two phases). But, to get at the same time a given goal attitude speed, it
may be necessary to end with a deceleration phase (third phase). Each of these
phases may be empty. To get an intuition of the problem at hand, think that
you are driving a car at a given speed on a highway and that you want to go as
soon as possible behind the car of a friend who is driving at another speed.

8 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

1t

T
1

1tΔ
2tΔ

3tΔ

bt 2t ft

L

t

Phase 1 Phase 3

T
3

f

b

2

Phase 2

(moment)

(time)

Ι.Ω

Ι.Ω

Ι.Ω

Fig. 3. The three successive attitude movement phases along one axis

The start time tb of the first phase and the end time tf of the last one must
be obviously equal along the three axes. But in addition, in order to limit the
disturbances due to the instantaneous acceleration/deceleration changes, we en-
force that the phase commutation times t1 and t2 be equal along the three axes
too.

The problem consists now in determining the three common phase end times
t1, t2, and tf , and, along each axis, the torques T1 and T3 in the first and third
phases and the moment L2 in the second one. This is this problem we tried to
model as a continuous CSP problem and to solve using a continuous CSP solver.

2 Why Constraint Programming ?

2.1 Existing Methods

Numerical methods exist to solve this kind of problem. In particular, CNES has
developed a library called MANIAC [6] which includes an algorithm dedicated
to the computing of attitude changes for families of satellites whose attitude is
controlled thanks to reaction wheels (MYRIADE, PROTEUS, . . .). This algo-
rithm allows the feasibility of an attitude change of a given duration between
an initial attitude and a observation goal attitude to be checked. The minimal
duration of such an attitude change is obtained thanks to an iterative call to this
algorithm. In the context of the future PLEIADES satellites whose attitude is
controlled thanks to gyroscopic actuators, CNES has developed a similar library
called GOTlib. However, these methods have several drawbacks:

– they have been developed to be used on the ground in the context of the
regular production of activity plans; they are time consuming and cannot be
used in an online context as they stand;

– they consist in searching the values for which a function gets null thanks
to gradient-based mechanisms such as Newton and Lagrange algorithms;
they offer consequently no optimality guarantee in terms of attitude change
duration;

Satellite Attitude Change Minimal Duration 9

– they use no explicit model of the problem to solve: initial and goal states,
constraints on the attitude movement; this model is hidden in the algorithms.

2.2 Why Considering Constraint Programming ?

Interval analysis has been already used in robotics [7]. In the same direction,
we explored the use of constraint programming to remedy the drawbacks of the
existing methods. The main a priori advantages of such an approach are:

– the use of an explicit model of the problem, what is consistent with the
model-based approach followed by the AGATA project at all the levels of the
autonomous control of a spacecraft, for both situation tracking and decision;

– the ability to use the same model to answer various requests, by changing
only the optimization criterion (see Section 3.5);

– the ability to get the global optimum and not only a local one, or at least a
bound on this optimum, for example a lower bound on the minimal duration
of an attitude change, allowing the decision algorithm to remove infeasible
candidate actions.

3 How Constraint Programming ?

3.1 Kinematic Models

The first task is to build a simplified kinematic model of the various bodies which
come into play (Sun, Earth, and satellite): movement of the Earth around the
Sun and on itself, of the satellite orbit around the Earth, and of the satellite on
its orbit and on itself.

Reference Frames. Let Rφ(α), Rθ(α), and Rψ(α) be the rotation matrix of
any angle α around respectively the first, the second, and the third base vector.
Let uRi be the vector u expressed in any reference frame Ri. When no reference
frame is specified, the vector is assumed to be expressed in the inertial reference
frame Rc: u = uRc .

The chosen inertial reference frame is the geocentric equatorial reference frame
Rc = {xc; yc; zc}, with zc in the direction of the Earth inertial rotation vector
and xc pointing to the vernal equinox point4 γ.

For any ground area to observe starting in point M , we define the reference
frame Ra = {xa; ya; za} with za pointing to the zenith and xa in the direction
of the observation.

We define the satellite local orbital reference frame Rlo = {xlo; ylo; zlo} with
zlo pointing to the zenith and ylo in the direction of the kinetic moment of the
satellite moving around the Earth.

4 The vernal equinox point is one of the two points on the celestial sphere where the
celestial equator intersects the ecliptic. It is defined as the position of the Sun on
the celestial sphere at the vernal equinox time.

10 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

Fig. 4. Used reference frames

Finally, we define the satellite reference frame Rs = {xs; ys; zs} with zs in
the opposite direction to the observation instrument direction and ys in the
direction of the line of sensors of the observation instrument. When the satellite
points to the Earth center, Rs and Rlo are the same (see Figure 4 and see [8] for
more details).

Movement of a Point at the Earth Surface. An ground area to observe
is defined by a point M on the Earth surface and a course (the observation
direction). The latitude latM of M is constant and the right ascension5 asM (t)
of M at any time t is defined by the following equation:

asM (t) = asMb
+ ΩE(t− tb)

where asMb
is its right ascension at time tb and ΩE = 2π

86400 rd.s−1 is the Earth
inertial rotation speed. The orientation of the ground area reference frame Ra is
given by the transformation matrix from the inertial reference frame Rc to Ra:

Mca(t) = Rθ(−π

2
)Rφ(π)Rφ(asM (t))Rθ(latM)Rψ(course)

Consequently, the location EM(t) of M in Rc at any time t is given by:

EM(t) = Mca(t)

⎡
⎣

0
0

RE

⎤
⎦
Ra

=

⎡
⎣

RE cos(latM) cos(asM (t))
RE cos(latM) sin(asM (t))

RE sin(latM)

⎤
⎦
Rc

where RE = 6378.13 km is the Earth radius. Its velocity VM (t) is given by:

VM (t) = ΩEzc ∧EM(t)
5 The right ascension is the angular distance of a celestial body or point on the celestial

sphere, measured eastward from the vernal equinox.

Satellite Attitude Change Minimal Duration 11

Movement of the Satellite Orbit around the Earth. The satellite circular
orbit is characterized by its radius Ro and its inclination i. The right ascension
Ω(t) of its ascending node6 at any time t is defined by the following equation:

Ω(t) = Ωb + Ω̇(t− tb)

where Ωb is the right ascension of its ascending node at time tb and Ω̇ its constant
rotation speed around zc.

Movement of the Satellite on its Orbit. The satellite location on its orbit at
any time t is defined by its true anomaly7 ν(t) defined by the following equation:

ν(t) = νb + ν̇(t− tb)

where νb is its true anomaly at time tb and ν̇ its mean motion. The orientation
of the local orbital reference frame Rlo is given by the transformation matrix
from the inertial reference frame Rc to Rlo:

Mclo(t) = Rψ(Ω(t))Rφ(i)Rψ(
π

2
)Rφ(

π

2
)Rθ(ν(t))

Consequently, the location ES(t) of the satellite in Rc at any time t is given
by the vector:

ES(t) = Mclo(t)

⎡
⎣

0
0

Ro

⎤
⎦
Rlo

Its velocity VS(t) is given by:

VS(t) = Ωclo ∧ES(t) = (Ω̇zc + ν̇ylo) ∧ES(t)

Movement of the Satellite on itself. The attitude movement of the satellite
is constrained by its inertial matrix I and the maximum moment and torque
vectors Lmax and Tmax:

I =

⎛
⎝

Ix 0 0
0 Iy 0
0 0 Iz

⎞
⎠ =

⎛
⎝

850 0 0
0 850 0
0 0 750

⎞
⎠ m2.kg

⎡
⎣

Lxmax

Lymax

Lzmax

⎤
⎦ =

⎡
⎣

45
45
20

⎤
⎦ N.m

⎡
⎣

Txmax

Tymax

Tzmax

⎤
⎦ =

⎡
⎣

7
7
6

⎤
⎦ N.m

6 The orbit ascending node is the orbit point where the satellite crosses the equatorial
plane headed from south to north.

7 The satellite true anomaly is the angular distance, viewed from the Earth center
and measured in the orbital plane from the perigee to the current location of the
satellite.

12 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

3.2 Attitude Change with a Fixed Goal Attitude

We start by considering the simplest case, where the goal attitude is fixed. This
happens when the candidate next action is a battery recharge with the solar
generators oriented towards the Sun. Because of the huge distance between the
Earth and the Sun and the relatively slow movement of the Earth around the
Sun, we can indeed consider that the attitude ASun required by battery recharge
remains constant during a non-eclipse period (more than half a revolution of the
satellite around the Earth, which lasts about 100 minutes; see Figure 5).

As the satellite attitude movement has been decomposed into three parallel
movements, each one along one axis, each other constrained by only the three
common phase end times (see Section 1.3), we can consider the attitude move-
ment along one axis.

Let αb (resp. αf) be the initial (resp. goal) attitude, with Δα = αf−αb. Let Ωb

(resp. Ωf) be the initial (resp. goal) attitude speed. Let tb be the initial time and
t1 (resp. t2 and tf) be the end time of phase 1 (resp. 2 and 3) with Δt1 = t1 − tb,
Δt2 = t2− t1, and Δt3 = tf − t2. Let T1 (resp. T3) be the constant torque during
phase 1 (resp. 3) and L2 be the constant moment during phase 2 (see Figure 3).
The moment I ·Ω(t) at any time t is given by the following equations:

– during phase 1: I ·Ω(t) = I ·Ωb + T1(t− tb);
– during phase 2: I ·Ω(t) = L2
– during phase 3: I ·Ω(t) = I ·Ωf + T3(t− tf);

Moment continuity at times t1 and t2 enforces that I · Ωb + T1(t1 − tb) =
I ·Ωf + T3(t2 − tf) = L2. This results in Equations 1 and 2:

T1 =
L2 − I ·Ωb

Δt1
(1)

T3 =
I ·Ωf − L2

Δt3
(2)

If we consider the attitude change Δα between tb and tf , we get:

I ·Δα =
∫ tf

tb

I ·Ω(t) dt = I ·Ωb ·Δt1 +T1 ·Δt1
2

2
+L2 ·Δt2+I ·Ωf ·Δt3+T3 ·Δt3

2

2

Combined with equations 1 and 2, this results in Equation 3.

I ·Δα =
L2 + I ·Ωb

2
Δt1 + L2 ·Δt2 +

L2 + I ·Ωf

2
Δt3 (3)

The problem consists now in minimizing tf with constraints given by Equa-
tions 1, 2, and 3, at which must be added the following inequalities:

tb ≤ t1 ≤ t2 ≤ tf

−Lmax ≤ L2 ≤ Lmax

−Tmax ≤ T1, T3 ≤ Tmax

Satellite Attitude Change Minimal Duration 13

Fig. 5. Reaching a Sun pointing attitude

It is worth emphasizing that, because the decision variables are t1, t2, tf , L2,
T1, and T3, the resulting problem is not linear.

3.3 Attitude Change with a Variable Goal Attitude

Except when the next candidate action is a battery recharge, the goal attitude
and attitude speed are not fixed. They are variable and depend on the time tf
at which the attitude movement ends. This is the case when the candidate next
action is an observation, a data downloading, a detection, a geocentric pointing,
or an orbital manoeuvre.

We consider here the most constrained case when the candidate next action
is the observation of any ground area a (see Figure 6 which shows how the
goal attitude depends on the time at which observation starts, anywhere in
the visibility window [ts; te] of a). All the constraints described in the previous
section for the case of an attitude change with a fixed goal attitude remain valid,
except that αf and Ωf are no longer constant. They are variable, but constrained
due to the following requirements:

– the observation instrument must point to the starting point M of a:

zs =
ES(tf)−EM(tf)
||ES(tf)−EM(tf)||

– the sensor line of the observation instrument must be orthogonal to the
observation direction of a:

xs = ya(tf) ∧ zs

So, the orientation of the satellite reference frame Rs at time tf is given by
the transformation matrix from the inertial reference frame Rc to Rs:

Mcs =
(
xs zs ∧ xs zs

)

14 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

Fig. 6. Reaching an observation attitude

– the speed of the projection on the ground of the sensor line of the of the
observation instrument must be equal to the sum of the ground area speed
and of the required scanning observation speed vscan:

VS(tf) + Ωcs(tf) ∧ (EM(tf)−ES(tf)) = VM (tf) + vscanxa(tf)

where Ωcs(t) is the rotation speed of the satellite reference frame Rs in the
inertial reference frame Rc at any time t.

3.4 CSP Model

The problem can be cast into the following continuous CSP [9].

Variables representing the attitude movement:

tf ∈ [ts; te] T1x, T3x ∈ [−Tmaxx; Tmaxx] L2x ∈ [−Lmaxx; Lmaxx]
t1, t2 ∈ [tb; te] T1y, T3y ∈ [−Tmaxy; Tmaxy] L2y ∈ [−Lmaxy; Lmaxy]

T1z, T3z ∈ [−Tmaxz; Tmaxz] L2z ∈ [−Lmaxz; Lmaxz]

Variables representing the goal state at time tf :

Mca ∈ M3(R) xa ∈ [−1, 1]3 ya ∈ [−1, 1]3

Mclo ∈ M3(R) Ωcs ∈]−∞; +∞[3 ΩRs
cs ∈]−∞; +∞[3

Mcs ∈M3(R) xs ∈ [−1, 1]3 zs ∈ [−1, 1]3

Δφ ∈ [−π; π] Δθ ∈ [−π; π] Δψ ∈ [−π; π]

Constraints:

tb ≤ t1 ≤ t2 ≤ tf and Equations 1, 2, and 3 along the three axes

Mca = Mca(tf) = Rθ(−π2)Rφ(π)Rφ(asM (tf))Rθ(latM)Rψ(course)

xa = Mcaxc ya = Mcayc

Mclo = Mclo(tf) = Rψ(Ω(tf))Rφ(i)Rψ(π2)Rφ(π2)Rθ(ν(tf))

Satellite Attitude Change Minimal Duration 15

zs = ES(tf)−EM(tf)
||ES(tf)−EM(tf)|| xs = ya ∧ zs

Mcs = (xs zs ∧ xs zs) Ωcs = McsΩ
Rs
cs

VS(tf) + Ωcs ∧ (EM(tf)−ES(tf)) = VM (tf) + vscanxa

Δφ = arctan((Mcs)32
(Mcs)33

) Δθ = − arcsin((Mcs)31) Δψ = arctan((Mcs)21
(Mcs)11

)

3.5 Resolution with RealPaver

We used the RealPaver continuous CSP solver [10] to compute the minimal du-
ration of an attitude change. We present an example of computation where the
satellite attitude is Ab at time tb = 0 and the candidate action consists in ob-
serving point M (latM = 40.1˚, asMb

= 1.0 rd, and course = 0.5 rd) with a null
scanning speed (vscan = 0 m.s-1) within the visibility window
[ts; te] = [0; 100] s.

The considered satellite orbit is characterized by its radius Ro = 7204.8 km,
its inclination i = 98.72˚, its ascending node rotation speed Ω̇ = 1.99e−7 rd.s-1,
and its ascending node right ascension Ωb = −2.23 rd at time tb. The satellite
mean motion is ν̇ = 1.03e−3 rd.s-1 and its true anomaly at time tb is νb = 2.3 rd.

Ab = {
[

ψb
θb
φb

]
,

⎡
⎣

ψ̇b
θ̇b
φ̇b

⎤
⎦} = {

[
1.34
−0.0682
−0.254

]
rd,

[
0.0495
0.0133
0.0494

]
rd.s−1}

Figure 7 shows the result of the computation of a lower bound on the attitude
change minimal duration (ΔT = tf − tb ≈ 16.75 s) obtained in 240 ms. From
that, we just know that there is no attitude change whose duration is shorter
than 16.75 seconds, but know neither the minimal duration, nor the associated
attitude movement.

Figure 8 shows the result of the computation of an upper bound on the attitude
change minimal duration (ΔT ≈ 49.02 s) obtained in 600 ms. This upper bound
has been obtained by fixing the remaining degrees of freedom on the trajectory,
more precisely by setting the torques T1 and T3 to the maximal acceleration
and deceleration along the axis for which the angular movement to perform is
the greatest, in this case the x axis, with T1x = −Txmax and T3x = Txmax . From
that, we get an attitude movement whose duration is an upper bound on the
attitude change minimal duration.

But attempts to get the minimal duration and the associated attitude move-
ment within a reasonable CPU time were unsuccessful. So, it remains to explore
other ways, possibly more sensible, of fixing the remaining degrees of freedom
on the trajectory.

Interestingly, it is possible to use the same model to optimize another criterion.
If there are many observations to perform, minimizing the attitude change du-
ration may be sensible. But, if there are only few observations, it may be more
sensible to try and optimize their quality. One way of doing that consists in

16 G. Beaumet, G. Verfaillie, and M.-C. Charmeau

OUTER BOX: HULL of 1 boxes
tf in [16.75 , 16.77]
delta_psi in [-1.5 , -1.499]
delta_theta in [-0.1763 , -0.1761]
delta_phi in [1.144 , 1.146]
T1x in [-7 , -0.1952]
T3x in [-7 , +7]
T1y in [-7 , +7]
T3y in [-7 , +7]
T1z in [-6 , -1.016]
T3z in [-6 , +6]
L2x in [-45 , +41.59]
L2y in [-45 , +45]
L2z in [-20 , +20]
t1 in [2.84 , 16.77]
t2 in [2.84 , 16.77]
[...]

precision: 90, elapsed time: 240 ms

Fig. 7. Lower bound computation

OUTER BOX: HULL of 1 boxes
tf in [49.02 , 49.04]
delta_psi in [-1.552 , -1.551]
delta_theta in [-0.3708 , -0.3704]
delta_phi in [1.207 , 1.209]
T1x = -7 **point**
T3x = 7 **point**
T1y in [-1.697 , -1.688]
T3y in [0.5936 , 0.6169]
T1z in [-1.398 , -1.382]
T3z in [-3.478 , -3.413]
L2x in [-45 , -44.91]
L2y in [-9.745 , -9.662]
L2z in [19.68 , 19.84]
t1 in [12.43 , 12.45]
t2 in [43.27 , 43.31]
[...]

precision: 59.6, elapsed time: 600 ms

Fig. 8. Upper bound computation

OUTER BOX: HULL of 1 boxes
cos_a-1 in [1.036 , 1.038]
tf in [107.4 , 107.5]
delta_psi in [1.363 , 1.365]
delta_theta in [-0.7951 , -0.7948]
delta_phi in [1.349 , 1.351]
T1x in [-7 , +1.02]
T3x in [-7 , +7]
T1y in [-7 , +7]
T3y in [-7 , +7]
T1z in [-6 , -0.1586]
T3z in [-6 , +6]
t1 in [2.84 , 107.5]
t2 in [2.84 , 107.5]
[...]

precision: 105, elapsed time: 4,760 ms

Fig. 9. Observation angle optimization

minimizing the observation angle8. Figure 9 shows the result of the computation
of a lower bound on the new criterion cos_a-1 = 1

<zs,zlo>
obtained in 4, 760 ms,

with ΔT ≈ 107.4 s. However, we can observe that the CPU time is significantly
greater than with the previous optimization criterion.

4 Added Value of Constraint Programming

The main lessons we draw from this work are the following ones:

– maybe, the main advantage of using constraint programming tools is to
compel oneself to write an explicit model of the problem, which can be used
as a reference for any algorithmic development; moreover, the same model
can be used with different optimization criteria;

8 The observation angle is defined as the angle between the base vectors zs and zlo.

Satellite Attitude Change Minimal Duration 17

– unlike gradient-based methods, interval analysis allows bounds to be com-
puted; in our case, the lower bound on the minimal duration of an attitude
change may allow infeasible candidate actions to be removed;

– unfortunately, the recursive domain splitting used by constraint program-
ming tools does not allow optimal solutions to be produced within a rea-
sonable CPU time; in practice, some heuristic choices are necessary to get
solutions of reasonable quality.

References

1. Bensana, E., Lemâıtre, M., Verfaillie, G.: Benchmark Problems: Earth Observation
Satellite Management. Constraints 4(3), 293–299 (1999)

2. Verfaillie, G., Lemâıtre, M.: Selecting and Scheduling Observations for Agile Satel-
lites: Some Lessons from the Constraint Reasoning Community Point of View.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 670–684. Springer, Heidelberg
(2001)

3. Chien, S., et al.: The EO-1 Autonomous Science Agent. In: Kudenko, D., Kazakov,
D., Alonso, E. (eds.) Adaptive Agents and Multi-Agent Systems II. LNCS (LNAI),
vol. 3394. Springer, Heidelberg (2005)

4. Damiani, S., Verfaillie, G., Charmeau, M.C.: Cooperating On-board and On the
ground Decision Modules for the Management of an Earth Watching Constellation.
In: Proc. of i-SAIRAS-05 (2005)

5. Charmeau, M.C., Bensana, E.: AGATA: A Lab Bench Project for Spacecraft Au-
tonomy. In: Proc. of i-SAIRAS-05 (2005)

6. Parraud, P., Flipo, A., Jaubert, J., Lassalle-Balier, G.: Computing Smooth Attitude
Guidance Laws for Homing Maneuvers. In: Proc. of the International Symposium
on Space Technology and Science (2006)

7. Merlet, J.P.: Interval Analysis and Robotics (Invited Presentation). In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, p. 15. Springer, Heidelberg (2006)

8. Hoots, F.: Theory of the Motion of an Artificial Earth Satellite. Celestial Mechanics
and Dynamical Astronomy (1979)

9. Granvilliers, L., Benhamou, F.: Continuous and Interval Constraints. In: Rossi, F.,
Beek, P.V., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 571–603.
Elsevier, Amsterdam (2006)

10. Granvilliers, L., Benhamou, F.: RealPaver: an Interval Solver using Constraint
Satisfaction Techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

Solving an Air Conditioning System Problem in
an Embodiment Design Context Using Constraint

Satisfaction Techniques

Raphaël Chenouard1, Patrick Sébastian1, and Laurent Granvilliers2

1 ENSAM Bordeaux, TRansferts Ecoulements FLuides Energétique, CNRS, F-33405,
Talence Cedex

2 University of Nantes, Laboratoire d’Informatique de Nantes Atlantique, CNRS, BP
92208, F-44322 Nantes Cedex 3

Abstract. In this paper, the embodiment design of an air condition-
ing system (ACS) in an aircraft is investigated using interval constraint
satisfaction techniques. The detailed ACS model is quite complex to
solve, since it contains many coupled variables and many constraints
corresponding to complex physics phenomena. Some new heuristics and
notions based on embodiment design knowledge, are briefly introduced
to undertake some embodiment design concepts and to obtain a more
relevant and more efficient solving process than classical algorithms.

The benefits of using constraint programming in embodiment design
are discussed and some difficulties for designers using CP tools are shortly
detailed.

1 An Air Conditioning System Problem

1.1 Context

The design process is a sequence of phases ranging from the definition of needs
and requirements to preliminary design and detailed design (Pahl & Beitz 1996).
Preliminary design includes conceptual design leading to product schemes, and
embodiment design, where feasibility studies are investigated according to geo-
metric constraints, physics behaviors and interactions between the product, its
components, and its environments.

Nowadays, no real software exist to solve complex embodiment design prob-
lems. In this context, a constraint solver, namely Constraint Explorer, was de-
veloped within a partnership between Dassault Aviation and several research
laboratories. This partnership was created through the french RNTL project
CO2. Our work starts from this project and aims to express some other dif-
ficulties using constraint programming in embodiment design, where problems
are highly coupled according to a design point of view. We use Elisa 1, an open
C++ library for constraint programming and constraint solving techniques based
on interval arithmetic (Moore 1966), where we develop some new concepts and
algorithms.
1 http://sourceforge.net/projects/elisa/

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 18–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving an Air Conditioning System Problem in an Embodiment 19

Fig. 1. Bloc functional diagram for an aircraft air conditioning system

In this paper, the embodiment of an air conditioning system (ACS) for an
aircraft (see Figure 1) is investigated. Figure 1 describes the main components of
an ACS and functional fluxes circulation. The ACS may be viewed as a bootstrap,
composed of: a turbo-machine (a compressor, a turbine and a coupling shaft),
an exchanger, a trim gate, a diffuser and a nozzle. This bootstrap corresponds
to a reverse Joule-Brayton cycle. A trim gate is used to regulate the air cooling
system and guarantee a suitable air pressure and temperature in most of the
aircraft life situations. The main air is taken from the turbo-reactor and flows
through the compressor. The pressure and temperature of the main air increase
a lot; this improves the heat tranfers inside of the heat exchanger. Indeed, the
heat exchanger uses the dynamic cold air from atmosphere to cool down the
main air flow, which is very hot. Then, the main air is released through the
turbine and its pressure and temperature significantly drop. The coupling shaft
transmits the energy given by the turbine rotation to the compressor. If the main
air temperature is not suitable for humans (i.e.: too cold), then the trim gate
can mix hot air from the turbo-reactor with the main air flow.

In an aircraft, several essential criteria must be taken into account. Indeed,
the air pressure and temperature of the cabin must be guaranteed for the well-
being of the passengers, but the air flows taken from the turbo-reactor and
from the atmosphere have to be carefully managed. Indeed, it can decrease the

20 R. Chenouard, P. Sébastian, and L. Granvilliers

turbo-reactor performances and it can also increase the aircraft drag force. More-
over in an aircraft, the volume and the mass of every element penalize its per-
formances, therefore the mass and volumes of the ACS have to be minimized.

1.2 Model Description

In embodiment design, a product is described using several classes of variables.
Indeed, designers are mainly interested in only a few variables and criteria. The
design variables define by their values design solution principles. The whole de-
sign variables correspond to the smallest set of variables defining the architecture
of a product (main dimensions, structural alternatives, etc.). The design vari-
ables are concerned with every stage of the product life cycle contrary to the
other variables, which are specific to the investigated phase. Thus, the domain of
the design variables is accurately assessed by designers regarding their possible
values and their precision. These assessments are based on designer’s expertise.
The auxiliary variables are used to express the constraints related to the ACS,
namely physics behavior, geometric constraints and performances criteria. They
are used to link design variables and criteria using some relevant knowledge
related to the ACS. Criteria permit to validate and to evaluate the design solu-
tions, but at this point, it is too early in the design process to really optimize,
since some of the components may change.

All the components of the ACS are not standardized. For the sake of simplicity,
only the exchanger and the trim gate are embodied, since the ACS performances
seem to be mainly depending on the characteristics of the exchanger. In this way,
other components are mainly expressed with efficiency coefficients (provided by
manufacturers) and energy balances. Although these simplifications are used, the
model of the exchanger is really complex and several coupled physics phenomena
interfere.

Our model is composed of 156 variables. There are 5 design variables (1 for
the trim gate and 4 describing the exchanger). The 151 other variables are some
auxiliary variables. Most of them (85 variables) may be considered as explicit
variables. Indeed, these variables are explicitly defined by a constraint, since they
correspond to intermediary computations. Their mathematical definition could
act as a substitute for them, but they are maintained within the model, because
they express well-known physical variables (for instance Reynolds or Nusselt
dimensionless numbers) or criteria used by designers. These variables preserve
the model expressivity and intelligibility. The 66 other auxiliary variables are
mainly related to the exchanger (fin characteristics, pressures, temperatures,
efficiency, etc.). Explicit variables’ values are often used to estimate the validity
of the model and to check that no error occurs in the expressed knowledge. Many
variables can be considered as explicit variables, if their significance in the model
is minor regarding the designer expertise and if they are alone on the left part
of one equation.

Constraints may also be classified. For instance, there are 2880 basic unary con-
straints describing a catalogue of 48 exchange surfaces (Kays & London 1984). In-
deed, 2 exchange surfaces (hot and cold sides) are detailed using 30 characteristics

Solving an Air Conditioning System Problem in an Embodiment 21

(fins thickness and spacing, interpolation coefficients, etc.). 9 constraints describe
the energy balances of the 8 components used in the model. 94 other constraints
express the ACS characteristics and behavior (geometry, temperature, pressure
losses, etc.), most of them defining the explicit variables.

1.3 Embodiment Design Solutions

A design solution corresponds to a product architecture, which satisfy all con-
staints and criteria. As a consequence, a design solution is represented by design
variable values. The multiple auxiliary variables values must not be taken into
account when considering design solutions, since their domain exploration may
induce duplicated design variable solutions. However the auxiliary variables ex-
ploration is mandatory to check the product behavior and the physics reality.

2 Why CP?

In Embodiment design, designers have to determine sets of design solutions to
support decision making. They need tools to globally explore the solutions search
space.

Stochastic methods are mainly used. They are developed in engineering de-
partments using simulation tools coupled with optimization tools. This method
requires the development of simulation codes, specific to the investigated prob-
lems. For instance, a tool using an optimization approach based on an evolu-
tionary method was developed to investigate the ACS presented in this paper
(Sébastian et al. 2007). These simulation codes are often powerful, but they are
not easily maintainable and reusable. The solving algorithm must be redefined
for each application, even though it is often time consuming to develop. In the
context of a preliminary design phase, many decisions are not taken at that point
and the model may evolve several times. Moreover the evolutionary approaches
do not compute the entire set of solutions. In particular if some parameters of
the genetic algorithm are not finely tuned, some areas of the search space may
not be explored. The embodiment design phase is used to detect feasibility ar-
eas in the search space and leaving out some may be detrimental to take the
appropriate decisions.

The CP approach allows to write the design models without developing their
solving methods, thus the cost is lesser when a parameter or a component changes.
It is already used in configuration and in conceptual design
(O’Sullivan 2001, Gelle & Faltings 2003, Yannou et al. 2003) and it seems promis-
ing for embodimentdesign (Zimmer & Zablit 2001, Fischer et al. 2004).The search
space is explored entirely and it is easier to determine the shapes of the solution set.
This entire set of solutions allows designers to takemore robust decisions, since they
can investigatemore easily the model response to some characteristics changes (for
instance components, dimensions or criteria) and thus preserve one design archi-
tecture and some of its performances validity from future changes.

22 R. Chenouard, P. Sébastian, and L. Granvilliers

3 How CP?

In our air conditioning system application, we use a general CP framework based
on a branch-and-prune algorithm (Van-Hentenryck et al. 1997).

3.1 Model Formulation

We consider the classical triplet representation of CSP problems: 〈V, D, C〉. Vari-
ables are defined using discrete or continuous domains. During computations,
discrete domains are converted into an interval hull and it is later refined using
the discrete values it holds. The constraints are based on arithmetic expressions,
using the classical equality and weak inequality operators.

However, some physics laws were established through experiments, and they
are expressed as piecewise nonlinear functions. We focus on piecewise phenom-
ena which are defined by one variable. Indeed, most physics phenomena are
estimated using some representative and well-known variables (for instance in
fluid mechanics: Nusselt, Reynolds, Prandtl numbers, etc.). We define a global
piecewise constraint to efficiently compute theses piecewise nonlinear functions,
quite similarly to Refalo’s approach on linear piecewise functions (Refalo 1999).
Moreover this global constraint allows to define easily the range of choices using
a unique reference for a component, corresponding to a disjunction between all
the components to choose.

3.2 Solving Algorithms

The robust classical round-robin strategy on the variables choices for exploration
often gives slow solving times for embodiment design problems and generates
many duplicated design solutions. The main explanation is the useless compu-
tation steps made on auxiliary variables. Indeed, they may have a very large
domain, whereas splitting on their domain may result on only few reductions
of the overall search space. That’s why we develop a heuristic custom search
based on variable classes linked to the embodiment design point of view. Indeed,
design variables are relating to the main structuring characteristics and mod-
els are often established around them and around criteria. Auxiliary variables
are only introduced to express performance criteria, physics behavior, etc. (see
figure 2). Thus, this choice strategy promotes design variables to compute the
design architectures (or design principles of solution) as soon as possible. Auxil-
iary variables’ domain often appear to be more quickly reduced than using the
round-robin strategy.

In addition, some of the auxiliary variables are explicitly defined according to
other variables. They correspond to intermediary computation steps, but they
are maintained in the model to ensure its intelligibility. To avoid some use-
less exploration steps according to these variables, their precision are defined
to the infinite value, so that their precisions are always achieved. Their values
are computed by the consistency pruning process based on 2B (Lhomme 1993)
and box consistency (Benhamou et al. 1999). It is important to highlight, that

Solving an Air Conditioning System Problem in an Embodiment 23

Fig. 2. Knowledge classification in an embodiment design model

explicit variables may be defined using other explicit variables. In this case, no
dependency cycle has to stand between them. Some small design problems are
presented using such variables or not in Vu’s work (Vu 2005).

These algorithms and the use of explicit variables allow us to compute more
efficiently the entire solution set of embodiment design problems in a few hours,
whereas other algorithms do not compute the first solution after several hours
(the solving process was stopped after about 5 hours without any results).

In some other works, models are decomposed in small blocks organized in a
directed acyclic graph (Reddy et al. 1996, Bliek et al. 1998, Neveu et al. 2006).
It may be interpreted to a variables solving order, where blocks are fully solved
before starting the next one in the graph. It is an efficient approach for problems,
where coupled variables are not too numerous. Indeed, when there are several
sets of coupled variables, the model is decomposed in big blocks and the hard-
ness of the problem remains. Moreover, preliminary design problems are often
under-constrained, and many start variables have to be chosen to compute a
decomposition of the constraint network. In this case, these variable domains
are explored almost exhaustively and it may induce useless computation steps
on irrelevant variables.

3.3 Precision Management

The management of the precisions variables appears to be fundamental to ensure
a relevant solution set for designers. Indeed, each design variable has a precision
representing the interval width, which defines solutions according to the design
point of view. These precisions are linked with tolerances and real-world feasibility.

24 R. Chenouard, P. Sébastian, and L. Granvilliers

In many cases, a global precision for all variables (for instance 10−8 is the
default precision on several solvers) has no sense considering the design point of
view. A default precision can be defined for some variables, but most relevant
variables of an embodiment design problem must have their own appropriate
precision. The design variable precisions have to be defined taking into account
the product specifications and requirements.

The precisions on auxiliary variables are more difficult to set properly. Some
complex phenomena may be taken into account and designers may have diffi-
culties to forecast the relevant variable precisions linked with these phenomena.
Indeed, they may use some confidence percentage linked to some imprecisions
related to the computed values. These imprecisions are linked to simplifying
assumptions, which allow designers to neglect terms when writing balance equa-
tions. From this point of view, balance equations of mass, energy or momentum
are linked to a precision taking into account the terms neglected by designers.
This confidence percentage may be associated as a relative precision to some rel-
evant variables of constraints, for instance efficiency coefficients. However some
other auxiliary variables may be related to some physics quantities or to some
physics order of magnitude and their precisions (absolute or relative) should be
defined taking this knowledge into account.

The precision management is really fundamental to obtain efficient solving
time (not completely useless search space explorations) and relevant solutions
(not too many duplicated design solutions).

3.4 Model Implementation

All the constants, variables, domains and constraints of the ACS problem are
detailed in the following tables. The c or h indexes related to some variables
identify the cold or hot side of the exchanger. We do not define the domain of
the variables from the Kays & London database and explicit variables, since it
is useless. For a variable x, p(x) denotes the precision of x.

Constants
Air properties Cp = 1000 J/kg.K, r = 287 J/kg/K, γ = 1.4
Flight conditions Z = 10500 m, M = 0.8
Turbo-reactor characteristics TCTR = 8, ηTRd = 0.9, ηTRc = 0.8
Components efficiency ηc = 0.75, ηAT = 0.95, ηt = 0.8, ηNO = 0.9, ηDI = 0.9
Air sent into the cabin T5 = 278.15 K, p5 = 85000 Pa, q = 0.7 kg/s
Plates characteristics kp = 20 W/m/K, tp = 0.001 m

Design variables
Width of the exchanger (m) Lx ∈ [0.1, 1], p(Lx)= 0.01
Mass capacity ratio (-) τ ∈ [1, 8], p(τ)= 0.5
Hot-side exchange surface reference (-) ExSurfh ∈ [1, 48]: int
Cold-side exchange surface reference (-) ExSurfc ∈ [1, 48]: int
Trim gate radius (m) Rv ∈ {0.01, 0.02, ..., 0.2}

Solving an Air Conditioning System Problem in an Embodiment 25

Auxiliary variables
Exchanger material characteristics roex ∈ [0, 10000], kw ∈ [0, 500]

Exchanger pressures (Pa) p2 ∈ [0, 1000000] ∧ p(p2) = 5%,
p3 ∈ [0, 1000000] ∧ p(p3) = 5%

peic ∈ [0, 1000000] ∧ p(peoc) = 5%,
peoc ∈ [0, 1000000] ∧ p(peoc) = 5%

Exchanger temperatures (K) T2 ∈ [0, 1000] ∧ p(T2) = 5%,
T3 ∈ [0, 1000] ∧ p(T3) = 5%

Teic ∈ [0, 1000] ∧ p(Teic) = 5%,
Teoc ∈ [0, 1000] ∧ p(Teoc) = 5%

Exchanger pressure losses (Pa) ΔPeh ∈ [−∞, +∞] ∧ p(ΔPeh) = 10%
ΔPec ∈ [−∞, +∞] ∧ p(ΔPec) = 10%

Exchanger efficiency coefficient (-) ε ∈ [0, 1] ∧ p(ε) = 5%

Air flows in the exchanger (kg/s) qra ∈ [0, +∞] ∧ p(qra) = 0.001
qma ∈ [0, +∞] ∧ p(qma) = 0.001

Pressure after the turbine (Pa) p4 ∈ [0, 1000000] ∧ p(p4) = 5%

Temperature after the turbine (K) T4 ∈ [0, 1000] ∧ p(T4) = 5%

Auxiliary variables
relating to the K&L database
Fins characteristics bh, rhh, δh, βh, bc, rhc, δc, βc

Colburn interpolation coefficients JSh1, JSh2, JSh3, JSc1, JSc2, JSc3

Fanning interpolation coefficients fSh1, fSh2, fSh3, fSc1, fSc2, fSc3

Kc interpolation coefficients KcSh1, KcSh2, KcSh3, KcSh4, KcSh5, KcSh6

KcSh7, KcSh8, KcSh9

KcSc1, KcSc2, KcSc3, KcSc4, KcSc5, KcSc6]
KcSc7, KcSc8, KcSc9

Ke interpolation coefficients KeSh1, KeSh2, KeSh3, KeSh4, KeSh5, KeSh6

KeSh7, KeSh8, KeSh9

KeSc1, KeSc2, KeSc3, KeSc4, KeSc5 , KeSc6

KeSc7, KeSc8, KeSc9

Auxiliary variables
defined as explicit variables
Exchanger dimensions (m) Ly = Lx, Lz = 0.25 ∗ Lx

Fins characteristics αh = (bh∗βh)
(bh+bc+2∗δh)

, αc = (bc∗βc)
(bh+bc+2∗δc)

,
σh = αh ∗ rhh, σc = αc ∗ rhc

Fins efficiency ηfh = tanh mlh
mlh

, ηfc = tanh mlc
mlc

Exchange surface dimensions Ah = αh ∗ (Lx ∗ Ly ∗ Lz), Ac = αc ∗ (Lx ∗ Ly ∗ Lz),
Aw = Lx ∗ Ly ∗ n, Ach = σh ∗ Afh, Acc = σc ∗ Afc,

Afh = Lx ∗ Lz, Afc = Ly ∗ Lz

Exchange surface efficiency η0h = 1 − Afh
Ah

∗ (1 − ηfh), η0c = 1 − Afc
Ac

∗ (1 − ηfc)

26 R. Chenouard, P. Sébastian, and L. Granvilliers

Exchanger inner wall thickness (m) tw = (δh+δc)
2

Number of plates (-) n = Lz
bh+bc+2∗δh

Air characteristics in the exchanger Gh = qma
Ach

, Gc = qra
Acc

,

μh =
−1.075e−5−2.225e−9∗T3+1.725e−6∗

√
T3

2
+

−1.075e−5−2.225e−9∗T2+1.725e−6∗
√

T2
2

,
μc = −1.075e−5−2.225e−9∗Teoc+1.725e−6∗√Teoc

2
+

−1.075e−5−2.225e−9∗Teic+1.725e−6∗
√

Teic

2
,

ρ2 = p2
r∗T2

, ρ3 = p3
r∗T3

,
ρic = peic

r∗Teic
, ρoc = peoc

r∗Teoc
,

Cpoh = 1003.7 + 6.8e−2 ∗ (T3 − 273.15)+
2.22e−4 ∗ (T3 − 273.15)2,

Cpih = 1003.7 + 6.8e−2 ∗ (T2 − 273.15)+
2.22e−4 ∗ (T2 − 273.15)2,

Cph = Cpoh+Cpih
2

,
Cpoc = 1003.7 + 6.8e−2 ∗ (Teoc − 273.15)+

2.22e−4 ∗ (Teoc − 273.15)2 ,
Cpic = 1003.7 + 6.8e−2 ∗ (Teic − 273.15)+

2.22e−4 ∗ (Teic − 273.15)2

Cpc = Cpoc+Cpic
2

Exchanger mass (kg) mex = ρex ∗ Lx ∗ Ly ∗ ((σh∗δh
rhh

+ σc∗δc
rhc

) ∗ Lz + n ∗ tw)

Exchanger volume (m3) V = Lx ∗ Ly ∗ Lz

Air speed in the exchanger (m/s) Ch = qma
Ach∗ρ2

, Cc = qra
Acc∗ρic

Heat transfer characteristics λ = qra∗Cpic
qma∗Cpih

,
Nut = qma∗Cpih

1
η0h∗hh∗Ah

+ tw
kw∗Aw

+ 1
η0c∗hc∗Ac

,

hh = Jh ∗ Gh ∗ Cph ∗ Pr
−2/3
h ,

hc = Jc ∗ Gc ∗ Cpc ∗ Pr
−2/3
c

Colburn Coefficients (-) Jh = eJSh1∗log2(Reh)+JSh2∗log(Reh)+JSh3 ,
Jc = eJSc1∗log2(Rec)+JSh2∗log(Rec)+JSh3

Fanning friction factor (-) fh = efSh1∗log2(Reh)+fSh2∗log(Reh)+fSh3 ,
fc = efSc1∗log2(Rec)+fSh2∗log(Rec)+fSh3

Prandtl number (-) Prh =
(0.825−0.00054∗T3+5.0e−7∗T2

3)

2
+

(0.825−0.00054∗T2+5.0e−7∗T2
2)

2
,

Prc =
0.825−0.00054∗Teoc +5.0e−7∗Te2

oc
2

+
0.825−0.00054∗Teic +5.0e−7∗Te2

ic
2

Reynolds number (-) Reh = 4∗rhh∗Gh
μh

, Rec = 4∗rhc∗Gc
μc

Inlet pressure losses coefficient Kch = KcSh1 ∗ σ2
h + KcSh2 ∗ σh + KcSh3 ∗ log2(Reh)+

KcSh4 ∗ σ2
h + KcSh5 ∗ σh + KcSh6 ∗ log(Reh)+

KcSh7 ∗ σ2
h + KcSh8 ∗ σh + KcSh9,

Kcc = KcSc1 ∗ σ2
c + KcSc2 ∗ σc + KcSc3 ∗ log2(Rec)+

KcSc4 ∗ σ2
c + KcSc5 ∗ σc + KcSc6 ∗ log(Rec)+

KcSc7 ∗ σ2
c + KcSc8 ∗ σc + KcSc9

Solving an Air Conditioning System Problem in an Embodiment 27

Outlet pressure losses coefficient Keh = KeSh1 ∗ σ2
h + KeSh2 ∗ σh + KeSh3 ∗ log2(Reh)+

KeSh4 ∗ σ2
h + KeSh5 ∗ σh + KeSh6 ∗ log(Reh)+

KeSh7 ∗ σ2
h + KeSh8 ∗ σh + KeSh9,

Kec = KeSc1 ∗ σ2
c + KeSc2 ∗ σc + KeSc3 ∗ log2(Rec)+

KeSc4 ∗ σ2
c + KeSc5 ∗ σc + KeSc6 ∗ log(Rec)+

KeSc7 ∗ σ2
c + KeSc8 ∗ σc + KeSc9

Atmosphere characteristics Ta = 288.2 − 0.00649 ∗ Z, pa = 101290 ∗ (Ta
288.08

)5.256

Turbo-reactor temperatures (K) T0 = Ta ∗ (1 + M2∗(γ−1)
2

)

T1 = T0 ∗ (1 + 1
ηT Rc

∗ ((p1
p0

)
γ−1

γ − 1))

Turbo-reactor pressures (Pa) p0 = pa ∗ (ηTRd ∗ M2∗(γ−1)
2

+ 1)
γ

γ−1 ,
p1 = TCTR ∗ p0

Diffuser pressures (Pa) poDc = piDc ∗ (ηDI ∗ M2 ∗ γ−1
2

+ 1)
γ

γ−1

and temperatures (K) ToDc = T iDc ∗ (1 + M2 ∗ γ−1
2

)
piDc = pa, T iDc = Ta

Nozzle pressure (Pa) piBc = peoc, poBc = pa, T iBc = Teoc

and temperatures (K) ToBc = T iBc ∗ (1 + ηNO ∗ (−1 + (poBc
piBc

)
γ−1

γ))

Trim gate descripion ν = r∗T1
p1

, p4 = p5, qmav = q − qma

ksiα = e(4.03108e−4∗α2+8.50089e−2∗α−1.59295

Various explicit variables mh =
√

2∗hh
kw∗δh

, mc =
√

2∗hc
kw∗δc

,
mlh = mh∗bh

2
, mlc = mc∗bc

2
,

CPamh = Kch + 1 − (σ2
h), CPdh = 2 ∗ (ρ2

ρ3
− 1),

CPrh = fh ∗ Ah
Ach

∗ (2 ∗ ρ2
ρ2+ρ3

),
CPavh = (Keh + σ2

h − 1) ∗ rho2
rho3

,
CPamc = Kcc + 1 − σ2

c , CPdc = 2 ∗ (ρic
ρoc

− 1),
CPrc = fc ∗ Ac

Acc
∗ (2 ∗ ρic

ρic+ρoc
),

CPavc = (Kec + σ2
c − 1) ∗ ρic

ρoc

Constraints
Catalogue of exchSurfh = 1 → JSh1 = 0.0314 ∧ · · · ∧ KcSh9 = 1.717231

exchange surfaces
...

exchSurfh = 48 → JSh1 = 0.0369 ∧ · · · ∧ KcSh9 = 1.551097
exchSurfc = 1 → JSc1 = 0.0314 ∧ · · · ∧ KcSc9 = 1.717231

...
exchSurfc = 48 → JSc1 = 0.0369 ∧ · · · ∧ KcSc9 = 1.551097

Materials choice for the T2 ≤ 473 → roex = 8440 ∧ kw = 30
exchanger T2 ≥ 473 → roex = 8440 ∧ kw = 30

Exchanger description:
Air flow ratio τ = qra

qma

Heat efficiency ε = 1 − eλ∗Nut0.22∗(e
−Nut0.78

λ −1)

for the hot-side ε = T2−T3
T2−T0

28 R. Chenouard, P. Sébastian, and L. Granvilliers

Hot-side energy balance T3 = T2 − ε ∗ (T2 − Teic)
Hot-side pressure losses ΔPeh = p2 − p3

ΔPeh =
G2

h
2∗ρ2

∗ (CPamh + CPdh + CPrh + CPavh)

Cold-side energy balance Teoc = qma∗Cpih
qra∗Cpic

∗ (T2 − T3) + Teic

Cold-side pressure losses ΔPec = peic − peoc

ΔPec =
G2

c
2∗ρic

∗ (CPamc + CPdc + CPrc + CPavc)

Components energy
balances:
Compressor ηc ∗ (T2

T1
− 1) = (p2

p1
)

γ
γ−1 − 1

Coupling shaft (T2 − T1) = ηAT ∗ (T3 − T4)

Turbine 1-T4/T3 = ηt ∗ (1 − (p4
p3

)
γ−1

gamma)

Trim gate q ∗ Cp ∗ T5 = qma ∗ Cp ∗ T4 + qmav ∗ Cp ∗ T1

p1 − p4 = ksiα ∗ ν ∗ q2
mav

2∗(π∗Rv2)2

ToDc = Teic

poDc = peic

3.5 ACS Solutions

Using all this knowledge about the ACS model during the solving process permit
us to compute a finite set of 322 design solution principles in a few hours on a
personal computer at 2 GHz (see figure 3 and 4). Using a classical Round-Robin
strategy with relevant precisions, but without taking into account design variable
classes, give a set of 388608 solutions in several hours.

Fig. 3. ACS solutions considering the main system performance criteria: volume and
mass of the exchanger

Solving an Air Conditioning System Problem in an Embodiment 29

Fig. 4. ACS solutions considering the exchanger mass sorted by hot-side exchange
surface references

Figure 3 illustrates the distribution of the solution set considering 2 major
criteria: the volume of the exchanger and its mass. The three symbols used
to plot solutions represent the exchange surface types used for the hot-side in
the exchanger. The dashed line was made by hand and permits to perceive the
overall shape of the solution space. Figure 4 shows the solutions sorted by the
exchange surface references from the catalogue for the hot side of the exchanger.
It is important to highlight that there are no solutions with the wavy exchange
surfaces from the catalogue and the best ones are from the louvered exchange
surface family.

Considering all this results, designers may have a better understanding of
the solution set of the ACS. These results allow us to validate some factual
knowledge about the design of air conditioning systems in an aircraft. Some
exchange surfaces families appear to participate in more powerful ACS and it
could save time in the upstream phases of ACS design.

4 Added Value of CP?

4.1 Development Cost

This application was developed in several steps, because of the complexity of the
model. A first model without fins between the exchanger plates was developed.
It took a few days to get a preliminary model, since we used the data from an
evolutionary approach and previous work on this system. However several days
were needed to get a model with valid physics behaviors. Finally the entire model
with fins data was built after several weeks. We do not count the development
time of the heuristics search in the solver.

30 R. Chenouard, P. Sébastian, and L. Granvilliers

However for new projects, we suppose that the model writing phase take longer
if it is as complex as for the ACS, but we think that only a few weeks could be nec-
essary to devise a CSP model for design problems, particularly if it is preceded by a
relevant analysis of the product. It permits to identify and organize into a hierarchy
the components and physics phenomena (Szykman et al. 1999, Scaravetti 2004).
Then the main characteristics of the product are defined and only the relevant
physics laws and the relevant performances criteria are expressed.

4.2 Industrial Use

Our work on the ACS is based on previous work using other solving meth-
ods (Sébastian et al. 2007). The CP approach allows to avoid the test and fail
method commonly used in design process. In the classical approach, a model
is developed and then criteria validate or not the solutions found.In the CP
approach, criteria are within the model and only satisfactory solutions are com-
puted. In addition, each model development (embodiment design and detailed
design) takes about 3 months and the deadlines of industrial design are incom-
patible with several model developments.

Our ACS model is quite complete considering an embodiment stage, since it
takes into account more detailed knowledge related to components and their per-
formances than previously used models, namely the exchanger and its exchange
surfaces. The results from an equivalent model were taken into account for the
design of the ACS in a vehicle subjected to confidentiality constraints developed
by Dassault Aviation.

4.3 Feedback and User Experience

The use of constraint satisfaction techniques in embodiment design appears
promising, although the solving process is not always efficient. Indeed, solving
some models may be time consuming compared to the evolutionary approach
and the solution set is not always relevant, since there are many duplicated
solutions realted to the design point of view.

We think that most CP tools or constraints solvers are not enough designed
for beginners in constraints and particularly designers, although the constraints
languages are often intuitive. Solvers are mainly concerned with mathematical
results, leaving aside other needs. Most solvers do not take into account fun-
damental notions of design, as for instance the design and auxiliary variables,
explicit variables, piecewise constraints, matrix calculus, models and data from
catalogues or databases, etc. More to the point, the results obtained with a con-
straint solver are not reusable for the next phases of the design process, where
CAD tools are mainly used.

Moreover, the development of real applications with many constraints and
large amounts of data is difficult. Indeed, the inconsistencies are often complex
to explain, since only little information is available about the solving failures and
only how familiar the user is with the problem may really help. In our application,
this lack of information about the solving process and the inconsistencies have
drastically increased the development time of the ACS model.

Solving an Air Conditioning System Problem in an Embodiment 31

Finally, we think that solvers must not be some black box tools. They have
to be flexible and tuneable to fit every problem type. The definition of heuristics
at several levels should make it possible to undertake all model specificities, like,
for instance, considering the relevance of variable classes according to a design
point of view, or more specific strategies related to the investigated problem.

5 Conclusion

In this paper, the model of an air conditioning system in an aircraft is investi-
gated according to the embodiment design context. Indeed, some simplifications
are made on several components, whereas others are more detailed, adding the
reality of complex physics phenomena at several scales. Some new concepts and
new heuristics are defined according to variable classes and relevant precisions
in order to support decision making. Indeed, many duplicated design solutions
are eliminated when compared to a classical CP solving approach and the entire
set of design solutions is computed. These new notions increase the efficiency of
the solving process, but we believe that some improvements can still be made to
undertake additional design model specificities.

Solving embodiment design models with constraint programming seems
promising, although some difficulties may appear for beginners in constraints.
Indeed, most solvers are mathematical tools, where design concepts are missing.
The difficulty for CP is to keep within a general approach to solve problems in
order to keep its easy-to-use feature, and at the same time to solve efficiently all
types of problems.

However, several fundamental notions may be integrated in solvers to help
designers with their task, as for instance the variable types in design, piecewise
constraints, etc. The constraints solvers should also be linked with other tools
commonly used in design (CAD tools), and perhaps use an object or compo-
nent oriented approach to express constraints and to facilitate the writing of
knowledge and to reuse it in other tools.

On the other hand, the CP approach allows designers to avoid backtracks in
the design process, since criteria are used in the solving process to compute only
satisfactory architectures. Thus, designers can choose among several architec-
tures and have a better overview of product possibilities.

References

[Benhamou et al. 1999]Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Re-
vising Hull and Box Consistency. In: International Conference on Logic Program-
ming, pp. 230–244. MIT Press, Cambridge (1999)

[Bliek et al. 1998]Bliek, C., Neveu, B., Trombettoni, G.: Using Graph Decomposition
for Solving Continuous CSPs. In: Maher, M.J., Puget, J.-F. (eds.) Principles and
Practice of Constraint Programming - CP98. LNCS, vol. 1520. Springer, Heidelberg
(1998)

32 R. Chenouard, P. Sébastian, and L. Granvilliers

[Fischer et al. 2004]Fischer, X., Sebastian, P., Nadeau, J.-P., Zimmer, L.: Constraint
based Approach Combined with Metamodeling Techniques to Support Embodiment
Design. In: SCI’04, Orlando, USA.

[Gelle & Faltings 2003]Gelle, E., Faltings, B.: Solving Mixed and Conditional Con-
straint Satisfaction Problems. Constraints 8, 107–141 (2003)

[Kays & London 1984]Kays, W.M., London, A.L.: Compact Heat Exchangers. Mc
Graw-Hill, New York (1984)

[Lhomme 1993]Lhomme, O.: Consistency Techniques for Numeric CSPs. In: IJCAI’93,
Chambéry, France (1993)

[Moore 1966]Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
[Neveu et al. 2006]Neveu, B., Chabert, G., Trombettoni, G.: When Interval Analysis

Helps Interblock Backtracking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204.
Springer, Heidelberg (2006)

[O’Sullivan 2001]O’Sullivan, B.: Constraint-Aided Conceptual Design. Professional En-
gineering Publishing (2001)

[Pahl & Beitz 1996]Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach.
Springer, Heidelberg (1996)

[Reddy et al. 1996]Reddy, S.Y., Fertig, K.W., Smith, D.E.: Constraint Management
Methodology for Conceptual Design Tradeoff Studies. In: Design Theory and
Methodology Conference, Irvine, CA (1996)

[Refalo 1999]Refalo, P.: Tight Cooperation and Its Application in Piecewise Linear
Optimization. In: Jaffar, J. (ed.) Principles and Practice of Constraint Programming
– CP’99. LNCS, vol. 1713, pp. 375–389. Springer, Heidelberg (1999)

[Scaravetti 2004]Scaravetti, D., Nadeau, J.P., Sébastian, P., Pailhès, J.: Aided Decision-
Making for an Embodiment Design Problem. In: International IDMME, Bath, UK
(2004)

[Sébastian et al. 2007]Sébastian, P., Chenouard, R., Nadeau, J.P., Fischer, X.: The
Embodiment Design Constraint Satisfaction Problem of the BOOTSTRAP facing
interval analysis and Genetic Algorithm based decision support tools. International
Journal on Interactive Design and Manufacturing (2007) ISSN: 1955-2513.

[Szykman et al. 1999]Szykman, S., Racz, J.W., Sriram, R.D.: The Representation of
Function in Computer-based Design. In: Proceedings of the 1999 ASME Design
Engineering Technical Conferences (11th International Conference on Design Theory
and Methodology) (1999) DETC99/DTM-8742.

[Van-Hentenryck et al. 1997]Van-Hentenryck, P., Mc Allester, D., Kapur, D.: Solving
Polynomial Systems Using Branch and Prune Approach. SIAM Journal on Numer-
ical Analysis 34(2), 797–827 (1997)

[Vu 2005]Vu, X.-H.: Rigorous Solution Techniques for Numerical Constraint Satis-
faction Problems. PhD thesis, Swiss Federal Institute of Technology in Lausanne
(EPFL) (2005)

[Yannou et al. 2003]Yannou, B., Simpson, T.W., Barton, R.R.: Towards a Conceptual
Design Explorer using Metamodeling Approaches and Constraint Programming. In:
ASME DETC’03, Chicago, USA (2003)

[Zimmer & Zablit 2001]Zimmer, L., Zablit, P.: Global Aircraft Predesign based on Con-
straint Propagation and Interval Analysis. In: CEAS-MADO’01, Koln, Germany
(2001)

Solving the Salinity Control Problem in
a Potable Water System�

Chiu Wo Choi and Jimmy H.M. Lee

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{cwchoi,jlee}@cse.cuhk.edu.hk

Abstract. Salinity is the relative concentration of salts in water. In a city of south-
ern China, the local water supply company pumps water from a nearby river for
potable use. During the winter dry season, the intrusion of sea water raises the
salinity of the river to a high level and affects approximately the daily life of
450,000 residents of the city. This paper reports the application of constraint pro-
gramming (CP) to optimize the logistical operations of the raw water system so
as to satisfy the daily water consumption requirement of the city and to keep the
potable salinity below a desirable level for as many days as possible. CP is the key
to the success of the project for its separation of concerns and powerful constraint
language that allows for rapid construction of a functional prototype and produc-
tion system. Flexibility and adaptiveness allow us to deal with our clients’ many
changes in the requirements. Deriving good variable and value ordering heuristics,
and generating useful implied constraints, we demonstrate that branch-and-bound
search with constraint propagation can cope with an optimization problem of large
size and great difficulty.

1 Introduction

Salinity is the relative concentration of salts in water measured in parts per million (ppm).
All types of water, except distilled water, contain different concentration of salts. The
salinity of very clean water is about 50 ppm, while sea-water is about 35,000 ppm.

In a city of southern China, the local water supply company pumps water into a raw
water system from a nearby river for supplying water to the city. The pumped water is
to be stored and mixed with water in a number of reservoirs in the raw water system.
The water is also treated before supplying to the general public for daily consumption.

The geographic location of the pumping station is close to the river estuary. During
the winter dry season, the water level of the river is low due to lack of rainfall. Tidal
flows and other weather conditions lead to the intrusion of sea-water into the river. As
a result, the salinity of the water pumped from the river could drastically rise to such
levels as 2,500 ppm while the desirable salinity level of potable water is below 250 ppm.
During the salinity period, the daily life of some 450,000 residents is affected.

� We thank the anonymous referees for their insightful comments. The work described in this
paper was substantially supported by a grant (Project no. CUHK4219/04E) from the Research
Grants Council of the Hong Kong SAR.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 33–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 C.W. Choi and J.H.M. Lee

There are a number of ways to better prepare for the crisis. On the engineering side,
the water company can improve the monitoring of the salinity levels and the pumping
system. Reservoirs can be topped up with fresh water before the dry season begins.
Better leak detection at the water pipes and the reservoirs can reduce water loss.

Before attempting on larger scale engineering work, such as seawater desalination,
the water company decided to tackle the salinity issue as an optimization problem. The
idea is to carefully plan when and how much water to pump from the river using supplied
prediction information of the salinity profile at the water source, and how much water
should be transferred among the reservoirs in the raw water system. The aim is to satisfy
the daily water consumption while optimizing the number of days in which the salinity
of the potable water is below a given desirable level.

In the beginning of this project, the water supply company required us to handle at
most 90 days for the duration of the salinity period. Later, upon receiving satisfactory
preliminary results, the water supply company requested us to extend the duration to at
most 180 days, the problem model of which consists of about 4,500 variables and 9,000
constraints. The search space of such model is about (3, 612, 000)180. In addition to the
shear size, the problem consists of physical conditions expressible as a mixture of linear
and non-linear constraints, as well as ad hoc conditions which can only be modeled as
a table constraint. In view of the stringent requirements and tight production schedule,
we adopt constraint programming (CP) as the key technology of the project, following
the success of the CLOCWiSe project [1].

The rest of this paper is organized as follows. Section 2 discusses the current practice
and why constraint programming (CP) is used in this project. Section 3 details the
application domain. Operations of the raw water system, as well as the objective of the
problem, are described in length. Section 4 describes how CP is applied to model the
problem. Section 5 describes the improvements to increase search efficiency, followed
by a discussion of some testing results in Section 6. In Section 7, we discuss the added
values of CP and other possible approaches that have been tried to solve the problem.
We conclude the paper in Section 8.

2 Current Practice Versus Constraint Programming

The water supply company has developed a spreadsheet to optimize the operations of
water pumping and transfer during the salinity period. The spreadsheet approach is prim-
itive and uses manual trial-and-error method to perform optimization. The spreadsheet
consists of macros that encode equations on the law of conservation of matters. Users
of the spreadsheet have to input the given data and guess some values for the number
of pumping hours and amount of water to be transferred between reservoirs. The macro
will then compute automatically the potable salinity using the given inputs. Users have
to check whether the resulting potable salinity is satisfactory; if not, the guessed values
must be manually tuned repeatedly until a satisfactory result is obtained.

The major weakness of such manual method is that it is tedious and time consuming.
The problem on hand is usually too large and too complex for humans to perform such
manual optimization process. Users of the spreadsheet often obtain solutions that violate
some constraints of the problem, since some constraints stated above cannot be enforced

Solving the Salinity Control Problem in a Potable Water System 35

automatically using a spreadsheet. Field workers in the pumping stations and reservoirs
often lack the knowledge of operating a spreadsheet.

The water supply company would like to have an automated system with a more
realistic model and a simple interface so as to generate solutions which satisfy all the
constraints of the problem. Moreover, the system should be flexible enough to cater for
changes in the topology of the water system and additional constraints.

We propose the application of CP to develop an automated optimization engine for
solving the salinity problem. A key advantage of CP is the separation of modeling and
solving. By modeling, we mean the process of determining the variables, the associated
domains of the variable, the constraints and the objective function. The availability of
a rich constraint language allows for a constraint model relatively close to the original
problem statement, making the model easy to verify and adaptable to changes. Indeed,
during the development of the system, our client changed the constraints and require-
ments a good many times. CP allowed us to change the model quickly and meet the tight
development schedule.

Although efficient commercial constraint solvers are available, out-of-the-box exe-
cution strategies usually fail to handle even small testing instances of the problem. We
make two improvements to speed up solution search and quality of solutions. First, by
studying the problem structure and insights of human experts in depth, we devise good
search heuristics for both variables and values that allow us to find solutions faster. We
also program an opportunistic iterative improvement strategy. Second, we give a general
theorem that allows us to derive useful implied constraints from a set of linear equalities.
Adding these implied constraints into the model can increase the amount of constraint
propagation, which in turns reduces the search space substantially.

Our application exemplifies the advantage of separation of concerns offered by CP.
After the problem model was constructed, we never had to touch the model again except
when users requested changes in the requirements. The focus of the development is thus
on improving search and looking for better heuristics.

3 Application Domain Description

The entire water supply system consists of the raw water system, water treatment plant
and potable water distribution network. In the raw water system, water is pumped from
the river and carried to the treatment plant. Surplus water are stored in reservoirs for
emergency and salinity control during dry season. In order to ensure that the water
supplied to the city is safe for drinking, raw water is treated in the treatment plant
before being carried by the distribution network to general households and commercial
establishments. It is important to note that the water treatment plant is incapable of
removing salt from the raw water since salt is highly soluble and tends to stay dissolved.
In this project, we focus on optimizing the logistical operations of the raw water system
to control the salinity of potable water.

3.1 The Raw Water System

Figure 1 shows the topology of the water supply system. The raw water system consists
of 3 pumping stations (X , Y and Z) denoted by black dots, 4 reservoirs (A, B, C and

36 C.W. Choi and J.H.M. Lee

A B

C
Y ZX

E

D

To Distribution
Network

Fig. 1. The Raw Water System Model

D) denoted by cylinders and a water treatment plant (E) denoted by a rectangle. Arrows
denote connecting pipes and the direction of water flow. Raw water (from the river) is
pumped at pumping station X and carried all the way to reservoir C for storage. Surplus
water is delivered, via pumping stations Y and Z , to and stored in reservoirs A and B
respectively for future use. Water in reservoirs A and B can be transferred and mixed
with water in reservoir C for regulation of salinity of water during the dry seasons. Water
is carried from reservoir C to reservoir D for storage and to the water treatment plant E
which is connected directly to the distribution network. In the water treatment plant E,
water from reservoir C can be mixed with water from reservoir D. Water is treated in the
water treatment plant E before being supplied to the general public for consumption.

There are several (reasonable) assumptions made by the water supply company for
the raw water system to simplify the computational model. The unit of measurement
for volume is cubic meter (m3) and the unit of measurement for operation of pumps
is in hours. Salinity concentration in each reservoir is homogeneous and instantaneous
mixing occurs when water is poured in each reservoir. There is little rainfall during the dry
seasons and the river is the only source of raw water. The computational model operates
on a day-by-day basis, so that the predicted salinity data represent daily averages. Since
salinity of the raw water varies during a single day, operators at the pumping station
would use their experience to decide the best time during the day to pump water with
lower salinity.

3.2 Physical and Human Constraints

There are three types of constraints concerning the raw water system. The first type of
constraints is about the law of conservation of matters (i.e. water and salts). The general
form for the law of conservation of water of a reservoir is

volume today = volume yesterday − volume flow-out + volume flow-in. (1)

Analogously, the general form for the law of conservation of salts of a reservoir is

(salinity today × volume today) = (salinity yesterday × volume yesterday) −
(salinity flow-out × volume flow-out) + (salinity flow-in × volume flow-in) (2)

The second type of constraints is about physical limitation on the capacity of pumps,
reservoirs and pipes. Each pumping station has a maximum number of usable pumps and
each pump has a given capacity measured in cubic meters per hour. Each reservoir has a

Solving the Salinity Control Problem in a Potable Water System 37

Table 1. Constraint on Water Flowing Out of Reservoir C

Maximum Flow-out
Volume of Reservoir C (m3) Capacity of Reservoir C (m3/day)

2,345,650 – 2,454,590 211,395
...

...
1,200,000 – 1,256,250 160,445

minimum and maximum capacity. It is impossible to pump water out of a reservoir when
it is at the minimum capacity, and overflowing a reservoir at its maximum capacity for
dilution is forbidden. Each reservoir also has a volume threshold which reserves certain
amount of water above the minimum capacity for emergency use. The volume threshold
for each reservoir is different from one day to another, and the volume threshold overrides
the minimum capacity. The pipes, which connect reservoirs A and B to reservoir C and
the pipe which connects reservoir D to the treatment plant E, have a maximum capacity
measured in cubic meters per day.

Flowing from reservoir C located at a high topographical level, water is carried by
gravity to reservoir D and the water treatment plant E. Therefore, the maximum amount
of water that can flow out of reservoir C depends on the water pressure which de-
creases as the water level of reservoir C goes down. Due to the complex nature of the
physics behind the water transfer mechanism, the constraint is given in the form of a ta-
ble constructed empirically using measurement and experimentation. The water supply
company provides a table (see Table 1) to specify such constraint.

The third type of constraints is about the requirements of the general public on water
consumption. It is mandatory to have enough water supply to the general public ev-
eryday. There is a maximum level of potable salinity to ensure that water is safe for
drinking. Between any two consecutive days, the salinity level of potable water should
not increase too drastically; otherwise, the general public will feel a sudden increase
in saltiness of drinking water and that will raise public discontent. There are no cor-
responding constraints to restrict sudden decreases, since drop in salinity is generally
welcome by the public.

3.3 Problem Statement

To control the salinity of potable water, the water supply company needs to control
carefully when and how much water is pumped from the river and how much water
is transferred among the reservoirs. The aim is to satisfy all the constraints stated in
Section 3.2 and to keep the salinity of potable water below a desirable level for as many
days as possible during the salinity period. The given data include the initial volume and
salinity level of reservoirs and the prediction1 of salinity level of the river during the
salinity period.

1 The prediction of salinity level of the river is supplied to us by the water supply company. The
prediction model is beyond the scope of this project.

38 C.W. Choi and J.H.M. Lee

4 Problem Modeling

Let n denote the duration of the given salinity period, (i.e. n ≤ 180 days). Since values
in our model are defined on a day-by-day basis, we have a set of variables for each day
i ∈ {1, . . . , n}, and each set contains seven variables. The first three variables are PX

i ,
PY

i and PZ
i which denote the number of pumping hours to operate at pumping stations

X , Y and Z respectively. The other four variables are OA
i , OB

i , OC
i and OD

i which
denote the amount of water flowing out of reservoirs A, B, C and D respectively.

4.1 Domains Discretization

The associated domains of the above variables are all continuous in nature, i.e. time
for pumping hours and volume for water transfers. After consulting the water supply
company, we learn that it does not make sense to operate the pumps for a very short time
(e.g. 3 minutes) or to transfer a very small amount of water (e.g. 10 m3). Therefore, we
discretize the domains to reflect this reality and to reduce the search space. Assuming
the pumps are operated in unit of φ pumping hours (e.g. φ = 6 hours), the domains D
of the 3 pump variables are

D(PX
i) = {0, . . . , �NX · 24/φ�} D(PY

i) = {0, . . . , �NY · 24/φ�}
D(PZ

i) = {0, . . . , �NZ · 24/φ�}

where NX , NY and NZ denote the maximum number of usable pumps in pumping
stations X , Y and Z respectively. Assuming water is transferred in unit of τ m3 (e.g. τ =
5, 000m3), the domains D of the 4 flow-out variables are

D(OA
i) = {0, . . . , �FA/τ�} D(OB

i) = {0, . . . , �FB/τ�}
D(OC

i) = {0, . . . , �FC/τ�} D(OD
i) = {0, . . . , �FD/τ�}

where FA, FB , FC , and FD denote the maximum amount of water that can flow out
of reservoirs A, B, C, and D respectively. We also have a number of other variables but
they are auxiliary in the sense that the values of the auxiliary variables are fixed once
the values of the decision variables are known.

4.2 Constraints and Objective Function

To express the constraints on the law of conservation of water for the reservoirs, we
derive the following constraints from Equation 1,

V A
i = V A

i−1 − (OA
i · τ) + IA

i (3)

V B
i = V B

i−1 − (OB
i · τ) + IB

i (4)

V C
i = V C

i−1 − (OC
i · τ) + (OA

i · τ) + (OB
i · τ) + IX

i − IA
i − IB

i (5)

V D
i = V D

i−1 − (OD
i · τ) + ID

i (6)

where V A
i , V B

i , V C
i and V D

i are auxiliary variables denoting the volume of the four
reservoirs on day i ∈ {1, . . . , n}; IA

i , IB
i , IX

i and ID
i are auxiliary variables denoting

Solving the Salinity Control Problem in a Potable Water System 39

the amount of water to flow into the four reservoirs on day i ∈ {1, . . . , n}. We express
the amount of water pumps from the pumping stations using the constraints

IA
i = PY

i · φ · KY IB
i = PZ

i · φ · KZ IX
i = PX

i · φ · KX

where KY , KZ and KX denote the capacity of the pumps in pumping stations Y , Z and
X respectively. We use the following constraints to express that there is only a single
source of water flowing into reservoir D,

ID
i = (OC

i · τ) − Ui V E
i = Ui + (OD

i · τ)

where V E
i denotes the amount of water consumption on day i ∈ {1, . . . , n}, and Ui

denotes the surplus water flowing out of reservoir C after some water is supplied for
consumption .

To express the constraints on the law of conservation of salts for reservoirs A, B, C,
D, we derive the following constraints from Equation 2,

(SA
i · V A

i) = (SA
i−1 · V A

i−1) − (SA
i−1 · OA

i · τ) + (SX
i · IA

i)
(SB

i · V B
i) = (SB

i−1 · V B
i−1) − (SB

i−1 · OB
i · τ) + (SX

i · IB
i)

(SC
i · V C

i) = (SC
i−1 · V C

i−1) − (SC
i−1 · OC

i · τ) + (SA
i−1 · OA

i · τ)+
(SB

i−1 · OB
i · τ) + (SX

i · IX
i) − (SX

i · IA
i) − (SX

i · IB
i)

(SD
i · V D

i) = (SD
i−1 · V D

i−1) − (SD
i−1 · OD

i · τ) + (SC
i−1 · ID

i)

where SA
i , SB

i , SC
i , SD

i are auxiliary variables denoting the salinity level of the four
reservoirs on day i ∈ {1, . . . , n}, and SX

i is the (given) predicted value of salinity level
of the river. We also need a constraint to specify the law of conservation of salts for
potable water

(SE
i · V E

i) = (SC
i−1 · Ui) + (SD

i−1 · OD
i · τ)

where V E
i and SE

i denote the amount of water consumption and the potable salinity on
day i ∈ {1, . . . , n}. Note that the variables denoting salinity level are continuous, and
the constraints associated to these variables involve both finite domain and continuous
variables.

We can express the physical limitation on the volume of the reservoirs using the
following constraints,

V A
min + HA

i ≤ V A
i ≤ V A

max V B
min + HB

i ≤ V B
i ≤ V B

max
V C

min + HC
i ≤ V C

i ≤ V C
max V D

min + HD
i ≤ V D

i ≤ V D
max

where V A
min, V B

min, V C
min and V D

min denote the minimum capacity of the four reservoirs,
V A

max, V B
max, V C

max and V D
max denote the maximum capacity of the four reservoirs, and

HA
i , HB

i , HC
i and HD

i denote the volume threshold of the four reservoirs on day
i ∈ {1, . . . , n}.

The following set of constraints expresses the requirements given in Table 1,

OC
i ≤

⎧⎪⎨
⎪⎩

211, 395 if 2, 345, 650 < V C
i ≤ 2, 454, 590

...
...

160, 445 if 1, 200, 000 < V C
i ≤ 1, 256, 250

40 C.W. Choi and J.H.M. Lee

We have intentionally used < and ≤ to specify the bounds on each level to avoid potential
conflict with domain discretization.

Last but not least, we have the following constraints to express the requirements of
the general public on potable salinity,

SE
i ≤ SE

max SE
i ≤ SE

i−1 + δ

where SE
max denotes the maximum level of potable salinity and δ denotes the maximum

allowable daily increase in potable salinity. Clearly, the objective of the problem is to
maximize the sum

n∑
i=1

(SE
i ≤ SE

desire)

which represents the total number of days that potable salinity is below the desirable
level SE

desire.

5 Improving Search

We implement the above model using ILOG Solver 6.0 [5]. Out-of-the-box execution
strategies used in our initial implementation fails to handle even small testing instances
of the problem. There are two important issues in applying CP to solve problems. The
first issue is to use an appropriate search strategy so that (good) solutions appear earlier
in the search. There is no definite rule for discovering what is a good search strategy.
By studying the problem structure and insights of human experts in depth, we are able
to come up with a good search strategy. The second issue is that the model should also
have strong propagation: that is, it should be able to quickly reduce the domains of the
variables of the problem. We give a theorem for deriving useful implied constraints from
a set of linear equalities to increase the amount of constraint propagation.

5.1 Variable and Value Ordering Heuristics

Since values in our model are defined on a day-by-day basis, it does make sense to label
the variables chronologically by the days. We propose to pick first the seven decision
variables for day 1, then day 2, and so on until day n. Such variable ordering has the
advantages of turning many of the non-linear constraints into linear constraints, since
constraint propagation on linear constraints is usually stronger than that on non-linear
constraints.

Within day i ∈ {1, . . . , n}, we propose to pick the variables based on the following
order: (PX

i , PY
i , PZ

i , OC
i , OD

i , OA
i , OB

i). This ordering is the best we have so far after
extensive experiments. The rationale is that the river is the only source of water, the
pumps dictate the amount of salts to take into the reservoirs and are very important in
controlling the salinity of potable water. In the raw water system, reservoirs A and B
serve only as storage for surplus water which can be used to dilute the water pumps from
the river, and hence are less important than reservoirs C and D.

Different variables represent different control parameters of the raw water system.
Rather than using a single value ordering heuristic for all variables, we have different

Solving the Salinity Control Problem in a Potable Water System 41

heuristics for different variables depending on their strategic roles in the raw water
system.

– For variable PX
i , the value ordering heuristic depends on the salinity of river SX

i

on day i ∈ {1, . . . , n}. In order to control the salinity, it is common sense to pick
lower value for PX

i (i.e. pump less water) if SX
i is high (i.e. salty river water);

and pick higher value for PX
i otherwise. We make use of a user-supplied salinity

level avoidPump to indicate when the salinity should be considered high. If SX
i

is less than avoidPump, then larger values in the domain of SX
i can be tried first;

and vice versa, otherwise. In comparing SX
i and avoidPump, the magnitude of their

difference is taken into account too.
– For variables PY

i and PZ
i , the value ordering heuristic picks the middle value first.

Pumping stations Y and Z pump the water coming from pumping station X , and we
prefer to pump more water from the river when it is less salty. We lean on pumping
more water into Reservoirs A and B for dilution, but at the same time do not want to
overdo it (since it is dangerous when the salinity of the water from pumping station
X is high).

– For variable OC
i , rather than choosing the values one-by-one from the domains, we

use bisection to perform domain splitting. Bisection divides the values in a variable
domain into two equal halves, and this process is repeated recursively forming
a binary tree with leave nodes containing only a single value. The water supply
company prefers to use more water in reservoir C for consumption. Therefore, our
heuristic prefers to visit the branch with larger domain values first each time the
domains are bisected.

– For variable OD
i , the water supply company wants to avoid using too much water

from reservoir D. If SC
i−1 ≤ SE

desire, we use bisection and visit first the branch with
smaller domain values. Otherwise, our heuristic picks the value which gives the
minimum amount of water required to satisfy SE

i ≤ SE
desire.

– For variable OA
i and OB

i , we use bisection and visit first the branch with smaller
values. The rationale is to keep more fresh water in reservoirs A and B for dilution.

For most of the test cases given by the water supply company, the above search strategy
performs well. We called this strategy the NORMAL strategy. However, there are some
stringent (unrealistic) test cases where the amount of daily water consumption is usually
higher than the maximum amount of water that can flow out of reservoir C. If we are too
frugal in supplying water from reservoirs A and B to C, reservoirs C and D alone would
not be able to handle the high daily water consumption. To deal with such situation, we
propose another set of value ordering heuristic, called the HIGH strategy, especially for
test cases with such stringent daily water consumption pattern. The only modification is
to visit first the branch with larger domain values when bisecting domains of variables
OA

i and OB
i . The rationale is to keep reservoir C as full as possible.

5.2 Greedy Search Strategy

The basic solution search technology is branch-and-bound with constraint propagation.
The avoidPump user input parameter turns out to have great impact on the quality of the
solutions generated. Since our value ordering heuristics are designed to generate good

42 C.W. Choi and J.H.M. Lee

quality solutions earlier in the search, prolonging the search effort could be fruitless. We
adopt an opportunistic iterative improvement approach.

Our search strategy encompasses trying different avoidPump values in succession
with a timeout (300 seconds) period for each value. After consultation with human
operators and extensive experimentations, we adopt to try the following avoidPump
values in sequence: 600, 700, . . . , 1500. A smaller (larger) avoidPump value implies a
more conservative (aggressive) approach to pumping water. In other words, we progress
from a more conservative to a more aggressive approach.

For every avoidPump value, we start execution with the best solution from the last
execution as guidance. After a timeout period expires, the system examines if a better
solution is found. If yes, execution continues for another timeout period; otherwise, the
next avoidPump value is tried. The rationale is that if a better solution is found within
the timeout period for a particular avoidPump value, the value is good and should be
given more chance to search for even better solution. On the other hand, a avoidPump
value failing to find any good solutions within the timeout period is probably no good
and there is probably no point to search further.

5.3 Adding Implied Constraints

Most of the constraints in our model are linear equalities denoting the law of conser-
vation of water and salts. Given a set of linear equalities sharing common terms, we
can introduce a new variable to denote the common terms and reformulate the linear
equalities in terms of the new variables. The resulting set of linear equalities can be
added as implied constraints to increase the amount of constraint propagation. Modern
constraint solvers use bounds propagation [6] for linear arithmetic constraints. We state
without proof the following theorem based on the work of Harvey and Stuckey [4] and
Choi et al. [2,3].

Theorem 1. Let c1 ≡
∑

i(ai)(xi) +
∑

j(bj)(yj) = d1 and c2 ≡
∑

j(bj)(yj) +∑
k(ck)(zk) = d2, we can reformulate c1 and c2 as c3 ≡

∑
j(bj)(yj) − v = 0,

c4 ≡
∑

i(ai)(xi) + v = d1, and c5 ≡ v +
∑

k(ck)(zk) = d2. Bounds propagation on
{c1, c2, c3, c4, c5} is stronger than bounds propagation on {c1, c2}.

For instance, observe that there is a common term −(OA
i · τ)+ IA

i between Equations 3
and 5, similarly a common term −(OB

i · τ) + IB
i between Equations 4 and 5. We can

reformulate Equations 3, 4 and 5 as follow

WA
i = −(OA

i · τ) + IA
i WB

i = −(OB
i · τ) + IB

i

V A
i = V A

i−1 + WA
i V B

i = V B
i−1 + WB

i

V C
i = V C

i−1 − (OC
i · τ) + IX

i − WA
i − WB

i

where WA
i and WB

i are auxiliary variables representing the common term. We can
add the above equalities as implied constraints to our model. Suppose τ = 5000 and
the domain D is such that: D(V A

0) = {1300000}, D(V B
0) = {1237350}, D(V C

0) =
{2450000}, D(V A

1) = {320000, . . . , 1500000}, D(V B
1) = {100000, . . . , 1260000},

D(V C
1) = {1200000, . . . , 2450000}, D(OA

1) = {0, . . . , 15}, D(OB
1) = {0, . . . , 15},

D(OC
1) = {27, . . . , 42}, D(IA

1) = {0, . . . , 36000}, D(IB
1) = {0, . . . , 36000}, and

Solving the Salinity Control Problem in a Potable Water System 43

D(IX
1) = {0, . . . , 432000}. Constraint propagation with the original set of constraints

returns the domains D′ such that D′(IX
1) = {0, . . . , 282000}, while constraint propa-

gation with the new and enlarged set of constraints returns the domains D′′ such that
D′′(IX

1) = {0, . . . , 268650}. The latter is stronger in propagation.

6 Experiments

We have tested the system using both real-life and handcrafted data provided by the
water supply company. We have chosen three representative sets of data to illustrate the
performance of our system. Each set of data has a different characteristic, aiming to test
the versatility and robustness of our engine. The three sets of data differ in terms of:

– the duration of the salinity period (n),
– the predicted salinity level of river (SX

i),
– the daily water consumption of the city (V E

i),
– the volume thresholds for the reservoirs (HA

i , HB
i ,HC

i and HD
i), and

– the initial volumes and salinity values of the reservoirs (V A
0 , SA

0 , V B
0 , SB

0 , V C
0 , SC

0 ,
V D

0 , SD
0).

Figure 2 gives the salinity curves of the prediction data.
The following experiments are executed using a Linux Workstation (Intel Pentium-

III 1GHz with 1GB memory) running Fedora Core release 3. We choose ILOG Solver
6.0 [5] as our implementation platform. The time limit for the system to run is set to one
hour. Execution is aborted when the time limit is reached, and the best solution located
so far is reported.

For this project, there is no way to do comparison with the existing manual method
based on spreadsheet. We cannot make any meaningful comparison in terms of the
quality of solution since the manual method often fails to obtain a solution satisfying
all constraints. We also cannot make any fair comparison in terms of time since one is
a manual method and the other is an automated method. Therefore, we present only the
results obtained from our system.

Table 2 shows the result of Set 1. The first two columns with heading “salinity”
indicate the different combination of desirable and maximum salinity level. The next

0

500

1000

1500

2000

2500

3000

20 40 60 80 100 120 140 160 180

m3

day

Set 1
Set 2
Set 3

Fig. 2. Salinity Prediction Curves for Data Sets 1 to 3

44 C.W. Choi and J.H.M. Lee

Table 2. Result of Set 1, Duration = 180 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 157 21 3 126 619 134,520,603 104 44 2,367
250 350 180 21 3 168 621 134,520,602 162 330 30,005
250 400 180 23 3 168 623 1,807 162 333 30,013
250 500 180 29 3 168 627 134,520,602 162 337 30,013
250 600 180 34 3 168 631 1,807 162 342 30,013
250 1,000 180 58 3 168 649 134,520,602 162 364 30,013
300 600 180 35 3 180 32 4 180 215 20,678
300 1,000 180 62 3 180 50 4 180 238 20,678

Table 3. Result of Set 2, Duration = 180 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – – – – – – –
250 500 107 1,222 269,201,686 107 1,222 134,725,593 – – –
250 600 117 926 269,080,063 117 925 134,604,570 – – –
250 1,000 117 943 269,063,234 117 943 134,582,923 73 53 520
300 600 137 952 269,096,832 129 1,225 269,196,833 – – –
300 1,000 146 647 269,041,205 146 646 78,408 114 52 605

three columns with heading “normal” indicate the results using the NORMAL strategy.
We measure the number of days for which the potable salinity is below the desirable
level (column “days”), the runtime in seconds (column “secs”) and the total number of
fails (column “fails”). The next three columns with heading “high” indicate the results
using the HIGH strategy. The last three columns with heading “old” indicate the results of
an earlier implementation without the custom heuristics and implied constraints listed in
Section 5. Our system performs very well for Set 1 and is able to fulfill all 180 days with
the potable salinity below 250 ppm in just 21 seconds. For this scenario, the NORMAL

strategy clearly works better than the HIGH strategy. This scenario represents a typical
dry season of the city that lasts only 90 days out of the 180 day period. The search is
clearly improved comparing to the “old” implementation for the NORMAL strategy is
able to find better solution much faster and lesser number of fails.

Table 3 shows the result of Set 2, which is a more difficult scenario than Set 1. Set 2
has a prolonged drought period lasting the entire 180 days, which is one of the worst in
the last 150 years for the city. For this set of data, our system can maintain the potable
salinity always below 500 ppm, but it can only fulfill 107 days out of 180 days with
the potable salinity below 250 ppm. It takes around 20 minutes for our system to find
this solution. If we can relax the desirable salinity level to 300 ppm and the maximum
salinity level to 1000 ppm, our system can return a better solution fulfilling 146 days

Solving the Salinity Control Problem in a Potable Water System 45

Table 4. Result of Set 3, Duration = 90 days

salinity normal high old
desire max days secs fails days secs fails days secs fails

200 300 – – – – – – – – –
250 350 – – – – – – – – –
250 400 – – – 21 2,403 404,174,730 – – –
250 500 – – – 28 1,803 269,394,622 12 4 9
250 600 – – – 28 1,803 269,480,570 12 4 9
250 1,000 – – – 28 1,805 639,731 12 6 9
300 600 – – – 45 1,803 269,441,669 24 4 5
300 1,000 – – – 45 1,805 135,072,897 24 6 5

out of 180 days with the potable salinity below 300 ppm. The system is now able to find
the solution in 10 minutes. This example illustrates the flexibility of our system. If we
allow the desirable salinity level to raise slightly higher, our system would be able to
distribute the salinity level of potable water more evenly among the days to improve the
quality of solution.

Table 4 shows the result of Set 3, which is an artificially handcrafted scenario. The
salinity level of the river for Set 3 is similar to the first 90 days of Set 1. The difficulty
of Set 3 lies in the unrealistically high daily water consumption2 comparing to Set 1
and Set 2 as shown in Figure 3. Set 1 (the bold dotted line) has constant daily water

140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000

20 40 60 80 100 120 140 160 180

m3

day

Set 1
Set 2
Set 3

Fig. 3. Daily Water Consumption (V E
i)

consumption. Set 2 (the thin line) has a fluctuating daily water consumption. Set 3 (the
bold line) has a more fluctuating daily water consumption that is usually higher than
the maximum amount of water that can flow out of reservoir C (i.e. 211,395 m3/day).
Set 3 suffers from the problem discussed at the end of Section 5.1, which makes the
NORMAL strategy fail. The HIGH strategy is able to find a solution fulfilling 28 days out
of 90 days with the potable salinity below 250 ppm and maintaining the potable salinity
always below 500 ppm. It takes about 30 minutes to find this solution.

2 The capacities of the reservoirs are: A = 1, 500, 000 m3, B = 1, 260, 000 m3, C =
2, 450, 000 m3, and D = 2, 060, 000 m3 for comparison with the daily consumption.

46 C.W. Choi and J.H.M. Lee

7 Discussions

In this project, we collaborate with the International Institute for Software Technology,
United Nations University (UNU/IIST). We are responsible for the design and implemen-
tation of the core optimization engine, while UNU/IIST is responsible for constructing a
web user interface to invoke our optimization engine. We discuss in the following issues
regarding system development and deployment.

7.1 Added Values of CP

Our client gave us the problem in late September, 2004, only a couple of months before
the beginning of the winter dry season. During that time, the city was suffering from
one of the most serious drought in the last 150 years. Due to the urgency of the problem,
we were given only 2 weeks to come up with a functional prototype, and to release a
fully functional production system in early December, 2004, just before the winter dry
season began. This version replicates and automates the functionalities and model of the
client’s spreadsheet model described in Section 2. We came up with a version to model
the table constraint (water flow limit from Reservoir C to D) plus a large number of
change requests in another month’s time. The project involves the authors coming up
with the model and techniques for improving search, and two undergraduate students
for the implementation effort. The use of CP allowed us to meet the deadline and come
up with the first fully functional production system in just 2 months of development. We
spent another 5 months to study and experiment with various search improvements.

We have delivered the system to the water supply company. Installation and user
trainings were provided, together with a 12-month maintenance and support period.
The system has passed user acceptance test and has been into full production mode
since June, 2005. We received positive feedbacks from the users of the water supply
company. The only support request was just for a re-installation because of the ILOG
product upgrade. However, due to the continuing worsening of the drought condition in
the past years, even optimizing the logistical operations of the raw water system alone
is insufficient to control the salinity problem. The water supply company is seriously
considering physical measures such as reverse osmosis, moving the pumping station to
upper stream of the river, and even purchasing fresh water from nearby provinces to
effectively handle the salinity crisis.

The optimization engine is abstracted from the web interface, the end-users do not
need to understand CP at all. Indeed, our client does not care about the optimization
methodology we use, and wanted only a practical solution for the salinity problem that
could be developed in 2 months, although our method has no guarantee for optimality.

7.2 Reasons for Choosing Finite Domain

Although the domain of the salinity problem is continuous (real numbers), a more natural
choice seems to be modeling the problem using interval constraints instead of finite
domain constraints. However, we still decided to use finite domain constraints for the
following practical considerations. First, as discussed in Section 4.1, it does not make
sense to operate the pumps for a very short time (e.g. 3 minutes) or to transfer a very small

Solving the Salinity Control Problem in a Potable Water System 47

amount of water (e.g. 10 m3). Therefore, we decided to discretize the domains. Second,
finite domain constraints have had many successful industrial applications including
scheduling, time-tabling, resource allocation, etc. Third, the development schedule was
extremely tight and opportunity cost was high. At the time we were given the problem,
we simply could not afford a lot of experimentation but had to adopt a proven technology.

7.3 Other Optimization Methodologies

Besides CP, we have investigated with UNU/IIST in applying Evolver [7], which is
a genetic algorithm based optimization engine for Microsoft R© Excel, to the project.
Experimental results show that this approach is less efficient both in terms of execution
time and quality of solution. Moreover, Evolver is only semi-automatic, requiring expert
human guidance during the search for solutions. This approach is also unstable and
unpredictable with regard to convergence. Nevertheless, such an approach is good for
fast prototyping.

We also works with the operations research (OR) colleagues in our university to
investigate the use of linear programming (LP) [8] for solving the salinity problem. The
advantage of using LP is that the domain of the salinity problem is continuous in nature
(i.e. real numbers); hence, there is no need to discretize the domains. However, the major
obstacle to the LP approach is the nonlinear constraints in the problem, i.e. constraints
on the law of conservation of salts and the table constraints on the water flowing out of
reservoir C. The idea is to construct an approximate model of the problem with only
linear constraints and objectives. Preliminary results are encouraging, outperforming
our engines in selected test cases. The possibility of combining the LP model and the
CP model is a promising research direction.

8 Conclusion

By applying CP, we have developed a fully automated optimization engine incorporating
a more realistic model for solving the salinity problem. Experimental results demonstrate
that the engine is more efficient and can produce higher quality solutions than the human
counterpart. Now, even a non-domain expert can make use of our engine to plan for water
management operations and experiment with different salinity scenarios in advance.

In summary, the choice of CP has immense impact on the successful delivery of the
project. First, the rich constraint language available in commercial constraint solvers
allows efficient modeling of the problem. Separation of concerns of CP allows us to
focus on programming search heuristics. We were thus able to complete a working
prototype and a functional production system within a tight development schedule. Sec-
ond, CP is flexible and adaptive to changes. During the course of development, our
client requested for numerous, often unreasonable, changes to the requirement speci-
fication. Without CP as the core technology, we were not sure if we could deal with
all the requests in a timely and mostly effortless manner. Third, we were also able to
adopt and generalize latest research result in propagation redundancy [4,2,3] to come up
with useful implied constraints for our implementation, thus enhancing the constraint
propagation in the salinity control engine. And this work on the model is orthogonal to
the search strategies we employ. This is again a triumph of separate of concerns.

48 C.W. Choi and J.H.M. Lee

References

1. Brdys, M., Creemers, T., Riera, J., Goossens, H., Heinsbroek, A.: Clockwise: Constraint logic
for operational control of water systems. In: The 26th Annual Water Resources Planning and
Management Conference, pp. 1–13 (1999)

2. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited.
In: Australian Conference on Artificial Intelligence, pp. 49–58 (2006)

3. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Removing propagation redundant constraints in redun-
dant modeling. ACM Transactions on Computational Logic (to appear 2007)

4. Harvey, W., Stuckey, P.J.: Improving linear constraint propagation by changing constraint
representation. Constraints 8(2), 173–207 (2003)

5. ILOG, S.A.: ILOG Solver 6.0: User’s Manual (2003)
6. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT Press, Cam-

bridge (1998)
7. Palisade Corporation: Evolver 4.0 (2005), Available from http://www.palisade.com
8. Vanderbei, R.J.: Linear Programming—Foundations and Extensions, 2nd edn. Springer, Hei-

delberg (2001)

http://www.palisade.com

Exploring Different Constraint-Based Modelings

for Program Verification

Hélène Collavizza and Michel Rueher

Université de Nice–Sophia-Antipolis – I3S/CNRS
930, route des Colles - B.P. 145, 06903 Sophia-Antipolis, France

{helen,rueher}@polytech.unice.fr

Abstract. Recently, constraint-programming techniques have been used
togenerate test dataand toverify the conformity of aprogramwith its spec-
ification. Constraint generated for these tasks may involve integer ranging
on all machine-integers, thus, the constraint-based modeling of the pro-
gram and its specification is a critical issue. In this paper we investigate
different models. We show that a straightforward translation of a program
and its specification in a system of guarded constraints is ineffective. We
outline the key role of Boolean abstractions and explore different search
strategies on standard benchmarks.

1 Introduction

Constraint programming techniques have been used to generate test data (e.g.,
[6,13]) and to develop efficient model checking tools (e.g. [10,4]). SAT based
model checking platforms have been able to scale and perform well due to many
advances in SAT solvers [11]. Recently, constraint-programming techniques have
also been used to verify the conformity of a program with its specification [3,8].

To establish the conformity between a program and its specification we have
to demonstrate that the union of the constraints derived from the program and
the negation of the constraints derived from its specification is inconsistent.
Roughly speaking, pruning techniques -that reduce the domain of the variables-
are combined with search and enumeration heuristics to demonstrate that this
constraint system has no solutions.

Experimentations reported in [8] demonstrate that constraint techniques can
be used to handle non-trivial academic examples. However, we are far from the
state where this techniques can be used automatically on real applications. Mod-
eling is a critical issue, even on quite small programs. That’s why we investigate
different models in this paper.

The framework we explore in this paper can be considered as a very specific
instance of SMT solvers1

1 For short, a Satisfiability Modulo Theories (SMT) problem consists in deciding the
satisfiability of ground first-order formulas with respect to background theories such
as the theory of equality, of the integer or real numbers, of arrays, and so on [5,12,1].

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

50 H. Collavizza and M. Rueher

The different models and search strategies we did experiment with, showed
that a straightforward translation of a program and its specification in a sys-
tem of guarded constraints is ineffective2. These experimentations also clearly
outlined the key role of appropriate Boolean abstractions.

The verification of the conformity between a program and its specification is
highly dependant on the programming language and the specification language.
In this paper, we restrict ourseleves to Java programs and JML specifications
(for “Java Modeling Language” see www.cs.iastate.edu/˜leavens/JML).

To illustrate the advantages and limits of the models and search strategies we
introduce, we will use the following examples:

– S1 (see figure 1) : This is a very simple example of a Java program and its
JML specification : it returns 1 if i < j and 10 otherwise. S1 will help us to
understand how to introduce boolean abstractions. For each model, we will
give the complete constraint system for S1.

– S2 : This is also a very simple example derived from S1. The only difference
with S1 is that it returns the result of a calculus on input variables instead
of constant values, i.e., it returns i + j when S1 returns 1 (line 5 in figure 1)
and 2∗ i when S1 returns 10 (line 6 in figure 1). The main idea is to evaluate
the impact of arithmetic during the resolution process.

– Tritype : This is a famous example in test case generation and program
verification. This program takes three numbers that must be positive. These
numbers represent the lengths of three sides of a triangle. It returns 4 if the
input is not a triangle, 3 if it is an equilateral triangle, 2 if it is isosceles and
1 if it is a scalene triangle.

– Tri-perimeter : This program has the same control part than the tritype
program. It returns -1 if the three inputs are not the lengths of triangle sides,
else it returns the perimeter of the triangle. The specification returns i+j+k
while the program returns either 3 ∗ i, 2 ∗ i+ j, 2 ∗ i+ k, 2 ∗ j + i or i+ j + k.

The program and the specification of tritype and tri-perimeter can be found
at www.polytech.unice.fr/˜rueher/annex tritype triperimeter.pdf.

All the java programs of the examples in this paper conform to their JML
specifications. This corresponds to the much difficult problem, since the search
must be complete. Indeed, detection of non-conformity is much easier in practice
(it stops when the first solution is found) even if the difficulty from a theoretical
point of view is the same.

The rest of this paper is organised as follows. Section 2 recalls some basics on
the translation process we have implemented to generate the constraint systems.
Section 3 details the different models we propose whereas section 4 introduces
different solving strategies. Section 5 describes the experimental results and sec-
tion 6 discusses some critical issues.
2 A full translation in Boolean constraints is also ineffective as soon as numeric ex-

pression occurs in the program or in the specification. Indeed, in this case we need
to translate each integer operation into bit-vector calculus. Thus, even SMT solvers
like SMT-CBMC [2] which use specialized solver for bit-vector calculus fail to solve
some trivial problems.

Exploring Different Constraint-Based Modelings for Program Verification 51

/* @ public normal_behavior
@ ensures ((i<j)=>\result=1) && ((i>=j)=>\result=10)

*/
int simple(int i, int j) {

1 int result;
2 int k=0;
3 if (i <= j) k=k+1;
4 if (k==1 && i!=j) result=1;
5 else result =10;
6 return result;
}

Fig. 1. S1 example : JML specification and Java program

2 Translation of a Program and its Specification into
Constraints

This section recalls basic techniques for translating a Java program and its JML
specification into a set of constraints.

For the sake of simplicity, we only consider here a very restricted form of Java
and JML programs. For the JML specification, we restrict ourselves to normal
behaviour, i.e., we do not consider exceptions such as overflows. We also assume
that the JML specification contains an \ensures statement, a logical expression
defining the post-condition. It may also contain a \requires statement defining
the pre-condition. Likewise, we only consider Java program where all variables
are integers and we assume that functions have only one return statement. Fi-
nally, we do not detail here the process for handling loops. Interested readers
can find details on the way we handle loops and several JML statements such
as \forall statement in [8].

2.1 Translation Process

We only recall here the basics which are required to understand this paper. More
details on SSA form can be found in [9].

Translating the Program into a Set of Constraints. We first transform the
program into its SSA ”Single State Assignment” form [9]: for each new definition
of a program variable, we introduce a fresh variable. In order to manage control
instructions, we use φ–functions for if then else statements.

Basic statements. Each assignment var = value is translated as a constraint
vari = value where i is the current number of definition of variable var. For
example, the following piece of code x = x+1; y = x ∗ y; x = x+ y; is translated
as the set of constraints : {x1 = x0 + 1, y1 = x1 ∗ y0, x2 = x1 ∗ y1}.

Conditional execution flow. Conditional execution flows are translated into
guarded constraints. Guarded constraints are conditional constraints whose eval-
uation depends upon other constraints. C0 → C1 denotes a guarded constraint

52 H. Collavizza and M. Rueher

where C0 and C1 are conjunctions of basic constraints. Relation C0 → C1 states
that constraints C1 have to be added to the current constraint store when the
solver can prove that constraints C0 hold. More precisely, let C0 be a boolean
expression and C1 a set of constraints, the guarded constraint C0 → C1 behaves
as follows:

– When the solver can prove that C0 is true, then constraints C1 are added to
the store of constraints;

– When the solver can prove that C0 is false, then the guarded constraint is
just discarded;

– When the solver can neither prove that C0 is true, nor prove that C0 is false,
that is when not enough variables of C0 are instantiated, then the guarded
constraint is suspended.

The solver tries to prove that the guard C0 of a suspended constraint holds
whenever the domain of some variable occurring in C0 has been reduced.

One major difficulty with guarded constraints is that nothing can be done
before the solver can demonstrate that the condition is either true or false. Let
us consider a very simple piece of code:

//@ ensures \result ≥ 0
public int absolute(int i, int j) {

if (i<j) return j - i;
else return i - j;

}

This code is translated into the following set of constraints:
{i < j → r = j − i, !(i < j) → r = i − j, r < 0}
A standard CSP solver cannot achieve any pruning on this system since noth-

ing is known about i and j. So a very costly enumeration process is started: the
inconsistency is only detected when the domain of i and j are reduced to one
value.

That’s why we introduce Boolean variables and handled in a better way
guarded constraints (see part 3.2).

The If then statement. For the sake of clarity, we only focus on the assign-
ment of a single variable. Trivially, the same process could be applied individually
for each variable appearing in a block with many variable assignments.

Let us consider the statement S : if (cond) {var=val}. Assume that var
has already been defined p times before this statement. S is translated into
the following set of guarded constraints where SSA(s) denotes the constraint
corresponding to the SSA form of the basic statement s.

if part : SSA(cond) → varp+1 = SSA(val)
else part : SSA(!cond) → varp+1 = varp

The else part just ensures that the varp+1 fresh variable will not remain
uninstantiated in the corresponding CSP.

Exploring Different Constraint-Based Modelings for Program Verification 53

The If then else statement. Let us consider the statement S : if (cond)
{v=x1;v=x2; ...;v=xq;} else {v=y1;v=y2;...; v=yr;}. Assume that v has
already been defined p times before this statement and assume that q < r. Since
v has not the same number of definitions in the if part and the else part, we
need to introduce a guarded constraint to take the place of the φ function. So,
S is translated into the following set of guarded constraints :

// if part
SSA(cond) → (vp+1=SSA(x1))&(vp+2=SSA(x2))&...&(vp+q=SSA(xq))
// else part
SSA(!cond) → (vp+1=SSA(y1))&(vp+2=SSA(y2))&...&(vp+r=SSA(yr))
// φ function
SSA(cond) → (vp+q+1=vp+q)&(vp+q+2=vp+q)&...&(vp+r=vp+q)

Remark: if q > r the same principle is applied and the guarded constraints
of the φ function are guarded by SSA(¬ cond). If q=r then no φ function is
required. Figure 2 gives an example of translation of an overlapped if then
else.

1 if (i < j) x = 0; (i<j) --> x1=0
else {

2 if (i < 30) (!(i<j)&(i<30))-->(x1=x0+1&x2=x1+y0)
{ x = x+1;

x = x+y;}
else {

3 if (j > 43) x=2; (!(i<j)&!(i<30)&(j>43))--> x1=2
else x=3; (!(i<j)& !(i<30)& !(j>43))--> x1=3

} // phi-function for #2 if
} (!(i<j)&!(i<30)) --> x2=x1

// phi-function for #1 if
(i<j) --> x2=x1

Fig. 2. example of if then else translation

Translating theSpecification. TheJMLspecificationwehandle is decomposed
into two parts : the \requires statement and the \ensures statement. The
\requires statement is a logical expression on input variables and the \ensures
statement is a logical expression both on input variables and \result, which de-
notes in JML the value returnedby themethod.We translate the JMLspecification
in the following way :

– each logical expression is translated into the corresponding constraint,
– the \result JML variable is associated to a new variable of the CSP named

result which establishes the link between the program and the specification,
– we add the constraints issued from the \requires statement,
– we add the negation of constraints issued from the \ensures statement.

54 H. Collavizza and M. Rueher

2.2 Characteristics of a CSP for Software Validation

We define a CSP for software validation as a tuple formed with a set of integer
variables, a set of boolean variables (possibly empty) used to improve perfor-
mance of guarded constraints propagation, a set of guarded constraints issued
from the program and the specification and an abstraction table which gives the
correspondence between the boolean abstract variables and the integer expres-
sions. This is detailed in figure 3.

1. Variables

– INT VAR : set of finite variables with domain [min,max]
– BOOL VAR : set of boolean variables with domain [0,1]
– result ∈ INT VAR : the variable which makes the link between the program

(Java return statement) and the specification (\result JML statement)

2. Constraints

– PROG CONST : set of guarded constraints from the program
– REQUIRE CONST : set of guarded constraints from the JML \requires

statement
– ENSURE CONST : set of guarded constraints from the negation of the JML

\ensures statement

3. Abstraction table
– SEMANTICS(bi) provides the finite domain constraint that is modelled by

the boolean abstract variable bi.

Fig. 3. CSP for software validation

3 Modeling Issues

We present here different models –from the less abstract one to the most abstract
one– that we studied during our experiments. All the models are illustrated on
example S1 of figure 1. To help the reading, in the successive figures for example
S1 , we start by ’*’ the lines which have changed from one model to the next
one. When solving the CSPs, all the models are also evaluated on the two more
significant benchmarks tritype and tri-perimeter.

3.1 INT CSP: A Model Without Boolean Abstraction

In this model, we do not introduce any boolean variable : the guarded constraints
are couples (g,c) where g and c are expressions on integer variables. Figure 4
illustrates this model on example S1.

3.2 HYBRID CSP 1: Using Boolean Abstraction for the Program
Guards

In this model, we introduce a boolean variable for each guard involved in the
constraints of the program. The advantage is that the enumeration process be-
gins with boolean variables and so guards are evaluated first. In this way, a

Exploring Different Constraint-Based Modelings for Program Verification 55

1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]
BOOL_VAR = empty
result in [min,max]

2. Constraints
PROG_CONST :
1 r_0=0
2 k_0=0
3 i<=j --> k_1=k_0+1
4 !(i<=j) --> k_1=k_0
5 k_1=1 & i!=j --> r_1=1
6 !(k_1=1 & i!=j) --> r_1=10
7 result=r_1

REQUIRE_CONST : empty
ENSURE_CONST :
8 !(((i<j) --> result=1) & ((i>=j) --> result=10))

3. Abstraction table : empty

Fig. 4. Example S1: INT CSP

constraint c can be posted even if the integer variables involved in its guard
are not instantiated. The introduction of boolean entails a non standard pro-
cessing of guarded constraints. For instance, consider the guarded constraint
i < j → k1 = k0 + 1 and assume that the boolean variable b0 is associated to
the guard i < j. When b0 is set to true, both constraints i < j and k1 = k0 + 1
are added to the constraint store.

Figure 5 shows this model on example S1. With respect to figure 4 we have
introduced two boolean variables, g 0 for the guard of constraints 3 and 4 and
g 1 for the guard of constraints 5 and 6.

3.3 HYBRID CSP 2: Using Boolean Abstraction for Expressions
Appearing in Several Guards

One drawback of the previous model is that it looses too much semantics; for
instance, it doesn’t take into account that the same logical expressions may be
involved in distinct guards. That’s why we introduce in the model HYBRID CSP 2
a boolean variable for each sub-expression which appears several times in the
guards of the program constraints or in the specification constraints.

In the previous modeling of example S1 (see figure 5), the sub-expression i < j
appears both in guard g 0 and in the specification constraints. So we introduced
a new boolean variable to abstract this expression (see figure 6).

3.4 HYBRID CSP 3: Adding Boolean Abstraction for Expressions
Involving the Variable result

In order to have a better link between the program and the specification, we ex-
tend the HYBRID CSP 2 model by introducing a boolean abstraction for each

56 H. Collavizza and M. Rueher

1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

1 r_0=0
2 k_0=0

* 3 g_0 --> k_1=k_0+1
* 4 !g_0 --> k_1=k_0
* 5 g_1 --> r_1=1
* 6 !g_1 --> r_1=10

7 result=r_1
REQUIRE_CONST : empty
ENSURE_CONST :
8 !(((i<j) --> result=1) & ((i>=j) --> result=10))

3. Abstraction table
* SEMANTICS(g_0) = i<=j
* SEMANTICS(g_1) = k_1=1 & i!=j

Fig. 5. Example S1 : HYBRID CSP 1

expression on the result variable. This variable is part both of the program and
the specification and so it can be helpful to cut some branches during the reso-
lution process. Since we can only assign variable result once, we add a constraint
which states that only one abstract variable can be true at the same time.

For example S1, we introduced two boolean variables in the model of figure 6 :
one for the expression result=1 and the other for the expression result=10; the link
between the possible values of variable result is done by constraint 7 in figure 7.

3.5 BOOL CSP: Boolean Model

In this model, we introduce a boolean variable for each expression in the program
and the specification. This is the model which is used by SAT solvers when the
expressions do not contain any arithmetic expression. If they do, basic arithmetic
operations must also be modelled with boolean constraints.

4 Solving the CSP

We have explored various strategies for solving hybrid CSP with boolean and
integer variables. These strategies are closely related to the models we presented
in the previous section. We operated with JSolver4Verif[7]: it is a Java version
of Ilog solver3 with specific propagation rules based on congruence techniques.
However, on all the examples contained in this paper the performances of JSolver
are very similar to the one of Solver.

3 See http://www.ilog.com/products/cp/.

Exploring Different Constraint-Based Modelings for Program Verification 57

1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST

1 r_0=0
2 k_0=0

* 3 (g_0||g_1) --> k_1=k_0+1
* 4 !(g_0||g_1) --> k_1=k_0
* 5 g_2 --> r_1=1
* 6 !g_2 --> r_1=10

7 result=r_1
REQUIRE_CONST : empty
ENSURE_CONST

8 !((g_0 --> result=1) & (!g_0 --> result=10)))
3. Abstraction table
* SEMANTICS(g_0) = i<j
* SEMANTICS(g_1) = i=j
* SEMANTICS(g_2) = k_1=1 & !g_1

Fig. 6. S1 example : HYBRID CSP 2

4.1 Solving an Integer CSP

In order to solve INT CSP we only have to perform a search on the CSP. If a
solution is found, then it is an error test case (a data that satisfies the constraints
of the program and of the negation of its specification); otherwise the program
is conform to its specification.

4.2 Solving a Hybrid CSP Using a CSP Solver

We show here two strategies for solving hybrid CSP for models HYBRID CSP 1,
HYBRID CSP 2 and HYBRID CSP 3:

– Strategy 1 : searching for all solutions.
Roughly speaking, this strategy consists into searching a solution to the
hybrid CSP and then to construct an integer CSP which has the semantics
of the current solution of the hybrid CSP. This process is detailed in figure 9.
The goal of this strategy is to take advantage of of the forward and backward
propagation process on guarded constraints.

– Strategy 2 : enumerating on boolean variables only
This is the same algorithm as Strategy 1 except that in line 1 of figure 9 we
start the search by enumerating on boolean variables only (i.e. on B VAR
variables only).

This strategy is mandatory when we use models HYBRID CSP 2 or HY-
BRID CSP 3. In these models, some boolean variables depend from other
boolean variables and do not appear directly in the constraints of the pro-
gram and the specification. So they may remain uninstantiated during the
search on the HYBRID CSP.

58 H. Collavizza and M. Rueher

1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1\} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2,b_0,b_1} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

1 r_0=0
2 k_0=0
3 (g_0||g_1) --> k_1=k_0+1
4 !(g_0||g_1) --> k_1=k_0

* 5 g_2 --> b_0
* 6 !g_2 --> b_1
* 7 b_0 + b_1 = 1

REQUIRE_CONST : empty
ENSURE_CONST :

* 8 !((g_0 --> b_0) & (!g_0 --> b_1))
3. Abstraction table
* SEMANTICS[g_0] = i<j
* SEMANTICS[g_1] = i=j
* SEMANTICS[g_2] = k_1=1 & !g_1
* SEMANTICS[b_0] = result=1
* SEMANTICS[b_1] = result=10

Fig. 7. S1 example : HYBRID CSP 3

5 Experimental Results

5.1 Experimental Results

In this section we evaluate the various models and strategies on the S1 and S2
programs and also validate our conclusions on the two more realistic examples
tritype and tri-perimeter.

In each table, we consider signed integers and we give the time performance
according to the number of bits they are coded with. Since our purpose is to
compare different modeling issues, we use a time out limit of ten minuts (denoted
‘−’ in the tables). Nevertheless, we give the solving time required for the largest
size of integers we could handle in some cases (in italic). bool denotes the number
of boolean solutions, that’s to say the number of finite domain CSPs which
are generated, and which have to be disproved to demonstrate the conformity
between the program and its specification.

The constraint systems for these different programs have been generated au-
tomatically. Primary boolean expressions are stored on the fly in a hash map
and each expression is replaced with a boolean variable if it is used more than
once, depending on the model. All experiments were performed on a Processor
Intel Core 2 Duo E6400 (2,13 GHz, 1G memory).

Exploring Different Constraint-Based Modelings for Program Verification 59

1. Variables
INT_VAR = {i,j,r_0,r_1,k_0,k_1} in [min,max]

* BOOL_VAR = {g_0,g_1,g_2,b_0,b_1,b_2,...,b_11} in [0,1]
result in [min,max]

2. Constraints
PROG_CONST :

* 1 b_0
* 2 b_1
* 3 (g_0||g_1) --> b_2
* 4 !(g_0||g_1) --> b_3
* 5 g_2 --> b_4
* 6 ! g_2 --> b_5
* 7 b_2 + b_3 = 1
* 8 b_4 + b_5 = 1

REQUIRE_CONST : empty
ENSURE_CONST :

* 9 !((g_0 --> b_4) & (!g_0 --> b_5))
3. Abstraction table

SEMANTICS(g_0) = i<j SEMANTICS(g_1) = i=j
SEMANTICS(g_2) = k_1=1 & !g_1

* SEMANTICS(b_0) = r_0=0 SEMANTICS(b_1) = k_0=0
* SEMANTICS(b_2) = k_1=k_0+1 SEMANTICS(b_3) = k_1=k_0
* SEMANTICS(b_4) = result=1 SEMANTICS(b_5) = result=10

Fig. 8. Example S1 : BOOL CSP

Let HYBRID CSP={I VAR, B VAR, CONST, SEMANTICS} where I VAR is the set of integer
variables including result, B VAR the set of boolean variables, CONST is the union
of constraints from program and specification and SEMANTICS is the abstraction table
boolean conform(HYBRID CSP)
1 start a search on HYBRID CSP
2 if HYBRID CSP has no solution print program conform with its specification; return true
3 else
4 while HYBRID CSP has a solution
5 - search next solution S of HYBRID CSP
6 - build integer CSP S INT :

. for each variable I in I VAR add a variable S I in S INT
with initial domain equals to the domain of I in solution S

. add the constraints of CONST where each variable I has been renamed as S I

. for each variable Bi in B VAR,
if Bi is true in solution S add the constraint SEMANTICS(bi)
else if bi is not an abstraction of an assignement of variable result,

then add the constraint (!SEMANTICS(bi))
7 - start a search on S INT : if there is a solution it is an error test-case; return false
8 print program conform with its specification; return true.

Fig. 9. Strategy 1: solving an hybrid CSP

60 H. Collavizza and M. Rueher

5.2 INT CSP Model

As mentioned in subsection 3.2, the INT CSP model cannot achieve any filtering
as long as the integer variables involved in the guards are not instantiated. So,
the search process is very slow: table 1 shows that even for the very simple
examples, the INT CSP model cannot be solved for integers coded on 32 bits.

Table 1. CSP INT solving
bit S1 S2 tritype tri-perimeter

8 0.577 s 0.766 s 66.582 s 406.27 s
10 5.422 s 9.255s - -
16 21663.778 s (6 hours) - - -
32 - - - -

5.3 Hybrid CSP Models

Table 2 provides the results for S1 and tritype programs.
In these programs, the returned value is a constant so the HYBRID CSP 3 is

not relevant. Indeed, in this case there is little interest to introduce a boolean
abstraction for each expression on the result variable.

Searching all solutions (strategy 1) is rather inefficient with the HYBRID CSP 1
model. Strategy 2 (searching only boolean solutions) is clearly better both with
HYBRID CSP 1 and HYBRID CSP 2.

An essential observation is that strategy 1 searches for all the solutions, that
is to say, even for solutions which differ on integer variables but are equals for
boolean variables. As said before, we evaluated this strategy because the inverse
propagation of guarded constraints may eliminate values for boolean variables
on some problems. Indeed, for a guarded constraint (g, c), if c is proved false due
to other constraints, then the negation of g is added to the constraint store; this
information may cut some branches for other guarded constraints which share
guard g.

The difference between the results for the various models highlights that in-
troducing boolean variables is a key issue when these variables are shared by
many constraints.

Table 3 compares the performances of models HYBRID CSP 2,
HYBRID CSP 3 and BOOL CSP on the S2 and tri-perimeter examples using
strategy 2.

First, let us note that the performances are weaker on these two examples.
This is due to the arithmetic operations, which occur in these two examples. In-
deed, S2 (resp. tri-perimeter) differs from S1 (resp. tritype) only on the operative
part (calculus on inputs instead of constant value).

Another essential observation is that in model BOOL CSP, we provide a con-
straint which states that the boolean variables which correspond to several as-
signements of a single variable cannot be true at the same time. This is a critical
point: if we remove this constraint for tri-perimeter with integers coded on 8 bits
there are 778240 boolean solutions and it takes 319.028s to solve the problem.

Exploring Different Constraint-Based Modelings for Program Verification 61

Table 2. HYBRID CSP 1 and HYBRID CSP 2 solving

S1 and tritype

bit HYBRID CSP 1 HYBRID CSP 1 HYBRID CSP 2
strategy 1 strategy 2 strategy 2

S1 tritype S1 tritype S1 tritype

8 57.116 s - 0.194 s 0.999 s 0.182 s 1.768 s
131072 bool 4 bool 565 bool 4 bool 4520 bool

10 - - 0.221 s 4.157 s 0.186 s 1.926 s
4 bool 565 bool 4 bool 4520 bool

16 - - 0.568 s - 0.221 s 8.522 s
4 bool 4 bool 4520 bool

32 - - - - 1520.82 s -
4 bool

Table 3. HYBRID CSP 2, HYBRID CSP 3 and BOOL CSP solving

S2 and tri-perimeter

bit HYBRID CSP 2 HYBRID CSP 3 BOOL CSP

S2 tri-perimeter S2 tri-perimeter S2 tri-perimeter

8 0.477 s 15.056 s 0.185 s 6.57 s 0.2 s 3.42 s
8 bool 5056 4 bool 22464 bool 4 bool 6080 bool

10 2.946 s - 0.2 s 10.489 s 0.286 s 3.654 s
8 bool 4 bool 22464 bool 4 bool 6080 bool

16 - - 0.274 s - 0.292 s 4.809 s
4 bool 4 bool 6080 bool

32 - - 2516.156 s - - -
4 bool

6 Discussion

Verification and validation are two of the most critical issues in the software
engineering process. Numerous techniques, ranging from formal proofs to test-
ing methods have been used during the last years to verify the conformity of a
program with its specification. However, such a verification remains a difficult
task, even for small programs. Our experimentations [8] showed that constraint
techniques can be very efficient on some non trivial problems. Performance of
CSP techniques behave clearly better than state of art SMT solvers [8,2]

In this paper, we did investigate different CSP models on a few simple but
non-trivial academic examples. As expected, a straightforward translation of a
program and its specification in a system of guarded constraints is ineffective,
even on very simple examples. Boolean abstraction is clearly a critical issue for
efficiency. An appropriate Boolean abstraction is an essential support for the
search process.

62 H. Collavizza and M. Rueher

Of course, additional work is required before these techniques can be used on
real applications. Further work to try is on the cooperation of CSP and SAT
solvers as well as new filtering techniques.

When the set of Boolean constraints becomes larger, a collaboration be-
tween a SAT solver and CSP solver is probably more appropriate to handle
such problems. We have performed some very preliminary experimentation with
SAT4J(see www.sat4j.org) and Jsolver4Verif. A technical difficulty concerns the
enumeration of all solutions by a SAT solvesr. Indeed, the most efficient SAT
solver are not designated to enumerate all solutions. Moreover, the transfer to
the SAT solver of failure information from CSP solver –which is a key issue– is
far from being obvious.

Specific filtering techniques4 may also drastically improve the refutation of
the generated CSP over finite domains. Likewise, linear solvers or difference
constraint solvers may be used to check the consistency of constraint defining
the semantics of guards.

References

1. Aı̈t-Kaci, H., Berstel, B., Junker, U., Leconte, M., Podelski, A.: Satisfiability Mod-
ulo Structures as Constraint Satisfaction: An Introduction. In: Procs. of JFLA, 8
pages (2007)

2. Armando, A., Mantovani, J., Platania, L.: Bounded Model Checking of C Programs
using a SMT solver instead of a SAT solver Technical Report, AI-Lab, DIST,
University of Genova, 16 pages (December 19, 2005)

3. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-Testing-Tools: a Symbolic
Animator for JML Specifications using CLP. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

4. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

5. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

6. Gotlieb, A., Botella, B., Rueher, M.: Automatic Test Data Generation using Con-
straint Solving Techniques. In: Proc. ISSTA 98, ACM SIGSOFT, vol. 2, pp. 53–62
(1998)

7. Leconte, M., Berstel, B.: Extending a CP Solver with Congruences as Domains
for Program Verification. In: Procs. of CSTVA06, 1st Workshop on Constraints in
Software Testing, Verification and Analysis, Nantes (2006)

8. Collavizza, H., Rueher, M.: Software Verification using Constraint Programming
Techniques. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920, pp. 182–196. Springer, Heidelberg (2006)

9. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, K.: Efficently Computing
Static Single Assignment Form and the Control Dependence Graph. Transactions
on Programming Languages and Systems 13(4), 451–490 (1991)

4 See for instance [7] where congruence domains are introduced.

Exploring Different Constraint-Based Modelings for Program Verification 63

10. Ganai, M., Gupta, A., Ashar, P.: DiVer: SAT-Based Model Checking Platform for
Verifying Large Scale Systems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 575–580. Springer, Heidelberg (2005)

11. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an Efficient SAT Solver. In: Proc. of DAC, pp. 530–535 (2001)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT an SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM (to appear)

13. Sy, N.T., Deville, Y.: Automatic test data generation for programs with integer
and float variables. In: Proc of. 16th IEEE International Conference on Automated
Software Engineering(ASE01). IEEE Computer Society Press, Los Alamitos (2001)

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 64 – 76, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Application of Constraint Programming to
Generating Detailed Operations Schedules for Steel

Manufacturing

Andrew Davenport
1
, Jayant Kalagnanam

1
, Chandra Reddy

1
, Stuart Siegel

1
,

and John Hou2

1
IBM T.J.Watson Research Center, 1101 Kitchawan Road, Yorktown Heights,

NY 10598, USA
2

IBM Taiwan Business Consulting Services, Shong-Ren Rd, Taipei, Taiwan,
Republic of China

davenport@us.ibm.com, jayant@us.ibm.com,
creddy@us.ibm.com, ssiegel@us.ibm.com, kwhou@tw.ibm.com

Abstract. We present an overview of a system developed by IBM for generating
short-term operations schedules for a large steel manufacturer. The problem ad-
dressed by the system was challenging due to the combination of detailed
resource allocation and scheduling constraints and preferences, sequence depend-
ent setup times, tight minimum and maximum inventory level constraints between
processes, and constraints on the minimum and maximum levels of production by
shift for each product group. We have developed a domain-specific decomposi-
tion based approach that uses mixed-integer programming to generate a high-level
plan for production, and constraint programming to generate a schedule at fine
level of time granularity taking into account detailed scheduling constraints and
preferences. In this paper we give an overview of the problem domain and solu-
tion approach, and present a detailed description of the constraint programming
part of the system. We also discuss the impact the system is having with the cus-
tomer on their manufacturing operations.

1 Introduction

In this paper we present an overview of a system developed by IBM for generating
short-term detailed operations schedules for a large steel manufacturer. The problem
addressed by the system involves generating schedules subject to detailed constraints
and preferences at a fine level of time granularity (30 seconds or less). Scheduling
problems with such low-level constraints and preferences are typically handled well
by constraint programming techniques [1,3]. However the problem also contains con-
straints and objectives that are stated at a coarser level of time granularity, and might
be considered to be more at the “planning level”. Examples of such constraints and
objectives are deciding which orders to produce over the next few days from an order
pool, subject to capacity constraints on the number of orders of each product type that
can be produced within each shift, and maximizing the number of orders scheduled on
their preferred start date. This aspect of the problem is often handled well using mixed

 An Application of Constraint Programming 65

integer programming techniques. In order to combine the advantages of both
constraint programming and integer programming, we developed a hybrid solution
approach that decomposes the full problem into a high level integer programming
based planning problem to determine what orders to produce and roughly when on the
available process stages, and a low-level constraint programming based scheduling
problem to determine a detailed second-by-second schedule on specific machines at
each process. However the complex global nature of some of the detailed scheduling
constraints, combined with the requirement to achieve a high level of resource utiliza-
tion, resulted in this decomposition-based approach producing poor solutions that
were not acceptable to the customer. In order to overcome this drawback, we devel-
oped a simple integration mechanism between the planning and detailed scheduling
stages that was found to significantly improve solution quality. A detailed description
of the mixed integer programming formulations used in this decomposition-based
approach is presented in [6]. In this paper we present an overview of the application
domain and the integrated problem solving approach, and discuss in detail the con-
straint programming aspects of solving this problem.

2 The Problem

The scope of the problem addressed by the system is to produce a multi-day opera-
tions schedule for the manufacture of steel products from raw material inputs. The
main processes involved in the manufacturing of steel are illustrated in Figure 1.
The four main process areas addressed by the system are:

1. The Blast Furnace (far left in Figure 1) where iron is heated to a very high
temperature to become molten. There is a continuous flow of molten iron
from the blast furnace to the downstream processes. This flow is given as in-
put to the scheduling problem formulation specified on an hourly basis.

2. The Basic Oxygen Furnace is the first process that all production must pass
through after leaving the blast furnace. At this process, molten iron starts to
become differentiated with respect to grade and chemical composition.

3. The Refining Processes consist of a number of steps such as reheating, ladle
furnace and stirring. Not all production will pass through all of these steps,
and these steps are not ordered (the steps that are used depend on the chemi-
cal composition of the final products.)

4. The Continuous Casters (far right in Figure 1): All production passes from
the refining stage to the final continuous casting process. In this process,
molten steel is poured into a long, adjustable copper mold. As the steel
passes through the mold, it is cooled by water jets and solidifies into slabs of
a specific dimension.

Steel is usually produced on a make to order basis. Customer orders are batched
into units of production called “charges”. All distinct operations (activities in the
scheduling model) from the basic oxygen furnace and the refining process stages take
place on a single charge of steel. At the continuous casting stage, operations take
place on a sequence of (2-12) contiguous charges, which is called a “cast”. The batch-
ing of orders into charges and the sequencing of charges into casts is provided as

66 A. Davenport et al.

input to the scheduling system. These batching and sequencing steps form the basis
of a complex, multi-criteria sequencing problem, the descriptions of which are outside
of the scope of this paper, but which were part of the overall system developed by
IBM for the customer.

BOF3

BOF1

BOF2

BOF4

LF1

LF2

Refining Processes:

Reheating Ladle Furnace

(RH) (LF)

Blast Furnace Continuous
Casters

RH1

RH2

RH3

Basic Oxygen

Furnaces
(BOF)

Fig. 1. An illustration of the basic process flow for the manufacture of steel

We divide the full problem into two problem stages: the downstream cast schedul-
ing problem, which corresponds to the high-level planning problem, and the upstream
processes detailed scheduling problem. We describe each of these problems stages in
the sections which follow.

2.1 Detailed Scheduling Problem Model

Figure 2 presents a Gantt chart view illustrating how the concept of charges and casts
are reflected in the formulation of the scheduling model. The Figure shows the sched-
ule for the activities involved in the production of a single cast of steel. The interest-
ing aspects of this formulation to note are that:

1. Each set of activities, for example A1, A2, A3 and A4 represent the set of op-
erations required to produce a single charge of steel. This corresponds to a
single job in the scheduling model. All activities are non-preemptible.

2. In the final casting process a cast is produced consisting of a sequence of
contiguous charges. This sequence is given as input to the problem. The
processing of consecutive charges in a single cast on the casting processes
must be without interruption. In Figure 2, the activities A4, B3 and C2 are
scheduled as a cast on the casting process. Hence the start time of activity B3
must occur at the end time of activity A4, and the start time of activity C2
must occur at the end time of activity B3.

3. There are tight minimum and maximum time lag constraints between con-
secutive activities in the same job1, for instance the maximum time lag
between the end of activity A1 and start of activity A2 might be 20 minutes.

1 Maximum time lags arise as a result of the movement of the molten steel between processes.

If the steel cools down, it is necessary to reheat it, which is expensive in terms of energy con-
sumption. Minimum time lags arise from the transfer time of materials between processes.

 An Application of Constraint Programming 67

4. At each process stage there are a number of resources (machines) that can be
used to process an activity (between 2 and 5). The scheduling system needs
to determine which resource at each process stage each activity is assigned
to2. Each resource has different operating characteristics and a different
physical location. As a result, the processing time of an activity at a process
stage, as well as the transfer time between processes, will depend on the spe-
cific resources at each process the activity is assigned to.

5. For each charge we are given a preferred recipe specifying the sequence of
process steps that the charge must pass through. We are also given between 0
and 3 alternate recipes that can be used, should there not be sufficient capac-
ity on the preferred recipe process stages. In practice, most (85-95%) of
charges will be assigned to their preferred recipes.

Processes

Casting

LF

A3

B3A4 C2

B1 C1A1BOF

Time

B2A2

RH

Fig. 2. A Gantt chart illustration of the activities involved in manufacturing a single cast in a
steel plant, from the basic oxygen furnace (BOF) to the refining processes (reheating (RH), and
ladle furnace (LF)) to the casting process

All the scheduling resources in the problem model have unary capacity (at most
one activity at any time point can be executing on a specific resource.) However some
resources are state resources, whose state is represented by the number of activities it
has processed since the last “setup” activity on the resource. Once the resource has
processed a maximum number of activities, it is required to perform another setup
activity. Charges on a state resource have a range specifying the minimum and maxi-
mum values with respect to the resource state, within which they can be processed on
the resource.

2.2 Cast Scheduling Problem Model

We are required to schedule between 60 and 100 casts each composed of 2-12 charges
on one of a number (3-9) of distinct casting machines and upstream processes over a

2 There is an exception for the casting process, where every charge in a cast executes on the

same casting machine that is given as input to the scheduler.

68 A. Davenport et al.

1-2 day horizon. The system selects which casts to schedule within the horizon from a
pool of around 200 available casts given as input.

As mentioned earlier, there is a continuous flow of molten iron from the blast fur-
nace. The amount of this flow over time is specified as a problem input in terms of
number of tons per hour. We consider some quantity of molten iron to be consumed
by the first activity of each job when it starts processing at the basic oxygen furnace
process. Between the blast furnace and the basic oxygen furnace there is finite capac-
ity buffer, where the molten iron is stored until some activity is scheduled to consume
it. There are tight constraints on the minimum and maximum quantity of molten iron
that can be allowed to accumulate in this buffer.

The cast schedule specifies which casts are to be processed at what time on the
available casting machines, subject to the following constraints:

1. Shift level target and capacity constraints: each charge has attributes such as
product type and grade. Constraints state the target, minimum and maximum
number of charges that can be produced per shift by each attribute. (A shift is
a period of 8 hours, and there are 3 shifts per day.)

2. Each charge is associated with a preferred start date. We are required to
maximize the number of charges that are processed on their preferred start
dates.

3. Sequence dependent setup times between consecutive casts processed on the
same casting machine.

4. Minimum and maximum hot metal inventory level constraints.

Figure 3 illustrates a simple cast schedule for three casting machines. Note that
on caster-3 it is possible to schedule three casts F, G and H consecutively with no
setup time between them. Although there is no explicit objective to minimize setup
time used in the schedule, in practice the maximum hot metal inventory constraint and
constraints on the minimum number of charges to schedule per shift require us to use
as little setup time as possible.

Fig. 3.

Time

Caster-1 A B

Caster-2 D EC

G HFCaster-3

Inven-
tory Level

Fig. 3. An illustration of a Gantt chart that specifies a cast schedule

 An Application of Constraint Programming 69

3 Why CP?

The system developed by IBM was designed to be used as a decision support tool for
the scheduling department at a steel manufacturing plant. Prior to our involvement, all
scheduling was performed manually by a group of scheduling experts. The nature of
steel manufacturing is such that production planning, design and operations schedul-
ing are generally more complex than is found in other industries. In particular, opti-
mization problems in the steel industry often involve many constraints expressed at a
very low level of detail, yet the tightness of these constraints can have a major impact
on the solution at a global level. Furthermore, most steel industry problems that we
have encountered contain multiple, often competing objectives. As a result, off-the-
shelf supply chain tools, even with some customization, are usually not able to cope
with the complexity of optimization problems found in the steel industry.

The complexity of the problem model we encountered for this problem is such that
constraint programming seemed a natural choice for the detailed scheduling part of
the system. Some of the detailed constraints in the problem, such as those involving
state resources, would be quite difficult to model and maintain using an integer pro-
gramming formulation. Even so, this problem was still quite challenging to solve us-
ing constraint programming, since some aspects of the problem have received little
attention in the research literature. Examples of such aspects include scheduling with
non-substitutable resource alternatives and alternative recipes [7,9] and taking into
account detailed preferences on resource and recipe assignments for each activity or
set of activities. (One example of the source of such preferences was that if something
goes wrong during execution, the schedule should be designed in such a way that it
was easy for the human experts to take out “chunks” of the schedule to reschedule
elsewhere as quickly as possible.) As such, we were required to experiment and de-
velop solution approaches for dealing with these aspects of the problem during the
project. One advantage of using constraint programming, compared with integer pro-
gramming approaches, is the relative ease with which the constraint programming
model and solution approach could quickly and flexibly accommodate change re-
quests over the lifespan of the project.

Although constraint programming seemed like a good choice of technology for the
detailed scheduling aspect of the problem, the cast scheduling problem contains con-
straints and objectives that are more amenable to an integer programming approach.
As such, the solution approach we developed decomposes the full problem into two
sub-problems that are solved in sequence:

1. Downstream cast scheduling: Cast scheduling determines which casts we
are going to schedule and when; satisfying hot metal inventory constraints,
shift level capacity constraints, sequence-dependent setup times between
casts and preferred start times of casts. We do not consider the scheduling of
any upstream processes of casting at this stage. We model this problem using
a time-indexed integer programming formulation with a time granularity of
15-30 minutes and solve it using ILOG CPLEX3.

3 For the purposes of cast scheduling, we assume all charges will be scheduled on their pre-

ferred route. The upstream detailed scheduling stage may reassign routes.

70 A. Davenport et al.

2. Upstream process detailed scheduling: From the solution of the cast-
scheduling problem we create a constraint-programming model for schedul-
ing the processes upstream of casting, taking into account detailed schedul-
ing constraints and preferences (such as minimum and maximum time lags
between activities, resource exclusion constraints, state resource constraints,
preferences on recipe and resource assignments.) This model is formulated at
a fine level of time granularity (30 seconds.) Since the cast schedule has al-
ready been determined, we do not need to take into account any of the cast
scheduling constraints in this model4.

This solution approach exploits the fact that we have fairly tight maximum time
lag constraints between all consecutive pairs of activities in a single job for a charge
(this may be as little as 20-40 minutes.) As a result, the schedule for a single cast over
all processes will necessarily be localized in time both on the casting process and the
upstream processes.

4 How CP?

We solve the cast scheduling problem using mixed-integer programming, formulating
the problem using a time-indexed formulation and modeling the shift level capacity
constraints, the sequence dependent setup times and the hot metal inventory con-
straints as side constraints. The scheduling horizon in the time-indexed model is di-
vided into a set of contiguous time periods of equal size (between 15 and 30 minutes.)
We present the full mixed integer programming model in [6]. In the sections that fol-
low, we discuss in detail the use of constraint programming in the overall system and
give an overview of the integration between the integer programming model and the
constraint programming model.

4.1 Constraint-Programming Detailed Scheduling Solver

Given a cast schedule that specifies which casts are to be scheduled in the horizon and
an approximate starting time for each selected cast, the goal of the detailed scheduler
is to schedule all processes upstream of casting, subject to the following:

1. Select a recipe from a number of available alternate recipes for each charge in
each cast to follow in the schedule;

2. Select a resource (machine) from a number of available non-substitutable re-
sources for each job at each process stage;

3. Assign start times to activities on each resource at each process stage, subject
to unary resource capacity constraints and precedence constraints with mini-
mal and maximal time lags;

4. Take into account preferences on alternate recipe and resource assignments.

4 The detailed scheduler is based on a C++ constraint-programming library for manufacturing

scheduling developed by IBM (currently known as the “Watson Scheduling Library”).

 An Application of Constraint Programming 71

yes

Assignment of
recipes found?

no: relax problem

no: add recipe nogood

Feasible sched-
ule found?

Search for an assignment of recipes to charges
(maximizing the number of charges assigned to

their preferred recipe)

Search for a feasible schedule (assigning re-
sources and sequencing activities on each

resource)

Improve feasible schedule with respect to de-
tailed preferences using large neighborhood search

Return schedule

yes

Fig. 4. Problem solving flow for detailed scheduling

We use constraint programming to perform detailed scheduling [1]. An outline of
the constraint programming approach we use to perform detailed scheduling is pre-
sented in Figure 4.

The problem solving process takes place in several stages. Firstly, we search for a
complete feasible assignment of recipes to charges. We perform depth-first search
with chronological backtracking. We use a chronological variable ordering heuristic,
following the initial start time for each cast specified by the cast scheduling solution.
Alternate recipes for each charge are tried in order of preference. Usually we can find
an assignment of recipes that uses the most preferred recipe for each charge. In rare
cases that a feasible assignment of recipes cannot be found, we relax the problem by
selecting a cast to remove from the schedule.

The next stage is to find a feasible schedule that for each recipe, assigns a resource
to each activity at each process stage in the recipe, and sequences all activities on

72 A. Davenport et al.

each resource. The search approach for finding a feasible schedule is based on the
precedence constraint-posting framework described in [3], using chronological
backtracking and some simple texture-measurement based heuristics for resource as-
signment selection [2]. We use the timetable and disjunctive resource constraint
propagators [1,5]. The difficulty in solving this problem arises more from making the
right choices of resources to use for each activity to satisfy the precedence constraints
with tight maximal time lags, rather than in sequencing the activities on each re-
source. As such, we did not find complex constraint propagation approaches such as
edge-finding [1] to be useful for solving this problem. Temporal constraint propaga-
tion is performed using a variation of the incremental longest-paths algorithms devel-
oped in [4]. If we cannot find a feasible schedule after some backtrack limit is
reached, we identify a recipe to add as a nogood recipe and return to the recipe as-
signment stage.

Once we have a feasible schedule, we attempt to improve the quality of the solu-
tion with respect to preferences on resource and recipe assignments. For this, we have
many detailed preferences specified as rules by the user. For example, one such rule
might specify that all charges in the same cast should try to use the same resource in
the reheating process. We use constraint programming based large neighbourhood
search to perform this improvement phase [11].

In practice, the detailed scheduler is quite fast: an initial feasible schedule can usu-
ally be found in less than 5 seconds on a 1.6 GHz Pentium 4 laptop. Improving the
schedule using large neighborhood can take 2-3 minutes. The cast scheduler is the
most time consuming part of the system: finding a cast schedule within 1% of opti-
mality with CPLEX usually takes 5-10 minutes.

4.2 Integration Issues

One drawback of the decomposition-based approach we have presented arises from
not taking into account upstream processes in the formulation of the downstream cast-
scheduling problem. We sometimes encountered unforeseen bottlenecks on some of
these upstream processes during detailed scheduling based on the cast schedule solu-
tion. Sometimes this results in the solution to the cast scheduling problem found by
the integer programming solver being infeasible on the processes upstream of casting.

One solution to this problem is to extend the cast-scheduling model to perform
some scheduling of the upstream bottleneck processes. However, the time-indexed
formulation of the cast-scheduling problem is at a relatively coarse level of time
granularity (15-30 minutes), relative to the time granularity of the detailed scheduling
constraints (at the 30 second level.) Using a finer time granularity in the cast-
scheduling model in order to accommodate such constraints significantly increases
the size and complexity of the model and the time taken to find a solution.

We developed an alternative approach to avoiding upstream bottlenecks by add-
ing capacity constraints on the upstream bottleneck processes as side constraints to
the cast-scheduling integer programming model. In order to formulate such capacity
constraints, we need to be able to estimate for each cast how much capacity of the
upstream processes they are expected to utilize, and when. This is illustrated in
Figure 5, where we represent part of the time-indexed cast-scheduling formulation

 An Application of Constraint Programming 73

involving a single cast of 3 charges, A, B and C, starting in time period 5 on the Caster
and using 3 time periods (5-7) of Caster capacity. In this example if charge A in the
cast starts in period 5 on the Caster, we might estimate that it will use 1 time period of
upstream BOF capacity in period 2. Note that later detailed scheduling of the up-
stream processes may determine that the actual BOF capacity used by these charges is
somewhere else in the schedule. However, since we have tight maximum wait time
constraints between consecutive activities in a job for each charge, our working as-
sumption is that we can estimate upstream capacity utilization for each cast that is
fairly accurate with respect to the final upstream schedule.

Caster

Time Period

C

B CA

BABOF

Fig. 5. An illustration of the estimated capacity utilization profile on the upstream process BOF
for a cast startin g on the Caster process in time period 5

More specifically, for each cast and each time period t in the time-indexed integer
programming model and for each upstream bottleneck process, we estimate the capac-
ity used by the cast on the process if it starts processing in time period t on the casting
process. (In practice it is not necessary to estimate this for every time period: it is suf-
ficient to generate a single estimation for all time periods where the capacity con-
straints do not change.) We use this estimation as a basis to formulate the upstream
process capacity constraints to add to the time-indexed integer programming model.
For such an estimation to be useful, it should take into account the detailed scheduling
constraints on the upstream processes. We do this by generating a detailed schedule
for each cast on all upstream processes, independently of all other casts, using the
constraint programming scheduling solver. We use the solution generated by this
solver as the basis to estimate upstream capacity utilization for each cast.

Experiments on customer problem data show that by using capacity constraints
generated from a constraint programming solution for a single cast can improve both
the quality of the final schedule with respect to number of orders scheduled, and well
as speed up execution time of the solver. We present the exact formulation of these
capacity constraints, as well as experimental results comparing the performance of
constraint-programming generated capacity constraints to those generated using sim-
ple heuristics, in [6].

We summarize the full high-level problem solving flow used by the system for a
generating a steel-making schedule in Figure 6.

74 A. Davenport et al.

1. Generate an estimated capacity profile for each cast at each
time period, based on a detailed schedule for the cast generated
using constraint programming.

2. Generate a cast schedule, based on the solution to a time-indexed
integer programming model taking into account the estimated up-
stream capacity used by each cast calculated from step 1.

3. Generate a detailed upstream schedule for all casts based on the
cast schedule solution from step 2 using constraint program-
ming.

Fig. 6. High-level solution approach process flow using constraint programming and mixed
integer programming

5 Added Value of CP?

The scheduling system described in this paper was just one part of a large, multi-
million dollar development project that interacted with an upstream optimization
module to design the casts that are input to the system, and a downstream module to
perform hot strip mill sequencing of the production scheduled by the system. The
scheduling system module was developed by two researchers at IBM over a period of
18 months.

The users acknowledge that this scheduling problem is extremely complex, in part
due to the complexity of the manufacturing processes and the wide diversity of prod-
uct types produced. The impetus for the user to improve their scheduling processes
arose from the growing pressure from their customers to improve on-time delivery
and provide shorter ordering promising time. There were several attempts in the past
by the user to develop a scheduling system in-house. This included developing a rule-
based system and experimenting with heuristic scheduling approaches, but the results
unsatisfactory.

As of writing, the system has just started to go into use by the end user, in parallel
with their current system. Initial feedback has been very favourable. The users inter-
act with the system through a graphical user interface, allowing them to influence
aspects of the solution such as stating that some casts must be included in the sched-
ule within some specified time range. The users are very impressed that the IBM
system is able to generate schedules that achieve higher resource utilization, by
scheduling up to 10% more charges, than that of hand-generated schedules prepared

 An Application of Constraint Programming 75

by the expert human schedulers. Furthermore, the system can generate full 2-day
schedules within 5-10 minutes on a 3GHz Opteron Linux machine, as opposed to
many hours needed for the human experts to generate a schedule. This is important,
since in practice the users may use the system to perform some kind of “what-if”
analysis, experimenting with problem parameters and upstream optimization modules
to generate and select from multiple possible schedules. Since the shop floor is very
dynamic, some real-time adjustment of the schedules generated by the system is per-
formed by the users during execution.

6 Related Work

Due to the nature of the manufacturing processes, the complexity of production plan-
ning and operations scheduling is usually higher in the steel industry than in many
other industries. As a result, many commercial “off-the-shelf” tools cannot adequately
address the full scope and complexity of production planning and scheduling in the
steel industry. We believe that constraint programming can be an important compo-
nent of decision-support solutions in this area. Some other applications of constraint
programming in the steel industry include the system presented in [12] to perform
bloom sequencing at what was formerly British Steel. The bloom-sequencing problem
is an “upstream” optimization problem to the system presented in this paper: it is used
to design the casts whose production is then scheduled by the steelmaking scheduling
system. (A system to perform bloom sequencing (as well as plate and coil sequenc-
ing) was designed and implemented by IBM as part of the overall project, but is not
described in this paper. This system uses a decomposition-based approach utilizing
integer programming and specialized bin-packing heuristics [10].) Constraint pro-
gramming is also used in the COORDIAL system developed using CHIP for real-time
scheduling of the production of steel for the Sollac Group in France [13].

7 Conclusions

We have presented an overview of a system for generating detailed schedules for steel
production that has developed by IBM for a large steel manufacturer. The full sched-
uling problem addressed by the system involves solving two related problems for the
upstream and downstream processes of steel manufacturing. The downstream, cast-
scheduling problem requires the selection and sequencing of groups of contiguous
jobs (casts) on a number of machines, subject to shift-level capacity constraints, inter-
process inventory constraints and sequence-dependent setup times. The upstream
scheduling problem involves determining a detailed schedule for processes upstream
of the casting processes, taking into account preferences on how resources are allo-
cated (such as alternate recipes and resources used by each job), precedence con-
straints with tight minimum and maximum time lags and complex state resources. We
have presented an integrated, decomposition-based approach that uses mixed-integer
programming to generate a production plan for downstream cast scheduling at a
coarse level of time granularity, and constraint programming to schedule upstream
processes subject to detailed scheduling constraints at a fine level of time granularity.
Initial end-user feedback has been very favourable.

76 A. Davenport et al.

References

[1] Baptiste, P., LePape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint
Programming to Scheduling Problems. In: International Series in Operations Research
and Management Science, vol. 39. Kluwer, Dordrecht (2001)

[2] Beck, J.C., Davenport, A.J., Sitarski, E.M., Fox, M.S.: Texture-Based Heuristics for
Scheduling Revisited. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI-97), pp. 241–248. AAAI Press / MIT Press (1997)

[3] Cheng, C.C., Smith, S.F.: Applying constraint satisfaction techniques to job shop sched-
uling. Annals of Operations Research, Special Volume on Scheduling: Theory and Prac-
tice 1 (1996)

[4] Katriel, I., Van Hentenryck, P.: Maintaining Longest Paths in Cyclic Graphs. In: Proc.
11th International Conference on Principles and Practice of Constraint Programming.
Springer, Heidelberg (2005)

[5] Laborie, P.: Algorithms for propagating resource constraints in AI planning and schedul-
ing: existing approaches and new results. Artificial Intelligence Journal 143(2), 151–188
(2003)

[6] Davenport, A., Kalagnanam, J.: Scheduling steel production using mixed-integer pro-
gramming and constraint programming. In: Proceedings of the 3rd Multidisciplinary In-
ternational Scheduling Conference: Theory and Applications (2007)

[7] Beck, J.C., Fox, M.S.: Scheduling Alternative Activities. In: Proceedings of the Six-
teenth National Conference on Artificial Intelligence (AAAI-99) (1999)

[8] Kramer, L.A., Smith, S.F.: Maximizing Flexibility: A Retraction Heuristic for Over-
subscribed Scheduling Problems. In: Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-03) (2003)

[9] Focacci, F., Laborie, P., Nuijten, W.: Solving Scheduling Problems with Setup Times
and Alternative Resources. In: Proceedings of the 5th International Conference on Artifi-
cial Intelligence Planning and Scheduling Systems (AIPS 2000), pp. 92–111 (2000)

[10] Lee, H.S., Trumbo, M.: An Approximate 0-1 Edge-Labeling Algorithm for Constrained
Bin-Packing Problem. In: Proceedings of the 15th International Joint Conference on Arti-
ficial Intelligence (IJCAI-97), pp. 1402–1411 (1997)

[11] Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) Principles and Practice of Con-
straint Programming - CP98. LNCS, vol. 1520. Springer, Heidelberg (1998)

[12] Smith, A.W., Smith, B.: Constraint Programming Approaches to a Scheduling Problem
in Steelmaking. School of Computing Research Report 97.43, University of Leeds (Sep-
tember 1997)

[13] http://www.cosytec.com/constraint_programming/cases_studies/steel_industry.htm

An Efficient Model and Strategy for the

Steel Mill Slab Design Problem

Antoine Gargani1 and Philippe Refalo2

1 ILOG, 9, rue de Verdun, BP85,
94253 Gentilly Cedex, France

agargani@ilog.fr
2 ILOG, Les Taissounières, 1681, route des Dolines,

06560 Sophia-Antipolis, France
refalo@ilog.fr

Abstract. The steel mill slab design problem from the CSPLIB is real-
life problem from the steel industry. Finding optimal solutions to this
problem is difficult. Existing constraint programming approaches can
solve problems up to 30 orders. We propose a strong constraint pro-
gramming model based on logical and global constraints. By designing
a specific strategy for variable and value selection, we are able to solve
instances having more than 70 orders to optimality using depth-first
search. Injecting this strategy into a large neighborhood search, we are
able to solve the real-life instance of the CSPLIB having 111 orders in
just 3 seconds.

1 Introduction

The steel mill slab design problem (referenced in the CSP library1 as problem 38)
is difficult to solve to optimality. This problem arises from operations planning
in the process industry. The problem consists of packing a set of orders onto
slabs so as to minimize the total capacity of the slabs needed to fulfill the order
book. In practice, two constraints must be satisfied. First, the total weight of
the orders assigned to a slab cannot exceed the slab weight. Second, there is a
route specification associated with each order represented by the color of the
order. Packing different colors on a slab involves cutting the slab in different
pieces. The cutting machine being the bottleneck of production line, the number
of allowed cuttings must not exceed one, and thus the number of different colors
on a slab must not exceed two.

The slab design problem is the second step of a more general problem that
optimizes the process of orders in a steel mill (see [6]). Before designing and
producing slabs, the orders are matched with a slab surplus inventory. Some
orders may be assigned to existing slabs, and thus only the orders that were not
matched are used in the slab design problem. This inventory matching problem
has some similarities with the slab design problem, but the number of available

1 CSPLIB problems are available at http://www.csplib.org.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 77–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 A. Gargani and P. Refalo

slabs is limited, and a cost for non-packed orders must be handled. This inven-
tory matching problem was addressed with integer programming techniques and
in particular by developing approximation algorithms [1] More recently, better
results were found using a column generation approach [2].

In the slab design problem, there is no limit on the number of available slabs,
and all orders must be packed. This problem, described in the CSP library, has
been addressed with constraint programming techniques. In the CSPLIB, an
instance with 111 orders is available that so far could not be solved to optimality
by constraint programming approaches. A study of different models has been
presented in [3], and the role of symmetries has been discussed and experienced in
[4]. A hybrid approach combining constraint programming and linear relaxations
described in [5] gave the best results and could solve an instance with 30 orders (a
subinstance of the 111 orders instance) in about 1000s. Local search techniques
were also used in [7]. In this report, the local search solver for pseudo booleans
WSAT(OIP) [12] is applied to the decision problem where the cost function is
forced to the lower bound of the problem (the sum of order weights). A solution
to the 111 instance could be found in about 2000s.

The models used for constraint programming approaches to this problem were
basically linear models over binary variables. While such models are suited for
integer programming solvers that can tighten the formulation by cutting-plane
generation, these models are notoriously not well suited to a constraint program-
ming approach because of the limited domain reductions they produce.

We introduce in this article a strong constraint programming model based on
logical and global constraints that achieves more domain reduction. This new
model is simple and elegant; it does not contain binary variables but exploits the
structure of the problem. By designing a specific strategy for variable and value
selection, we are able to use depth-first search to solve instances having more
than 70 orders to optimality in less than 200s. We have used this strategy in
a large neighborhood search, and we are able to solve the largest instance with
111 orders in just 3s.

2 Problem Description

The problem consists in producing n orders from a set of slabs. Several orders
can be made from the same slab but there is no limitation on the number of slabs
that can be requested. Each order o has a color co and requires an amount of
capacity (weight) wo of the slab to which it is assigned. Each slab has a weight
that must be chosen from the increasing set of weights {u1, u2, . . . , uk}. The
constraints of the problem are

1. an order must be produced from a single slab, and
2. the sum of order weights on a slab must not exceed the slab weight, and
3. a slab can be used to produce orders of at most two different colors.

The first two constraint describe a bin-packing problem. The third one is
called the color constraint. Therefore this problem is also called a variable sized

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 79

bin-packing problem with color constraints in the literature [1]. In the steel mill
slab design problem, the objective is to produce a few slabs as possible to satisfy
the demande. More precisely, the objective is to minimize the cumulative sum
of the weights of the slabs used. An obvious lower bound to this problem is the
sum of order weights.

Example 1. Here is a small, illustrative example of an instance and of a solu-
tion. Assume that we have 10 orders whose weights and colors are

Order 1 2 3 4 5 6 7 8 9 10
Weight 1 3 2 9 9 11 3 3 5 2
Color Red Black Black Red Red White Red White Black Red

and let the set of possible slab weight be {5, 7, 9, 11, 15, 18}. A solution to this
problem is to use 4 slabs and assign the orders in the following way:

Slab Orders Weight sum Slab weight
1 1, 2, 3 6 7
2 4, 5 9 9
3 6, 7, 8 17 18
4 9, 10 7 7

Note that in this solution

– there are no more than two different colors on the same slab;
– the maximum slab weight is not exceeded;
– the slab weight is just large enough for producing the orders;
– the cost of this solution (the sum of the slab weights) is 41;
– a lower bound is the sum of order weights that is 39.

3 A Basic Model

The basic model described here is very similar to the model used for a constraint
programming solver in [4]. The model uses primarily binary variables.

Assume that O is the set of orders and S is the set of slabs. Since there is
no limitation on slab weight, we artificialy create as many slabs as orders and
|S| = |O|. Let C bet the set of colors of orders in O and let Q be the set of slab
weights Q = {u0 = 0, u1, u2, . . . , uk}. The value 0 introduced in the set is the
weight of unused slabs.

The variables of the problem are binary variables. The first matrix of variables
determines the positions of the orders:

xos ∈ {0, 1} for o ∈ O, s ∈ M

We have xos = 1 when order o is packed onto the slab s. The second matrix of
variables determines the weight of a slab:

ysq ∈ {0, 1} for s ∈ O, q ∈ Q

80 A. Gargani and P. Refalo

We have ysq = 1 when the slab s has weight q. The third matrix of variables is
related to colors:

zcs ∈ {0, 1} for c ∈ C, s ∈ S

We have zcs = 1 when at least one order of color c is assigned to slab s.
The first constraint of the problem states that an order must be on a single

slab: ∑
o∈O

xos = 1 for every slab s ∈ S

The second one states that a slab must have a single weight:
∑
q∈Q

ysq = 1 for every slab s ∈ S

The third constraint states that the orders must fit within the slab weight:
∑
o∈O

woxos ≤
∑
q∈Q

q × yqm for every slab s ∈ S

When an order is on a slab, then its color is on a slab

xos ≤ zcos for o ∈ O, s ∈ M

There are orders of at most two different colors on the same slab:∑
c∈C

zcs ≤ 2 for every slab s ∈ S

Finally, the objective function is to minimize the sum of the slab weights:

min
∑

s∈S,q∈S

q × ysq for s ∈ S

In addition, the authors introduced in [5] a variable for each order whose value
is the slab it uses (Order[o] ∈ S). These variables are linked to the binary vari-
ables via channeling constraints like (Order[o] = s) ↔ (xos = 1). The purpose
of these variables is to state symmetry-breaking constraints and to define the
search strategy. The strategy used is to choose first the order variable Order[o]
with minimum domain size and assign it to the slab with the smallest index. Pure
constraint programming could solve problems having up to about 20 orders. By
hybridizing constraint programming and integer programming, instances with
30 orders could be solved in about 1000s [5].

The basic model defined above is basically a linear model over binary vari-
ables. Such a model is well-suited to an integer programming solver. Integer
programming solvers can tighten the formulation by adding cutting planes and
use the relaxed optimal solution to guide the search. However for constraint pro-
gramming solvers, this model involves few domain reductions and can be seen
as a typical worst case. Moreover, this model involves different groups of binary
variables, and it is not easy to determine how to branch on them. Should we
start branching with order variables, or with slab weight variables ? Should we
merge the groups ? A comparison has been made in [5] but there is no clear
winner.

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 81

4 A Stronger Constraint Programming Model

The constraint programming model we propose is rather different from the basic
one. For clarity, we will consider the minimization of the unused capacity of the
selected slab, also called the loss. This is equivalent to the objective function of
the basic model up to a constant. An obvious lower bound is 0. It is reached
when the orders assigned to slabs fit exactly the slab weights. Consequently, it
gives a clearer view of solution cost and of the distance to optimality that no
longer depends on the order weights.

Example 2. The solution in Example 1 above induces an total loss of 2 because
slabs 1 and 3 are not fully filled

Slab Orders Weight sum Slab weight Loss
1 1, 2, 3 6 7 1
2 4, 5 9 9 0
3 6, 7, 8 17 18 1
4 9, 10 7 7 0

To design a stronger constraint programming model we had to unlinearize the
basic model in order to replace linear constraints by global and logical constraints
which achieve more propagation more efficiently.

The first model change is in regards to the variables. Since an order uses a
single slab, we can avoid creating a binary variable for each couple (order, slab)
and instead introduce a single variable for each order that specifies the slab it
uses. That is for each order o ∈ O a variable xo whose domain is S is created.
The constraint stating that an order uses a single slab becomes implicit.

The variables xo are the decision variables of the problem; the instantiation
of these variables suffices to define completely a solution to the problem and
the value of the objective function. Therefore, a good approach is to state all
constraints only on those variables or, at most, to introduce auxiliary variables
that are all fixed to a value when the decision variables are fixed. This permits
the search strategy to be applied to the decision variables only and avoids the
need to determine priorities between groups of variables. These priorities are
often quite difficult to determine, and this is one of the drawbacks of the basic
model.

Packing orders onto slabs can be expressed directly over the variables xo. A
straightforward approach is to constrain, for each slab s, the sum of weights of
orders using the slab: ∑

o∈O

(xo = s) × wo ≤ uk

where uk is the maximum capacity of a slab. However, to compute the loss we
need to know the load of each slab. An auxiliary load variable ls ∈ {0, . . . , uk}
can be introduced for each slab s and an equivalent constraint is stated instead:

ls =
∑
o∈O

(xo = s) × wo

82 A. Gargani and P. Refalo

The upper bound on the ls variables enforces constraint on the maximum slab
weight. Note that variables ls are all fixed when the variables xo are all fixed.
This formulation could be strengthened by replacing each linear constraint by a
knapsack constraint. An arc-consistency algorithm has been given in [10]. Knap-
sack global constraints are also used in the Comet system [11]. An alternative
stronger formulation is to replace the whole set of inequalities by the global
packing constraint introduced in [9]. It constrains a set of items, given with
their sizes, to be packed into a set of bins. The load of each bin is given as a
variable. Upper bounds on load variables can be used to model the bin capac-
ity. The packing constraint can be used to strengthen formulations not ony for
bin-packing problem, but more generaly on assignment problems where capacity
is involved such as warehouse location or resource allocation. The packing con-
straint achieves more domain reductions than the set of linear constraints above.
We have used it to pack orders on slabs. It is stated over variables xo and ls and
uses order weights wo as item sizes:

pack([l1, . . . , ln], [x1, . . . , xn], [w1, . . . , wn])

A straightforward way to express the loss on each slab is to introduce a variable
yi ∈ {0, u1, u2, . . . , uk} representing the weight of the slab i. We can then state
that the loss on slab s is losss = (ys − ls). To achieve more propagation we can
observe that the loss on a slab is simply a function of its load. For instance in
the Example 1 above for a load of 12, the loss is 5, that is the difference between
the load and the smallest slab weight that can contain the orders on that slab.
The loss of a slab can thus be defined by

loss(load) = min{uj | j ∈ {1, . . . , k} ∧ uj ≥ load} − load

Therefore the loss of a slab s can be expressed by a constraint in extension
(that lists the set of solutions) where the number of solutions is equal to the
largest slab weight. Most of the constraint solvers achieve arc-consistency on
this constraint. In the Example 1 above the set of solutions is:

load 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
loss 0 4 3 2 1 0 1 0 1 0 1 0 3 2 1 0 2 1 0

A simpler way to express this constraint with the same perfect domain re-
duction is to use the good old element constraint that indexes the array of
precomputed loss with the load variable ls. This expression is element(ls, loss).
The objective function is thus

min
∑
s∈S

element(ls, loss)

Note that when the objective function is to minimize the sum of the slab weights,
the loss array is replaced by the array of slab weights indexed by the load.

Now we can express the color constraints without introducing extra variables.
First we need an expression that is equal to one when a color k is used on a

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 83

1. using CP;

2. int nbSlabs = 10;
3. int nbOrders = 10;
4. int nbColors = 3;
5. int nbCap = 7;
6. int capacities[1..nbCap] = [0, 5, 7, 9, 11, 15, 18];
7. int weight[1..nbOrders] = [1, 3, 2, 9, 9, 11, 3, 3, 5, 2];
8. // White = 0, Black = 1, Red = 2
9. int colors[1..nbOrders] = [2, 1, 1, 2, 2, 0, 2, 0, 1, 2];

10. int maxCap = max(i in 1..nbCap) capacities[i];
11. int loss[c in 0..maxCap]
12. = min(i in 1..nbCap : capacities[i] >= c) capacities[i] - c;

13. dvar int x[1..nbOrders] in 1..nbSlabs;
14. dvar int l[1..nbSlabs] in 0..maxCap;

15. minimize sum(s in 1..nbSlabs) loss[l[s]];
16. subject to {
17. pack(l, x, weight);
18. forall(s in 1..nbSlabs)
19. sum (c in 1..nbColors)
20. (or(o in 1..nbOrders : colors[o] == c) (x[o] == s)) <= 2;
21. }

Fig. 1. An OPL 5.2 model for the steel mill slab design problem

slab s. Such an expression is simply modeled by a disjunction over order position
variables xo whose color co is equal to k:

∨
{o∈O, co= k}

(xo = s)

The color constraint on a slab is then

∑
k∈C

⎛
⎝ ∨
{o∈O, co= k}

(xo = s)

⎞
⎠ ≤ 2

Figure 1 shows a complete OPL 5.2 model whose objective is to minimize the
total loss. ILOG OPL 5.2 includes ILOG CP Optimizer 1.0, which is the ILOG
constraint programming C++ library. From lines 2 to 9, the constants and arrays
of the instance used in Example 1 are initialized. The maxCap constant is set to
the maximum capacity of a slab at line 10. The array loss initialized at lines
11 and 12 contains the loss induced by each slab load. This is to be used in

84 A. Gargani and P. Refalo

the objective function. At lines 13 and 14, the variables x (that represent order
positions) and l (the slab load) are created. The cost function is defined at line
15. An element constraint in OPL is created by indexing a constant array with
a variable. The pack constraint is stated at line 17. And for each slab, a color
constraint is stated at lines 18 to 20.

5 A Search Strategy

The steel mill slab design can be seen as a bin-packing problem with color con-
straints. The orders must be packed onto slabs. Therefore we have implemented a
typical search strategy for solving bin-packing problems. The strategy consists of

– choosing the order with the largest weight first and
– placing that order in the first available slab.

The choice of the variable follows the first-fail principle strategy: largest orders
are the most difficult to assign and placing them first reduces the search space.
The choice of a value involves grouping orders on a small set of slabs. Avoiding
the orders being spread on too many slabs reduces the chances of creating a
loss on several slabs and thus avoids producing solutions with a large loss. This
strategy has been implemented within a depth-first search.

5.1 Test Instances

The instance provided with the problem definition in the CSPLIB is one with
111 orders. Previous studies of this problem have considered subinstances of this
instance by keeping only the k first orders with k varying from 12 to 30. In
order to have a precise evaluation of the effectiveness of our choices, we have
considered all subinstances from k = 12 to k = 110 and, of course, the original
instance. Every instance has a solution where the total loss is zero.

Our comparisons measure the computation time needed to reach an optimal
solution. The experiments were made with ILOG CP Optimizer 1.0, a constraint
programming library in C++ and we have run the test with a time limit of 1000
seconds on a PC with a Pentium-4 processor at 2.6 Mhz. The results given by
our strategy are presented in Figure 2. The instances index the x-axis while the
computation time (in seconds) to reach an optimal solution is on the y-axis.
We were able to solve all the instances ranging from 12 to 74 orders in less
than 200 seconds. This is much better than all previous constraint programming
approaches to this problem.

5.2 Symmetry Breaking

Previous studies on the solution of the steel mill slab design problem insist on
the importance of breaking symmetries by adding extra constraints. In [4], two
main classes of symmetries are identified:

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 85

Fig. 2. Depth-first search

Fig. 3. Symmetry-breaking constraints (circles) versus no symmetry-breaking con-

straints (diamond-shaped)

1. Slab weight symmetries: slabs weights can be permuted without changing
the objective value of the solution.

2. Identical order symmetries: two identical orders (w.r.t. weight and color) on
different slabs can be swapped.

To avoid the search strategy producing symmetrical solutions, some additional
constraints can be added. The first symmetry can be broken by forcing the slab
s to be of greater or equal weight than s + 1 (ls ≥ ls+1). The second symmetry
can be broken by adding a constraint for each pair or identical orders i and j.

86 A. Gargani and P. Refalo

If i > j the constraint forces the order i to be on a slab whose index is greater
or equal than the slab index of order j (xi ≥ xj for i, j ∈ O such that wi = wj

and ci = cj) .
We have tested adding these symmetry breaking constraints to our constraint

programming model. Experiments show that these constraints can be useful
for small instances but negatively impact performance on larger instances. The
results are presented in Figure 3. For the instance with 37 orders and higher, no
optimal solution can be found within the time limit.

The symmetry-breaking constraints prevent our strategy from finding good
solutions causing the loss in performance. As the biggest orders are placed first,
the first slabs are filled with big orders and are more likely to have a loss (small
orders help fill the slab completely). As a consequence, the first slabs are not fully
filled, and, since symmetry breaking constraints force the slab loads to decrease,
this increases the number of slabs used. The scattering of orders is reinforced by
the color constraints. All of this increases the chance of getting a solution with
a high loss. Depth-first search makes this even worse as a bad decision made
at the beginning of the search to satisfy the symmetry-breaking constraints will
be reconsidered only when search has exhausted the whole tree below that bad
decision.

We have also observed that in some cases, it even becomes very difficult to find
a first solution to the problem. This is because symmetry breaking constraints
can create unsatisfiable configurations of slabs. By imposing that the first slabs
must have a load greater than or equal to the following ones, it happens that
the first slabs become impossible to fill to the required load. Depth-first search
may need a considerable enumeration to discover this and to reconsider the bad
choices.

For these reasons, we have not used symmetry breaking constraints in our
constraint programming solution, and we have dramatically improved the con-
vergence of the search by using a local search approach.

5.3 Large Neighborhood Search

Large neighborhood search (LNS) is a local search technique that improves so-
lutions by solving small decision problems [8].

Assume we want to solve the optimization model

min f(x) s.t. M

where x are the decision variables, f is the objective function and M is the set
of constraints. The LNS method starts from a solution x∗ of M whose objective
value is f∗. It first chooses a fragment F that is a set of equations xi = x∗i and
injects it in the model M . That is, it fixes the variables of the fragment to their
value in the current solution but keeps the other variables unfixed. Additionally,
a constraint is stated on the objective function to force it to be improved. This
new model is called a submodel since its solution set is included in the solution
set of M . A search method is then applied to the submodel

R = M ∪ F ∪ {f(x) ≤ f∗ − ε}

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 87

Where ε is the (positive) optimality tolerance. Consequently when a solution is
found in the submodel, it has a necessarily better objective function than the
previous one, and it shares with the current solution the values of variables that
are in the fragment F . The new solution found becomes the current solution,
and the process is repeated.

This method is well suited to optimization in constraint programming be-
cause constraint programming is good at finding solutions in small constrained
problems.

Example 3. If we reconsider the data and solution in Example 1, the current
solution is x∗1 = 1, x∗2 = 1, x∗3 = 1, x∗4 = 2, x∗5 = 2, x∗6 = 3, x∗7 = 3, x∗8 = 3, x∗9 =
4, x∗10 = 4 and the objective value of this solution is 2. Let M be the strong
constraint programming model of Section 4. A possible fragment for LNS is F =
{x2 = 1, x3 = 1, x4 = 2, x5 = 2, x6 = 3, x9 = 4, x10 = 4} where only x1 and x8
are unfixed. The subproblem solved by LNS in this case is

R = M ∪ F ∪ {f(x) ≤ 1}

The subproblem is solved with a standard constraint programming search that
is comprised of depth-first search and constraint propagation. If a good strategy
is known for the solving the problem with depth-first search, it is in general also
good for solving the subproblem as both have basically the same structure.

Example 4. The submodel of the previous example contains an optimal solu-
tion. Instantiating the variable x1 to 3 permits the reduction of the weight of slab
1 from 7 to 5, and its loss becomes 0. The slab 3 now has an order of weight one
more, and it fills slab completely. The loss is thus 0. The new solution is

Slab Orders Weight sum Slab weight Loss
1 2, 3 5 5 0
2 4, 5 9 9 0
3 6, 7, 8, 1 18 18 0
4 9, 10 7 7 0

This solution would have been harder to find than the previous one with the full
search space. Having a small search space to explore (and of course, the right
fragment) makes it easier to find.

In order for the LNS method to explore several neighborhoods and thus several
fragments, the submodel is not solved completely. It is crucial to set a limit on
the solution method. It can be a limit in time or on the size of the search tree.
For instance, when the strategy has encountered a certain number of failures
without finding a solution, one can consider that the fragment is not likely to
lead to a solution and the search can be stopped. This limit on failures is often
used in constraint programming based LNS methods, and the failure limit used
is often quite small.

Large neighborhood search has improved dramatically the convergence of our
search strategy. For the steel mill slab design problem, we have used the following
configuration:

88 A. Gargani and P. Refalo

– the fragment size is chosen randomly (between 50% and 95% of the variables
are fixed in the fragment);

– variables appearing in the fragment are chosen randomly until the required
size is reached;

– load variables ls are never included in the fragment, the load must not be
fixed in order to allow the uninstantiated orders to be assigned to any slab
to improve the solution;

– the search strategy for solving the subproblems is the one used for depth-first
search (largest orders first, smallest index slab first);

– the failure limit is set to 60.

Fig. 4. Large neighborhood search (circles) versus depth-first search (diamond-shaped)

The results are shown in Figure 4. The largest instance with 111 orders is
solved in 2.98 seconds and only 27 fragments are explored. All other smaller
instances are solved in less than 3 seconds. Interestingly, even with different
random seeds, the computation time does not vary much. This demonstrates
the robustness of this approach.

6 Conclusion

The constraint programming model we have presented is based on logical and
global constraints and is more effective than a linear model over binary variables.
A dedicated search strategy used in conjunction with large neighborhood search
was able to solve the CSPLIB instance in a few seconds. This demonstrates that
a combination of a strong model, a dedicated strategy and randomization can
make large neighborhood search effective.

The solutions developed for solving the steel mill slab design can be applied
to solving the first-step problem (inventory matching) where orders are not nec-
essarily all packed. Minimizing the weight of unpacked orders is also part of the

An Efficient Model and Strategy for the Steel Mill Slab Design Problem 89

objective function. The pack global constraint cannot be used any longer, and
the strategy would need to be adapted. This is the topic of our current research.

References

1. Dawande, M., Kalagnanam, J., Sethuraman, J.: Variable-sized bin packing with
color constraints. Electronic Notes in Discrete Mathematics 7 (2001)

2. Forrest, J., Ladanyi, L., Kalagnanam, J.: A column-generation approach to the
multiple knapsack problem with color constraints. INFORMS Journal on Comput-
ing 18(1), 129–134 (2006)

3. Frisch, A., Miguel, I., Walsh, T.: Modelling a steel mill slab design problem. In:
Proceedings of the IJCAI-01 Workshop on Modelling and Solving Problems with
Constraints (2001)

4. Frisch, A., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239. Springer,
Heidelberg (2001)

5. Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Hybrid modelling for robust solving.
Annals of Operations Research 130(1-4), 19–39 (2004)

6. Kalagnanam, J., Dawande, M., Trumbo, M., Lee, H.S.: Inventory matching prob-
lems in the steel industry. Technical Report RC 21171, IBM Research Report, T.J.
Watson Research Center (1988)

7. Prestwich, S.: Search and modelling issues in steel mill slab design. Technical Re-
port 4/148, Cork Constraint Computation Center (2002)

8. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) Principles and Practice of
Constraint Programming - CP98. LNCS, vol. 1520, pp. 417–431. Springer, Heidel-
berg (1998)

9. Shaw, P.: A constraint for bin-packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

10. Trick, M.: A dynamic programming approach for consistency and propagation for
knapsack constraints. In: Proceedings of the Third International Workshop on In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR-01), Lille, France, pp. 113–124 (2001)

11. van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge, Mass. (2005)

12. Walser, J.P.: Solving linear pseudo-boolean constraints with local search. In: Pro-
ceedings of the Eleventh Conference on Artificial Intelligence, pp. 269–274 (1997)

Constraint-Based Temporal Reasoning

for E-Learning with LODE

Rosella Gennari and Ornella Mich

KRDB, CS Faculty, Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy

gennari@inf.unibz.it, mich@itc.it

Abstract. LODE is a logic-based web tool for Italian deaf children. It
aims at stimulating global reasoning on e-stories written in a verbal lan-
guage. Presently, we are focusing on temporal reasoning, that is, LODE
stimulates children to reason with global temporal relations between
events possibly distant in a story. This is done through apt exercises
and with the support of a constraint programming system. Children can
also reinvent the e-story by rearranging its events along a new temporal
order; it is the task of the constraint system to determine the consistency
of the temporally reorganised story and provide children with feedback.
To the best of our knowledge, LODE is the first e-learning tool for Italian
deaf children that aims at stimulating global reasoning on whole e-stories.

Keywords: constraint programming, automated temporal reasoning,
e-learning, assistive technology.

1 Introduction

In the last years, much research in deaf studies and computer science has been
devoted to applications for sign languages; roughly speaking, a sign language is
a gestural-visual language with signs as lexical units, whereas a verbal language
is an oral-auditive language with words as lexical units. Less attention seems to
be paid to e-learning tools for improving the literacy of deaf children in verbal
languages. Our LOgic-based e-tool for DEaf children (LODE) belongs in this
latter class. In the following, we motivate the need of an e-learning tool such as
LODE and then briefly outline our LODE tool.

1.1 The Problem

Learning to read and write effectively can be a difficult task for deaf people. Due
to a limited exposition to the language in its spoken form in their first years of life,
they lack the primary, natural means of acquiring literacy skills: “deaf children
have unique communication needs: unable to hear the continuous, repeated flow
of language interchange around them, they are not automatically exposed to the
enormous amounts of language stimulation experienced by hearing children” [24].

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 90–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constraint-Based Temporal Reasoning for E-Learning with LODE 91

Research on deaf subjects points out that deaf people hardly achieve verbal
language literacy; they tend to reason on single episodes and show difficulties
in formulating coherent global relations, such as temporal relations, between
episodes of narratives in a verbal language [5], to the effect that their abil-
ity of reading does not often go beyond that of a eight-year old child [20]. As
reported in [5], this attitude can also depend on the kind of “literacy interven-
tions addressed to deaf children” which tend to “focus on single sentences and
the grammatical aspects of text production”. A novel literacy e-tool for them
should thus focus on global deductive reasoning.

1.2 Our Proposal

Given that limited literacy skills constitute an obstacle to the integration of
deaf people into our society, our purpose is to develop an e-learning tool for
deaf children which stimulates the global reasoning on texts written in verbal
Italian. To this end, LODE presents children with e-stories and invites children
to globally reason on each of them; that is, children are elicited to analyse and
produce relations between events, even distant in the story, so that the relations
are consistent with the story and possibly implicit in it.

In its current version, LODE focuses on a specific type of relations, namely,
temporal relations; it narrates temporally rich stories and then stimulates chil-
dren to create a coherent network of temporal relations out of each LODE’s
story. In order to do so, LODE heavily employs an automated reasoner, namely,
a constraint programming system.

Section 2 provides the essential background on reasoning with temporal re-
lations by using constraint programming. Then the paper delves into LODE.
Section 3 outlines the educational exercises of LODE and how they aim at stim-
ulating global reasoning with temporal relations. The architecture of LODE is
discussed in Sect. 4; there, we explain the pivotal role of constraint program-
ming and how it allows us to implement the educational exercises of LODE. We
relate LODE to other e-tools for deaf children in Sect. 5, highlighting its novelty
in the e-learning landscape of e-tools for deaf children, and conclude with an
assessment of our work in Sect. 7.

2 Background on Temporal Reasoning with Constraints

Temporal Reasoning is a branch of Artificial Intelligence (AI) and involves the
formal representation of time and a computational reasoning system for it. An
instance of a temporal reasoning problem is given by the following exercise of
LODE; the excerpt is taken from a simplified version of The Ugly Duckling by
H.C. Andersen.

Mammy duck is brooding: she has five eggs, four are small, and one is
big. All of a sudden, while she is still brooding, the small eggshells crack
and four little yellow ducklings peep out. Mammy duck watches the big

92 R. Gennari and O. Mich

egg but sees no signs of cracking. . . So she decides to keep on brooding.
After some days, while she is brooding, also the big eggshell cracks and
an ugly grey duckling peeps out. . .

Exercise: do the small eggshells crack before the big eggshell cracks?

We use it in the remainder to explain the time representation, in Subs. 2.1, and
the computational reasoning system, in Subs. 2.2, that LODE adopts.

2.1 Time Representation à la Allen

Here we adopt intervals as the primitive entities for representing time; each
interval is uniquely associated with a time event. Between any two pairs of
events, there is an atomic Allen relation, namely, a relation of the form

before, meets, overlaps, starts, during, finishes, equals

or rel−1, where rel is one of the above relations and rel−1 is the inverse of rel.
See Fig. 1 for an intuitive graphical representation of the atomic Allen rela-
tions between two events, e1 and e2. The Allen relations are employed whenever

• e1 • ◦ e2 ◦ e1 before e2, e2 before−1e1

• e1 •◦ e2 ◦ e1 meets e2, e2 meets−1e1

• e1 •◦ e2 ◦ e1 overlaps e2, e2 overlaps−1e1

• e1 •◦ e2 ◦ e1 starts e2, e2 starts−1e1

• e1 •◦ e2 ◦ e1 during e2, e2 during−1e1

• e1 •◦ e2 ◦ e1 finishes e2, e2 finishes−1e1

• e1 •◦ e2 ◦ e1 equals e2, e2 equals e1

(note that equals−1 = equals)

Fig. 1. The atomic Allen relations

temporal information boils down to qualitative relations between events, e.g.,

“the small eggshells crack while Mammy duck broods”; (1)

in terms of the Allen relations, the sentence (1) states that the relation during
can hold between the event “the small eggshells crack” and the event “Mammy
duck broods”. By way of contrast, “the small eggshells crack after 2 days” is a
quantitative temporal information.

As Allen arguments [1], “uncertain information” can be represented by means
of unions of the atomic Allen relations. Formally, let A denote the class of the
atomic Allen relations. Then the class 2A forms a relational algebra with the
operations of union ∪, composition �, and inverse −1. In particular, the compo-
sition operation is used in deductions with the Allen relations. For instance, the

Constraint-Based Temporal Reasoning for E-Learning with LODE 93

result of the composition before � before is before; this means that
if e1 before e2 and e2 before e3
then e1 before e3.

2.2 Constraint Programming for Automated Temporal Reasoning

Constraint programming is a flourishing programming paradigm implemented
in several constraint programming systems, e.g., ECLiPSe, a Constraint Logic
Programming (CLP) system. Performing automated temporal reasoning with
constraint programming means first modelling a temporal problem in a suit-
able formalism and then solving it in an automated manner with a constraint
programming system. In the following, we introduce the basics on constraint
modelling and solving, taking them from [4].

Constraint modelling. Given the temporal reasoning problem above, the con-
straint programmer models it as a constraint satisfaction problem. In essence,
this is given by

– finitely many variables, x1, . . . , xn,
– each ranging on a domain Di of values,
– and a set of constraints, namely, relations of the form C ⊆ Di1 × · · · × Dim .

A tuple of domain values a1, . . . , an for the variables x1, . . . , xn is a solution to
the problem if it belongs to all the constraints of the problem. When a value ai

for xi participates in a solution to the problem, we will say that ai is consistent
with the problem.

A temporal reasoning problem can be modelled as a constraint problem as
done in [3]. We expound this modelling in the context of LODE in Sect. 4.
As an example, take the temporal reasoning problem in p. 91. The ordered
pair of events “the small eggshells crack” and “the big eggshell cracks” gives
a variable; its domain is the set of the atomic Allen relations; the temporal
reasoning problem restricts the domain of the variable to before, and this is a
unary constraint. The relation before is consistent with the considered problem.

Constraint solving. Once a temporal reasoning problem is modelled as a
constraint problem in a suitable programming language (e.g., CLP), a constraint
programming system (e.g., ECLiPSe) can be invoked to solve it. In this setting,
to solve a problem means

– to decide on the consistency of a relation with the problem, e.g., before
between “the big eggshells crack” and “the small eggshell cracks”,

– or to deduce an/all the Allen relation/relations between two events, e.g., “the
big eggshell cracks” and “the small eggshells crack”, which are consistent
with the problem and implicit in it.

The LODE’s exercises rely on both these solving capabilities of a constraint
programming system, namely, that of deciding on and that of deducing new
Allen relations, consistent with a LODE’s story. First we need to present such
exercises, then we can return to constraint programming by explaining its role
in the LODE’s architecture and in solving the exercises.

94 R. Gennari and O. Mich

3 LODE: Educational Exercises

LODE presents a list of e-stories the child can choose among. They are simplified
versions of traditional children tales, such as The Ugly Duckling, so that the
language is more suitable to a 8-year old deaf child; they are also enriched with
explicit temporal relations so as to focus the attention of the child on temporal
reasoning. The child has to choose a story from the list in order to begin his/her
work session.

3.1 Dictionary of Difficult Words

The first exercises build a sort of dictionary of the most unusual words for
deaf children. Single words are proposed on the screen together with an image
explaining their meaning and a short textual explanation; example sentences are
also available. This preliminary phase simplifies the comprehension of the story
and the association grapheme-meaning in beginning readers, a step which may
be necessary with young deaf users. Children can also consult back the dictionary
during the other work sessions of LODE.

Future versions of LODE will also feature a translation of the dictionary words
into Italian Sign Language (Lingua Italiana dei Segni, LIS) to facilitate their
comprehension to LIS speakers.

3.2 Global Reasoning Exercises

Then the chosen story is presented, split across different pages. There are two
or three sentences with an explanatory image on each page. The text is visually
predominant so that the child must concentrate on it and not on the image.
Every few pages, the child starts a new exercise session for reasoning on the
tale. In LODE, we have two main types of reasoning exercises: comprehension
exercises and production exercises.

Comprehension. In comprehension exercises, the child is presented with tem-
poral relations connecting events of the story; the relations may be implicit in it.
More precisely, the child is proposed four temporal relations. The child is asked
to judge which relations are inconsistent with the text he/she has already read,
playing the role of the teacher who eliminates the incoherent ones. The four
cases are constructed with the assistance of the constraint programming system
to determine which temporal relations are (in)consistent with the story.

Production. The child is asked to tackle three main kinds of production exer-
cises, explained in the following.

P1. The child is shown an unordered sequence of temporal events extracted from
the story; his/her task is to drag the events into the right temporal sequence,

Constraint-Based Temporal Reasoning for E-Learning with LODE 95

namely, one which is consistent with the story. The consistency is decided
by the constraint programming system.

P2. The child is shown scattered sentence units extracted from the given story;
then he/she should compose a grammatically correct sentence with them,
forming a temporal relation consistent with the story and which may be im-
plicit in the story. For instance, suppose that the available sentence units are:
before, while, after, the big eggshell, cracks, the small eggshells,
crack. Two are the possible correct sentences the child can compose, consis-
tent with the tale. One is: the small eggshells crack before the big
eggshell cracks. The other sentence is: the big eggshell cracks
after the small eggshells crack. If the child composes a wrong sen-
tence, because it is ungrammatical or inconsistent with the story, LODE will
suggest how to correct the sentence with the help of the constraint program-
ming system and a natural language processor for Italian.

P3. The child can also reinvent the chosen e-story by using selected events of the
e-story. More precisely, first LODE proposes a set of events extracted from
the chosen e-story. Then the child re-creates his/her own story by reordering
the events along the timeline, to the child’s liking. Anytime, the child can
check whether the temporal relations are consistent in his/her story, e.g., it
is not the case that an event is simultaneously before and during another;
he/she can also ask for the assistance of LODE, or better, of the constraint
programming system of LODE in setting new temporal relations between
events, consistent with his/her story.

3.3 Final Remarks

LODE assists children in all the exercises, e.g., they are shown the events they
may reason on. The difficulty of the exercises for reasoning increases with the
portion of the story the child has to reason on. Thus, first LODE proposes the
simpler exercises: these relate two temporal events which occur in the portion
of the tale, temporally rich, that the child has just read. If the score reached so
far by the child is reasonably good, then LODE proposes the more challenging
exercises, namely, those that require a deep global understanding of the story
and the creation of global temporal relations: these exercises relate two temporal
events, one of the current session and the other of a previous session—the farther
is this session the more difficult is the exercise.

Moreover, note that the comprehension exercises aim at stimulating the de-
duction of global relations between events of the story; the production exercises
demand this and something else, that is, to compose parts of the story. There-
fore, the production exercises also aim at teaching children Italian grammar. To
stimulate children to write, web users of LODE will also be invited to collaborate
and exchange their productions via a blog.

Through all its exercises, LODE stimulates children to learn and reason on
e-stories in an inductive and implicit manner.

96 R. Gennari and O. Mich

Web GUI REASONER

Data ARCHIVE

Natural
Language

PROCESSOR

SERVER

M
A

S
T

E
R

CLIENT

Fig. 2. LODE: a screen-shot of a client session on the left and the client-server archi-
tecture on the right

4 LODE: The Architecture and the Constraint-based
Module

LODE has a web-based client-server architecture; see Fig. 2. We opt for this
for several reasons. First, it makes LODE independent of the Operating System
(OS). Therefore, users are free to run LODE on the preferred OS with their web
browser. Second, it makes easier the updating of LODE; new features can be
implemented without affecting the users, e.g., no need of installing new versions
of LODE. Third, a web-based architecture promotes collaborative study: when
they are on-line, the LODE users can work together and exchange their own
stories or comments.

4.1 The Modular Architecture

The client is a graphical user interface (GUI); see the left side of Fig. 2. This is
an AJAX application compatible with most web browsers, e.g., Firefox-Mozilla,
Internet Explorer, Safari, Opera. It works as the interface between the LODE
user and the real system, the server, which runs on a remote machine.

The server has a modular structure. The main modules are: 1) the stories’
database, 2) the Constraint-based Automated Reasoner and 3) the Natural Lan-
guage Processor ; see the right side Fig. 2.

1) The current stories’ database is a simple repository structured as a file
system. It contains temporally enriched versions of famous children sto-
ries, in XHTML format. Events and relations are tagged in XHTML à la
TimeML [23], the main difference being that the used Allen relations can be
non-atomic; see Fig. 3 for an example.

2) The Constraint-based Automated Reasoner is composed of three main parts:
a) ECLiPSe, the constraint (logic) programming system; b) the knowledge
base, namely, an ECLiPSe program with the inverse and composition oper-
ations for the Allen relations; c) the domain knowledge, consisting of con-
straint problems modelling the temporal information of the e-stories in the

Constraint-Based Temporal Reasoning for E-Learning with LODE 97

database. The Constraint-based Automated Reasoner is employed in the
composition and production exercises to assist children in their deductions.

3) The Natural Language Processor will check if the user’s sentences are gram-
matically correct in the production exercises.

The most important module of the architecture is the Constraint-based Auto-
mated Reasoner.

4.2 The Constraint-Based Automated Reasoner

Each e-story in the database is modelled as a constraint problem in a semi-
automated manner; the problem is included in the domain knowledge and then
solved by the chosen constraint programming system. Let us make precise what
we mean by modelling and solving in the context of LODE; for their more general
presentation, refer back to Subsect. 2.2.

Constraint modelling in LODE. First we illustrate the main steps of the
modelling with an example and then we generalise it.

Example. Hereby is part of the excerpt of the LODE’s story introduced in Sect. 2:

The small eggshells crack. Mammy duck watches the big
egg. . . After some days, [. . .] the big eggshell cracks. (2)

The excerpt has 3 temporal events, tagged in the XHTML code as illustrated in
Fig. 3:

– “the small eggshells crack”, classified as E1;
– “Mammy duck watches the big egg”, classified as E2;
– “the big eggshell cracks”, classified as E3;

The corresponding constraint problem, stored in the domain knowledge of
ECLiPSe, has variables

<EVENT class="E1">

The small eggshells crack

</EVENT>

<EVENT class="E2">

Mammy duck watches the big egg

</EVENT>

<TLINK event="E1" relatedToEvent="E2" relType="before OR meets"/>

<EVENT class="E3">

The big eggshell cracks

</EVENT>

<TLINK event="E2" relatedToEvent="E3" relType="before"/>

Fig. 3. A sample of a tagged story in LODE

98 R. Gennari and O. Mich

– E1E2 with domain the set of the atomic Allen relations between E1 and E2,
– E2E3 with domain the set of the atomic Allen relations between E2 and E3,
– E1E3 with domain the set of the atomic Allen relations between E1 and E3,

and constraints of two main types:

C1. unary constraints formalising the temporal relations of the excerpt (which
are tagged with TLINK in the XHTML code in Fig. 3), that is: a constraint
stating that E1E2 is before or meets; a constraint stating that E2E3 is before;

C2. a ternary constraint on E1, E2 and E3 formalising the Allen composition
operation; the ternary constraint on E1, E2 and E3 yields that before can
hold between E1 and E3 since before can hold between E1 and E2, and
between E2 and E3.

See Fig. 4 for the straightforward translation of the above constraints in the
language of ECLiPSe.

E1E2 &:: [before,meets],

E2E3 &:: [before],

allen composition(E1E2, E2E3, E1E3)

Fig. 4. The constraint model in ECLiPSe corresponding to the sample in Fig. 3

Model. As illustrated in the above example, here we adopt the same constraint
model for qualitative temporal reasoning as in [3]. More precisely, the knowledge
base contains

– the set A of atomic Allen relations providing the domain of the variables,
– a ternary relation, namely, allen composition, for the composition of the Allen

relations, e.g., allen composition(before, before, before).

Let E := {E1, . . . , En} be the set of events tagged in a story of LODE. Then the
domain knowledge of the constraint-based module contains the following:

– variables EiEj of ordered pairs of events Ei and Ej of E; the domain of the
EiEj is the set A of the atomic Allen relations;

– for each variable EiEj, a unary constraint C(EiEj) on EiEj which restricts
the relations from A to those that are declared in the story (e.g., see item
C1 above);

– for each triple Ei, Ej and Ek of events from E, a ternary constraint C(EiEj,
EjEk, EiEk) stating that each relation in EiEk comes from the composition
of EiEj and EjEk (e.g., see item C2 above).

Constraint solving in LODE. In LODE, we employ both the following solving
capabilities of a constraint programming system such as ECLiPSe:

– that of deciding on the consistency of a temporal constraint problem in the
domain knowledge,

Constraint-Based Temporal Reasoning for E-Learning with LODE 99

– that of deducing a/all the consistent Allen relation/relations between two
events of a temporal constraint problem in the domain knowledge.

These constraint solving capabilities are employed in LODE in two main manners:

– to assist the LODE developers in the creation of the exercises; the constraint
programming system allows us to automatically deduce the relations between
events which are consistent with the e-story, such as before between E1 and
E3 of (2);

– to assist children in the resolution of exercises. In the comprehension ex-
ercises and in some production exercises (see Sect. 3), the constraint pro-
gramming system can be used to decide on the consistency of the relations
proposed by children. Moreover, in specific production exercises, a child can
recreate his/her own story, setting a different order among events of the story
along the timeline; then he/she can (transparently) query the constraint sys-
tem to decide on the consistency of the recreated story or to deduce a/the
consistent relation/relations between the considered events.

Final remarks: Why Constraint Programming in LODE. Constraint pro-
gramming is thus a backbone of LODE; in the following, we try to sum up the
main reasons for using constraint programming in LODE; we split our summary
in two parts, one for constraint modelling, the other for constraint solving.

Constraint modelling

– First of all, the constraint modelling is human readable as it is closer to
the structure of the temporal reasoning problem; by way of contrast, a SAT
encoding would be less manageable and readable for the modeller.

– The modelling can also be semi-automated: events and explicit relations of
an e-story are first tagged in XHTML; then a script automatically reads
the XHTML tags and translates them into variables and constraints of the
corresponding constraint problem.

– Last but not least, the constraint model for temporal reasoning that we
adopted here allows us to employ a generic constraint programming system,
such as ECLiPSe, as is. In other words, this constraint model does not de-
mand to implement dedicated algorithms for temporal reasoning with Allen
relations; for instance, with this model, we can exploit constraint propagation
in the form of hyper-arc consistency which is already available in the propia
library of ECLiPSe; instead, with the constraint model described in [12], we
should use and implement path consistency.

Constraint solving

– Thanks to the solving capabilities of the constraint programming system,
users of LODE can create new temporally consistent e-stories out of the
available ones: a user of LODE can query the constraint programming system
to decide on the consistency of the relations in his/her story, or to deduce
new temporal relations that can be consistently added to his/her story.

100 R. Gennari and O. Mich

– Using constraint programming spares the LODE developers manual work in
the creation of the exercises, a task which is tedious and prone to human
errors: instead of creating, manually, a series of exercises, e-stories are first
modelled as constraint problems; then the relations of the reasoning exer-
cises, introduced in Sect. 3, are deduced using the constraint programming
system.

– Moreover, the exercises created in this manner can be easily updated, new
exercises can be introduced and solved on the fly using the constraint pro-
gramming system.

– Although the efficiency in solving temporal problems is not a critical fea-
ture of LODE at present, it may become a critical issue in future and more
ambitious versions of the tool; in this respect, the model and the different
constraint propagation and search procedures already available in the chosen
constraint programming system will be of pivotal importance.

5 Related Work

Currently, research in deaf studies and computer science seems to mostly revolve
around applications for sign languages, such as LIS, e.g., see [7,16]. Considerable
less attention seems to be devoted to the development of e-learning tools for the
literacy of deaf children in verbal languages. This impression is confirmed by our
overview of this type of e-learning tools. We present the main ones related to
LODE in the remainder.

5.1 Italian Tools

In Italy, three systems were developed in the ’90s to tackle different aspects of
verbal Italian lexicon or grammar: Articoli [6] aims at teaching Italian articles
(e.g., gender agreement); Carotino [8] is an interactive tool for teaching simple
Italian phrases; Pro-Peanuts [21] deals with the correct use of pronouns. Please,
note that none of these tools were developed exclusively for deaf children. This is
clear in a tool such as Carotino, where instructions for children presume a certain
knowledge of written verbal Italian and do not focus on issues with verbal Italian
which are specific to deaf children.

There are several tools that aim at teaching stories to deaf or hearing-impaired
children. In order to facilitate the integration of a deaf girl into an Italian primary
school, teachers and students of the school created Fabulis [11], a collection of
famous stories for children narrated using text and images, based on gestures
and LIS signs. Another application born at school is Nuvolina [19], the result of
a project realised in a fourth class of an Italian primary school. Also this project
aimed at integrating a deaf girl into the class. Nuvolina is a multimedia tale
with contents in Italian, English and French, written and spoken. The version
in verbal Italian is also presented in LIS by means of short videos.

In the area of bilingual tools, employing LIS and verbal Italian, we found Gli
Animali della Savana [2]. This is a multimedia software based on text, images

Constraint-Based Temporal Reasoning for E-Learning with LODE 101

and videos, featuring an actor who translates the written text in LIS; assisted
by a cartoon (a lion), the user navigates through a series of pages presenting
the life of 10 wild animals. A more recent and ambitious project is Tell me a
Dictionary [15,22], the purpose of which is to offer both deaf and hearing children
an interactive instrument to discover and compare the lexicon of LIS and Italian.
Tell me a Dictionary is a multimedia series of six DVDs plus book volumes [15].

We also found references to a tool developed in 1994, Corso di Lettura [10],
which aims at improving the reading capabilities of hearing-impaired children.
Alas, we could not find further information on the tool besides this.

5.2 English Tools

Theprimary goal of the ICICLE [14,17] researcherswas to employ natural language
processing andgeneration to tutor deaf students on theirwrittenEnglish. ICICLE’s
interactionwith the user takes the formof a cycle of user input and system response.
The cycle begins when a user submits a piece of writing to be reviewed by the sys-
tem. The system then performs a syntactic analysis on this writing, determines its
errors, and constructs a response in the form of tutorial feedback. This feedback is
aimed towards making the student aware of the nature of the errors found in the
writing and giving him or her the information needed to correct them.

CornerStones [18] is a technology-infused approach to literacy development for
early primary children who are deaf or hard of hearing. Academic experts in lit-
eracy and deafness, along with teachers of deaf students participated in its de-
velopment. An essential element of Cornerstones is a story taken from the PBS’s
literacy series Between the Lions, complemented by versions of the story in Amer-
ican Sign Language and other visual-spatial systems for communicating with deaf
children. Cornerstones developers evaluated their system with children and teach-
ers and results of their evaluation demonstrated an increase in students’ knowledge
of selected words from pre-test to post-test.

FtL [9] has not been developed for deaf or hard of hearing children, but this type
of users has also been considered. FtL is a comprehensive computer-based read-
ing program that has been designed to teach beginning and early readers to read
with good comprehension. FtL consists of three integrated components: a Man-
aged Learning Environment (MLE) that tracks and displays student progress and
manages an individual study plan for each student; Foundational Skills Reading
Exercises, which teach and practice basic reading skills, such as alphabet knowl-
edge and word decoding, providing the foundation for fluent reading; Interactive
Books, which represent the state of the art in integration of human language and
animation technologies to enable conversational interaction with a Virtual Tutor
that teaches fluent reading and comprehension of text. The final evaluation of FtL
produced significant learning gains for letter and word recognition for kindergarten
students.

5.3 Final Remarks

According to our overview of Italian and non-Italian projects for deaf children,
and to the best of our knowledge, LODE is the first web e-learning tool that

102 R. Gennari and O. Mich

tackles literacy issues of deaf children which go beyond the lexicon and
grammar of a verbal language, that is: LODE addresses global deductive reasoning
on stories, and LODE does it with the support of a constraint-based automated
reasoner. Table 1 gives a summative analysis of LODE, comparing it with the
principal and assessed tools for the literacy improvement of deaf children.

Table 1. Tools for literacy improvement: a comparative analysis

ICICLE Cornerstones FtL LODE

Content type user’s input famous stories interactive
books

famous
stories

Use of sign language yes yes no planned

Dialogue interface yes no yes yes

Reading comprehension no no yes yes

Active feedback yes no no yes

Syntax/grammar analysis yes no no planned

Speech recognition no no yes no

Global deductive reasoning no no no yes

6 Future Work

LODE is being evaluated into three main phases. The first evaluation phase is
almost over; LIS interpreters and teachers for deaf children from the Talking
Hands Association and the Italian National Institute for the Assistance and
Protection of the Deaf (ENS), logopaedists and a cognitive psychologist have
tested a preliminary version of LODE and provided us with positive informative
feedback on its learning goals and strategies.

The second and third evaluation phases will directly involve deaf children;
the second phase will be done in class with the assistance of a teacher from
ENS and a cognitive psychologist; the third phase will involve children at home.
The second evaluation phase will test the usability of LODE and, in particular,
which is the most effective way of visually representing the exercises of LODE.
The third evaluation phase will test the effectiveness of LODE and will involve
circa 15 deaf children. As confirmed by our own experience, the assistance of
children and their teachers is fundamental for developing a tool interesting and
useful for children.

Last but not least, the application of constraint programming in LODE goes
beyond temporal reasoning: after the evaluation phase, we are going to extend
LODE to other kinds of global deductive reasoning, critical for deaf children and
for which constraint programming can be beneficial.

7 Conclusions

In this paper, we presented our e-learning web-based tool for deaf children:
LODE. The tool tackles problematic issues encountered in their written produc-
tions in a verbal language, related to deductive global reasoning; see Subsect. 1.1.

Constraint-Based Temporal Reasoning for E-Learning with LODE 103

Presently, we are focusing on global temporal reasoning. In Sect. 2, we introduced
temporal reasoning with Allen relations and motivated their use in the context
of LODE; note that the relations are visually represented as explained in [13]
because LODE is for deaf children. In Sect. 3, we summed up the educational
exercises of LODE; we showed how the so-called reasoning exercises aim at stim-
ulating global reasoning on stories, and not on isolated sentences of the stories.

In particular, these exercises of LODE demand the use of the automated rea-
soner embedded in LODE, namely, a constraint programming system. In Sect. 4,
explaining the web-based architecture of LODE, we presented in details and mo-
tivated such a use of constraint programming in LODE, both in terms of the
adopted constraint model for temporal reasoning problems and in terms of the
constraint solving capabilities of a system such as ECLiPSe.

In Sect. 5, we overviewed and compared with LODE several e-learning tools
that address literacy issues of deaf or hearing-impaired people. According to
our overview and to the best of our knowledge, LODE is the first web-based
e-learning tool which aims at stimulating global deductive reasoning on whole
e-stories in a verbal language, such as Italian, by employing a constraint-based
automated reasoner.

Acknowledgement. Among the others, we wish to thank B. Arfé, S. Brand,
the ENS of Trento (in particular, N. Hy Thien), Talking Hands (in particular,
F. De Carli), M. Valente and the anonymous referees for their assistance.

References

1. Allen, J.F.: Mantaining Knowledge about Temporal Intervals. Comm. of ACM 26,
832–843 (1983)

2. Animali della Savana, G.: Retrieved (October 24, 2006) from
http://www.areato.org/noquadri/ausiliDinamici/AusDnm 00 Titolo.Asp?
IDAUSILIO=106&FORMATO=G

3. Apt, K.R., Brand, S.: Constraint-based Qualitative Simulation. In: Proc. of
the 12th International Symposium on Temporal Representation and Reasoning
(TIME’05), pp. 26–34 (2005)

4. Apt, K.R., Wallace, M.G.: Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press, Cambridge (2006)

5. Arfé, B., Boscolo, P.: Causal Coherence in Deaf and Hearing Students’ Written
Narratives. Discourse Processes 42(3), 271–300 (2006)

6. Articoli: Retrieved (October 24, 2006) from
http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=36

7. Bartolini, S., Bennati, P., Giorgi, R.: Sistema per la Traduzione in Lingua Italiana
dei Segni: Blue Sign Translator / Wireless Sign System. In: Proc. of the 50th AIES
National Conference (2004)

8. Carotino: Retrieved (October 24, 2006) from
http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=40

9. Cole, R., Massaro, D., Rundle, B., Shobaki, K., Wouters, J., Cohen, M., Beskow, J.,
Stone, P., Connors, P., Tarachow, A., Solcher, D.: New Tools for Interactive Speech
and Language Training: Using Animated Conversational Agents in the Classrooms
of Profoundly Deaf Children

http://www.areato.org/noquadri/ausiliDinamici/AusDnm_00_Titolo.Asp?IDAUSILIO=106&FORMATO=G
http://www.areato.org/noquadri/ausiliDinamici/AusDnm_00_Titolo.Asp?IDAUSILIO=106&FORMATO=G
http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=36
http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=40

104 R. Gennari and O. Mich

10. di Lettura, C.: Retrieved (October 24, 2006) from
http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=35

11. Fabulis: Retrieved (October 24, 2006) from
http://www.bonavitacola.net/fabulis/

12. Gennari, R.: Temporal Reasoning and Constraint Programming: a Survey. CWI
Quarterly 11(2–3) (1998)

13. Gennari, R., Mich, O.: LODE: Global Reasoning on e-Stories for Deaf Children.
In: Proc. of the Engineered Applications of Semantic Web (SWEA 2007), invited
session of the 11th KES conference, to be published in the LNAI/LNCS series
(2007)

14. ICICLE: Retrieved (January 24, 2007) from http://www.eecis.udel.edu/
research/icicle/

15. Insolera, E., Militano, G., Radutzky, E., Rossini, A.: Pilot Learning Strategies in
Step with New Technologies: LIS and Italian in a Bilingual Multimedia Context
’Tell me a Dictionary’. In: Vettori, C. (ed.) Proc. of the 2nd Workshop on the
Representation and Processing of Sign Languages, LREC 2006 (2006)

16. Mertzani, M., Denmark, C., Day, L.: Forming Sign Language Learning Environ-
ments in Cyberspace. In: Vettori, C. (ed.) Proc. of the 2nd Workshop on the Rep-
resentation and Processing of Sign Languages, LREC 2006 (2006)

17. Michaud, L.N., McCoy, K.F., Pennington, C.: An Intelligent Tutoring System for
Deaf Learners of Written English. In: Proc. of ASSETS’00 (2000)

18. NCAM-CornerStones: Retrieved (January 24, 2007) from http://ncam.wgbh.org/
cornerstones/overview.html

19. Nuvolina: Retrieved (October 24, 2006) (1998) from http://www.areato.org/
noquadri/ausiliDinamici/AusDnm 01 Dettaglio.Asp?IDAUSILIO=229
IDSEZIONE=5&FORMATO=G&VETRINA=N

20. Paul, P.V.: Literacy and Deafness: the Development of Reading, Writing, and Lit-
erate Thought. Allyn & Bacon (1998)

21. Pro-peanuts: Retrieved (October 24, 2006) (1998) from http://www.ciscl.
unisi.it/persone/chesi/laurea/str.htm

22. Tell me a Dictionary: Retrieved (October 24, 2006) (2005) from http://www.
lismediait/demo01/home.html

23. TimeML: Retrieved (March 10, 2007) from
http://www.cs.brandeis.edu/∼jamesp/arda/time/

24. UNESCO: Education of Deaf Children and Young People. Guides for Special Needs
Education. Paris (1987)

http://www.anastasis.it/AMBIENTI/NodoCMS/CaricaPagina.asp?ID=35
http://www.bonavitacola.net/fabulis/
http://www.eecis.udel.edu/research/icicle/
http://www.eecis.udel.edu/research/icicle/
http://ncam.wgbh.org/cornerstones/overview.html
http://ncam.wgbh.org/cornerstones/overview.html
http://www.areato.org/noquadri/ausiliDinamici/AusDnm_01_Dettaglio.Asp?IDAUSILIO=229&IDSEZIONE=5&FORMATO=G&VETRINA=N
http://www.areato.org/noquadri/ausiliDinamici/AusDnm_01_Dettaglio.Asp?IDAUSILIO=229&IDSEZIONE=5&FORMATO=G&VETRINA=N
http://www.areato.org/noquadri/ausiliDinamici/AusDnm_01_Dettaglio.Asp?IDAUSILIO=229&IDSEZIONE=5&FORMATO=G&VETRINA=N
http://www.ciscl.unisi.it/persone/chesi/laurea/str.htm
http://www.ciscl.unisi.it/persone/chesi/laurea/str.htm
http://www.lismedia.it/demo01/home.html
http://www.lismedia.it/demo01/home.html
http://www.cs.brandeis.edu/~jamesp/arda/time/

Scheduling for Cellular Manufacturing

Roman van der Krogt1, James Little1, Kenneth Pulliam2, Sue Hanhilammi2,
and Yue Jin3

1 Cork Constraint Computation Centre
Department of Computer Science

University College Cork, Cork, Ireland
{roman,jlittle}@4c.ucc.ie

2 Alcatel-Lucent System Integration Center, Columbus, Ohio
3 Bell Labs Research Center Ireland

Abstract. Alcatel-Lucent is a major player in the field of telecommu-
nications. One of the products it offers to network operators is wireless
infrastructure such as base stations. Such equipment is delivered in cabi-
nets. These cabinets are packed with various pieces of electronics: filters,
amplifiers, circuit packs, etc. The exact configuration of a cabinet is
dependent upon the circumstances it is being placed in, and some 20
product groups can be distinguished. However, the variation in cabinets
is large, even within one product group. For this reason, they are built
to order.

In order to improve cost, yield and delivery performance, lean man-
ufacturing concepts were applied to change the layout of the factory to
one based on cells. These cells focus on improving manufacturing through
standardised work, limited changeovers between product groups and bet-
ter utilisation of test equipment. A key component in the implementation
of these improvements is a system which schedules the cells to satisfy
customer request dates in an efficient sequence.

This paper describes the transformation and the tool that was
built to support the new method of operations. The implementation
has achieved significant improvements in manufacturing interval, work
in process inventory, first test yield, headcount, quality (i.e. fewer defects
are found during the testing stage) and delivery performance. Although
these benefits are mainly achieved because of the change to a cell layout,
the scheduling tool is crucial in realising the full potential of it.

1 Introduction

Alcatel-Lucent is a major player in the field of telecommunications. One of the
products they deliver to network operators is wireless infrastructure. A key com-
ponent of wireless infrastructure is the base station. Such equipment is delivered
in cabinets, an example of which is pictured in Figure 1.1 Located between the
1 Although the cabinet is only the outer casing of the equipment, this is the term the

company uses to refer to the equipment. In this paper, we will therefore also use the
term ’cabinet’ to refer to the whole item.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 105–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

106 R. van der Krogt et al.

antennae and the ground network, their function is to handle the signals the
antennae receive and send. Depending on the model, their size is roughly that
of a standard kitchen refrigerator and they are packed with various pieces of
electronics: filters, amplifiers, circuit packs, etc. The exact configuration of a
cabinet is dependent upon the circumstances it is being placed in: the type of
network (e.g. CDMA or UMTS), the frequency (the GSM standard defines eight
frequency bands, for example), physical location (inside or outside), network
density (is it expected to handle a high or low volume of calls, what is the area
the cabinet covers), etc. Some 20 product groups can initially be distinguished.
However, as one can understand from the many aspects that are taken into con-
sideration, the variation in cabinets is large, even within one product group. For
this reason, they are built to order.

Fig. 1. A cabinet

The site that we worked with, the Systems Integration Center in Columbus,
Ohio, produces several hundred cabinets per week on average. The production
takes place in three stages: assembly, wiring and testing. The durations of each
the stages depends on the particular product group of the cabinet.

Assembly. The first series of steps takes as input a partially pre-populated
cabinet. This has certain basic features such as power supplies, cooling and
the back plane. To this, they add the required amplifiers, filters, circuit packs
and other hardware according to a predetermined schema. The cabinet passes
through a number of stations. Each station is dedicated to one or more types
of modules that are fitted into the cabinet.

Wiring. The second step involves physically interconnecting the hardware that
was added during assembly. Each component has a number of input and
output ports that have to be connected with a wire to the outputs and
inputs of other modules, again according to a predefined schema.

Scheduling for Cellular Manufacturing 107

Testing. The final step involves the validation of the completed system. For
this, each cabinet is connected to a test station that subjects it to a specially
designed set of test signals. If the output of the cabinet is not according to
specifications (e.g. due to a cable that is not firmly fixed in place), the test
engineer diagnoses the system and corrects the fault.

Of the three stages, assembly is a relatively low skill operation and requires the
least amount of training. The wiring step is more complicated, because a great
number of connections has to be made between a great number of connectors
that all look identical. Moreover, there is a high degree of freedom in the way the
connections can be made. Not in terms of the inputs and outputs that have to be
connected (these are fixed), but in terms of the order in which the connections
are made (i.e. which cables run in front of other cables), the position of the
cables (e.g. along the left or the right side of the cabinet) and which cables
are tied together. The final step of testing is also complicated, as it involves
making diagnoses for the detected anomalies and repairing them. Notice that
the high variability in orders exacerbates the complexity in wiring and testing.
To address these issues, the management decided to introduce a new setup that
allows wirers and test engineers to specialise on product groups. However, this
means that production has to be matched to available operator capabilities. The
CP-based scheduling system we describe in this paper does exactly that.

The remainder of this paper is organised as follows. In the next section, we
describe this change in operations in more detail and show why the use of a
scheduling tool is necessary in the new situation. Section 3, then, describes the
system that we built in detail. The paper finishes with an evaluation on the
system itself and the use of CP in general.

2 Introducing CP

As indicated in the introduction, the wirers and test engineers face a great diffi-
culty because of the huge variety in cabinets. Part of the problem in the original
situation, as depicted in Figure 2.a, is that all wirers and all test engineers are
considered to be a pool. Assembly puts populated cabinets into a buffer, from
which the wirers take their cabinets. In their turn, wirers put finished cabinets
into a buffer for testing. In this situation, only a very crude scheduling is em-
ployed. Based on the due dates of the orders, it is decided which orders are to be
produced on a given day. The assembly stage then starts populating the required
cabinets and places them in a buffer for wiring. When a wirer finishes a cabinet,
he chooses one of the cabinets from the buffer to work on. Similarly, testers pull
a cabinet out of the buffer for testing. In this way, cabinets trickle down the three
stages on their way to completion. Aside from the selection of which orders to
produce on a given day, no scheduling is performed. This may lead to several
issues. For example, when a particular wirer has finished there is a few specific
cabinets available in the buffer. Perhaps, the only product groups available are
ones that he has no great familiarity with, which may lead to errors. As a sec-
ond example, consider that a wirer consistently makes the same mistake over a

108 R. van der Krogt et al.

particular period of time. These may be spread over several testers, all of whom
will have to diagnose the fault and may not notice the repeated nature of it.
Moreover, cabinets from product groups that are hard to wire, may have to wait
in the wiring buffer for a long time, since other, easier, cabinets are preferred by
the wirers.

Fig. 2. From assembly line to cell-based work floor

To prevent these and similar issues, management had decided to move from
what was essentially an assembly line to a (partially) cell-based work floor [6].
In particular, the company wanted to integrate the wiring and testing activities
into a cell, as depicted in Figure 2.b. Such a cell is made up of a dedicated
team consisting of wirers and testers that focuses on a limited number of prod-
uct groups. One of the key benefits that the company hopes to achieve by this
change in setup is an improved quality of wiring and hence lower testing times.
However, since the cells are dedicated to certain product groups, the order in
which cabinets are assembled becomes much more important. An incorrect se-
quence may starve certain cells, or lead to building a stock of cabinets waiting
to be processed on an already overloaded cell (or indeed both). For this reason,
a scheduling tool was required.

The choice of technology was influenced by several factors. Firstly, the prob-
lem is a scheduling one in which time needed to be represented at the minute
level. Therefore, a CP or IP based approach would be considered. There was
uncertainty about what a good schedule would look like and so we would be re-
quired to iterate through a number of search strategies and objective functions

Scheduling for Cellular Manufacturing 109

to achieve the type of schedule they needed. This required an environment to
try different options quickly, one of the reasons to work with Ilog OPL Studio.
Once we analysed the problem more we could see that here was a variety of
complex scheduling constraints which would have been too onerous to model in
IP; the high level scheduling concepts of CP-based scheduling provided the ideal
medium.

2.1 Related Work

Constraint-based scheduling is a modelling and solving technique successfully
used to solve real-world manufacturing problems in, for example, aircraft man-
ufacturing [4], production scheduling [8] and the semiconductor industry [1]. In
the area of telecommunications, Little et al. [5] have already applied CP to the
complex thermal part of the testing of circuit packs. This type of testing is not
present in the plant we are concerned with; however, the work was influential in
convincing the company of the suitability of the CP technology.

The area of cellular manufacturing is traditionally more about layout and
design; where the actual design of the cells, what they are to do, their location
and possible performance is of concern. Love [6] gives a clear overview on this
type of problem. In particular, Golany et al. [2] are concerned with identifying
the optimal level of work in progress (WIP) and the best strategy to deal with
backlogs, rather than producing a day to day schedule. Also in our case, the cells
location, number and they types of operations that they do, has been decided
in advance. Ponnabalam et al. [9] consider simulation of manufacturing through
a cell in light of uncertainty. They propose new heuristics to decide on the
allocation of jobs to machines. They are working on theoretical problems here,
but also simulating scheduling rather than creating an optimal (or near optimal)
schedule.

3 The Program

The basis of the model was developed over the course of a one week site visit. As
indicated above, the tool that we used for this was Ilog OPL Studio 3.7.1 with
the Ilog Scheduler [7]. Perhaps the most significant reason to use OPL Studio
was that we had effectively a time window of one week in which to develop
a model which would convince the company of the potential benefits. A rapid
prototyping system such as Ilog’s OPL 3.7.1 with its variety of solvers seemed a
good choice. Additionally, it offers the ability to try a variety of options quickly,
while investigating different strategies and objective functions. After the initial
model was built and verified, we returned home and finished the details of the
model and built a user interface around it. (More on our procedure is outlined
in the next section.)

The scheduling system produces a weekly schedule given the list of orders for
that week. It does so by iteratively considering each day, extending the schedule
built for the previous day(s). For each day, it first produces a schedule for each of
the cells, assuring that assembly is possible in principle. Then, in a second phase,

110 R. van der Krogt et al.

it optimises the assembly process. It then fixes this schedule and continues with
the next day. Satisfactory results are obtained with optimising each day for 60
CPU-seconds.2 The user runs the tool twice daily, computing a schedule from
scratch each time (but taking into account work in progress). This way, changes
to e.g. due dates and availability of material, and disruptions (e.g. machine
break-downs) are taken into account. If necessary, the tool can be run when a
disruption occurs to immediately take it into account.

Each order o is characterised by a product group group[o], an earliest start
time releaseTime[o], a due date dueDate[o], a measure for the availability of
components needed for the cabinet matAvailability [o], a priority priority [o] and
a partial preference ordering over the shifts preference[o].

3.1 The Model

From Figure 2.b one can see that there are essentially two processes in the new
configuration: that of assembly, and the work being carried out on the cells. As
the operations within each those processes are a sequence of steps, we opted not
to model each of the substeps, but regard each of the cells and the assembly line
as a single resource. A number of cabinets is assembled or processed at the same
time, however, so we used a discrete resource to model these.3 Unfortunately, the
semantics of a discrete resource imply that if we allow n cabinets simultaneously
on the assembly line, these might all start at the same time. Clearly this is
not the intended behaviour: although a number of cabinets can be assembled
simultaneously, these would have to be at different stations (i.e. stages in the
process). Therefore, for each discrete resource, we also create a corresponding
unary resource to regulate the flow.4 For each cabinet we now create two sets
of two of activities: one group to represent the usage of the assembly line, and
another to represent the usage of the cell. Both groups consist of an activity
for the discrete resource (with a duration equal to the complete process time),
and one activity for the unary resource (with a duration chosen according to
the desired flow through the resource). Constraints are put in place to ensure
that the activities in one group start at the same time. Figure 3 illustrates this
behaviour.Here, cellFlowAct [i] is the unary activity on a cell for cabinet i, and
wireAndTestAct [i] is the corresponding discrete activity. The duration of the
former activity regulates the inflow (it equals the duration of the first wiring
step); the duration of the latter equals the amount of time it takes for a cabinet
to be wired and tested. Notice that the variability in process times in all but one
of the stages is limited for all of the product groups; only the test stage has an
uncertain duration. However, the user recognised that this uncertain behaviour
2 The 60 seconds per day are required to get good results in weeks with a heavy load,

where orders have to be shifted to earlier days to achieve the requested due dates.
If this is not the case, 20 seconds per day suffice.

3 Discrete resources “are used to model resources that are available in multiple units,
all units being considered equivalent and interchangeable as far as the application is
concerned.” [3]

4 A unary resource “is a resource that cannot be shared by two activities.” [3]

Scheduling for Cellular Manufacturing 111

affects the efficiency of the cell as a whole. Therefore, they implemented a policy
to move cabinets that take more than a standard time to test to a special cell.
Hence, we are dealing with deterministic processing times, and can use fixed
durations in the schedule. In order to implement an efficient search, we make

Fig. 3. Example of using both a discrete resource and a unary resource to represent a
single entity (in this case: the cell)

use of a boolean matrix orderOnCellShift [o, c, s]. An entry in this matrix is true
iff order o is scheduled on cell c during shift s. Let O be the set of all orders, C
the set of all cells, and S the set of all shifts, then the following constraint holds:

∀o∈O

∑
s∈S

∑
c∈C

orderOnCellShift [o, c, s] = 1

Orders that are assigned a certain shift are started during that shift (but may
only be finished in a later shift):

∀o∈O

�

s∈S

�

c∈C

orderOnCellShift [o, c, s] × shift [s].start ≤ wireAndTestAct [o].start

∀o∈O wireAndTestAct [o].start ≤
�

s∈S

�

c∈C

orderOnCellShift [o, c, s] × shift [s].finish

Cells have an associated availability matrix which indicates during which shifts
they are active, as well as a capability matrix that specifies the product groups
that these cells can run.

∀o∈O∀c∈C

∑
s∈S

orderOnCellShift [o, c, s] ≤ capability [c, group[o]]

∀o∈O∀c∈C∀s∈S orderOnCellShift [o, c, s] ≤ availability [c, s]

Some days, not all orders can be scheduled, and some will have to be postponed
to a later date. A boolean variable delayed [o] is used to indicate that the due
date may be missed (but the order is still included in today’s schedule). Another
variable postponed [o] (which implies delayed [o]) indicates that the order will be
left for the next scheduling iteration.

∀o∈O (1 − delayed [o]) × wireAndTestAct [o].end ≤ dueDate[o]

In addition to the above constraints, there are constraints linking the activities
to their corresponding resources, precedence constraints as well as special con-
straints that keep track of the assignments that have been made so far, in order to

112 R. van der Krogt et al.

make decisions during search. The criterion is a minimisation of the makespan,
combined with the number of orders that have to be postponed. However, as
we shall see next, the search is geared towards clustering of product groups to
ensure few changeovers during a shift.

3.2 Search

A custom search procedure is used to produce the schedules for the cells, see
Algorithm 1. It considers each order in turn, ordered by their priorities, the
availability of components and their release times. It first tries to add the order
to today’s schedule, satisfying the due date constraints. To do so, it tries to assign
the order to each valid shift / cell combination. It does so following an order.
In this case, it first tries shifts with the highest preferences, and cells that have
already one or more cabinets of the same product group assigned. The latter is
to direct towards solutions that have a low number of different product groups
(and hence changeovers) that are assigned to a cell. If a shift / cell combination
is chosen, the order is assigned the earliest possible start time on that cell during
the shift.

If all these options fail, the search procedure next considers running late with
the order. This means that the order is started before it’s due time, but is only
finished after. Notice that we only have to consider the last possible shift of the
current time window in this case. Starting the processing of a cabinet during
one of the earlier shifts will result in the cabinet being finished in time, and the
previous step of the search procedure has shown that this cannot lead to a valid
solution. Finally, if neither of the previous steps result in a valid assignment for
the order, it is left for the next day’s schedule.

Once the cells have been assigned, a second search procedure is started that
optimises the assembly operations. The first stage finds ensures the existence
of a valid schedule for the assembly operations (to ensure that the schedule
for the cells is valid), but it does not try to optimise it, as the focus is on
optimising the usage of the cells. In this second phase, the schedule for the cells
is kept fixed, while the maximum time between the completion of assembly of
a cabinet and the start of the cell operations on that cabinet is minimised. The
search procedure for this stage is shown in Algorithm 2. This greedy algorithm
iteratively selects the order for which the minimum possible time that is spent in
the buffer between assembly and wiring is currently the largest.5 For this order,
it tries to assign the best possible time left, or removes it from the domain. It
does so for all orders, until all orders have been assigned a time to start the
assembly.

5 The dmax(v) function returns the maximum value in the domain of the variable
v. The function unbound(v) returns true if the variable v is unbound (i.e. has not
been assigned a value yet), and false otherwise.

Scheduling for Cellular Manufacturing 113

Algorithm 1. Search procedure for the first stage
begin

forall orders o ∈ O ordered by increasing 〈priority [o], matAvailability [o],
releaseTime[o]〉

try
// first try to schedule it for today
delayed [o] = 0
postponed [o] = 0
forall shifts s ∈ S ordered by increasing 〈preference[o], s〉

forall cells c ∈ C ordered by increasing 〈usage , s〉
try

orderOnCellShift [o, c, s] = 1
assign minimum time

or
orderOnCellShift [o, c, s] = 0

or
// consider finishing too late
delayed [o] = 1
postponed [o] = 0
select s ∈ S : s is the last shift in the current window
forall cells c ∈ C ordered by increasing 〈usage, s〉

try
orderOnCellShift [o, c, s] = 1
assign minimum time

or
orderOnCellShift [o, c, s] = 0

or
// wait for tomorrow’s schedule
delayed [o] = 1
postponed [o] = 1

end

Algorithm 2. Search procedure for the second stage
begin

while ∃o ∈ O : unbound(assemblyStart [o]) do
select o ∈ O : unbound(assemblyStart [o]) ordered by decreasing
〈cellStart [o] − dmax(assemblyStart [o]) 〉
try

assemblyStart [o] = dmax(assemblyStart [o])
or

assemblyStart [o] < dmax(assemblyStart [o])

end

114 R. van der Krogt et al.

3.3 The GUI

The user interface is built in Microsoft Excel using Visual Basic. The reason for
this is twofold. On the one hand, the users are comfortable using the Microsoft
Office suite, which means that no extra training is required. On the other hand,
it allowed for easy integration with the existing Work floor Management System
that tracks all activities and can generate reports in the Excel file format.

Fig. 4. Screenshot of the GUI

Figure 4 shows the user interface. The window in the top right (labeled “Cell
Scheduler”) forms the heart of the interface. On the left-hand side, it allows the
input of some general data (the input file for orders and the output file for the
resulting schedule, for example) and on the right-hand side there is a number
of buttons that allow the user to specify the more static input to the scheduler.
This includes things like the number of cells, their capabilities and availabilities,
changeover times between product groups, and the product groups themselves.
(This last window is shown in the foreground.)

The output of the scheduling tool is presented as an Excel file, see Figure 5. This
file consists of two sheets: one for assembly and one for the cells. On each tab, it
shows per shift which work is to be done and when and where each activity is to
take place. The rows in bold face correspond to work that was in progress when the
scheduling tool was run. Each row lists the order number, the start en finish times
of assembly (if applicable), the start and finish times of wiring and testing(i.e. the

Scheduling for Cellular Manufacturing 115

Fig. 5. Screenshot of the resulting output (censored)

activity on the cell) and the original due date. The cell sheet (which is shown in
Figure 5) groups the orders by cell, whereas the assembly sheet merely shows the
orders over time.

4 Evaluation

4.1 From Prototype to Production

The scheduling system is currently in the final stages of testing. As said before,
the project started with the authors visiting the site for a week in October 2006.
During the first two days of the week, we had meetings with the key figures
in the factory and were painted a detailed picture of the processes going on.
We then worked on a prototype model, confirming our decisions and asking for
clarifications as we needed them. Although very intense (for both sides), this
proved to be a very fruitful setup: by the end of the week we could present an
initial version of our system. After presenting our first results, the company was
confident that the CP-based scheduling approach that we proposed could deliver
the tool they needed. So confident, in fact, that they decided to buy the necessary
licenses, a considerable investment, during the course of our presentation. (The
option of re-engineering the model in another language was also considered, but
rejected because of time constraints.) We took the model home, further refined
it, and added the GUI as discussed in Section 3.3. Early January, we produced
the first schedules in parallel to the schedules the company made themselves.
Eventually, when enough confidence in the schedules was gained, the system’s
schedules were used as the basis for the company’s own schedules. From the
second half of March, the company is using the schedules as is. As all recent
issues are of a cosmetic nature, we expect to move into full production mode

116 R. van der Krogt et al.

shortly. This would mean that the project has taken roughly eight months from
the start. Note, however, that due to issues obtaining a license to OPL for the
company the project was stalled during December, and it was worked on part-
time. Taking this into account, the project has taken three to four months of
full-time work.

It is hard to quantify the direct benefit that the scheduling tool has delivered,
as it is part of the overall implementation of a different way of working. More-
over, the transition to the new setup has only recently been completed. However,
already, the user has observed significant improvements in manufacturing inter-
val, work in process inventory, first test yield, head count, quality and delivery
performance. Although these benefits are mainly achieved because of the change
to a cell layout, the scheduling tool is crucial in realising the full potential of this
layout. The feeling is that the return on investment is considerable, although
no figures have been calculated yet. Due to its success, the company consid-
ers extending the cell-based work floor concept to other areas of the factory. A
CP-based scheduler would be part of that extension.

4.2 Lessons Learned

The week that we spent on-site developing the first model was intensive (for all
parties), but great to kick start the project. By the end of the week, the outline
of the complete system could be seen, which acted as a motivator to keep things
going. However, to achieve this required commitment from the people in the
factory, who had to spend a lot of time interacting with us. The engineers at the
site had experience with the Theory of Constraints. As such, they had intuitive
notions of what a constraint is and how to identify them. This helped us greatly
in the initial modelling and getting the feedback on that model. Both these
factors were required for the success of our visit. If these requirements are met,
however, we can recommend this approach as it helps the developers to get to
grips with the problem quickly, and builds a strong relationship between the
developer and the user.

From our point of view, the main lesson learned is that it is harder than it
seems to successfully deploy a system. This may seem obvious to some, but the
amount of work it takes to go from prototype to a system robust enough to
withstand user interaction is considerable. Moreover, the variety of situations
that is encountered in practice means that the model itself has to be robust
enough to allow for very different input profiles. This either calls for a large data
set during development, or a period of building this robustness during the testing
process. As there was no data available on the new layout when we started, we
opted for the latter. In this case it is important to make the user realise that
the initial phase of testing will be slow and not not very smooth at times, as the
tool is adjusted to match the reality on the shop floor.

4.3 Final Remarks

This project shows the strength of the combination of lean manufacturing tech-
niques and (CP-based) scheduling. The former techniques allow a business to

Scheduling for Cellular Manufacturing 117

take a critical look at its operations to identify areas for improvement, whereas
the latter technique can be used to realise the potential of the improvements.
This becomes more and more an issue as businesses move to more advanced
methods of operation. As the user puts it: “The amount of constraints the pro-
gram has to handle points out the need for it. Scheduling manually would not
allow us to service our customers as well.”

Acknowledgements

Roman van der Krogt is supported by an Irish Research Council for Science,
Engineering and Technology (IRCSET) Postdoctoral Fellowship. James Little
is supported by Science Foundation Ireland under Grant- 03/CE3/I405 as part
of the Centre for Telecommunications Value-Chain-Driven Research and Grant-
05/IN/I886.

The authors would like to thank everybody at the Systems Integration Center
in Columbus, Ohio for their warm welcome and support.

References

1. Bixby, R., Burda, R., Miller, D.: Short-interval detailed production scheduling in
300mm semiconductor manufacturing using mixed integer and constraint program-
ming. In: The 17th Annual SEMI/IEEE Advanced Semiconductor Manufacturing
Conference (ASMC-2006), pp. 148–154. IEEE Computer Society Press, Los Alami-
tos (2006)

2. Golany, B., Dar-El, E.M., Zeev, N.: Controlling shop floor operations in a multi-
family, multi-cell manufacturing environment through constant work-in-process. IIE
Transactions 31, 771–781 (1999)

3. Ilog: Ilog OPL Studio 3.7.1 help files (2005)
4. Bellone, J., Chamard, A., Fischler, A.: Constraint logic programming decision sup-

port systems for planning and scheduling aircraft manufacturing at dassault avia-
tion. In: Proceedings of the Third International Conference on the Practical Appli-
cations of Prolog, pp. 111–113 (1995)

5. Creed, P., Berry, S., Little, J., Goyal, S., Cokely, D.: Thermal test scheduling using
constraint programming. In: Proceedings of the 12th IFAC Symposium on Informa-
tion Control Problems in Manufacturing (2006)

6. Love, D.: International Encyclopedia of Business and Management. In: The Design
of Manufacturing Systems, vol. 4, pp. 3154–3174. Thompson Business Press (1996)

7. Nuijten, W., Le Pape, C.: Constraint-based job shop scheduling with IILOG
SCHEDULER. Journal of Heuristics 3, 271–286 (1998)

8. Le Pape, C.: An application of constraint programming to a specific production
scheduling problem. Belgian Journal of Operations Research, Statistics and Com-
puter Science (1995)

9. Ponnambalam, S.G., Aravindan, P., Reddy, K.R.R.: Analysis of group scheduling
heuristics in a manufacturing cell. The International Journal of Advanced Manufac-
turing Technology 15, 914–932 (1999)

A Constraint Store Based on Multivalued

Decision Diagrams

H.R. Andersen1, T.Hadzic1, J.N. Hooker2, and P. Tiedemann1

1 IT University of Copenhagen
{hra,tarik,petert}@itu.dk
2 Carnegie Mellon University
john@hooker.tepper.cmu.edu

Abstract. The typical constraint store transmits a limited amount of
information because it consists only of variable domains. We propose a
richer constraint store in the form of a limited-width multivalued de-
cision diagram (MDD). It reduces to a traditional domain store when
the maximum width is one but allows greater pruning of the search tree
for larger widths. MDD propagation algorithms can be developed to
exploit the structure of particular constraints, much as is done for do-
main filtering algorithms. We propose specialized propagation algorithms
for alldiff and inequality constraints. Preliminary experiments show that
MDD propagation solves multiple alldiff problems an order of magnitude
more rapidly than traditional domain propagation. It also significantly
reduces the search tree for inequality problems, but additional research
is needed to reduce the computation time.

1 Introduction

Propagation through a constraint store is a central idea in constraint program-
ming, because it addresses a fundamental issue in the field. Namely, how can a
solver that processes individual constraints recognize the global structure of a
problem? Global constraints provide part of the answer, because they allow the
solver to exploit the global structure of groups of constraints. But the primary
mechanism is to propagate the results of processing one constraint to the other
constraints. This is accomplished by maintaining a constraint store, which pools
the results of individual constraint processing. When the next constraint is pro-
cessed, the constraint store is in effect processed along with it. This partially
achieves the effect of processing all of the original constraints simultaneously.

In current practice the constraint store is normally a domain store. Constraints
are processed by filtering algorithms that remove values from variable domains.
The reduced domains become the starting point from which the next constraint
is processed. An advantage of a domain store is that domains provide a natural
input to filtering algorithms, which in effect process constraints and the domain
store simultaneously. A domain store also guides branching in a natural way.
When branching on a variable, one can simply split the domain in the current
domain store. As domains are reduced, less branching is required.

A serious drawback of a domain store, however, is that it transmits relatively
little information from one constraint to another, and as a result it has a limited

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 118–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Constraint Store Based on Multivalued Decision Diagrams 119

effect on branching. A constraint store can in general be regarded as a relaxation
of the original problem, because any set of variable assignments that satisfies the
original constraint set also satisfies the constraint store. A domain store is a very
weak relaxation, since it ignores all interactions between variables. Its feasible
set is simply the Cartesian product of the variable domains, which can be much
larger than the solution space.

This raises the question as to whether there is a natural way to design a
constraint store that is more effective than a domain store. Such a constraint
store should have several characteristics:

1. It should provide a significantly stronger relaxation than a domain store.
In particular, it should allow one to adjust the strength of the relaxation it
provides, perhaps ranging from a traditional domain store at one extreme to
the original problem at the other extreme.

2. It should guide branching in a natural and efficient way.
3. In optimization problems, it should readily provide a bound on the optimal

value (to enable a branch-and-bound search).
4. It should provide a natural input to the “filtering” algorithms that process

each constraint.

In this context, a “filtering” algorithm would not simply filter domains but would
tighten the constraint store in some more general way.

We propose a multivalued decision diagram (MDD) [1] as a general constraint
store for constraint programming, on the ground that it clearly satisfies at least
the first three criteria, and perhaps after some algorithmic development, the
fourth as well. MDDs are a generalization of binary decision diagrams (BDDs)
[2,3], which have been used for some time for circuit design/verification [4,5] and
very recently for optimization [6,7,8]. The MDD for a constraint set is essentially
a compact representation of a branching tree for the constraints, although it can
grow exponentially, depending on the structure of the problem and the branching
order. We therefore propose to use a relaxed MDD that has limited width and
therefore bounded size. The MDD is relaxed in the sense that it represents a
relaxation of the original constraint set.

An MDD-based constraint store satisfies the first three criteria as follows:

1. By setting the maximum width, one can obtain an MDD relaxation of arbi-
trary strength, ranging from a traditional domain store (when the maximum
width is fixed to 1) to an exact representation of the original problem (when
the width is unlimited).

2. One can easily infer a reduced variable domain on which to branch at any
node of a branching tree.

3. A relaxed MDD provides a natural bounding mechanism for any separable
objective function. The cost of a particular shortest path in the MDD is a
lower bound on the optimal value.

The primary research issue is whether fast and effective “filtering” algorithms
can be designed for limited-width MDDs. Rather than reduce domains, these

120 H.R. Andersen et al.

algorithms would modify the current MDD without increasing its maximum
width. The feasibility of this project can be demonstrated only gradually by
examining a number of constraints and devising MDD filters for each, much as
was done for conventional domain filtering. As a first step in this direction we
present an MDD filter for the all-different (alldiff) constraint and for inequality
constraints (i.e., constraints that bound the value of a separable function).

2 Related Work

The limitations of the domain store’s ability to make inferences across constraints
are well known, but few attempts have been made to generalize it. In [9] meta-
programming is proposed for overcoming the limitations. The idea is to allow
symbolic propagation by giving the programmer detailed access to information
about constraints at runtime and thereby allow for early detection of failures by
symbolic combination of constraints.

Decision diagrams have been used previously for Constraint Satisfaction as a
compact way of representing ad-hoc global constraints [10] as well as for no-good
learning both in CSP and SAT solving [11]. This is however quite different from
the goal of this paper, which is to utilize an MDD as a relaxation of the solution
space.

3 MDDs and Solution Spaces

We are given a constraint set C defined over variables X = {x1, . . . , xn} with
finite domains D1, . . . , Dn giving rise to the declared domain of solutions D =
D1 × · · · × Dn. Each constraint C ∈ C is defined over a subset of variables
scope(C) ⊆ X . An MDD for C can be viewed as a compact representation of a
branching tree for the constraint set.

For example, an MDD for the two constraints

x1 + x3 = 4 ∨ (x1, x2, x3) = (1, 1, 2),
3 ≤ x1 + x2 ≤ 5

(1)

with x1, x2, x3 ∈ {1, 2, 3} appears in Fig. 1(a). The edges leaving node u1 repre-
sent possible values of x1, those leaving u2 and u3 represent values of x2, and so
forth. Only paths to 1 are shown.

Formally, an MDD M is a tuple (V, r, E, var, D), where V is a set of vertices
containing the special terminal vertex 1 and a root r ∈ V , E ⊆ V × V is a set of
edges such that (V, E) forms a directed acyclic graph with r as the source and 1
as the sink for all maximal paths in the graph. Further, var : V → {1, . . . , n+1}
is a labeling of all nodes with a variable index such that var(1) = n + 1 and
D is a labeling Du,v on all edges (u, v) called the edge domain of the edge. We
require that ∅ �= Du,v ⊆ Dvar(u) for all edges in E and for convenience we take
Du,v = ∅ if (u, v) �∈ E.

A Constraint Store Based on Multivalued Decision Diagrams 121

x1

x2

x3

u1
...

{1}
...

{2}

...

{3}

u2
..

{2, 3}
..

{1}
u3
..

{1, 2}
u4

...
{3}

u5
..

{2}
u6
...

{1}
1

(a)

x1

x2

x3

u1
...

{1}
...

{2}

...

{3}

u2
..

{2, 3}
..

{1}
u3
...

{1, 2}
u4

...
{3}

u5
..

{1, 2}

1

(b)

u1
...

{1}
...

{2}

...

{3}

u2
..

{2}
u3
...

{1, 2}
u4

...
{3}

u5
..

{1, 2}

1

(c)

Fig. 1. (a) MDD for problem (1). (b) Same MDD relaxed to width 2. (c) Result of

propagating alldiff in (b).

We work only with ordered MDDs. A total ordering < of the variables is
assumed and all edges (u, v) respect the ordering, i.e. var(u) < var(v). For con-
venience we assume that the variables in X are ordered according to their indices.
Ordered MDDs can be considered as being arranged in n layers of vertices, each
layer being labeled with the same variable index. If i = var(u) and j = var(v),
we say that (u, v) is a long edge if its skips variables (i+1 < j). We use Nu,v for
the set of indices {i + 1, i + 2, . . . , j − 1} skipped by the long edge, with Nu,v = ∅
if (u, v) is not a long edge.

Each path from the root to 1 in an MDD represents a set of feasible solutions
in the form of a Cartesian product of edge labels. Thus the path (u1, u2, u4, 1)
in Fig. 1(a) represents the two solutions (x1, x2, x3) in the Cartesian product
{1}×{2, 3}×{3}. Note that the path (u1, u5, 1) does not define the value of x2,
which can therefore take any value in its domain. This path represents the three
solutions in {2}×{1, 2, 3}×{2}. Formally, a path p = (u0, . . . , um), u0 = r, um =
1 defines the set of solutions Sol(p) =

∏m−1
i=0 (Dui,ui+1 ×

∏
k∈Nui,ui+1

Dk). Every
path can in this way be seen as a traditional domain store. The solutions repre-
sented by an MDD are a union of the solutions represented by each path. One of
the key features of an MDD is that due to sharing of subpaths in the graph, it
can represent exponentially more paths than it has vertices. This means that we
can potentially represent exponentially many domain stores as an approximation
of the solution set.

An MDD M induces a Cartesian product domain relaxation D×(M) whose
k’th component is defined by

D×k (M) =
{

Dk if there exists (u, v) with k ∈ Nu,v,⋃
{Du,v | var(u) = k} otherwise.

This relaxation shows that an MDD is a refined representation of the associated
domain store. For a given set of solutions S ⊆ D = D1×· · ·×Dn, it is convenient
to let Sxi=α be the subset of solutions in which xi is fixed to α, so that Sxi=α =
{(α1, . . . , αn) | αi = α}. If MDD M represents solution set S, we let Mxi=α

be the MDD that represents Sxi=α obtained by replacing the labels with {α}

122 H.R. Andersen et al.

msearch(Dpr,Mpr, D, M)
1: D ← propagate(Dpr, D)
2: M ← mprune(M, D) /* prune M wrt. D */
3: repeat
4: M ← mpropagate(Mpr, M)
5: M ← mrefine(M)
6: until no change in M
7: D ← D×(M) /* find the domain store relaxation of M */
8: if ∃k. Dk = ∅ then return false
9: else if ∃k.|Dk| > 1 then
10: pick some k with |Dk| > 1
11: forall α ∈ Dk: if msearch(Dpr,Mpr, Dxk=α, Mxk=α) then return true
12: return false
13: else return true /* ∀k. |Dk| = 1, i.e., D is a single solution */

Fig. 2. The MDD-based search algorithm. The algorithms uses a set of domain propa-

gators Dpr and a set of MDD-propagators Mpr. It works on a domain store relaxation

D and an MDD constraint store M . In line 1 propagate is the standard domain prop-

agation on D and in line 2 M is pruned with respect to the result of the domain

propagation. Lines 3-6 mix MDD propagation and refinement until no further change

is possible. This is followed by a new computation of the domain store relaxation, which

is then used in guiding the branching in lines 10-11. An important operation is that of

restricting the MDD store when a branch is made in line 11: Mxk=α. There are several

options when implementing this operation as discussed in the main text.

on every edge leaving a vertex u with var(u) = i. Also for a given D we let
mprune(M, D) be the MDD that results from replacing each edge domain Du,v

with Du,v ∩ Dvar(u).
We use an MDD of limited width as a constraint store (i.e., as a relaxation

of the given constraint set). The width of an MDD is the maximum number
of nodes on any level of the MDD. For example, Fig. 1(b) is a relaxed MDD
for (1) that has width 2. It represents 14 solutions, compared with 8 solutions
for the original MDD in Fig. 1(a). The relaxation is considerably tighter than
the conventional domain store, which admits all 27 solutions in the Cartesian
product {1, 2, 3} × {1, 2, 3} × {1, 2, 3}.

4 MDD-Based Constraint Solving

The MDD-based constraint solver is based on propagation and search just as
traditional solvers. During search, branches are selected based on the domains
represented in the MDD store. Propagation involves the use of a new set of MDD
propagators and a refinement step. The overall algorithm is shown in Fig. 2.

The algorithm is a generalization of the normal constraint solving algorithm
[12]. If lines 3–7 are omitted we get the domain store algorithm. The steps in line
1–2 are included for efficiency. If more powerful and efficient MDD propagators
are developed, they might not be necessary. Further, the branching used in lines

A Constraint Store Based on Multivalued Decision Diagrams 123

10–11 could be replaced by more general branching strategies [12]. The operation
Mxk=α can be implemented in several ways. The effect is that the constraint store
is reduced to reflect the choice of xk = α. If the branching follows the MDD
variable ordering, this is very simple as the new MDD store can be represented
by moving the root to the node reached by following the edge corresponding
to xk = α. If another order is used, the operation will have to be implemented
through a marking scheme keeping track of the “live” parts of the MDD store,
or by explicitly reducing the MDD store. The major logical inferences are made
by the MDD (and domain) propagators.

Propagators work by pruning edge domains, and if a domain Du,v is pruned
down to the empty set, the edge (u, v) is removed. This can lead to further
reduction of the MDD, if after the removal of the edge some other edges do no
longer have a path to 1 or can be reached by a path from r. MDD propagators
are described in section 5.

The purpose of refinement is to refine the relaxation represented by the MDD
so that further propagation can take place. Refinement is achieved through node
splitting which refines the MDD by adding nodes while ensuring the maximal
width is not exceeded (see section 6).

MDD-Based Constraint Optimization. The MDD-based solver can be read-
ily used for optimization. A separable objective function

∑
i fi(xi) can be

minimized over an MDD through efficient shortest path computations. Suppose
for example we wish to minimize the function

20x2
1 − 10x2

2 + 15x2
3 (2)

subject to (1). The MDD is shown in Fig. 3(a). The corresponding edge weights
appear in Fig. 3(b). Thus the weight of the edge (u2, u4) is minx2∈{2,3}{−10x2

2} =
−90, and the weight of the edge (u1, u5) is

min
x1∈{2}

{20x2
1} + min

x2∈{1,2,3}
{−10x2

2} = −10 .

Formally, given a separable objective function
∑

i fi(xi) each edge (u, v) with
i = var(u) is associated with the weight wf (u, v):

min
xi∈Du,v

{fi(xi)} +
∑

k∈Nu,v

min
xk∈Dk

fk(xk) . (3)

A branch-and-bound mechanism computes a lower bound on the optimal value
as the cost of the shortest path in the current MDD relaxation wrt. weights
wf (u, v). The more relaxed the MDD representation, the weaker the bound. For
example, the shortest path for the MDD in Fig. 3(b) is (u1, u5, 1) and has cost
50. The lower bound wrt. the relaxed MDD of Fig. 1(b) (edge weights indicated
in Fig. 3(c)) is 5. Finally, the lower bound based only on the domain store is −55.

If the bound is greater than the cost of the current incumbent solution b,
the search is cut of. This is achieved by adding a new inequality constraint∑

i fi(xi) ≤ b to the set of constraints and propagating it in future using a
standard inequality propagator (discussed in section 5).

124 H.R. Andersen et al.

x1

x2

x3

u1
...

{1}
...

{2}

...

{3}

u2
..

{2, 3}
..

{1}
u3
..

{1, 2}
u4

...
{3}

u5
..

{2}
u6
...

{1}
1

(a)

u1
...

20

...

−10

...

180

u2
..

−90

..

−10

u3
..

−40

u4
...
135

u5
..

60

u6
...

15

1

(b)

u1
...

20

...

−10

...

180

u2
..

−90

..

−10

u3
...

−40

u4
...
135

u5
..

15

1

(c)

Fig. 3. (a) MDD for problem (1) copied from Fig. 1. (b) The same with edge weights

for objective function (2). (c) Weights when the MDD is relaxed to width two.

5 Propagation

To characterize the strength of MDD propagators we define the notion of MDD
consistency for a constraint C and an MDD M as the following condition: for
every edge (u, v) ∈ E and every value α ∈ Du,v, if α is removed from Du,v then
there is at least one solution in M satisfying C that is lost. When the MDD
is a single path, MDD consistency is equivalent to generalized arc consistency
(GAC).

A key observation is that even if a constraint C has a polynomial-time algo-
rithm that enforces GAC, it can be NP-hard to enforce MDD consistency for
C on a polynomial sized MDD. This is because the Hamiltonian path problem,
which is NP-hard, can be reduced to enforcing MDD consistency on an MDD
of polynomial size. Consider the n-walk constraint on a graph G. Variable xi is
the ith vertex of G visited in the walk, and the only restriction is that xi+1 be
vertex adjacent to xi. Then x1, . . . , xn is a Hamiltonian path in G if and only if
x1, . . . , xn is an n-walk on G and alldiff(x1, . . . , xn) is satisfied.

The MDD for the n-walk constraint has polynomial size because there are at
most n nodes at each level in the MDD: From the root node there is an edge
with domain {i} to a node corresponding to each vertex i of G. From any node
on level k < n corresponding to vertex i there is an edge with domain {j} to a
node corresponding to each vertex j that is adjacent to i in G. Thus there may
be no poly-time algorithm for MDD consistency even when there is a poly-time
algorithm for domain consistency (unless P=NP).

Re-using domain propagators. An intermediate step towards implementing
customized MDD-based propagators is to reuse existing domain propagators.
Though the above result on MDD consistency means that we should not expect
a general polynomial time algorithm that can enforce MDD consistency, we can
still reuse domain propagators to achieve tighter consistency than GAC.

Let Dpr be the set of domain propagators we wish to reuse. In order to apply
such propagators to the MDD store, we must supply them with a domain in such
a way that any domain reductions made by the propagators can be utilized for

A Constraint Store Based on Multivalued Decision Diagrams 125

edge domain reductions. To this end consider an edge (u, v) and let Mu,v be the
MDD obtained by removing all paths in M not containing the edge. Note that
the domain relaxation D×(Mu,v) might be significantly stronger than D×(M).
We can now compute the simultaneous fixpoint Ddom of the propagators in Dpr
over D×(Mu,v). For each assignment xk = α consistent with D×(Mu,v) but not
with Ddom we place a no-good xk �= α on the edge (u, v). We can use such a
no-good to prune as follows. If (u, v) corresponds to the variable xk we prune α
from Du,v and remove the no-good. Otherwise, if (u, v) corresponds to a variable
xj ,where j < k, we move the no-good to all incoming edges of u if the same no-
good occurs on all other edges leaving u. In the case j > k, the no-good is moved
to all edges leaving v if all incoming edges to v have the no-good. Intuitively,
no-goods move towards the layer in the MDD which corresponds to the variable
they restrict, and are only allowed to move past a node if all paths through that
node agree on the no-good. This ensures that no valid solutions will be removed.

As an example, consider propagating an alldiff over Fig. 1(b). Examining
(u2, u4) yields a no-good x2 �= 3 which can be immediately used for pruning
Du2,u4 . Examining (u1, u2), yields the nogood x2 �= 1, which can be moved to
(u2, u5) and (u2, u4), resulting in the former edge being removed. The result is
shown in Fig. 1(c).

This type of filtering will reach a fixpoint after a polynomial number of passes
through the MDD, and will hence only apply each domain propagator polyno-
mially many times. However, since many domain store propagators can be quite
costly to invoke even once it is important to develop specialized propagators
that not only take direct advantage of the MDD store but also obtain stronger
consistency.

Inequality Propagator. Consider a constraint which is an inequality over a
separable function: ∑

i

fi(xi) ≤ b .

We can propagate such a constraint on an MDD by considering shortest paths
in the MDD wrt. edge weights wf (u, v) (equation (3) in section 4). For each
node u we calculate Lup(u) and Ldown(u) as the shortest path from the root
to u and from u to 1 respectively. Lup and Ldown can be computed for all
nodes simultaneously by performing a single bottom-up and top-down pass of
the MDD. A value α can now be deleted from an edge domain Du,v iff every
path through the edge (u, v) has weight greater than b under the assumption
that xvar(u) = α, that is if

Lup(u) + wf (u, v) + Ldown(v) > b .

Further details (for propagation in BDDs) can be found in [8]. We observe that
this inequality propagator achieves MDD consistency as a value α in an edge
domain Du,v is always removed unless there exists a solution to the inequality
in the MDD going through the edge (u, v).

126 H.R. Andersen et al.

Alldiff Propagator. As implied by the hardness proof of MDD consistency,
a polynomial time MDD consistent propagator for the alldiff constraint would
imply that P=NP. In this section we therefore suggest a simple labeling scheme
that provides efficient heuristic propagation of an alldiff constraint over the MDD
store.

To each node u we attach four labels for each alldiff constraint C: ImpliedUp,
ImpliedDown, AvailUp and AvailDown. The label ImpliedUpC(u) is the set of all
values α such that on all paths from the root to u there is an edge (v, w) where
xvar(v) ∈ scope(C) and Dv,w = {α}. The label ImpliedDownC(u) is defined
similarly for paths from u to the 1-terminal. Given these labels for a node u we
can remove the value α from the domain of an edge (v, w) if α ∈ ImpliedUp(v)
or α ∈ ImpliedDown(w).

In addition we use the label AvailUpC(u), which contains values α such that
there exists at least one path from the root to u containing some edge (v, w)
where xvar(v) ∈ scope(C) and α ∈ Dv,w.

Given some node u, consider the set of variables Xa = scope(C) ∩ {xk | k <
var(u)}. If |Xa| = |AvailUpC(u)| (i.e., Xa forms a Hall Set [13]) the values in
AvailUpC(u) cannot be assigned to any variables not in Xa. This allows us to
prune these values from the domain of any outgoing edge of u. AvailDownC is
defined and used analogously.

When the labels of the parents of a node u are known, it is easy to update
the labels ImpliedUp and AvailUp of u as follows. Let {(u1, α1), . . . , (uk, αk)}
be pairs of parents and values, corresponding to incoming edges to u (nodes are
repeated if the edge domain label on an edge contains more than one value). We
then have

ImpliedUpC(u) =
⋂

1≤j≤k

(ImpliedUpC(uj) ∪ {αj})

AvailUpC(u) =
⋃

1≤j≤k

(AvailUpC(uj) ∪ {αj})

Using this formulation it is easy to see that computing ImpliedUp and AvailUp
as well as pruning values based on these can be trivially accomplished in a single
top-down pass of the MDD store. Similarly ImpliedDown and AvailDown can
be computed in a single bottom-up pass.

6 Refining

Refining is achieved by node splitting in an MDD M . A node u ∈ V is selected
for splitting. We then add a new node u′ to V and add edges as follows. Let
Inu = {s ∈ V | (s, u) ∈ E} be the set of vertices with an edge to u and let
Outu = {t ∈ V | (u, t) ∈ E} be the set of vertices with an edge from u. The new
edges are then E′ = {(s, u′) | s ∈ Inu} ∪ {(u′, t) | t ∈ Outu}. The domains for
the outgoing edges of u′ are the same as for u: Du′,t = Du,t for all t ∈ Outu. For
the ingoing edges we select some domains Ds,u′ ⊆ Ds,u and remove these values
from the domains in Ds,u, i.e., we update Ds,u to Ds,u \ Ds,u′ . A good selection

A Constraint Store Based on Multivalued Decision Diagrams 127

(a)

{2}

u4

{1} {2}

{1}

{1,2}

u1 u2 u3

u5 u6

(b)

u5

∅

u4

{1}

∅{1}

u6

u2u1 u3

{1}
{2}

{2}{2}
{1}

{2}

u′
4

(c)

u4

{1}

u1 u2 u3

u5
u6

{2}

{1}
{2}

{2}{1}

u′
4

Fig. 4. (a) Part of an MDD store representing a relaxation of a global alldiff, just before

splitting on the node u4. Note that while there are obvious inconsistencies between the

edge domains (such as label 1 in domains of (u1, u4) and (u4, u6)), we cannot remove

any value. (b) A new node u′
4 has been created and some of the edge domain values

to u4 have been transferred to u′
4. There are no labels on (u2, u

′
4) and (u3, u4), so the

edges need not be created. (c) After the split we can prune inconsistent values and as

a result remove edges (u4, u6) and (u′
4, u5).

of the node u and the new ingoing edge domains will help the future MDD
propagators in removing infeasible solutions from the MDD store. A good split
should yield an MDD relaxation that is fine-grained enough to help propagators
detect inconsistencies, but that is also coarse enough so that each removal of
a value from an edge domain corresponds to eliminating a significant part of
the solution space of the MDD. Fig. 4 shows an example of a node split and
subsequent propagation.

The selection of the splitting node u and the ingoing edge domain splits is
performed by a node splitting heuristic. We will use a heuristic that tries to select
nodes that 1) are involved in large subsets of the solution space, and 2) have the
potential of removing infeasible solutions during subsequent propagation steps.
These criteria – estimating the strength of a split – must be balanced against the
limit on the width of the MDD store and the increase in memory usage resulting
from adding the new node and edges. For alldiffs C, the heuristic can utilize the
labels ImpliedUpC computed by the alldiff propagators. If var(u) ∈ scope(C)
then the larger the size of the ImpliedUp-set the more pruning could happen
after splitting the node u. Also, the ability to prune significantly increases with
the number of different constraints involving var(u). Therefore, an estimate of
strength for u could be the product of the sizes of the ImpliedUpC -sets for each
alldiff C s.t. var(u) ∈ scope(C).

7 Computational Results

To obtain experimental results we integrated the MDD store into Gecode
[14,15,16], a standard domain-store based solver. We implemented the MDD

128 H.R. Andersen et al.

store as a specialized global constraint. We ensure that the MDD store is prop-
agated only after all other standard propagators in the model have stabilized,
so the order of propagation is as indicated by Fig. 2. All experiments were
run without recomputation (a memory management technique for backtracking
search [12]). Since this slightly increased the performance of Gecode without the
MDD store, this did not bias the results. All experiments were run on a desktop
PC with an Intel Core 2 Duo 3.0 Ghz CPU and 2GB of memory.

In experiments involving alldiffs, we used both Gecode’s domain propagator
and our own MDD propagator. The domain propagator was set to provide do-
main consistency and the MDD propagator used only the up version of each
label. Experiments involving optimization or linear inequalities over the MDD
store used only the MDD-versions of inequality propagators. All instances were
randomly generated.

We first compared the size of the search tree of domain-based search STD and
MDD-based search STM . This gives an idea of how the extra processing at each
node influences the search tree. We then took into account this extra processing,
by counting the total number of node-splits NSM and comparing STD against
STM + NSM . Finally, we compared the total running times TD and TM for
domain-based and MDD-based search respectively.

The first set of experiments was carried out for several different MDD widths.
The problems consisted of three overlapping alldiff constraints. Each instance
was parameterized by the triple (n, r, d), where n is the number of variables, r the
size of the scope of each alldiff, and d the size of a domain. We ordered variables
in decreasing order of the number of alldiffs covering them. This variable ordering
was then used both as the ordering in the MDD store and for the search.

Remarkably, the MDD-based search never backtracked. The MDD-based re-
finement was strong enough to either detect infeasibility immediately, or to guide
branching so that no backtracking was necessary. Hence, the size of the MDD-
search tree is incomparably small – at most n. We therefore report only the
comparison of STD against the STM +NSM . This is shown in Fig. 5(a), for dif-
ferent widths. Fig. 5(b) compares the total running time for different widths. We
can see, that when the total search effort is taken into account, the MDD-store
still outperforms domain-based search by several orders of magnitude. We also
see that the actual time closely corresponds to the number of node splits.

Width clearly has a dramatic effect both on the total computational effort
STM + NSM , as well as the running time TM . The smallest width tested with
the MDD store is 5 for the (10, 9, 9) instances and 10 for the (12, 10, 10) instances.
The runtime is worse with the MDD store for small widths but becomes more
than an order of magnitude better for larger widths. In the (10, 9, 9) instances a
width of 10 suffices to outperform the domain store, while 25 is required in the
(12, 10, 10) instances.

The second set of experiments minimized
∑

i cixi subject to
∑

i aixi ≤ αL
and a single alldiff, where L is the maximum value of the left-hand side of
the inequality constraint and α ∈ [0, 1] is a tightness parameter. The instances
were parameterized by (n, k), where n is the total number of variables, and k

A Constraint Store Based on Multivalued Decision Diagrams 129

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 50 100 150 200 250

Total work vs Width

MDD(10,9,9)
STD(10,9,9)

MDD(12,10,10)
STD(12,10,10)

(a)

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

Running time vs Width

MDD(10,9,9)
STD(10,9,9)

MDD(12,10,10)
STD(12,10,10)

(b)

Fig. 5. (a) The two curves labeled MDD(n, r, d) show the total computational effort

STM +NSM that resulted from an MDD constraint store on instances with parameters

(n, r, d); every problem was solved without backtracking. The two lines labeled STD

show the search tree size that resulted from a standard domain store. Each instance

set consists of 60 randomly generated instances. Twenty instances were feasible for the

(10, 9, 9) set, 16 for the (12, 10, 10) instances. (b) The same as before, but showing the

actual running time in milliseconds. Note the close relation between STM + NSM and

the time used.

130 H.R. Andersen et al.

 10

 100

 1000

 10000

 100000

 1e+006

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total work vs Tightness

MDD(12,11)
STD(12,11)
MDD(14,11)
STD(14,11)
MDD(16,11)
STD(16,11)

(a)

 10

 100

 1000

 10000

 100000

 1e+006

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size of search tree vs Tightness

MDD(12,11)
STD(12,11)
MDD(14,11)
STD(14,11)
MDD(16,11)
STD(16,11)

(b)

Fig. 6. (a) Total computation effort vs. the tightness α when minimizing
�

i cixi

subject to
�

i aixi ≤ αL and a single alldiff, where L is the maximum size of the left-

hand side of the inequality. MDD(n, k) denotes the MDD-based results for instances

parameterized by (n, k), and STD denotes results based on standard domain filtering.

For MDD-based results, computational effort is the sum STM + SNM of the number

search tree nodes and the number of splits, and for domain filtering it is the number

STD of search tree nodes. (b) Number of search tree nodes vs. the tightness α when

minimizing
�

i cixi subject to
�

i aixi ≤ αL and a single alldiff.

A Constraint Store Based on Multivalued Decision Diagrams 131

the number of variables in the alldiff. The coefficients ai and ci were drawn
randomly from the interval [1, 100]. We made the same comparisons as in the
previous experiment.

The MDD store resulted in a consistently smaller search tree (Fig. 6(b)). The
size of the search tree explored using the mdd store (STM) was as little as one-fifth
the number explored by Gecode (STD). The total number of splits NSM was also
significantly smaller than STD in most cases (Fig. 6(a)). However, the computa-
tion time TM was an order of magnitude greater than TD. Similar results were
obtained when minimizing the same objective functions subject to a single alldiff.

8 Conclusions and Future Work

Preliminary experiments indicate that an MDD-based constraint store can sub-
stantially accelerate solution of multiple-alldiff problems. Even a rather narrow
MDD allows the problems to be solved without backtracking, while the tradi-
tional domain store generates about a million search tree nodes. As the MDD
width increases, the MDD-based solution becomes more than an order of mag-
nitude faster than a solver based on traditional domain filtering.

Conventional wisdom tells us that in constraint satisfaction problems, reduc-
ing the search tree through enhanced processing at each node often does not
justify the additional overhead—perhaps because the added information is not
transmitted in a conventional domain store. Our results suggest that intensive
processing can be well worth the cost when one uses a richer constraint store.

We obtained less encouraging results for the optimization problems involving
inequalities, where more intensive processing at each node is generally worth-
while. The MDD store required less branching than a traditional domain store,
but the computation time was greater. An important factor affecting perfor-
mance is that we cannot identify a feasible solution until we have branched
deeply enough in the search tree to fix every variable to a definite value. This is
time consuming because MDDs are processed at each node along the way.

This problem is avoided in branch-and-cut methods for integer programming
by solving the relaxation at each node and checking whether the solution happens
to be integral. Very often it is, which allows one to find feasible solutions high in
the search tree. This raises the possibility that we might “solve” the MDD relax-
ation (by heuristically selecting solutions that it represents) and check whether
the solution is feasible in the original problem. This is an important project for
future research and could substantially improve performance.

Overall, the results suggest that an MDD-based constraint store can be an
attractive alternative for at least some types of constraints. Naturally, if an MDD
is not useful for a certain constraint, the solver can propagate the constraint with
traditional domain filtering.

A number of issues remain for future research, other than the one just men-
tioned. MDD-based propagators should be built for other global constraints,
additional methods of refining the MDD developed, and MDD-based constraint
stores tested on a wide variety of problem types.

132 H.R. Andersen et al.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable suggestions which helped us improve the presentation significantly.

References

1. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued
decision diagrams: Theory and applications. International Journal on Multiple-
Valued Logic 4, 9–62 (1998)

2. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, avail-
able online, IT University of Copenhagen (1997)

3. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27,
509–516 (1978)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

5. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

6. Becker, Behle, Eisenbrand, Wimmer: BDDs in a branch and cut framework. In:
Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503. Springer, Heidelberg (2005)

7. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using bi-
nary decision diagrams. Technical report, Carnegie Mellon University. In: Presented
at GICOLAG workshop (Global Optimization: Integrating Convexity, Optimiza-
tion, Logic Programming, and Computational Algebraic Geometry), Vienna (2006)

8. Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 program-
ming. Technical report, Carnegie Mellon University (to appear)

9. Muller, T.: Promoting constraints to first-class status. In: Proceedings of the First
International Conference on Computational Logic, London (2000)

10. Cheng, K.C., Yap, R.H.: Maintaining generalized arc consistency on ad-hoc n-ary
boolean constraints. In: Proceeedings of The European Conference on Artificial
Intelligence (2006)

11. Hawkins, P., Stuckey, P.J.: A hybrid BDD and SAT finite domain constraint solver.
In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 103–117. Springer,
Heidelberg (2005)

12. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming.
Foundations of Artificial Intelligence, pp. 495–526. Elsevier Science, Amsterdam,
The Netherlands (2006)

13. van Hoeve, W.J.: The alldifferent constraint: A survey. In: Sixth Annual Workshop
of the ERCIM Working Group on Constraints (2001)

14. Schulte, C. (ed.): Programming Constraint Services. LNCS (LNAI), vol. 2302.
Springer, Heidelberg (2002)

15. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 619–633. Springer, Heidelberg (2004)

16. Schulte, C., Szokoli, G., Tack, G., Lagerkvist, M., Pekczynski, P.: Gecode. Software
download and online material at the website: http://www.gecode.org

http://www.gecode.org

GAC Via Unit Propagation

Fahiem Bacchus

Department of Computer Science,University of Toronto, Canada
fbacchus@cs.toronto.edu

Abstract. In this paper we argue that an attractive and potentially very general
way of achieving generalized arc consistency (GAC) on a constraint is by using
unit propagation (UP) over a CNF encoding of the constraint. This approach to
GAC offers a number of advantages over traditional constraint specific algorithms
(propagators): it is easier to implement, it automatically provides incrementality
and decrementality in a backtracking context, and it can provide clausal reasons to
support learning and non-chronological backtracking. Although UP on standard
CNF encodings of a constraint fails to achieve GAC, we show here that alternate
CNF encodings can be used on which UP does achieve GAC. We provide a generic
encoding applicable to any constraint. We also give structure specific encodings
for the regular, among, and gen-sequence constraints on which UP can achieve
GAC with the same run time bounds as previously presented propagators. Finally,
we explain how a UP engine can be added to a CSP solver to achieve a seam-
less integration of constraints encoded in CNF and propagated via UP and those
propagated via traditional constraint specific propagators.

1 Introduction

Unit propagation (UP) is a local propagation mechanism for propositional formulas
expressed in conjunctive normal form (CNF). Any constraint over finite domain variables
can be converted to CNF using the direct encoding of [17]. However, UP on that encoding
(or on the other encodings presented in [17]) does not achieve GAC—it has only the
power of forward checking. In this paper we demonstrate that alternate CNF encodings
can be constructed that allow UP to efficiently achieve GAC.

Using UP on a CNF encoding to achieve GAC has a number of advantages over
the specialized constraint specific algorithms (propagators) that are typically used. Intu-
itively, these advantages arise from the fact that propagators are procedural where as the
CNF encoding utilized by UP is declarative. In particular, the sequencing of operations
defining a propagator is typically quite rigid. Altering these operations so as to support
features like interleaving with the propagators for other constraints or incrementality
and decrementality in a backtracking context often requires non-trivial modifications.

In contrast UP can be run on a CNF encoding in flexible ways. In particular, UP can
easily interleave the propagation of multiple constraints; it is always incremental; decre-
mentality can be achieved almost without cost; and it readily supports the derivation of
new clauses (generalized nogoods [12]) that can be used to improve search performance
via learning and non-chronological backtracking. First, once encoded in CNF a con-
straint’s clauses need not be distinguished from the clauses encoding other constraints.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 133–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

134 F. Bacchus

Thus, UP can interleave its GAC propagation across different constraints in arbitrary
ways. For example, if the constraints C1 and C2 are both encoded in CNF then UP can
detect that a value for a variable has become inconsistent for constraint C1 while it is
in the middle of propagating the clauses for computing GAC on C2. Furthermore, this
pruned value will then automatically be taken into account during the rest of UP’s com-
putation of GAC on C2. Second, UP works by forcing the truth value of propositions;
the order in which these truth values are set is irrelevant to the final result. Hence, it
is irrelevant to UP if some of these propositions already have their truth value set: i.e.,
UP is always incremental. Third, the modern technique for implementing UP employs
a lazy data structure called watch literals. One of the salient features of watch literals
is that they need not be updated on backtrack. Thus, with UP decrementality can be
achieved essentially without cost: only the forced truth assignments need to be undone.
Fourth, if UP detects a contradiction, existent techniques can be used to learn power-
ful nogoods that can improve search performance. These techniques learn generalized
nogoods (clauses) which are more powerful than standard nogoods [12].

Previous work has investigated the connections between SAT propagation mecha-
nisms (including UP) and various CSP propagation mechanisms (e.g., [6,3,9,17]). Most
of this work, however, has been confined to binary constraints and thus has addressed
AC rather than GAC. However, Hebrard et al. [11] building on the work of [9] present
an CNF encoding for an arbitrary constraint that allows UP to achieve relational k-
arc-consistency. Although that paper did not directly address achieving GAC via UP,
their encoding can easily be adapted accomplish this. Furthermore, UP on this encoding
achieves GAC in the same time complexity as a generic GAC algorithm like GAC-
Schema [4] (GAC-Schema can however have a lower space complexity). Here one of
our contributions is to elaborate the connection between GAC and UP on generic con-
straints, showing how Hebrard et al.’s encoding idea can be adapted to achieve GAC and
how a more direct CNF encoding of the constraint can also allow UP to achieve GAC.

The main benefit of GAC in Constraint Programming, however, lies not so much with
generic constraints, but rather in the fact that for a number of constraints specialized
algorithms exist, called propagators, that can compute GAC in time that is typically
polynomial in the arity of the constraint. This is a significant speed up over generic GAC
algorithms which require time exponential in the arity of the constraint.

The main contribution of this paper is to demonstrate that just as some constraints ad-
mit specialized algorithms for computing GAC, some constraints also admit specialized
CNF encodings on which UP can compute GAC much more efficiently. In this paper,
we demonstrate such encodings for three different constraints: regular, among and
gen-sequence. However, UP on our encoding for gen-sequence is not quite sufficient
to achieve GAC. Nevertheless, a simple extension of UP called the failed literal test is
able to achieve GAC on this encoding. The failed literal test retains the advantages of
UP mentioned above.

An additional contribution of the paper is to explain how a CSP solver can easily
be modified to integrate a state of the art UP engine that can then be used to achieve
GAC for some constraints while the other constraints are propagated using traditional
mechanisms. It is worth noting that a UP engine does not need to be implemented from
scratch. Rather, very efficient state of the art UP engines are publically available. For

GAC Via Unit Propagation 135

example, the open source MiniSat SAT solver [7] (a consistent winner of recent SAT
solver competitions) contains a clearly coded UP engine that can be extracted and utilized
for this purpose—the code can be freely used even for commercial purposes.

In the sequel we first present the background properties of GAC and UP needed for
the rest of the paper, and explain what is already known about the connection between
GAC and UP. We then give a new result that elaborates on this connection. These results
illustrate how generic GAC can be accomplished by UP. We then illustrate how a UP
engine can be seamlessly integrated into a CSP solver. Turning to global constraints, we
then present encodings for the afore mentioned constraints that allow UP to achieve GAC
in polynomial time. We close with some final conclusions and ideas for future work.

2 Background

Let V = {V1, . . . , Vn} be a sequence of variables each of which has a finite domain
of possible values dom [Vi]. Corresponding to the variable sequence V is the Cartesian
product of the variable domains. We extend dom to apply to sequences of variables:
dom [V] = dom [V1] × · · · × dom [Vn]. A constraint C is a function over a sequence
of variables scope(C). The size of scope(C) is called the arity of C. C maps tuples
from dom [scope(C)] to true/false. That is, if scope(C) = 〈X1, . . . , Xk〉 and τ ∈
dom[X1] × · · · × dom[Xk], then C(τ) = true/false. If C(τ) = true we say that τ
satisfies C, else it falsifies it. We also view τ as being a set of assignments and say that
V = d ∈ τ if τ ’s V ’th dimension is equal to d.

A constraint C is said to be GAC if for every variable X ∈ scope(C) and every value
d ∈ dom [X] there exists a τ ∈ dom [scope(C)] with X = d ∈ τ and C(τ) = true.
A satisfying tuple τ containing X = d is called a support for X = d. A constraint
can be made GAC by simply removing every unsupported value from the domains of
its variables. If the value d ∈ dom [V] is unsupported by C we say that the assignment
V = d is GAC-inconsistent for C.

GAC propagation is the process of making some or all of the constraints of the problem
GAC. If more than one constraint is to be made GAC, then GAC propagation will be
an iterative process as making one constraint GAC might cause another constraint to
no longer be GAC. However, since enforcing GAC (making a constraint GAC) is a
monotonic process of removing unsupported values from the domains of variables,
propagation must converge in at most a polynomial number of steps.

Unit propagation (UP) works on propositional formulas expressed in conjunctive nor-
mal form (CNF). A CNF formula is a conjunction ofclauses, each of which is a disjunction
of literals, each of which is a variable of the formula valued either positively or negatively.
Given a CNF formula F and a literal � we denote the reduction ofF by � asF

∣∣
�
. The reduc-

tion F
∣∣
�

is a new CNF formula obtained from F by removing all clauses of F containing
� and then removing ¬� (the negation of �) from all remaining clauses. UP works by it-
eratively identifying all unit clauses of F (i.e., clauses containing only a single literal).
Each unit clause (�) ∈ F entails that � must be true. Hence if (�) is a unit clause of F
then F is equivalent to F

∣∣
�
. UP forces � and transforms F to F

∣∣
�

whenever it finds a unit
clause (�). Furthermore, since F

∣∣
�

might contain additional unit clauses UP iteratively
identifies unit clauses and continues to reduce the formula until no more units exist.

136 F. Bacchus

It is not hard to demonstrate that the final formula produced by UP does not depend
on the order in which UP removes the unit clauses. Similarly, if GAC is being achieved
for a collection of constraints, the order in which these constraints are processed (and
reprocessed) has no effect on the final set of reduced variable domains. It can also be
seen that UP runs in time linear in the total size of the input formula F (the sum of
the lengths of the clauses of F): each clause of length k need only be visited at most k
times to remove literals or force the last literal during UP. GAC also runs in time linear
in the size of a tabular representation of the constraint: by processing each satisfying
tuple of the constraint GAC can identify all supported variable values.1 However, the
tabular representation of a constraint has size exponential in the constraint’s arity. It
can be shown that when taking the arity of the constraint as the complexity parameter
achieving GAC is NP-Hard. Both UP and GAC are sound rules of inference. That is, if
d is removed from the domain of V by GAC, then no tuple of assignments satisfying C
can contain V = d. Similarly, if UP forces the literal � then � must be true in all truth
assignments satisfying F . Finally, Both GAC and UP can detect contradictions. If UP
produces an empty clause during its propagation, the initial formula is UNSAT, and if
GAC produces an empty variable domain the constraint cannot be satisfied.

UP can also be utilized for look-ahead. In particular the failed literal rule [8] involves
adding the unit clause (�) and then doing UP. If this yields a contradiction we can conclude
that ¬� is implied by the original formula.

2.1 Achieving Generic GAC with UP

In [11] a CNF encoding for a constraint was given on which UP is able to achieve
relational k-arc consistency. Although GAC was not mentioned in that paper, their idea
can be easily be adapted to allow UP to compute GAC on an arbitrary constraint.

The required encoding contains clauses for representing the variables and their do-
mains of possible values. We call these clauses the Variable Domain Encoding
(VDom). VDom consists of the following propositional variables and clauses. For every
multi-valued variable V with dom [V] = {d1, . . . , dm}:

1. m assignment variables AV =dj one for each value dj ∈ dom [V]. This variable is
true when V = dj , it is false when V cannot be assigned the value dj , i.e., V has
been assigned another value, or dj has been pruned from V ’s domain.

2. The O(m2) binary clauses (¬AV =d, ¬AV =d′) for every d, d′ ∈ dom [V] such that
d �= d′, capturing the condition that V cannot be assigned two different values.

3. The single clause (AV =d1 , . . . , AV =dm) which captures the condition that V must
be assigned some value.

One important point about the VDom clauses is that although there are O(km2)
clauses, UP can be performed on these clauses in time O(km). In particular, it is easy
to modify a UP engine so that the information contained in the VDom clauses is given a
more compact O(km) representation and propagated in O(km) time (e.g., the e-clauses
described in [5]). In the sequel we will assume that this optimization to the UP engine
is used, so as to avoid an unnecessary m2 factor in our complexity results.

1 Practical GAC algorithms employ support data structures that make re-establishing GAC more
efficient and that save space when the constraint is intensionally represented.

GAC Via Unit Propagation 137

In addition to the VDom clauses, the encoding contains additional clauses used
to capture the constraint C. These constraint clauses utilize additional propositional
variables t1, . . . , tm, each one representing one of the m different tuples over dom
[scope(C)] that satisfies C. Let τi be the satisfying tuple represented by the proposi-
tional variable ti. Using the ti variables the clauses capturing C are as follows:

1. For the variable V ∈ scope(C) and value d ∈ dom [V], let {s1, . . . , si} be the subset
of {t1, . . . , tm} such that the satisfying tuples represented by the si are precisely
the set of tuples containing V = d. That is, the si represent all of the supports for
V = d in the constraint C. Then for each variable and value V = d we have the
clause (s1, . . . , si, ¬AV =d), which captures the condition that V = d cannot be true
if it has no support.

2. For each satisfying tuple of C, τi, and assignment V = d ∈ τi we have the clause
(AV =d, ¬ti), which captures the condition that the tuple of assignments τi cannot
hold if V = d cannot be true.

When building this encoding, any value d ∈ dom [V] that is unsupported in C will
yield a unit clause ¬AV =d in item 1. Thus for every value d ∈ dom [V] pruned by GAC,
UP will force ¬AV =d. More interestingly, in a dynamic context if d is pruned (say by
GAC on another constraint), then the clauses of item 2 will allow UP to negate all tuple
variables ti such that V = d ∈ τi. Then the clauses of item 1 will allow UP to delete any
newly unsupported domain values. This propagation will continue until all unsupported
domain values have been removed and GAC has been re-established.

It can also be observed that the size of this encoding (i.e., the sum of the lengths of the
clauses) is linear in the size of the constraint’s tabular representation: O(mk) where m
is the number of satisfying tuples, and k is the constraint’s arity. In particular, ti appears
in only k clauses from item 1 (which bounds to total length of these clauses), and k
clauses from item 2 (which are all of length 2). Hence UP on this encoding will operate
in time linear in the size of the constraint’s tabular representation, i.e., the same time
complexity as a generic GAC algorithm.

3 UP for Generic GAC Revisited

We now present an new method for achieving GAC on a generic constraint via UP. Our
method does not introduce any new propositional variables (only assignment variables
are used).

In the new encoding we have the VDom clauses encoding the multi-valued variables
in scope(C), as before. Then for each falsifying tuple of assignments τ = 〈V1 =
d1, V2 = d2, . . . , Vk = dk〉 to the variables in scope(C) we add the clause (¬AV1=d1 ,
. . . , ¬AVk=dk

) which blocks this tuple of assignments. Call this set of clauses direct(C)
[17]. Let the total set of clauses encoding C be T = VDom∪direct(C). Now we replace
T with its set of prime-implicates.

Definition 1. If F is a CNF formula then the clause c is a prime implicate of F if F |= c
and for any c′ that is a sub-clause of c (c′ � c), then F �|= c′.

Letting PI (T) be the set of prime implicates of T we have the following result.

138 F. Bacchus

Theorem 1. If the constraint C is satisfied by some tuple of assignments, UP on the CNF
theory PI (T) achieves GAC on C. That is, the assignment V = d is GAC-inconsistent
for C iff UP on PI (T) forces ¬AV =d. If C has no satisfying tuple, UP on PI (T) will
generate the empty clause (and GAC will generate an empty domain).

Proof: First we observe that the set of satisfying tuples of C and the set of models
of T are in 1-1 correspondence. From any model of T we must have one and only one
assignment variable AV =d being true for each variable V ∈ scope(C). Furthermore, this
set of true assignments do not correspond to any falsifying tuple, else they would falsify
one of the clauses encoding C. Similarly, from a satisfying tuple for C we can make
the corresponding assignment variables of T true, this will falsify all other assignment
variables and thus satisfy all the clauses encoding C.

Hence, if GAC prunes V = d, AV =d cannot be true in any model of T , thus T |=
(¬AV =d) and this unit clause must be part of PI (T). On the other hand if UP on PI (T)
forces ¬AV =d then AV =d must be false in every model of PI (T), hence false in every
model of T (since PI (T) is logically equivalent to T), hence V = d cannot be part of
any satisfying tuple, and hence it will be pruned by GAC. Finally, if C is unsatisfiable,
T will be UNSAT, and PI (T) will contain only the empty clause.

Corollary 1. If after establishing GAC by running UP on PI (T) we additionally prune
the assignment V = d (say by GAC on another constraint), then UP on PI (T) ∪
(¬AV =d) will re-establish GAC.

This corollary can be seen to be true by observing that UP on PT (T)∪ (¬AV =d) is the
same as UP on PT (T)

∣∣
¬AV =d

and that this is the set of prime implicates of T
∣∣
¬AV =d

.
Computing the set of prime implicates of a theory can be expensive; in the worst

case it is exponential in the sum of the domain sizes of the variables in scope(C). Nev-
ertheless, we can make the following observations. First, the prime implicate encoding
can be computed prior to search. Furthermore, once a constraint has been converted to
its prime implicate encoding that encoding can be reused in any CSP containing the
constraint. Second, some constraints might have a special structure that permit a more
efficient computation of their prime implicates. And third even partial computation of
some of the implicates of T could allow UP to derive more consequences even if it fails
to achieve GAC.

4 Using a UP Engine in a CSP Solver

The two encodings presented above facilitate achieving GAC on an arbitrary constraint,
but the complexity remains exponential in the constraint’s arity. In the next section we
investigate encodings that exploit constraint specific structure to move from exponential
to polynomial complexity. But before presenting those results we first discuss how an
UP engine could be utilized in a CSP solver.

The architecture would be as illustrated in the figure to the right. The UP engine oper-
ates on a set of clauses encoding some of the constraintsC1, . . . , Ck. These clauses would
also include the VDom clauses encoding variable domains. The other

GAC Via Unit Propagation 139

Backtracking
Search Engine

UP Engine GAC Propagator

Clauses encoding Propagators forClauses encoding
constraints
C1,…,Ck and
variable domains

Propagators for
constraints D1,…,Di

for variables in
these constraints

constraints of the problem, D1, . . . , Di

are handled by a standard CSP propaga-
tor (e.g., a GAC propagator). Both UP
and GAC communicate with each other
and with an underlying solver. The com-
munication required is simple. When-
ever GAC (the solver) prunes a value
d from dom [V] (assigns V = d) it in-
forms the UP engine that the associated
literal ¬AV =d (AV =d) has become true.
UP can then propagate this literal which
might result in other variables AX=a

being forced true or false. If AX=a becomes true, then the assignment X = a is forced
and all of X’s other values have been pruned. The GAC engine can then propagate the
fact that X �= d for all d �= a. If AX=a becomes false, then the GAC engine can prop-
agate the pruned value X �= a. Either engine might be able derive a contradiction, at
which point the search engine can backtrack. On backtrack the search engine will inform
the GAC and UP engines to backtrack their state. For UP this is the simple process of
unassigning all literals set to be true since the backtrack point.

Note that UP can also return a clausal reason for every assignment variable it forces.
These clausal reasons can then be utilized by the search engine to perform
non-chronological backtracking and clause learning. Since these clauses can contain
both positive and negative instances of the assignment variables they are more general
than standard nogoods (which contain only positive instances of assignment variables).
As shown in [12] this added generality can yield a super-polynomial speedup in search.
With the GAC engine, however, we have to modify each specialized propagator to al-
low it to produce an appropriate clausal reason for its pruned values. [12] gives some
examples of how this can be accomplished.

5 Constraint Specific UP Encodings

GAC propagators are one of the fundamental enablers of GAC in CSP solvers. Prop-
agators are constraint specific algorithms that exploit the special structure of a con-
straint so as to compute GAC in time polynomial in the constraint’s arity.

Our main contribution is to demonstrate that constraint specific structure can also
be exploited by a UP engine for a range of constraints. In particular, we present spe-
cialized clausal encodings for three different constraints, regular, among, and gen-
sequence, such that UP on these encodings achieve GAC as efficiently as currently
known propagators.

There has been some previous work on exploiting structure via specialized CNF
encodings of constraints, e.g., [2,15,10,1]. These works however are mostly aimed
at obtaining better performing CNF encodings for use in a SAT solver. In particular,
either UP on these encodings does not achieve GAC or when it does it is not as
efficient as standard GAC propagators.

140 F. Bacchus

5.1 Regular

A regular constraint over a sequence of k variables asserts that the sequence of val-
ues assigned to those variables falls into a specific regular language. By varying the
language the regular constraint can be used to capture a number of other constraints
(e.g., the stretch constraint) [13]. It is not always possible to achieve GAC on a regu-
lar constraint in time polynomial in its arity. In particular, the complexity of achieving
GAC also depends on the complexity of the regular language being recognized. Nev-
ertheless, UP on our clausal encoding can achieve the same complexity guarantees
as the propagator given in [13].

More formally, each regular language L has an associated Deterministic Finite Au-
tomaton (DFA) M that accepts a string iff that string is a member of L. M is defined
by the tuple 〈Q, Σ, δ, q0, F 〉, where Q is a finite set of automaton states, Σ is an in-
put alphabet of symbols, δ is a transition function mapping state-input symbol pairs
to new states Q×Σ �→ Q, q0 is the initial state, and F is a set of accepting states. A
DFA takes as input a string of characters. Each character c ∈ Σ causes it to transition
from its current state q to the new state δ(q, c). The DFA starts off in the state q0
and a string S over the alphabet Σ is said to be accepted by the DFA M if S causes
M to transition from q0 to some accepting state in F .

Let L be a regular language over the alphabet of symbols
⋃k

i=1 dom [Vi], and
M be a DFA that accepts L. The regular constraint over the sequence of variables
〈V1, . . . , Vk〉 and the language L, regularL(〈V1, . . . , Vk〉) is satisfied by a sequence
of assignments 〈V1 = d1, . . . Vk = dk〉 iff the sequence of values 〈d1, . . . , dk〉 is
accepted by the DFA associated with L.

Our clausal encoding of regular utilizes the insight of [13] that GAC can be achieved
by looking for paths in a layered directed graph. The graph has k layers each of which
represents the possible states the DFA can be in after s inputs (0 ≤ s ≤ k). Any input
string generates a path in this graph, and an accepted string must generate a path starting
at q0 and ending in some state of F . Our encoding captures the structure of this graph in
such a way that UP can determine whether or not any particular value d ∈ dom [Vi] lies
on an accepting path (is part of a satisfying tuple). The encoding contains the assignment
variables AVi=d (d ∈ dom [Vi]) along with the VDom clauses encoding the variable
domains. In addition it also contains the following variables and clauses:

1. For each step s of M ’s processing, 0 ≤ s ≤ k, and each state qi ∈ Q, the state
variable qs

i . This variable is true if M is in state qi after having processed s input
symbols.

2. For each transition (qi, d) �→ qj ∈ δ and each step s, 1 ≤ s ≤ k such that
d ∈ dom [Vs], the transition variable tsqi〈d〉qj

. This variable is true if M ’s s-th
input symbol is d and on processing this symbol it transitions from state qi to qj .

3. For each transition variable the clauses (¬tsqi〈d〉qj
, qs−1

i), (¬tsqi〈d〉qj
, qs

j),
and (¬tsqi〈d〉qj

, AVs=d). These clauses capture the condition that if the transi-
tion tsqi〈d〉qj

is true, M must be in state qi at step s−1, qj at step s, and Vs must
be assigned the value d.

4. For each state variable qs
i let {ts+1

qi〈∗〉∗} be the set of transition variables repre-
senting transitions out of qi at step s+1 and {ts∗〈∗〉qi

} be the set of transition

GAC Via Unit Propagation 141

variables representing transitions into qi at step s. For each qs
i the encoding con-

tains the clauses ({ts+1
qi〈∗〉∗}, ¬qs

i) and ({ts∗〈∗〉qi
}, ¬qs

i), capturing the condition
that at least one incoming and one outgoing transition must be true for state qi

to hold at step s. For step 0 we omit the clauses for incoming transitions, and
for step k we omit the clauses for outgoing transitions.

5. For each assignment variable AVs=d let {ts∗〈d〉∗} be the set of transition variables
representing transitions enabled by the assignment Vs = d at step s. Then for
each assignment variable the encoding contains the clause ({ts∗〈d〉∗}, ¬AVs=d)
capturing the condition that at least one supporting transition must be true for
this assignment to be possible.

6. For each state variable q0
i such that i �= 0, the encoding contains the clause (¬q0

i),
capturing the condition that M must start in step 0 in the initial state q0. For
each state variable qk

i such that qi is not an accepting state of M , the encoding
contains the clause (¬qk

i), capturing the condition that M must finish in some
accepting state.

Theorem 2. If the constraint regularL(〈V1, . . . , Vk〉) is satisfied by some tuple of
assignments, UP on the above encoding achieves GAC on the constraint in time
O(km|Q|), where k is the arity of the constraint, m is the maximum sized domain,
and |Q| is the number of states of the DFA accepting L. That is, the assignment
Vi = d is GAC-inconsistent for regularL(〈V1, . . . , Vk〉) iff UP on this encoding forces
¬AVi=d. If regularL(〈V1, . . . , Vk〉) has no satisfying assignment UP will generate the
empty clause (GAC will generate an empty domain).

Proof: First we address the size of the encoding. There are |Q|k state variables (where
k is the arity of the constraint and |Q| is the number of states of M), and if m is the
maximal sized domain of any of the variables Vi, at most km|Q| transition variables.
In particular, M is deterministic, hence for each transition variable tsqi〈d〉qj

if any two
of the three parameters qi, d, or qj are fixed the last parameter can only have a single
value (s ranges from 1 to k).

Associated with each transition variable are 3 clauses from item 3 for a total size
of O(km|Q|). Associated with each of the k|Q| state variables is a clause of length
|{ts+1

qi〈∗〉∗}| + 1 and a clause of length |{ts∗〈∗〉qi
}| + 1, from item 4. These clauses are

at most m + 1 in length (given the input symbol the other (input or output) state
is determined): again a total size of O(km|Q|). Finally, associated with each of the
O(km) assignment variables is a single clause of length |{ts∗〈d〉∗}|+1. These clauses
can be most length |Q|+1 (fixing the input or output state determines the other state):
once again a total size of O(km|Q|). Hence the total size of the clausal encoding is
O(km|Q|) which gives the space as well as the time complexity of UP (UP runs
in time linear in the total size of the encoding).2 This is the same time and space
complexity of the propagator given in [13].

Now we prove that UP achieves GAC assuming that the constraint is satisfied by
some tuple of assignments. First, if Vi = di is not pruned by GAC then UP cannot

2 As discussed Section 2.1 we are exploiting the fact that the km2 VDom clauses can be
represented and propagated in O(km) space and time.

142 F. Bacchus

force ¬AVi=di . If Vi = di is not pruned by GAC it must have a supporting tuple,
〈V1 = d1, . . . , Vi = di, . . . , Vk = dk〉. This sequence of inputs to M will cause
M to transition through a sequence of states 〈qπ(0), qπ(1), . . . , qπ(k)〉 starting at the
initial state qπ(0) = q0 and ending at an accepting state qπ(k) ∈ F . Setting all of
the corresponding assignment variables AVi=di , state variables qs

π(s), and transition
variables tsqπ(s−1)〈ds〉qπ(s)

to be true, and and all other variables to be false, we observe
that all clauses become satisfied. Hence AVi=di is part of a satisfying truth assignment
and since UP is sound it cannot force ¬AVi=di . We conclude by contraposition that
if UP forces ¬AVi=di then GAC must prune Vi = di

Second, if UP does not force ¬AVi=di then GAC will not prune Vi = di, and by
contraposition we have that if GAC prunes Vi = di then UP must force ¬AVi=di .
Given that UP has been run to completion and ¬AVi=di has not been forced, then by
the clauses of item 5 there must exist some transition variable tiqh〈di〉qj

that also has
not be falsified by UP. By the clauses of item 2, it must also be the case that the state
variables qi−1

h and qi
j have not been falsified. By the clauses of item 4 there must be

corresponding transition variables ti−1
qg〈di−1〉qh

incoming to qi−1
h and ti+1

qj〈di+1〉qk
out-

coming from qi
j , neither of which have been falsified. By the clauses of item 2 the

assignment variables AVi−1=di−1 and AVi+1=di+1 cannot be falsified. Continuing this
way we arrive at a input sequence that includes Vi = di and that causes M to transi-
tion from q0 to an accepting state. That is, Vi = di has a supporting tuple, and GAC
will not prune it.

Finally, if regularL(〈V1, . . . , Vk〉) has no satisfying assignment then no value d ∈
dom [Vi] is supported (for any variable Vi). By the above UP will force ¬AVi=d for
every d ∈ dom [Vi] thus making the VDom clause (AVi=d1 , . . . , AVi=dm) empty.

Corollary 2. If after initial GAC we additionally prune the assignment Vi = di, then
adding the unit clause ¬AVi=di and again performing UP re-establishes GAC.

That is, we can incrementally maintain GAC on regularL(〈V1, . . . , Vk〉) by simply
falsifying the assignment variables for every pruned assignment and then redoing UP.
As noted in the introduction UP is inherently incremental, so no changes need to be
made to achieve an incremental propagator. This corollary can be proved by observ-
ing that the proof of the theorem continues to apply even if some of the assignment
variables have initially been set to be false.

In [14] a CNF encoding for the grammar constraint has been developed. That
encoding is based on the grammar rules view of languages, and uses CNF to encode
a dynamic programming parsing algorithm. UP on the encoding is able to achieve
GAC for context free grammar constraints. Since regular languages are a subset of
context free languages, this encoding supplies an alternate way of using UP to achieve
GAC on regular. However, as demonstrated below our encoding for regular can be
extended to provide an encoding for gen-sequence whereas the encoding of [14] does
not provide an immediate solution for gen-sequence. Furthermore, the argument that
UP might be a useful general way of achieving GAC is not put forward in that paper.

GAC Via Unit Propagation 143

5.2 Among

An among constraint over a sequence of k variables, 〈V1, . . . , Vk〉 asserts that at least
min and at most max of these variables can take on a value from a specific set S.
More formally, among(〈V1, . . . , Vk〉, S, min, max) is satisfied by a tuple of assign-
ments 〈d1, . . . , dk〉 iff min ≤ |〈d1, . . . , dk〉 ∩ S| ≤ max.

To simplify our notation we can consider among(〈V1, . . . , Vk〉, {1}, min, max) in
which all of the variables in 〈V1, . . . , Vk〉 have domain {0, 1} and S is {1}. Any
among constraint among(〈X1, . . . , Xk〉, S′, min, max) can be reduced to this case
by introducing the 〈V1, . . . , Vk〉 as new variables and imposing a constraint between
Xi and Vi (1 ≤ i ≤ k) such that Vi = 1 iff Xi has a value in S′. In fact, although
we omit the details here, the constraint between the original Xi variables and the
Vi variables can be captured with a CNF encoding and enforced with the same UP
engine used to enforce among.

We can specify a CNF encoding for among by constructing a DFA that has max
states, q0, . . . , qmax. The states qmin, . . . qmax are all accepting states. The input al-
phabet is the two conditions Vi and ¬Vi (the Vi are binary values thus they can be
treated as propositions with Vi ≡ Vi = 1 and ¬Vi ≡ Vi = 0). The transition func-
tion is simply defined by the condition that an Vi input causes a transition from qj

to qj+1, while a ¬Vi input causes a transition from qj back to qj . In other words,
the states of the DFA simply keep track of the number of variables taking values in
S and accepts iff the total number over all k variables lies in the range [min, max].
Thus the among constraint can be encoded as a CNF on which UP achieves GAC
by using the previously specified encoding for this DFA.

Encoding among as a CNF is not particularly practical, as among has a very sim-
ple propagator that is more efficient than UP on this CNF encoding. The real use of
the CNF encoding of among comes from applying it to conjunctions of among con-
straints. It can also be noted that [1,15] both provide CNF encodings for the Boolean
Cardinality Constraint which is equivalent to the above among constraint. Their en-
codings allow UP to achieve GAC, but as with the above encoding, their encodings
are not as efficient as the standard propagator.

5.3 Generalized Sequence Constraint

A gen-sequence constraint over a sequence of variables 〈V1, . . . , Vk〉 is a conjunction
of among constraints. However, it is not an arbitrary collection of among constraints.
In particular, all of the among constraints are over sub-sequences of the same global
sequence 〈V1, . . . , Vk〉. Furthermore, the among constraint all count membership in
a fixed subset of domain values S.3 More formally,

gen-sequence(〈V1, . . . , Vk〉, S, 〈σ1, . . . , σm〉, 〈min1, . . . , minm〉, 〈max1, . . . , maxm〉)
≡

∧m
j=1 amongj(σj , S, minj , maxj),

where each σj is a sub-sequence of 〈V1, . . . , Vk〉.
3 The algorithm provided in [16] also requires that the set S be fixed over all among

constraints.

144 F. Bacchus

We present an encoding on which the failed literal test achieves GAC. That is,
with this encoding, each value of each variable can be tested to determined if it is
supported by doing a single run of UP. It is particularly important that modern imple-
mentations of UP are decremental almost without cost. Thus all that needs to be done
between testing successive variable values is to undo the truth assignments forced by
the previous run of UP. Using the failed literal test to achieve GAC on this constraint
achieves the same time complexity guarantee as the propagator given in [16].

Since the set S is fixed across all of the among constraints, we can apply the same
transformation used in the previous section to convert them to among constraints
over variables with domain {0, 1} and S = {1}. With this simplifying transformation
our CNF encoding for gen-sequence consists of the encoding generated by a simple
DFA along with some additional clauses. In particular, to obtain a CNF encoding for
gen-sequence(〈V1, . . . , Vk〉, {1}, 〈σ1, . . . , σm〉, 〈min1, . . . , minm〉,
〈max1, . . . , maxm〉) (abbreviated as gen-sequence(〈V1, . . . , Vk〉)) where S = {1}
and the variables are all have domain {0, 1}, we first generate the CNF encoding for
among(〈V1, . . . , Vk〉, S, 0, k).

This encoding captures a DFA that simply keeps track of the number of variables
in 〈V1, . . . , Vk〉 that lie in S: all states are accepting. In the CNF encoding each step
s (0 < s ≤ k) contains s state variables qs

i (0 ≤ i ≤ s) indicating that i of the
first s variables V1, . . . , Vs took a value in S. The transition variables tsqi〈Vs〉qi+1

and
tsqi〈¬Vs〉qi

capture the transitions qi → qi+1 made when Vs takes a value in S and
qi → qi made when Vs takes a value not in S.

In addition to the clauses encoding this “base” DFA, for every constraint amongj

(σj , S, minj , maxj) in the gen-sequence we have the following clauses.

1. Let σj be the subsequence of variables 〈Vg, . . . , Vh〉, for every state variable at
step g−1, qg−1

i (0 ≤ i ≤ k) we have the clause (qh
i+ minj

, . . ., qh
i+ maxj

, ¬qg−1
i)

encoding the condition that if the count by time we have reached step h does not
lie in the range [i + minj , i + maxj] then we cannot have started with the count
at i at step g−1.

2. The clause (qg−1
i−maxj

, . . ., qg−1
i−minj

, ¬qh
i) encoding the condition that if the count

by time we reach step h is i then we must have started off in the range [i −
maxj, i − minj] at step g−1.

Theorem 3. If the constraint gen-sequence(〈V1, . . . , Vk〉) is satisfied by some tuple
of assignments, the failed literal test on the above encoding achieves GAC on the
constraint in time O(mk3), where k is the arity of the constraint, and m is the num-
ber of among constraints in the gen-sequence constraint. That is, the assignment Vi

(i.e., Vi = 1) is GAC-inconsistent iff the failed literal test on Vi yields a contradiction.
Similarly for the assignment ¬Vi (i.e., Vi = 0). If gen-sequence(〈V1, . . . , Vk〉) has
no satisfying assignment then UP (without use of the failed literal test) will generate
the empty clause (GAC would generate an empty domain).4

4 Note that in [16] the claim is made that their propagator runs in time O(k3). However,
a close look at their algorithm demonstrates that it in fact requires O(mk3). In par-
ticular, each time a PUSHUP operation (at most O(k2)) in their CHECKCONSISTENCY

GAC Via Unit Propagation 145

Proof: We show that Vi is GAC inconsistent iff the failed literal test on ¬Vi yields
a contradiction. The argument for ¬Vi is similar.

Consider the relevant parts of the CNF encoding of gen-sequence. These are the
clauses encoding the base DFA that counts the number of variables taking values in
S, along with the clauses of item 1 and 2 above capturing the relationship between
the initial and final counts for each among constraint.

If GAC does not prune Vi then there must be some supporting tuple of values
containing it 〈V1, . . . , Vk〉. We can then generate a path through the base DFA from
this input sequence of Vj values. As with the proof of Theorem 2 this sequence can
be used to assign true to the state, and transition lying along this accepting path, with
all other variables assigned false. It can then be observed that all clauses of the DFA
will be satisfied, and further since the sequence also satisfies all m among constraints
so will all clauses for the m among constraints (items 1 and 2 above). Thus UP
cannot not force ¬Vi since Vi is part of a satisfying assignment. Furthermore, the
failed literal test on Vi cannot yield a contradiction. By contraposition we conclude
that if the failed literal test yields a contradiction then GAC will prune the value.

To prove the other direction consider what happens after UP (but not failed literal) has
been run. There will be some set of unfalsified state variables Qs at each step s. If any
of these sets, say Qi is empty, UP must have produced an empty clause. In particular,
the clauses of item 3 of the DFA encoding (specifying that a transition cannot be true
if its final state is false) will allow UP to falsify all incoming transitions variables into
states of step s, and this in turn will allow UP to falsify both “alphabet symbols” Vi

and ¬Vi using the clauses of item 5 of the DFA. This will give rise to a contradiction
and an empty clause. By the previous paragraph this means that the constraint has no
satisfying tuple, as each satisfying tuple yields a model of the clauses.

Say that none of these sets Qs is empty, let 〈q0, qπ(1), . . . , qπ(k)〉 be the sequence
of states such that π(i) is the minimal indexed state variable of Qi. This sequence of
states corresponds to the minimal unfalsified counts in the DFA after UP. We claim
that this sequence of states corresponds to a satisfying tuple for gen-sequence. First,
we have that either π(i+1) = π(i) or π(i+1) = π(i) + 1, that is these counts can
increase by zero or one at each step. If π(i+1) < π(i), then the only transitions
into qi+1

π(i+1) are from qi
j with j < π(i). However, all such state variables have been

falsified as qi
π(i) is the minimal indexed state variable at step i, hence the clauses of

item 3 of the DFA would have falsified all transitions variables coming into qi+1
π(i−1),

and the clauses of item 4 of the DFA would falsify qi+1
π(i+1): a contradiction. Similarly,

if π(i+1) > π(i) + 1 then all outgoing transitions from qi
π(i) would be falsified and

so would qi
π(i). Second, if π(i+1) = π(i) the variable ¬Vi cannot be false and if

π(i+1) = π(i) + 1 the variable Vi cannot be false: if these variables were false
then one or both of qi

π(i) and qi+1
π(i+1) would fail to have any incoming or outgoing

transitions and would thus be falsified by UP. Finally, this sequence must satisfy each

algorithm is performed it could require first checking all m among constraints to see if
any are violated. This yields an O(mk2) complexity for CHECKCONSISTENCY and an
overall O(mk3) complexity for achieving GAC.

146 F. Bacchus

among constraint because of the clauses from each of these constraints. Consider the
clauses (qh

π(g+ minj), . . ., qh
π(g+ maxj), ¬qg−1

π(g−1)) and (qg−1
π(h−maxj)

, . . ., qg−1
π(h−minj)

,

¬qh
π(h)) from among constraint j. Since qg−1

π(g−1) is the minimal indexed state variable

at step g and qh
π(h) is the minimal indexed state variable at step h, we can see that

if π(g) − π(h) lies outside of the range [minj , maxj] then one of qg−1
π(g−1) or qh

π(h)
will be falsified by UP from these clauses. For example, if π(g)−π(h) > maxj then
all of the step h state literals in (qh

π(g+ minj), . . ., qh
π(g+ maxj), ¬qg−1

π(g−1)) would be

falsified and thus qg−1
π(g−1) would also be falsified by UP. Hence, these minimal states

and the corresponding transitions and Vj variables between them define a satisfying
tuple for gen-sequence. We also see that if the constraint has no satisfying tuple, at
least one of the sets Qs must be empty and by the previous paragraph UP yields the
empty clause. This proves the last claim of the theorem.

If we apply the failed literal test to Vi, this will force Vi and thus if there is no con-
tradiction the minimal path after UP must contain Vi in the satisfying tuple it defines.
Thus Vi is supported, and so GAC will not prune this assignment. By contraposition,
if GAC prunes Vi then the failed literal test must generate a contradiction.

Turning now to the complexity, note that the encoding for the base DFA is of size
(total length of clauses) O(k2); in particular |Q| = k and m = 2 since the base DFA
only has to symbols Vj and ¬Vj in its alphabet. The clauses encoding the among con-
straints total m (the number of among constrains) times O(k2); each among constraint
generates k clauses from item 1 and k clauses of item 2, each of these clauses is of
length O(k). So in total we have a CNF theory of total size O(mk2). At most we have
to do O(k) failed literal tests each of which runs in time O(k2). This gives us a total
complexity for achieving GAC of O(mk3) in the worst case.

Some additional comments can be made about the practicality of this approach to GAC
on gen-sequence. First, the failed literal test can be quite efficient. In particular, no work
needs to be done to reset the “data structures” (i.e., the clauses) between successive
failed literal tests. Second, UP on this encoding achieves incremental GAC, it is not
difficult to see that if we prune values from the domains of the variables Vi so as to force
the value of Vi, UP can incrementally re-establish GAC. Third, the initial UP and each
successive failed literal test yields a supporting tuple. If Vi or ¬Vi appears in any of these
tuples, we need not do a failed literal test on it: it is already supported. Furthermore,
by analogous reasoning it is not hard to see that the sequence of maximum indexed
state variables in the sets Qs also forms a satisfying tuple. Thus the initial UP and each
subsequent failed literal test can yield up to two satisfying tuples, each of which can be
used to avoid testing some as yet untested Vi literals.

6 Conclusions

In this paper we have shown that GAC can be efficiently achieved by using the ap-
proach of converting a constraint to a CNF and then employing a UP engine to do
propagation in that CNF. As discussed in the introduction this approach has a number
of advantages, including the fact that it is immediately incremental and decremen-
tal. We have also shown that special structure in a constraint can in some cases be

GAC Via Unit Propagation 147

exploited so that UP can achieve GAC with the same complexity as a constraint spe-
cific propagation algorithm.

A number of questions remain open. First, there is the empirical question of how
this approach performs in practice. On that front we are quite optimistic given the
highly tuned nature of publically available UP engines. Second, there is the question
of just how general is this approach; can it be applied to other well known con-
straints? One thing to note with respect to this question is that regular is already
quite a general constraint. Nevertheless, further research along this line is definitely
required. It should be noted that the CNF encodings presented here exploits struc-
ture that had already been uncovered and exploited in previous propagators. So it is
feasible that other propagation algorithms could similarly exploited.

References

1. Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

2. Bailleux, O., Boufkhad, Y.: Full cnf encoding: The counting constraints case. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)

3. Bennaceur, H.: A comparison between sat and csp techniques. Constraints 9, 123–138
(2004)

4. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: Preliminary
results. In: Proc. IJCAI, pp. 398–404 (1997)

5. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure. In: Proc.
IJCAI-2005, pp. 1306–1312 (2005)

6. Dimopoulos, Y., Stergiou, K.: Propagation in csp and sat. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 137–151. Springer, Heidelberg (2006)

7. Eén, N., Sörensson, N.: Minisat solver, http://www.cs.chalmers.se/Cs/
Research/FormalMethods/MiniSat/MiniSat.html

8. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. PhD the-
sis, University of Pennsylvania (1995)

9. Gent, I.: Arc consistency in sat. In: ECAI, pp. 121–125 (2002)
10. Gent, I., Nightingale, P.: A new encoding of all-different into SAT. In: Proc. 3rd Interna-

tional Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp.
95–110 (2004)

11. Hebrard, E., Bessière, C., Walsh, T.: Local consistencies in sat. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 400–407. Springer, Heidelberg (2004)

12. Katsirelos, G., Bacchus, F.: Generalized nogoods in csps. In: Proc. of AAAI, pp. 390–396
(2005)

13. Pesant, G.: A regular language membership constraint for finite sequences of variables.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

14. Quimper, C.-G., Walsh, T.: Decomposing global grammar constraints. In: Proc. of CP2007
(2007)

15. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

16. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the Sequence
Constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204. Springer, Heidelberg
(2006)

17. Walsh, T.: Sat v csp. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html

Solution Directed Backjumping for QCSP

Fahiem Bacchus1 and Kostas Stergiou2

1 Department of Computer Science, University of Toronto, Canada
fbacchus@cs.toronto.edu

2 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece

konsterg@aegean.gr

Abstract. In this paper we present new techniques for improving backtracking
based Quantified Constraint Satisfaction Problem (QCSP) solvers. QCSP is a
generalization of CSP in which variables are either universally or existentially
quantified and these quantifiers can be alternated in arbitrary ways. Our main
new technique is solution directed backjumping (SBJ). In analogue to conflict
directed backjumping, SBJ allows the solver to backtrack out of solved sub-trees
without having to find all of the distinct solutions normally required to validate
the universal variables. Experiments with the solver QCSP-Solve demonstrate
that SBJ can improve its performance on random instances by orders of mag-
nitude. In addition to this contribution, we demonstrate that performing varying
levels of propagation for universal vs. existential variables can also be useful for
enhancing performance. Finally, we discuss some techniques that are technically
interesting but do not yet yield empirical improvements.

1 Introduction

In this paper we present new techniques for improving the performance of solvers for
Quantified Constraint Satisfaction Problems (QCSPs). QCSPs are an extension of stan-
dard constraint satisfaction problems (CSPs) that can compactly represent a wider range
of problems than the standard CSP formalism. Whereas all of the variables of a CSP are
implicitly existentially quantified, QCSPs also allow variables to be universally quanti-
fied. Furthermore, universal and existential variables can be alternated in arbitrary ways
in a QCSP. From a theoretical point of view, these added features make QCSPs PSPACE
complete; any problem in PSPACE can be encoded as a polynomially sized (poly-sized)
QCSP. CSPs, on the other hand, are NP complete; any problem in NP can be encoded as
a poly-sized CSP. It is known that both NP ⊆ PSPACE and co-NP ⊆ PSPACE, and it is
widely believed that these containments are proper, i.e., that there are problems outside
of NP and co-NP that still lie in PSPACE. Such problems will not have a poly-sized
CSP representation, but will have a poly-sized QCSP representation.

From a practical point of view, this difference means that if effective QCSP solvers
can be developed they would enable a wide range of practical applications that lie be-
yond the reach of CSP solvers. Even though CSP and QCSP solvers both have the same
exponential worst case complexity, experience has shown that solvers can often achieve
reasonable run times in practice. The real issue separating CSP and QCSP solvers lies

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 148–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solution Directed Backjumping for QCSP 149

in size of the problem representation, i.e., the size of the input. If NP �= PSPACE, then
there will exist problems for which a CSP formalization will always be exponentially
larger than the equivalent QCSP representation. Thus a CSP solver could not even get
started on the problem—the problem would contain too many variables and constraints.
The QCSP representation, on the other hand, would still be polynomial in size and thus
potentially solvable by a QCSP solver if that solver was able to achieve reasonable run
times in practice.

A good illustration of this point comes from the area of circuit diagnosis. In [1]
an innovative application of quantified boolean formulas (QBF is a restricted form of
QCSP), for diagnosing hardware circuits is given. The key feature of the approach is
that the QBF encoding is many times smaller than the equivalent SAT encoding (SAT is
a restricted form of CSP). In fact, in experiments the SAT encoding grew so large that it
could no longer be solved by existent SAT solvers, whereas the QBF encoding remained
compact and was solvable by existent QBF solvers. Other applications of QCSP come
from areas like conditional planning and planning under incomplete knowledge [14],
non-monotonic reasoning [9], and hardware verification and design [7,1].

In this paper we present new techniques for improving backtracking based QCSP
solvers. Our main contribution is to demonstrate how the technique of cubes, utilized
in QBF solvers [16,12], can be extended to QCSPs in a technique we call solution di-
rected backjumping (SBJ). SBJ allows the solver to backtrack intelligently after having
encountered a solution. SBJ subsumes and improves on the technique of solution di-
rected pruning (SDP) [11], in an manner analogous to how conflict directed backjump-
ing (CBJ) extends ordinary backjumping. In particular, SBJ computes information that
can be used at internal nodes of the tree rather than just at the leaf nodes. Experiments
demonstrate that SBJ can improve performance by orders of magnitude.

In addition to SBJ, we demonstrate that performing varying levels of propagation for
universal vs. existential variables can enhance performance. In particular, we show that
enforcing very high levels of consistency on universal variables can pay off, as detect-
ing a locally inconsistent value of a universal variable immediately forces a backtrack.
We also discuss validity pruning, a technique that can be used to prune the domains
of universally quantified variables. Our current empirical investigations with random
problems indicate that validity pruning does not yield significant improvements. Nev-
ertheless, it has the potential to be useful in other types of problems.

This paper is structured as follows. Section 2 gives the necessary definitions and
background on QCSPs. Section 3 describes methods to enhance propagation in QCSPs,
while in Section 4 we present SBJ, a method to enhance intelligent backtracking in QC-
SPs. Section 5 gives experiments results demonstrating the efficiency of the proposed
methods. Finally, in Section 6 we conclude.

2 Background

We are concerned here with QCSPs defined over finite valued variables. Let V =
{v1, . . . , vn} be a set of variables. Each variable vi has an associated finite domain
of values dom [vi]. We write v = d if the variable v has been assigned the value d al-
ways requiring that d ∈ dom [v], i.e., a variable can only be assigned a value from its

150 F. Bacchus and K. Stergiou

domain. A constraint c is a function from a subset of the variables in V to {true, false}
(1/0). This subset of variables is called the scope of c, scope(c), and the cardinality of
this set is the arity of the constraint. Any tuple τ of values for the variables in scope(c)
will be mapped by c to true or false. If c(τ) = true, τ is said to be a satisfying tuple
of c, else c(τ) = false and τ is a falsifying tuple of c. We will consider τ to be a set,
and write v = d ∈ τ if v has the value d in τ .

A conjunction of constraints C = c1 ∧ · · · ∧ cm, their associated variables V =⋃m
j=1 scope(cj), and domains for these variables D = {dom [v] : v ∈ V } define a

standard CSP, C[D], which forms the body of a QCSP. Let τ be a tuple of values for all
of the variables in V , and for each constraint ci ∈ C let τi be the subset of τ containing
the values assigned to variables in scope(ci). τ is a solution of the body C[D] if each
τi is a satisfying tuple of ci.

Definition 1 (QCSP). Given a body C[D] a Quantified Constraint Satisfaction Prob-
lem (QCSP) is a formula of the form Q.C[D] where Q is a quantifier prefix consisting
of the variables of

⋃
cj∈C scope(cj) arranged in some sequence and each proceeded by

either an existential (∃) or universal quantifier (∀).

For example
∀v1, ∃v2, ∀v3, ∃v4.c1(v1, v2) ∧ c2(v1, v3, v4) ∧ c3(v2, v3, v4)

[{dom[v1] = {a, b}, dom[v2] = {a, b, c}, dom[v3] = {a}]

is a QCSP with the quantifier prefix ∀v1, ∃v2, ∀v3, ∃v4. This QCSP asserts that for all
values of v1 there exists a value of v2 (perhaps dependent on the particular value of
v1) such that for all values of v3 there exists a value of v4 (perhaps dependent on the
particular values of v1, v2 and v3) such that all the constraints c1, c2 and c3 are satisfied.

A quantifier block qb of Q is a maximal contiguous subsequence of Q such that
every variable in qb has the same quantifier type. For two quantifier blocks qb1 and qb2
we say that qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in Q. Each variable v in
Q appears in some quantifier block qb(v) and we say that v1 ≤q v2 if qb(v1) ≤ qb(v2)
and v1 <q v2 if qb(v1) < qb(v2). We also say that v is universal (existential) if its
quantifier in Q is ∀ (∃).

A QCSP makes an assertion that is either true or false. The assertion made by
Q.C[D] is true iff Q.C[D] has a Q-Model. A Q-Model for a Q.C[D] is a tree in which
each node except for the root is labeled by a variable assignment and that is subject to
the following conditions. Let n and m be any two nodes in the tree such that n’s label
is x = a while m’s label is y = b.

1. If n is an ancestor of m, then it must be the case that x ≤q y. That is, the sequence
of assignments along any path from the root to a leaf must respect the ordering of
the quantifier blocks.

2. If x is universally quantified, then n must have k − 1 siblings where k is the size of
dom [x]. For each value d ∈ dom [x], n or one of its k − 1 siblings must be labeled
by x = d. On the other hand if x is existentially quantified, then n has no siblings.

3. The tuple of assignments along any path from the root to a leaf node must be a
solution to C[D].

Solution Directed Backjumping for QCSP 151

Hence in a Q-Model there is a path for every possible setting of the universal vari-
ables in Q each of which is a CSP solution to the body of the QCSP. Thus a Q-Model of
a QCSP containing k universal variables will contain 2O(k) solutions to the body. From
this definition it can be seen that any CSP can be viewed as a QCSP with all its variable
existentially quantified. The Q-Models of such existential only QCSPs contain only a
single path, and determining the truth of such QCSPs (the existence of a Q-Model) is
equivalent to determining if the CSP has a solution.

The reduction of C[D] by an assignment v = d, C[D]
∣∣
v=d

is the new body obtained
by removing from the domain of v all values not equal to d (i.e., reducing dom [v] set
to the singleton set {d}). We can also reduce the body by pruning a value from the
domain of a variable: C[D]

∣∣
v �=d

= C[(D
(
dom [v])/(dom [v]−d)

)
]. The reduction by

a set of assignments or value prunings is defined as the sequential application of these
reductions. Note that if any variable domain is reduced to the empty set, then the QCSP
is false. It cannot have a Q-Model as every Q-Model must assign every variable a value
from its domain along each path.

Proposition 1. Let v be a variable and d be some value in its domain. If v is universal
then Q.C[D] ⇒ Q.C[D]

∣∣
v �=d

. If v is existential then Q.C[D]
∣∣
v �=d

⇒ Q.C[D].

Proof: If v is universal and Q.C[D] has a Q-Model then so does Q.C[D]
∣∣
v �=d

: we
simply remove all subtree rooted by nodes labeled v = d from Q.C[D]’s Q-Model. If
v is existential then any Q-Model of Q.C[D]

∣∣
v �=d

is a Q-Model of Q.C[D].
A common way of solving a QCSP is via backtracking search. In its most basic

form such a search works much like CSP backtracking search except for two additional
conditions: (1) the variable ordering along any branch must respect the ordering of the
quantifier blocks (although it is free to dynamically reorder the variables within each
block), and (2) for every universal variable v the search needs to solve for every value
in dom [v].

The search tries to find a Q-Model: a successful run verifies that a Q-Model exists
by traversing a Q-Model during its search while a failed run has tried to traverse all
possible Q-Models thus verifying that one does not exist. In particular, at any node n
the search tree that has been reached by making the sequence of assignments πk =
〈v1 = d1, . . . , vk = dk〉, the search in the subtree below n attempts to find a Q-Model
for Q.C[D]

∣∣
πk

. Thus at the root the search attempts to find a Q-Model for the original
problem Q.C[D].

The key to making backtracking search for QCSPs effective is by developing tech-
niques that allow unsuccessful subtrees to be refuted more efficiently, and successful
subtrees to be verified more efficiently. Efficient refutation of unsuccessful subtrees is
also the goal in backtracking CSP solvers, but here we aim to exploit the additional
structure of QCSPs to develop better methods for achieving this goal. Efficient verifi-
cation of successful subtrees, on the other hand, has no analogue in CSP solvers which
typically can stop as soon as a single solution is found. With a QCSP however, a suc-
cessful subtree has an exponential number of solutions and finding each of these would
be very slow. Here again our aim is to exploit the additional structure of QCSPs to de-
velop methods for verifying that all of these solutions exist without having to actually
find each one.

152 F. Bacchus and K. Stergiou

In the sequel we report on some new methods for achieving these two goals as well
as on our empirical evaluation of their effectiveness. From here on we will confine
our attention to QCSPs with constraints of arity at most two. It can be noted that any
QCSP with non-binary constraints can be converted to an equivalent QCSP containing
only binary constraints by applying the hidden variable transformation (see e.g., [2]) to
convert the body to a binary CSP and then adding all of the newly introduced hidden
variables as new existential variables to the end of the quantifier prefix. Whether or not
this is a effective way of dealing with non-binary constraints is a topic for future work.
The alternative of dealing directly with non-binary constraints poses some considerable
additional formal and practical challenges and is also a topic for future work.

3 Propagation

Our first techniques arise from the standard idea of constraint propagation. These tech-
niques use the constraints of the QCSP body to provide additional information that can
simplify the task of searching the subtree below the current node.

3.1 Detecting Inconsistent Values

An assignment v = d is inconsistent for Q.C[D] if it does not appear in any Q-Model
of Q.C[D]. If v = d is inconsistent and v is existential then Q.C[D] ≡ Q.C[D]

∣∣
v �=d

:

any Q-model for Q.C[D] must also be a Q-Model for Q.C[D]
∣∣
v �=d

since it cannot
contain v = d, while Prop. 1 supplies the opposite direction. On the other hand if v is
universal then Q.C[D] is false: any Q-Model must contain v = d.

Of course it is in general hard to detect inconsistent values, but as with CSPs various
local checks can be performed that detect some but not all inconsistent values. Such
checks can be done at every node n of the search (including prior to search at the root).
In particular, if an inconsistent existential value is detected it can be pruned before
searching the subtree below n, and if an inconsistent universal value is detected the
search can immediately backtrack from n.

Since every path in a Q-Model is a standard CSP solution to the body, any standard
CSP technique for detecting inconsistent values can be used: any value inconsistent
for the body cannot appear in any Q-Model. Additionally, we can do better than this
by exploiting the additional structure of QCSPs. In particular, as shown in [6,13], arc
consistency (AC) can be extended to QCSPs to support the detection of values that are
inconsistent for the QCSP even though they are not inconsistent for the CSP body. AC
for binary QCSPs has been implemented in the QCSP-Solve system that we employ in
our empirical evaluations. QCSP-Solve uses AC only as a preprocessing step (i.e., at
the root), as FC (forward checking) seems to be more cost effective during search [11].

The key feature of AC for QCSPs is that it allows many of the constraints of the body
to be removed at the root. In particular, the only constraints c(x, y) that remain in the
problem after AC preprocessing are those where both x and y are existential, and those
where x is universal, y is existential, and x <q y (see [11] for more details).

Pruning inconsistent values improves the efficiency of search in the subtree below,
but local consistency checking has its greatest impact when it allows us to avoid that

Solution Directed Backjumping for QCSP 153

search altogether. This happens when either all values of an existential are pruned or
a single value of a universal is pruned. It is more likely that local propagation can
prune a single universal value than all values for some existential. Hence, it can be
worth while to expend more effort checking for inconsistency universal values. This
intuition already appears to some extent in the QCSP-Solve system via its FC1 and
MAC1 propagation. In these propagation methods, whenever a universal variable x
is to be branched on, before descending deeper in the search tree all of its possible
values are tried and FC or AC performed after each trial assignment. If any of these
assignments yield a contradiction the algorithm can immediately backtrack. This extra
work on universals was shown to be cost effective in the experiments of [11].

Our first new technique is to further investigate the technique of doing more work on
the consistency checking of universals. In particular, we investigate applying a different
and stronger level of consistency checking on universals and a weaker, and thus cheaper,
level of consistency on existentials, in addition to the technique of checking all universal
values prior to descending deeper, used in [11].

3.2 Strong Levels of Consistency on Universals

Like QCSP-Solve after any existential is assigned we perform FC. But further to QCSP-
Solve we also check all future universal variables to ensure that they are arc consistent
in all of the constraints they participate in. Like QCSP-Solve if a universal is about to
be assigned we check each of its values first. But further to QCSP-Solve we check each
value with a much higher level of local consistency than FC. The particular form of
local consistency we found to be effective is a mixture of path consistency (PC) and
max restricted path consistency (maxRPC). If any value of the universal fails this local
consistency test we backtrack. If they all pass this test, we then assign the universal
a value and then perform FC followed by enforcing AC on all constraints involving a
future universal. Hence, we have two changes from QCSP-Solve: (1) after each instan-
tiation we check that the future universals are AC in their constraints, and (2) checking
a higher level of consistency on all values of a universal prior to assigning it a specific
value.

Now we specify more precisely the local consistency test we employ on the values
of an about to be assigned universal. A pair of values (di, dj), di ∈ dom [vi] and dj ∈
dom [vj], is path consistent (PC) iff the two values are compatible and for any third
variable vk there exists a value dk ∈ dom [vk] that is compatible with both di and dj . A
value di ∈ dom [vi] is max Restricted Path Consistent (maxRPC) [8] iff for any variable
vj constrained with vi there exists a value dj ∈ dom [vj] that is compatible with di and
has the following property: for any third variable vk, there exists a value dk ∈ dom [vk]
that is compatible with both di and dj . In this case we say that dj is a maxRPC-support
of di. In other words di is maxRPC if it is a member of some path consistent pair in
every constraint it participates in while path consistency ensures that every pair di of
is path consistent. When during search we are about the assign the universal vi, after
having some set of assignments π, the local consistency test we employ is specified in
Figure 1.

In Figure 1 when a universal vi is reached during search we check that each of its
values di has a maxRPC support in the domain of each existential it is constrained with,
and that di is path consistent with all future universals. AC preprocessing ensures there

154 F. Bacchus and K. Stergiou

function maxRPC+PC_Propagation (Q.C[D], π, vi)
1: for each value di ∈ dom[vi]
2: for each unassigned existential variable vj constrained with vi

3: if di has no maxRPC-support in dom[vj]
4: then return FAIL
5: for each unassigned universal variable vj

6: for each value dj ∈ dom[vj]
7: if (di, dj) is not path consistent
8: then return FAIL

Fig. 1. Strong propagation on universal variables

are no constraints over two universals, thus to check the consistency of pairs of universal
values we must consider the existentials they are jointly constrained with; hence our use
of path consistency.

The following example demonstrates how the application of PC and maxRPC prunes
the search space upon reaching a universal variable.

Example 1. Consider the QCSP

∃v1, ∀v2, ∃v3, ∀v4, ∃v5.(v1 �= v5 − 2 ∧ v2 = v3 ∧ v2 �= v5 ∧ v3 �= v5 − 1 ∧ v4 = v5)
[dom [v1]=dom [v2]=dom [v3] = dom [v4] = {0, 1}, dom[v5] = {0, 1, 2}]

A chronological backtracking algorithm that applies PC and maxRPC upon reaching a
universal will solve the problem as follows. Variable v1 is assigned value 0. Forward
checking removes 2 from dom [v5]. The next variable v2 is a universal. We will now call
the function of Figure 1 to apply PC and maxRPC on v2’s values. v3 is existential and
is constrained with v2. Therefore, we check if value 0 of v2 has a maxRPC-support in
dom [v3] (line 3). The only value compatible with 0 in dom [v3] is 0 and there is no value
in dom [v5] that is compatible with both 0 ∈ dom [v2] and 0 ∈ dom [v3]. Therefore,
value 0 of v2 is not maxRPC and the algorithm immediately backtracks and assigns 1 to
v1. Again the function of Figure 1 is called. Value 0 of v2 now has a maxRPC-support
in dom [v3] (value 0), because 2 has been restored to dom [v5] and it is compatible with
both 0 ∈ dom [v2] and 0 ∈ dom [v3]. v4 is a universal so we now apply PC on its values.
That is, we check if the values of v4 have a support in v5 that is also a support for value
0 of v2 (lines 6-8). This is not the case for value 0 of v4 and therefore the algorithm
backtracks and determines that the problem is false.

3.3 Detecting Valid Values

In QCSPs a duality exists between universal and existential variables that manifests
itself in various aspects of the processing that can be done when solving a QCSP. With
respect to detecting inconsistent values the dual notion is detecting valid values.

An assignment v = d is valid for a constraint c if for every tuple τ of assignments
to the variables in scope(d) with v = d ∈ τ we have c(τ) = true. In other words the
assignment v = d renders c vacuous. We say that an assignment v = d is valid for a
conjunction of constraints C if it is valid for every constraint in C that has v in its scope.

This notion of validity corresponds both to that defined in [3] and to the notion of
purity defined in [11]. It is also related to notions described in [5]. A useful fact from

Solution Directed Backjumping for QCSP 155

[3] is that validity is the dual of inconsistency with respect to GAC. That is, v = d is
valid for a constraint c if and only if v = d is GAC inconsistent for ¬c, where ¬c is
the negation of c. That is, scope(¬c) = scope(c) and for any tuple of assignments τ ,
¬c(τ) = true iff c(τ) = false.

If v = d is valid for C in the QCSP Q.C[D] and v is existential then Q.C[D] ≡
Q.C[D]

∣∣
v=d

: we can assign v the value d. In particular, if Q.C[D] has a Q-Model, then
we can replace every assignment to v in that Q-Model by v = d. Since v = d is valid
this change cannot cause any constraint to be violated, hence the modified Q-Model is
still a Q-Model for Q.C[D]

∣∣
v=d

. Prop.1 provides the opposite direction. On the other
hand if v is universal then Q.C[D] ≡ Q.C[D]

∣∣
v �=d

: we can prune d from dom [v]. In

this case if Q.C[D]
∣∣
v �=d

has a Q-Model we can add the node v = d as a new sibling
to all sets of siblings labeled by the other assignments to v and then simply copy the
subtree below one of these other assignments to create subtree below v = d. Since
v = d is valid the other assignment’s subtree will continue to be a tree of solutions
under v = d. This modified Q-Model is a Q-Model of Q.C[D]. Prop.1 provides the
opposite direction.

Validity was previously utilized in QCSP-Solve by waiting until a variable was about
to be assigned. At that point the values of the variable would be checked to see if any
of them were valid (pure). For an existential the valid value would immediately be
assigned, and for a universal the valid values would be pruned, in accord with the above
observations.

An alternative to the approach of QCSP-Solve is to do validity propagation. In par-
ticular, instead of waiting until a variable is about to be assigned one could detect valid
values of future variables and prune or assign them dependent on their type. Validity
propagation can be achieved by exploiting the relationship cited above between GAC
(AC) on the negation of a constraint and validity. That is, it is fairly easy to alter AC
lookahead to detect valid values of future variables by running AC on the negations of
the constraints.

It should be noted that validity propagation does not affect the size of the search tree:
a valid value of a future variable will still be exploited even if it is only detected at the
time the variable is about to be assigned. Potentially, it can be more efficient to deter-
mine that a value is valid once near the top of the search tree, rather than each time the
variable is to be assigned. On the other hand, one could waste time detecting valid val-
ues for variables that are never reached because an inconsistency is found before they
are instantiated. The main potential benefit of validity propagation over future variables
lies in the fact that it dynamically alters the size of the variable domains; potentially dif-
ferently along different branches of the search tree. As noted above, although the order
in which variables are instantiated is restricted by the ordering of the quantifier blocks,
within a quantifier block the variable ordering can be selected heuristically. Hence, va-
lidity propagation could potentially provide “within a block” dynamic ordering with
useful information about varying domains sizes.

We implemented validity propagation and used it in conjunction with dynamic vari-
able ordering within quantifier blocks. Our experimental results were disappointing, but
we only tested random problems. Potentially this technique could be useful on other
QCSPs.

156 F. Bacchus and K. Stergiou

4 Intelligent Backtracking

Our second set of techniques arises from the idea of keeping track of the reasons a path
failed or succeeded so that irrelevant variables can be backtracked over. QCSP-Solve
already utilizes conflict directed backjumping (CBJ), as described in [11]. Hence, when
backtracking from a failure node irrelevant variables can be skipped over. However, CBJ
does not support intelligent backtracking from successful nodes. Extending intelligent
backtracking so that it can be applied after success is achieved by our new technique of
solution directed backjumping (SBJ).

4.1 Solution Directed Backjumping (SBJ)

In QBF solvers cube learning is an technique used to backtrack from successful nodes
[16,12]. Cubes are computed at solution leaves of the search tree by identifying a subset
of the assigned literals sufficient to satisfy all clauses of the QBF. The aim is to identify
universal variables whose setting was irrelevant to the discovered solution. Potentially
those variables can be backtracked over without having to test if their other value is
solvable.

In a QBF solver the leaf cubes (cubes computed as solution leaf nodes) support
backtrack to the deepest universal they contain, and at internal nodes cubes computed
for each setting of a universal can be combined to support further non-chronological
backtracking. Since a successful subtree in QBF (or QCSP) can contain an exponential
number of solutions, backtracking out of such subtrees by using cubes can provide a
considerable performance improvement. For example, if at a any node a cube consisting
entirely of existential literals is computed, then the search can immediately terminate.

In QCSPs however a straight forward application of this idea is not effective. In
particular it is hardly ever the case that a universal variable is completely irrelevant
to the solution found. Rather, the solution found at a leaf node might continue to be a
solution under some other settings of the universal variable, but not under other settings.
Hence the idea behind SBJ is to keep track of the values of the universals that are
verified by the current solution so that on backtrack these values need not be verified
again. It is however slightly easier to formalize SBJ as keeping track of the complement
of the verified values.

Definition 2 (QCSP Cube). Let qbe be a set containing (a) a set of existential assign-
ments (v = a) and (b) for each universal variable v a set of values uncovered [v] ⊂
dom [v]. Let C[D]

∣∣
qbe

be the reduction of C[D] by v = a for each existential assign-

ment (v = a) ∈ qbe and by v �= d for each d ∈ uncovered [v] for each universal
variable v. The set qbe is a cube iff Q.C[D]

∣∣
qbe

is true (i.e., has a Q-Model).

We use the convention of omitting mention of the set uncovered [v] from a cube if it is
empty, and we say that the universal variable vu is in a cube, qbe , if uncovered [vu] ∈
qbe (i.e., uncovered [vu] �= ∅). An existential assignment ve = a ∈ qbe is called tailing
if for all universal variables vu ∈ qbe we have vu <q ve.

Observation 1. If ve = a is a tailing existential in a cube qbe then qbe − {ve = a} is
also a cube. That is, tailing existential assignments can be removed from a cube.

Solution Directed Backjumping for QCSP 157

function ComputeLeafCube (Q.C[D], π)
1: qbe = the assignments to the existential variables in π
2: for each universal variable vi

3: uncovered [vi] = {}
4: for each d ∈ dom[vi]
5: if π(vi=d) does not satisfy C
6: uncovered [vi] = uncovered [vi] ∪ {d}
7: qbe = qbe ∪ �uncovered [vi]

�

8: qbe = remove tailing existentials from qbe

Fig. 2. Computing a QCSP cube at a solution leaf node

Proof: Q.C[D]
∣∣
qbe

is true (by definition) and Q.C[D]
∣∣
qbe

⇒ Q.C[D]
∣∣
qbe−{ve=a}

(Prop 1). Hence Q.C[D]
∣∣
qbe−{ve=a} is also true and qbe − {ve = a} is a cube.

Figure 2 gives the algorithm for computing a QCSP cube at a solution leaf. Let π be
the sequence of assignments made on the path to this leaf node. (π satisfies all of the
constraints of the body). In this algorithm π(vi=d) denotes the set of assignments π
modified so that vi is now assigned the value d. The algorithm computes uncovered [vi]
for each universal variable vi; this is the set of values of vi that are incompatible with
the current solution. Note that uncovered [vi] can never contain vi’s current value (the
condition on line 5 cannot be satisfied since π satisfies all constraints).

Proposition 2. The set qbe returned by ComputeLeafCube is a cube.

Proof: Consider qbe before tailing existentials are removed (line 8). At this point qbe
contains an assignment for every existential variable. We must show that Q.C[D]

∣∣
qbe

has a Q-Model. Such a Q-Model will be a tree with paths for every combination of
assignments to the universal variables not in the uncovered sets. Construct such a tree
by assigning the existential variables along every path its value in qbe . Due to our re-
striction to binary constraints and preprocessing of the problem C[D] only contains
constraints c(vu, ve) between a universal and an existential and constraints c(ve1 , ve2)
between two existentials. Since the existential assignments in qbe came from a solu-
tion π all constraints between two existentials are satisfied. Furthermore, line 5 ensures
that all constraints between a universal and an existential are satisfied by any universal
value not in the uncovered sets. Hence each path in this tree is a solution to C[D], and
Q.C[D]

∣∣
qbe

has a Q-model (is true). By the previous observation qbe remains a cube
after its tailing existentials have been removed.

Let v be the deepest universal in qbe , i.e., the universal assigned at the deepest level
along the path to the current solution leaf with uncovered [v] �= ∅. Let n be the node
assigning v its current value. The fact that qbe is a cube tells us that the subtree under
n has been solved: this subtree is attempting to solve Q.C[D]

∣∣
πv

where πv is set of
assignments in the path to n. πv agrees with qbe on the assignment to its existential
variables but further restricts its universal variables to assignments that lie in the do-
mains of C[D]

∣∣
qbe

. By Prop. 1 Q.C[D]
∣∣
qbe

⇒ Q.C[D]
∣∣
πv

, and thus Q.C[D]
∣∣
πv

must
be true since qbe is a cube. Furthermore, qbe also verifies that the subtrees of the other
assignments to v not in uncovered [v] are also solved: by the same reasoning all of these

158 F. Bacchus and K. Stergiou

function ComputeInternalCube (Q.C[D], v, πv, qbe1, . . . , qbek)
1: qbe = the assignments to the existential variables in πv

2: for each universal variable vi �= v

3: uncovered [vi] =
�k

j=1 uncovered [vi] ∈ qbej

4: qbe = qbe ∪ �uncovered [vi]
�

5: qbe = remove tailing existentials from qbe

Fig. 3. Computing a QCSP cube at an internal node where the universal variable v was assigned

subproblems are also true. Hence, the search can backtrack to the node that assigned v,
and from that point only attempt to solve the values for v in uncovered [v] that have not
been previously verified.

Each time the search backtracks to a universal variable v a new cube is returned, and
at least one more value from v’s domain has been verified (v’s current assignment must
be verified by the cube). Say that the search backtracks to v a total of k times before
all of v’s domain has been verified, in the process returning k cubes qbe1, . . . , qbek. At
that point, the function in Figure 3 is invoked to compute a new cube (where πv is the
sequence of assignments made before v was selected to be assigned).

In ComputeInternalCube each universal’s uncovered values is the union of its
uncovered values in the k cubes qbe1, . . . , qbek. Note also that uncovered [v] is omit-
ted from the new cube (i.e., uncovered [v] is implicitly empty). Since v was the deepest
universal in each of the cubes qbei, we see that the newly computed cube also contains
no universals deeper that v. Nor does it contain any existential assignments deeper than
v due to line 5 and the fact that each cubei also previously had their tailing existentials
removed.

Once qbe is has been computed the search can once again backtrack to the node
assigning the deepest universal v′ in qbe, and at that point continue by solving all values
of v′ in uncovered [v′] ∈ qbe that have not be previously verified. If all of these values
were previously verified ComputeInternalCube will be invoked again on the set
of cubes that were returned to v′ (i.e., qbe and any other cubes returned by earlier
backtracks to v′). The new cube it returns will then generate yet another backtrack.

Proposition 3. Assume that qbe1, . . . , qbek are all cubes, have been existentially re-
duced, agree on all existential assignments, have v as their deepest universal, and to-
gether verify all of the values in dom [v] (i.e., for each a ∈ dom [v] there exists j such
that a �∈ uncovered [v] ∈ qbej). Then the set qbe returned by ComputeInternal
Cube is a cube.

This proposition can be proved by constructing a Q-Model for Q.C[D]
∣∣
qbe

using parts

of the k Q-Models known to exist for Q.C[D]
∣∣
qbei

. Subject to the assumed condi-
tions these Q-Models are sufficiently compatible that these parts can be put together to
cover all values for the universal variable v and all values in the universal domains of
C[D]

∣∣
qbe

.
The above propositions demonstrate that SBJ computes correct cubes and that these

cubes verify that the backtracking described above is sound. In particular, SBJ will
backtrack to the root of the search tree if and only if it has verified that the empty set is

Solution Directed Backjumping for QCSP 159

a cube. That is, Q.C[D]
∣∣
∅ = Q.C[D] is true. Finally, two more observations about SBJ

can be made. First, SBJ’s space requirements are bounded by O(dn2), where d is the
maximal sized variable domain and n is the number of variables. In particular, at each
node along the current path (max n nodes) we need only store the union of the cubes
that have been returned to that node so far. Furthermore, this set can be deleted when we
backtrack from the node. Second, at each node the cubes contain all of the previously
assigned existentials, so we need not explicitly store these in cube. These existentials
would be needed however if we wanted to store the cubes to use along future paths of
the search tree (i.e., if we were to perform cube learning).

5 Empirical Study

The random QCSP instances used in our empirical study were generated following the
generation model introduced in [11]. As in [15] we added an extra parameter that de-
notes the number of universal blocks. The generator takes 8 parameters: 〈n, n∃, n∀, d,
p, q∀∃, q∃∃, b∀〉 > where n is the number of variables, n∃ is the number of existentials
in each block, n∀ is the number of universals in each block, d is the uniform domain
size, p is the number of binary constraints as a fraction of all possible constraints, and
b∀ is the number of universal blocks. q∃∃ is the fraction of satisfying tuples in con-
straints between existentials. The satisfying tuples in a constraint between a universal
and an existential later in the variable sequence are specified as follows. A random total
bijection is generated from the domain of the universal to the domain of the existential.
All 2-tuples not in the bijection satisfy the constraint. Parameter q∀∃ is the fraction of
satisfying tuples from the d tuples in the bijection.

Constraints between universals or an existential and a universal later in the variable
sequence are not generated as these can be removed by preprocessing [11]. With certain
parameter settings the randomly generated instances are free from the flaw described
in [10]. Variables are quantified in blocks with alternating quantification starting with a
block of n∃ existentials.

5.1 SBJ and Strong Consistency on Universals

To evaluate the effects of SBJ and the constraint propagation methods for universals, we
have compared QCSP-Solve against three solvers obtained by extending QCSP-Solve
with these features. The first solver (QCSP-Solve prop) augments QCSP-Solve with
strong propagation on universals. The second one (QCSP-Solve+) augments QCSP-
Solve with SBJ. The third one (QCSP-Solve++) applies both SBJ and strong propaga-
tion on universals. We used random problems with a variety of parameter settings. The
results presented hereafter are averages over 100 instances generated at each data point.
In each figure the value of q∃∃ is varied in steps of 0.05. For the experiments of this
section variables were instantiated according to the quantifier sequence. Values were
always ordered lexicographically.

Figure 4 shows cpu times and node visits from problems where n = 24, n∃ = n∀ =
8, b∀ = 1, d = 9, p = 0.15, q∀∃ = 0.44. Under these parameter settings all instances
are guaranteed to be flaw-free.

160 F. Bacchus and K. Stergiou

0.01

0.1

1

10

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

100

1000

10000

100000

1e+006

1e+007

1e+008

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

Fig. 4. Cpu times (left) and node visits (right)

0.01

0.1

1

10

100

1000

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

0.01

0.1

1

10

100

1000

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

Fig. 5. Cpu times on problems with 25 variables (left) and 28 variables (right)

The results given in Figure 5 are from problems generated using similar parameter
settings as in [15]. The left plot in Figure 5shows cpu times from problems where n = 25,
n∃ = n∀ = 5, b∀ = 2, d = 8, p = 0.20, q∀∃ = 0.50. The right plot in Figure 5 shows
cpu times from problems where n = 28, n∃ = n∀ = 4, b∀ = 3, d = 8, p = 0.20,
q∀∃ = 0.50. Note that neither of these parameter settings guarantees flaw-free instances.

In all sets of problems QCSP-Solve++ is considerably faster than QCSP-Solve. For
high values of q∃∃, where most instances are soluble, the speed-up obtained can be up
to two orders of magnitude. This is because, through the use of SBJ, the solver avoids
repeatedly searching for solutions involving all sequences of assignments to universals.
For low values of q∃∃, where most problems are insoluble, SBJ has little effect and
the computation/maintainance of solution cubes is an overhead that slows down search.
However, the early failure detection offered by the strong consistencies applied on uni-
versals outweighs this and speed-ups compared to QCSP-Solve are obtained. Compar-
ing QCSP-Solve to QCSP-Solve prop and QCSP-Solve+ to QCSP-Solve++ shows that
the effects of SBJ and strong propagation on universals are more or less orthogonal.

As is evident from the results shown in the figures, a small increase in the number of
variables and quantifier alternations can have a significant impact on the difficulty of the
problem.

Other Approaches to QCSP Solving. Apart from QCSP-Solve, two direct solvers
for QCSPs have been developed and a number of encodings of QCSP into QBF have
been proposed. The two solvers are BlockSolve [15] and QeCode [4]. BlockSolve is

Solution Directed Backjumping for QCSP 161

a bottom-up solver that displays very good performance on soluble instances, but as a
downside requires exponential space. QeCode is built on top of Gecode and hence is
equipped with many advanced CSP techniques. However, it lacks specialized features
for QCSPs, such as pure value handling.

Although we have not directly compared our work to these solvers, we can make
some conjectures by observing the performance of the solvers on instances generated
with similar parameters. SBJ makes QCSP-Solve far more competitive with BlockSolve
than before on soluble instances. However, BlockSolve still holds an advantage, as it
can achieve a speed-up of up to four orders of magnitude over QCSP-Solve; albeit with
an exponential memory cost. At the phase transition and to its left, where problems
are insoluble, BlockSolve is outperformed by our techniques. This conjecture is based
on the observation that BlockSolve displays roughly the same performance as QCSP-
Solve at the phase transition while it is slower in the insoluble region [15]. Experiments
with QeCode showed that it displays roughly similar performance as QCSP-Solve [4].
Therefore, we conjecture that SBJ makes QCSP-Solve considerably more efficient than
QeCode on soluble instances. QBF solvers that run on the efficient adapted and en-
hanced log encodings are typically slower than QCSP-Solve on insoluble instances and
faster on soluble ones [10,11]. We conjecture that SBJ makes QCSP-Solve at least com-
petitive with the encodings on soluble instances.

5.2 Validity Pruning and Dynamic Variable Ordering

We now study the effect of validity pruning and dynamic variable ordering (DVO)
within blocks. In Figure 6 we compare three variations of QCSP-Solve++ augmented
with validity pruning. The first one (QCSP-Solve++.1) applies validity pruning to
achieve early detection of valid values and uses a static variable ordering. Its perfor-
mance is very close to that of QCSP-Solve++ (it is negligibly slower). The second
variation (QCSP-Solve++.2) dynamically reorders variables within both existential and
universal blocks. The third variation (QCSP-Solve++.3) applies DVO only within ex-
istential blocks and orders the universals statically. The heuristic used is dom/deg. The
left plot in Figure 6 gives results from the problems of Figure 4 while the right plot
gives results from the problems of Figure 5 (the ones with 25 variables).

Not surprisingly, DVO is effective on insoluble problems with large existential
blocks. However, is has little effect on soluble problems, and even slows down search

0

1

2

3

4

5

6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve++.1
QCSP-Solve++.2
QCSP-Solve++.3

0

5

10

15

20

25

30

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve++.1
QCSP-Solve++.2
QCSP-Solve++.3

Fig. 6. Cpu times on problems with 25 variables (left) and 28 variables (right)

162 F. Bacchus and K. Stergiou

in some cases. Again unsurprisingly, problems with blocks of small size do not bene-
fit from DVO. Finally, since QCSP-Solve++.2 and QCSP-Solve++.3 yield similar re-
sults, it seems that the reordering of universals does not improve the performance of the
solver. However, fail-first heuristics like dom/deg may not be ideal for universal vari-
ables, so it is possible that better heuristics, which exploit the information offered by
validity pruning, will be designed in the future.

6 Conclusions

We have presented new techniques for improving the performance of backtracking
based QCSP solvers. Our main contribution is the development of solution directed
backjumping for QCSPs. In analogue to conflict directed backjumping, SBJ allows the
solver to backtrack out of solved sub-trees without having to find all of the distinct
solutions normally required to validate that all sequences of assignments to the uni-
versal variables lead to solutions. We also demonstrated that performing varying levels
of propagation for universal vs. existential variables can be useful for enhancing per-
formance. Experiments with the solver QCSP-Solve demonstrate that both these tech-
niques, and especially SBJ, can significantly improve the performance of backtracking
solvers. Finally, we discussed validity pruning, a potentially useful technique that can
be used to prune the domains of universally quantified variables during search.

References

1. Ali, M.F., Safarpour, S., Veneris, A., Abadir, M.S., Drechsler, R.: Post-verification debugging
of hierarchical designs. In: International Conf. on Computer Aided Design (ICCAD), pp.
871–876 (2005)

2. Bacchus, F., van Beek, P.: On the conversion between non-binary and binary constraint sat-
isfaction problems. In: Proceedings of AAAI-98, pp. 311–318 (1998)

3. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Proc. of 19th
IJCAI, pp. 35–40 (2005)

4. Benedetti, M., Lallouet, A., Vautard, J.: Reusing CSP propagators for QCSPs. In: Hnich, B.,
Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978. Springer,
Heidelberg (2006)

5. Bordeaux, L., Cadoli, M., Mancini, T.: CSP Properties for Quantified Constraints: Definitions
and Complexity. In: Proceedings of AAAI-2005, pp. 360–365 (2005)

6. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for Quantified Constraints. In: Van
Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer, Heidelberg (2002)

7. Bryant, R., Lahiri, S., Seshia, S.: Convergence testing in term-level bounded model checking.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 348–362. Springer,
Heidelberg (2003)

8. Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted path con-
sistency. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming - CP97.
LNCS, vol. 1330, pp. 312–326. Springer, Heidelberg (1997)

9. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quanti-
fied boolean formulas. In: Proceedings of AAAI-2000, pp. 417–422 (2000)

10. Gent, I., Nightingale, P., Rowley, A.: Encoding Quantified CSPs as Quantified Boolean For-
mulae. In: Proceedings of ECAI-2004, pp. 176–180 (2004)

Solution Directed Backjumping for QCSP 163

11. Gent, I., Nightingale, P., Stergiou, K.: QCSP-Solve: A Solver for Quantified Constraint Sat-
isfaction Problems. In: Proceedings of IJCAI-2005 (2005)

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfia-
bility. In: Eighteenth national conference on Artificial intelligence, pp. 649–654 (2002)

13. Mamoulis, N., Stergiou, K.: Algorithms for Quantified Constraint Satisfaction Problems. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 752–756. Springer, Heidelberg (2004)

14. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intel-
ligence Research 10, 323–352 (1999)

15. Verger, G., Bessière, C.: Blocksolve: a Bottom-Up Approach for Solving Quantified CSPs.
In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 635–649. Springer, Heidelberg (2006)

16. Zhang, L., Malik, S.: Towards symmetric treatment of conflicts and satisfaction in quantified
boolean satisfiability solver. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
185–199. Springer, Heidelberg (2002)

Reformulating CSPs for Scalability with Application to
Geospatial Reasoning

Kenneth M. Bayer1, Martin Michalowski2, Berthe Y. Choueiry1,2,
and Craig A. Knoblock2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln
{kbayer,choueiry}@cse.unl.edu

2 University of Southern California, Information Sciences Institute
{martinm,knoblock}@isi.edu

Abstract. While many real-world combinatorial problems can be advantageously
modeled and solved using Constraint Programming, scalability remains a major is-
sue in practice. Constraint models that accurately reflect the inherent structure of
a problem, solvers that exploit the properties of this structure, and reformulation
techniques that modify the problem encoding to reduce the cost of problem solving
are typically used to overcome the complexity barrier. In this paper, we investi-
gate such approaches in a geospatial reasoning task, the building-identification
problem (BID), introduced and modeled as a Constraint Satisfaction Problem by
Michalowski and Knoblock [1]. We introduce an improved constraint model, a
custom solver for this problem, and a number of reformulation techniques that
modify various aspects of the problem encoding to improve scalability. We show
how interleaving these reformulations with the various stages of the solver allows
us to solve much larger BID problems than was previously possible. Importantly,
we describe the usefulness of our reformulations techniques for general Constraint
Satisfaction Problems, beyond the BID application.

1 Introduction

Geospatial data integration aims at combining geospatial information from traditional
and non-traditional data sources to infer information that is not available in any one
source. The inadvertent bombing of the Chinese Embassy in Belgrade [2] illustrates
the importance of geospatial data integration. That event could have been avoided by
reasoning about the information that was available at the time (i.e., telephone books and
maps) to identify the buildings shown in a satellite image. More generally, the information
gained by data integration can be used to verify and augment geospatial databases (e.g.,
gazetteers), and extend the capabilities of geospatial systems (e.g., Google Maps, Google
Earth, and Microsoft VirtualEarth).

Michalowski and Knoblock [1] identified and studied the Building Identification
(BID) problem as an application of significant intelligence and civilian impact. The
task is to assign a potentially incomplete list of postal addresses, collected from various
‘phone-book’ sources, to buildings appearing in a satellite image. A map provides the
names of the streets and the positions of the buildings, but we do not know the addresses
of the buildings or, for a building located on a street corner, on which street the building’s
address lies. They modeled the problem as a Constraint Satisfaction Problem (CSP) and

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 164–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 165

used an existing solver (CPlan [3]) to find all possible matchings of addresses to buildings
that are consistent with the phone book and with the geographical layout in the image.
Their work established the feasibility of the approach and identified an important new
area where CP techniques are useful for solving real-world problems. However, their
approach resisted scaling because their model included high-arity constraints and their
generic solver failed to take advantage of the structural information in the application
domain. While we show in this paper that the particular BID problem studied in [1] is
tractable, it is clear that only a careful theoretical study can determine whether or not
a given set of constraints in the BID problem yields a tractable problem. The value of
a CP approach is its flexibility in solving new problems with arbitrary constraints even
when the problem’s tractability is unknown. This paper addresses the scalability of the
CP approach to the BID problem with the use of reformulation techniques, and discusses
the use of the proposed reformulations to general CSPs.

First, we propose an improved constraint model that reflects the topology of the streets
layout, and accommodates the addition of new constraints locally to express variations
of street-numbering schemas around the world. Second, we introduce a custom solver,
based on backtrack search, that exploits structural properties of a problem instance, such
as identifying backdoor variables [4] and exploiting them to decompose the problem into
tractable components. Third, we introduce four reformulation techniques to reduce the
cost of problem solving. These techniques are (1) reformulating the BID problem from a
counting problem to a satisfiability one, (2) reducing the domains size of variables in the
scope of a global constraint that we identify and characterize, (3) relaxing the satisfiability
problem into a matching problem, (4) using symmetry to generate efficiently all possible
solutions of the relaxed version of the original BID counting problem. Fourth, as we
introduce each reformulation technique, we also discuss its application to general CSPs.
Fifth, we evaluate the benefits of 3 of our reformulations on the BID problem, showing
that we can now solve instances involving 206 buildings while the problem solved by
Michalowski and Knoblock included only 34 buildings.

This paper is structured as follows. Section 2 positions our adopted perspective on
reformulation. Section 3 describes the new CSP model and custom solver for the BID
problem. Sections 4, 5, 6, and 7 describe our reformulations of the BID problem and
their utility for general CSPs. Section 8 evaluates our techniques on real-world BID
instances. Finally, Section 9 describes related work and concludes the paper.

2 Background

Choueiry et al. [5] characterized a reformulation as a transformation of a problem P
from one encoding to another, where a problem is given by a formulation and a query,
P = 〈F , Q〉. The transformation may change the query and/or any of the components
of the formulation. The goal of the reformulation is to ‘simplify’ problem solving,
where the benefit of the ‘simplification’ and other effects of the reformulation are
clearly articulated in the particular problem-solving context. The reformulation tech-
niques discussed in this paper operate on various aspects of a Constraint Satisfaction
Problem (CSP) in order to improve the performance of problem solving. The problem
formulation of a CSP is given by F = (V , D, C) where V= {Vi} is a set of variables,

166 K.M. Bayer et al.

rP

oQQuery:

oP
o=(V o,Do,C)F o r=(V r ,Dr ,C)F rFormulation:

Query: rQ
ReformulationFormulation:

Fig. 1. The general pattern of a CSP transformation

D= {DVi} the set of their respective domains, and C a set of constraints. A constraint
is a relation over a subset of the variables specifying the allowable combinations of
values for the variables in its scope. A solution is an assignment to the variables such
that all constraints are satisfied. The query is usually to find one consistent solution
or all possible solutions. In this paper, we describe a reformulation of a CSP as a
transformation of the original problem Po = 〈Fo, Qo〉 into the reformulated prob-
lem Pr = 〈Fr, Qr〉, where Fi indicates a formulation and Qi indicates a query, as
illustrated in Figure 1.

3 Modeling and Solving the BID Problem as a CSP

The task is to assign possible addresses to the buildings that appear in a satellite im-
age. Each address consists of the combination of a street name and a number. The
names of the streets are provided by a map and the positions of the buildings are
extracted from a satellite image. Thus, we know the street names and the positions
of the buildings, but we do not know the addresses of the buildings or, for buildings
located on corners, on which street the buildings are located. The addresses can be
partially retrieved from a variety of data sources such as a phone books, gazetteers, or
property records. We generically refer to the addresses given as input as phone-book
addresses regardless of their actual source. Figure 2 shows a BID instance with 10
buildings. The set of phone-book addresses may be incomplete, that is, there could be
fewer addresses than there are buildings in an image. However, we assume that the re-
verse does not hold, that is, every phone-book address must be assigned to a building
on the image. A solver must infer addresses for buildings that do not have an address
in the phone book. In addition to the phone-book addresses, we may have informa-
tion about street-numbering schemas used in a given region in the world, such as the
100-block increment in the addresses across street intersections used in the US or the
red-black numbering used in Italy. Also, we may know the exact address of one or
more landmarks, such as the residence of the Prime Minister in London.

B6

B3

B8

B4

B9

B1 S1#1, S1#4,
S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15
= Corner building
= Building

Si = Street

B2

B5
B7 B10

S3

S1 S2

Fig. 2. An example of the building-identification problem

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 167

3.1 A New Constraint Model

Below we describe the variables and constraints in our CSP model of the BID prob-
lem. Our model uses three types of variables: orientation, corner, and building. In
general, there are four orientation variables. These Boolean variables determine the
global orientation properties of the map. The first two are ordering variables and in-
dicate whether or not addresses increase in value when moving toward the north and
to the east. The remaining two are parity variables and indicate on which side of
the street odd addresses occur. The corner variables represent the possible streets on
which a corner building might be. We generate one corner variable for each corner
building, whose domain is the list of streets on which the building could lie. The cor-
ner buildings are natural ‘backdoors’ [4] in the constraint network: once the solver
assigns values to all corner buildings, the network degenerates into a set of chains
(corresponding to buildings along street segments) that can be solved in a backtrack-
free manner. Thus our solver instantiates corner variables as soon as possible. The
building variables represent the addresses (i.e., numbers) of the buildings. We gen-
erate a building variable for every building on the map. The domain of a variable is
every possible address on the building’s streets.

Our model has five types of constraints: parity, ordering, corner, phone book, and
grid. Parity constraints are binary constraints and ensure that the numbers assigned
to buildings respect the values assigned to the parity (orientation) variables. Ordering
constraints are ternary constraints, and link an ordering variable to two building vari-
ables along the same street. These constraints ensure that the addresses assigned to
the building variables respect the ordering specified by the ordering variable. Corner
constraints are binary constraints that apply to the pair of variables of each corner
building, namely, the corner variable (which determines the street), and the building
variable (which determines the address on the street). It reinforces that the address
assigned to the building is consistent with the street chosen for the building. Phone-
book constraints exist for each street on the map. These constraints ensure that the
solver assigns every address in the phone book to some building along that street.
These constraints usually have a high arity, because their scope is the set of build-
ings along the street. Grid constraints exist between buildings across certain artificial
grid-lines, depending on the region we are modeling. These constraints ensure that
the addresses of adjacent buildings across the grid-lines are in separate numeric in-
crements. For example, in many cities in the United States, addresses increase to the
next increment of 100 across intersections.

Our new model improves the original one proposed in [1] as follows. The number
of variables for non-corner buildings is reduced by half, reducing number of variables
between 37% and 43% in our test cases. Domains of the building variables in [1] were
enumerated and upper bounds chosen arbitrary. They are represented as intervals with
potentially infinite bounds in the new model. We reduced constraint arity from four to
two for parity constraints, and from six to three for ordering constraints. Corner con-
straints are new and allow early decomposition of the problem. Grid constraints are
also new and allow a more precise modeling of the real world. Interestingly, we show,
in Section 6, that in the absence of grid constraints, the BID problem is tractable. The
tractability of the BID problem in the presence of grid constraints remains an open

168 K.M. Bayer et al.

question. Thus, modeling the BID problem as a CSP remains a pertinent approach
because it gives us the flexibility to represent arbitrary constraints such as grid con-
straints and other street-addressing schemas used around the world.

3.2 A Custom Backtrack-Search Solver

Our custom solver, written in Java, is a backtrack-search procedure. We adapted the
conflict-directed backjumping mechanism MAC-CBJ of [6] to handle constraints of
any arity with nFC3, a look-ahead strategy for non-binary CSPs [7], yielding nFC3-
CBJ. Key to the solver’s success are the domain representation and the variable or-
dering. Domains of building variables are represented as a list of intervals, where an
interval is a sequence of values. This representation allows us to restrict propaga-
tion to the boundaries of the intervals, as in bound consistency, whenever possible,
and iterate over the individual values only when necessary. Using intervals with ar-
bitrary large bounds is crucial when the phone book is incomplete and the smallest
or largest address number on a given street is not known. Variables are ordered as
follows: building and corner variables corresponding to landmark buildings, orienta-
tion variables, corner variables, then building variables. Because corner variables are
backdoor variables, satisfiability can be determined without instantiating the building
variables, which are instantiated only when full solutions are sought. Further, instan-
tiating the backdoor variables (corner variables) decomposes the problem into chains,
one for each entire street.

4 Query Reformulation

Michalowski and Knoblock [1] searched for all solutions in order to retrieve for each
building on the map the set of acceptable addresses. When the phone book is com-
plete, the problem has few solutions. Our solver, but not the one in [1], can easily
find all solutions for all real-world examples we tested. When the phone book is not
complete, the number of solutions quickly increases. The sheer number of solutions
to be enumerated forced us to reconsider the task and reformulate the original query
as explained below.

4.1 Per-Variable Solutions

Finding all solutions of a CSP is O(dn) where n is the number of variables and d
is the maximum domain size. In practice, this process is prohibitively expensive. We
consider the situation where we do not need to find all solutions, but only the values
that each variable takes in any solution. We call this problem finding the per-variable
solutions1. Thus, we reformulate the query from Qo= enumerating all solutions, to
Qr= finding the per-variable solutions, where Qr is “∀ Vi, x ∈ DVi , find if Po ∧
(Vi ← x) is satisfiable” as illustrated in Figure 3. This query changes the complexity
class of the problem from a counting problem to a satisfiability one.

1 Formally, this query corresponds to finding the minimal CSP. It is also equivalent to the
inverse consistency property introduced in [8], and to relational (1,|C|)-consistency defined
in [9].

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 169

oQ
oP

Query: = Enumerate all solutions
The problem is a counting problem

rQ
rP

Query: = Find a per−variable solution
The problem is a satisfiability problem

Fig. 3. Reformulation for the per-variable solution query

Algorithm 1 tests for every variable-value pair (Vi, x) if the CSP with Vi←x is
solvable. When it is, x is added to the data structure returned by the algorithm. Al-
gorithm 1 returns the set of variables along with all their values that appear in a
solution.

Input: P =(V, D, C)
Output: S, a per-variable solution
foreach Vi ∈ V do1

S[Vi] ← ∅2

end3

foreach Vi ∈ V do4

foreach x ∈ DVi do5

if P with Vi←x has a solution then6

S[Vi] ← S[Vi] ∪ {x}7

end8

end9

if |S[v]| = 0 then10

return P has no solutions11

end12

end13

return S14

Algorithm 1. Finding the per-variable solutions

The inner loop of the algorithm runs O(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appears costly, but in cases where
the original CSP has significantly more than nd solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to the CSP.

When the test in Line 6 is executed by finding a solution to the CSP, the values for
the variables in the solution found can be collected, and excluded from future calls in
the loops on Lines 1 and 5 thus reducing the number of loops2. In the BID problem,
we are not able to exploit this improvement for the following reason. A variable-
value pair in Algorithm 1 for the BID problem is a combination of a building and a
street name and number. However, the satisfiability of the BID instance is determined,
and search is terminated, after the assignment of the backdoor variables and without
instantiating the building variables (see Section 3.2). The benefit of continuing search
and generating solutions after the instantiation of the backdoor variables in order to
exploit the above improvement remains to be assessed.

2 This improvement was suggested by an anonymous reviewer.

170 K.M. Bayer et al.

4.2 Application to Relational (i, m)-consistency

In non-binary CSPs, in order to enforce higher level consistency than (generalized)
arc-consistency, Dechter and van Beek [9]introduced relational (i, m)-consistency as
the consistency of m non-binary constraints over every subset of i variables in the
CSP. Dechter [10] proposed the algorithm RC(i,m) for computing relational (i, m)-
consistency. RC(i,m) works as follows. For every set Cm of m constraints in a con-
straint network, join the m constraints and project the result on each subset of i vari-
ables. The algorithm is not practical for large values of m, because the memory re-
quirements for computing and storing a join of m constraints rises exponentially with
the number of variables in the scopes of these constraints.

Algorithm 1 computes a minimal network, and the resulting network is the same
as if we had executed RC(1,m). The difference between the two algorithms is that Al-
gorithm 1 is polynomial space, whereas RC(1,m) is exponential space. We can easily
generalize Algorithm 1 to consider sets of i variables (and all tuples in the Cartesian
product of their domain) rather than a single variable (and a single variable-value
pair). This extension would allow Algorithm 1 to produce the same results as RCi,m.
The memory requirement rises exponentially with i, which quickly becomes imprac-
tical, but remains more efficient than RC(i,m) whose space complexity is exponential
in the size of the union of the m constraints scopes.

5 Domain Reformulation Using Symbolic Values

If the phone book is incomplete, we must infer the missing numbers to add to the
variables’ domains. Michalowski and Knoblock [1] proposed to enumerate all num-
bers between 1 and the largest address that appears on the street. Their approach has
two problems. First, the choice of the upper limit is arbitrary. When the largest ad-
dress is not in the phone book, this approach may yield incorrect solutions. The sec-
ond problem with this approach is that the size of the domains becomes prohibitively
large on real-world data. We propose a reformulation of the variables domains that
reduces their size using symbolic variables, thus solving both problems.

5.1 Symbolic Values in the BID Problem

Assume we have, on the even side of a street S, the set of buildings BS={B1, B2, . . .,
B5}, the set of phone-book addresses of even parity PS={S#12, S#18}, and the range
of address numbers [2,624]. Any assignment cannot use more than 3 numbers in each of
[2,12), (12,18), and (18,624]. Using symbolic values to represent an address in a solution,
we replace the domain [1,624] of each variable BS with the significantly smaller set {s1,
s2, s3, 12, s4, s5, 18, s6, s7, s8} where s1, s2, s3 ∈ [2,12), s4, s5 ∈ (12,18), and s6, s7, s8 ∈
(18,624] and si<sj for i<j. This process allows us to choose arbitrarily large bounds on
a given street. Figure 4 illustrates this transformation. More generally, when [min,max]
is the range of address numbers on the considered side of S, the address numbers
in PS partition [min,max] into consecutive convex intervals. In any such interval (i1,
i2), we cannot use more than minimum(|BS|-|PS |, � (i2−i1)−1

2) addresses. Below
we introduce ALLDIFF-ATMOST as a global constraint useful in such situations and

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 171

1 2 3 4 5 6 7 8

{2, 4, ..., 8, 10, 12, 14, 16, 18, 20, 22, ..., 622, 624 }Original domain

Reformulated domain , s , s , s , 18, , s , s s , 12, s s{ }

Fig. 4. Domain reformulation for the building-identification problem

discuss how to reformulate the domains of the variables in the scope of this constraint
in order to reduce their size both for general and totally ordered domains.

5.2 The ALLDIFF-ATMOST Global Constraint

Example 1. An emerging country received an aid to build 7 hospitals on its territory,
but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint ALLDIFF-ATMOST to model this situation. Given a set
of variables A = {V1, V2, ..., Vn} with domains DVi , ALLDIFF-ATMOST(A, k, d),
where d⊆DVi for i ∈ [1, n], k∈N, and k≤|d|, requires that (1) all variables take
different values and (2) at most k variables in A have values from d. Note that while
the domains DVi may be different, d must be a subset of each one of them and DVi ,
and d and DVi may be finite or infinite3.

Example 2. Consider with the variables A={V1, V2, V3, V4} of a CSP, with Di={1,
2, . . . , 8} and the constraint ALLDIFF-ATMOST(A, 2, {1, 3, 4, 5, 8}). The assignment
V1←5, V2←2, V3←7 and V4←4 satisfies the constraint.

We can express the above described situation for the BID problem as ALLDIFF-
ATMOST(BS, ka, (i1, i2)) with ka=minimum(|BS|-|PS |, � (i2−i1)−1

2).

5.3 ALLDIFF-ATMOST Reformulation

Our reformulation of the domains of the variables in a ALLDIFF-ATMOST constraint
is theorem constant, in the sense that solutions to the reformulated problem map to
solutions to the original problem [12]. The benefit of this reformulation is the reduc-
tion of the domain sizes. Because the complexity of many CP techniques depends on
the sizes of the domains, the reformulation improves the solver performance.

We reformulate the domains of the variables in the scope of the constraint ALLDIFF-
ATMOST(A, k, d) by introducing k values sl that we call symbolic values as follows:

∀ Vi ∈ A DVir = {s1, s2, . . . , sk} ∪ (DVi \ d) (1)

where the symbolic values sj (1 ≤ j ≤ k) can take any distinct values in d. Applying
this reformulation on Example 2 yields the following domains for all four variables:
DVi={s1, s2, 2, 6, 7}, where s1, s2 can take any different values in {1, 3, 4, 5, 8}.

3 Many definitions of the ATMOST constraint exist (e.g., ECLiPse and on page 148 of [11]).
Our definition of ALLDIFF-ATMOST allows us to express a situation of interest to resource
allocation problems where our reformulation can be used to reduce the domain size.

172 K.M. Bayer et al.

=(V o,C)oo o,DF
oP

rF
rD
rC

Pr

Formulation:
Formulation:

: Replace AllDiff−Atmost with AllDiff
: Smaller domains with symbolic values

Fig. 5. The reformulation of ALLDIFF-ATMOST

In Example 1, the domains become {s1, s2} ∪ {sites in non-volcanic areas} where
s1, s2 are different and range over sites with volcanic activities.

This reformulation operates on the problem formulation and affects, strictly speak-
ing, both the ALLDIFF-ATMOST constraint and the domains of the variables in its
scope, see Figure 5. However the most significant modification is the domain refor-
mulation. We transform Do to Dr, where in Dr the domains of variables in A have
been reformulated according to Equation (1). Replacing d with k symbolic values
reduces the domains sizes by |d| − k, which is useful when d is large or infinite.

This operation is particularly useful during backtrack search where the domain values
are enumerated. If we want to assign ‘ground’ values to each symbolic value, we can do
so as a post-processing step while ensuring that two symbolic values are always mapped
back to distinct ground values. While a solution to the reformulated problem does not
map to a unique solution to the original problem, we can generate any solution to the
original problem from some solution to the reformulated problem. Of particular concern
is the interaction between this reformulation and the other constraints in the problem.
When all the constraints in a problem can be checked on the symbolic values, as in the
case of the BID problem, the reformulation is sound. When one or more constraints in
a problem must be checked on the ‘ground’ values, then propagation must run on the
appropriate representation for each constraint and, as soon as domain filtering causes
|d| ≤ k, then reformulated domains should be dropped and ALLDIFF-ATMOST replaced
with a ALLDIFF constraint, as is the case in a BID instance with a complete phone-
book. While this double representation works for constraint propagation, using it during
backtrack search requires further investigation.

5.4 Symbolic Intervals

When the values in the variables domains follow a total order, as in numeric do-
mains, the domains are commonly represented as intervals and constraint propaga-
tion is typically restricted to the endpoints of these intervals, as in box-consistency
algorithms. The reformulation of an ALLDIFF-ATMOST in the presence of totally or-
dered domains obviously remains valid. However, in order to restrict propagation to
the endpoints of the intervals representing the domains, the following is needed:

1. We require the values in d to form a convex interval.
2. We must add total ordering constraints between the symbolic values: s1 < s2 <

. . . < sk.
3. We must add total ordering constraints between the two extreme symbolic values,

s1 and sk, and their closest neighbors in the reformulated domains. Let Dl
Vir

and
Dr

Vir
be respectively the intervals of DVi\d to the left and right of, and adjacent

to, d. The right endpoint of Dl
Vir

must be less than s1, and the left endpoint of
Dr

Vir
must be greater than sk. Figure 6 illustrates this transformation.

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 173

, ,{ s1 s2 , ... s k }

d

i

Do
Vi

VDref
i

D= V
ref,l Dref,r

Vi
∪∪

Fig. 6. ALLDIFF-ATMOST reformulation for totally ordered domains

4. When mapping the symbolic values back to ground values, the ground values
must respect the total ordering imposed on the symbolic values.

In the BID problem, we use this particular form of the reformulation of the ALLDIFF-
ATMOST on the building variables, which have totally ordered domains.

6 Problem Relaxation by Constraint Removal

Removing (or adding) a constraint in a problem formulation to yield a necessary (or
sufficient) tractable approximation of the problem is a typical reformulation strategy.
Examples abound and include: In AI, admissible heuristics generation for A∗ (page 107 in
[11]) and theory approximation [13]; in mathematical programming, linear relaxation of
integer programs, Lagrangian relaxation [14], and the cutting-plane method. Below, we
show that removing the grid constraint from the BID problem yields a tractable problem
that is a tractable necessary approximation of the BID problem.

6.1 A Tractable Necessary Approximation of the BID Problem

We describe a construction to efficiently solve the BID problem in the absence of
grid constraints by finding a maximum matching in a bipartite graph. We first recall
some terminology. Let G = (X ∪ Y, E) be a bipartite graph with edge set E, vertex
set V = X ∪ Y , and partitions X and Y , which are independent sets of vertices.
We define a match count for each vertex in v ∈ V , which we denote m(v), to be
a positive (non-null) integer. A matching in G is a set of edges M ⊆ E such that
for all v ∈ V there exists at most one edge e ∈ M incident to v. In this paper we
consider a matching in G to be a set of edges M ⊆ E such that for all v ∈ V there
exists at most m(v) edges e ∈ M incident to v. Further, we say that a matching M
saturates vertex v iff M has exactly m(v) edges incident to v; and a matching M
saturates a set S iff M saturates all vertices in S. A matching that saturates S can
be computed in polynomial time [15].

Given an instance of the BID problem without grid constraints, we construct a
bipartite graph G = (B ∪S, E) as follows. First, assume an assignment to the orien-
tation variables (there are 24 such assignments). For each building β in the problem,
add a vertex b to B and set its match count to 1. For each street σ in the problem,
add two vertices sodd and seven to S, one for each side of the street. Set the match
count of each si to the number of phone-book addresses on street s with parity i. For
each building β, add an edge between vertex b and the street vertex corresponding
to the street side on which β may be. (Note that corner buildings are on two streets.)
Figure 7 shows the construction of G for the map in Figure 2 where we assume that
odd numbers appear on the North and West sides of the street. We can show that a

174 K.M. Bayer et al.

B5 B6 B7 B8 B9 B10B4B3B2B1

S2_evenS2_odd S3_odd S3_evenS1_evenS1_odd

Fig. 7. Graph construction for Figure 2

S2_odd
(1)

S2_even
(1)

S3_odd
(3)

S3_even
(2)

S1_odd
(1)

S1_even
(2)

B2
(1)

B3
(1)

B4
(1)

B5
(1)

B6
(1)

B7
(1)

B8
(1)

B9
(1)(1)

B1 B10
(1)

Fig. 8. A saturating matching for Figure 7

matching in this graph that saturates S corresponds to a satisfactory assignment of
streets to corner buildings4. We find a maximum matching using an O(n5/2) algo-
rithm by Hopcroft and Karp [16] after replacing each vertex in the bipartite graph by
as many vertices as its match count.

Figure 8 shows a saturating matching for the graph of Figure 7, where the edges of
the matching are darkened and the numbers in parentheses indicate the match count.
This matching determines the satisfiability of the relaxed BID problem, and yields
assignments to all corner variables in the corresponding CSP. For a complete solu-
tion, we still need to instantiate the building variables, which can be done in linear
time because the constraint network becomes a set of chains after the instantiation
of the backdoor (corner) variables. While the matching approach is powerful, it does
not model the grid constraint. The tractability of the problem with grid constraints
remains an open question.

6.2 Relaxing Resource Allocation Problems

At the core of many resource allocation problems lies the problem of matching be-
tween the elements of two sets: the tasks and the resources. In general, the resource
allocation problem may be complex (and likely intractable). However, we may some-
times be able to identify those constraints that, when removed, reduce the original
problem into the problem of finding a matching in a bipartite graph that saturates
one of the two partitions as described above. Figure 9 illustrates this relaxation.

Po Pr

o=(V o,Do,C)oFFormulation:
Query: Q o = Is the problem satisfiable?

Formulation:
Query: Q r = Is there a matching saturating a partition of V?

G = (V,E)

Fig. 9. Relaxing a CSP as a matching problem

6.3 Using the Relaxation in Problem Solving

We can use the above relaxation in four ways for the BID problem and for other
applications that can be relaxed as a matching problem:

1. To solve problem instances that do not have the grid constraints, e.g. [1].
2. As a first preprocessing step to quickly rule out unsatisfiable instances, i.e. before

Line 1 in Algorithm 1. Our experiments on the BID problem (not included here

4 The matching must saturate S because the BID problem assumes that all addresses in the
phone book, whether complete or incomplete, must be assigned to a building.

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 175

for lack of space) showed that this early preprocessing is effective only on
tight problems.

3. As a second preprocessing between Line 5 and Line 6 in Algorithm 1, see
Section 8.

4. As a lookahead mechanism when using search at Line 6 in Algorithm 1. We use
the construction of [17] to filter out, from the domains of the future variables,
those values that cannot yield a solution. As such, the relaxed problem appears
as a (special version of the) all-diff constraints of [17], added to the problem as
a new but redundant constraint to enhance propagation, see Section 8.

7 Generating Solutions by Symmetry

The set of solutions to the relaxed problem of Section 6 can be obtained by enu-
merating all maximum matchings using an algorithm such as the one proposed by
Uno [18]. In this section, we characterize all maximum matchings in a bipartite graph
as symmetric to a single base matching, and proposed to use this symmetry to enu-
merate all solutions.

Our symmetry detection relies on two graph constructions described by Berge [19]:
alternating cycles (AltCyc) and even alternating paths starting at a free vertex (EvAltP).
An AltCyc or EvAltP in a graph G relative to a matching M alternate between edges
in M and edges not in M . If we take a maximum matching M and a AltCyc or EvAltP
P , we can produce another maximum matching M ′ by computing the symmetric dif-
ference of M and P , denoted MΔP . We use that mechanism to identify all maximum
matchings in a bipartite graph G as symmetric of a single maximum matching M . Let
S be the set of all AltCyc’s and EvAltP’s relative to M . We construct another maximum
matching Mi by choosing a disjoint subset Si ⊆ S and computing MΔSi. Mi is sym-
metrical to M in that it is identical to M in all edges except those in Si. In fact, for any
maximum matching Mj of G, we prove5 that there exists an Sj such that Mj = MΔSj .
We generate S by first orienting G using the construction described by Hopcroft and
Karp [16]. From the oriented graph, we enumerate the alternating paths by finding all
EvAltP’s, as defined by Berge [19]. We enumerate the AltCyc’s from the strongly con-
nected components in the oriented graph as described by Régin [17]. Thus, to store
the information necessary to enumerate all alternating paths and cycles, and therefore
all maximum matchings, we only need to store a single base matching, the set of free
vertices, and the set of strongly connected components6.

Consider the bipartite graph G = (X ∪ Y, E), where X = {x1, x2, x3, x4},
Y = {y1, y2, y3}, and E={(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), (x4, y2),
(x4, y3)}. Figure 10 (a) shows a maximum matching M in G. P = x1y1x2 is an
alternating path and C = x3y2x4y3x3 is an alternating cycle. We find other maxi-
mum matchings using the symmetric difference operator. Figure 10 (b) show MΔP ,
Figure 10 (c) shows MΔC, and Figure 10 (d) shows MΔ(C ∪ P).

Figure 11 illustrates the two reformulations of Po, the problem of enumerating all
maximum matchings. We can reformulate Po as Pr1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reformulate the problem as Pr2,

5 The proof is omitted for lack of space.
6 An improvement suggested by an anonymous reviewer.

176 K.M. Bayer et al.

1x

x2

x3

4x

X

y3

Y

y1

y2

(a)

y3

1x

x2

x3

4x
(b)

Y

y1

y2

X

1x

x2

x3

4x

X

y3

(c)

Y

y1

y2

1x

x2

x3

4x

X

y3

(d)

Y

y1

y2

Fig. 10. Multiple matchings saturating Y

Formulation:
−A maximum matching M
−The set of strongly connected components in the oriented graph
−The set of free vertices in the oriented graph

Formulation:
Query: Q r = Enumerate all maximum matchings in G

G = (V,E)
oP Pr1

Pr2

Formulation: The set of all maximum matchings in G

Uno’s algorithm

Fig. 11. Finding all maximum matchings

a base matching and its corresponding sets of strongly connected components and
free vertices. All matchings can be enumerated from Pr2 as needed. Our construction
has the same time complexity as Uno’s, which is linear in the number of maximum
matching. However, our characterization of the solutions as symmetries has valuable
properties which we do not fully exploit:

1. It provides a more compact representation of the set of solutions. Rather than
storing all matchings, we store a single matching, a set of strongly connected
components, and a set of free vertices.

2. In case one is indeed seeking all, or a given number of, the solutions to BID prob-
lem (similarly, to a resource allocation problem that has a maximum matching re-
laxation), we can generate every symmetric matching to that known single matching
and test if it satisfies the additional constraints of the non-relaxed problem, when it
does not, the matching is a solution to the non-relaxed problem found without search.
Naturally, the number of maximum matchings can be large.

8 Experiments

We integrate our techniques in the flowchart shown in Figure 12, which implements
the instruction in Line 6 of Algorithm 1. Table 1 describes the properties of the re-
gions of the the city of El Segundo (CA), on which we ran our experiments. The
number of calls refers to the total number of calls to Line 6 of Algorithm 1. Each
call to Line 6 was timed out after one hour. We report the number of timed out exe-
cutions. The completeness of the phone book indicates what percent of the buildings
on the map have a corresponding address in the phone book. We created the com-
plete phone books using property-tax data, and the incomplete phone books using the
real-world phone-book.

Effect of domain reformulation. Table 2 shows the effect of domain reformulation by
comparing the domain sizes and the cost of BT before and after reformulation. When
the phone book is complete, the reformulation is not used as no ALLDIFF-ATMOST

constraints exist. The advantage of the reformulation increases with the incomplete-
ness of the phone book.

Effect of query reformulation. As stated in Section 4, the sheer number of solutions
made it impossible to solve problem instances with incomplete phone-books using
the query of enumerating all solutions. Thus, without the query reformulation, we
would not have been able to solve the incomplete phone-book instances.

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 177

Does
matching solution

exist?

−Lookahead using matching relaxation

−Only instantiate corner buildings

−nFC3−CBJ
−Special variable ordering

−Lookahead with nFC3

Execute backtrack search

Build the CSP model

Execute the matching solver

Build the matching model

Solution Exists

No

Yes

No solution exists

No
No solution exists

Yes

Does

exist?
CSP solution

Address−assignment problem instance

Fig. 12. Implementing Line 6 of Algorithm 1

Table 1. Case studies used in experiments

Case study Phone book Number of
completeness bldgs crnr bldgs blks calls

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

Table 2. Domain reformulation

Case study Avg. domain size Runtime [sec] Timeouts
Orig. Ref. Orig. Ref. Orig. Ref.

NSeg125-i 1103.1 236.1 2943.7 744.7 0 0
NSeg206-i 1102.0 438.8 14818.9 5533.8 0 0
SSeg131-i 792.9 192.9 67910.1 66901.1 18 17
SSeg178-i 785.5 186.3 119002.4 117826.7 32 29

Table 3. Solvers’ performance (no grid)

Runtime [sec]

BT Matching
Matching +

Case study
Symmetry

NSeg125-c 139.2 4.8 0.03
NSeg125-i 744.7 2.5 *
NSeg206-c 4971.2 16.3 0.06
NSeg206-i 5533.8 8.5 *
SSeg131-c 38618.3 7.3 0.26
SSeg131-i 66901.1 3.1 *
SSeg178-c 117279.1 22.5 0.41
SSeg178-i 117826.7 4.9 *
* Did not finish in 1 hour.

Effect of finding symmetrical maximum matchings. In the absence of grid constraints,
the building-identification problem can be solved in polynomial time by the matching
solver. Here we compare backtrack search, a solver that uses Algorithm 1 with a
matching solver, and a solver that uses the reformulation of symmetric matchings
from Section 7. Finding all symmetric matchings requires enumerating all matchings,
which isn’t feasible for the under-constrained incomplete phone-book problems. Thus,
those problem instances timed out and are indicated by asterisks. However, when
the number of solutions was small, such as when the phone-book is complete, the
symmetry solver had significantly better performance than the per-variable matching
solver. The benefit in terms of runtime reduction is shown in Table 3.

Effect of relaxing a CSP into a matching problem. To test the use of the matching re-
laxation as a preprocessing step and lookahead mechanism, we added grid constraints to
each region. Table 8 shows the results of these experiments, comparing the performance
of: (1) the backtrack search (BT), (2) BT with matching for preprocessing (Preproc+BT),
(3) BT with matching for lookahead (Lkhd+BT), and (4) BT with matching for both pur-
poses (Preproc+BT+Lkhd). We report runtime, number of timeouts, and number of calls
to the CSP solver saved by the preprocessing. In all cases, the same solutions were found.
Our results indicate that, in general, the integration of the matching and BT improves

178 K.M. Bayer et al.

Table 4. Improvements due to preprocessing and lookahead

NSeg125-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 -

Preprocessing+BT 33.2 0 97.0%
BT+Lkhd 140.2 0 -

Preproc+BT+Lkhd 39.6 0 97.0%
NSeg125-i + grid CPU [sec] #Timeouts Calls saved

BT 1232.5 0 -
Preprocessing+BT 1159.1 0 62.6%

BT+Lkhd 726.6 0 -
Preproc+BT+Lkhd 701.1 0 62.6%
NSeg206-c + grid CPU [sec] #Timeouts Calls saved

BT 2277.5 0 -
Preprocessing+BT 614.2 0 98.9%

BT+Lkhd 1559.2 0 -
Preproc+BT+Lkhd 443.8 0 98.9%
NSeg206-i + grid CPU [sec] #Timeouts Calls saved

BT 4052.8 0 -
Preprocessing+BT 3806.7 0 87.8%

BT+Lkhd 3499.5 0 -
Preproc+BT+Lkhd 3510.0 0 87.8%

SSeg131-c + grid CPU [sec] #Timeouts Calls saved
BT 17063.3 0 -

Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 9745.8 0 -

Preproc+BT+Lkhd 4256.0 0 92.5%
SSeg131-i + grid CPU [sec] #Timeouts Calls saved

BT 114405.9 30 -
Preprocessing+BT 114141.3 29 74.2%

BT+Lkhd 107896.3 30 -
Preproc+BT+Lkhd 108646.5 30 74.2%
SSeg178-c + grid CPU [sec] #Timeouts Calls saved

BT 78528.6 14 -
Preprocessing+BT 15717.9 1 91.9%

BT+Lkhd 74172.0 14 -
Preproc+BT+Lkhd 13961.1 1 91.9%
SSeg178-i + grid CPU [sec] #Timeouts Calls saved

BT 138404.2 35 -
Preprocessing+BT 103244.7 25 72.7%

BT+Lkhd 121492.4 32 -
Preproc+BT+Lkhd 85185.9 22 72.7%

performance. There are exceptions, when the cost of the additional processing exceeds
the gains in terms of reduced search space. However, even when we saw performance
degradation, the degradation was minimal.

9 Related Work and Conclusions

Reformulation has been applied to a wide range of CSP problems with much success.
The literature also encompasses approaches to modeling, abstraction, approximation,
and symmetry detection7. Nadel studied 8 different models of the n-Queens problem,
some of which much easier to solve than others [20]. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1874 [21]. Holte and Choueiry provide a general
discussion on abstraction and reformulation in AI including CSPs [22]. Razgon et al. [23]
studied a class of problems that is similar to the one we investigate, and which they call
Two Families of Sets constraints (TFOS). They introduced a technique for reformulat-
ing TFOS problems into network flow problems. Conceptually, the relaxed problem we
study in Section 6 constitutes a special case of the TFOS problem.

An interesting feature of our work is the design of several techniques and their
integration in a comprehensive framework for solving the BID problem while high-
lighting their usefulness for general CSPs. Also, our query reformulation facilitates a
much wider use of relational consistency algorithms than was possible before. In the
future, we intend to evaluate these techniques in other application settings. For ex-
ample, we believe that many resource allocation problems have matching relaxations
like we described.

Acknowledgments. Experiments were conducted on the Research Computing Facil-
ity at UNL. This research is supported by NSF CAREER Award #0133568 and the
Air Force Office of Scientific Research under grant numbers FA9550-04-1-0105 and
FA9550-07-1-0416.

7 Some successful dedicated meetings are: Symposium on Abstraction, Reformulation and Ap-
proximation, Workshop on Modeling and Reformulation, Workshop on Symmetry in CSPs.

Reformulating CSPs for Scalability with Application to Geospatial Reasoning 179

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaction Approach to Geospatial Rea-
soning. In: AAAI 2005, pp. 423–429 (2005)

2. Pickering, T.: Speech by Under Secretary of State T. Pickering on 06/17/1999 to the
Chinese Government Regarding the Accidental Bombing of the PRC Embassy in Belgrade
(1999)

3. van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning. In:
AAAI 1999, pp. 585–590 (1999)

4. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and Backdoors in Satisfiability.
In: AAAI 2005, pp. 1373–1468 (2005)

5. Choueiry, B.Y., Iwasaki, Y., McIlraith, S.: Towards a Practical Theory of Reformulation
for Reasoning About Physical Systems. Artificial Intelligence 162 (1–2), 145–204 (2005)

6. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency with Conflict-Directed Backjumping.
Technical Report 95/177, Univ. of Strathclyde (1995)

7. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On Forward Checking for Non-binary
Constraint Satisfaction. In: Jaffar, J. (ed.) Principles and Practice of Constraint Program-
ming – CP’99. LNCS, vol. 1713, pp. 88–102. Springer, Heidelberg (1999)

8. Freuder, E., Elfe, C.: Neighborhood Inverse Consistency Preprocessing. In: AAAI 1996,
pp. 202–208 (1996)

9. Dechter, R., van Beek, P.: Local and Global Relational Consistency. Journal of Theoretical
Computer Science (1996)

10. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-

wood Cliffs (2003)
12. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence 57(2-3), 323–

389 (1992)
13. Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. Journal of

the ACM 43(2), 193–224 (1996)
14. Milano, M. (ed.): Constraint and Integer Programming: Toward a Unified Methodology.

Kluwer Academic Publishers, Dordrecht (2004)
15. Gallai, T.: Über extreme Punkt- und Kantenmengen. Ann. Univ. Sci. Budapest, Eotvos

Sect. Math. 2, 133–139 (1959)
16. Hopcroft, J., Karp, R.: An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs.

SIAM 2, 225–231 (1973)
17. Régin, J.: A Filtering Algorithm for Constraints of Difference in CSPs. In: AAAI 1994,

pp. 362–367 (1994)
18. Uno, T.: Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings

in Bipartite Graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,
vol. 1350, pp. 92–101. Springer, Heidelberg (1997)

19. Berge, C.: Graphs and Hypergraphs. American Elsevier, New York (1973)
20. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Using n-

Queens. IEEE Expert 5(3), 16–24 (1990)
21. Glaisher, J.: On the Problem of the Eight Queens. Philosophical Magazine 4(48), 457–467

(1874)
22. Holte, R.C., Choueiry, B.Y.: Abstraction and Reformulation in Artificial Intelligence.

Philosophical Trans. of the Royal Society Sect. Biological Sciences 358(1435), 1197–
1204 (2003)

23. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing Global Constraints Based on Network
Flows. In: Workshop on Constraint Modelling and Reformulation, pp. 74–87 (2006)

A Generic Geometrical Constraint Kernel in Space and
Time for Handling Polymorphic k-Dimensional Objects

N. Beldiceanu1, M. Carlsson2, E. Poder1, R. Sadek1, and C. Truchet3

1 École des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 Nantes, France
{Nicolas.Beldiceanu,Emmanuel.Poder,Rida.Sadek}@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mats.Carlsson@sics.se

3 Université de Nantes, LINA FRE CNRS 2729, FR-44322 Nantes, France
Charlotte.Truchet@univ-nantes.fr

Abstract. This paper introduces a geometrical constraint kernel for handling the
location in space and time of polymorphic k-dimensional objects subject to vari-
ous geometrical and time constraints. The constraint kernel is generic in the sense
that one of its parameters is a set of constraints on subsets of the objects. These
constraints are handled globally by the kernel.

We first illustrate how to model several placement problems with the constraint
kernel. We then explain how new constraints can be introduced and plugged into
the kernel. Based on these interfaces, we develop a generic k-dimensional lexi-
cographic sweep algorithm for filtering the attributes of an object (i.e., its shape
and the coordinates of its origin as well as its start, duration and end in time) ac-
cording to all constraints where the object occurs. Experiments involving up to
hundreds of thousands of objects and 1 million integer variables are provided in
2, 3 and 4 dimensions, both for simple shapes (i.e., rectangles, parallelepipeds)
and for more complex shapes.

1 Introduction and Presentation of the Kernel

This paper introduces a constraint kernel geost(k,O,S, C) for handling in a generic
way a variety of geometrical constraints C in space and time between polymorphic
k-dimensional objects O (k ∈ N

+), where each object takes a shape among a set of
shapes described by S during a given time interval and at a given position in space.
This line of research can be seen as a continuation and generalisation of previous work
on non-overlapping parallelepipeds [1,2,3,4].

Each shape is defined as a finite set of shifted boxes, where each shifted box is
described by a box in a k-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box s = sbox(sid , t[], l[]) ∈ S is
an entity defined by its shape id s.sid , shift offset s.t[d], 0 ≤ d < k, and sizes s.l[d]
(s.l[d] > 0, 0 ≤ d < k). All attributes of a shifted box are integer values. Then, a shape
is defined as the union of shifted boxes sharing the same shape id. Each object o =
object(id , sid , x[], start , duration , end) ∈ O is an entity defined by its unique object
id o.id , shape id o.sid , origin o.x[d], 0 ≤ d < k, start in time o.start , duration in time

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 180–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Generic Geometrical Constraint Kernel in Space and Time 181

o.duration (o.duration ≥ 0) and end in time o.end .1 All these attributes correspond
to domain variables.2 Typical constraints from the list of constraints C can express, for
instance, the fact that a given subset of objects from O do not pairwise overlap or that
they are all included within a given bounding box. Constraints always have two first
arguments Ai and Oi (followed by possibly some additional arguments) which resp.
specify:

– A list of distinct dimensions (integers in [0, k − 1]) that the constraint considers.
– A list of identifiers of the objects to which the constraint applies.

Example 1. Assume we have a 3D placement problem (i.e., k = 3) involving a set of paral-
lelepipeds P and one subset P ′ of P , where we want to express the fact that (1) no parallelepipeds
of P should overlap, and (2) no parallelepipeds of P ′ should be piled. Constraints (1) and (2)
resp. correspond to non-overlapping([0, 1, 2], P) and to non-overlapping([0, 1], P ′). Within the
first non-overlapping constraint, the argument [0, 1, 2] expresses the fact that we consider a
non-overlapping constraint according to dimensions 0, 1 and 2 (i.e., given any pair of paral-
lelepipeds p′ and p′′ of P there should exist at least one dimension d (d ∈ {0, 1, 2}) where
the projections of p′ and p′′ on d do not overlap). Similarly, the argument [0, 1] of the sec-
ond non-overlapping constraint expresses the fact that, given any pair of parallelepipeds p′ and
p′′ of P ′, there should exist at least one dimension d (d ∈ {0, 1}) where p′ and p′′ do not
overlap).

geost(k,O,S, C) is defined in the following way: given a constraint ctr i(Ai,Oi) from
the list of constraints C between a subset of objects Oi ⊆ O according to the attributes
Ai, letMCi denote the sets of cliques stemming from the objects ofOi that all overlap
in time.3 The constraints of geost(k,O,S, C) hold if and only if ∀ctr i ∈ C, ∀OMCi

∈
MCi : ctr i(Ai,OMCi) holds.

Example 2. Fig. 1 presents a typical example of a dynamic 2D placement problem where one
has to place four objects, in time and within a given box, so that objects that overlap in time do
not overlap in space. Parts (A), (B), (C) and (D) resp. represent the potential shapes associated
with the four objects to place, where the origin of each object is represented by a black square �.
Part (E) shows the position of the four objects of the example as the time varies, where the first,
second, third and fourth objects were resp. assigned shapes S1, S5, S8 and S9:

– During the first time interval [2, 9] we have only object O1 at position (1, 2).
– Then, at instant 10 objects O2 and O3 both appear. Their origins are resp. placed at positions

(2, 1) and (4, 1).
– At instant 14 object O1 disappears and is replaced by object O4. The origin of O4 is fixed at

position (1, 1). Finally, at instant 22 all three objects O2, O3 and O4 disappear.

The corresponding arguments are:

1 The time dimension is treated specially since the duration attribute may not be fixed, which
is not the case for the sizes of a shifted box. Also, the geometrical constraints only apply on
objects that intersect in time.

2 A domain variable v is a variable ranging over a finite set of integers denoted by dom(v); let
v and v resp. denote the minimum and maximum possible values for v.

3 In fact, these cliques (of an interval graph) are only used for defining the declarative semantics
of geost ’s constraints.

182 N. Beldiceanu et al.

01 geost(2,
02 [object(1,1,[1,2], 2,12,14), object(2,5,[2,1],10,12,22),
03 object(3,8,[4,1],10,12,22), object(4,9,[1,1],14, 8,22)],
04 [sbox(1,[0,0],[2,1]), sbox(1,[0,1],[1,2]), sbox(1,[1,2],[3,1]),
05 sbox(2,[0,0],[3,1]), sbox(2,[0,1],[1,3]), sbox(2,[2,1],[1,1]),
06 sbox(3,[0,0],[2,1]), sbox(3,[1,1],[1,2]), sbox(3,[2,2],[3,1]),
07 sbox(4,[0,0],[3,1]), sbox(4,[0,1],[1,1]), sbox(4,[2,1],[1,3]),
08 sbox(5,[0,0],[2,1]), sbox(5,[1,1],[1,1]), sbox(5,[0,2],[2,1]),
09 sbox(6,[0,0],[3,1]), sbox(6,[0,1],[1,1]), sbox(6,[2,1],[1,1]),
10 sbox(7,[0,0],[3,2]), sbox(8,[0,0],[2,3]), sbox(9,[0,0],[1,4])],
11 [non-overlapping([0,1],[1,2,3,4]),included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argument 2 is the number of dimensions of the placement space we consider.
Its second and third arguments resp. describe the four objects and the shifted boxes of
the nine shapes we have. For instance, the 3 boxes of shape S1 (depicted by 3 thick
rectangles in Part (A) of Fig. 1) respectively correspond to the 3 boxes declared at
line 04 of the example. Finally, its last argument gives the list of geometrical constraints
imposed by geost : the first constraint expresses a non-overlapping constraint between
the four objects, while the second constraint imposes the four objects to be located
within the box containing all points (x, y) such that 1 ≤ x ≤ 1 + 5 − 1 and 1 ≤ y ≤
1 + 4 − 1. The constraints of geost hold since the four objects do not simultaneously
overlap in time and in space and since they are completely included within the previous
box (i.e., see Part (E) of Fig. 1).

Within the scope of geost(k,O,S, C), this paper presents a filtering algorithm that
prunes the domain of each attribute of every object o = object(id , sid , x[], start ,

1

1

2

2 3 5

4

3

4

1

1 4

2

3

4

5323 5

4

3

2

1

1

2 4

time

objects

221421 3 4 5 6 7 8 9 11 12 13 15 16 17 18 19 20 2110

S9S8

S7

S6

S5

S4

S3

S2

S1

object O3 is assigned shape S8

object O2 is assigned shape S5

object O1 is assigned shape S1

(E)

first clique={O1} second clique={O1,O2,O3} third clique={O2,O3,O4}

(D) object O4(C) object O3(B) object O2(A) object O1

S
ha

pe
 o

f t
he

fo
ur

th
 o

bj
ec

t

th
e

th
ird

 o
bj

ec
t

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

se
co

nd
 o

bj
ec

t
P

ot
en

tia
l s

ha
pe

s
fo

r

th
e

fir
st

 o
bj

ec
t

P
ot

en
tia

l s
ha

pe
s

fo
r

interval [14,21]

O4

O3

O2

O1

O4

O2O3 O4 O3

O1

O2

interval [2,9]

O1

interval [10,13]

Fig. 1. Example with 4 objects, 9 shapes, one non-overlapping and one included constraints

A Generic Geometrical Constraint Kernel in Space and Time 183

duration , end) ∈ O. All values found infeasible are deleted from the shape attribute
sid ; for the other attributes (i.e., the origin x[], the start, the duration and the end), the
minimum and maximum are adjusted.

The paper is organised as follows. Section 2 provides an overview of placement prob-
lems that can be modelled with the constraints currently available in geost . Section 3
presents the overall architecture of the geometrical kernel. It explains how to define
geometrical constraints in terms of a programming interface by the geometrical kernel.
Section 4 focusses on the main contribution of this paper: a multi-dimensional lexico-
graphic sweep algorithm used for filtering the attributes of an object of geost . Section 5
evaluates the scalability of the geost kernel as well as its ability to deal with a variety
of specific placement problems. Before we conclude, Section 6 compares geost with
related work and suggests future directions.

2 Modelling Problems with geost

As illustrated by Fig. 2 in the context of non-overlapping, geost allows to model directly
a large number of placement problems:

– Case (A) corresponds to a non-overlapping constraint among three segments.
– The second and third cases (B,C) correspond to a non-overlapping constraint be-

tween rectangles where (B) is a special case where the sizes of all rectangles in the
second dimension are equal to 1; this can be interpreted as a machine assignment
problem.

– Case (D) corresponds to a non-overlapping constraint between rectangles where
each rectangle can have two orientations. This is achieved by associating with each
rectangle two shapes of respective sizes l×h and h×l. Since their orientation is not
initially fixed, the included constraint enforces the three rectangles to be included
within the bounding box defined by the origin’s coordinates 1, 1 and sizes 8, 3.

– Case (E) corresponds to a non-overlapping constraint between more complex ob-
jects where each object is described by a given set of rectangles.

– Case (F) describes a placement problem where one has to first assign each rectangle
to a strip so that all rectangles that are assigned to the same strip do not overlap.

– Case (G) corresponds to a non-overlapping constraint between parallelepipeds.
– Case (H) can be interpreted as a non-overlapping constraint between parallelepipeds

that are assigned to the same container. The first dimension corresponds to the identi-
fier of the container, while the next three dimensions are associated with the position
of a parallelepiped inside a container.

– Case (I) describes a rectangle placement problem over three consecutive time-slots:
rectangles assigned to the same time-slot should not overlap in time. We initially
start with the three rectangles 1, 2 and 3. Rectangle 3 is no longer present at instant 2
(the triangle � within rectangle 3 at time 1 indicates that rectangle 3 will disappear
at the next time-point), while rectangle 4 appears at instant 2 (the triangle � within
rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).
Finally, rectangle 2 disappears at instant 3 and is replaced by rectangle 5.

184 N. Beldiceanu et al.

2

1

(H)

(I)

(G)

(F)

(E)

(D)

(C)

(B)

(A)

2 3

1

2

3
1

2

1

2

3

4

1 2 3 4 5 1
2

3
4

5

5

2 3

4321

3

2

1
6 8754321

3

2

1

6 8754321

5 7 86
1

2

3

1 2 3 4 5 7 86

1 2 3 4 5 7 86
1

2

3

1

1
8754321

1

2

3

4

1 2 3 1 2 3 1

3

2

6

2
3

1

1

2

3

1 2 3

1 2

44
2

3

52

111

3

2

1

32
1

3

1

3

2

1

3
2

1

2

2

3

3

1

32

2

31

time=3time=2time=1

Fig. 2. Nine typical examples of use of geost

3 Standard Representation of Geometrical Constraints

The key idea for handling multiple geometrical constraints in a common kernel is
the following. For each type of geometrical constraint found in C (also called exter-
nal constraints), one has to provide a service that computes necessary conditions (also
called internal constraints) for a given object and shape. Given an external geometrical
constraint ectr i(Ai,Oi) (Ai ⊆ {0, 1, . . . , k − 1},Oi ⊆ O), one of its object o ∈ Oi

and one potential shape s of o, such a necessary condition generated by ectr i, o and s is
a unary4 constraint ictr(o.x) such that: o.sid = s ∧ ectr i(Ai,Oi) ⇒ ictr(o.x). Now,
the key to being able to globally treat such necessary conditions in the kernel is to give
them a uniform representation. We have chosen the following one:

– A constraint outbox(t, l) on o.x holds iff o.x is located outside the shifted box
defined by its origins point t[d], 0 ≤ d < k, and sizes l[d], 0 ≤ d < k (i.e.,
∃d ∈ [0, k − 1] | o.x[d] < t[d] ∨ o.x[d] > t[d] + l[d]− 1).

Thus, an outbox corresponds to a box-shaped set of points that are infeasible for o.x.
The purpose of the introduction of outboxes is to have a common representation for the
kernel, suitable for the k-dimensional lexicographic sweep algorithm presented in the
next section, which considers all the outboxes, for a selected object and shape, in one
run.

Consequently, for each type of external geometrical constraint, found in C a service
GenOutboxes(ectr i, o, s) : (ictrs), responsible for generating outboxes, must be pro-
vided. This service is assumed to generate outboxes that intersect the domains of the
origin coordinates of o. Also, if all attributes mentioned by ectr i belonging to objects
other than o are fixed, those outboxes are assumed to be necessary and sufficient condi-
tions, lest the kernel accept false solutions.

4 Unary, since it involves the k coordinates of a single object.

A Generic Geometrical Constraint Kernel in Space and Time 185

Example of External Geometrical Constraints. We now illustrate some external geo-
metrical constraints that are currently available within the constraint kernel. As we saw
in the introduction, an external constraint always has at least two arguments that resp.
correspond to a list of distinct dimensions and to a list of object identifiers to which the
constraint applies.

The included and non-overlapping external constraints. The included(Ai,Oi, t, l)
and the non-overlapping(Ai,Oi) external constraints take as input a list of distinct
dimensions Ai in {0, 1, . . . , k − 1} and a list Oi of distinct object identifiers of geost .
In addition, the included constraint considers a shifted box defined by its origin point
t[d], 0 ≤ d < k, and size l[d], 0 ≤ d < k.

The included constraint enforces for each object o (with o.id ∈ Oi) and for any
corresponding shifted box s (with o.sid = s.sid) the condition ∀d ∈ Ai | t[d] ≤
o.x[d] + s.t[d]∧ o.x[d] + s.t[d] + s.l[d]− 1 ≤ t[d] + l[d]− 1 (i.e., s is included within
the shifted box attribute defined by the parameters t and l of the included constraint).
Depending on which shape of an object we actually consider, the included constraint
can be translated to 2k outbox constraints.

The non-overlapping constraint enforces the following condition: given two distinct
objects o and o′ (with o.id , o′.id ∈ Oi) that overlap in time, no shifted box s (with
o.sid = s.sid) should overlap any shifted box s′ (with o′.sid = s′.sid); i.e. it should
hold that ∃d ∈ Ai | o.x[d] + s.t[d] + s.l[d] ≤ o′.x[d] + s′.t[d] ∨ o′.x[d] + s′.t[d] +
s′.l[d] ≤ o.x[d] + s.t[d] (i.e., there exists a dimension where they do not intersect).
While focussing on an object o we can easily generate an outbox constraint for each
object o′ that should not overlap o by reusing the results of [2].

4 The Geometrical Kernel: A Generic k-Dimensional
Lexicographic Sweep Algorithm

In this section, we first present the sweep algorithm used for filtering the coordinates of
the origin of an object o of geost when each object has one single shape. We initially
assume that time is treated exactly like the space dimensions, i.e. that the o.x array is
extended by one element. Toward the end of this section, we explain in detail how to
treat the time attributes of an object. We also assume for now that the shape attribute is
fixed, and explain later how to handle multiple potential shapes for an object (i.e., poly-
morphism). We now introduce some notation used throughout this section.

Notation. Assume v and w are vectors of scalars of k components. Then v ← w
denotes the element-wise assignment of w to v, w + d (resp. w − d) denotes the ele-
ment-wise addition of d (resp. −d) to w. Given a scalar d, 0 ≤ d ≤ k − 1, rot(v, d, k)
denotes the vector (v[d], v[(d+1) mod k], . . . , v[(d− 1) mod k]). That is, in the ro-
tated vector, v[d] is the most significant element, which is what we need when running
the sweep algorithm on dimension d.

The Sweep Algorithm. This algorithm first considers all outboxes ICo derived from
C where object o actually appears, and then performs a recursive traversal of the place-
ment space for each coordinate and direction (i.e., min or max). Without loss of gen-
erality, assume we want to adjust the minimum value of the dth coordinate o.x[d],

186 N. Beldiceanu et al.

0 ≤ d < k, of the origin of o. The algorithm starts its recursive traversal of the place-
ment space at point c = rot(o.x, d, k) and could in principle explore all points of the
domains of o.x, one by one, in increasing lexicographic order, until a point is found
that is not inside any outbox, in which case c[0] is the computed new minimum value.
To make the search efficient, instead of moving each time to the successor point, we
arrange the search so that it skips points that are known to be inside some outbox.5

Thus, we compute the lexicographically smallest point c′ such that:

1. c′ is lexicographically greater than or equal to c,
2. every element of c′ is in the domain of the corresponding element of o.x,
3. c′ is not inside any outbox of ICo.

If no such c′ exists, the constraint fails. Otherwise, the minimum value of o.x[d] is
adjusted to c′[0]. As we saw, the sweep algorithm moves in increasing lexicographic or-
der a point c from its lexicographically smallest potential feasible position to its lexico-
graphically largest potential feasible position through all potential points. The algorithm
uses the following data structures:

– The current position c of the sweep.
– A vector n[0..k − 1] that records knowledge about already encountered sets of

infeasible points while moving c from its first potential feasible position. The vector
n is always element-wise greater than c and maintained as follows. Let inf, sup
denote the vectors inf = rot(o.x, d, k) and sup = rot(o.x + 1, d, k):
• Initially, n = sup.
• Whenever an outbox f containing c is found, n is updated by taking the ele-

ment-wise minimal value of n and the upper boundary of rot(f, d, k), indicat-
ing the fact that new candidate points can be found beyond that value.
• Whenever we skip to the next candidate point, we reset the elements of n that

were used to the corresponding values of sup.
The following invariant holds for the vector n, and is used when advancing c to the
next candidate point. Let i be the smallest j such that n[j +1] = sup[j +1]∧ · · · ∧
n[k − 1] = sup[k − 1] and suppose c is known to be in some outbox. Then, the
next point, lexicographically greater than c and not yet known to be in any outbox,
is (c[0], . . . , c[i− 1], n[i], inf[i + 1], . . . , inf[k − 1]).

Algorithm 1 implement this idea. The algorithm prunes the bounds of each coordi-
nate of every object wrt. its relevant outboxes, iterating to fix-point.

Efficiency. The main inefficiency in this sweep algorithm lies in searching the set
of outboxes (line 4 of PruneMin). In order to make this search more efficient, we
can make the sweep algorithm more sophisticated by the following modifications to
PruneMin:

– We extend the state of the algorithm by an event point series, ordered in lexi-
cographically increasing order. These events correspond to the lexicographically
smallest (insert events) and largest (delete events) relevant infeasible point associ-
ated with each outbox ictro ∈ ICo. They are sorted in lexicographically increasing
order, and we maintain a pointer into the series in sync with point c.

5 Potential holes in the domains are reflected in outboxes.

A Generic Geometrical Constraint Kernel in Space and Time 187

PROCEDURE FilterCtrs(k, O, S ,C) : bool
1: nonfix ← true // fixpoint not yet reached
2: while nonfix do
3: nonfix ← false // assumes no filtering will be done
4: for all o ∈ O do
5: I ← ⋃

e∈C GenOutboxes(e, o, o.sid) // build the set of outboxes on o
6: I ← I ∪ ⋃

0≤d<k possible outboxes corresponding to holes in o.x[d]
7: for d ← 0 to k − 1 do
8: if ¬PruneMin(o, d, k, I) ∨ ¬PruneMax(o, d, k, I) then
9: return false // no feasible origin

10: else if o.x was pruned then
11: nonfix ← true // fixpoint not yet reached
12: end if
13: end for
14: end for
15: end while
16: return true // feasible origin

PROCEDURE PruneMin(o, d, k, I) : bool
1: b ← true // b =true while we have not failed
2: c ← o.x // initial position of the point
3: n ← o.x + 1 // upper limits+1 in the different dimensions
4: while b ∧ ∃f ∈ I | c ∈ f do
5: n ← min(n, f.t + f.l) // update vector naccording to an outbox f containing c
6: b ← false // no new point to jump to yet
7: for j ← k − 1 downto 0 do
8: j′ ← (j + d) mod k // rotation wrt. d, k
9: c[j′] ← n[j′] // use vector n to jump

10: n[j′] ← o.x[j′] + 1 // reset component of n to maximum value
11: if c[j′] ≤ o.x[j′] then
12: b ← true // jump target found
13: j ← 0 // exit for loop
14: else
15: c[j′] ← o.x[j′] // reset component of c, for exhausted a dimension
16: end if
17: end for
18: end while
19: if b then
20: o.x[d] ← max(o.x[d], c[d])
21: end if
22: return b

Algorithm 1: FilterCtrs is the main filtering algorithm associated with geost(k, O, S ,C),
where k, O, S and C resp. correspond to the number of dimensions, to the objects, to the
shapes and to the external geometrical constraints. PruneMin adjusts the lower bound of the
dth coordinate of the origin of object o where I is the set of outboxes associated with ob-
ject o (since PruneMax is similar to PruneMin it is omitted). The given fixpoint loop is an
over-simplification. The implementation maintains a set of objects that need filtering. Whenever
an object o is pruned, all non-fixed objects connected to o by an external constraint are added to
this set. When the set becomes empty, the fixpoint is reached.

188 N. Beldiceanu et al.

��
��
��
��

���� ��������

FOR FILTERING THE ORIGIN OF THE

INTERNAL CONSTRAINTS GENERATED

ctr1: outbox([1,1],[2,2])

ctr2: outbox([1,3],[6,4])

ctr3: outbox([1,8],[2,1])

ctr4: outbox([3,1],[5,3])

ctr5: outbox([1,7],[8,1])

DCTRS

[object(1,1,[x1,y1],0,1,1),object(2,2,[x2,y2],0,1,1),geost(

 object(3,3,[x3,y3],0,1,1),object(4,4,[x4,y4]0,1,1),

 object(5,5,[x5,y5],0,1,1)],

[shape(1,[0,2],[0,1]),shape(2,[0,3],[0,1]),shape(3,[0,1],[0,1]),

 shape(4,[0,1],[0,3]),shape(5,[0,5],[0,4])],

[non−overlapping([0,1],[1,2,3,4,5])])

FIFTH OBJECT, i.e. (x5,y5) (ICTRS)

10 10

8

8

9

7

6

5

4

3

2

1

7654321

10

8

8

9

7

6

5

4

3

2

1

76543211 2 3 4 5 6 7

1

2

3

4

5

6

7

9

8

8

10 10

8

8

9

7

6

5

4

3

2

1

7654321

ctr2

ctr5

ctr3

ctr4

ctr1

ctr5

ctr3

ctr4

ctr2

ctr1

ctr3

ctr4

ctr5

ctr2

ctr1

ctr4

ctr3

ctr5

ctr2

ctr1

ctr4

ctr5

ctr2

ctr4

ctr5

ctr2

ctr4

ctr5

ctr2

ctr4

ctr5

ctr2

 constraint)

ACTRS
(active internal

ctr1

ctr2

ctr5

ctr3

ctr4

 constraint)

DCTRS

EXTERNAL CONSTRAINT (non−overlapping)

DCTRS

DCTRSDCTRSDCTRS

DCTRSDCTRS

DCTRS

ctr3
ctr5

ctr2

ctr4ctr1

ctr3

ctr2

ctr4ctr1

ctr3
ctr5

ctr4ctr1

ctr3
ctr5

ctr2

ctr1

ctr5

ctr2

ctr4ctr1ctr4ctr1

ctr2

ctr3

ctr3
ctr5

ctr4ctr1ctr4

ctr5
ctr3

ctr2

ctr5

ctr2

ctr4

ctr5

ctr2

ctr1

ctr3

x5 in 1..8, y5 in 1..8, y5<>7

x4 in 7..7, y4 in 1..1

x3 in 2..4, y3 in 8..9

x2 in 4..4, y2 in 6..6

x1 in 1..4, y1 in 2..4

VARIABLES

ctr5ctr2

ctr4

ctr3ctr5

ctr2ctr1

ACTRS

CONFLICT

CONFLICT

ACTRS

CONFLICT

ACTRS

CONFLICT

ACTRS

CONFLICT

ACTRS

CONFLICT

ACTRS

ACTRS

CONFLICT

ACTRS

CONFLICT

SWEEP POINT: c=(1,1) SWEEP POINT: c=(1,3)

SWEEP POINT: c=(1,7) SWEEP POINT: c=(1,8) SWEEP POINT: c=(3,1)

SWEEP POINT: c=(3,4) SWEEP POINT: c=(3,7)

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

9

8

8

10

(delayed internal
10

8

8

9

7

6

5

4

3

2

1

7654321 1 2 3 4 5 6 7

1

2

3

4

5

6

7

9

8

8

10 10

8

8

9

7

6

5

4

3

2

1

7654321

1 2 3 4 5 6 7

1

2

3

4

5

6

7

9

8

8

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

r3

r3

c=(3,8)

r1 4

5r

3r
r3

3r

3r

r2

1r

r1 1r

r

Fig. 3. Illustration of the lexicographic sweep algorithm for adjusting the minimum value of the
abscissa of rectangle r5

– We maintain the set of active outboxes, corresponding to all outboxes ictro ∈ ICo

such that c is between its lexicographically smallest and largest infeasible points.
This set is initially empty.

– When c is initialized in line 2 as well as when c is incremented in lines 7-17, the
relevant events up to point c from the event point series are processed, and the
corresponding outboxes are added to or deleted from the set of active outboxes.

– In line 4, only the active outboxes are considered.

Example 3. Fig. 3 illustrates the k-dimensional lexicographic sweep algorithm in the context of
k = 2. Parts (A) and (B) provide the variables of the problem (i.e., the abscissa and ordinate
of each rectangle r1, r2, r3, r4 and r5) as well as the non-overlapping constraint between the

A Generic Geometrical Constraint Kernel in Space and Time 189

five previous rectangles. On Part (D) we have represented the extreme possible feasible positions
of each rectangle (i.e., rectangles r1 to r4): for instance the leftmost lower corner of rectangle
r1 can only be fixed at positions (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4),
(4, 2), (4, 3) and (4, 4). Parts (C) to (L) of Fig. 3 detail the different steps of the algorithm for
adjusting the minimum value of the abscissa of rectangle r5. Part (C) provides the outboxes
associated with the fact that we want to prune the coordinates of r5: constraints ctr1, ctr2, ctr3

and ctr4 resp. correspond to the fact that rectangle r5 should not overlap rectangles r1, r2, r3

and r4, while constraint ctr5 represents the fact that the ordinate of r5 should be different from
7. Part (D) represents the initialisation phase of the algorithm where we have all five outboxes
with their respective lexicographically smallest infeasible point (i.e., (1, 1) for ctr 1, (1, 3) for
ctr2, (1, 7) for ctr5, (1, 8) for ctr3 and (3, 1) for ctr4). Part (E) represents the first step of the
sweep algorithm where we start the traversal of the placement space at point c = (1, 1). We first
transfer to the list of active outboxes all outboxes for which the first lexicographically smallest
infeasible point is lexicographically greater than or equal to the current position of the sweep
c = (1, 1) (i.e., constraint ctr 1 = outbox([1, 1], [2, 2])). We then search through the list of
active constraints (represented on the figure by a box with the legend ACTRS on top of it) the
first constraint for which c = (1, 1) is infeasible. In fact, since ctr1 is infeasible (represented on
the figure by a box with the legend CONFLICT on top of it) we compute the vector f = (3, 3)
that tells how to get the next potentially feasible point in the different dimensions. Consequently
the sweep moves to the next position (1, 3) (see Part (F)) and the process is repeated until we
finally find a feasible point for all outboxes (i.e., point (3, 8) in Part (L)). Note that, when the
lexicographically largest infeasible point associated with an active outbox is lexicographically
less than the current position of the sweep, we remove that constraint from the list of active
outboxes. This is for instance the case in Part (I), where we remove constraint ctr3 from the list
of active outboxes (since its lexicographically largest infeasible point (2, 8) is lexicographically
less than the position of the sweep c = (3, 1)).

Complexity. Rather than analysing the complexity of the geost kernel for a fixed k,
which depends both on the type of each external constraint (i.e., the complexity of a
given external constraint for generating all its corresponding outboxes as well as their
number), we rather focus on PruneMin for adjusting the minimum value of the dth

coordinate of the origin of an object. Assuming that the maximum number of outboxes
is equal to n we give an upper bound on the maximum number of jumps of PruneMin
(i.e., the maximum number of times the sweep is moved).

First note that we always jump to an upper border (+1) of an outbox (i.e., see line 5 of
PruneMin) or that we reset some coordinates of the sweep to its minimum value (i.e.,
see line 15 of PruneMin). Consequently, all coordinates of the sweep are always equal
to an upper border (+1) of some outboxes or to a minimum possible value. Since we
want to evaluate the maximum number of jumps, let us assume that for every dimension
d (0 ≤ d < k) the upper limits of all the n outboxes are distinct. Having this in
mind we can construct a maximum of (n + 1)k points. Even if we found a systematic
construction where this number of jumps is reached, the performance evaluation of
Section 5 indicates that we can handle a reasonable number of objects for k = 2, 3, 4.

From a memory consumption point of view, the algorithm only records the coordi-
nates of the sweep from one invocation to the next, in order not to restart the search
from scratch (i.e., 2k points for each object).

Handling Time. Given an object o ∈ O of geost , the sweep algorithm that we have
introduced in the previous section can be easily adapted to handle the start in time

190 N. Beldiceanu et al.

o.start , duration in time o.duration and end in time o.end . Beside maintaining bound
consistency for the constraint o.end = o.start + o.duration , we add an extra time
dimension to the geometric coordinates of object o. Roughly, this new time coordinate
corresponds to o.start resp. o.end depending on whether we are adjusting the minimum
or maximum.

Handling Polymorphism. In order to handle the fact that objects can have several
potential shapes we modify the previous algorithm in the following way. For adjusting
the minimum value of the coordinate of the origin of an object that has more than one
shape we call the sweep algorithm for each potential shape of the object (i.e., for each
value of its shape variable). Then we take the smallest minimum value obtained (i.e.,
we use constructive disjunction) and prune the shape variable of an object if we did not
find any feasible point for a given potential shape of that object.

Other Internal Constraints. The standard representation of geometrical constraints
given in Section 3 is an over-simplification. For some constraints, e.g. distance con-
straints, outboxes are not a suitable representation, as the set of forbidden coordinates
cannot be covered by a small number of boxes. Therefore, the constraint kernel inter-
nally handles other representations of necessary conditions, with an appropriate internal
API. For details, see the technical report [5].

5 Performance Evaluation

We evaluate the implementation6 of the geost kernel from three perspectives:
Wanting to measure the speed and the scalability of the sweep algorithm for find-

ing a first solution on loosely constrained placement problems (i.e., 20% spare space),
we generated one set of random problem instances of m k-dimensional boxes for
k ∈ {2, 3, 4} involving t ∈ {1, 16, 256, 1024} distinct types of boxes, and for m ∈
{1024, 2048, . . . , 262144}. The results for k = 2 are shown in Fig. 4 (top left) and
indicates that the approach is sensible to the number of distinct types of boxes. It can
typically pack 1024 2D, 3D and 4D distinct boxes in at most 200 msec. The longest
time, 13694 seconds (close to 4 hours), was obtained for packing 262144 4D paral-
lelepipeds (over 1 million domain variables) with a memory consumption of 351MB.

Wanting to get an idea of the performance of the geost kernel on very tight place-
ment problems (i.e., 0% spare space), we considered the perfect squared squares prob-
lem [1,6] as well as the 3D pentominoes problem [7]:

– A perfect squared square of order n is a square that can be tiled with n smaller
squares where each of the smaller squares has a different integer size. We used the
data available (i.e., the size of the small squares to pack) from the catalogue [8] and
tested the corresponding 207 instances. The labelling strategy is roughly to repeat
the following, first for the x dimension, then for the y dimension:
1. Find the smallest position where some square can be placed.
2. Find a square to place in that position.

6 The experiments were run in SICStus Prolog 4 compiled with gcc -02 version 4.0.2 on a 3GHz
Pentium IV with 1MB of cache.

A Generic Geometrical Constraint Kernel in Space and Time 191

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1000 10000 100000 1e+06

tim
e

m

t=1
t=16

t=256
t=1024

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

backtracks
time

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45

time (we)
time [4]

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45

backtracks (we)
backtracks [4]

Fig. 4. Performance evaluation. Top left: scalability, t ∈ {1, 16, 256, 1024}. Top right: Perfect
Squared Squares, runtime and backtracks. Bottom: 2D Orthogonal Packing, runtime (left) and
backtracks (right). Time in milliseconds. In each curve, the instances are ordered by increasing y
value.

– Pentominoes are pieces made of 5 connected unit cubes laid on a plane surface.
Their shapes look like the 12 letters F , I , L, P , N , T , U , V , W , X , Y and Z . We
considered the problem of finding the different ways of putting 12 distinct shapes
that can be reflected and rotated in a box having a volume of 60 unit cubes. Our
labelling strategy is roughly to repeat the following:
1. Find a slot in the space that has not yet been filled by some piece.
2. Find a piece that can fill that slot.

Fig. 4 (top right) and Table 1 respectively report, for the squared squares and the
pentominoes problems, the time and number of backtracks for exploring all the search
space7 without breaking any symmetry. For the squared squares problems the maxi-
mum time of 1585 seconds was spent on problem 48; on the other hand, 148 problems
were completely solved within 60 seconds. For the 3D pentomino packing instances,
performance results for comparison can be found in [7]. However, they stop the search
when the first 100 solutions have been found, so the results are only partly comparable.

Finally, wanting to compare the geost kernel with a recent exact state of the art
method for the 2D orthogonal packing problem [4], we reused the benchmarks pro-
posed by Clautiaux et al. [9]. This is a feasibility problem which consists in determining
whether a set of rectangles that cannot be rotated, can be packed or not into a rectangle
of fixed size. In these instances the discrepancy between the sum of the areas of the

7 Finding all solutions and proving that there is no other solution.

192 N. Beldiceanu et al.

Table 1. Performance evaluation. 3D pentomino packing instances. Time in milliseconds. “n/a”
corresponds to a quantity that was not available with a time-out of several hours.

configuration backtracks (1st) time (1st) backtracks (all) time (all) solutions
20 × 3× 1 1434 1840 47381 49740 8
15 × 4× 1 290 560 888060 939060 1472
12 × 5× 1 1594 1850 3994455 4112870 4040
10 × 6× 1 111 260 9688985 10726810 9356
10 × 3× 2 1267 2370 1203511 1778980 96
6× 5× 2 157 730 n/a n/a n/a
5× 4× 3 3567 14930 n/a n/a n/a

rectangles to pack and the area of the big rectangle vary from 0% to 20%. We have 41
instances involving between 10 and 23 rectangles. Moreover, from these 41 instances,
26 instances are not feasible. In order to break symmetries between multiple rectangles
of the same shape we added lexicographic ordering constraints. All x coordinates were
labelled followed by all y coordinates, by decreasing rectangle size. Values were tried
by increasing value. Fig. 4 (bottom) compares our results with the ones reported in [4].
Note that the sequence order for the curves differs, since the instances of each curve
are ordered by increasing y value. We solved all instances and are comparable with [4],
although 8 instances are much easier for [4] and 10 instances are much easier for us.

Note that for the last three problems (i.e., Squared Squares, Pentominoes and 2D
orthogonal packing) extra filtering algorithms mostly based on cumulative relaxation
were integrated within our kernel. Since this paper focusses on the constraint kernel
and because of space limitations these methods were not detailed.

6 Related Work and Future Directions

The rectangles packing problem has been studied by Clautiaux et al. [9,4] where
scheduling-based reasoning is used [1]. The use of sweep algorithms in constraint filter-
ing algorithms was introduced in [3] and applied to the non-overlapping 2D rectangles
constraints. This paper generalizes and extends that work in several ways.

– The 2D sweep is generalized to a lexicographic sweep, independent of the number
of dimensions.

– The notion of forbidden regions for non-overlapping rectangles is generalized to
necessary conditions for general geometric constraints.

The idea of generating necessary conditions is reminiscent of indexicals [10], a.k.a.
projection constraints [11]. An indexical for a constraint c(x1, . . . , xn) computes a
unary constraint on a single variable xi, i.e. a set S of values such that c ⇒ xi ∈ S,
in reaction to domain changes in x1, . . . , xn. The constraint kernel then immediately
enforces xi ∈ S. Our kernel generalizes this in two ways:

– We compute necessary conditions in the form of k-dimensional forbidden regions.
– We treat all such forbidden regions, for a selected object and shape, in one run of

the sweep algorithm. Projecting a single forbidden region on one coordinate often
does not yield any pruning, whereas considering the union of forbidden regions is
much more effective.

A Generic Geometrical Constraint Kernel in Space and Time 193

Dal Palù et al. in [12] proposed a constraint solver specialized for 3D discrete do-
mains. Their solver was targeted to the study of problems in molecular, chemical and
crystal structures. Our work, however, remains in the setting of mainstream finite do-
main constraint systems, whereas our kernel internally handles k-dimensional objects.

Even though the geost kernel has been designed over discrete domains, it could
rather easily be extended to continuous domains with the coordinates of the objects
approximated by the floating-point numbers F . Since switching from N to F may cause
rounding errors at this level, the sweep algorithm needs to handle these rounding errors
when moving the sweep out of an outbox constraint. If the projections of the forbidden
regions on all dimensions are intervals of real bounds we can proceed as follows. On
continuous domains, an outbox will have an very thin strip at the border where the
feasibility of the corresponding internal constraint is unknown. The region inside this
strip is strictly forbidden, and outside, the constraints is certainly satisfied. The outbox
must be computed including this strip, by taking lower and upper approximations of
the region’s coordinates. In that case, the solutions are guaranteed to be valid, but the
solver may not be complete, because it may (rarely) happen that the real forbidden
region allows positions that are forbidden by its approximation.

This research was conducted under the European Union project “Net-WMS”, a major
task of which is to study packing problems in warehouse management. In this context,
our constraint kernel is a step towards being able to capture a large set of packing rules
in a constraint programming setting. Future work involves extending our set of external
geometric constraints to include such packing rules.

7 Conclusion

The main contribution of this paper is a geometrical constraint kernel for handling the
location in space and time of polymorphic k-dimensional objects subject to various
geometrical and time constraints. The constraint kernel is generic in the sense that one
of its parameters is a set of constraints on subsets of the objects. These constraints are
handled globally by the kernel.

We have presented a sweep algorithm for filtering the attributes of the objects. Thanks
to its architecture, new geometric constraints can be plugged into this sweep algorithm
without modifying it. The strong point of this sweep algorithm is that it considers all
the geometrical constraints for a selected object and shape in one run. As a first result,
more deduction can be performed by combining sets of forbidden points coming from
multiple geometrical constraints. Secondly, it can handle within one single constraint
problems involving up several tens of thousands of objects without memory consump-
tion problems, which is often a weak point for constraint programming environments.
We have also shown that we could handle tight 2D or 3D placement problems, which
were traditionally solved by specific approaches.

Acknowledgements

This research was conducted under European Union Sixth Framework Programme Con-
tract FP6-034691 “Net-WMS”.

194 N. Beldiceanu et al.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and
placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Guo, Q., Thiel, S.: Non-overlapping constraints between convex polytopes.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 392–407. Springer, Heidelberg (2001)

3. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraints. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–
391. Springer, Heidelberg (2001)

4. Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint programming approach
for the orthogonal packing problem. Computers and Operation Research (to appear)

5. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical con-
straint kernel in space and time for handling polymorphic k-dimensional objects. SICS Tech-
nical Report T2007:08, Swedish Institute of Computer Science (2007)

6. Van Hentenryck, P.: Scheduling and packing in the constraint language cc(FD). In: Zweben,
M., Fox, M. (eds.) Intelligent Scheduling, Morgan Kaufmann, San Francisco (1994)

7. Colmerauer, A., Gilleta, B.: Solving the three-dimensional pentamino puzzle. Technical
report, Laboratoire d’Informatique de Marseille (1999),
http://www.lim.univ-mrs.fr/˜colmer/ArchivesPublications/
Giletta/misc99.pdf

8. Bouwkamp, C.J., Duijvestijn, A.J.W.: Catalogue of simple perfect squared squares of orders
21 through 25. Technical Report EUT Report 92-WSK-03, Eindhoven University of Tech-
nology, The Netherlands (November 1992)

9. Clautiaux, F., Carlier, J., Moukrim, A.: A new exact method for the two-dimensional orthog-
onal packing problem. European Journal of Operational Research (to appear)

10. Van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint processing in cc(FD). Manuscript
(1991)

11. Sidebottom, G.: A Language for Optimizing Constraint Propagation. PhD thesis, Simon
Fraser University (1993)

12. Palù, A.D., Dovier, A., Pontelli, E.: A new constraint solver for 3D lattices and its application
to the protein folding problem. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 48–63. Springer, Heidelberg (2005)

http://www.lim.univ-mrs.fr/~{}colmer/ArchivesPublications/Giletta/misc99.pdf
http://www.lim.univ-mrs.fr/~{}colmer/ArchivesPublications/Giletta/misc99.pdf

Local Symmetry Breaking During Search in

CSPs

Beläıd Benhamou and Mohamed Réda Säıdi

Laboratoire des Sciences de l’Information et des Systèmes (LSIS)
Centre de Mathématiques et d’Informatique

39, rue Joliot Curie - 13453 Marseille cedex 13, France
Belaid.Benhamou@cmi.univ-mrs.fr, saidi@cmi.univ-mrs.fr

Abstract. Many research works on symmetry in CSPs appeared re-
cently. But, most of them deal only with the global symmetry1 of the
studied problem and give no strategy that can be used to detect and
eliminate local symmetry2. Eliminating global symmetry is shown to be
useful, but exploiting only these symmetries could not be sufficient to
solve some hard locally symmetrical problems. That is, a problem can
have few or no initial symmetries and become very symmetrical at some
nodes during the search. In this paper we study a general principle of
semantic symmetry and define a syntactic symmetry which is a suffi-
cient condition for semantic symmetry. We define a weakened form of
this syntactic symmetry, and show how to detect and how to eliminate
it locally to increase CSP tree search methods efficiency. Experiments
confirm that local symmetry breaking is profitable for CSP solving.

1 Introduction

As far as we know, the principle of symmetry is first introduced by Krishna-
murty [1] to improve resolution in propositional logic. Symmetries for Boolean
constraints are studied in depth in [2,3,4], the authors showed how to detect them
and proved that their exploitation is a real improvement for several automated
deduction algorithms. The notion of interchangeability in CSPs is introduced in
[5] and symmetry for CSPs are studied in [6,7].

Since that, many research works on symmetry have appeared. For instance,
the static approach used by James Crawford et al. in [8] for propositional logic
theories consists in adding constraints to break the global symmetries of the
problem. This technique has been improved in [9] and extended to 0-1 Integer
Logic Programming in [10].

Since a great number of constraints could be added, some researchers pro-
posed to add the constraints during the search. In [11,12,13], authors post some
conditional constraints which remove the symmetric of the partial interpretation

1 The symmetry of the initial problem appearing at the root of the search tree.
2 The symmetry of the resulting CSP at a node of the search tree corresponding to a

partial instantiation.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 195–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 B. Benhamou and M.R. Säıdi

in case of backtracking. In [14,15,16,17], authors proposed to use each subtree
as a no-good to avoid exploration of some symmetric interpretations and the
group equivalence tree conceptual for value symmetry elimination is introduced
in [18]. These techniques are called respectively SBDS, SBDD and GE-Tree.

Recently, a method which breaks symmetries between the variables of an
Alldiff constraint is studied in [19], a nice method which eliminates all value
symmetries in surjection problems is given in [20], and a work gathering all the
known different symmetry definitions to solution symmetry or to constraint sym-
metry is done in [21]. More recently, in [22], Puget studied a new lex constraints
symmetry breaking method in the term of dynamic lex leader solutions, and in
[23] Walsh studied various new propagators to break various symmetries among
them the one acting simultaneously on both variables and values.

One drawback of all these approaches is that only the symmetry of the initial
problem is considered (the global symmetry) and no method that allows dynamic
detection and exploitation of local symmetry is given. Recently, researchers called
this, conditional symmetry [24,25].

In this paper we developed the general concept of semantic symmetry for CSPs
that Benhamou first initiated in [7]. We also study and extend the principle of
syntactic symmetry that we prove to be a sufficient condition for semantic sym-
metry. We show how local symmetry is detected and eliminated during search,
and show how its removal simplifies the search space of tree search algorithms.

This paper is organized as following: CSP background is given in Section 2.
Semantic symmetry is defined in Section 3. Section 4 discusses the notion of syn-
tactical symmetry which is a sufficient condition for semantic symmetry. Section
5 shows how symmetry is detected and eliminated locally during search and how
a tree search method (here Forward Checking) takes advantage of symmetrical
values to reduce its search space. In section 6 we evaluate the proposed tech-
niques by experimental results and Section 7 concludes the work.

2 Background

A CSP is a quadruple P = (V, D, C, R) where: V = {v1, ..., vn} is a set of n
variables; D = {D1, . . . , Dn} is the set of finite discrete domains associated to
the CSP variables, Di includes the set of possible values of the CSP variable vi,
di denotes the fact that the value d belongs to the domain Di, C = {C1, ..., Cm}
is a set of m constraints each involving a subset of the CSP variables. A bi-
nary constraint is a constraint which involves at most two variables vi, vj , and
is denoted by Cij ; R = {r1, ..., rm} is a set of relations corresponding to the
constraints of C. ri represents the list of value tuples permitted by the con-
straint Ci ∈ C. A binary CSP P (a CSP involving only binary constraints)
can be represented by a constraint graph G(V, E) where the set of vertices
V is the set of the CSP variables and each edge (vi, vj) ∈ E connects the
variables vi and vj involved in the constraint Cij ∈ C. The microstructure
[5,26,21] of the CSP P is a graph MP(V × ∪i∈[1,n]Di, É), where each edge
of É corresponds either to a tuple allowed by a specific constraint or to an

Local Symmetry Breaking During Search in CSPs 197

allowed tuple because there is no constraints between the associated variables.
An instantiation I = (〈v1, a1〉, 〈v2, a2〉, . . . , 〈vn, an〉) is the variable assignment
{v1 = a1, v2 = a2, . . . , vn = an} where a value ai of the domain Di is assigned
to the variable vi . A constraint Ci ∈ C is satisfied by I if the projection of I
on the variables involved in Ci is a tuple of ri. The instantiation I is consistent
if it satisfies all the constraints of C, thus I is a solution of the CSP. An in-
stantiation of a subset of the CSP variables V is called a partial instantiation, it
defines a nogood when it is inconsistent. Each partial instantiation I defines a
node nI in the search tree which corresponds to the local CSP PI resulting from
P by considering I and its induced propagations. An instantiation is total if it
is defined on all the CSP variables. Given a CSP, the main question is to decide
its consistency or to find its set of solutions. We assume that the reader knows a
minimal background on permutations and groups. For the sake of simplicity we
restricted the study to binary CSPs, however, the notion of symmetry remains
valuable for non-binary CSPs as well.

3 Semantic Symmetry

Because we are interested in two problems in CSPs: the problem of finding a
solution and the problem of finding all the solutions of the CSP, we define two
levels of semantic symmetry.

Definition 1 (Semantic symmetry for consistency). Two variable-value
pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj are symmetrical for consistency iff
the following assertions are equivalent:

1. There is a solution of the CSP which assigns the value bi to the variable vi;
2. There is a solution of the CSP which assigns the value cj to the variable vj.

Variable-value pairs can be not only symmetrical for consistency, but symmetri-
cal for the set of all solutions as well. Thus, if sol(P) denotes the set of solutions
of the CSP P , then we define a second level of semantic symmetry as follows:

Definition 2 (Semantic symmetry for all solutions). Two variable-value
pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj are symmetrical for sol(P) if and
only if each solution of the CSP assigning the value bi to vi can be mapped into
a solution assigning the value cj to vj and vice-versa.

This means that the set of solutions in which the assignment vi = bi participates
is isomorphic to the one in which vj = cj participates. These are symmetrical
solutions.

Remark 1. 1. If the variables vi and vj designate a same variable, then both
previous definitions concern symmetry of values of a same domain.

2. Symmetry for all solutions implies symmetry for consistency.

Identifying semantic symmetry is clearly time consuming, since this requires
solving the problem. We study in the next section the syntactical symmetry no-
tion which is more tractable computationally and which is a sufficient condition
to handle semantic symmetry.

198 B. Benhamou and M.R. Säıdi

4 Syntactic Symmetry

In [7], the author studied syntactical symmetry of values of a same CSP domain
variable, here syntactic symmetry is extended to the possible variable-value pairs
of the CSP. This leads to a similar definition as the one of constraint symmetry
given in [21]

Definition 3. A syntactical symmetry of a CSP P = (V, D, C, R) having the
microstructure MP , is a mapping σ : V × ∪i∈[1,n]Di −→ V × ∪i∈[1,n]Di, that
preserves the edges and the non-edges of MP .

Remark 2. A syntactical symmetry of a CSP P is an automorphism of its mi-
crostructure MP . The set of syntactic symmetries of a CSP P is identical to
the set of its constraint symmetries [21] which is equivalent to the automor-
phism group Aut(MP) of its microstructure. Syntactical symmetries preserve
the solutions of the CSP.

Definition 4. Two variable-value pairs 〈vi, bi〉 ∈ V × Di and (vj , cj) ∈ V × Dj

are syntactically symmetrical iff there exists a syntactical symmetry σ of P, such
that σ(〈vi, bi〉)=〈vj , cj〉.

Theorem 1. If two variable-value pairs 〈vi, bi〉 ∈ V × Di and 〈vj , cj〉 ∈ V × Dj

are syntactically symmetrical, then they are semantically symmetrical for all
solutions of the CSP.

Proof. It is based on the fact that syntactical symmetry preserves solutions.

4.1 The Weakened Syntactic Symmetry Conditions

A weakened symmetry condition has been defined in [27,28] for the restricted
framework of Not-equals CSPs and had been shown to be useful in practice. Here,
we show how to extend this weakened condition to General CSPs. Before doing
that, we define the notion of assignment trees and failure trees corresponding to
the enumerative search method used to prove the consistency of a considered CSP.

Definition 5. We call an assignment tree of a CSP P corresponding to a given
search method and a fixed variable ordering, a tree which gathers the history of
all the variable assignments made during search, where the nodes represent the
variables of the CSP and where the edges outgoing from a node vi are labeled by
the different values used to instantiate the corresponding CSP variable vi.

The root of the tree is the first variable in the ordering. In this work, the con-
sidered search method is Forward Checking [29].

In an assignment tree of a CSP, a path connecting the root of the tree to a
node defines a partial instantiation I of the CSP. The variables of the partial
instantiation I are the nodes of the considered path. The last node nI of the
path corresponds to the last affected variable in the instantiation or to a variable
having an empty domain.

Local Symmetry Breaking During Search in CSPs 199

We associate to each inconsistent partial instantiation, corresponding to a
given path in the assignment tree, a failure tree defined as follows:

Definition 6. Let T be an assignment tree of the CSP P, I = (〈v1, a1〉, 〈v2, a2〉,
. . . , 〈vi, ai〉) an inconsistent partial instantiation of the variables v1,v2,...,vi cor-
responding to the path {v1, v2, ..., vi} in T . We call a failure tree of the instanti-
ation I, the sub-tree of T denoted by TI such that:

1. The root of the tree T and the root of the sub-tree TI are joined by the path
corresponding to the instantiation I;

2. All the CSP variables corresponding to the leaf nodes of TI have empty do-
mains.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

..... .

.

.

.

.
�

�
�

�

�
�

�
�

�
�

�
�

�
�

��
�

�
�
v3

�=
�=

a,b,c

a,b,c a,b,c

a,b,c c,d

�=

v4

v5

v2

v1

�=

�=

�=

�=

�= �� �

� � � �

� � � � � �

� �

�

�

�

�

�

. ��

��

��

��

��

��
		

		

��

��

�
��

��

�

v1

cba

v2 v2 v2

b c a c a b

v3 v3 v3 v3 v3 v3

c b c a b a

v4
v4 v4 v4 v4 v4

TI=(b,a)

Fig. 1. The constraint graph of a graph coloring instance, its assignment tree and the

failure tree of I=(〈v1, b〉, 〈v2, a〉)

Example 1. Take the CSP on the left part of Figure 1 and apply a Forward
Checking process on it w.r.t the variable ordering {v1, v2, v3, v4, v5}. The right
part of Figure 1 illustrates the assignment tree of the considered CSP. If we
take the partial instantiation I = (〈v1, b〉, 〈v2, a〉), then the failure tree TI of the
instantiation I is the part of the assignment tree shown in a box.

We can now give the weakened conditions of syntactic symmetry. The main idea
is to weaken the syntactic symmetry conditions when an inconsistent partial
instantiation is generated during the search. That is, for a local CSP PI where
the partial instantiation I is inconsistent, the conditions of syntactic symmetry
(Definition 3) are restricted to only the variables involved in the failure tree TI ,
rather than to all the un-instantiated variables.

Theorem 2. Let P(V, C, D, R) be a CSP, I0 = (〈v1, a1〉, . . . , 〈vi−1, ai−1〉) a
partial instantiation of i − 1 variables instantiated before the current variable
vi such that the extension I = I0

⋃
{〈vi, ai〉} is inconsistent, TI is the failure

tree of I and V ar(TI) the set of the variables corresponding to the nodes of
TI. If 〈vi, ai〉 is syntactically symmetrical to 〈vj , bj〉 in the CSP ṔI0 derived
from PI0 by restricting its set of variables to V ar(TI)∪{vi}, then the extension
J = I0

⋃
{〈vj , bj〉} is inconsistent.

200 B. Benhamou and M.R. Säıdi

Proof. The CSP ṔI0 is PI0 where the set of variables is restricted to V ar(TI)∪
{vi}. By the hypothesis, TI is a failure tree of I in P . This implies that the
assignment of the value ai to vi leads to a failure in ṔI0 . In other words, 〈vi, ai〉
does not participate in any solution of ṔI0 . By the hypothesis, the pair 〈vi, ai〉 is
symmetrical to 〈vj , bj〉 in ṔI0 . This implies that 〈vj , bj〉 does not participate in
any solution of ṔI0 . Thus 〈vj , bj〉 does not participate in any solution of PI0 as
well. This implies that the partial instantiation J = I0

⋃
{〈vj , bj〉} is inconsistent

in P . (QED)

Remark 3. In the case of a failure during search, the symmetry conditions are
restricted to only the variables participating in the failure.

Theorem 2 gives an interesting weakening of the conditions of syntactic sym-
metry that we can use when the current partial instantiation leads to an in-
consistency. By using the new conditions, some symmetries not captured by the
normal conditions can result from these weakened conditions. Let us consider
for instance the CSP of Figure 1. If we take the partial instantiation I0 = 〈v1, b〉
and the inconsistent extension I=I0∪ {〈v2, a〉}, then the pairs 〈v2, a〉 and 〈v2, c〉
are symmetrical. That is, the two values a and c of the domain of the current
variable v2 are symmetrical w.r.t the weakened conditions (Theorem 2) applied
on the CSP ṔI0 involving the set of variables V ar(TI)∪v2={v2, v3, v4}, whereas
the normal symmetry conditions are not verified on the CSP PI0 involving the
set of all un-instantiated variables {v2, v3, v4, v5}. The branch corresponding to
the assignment of c to v2 is not explored during search thanks to Theorem 2.
This defines a more powerfull symmetry cut that we use to shorten CSP search
trees.

Besides, this weakening property can be used in other known symmetry break-
ing methods [2,3,4]. That is, symmetry conditions have to be checked only on
the variables involved in the failure when a partial instantiation is shown to be
inconsistent.

Below we show how local symmetry is detected and eliminated, and how a
tree search method (Forward Checking) can take advantage of symmetry.

5 Local Symmetry Detection and Exploitation

5.1 Symmetry Detection and Breaking

Local symmetries have to be detected dynamically at each node of the search
tree. Dynamic symmetry detection had been studied in CSPs, a local syntactic
domain symmetry search method had been given in [7].

As an alternative to this symmetry search method, we adapted Saucy [9] to
detect local syntactic symmetries and show how to break such symmetries dur-
ing search. Saucy is a tool for computing the automorphism group of a graph.
Other tools like Nauty [30] or the most recent methods AUTOM [31] or the one
described in [32] can be adapted to search local symmetry. It is shown in [31]
that AUTOM is the best method. Because the source code of AUTOM is not

Local Symmetry Breaking During Search in CSPs 201

free, we chose Saucy. Since the syntactic symmetry group of a CSP P is identical
to the automorphism group of its microstructure MP , we can use Saucy on MP
to detect the syntactic symmetry group of P . Saucy returns a set of generators
Gen of the symmetry group from which we can deduce each symmetry. Saucy
offers the possibility to color the microstructure such that, a node is allowed to
be permuted with another node if they have the same color. This restricts the
permutations to the nodes having the same color. We use this coloration possibil-
ity to guide the symmetry search and detect local value symmetries. The source
code of Saucy can be found at (http://vlsicad.eecs.umich.edu/BK/SAUCY/).

Symmetry detection: Consider a CSP P , and a partial instantiation I of
P , defining a state in the search corresponding to the current node nI . The
main idea is to maintain dynamically the microstructure MPI of the CSP PI
corresponding to the local sub-problem defined at each current node nI , then
color the microstructure MPI and compute its automorphism group Aut(MPI).
The CSP PI can be viewed as a new problem corresponding to the unsolved part.
Computing all the automorphisms of the dynamic microstructure at each node
of the search tree may be expensive. To remedy this, two coloration strategies
of the microstructure are considered:

1. The multi-colors-strategy: A first compromise is to limit permutations
to only values of the same domains. To do that, a color is associated to each
variable. Every node of the microstructure belonging to a variable is colored
with the same color. Now by applying Saucy on this colored microstructure
we can get the generator set Gen of the symmetry sub-group existing between
values of the same domains of the CSP.

2. The two-colors-strategy: A second compromise is to associate to the cur-
rent variable vi (under instantiation) one color and all the other variables
another color. That is, we color the dynamic microstructure MPI with two
colors. All the nodes of the microstructure belonging to the current variable
vi have the first color and all the other nodes the second one. Finally ap-
ply Saucy to compute the generators of the automorphism sub-group corre-
sponding to this coloration. This returns the generators Gen of the symmetry
group allowing variable-value permutations on the other variables different
from vi, but the values of vi are permuted together.

Remark 4. The total local symmetry group is reached when using only one color
on the microstructure MPI .

Symmetry elimination: We use Theorem 2 to prune search spaces of tree search
methods. Indeed, if the assignment 〈vi, bi〉 of the current variable vi at a given node
nI of the search tree is shown to participate in no solution of the CSP P , then all
the pairs 〈vj , cj〉 which are symmetrical to 〈vi, bi〉 in PI do not (i.e. these pairs are
the ones corresponding to the orbit of the conflicted pair 〈vi, bi〉 that can be com-
puted by using only the symmetry group generators). Then we remove the value
cj from the domain of the un-instantiated variable vj , and prune the sub-space
which corresponds to its assignment to vj in the search tree.

202 B. Benhamou and M.R. Säıdi

If the variable vi and vj are the same (as in our implementation), then the
previous reasoning handles symmetries between values of the domain Di. The
domain Di of the current variable vi is partitioned into sub-sets of symmetrical
values w.r.t the detected local symmetries at the corresponding node of the
search tree. To avoid generating local symmetrical solutions, we consider one
value from each sub-set of symmetrical values in Di. If we need to check CSP
consistency only, we stop the search when a first solution is found.

5.2 Symmetry Advantage in Tree Search Algorithms

Now we are in the position to show how these symmetrical values can be used
to increase the efficiency of CSP tree search algorithms. We choose in our im-
plementation the Forward Checking method to be the baseline method that we
want to improve by local symmetry elimination. The resulting procedure called
FC-sym is given in Figure 2.

If I is an inconsistent partial instantiation in which the assignment 〈vi, di〉 of
the current variable vi is shown to participate in no solutions of the CSP P , then
according to Theorem 2, all the pairs 〈vj , dj〉 which are symmetrical to 〈vi, di〉 in
PI do not. Thus we remove dj from the domain of vj , and prune the sub-space
which corresponds to its assignment to vj .

The function orbit(〈vk+1, dk+1〉, Gen) is elementary, it computes the orbit of
the pair 〈vk+1, dk+1〉 from the set of generators Gen returned by Saucy.

6 Experiments

Now, we shall investigate the performances of our search techniques by exper-
imental analysis. We choose for our study some classical problems to show the
local symmetry behavior in CSP resolution. We expect that symmetry breaking
will be more profitable in real-life applications. Here, we tested and compared
four methods:

1. No-sym: search without symmetry breaking;
2. Global-sym: search with global symmetry breaking restricted to values of

a same domain. The same symmetries as the ones considered in the GE-
tree method, with a slight difference that we break only global symmetries
between values of a same domain;

3. Local-sym1: search with local value symmetry breaking (the weakened sym-
metry). This method implements the multi-colors strategy (see Section 5.1).

4. Local-sym2: search with restricted local variable-value symmetry breaking
(the weakened symmetry). This method implements the two-colors strategy
(see Section 5.1).

on different problems: random graph coloring problems, Dimacs graph coloring
instances and n-Queens problems. An implementation of the Local−sym1 strat-
egy in GECODE system is successfully used in [33] to break local symmetry in
the subgraph pattern matching problem. The common baseline search method

Local Symmetry Breaking During Search in CSPs 203

Procedure FC-sym(D, I, k);{I = [〈v1, d1〉, 〈v2, d2〉, . . . , 〈vk, dk〉]}
begin

if k = n then I is a solution, return(I)
else
begin

for each vi ∈ V , such that Cik ∈ C, vi ∈future(vk) do
for each value di ∈ Di do

if (di, dk) /∈ rik then
delete di from Di;

if ∀vi ∈ future(vk), Di �= ∅ then
begin

vk+1=next-variable(vk)
repeat

take dk+1 ∈ Dk+1

Dk+1 = Dk+1 − {dk+1}
I=I ∪ {〈vk+1, dk+1〉};
J =FC-sym(D, I, k + 1);
I=I-{〈vk+1, dk+1〉};
if J ∈ Sol(P) then Gen=Saucy(PI);
else Gen=Saucy(PV ar(TI)∪vk+1);

SymClass(〈vk+1, dk+1〉)=orbit(〈vk+1, dk+1〉,Gen);
Dk+1=Dk+1-SymClass(〈vk+1, dk+1〉)

until Dk+1 = ∅
end

end
end;

Fig. 2. Forward Checking method with symmetry

for the four previous methods is Forward Checking. The complexity indicators
are the number of nodes of the search tree and the CPU time. The time needed
for computing symmetries is added to the total CPU time. The source codes are
written in C and compiled on a Pentium 4, 2.8 GHZ and 1 Go of RAM.

6.1 Random Graph Coloring Problems

Random graph coloring problems are generated with respect to the following
parameters: (1) n : the number of vertices (variables), (2) Colors: the number
of colors (domain values) and (3) d: the density which is a number between 0
and 1 expressed by the ratio : the number of constraints (the number of edges
in the constraint graph) to the number of all possible constraints. For each test
corresponding to some fixed values of the parameters n, Colors and d, a sample
of 100 instances are randomly generated and the measures (CPU time, nodes)
are taken on the average.

Figure 3, shows the performances of the four methods in number of nodes of
the search tree, respectively, in CPU time (in seconds) on random graph coloring
problems, whose number of variables is fixed to n = 15 and the density to d = 0.9.
We reported here experiments on instances having hight density, because they

204 B. Benhamou and M.R. Säıdi

Fig. 3. Node and Time curves where n = 15 and d = 0.9

are the hardest instances, and symmetry presents a similar behavior for average
and weak density instances. The curves on the left are plotted in a logarithmic
scale, they represent the performances in number of nodes w.r.t the number
of colors. The ones on the right are plotted in the usual scale and express the
performances in CPU time w.r.t the number of colors. As expected, we can see
that all the methods exploiting symmetry outperform dramatically the search
without symmetry (No-sym) in both the number of nodes and the CPU time.
We can also see on the node curves that local symmetry elimination (Local-sym1
and Local-sym2) reduces more the search tree than global symmetry elimination
(Global-sym). That is, local symmetries are more frequent during the search than
the global symmetries stabilizing the partial instantiation. Both Local-sym1 and
Local-sym2 have the same behavior in number of nodes; their node curves are
almost identical. We can distinguish on the CPU time curve of No-sym a critical
region where the instances are harder. All the methods using symmetry solved
these instances in less than 0.1 seconds, then their CPU time curves are confused
with x-axis and do not appear.

Since Figure 3 does not allow a CPU time comparison of the methods ex-
ploiting symmetry, we reported in Figure 4 the practical results of the methods:
Global-sym, Local-sym1 and Local-sym2, on the random graph coloring problem
where the number of variables is increased to n = 35 and where we keep the
same density (d = 0.9) as in Figure 3.

Fig. 4. Node and Time curves of the three symmetry methods on random graph col-

oring where n = 35 and d = 0.9

Local Symmetry Breaking During Search in CSPs 205

We can see on the node curves (the curves on the left plotted in a logarithmic
scale) that both Local-sym1 and Local-sym2 detect and eliminate more sym-
metries than the Global-sym method. The reason is that the local symmetry
detected at a node during the search by both Local-sym1 and Local-sym2 in-
cludes the global symmetry stabilizing the partial instantiation at that node
exploited by Global-sym. The node curves of both Local-sym1 and Local-sym2
compare well. From the CPU time curves (the curves on the right), we can
see that both Local-sym1 and Local-sym2 are faster than Global-sym. Near the
peak of difficulty, Local-sym2 seems to be 12 times faster than Global-sym and
Local-sym1 about 24 times faster than Global-sym. Therefore, Local symmetry
elimination is profitable for solving random graph coloring instances in the hard
region and outperforms dramatically global symmetry breaking on these prob-
lems. We can also see on the CPU time that Local-sym1 improves Local-sym2,
thus the good compromise looks to be the multi-color strategy corresponding to
domain value symmetry. These remarks will be confirmed by the experiments
on Dimacs benchmarks in the next section.

6.2 Dimacs Graph Coloring Benchmarks

Here, we tested and compared the four methods on some graph coloring bench-
marks taken from the Dimacs challenge (http://mat.gsia.cmu.edu/COLOR04/).

Table 1 shows the results of the methods on some of the benchmarks. It gives
the instance, the chromatic number found (k), the number of nodes of the search
tree and the CPU time for each method. We seek for each instance the minimal
number k of colors needed to color the vertices of the corresponding graph (called
the chromatic number). The search of the chromatic number consists in proving
the consistency of the problem with k colors (the existence of a k-coloration
of the graph); and in proving its inconsistency when using k − 1 colors (not
colorable). The symbol ”-” means that the corresponding method does not solve
the instance in one hour.

Table 1. Results on some Dimacs graph coloring benchmarks

No-sym Global-sym Local-sym1 Local-sym2
Instance k Nodes T ime Nodes T imes Nodes T ime Nodes T ime

myciel4 5 30,976 0.16 2,764 0.03 1,260 0.01 1,260 0.04
myciel5 6 - - 8,040,259 59.84 2,413,556 22.21 2,406,945 25.36
anna 11 - - 3,403 0.59 168 0.05 168 0.08
david 11 - - 3,896 0.23 124 0.03 124 0.03
queen7 7 7 2,452 0.01 513 0.02 502 0.01 502 0.0
queen8 8 9 - - 10,629,131 262.54 1,399,436 29.7 1,396,774 30.16
school1 14 - - - - 76,192 17.28 75,985 17.85
school1 nsh 14 - - - - 1,487,287 257.57 1,486,523 270.4
2-Insertion 3 4 832,150 1.02 277,408 0.73 135,953 0.48 115,737 0.52
2-FullIns 3 5 2,294,396 7.63 193,347 1.14 49,202 0.59 48,076 0.65
mugg88 1 4 - - - - 2,882,284 53.91 2,882,284 93.55
mugg88 25 4 - - - - 881,784 6.74 881,784 9.4
mugg100 1 4 - - - - 3,325,453 24.85 3,325,453 40.15
mugg100 25 4 - - - - 2,727,178 17.3 2,727,178 30.92
zeroin.i.1 49 - - - - 268 7.0 268 35.49
zeroin.i.2 30 - - - - 262 0.75 262 3,675
zeroin.i.3 30 - - - - 262 0.76 262 3,675
mulsol.i.2 31 - - - - 237 0.85 237 10.14
mulsol.i.3 31 - - - - 237 0.9 237 10.14
le450 5a 5 178,753 13.88 170,123 13.75 167,787 32.0 167,703 32.23
le450 5b 5 1,349 0.11 1,110 0.09 927 0.11 927 0.19
le450 5c 5 1,984 0.15 1,984 0.17 1,983 0.31 1,975 0.34
le450 5d 5 5,795 0.54 4,563 0.34 3,452 0.62 3,452 0.68
DSJC125.1 5 55,358 0.85 43,773 1.34 40,809 1.44 40,809 1.48

206 B. Benhamou and M.R. Säıdi

Table 1 shows that both No-sym and Global-sym are not able to solve several
instances under the time limit, but Global-sym is better than No-sym in both
numbers of nodes and CPU time on these problems. We can see that both Local-
sym1 and Local-sym2 are in general better than Global-sym in both the number
of nodes and the CPU time. That is, local symmetry is more profitable than
global symmetry on these problems. We can also see that Local-sym1 eliminates
the same symmetries as the ones eliminated by Local-sym2, but Local-sym1
is faster than Local-sym2. This confirms that eliminating local domain value
symmetries by using the multi-color strategy implemented in Local-sym1 is the
best compromise on these problems.

6.3 The n-Queens Problems

Finding all solutions of the n-queens problem is still a challenge. We compared
the four methods on some instances of this problem.

Table 2 summarizes the results obtained. For each method we give the num-
ber of computed solutions (Sols), the number of nodes, and the CPU time in
seconds. Note that for the methods exploiting symmetry, the number of solu-
tions (Sols) is the number of non-symmetrical solutions found w.r.t the applied
symmetry breaking strategy. The number of solutions of No-sym is the total set
of solutions of the problem. We can see that both Local-sym1 and Local-sym2
represent the set of solutions slightly in a more compact way than Global-sym.
This means that Local-sym1 and Local-sym2 compact some local symmetrical
solutions in addition to the global symmetrical ones compacted by Global-sym.
We can also see that Local-sym2 detects some local symmetrical solutions which
are not considered by Local-sym1. This is due to some variable-value symmetries
considered in Local-sym2 that detect some local symmetrical solutions which are
not detected in Local-sym1. Now, if we compare globally the methods in number
of solutions, in the number of nodes and in CPU time, the method Global-sym
seems to be the best on the average. Indeed, global symmetry is sufficient to solve
efficiently the n-queens problems and local value symmetry does not abound like

Table 2. Results on the n-queens problem

No-sym Global-sym
n Sols Nodes Time Sols Nodes Times
8 92 1,360 0.0 46 680 0.01
9 352 5,399 0.0 179 2,800 0.0
10 724 19,744 0.03 362 9,872 0.03
11 2,680 85,939 0.1 1,382 43,958 0.07
12 14,200 416,828 0.28 7,100 208,414 0.25
13 73,712 2,154,845 2.69 37,361 1,093,606 1.99
14 365,596 11,799,746 46.95 51,726 5,899,873 20.65

Local-sym1 Local-sym2
n Sols Nodes Time Sols Nodes Times
8 45 664 0.01 45 662 0.01
9 172 2,645 0.02 168 2,625 0.05
10 355 9,656 0.07 353 9,640 0.08
11 1,309 42,154 0.25 1,305 42,078 0.31
12 6,883 204,901 2.05 6,839 203,611 2.19
13 35,525 1,055,366 11.44 35,312 1,053,053 11.58
14 44,334 5,777,244 69.6 43,257 5,765,594 75.6

Local Symmetry Breaking During Search in CSPs 207

in the graph coloring. We believe that local variable symmetry will be more prof-
itable for n-queens.

7 Discussion and Conclusions

Here, we extended symmetry detection and elimination to local symmetry. That
is, the symmetries of each sub-CSP defined at a given node of the search tree
and which is derived from the initial CSP by considering the partial instantiation
corresponding to that node. We adapted Saucy to compute this local symmetry
by maintaining dynamically the microstructure of the sub-CSP defined at each
node of the search tree. Unlike the methods using GAP tools, here local symme-
try detection is fully automated. Saucy is called with the microstructure of the
local sub-CSP as the input graph, and then return the set of generators of the
automorphism group of the microstructure which is shown to be equivalent to
the local symmetry group of the considered sub-CSP. Detecting and exploiting
all the local symmetry groups of the different nodes generated during the search
may be time consuming. To remedy this, we proposed two coloration strategies in
order to guide and restrict the symmetry search to domain value permutations
(the multi-color strategy) and to some restricted variable-value permutations
(the two color strategy). Both local symmetry strategies are implemented and
exploited in the tree search method FC to prove either CSP consistency or to
compute the not-local symmetrical solutions of the CSP. Experimental results
confirmed that local symmetry breaking is profitable for CSP solving and im-
proves global symmetry breaking in most of the considered problems.

As a future work, we are looking to implement a one-color symmetry detection
strategy, then experiment it and compare it with the two strategies studied in
this work.

An other interesting point, is to extend our approach to variable local symme-
try breaking. One can try to detect local variable symmetries and post dynamic
constraints to break them, it will be important to consider the possibilities of
combining local variable and local value symmetries.

Finally, we are interested to adapt our symmetry results for other look-ahead
CSP methods like MAC, and export local symmetry breaking to other research
domains like biology or operational research to tackle real life applications.

References

1. Krishnamurty, B.: Short proofs for tricky formulas. Acta informatica 22, 253–275
(1985)

2. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus
and application. In: Eleventh International Conference on Automated Deduction,
Saratoga Springs, NY, USA (1992)

3. Benhamou, B., Sais, L.: Tractability through symmetries in propositional calculus.
Journal of Automated Reasoning (JAR) 12, 89–102 (1994)

208 B. Benhamou and M.R. Säıdi

4. Benhamou, B., Sais, L., Siegel, P.: Two proof procedures for a cardinality based
language. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 94. LNCS,
vol. 775, pp. 71–82. Springer, Heidelberg (1994)

5. Freuder, E.: Eliminating interchangeable values in constraints satisfaction prob-
lems. In: Proc AAAI-91, pp. 227–233 (1991)

6. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689. Springer, Hei-
delberg (1993)

7. Benhamou, B.: Study of symmetry in constraint satisfaction problems. In: Borning,
A. (ed.) PPCP 1994. LNCS, vol. 874. Springer, Heidelberg (1994)

8. Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR’96. Principles of Knowledge Representation and Reason-
ing, pp. 148–159. Morgan Kaufmann, San Francisco, California (1996)

9. Aloul, F.A., Ramani, A., Markov, I.L., Sakallak, K.A.: Solving difficult sat instances
in the presence of symmetry. IEEE Transaction on CAD 22(9), 1117–1137 (2003)

10. Aloul, F.A., Ramani, A., Markov, I.L., Sakallak, K.A.: Symmetry breaking for
pseudo-boolean satisfiabilty. In: ASPDAC’04, pp. 884–887 (2004)

11. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaf-
far, J. (ed.) Principles and Practice of Constraint Programming – CP’99. LNCS,
vol. 1713. Springer, Heidelberg (1999)

12. Gent, I.P., Smith, B.M.: Symmetry breaking during search in constraint program-
ming. In: Proceedings ECAI’2000 (2000)

13. Gent, I., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking dur-
ing search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430.
Springer, Heidelberg (2002)

14. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh,
T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–82. Springer, Heidelberg (2001)

15. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–108. Springer, Heidelberg (2001)

16. Puget, J.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)

17. Gent, I.P., Hervey, W., Kesley, T., Linton, S.: Generic sbdd using computational
group theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833. Springer, Heidelberg
(2003)

18. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.A.: Tractable symmetry
breaking using restricted search trees. In: Proceedings of ECAI’04, pp. 211–215
(2004)

19. Puget, J.: Breaking symmetries in all diffrent problems. In: Proceedings of IJCAI,
pp. 272–277 (2005)

20. Puget, J.: Breaking all value symmetries in surjection problems. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

21. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry defini-
tions for constraint satisfaction problems. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 17–31. Springer, Heidelberg (2005)

22. Puget, J.: Dynamic lex constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 453–467. Springer, Heidelberg (2006)

23. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)

24. Gent, I.P., Kelsey, T., Linton, S.A., McDonald, I., Migeul, I., Smith, B.: Conditional
symmetry breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 256–270.
Springer, Heidelberg (2005)

Local Symmetry Breaking During Search in CSPs 209

25. Zampelli, S., Deville, Y., Dupont, P.: Symmetry breaking in subgraph pattern
matching. In: SymCon’06, pp. 35–42 (2006)

26. Jegou, P.: Decomposition of domains based on the micro-structure of finite con-
straint satisfaction problems. In: Proceedings AAAI’93 (1993)

27. Benhamou, B., Säıdi, M.R.: Reasoning by dominance in not-equals binary con-
straint networks. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 670–674.
Springer, Heidelberg (2006)

28. Benhamou, B., Säıdi, M.R.: Some improvements in symmetry elimination in not-
equals binary constraint networks. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 1–7. Springer, Heidelberg (2005)

29. Haralik, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence 14, 263–313 (1980)

30. McKay, B.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)
31. Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek,

P. (ed.) CP 2005. LNCS, vol. 3709, pp. 474–488. Springer, Heidelberg (2005)
32. Mears, C., de la Banda, M.G., Wallace, M.: On implementing symmetry detection.

In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 1–8. Springer, Heidelberg
(2006)

33. Zampelli, S., Deville, Y., Säıdi, M.R., Benhamou, B., Dupont, P.: Breaking local
symmetries in subgraph pattern matching. In: The International Symmetry Con-
ference (ISC 2007), Edinburgh, SCOTLAND (2007)

Encodings of the SEQUENCE Constraint

Sebastian Brand1, Nina Narodytska2, Claude-Guy Quimper3, Peter Stuckey1,
and Toby Walsh2

1 NICTA and University of Melbourne
2 NICTA and University of NSW

3 Omega Optimisation

Abstract. The SEQUENCE constraint is useful in modelling car sequencing, ros-
tering, scheduling and related problems. We introduce half a dozen new encod-
ings of the SEQUENCE constraint, some of which do not hinder propagation. We
prove that, down a branch of a search tree, domain consistency can be enforced
on the SEQUENCE constraint in just O(n2 log n) time. This improves upon the
previous bound of O(n3) for each call down the tree. We also consider a gener-
alization of the SEQUENCE constraint – the Multiple SEQUENCE constraint. Our
experiments suggest that, on very large and tight problems, domain consistency
algorithms are best. However, on smaller or looser problems, much simpler en-
codings are better, even though these encodings hinder propagation. When there
are multiple SEQUENCE constraints, a more expensive propagator shows promise.

1 Introduction

Global constraints are an important factor contributing to the success of constraint pro-
gramming. They capture common modelling patterns and provide efficient propagators
for these patterns. Research has started to show that some global constraints can be
efficiently and effectively encoded and propagated using a small number of building
blocks. For instance, a wide range of useful global constraints like AMONG, ATMOST,
LEX, and STRETCH can be efficiently and effectively encoded using Pesant’s REGULAR

constraint [1]. Such REGULAR constraints can themselves be efficiently and effectively
encoded into ternary transition constraints [2].

Encoding global constraints in this way offers several advantages. First, it is easy to
incorporate such encodings into existing solvers. Second, encodings can provide effi-
cient incremental propagators. For example, with the ternary encoding of the REGULAR

constraints, only those ternary constraints involving variables whose domains have
changed need wake up. Third, encodings can make it easier to construct nogoods for
learning and backjumping. Fourth, the encoding gives heuristics an ability to “look in-
side” the global constraint when making branching decisions.

In this paper we propose and compare half a dozen different encodings of the
SEQUENCE constraint. The SEQUENCE constraint was introduced by Beldiceanu and
Contejean [3]. It constrains the number of values taken from a given set in any se-
quence of k variables. It is useful in staff rostering to specify, for example, that every
employee has at least 2 days off in any 7 day period. Another application is car sequenc-
ing problems (prob001 in CSPLib). The SEQUENCE constraint can be used to specify,

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 210–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Encodings of the SEQUENCE Constraint 211

for example, that at most 1 in 3 cars along the production line can have a sun-roof fit-
ted. Several propagators for the SEQUENCE constraint have previously been proposed
against which we will compare these new encodings.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values
for subsets of variables. We use capital letters for variables (e.g. X , Y and S), and
lower case for values (e.g. d and di). A solution is an assignment of values to the vari-
ables satisfying the constraints. Constraint solvers typically explore partial assignments
enforcing a local consistency property using either specialized or general purpose prop-
agation algorithms. A support for a constraint C is a tuple that assigns a value to each
variable from its domain which satisfies C. A bounds support is a tuple that assigns
a value to each variable which is between the maximum and minimum in its domain
which satisfies C. A constraint is domain consistent (DC) iff for each variable Xi, every
value in the domain of Xi belongs to a support. A constraint is bounds consistent (BC)
iff for each variable Xi, there is a bounds support for the maximum and minimum value
in its domain. A CSP is DC/BC iff each constraint is DC/BC. A CSP is singleton do-
main consistent (SDC) iff for each variable Xi, we can assign any value in the domain
of Xi and make the resulting subproblem domain consistent. Consider, for example, a
problem with two constraints: X1 �= X2, X1 + X2 = X3, where D(X1) = {0, 1, 2},
D(X2) = {1, 3} and D(X3) = {1, 2, 3}. All constraints are domain consistent, but
enforcing SDC on these constraints removes the value 1 from the domain of X1 and
the value 2 from the domain of X3. A CSP is singleton bounds consistent (SBC) iff for
each variable Xi, we can assign the maximum (minimum) value of Xi and make the
resulting subproblem bounds consistent. In the previous example enforcing SBC does
not prune any values. A constraint is monotone iff there exists a total ordering ≺ of the
domain values such that for any two values v, w if v ≺ w then v can be replaced by w
in any support for C.

We will compare local consistency properties applied to sets of constraints, c1 and
c2, that are logically equivalent. As in [4], a local consistency property Φ on c1 is as
strong as Ψ on c2 iff, given any domains, if Φ holds on c1 then Ψ holds on c2; Φ on
c1 is stronger than Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 but not vice versa; Φ on
c1 is equivalent to Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 and vice versa; they are
incomparable otherwise. For the complexity results, we assume the propagation engine
wakes each propagator whose variables are changed in constant time per propagator,
and that the propagation cost for a linear constraint on n variables is O(n). Modern
propagation engines respect this.

3 The SEQUENCE Constraint

The AMONG constraint restricts the number of occurrences of some given values in a
sequence of k variables. More precisely, AMONG(l, u, [X1, X2, . . . , Xk], v) holds iff
l ≤ |{i | Xi ∈ v}| ≤ u. That is, between l and u of the variables take values in v.

212 S. Brand et al.

The AMONG constraint can be encoded by channelling into 0/1 variables using Yi ↔
Xi ∈ v and l ≤ ∑k

i=1 Yi ≤ u. Since the constraint graph of this encoding is Berge-
acyclic, this does not hinder propagation. Consequently, except in Section 5 we will
simplify notation and consider AMONG (and SEQUENCE) on Boolean variables Y with
v = {1}. If l = 0, AMONG becomes an ATMOST constraint. If u = k, AMONG

becomes an ATLEAST constraint. ATMOST (and ATLEAST) is monotone since given a
support, we also have support for any larger (smaller) value [5].

The SEQUENCE constraint is a conjunction of overlapping AMONG constraints.
More precisely, SEQUENCE(l, u, k, [X1, X2, . . . , Xn], v) holds iff for 1 ≤ i ≤ n−k+1,
AMONG(l, u, [Xi, Xi+1, . . . , Xi+k−1], v) holds. We shall refer to the decomposition of
the SEQUENCE constraint into a sequence of AMONG constraints as the AMONG de-
composition (AD). Clearly, this decomposition hinders propagation. However, if the
AMONG constraint is monotone then enforcing DC on the decomposition is equivalent
to enforcing DC on the SEQUENCE constraint [5]. An extension proposed in [6] is that
each AMONG constraint can have different parameters (l, u and k). All the encodings
proposed here can easily be extended to deal with this generalization.

Several filtering algorithms exist for SEQUENCE constraints. Régin and Puget
propose a filtering algorithm for the Global Sequencing constraint (GSC)
that combines a SEQUENCE and a Global Cardinality constraint (GCC) [7].
GSC([X1, . . . , Xn], l, u, v, k, [l1, . . . , lm], [u1, . . . , um]) is satisfied iff for each i ∈
{1, . . . , m}, li ≤ |{j | Xj = i}| ≤ ui and for each p ∈ {1, . . . , n − k},
l ≤ |{j | Xj ∈ v & p ≤ j ≤ p+k−1}| ≤ u. They encode the GSC constraint into a set
of GCC constraints. This encoding hinders propagation as domain consistency on the
encoding may not achieve domain consistency on the original SEQUENCE constraint.
Beldiceanu and Carlsson propose a greedy filtering algorithm for the CARDPATH con-
straint that can be used to propagate the SEQUENCE constraint, but this again may not
achieve domain consistency [8]. Régin proposes decomposing GSC into a set of variable
disjoint AMONG and GCC constraints [9]. Again, this decomposition hinders propaga-
tion. Bessière et al. [5] encode SEQUENCE using a SLIDE constraint, and give a domain
consistency propagator that runs in O(ndk−1) time (d is the maximal domain size).
Finally, van Hoeve et al. [6] propose two filtering algorithms that establish domain con-
sistency. The first algorithm is based on an encoding into a REGULAR constraint and
runs in O(n2k) time, whilst the second is based on computing cumulative sums and
runs in O(n3) time (we call this HPRS after the initials of the authors). One of our
contributions here is to improve on this bound.

3.1 Domain Consistency Filtering Algorithms Based on REGULAR (LO)

As mentioned above, van Hoeve et al. give an encoding using the REGULAR constraint
[6]. The states of the automata used in this encoding record which of the last k values
encountered are from the set v. We can improve upon this encoding very slightly by
having states record just the last k−1 values encountered. A transition is then permitted
iff the last k−1 values encountered plus the current variable have the correct frequency
of values from the given set.

We now give an alternative encoding using the REGULAR constraint. The REGULAR

([X1, . . . , Xn],A) constraint ensures that the string defined by the sequence of

Encodings of the SEQUENCE Constraint 213

variables X1, . . . , Xn is accepted by the deterministic finite automaton (DFA) A. The
encoding exploits two features of many car sequencing and staff rostering problems.
First, such problems typically only place upper bounds on occurrences (e.g. at most 1
in 3 cars can have the sun-roof). Second, in many problems the lower and upper bounds
are typically small (e.g. in all data files in Prob001 in CSPLib, u ≤ 2 and k ≤ 5).

Suppose we wish to ensure that at most 1 in k Boolean variables Yi take the value
1. Consider an automaton whose states record the minimum of k and the distance back
to the last occurrence of 1. If 1 has not yet occurred, the distance is taken to be k. The
transition function from the state q on seeing Yi is t(q, Yi) = min(k, q + 1) if Yi = 0
and t(q, Yi) = 1 if q = k and Yi = 1. The initial state of the automaton is k and any
state is accepting (Figure 1(a)). A similar automaton can be constructed for u > 1, but
we need states to record the distances back to the last u occurrences of value 1. Now,
suppose we wish to ensure at least 1 in k variables take the value 1. The states of the
automaton record the distance back to the last occurrence of 1. If 1 has not yet occurred,
the distance is taken to be the number of variables seen so far. The transition function
from the state q on seeing Yi is t(q, Yi) = q + 1 if Yi = 0 and q < k, and t(q, Yi) = 1
if q ≤ k and Yi = 1. The initial state of the automaton is 1 and any state is accepting
(Figure 1(b)).

1 2 q0=3

1

0

0

0 q0=1 2 3

1

0

1

0

1
(a) (b)

Fig. 1. (a) An automaton for the ATMOSTSEQ constraint with u = 1 and k = 3. (b) An automa-
ton for the ATLEASTSEQ constraint with l = 1 and k = 3.

Thus, to encode a SEQUENCE constraint, we convert it into a sequence of ATLEAST

and ATMOST constraints. We can convert the sequence of ATLEAST constraints into
a sequence of ATMOST constraints (or vice versa depending on which representation
gives smaller complexity) by inverting the value being counted. For example,the con-
straint that at least 3 in any 5 days must be work days is equivalent to at most 2 in 5 days
are rest days. Finally, we construct the product of the automata for the two sequences
of ATMOST or ATLEAST constraints. The complexity of enforcing domain consistency
on SEQUENCE using this encoding is O(nkmin(l,k−l)+min(u,k−u)). We will refer to this
encoding as LO as the automaton records the last occurrence(s).

3.2 Domain Consistency Filtering Algorithm Based on Cumulative Sums (CS)

Our next encoding is based on computing cumulative sums. We introduce a sequence
of cumulative sum integer variables Sj where Sj =

∑j
i=1 Yi, each with domain [0, j].

We encode this linearly as S0 = 0 and Si = Yi + Si−1 for 1 ≤ i ≤ n. We then post
Sj ≤ Sj+k− l and Sj+k ≤ Sj +u for 1 ≤ j ≤ n−k+1. We call this the CS encoding.
Not surprisingly, this encoding hinders propagation. However, if we enforce a slightly
stronger level of local consistency on the encoding, propagation is unhindered.

214 S. Brand et al.

Theorem 1. Singleton bounds consistency on CS enforces domain consistency on
SEQUENCE and takes O(n3) time to enforce down a branch of a search tree.

Proof. It is easy to show that if CS is BC then setting each Si variable to its upper
bound ui, and setting each Yi = ui − ui−1 gives a solution of CS and the SEQUENCE

constraint. Hence SBC on CS clearly enforces DC of SEQUENCE.
For the complexity argument, first note that propagation for CS is O(n2) having

O(n) constraints which can wake at most O(n) times each. A priori it would appear that
enforcing SBC at each node down the search tree is O(n3) since we must check O(n)
assignments. But we can show for each assignment, either incremental propagation is
O(n) or it is O(n2) and the assignment causes failure. Since each failure fixes an Yi

variable in any forward computation this can occur at most O(n) times. Hence the
total complexity down the tree is O(n3). Using shadow variables for the Yi we can
disconnect the SBC propagation of the CS encoding from the rest of the problem. Since
copying from the Yi to their shadows and back is O(n) the implementation of SBC is
O(n3).

Incremental BC of CS after fixing a single Yi variable proceeds to modify upper and
lower bounds of Sj variables. Either every bound is modified at most once, in which
case the propagation is O(n), or some bound is modified twice. We can use the sequence
of propagations that cause the bound to be modified twice to modify it again. Applying
this sequence repeatedly we eventually wipe out a domain and detect failure. ��
Consider, for example, SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Y3) = {0} and
D(Yi) = {0, 1}, i ∈ {1, 2, 4}. Corresponding cumulative sum variables S have the
following domains: S0 ∈ {0}, S1 ∈ {0, 1}, S2, S3 ∈ {1, 2}, S4 ∈ {2, 3}. All con-
straints in CS are bounds consistent. However, enforcing singleton bounds consistency
on CS prunes the value 0 from the domains of Y2 and Y4. We can see SBC applied
to CS as a reworking of the original HPRS algorithm in different terms, with a tighter
complexity argument.

3.3 Domain Consistency Filtering Algorithm Based on Difference Constraints
(CD)

The key constraints in the CS encoding are difference constraints of the form S ≤
S′ + d, a well studied class with connections to shortest path algorithms [10]. We can
modify the encoding to use only reified difference constraints, and then use efficient
methods for handling these constraints. We replace each constraint Si = Yi + Si−1 by
the equivalent Si ≤ Si−1 + 1, Si−1 ≤ Si, Yi ⇔ Si−1 ≤ Si− 1. We denote this the CD
encoding.

We can convert a conjunction of difference constraints C into a weighted directed
graph GC = (NC , EC) defined as NC = vars(C) and EC = {S c→ S′ | S ≤ S′+ c ∈
C}, where S

c→ S′ is a directed edge from S to S′ with weight c.
The connection with shortest path algorithms is well known:

Proposition 1. (Theorem 1 from [10]) C is satisfiable iff GC contains no negative
length cycles. Assuming C is satisfiable then C implies S ≤ S′ + c iff the shortest
path from S to S′ in GC is length c′ ≤ c. ��

Encodings of the SEQUENCE Constraint 215

We construct a DC propagator by using the current Y assignment to construct a con-
junction of difference constraints C. After checking the satisfiability of C, we then
check whether C implies Si−1 ≤ Si − 1 in which case we set Yi = 1, or if it implies
Si ≤ Si−1 (the negation of Si−1 ≤ Si − 1) in which case we set Yi = 0.

Theorem 2. The difference constraints propagator on the CD encoding enforces do-
main consistency of SEQUENCE in O(n2 log n) time down a branch of a search tree.

Proof. Suppose that Yi = 1 has no support given the current domains. Since each
solution of the SEQUENCE constraint can be extended to a solution of CD, there can be
no solution to CD with Yi = 1. Hence the difference constraints will imply Si ≤ Si−1
and the algorithm will set Yi = 0. The reasoning is analogous for Yi = 0.

Cotton and Maler [10] define incremental algorithms for (a) detecting negative cycles
in a weighted directed graph after addition of a new edge in O(|E| + |N | log |N |),
and (b) checking whether the shortest path has changed after addition of a new edge
for a set P of pairs of nodes in O(|E| + |N | log |N | + |P |). For the CD encoding
P = {(Si, Si−1), (Si−1, Si) | 1 ≤ i ≤ n} and |NC |, |EC |, and |P | are all O(n); hence
the complexity of incremental propagation after adding a single edge (e.g. when Yi is
fixed) is O(n log n). Since we only add O(n) edges overall, the total complexity over a
branch of the search tree is O(n2 log n). ��
Our current implementation of CD uses incremental all-pairs shortest path algorithms,
rather than the single-source shortest path algorithms of [10]. Let sij be the shortest
path from Si to Sj for 1 ≤ i, j ≤ n. Adding a single new arc Sk

c→ Sl then there
exists a negative cycle iff slk + c < 0. If no negative cycle exists then we can update
all shortest paths variables sij by sij = min{sij , sik + c + slj}. The cost for adding a
single arc is then O(n2) and hence O(n3) down a branch of the search tree.

Consider, for example, SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Yi) = {0, 1},
i ∈ {1, . . . , 4}. The initial constraint graph and the corresponding transitive closure of
its adjacency matrix are presented in Figure 2(a). Assigning Y3 to 0 causes addition of
the edge from S3 to S2 with cost 0. After updating all shortest path variables s, we get
that s1,2 and s3,4 are equal to −1. Consequently, value 0 can be pruned from domains
of Y2 and Y4 (Figure 2(b)).

3.4 Domain Consistency Filtering Algorithm Based on Partial Sums (PS)

The fourth encoding is arguably the simplest encoding which gives domain consistency.
The PS encoding simply decomposes the constraint into a set of equations based on
partial sums: Pi,j =

∑j
l=i Yl each with domain [0, min(u, j− i+1)]. The PS encoding

of the SEQUENCE constraint is Pi,i+k−1 ≤ u and Pi,i+k−1 ≥ l for 1 ≤ i ≤ n− k + 1
as well as Pi,i = Yi for 1 ≤ i ≤ n and most importantly, all possible ways of adding
two of these variables to create another: Pi,j = Pi,m + Pm+1,j for 1 ≤ i ≤ m < j ≤
n, j ≤ i + k − 1. Note there are O(nk2) constraints of the last form.

Lemma 1. Bounds consistency on the PS encoding enforces domain consistency of the
SEQUENCE constraint in O(nk2u) down a branch of a search tree.

216 S. Brand et al.

S0

0 0

0

0

0

0

0

0

0

1

1

1

1

-1-1

-1-1

-1

-2

2

2

234

3

S1 S2 S3 S4

0 1 2 3 4

0 0 0 0

1 1 1 1

2 2 2

-1 -1 -1

S0

0 0

0

0

0

0

-1

0

-1

1

1

0

1

-1-1

-2-1

-1

-2

2

1

123

2

S1 S2 S3 S4

0 0 0 0

1 1 0 1

2 2 2

-1 -1 -1

(a)

(b)

Assigning Y3 to 0 implies
Y2 = 1; Y4 = 1

0 1 2 3 4

0

1

2

3

4

s

s

0

1

2

3

4

Fig. 2. The CD encoding for SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Yi) = {0, 1}, i ∈
{1, . . . , 4}. (a) The initial constraint graph and the transitive closure of its adjacency matrix.
(b) The constraint graph and the transitive closure of its adjacency matrix after assigning Y3 to 0.

Proof. Define domain D to bounds capture C if for each Yi + · · · + Yj ≤ c ∈ C,
maxD(Pi,j) ≤ c and for each Yi + · · · + Yj ≥ c ∈ C, min D(Pi,j) ≥ c. Clearly the
domain resulting from BC applied to PS bounds captures the AD encoding.

We show that if D is BC with PS and bounds captures C then it also bounds captures
C′ which results from eliminating the least (or greatest) indexed variable Yi.

We consider the least variable Yi, the greatest is similar. Consider Fourier elimination
of Yi. For each pair of constraints in C of the form Yi + · · ·+ Yj1 ≤ c1 and Yi + · · ·+
Yj2 ≥ c2, Fourier elimination creates the constraint (a) if j1 > j2 then Yj2+1 + · · · +
Yj1 ≤ c1 − c2, (b) if j1 < j2 then Yj1+1 + · · · + Yj2 ≥ c2 − c1, or (c) if j1 = j2
then 0 ≤ c1 − c2. Now since D bounds captures C we have maxD(Pi,j1) ≤ c1 and
min D(Pi,j2) ≥ c2. For case (a) by BC on the constraint Pi,j1 = Pi,j2 + Pj2+1,j1

we have maxD(Pj2+1,j1) ≤ c1 − c2, for (b) BC on Pi,j2 = Pi,j1 + Pj1+1,j2 gives
min D(Pj1+1,j2) ≥ c2 − c1, and for (c) the new constraint is true since otherwise
D(Pi,j1) = ∅. Hence the new constraint is bounds captured by D.

To prove DC of SEQUENCE, let C be the AD encoding plus inequalities fixing Y
variables in the current domain D (which we assume is BC with PS). Clearly D bounds
captures C. Consider any variable Yi, and eliminate from C in order Y1, . . . , Yi−1, Yn,
Yn−1, . . . , Yi+1 to obtain C′. Now C′ only involves the variable Yi. By the correctness
of Fourier elimination1 there are solutions of C extending any solution of C′. Since
D bounds captures C′ by repeated use of the above argument we have that there are
solutions to C for each d ∈ D(Yi).

For the complexity argument, we note that the domains of the variables in each con-
straint Pi,j = Pi,m + Pm+1,j can change at most 3u times in a forward computation.
Each propagation is O(1) hence the overall complexity down a branch is O(nk2u). ��

1 While Fourier is for real variable elimination, it coincides with integer elimination on C.

Encodings of the SEQUENCE Constraint 217

3.5 A Log Based Encoding of SEQUENCE (LG)

Our final encoding, called LG, is based on a simple dynamic program that builds up
partial sums on counts. We introduce variables Li,j with domain [0, min(u, 2i−1)] for

the partial sums
∑j+2i−1

k=j Yk where 0 ≤ i ≤ log k� and 1 ≤ j ≤ n − 2i + 1.
Note that Li,j = Pj,j+2i−1. This requires the constraints L0,j = Yj , 1 ≤ j ≤ n and
Li,j = Li−1,j + Li−1,j+2i−1 , 1 ≤ j ≤ n, i > 0. Suppose k =

∑m
i=1 2ai where

a1 < . . . < am (in other words, ai is the ith bit set in the binary representation of k).
We also need the vector Z1 to Zn−k+1, each with domain [l, u], and the constraint

Zj =
m∑

i=1

L[ai, j +
i−1∑
k=1

2ak].

Figure 3 shows the intra-variable dependencies for an example.

L0,1
[0,1]

L0,2
[0,1]

L0,3
[0,1]

L0,4
 [0,1]

L0,5
[0,1]

L0,6
[0,1]

L0,7
[0,1]

L1,1
[0,2]

L1,2
[0,2]

L1,3
[0,2]

L1,4
[0,2]

L1,5
[0,2]

L1,6
[0,2]

L2,1

[0,3]
L2,2

[0,3]
L2,3

[0,3]
L2,4

[0,3]

Z1

[2,3]

Z2
[2,3]

Z3
[2,3]

Y1

[0,1]
Y2

[0,1]
Y3

[0,1]
Y4

[0,1]
Y5

 [0,1]
Y6

[0,1]
Y7

[0,1]

Layer 0:

Layer 1:

Layer 2:

Fig. 3. Dependencies between partial sum variables L and Y and their initial domains for the
SEQUENCE(2, 3, 5, [Y1, . . . , Y7]) constraint

We have O(n log k) variables L that are subject to O(n log k) ternary constraints
and O(n) variables Z that are subject to O(n) linear constraints of arity O(log k).
The constraint propagation cost equals the number of invocations of the filtering al-
gorithm for this constraint times the cost of one invocation. The number of invoca-
tions is bounded by the number of values in the domains of the variables. Hence,
the propagation cost of a ternary constraint is O(u). For all ternary constraints we
have a cost of O(u)O(n log k) = O(nu log k). Also, we have O(n) variables Z
that are subject to O(n) linear constraints. We split linear constraints of the form
a = b1 + b2+, . . . , +bp−2 + bp−1 + bp into ternary constraints as follows: a =
b1 + (b2 + (, . . . , (bp−2 + (bp−1 + bp)))). Each parenthesised expression creates an ad-
ditional variable. Instead of having O(n) linear constraints of arity O(log k), we have
O(n log k) ternary constraints. The cardinality of each variable domain in these con-
straints is O(u). Consequently, the propagation cost for the original linear constraints is
O(u)O(n log k) = O(nu log k). Therefore we can enforce bounds consistency on this
encoding in O(nu log k)+ O(nu log k) = O(nu log k) time down a branch of a search
tree. However, this may not achieve domain consistency on the SEQUENCE constraint.

218 S. Brand et al.

There are a number of redundant constraints we can add to improve propagation. In
fact, we can add any permutation of partial sums that add up to k. It is not hard to show
that such additional redundant constraints can help propagation.

4 Theoretical Comparison

We compare theoretically those encodings on which we may not achieve domain consis-
tency on the SEQUENCE constraint. We will show that we get more propagation with LG
than AD, but that AD, CS and LG are otherwise incomparable. During propagation, all
auxiliary variables in CS, LG, AD and PS encodings will always have ranges as their do-
mains; consequently, bounds consistency is equivalent to domain consistency for them.

Theorem 3. Bounds consistency on LG is strictly stronger than bounds consistency on
AD.

Proof. Suppose LG is bounds consistent. Consider any AMONG constraint in AD. It is
not hard to see how, based on the partial sums in LG, we can construct support for any
value assigned to any variable in this AMONG constraint. To show strictness, consider
SEQUENCE (3, 3, 4, [Y1, . . . , Y6], {1}) with Y1, Y2 ∈ {0} and Y3, . . ., Y6 ∈ {0, 1}.
Enforcing bounds consistency on LG fixes Y5 = Y6 = 1. On the other hand, AD is
bounds consistent. ��
Theorem 4. Bounds consistency on CS is incomparable to bounds consistency on AD.

Proof. Consider SEQUENCE (1, 1, 3, [Y1, Y2, Y3, Y4], {1}) with Y1 ∈ {0} and Y2, Y3,
Y4 ∈ {0, 1}. Now AD is bounds consistent. In CS, we have S0, S1 ∈ {0}, S2 ∈ {0, 1},
S3, S4 ∈ {1}. As S3 and S4 are equal, enforcing bounds consistency on CS prunes 1
from the domain of Y4.

Consider SEQUENCE (1, 2, 2, [Y1, Y2, Y3, Y4], {1}) with Y3 ∈ {0} and Y1, Y2, Y4 ∈
{0, 1}. In CS, we have S0 ∈ {0}, S1 ∈ {0, 1}, S2, S3 ∈ {1, 2}, S4 ∈ {2, 3}. All
constraints in CS are bounds consistent. Enforcing bounds consistency on AD prunes 0
from the domains of Y2 and Y4. ��
From the proof of Theorem 4 it follows that bounds consistency on CS does not enforce
domain consistency on SEQUENCE when SEQUENCE is monotone.

Theorem 5. Bounds consistency on CS is incomparable with bounds consistency on
LG.

Proof. Consider SEQUENCE (2, 2, 4, [Y1, Y2, Y3, Y4, Y5], {1}) with Y1 ∈ {1} and Y2,
Y3, Y4, Y5 ∈ {0, 1}. All constraints in LG are bounds consistent. In CS, we have S0 ∈
{0}, S1 ∈ {1}, S2, S3 ∈ {1, 2}, S4 ∈ {2}, S5 ∈ {3}. As S4 and S5 are ground and
S5 = S4 + 1, Enforcing bounds consistency on CS fixes Y5 = 1.

Consider SEQUENCE (2, 3, 3, [Y1, Y2, Y3, Y4], {1}) with Y1 = 1 and Y2, Y3, Y4 ∈
{0, 1}. Now CS is bounds consistent. However, enforcing bounds consistency on LG
prunes 0 from Y4. ��
Recall that singleton bounds consistency on CS is equivalent to domain consistency on
SEQUENCE. We therefore also consider the effect of singleton consistency on the other

Encodings of the SEQUENCE Constraint 219

encodings where propagation is hindered. Unlike CS, singleton bounds consistency on
AD or LG may not prune all possible values.

Theorem 6. Domain consistency on SEQUENCE is strictly stronger than singleton
bounds consistency on LG.

Proof. Consider SEQUENCE (2, 2, 4, [Y1, Y2, Y3, Y4, Y5], {1}) with Y1 ∈ {1} and Y2,
Y3, Y4, Y5 ∈ {0, 1}. Consider Y5 = 0 and the LG decomposition. We have P0,1 ∈
{1}, P0,2, P0,3, P0,4 ∈ {0, 1}, P0,5 ∈ {0}, P1,1, P1,2 ∈ {1, 2}, P1,3, P1,4 ∈ {0, 1},
P2,1, P2,2 ∈ {2}. All constraints in LG are bounds consistent. Consequently, we do not
detect that Y5 = 0 does not have support. ��
Theorem 7. Domain consistency on SEQUENCE is strictly stronger than singleton
bounds consistency on AD.

Proof. By transitivity from Theorems 6 and 3. ��
We summarise relations among the decompositions in Figure 4.

DC(SEQ) SBC(AD)

BC(LG)

BC(CS)SBC(CS)

SBC(LG)

BC(AD)

A
A
A

B
B
B

A is strictly stronger than B

A and B are incomparable

A and B are equivalent

Fig. 4. Relations among decompositions of the SEQUENCE constraint

5 The Multiple SEQUENCE Constraint (MR)

We often have multiple SEQUENCE constraints applied to the same sequence of vari-
ables. For instance, we might insist that at most 1 in 3 cars have the sun roof option and

0

1

2

0212

2021

22 0

2

1

1

2

0

2

2

2

1

0
2

2

2

2

Fig. 5. The automaton for the Multiple SEQUENCE constraint with two SEQUENCEs:
SEQUENCE(0, 1, 2, [X1, . . . , Xn], {1}) and SEQUENCE(2, 3, 3, [X1, . . . , Xn], {2}) with
D(Xi) = {0, 1, 2}, for i ∈ {1, . . . , n}

220 S. Brand et al.

simultaneously that at most 2 in 5 of those cars have electric windows. We propose an
encoding for enforcing domain consistency on the conjunction of m such SEQUENCE

constraints (we shall refer to this as MR). Suppose that the jth such constraint, j ≥ 1, is
SEQUENCE(lj , uj , kj , [X1, . . . , Xn], vj). We suppose that the values being counted are
disjoint. We channel into a new sequence of variables Yi where Yi = j if Xi ∈ vj

else Yi = 0. We now construct an automaton whose states record the last k′ − 1
values used where k′ is the largest kj . Transitions of the automaton ensure that all
SEQUENCE constraints are satisfied. Domain consistency can therefore be enforced
using the REGULAR constraint in O(nmk′−1) time. The automaton for the Multiple
SEQUENCE with 2 SEQUENCEs is presented in Figure 5.

6 Experimental Results

To compare performance of the different encodings, we carried out a series of experi-
ments. The first series used randomly generated instances so we could control the pa-
rameters precisely. The second series used some nurse rostering benchmarks and car
sequencing benchmarks to test more realistic situations. Experiments were run with
ILOG Solver 6.1 on an Intel Pentium 4 CPU 3.20Ghz, 1GB RAM.

6.1 Random Instance

For each possible combination of n ∈ {50, 200, 500}, k ∈ {7, 15, 25, 50}, Δ = u −
l ∈ {1, 5}, we generated twenty instances with random lower bounds in the interval
[0, k − Δ). We used a random value and variable ordering and a time-out of 100 sec.
Results are given in Tables 1–2.

Instances can be partitioned into two groups. In the first group, n > 50 and Δ < 3.
On these instances, assignment of one variable has a strong impact on other variables. In
the extreme case when Δ = 0 instantiation of one variable assigns on average another
n/k variables. So, we expect DC propagators to significantly shrink variable domains

Table 1. Randomly generated instances with a single SEQUENCE constraint and Δ = 1. Number
of instances solved in 100 sec / average time to solve.

n k PS HPRS CD AD GSC LG CS

50
7 20 / 0.003 20 / 0.002 20 / 0.005 20 / 0.133 20 / 0.538 20 / 0.044 20 / 0.002
15 20 / 0.023 20 / 0.001 20 / 0.005 20 / 0.004 20 / 0.018 20 / 0.003 20 / 0.001
25 20 / 0.094 20 / 0.003 20 / 0.005 19 / 0.066 19 / 0.396 19 / 0.034 20 / 0.001

200
7 20 / 0.016 20 / 0.030 20 / 0.242 15 / 2.517 14 / 5.423 17 / 0.003 20 / 0.020
15 20 / 0.120 20 / 0.030 20 / 0.235 7 / 1.850 6 / 0.106 9 / 0.083 20 / 0.016
25 20 / 0.661 20 / 0.027 20 / 0.235 3 / 0.005 3 / 0.039 3 / 0.004 20 / 0.016
50 20 / 5.423 20 / 0.028 20 / 0.232 4 / 18.255 3 / 1.361 6 / 5.926 20 / 0.014

500
7 20 / 0.043 20 / 0.336 20 / 4.086 9 / 6.756 8 / 1.046 13 / 0.009 20 / 0.150
15 20 / 0.320 20 / 0.334 20 / 4.130 4 / 13.442 3 / 0.121 6 / 0.012 20 / 0.100
25 20 / 1.816 20 / 0.279 20 / 4.017 1 / 0 1 / 0 3 / 0.013 20 / 0.085
50 20 / 16.762 20 / 0.290 20 / 4.032 0 / 0 0 / 0 2 / 11.847 20 / 0.086

TOTALS
solved/total 220 /220 220 /220 220 /220 102 /220 97 /220 118 /220 220 /220

avg time for solved 2.298 0.124 1.566 2.376 1.115 0.524 0.045
avg bt for solved 0 0 0 42830 4319 3239 33

Encodings of the SEQUENCE Constraint 221

Table 2. Randomly generated instances with a single SEQUENCE constraint and Δ = 5. Number
of instances solved in 100 sec / average time to solve.

n k PS HPRS CD AD GSC LG CS

50
7 20 / 0.004 20 / 0.001 20 / 0.005 20 / 0.001 20 / 0.003 20 / 0.002 20 / 0.002
15 20 / 0.025 20 / 0.001 20 / 0.006 20 / 0.001 20 / 0.005 20 / 0.001 20 / 0.002
25 20 / 0.100 20 / 0.001 20 / 0.006 20 / 0.001 20 / 0.008 20 / 0.002 20 / 0.002

200
7 20 / 0.016 20 / 0.020 20 / 0.262 20 / 0.003 20 / 0.017 20 / 0.005 20 / 0.024
15 20 / 0.133 20 / 0.031 20 / 0.251 20 / 0.005 20 / 0.026 20 / 0.005 20 / 0.028
25 20 / 0.665 20 / 0.030 20 / 0.242 20 / 0.007 20 / 0.038 20 / 0.006 20 / 0.020
50 20 / 5.538 20 / 0.039 20 / 0.242 20 / 0.012 20 / 0.073 20 / 0.010 20 / 0.019

500
7 20 / 0.047 20 / 0.195 20 / 4.362 20 / 0.012 20 / 0.085 20 / 0.012 20 / 0.154
15 20 / 0.358 20 / 0.383 20 / 4.183 20 / 0.015 20 / 0.119 20 / 0.017 20 / 0.235
25 20 / 1.786 20 / 0.411 20 / 4.127 20 / 0.019 20 / 0.146 20 / 0.021 20 / 0.201
50 20 / 17.016 20 / 0.342 20 / 4.077 11 / 0.034 11 / 0.298 12 / 0.033 20 / 0.120

TOTALS
solved/total 220 /220 220 /220 220 /220 211 /220 211 /220 212 /220 220 /220

avg time for solved 2.335 0.132 1.615 0.009 0.065 0.009 0.073
avg bt for solved 0 0 0 2 2 1 19

and reduce the search tree. As can be seen from Table 1, DC propagators outperform
non-DC propagators. Surprisingly, CS has the best time of all combinations and solved
all instances. Whilst it takes more backtracks compared to the DC propagators which
solve problems without search, it is much faster. The CD algorithm is an order of mag-
nitude slower compared to the HPRS propagator but in the current implementation we
use incremental all-pairs shortest path algorithms, rather than the single-source short-
est path algorithms of [10]. The PS algorithm is much slower compared to other DC
algorithms and its relative performance decays for larger k.

In the second group, n ≤ 50 or Δ ≥ 3. On these instances, assignment of a variable
does not have a big influence on other variables. The overhead of using DC propagators
to achieve better pruning outweighs the reduction in the search space. The clear winner
in this case are those propagators that do not achieve DC. When k < 25 AD is best.
When k gets larger, LG solves more instances and is faster.

6.2 Nurse Rostering Problems

Instances come from www.projectmanagement.ugent.be/nsp.php. For
each day in the scheduling period, a nurse is assigned to a day, evening, or night shift
or takes a day off. The original benchmarks specify minimal required staff allocation
for each shift and individual preferences for each nurse. We ignore these preference
and replace them with a set of constraints that model common workload restrictions for
all nurses. The basic model includes the following three constraints: each shift has a
minimum required number of nurses, each nurse should have at least 12 hours of break
between 2 shifts, each nurse should have at least two consecutive days on any shift.
Each model was run on 50 instances. The scheduling period is 14 days. The number of
nurses in each instance was set to the maximal number of nurses required for any day
over the period of 14 days. The time limit for all instances was 100 sec. For variable
ordering, we branched on the smallest domain. Table 3 gives results for those instances
that were solved by each propagator. In these experiments n < 50. As expected from
the random experiments, the AD decomposition outperforms all other decompositions.

www.projectmanagement.ugent.be/nsp.php

222 S. Brand et al.

Table 3. Models of the nurse rostering problem using the SEQUENCE constraint. Number of
instances solved in 100 sec / average time to solve.

SEQUENCE PS LO HPRS CD AD GSC LG CS
(1, 3, 3, {O}) 43 / 0.47 43 / 0.64 43 / 0.54 43 / 0.63 43 / 0.45 43 / 0.60 43 / 0.45 39 / 2.49
(3, 5, 5, {O}) 44 / 2.43 44 / 2.11 44 / 2.28 44 / 2.61 44 / 1.84 44 / 2.84 44 / 1.87 40 / 3.53
(2, 2, 5, {O}) 39 / 5.41 39 / 4.76 40 / 7.41 38 / 4.97 36 / 7.50 35 / 7.73 36 / 8.56 36 / 5.36
(2, 2, 7, {O}) 23 / 9.09 23 / 7.92 23 / 5.64 23 / 7.50 22 / 11.16 22 / 18.21 22 / 11.66 23 / 4.53
(2, 3, 5, {O}) 26 / 4.65 26 / 4.92 27 / 6.77 26 / 3.91 27 / 5.47 26 / 4.27 27 / 5.81 26 / 5.77
(2, 5, 7, {O}) 22 / 3.45 23 / 6.90 22 / 2.22 22 / 2.43 23 / 6.06 22 / 3.28 22 / 2.10 22 / 2.28
(1, 3, 4, {O}) 27 / 7.02 26 / 5.25 27 / 6.75 26 / 4.35 27 / 5.80 26 / 4.69 27 / 6.05 25 / 6.18

TOTALS
solved/total 224 /350 224 /350 226 /350 222 /350 222 /350 218 /350 221 /350 211 /350

avg time for solved 4.169 4.068 4.263 3.475 4.776 5.170 4.676 4.218
avg bt for solved 11045 9905 13804 8017 20063 12939 18715 17747

The only exception are instances with Δ = 0 and non-DC propagators lose to DC
algorithms and the CS decomposition.

6.3 Car Sequencing Problems

In this series of experiments we used car sequencing problems benchmarks. All in-
stances are taken from CSPLib (the first set of benchmarks). We used the car sequenc-
ing model from the Ilog distribution as the basic model and added each encoding as
a redundant constraint to this model. The time limit for all instances was 100 sec. All
SEQUENCE constraints in these benchmarks are monotone. Hence, GSC enforces DC
on the SEQUENCE part of it, and an introduction of redundant constraints does not give
extra pruning. As Table 4 shows, the basic model gives the best performance.

Table 4. The Car Sequencing Problem. Number of instances solved in 100 sec / average time to
solve.

The basic model from the Ilog distribution +
PS LO HPRS CD AD LG CS

CarSequencing 36 / 8.21 36 / 8.26 35 / 7.59 34 / 7.85 36 / 8.15 36 / 7.95 36 / 8.10 35 / 5.91
TOTALS

solved/total 36 /78 36 /78 35 /78 34 /78 36 /78 36 /78 36 /78 35 /78
avg time for solved 8.21 8.26 7.59 7.85 8.15 7.95 8.10 5.91

avg bt for solved 518 518 265 211 518 518 518 265

6.4 Multiple SEQUENCE Constraints

We also evaluated performance of the different propagators on problems with multiple
SEQUENCE constraints. We again used randomly generated instances and nurse roster-
ing problems. For each possible combination of n ∈ {50, 100}, k ∈ {5, 7}, Δ = 1, we
generated twenty random instances with four SEQUENCE constraints. All variables had
domains of size 5. An instance was obtained by selecting random lower bounds in the
interval [0, k − Δ]. We excluded instances where

∑m
i=1 li ≥ k to avoid unsatisfiable

instances. We used a random variable and value ordering and a time-out of 100 sec. All
SEQUENCE constraints were enforced on disjoint sets of cardinality one.

Experimental results are given in Table 5. The Multiple SEQUENCE propagator sig-
nificantly outperforms other propagators in both the time to find a valid sequence and

Encodings of the SEQUENCE Constraint 223

Table 5. Randomly generated instances with 4 SEQUENCE constraints and Δ = 1. Number of
instances solved in 100 sec / average time to solve.

n k MR PS LO HPRS CD AD GSC LG CS
50 5 20 / 0.05 6 / 12.58 6 / 17.03 5 / 0.81 5 / 4.76 6 / 13.75 5 / 10.59 7 / 15.05 0 / 0

7 20 / 0.86 6 / 20.85 6 / 16.89 7 / 23.99 4 / 0.15 6 / 14.02 5 / 15.90 8 / 26.81 2 / 5.80

100 5 20 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
7 20 / 1.83 2 / 8.98 2 / 7.52 2 / 10.48 1 / 0 1 / 0 1 / 0 1 / 0 0 / 0

TOTALS
solved/total 80 /80 14 /80 14 /80 14 /80 10 /80 13 /80 11 /80 16 /80 2 /80

avg time for solved 0.71 15.61 15.61 13.78 2.44 12.81 12.04 19.99 5.80
avg bt for solved 0 72078 72078 64579 2214 185747 51413 257831 106008

Table 6. Models of the nurse rostering problem using the SEQUENCE constraint. Number of
instances solved in 100 sec / average time to solve.

MR PS LO HPRS CD AD GSC LG CS
Model 1 9 / 10.62 4 / 12.61 4 / 14.78 4 / 7.38 4 / 19.00 4 / 6.41 4 / 16.87 4 / 5.58 4 / 5.64
Model 2 8 / 1.40 4 / 0.08 4 / 0.11 4 / 0.04 4 / 0.06 4 / 0.04 4 / 0.08 4 / 0.04 4 / 0.04

TOTALS
solved/total 17 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100

avg time for solved 6.28 6.35 7.45 3.71 9.53 3.22 8.47 2.81 2.84
avg bt for solved 3470 30696 30696 30696 30696 30232 30232 30430 30749

the number of solved instances. For bigger values of n, the Multiple SEQUENCE prop-
agator is the only one able to solve all instances. However, due to its space complexity,
to use this propagator, k and m need to be relatively small and n < 100.

In the second series of experiments we used nurse scheduling benchmarks. We re-
moved the last constraint from the basic model described in the previous section and
added two sets of non-monotone SEQUENCE constraints to give two different models.
In the first model, each nurse has to work 1 or 2 night shifts in 7 consecutive days, 1
or 2 evening shifts, 1 to 5 day shifts and 2 to 5 days-off. In the second model, each
nurse has to work 1 or 2 night shifts in 7 consecutive days, and has 1 or 2 days off in
5 days. In order to test the performance of the Multiple SEQUENCE constraint on large
problems, we built a schedule over a 28 days period. The number of nurses was equal to
the maximum number of nurses required for any day over the period multiplied by 1.5.
The total number of variables in an instance is about 500. Table 6 shows the number of
instances solved by each propagator. The Multiple SEQUENCE propagator again solved
the most instances.

7 Conclusion

The SEQUENCE constraint is useful in modelling a range of rostering, scheduling and
car sequencing problems. We proved that down a branch of a search tree domain con-
sistency can be enforced on the SEQUENCE constraint in just O(n2 log n) time. This
improves upon the previous bound of O(n3) for each call down the branch [6]. To
propagate the SEQUENCE constraint, we introduced half a dozen new encodings, some
of which do not hinder propagation. We also considered a generalization of SEQUENCE

constraint – the Multiple SEQUENCE constraint. Our experiments suggest that, on very

224 S. Brand et al.

large and tight problems, the existing domain consistency algorithm is best. However,
on smaller or looser problems, much simpler encodings are better, even though these en-
codings hinder propagation. When there are multiple SEQUENCE constraints, especially
when we are forcing values to occur, a more expensive propagator shows promise.

This study raises a number of questions. For example, what other global constraints
can be efficiently and effectively propagated using simple encodings? As a second ex-
ample, can we design heuristics to choose an effective encoding automatically?

Acknowledgements

We would like to thank Willem-Jan van Hoeve for providing us with the implementation
of the HPRS algorithm, as well as the reviewers for useful feedback.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

2. Quimper, C.G., Walsh, T.: Global grammar constraints. [11], pp. 751–755
3. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and

Computer Modelling 12, 97–123 (1994)
4. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfac-

tion problem. In: 15th Int. Joint Conf. on Artificial Intelligence (IJCAI’97), pp. 412–417.
Morgan Kaufmann, San Francisco (1997)

5. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The SLIDE-meta constraint.
Technical report (2007)

6. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the Sequence con-
straint. [11], pp. 620–634

7. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Smolka,
G. (ed.) Principles and Practice of Constraint Programming - CP97. LNCS, vol. 1330, pp.
32–46. Springer, Heidelberg (1997)

8. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing the
cardinality-path constraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp.
59–73. Springer, Heidelberg (2001)

9. Régin, J.C.: Combination of Among and Cardinality constraints. In: Barták, R., Milano, M.
(eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005)

10. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg
(2006)

11. Benhamou, F. (ed.): CP 2006. LNCS, vol. 4204. Springer, Heidelberg (2006)

On Inconsistent Clause-Subsets for Max-SAT Solving�

Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu-Min Li

LaRIA, FRE 2733 – Université de Picardie Jules Verne
33, Rue St-Leu, 80039 Amiens Cedex 01, France

{sylvain.darras,gilles.dequen,laure.devendeville,
chu-min.li}@u-picardie.fr

Abstract. Recent research has focused on using the power of look-ahead to
speed up the resolution of the Max-SAT problem. Indeed, look-ahead techniques
such as Unit Propagation (UP) allow to find conflicts and to quickly reach the
upper bound in a Branch-and-Bound algorithm, reducing the search-space of the
resolution. In previous works, the Max-SAT solvers maxsatz9 and maxsatz14
use unit propagation to compute, at each node of the branch and bound search-
tree, disjoint inconsistent subsets of clauses in the current subformula to estimate
the minimum number of clauses that cannot be satisfied by any assignment ex-
tended from the current node. The same subsets may still be present in the sub-
trees, that is why we present in this paper a new method to memorize them and
then spare their recomputation time. Furthermore, we propose a heuristic so that
the memorized subsets of clauses induce an ordering among unit clauses to detect
more inconsistent subsets of clauses. We show that this new approach improves
maxsatz9 and maxsatz14 and suggest that the approach can also be used to
improve other state-of-the-art Max-SAT solvers.

Keywords: Max-SAT, Unit Propagation, Inconsistent Subset.

1 Introduction

The Max-SAT (short for Maximum Satisfiability) problem is to find an assignment of
logical values to the variables of a propositional formula expressed in terms of a con-
junction of clauses (i.e. disjunction of literals) that satisfies the maximum number of
clauses. This optimization problem is a generalization of the Satisfiability Decision
problem. During the last decade, the interest in studying Max-SAT has grown signif-
icantly. These works highlight Max-SAT implications in real problems, as diverse as
scheduling [1], routing [2], bioinformatics [3], . . . , motivating considerable progresses
concerning efficient Max-SAT solving based on the Branch-and-Bound (BnB) scheme.

The almost common characteristic of the successive progresses for the BnB scheme
is to propose new ways of computing the Lower Bound (LB). Given a Max-SAT in-
stance Σ, the BnB algorithm implicitly enumerates the search-space of all possible as-
signments using a binary search-tree. At every node, BnB compares the Upper Bound
(UB), which is the minimum number of conflict clauses in Σ obtained so far for a
complete assignment, with LB which is an underestimation of the minimum number
of conflict clauses of Σ by any complete assignment obtained by extending the partial
assignment at the current node. If LB ≥ UB, the algorithm prunes the subtree below

� This work was partially supported by Région Champagne-Ardennes.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 225–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

226 S. Darras et al.

the current node, since a better solution cannot be obtained from the current node. In
previous works, the quality of LB was improved of several manners. Thus, [4,5,6] de-
fine new inference rules based on special cases of resolution that are able to outperform
state-of-the-art solvers [7,8]. In addition, another way to improve LB is to make an
intensive use of unit propagation with look-ahead techniques at each node of the BnB
algorithm in order to find disjoint inconsistent clause-subsets (named ICS in the follow-
ing) [9,10]. These inconsistent cores of clauses allow LB to quickly equal or exceed
UB and to decrease the mean-size of the BnB search-tree. However, some characteris-
tics as the mean number of clauses belonging to these cores influence on the quality of
LB and consequently on the efficiency of the BnB algorithm. Moreover, the detection
of these disjoint inconsistent clause-subsets is not incremental in [9,10]. In other words,
a number of inconsistent clause-subsets detected at a node are detected over and again
in the two subtrees of the node.

In this paper, we focus on the study of the characteristics of the inconsistent clause-
subsets and their influence on the lower bound quality. After presenting some prelim-
inaries, we study structures and characteristics of inconsistent clause-subsets and pro-
pose a heuristic to estimate the usefulness of a given inconsistent subset of clauses in
LB calculus. We then describe our heuristic-based approach to improve LB and to
make the LB calculus more incremental. This approach is applied to the Max-SAT
solvers maxsatz9 [10] and maxsatz14 [4], and experimental results on random and
Max-Cut instances where some are from the 2007 Max-SAT evaluation1 show that our
approach significantly improves maxsatz9 and maxsatz14.

2 Preliminaries

A CNF-formula (Conjunctive Normal Form formula) Σ is a conjunction of clauses
where each clause is a disjunction of literals. A literal is the (positively or negatively)
signed form of a boolean variable. An interpretation of Σ is an assignment over the
truth values space {True, False} to its variables. It is a partial interpretation if only a
subset of the variables of Σ are assigned. A positive (resp. negative) literal is satisfied if
the corresponding variable has the value True (resp. False). A clause is satisfied if at
least one of its literals is satisfied. Σ is satisfied according to an interpretation if all its
clauses are satisfied. The Max-SAT problem is to find an assignment which minimizes
the number of falsified clauses of Σ. This optimization problem is a generalization of
the Satisfiability decision problem which is to determine whether a satisfying assign-
ment of all clauses of Σ exists or not.

In this paper, each further reference of formula means CNF-formula. Moreover, a
conjunction of clauses c1 ∧ c2 ∧ ... ∧ cm is simply represented by a set of clauses
{c1, c2, . . . , cm}. We denote k-cl a clause which contains exactly k literals. The 1-cl
and 2-cl clause may be respectively named unit and binary clause. A k-SAT formula is
a formula which exclusively consists of k-cl. An empty clause contains no literal; it rep-
resents a conflict since it cannot be satisfied. When one literal l is assigned to True, ap-
plying
one-literal rule consists in satisfying all clauses containing l (i.e. removing them from
the formula) and removing all ¬l from all remaining clauses. The Unit Propagation
(denoted UP) is the iterative process which consists in applying one-literal rule to each

1 http://www.maxsat07.udl.es/

http://www.maxsat07.udl.es/

On Inconsistent Clause-Subsets for Max-SAT Solving 227

literal appearing in at least one unit clause. This process continues until all unit clauses
disappear from Σ or an empty clause is derived.

We focus our work on complete Max-SAT solvers which are based on a BnB al-
gorithm. This class of solvers actually provides the best performances on Max-SAT
solving2. Given Σ, these solvers implicitly enumerate the whole search-space of the
formula by constructing a depth-first search-tree. At every node, they use two impor-
tant values: UB, the minimum number of conflict clauses in Σ obtained so far for a
complete assignment, and LB, an underestimation of the minimum number of conflict
clauses of Σ by any complete assignment extending the partial assignment at the current
node. If LB < UB, the current partial assignment is extended by choosing a decision
variable x, which is successively set to True and False in order to split the current
sub-formula into two new simplified ones using the one-literal rule, the process being
recursively continued from each of the two new formulas. If LB ≥ UB the solvers
prune the subtree under the current node, since all complete assignments extending the
current partial assignment are worse than the best one found so far. The solution of a
BnB solver is the assignment with the minimum UB after enumerating all assignments.

As it allows to prune subtrees, LB is essential in efficient Max-SAT solving. In [11],
LB is defined as follows:

LB(ΣA) = #Empty(ΣA) +
∑
x∈ΣA

min(#Unit(x, ΣA), #Unit(¬x, ΣA)) (1)

where #S is the number of elements of the set S, ΣA is the current state of a formula
Σ according to a partial assignment A, Empty(ΣA) is the set of empty clauses of ΣA,
and Unit(lit, ΣA) is the set of unit clauses containing the literal lit. Many works have
extended this estimation. The equation 1 can be generalized to:

LB(ΣA) = #Empty(ΣA) + #ICS(ΣA) (2)

where ICS(ΣA) is a set of disjoint inconsistent clause-subsets from the formula ΣA.
Subsets of the form {x, ¬x}, x ∈ ΣA are included in ICS(ΣA). Thanks to binary
clauses using the Directional Arc Consistency notion (DAC) defined in [12] for Max-
CSP, [13,14] have improved the LB computation.

More recently, the equation 2 has led to new rules:

1. The Star rule ([15,16]) consists in searching inconsistent cores of clauses of the
form {l1, ..., lk, ¬l1 ∨ ... ∨ ¬lk}.

2. The UP-rule [9] detects inconsistent clause-subsets in ΣA using unit propagation.
The detection can be described as follows. Let ΣA1 be a copy of ΣA. Unit prop-
agation repeatedly applies one-literal rule to simplify ΣA1 until there is no more
unit clause or an empty clause is derived. If an empty clause is derived, let S be the
set of clauses used to derive the empty clause. Then S is an inconsistent subset of
clauses, i.e., all clauses in S cannot simultaneously be satisfied by any assignment.
For example, let us consider the following set of clauses of a formula Σ1:

Σ1 =

⎧⎨
⎩

c1 : x1 c4 : ¬x2 ∨ ¬x4 c7 : ¬x4 ∨ x6
c2 : ¬x1 ∨ x2 c5 : ¬x1 ∨ ¬x3 ∨ x4
c3 : ¬x1 ∨ ¬x2 ∨ x3 c6 : ¬x1 ∨ x5

⎫⎬
⎭

2 see http://www.iiia.csic.es/∼maxsat06/

http://www.iiia.csic.es/~maxsat06/

228 S. Darras et al.

Following the UP process, x1 has to be True, c2 and c6 become unit clauses, and
so on. Finally, c5 is empty and the set S = {c1, c2, c3, c4, c5} is an inconsistent
subset of clauses.

The detection of other disjoint inconsistent subformula continues, after exclud-
ing the clauses of S, until no more empty clause can be derived. LB is then the
number of empty clauses in ΣA plus the total number of disjoint inconsistent sub-
sets of clauses detected.

3. The failed literals technique [10] (denoted UP ∗FL) is an extension of UP -rule. After
applying UP -rule to ΣA to detect disjoint subsets of clauses, it detects additional
disjoint inconsistent subsets of clauses by finding failed literals after excluding the
inconsistent subsets of clauses already found from ΣA. This detection can be illus-
trated as follows. If unit propagation in ΣA∪{x} and unit propagation in ΣA∪{¬x}
both lead to a conflict then clauses in ΣA implying the two contradictions constitute
an inconsistent subset.

The UP ∗FL heuristic has been proved much more effective in maxsatz9 [10] and
maxsatz14 [4] than previous state-of-the-art lower bounds. However, the LB calculus
based on UP ∗FL in maxsatz9 and maxsatz14 is not incremental (in maxsatz14, an
incremental part of the LB is computed by inference rules ; we mention them in
section 5.2) . When LB is still less than UB, the solver should extend the current par-
tial assignment i.e., the solver should branch. Before branching to a new node, all the
inconsistent clauses-subset are erased. The new node does not inherit neither the incon-
sistent clause-subsets detection of its parent, nor the information of these inconsistent
clause-subsets such as their size. The UP ∗FL function is entirely re-executed at the new
node.

The aim of our work is to enable a search-tree node to inherit some inconsistent
clause-subsets of its parent, which avoids the entire re-execution of the UP ∗FL function
and could improve the quality of LB.

3 Improving UP ∗
FL

The purpose of UP ∗FL is to detect as many inconsistent clause-subsets as possible in
a formula. Since an inconsistent subset of clauses has to be excluded before detecting
other inconsistent subsets of clauses, UP ∗FL should detect small enough inconsistent
subsets of clauses, leaving more clauses in the formula to facilitate the detection of other
inconsistent subsets of clauses. UP ∗FL uses a heuristic on the ordering of unit clauses
during unit propagation to detect small inconsistent clause-subsets, but when there are
several unit clauses in the formula, it selects one in an undetermined ordering to start an
unit propagation. However, we believe that the number of inconsistent subsets detected
by UP ∗FL is strongly correlated to the ordering of initial unit clauses. Moreover, as we
noticed above, UP ∗FL recomputes the whole inconsistent subset detection in every node
of a search-tree, which is time-consuming.

For example, let Σ2 be the following set of clauses

Σ2 =

⎧
⎪⎨
⎪⎩

c1 : x1 c5 : ¬x3 ∨ x5 c9 : ¬x6 ∨ x4 c13 : ¬x8 ∨ x9
c2 : ¬x1 ∨ x2 c6 : ¬x4 ∨ ¬x5 c10 : ¬x6 ∨ x5 c14 : ¬x8 ∨ x10
c3 : ¬x2 ∨ x3 c7 : ¬x9 ∨ ¬x10 c11 : ¬x3 ∨ x7
c4 : ¬x3 ∨ x4 c8 : x6 c12 : ¬x7 ∨ x8

⎫
⎪⎬
⎪⎭

On Inconsistent Clause-Subsets for Max-SAT Solving 229

1. unit clause ordering in UP ∗FL detection.

• UP ∗FL first calls UP-rule detection. Following the empirical UP ∗FL techniques
of the maxsatz solver, c1 is propagated first, then new unit clauses produced
during the unit propagation are stored in a queue and propagated in a first in
first out ordering. Thus, the UP-rule first assigns x1 = True through the clause
c1. The variables x2 = True, x3 = True, x4 = True, x5 = True, and x7 =
True, through c1, c2, c3, c4, c5, c11 respectively. We then get an empty clause
c6 and the inconsistent subset of clauses S is equal to {c1, c2, c3, c4, c5, c6}.
Only clauses {c7, c8, c9, c10, c11, c12, c13, c14} can participate in finding other
inconsistent clause-subsets. However, while propagating c8, the UP-rule as-
signs x6 = True, x4 = True, x5 = True through c8, c9, c10, respectively, no
more conflict is found.

• Consider now another ordering of the unit clauses in Σ2 that propagates first c8.
The following assignments are then performed: x6 = True, x4 = True, and
x5 = True through c8, c9, and c10, respectively. We encounter an empty clause
c6. The associated inconsistent subset of clauses is S′ = {c6, c8, c9, c10}.
The candidates clauses belonging to other inconsistent clause-subsets are then
{c1, c2, c3, c4, c5, c7, c11, c12, c13, c14}. We then propagate c1, x1 = True,
x2 = True, x3 = True, x4 = True, x5 = True, x7 = True, x8 = True,
x9 = True, and x10 = True through c1, c2, c3, c4, c5, c11, c12, c13, and c14,
respectively. As c7 is now empty, a second and disjoint inconsistent clause-
subset S′′ = {c1, c2, c3, c7, c11, c12, c13, c14} is obtained.

2. Re-computation of inconsistent clause-subsets.
Let us consider now the same subformula Σ2 and assuming that the next decision
variable chosen by the solver does not belong to {x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10}. Σ2 is unchanged. UP ∗FL probably finds the same conflicts, so the re-compu-
tation could be avoided if the inconsistent clause-subsets of the parent node were
memorized.

Within a practical framework, we propose a method to solve totally or partially the
UP ∗FL weaknesses mentioned above. The idea is to memorize the small inconsistent
subsets of clauses computed at a given node and maintain them for all the corresponding
subtrees. This allows to avoid costly re-detection of inconsistent subsets and induce a
natural ordering UP ∗FL detection. Indeed, storing (small) inconsistent subsets of clauses
is equivalent to grant a privilege to the variables which minimize the number of clauses
to detect a conflict. We could just store a sorted list of variables, which would give us
the same ”good” conflictual clause subsets at each node than if we had memorized these
sets: it draws a variable ordering. Thus, the goal of our approach is double:

• Inconsistent subsets of clauses stored at a node of the search-tree will not be re-
computed at the child-nodes. These subsets are directly added to LB. Once a small
inconsistent subset is found, the solver does not spend time to detect it again.

• Since we will empirically determine ”interesting” inconsistent clause-subsets,
UP ∗FL begins its computation in the child-nodes with the stored interesting sub-
sets. In addition to the advantage that these interesting inconsistent clause-subsets
are given without specific detection, they induce a natural ordering of unit clauses
for detecting small inconsistent subsets of clauses so as to improve LB.

230 S. Darras et al.

For example, let Σ3 be the following set of clauses

Σ3 =

⎧
⎪⎨
⎪⎩

c1 : x1 c5 : ¬x3 ∨ x5 c9 : ¬x6 ∨ x4 c13 : ¬x8 ∨ x9
c2 : ¬x1 ∨ x2 c6 : ¬x4 ∨ ¬x5 c10 : ¬x6 ∨ x5 c14 : ¬x8 ∨ x10
c3 : ¬x2 ∨ x3 ∨ x11 c7 : ¬x9 ∨ ¬x10 c11 : ¬x3 ∨ x7
c4 : ¬x3 ∨ x4 c8 : x6 c12 : ¬x7 ∨ x8

⎫
⎪⎬
⎪⎭

Propagating c1, UP ∗FL does not find any empty clause. Propagating c8, UP ∗FL finds
an inconsistent subset S′ = {c6, c8, c9, c10} as for Σ2 in the previous example, which
we store. After branching next on x11 and assigning False to x11, Σ3 becomes Σ2.
Without the storage of S′, UP ∗FL propagates c1 and finds an unique inconsistent clause-
subsets S={c1, c2, c3, c4, c5, c6} as in the previous example, since after the clauses in S
are removed from Σ2, no more conflict is found using unit propagation.

However, with the storage of the inconsistent subset S′ = {c6, c8, c9, c10}, after
branching next on x11 and assigning False to x11, S′ is first counted in LB and its
clauses are excluded in the conflict detection. UP ∗FL naturally detects the second in-
consistent subset S′′ = {c1, c2, c3, c7, c11, c12, c13, c14}.

The above example shows that by memorizing small inconsistent subsets of clauses
and ”forget” large ones, we are able to detect more inconsistent subsets of clauses.

4 Clause Sets Storage

We have seen in the previous section that the storage of inconsistent subsets of clauses
and their reuse are helpful. We should now answer two questions: (i) should we memo-
rize all inconsistent subsets of clauses for child-nodes? (ii) if not, what are inconsistent
subsets of clauses that should be stored? For this purpose, we should analyze the impact
of branching on a variable.

Let us consider an inconsistent subset Sk = {ck1 , ck2 , ..., ckn} found at a node of
the search-tree by UP ∗FL. Note that Sk is a minimal inconsistent subset of clauses in
the sense that it becomes consistent if any clause is removed from it, meaning that any
literal in Sk should also have its negated literal in Sk. Let x be the next branching
variable. We can distinguish three cases:

1. Variable x appears in clauses of Sk.
In this case, the literals x and ¬x belong to Sk. Sk has no meaning anymore after
branching because it contains satisfied clauses, and Sk remains inconsistent but
is not probably minimal anymore. We should then find the minimal inconsistent
subset of Sk and allow other clauses of Sk to be used in the detection of other
conflicts.

To illustrate this case, let us consider the following inconsistent clause subset:

Sk =
{

c1 : ¬x ∨ y c3 : ¬y ∨ ¬z c5 : ¬z ∨ t
c2 : ¬y ∨ z c4 : x ∨ z c6 : ¬z ∨ ¬t

}

On the one hand, when x is set to True, the clause c4 is then satisfied. The subset
of clauses {y, ¬y ∨ z, ¬y ∨ ¬z} from c1, c2 and c3 is inconsistent. This allows
the set of clauses R = {¬z ∨ t, ¬z ∨ ¬t} from c5 and c6 to take part of other
conflictual sets. On the other hand, when x is set to False, the subset of clauses
{z, ¬z ∨ t, ¬z ∨¬t} from c4, c5 and c6 is inconsistent and R = {¬y ∨ z, ¬y ∨¬z}
from c2 and c3 can be used to detect other conflicts.

On Inconsistent Clause-Subsets for Max-SAT Solving 231

2. Variable x does not appear in clauses of the Sk, but some of the clauses shortened
by the assignment of x form a smaller inconsistent subset S′k using some clauses of
Sk.

S′k and Sk are inconsistent but not disjoint. Only one of S′k and Sk can contribute
to increase LB. It would be more useful to keep S′k instead of Sk.
For example, consider the inconsistent clause-subset Sk such as:

Sk =
{

c1 : ¬w ∨ y c3 : ¬y ∨ ¬z c5 : ¬z ∨ t
c2 : ¬y ∨ z c4 : w ∨ z c6 : ¬z ∨ ¬t

}

and the two clauses c7 : ¬x ∨ z ∨ t and c8 : ¬x ∨ z ∨ ¬t. After branching to x
and x=True, c7 and c8 are reduced to z ∨ t and z ∨ ¬t, respectively. Thus, one can
exhibit S′k which consists of:

S′k =
{

c5 : ¬z ∨ t c7 : z ∨ t
c6 : ¬z ∨ ¬t c8 : z ∨ ¬t

}

In order to maximize the possibility of finding other inconsistent clause-subsets,
a solver should forget Sk in order to detect S′k, allowing clauses in Sk \ S′k to
participate in further conflict detection.

3. Variable x does not appear in clauses of Sk and there is no new smaller inconsistent
subset using clauses of Sk.

In this third case, it is generally useful to memorize Sk, since otherwise UP ∗FL
would probably re-detect it at the child-nodes. Memorizing it avoids this re-
detection.

Given a formula Σ, the first aim of our work is to induce a natural ordering for unit
clauses of Σ so that as many inconsistent subsets of clauses as possible are detected.
The second aim is to avoid the repeated detections of the same inconsistent subsets
of clauses at different nodes of a search-tree to make the LB computation more in-
cremental. For these two aims, we should keep all inconsistent subsets of clauses in
case 3 and avoid keeping any inconsistent subset of clauses in case 1 and case 2 when
branching.

Figure 1 shows the branch and bound algorithm for Max-SAT with storage of in-
consistent subsets of clauses. The first call to the function is max-sat(Σ, #clauses, ∅).
Given a formula Σ, the algorithm begins by removing all clauses in each inconsistent
subset stored in ICSS (lines 4-6). Then it computes the set C of further inconsistent
subsets of clauses using UP ∗FL (line 7). If LB reaches UB the solver backtracks, other-
wise all removed clauses are reinserted (lines 13-15). The heuristic decideStorage(S)
decides if the new inconsistent subset of clauses S should be stored (lines 17-19). This
heuristic is essentially based on the probability that S is in case 2. Finally, in lines 21-
25, all inconsistent subsets containing the next branching variable x are removed from
ICSS before branching so that any inconsistent subset of clauses in case 1 is not stored
anymore.

Since all inconsistent subsets of clauses containing the next branching variable x
(case 1) are excluded, the heuristic decideStorage(S) only decides if S would proba-
bly lead to the case 2. If the heuristic performs well, most inconsistent subsets of clauses

232 S. Darras et al.

max-sat(Σ, UB, ICSS)
Require: A CNF formula Σ, an upper bound UB, and a set of inconsistent subsets of clauses

ICSS
Ensure: The minimal number of unsatisfied clauses of Σ
1: if Σ = ∅ or Σ only contains empty clauses then
2: return #Empty(Σ);
3: end if
4: for all inconsistent subset S in ICSS do
5: remove clauses of S from Σ
6: end for
7: C ← UP ∗

F L(Σ);
8: LB ← #Empty(Σ) + #ICSS + #C
9: if LB ≥ UB then

10: return ∞;
11: end if
12: x ← selectVariable(Σ)
13: for all inconsistent subset S in ICSS do
14: reinsert clauses of S into Σ
15: end for
16: for all inconsistent subset S in C do
17: if decideStorage(S)=True then
18: ICSS ← ICSS ∪ {S}
19: end if
20: end for
21: for all inconsistent subset S in ICSS do
22: if S contains x (case 1) then
23: remove S from ICSS
24: end if
25: end for
26: UB ← min(UB, max-sat(Σx̄, UB, ICSS))
27: return min(UB, max-sat(Σx, UB, ICSS))

Fig. 1. A branch and bound algorithm for Max-SAT with storage of inconsistent subsets of clauses

stored in ICSS should be in case 3 and consequently an effective lower bound LB can
be obtained. So the heuristic decideStorage(S) is essential in our approach.

It is obviously not conceivable to build a function that could definitely decide if
a clause subset would never hide a smaller set since it would need to consider every
node of the subtrees rooted at the current node. So we rather use a heuristic to define
decideStorage(S).

We conjecture that the more clauses an inconsistent clause-subset S contains, the
higher is the probability that some of its clauses are involved in a smaller new incon-
sistent subset of clauses after branching. In other words, a larger inconsistent clause-
subset S has higher probability to be in case 2 and a smaller inconsistent clause-subset
S has higher probability to be in case 3. This conjecture suggests that the size of S is
an effective characteristic to be used in decideStorage(S) to decide if S is in case 3
and should be stored. Our empirical results in the next section seem to confirm this
conjecture.

On Inconsistent Clause-Subsets for Max-SAT Solving 233

5 Experimental Results

As indicated in Algorithm 1, our approach can be implemented in all branch-and-bound
methods dedicated to complete Max-SAT solving of which the LB computation is
based on the detection of disjoint inconsistent subsets of clauses. We have chosen to
graft it into the maxsatz solver [10] which is the best performing Max-SAT solver in
the Max-SAT evaluation 20063. Nevertheless, in order to validate the strength of our
approach, we have tested it on the two last versions of maxsatz: version 9 with ”Failed
Literals” [10] (denoted maxsatz9) and version 14 with ”Failed Literals” and ”Infer-
ence Rules” [4] (denoted maxsatz14). These two solvers extended by our approach
are respectively named maxsatz9icss and maxsatz14icss in the following, where icss
denotes Inconsistent Clause Subset Storage. Moreover, we compare maxsatz9icss and
maxsatz14icss with Toolbarv3 [17,18] and MaxSolver [19], two other state-of-the-
art Max-SAT solvers. The experimentations have been done on a 2.6 GHz Bi-Opteron
with 2 GB of RAM under Linux OS (kernel 2.6).

5.1 Size of the Inconsistent Clause-Subsets

We use a heuristic based on the size of an inconsistent subset S of clauses to indicate
whether S is in case 3 or not. We empirically determine that S should probably be in
case 3 if it contains at most five clauses of which at most two unit clauses. Figure 2
shows the influence of the storage of inconsistent clause-subsets according to their size.
It compares the mean run-time of the maxsatz14 solver on sets of 2-SAT and 3-SAT
formulae with 80 variables when the #clauses

#vars ratio increases, where the decideStorage

predicate in algorithm 1 chooses to store inconsistent subsets with at most five clauses
(maxsatz9/14icss(5)), of which at most two unit clauses, and with all inconsistent
subsets (maxsatz9/14icss(yes)), with at most two unit clauses, respectively. The rea-
son of limiting the number of unit clauses in a stored inconsistent subset is that an unit

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60

tim
e

(s
ec

)

#clauses/#variables

maxsatz14icss(yes)
maxsatz14

maxsatz14icss(5)

(a) 2-SAT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 8 10 12 14 16

tim
e

(s
ec

)

#clauses/#variables

maxsatz14
maxsatz14icss(5)

maxsatz14icss(yes)

(b) 3-SAT

Fig. 2. Mean computation time of the maxsatz14 solver with or without inconsistent subsets
storage for randomly generated 2-SAT formulae and 3-SAT formulae with 80 variables with the
ratio #clauses

#vars
from 10 to 80 (2-SAT) and from 7 to 17 (3-SAT). The decideStorage heuristic

chooses to store all inconsistent subsets (maxsatz14icss(yes)) or the inconsistent subsets of at
most five clauses (maxsatzicss(5)) with at most two unit clauses, respectively.

3 see http://www.iiia.csic.es/∼maxsat06/

http://www.iiia.csic.es/~maxsat06/

234 S. Darras et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 10 20 30 40 50 60

tim
e

(s
ec

)

#clauses/#variables

maxsatz9
maxsatz9icss(5)

toolbarv3

(a) 80 variables

 0

 50000

 100000

 150000

 200000

 250000

 10 15 20 25 30

tim
e

(s
ec

)

#clauses/#variables

maxsatz9
maxsatz9icss(5)

toolbarv3

(b) 100 variables

Fig. 3. mean computation time of maxsatz9 and maxsatz9icss(5) on sets of randomly gener-
ated 2-SAT formulae of 80 and 100 variables according to the ratio #clauses

#vars
from 10 to 60/30

clause is likelier to be involved in other inconsistent subsets detected by unit propaga-
tion, so that inconsistent subsets containing more than two unit clauses should not be
stored, since these unit clauses can be used to possibly detect more inconsistent sub-
sets after branching. We have developed a maxsatz9/14icss(yes) without limit on the
number of unit clauses which gives the worst results on each instance. Note that both
maxsatz14icss(5) and maxsatz14icss(yes) are based on maxsatz14, the currently
fastest solver for Max-2-SAT and Max-3-SAT in our knowledge.

Considering the 2-SAT curve with high #clauses
#vars ratios in Figure 2(a), the mean

time is more than twice faster when the decideStorage predicate chooses to store sub-
sets with a low number of clauses (see maxsatz14icss(5) curve) than for an unlim-
ited storage (see maxsatz14icss(yes) curve). Moreover, at this point of the curve, the
search-tree size of maxsatz14icss(yes) is almost three times bigger than the search-
tree size of maxsatz14icss(5) (see table 4). Note that maxsatz14icss(yes) is slower
than maxsatz14 in which no inconsistent subset is stored, but maxsatz14icss(5) is
faster than maxsatz14.

For 3-SAT formulae, it is less easy to find an inconsistent subset of clauses, and
it is less probable that a clause in an inconsistent subset to be involved in a smaller
subset of clauses. So we observe in Figure 2(b), that it is better to store all detected in-
consistent subsets of clauses and maxsatz14icss(yes) is the best option. Nevertheless,
maxsatz14icss(5) is not far from maxsatz14icss(yes) and is faster than maxsatz14.

We finally note in Figure 2 that when the #clauses
#vars ratio of the formula increases,

the gain with the inconsistent subsets storage becomes more significant in terms of
computation time.

5.2 Comparative Results

Figure 3 and Figure 4 compare maxsatz9icss(5), maxsatz9, and Toolbarv3 on Max-
2-SAT and Max-3-SAT problems. It is clear that with the inconsistent clause-subsets
storage, maxsatz9icss(5) is significantly faster than maxsatz9. Using powerful infer-
ence rules, Toolbarv3 is faster than maxsatz9icss(5) and maxsatz9 for Max-2-SAT,
but both maxsatz9icss(5) and maxsatz9 are faster than Toolbarv3 for Max-3-SAT.

Figure 5 and Figure 6 compare maxsatz14, maxsatz14icss(5) and Toolbarv3 on
Max-2-SAT and Max-3-SAT problems. Both maxsatz14, maxsatz14icss(5) are sub-

On Inconsistent Clause-Subsets for Max-SAT Solving 235

 0

 2000

 4000

 6000

 8000

 10000

 8 10 12 14 16

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz9

maxsatz9icss(5)

(a) 70 variables

 0

 5000

 10000

 15000

 20000

 25000

 8 9 10 11 12 13 14

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz9

maxsatz9icss(5)

(b) 80 variables

Fig. 4. Mean computation time of maxsatz9, maxsatz9icss(5) and Toolbarv3 on sets of ran-
domly generated 3-SAT formulae which consists of 70 and 80 variables according to the ratio
#clauses
#vars

from 7 to 17/15

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz14

maxsatz14icss(5)

(a) 80 variables

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 15 20 25 30

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz14
maxsatz14icss(5)

(b) 100 variables

Fig. 5. Mean computation time maxsatz14, maxsatz14icss(5) and Toolbarv3 on sets of ran-
domly generated 2-SAT formulae of 80 and 100 variables according to the ratio #clauses

#vars
from

10 to 60/30

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8 10 12 14 16

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz14

maxsatz14icss(5)

(a) 70 variables

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 8 9 10 11 12 13 14

tim
e

(s
ec

)

#clauses/#variables

toolbarv3
maxsatz14

maxsatz14icss(5)

(b) 80 variables

Fig. 6. Mean computation time of maxsatz14, maxsatz14icss(5) and Toolbarv3 on sets of
randomly generated 3-SAT formulae which consists of 70 and 80 variables according to the ratio
#clauses
#vars

from 7 to 17/15

236 S. Darras et al.

Table 1. Average computation time improvement (in %) provided by the icss(5) approach when
it is grafted to the two best versions of maxsatz on sets of randomly generated 3-SAT formulae
which consists of 60, 70 and 80 variables and for ratio #clauses

#vars
from 7.14 to 22.85

solver/#clauses
#vars 7.14 8.57 10.00 11.43 12.85 14.28 15.71 17.15 18.56 20.00 21.43 22.85

60v/maxsatz9 11 14 18 22 25 29 32 37 40 43 46 49
70v/maxsatz9 11 15 18 20 24 27 30 34 38 42 46
80v/maxsatz9 12 15 18 20 24 25 29 33
60v/maxsatz14 5 5 9 9 13 16 18 21 24 25 27 29
70v/maxsatz14 3 5 6 9 12 15 17 20 22 24 26
80v/maxsatz14 3 5 7 8 11 14 16 19

Table 2. Average computation time improvement (in %) provided by the icss(5) approach when
it is grafted to the two best versions of maxsatz on sets of randomly generated 2-SAT formulae
which consists of 60 to 100 variables and for ratio #clauses

#vars
from 10 to 80

solver/#clauses
#vars 10 12 15 17 20 30 40 50 60 70 80

60v/maxsatz9 34 39 54 59 65 76 80 81 84 82 83
70v/maxsatz9 36 50 55 57 69 83 86 88 88 87
80v/maxsatz9 42 52 57 64 72 84 89 89 90
100v/maxsatz9 47 50 68 72 83
60v/maxsatz14 2 1 5 3 7 5 6 7 7 6 8
70v/maxsatz14 −6 2 9 8 6 10 9 9 9 10
80v/maxsatz14 13 8 10 7 12 13 11 10 11
100v/maxsatz14 0 11 16 19 17 18

stantially faster than Toolbarv3 for Max-2-SAT and Max-3-SAT problems and max-
satz14icss(5) is significantly faster than maxsatz14.

Table 2 and Table 1 show the average computation time improvement (in %) of
maxsatz9icss(5) and maxsatz14icss(5) compared with maxsatz9 and maxsatz14,
respectively, for Max-2-SAT and Max-3-SAT problems. It is clear that the improvement
becomes more important when the #clauses

#vars increases.
Table 4 and Table 3 compare the size of search-trees of maxsatz9, maxsatz14,

maxsatz9icss(5), maxsatz14icss(5), and Toolbarv3 for Max-2-SAT and Max-3-SAT
problems. The inconsistent clause subsets storage allows maxsatz9icss(5) and max-
satz14icss(5) to compute better lower bounds and to have smaller search-trees.

The comparison of maxsatz14 and maxsatz14icss(5) deserves more discussions.
maxsatz14 is maxsatz9 augmented with 4 inference rules [4]. An inference rule in
maxsatz14 transforms a special inconsistent subset of binary and unit clauses into an
empty clause and a number of other clauses, so that the conflict represented by the
empty clause does not need to be re-detected in the subtree and the new clauses can
be used to detect other conflicts. For example, Rule 3 in maxsatz14 transforms the
set of clauses {x1, x2, ¬x1 ∨ ¬x2} into an empty clause and a binary clause x1 ∨ x2.
The empty clause contributes to increase the lower bound by one, and the binary clause
x1 ∨ x2 can be used to detect other conflicts.

So the empty clause made explicit using an inference rule in maxsatz14 makes the
lower bound computation in different search-tree nodes more incremental, since the
conflict does not need to be re-detected in the subtree. The new added clauses using the
inference rule allows to improve the lower bound.

The inference rules implemented in Toolbarv3 are independently designed for
weighted Max-SAT, and are similar to those implemented in maxsatz14 when applied

On Inconsistent Clause-Subsets for Max-SAT Solving 237

Table 3. Average search-tree size (in 104 nodes) of Toolbarv3, maxsatz9, maxsatz9icss(5),
maxsatz14 and maxsatz14icss(5) on sets of randomly generated 3-SAT formulae of 60, 70
and 80 variables with ratio #clauses

#vars
from 8.57 to 22.85

Algorithms/#clauses
#vars 8.57 10.00 12.85 14.28 17.15 20.00 21.43 22.85

60v/maxsatz9 1.21 3.22 14.61 27.44 59.65 130.18 180.79 262.86
60v/maxsatz9icss(5) 1.18 3.13 14.13 26.12 53.80 109.98 148.24 209.32

60v/Toolbarv3 115.06 258.54 878.23 1, 279.87 2, 465.58 4, 034.10 4, 065.77 4, 439.90
60v/maxsatz14 1.20 2.54 9.88 17.32 33.03 64.01 84.47 114.44

60v/maxsatz14icss(5) 1.19 2.52 9.83 17.19 32.70 63.27 82.96 112.02
70v/maxsatz9 4.93 19.61 94.64 166.50 471.22 1, 397.55 2, 188.83

70V/maxsatz9icss(5) 4.75 19.01 92.35 161.23 436.11 1, 199.83 1, 796.31
70v/Toolbarv3 987.95 2, 615.78 4, 228.95 5, 229.80 3, 941.12 3, 941.12 3, 941.12
70v/maxsatz14 4.80 14.84 63.75 104.27 268.73 694.23 1, 012.11

70v/maxsatz14icss(5) 4.78 14.83 63.31 103.21 264.87 681.41 994.00
80v/maxsatz9 22.57 113.01 644.61 1, 303.28 5, 388.91

80v/maxsatz9icss(5) 21.64 109.11 632.50 1, 278.88 5, 095.61
60v/Toolbarv3 5, 629.36 7, 927.10 4, 530.50 4, 530.50
80v/maxsatz14 19.67 81.28 409.06 716.40 2, 965.09

80v/maxsatz14icss(5) 19.53 80.80 406.62 710.32 2, 921.41

Table 4. Average search-tree size (in 104 nodes) of Toolbarv3, maxsatz9, maxsatz9icss(5),
maxsatz14 and maxsatz14icss(5) on sets of randomly generated 2-SAT formulae of 60 to 100
variables with ratio #clauses

#vars
from 10 to 60

Algorithms/#clauses
#vars 10 12 15 17 20 30 40 50 60

60v/maxsatz9 0.1 0.2 0.6 1.1 1.3 4.7 8.3 13.8 19.0
60v/maxsatz9icss(5) 0.1 0.1 0.4 0.7 0.8 2.2 3.6 5.5 7.0

60v/Toolbarv3 0.8 1.1 1.8 3.2 3.0 5.6 8.1 12.9 11.8
60v/maxsatz14 0.03 0.04 0.09 0.15 0.14 0.27 0.44 0.66 0.71

60v/maxsatz14icss(5) 0.03 0.04 0.09 0.1 0.1 0.3 0.4 0.6 0.7
70v/maxsatz9 0.3 0.5 2.4 4.1 10.6 54.1 131.3 282.6 434.3

70v/maxsatz9icss(5) 0.2 0.4 0.1 0.3 5.6 18.3 41.7 75.1 121.2
70v/Toolbarv3 2.1 2.6 6.3 12.4 15.6 48.3 46.3 88.3 109.1
70v/maxsatz14 0.07 0.09 0.3 0.4 0.7 1.9 2.7 4.9 7.1

70v/maxsatz14icss(5) 0.08 0.1 0.3 0.4 0.8 1.8 2.6 4.7 6.8
80v/maxsatz9 1.3 5.1 12.3 21.2 25.6 238.9 1, 238.2 2, 161.4 3, 317.6

80v/maxsatz9icss(5) 1.1 4.0 7.9 11.4 11.2 71.5 283.4 523.1 734, 6
80v/Toolbarv3 14.3 25.7 43.5 51.31 35.19 166.39 345.93 578.73 322.58
80v/maxsatz14 0.3 0.5 1.2 1.5 1.5 6.3 19.2 24.9 27.8

80v/maxsatz14icss(5) 0.2 0.5 1.2 1.5 1.4 6.1 18.4 23.7 25.7
100v/maxsatz9 33.6 69.4 768.4 1, 078.4 4, 364.8 12, 348.8

100v/maxsatz9icss(5) 26.0 48.2 324.9 404.6 1, 040.2 2, 349.1
100v/Toolbarv3 236.8 528.8 2, 235.3 1, 489.5 3, 307.4 8, 513.2
100v/maxsatz14 3.8 7.2 32.1 40.8 95.6 258.3

100v/maxsatz14icss(5) 4.1 7.0 29.7 36.9 88.8 233.8

to (unweighted) Max-SAT. Note that all these inference rules are limited to unit and
binary clauses.

Unfortunately, the inference rules implemented in maxsatz14 and Toolbarv3 are for
special subsets of clauses and cannot be applied to transform all inconsistent subsets of
clauses. For example, no inference rule is applied in maxsatz14 and Toolbarv3 to the
inconsistent clause set {x1, x2, x3, ¬x1 ∨ ¬x2 ∨ ¬x3}, which has to be re-detected in
every node of a search-tree. This set is indeed equivalent to the set {∅, x1 ∨ x2, x1 ∨
x3, ¬x1 ∨ x2 ∨ x3}, which is time-consuming to detect and to treat. maxsatz14 is
limited to detect some special patterns which are shown practically efficient as inference
rules.

238 S. Darras et al.

Table 5. Mean computation time (in sec.) of maxsatz9, maxsatz9icss(5), maxsatz14,
maxsatz14icss(5), Toolbarv3 and MaxSolver on some families of Max-Cut and Max-SAT
evaluation benchmarks

Benchmarks maxsatz9 maxsatz9icss(5) Toolbarv3 maxsolver maxsatz14 maxsatz14icss(5)
brock200 98.43 38.40 40.33 18, 902 7.58 6.58
brock400 350.22 141.00 118.88 > 25, 200 27.22 24.49
brock800 53.47 19.37 16.74 18, 917 3.21 2.90

c − fat200 1.09 0.48 0.33 2.46 0.07 0.08
c − fat500 10, 743.42 10, 658.90 12, 737 12, 615.07 7, 313.89 7, 353.20
hamming6 12, 605 12, 601 12, 600 > 25, 200 12, 600.27 12, 600.22
hamming8 12, 603.77 12, 601.53 12, 600 12, 609.13 12, 600.22 12, 600.20
hamming10 15, 013.98 14, 009.33 13, 337.14 > 25, 200 12, 858.69 12, 803.17
johnson16 7.40 3.40 1.00 > 25, 200 0.39 0.30
johnson32 2, 535.20 1, 066.03 311.27 > 25, 200 127.13 111.03

keller 116.13 45.21 13.02 > 25, 200 4.47 3.39
maxcut60420 11.68 2.99 5.88 122.90 0.90 0.88
maxcut60500 68.76 15.86 27.01 523.37 3.00 2.94
maxcut60560 210.64 47.47 67.27 > 25, 200 6.40 6.03
maxcut60600 365.98 81.89 96.24 > 25, 200 9.20 8.58

phat300 164.27 63.14 81.92 8, 400.58 10.82 8.60
phat500 356.30 142.48 165.31 8, 404.01 33.06 31.07
phat700 123.76 49.01 54.66 8, 400.79 14.60 12.13
phat1000 51.28 20.09 21.80 8, 401.15 3.56 2.89
san2000 4, 033.84 1, 878.20 1, 345.57 > 25, 200 451.01 404.92
san4000 1, 250.98 561.10 434.97 20, 161.99 127.99 113.26
san1000 4.03 1.62 1.25 15.28 0.23 0.22
sanr200 1, 354.37 617.36 516.93 > 25, 200 134.10 116.50
sanr400 42.63 15.28 13.17 12, 606, 03 2.49 1.80

t4pm3 − 6666.spn 0.80 0.03 10.18 0.45 0.05 0.04
t5pm3 − 7777.spn 209.82 51.96 > 25, 200 15, 336.68 116.72 65.70

ramk3n10.ra0 262.230 261.850 594.46 > 25, 200 293.430 294.530
ramk3n9.ra0 0.120 0.120 0.27 > 25, 200 0.140 0.140

spinglass42 .pm3 0.160 0.070 17.81 > 25, 200 0.160 0.120
spinglass510 .pm3 190.310 54.200 > 25, 200 > 25, 200 101.290 60.910
spinglass51 .pm3 394.140 108.020 > 25, 200 > 25, 200 229.330 137.820
spinglass53 .pm3 309.470 87.590 > 25, 200 > 25, 200 160.510 105.610
spinglass55 .pm3 105.100 25.300 > 25, 200 > 25, 200 45.310 25.530
spinglass56 .pm3 578.410 154.120 > 25, 200 > 25, 200 343.910 206.920
spinglass57 .pm3 272.320 61.110 > 25, 200 > 25, 200 117.880 65.090
spinglass59 .pm3 162.930 47.600 > 25, 200 > 25, 200 102.170 62.310

Our inconsistent clause subsets storage approach allows to complete the inference
rules. In other words, when no inference rule is applicable, the inconsistent clause
subset can be stored to make the lower bound computation incremental and to im-
prove the lower bound. The experimental results show the effectiveness of our
approach.

We have also tested MaxSolver [19], which is too slow to be showed in Figures 3,
4, 5 and 6, and in Tables 2, 1, 4, and 3.

Table 5 compares MaxSolver, maxsatz9, maxsatz14, maxsatz9icss(5), max-
satz14icss(5), and Toolbarv3 on max-cut instances submitted to the Max-SAT evalu-
ation 2006. Observe that maxsatz9icss(5) is significantly faster than maxsatz9 and
maxsatz14icss(5) is also generally faster than Toolbarv3 and maxsatz14 as the in-
consistent clause-subsets storage complete inference rules in maxsatz14.

6 Conclusion

We study the detection of disjoint inconsistent subsets of clauses in maxsatz9 and
maxsatz14 and find that the detection could be more incremental and that the ordering

On Inconsistent Clause-Subsets for Max-SAT Solving 239

of initial unit clauses in a CNF formula is important for the lower bound computation.
We then propose an approach to store some inconsistent clause subsets at a node for its
subtrees. The selection of a clause subset S to be stored is determined by a heuristic
based on the size of the clause subset, estimating the probability that the clauses of S
are used to detect smaller inconsistent subsets than S in the subtrees. The experimental
results show that our approach improves maxsatz9 and maxsatz14 in terms of run-
time and search-tree size, by making the lower bound more incremental and by inducing
a natural ordering of initial unit clauses in a CNF formula. Our approach completes the
inference rules in maxsatz14 and could be also used in any Max-SAT solver which
computes the lower bound by detecting disjoint inconsistent subsets of clauses.

As future work we also plan to apply the incremental lower bound to Max-SAT
solvers that deal with the many-valued clausal formalism defined in [20,21,22] and to
partial Max-SAT solvers [23].

References

1. Watson, J., Beck, J., Howe, A., Whitley, L.: Toward an understanding of local search cost in
job-shop scheduling (2001)

2. Iwama, K., Kambayashi, Y., Miyano, E.: New bounds for oblivious mesh routing. In: Euro-
pean Symposium on Algorithms, pp. 295–306 (1998)

3. Zhang, Y., Zha, H., Chao-Hsien, C., Ji, X., Chen, X.: Towards inferring protein interactions:
Challenges and solutions. EURASIP Journal on Applied Signal Processing (2005)

4. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Journal of Artificial Intelli-
gence Research (to appear, 2007)

5. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI (2006)
6. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for max-sat solving. In:

ijcai07 (2007)
7. Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satis-

fiability. Artificial Intelligence 164(1-2), 47–80 (2005)
8. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted csp. In:

IJCAI, pp. 239–244 (2003)
9. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in

branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005)

10. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for max-sat. In: AAAI, pp. 86–91 (2006)

11. Wallace, R., Freuder, E.: Comparative studies of constraint satisfaction and davis-putnam
algorithms for maximum satisfiability problems. In: Cliques, Colouring and Satisfiability,
pp. 587–615 (1996)

12. Wallace, R.J.: Directed arc consistency preprocessing. In: Constraint Processing, Selected
Papers, pp. 121–137. Springer, London, UK (1995)

13. Larrosa, J., Meseguer, P., Schiex, T.: Maintaining reversible dac for max-csp. Artif. In-
tell. 107(1), 149–163 (1999)

14. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted CSP. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

15. Shen, H., Zhang, H.: Study of lower bounds functions for max-2-sat. In: AAAI 2004, pp.
185–190 (2004)

16. Alsinet, T., Manyà, F., Planes, J.: Improved exact solver for weighted Max-SAT. In: Bacchus,
F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer, Heidelberg (2005)

17. de Givry, S.: Singleton consistency and dominance for weighted csp. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

240 S. Darras et al.

18. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted csp. In:
IJCAI 2003 (2003)

19. Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satis-
fiability. Artif. Intell. 164(1-2), 47–80 (2005)

20. Béjar, R., Manyà, F.: Solving combinatorial problems with regular local search algorithms.
In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp.
33–43. Springer, Heidelberg (1999)

21. Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical logic. In:
ISMVL’01, pp. 221–226 (2001)

22. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems
with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542,
pp. 1–15. Springer, Heidelberg (2005)

23. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems. Journal of
Heuristics 12(4–5), 375–392 (2006)

An Abstract Interpretation Based Combinator

for Modelling While Loops in Constraint
Programming

Tristan Denmat1, Arnaud Gotlieb2, and Mireille Ducassé1

1 IRISA/INSA
2 IRISA/INRIA

Campus universitaire de Beaulieu 35042 Rennes Cedex, France
{denmat,gotlieb,ducasse}@irisa.fr

Abstract. We present the w constraint combinator that models while
loops in Constraint Programming. Embedded in a finite domain con-
straint solver, it allows programmers to develop non-trivial arithmetical
relations using loops, exactly as in an imperative language style. The
deduction capabilities of this combinator come from abstract interpreta-
tion over the polyhedra abstract domain. This combinator has already
demonstrated its utility in constraint-based verification and we argue
that it also facilitates the rapid prototyping of arithmetic constraints
(e.g. power, gcd or sum).

1 Introduction

A strength of Constraint Programming is to allow users to implement their own
constraints. CP offers many tools to develop new constraints. Examples include
the global constraint programming interface of SICStus Prolog clp(fd) [5], the
ILOG concert technology, iterators of the GECODE system [17] or the Con-
straint Handling Rules [8]. In many cases, the programmer must provide prop-
agators or filtering algorithms for its new constraints, which is often a tedious
task. Recently, Beldiceanu et al. have proposed to base the design of filtering al-
gorithms on automaton [4] or graph description [3], which are convenient ways of
describing global constraints. It has been pointed out that the natural extension
of these works would be to get closer to imperative programming languages [4].

In this paper, we suggest to use the generic w constraint combinator to model
arithmetical relations between integer variables. This combinator provides a
mechanism for prototyping new constraints without having to worry about any
filtering algorithm. Its originality is to model iterative computations: it brings
while loops into constraint programming following what was done for logic pro-
gramming [16]. Originally, the w combinator has been introduced in [9] in the
context of program testing but it was not deductive enough to be used in a more
general context. In this paper, we base the generic filtering algorithm associated
to this combinator on case-based reasoning and Abstract Interpretation over the
polyhedra abstract domain. Thanks to these two mechanisms, w performs non-
trivial deductions during constraint propagation. In many cases, this combinator

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 241–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 T. Denmat, A. Gotlieb, and M. Ducassé

can be useful for prototyping new constraints without much effort. Note that we
do not expect the propagation algorithms generated for these new constraints
to always be competitive with hand-written propagators.

We illustrate the w combinator on a relation that models y = xn. Note that
writing a program that computes xn is trivial whereas building finite domain
propagators for y = xn is not an easy task for a non-expert user of CP. Figure 1
shows an imperative program (in C syntax) that implements the computation
of xn, along with the corresponding constraint model that exploits the w com-
binator (in CLP(FD) syntax). In these programs, we suppose that N is positive
although this is not a requirement of our approach.

power(X,N){ power(X,N, Y) : −
Y = 1; w([X, 1, N], [Xin, Y in, Nin], [Xin, Y out, Nout], [, Y,],
while(N ≥ 1){ Nin # >= 1,

Y = Y ∗ X; [Y out # = Y in ∗ Xin,
N = N − 1}; Nout # = Nin − 1]).

return Y ; }

Fig. 1. An imperative program for y = xn and a constraint model

It is worth noticing that the w combinator is implemented as a global con-
straint. As any other constraint, it will be awoken as soon as X, N or Y have
their domain pruned. Moreover, thanks to its filtering algorithm, it can prune
the domains of these variables. The following request shows an example where
w performs remarkably well on pruning the domains of X, Y and N .

| ?- X in 8..12, Y in 900..1100, N in 0..10, power(X,N,Y).

N = 3, X = 10, Y = 1000

The w combinator has been implemented with the clp(fd) and clpq libraries
of SICStus prolog. The above computation requires 20ms of CPU time on an
Intel Pentium M 2GHz with 1 Gb of RAM.
Contributions. In this paper, we detail the pruning capabilities of the w com-
binator. We describe its filtering algorithm based on case-based reasoning and
fixpoint computations over polyhedra. The keypoint of our approach is to re-
interpret every constraint in the polyhedra abstract domain by using Linear
Relaxation techniques. We provide a general widening algorithm to guarantee
termination of the algorithm. The benefit of the w combinator is illustrated on
several examples that model non-trivial arithmetical relations.
Organization. Section 2 describes the syntax and semantics of the w operator.
Examples using the w operator are presented. Section 3 details the filtering
algorithm associated to the combinator. It points out that approximation is
crucial to obtain interesting deductions. Section 4 gives some background on
abstract interpretation and linear relaxation. Section 5 shows how we integrate
abstract interpretation over polyhedra into the filtering algorithm. Section 6
discusses some related work. Section 7 concludes.

An Abstract Interpretation Based Combinator for Modelling 243

2 Presentation of the w Constraint Combinator

This section describes the syntax and the semantics of the w combinator. Some
examples enlight how the operator can be used to define simple arithmetical
constraints.

2.1 Syntax

Figure 2 gives the syntax of the finite domain constraint language where the w
operator is embedded.

W ::= w(Lvar, Lvar,Lvar, Lvar, Arith Constr, LConstr)
If ::= if(Lvar, Arith Constr, LConstr, LConstr)
Lvar ::= var Lvar | ε
LConstr ::= Constr LConstr | ε
Constr ::= var in int..int | Arith Constr | W | If
Arith Constr ::= var Op Expr
Op ::= < | ≤ | > | ≥ | �= | =
Expr ::= Expr + Expr | Expr − Expr | Expr ∗ Expr | var | int

Fig. 2. syntax of the w operator

As shown on the figure, a w operator takes as parameters four lists of variables,
an arithmetic constraint and a list of constraints. Let us call these parameters
Init, In, Out, End, Cond and Do. The Init list contains logical variables repre-
senting the initial value of the variables involved in the loop. In variables are
the values at iteration n. Out variables are the values at iteration n + 1. End
variables are the values when the loop is exited. Note that Init and End vari-
ables are logical variables that can be constrained by other constraints. On the
contrary, In and Out are local to the w combinator and do not concretely exist
in the constraint store. Cond is the constraint corresponding to the loop condi-
tion whereas Do is the list of constraints corresponding to the loop body. These
constraints are such that vars(Cond) ∈ In and vars(Do) ∈ In ∪Out.

Line 2 of Figure 2 presents an if combinator. The parameter of type
Arith Constr is the condition of the conditional structure. The two parameters
of type LConstr are the “then” and “else” parts of the structure. Lvar is the
list of variables that appear in the condition or in one of the two branches. We
do not further describe this operator to focus on the w operator.

The rest of the language is a simple finite domain constraint programming
language with only integer variables and arithmetic constraints.

2.2 Semantics

The solutions of a w constraint is a pair of variable lists (Init, End) such that the
corresponding imperative loop with input values Init terminates in a state where
final values are equal to End. When the loop embedded in the w combinator
never terminates, the combinator has no solution and should fail. This point is
discussed in the next section.

244 T. Denmat, A. Gotlieb, and M. Ducassé

2.3 First Example: Sum

Constraint sum(S,I), presented on Figure 3, constrains S to be equal to the
sum of the integers between 1 and I: S =

∑n
i=1 i

sum(I){
S = 0;
while(I > 0){

S = S + I;
I = I - 1;

}
return S;

sum(S,I) :-
I > 0,
w([0,I],[In,Nin],[Out,Nout],[S,_],

Nin > 0,
[Out = In + Nin,
Nout = Nin - 1]).

Fig. 3. The sum constraint derived from the imperative code

The factorial constraint can be obtained by substituting the line
Out = In + Nin by Out = In * Nin and replacing the initial value 0 by 1.
Thanks to the w combinator, sum and factorial are easy to program as far as one
is familiar with imperative programming. Note that translating an imperative
function into a w operator can be done automatically.

2.4 Second Example: Greatest Common Divisor (gcd)

The second example is more complicated as it uses a conditional statement in the
body of the loop. The constraint gcd(X,Y,Z) presented on Figure 4 is derived
form the Euclidian algorithm. gcd(X,Y,Z) is true iff Z is the greatest common
divisor of X and Y .

gcd(X,Y){
while(X > 0){

if(X < Y){
At = Y;
Bt = X;

}else{
At = X;
Bt = Y;

}
X = At - Bt;
Y = Bt;

}
return Y;

gcd(X,Y,Z) :-
w([X,Y],[Xin,Yin],[Xout,Yout],[_,Z],

Xin > 0,
[if([At,Bt,Xin,Yin],

Xin < Yin,
[At = Yin, Bt = Xin],
[At = Xin, Bt = Yin]),

Xout = At - Bt,
Yout = Bt]).

Fig. 4. The gcd constraint

An Abstract Interpretation Based Combinator for Modelling 245

3 The Filtering Algorithm

In this section we present the filtering algorithm associated to the w operator
introduced in the previous section. The first idea of this algorithm is derived from
the following remark. After n iterations in the loop, either the condition is false
and the loop is over, or the condition is true and the statements of the body are
executed. Consequently, the filtering algorithm detailed on Figure 5 is basically
a constructive disjunction algorithm. The second idea of the algorithm is to use
abstract interpretation over polyhedra to over-approximate the behaviour of the
loop. Function w∞ is in charge of the computation of the over-approximation.
It will be fully detailed in Section 5.3.

The filtering algorithm takes as input a constraint store ((X, C, B) where X
is a set of variables, C a set of constraints and B a set of variable domains), the
constraint to be inspected (w(Init, In, Out, End, Cond, Do)) and returns a new
constraint store where information has been deduced from the w constraint. X̃
is the set of variables X extended with the lists of variables In and Out. B̃ is
the set of variable domains B extended in the same way.

Input:
A constraint, w(Init, In, Out, End, Cond, Do)
A constraint store, (X, C, B)

Output:
An updated constraint store

w filtering

1 (Xexit, Cexit, Bexit) := propagate(X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
2 if ∅ ∈ Bexit

3 return (X̃, C ∧ Init = In ∧ Cond ∧ Do ∧
4 w(Out, FreshIn,FreshOut, End, Cond′, Do′), B̃)

5 (X1, C1, B1) := propagate(X̃, C ∧ Init = In ∧ Cond ∧ Do, B̃)
6 (Xloop, Cloop, Bloop) := w∞(Out, FreshIn,FreshOut, End, Cond′, Do′, (X1, C1, B1))
7 if ∅ ∈ Bloop

8 return (X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
9 (X ′, C′, B′) := join((Xexit, Cexit, Bexit), (Xloop, Cloop, Bloop))Init,End

10 return (X ′, C′ ∧ w(Init, In, Out, End, Cond, Do), B′)

Fig. 5. The filtering algorithm of w

Line 1 posts constraints corresponding to the immediate termination of the
loop and launches a propagation step on the new constraint store. As the loop
terminates, the variable lists Init, In, Out and End are all equal and the condi-
tion is false (¬Cond). If the propagation results in a store where one variable has
an empty domain (line 2), then the loop must be entered. Thus, the condition
of the loop must be true and the body of the loop is executed: constraints Cond
and Do are posted (line 3). A new w constraint is posted (line 4), where the
initial variables are the variables Out computed at this iteration, In and Out
are replaced by new fresh variables (FreshIn and FreshOut) and End variables

246 T. Denmat, A. Gotlieb, and M. Ducassé

remain the same. Cond′ and Do′ are the constraints Cond and Do where vari-
able names In and Out have been substituted by FreshIn and FreshOut. The
initial w constraint is solved.

Line 5 posts constraints corresponding to the fact that the loop iterates one
more time (Cond and Do) and line 6 computes an over approximation of the
rest of the iterations via the w∞ function. If the resulting store is inconsistent
(line 7), then the loop must terminate immediately (line 8). Once again, the w
constraint is solved.

When none of the two propagation steps has led to empty domains, the stores
computed in each case are joined (line 9). The Init and End indices mean that
the join is only done for the variables from these two lists. After the join, the w
constraint is suspended and put into the constraint store (line 10).

We illustrate the filtering algorithm on the power example presented on Fig-
ure 1 and the following request:
X in 8..12, N in 0..10, Y in 10..14, power(X,N,Y).

At line 1, posted constraints are:
Xin = X, Nin = N, Yin = 1, Y = Yin, Nin < 1. This constraint store is in-
consistent with the domain of Y. Thus, we deduce that the loop must be entered
at least once. The condition constraint and loop body constraints are posted (we
omit the constraints Init = In):
N >= 1, Yout = 1*X, Xout = X, Nout = N-1 and another w combinator is
posted:

w([Xout,Yout,Nout],[Xin’,Yin’,Nin’],[Xout’,Yout’,Nout’],[_,Y,_],
Nin’>= 1,[Yout’ = Yin’*Xin’, Xout’ = Xin’, Nout’ = Nin’-1]).

Again, line 1 of the algorithm posts the constraints Y = Yout, Nout < 1. This
time, the store is not inconsistent. Line 5 posts the constraints
Nout >= 1, Yout’ = Yout*X, Xout’ = X, Nout’ = Nout - 1, which reduces
domains to Nout in 1..9, Yout’ in 64..144, Xout’ in 8..12. On line 6,
w∞([Xout’,Yout’,Nout’],FreshIn,FreshOut,[_,Y,_],Cond,Do,Store)
is used to infer Y >= 64. Store denotes the current constraint store. This is
a very important deduction as it makes the constraint store inconsistent with
Y in 10..14. So Nout < 1,Y = X is posted and the final domains are
N in 1..1, X in 10..12, Y in 10..12. This example points out that ap-
proximating the behaviour of the loop with function w∞ is crucial to deduce
information.

On the examples of sections 2.3 and 2.4 some interesting deductions are done.
For the sum example, when S is instantiated the value of I is computed. If no
value exist, the filtering algorithm fails. Deductions are done even with partial
information: sum(S,I), S in 50..60 leads to S = 55, I = 10.

On the request gcd(X,Y,Z), X in 1..10, Y in 10..20, Z in 1..1000, the fil-
tering algorithm reduces the bounds of Z to 1..10. Again, this deduction is done
thanks to the w∞ function, which infers the relations Z ≤ X and Z ≤ Y . If
we add other constraints, which would be the case in a problem that would use
the gcd constraint, we obtain more interesting deductions. For example, if we add
the constraint X = 2 ∗ Y , then the filtering algorithm deduces that Z is equal to

An Abstract Interpretation Based Combinator for Modelling 247

Y. On each of the above examples, the required computation time is not greater
than 30 ms.

Another important point is that approximating loops also allows the filtering
algorithm to fail instead of non terminating in some cases. Consider this very
simple example that infinitely loops if X is lower than 10.

loop(X,Xn) :-
w([X],[Xin],[Xout],[Xn],

X < 10,
[Xout = Xin])

Suppose that we post the following request, X < 0, loop(X,Xn), and apply the
case reasoning. As we can always prove that the loop must be unfolded, the
algorithm does not terminate. However, the filtering algorithm can be extended
to address this problem. The idea is to compute an approximation of the loop
after a given number of iterations instead of unfolding more and more the loop.
On the loop example, this extension performs well. Indeed the approximation
infers Xn < 0, which suffices to show that the condition will never be satisfied
and thus the filtering algorithm fails. If the approximation cannot be used to
prove non-termination, then the algorithm returns the approximation or con-
tinue iterating, depending on what is most valuable for the user: having a sound
approximation of the loop or iterating hoping that it will stop.

4 Background

This Section gives some background on abstract interpretation. It first presents
the general framework. Then, polyhedra abstract domain is presented. Finally,
the notion of linear relaxation is detailed.

4.1 Abstract Interpretation

Abstract Interpretation is a framework introduced in [6] for inferring program
properties. Intuitively, this technique consists in executing a program with ab-
stract values instead of concrete values. The abstractions used are such that
the abstract result is a sound approximation of the concrete result. Abstract
interpretation is based upon the following theory.

A lattice 〈L,�,�,	〉 is complete iff each subset of L has a greatest lower bound
and a least upper bound. Every complete lattice has a least element ⊥ and a
greatest element �. An ascending chain p1 � p2 � . . . is a potentially infinite
sequence of ordered elements of L. A chain eventually stabilizes iff there is an i
such that pj = pi for all j ≥ i. A lattice satisfies the ascending chain condition
if every infinite ascending chain eventually stabilizes. A function f : L → L is
monotone if p1 � p2 implies f(p1) � f(p2). A fixed point of f is an element p
such that f(p) = p. In a lattice satisfying ascending chain condition, the least
fixed point lfp(f) can be computed iteratively: lfp(f) =

⊔
i≥0 f i(⊥).

248 T. Denmat, A. Gotlieb, and M. Ducassé

The idea of abstract interpretation is to consider program properties at each
program point as elements of a lattice. The relations between the program prop-
erties at different locations are expressed by functions on the lattice. Finally,
computing the program properties consists in finding the least fixed point of a
set of functions.

Generally, interesting program properties at a given program point would be
expressed as elements of the lattice 〈P(N),⊆,∩,∪〉 (if variables have their val-
ues in N). However, computing on this lattice is not decidable in the general case
and the lattice does not satisfy the ascending chain condition. This problem often
appears as soon as program properties to be inferred are not trivial. This means
that the fixed points must be approximated. There are two ways for approximating
fixed points. A static approach consists in constructing a so-called abstract lattice
〈M,�M ,�M ,	M 〉 with a Galois connection 〈α, γ〉 from L to M . α : L→M and
γ : M → L are respectively an abstraction and concretization function such that
∀l ∈ L, l � γ(α(l)) and ∀m ∈ M, m �M α(γ(m)). A Galois connection ensures
that fixed points in L can be soundly approximated by computing in M . A dy-
namic approximation consists in designing a so-called widening operator (noted
∇) to extrapolate the limits of chains that do not stabilize.

4.2 Polyhedra Abstract Domain

One of the most used instanciation of abstract interpretation is the interpretation
over the polyhedra abstract domain, introduced in [7]. On this domain, the set of
possible values of some variables is abstracted by a set of linear constraints. The
solutions of the set of linear constraints define a polyhedron. Each element of the
concrete set of values is a point in the polyhedron. In this abstract domain, the
join operator of two polyhedra is the convex hull. Indeed, the smallest polyhedron
enclosing two polyhedra is the convex hull of these two polyhedra. However,
computing the convex hull of two polyhedra defined by a set of linear constraints
requires an exponential time in the general case.

Recent work suggest to use a join operator that over-approximates the convex
hull [15]. Figure 6 shows two polyhedra with their convex hull and weak join.

Intuitively, the weak join of two polyhedra is computed in three steps. Enlarge
the first polyhedron without changing the slope of the lines until it encloses the
second polyhedron. Enlarge the second polyhedron in the same way. Do the
intersection of these two new polyhedra.

In many works using abstract interpretation on polyhedra, the standard widen-
ing is used. The standard widening operator over polyhedra is computed as fol-
lows: if P and Q are two polyhedra such that P � Q. Then, the widening P∇Q

Fig. 6. Convex Hull vs Weak Join

An Abstract Interpretation Based Combinator for Modelling 249

is obtained by removing from P all constraints that are not entailed in Q. This
widening is efficient but not very accurate. More accurate widening operators
are given in [1].

4.3 Linear Relaxation of Constraints

Using polyhedra abstract interpretation requires us to interpret non linear con-
straints on the domain of polyhedra. Existing techniques aim at approximating
non linear constraints with linear constraints. In our context, the only sources
of non linearity are multiplications, strict inequalities and disequalities. These
constraints can be linearized as follows:

Multiplications. Let X and X be the lower and upper bounds of variable
X . A multiplication Z = X ∗ Y can be approximated by the conjunction of
inequalities [12]:

(X −X)(Y − Y) ≥ 0 ∧ (X −X)(Y − Y) ≥ 0

∧ (X −X)(Y − Y) ≥ 0 ∧ (X −X)(Y − Y) ≥ 0

This constraint is linear as the product X ∗Y can be replaced by Z. Fig.7 shows
a slice of the relaxation where Z = 1. The rectangle corresponds to the bounding
box of variables X, Y , the dashed curve represents exactly X ∗ Y = 1, while the
four solid lines correspond to the four parts of the inequality.

Fig. 7. Relaxation of the multiplication constraint

Strict inequalities and disequalities. Strict inequalities X < V ar (resp.
X > V ar) can be rewritten without approximation into X ≤ V ar−1 (resp. X ≥
V ar + 1), as variables are integers. Disequalities are considered as disjunctions
of inequalities. For example, X �= Y is rewritten into X =< Y −1∨X >= Y +1.
Adding the bounds constraints on X and Y and computing the convex hull of
the two disjuncts leads to an interesting set of constraints. For example, if X
and Y are both in 0..10, the relaxation of X �= Y is X + Y ≥ 1 ∧X + Y ≤ 19.

5 Using Abstraction in the Filtering Algorithm of w

In this section, we detail how abstract interpretation is integrated in the w
filtering algorithm. Firstly, we show that solutions of w can be computed with a
fixed point computation. Secondly, we explain how abstract interpretation over
polyhedra allows us to compute an abstraction of these solutions. Finally, the
implementation of the w∞ function is presented.

250 T. Denmat, A. Gotlieb, and M. Ducassé

5.1 Solutions of w as the Result of a Fixed Point Computation

Our problem is to compute the set of solutions of a w constraint:

Z = {((x1, . . . , xn), (xf
1 , . . . , xf

n)) |
w((x1, . . . , xn), In, Out, (xf

1 , . . . , xf
n), Cond, Do)}

Let us call Si the possible values of the loop variables after i iterations in a loop.
When i = 0 possible variables values are the values that satisfy the domain
constraint of Init variables. We call Sinit this set of values. Thus S0 = Sinit. Let
us call T the following set:

T = {((x1, . . . , xn), (x′1, . . . , x
′
n)) | (x1, . . . , xn) ∈ Sinit ∧ ∃i(x′1, . . . , x′n) ∈ Si}

T is a set of pairs of lists of values (l, m) such that initializing variables of the
loops with values l and iterating the loop a finite number of times produce the
values m. The following relation holds

Z = {(Init, End) | (Init, End) ∈ T ∧End ∈ sol(¬Cond)}

where sol(C) denotes the set of solutions of a constraint C. The previous formula
expresses that the solutions of the w constraint are the pairs of lists of values
(l, m) such that initializing variables of the loops with values l and iterating
the loop a finite number of times leads to some values m that violate the loop
condition.

In fact, T is the least fixed point of the following equation:

T k+1 = T k ∪ {(Init, Y) | (Init, X) ∈ T k ∧ (X, Y) ∈ sol(Cond ∧Do})} (1)
T 0 = {(Init, Init) | Init ∈ Sinit} (2)

Cond and Do are supposed to involve only In and Out variables. Thus, com-
posing T k and sol(Cond ∧ Do) is possible as they both are relations between
two lists of variables of length n.

Following the principles of abstract interpretation this fixed point can be
computed by iterating Equation 1 starting from the set T 0 of Equation 2.

For the simple constraint: w([X],[In],[Out],[Y],In < 2,[Out = In+1])
and with the initial domain X in 0..3, the fixed point computation proceeds
as follows.

T 0 = {(0, 0), (1, 1), (2, 2), (3, 3)}
T 1 = {(0, 1), (1, 2)} ∪ T 0

= {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (3, 3)}
T 2 = {(0, 1), (0, 2), (1, 2)} ∪ T 1

= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (3, 3)}
T 3 = T 2

An Abstract Interpretation Based Combinator for Modelling 251

Consequently, the solutions of the w constraint are given by

Z = {(X, Y) | (X, Y) ∈ T 3 ∧ Y ∈ sol(In ≥ 2)}
= {(0, 2), (1, 2), (2, 2), (3, 3)}

Although easy to do on the example, iterating the fixed point equation is unde-
cidable because Do can contain others w constraints. Thus, Z is not computable
in the general case.

5.2 Abstracting the Fixed Point Equations

We compute an approximation of T using the polyhedra abstract domain. Let
P be a polyhedron that over-approximates T , which means that all elements of
T are points of the polyhedron P . Each list of values in the pairs defining T has
a length n thus P involves 2n variables. We represent P by the conjunction of
linear equations that define the polyhedron.

The fixed point equations become:

P k+1(Init, Out) = P k 	 (P k(Init, In) ∧Relax(Cond ∧Do))Init,Out (3)
P 0(Init, Out) = α(Sinit) ∧ Init = Out (4)

Compared to equations 1 and 2, the computation of the set of solutions of
constraint C is replaced by the computation of a relaxation of the constraint
C. Relax is a function that computes linear relaxations of a set of constraints
using the relaxations presented in Section 4.3. PL1,L2 denotes the projection
of the linear constraints P over the set of variables in L1 and L2. Projecting
linear constraints on a set of variables S consists in eliminating all variables not
belonging to S. Lists equality L = M is a shortcut for ∀i ∈ [1, n]L[i] = M [i],
where n is the length of the lists and L[i] is the ith element of L. P1	P2 denotes
the weak join of polyhedron P1 and P2 presented in Section 4.2.

In Equation 4, Sinit is abstracted with the α function. This function com-
putes a relaxation of the whole constraint store and projects the result on Init
variables.

An approximation of the set of solutions of a constraint w is given by

Q(Init, In) = P (Init, In) ∧Relax(¬Cond) (5)

We detail the abstract fixed point computation on the same example as in
the previous section. As the constraints Cond and Do are almost linear their
relaxation is trivial: Relax(Cond ∧Do) = Xin ≤ 1, Xout = Xin + 1. Xin is only
constrained by its domain, thus α(Sinit) = Xin ≥ 0 ∧Xin ≤ 3. The fixed point
is computed as follows

P 0(Xin, Xout) = Xin ≥ 0 ∧Xin ≤ 3 ∧Xin = Xout

P 1(Xin, Xout) = (P 0(Xin, X0) ∧X0 ≤ 1 ∧Xout = X0 + 1)Xin,Xout

	 P 0(Xin, Xout)
= (Xin ≥ 0 ∧Xin ≤ 1 ∧Xout = Xin + 1) 	 P 0(Xin, Xout)
= Xin ≥ 0 ∧Xin ≤ 3 ∧Xout ≤ Xin + 1 ∧Xout ≥ Xin

252 T. Denmat, A. Gotlieb, and M. Ducassé

P 2(Xin, Xout) = (P 1(Xin, X1) ∧X1 ≤ 1 ∧Xout = X1 + 1)Xin,Xout

	 P 1(Xin, Xout)
= (Xin ≥ 0 ∧Xin ≤ 3 ∧Xin ≤ Xout − 1) 	 P 1(Xin, Xout)
= Xin ≥ 0 ∧Xin ≤ 3 ∧Xout ≤ Xin + 2 ∧Xout ≥ Xin ∧Xout ≤ 4

P 3(Xin, Xout) = (P2(Xin, X2) ∧X2 ≤ 1 ∧Xout = X2 + 1)Xin,Xout

	 P 2(Xin, Xout)
= (Xin ≥ 0 ∧Xin ≤ 3 ∧Xin ≤ Xout − 1) 	 P 2(Xin, Xout)
= P 2(Xin, Xout)

Figure 8 shows the difference between the exact fixed point computed with
the exact equations and the approximate fixed point. The points correspond to
elements of T 3 whereas the grey zone is the polyhedron defined by P 3.

Fig. 8. Exact vs approximated fixed point

An approximation of the solutions of the w constraint is

Q = P 3(Xinit, Xend) ∧Xend ≥ 2
= Xend ≥ 2 ∧Xend ≤ 4 ∧Xin ≤ Xend ∧Xin ≤ 3 ∧Xin ≥ Xend − 2

On the previous example, the fixed point computation converges but it is not
always the case. Widening can address this problem. The fixed point equation
becomes:

P k+1(Init, Out) = P k(Init, Out)∇
(P k 	 (P k(Init, In) ∧Relax(Cond, Do))Init,Out)

In this equation ∇ is the standard widening operator presented in Section 4.2.

5.3 w∞: Implementing the Approximation

In Section 3, we have presented the filtering algorithm of the w operator. Here,
we detail more concretely the integration of the abstract interpretation over
polyhedra into the constraint combinator w via the w∞ function.

w∞ is an operator that performs the fixed point computation and communi-
cates the result to the constraint store. Figure 9 describes the algorithm. All the
operations on linear constraints are done with the clpq library [10].

An Abstract Interpretation Based Combinator for Modelling 253

Input:
Init, In, Out, End vectors of variables
Cond and Do the constraints defining the loop
A constraint store (X, C, B)

Output:
An updated constraint store

w∞ :
1 P i+1 := project(relax(C,B), [Init]) ∧ Init = Out
2 repeat
3 P i := P i+1

4 P j := project(P i ∧ relax(Cond ∧ Do, B), [Init, Out])

5 P k := weak join(P i, P j)

6 P i+1 := widening(P i, P k)
7 until includes(P i, P i+1)
8 Y := P i+1 ∧ relax(¬Cond, B)
9 (C′, B′) := concretize(Y)
10 return (X, C′ ∧ w(Init, In, Out, End, Cond, Do), B′)

Fig. 9. The algorithm of w∞ operator

This algorithm summerizes all the notions previously described. Line 1 com-
putes the initial value of P . It implements the α function introduced in Equa-
tion 4. The relax function computes the linear relaxation of a constraint C given
the current variables domains, B. When C contains another w combinator, the
corresponding w∞ function is called to compute an approximation of the sec-
ond w. The project(C, L) function is a call to the Fourier variable elimination
algorithm. It eliminates all the variables of C but variables from the list of lists
L. Lines 2 to 7 do the fixed point computation following Equation 3. Line 6
performs the standard widening after a given number of iterations in the repeat
loop. This number is a parameter of the algorithm. At Line 7, the inclusion
of P i+1 in P i is tested. includes(P i, P i+1) is true iff each constraint of P i is
entailed by the constraints P i+1.

At line 8, the approximation of the solution of w is computed following Equa-
tion 5. Line 9 concretizes the result in two ways. Firstly, the linear constraints
are turned into finite domain constraints. Secondly, domains of End variables
are reduced by computing the minimum and maximum values of each variable in
the linear constraints Y . These bounds are obtained with the simplex algorithm.

6 Discussion

The polyhedra abstract domain is generally used differently from what we pre-
sented. Usually, a polyhedron denotes the set of linear relations that hold between
variables at a given program point. As we want to approximate the solutions of a
w constraint, our polyhedra describe relations between input and output values
of variables and, thus, they involve twice as many variables. In abstract interpre-
tation, the analysis is done only once whereas we do it each time a w operator is

254 T. Denmat, A. Gotlieb, and M. Ducassé

awoken. Consequently, we cannot afford to use standard libraries to handle poly-
hedra, such as [2], because they use the dual representation, which is a source of
exponential time computations. Our representation implies, nevertheless, doing
many variables elimination with the Fourier elimination algorithm. This remains
costly when the number of variables grows. However, the abstraction on polyhe-
dra is only one among others. For example, abstraction on intervals is efficient
but leads to less accurate deductions. The octagon abstract domain [13] could be
an interesting alternative to polyhedra as it is considered to be a good trade-off
between accuracy and efficiency.

Generalized Propagation [14] infers an over-approximation of all the answers
of a CLP program. This is done by explicitely computing each answer and joining
these answers on an abstract domain. Generalized Propagation may not termi-
nate because of recursion in CLP programs. Indeed, no widening techniques are
used. In the same idea, the 3r’s are three principles that can be applied to speed
up CLP programs execution [11]. One of these 3r’s stands for refinement, which
consists in generating redundant constraints that approximate the set of an-
swers. Refinement uses abstract interpretation, and more specifically widenings,
to compute on abstract domains that have infinite increasing chains. Hence, the
analysis is guaranteed to terminate. Our approach is an instantiation of this
theoretical scheme to the domain of polyhedra.

7 Conclusion

We have presented a constraint combinator, w, that allows users to make a
constraint from an imperative loop. We have shown examples where this com-
binator is used to implement non trivial arithmetic constraints. The filtering
algorithm associated to this combinator is based on case reasoning and fixed
point computation. Abstract interpretation on polyhedra provides a method for
approximating the result of this fixed point computation. The results of the ap-
proximation are crucial for pruning variable domains. On many examples, the
deductions made by the filtering algorithm are considerable, especially as this
algorithm comes for free in terms of development time.

Acknowledgements

We are indebted to Bernard Botella for his significant contributions to the
achievements presented in this paper.

References

1. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 337–354.
Springer, Heidelberg (2003)

2. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

An Abstract Interpretation Based Combinator for Modelling 255

3. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Graph properties based fil-
tering. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 59–74. Springer,
Heidelberg (2006)

4. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004)

5. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–
206. Springer, Heidelberg (1997)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL’77.
Proc. of Symp. on Principles of Progr. Lang., pp. 238–252. ACM Press, New York
(1977)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL’78. Proc. of Symp. on Principles of Progr. Lang., pp. 84–96.
ACM Press, New York (1978)

8. Fruhwirth, T.: Theory and practice of constraint handling rules. Special Issue on
Constraint Logic Progr., Journal of Logic Progr. 37(1-3) (1998)

9. Gotlieb, A., Botella, B., Rueher, M.: A CLP framework for computing structural
test data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

10. Holzbaur, C.: OFAI clp(q,r) Manual. Austrian Research Institute for Artificial
Intelligence, Vienna, 1.3.3 edn.

11. Marriott, K., Stuckey, P.J.: The 3 r’s of optimizing constraint logic programs:
Refinement, removal and reordering. In: POPL’93. Proc. of Symp. on Principles of
Progr. Lang., pp. 334–344. ACM Press, New York (1993)

12. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Math. Progr. 10, 147–175 (1976)

13. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
Journal 19, 31–100 (2006)

14. Le Provost, T., Wallace, M.: Domain independent propagation. In: FGCS’92. Proc.
of the Int. Conf. on Fifth Generation Computer Systems, pp. 1004–1011 (1992)

15. Sankaranarayanan, S., Colòn, M.A., Sipma, H., Manna, Z.: Efficient strongly rela-
tional polyhedral analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 115–125. Springer, Heidelberg (2005)

16. Schimpf, J.: Logical loops. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp.
224–238. Springer, Heidelberg (2002)

17. Schulte, C., Tack, G.: Views and iterators for generic constraint implementations.
In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI),
vol. 3978, pp. 118–132. Springer, Heidelberg (2006)

Tradeoffs in the Complexity

of Backdoor Detection

Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Cornell University, Department of Computer Science, Ithaca, NY 14850, USA
{bistra,gomes,sabhar}@cs.cornell.edu

Abstract. There has been considerable interest in the identification of
structural properties of combinatorial problems that lead to efficient al-
gorithms for solving them. Some of these properties are “easily” identi-
fiable, while others are of interest because they capture key aspects of
state-of-the-art constraint solvers. In particular, it was recently shown
that the problem of identifying a strong Horn- or 2CNF-backdoor can
be solved by exploiting equivalence with deletion backdoors, and is NP-
complete. We prove that strong backdoor identification becomes harder
than NP (unless NP=coNP) as soon as the inconsequential sounding
feature of empty clause detection (present in all modern SAT solvers) is
added. More interestingly, in practice such a feature as well as polyno-
mial time constraint propagation mechanisms often lead to much smaller
backdoor sets. In fact, despite the worst-case complexity results for
strong backdoor detection, we show that Satz-Rand is remarkably good
at finding small strong backdoors on a range of experimental domains.
Our results suggest that structural notions explored for designing efficient
algorithms for combinatorial problems should capture both statically and
dynamically identifiable properties.

1 Introduction

Capturing and exploiting problem structure is key to solving large real-world
combinatorial problems. For example, several interesting tractable classes of
combinatorial problems have been identified by restricting the constraint lan-
guage used to characterize such problem instances. Well-known cases include
2CNF, Horn, Linear Programming (LP), and Minimum Cost Flow problems
(MCF). In general, however, such restricted languages are not rich enough to
characterize complex combinatorial problems. A very fruitful and prolific line of
research that has been pursued in the study of combinatorial problems is the
identification of various structural properties of instances that lead to efficient al-
gorithms. Ideally, one prefers structural properties that are “easily” identifiable,
such as from the topology of the underlying constraint graph. As an example, the
degree of acyclicity of a constraint graph, measured using various graph width
parameters, plays an important role with respect to the identification of tractable
instances — it is known that an instance is solvable in polynomial time if the
treewidth of its constraint graph is bounded by a constant [8, 9, 6, 10, 5, 21]. In-
terestingly, even though the notion of bounded treewidth is defined with respect

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 256–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tradeoffs in the Complexity of Backdoor Detection 257

to tree decompositions, it is also possible to design algorithms for constraint satis-
faction problems of bounded (generalized) hypertree width that do not perform
any form of tree decomposition (see e.g., [3]). Other useful structural proper-
ties consider the nature of the constraints, such as their so-called functionality,
monotonicity, and row convexity [7, 24].

Another approach for studying combinatorial problems focuses on the role
of hidden structure as a way of analyzing and understanding the efficient per-
formance of state-of-the-art constraint solvers on many real-world problem in-
stances. One example of such hidden structure is a backdoor set, i.e., a set of
variables such that once they are instantiated, the remaining problem simplifies
to a tractable class [25, 26, 12, 4, 15, 23, 20]. Note that the notion of tractabil-
ity in the definition of backdoor sets is not necessarily syntactically defined: it
may often be defined only by means of a polynomial time algorithm, such as
unit propagation. In fact, the notion of backdoor sets came about as a way of
explaining the high variance in performance of state-of-the-art SAT solvers, in
particular heavy-tailed behavior, and as a tool for analyzing and understand-
ing the efficient performance of these solvers on many real-world instances, in
which the propagation mechanisms of fast “sub-solvers” play a key role. In this
work the emphasis was not so much on efficiently identifying backdoor sets, but
rather on the fact that many real-world instances have surprisingly small sets of
backdoor variables and that once a SAT solver instantiates these variables, the
rest of the problem is solved easily. In this context, randomization and restarts
play an important role in searching for backdoor sets [25, 26].

Even though variable selection heuristics, randomization, and learning in cur-
rent SAT/CSP solvers are quite effective at finding relatively small backdoors
in practice, finding a smallest backdoor is in general intractable in the worst
case. This intractability result assumes that the size of the smallest backdoor
is unknown and can grow arbitrarily with n. However, if the size of the back-
door is small and fixed to k, one can search for the backdoor by considering
all

(
n
k

)
subsets of k variables and all 2k truth assignments to these candidate

variables. This is technically a polynomial time process for fixed k, although for
moderate values of k the run time becomes infeasible in practice. Can one do
better? This is a question considered in the area of fixed-parameter complexity
theory. A problem with input size n and a parameter k is called fixed-parameter
tractable w.r.t. k if it can be solved in time O(f(k)nc) where f is any com-
putable function and c is a constant. Note that c does not depend on k, meaning
that one can in principle search fairly efficiently for potentially large backdoors
if backdoor detection for some class is shown to be fixed parameter tractable.
Indeed, Nishimura, Ragde, and Szeider [19] showed that detecting strong back-
doors (cf. Section 2 for a formal definition) w.r.t. the classes 2CNF and Horn is
NP-complete but, interestingly, fixed-parameter tractable. This result for 2CNF
and Horn formulas exploits the equivalence between (standard) strong backdoors
and “deletion” backdoors, i.e., a set of variables that once deleted from a given
formula (without simplification) make the remaining formula tractable. Note,
however, that this result is only w.r.t. the tractable classes of pure 2CNF/Horn.

258 B. Dilkina, C.P. Gomes, and A. Sabharwal

In particular, certain kinds of obvious inconsistencies are not detected in these
classes, such as having an empty clause in an arbitrary formula — clearly, any
basic solver detects such inconsistencies. We show that such a seemingly small
feature increases the worst-case complexity of backdoor identification, but, per-
haps more importantly, can dramatically reduce the size of the backdoor sets.

More specifically, we prove that strong Horn- and 2CNF-backdoor identifica-
tion becomes both NP- and coNP-hard, and therefore strictly harder than NP
assuming NP �= coNP, as soon as empty clause detection is added to these classes.
This increase in formal complexity has however also a clear positive aspect in
that adding empty clause detection often considerably reduces the backdoor
size. For example, in certain graph coloring instances with planted cliques of
size 4, while strong Horn-backdoors involve ≈ 67% of the variables, the fraction
of variables in the smallest strong backdoors w.r.t. mere empty clause detection
converges to 0 as the size of the graph grows.

Encouraged by the positive effect of slightly extending our notion of Horn-
backdoor, we also consider backdoors w.r.t. RHorn (renamable Horn), UP (unit
propagation), PL (pure literal rule), UP+PL, and SATZ. For each of these no-
tions, we show on a variety of domains that the corresponding backdoors are
significantly smaller than pure, strong Horn-backdoors. For example, we con-
sider the smallest deletion RHorn-backdoors. We provide a 0-1 integer program-
ming formulation for finding such optimal backdoors, and show experimentally
that they are in general smaller than strong Horn-backdoors. In particular, in the
graph coloring domain, while strong Horn-backdoors correspond to ≈ 67% of the
variables, deletion RHorn-backdoors correspond to only ≈ 17% of the variables.
More interestingly, when considering real-world instances of a car configuration
problem, while strong Horn-backdoor sets vary in size between 10-25% of the
variables, deletion RHorn-backdoor sets vary only between 3-8%.

At a higher level, our results show that the size of backdoors can vary dra-
matically depending on the effectiveness of the underlying simplification and
propagation mechanism. For example, as mentioned earlier, empty clause detec-
tion can have a major impact on backdoor size. Similarly, Horn versus RHorn
has an impact. We also show that there can be a substantial difference between
deletion backdoors, where one simply removes variables from the formula, versus
strong backdoors, where one factors in the variable settings and considers the
propagation effect of these settings. Specifically, we contrast deletion RHorn-
backdoors with strong RHorn-backdoors. We prove by construction that there
are formulas for which deletion RHorn-backdoors are exponentially larger than
the smallest strong RHorn-backdoors.

Finally, despite the worst-case complexity results for strong backdoor detec-
tion, we show that Satz-Rand [16, 11] is remarkably good at finding small strong
backdoors on a range of experimental domains. For example, in the case of
our graph coloring instances, the fraction of variables in a small strong SATZ-
backdoor converges to zero as the size of the graph grows. For the car config-
uration problem, strong SATZ-backdoor sets involve 0-0.7% of the variables.
We next consider synthetic logistics planning instances over n variables that are

Tradeoffs in the Complexity of Backdoor Detection 259

known to have strong UP-backdoors of size log n [13]. For all these instances, the
size of the strong SATZ-backdoor sets is either zero or one. In contrast, the size
of deletion RHorn-backdoors corresponds to over 48% of the variables, increasing
with n. We also consider instances from game theory for which one is interested
in determining whether there is a pure Nash equilibrium. For these instances,
while strong Horn-backdoors and deletion RHorn-backdoors involve ≈ 68% and
≈ 67% of the variables, respectively, strong SATZ-backdoors are surprising small
at less than 0.05% of the variables.

These results show that real-world SAT solvers such as Satz are indeed re-
markably good at finding small backdoors sets. At a broader level, this work
suggests that the study of structural notions that lead to efficient algorithms for
combinatorial problems should consider not only “easily” identifiable properties,
such as being Horn, but also properties that capture key aspects of state-of-the-
art constraint solvers, such as unit propagation and pure literal rule.

2 Preliminaries and Related Work

A CNF formula F is a conjunction of a finite set of clauses, a clause is a disjunc-
tion of a finite set of literals, and a literal is a Boolean variable or its negation.
The literals associated with a variable x are denoted by xε, ε ∈ {0, 1}. var(F)
denotes the variables occurring in F . A (partial) truth assignment (or assign-
ment, for short) is a map τ : Xτ → {0, 1} defined on some subset of variables
Xτ ⊆ var(F). A solution to a CNF formula F is a complete variable assign-
ment τ (i.e., with Xτ = var(F)) that satisfies all clauses of F . F [ε/x] denotes
the simplified formula obtained from F by removing all clauses that contain the
literal xε and removing, if present, the literal x1−ε from the remaining clauses.
For a partial truth assignment τ , F [τ] denotes the simplified formula obtained
by setting the variables according to τ .

A unit clause is a clause that contains only one literal. A pure literal in F is
a literal xε such that x ∈ var(F) and x1−ε does not occur in F . A Horn clause
is a clause that contains at most one positive literal. A binary clause is a clause
that contains exactly two literals. A formula is called Horn (resp., 2CNF) if
all its clauses are Horn (binary). We also use Horn and 2CNF to denote the
two corresponding classes of formulas. Renaming or flipping a variable x in F
means replacing every occurrence of xε in F with x1−ε. F is Renamable Horn,
also called RHorn, if all clauses of F can be made Horn by flipping a subset
of the variables. Following Nishimura et al. [19], we define the deletion of a
variable x from a formula F as syntactically removing the literals of x from F :
F − x =

{
c \ {

x0, x1
} | c ∈ F

}
. For X ⊆ var(F), F −X is defined similarly.

The concept of backdoors and their theoretical foundations were introduced
by Williams, Gomes, and Selman [25, 26]. Informally, a strong backdoor set is a
set of variables such that for each possible truth assignment to these variables,
the simplified formula is tractable. The notion of tractability is quite general,
and it even includes tractable classes for which there is not a clean syntactic
characterization. It is formalized in terms of a polynomial time sub-solver:

260 B. Dilkina, C.P. Gomes, and A. Sabharwal

Definition 1 (sub-solver [25]). A sub-solver S is an algorithm that given as
input a formula F satisfies the following conditions:

1. Trichotomy: S either rejects F or correctly determines it (as unsatisfiable or
satisfiable, returning a solution if satisfiable),

2. Efficiency: S runs in polynomial time,

3. Trivial solvability: S can determine if F is trivially true (has no clauses) or
trivially false (has an empty clause, {}), and

4. Self-reducibility: If S determines F , then for any variable x and value ε ∈
{0, 1}, S determines F [ε/x].

Definition 2 (strong S-backdoor [25]). A set B of variables is a strong
backdoor set for a formula F w.r.t a sub-solver S if B ⊆ var(F) and for every
truth assignment τ : B → {0, 1}, S returns a satisfying assignment for F [τ] or
concludes that F [τ] is unsatisfiable.

Clearly, if B is a strong S-backdoor for F , then so is any B′ such that B ⊆ B′ ⊆
var(F). For any sub-solver S, given 〈F, k〉 as input, the problem of deciding
whether F has a strong S-backdoor of size k is in the complexity class ΣP

2 : we
can formulate it as, “does there exist a B ⊆ var(F), |B| = k, such that for
every truth assignment τ : B → {0, 1}, S correctly determines F [τ/B]?” We are
interested in the complexity of this problem for specific sub-solvers.

The most trivial sub-solver that fulfills the conditions in Definition 1 is the
one that only checks for the empty formula and for the empty clause. Lynce
and Marques-Silva [17] show that the search effort required by the SAT solver
zChaff [18] to prove a random 3-SAT formula unsatisfiable is correlated with
the size of the strong backdoors w.r.t. this trivial sub-solver.

More relevant sub-solvers employed by most state-of-the-art SAT solvers are
Unit Propagation and Pure Literal Elimination, and their combination. Given
a formula F , the Unit Propagation sub-solver (UP) checks whether the formula
is empty or contains the empty clause, in which case it is trivially solvable,
otherwise it checks whether the formula contains a unit clause. If yes, it assigns
the variable in the unit clause the corresponding satisfying value, and recurses on
the simplified formula. If the formula does not contain any more unit clauses, it is
rejected. The Pure Literal Elimination sub-solver (PL) checks for variables that
appear as pure literals, assigning them the corresponding value and simplifying,
until the formula is trivially solvable or is rejected (when no more pure literals
are found). The sub-solver that uses both of these rules is referred to as UP+PL.

We note that unit propagation by itself is known to be sufficient for computing
a satisfying assignment for any satisfiable Horn formula: set variables following
unit propagation until there are no more unit clauses, and set the remaining
variables to 0. A similar result is known for RHorn formulas. Interestingly, this
does not mean that the smallest UP-backdoors are never larger than Horn- and
RHorn-backdoors. For example, any (satisfiable) Horn formula with k ≥ 2 literals
per clause has a strong Horn-backdoor of size zero but no strong UP-backdoor
of size k − 2.

Tradeoffs in the Complexity of Backdoor Detection 261

Szeider [23] studied the complexity of finding strong backdoors w.r.t. the
above sub-solvers. For S ∈ {UP, PL, UP+PL} and with k as the parameter of
interest, he proved that the problem of deciding whether there exists a strong
C-backdoor of size k is complete for the parameterized complexity class W[P].
Interestingly, the näıve brute-force procedure for this problem is already in W[P];
it has complexity O(nk2knα) and works by enumerating all subsets of size ≤ k,
trying all assignments for each such subset, and running the O(nα) time sub-
solver. Hence, the in the worst case we cannot hope to find a smallest strong
backdoor w.r.t. UP, PL, or UP+PL more efficiently than with brute-force search.

Satz [16] is a DPLL-based SAT solver that incorporates a strong variable se-
lection heuristic and an efficient simplification strategy based on UP and PL. Its
simplification process and lookahead techniques can be thought of as a very pow-
erful sub-solver. Kilby et al. [15] study strong SATZ-backdoors: sets of variables
such that for every assignment to these variables, Satz solves the simplified for-
mula without any branching decisions (i.e., with a “branch-free” search). They
measure problem hardness, defined as the logarithm of the number of search
nodes required by Satz, and find that it is correlated with the size of the small-
est strong SATZ-backdoors.

A sub-solver S correctly determines a subclass of CNF formulas and rejects
others, and hence implicitly defines the class CS of formulas that it can deter-
mine. A natural variation of the definition of the backdoor does not explicitly
appeal to a sub-solver, but rather requires the remaining formula, after set-
ting variables in the backdoor, to fall within a known tractable sub-class, such
as 2CNF, Horn, or RHorn. We will refer to such backdoors as Horn-backdoor,
RHorn-backdoor, etc. Note that this way of defining the backdoor de facto cor-
responds to relaxing the assumption of the sub-solver’s trivial solvability and
therefore trivially satisfiable or unsatisfiable formulas need not lie within the
tractable class. For example, an arbitrary formula with an empty clause may
not be Horn. Such formulas — with an empty clause in them — are important
for our discussion and we use the following notation:

Definition 3. C{} is the class of all formulas that contain the empty clause, {}.
For any class C of formulas, C{} denotes the class C ∪ C{}.

We will show that strong backdoors w.r.t. 2CNF{} and Horn{} behave very dif-
ferently, both in terms of the complexity of finding backdoors as well as backdoor
size, compared to 2CNF and Horn. In our arguments, we will use two properties
of formula classes defined next.

Definition 4. A class C of formulas is closed under removal of clauses if re-
moving arbitrary clauses from any formula in C keeps the formula in C.

Definition 5. A class C of formulas is said to support large strong backdoors
if there exists a polynomial (in k) time constructible family {Gk}k≥0 of formulas
such that the smallest strong C-backdoors of Gk have size larger than k.

Note that (pure) 2CNF, Horn, and RHorn are closed under removal of clauses,
while C{} is in general not: removing the empty clause may put a formula outside

262 B. Dilkina, C.P. Gomes, and A. Sabharwal

C{}. Further, 2CNF and Horn support large strong backdoors as witnessed by
the following simple single-clause family of formulas: Gk = (x1∨x2∨ . . .∨xk+3).
It can be easily verified that the all-0’s assignment to any set of k variables of
Gk leaves a clause with three positive literals, which is neither 2CNF nor Horn.

A different notion of backdoors, motivated by the work of Nishimura et al.
[19], involves a set of variables such that once these variables are “deleted” from
the formula, the remaining formula falls into a given tractable class (without
considering any simplification due to truth assignments). Formally,

Definition 6 (deletion C-backdoor). A set B of variables is a deletion back-
door set of a formula F w.r.t. a class C if B ⊆ var(F) and F −B ∈ C.

When membership in C can be checked in polynomial time, the problem of
deciding whether F has a deletion C-backdoor of size k is trivially in NP. This
problem is in fact NP-complete when C is 2CNF [19], Horn [19], or RHorn [2].

In general, a deletion C-backdoor may not be a strong C-backdoor. E.g., when
C includes C{}, any 3CNF formula F has a trivial deletion C-backdoor of size 3:
select any clause and use its variables as the deletion backdoor. Unfortunately,
such a “backdoor” set is of limited practical use for efficiently solving F . When
the class C is closed under removal of clauses, every deletion C-backdoor is in-
deed also a strong C-backdoor. Conversely, strong C-backdoors often are not
deletion C-backdoors, because assigning values to variables usually leads to fur-
ther simplification of the formula. Nonetheless, for C ∈ {2CNF, Horn}, deletion
and strong backdoors are equivalent, a key fact underlying the fixed parameter
algorithm of Nishimura et al. [19]. We will show that this equivalence between
deletion backdoors and strong backdoors does not hold for RHorn.

Paris et al. [20] studied deletion RHorn-backdoors. They proposed a two step
approach: find a renaming that maximizes the number of Horn clauses using a
local search method and then greedily delete variables from the remaining non-
Horn clauses until the renamed formula becomes Horn. The variables deleted in
the second step form a deletion RHorn-backdoor. They find that branching on
these variables can significantly speed up DPLL solvers.

3 Theoretical Results

In this section, we first prove that the two problems of deciding whether a for-
mula has a strong backdoor w.r.t. 2CNF{} and Horn{}, respectively, are NP-hard
as well as coNP-hard. This shows that unless NP=coNP, this problem is much
harder than detecting strong backdoors w.r.t. 2CNF and Horn, which are both
known to be in NP [19]. Recall that adding C{} to 2CNF and Horn corresponds
to adding empty clause detection to the two classes. We then consider the class
RHorn and prove that strong RHorn-backdoors can be exponentially smaller
than deletion RHorn-backdoors, and are therefore more likely to succinctly cap-
ture structural properties of interest in formulas.

Lemma 1. Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the problem
of deciding whether F has a strong C{}-backdoor of size k is NP-hard.

Tradeoffs in the Complexity of Backdoor Detection 263

Proof. We extend the argument originally used by Nishimura et al. [19] for (pure)
2CNF/Horn. The polynomial time reduction is from the NP-complete Vertex
Cover problem: given an undirected graph G = (V, E) and a number k ≥ 0, does
G have a vertex cover of size k? Recall that a vertex cover U is a subset of V
such that every edge in E has at least one end point in U . Given an instance
〈G, k〉 of this problem, we will construct a formula FHorn with all positive literals
such that FHorn has a strong Horn{}-backdoor of size k iff G has a vertex cover
of size k. Similarly, we will construct F2CNF.

FHorn has |V | variables and |E| clauses. The variables are xv for each v ∈
V . For each edge e = {u, v} ∈ E, u < v, FHorn contains the binary clause
(xu∨xv). It is easy to see that if G has a vertex cover U , then the corresponding
variable set XU = {xu | u ∈ U} is a strong Horn{}-backdoor: for any assignment
τ to XU , F [τ/XU] only contains unit clauses or the empty clause, and is thus
in Horn{}. For the other direction, suppose XU is a strong Horn{}-backdoor.
We claim that variables of XU must touch every clause of FHorn so that the
corresponding vertices U touch every edge of G and thus form a vertex cover. To
see this, consider the all-1’s assignment τ1 to XU . Since XU is a strong Horn{}-
backdoor and assigning variables according to τ1 cannot result in creating the
empty clause, FHorn[τ1/XU] must be Horn. If XU did not touch a clause c of
FHorn, then c would appear in FHorn[τ1/XU] as a binary clause with two positive
literals, violating the Horn property. Hence, the claim holds.

F2CNF has |V | + |E| variables and |E| clauses. The variables are xv for each
v ∈ V and yu,v for each {u, v} ∈ E, u < v. For each such {u, v}, F2CNF contains
the ternary clause (xu ∨ xv ∨ yu,v). The argument for the correctness of the
reduction is very similar to above, relying on the all-1’s assignment. The only
difference is that if we have a strong backdoor XU , it may contain some of the
y variables, so that there is no direct way to obtain a vertex cover out of XU .
However, this is easy to fix. If XU contains yu,v and also at least one of xu and xv,
we can simply disregard yu,v when constructing a vertex cover. If XU contains
yu,v but neither xu nor xv, we can replace yu,v with either of these two variables
and obtain a backdoor set with fewer (and eventually no) such y variables. �
We now prove coNP-hardness of backdoor detection w.r.t. Horn{} and 2CNF{},
exploiting the notions introduced in Definitions 4 and 5.

Lemma 2. Let C be a class of formulas such that (1) C is closed under removal
of clauses and (2) C supports large strong backdoors. Then, given a formula F
and k ≥ 0, the problem of deciding whether F has a strong C{}-backdoor of size
k is coNP-hard.

Proof. Let UNSAT denote the coNP-complete problem of deciding whether a
given CNF formula is unsatisfiable. We prove the lemma by reducing UNSAT to
C{}-backdoor detection. Let H be a CNF formula over variables VH , |VH | = k.
We create a formula F such that F has a strong C{}-backdoor of size k iff H
is unsatisfiable. The idea is to start with H and append to it a formula on a
disjoint set of variables such that for any assignment to k backdoor variables, the

264 B. Dilkina, C.P. Gomes, and A. Sabharwal

combined formula does not reduce to a formula in C and must therefore contain
the empty clause in order to belong to C{}.

F is constructed as follows. Using the fact that C supports large strong back-
doors, construct in polynomial time a formula G over a disjoint set of variables
(i.e., variables not appearing in H) such that G does not have a strong C-
backdoor of size k. Now let F = H ∧G. We prove that H ∈ UNSAT iff F has a
strong C{}-backdoor of size k.

(⇒) Suppose H is unsatisfiable. This implies that every truth assignment τ to
VH , the variables of H , violates some clause of H . It follows that for each such
τ , F [τ/VH] = H [τ/VH]∧G[τ/VH] contains the empty clause and is therefore in
C{}. Hence VH gives us the desired backdoor of size k.

(⇐) Suppose F has a strong C{}-backdoor B of size k. Partition B into
BH ∪ BG, where BH has the variables of H and BG has the variables of G.
By the construction of G and because |BG| ≤ k, BG cannot be a strong C-
backdoor for G. In other words, there exists an assignment τG to BG such that
G[τG/BG] �∈ C. Because of the closure of C under removal of clauses and and the
variable disjointness of H and G, it follows that F [τ/B] �∈ C for every extension
τ = (τH , τG) of τG to all of B. However, since B is a strong C{}-backdoor for F ,
it must be that F [τ/B] ∈ C{}, and the only possibility left is that F [τ/B] ∈ C{}.
Since G[τG/BG] �∈ C{}, it must be that H [τH/BH] ∈ C{} for all such extensions
τ of τG. In words, this says that H [τH/BH] contains a violated clause for every
truth assignment to BH . Therefore, H is unsatisfiable as desired. �
Lemmas 1 and 2 together give us our main theorem:

Theorem 1. Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the prob-
lem of deciding whether F has a strong C{}-backdoor of size k is both NP-hard
and coNP-hard, and thus harder than both NP and coNP, assuming NP �= coNP.

We now turn our attention to the relationship between strong and deletion back-
doors. While these two kinds of backdoors are known to be equivalent for the
classes 2CNF and Horn, we prove an exponential separation for the class RHorn.
The main idea is the following. Suppose B is a strong RHorn-backdoor for F .
Then for each assignment τ to the variables in B, there exists a renaming rτ such
that F [τ/B] under the renaming rτ yields a Horn formula. If F is such that for
different τ , the various renamings rτ are different and mutually incompatible,
then there is no single renaming r under which F −B, the formula obtained by
deleting the variables in B, becomes Horn.

The following example illustrates this point, which we will generalize to an
exponential separation in the proof of Theorem 2. Let F = (x1 ∨ x2) ∧ (¬y1 ∨
¬y2) ∧ (¬x1 ∨ y1 ∨ z) ∧ (¬x1 ∨ y2 ∨ ¬z) ∧ (¬x2 ∨ y1 ∨ z) ∧ (¬x2 ∨ y2 ∨ ¬z). First
we observe that B = {z} is a strong RHorn-backdoor for F because for z = 0
we can rename x1 and y1, and for z = 1 we can rename x1 and y2 to get a Horn
formula. On the other hand, {z} certainly does not work as a deletion backdoor
because we must rename at least one of x1 and x2, which forces both y1 and y2
to be renamed and violates the Horn property. In fact, it can be easily verified
both {x1} and {y1} are also not deletion RHorn-backdoors. From the symmetry

Tradeoffs in the Complexity of Backdoor Detection 265

between x1 and x2 and between y1 and y2, it follows that F does not have a
deletion RHorn-backdoor of size 1.

Theorem 2. There are formulas for which the smallest strong RHorn-backdoors
are exponentially smaller than any deletion RHorn-backdoors.

Proof. Let s be a power of 2, t = s+log2 s, and n = s+log2 s+ t = 2 ·(s+log2 s).
We will prove the theorem by explicitly constructing a family of formulas {Fn}
such that Fn is defined over n variables, Fn has a strong RHorn-backdoor of size
log2 s = Θ(log n), and every deletion RHorn-backdoor for Fn is of size at least
s + log2 s− 1 = Θ(n).

Fn is constructed on three kinds of variables: {xi | 1 ≤ i ≤ t}, {yj | 1 ≤ j ≤ s},
and {zk | 1 ≤ k ≤ log2 s}. Variables zk are used to encode all s 0-1 sequences of
length log2 s. Specifically, for 1 ≤ j ≤ s, let Dj

z be the unique clause involving all
z variables where each zk appears negated in Dj

z iff the kth bit of j, written in
the binary representation, is a 1. For example, for j = 01101, Dj

z = (z1 ∨ ¬z2 ∨
¬z3∨z4∨¬z5). Note that Dj

z is falsified precisely by the unique assignment that
corresponds to the binary representation of j.

Fn has exactly st+2 clauses: Cx = (x1∨x2∨ . . .∨xt), Cy = (¬y1∨¬y2∨ . . .∨
¬ys), and for each i ∈ {1, . . . , t} , j ∈ {1, . . . , s}, the clause Ci,j

z = (¬xi∨yj∨Dj
z).

We now analyze RHorn-backdoors for Fn. First, we show that
{zk | 1 ≤ k ≤ log2 s} is a strong RHorn-backdoor for Fn. To see this, fix any
assignment τ ∈ {0, 1}log2 s to the z variables. By the discussion above, τ satisfies
all but one clause Dj

z. Let us denote this falsified clause by Dτ
z . It follows that

the reduced formula, Fn[τ/z], consists of Cx, Cy, and for each i ∈ {1, . . . , t}, the
binary clause (¬xi ∨ yτ). We can convert this formula to Horn by renaming or
flipping the signs of all xi, and of yτ . This renaming makes Cx Horn. Further,
it preserves the Horn property of Cy as well as of each of the t residual binary
clauses. Hence the z variables form a strong RHorn-backdoor of size log2 s.

To derive a lower bound on the size of every deletion RHorn-backdoor B,
notice that if B includes at least t − 1 of the x variables, then |B| ≥ t − 1 =
s + log2 s − 1, as claimed. Otherwise, B does not contain at least two of the
x variables, and we must therefore rename at least one of these two variables,
say x1, to make Cx Horn. This implies that we must flip all variables yj �∈
B because of the clauses C1,j

z which now already have a positive literal, x1.
However, because of the clause Cy , we can flip at most one y variable, and it
follows that at least s − 1 of the y variables are in B. Moreover, we also have
that all log2 s of the z variables are in B, because otherwise, irrespective of how
the z variables are renamed, in at least one C1,j

z clause a z variable will appear
positively, violating the Horn property. Hence, |B| ≥ s− 1 + log2 s, as claimed.
This finishes the proof. �

4 Computing the Smallest Backdoors

Smallest Strong Horn-Backdoors: The problem of finding a smallest strong
Horn-backdoor can be formulated as a 0-1 integer programming problem using

266 B. Dilkina, C.P. Gomes, and A. Sabharwal

the equivalence to deletion backdoors [19]. Given a formula F , associate with
each Boolean variable xi a 0-1 variable yi, where yi = 0 denotes that the cor-
responding variable xi is deleted from F (and added to the backdoor). For a
clause c ∈ F , let c+ =

{
i | x1

i ∈ c
}

and c− =
{
i | x0

i ∈ c
}
. The smallest (dele-

tion) Horn-backdoor problem is formulated as follows:

minimize
∑
i∈var(F)(1− yi)

subject to
∑

i∈c+ yi ≤ 1, ∀c ∈ F

yi ∈ {0, 1} , ∀xi ∈ var(F)

The constraints ensure that each clause is Horn (in each clause, the total
number of not-deleted positive literals is at most one). The objective function
minimizes the size of the backdoor.

Smallest Deletion RHorn-Backdoors: The problem of finding a smallest deletion
RHorn-backdoor can be formulated similarly. Given a formula F , associate with
each Boolean variable xi three 0-1 variables y1i, y2i, y3i, where y1i = 1 denotes
that xi is not renamed in F , y2i = 1 denotes that xi is renamed in F , and y3i = 1
denotes that xi is deleted from F (and added to the deletion backdoor). The
smallest deletion RHorn-backdoor problem is formulated as follows:

minimize
∑

i∈var(F) y3i

subject to y1i + y2i + y3i = 1, ∀xi ∈ var(F)∑
i∈c+ y1i +

∑
i∈c− y2i ≤ 1, ∀c ∈ F

y1i, y2i, y3i ∈ {0, 1} , ∀xi ∈ var(F)

The first set of constraints ensures that each Boolean variable xi is either not-
renamed, renamed, or deleted. The second set of constraints ensures that each
clause is Horn (in each clause, the total number of not-renamed positive literals
and renamed negative literals is at most one). The objective function minimizes
the size of the backdoor.

We use the above encodings and the ilog cplex libraries [14] for experiment-
ing with Horn- and RHorn-backdoors.

Smallest Strong SATZ-, UP-, and (UP+PL)-Backdoors: Following previous work
[25, 15], we consider strong backdoors w.r.t. branch-free search by Satz-Rand [11],
a randomized version of Satz [16]. These are referred to as SATZ-backdoors. We
obtain an upper bound on the size of the smallest strong SATZ-backdoors by run-
ning Satz-Rand without restarts multiple times with different seeds and record-
ing the set of variables on which the solver branches when proving unsatisfiability.
We also record the set of variables not set by UP and PL. This gives us an upper
bound on the strong (UP+PL)-backdoor size. Similarly we record all variables set
in Satz-Rand by anything but the UP procedure to obtain an upper bound on the
smallest strong UP-backdoor size.

Tradeoffs in the Complexity of Backdoor Detection 267

Table 1. Strong backdoor sizes for various ensembles of instances: Graph Coloring
(gcp), MAP planning (map), Pure Nash Equilibrium (pne), and Automotive Config-
uration (Cxxx). Each row reports the average over several instances. Backdoor sizes
are shown as the average % of the number of problem variables. The RHorn num-
bers are for deletion backdoors. Horn- and RHorn-backdoor sizes are for the smallest
corresponding backdoors, while the rest are upper bounds.

instance num num Horn RHorn SATZ UP+PL UP C{}
set vars clauses % (del) % % % % %

gcp 100 300 7557.7 66.67 17.00 0.30 1.20 1.23 4.00
gcp 200 600 30122.0 66.67 16.83 0.17 0.60 0.60 2.00
gcp 300 900 67724.4 66.67 16.78 0.11 0.51 0.60 1.33
gcp 400 1200 119997.4 66.67 16.75 0.08 0.38 0.55 1.00
gcp 500 1500 187556.0 66.67 16.73 0.07 0.28 0.80 0.80

map 5 7 249 720 38.96 37.75 0 2.01 2.01
map 10 17 1284 5000 44.55 44.31 0 1.17 1.17
map 20 37 5754 33360 47.31 47.25 0 0.61 0.61
map 30 57 13424 103120 48.21 48.19 0 0.41 3.23
map 40 77 24294 232280 48.66 48.65 0 0.31 3.20
map 50 97 38364 438840 48.93 48.92 0 0.25 3.19

pne 2000 40958.9 67.88 66.86 0.05 0.38 0.42
pne 3000 60039.7 67.66 66.55 0.00 0.17 0.20
pne 4000 79666.4 67.96 66.92 0.00 0.14 0.16
pne 5000 98930.8 67.80 66.80 0.00 0.13 0.15

C168 FW SZ 1698 5646.8 14.32 2.83 0.16 0.77 5.70
C168 FW UT 1909 7489.3 23.62 5.50 0.00 0.36 1.03
C170 FR SZ 1659 4989.8 9.98 3.57 0.13 0.57 15.19
C202 FS SZ 1750 6227.8 12.31 4.55 0.13 0.61 9.42
C202 FW SZ 1799 8906.9 14.48 6.12 0.22 0.89 10.86
C202 FW UT 2038 11352.0 21.25 7.61 0.00 0.20 1.86
C208 FA SZ 1608 5286.2 10.52 4.51 0.06 0.40 6.50
C208 FA UT 1876 7335.5 23.13 7.46 0.00 0.05 0.05
C208 FC RZ 1654 5567.0 10.28 4.59 0.36 1.12 12.91
C208 FC SZ 1654 5571.8 10.47 4.68 0.16 0.63 10.41
C210 FS RZ 1755 5764.3 11.64 4.22 0.55 1.25 12.12
C210 FS SZ 1755 5796.8 11.77 4.35 0.30 0.91 15.56
C210 FW RZ 1789 7408.3 12.54 4.81 0.65 1.42 12.97
C210 FW SZ 1789 7511.8 13.74 5.37 0.23 0.78 11.15
C210 FW UT 2024 9720.0 20.73 7.31 0.00 0.64 4.42
C220 FV SZ 1728 4758.2 9.14 2.92 0.19 0.46 8.88

5 Experimental Evaluation

For our experimental evaluation, we considered four problem domains: graph
coloring, logistics planning, equilibrium problems from game theory, and car
configuration. The results are shown in Table 1.

We generated graph coloring instances using the clique hiding graph gener-
ator of Brockington and Culberson [1]. All instances were generated with the

268 B. Dilkina, C.P. Gomes, and A. Sabharwal

probability of adding an edge equal to 0.5 and with a hidden clique of size 4.
All SAT-encoded instances are unsatisfiable when the number of colors is 3. The
twelve variables representing color assignments to the four vertices in the hid-
den 4-clique constitute a strong C{}-backdoor, since any assignment of colors
to these four vertices will fail at least one coloring constraint. This domain il-
lustrates how the strong Horn-backdoors and deletion RHorn-backdoors can be
significantly larger than backdoors w.r.t. empty clause detection; it also shows
that deletion RHorn-backdoors (involving ≈ 17% of the variables) are consider-
ably smaller than strong Horn-backdoors (≈ 67%). We note that Satz is very
efficient at finding the small backdoors corresponding to the planted cliques.

The MAP problem domain is a synthetic logistics planning domain for which
the size of the strong UP-backdoors is well understood [13]. In this domain,
n is the number of nodes in the map graph and k is the number of locations
to visit. All MAP instances considered are unsatisfiable, encoding one planning
step less than the length of the optimal plan. Hoffmann et al. [13] identify that
MAP instances with k = 2n−3 (called asymmetric) have logarithmic size DPLL
refutations (and backdoors). We evaluate the size of the backdoors in asymmet-
ric MAP instances of various sizes (n = 5..50). In this domain, strong Horn-
backdoors and deletion RHorn-backdoors are of comparable size and relatively
large (37-48%); as expected strong UP-backdoors are quite small. Interestingly,
Satz solves these instances without any search at all, implying that the smallest
strong SATZ-backdoor is of size 0.

The game theory instances encode the problem of computing an equilibrium
strategy. In a game, interactions between players can be represented by an undi-
rected graph where nodes represent players and edges represent mutual depen-
dencies between players. Each player has a finite set of actions and a payoff
function that assigns a real number to every selection of actions by him and his
neighbors. Here we consider binary games, where each player has exactly two
action choices. Our focus will be on random graphical games where each payoff
value is chosen uniformly and independently at random from the interval [0, 1]
and the interaction graphs are drawn from the Erdös-Rényi random graph model
G(n, p). In a pure Nash equilibrium (PNE), each player chooses an action and
has no incentive to unilaterally deviate and change his action, given the actions
chosen by the other players (i.e. each player has chosen a best response action
to the choices of his neighbors). We encode the problem of deciding whether a
graphical game has a PNE as a CNF formula that is satisfiable iff the given game
has a PNE. For every player p, there is a Boolean variable xp encoding the action
chosen by p. For each possible action assignment for the neighbors of p, we add a
clause ruling out the non-best response action of p. For this domain, while strong
Horn-backdoor sets and deletion RHorn-backdoor involve ≈ 68% and ≈ 67% of
the variables, respectively, strong SATZ-backdoors are surprisingly small, close
to 0% of the variables.

Finally, we also consider a real-world SAT benchmark from product config-
uration. The instances encode problems from the validation and verification of
automotive product configuration data for the Daimler Chrysler’s Mercedes car

Tradeoffs in the Complexity of Backdoor Detection 269

lines [22]. We consider a set of unsatisfiable instances available at http://www-
sr.informatik.uni-tuebingen.de/∼sinz/DC/. Here, while strong Horn-backdoors
vary between 10-25% of the variables, RHorn-backdoor sets are considerably
smaller at 3-8%. Strong SATZ-backdoors involve only 0-0.7% of the variables.

6 Conclusions

The complexity of finding backdoors is influenced significantly by the features
of the underlying sub-solver or tractable problem class. In particular, while the
problem of identifying a strong Horn- or 2CNF-backdoor is known to be in NP
and fixed parameter tractable, strong backdoor identification w.r.t. to Horn and
2CNF becomes harder than NP (unless NP=coNP) as soon as the seemingly
small feature of empty clause detection (present in all modern SAT solvers)
is incorporated. While such a feature increases the worst-case complexity of
finding backdoors, our experiments show that in practice it also has a clear
positive impact: it reduces the size of the backdoors dramatically. For the class
RHorn, we prove that deletion backdoors can be exponentially larger than strong
backdoors, in contrast with the known results for 2CNF- and Horn-backdoors.
Nonetheless, we show experimentally that deletion RHorn-backdoors can be sub-
stantially smaller than strong Horn-backdoors. We also demonstrate that strong
backdoors w.r.t. UP, PL, and UP+PL can be substantially smaller than strong
Horn-backdoors and deletion RHorn-backdoors. Finally, despite the worst-case
complexity results for strong backdoor detection, we show that Satz-Rand is re-
markably good at finding small strong backdoors on a range of problem domains.

Acknowledgments

The authors would like to thank Joerg Hoffmann for providing the generator for
the MAP domain, and the reviewers for their thoughtful comments. This research
was supported by IISI, Cornell University, AFOSR Grant FA9550-04-1-0151.

References

[1] Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiabil-
ity: Second DIMACS Implementation Challenge, American Mathematical Society,
vol. 26, pp. 75–88 (1996)

[2] Chandru, V., Hooker, J.N.: Detecting embedded Horn structure in propositional
logic. Information Processing Letters 42(2), 109–111 (1992)

[3] Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without
decompositions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 167–181.
Springer, Heidelberg (2005)

[4] Chen, H., Gomes, C., Selman, B.: Formal models of heavy-tailed behavior in com-
binatorial search. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, Springer, Heidel-
berg (2001)

270 B. Dilkina, C.P. Gomes, and A. Sabharwal

[5] Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

[6] Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction prob-
lems. Artif. Intell. 34(1), 1–38 (1987)

[7] Deville, Y., Van Hentenryck, P.: An efficient arc consistency algorithm for a class
of csp problems. In: IJCAI’91, pp. 325–330 (1991)

[8] Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1),
24–32 (1982)

[9] Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4),
755–761 (1985)

[10] Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
In: AAAI’90, Boston, MA, pp. 4–9 (1990)

[11] Gomes, C., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Ran-
domization. In: AAAI’98, New Providence, RI, pp. 431–438 (1998)

[12] Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2), 67–100
(2000)

[13] Hoffmann, J., Gomes, C., Selman, B.: Structure and problem hardness: Goal asym-
metry and DPLL proofs in SAT-based planning. Logical Methods in Computer
Science 3(1:6) (2007)

[14] ILOG, SA.: CPLEX 10.1 Reference Manual (2006)
[15] Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in

satisfiability. In: AAAI’05, pp. 1368–1373 (2005)
[16] Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-

lems. In: IJCAI’97, pp. 366–371 (1997)
[17] Lynce, I., Marques-Silva, J.: Hidden structure in unsatisfiable random 3-SAT: An

empirical study. In: ICTAI’04 (2004)
[18] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-

ing an efficient SAT solver. In: DAC’01, pp. 530–535 (2001) ISBN 1-58113-297-2.
[19] Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to

Horn and binary clauses. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542. Springer, Heidelberg (2005)

[20] Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing Horn strong backdoor sets
thanks to local search. In: ICTAI’06, pp. 139–143 (2006),
http://.ieeecomputersociety.org/10.1109/ICTAI.2006.43 ISSN 1082-3409

[21] Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited.
In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 499–513. Springer, Heidel-
berg (2006)

[22] Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. Artificial Intelligence for Engr. Design, Analysis and
Manufacturing 17(1), 75–97 (2003)

[23] Szeider, S.: Backdoor sets for DLL subsolvers. J. of Automated Reasoning (2005)
[24] van Beek, P., Dechter, R.: On the minimality and global consistency of row-convex

constraint networks. J. ACM 42(3), 543–561 (1995)
[25] Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:

IJCAI’03, pp. 1173–1178 (2003)
[26] Williams, R., Gomes, C., Selman, B.: On the connections between heavy-tails,

backdoors, and restarts in combinatorial search. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 222–230. Springer, Heidelberg (2004)

http://.ieeecomputersociety.org/10.1109/ICTAI.2006.43

Model-Driven Visualizations

of Constraint-Based Local Search�

Grégoire Dooms1, Pascal Van Hentenryck1, and Laurent Michel2

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Visualization is often invaluable to understand the behavior
of optimization algorithms, identify their bottlenecks or pathological be-
haviors, and suggest remedies. Yet developing visualizations is a tedious
activity requiring significant time and expertise. This paper presents a
framework for the visualization of constraint-based local search (CBLS).
Given a high-level model and a declarative visualization specification,
the CBLS visualizer systematically produces animations to visualize con-
straints and objectives, violations, and conflicts, as well as the temporal
behavior of these measures. The visualization specification is composed
of a triple (what,where,how) indicating what to display, where, and how.
The visualizer architecture is compositional and extensible, and focuses
almost exclusively on static aspects, the dynamic aspects being auto-
mated by invariants. The paper highlights various functionalities of the
visualizer and describes a blueprint for its implementation.

1 Introduction

The visualizations of optimization algorithms have been an integral part of con-
straint programming (CP) since its inception. Systems such as CHIP [5] already
featured graphical interfaces to understand and explain the behavior of con-
straint programs. Visualization and debugging of constraint programs became a
major research topic in the 1990s. It led to the DISCiPl project [4] and some
exciting developments such as the visualization of search trees (e.g., [3,9,10,16]),
global constraints (e.g., [2,6,11]), and the effect of propagation on the variable
domains (e.g., [10,16]). High-level visualization tools are desirable for at least
two reasons. On the one hand, building visualizations typically requires signifi-
cant time, care, and expertise because of the large gap between what users would
like to see and the abstractions provided by traditional graphical packages. On
the other hand, visualizations are often invaluable in analyzing the behaviour
of optimization algorithms, exhibiting their pathological behaviors, identifying
their bottlenecks, and suggesting avenues for improvements.

This research proposes a visualization framework for constraint-based local
search (CBLS) [15]. Inspired by earlier research, it is also motivated by the fact

� Partially supported by NSF awards DMI-0600384 & IIS-0642906 and ONR Award
N000140610607.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 271–285, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 G. Dooms, P. Van Hentenryck, and L. Michel

that, although CP and CBLS models are often quite close, the information to
visualize is fundamentally different in the two paradigms. Indeed, in CP, it is
often important to visualize the effect of constraint propagation and branching
heuristics on the search space and the search tree. In CBLS however, the search
algorithm typically works with a complete assignment of the decision variables
and it becomes critical to visualize such concepts as violations, variable gradi-
ents, and conflicts, as well as their evolution over time. Our visualization frame-
work thus aims at providing a high-level visualization tool for CBLS algorithms,
leveraging and amplifying the contributions from CP visualizers.

Our CBLS visualizer recognizes the inherent difficulty in implementing vi-
sualizations and strives to automate the visualization process, systematically
exploiting the substructures within CBLS models. It is based on the slogan

CBLS Animation = Model + Visualization Specification

capturing that a CBLS animation is obtained automatically from a model and
a visualization specification. The specification is declarative and expressed in
a small, compositional language, describing what must be visualized (e.g., vari-
able conflicts), how to represent it visually (e.g., using arcs to link variables
in conflict), and where to display the visualization (e.g., on a variable/value
view). Modelers can thus focus on what to visualize, not on how to build
animations.

Moreover, our CBLS visualizer features an extensible and compositional ar-
chitecture, focusing almost exclusively on the static aspects of visualization. Its
implementation proceeds by successive refinements, transforming the model and
the visualization specification into increasingly specific abstractions. In particu-
lar, the CBLS visualizer first extracts the relevant model concepts (e.g., conflict
sets), transforms them into visual concepts (set of arcs), before producing graph-
ical concepts (set of arcs with constrained logical coordinates). All these steps
are concerned with static descriptions of what must be visualized; they do not
deal with the dynamic aspects of the visualizations which are often most chal-
lenging and require low-level concepts such as callbacks. Instead, the animation
is obtained by the use of invariants to maintain the model, visual, and graphical
concepts incrementally. The incremental variables associated with each concept
type are thus the interface between the various abstraction layers, while the
declarative graphical layer automates the dynamic aspects of the visualization.

Our two main contributions can thus be summarized as follows:

1. We show how to systematically derive CBLS animations from high-level
models and declarative visualization specifications, exploiting the structure
of constraints and objectives.

2. We present a compositional and extensible architecture for the CBLS visu-
alizer, focusing almost exclusively on the static parts of the visualization.

The goal of this paper (best viewed in color) is to convey these two contribu-
tions. The paper first illustrates interesting animations for a variety of models,

Model-Driven Visualizations of Constraint-Based Local Search 273

illustrating the functionalities of the tool and its relationship with prior work.
It then presents the visualizer architecture with two goals in mind: To explain
how the animations are systematically derived and to highlight its composition-
ality, extensibility, and its “declarative” nature. The CBLS visualizer is entirely
written on top of the Comet system and consists of about 5,000 lines of code.

2 The CBLS Visualizer at Work

Visualizing Constraints: Figure 1 depicts how to visualize the car-sequencing
model in Comet [14]. Lines 1–6 depict the Comet model, while lines 7–8 specify
the visualization by declaring a CBLS visualizer and requesting that all (soft)
constraints be visualized. The resulting animation is sketched in Figure 2. Each
row in the display corresponds to a sequence constraint (one for each option),
each red rectangle highlights a slot in the assembly line for which the sequence
constraint is violated, and each yellow rectangle shows a slot requiring the op-
tion. This animation provides the counterpart for CBLS of the constraint-based
visualizations in CP (e.g., [11]), exploiting the structure and semantics of the
high-level model to provide a meaningful animation of CBLS concepts. But it
goes one step beyond by cleanly separating the model from the visualization spec-
ification. Indeed, the visualization only receives the model as input and cleanly
separates the model and the visualization. It is the responsibility of the visualizer
to collect the constraints from the model.

1 model m {
2 var{int} line[Cars](Configs);
3 hard: atmost(demand,line);
4 forall(o in Options)
5 soft: sequence(line,options[o],n[o],len[o]);
6 }
7 CBLSVisualizer visu();
8 visu.displayConstraints(m);

Fig. 1. Animating The Car Sequencing Problem

Fig. 2. The Car-Sequencing Animation

274 G. Dooms, P. Van Hentenryck, and L. Michel

1 model m {
2 var{int} boat[Periods,Groups](Hosts);
3 forall(g in Groups)
4 soft(2): alldifferent(all(p in Periods) boat[p,g]);
5 forall(p in Periods)
6 soft(2): knapsack(all(g in Groups) boat[p,g],crew,cap);
7 forall(i in Groups, j in Groups : j > i)
8 soft(1): atmost(1,all(p in Periods) boat[p,i] == boat[p,j]);
9 }

(a) The Progressive Party Problem.

1 model m {
2 var{bool} open[w in Warehouses]();
3 minimize: sum(w in Warehouses) fcost[w] * open[w] +
4 sumMinCost(open,tcost);
5 }

(b) The Warehouse Location Problem.

Fig. 3. Models for The Running Applications

(a) Knapsack Constraints (b) Alldifferent Constraints

Fig. 4. Visualizing Knapsack and Alldifferent Constraints in the Progressive Party

Figure 3 depicts the models for the progressive party and warehouse location
problems used to illustrate visualizations (we also use standard n-queens and
sudoku models). On the progressive party problem, the instructions

1 CBLSVisualizer visu();
2 visu.displayKnapsacks(m);
3 visu.displayAlldiffs(m);

produce two new windows animating all the knapsack and alldifferent constraints
separately. A snapshot of these visualizations is shown in Figure 4. The knap-
sack visualization shows the item allocation to the knapsacks and the constraint
violations. This display is inspired from the bin packing display for cumulative
in [11], with the difference that we also display the constraint violations. The
alldifferent constraints are visualized as bipartite variable/value graphs, high-
lighting their violations. Such visualizations are often critical in identifying bot-
tlenecks in local search algorithms. In particular, the knapsack visualizations
were instrumental in suggesting new moves for the progressive party problem,

Model-Driven Visualizations of Constraint-Based Local Search 275

Fig. 5. The Objective Function in Warehouse Location on the GAP Instance

(a) After a Diversification (b) Final Solution

Fig. 6. Visualizing the SumMinCost Objective in Warehouse Location

producing some significant improvements in performance [13]. The visualization
highlighted that assignments would rarely reduce the knapsack violations and
suggested the use of specific swaps for this problem.

Visualizing Objectives: Dedicated visualizations are also available for objective
functions. In this context, the visual information includes, not only the assign-
ment, but the value of the objective (instead of the violations). Consider the
warehouse location model applied to one of the challenging GAP instances. On
these instances, using variable neighborhood search, the objective function ex-
hibited a surprising, highly chaotic behavior with high peaks followed by deep
valleys. This is depicted in Figure 5 which displays the fixed and transportation
costs over time. The visualization of the sumMinCost objective function

1 visu.displaySumMinCost(m,WithBipartite());

provided a clear explanation of this behavior, as shown in Figure 6. Part (a) of
the figure is a snapshot of the visualization after a diversification of the variable
neighborhood search. Part (b) depicts the best solution found. In the visual-
ization, warehouses are shown by rectangles, while the customers are shown by

276 G. Dooms, P. Van Hentenryck, and L. Michel

circles. Obviously, the constraint visualization has no knowledge about the appli-
cation and simply visualizes the min-cost assignment and the costs (the what).
The visualisation must view tcost as a bipartite cost matrix (the how) and
the positioning of the customers and warehouses is automatically obtained by
a planar embedding algorithm balancing spacing between nodes and the (often
non-metric) distances in the cost matrix. The visualization reflects not only the
assignment, but also the cost of each assignment (bigger circles mean more ex-
pensive customers). Part (a) of the figure shows that, after a solution, many of
the customers entail a significant penalty because there is no open warehouse
close to them. Part (b) shows that, in the best solution, these high-cost cus-
tomers disappear at the price of opening more warehouses. This observation,
and the behavior of the objective function, suggest that a more effective di-
versification would swap warehouses instead of closing them, which was shown
beneficial experimentally. It is worth highlighting some interesting technical as-
pects. Figure 5 is obtained by the instruction visu.plotObjToLevel(m,1)which
inspects the model to retrieve the two sub-objectives (representing the fixed and
transportation costs) and displays them in the same time plot. Similarly, the
displaySumMinCost instruction extracts the SumMinCost sub-objective from
the model and uses a dedicated visualization (Figure 6) like for the constraint
displays of Figure 4. Note that there is no need to instrument the model to ob-
tain these visualizations, yet they exploit the combinatorial sub-structures of this
model to select meaningful animations automatically.

Visualizing Violations: Constraint and objective visualizations often give a local
view of a solution, its violations, and/or its objective value. It is often desirable
to look at these concepts more globally in order to identify potential bottlenecks.
Consider the progressive party problem again and the visualization specification:

1 CBLSVisualizer visu();
2 VariableDisplay vd = visu.getMatrixIntDisplay(m).labelValues();
3 plot(ConstraintViolations(m),vd,withDefault("red"));
4 plot(VariableViolations(m),vd,withDefault("red"));
5 plot(ViolationNature(m),vd, withColors());

This specification first creates a variable view in line 2 to display the variables
as a matrix. It then requests to visualize the constraint violations on such a
view (line 3). It also requests to visualize the variable violations. Finally, it
asks for visualizing the nature of the violations, also on a variable view. Note
that the plot instruction specifies what, where, and how to visualize. Only the
what and the how vary in this specification, but we will illustrate various where
subsequently. Figure 7 shows a snapshot of this visualization.

Part (a) shows the knapsack constraints horizontally, the alldifferent con-
straints vertically, and the atmost constraints with arcs below the variable view.
Their violation degrees are given in various intensities of red. This visualization
nicely illustrates the expressivity of model-based visualizations. The constraint vi-
olations (the what) are transformed in the visual concept of highlighting a set of
variables. The variable view (the where) automatically identifies the constraints

Model-Driven Visualizations of Constraint-Based Local Search 277

(a) Constraint Violations (b) Variable Violations

(c) Variable Violations by Type

Fig. 7. Constraint and Variable Violations for Progressive Party

with rows (knapsacks), columns (alldifferent), and pairs of columns (atmost).
Part (b) shows the variable violations, the intensity reflecting the violation de-
gree again. Part (c) depicts the nature of the violations, using different colors
for each violation type. In particular, the knapsack violations are shown in light
blue, the atmost violations in green, and the alldifferent violations in light green.
The visualization in Part (c) is obtained by creating constraint subsystems for
each type of constraint and retrieving the variable violations of each subsystem.
Such constraint subsystems are reminiscent of the S-boxes in [6].

These three snapshots are for the same configuration and the overall visualiza-
tions were valuable in understanding the new neighborhood for the progressive
party problem. Indeed, allowing swaps for knapsack constraints has essentially
shifted the bottleneck from knapsack to atmost constraints, confirming our in-
tuition about the benefits of knapsack swaps.

Visualizing Conflicts: The violations are sometimes a bit too coarse to expose
some underlying structure in CBLS algorithms: Discovering chains of dependen-
cies or subsets of highly interdependent variables may require a finer grained
visualization. The CBLS visualizer supports the concept of conflict: Informally
speaking, a conflict for a constraint C is a set of variables whose current assign-
ment violates C, independently of the values of the remaining variables in C.
The visualization specification
1 CBLSVisualizer visu();
2 VariableDisplay vd = visu.getMatrixIntDisplay(m).labelValues();
3 plot(AllDiffConflicts(m),vd, withArcs("red"));
4 plot(AtmostConflicts(m),vd, withArcs("red"));
5 plot(KnapsackConflicts(m),vd, withRectColor());

requests the visualization of the alldifferent and atmost conflicts (the what) with
red arcs (the how) (lines 3–4) and the knapsack conflicts with colored rectangles
(another how) (line 5). The snapshots, at the same point in time as the ear-
lier violation visualizations, are shown in Figure 8. Observe how the alldifferent
conflicts are visualized with a clique of arcs, how the atmost conflicts clearly
identify the pairs in conflict, and how the knapsack conflicts isolate the variables

278 G. Dooms, P. Van Hentenryck, and L. Michel

(a) Alldifferent Conflicts (b) Atmost Conflicts

(c) Knapsack Conflicts

Fig. 8. Conflict for the Progressive Party Problem

(a) Variable Updates over Time (b) Violation Variations over Time

Fig. 9. Visualizing Temporal Behavior

in conflict with rectangles. Note that the atmost constraint is a meta-constraint
posted on equations, which the visualizer inspects to collect the conflicting vari-
ables. These snapshots reveal some interesting structure about the applications.
First, the alldifferent constraint is violated by the largest group (variable 26 on
the horizontal axis), which also violates another knapsack constraint (see Figure
4(a)). Second, the atmost constraints tend to be localized at some specific region.
Understanding this structure better and finding ways to avoid these behaviors
may suggest new algorithmic improvements.

Visualizing Temporal Behavior: The visualizations presented so far require hu-
mans to infer the temporal behavior of the search from successive snapshots. As
shown by search tree visualizations in CP, it is often desirable to assist humans
in that activity by displaying the behavior of the algorithms over time. In CBLS,
the algorithm typically performs one or multiple random walks and it is impor-
tant to visualize its behavior along these walks. This information may help to
identify cyclic behavior due to short tabu list, dependencies between variables,
or neighborhoods that are too small to reach different parts of the search space.

Figure 9(a) visualizes how variables change over time. It is obtained by the in-
struction displayTemporal(Changes(Variables(m)),MoveClock)), which
specifies to visualize the variable changes using move events. The lower and
largest part of the figure depicts which variables have changed in the last 200
iterations. In this example, some variables tend to change much more often than

Model-Driven Visualizations of Constraint-Based Local Search 279

the others, a consequence of a (too) short tabu list. The upper part of the figure
presents 5 arrays of colored squares. The top array represents the total number
of changes over the complete execution of the algorithm and the four arrays
below depict changes over the last 100, 50, 20, and 10 moves.

The CBLS visualizer is compositional: it can display the temporal behav-
ior of any scalar function and supports high-order functions to generate in-
teresting functions. For instance, Figure 9(b) depicts the amount of change in
variable violations over time: Green squares indicate decreases in violations,
while red squares show violation increases. The figure is obtained by instruction
displayTemporal(Derivative(VariableViolation(m))), using a high-order
function for differentiation.

These temporal displays are inspired by update views in [10] and stacked
variable views in the VIFID tool [2]. Our visualizer adds the possibility to plot
user-defined functions and presents the last N values of this function. Moreover,
the time points are either automatically derived from the model (e.g., when
a variable violation changes in the second example) or specified by users (e.g.,
when the search procedure makes a move as in the first example). This last func-
tionality is similar in spirit to the spy-points in [2]. However, events in Comet
avoid to clutter the code with spy points, cleanly separating the visualization,
the model, and the search.

VariableViews: Visualizations are often specifiedwith a triplet (what,where,how).
We have shown many examples of what, some of how, but the where component was
almost always a two-dimensional variable view. Like some earlier tools [16,10], the
CBLS visualizer offers alternative variable views. A popular variable view for one-
dimensional arrays adds a dimension for values. Figure 10(a) visualizes the queens
conflicts on such a view and is obtained by the instructions
1 CBLSVisualizer visu();
2 VariableDisplay vd = visu.displayArray2D(m);
3 plot(AllDiffConflicts(m),vd, withArcs("red"));

The same variable/value view is also available for matrices and is illustrated for
the Sudoku conflicts in Figure 10(c). It shows the same information as Figure
10(b) but is much more readable. Those displays are obtained by the instructions
1 CBLSVisualizer visu();
2 VariableDisplay v2D = visu.getMatrixIntDisplay(m).colorLabelValues();
3 plot(AllDiffConflicts(m),v2D, withArcs("red"));
4 VariableDisplay v3D = visu.getMatrix3DDisplayByVal(m);
5 plot(AllDiffConflicts(m),v3D, withLines("red"));

In Figure 10(c), each value is associated with a table, which shows the variables
assigned to the value and their conflicts.

3 The Visualizer Architecture and Its Implementation

This section considers the visualizer architecture and presents a blueprint for
its implementation. It has a dual role: (1) To show how the CBLS visualizer is

280 G. Dooms, P. Van Hentenryck, and L. Michel

(a) Queens Conflicts. (b) Sudoku Conflicts.

(c) Sudoku Conflicts Again (Variable/Value View).

Fig. 10. Conflics and Variable Views for the Queens and Sudoku Problems

capable of deriving the visualizations from the model and the visualization spec-
ification; (2) to highlight the compositional, extensible, and declarative nature
of the visualizer itself. The high-level architecture is shown in the top part of
Figure 11. Starting from the model and the visualization specification, the visual
interpreter creates declarative graphical objects, which are then transmitted to
the graphics engine to produce an animated display. This process is executed
once at the beginning of the animation. The declarative graphical objects are
expressed in terms of incremental variables and invariants, which are maintained
automatically by Comet. The declarative graphics engine uses these incremental
variables and events to produce the animation.

3.1 The Visual Interpreter

The visual interpreter provides a number of functionalities depicted in the mid-
dle part of Figure 11, each of which focuses on some elements of the visualization
language. Space does not allow us to describe all of them in detail. Instead this
section focuses on a vertical slice of the visual interpreter: the transformation of
model concepts into graphical concepts occurring in many of the plot instruc-
tions described earlier.

Recall that the plot instruction is composed of three components: the what
(e.g., visualizing alldifferent conflicts), the where (e.g., on a variable/value view),
and the how (e.g., with arcs). The visual interpeter receives these components
and proceeds in stepwise refinements as depicted in the bottom part of

Model-Driven Visualizations of Constraint-Based Local Search 281

Fig. 11. The Architecture of the CBLS Visualizer

Figure 11. In particular, the model concepts (e.g., the what) are transformed
into visual concepts (the what + how), which are then extended into graphi-
cal concepts by adding logical coordinates, colors, and other attributes. Figure
12 illustrates this process on several examples from the previous sections. The
first line specifies the transformation for alldifferent or atmost conflicts in Fig-
ures 8(a) and 8(b). The second line illustrates the knapsack conflicts in Figure
8(c). The last line illustrates the refinements for the constraint violations in
Figure 7(a).

We now dive into the actual implementation for a specific example. This slice
of the visual interpreter illustrates its genericity, the significant role of invariants
which enables the interpreter to focus solely on static aspects, and the clean
separation of many visualization aspects (e.g., coordinates) until they are finally
combined at the lowest level. The running example considers the instruction

plot(AllDiffConflicts(m),vd,withArcs("red"));

i.e., how to visualize conflicts in the alldifferent constraints using red arcs on a
matrix→scalar variable view.

The What: The first step for the visual interpreter is to compute the conflicts for
the alldifferent constraints and to create a model concept to encapsulate them.
1 ModelConcept collectAllDiffConflicts(LocalModel m) {
2 ModelConcept x();
3 forall (c in getAllDifferentInstances(m))
4 x.add(getConflicts(c),c.getVariables());
5 return x;
6 }

282 G. Dooms, P. Van Hentenryck, and L. Michel

What How Where
Model −→ Conflict set −→ cliques of arcs −→ positioned arcs
Model −→ Conflict set −→ rectangle sets −→ positioned and colored rectangles
Model −→ Constraint violations −→ ellipses −→ positioned ellipses

Fig. 12. Illustrations of the Refinement Process

The conflicts for each constraint are computed with invariants:

1 var{set{int}}[] getConflicts(AllDifferent alldiff) {
2 LocalSolver ls = alldiff.getLocalSolver();
3 var{int}[] y = alldiff.getVariables();
4 var{set{int}}[] Idx = distribute(y);
5 int vIds[v in y.getRange()] = y[v].getId();
6 var{set{int}} Conflicts[Idx.getRange()](ls);
7 forall (val in Idx.getRange()) {
8 var{set{int}} Ids(ls) <- collect(i in Idx[val]) (vIds[i]);
9 Conflicts[val] <- (card(Ids) > 1 ? Ids : {});

10 }
11 return Conflicts;
12 }

Line 4 uses the distribute invariant to compute the indices of variables as-
signed to each value, i.e., for each value v, Idx[v] stores the sets of variable
indices which are assigned value v. Since the visualization is concerned with all
variables, each of these sets of indices is converted to a set Ids of variable iden-
tifiers using the collect invariant on line 8. Finally, on line 9, if the resulting
set has cardinality 2 or more, it is a conflict set and must be preserved. Oth-
erwise, the conflict set corresponding to that value is empty. Observe that this
computation takes place once: By stating these invariants, the implementation
guarantees that the array Conflicts will incrementally maintain all the conflict
sets over time, allowing the visual interpreter to focus on static aspects of the
visualization.

The How: The withArcs function returns a drawing specification (the how)
whose method plot is called with the model concept (the what) and a variable
view (the where). Its implementation is given by the snippet:

1 void DrawArc::plot(ModelConcept w, VariableView h) {
2 forall(i in w.getSetRange()) {
3 var{set{pair}} Conf(ls) <- w.getSet(i) cross w.getSet(i);
4 h.overlayPairs(ArcPairOverlay(Conf,_color));
5 }

Since it must highlight a set of variables with arcs, the visual interpreter gener-
ates the clique of all pairs of variables, which is again maintained by an invariant
(line 3). The interpreter then calls method overlayPairs on the variable view
(line 4) to visualize pairs with arcs (a visual concept).

Model-Driven Visualizations of Constraint-Based Local Search 283

The Where: The last step of the refinements, the overlayPairs method of the
variable display,
1 void VDisp2DS::overlayPairs(VisualPairConcept vc) {
2 GraphicalArcPairs gc(vc,_Xcoords, _Ycoords);
3 animate(gc,_board,_table);
4 }

adds the logical coordinates to the identifiers pairs and the pair visualization
(line 2) to create a graphical concept. This graphical concept is then transmitted
to the graphics engine with the drawing board and the coordinate transformer
_table capable of transforming logical coordinates into physical coordinates for
a table. The coordinate variables _Xcoords and _Ycoords are instance variables
of the class VariableView which VDisp2DS subclasses. In this example, these
logical coordinates do not vary during the animation. They do in variable/value
views (such as in the queens problem in Figure 10(a)), in which case, these
incremental variables automatically maintain the variable coordinates.

3.2 The Declarative Graphics Layer

It is also instructive to dive into a slice of the declarative graphics engine to
illustrate how the dynamic aspects of the visualization are handled at this lowest
level of abstraction. The snippet

1 void GraphicalPairsAnimator::animate() {
2 var{set{pair}} edges = _vc.getPairs();
3 forall (e in edges)
4 overlayOnePair(e);
5 whenever edges@insert(pair e)
6 overlayOnePair(e);
7 whenever edges@remove(pair e)
8 unOverlayOnePair(e);
9 }

shows the core of the pair animator. It first displays the current pairs (lines 2–3)
and then uses events to update the display when new pairs (e.g., new conflicts)
are added or removed (lines 4–7). Comet events make it natural to deal with
this data-driven aspect of the visualization. The snippet

1 void GraphicalPairAnimator::overlayOnePair(pair p) {
2 PairOverlay ph = _vc.getGraphics(_board,_x[e.f],_y[e.f],
3 _x[e.s],_y[e.s]);
4 _board.add(p,ph);
5 }

shows how to highlight a pair. It creates a pair overlay from the visual concept
using the physical coordinates and adds it to the board with the pair identi-
fier. The PairOverlay encapsulates a declarative graphical line or arc whose
attributes are specified by incremental variables. The physical coordinates are
obtained from the logical coordinates with invariants of the form

284 G. Dooms, P. Van Hentenryck, and L. Michel

1 px <- offsetx + lx*xs + xs/2;
2 py <- offsety + ly*ys + ys/2;

where px, py (resp. lx, ly) are the physical (resp. logical) coordinates, lib-
erating the engine from some of the dynamic aspects of the visualization. To
un-highlight one pair, it suffices to remove the pair (and its associated object)
from the board, i.e.,

1 void GraphicalPairAnimator::unOverlayOnePair(pair p){
2 _board.rem(p);
3 }

This declarative layer supports graphical objects similar to those in other graph-
ics frameworks (e.g. [1,7,12]). However, one of the contributions of the architec-
ture is to show that this declarative graphics layer can be lifted into a declarative
visualization layer thanks to the expressivity of invariants in Comet.

4 Conclusion

This paper presented a visualization framework for Constraint-Based Local
Search based on the slogan

CBLS Animation = Model + Visualization Specification.

Starting from a model and a specification stating what, where, and how to visu-
alize, the visualizer systematically produces animations to visualize constraints
and objectives, violations, and conflicts, as well as the temporal behavior of
these measures. The visualization exploits the high-level structure of the models
to highlight the behavior of CBLS algorithms in an informative and structured
way, relieving modelers and programmers from the tedious and time-consuming
task. The paper introduced new concepts and methods for visualizing CBLS
programs, and adapted existing ones from constraint programming to this new
setting. The paper also presented a blueprint for the visualizer architecture,
whose main contribution is to lift a declarative graphics layer into a declarative
visualization language. Thanks to invariants, the implementation focuses almost
exclusively on static aspects, pushing the dynamic updating to the declarative
graphics engine, the lowest abstraction level. The architecture is also composi-
tional and extensible, proceeding in stepwise refinements to produce successively
model, visual, and graphical concepts. Finally, the paper indicated that the re-
sulting visualizations have already been useful in identifying suprising behaviors,
suggesting new algorithms, and isolating bottlenecks. Research avenues are nu-
merous and range from identifying new interesting visualization concepts, to ag-
gregating results (e.g., for multi-start algorithms), visualizing algorithm-specific
concepts, and developing an interactive visual tool. A particularly intriguing av-
enue is to use Comet itself to produce a layout of many animation components
that satisfy user constraints, using ideas from document layout [8].

Model-Driven Visualizations of Constraint-Based Local Search 285

References

1. Borning, A.: The Programming Language Aspects of ThingLab, a Constraint-
Oriented Simulation Laboratory. ACM Transaction on Programming Languages
and Systems 3(4), 353–387 (1981)

2. Carro, M., Hermenegildo, M.: Tools for Constraint Visualisation: The VI-
FID/TRIFID Tool. In: Analysis and Visualization Tools for Constraint Program-
ming (2000)

3. Carro, M., Hermenegildo, M.: Tools for Search-Tree Visualisation: The APT Tool..
In: Analysis and Visualization Tools for Constraint Programming (2000)

4. Deransart, P., Hermenegildo, M., Maluszynski, J. (eds.): Analysis and Visualiza-
tion Tools for Constraint Programming, Constrain Debugging (DiSCiPl project).
Springer, London, UK (2000)

5. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier,
F.: The Constraint Logic Programming Language CHIP. In: Proceedings of the
International Conference on Fifth-Generation Computer Systems (1988)

6. Goualard, F., Benhamou, F.: Debugging Constraint Programs by Store Inspection.
In: Analysis and Visualization Tools for Constraint Programming (2000)

7. Helm, R., Marriott, K.: Declarative Graphics. In: Shapiro, E. (ed.) Third Interna-
tional Conference on Logic Programming. LNCS, vol. 225, pp. 513–527. Springer,
Heidelberg (1986)

8. Hosobe, H.: A Scalable Linear Constraint Solver for User Interface Construction..
In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 218–232. Springer, Heidelberg
(2000)

9. Schulte, C.: Oz Explorer: A visual constraint programming tool. In: ICLP’97, Leu-
ven, Belgium, pp. 286–300 (July 1997)

10. Simonis, H., Aggoun, A.: Search-Tree Visualisation. In: Analysis and Visualization
Tools for Constraint Programming (2000)

11. Simonis, H., Aggoun, A., Beldiceanu, N., Bourreau, E.: Complex Constraint Ab-
straction: Global Constraint Visualisation. In: Analysis and Visualization Tools for
Constraint Programming (2000)

12. Sutherland, I.E.: Sketchpad, A Man-Machine Graphical Communication System.
In: Outstanding Dissertations in the Computer Sciences. Garland Publishing (1963)

13. Van Hentenryck, P.: Constraint Programming as Declarative Algorithmics. In: Ben-
hamou, F., Jussien, N., O’Sullivan, B. (eds.) Trends in Constraint Programming,
Hermes (2007)

14. Van Hentenryck, P., Michel, L.: Synthesis of Constraint-Based Local Search Algo-
rithms from High-Level Models. In: AAAI’07 (July 2007)

15. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

16. Van Hentenryck, P., Michel, L., Paulin, P., Puget, J.F.: The OPL Studio Modeling
System. In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization,
pp. 43–76. Kluwer Academic Publishers, Dordrecht (2004)

Dealing with Incomplete Preferences in Soft Constraint
Problems

Mirco Gelain, Maria Silvia Pini, Francesca Rossi, and K. Brent Venable

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy
{mgelain,mpini,frossi,kvenable}@math.unipd.it

Abstract. We consider soft constraint problems where some of the preferences
may be unspecified. This models, for example, situations with several agents pro-
viding the data, or with possible privacy issues. In this context, we study how to
find an optimal solution without having to wait for all the preferences. In particu-
lar, we define an algorithm to find a solution which is necessarily optimal, that is,
optimal no matter what the missing data will be, with the aim to ask the user to
reveal as few preferences as possible. Experimental results show that in many
cases a necessarily optimal solution can be found without eliciting too many
preferences.

1 Introduction

Traditionally, tasks such as scheduling, planning, and resource allocation have been
tackled using several techniques, among which constraint reasoning is one of the
winning ones: the task is represented by a set of variables, their domains, and a set
of constraints, and a solution of the problem is an assignment to all the variables in
their domains such that all constraints are satisfied. Preferences or objective functions
have been used to extend such scenario and allow for the modelling of constraint op-
timization, rather than satisfaction, problems. However, what is common to all these
approaches is that the data (variables, domains, constraints) are completely known be-
fore the solving process starts.

On the contrary, the increasing use of web services and in general of multi-agent
applications demands for the formalization and handling of data that is only partially
known when the solving process works, and that can be added later, for example via
elicitation. In many web applications, data may come from different sources, which
may provide their piece of information at different times. Also, in multi-agent settings,
data provided by some agents may be voluntarily hidden due to privacy reasons, and
only released if needed to find a solution to the problem.

Recently, some lines of work have addressed these issues by allowing for open settings
in CSPs: both open CSPs [5,7] and interactive CSPs [11] work with domains that can be
partially specified, and in dynamic CSPs [4] variables, domains, and constraints may
change over time. It has been shown that these approaches are closely related. In fact,
interactive CSPs can be seen as a special case of both dynamic and open CSPs [10].

Here we consider the same issues but we focus on constraint optimization problems
rather than CSPs, thus looking for an optimal solution rather than any solution. In partic-
ular, we consider problems where constraints are replaced by soft constraints, in which

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 286–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dealing with Incomplete Preferences in Soft Constraint Problems 287

each assignment to the variables of the constraint has an associated preference com-
ing from a preference set [1]. In this setting, for the purpose of this paper we assume
that variables, domains, and constraint topology are given at the beginning, while the
preferences can be partially specified and possibly added during the solving process.

Constraint optimization has also been considered in the context of open CSPs, in a
cost-minimization setting in [6] and in a fuzzy setting in [7]. However, the incomplete-
ness considered in [7,6] is on domain values as well as on their preferences or costs.
We assume instead that all values are given at the beginning, and that some preferences
are missing. Because of the setting of [7], the assumption that new values and costs are
provided monotonically is needed, while it is not necessary here. Working under this
assumption means that the agent that provides new values/costs for a variable knows all
possible costs, since it is capable of providing the best value first. If the cost computa-
tion is expensive or time consuming, then computing all such costs (in order to give the
most preferred value) is not desirable. This is not needed in our setting, where single
preferences are elicited.

There are several application domains where such setting is useful. One regards the
fact that quantitative preferences, and needed in soft constraints, may be difficult and
tedius to provide for a user. Another one concerns multi-agent settings, where agents
agree on the structures of the problem but they may provide their preferences on dif-
ferent parts of the problem at different times. Finally, some preferences can be initially
hidden because of privacy reasons.

Formally, we take the soft constraint formalism when preferences are totally ordered
and we allow for some preferences to be left unspecified. Although some of the prefer-
ences can be missing, it could still be feasible to find an optimal solution. If not, then
we ask the user and we start again from the new problem with some added preferences.

More precisely, we consider two notions of optimal solution: possibly optimal solu-
tions are assignments to all the variables that are optimal in at least one way in which
currently unspecified preferences can be revealed, while necessarily optimal solutions
are assignments to all the variables that are optimal in all ways in which currently un-
specified preferences can be revealed. This notation comes from multi-agent preference
aggregation [12], where, in the context of voting theory, some preferences are missing
but still one would like to declare a winner.

Given an incomplete soft constraint problem (ISCSP), its set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.
Of course what we would like to find is a necessarily optimal solution, to be on the safe
side: such solutions are optimal regardless of how the missing preferences would be
specified. However, since such a set may be empty, in this case there are two choices:
either to be satisfied with a possibly optimal solution, or to ask users to provide some of
the missing preferences and try to find, if any, a necessarily optimal solution of the new
ISCSP. In this paper we follow this second approach, and we repeat the process until
the current ISCSP has at least one necessarily optimal solution.

To achieve this, we employ an approach based on branch and bound which first
checks whether the given problem has a necessarily optimal solution (by just solving
the completion of the problem where all unspecified preferences are replaced by the
worst preference). If not, then finds the most promising among the possibly optimal

288 M. Gelain et al.

solutions (where the promise is measured by its preference level), and asks the user
to reveal the missing preferences related to such a solution. This second step is then
repeated until the current problem has a necessarily optimal solution.

We implemented our algorithm and we tested it against classes of randomly gen-
erated binary fuzzy ISCSPs, where, beside the usual parameters (number of variables,
domain size, density, and tightness), we added a new parameter measuring the percent-
age of unspecified preferences in each constraint and domain. The experimental results
show that in many cases a necessarily optimal solution can be found by eliciting a small
amount of preferences.

2 Soft Constraints

A soft constraint [1] is just a classical constraint [3] where each instantiation of its
variables has an associated value from a (totally or partially ordered) set. This set has
two operations, which makes it similar to a semiring, and is called a c-semiring. More
precisely, a c-semiring is a tuple 〈A, +,×,0,1〉 such that: A is a set, called the carrier
of the c-semiring, and 0,1 ∈ A; + is commutative, associative, idempotent, 0 is its unit
element, and 1 is its absorbing element;× is associative, commutative, distributes over
+, 1 is its unit element and 0 is its absorbing element.

Consider the relation≤S over A such that a ≤S b iff a+ b = b. Then:≤S is a partial
order; + and × are monotone on ≤S; 0 is its minimum and 1 its maximum; 〈A,≤S〉
is a lattice and, for all a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent, then
〈A,≤S〉 is a distributive lattice and × is its glb.

Informally, the relation≤S gives us a way to compare (some of the) tuples of values
and constraints. In fact, when we have a ≤S b, we will say that b is better than a. Thus,
0 is the worst value and 1 is the best one.

Given a c-semiring S = 〈A, +,×,0,1〉, a finite set D (the domain of the variables),
and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V and
def : D|con| → A. Therefore, a constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values of D of these variables an element of the semiring
set A. A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over
a set of variables.

Many known classes of satisfaction or optimization problem can be cast in this for-
malism. A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
〈{false, true}, ∨,∧, false, true〉. On the other hand, fuzzy CSPs [13,9] can be mod-
eled in the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1], max, min,
0, 1〉. For weighted CSPs, the semiring is SWCSP = 〈
+, min, +, +∞, 0〉. Here pref-
erences are interpreted as costs from 0 to +∞, which are combined with the sum and
compared with min. Thus the optimization criterion is to minimize the sum of costs.
For probabilistic CSPs [8], the semiring is SPCSP = 〈[0, 1], max,×, 0, 1〉. Here pref-
erences are interpreted as probabilities ranging from 0 to 1, which are combined using
the product and compared using max. Thus the aim is to maximize the joint probability.

Given an assignment t to all the variables of an SCSP, we can compute its pref-
erence value pref(t) by combining the preferences associated by each constraint to
the subtuples of the assignments referring to the variables of the constraint. More

Dealing with Incomplete Preferences in Soft Constraint Problems 289

precisely, pref(P, s) = Π〈idef,con〉∈Cdef(s↓con), where Π refers to the × operation
of the semiring and s↓con is the projection of tuple s on the variables in con.

For example, in fuzzy CSPs, the preference of a complete assignment is the minimum
preference given by the constraints. In weighted constraints, it is instead the sum of the
costs given by the constraints.

An optimal solution of an SCSP is then a complete assignment t such that there is no
other complete assignment t′′ with pref(t) <S pref(t′′). The set of optimal solutions
of an SCSP P will be written as Opt(P).

3 Incomplete Soft Constraint Problems (ISCSPs)

Informally, an incomplete SCSP, written ISCSP, is an SCSP where the preferences of
some tuples in the constraints, and/or of some values in the domains, are not speci-
fied. In detail, given a set of variables V with finite domain D, and c-semiring S =
〈A, +,×, 0, 1〉with a totally ordered carrier, we extend the SCSP framework to incom-
pleteness by the following definitions.

Definition 1 (incomplete soft constraint). Given a set of variables V with finite do-
main D, and a c-semiring 〈A, +,×, 0, 1〉, an incomplete soft constraint is a pair 〈idef,
con〉 where con ⊆ V is the scope of the constraint and idef : D|con| −→ A ∪ {?} is
the preference function of the constraint. All tuples mapped into ? by idef are called
incomplete tuples.

In an incomplete soft constraint, the preference function can either specify the prefer-
ence value of a tuple by assigning a specific element from the carrier of the c-semiring,
or leave such preference unspecified. Formally, in the latter case the associated value is
?. A soft constraint is a special case of an incomplete soft constraint where all the tuples
have a specified preference.

Definition 2 (incomplete soft constraint problem (ISCSP)). An incomplete soft con-
straint problem is a pair 〈C, V, D〉 where C is a set of incomplete soft constraints over
the variables in V with domain D. Given an ISCSP P , we will denote with IT (P) the
set of all incomplete tuples in P .

Definition 3 (completion). Given an ISCSP P , a completion of P is an SCSP P ′ ob-
tained from P by associating to each incomplete tuple in every constraint an element
of the carrier of the c-semiring. A completion is partial if some preference remains un-
specified. We will denote with C(P) the set of all possible completions of P and with
PC(P) the set of all its partial completions.

Example 1. A travel agency is planning Alice and Bob’s honeymoon. The candidate
destinations are the Maldive islands and the Caribbean, and they can decide to go by
ship or by plane. To go to Maldives, they have a high preference to go by plane and a
low preference to go by ship. For the Caribbean, they have a high preference to go by
ship, and they don’t give any preference on going there by plane.

Assume we use the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉. Then we can model
this problem by using two variables T (standing for Transport) and D (standing for

290 M. Gelain et al.

Destination) with domains D(T) = {p, sh} (p stands for plane and sh for ship) and
D(D) = {m, c} (m stands for Maldives, c for Caribbean), and an incomplete soft
constraint 〈idef, con〉 with con = {T, D} and with preference function as shown in
Figure 1. The only incomplete tuple in this soft constraint is (p, c).

Also, assume that for the considered season the Maldives are slightly preferrable to
the Caribbean. Moreover, Alice and Bob have a high preference to plane as a way of
transport, while they don’t give any preference to ship. Moreover, as far as accommo-
dations, which can be in a standard room, a suite, or a bungalow, assume that a suite
in the Maldives is too expensive while a standard room in the Caribbean is not special
enough for a honeymoon. To model this new information we use a variable A (stand-
ing for Accommodation) with domain D(A) = {r, su, b} (r stands for room, su for
suite and b for bungalow), and three constraints: two unary incomplete soft constraints,
〈idef1, {T }〉, 〈idef2, {D}〉 and a binary incomplete soft constraint 〈idef3, {A, D}〉.
The definition of such constraints is shown in Figure 1. The set of incomplete tuples of
the entire problem is IT (P) = {(sh), (p, c), (su, c), (su, m), (r, m), (b, c)}.

idef2(c) = 0.7
idef2(m) = 0.9

idef1(p)=0.8
idef1(sh) = ?

D

idef3(r, c) = 0.3
idef3(su, c) = ?
idef3(b, c) = ?
idef3(r, m) = ?

idef3(b, m) = 0.2
idef3(su, m) = ?

idef(p,m) = 0.7

idef(sh,c) = 0.8

idef(sh,m) = 0.1

idef(p, c) = ?

T

A

Fig. 1. An ISCSP

Definition 4 (preference of an assignment, and incomplete tuples). Given an ISCSP
P = 〈C, V, D〉 and an assignment s to all its variables we denote with pref(P, s) the
preference of s in P . In detail, pref(P, s) = Π<idef,con>∈C|idef(s↓con) �=?idef(s↓con).
Moreover, we denote by it(s) the set of all the projections of s over constraints of P
which have an unspecified preference.

The preference of an assignment s in an incomplete problem is thus obtained by com-
bining the known preferences associated to the projections of the assignment, that is, of
the appropriated subtuples in the constraints. The projections which have unspecified
preferences, that is, those in it(s), are simply ignored.

Example 2. Consider the two assignments s1 = (p, m, b) and s2 = (p, m, su), we
have that pref(P, s1) = min(0.8, 0.7, 0.9, 0.2) = 0.2, while pref(P, s2) = min(
0.8, 0.7, 0.9) = 0.7. However, while the preference of s1 is fixed, since none of its
projections is incomplete, the preference of s2 may become lower that 0.7 depending
on the preference of the incomplete tuple (su, m).

Dealing with Incomplete Preferences in Soft Constraint Problems 291

As shown by the example, the presence of incompleteness generates a partition of the
set of assignments into two sets: those which have a certain preference which is in-
dependent of how incompleteness is resolved, and those whose preference is only an
upperbound, in the sense that it can be lowered in some completions.

Given an ISCSP P , we will denote the first set of assignments as Fixed(P) and the
second with Unfixed(P). In Example 2, Fixed(P) = {s1}, while all other assign-
ments belong to Unfixed(P).

In SCSPs we have that an assignment is an optimal solution if its global preference
is undominated. This notion can be generalized to the incomplete setting. In particular,
when some preferences are unknown, we will speak of necessarily and possibly optimal
solutions, that is, assignments which are undominated in all (resp., some) completions.

Definition 5 (necessarily and possibly optimal solution). Given an ISCSP P =
〈 C, V, D〉, an assignment s ∈ D|V | is a necessarily (resp, possibly) optimal solution
iff ∀Q ∈ C(P) (resp., ∃Q ∈ C(P) such that) ∀s′ ∈ D|V |, pref(Q, s′) �> pref(Q, s).

Given an ISCSP P , we will denote with NOS(P) (resp., POS(P)) the set of nec-
essarily (resp., possibly) optimal solutions of P . Notice that, while POS(P) is never
empty, in general NOS(P) may be empty. In particular, NOS(P) is empty whenever
the available preferences do not allow to determine the relation between an assignment
and all the others.

Example 3. In the ISCSP P of Figure 1, we can easily see that NOS(P) = ∅ since,
given any assignment, it is possible to construct a completion of P in which it is not an
optimal solution. On the other hand, POS(P) contains all assignments not including
tuple (sh, m).

4 Characterizing POS(P) and NOS(P)

In this section we characterize the set of necessarily and possibly optimal solutions of
an ISCSP given the preferences of the optimal solutions of two of the completions of P .
In particular, given an ISCSP P defined on a totally ordered c-semiring 〈A, +,×,0,1〉,
we consider:

– the SCSP P0 ∈ C(P), called the 0-completion of P , obtained from P by associat-
ing preference 0 to each tuple of IT (P).

– the SCSP P1 ∈ C(P), called the 1-completion of P , obtained from P by associat-
ing preference 1 to each tuple of IT (P).

Let us indicate respectively with pref0 and pref1 the preference of an optimal so-
lution of P0 and P1. Due to the monotonicity of ×, and since 0 ≤ 1, we have that
pref0 ≤ pref1.

In the following theorem we will show that, if pref0 > 0, there is a necessarily
optimal solution of P iff pref0 = pref1, and in this case NOS(P) coincides with the
set of optimal solutions of P0.

Theorem 1. Given an ISCSP P and the two completions P0, P1 ∈ C(P) as defined
above, if pref0 > 0 we have that NOS(P) �= ∅ iff pref1 = pref0. Moreover, if
NOS(P) �= ∅, then NOS(P) = Opt(P0).

292 M. Gelain et al.

Proof. Since we know that pref0 ≤ pref1, if pref0 �= pref1 then pref1 > pref0.
We prove that, if pref1 > pref0, then NOS(P) = ∅. Let us consider any assignment
s of P . Due to the monotonicity of ×, for all P ′ ∈ C(P), we have pref(P ′, s) ≤
pref(P1, s) ≤ pref1.

– If pref(P1, s) < pref1, then s is not in NOS(P) since P1 is a completion of P
where s is not optimal.

– If instead pref(P1, s) = pref1, then, since pref1 > pref0, we have s ∈ Unfixed
(P). Thus we can consider completion P ′1 obtained from P1 by associating prefer-
ence 0 to the incomplete tuples of s. In P ′1 the preference of s is 0 and the preference
of an optimal solution of P ′1 is, due to the monotonicity of ×, at least that of s in
P0, that is pref0 > 0. Thus s �∈ NOS(P).

Next we consider when pref0 = pref1. Clearly NOS(P) ⊆ Opt(P0), since any as-
signment which is not optimal in P0 is not in NOS(P). We will show that NOS(P) �=
∅ by showing that any s ∈ Opt(P0) is in NOS(P). Let us assume, on the contrary,
that there is s ∈ Opt(P0) such that s �∈ NOS(P). Thus there is a completion P ′

of P with an assignment s′ with pref(P ′, s′) > pref(P ′, s). By construction of P0,
any assignment s ∈ Opt(P0) must be in Fixed(P). In fact, if it had some incom-
plete tuple, its preference in P0 would be 0, since 0 is the absorbing element of ×.
Since s ∈ Fixed(P), pref(P ′, s) = pref(P0, s) = pref0. By construction of P1
and monotonicity of ×, we have pref(P1, s

′) ≥ pref(P ′, s′). Thus the contradiction
pref1 ≥ pref(P1, s

′) ≥ pref(P ′, s′) > pref(P ′, s) = pref0. This allows us to
conclude that s ∈ NOS(P) = Opt(P0). �

In the theorem above we have assumed that pref0 > 0. The case in which pref0 = 0
needs to be treated separately. We consider it in the following theorem.

Theorem 2. Given ISCSP P = 〈C, V, D〉 and the two completions P0, P1 ∈ C(P)
as defined above, assume pref0 = 0. Then, if pref1 = 0, NOS(P) = D|V |. Also, if
pref1 > 0, NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s

′) > 0 we have
it(s) ⊆ it(s′)}.
The formal proof is omitted for lack of space. Intuitively, if some assignment s′ has
an incomplete tuple which is not part of another assignment s, then we can make s′

dominate s in a completion by setting all the incomplete tuples of s′ to 1 and all the
remaining incomplete tuples of s to 0. In such a completion s is not optimal. Thus s is
not a necessarily optimal solution. However, if the tuples of s are a subset of the incom-
plete tuples of all other assignments then it is not possible to lower s without lowering
all other tuples even further. This means that s is a necessarily optimal solution.

We now turn our attention to possible optimal solutions. Given a c-semiring 〈A, +,
×, 0,1〉, it has been shown in [2] that idempotency and strict monotonicity of the ×
operator are incompatible, that is, at most one of these two properties can hold. In the
following two theorems we show that the presence of one or the other of such two
properties plays a key role in the characterization of POS(P) where P is an ISCSP.

In particular, if × is idempotent, then the possibly optimal solutions are the assign-
ments with preference in P between pref0 and pref1. If, instead, × is strictly mono-
tonic, then the possibly optimal solutions have preference in P between pref0 and

Dealing with Incomplete Preferences in Soft Constraint Problems 293

pref1 and dominate all the assignments which have as set of incomplete tuples a subset
of their incomplete tuples.

Theorem 3. Given an ISCSP P defined on a c-semiring with idempotent× and the two
completions P0, P1 ∈ C(P) as defined above, if pref0 > 0 we have that: POS(P) =
{s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1}.
The formal proof is omitted for lack of space. Informally, given a solution s such that
pref0 ≤ pref(P, s) ≤ pref1, it can be shown that it is an optimal solution of the
completion of P obtained by associating preference pref(P, s) to all the incomplete
tuples of s, and 0 to all other incomplete tuples of P . On the other hand, by construction
of P0 and due to the monotonicity of ×, any assignment which is not optimal in P0
cannot be optimal in any other completion. Also, by construction of P1, there is no
assignment s with pref(P, s) > pref1.

Theorem 4. Given an ISCSP P defined on a c-semiring with a strictly monotonic ×
and the two completions P0, P1 ∈ C(P) as defined above, if pref0 > 0 we have that:
an assignment s ∈ POS(P) iff pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) =
max{ pref(P, s′)| it(s′) ⊆ it(s)}.
The intuition behind the statement of this theorem is that, if assignment s is such that
pref0 ≤ pref(P, s) ≤ pref1 and pref(P, s) = max{pref(P, s′)|it(s′) ⊆ it(s)},
then it is optimal in the completion obtained associating preference 1 to all the tuples
in it(s) and 0 to all the tuples in IT (P) \ it(s). On the contrary, if pref(P, s) <
max{pref(P, s′)|it(s′) ⊆ it(s)}, there must be another assignment s′′ such that pref
(P, s′′) = max{pref(P, s′)|it(s′) ⊆ it(s)}. It can then be shown that, in all comple-
tions of P , s is dominated by s′′.

In constrast to NOS(P), when pref0 = 0 we can immediately conclude that POS
(P) = D|V |, independently of the nature of ×, since all assignments are optimal in P0.

Corollary 1. Given an ISCSP P = 〈C, V, D〉, if pref0 = 0, then POS(P) = D|V |.

The results given in this section can be summarized as follows:

– when pref0 = 0
• not enough information to compute NOS(P) (by Theorem 2);
• POS(P) = D|V | (by Corollary 1);

– when pref0 = pref1 = 0
• NOS(P) = D|V | (by Theorem 2);
• POS(P) = D|V | (by Corollary 1) ;

– when 0 = pref0 < pref1
• NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s

′) > 0 we have
it(s) ⊆ it(s′)} (by Theorem 2);
• POS(P) = D|V | (by Corollary 1);

– when 0 < pref0 = pref1
• NOS(P) = Opt(P0) (by Theorem 1);
• if× is idempotent: POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1} (by

Theorem 3);

294 M. Gelain et al.

• if × is strictly monotonic: POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤
pref1, pref(P, s) = max{ pref(P, s′)|it(s′) ⊆ it(s)}} (by Theorem 4);

– when 0 < pref0 < pref1
• NOS(P) = ∅ (by Theorem 1);
• POS(P) as for the case when 0 < pref0 = pref1.

5 A Solver for ISCSPs

We want to find a necessarily optimal solution of the given problem, if it exists. In most
cases, however, the available information will only allow to determine the set of pos-
sibly optimal solutions. In such cases, preference elicitation is needed to discriminate
among such assignments in order to determine a necessarily optimal one of the new
problem with the elicited preferences. In this section we describe an algorithm, called
Find-NOS, to achieve this task.

Algorithm 1. Find-NOS

Input: an ISCSP P
Output: an ISCSP Q, an assignment s, a preference p
P0 ← P [?/0]
s0, pref0 ← BB(P0, −)
s1 ← s0

pref1 ← pref0

smax ← s0

prefmax ← pref0

repeat
P1 ← P [?/1]
if pref1 > prefmax then

smax ← s1

prefmax ← pref1

s1, pref1 ← BB(P1, prefmax)
if s1 �= nil then

S ← it(s1)
P ← Elicit(P,S)
pref1 ← pref(P, s1)

until s1 = nil ;
return P , smax, prefmax

Algorithm Find-NOS takes in input an ISCSP P over a totally ordered c-semiring
and returns an ISCSP Q which is a partial completion of P , and an assignment s ∈
NOS(Q) together with its preference p. Given an ISCSP P , Find-NOS first checks if
NOS(P) is not empty, and, if so, it returns P , s ∈ NOS(P), and its preference. If
instead NOS(P) = ∅, it starts eliciting the preferences of some incomplete tuples.

In detail, Find-NOS first computes the 0-completion of P , written as P [?/0], called
P0, and applies Branch and Bound (BB) to it. This allows to find an optimal solution
of P0, say s0, and its preference pref0.

In our notation, the application of the BB procedure has two parameters: the problem
to which it is applied, and the starting bound. When BB is applied without a starting

Dealing with Incomplete Preferences in Soft Constraint Problems 295

bound, we will write BB(P,−). When the BB has finished, it returns a solution and
its preference. If no solution is found, we assume that the returned items are both nil.

Variables s1 and pref1 (resp., smax and prefmax) represent the optimal solution
and the corresponding preference of the 1-completion of the current problem (written
P [?/1]) (resp., the best solution and the corresponding preference found so far). At the
beginning, such variables are initialized to s0 and pref0.

The main loop of the algorithm, achieved through the repeat command, computes
the 1-completion, denoted by P1, of the current problem. In the first iteration the condi-
tion of the first if is not satisfied since pref1 = prefmax = pref0. The execution thus
proceeds by applying BB to P1 with bound prefmax = pref0 ≥ 0. This allows us
to find an optimal solution of P1 and its corresponding preference, assigned to s1 and
pref1. If BB fails to find a solution, s1 is nil. Thus the second if is not executed and
the algorithm exits the loop and returns P , smax = s0, and prefmax = pref0.

If instead BB applied to P1 with bound prefmax does not fail, then we have that
pref0 < pref1. Now the algorithm elicits the preference of some incomplete tuples,
via procedure Elicit.

This procedure takes an ISCSP and a set of tuples of variable assignments, and asks
the user to provide the preference for such tuples, returning the updated ISCSP. The
algorithm calls procedure Elicit over the current problem P and the set of incomplete
tuples of s1 in P . After elicitation, the new preference of s1 is computed and assigned
to pref1.

Since s1 �= nil, a new iteration begins, and BB is applied with initial bound given by
the best preference between pref1 and prefmax. Moreover, if pref1 > prefmax, then
smax and prefmax are updated to always contain the best solution and its preference.
Iteration continues until the elicited preferences are enough to make BB fail to find a
solution with a better preference w.r.t. the previous application of BB. At that point,
the algorithm returns the current problem and the best solution found so far, together
with its preference.

Theorem 5. Given an ISCSP P in input, algorithm Find-NOS always terminates and
returns an ISCSP Q such that Q ∈ PC(P), an assignment s ∈ NOS(Q), and its
preference in Q.

Proof. At each iteration, either prefmax increases or, if it stays the same, a new solution
will be found since after elicitation the preference of s1 has not increased. Thus, either
prefmax is so high that BB doesn’t find any solution, or all the optimal solutions have
been considered. In both cases the algorithm exits the loop.

At the end of its execution, the algorithm returns the current partial completion of
given problem and a solution smax with the best preference seen so far prefmax. The
repeat command is exited when s1 = nil, that is, when BB(P [?/1], prefmax) fails. In
this situation, prefmax is the preference of an optimal solution of the 0-completion of
the current problem P . Since BB fails on P [?/1] with such a bound, by monotonicity
of the × operator, prefmax is also the preference of an optimal solution of P [?/1].
By Theorems 1 and 2, we can conclude that NOS(P) is not empty. If prefmax = 0,
then NOS(P) contains all the assignments and thus also s0. The algorithm correctly
returns the same ISCSP given in input, assignment s0 and its preference pref0 = 0. If

296 M. Gelain et al.

instead 0 < prefmax, again the algorithm is correct, since by Theorem 1 we know that
NOS(P) = Opt(P [?/0]), and since smax ∈ Opt(P [?/0]). �

Notice also that the algorithm performs preference elicitation only on solutions which
are possibly optimal in the current partial completion of the given problem (and thus
also in the given problem). In fact, by Theorems 3 and 4, any optimal solution of the
1-completion of the current partial completion Q is a possibly optimal solution of Q.
Thus no useless work is done to elicit preferences related to solutions which cannot be
necessarily optimal for any partial completion of the given problem. This also means
that our algorithm works independently of the properties of the × operator.

6 Experimental Setting and Results

We have implemented Algorithm Find-NOS in Java and we have tested it on randomly
generated ISCSPs with binary constraints and based on the Fuzzy c-semiring. To gen-
erate such problems, we use the following parameters:

– n: number of variables;
– m: cardinality of the domain of each variable;
– d: density of the constraints, that is, the percentage of binary constraints present in

the problem w.r.t. the total number of possible binary constraints that can be defined
on n variables;

– t: tightness, that is, the percentage of tuples with preference 0 in each constraint
w.r.t. the total number of tuples (m2 since we have only binary constraints), and in
each domain;

– i: incompleteness, that is, the percentage of incomplete tuples (formally, tuples with
preference ?) in each constraint and in each domain.

For example, if the generator is given in input n = 10, m = 5, d = 50, t = 10, and
i = 30, it will generate a binary ISCSP with 10 variables, each with 5 elements in the
domain, 22 constraints on a total of 45 = n(n− 1)/2, 2 tuples with preference 0 and 7
incomplete tuples over a total of 25 in each constraint, and 1 missing preference in each
domain.

Notice that we use a model B generator: density and tightness are interpreted as
percentages, and not as probabilities. Also, when we simulate the Elicit procedure, we
randomly generate values in (0, 1].

We have generated classes of ISCSPs by varying one parameter at a time, and fixing
the other ones. The varying parameters are the number of variables, the density, and the
incompleteness. When the number of variables varies (from n = 5 to n = 20, with step
3), we set m = 5, d = 50, t = 10, and i = 30. When we vary the density (from d = 10
to d = 80 with step 5), we set n = 10, m = 5, t = 10, and i = 30. Finally, when we
vary the incompleteness (from i = 10 to i = 80 with step 5), we set n = 10, m = 5,
d = 50, and t = 10.

In all the experiments, we have measured the number of tuples elicited by Algorithm
Find-NOS. We also show the percentage of elicited tuples over the total number of
incomplete tuples of the problem in input. For each fixed value of all the parameters,
we show the average of the results obtained for 50 different problem instances, each

Dealing with Incomplete Preferences in Soft Constraint Problems 297

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 8 11 14 17 20

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

n. of variables

(a)

 0

 20

 40

 60

 80

 100

 5 8 11 14 17 20

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

n. of variables

(b)

Fig. 2. Number and percentage of elicited preferences, as a function of the number of variables.
Fixed parameters: m = 5, d = 50, t = 10, i = 30.

given in input to Find-NOS 10 times. This setting is necessary since we have two kinds
of randomness: the usual one in the generation phase and a specific one when eliciting
preferences.

Figure 2 shows the absolute number and the percentage of elicited preferences when
the number of variables varies. As expected, when the number of variables increases, the
absolute number of elicited preferences increases as well, since there is a growth of the
total number of incomplete tuples. However, if we consider the percentage of elicited
tuples, we see that it is not affected by the increase in the number of variables. In par-
ticular, the percentage of elicited preferences remains stable around 22%, meaning that,
regardless of the number of variables, the agent is asked to reveal only 22 preferences
over 100 incomplete tuples. A necessarily optimal solution can be thus found leaving
88% of the missing preferences unrevealed.

Similar results are obtained when density varies (see Figure 3). We can see that the
absolute number of elicited preferences grows when density increases. The maximum
number of elicited preferences reached is however lower that the maximum reached
when varying the variables (see Figure 2(a)). The reason for this is that the largest prob-
lems considered when varying the number of variables have more incomplete tuples
than the largest obtained when varying the density. In fact, a problem with n = 20,
given the fixed parameters, has around 685 incomplete tuples, 165 of which (about
22%) are elicited. On the other hand, a problem with d = 80, given the fixed param-
eters, has around 262 incomplete tuples, 55 (about 22%) of which are elicited. This is

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

density

(a)

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

density

(b)

Fig. 3. Number and percentage of elicited preferences, as a function of the density. Fixed param-
eters: n = 10, m = 5, t = 10, i = 30.

298 M. Gelain et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 15 20 25 30 35 40 45 50 55 60 65 70

n.
 e

lic
ite

d
pr

ef
er

en
ce

s

incompleteness

(a)

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

incompleteness

(b)

Fig. 4. Number and percentage of elicited preferences, as a function of the incompleteness. Fixed
parameters: n = 10, m = 5, t = 10, d = 50.

known from the beginning elicited by user

Fig. 5. Amount of preferences initially available and elicited as a function of the incompleteness.
Fixed parameters: n = 10, m = 5, t = 10, i = 30.

coherent with the fact that the results on the percentage of elicited preferences when
varying the density and the number of variables are very similar.

The last set of experiments vary the percentage of incompleteness (see Figure 4). As
for density and number of variables, the absolute number of elicited preferences grows
when the percentage of incompleteness increases. The maximum number of elicited
preferences reached is close to that reached when varying the variables. However, the
number of incomplete tuples of the problems with i = 70 is around 460 and thus smaller
than that of problems with n = 20. Thus the percentage of elicited preferences is larger
in problems with i = 70. This is confirmed by the corresponding result for the per-
centage of elicited preferences, which is shown to be around 35%. Additionally, the
percentage of elicited preferences follows a slightly increasing trend as the percentage
of incompleteness in the problem grows. However, it maintains itself below 35%, which
means that in the worst case, where 70% of the tuples are incomplete, we are able to
find a necessary optimal solution leaving 46% of the total number of tuples unspecified.

In Figure 5 we show the information about how many missing preferences we need
to ask the user in a different way: each bar has a lower part showing the amount of
information we have already (the one available at the beginning), while the higher part
shows how much more information we need to ask the user for in order to find a nec-
essarily optimal solution. It is possible to see that, when we have already some initial

Dealing with Incomplete Preferences in Soft Constraint Problems 299

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50 55 60 65 70

ex
ec

ut
io

ns
 o

f B
B

 o
n

P
[?

/1
]

incompleteness

(a)

 0

 200

 400

 600

 800

 1000

 1200

 10 15 20 25 30 35 40 45 50 55 60 65 70

tim
e

(m
se

c)

incompleteness

(b)

Fig. 6. CPU time and BB runs as a function of the incompleteness. Fixed parameters: n = 10,
m = 5, t = 10, i = 30.

information, usually we need to ask the user for more even if the initial information
amount is large. This is because some of the preferences available initially may be not
useful for the computation of an optimal solution. On the other hand, if we start with
no initial preferences (rightmost bar), we need to ask the user only for about 40% of the
preferences.

The focus of this work is on how many elicitation steps need to be done before
finding a necessarily optimal solution. In fact, our Branch and Bound procedure could
certainly be improved in terms of efficiency. However, we show in Figure 6 the CPU
time needed to solve some incomplete problems (when incompleteness varies) and also
the number of runs of the Branch and Bound on the 1-completion.

7 Ongoing and Future Work

We are currently working on several variants of the algorithm described in this paper,
where elicitation occurs not at the end of an entire BB search tree, but at the end of every
complete branch or at every node. In this case, the algorithm runs BB only once before
finding a necessarily optimal solution. Moreover, we are also considering variants of
the Elicit function that asks for just one of the missing preferences: for example, in the
context of fuzzy constraints, it just asks for the worst one, since it is the most useful one
due to the drowning effect.

Future work will consider partially ordered preferences and also other ways to ex-
press preferences, such as qualitative ones a la CP nets, as well as other kinds of missing
data, such as those considered in dynamic, interactive, and open CSPs. Moreover, other
solving approaches can be considered, such as those based on local search and variable
elimination.

We also would like to consider the specification of intervals, rather than a fixed pref-
erence or nothing. This would not change much our setting. We consider the [0,1] inter-
val where no preference is specified, and thus the 0-completion and the 1-completion.
With generic intervals, we can consider the ”lower bound completion” and the “upper
bound completion”.

300 M. Gelain et al.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
Journal of the ACM 44(2), 201–236 (1997)

2. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based
CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints 4(3) (1999)

3. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
4. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: AAAI, pp.

37–42 (1988)
5. Faltings, B., Macho-Gonzalez, S.: Open constraint satisfaction. In: Van Hentenryck, P. (ed.)

CP 2002. LNCS, vol. 2470, pp. 356–370. Springer, Heidelberg (2002)
6. Faltings, B., Macho-Gonzalez, S.: Open constraint optimization. In: Rossi, F. (ed.) CP 2003.

LNCS, vol. 2833, pp. 303–317. Springer, Heidelberg (2003)
7. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artif. Intell. 161(1-2),

181–208 (2005)
8. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probalistic approach.

In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 97–104.
Springer, Heidelberg (1993)

9. Fargier, H., Schiex, T., Verfaille, G.: Valued Constraint Satisfaction Problems: Hard and Easy
Problems. In: IJCAI-95, pp. 631–637. Morgan Kaufmann, San Francisco (1995)

10. González, S.M., Ansótegui, C., Meseguer, P.: On the relation among open, interactive and
dynamic CSP. In: The Fifth Workshop on Modelling and Solving Problems with Constraints
(IJCAI’05) (2005)

11. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.: Constraint
propagation and value acquisition: Why we should do it interactively. In: IJCAI, pp. 468–
477 (1999)

12. Lang, J., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Winner determination in sequential
majority voting. In: IJCAI, pp. 1372–1377 (2007)

13. Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proceedings 1st IEEE Conference on Evolu-
tionary Computing, Orlando, pp. 542–547 (1994)

Efficient Computation of Minimal Point Algebra

Constraints by Metagraph Closure

Alfonso Gerevini and Alessandro Saetti

Dipartimento di Elettronica per l’Automazione
Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy

{gerevini,saetti}@ing.unibs.it

Abstract. Computing the minimal network (or minimal CSP) repre-
sentation of a given set of constraints over the Point Algebra (PA) is
a fundamental reasoning problem. In this paper we propose a new ap-
proach to solving this task which exploits the timegraph representation
of a CSP over PA. A timegraph is a graph partitioned into a set of
chains on which the search is supported by a metagraph data structure.
We introduce a new algorithm that, by making a particular closure of
the metagraph, extends the timegraph with information that supports
the derivation of the strongest implied constraint between any pair of
point variables in constant time. The extended timegraph can be used as
a representation of the minimal CSP. We also compare our method and
known techniques for computing minimal CSPs over PA. For CSPs that
are sparse or exhibit chain structure, our approach has a better worst-
case time complexity. Moreover, an experimental analysis indicates that
the performance improvements of our approach are practically very sig-
nificant. This is the case especially for CSPs with a chain structure, but
also for randomly generated (both sparse and dense) CSPs.

1 Introduction

Constraint-based qualitative temporal reasoning is a widely studied area with
application to various fields of AI (for a recent survey see [2]). The Point Al-
gebra [9,10] is one of the first and most prominent frameworks for representing
qualitative temporal constraints and reasoning about them. PA consists of three
basic relations between time point variables that are jointly exhaustive and pair-
wise disjoint (<, >, =), all possible unions of them (≤, ≥, �=, and �, where �
is the universal relation), and of the empty relation. The convex Point Algebra
contains all the relations of PA except �=.

Given a set C of temporal constraints over PA (or a temporal CSP), a funda-
mental reasoning problem is computing the minimal CSP representation of C.1 A
temporal CSP is minimal if, for every pair of variables i, j, the relation R between
i and j is the strongest relation (or minimal constraint) between i and j that is en-
tailed by the CSP. In other words, every basic relation r ∈ R is feasible, i.e.,
there exists a solution of the temporal CSP where the values assigned to i and
j satisfy r.
1 This problem is also called deductive closure problem in [9], minimal labeling problem

in [5,7] and computing the feasible relations in [6].

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 301–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

302 A. Gerevini and A. Saetti

Computing the minimal CSP of a temporal CSP involving n variables can be
accomplished in O(n3) time by using a path-consistency algorithm, if the CSP
is over the convex PA [9,10], and in O(n3 + n2 · c �=), if the CSP is over the full
PA [6,4], where c �= is the number of input �=-constraints.

An alternative approach to qualitative temporal reasoning in the context of
PA is the “graph-based approach” [1,3]. Instead of computing the minimal CSP,
we build a particular graph-based representation of the input CSP that supports
efficient computation of the minimal constraints at query time. This method has
been proposed with the aim of addressing scalability especially for large data sets
forming sparse CSPs (in which the number of constraints is less than quadratic)
and exhibiting particular structure (e.g., a collection of time chains [3] or series-
parallel graphs [1]).

The minimal CSP representation supports the derivation of the strongest
entailed relation between any pair of variables in constant time. On the contrary,
in the graph-based representation this has a computational cost that depends on
the structure and sparseness of the input temporal CSP; in the best case it can
be constant time, while in the worst case it can be quadratic time with respect to
the number of the CSP point variables. On the other hand, in practice computing
the minimal CSP representation using known techniques is significantly slower
than computing the graph-based representation of a sparse CSP [1,3].

In this paper, we investigate a combined approach. We propose a new method
for computing the minimal CSP representation by exploiting the timegraph rep-
resentation [3]. A timegraph is a graph partitioned into a set of time chains on
which the search is supported by a metagraph data structure. We introduce a
new algorithm that, by making a particular closure of the metagraph, extends
the timegraph with information that supports the derivation of the strongest
entailed relation between any pair of point variables in constant time. The ex-
tended timegraph can be seen as a representation of the minimal CSP. By using
our approach the (explicit) minimal CSP can be computed in O(n̂ · ê + n2) time
(convex PA) and O(ê · n̂ + ê �= · (ê + n̂) + n2) time (full PA), where n̂, ê and ê �=
are the metanodes, metaedges and �=-metaedges, respectively, in the timegraph.

We compare our method and the known techniques for computing minimal
CSPs over PA. For CSPs that are sparse or exhibit chain structure, our approach
has a better worst-case time complexity. Moreover, an experimental analysis
indicates that in practice our approach is significantly faster. This is the case
not only for CSPs with a chain structure, but also for general randomly generated
(both sparse and dense) CSPs.

The paper is organized as follows. Section 2 gives the necessary background.
Section 3 presents our new method for computing the minimal CSP. Section 4
concerns the experimental analysis. Finally, Section 5 gives the conclusions.

2 Background: TL-Graphs, Timegraphs and Metagraphs

A temporally labeled graph (TL-graph) [3] is a graph with at least one vertex
and a set of labeled edges, where each edge (v, l, w) connects a pair of distinct

Efficient Computation of Minimal Point Algebra Constraints 303

0 10

20

30 40 60

503020

40

<

s a

i

b

c

h

e

d

<

fg

<

s a

i

b

c

h

e

d

<

fg

a) b)

�= �=

Fig. 1. Examples of TL-graph and ranked TL-graph. Edges with no label are assumed
to be labeled “≤”.

c)b)a)

u

t

w w

u

t

wv v v
�=

�= �=

Fig. 2. a) van Beek’s forbidden graph; b) and c) the two kinds of implicit < relation in a
TL-graph. Edges with no labels are assumed to be labeled “≤”. Dotted arrows indicate
paths, solid lines �=-edges. In each graph there is an implicit < between v and w.

vertices v, w representing point variables. Each edge represents a PA-constraint
and is either directed and labeled ≤ or <, or undirected and labeled �=. Figure
1.a) shows an example of TL-graph. A path in a TL-graph is called a ≤-path if
each edge on the path has label < or ≤. A ≤-path is called a <-path if at least
one of the edges has label <.

A TL-graph G contains an implicit < relation between two vertices v1, v2
when the strongest relation entailed by the temporal CSP from which G has
been built is v1 < v2 and there is no <-path from v1 to v2 in G. Figures 2.b) and
2.c) show the two possible TL-graphs which give rise to an implicit < relation.
All TL-graphs with an implicit < relation contain one of these subgraphs [4,6].

An acyclic TL-graph without implicit < relations is an explicit TL-graph. In
order to make explicit a TL-graph containing implicit < relations, we can add
new edges with label < [3]. For example, in Figure 2 we add the edge (v, <, w)
to the graph. An important property of an explicit TL-graph is that it entails
v ≤ w if and only if there is a ≤-path from v to w; it entails v < w if and only
if there is a <-path from v to w, and it entails v �= w if and only if there is a
<-path from v to w or from w to v, or there is an edge (v, �=, w).

Given a CSP C over PA with c constraints, we can construct a TL-graph G
representing C in O(c) time; In order to check consistency of C and transform G
into an equivalent acyclic TL-graph, we can use van Beek’s method for PA [6].

304 A. Gerevini and A. Saetti

<

< chain 2

chain 3

chain 1

edcba fs

g h
�=

20

i

10 30 40 50 60

30 40

200

Fig. 3. The timegraph of the TL-graph of Figure 1, with transitive edges and auxiliary
edges omitted. Dotted links between nodes on the same chain are nextgreater links.
Edges with no label are assumed to be labeled “≤”.

If the TL-graph (C) is consistent, each SCC is collapsed into an arbitrary vertex
v within that component, and all the cross-component edges entering or leaving
the component are appropriately transferred to v.

A ranked TL-graph [3] is a simple but powerful extension of an acyclic TL-
graph. In a ranked TL-graph (see Figure 1.b) , each vertex (time point) has a
rank associated with it. The rank of a vertex v can be defined as the length of
the longest ≤-paths to v from a source vertex s of the TL-graph representing
the “universal start time”, times a rank distance increment k [3]. The special
vertex s has no predecessor and its successors are all the vertices of the graph
that have no other predecessor. As observed in [1,3], the use of the ranks can
significantly speed up the search for a path from a vertex p to another vertex q:
the search can be pruned whenever a vertex with a rank greater than or equal
to the rank of q is reached.

A timegraph [3] is an acyclic ranked TL-graph partitioned into a set of
time chains, such that each vertex is on one and only one time chain. A time
chain is a ≤-path, plus possibly “transitive edges” connecting pairs of vertices
on the ≤-path. Distinct chains of a timegraph can be connected by cross-chain
edges. Vertices connected by cross-chain edges are called metanodes. Cross-chain
edges and certain auxiliary edges connecting metanodes on the same chain are
called metaedges. The auxiliary edges connect each metanode to the first (last)
successor (predecessor) metanode on the same chain with an outgoing cross-edge,
and to the first (last) successor (predecessor) metanode on the same chain with
an incoming cross-edge. These auxiliary edges are called the NextOut (PrevOut)
and NextIn (PrevIn) edges of a metanode. The metanodes and metaedges of a
timegraph T form the metagraph of T .2

Figure 3 shows the timegraph built from the TL-graph of Figure 1. All vertices
except d, e and s are metanodes. The edges connecting vertices a to i, i to c, b

2 The purpose of the metagraph is not to be an autonomous structure independent of
the rest of the graph, but a support structure to facilitate the graph search conducted
during the construction of the timegraph data structures or at query time. Our
implementation of the timegraph algorithms does handle the potential “pathological
case” identified in [1]. This is done by considering as the successors of a metanode v
on a chain c all successors of v on c with at least one outgoing cross-chain metaedge.

Efficient Computation of Minimal Point Algebra Constraints 305

to g, h with f , are metaedges. Dotted edges are special links called nextgreaters
that are computed during the construction of the timegraph and that indicate
for each vertex v the nearest descendant v′ of v on the same chain as v such that
the represented CSP entails v < v′.

In a timegraph the main purpose of the ranks is to support the computation
of the strongest entailed relation between two vertices on the same chain in
constant time: given two vertices v1 and v2 on the same chain such that the
rank of v2 is greater than the rank of v1, if the rank of the nextgreater of v1 is
less than or equal to the rank of v2, then the timegraph entails v1 < v2, otherwise
it entails v1 ≤ v2. For example, the timegraph of Figure 3 entails a < d because
a and d are on the same chain, and the rank of the nextgreater of a is less than
the rank of d.

Given a CSP C over PA, in order to build a timegraph representation of C, we
start from a TL-graph G representing C. The construction of the timegraph from
G consists of four main steps: checking the consistency of G (and C), ranking
of the graph vertices, formation of the time chains and the metagraph, and
making explicit the implicit < relations. The total time complexity of building
the timegraph for a CSP C consisting of c PA-constraints involving n point
variables is [3]:

– O(n + c + ê · n̂), if C is over the convex PA,
– O(n + c + ê · n̂ + ê �= · (ê + n̂)), if C is over the full PA,

where n̂ is the number of metanodes in the timegraph, ê is the number of
metaedges and ê �= is the number of metaedges labeled �=. It is worth noting
that typically n̂ is smaller than n, ê is smaller than c, and ê �= is smaller than
then the number of input �=-constraints.

Concerning querying the strongest entailed relations between two point vari-
ables p1 and p2 represented in a timegraph, there are four cases in which this
can be accomplished in constant time: (1) p1 and p2 are alternative names of the
same vertex (the strongest entailed relation is “=”); (2) the vertices v1 and v2
corresponding to p1 and p2 are on the same time chain; (3) v1 and v2 are not on
the same chain and have the same rank, and there is no �= edge between them
(the strongest entailed relation is “�”); (4) v1 and v2 are connected by a �=-edge
(the strongest entailed relation is �=). In the remaining cases an explicit search
on the metagraph needs to be performed. If there exists at least one <-path from
v1 to v2, then the answer is v1 < v2. If there are only ≤-paths (but no <-paths)
from v1 to v2, then the answer is v1 ≤ v2 [3]. (Analogously for the paths from
v2 to v1.) Such a graph search can be accomplished in O(ê + n̂) time.

3 Chain Closure for Timegraphs

In this section we extend the timegraph representation with additional informa-
tion that can be exploited to compute the strongest entailed relation (or minimal
constraint) between any pair of variables in constant time. This information con-
sists of two additional links for each metanode v with an outgoing cross-chain
edge and each chain c:

306 A. Gerevini and A. Saetti

– ChainLess(v, c), which is the first node w on c such that v < w is entailed
by the timegraph (there is a <-path from v to w);

– ChainLeq(v, c), which is the first node t on c such that v ≤ t is entailed by
the timegraph (there is a ≤-path from v to t).

When one of these links is undefined, the corresponding link has value “null”.
We call the set of ChainLess and ChainLeq links the chain closure (or metagraph
closure) of the timegraph.

3.1 Chain Closure Algorithm

The algorithm in Figure 4, ChainClosure, consists of three nested loops. The
most external loop considers each chain c; the second nested loop considers each
node v with outgoing cross-chain edge on c as a start node for a search; the
third nested loop performs a complete search on the metagraph for computing
the ChainLess and ChainLeq links for v and each time chain.

The first search starting from a metanode on a chain c starts from the last
metanode v = LastOut(v) on c with an outgoing cross-edge (step 3). Once the
algorithm has found all paths from v to the metanodes on each chain c′ �= c, the
ChainLess and ChainLeq links of v for all these chains have been computed, and
the algorithm “moves back” to the previous metanode on c, v = PrevOut(v),
with an outgoing cross-chain edge (step 23) to initiate another search (step 5).

The search from v is conducted by maintaining a frontier of nodes to be visited
(Open). Each time the search visits a metanode s ChainLess(v,Chain(s)) and
ChainLeq(v,Chain(s)) are updated, where Chain(s) denotes the chain of s (steps
7–14). Since the order in which the chains are processed by the external loop
corresponds to their increasing number, if Chain(s) < Chain(v), then, for all
metanodes on Chain(s), the ChainLess and ChainLeq links of s have already
been computed, and so they can be used to update the ChainLess and ChainLeq
of v (steps 7-8). For example, if Rank(ChainLess(s, c′)) < Rank(ChainLess(v, c′)),
where c �= c′, then ChainLess(v, c′) is set to ChainLess(s, c′), and similarly for
ChainLeq(v, c′).3 A similar updating is done when Chain(s) = Chain(v) and s has
an outgoing cross-chain edge; this propagates to v the ChainLess and ChainLeq
information previously computed for s. Steps 9–14 consider all the other cases in
which the ChainLess and ChainLeq links of v for Chain(s) need to be updated.
The flag Rel(s) ∈ {<, ≤, null} keeps track of the strongest path (relation) from
v to s found by the search (null means “no path found” so far).

After visiting s, the frontier Open is extended with the child nodes of s (steps
15–20), provided that they satisfy certain conditions illustrated below. The pur-
pose of these conditions is pruning the successor nodes for which we can antici-
pate that the current ChainLess and ChainLeq of v cannot be refined by contin-
uing the search from them. The search from v terminates when s = Pop(Open)
is null (step 6), i.e., when Open becomes empty.

In order to make the search more efficient, not all child nodes of the current
node s are added to Open. This pruning is performed by exploiting the chain
3 We omit the details of this updating process, which is straightforward.

Efficient Computation of Minimal Point Algebra Constraints 307

Algorithm: ChainClosure

Input: a timegraph T ;
Output: T extended with chain closure (ChainLeq and ChainLess links);

1. Open := empty list;
2. for each chain c (processed according to their increasing number) do
3. v := LastOut(c); Visited := empty list;
4. while v �= null
5. s := v; add s to Visited;
6. while s �= null
7. if Chain(s) ≤ Chain(v) and s �= v and s has outgoing metaedges then
8. Update ChainLeq(v, c′), ChainLess(v, c′) with ChainLeq(s, c′) and

ClainLess(s, c′), respectively, for each chain c′ �= c;
9. if Chain(v) �= Chain(s) and Rel(s) = < then
10. if Rank(ChainLess(v, Chain(s))) > Rank(s) then

ChainLess(v, Chain(s)) := s;
11. if ChainLeq(v, Chain(s)) �= null and Rank(ChainLeq(v, Chain(s))) ≥ Rank(s)

then ChainLeq(v,Chain(s)) := null;
12. if Chain(v) �= Chain(s) and Rel(s) = ≤ then
13. if Rank(ChainLess(v, Chain(s))) > Rank(s) and

Rank(ChainLeq(v, Chain(s))) > Rank(s) then ChainLeq(v,Chain(s)) := s;
14. if NG(s) �= null and Rank(ChainLess(v, Chain(s)) > Rank(NG(s)) then

ChainLess(v, Chain(s)) := NG(s);
15. if Chain(s) > Chain(v) or s = v or s has no outgoing cross-chain edges then
16. S := set of metanodes to which s is connected by outgoing cross-chain edges
17. if s = v or RelChain(s) = null or (RelChain(s) = ≤ and Rel(s) = <) then

S := S ∪ {s′ | s′ is successor of s on Chain(s) through the NextOut links}
18. for each w ∈ S do

19. if Rel(s) = < or (s,<, w) ∈ Ê or (Chain(s) = Chain(w) and s < w)
then update := < else update := ≤;

20. if Rel(w) = null or (Rel(w) = ≤ and update = <) then
Rel(w) := update; add w to Open (maintaining the list ordered by rank);

21. if s = v then RelChain(s) := ≤ else RelChain(s) := Rel(s);
22. s := Pop(Open); add s to Visited;
23. v := PrevOut(v); RelChain(v) := null;
24. For each node n in Visited, set Rel(n) to null;

Fig. 4. Algorithm for computing the chain closure of a timegraph. We assume that
Rank(null) = +∞. Ê is the set of metaedges. NG(s) abbreviates Nextgreater(s). The
RelChain and Rel flags, which we assume are initially set to null, are described in the
text. Condition s < w at step 19 can be checked in constant time by querying the
timegraph because s and w belong to the same chain.

numbering, the Rel flag, and an additional information called RelChain. As men-
tioned above, when the search visits a node s with an outgoing metaedge on a
chain already processed, i.e., Chain(s) < Chain(v), there is no need to add the
child nodes of s to Open. Similarly, when for a child node w we have Rel(w) =
<, or Rel(w) = ≤ and Rel(s) = ≤, there is no need to add w to Open.

308 A. Gerevini and A. Saetti

The meaning of the RelChain flag and its use for pruning the search at step 17
of the algorithm are slightly less intuitive. RelChain(s) ∈ {<, ≤, null} indicates
whether the chain of s has already been reached by the current search from v
and, if RelChain(s) �= null, it gives the strongest relation between v and any
visited metanode on Chain(s) that has been computed. When at step 17 the
algorithm considers the s′ nodes that are successors of s on the same chain as
s, such nodes are added to Open only if RelChain(s) is null, or RelChain(s) is
≤ and Rel(s) is <. In the other cases the s′ nodes have already been considered
by the search from v, and the current path from v to s′ is not stronger than the
one already found.

Finally, the elements in Open are maintained ordered by increasing rank, and
the next visited node (step 22) is always one with the lowest rank in Open. This
determines that, when a node s is visited, s cannot precedes any other node on
the same chain as s that has already been visited by the current search; this
property guarantees the correctness of the pruning described above.

The following theorem states the time complexity of ChainClosure.

Theorem 1. Let T be a timegraph with n̂ metanodes, ê metaedges and nc

chains. The time complexity of Algorithm ChainClosure applied to T is O(nc ·
ê + n̂2).

Proof. The time complexity is determined by (1) the total number of metanodes
and metaedges visited by all the searches from the metanodes with an outgoing
cross-chain edge; (2) the total cost of maintaining Open ordered by the rank of
its members.

Concerning (1), for each chain c, we have that the total number of metanodes
entering into Open for all the searches from a metanode on c is O(n̂). This is
because, for each search from a metanode v on c, by exploiting the Rel flag (steps
19-20), a node s that has already been visited by the current or any previous
search (from another metanode on c successor of v) enters into Open only if it
is revisited with a stronger relation (step 20). It follows that, for each chain,
the total number of visited metanodes is O(n̂) and the total number of visited
cross-chain edges is O(ê). Hence the total number of nodes and cross-chain edges
visited by the algorithm is O(nc · n̂ + nc · ê) = O(nc · ê).

The other metaedges visited by the search are the NextOut links connect-
ing two metanodes on the same chain. The total number of these edges in a
timegraph is O(n̂). By exploiting the Rel and RelChain flags (step 17), for each
search, the algorithm visits each NextOut link at most twice. Hence, since the
total number of searches performed by the algorithm is O(n̂), the total number
of visited NextOut links is O(n̂2).

Concerning (2), consider the collection of the O(n̂) nodes entering into Open
for all searches from a start vertex on the same chain. By representing Open
as a vector of metanodes indexed by their rank divided by the rank increment,
and the fact that the nodes in Open are processed by increasing rank order, we
can derive an efficient method for maintaining Open ordered in O(n̂) total time.
Hence, the total cost for maintaining Open ordered is O(nc · n̂). It follows that
the total time complexity of the algorithm is O(nc · ê + n̂2). �

Efficient Computation of Minimal Point Algebra Constraints 309

Case 1: v < w

chain 2

100

200

chain 1

110 120 130 140 150 160 170 180 190 200

NO(v)

NG(v)

210 220 230 240 250 260 270 280 290 300

w

C
ha

in
L
es

s

v <

NO(NG(v))

Cha
in
Le

q

Case 2: v < w

chain 2

100

200

chain 1

110 120 130 140 150 160 170 180 190 200

NO(v)

NG(v)

NO(NG(v))

210 220 230 240 250 260 270 280 290 300

Cha
inL

eq

w

v <

C
h
ai

n
L
es

s

Case 3: v ≤ w

chain 2

100

200

chain 1

110 120 130 140 150 160 170 180 190 200

NO(v)

NG(v)

NO(NG(v))

210 220 230 240 250 260 270 280 290 300

Cha
inL

eq

v

w

<

C
h
ai

n
L
es

s

Case 4: v�w

chain 2

100

200

chain 1

110 120 130 140 150 160 170 180 190 200

NO(v)

NG(v)

NO(NG(v))

210 220 230 240 250 260 270 280 290 300

Cha
inL

eq

v

w

<

C
h
ai

n
L
es

s

Fig. 5. Illustration of cases (1)–(4) in the constant time query algorithm outlined in
the proof of Theorem 2. NG and NO abbreviate Nextgreater and NextOut, respectively.
Edges on the same chain without a label are assumed to be ≤-edges.

310 A. Gerevini and A. Saetti

3.2 Constant Time Queries and Minimal Constraints

In order to obtain a constant time query algorithm for every pair of variables, we
exploit the ChainLess and ChainLeq information. Moreover, we assume that ev-
ery node of the timegraph has a (possibly null) NextOut link associated with it.4

Theorem 2. Let v and w be two point variables represented in a timegraph T
extended with the chain closure. The strongest entailed relation between v and w
can be computed in constant time.
Proof (sketch). If v and w are on the same time chain, T entails v = w or T
entails v �= w, then the strongest relation between v and w can be computed in
constant time as described in [3].

If v and w are on different chains, the strongest relation can be computed by
exploiting the chain closure as follows. Without loss of generality, suppose that
v is on chain 1 and w is on chain 2. There are three cases to consider: (a) none
of v and w are metanodes, (b) one of v and w is a metanode, (c) both v and w
are metanodes. In the rest of the proof we only consider case (a). Cases (b) and
(c) can be handled in a similar, slightly simpler, way.

If NextOut(v) = null, then clearly the query answer is “�”. Assume that Next
Out(v) �= null, and let no = NextOut(v) and ng = Nextgreater(v), if Nextgreater(v)
has a cross-chain outgoing edge, ng = NextOut(Nextgreater(v)) otherwise. There
are the following four cases to consider, which are illustrated in Figure 5:

(1) if Rank(w) ≥ Rank(ChainLeq(ng, 2)), then the strongest entailed relation
between v and w is “<”;

(2) if case (1) does not apply and Rank(w) ≥ Rank(ChainLess(no, 2)), then the
strongest entailed relation is “<”;

(3) if cases (1-2) do not apply and Rank(w) ≥ Rank(ChainLeq(no, 2)), then the
strongest entailed relation is “≤”;

(4) if cases (1–3) do not apply, the strongest entailed relation is “�”. �

Since, for any pair of variables in the timegraph T with chain closure representing
a CSP C, the strongest entailed relation can be obtained in constant time, T
can be considered as a representation of the minimal CSP of C. However, if we
want an explicit representation of the minimal CSP, we need an additional step
to read all minimal constraints from T , which can be done in quadratic time
w.r.t. the number of variables in C.

The next theorems state the complexity of our method for computing the
explicit minimal CSP for the convex PA and the full PA.5

4 This can easily be computed by post-processing the timegraph in linear time with
respect to the number of nodes and edges in the timegraph. The NextOut links for
a node that is not a metanode are used only to support constant time queries as
described in the proof of Theorem 2; they are not part of the metagraph. In the
original version of the timegraph only the metanodes can have a NextOut link.

5 If we use the extended timegraph as the representation of the output minimal con-
straints, then the O(n2) term in the complexity bounds can be omitted, and we need
to add the number of input constraints as an additional term; such a number is no
greater than O(n2) and for sparse CSPs is less than quadratic.

Efficient Computation of Minimal Point Algebra Constraints 311

Theorem 3. Let C be a CSP over the convex Point Algebra involving n vari-
ables, the explicit minimal CSP of C can be computed in O(n̂ · ê + n2) time,
where n̂ and ê are the metanodes and metaedges, respectively, in the timegraph
representing C.

Proof. The total time complexity for constructing the timegraph for C is O(n+
|C| + n̂ · ê) [3], where |C| is the number of constraints in C. By Theorem
2, computing the strongest relation entailed by a timegraph with chain clo-
sure for a pair of variables can be accomplished in constant time, and so all
minimal constrains of C can be obtained in O(n2) time. By Theorem 1, the
chain closure of the timegraph for C can be computed in O(nc · ê + n̂2). It fol-
lows that the total time complexity of computing the minimal CSP of C is O
(n̂ · ê + n2). �

Theorem 4. Let C be a CSP over the full Point Algebra involving n point
variables, the explicit minimal CSP of C can be computed in O(ê · n̂ + ê �= · (ê +
n̂)+n2) time, where n̂, ê and ê �= are the metanodes, metaedges and �=-metaedges,
respectively, in the timegraph representing C.

Proof (sketch). The proof is similar to the proof of Theorem 3, except that the
time complexity of computing the timegraph for C is O(n+ |C|+ ê·n̂+ ê �= ·(ê+n̂)).

�

Remark. We observe that the number of metanodes and metaedges in a time-
graph can be significantly smaller than the number of variables n and con-
straints c in the input CSP. For this reason, in practice the time complexity
of our approach can be lower than the complexity of the known techniques
for computing the minimal CSP of a CSP over the convex PA (O(n3)) and
the full PA (O(n3 + c �= · n2)), where c �= is the number of input �=-constraints
[10,6]. Moreover, for a sparse input CSP, our method has a better worst-case
time complexity. In particular, when c is linear with respect to n, the com-
plexity of our method is O(n2), while the techniques in [10,6] require O(n3)
time. This can be shown by considering a CSP with n variables forming a single
time chain. The path-consistency algorithm in [10] revises the relation between
O(n2) pairs of variables, and for each of these pairs it considers O(n) triples of
variables.

4 Experimental Analysis

We implemented (in C) all timegraph algorithms described in [3] and our new
chain closure algorithm. We call the resulting temporal reasoner tgc. In or-
der to evaluate the effectiveness of our approach in practice, we compared the
performance of tgc with an implementation of

– the path-consistency algorithm given in [10] with the improvements proposed
in [8], which we call pc,

312 A. Gerevini and A. Saetti

– pc extended with van Beek’s algorithm for removing the forbidden graphs
in a path-consistent CSP over PA [6], which we call pc-fg.6

pc solves the problem of computing the minimal CSP for the convex PA [9],
while pc-fg solves this problem for the full PA [4,6].

The output of pc and pc-fg is a matrix M such that each entry M [i, j]
contains a representation of the strongest entailed relation (minimal constraint)
between the i-th and the j-th variables in the input CSP. The output of tgc is
the collection of data structures representing a timegraph with chain closure. In
both cases, the minimal constraint for a pair of variables can be read from the
corresponding data structures in constant time. In our experimental comparison,
for tgc we also consider the additional total CPU-time for making all possible
queries, which for pc and pc-fg was not considered.

4.1 Experimental Settings and Test Domains

The experiments were aimed at evaluating the hypothesis that our approach
works well in practice for chain-structured CSPs (common, e.g., in automated
planning and story comprehension) as well as for randomly generated (sparse
and dense) CSPs. The data sets were obtained by running three different gen-
erators, two of which are based on the available code of known generators
[1,3]. Since we were mostly interested in testing the use of our closure algo-
rithm, every generated CSP is consistent and does not contain or entail equality
constraints.

In each plot with the experimental results, for the CPU-time of tgc we con-
sider two series of experimental results: one includes the total time for performing
all queries, the other does not. In both cases the CPU-time for tgc includes the
construction of the timegraph and the chain closure. All tests were conducted
on an Intel Xeon(tm) 3 GHz, 1 Gbytes of RAM. The CPU-time corresponding
to each point on a curve is an average value over 100 CSPs.

We used six test domains. The CSPs in Domains A, B, C and E, were syn-
thesized using DelGrande et al.’s generator [1], while Domain D using Gerevini
& Schubert’s generator [3]. For Domain F we used a new generator.

Domain A: randomly generated CSPs over the convex PA with equal numbers
of <, ≤-constraints and no �=-relation. For each considered number n of variables,
100 CSPs with n · �(log2(n))� constraints each are generated.

Domain B: this domain is the same as Domain A, except that the differences
among the CSP instances concern the number c of constraints, rather than the
number of variables, which is set to 1000. The generated CSPs range from sparse
CSPs (c = 3000) to dense CSPs (c = 449, 850).

6 We carefully checked the code of pc and pc-fg to make the implementation efficient
and bug-free. The correctness of the three implemented systems was checked by
comparing the corresponding minimal constraints obtained for the same CSP, using
many randomly generated CSPs.

Efficient Computation of Minimal Point Algebra Constraints 313

Domain C: randomly generated CSPs over the convex PA with a chain based
structure. For each considered number n of variables, the procedure generates
100 CSPs as described in [1].

Domain D: randomly generated CSPs over the convex PA consisting of data
sets that tend to fall into chains. For each considered number n of variables,
the procedure generates 100 CSPs as described in [3], each of which contains
n · �(log2(n))� constraints.

Domain E: this domain is the same as Domain A, except that the CSPs also
contain �=-constraints. For each considered number n of variables, the procedure
generates 100 CSPs. Each generated CSP contains n · �(log2(n))� constraints,
10% of which are �=-constraints.

Domain F: randomly generated CSPs over the full PA consisting of CSPs with
a chain structure and many �=-diamonds (forbidden graphs). For each consid-
ered number n of variables, the procedure generates 100 CSPs as follows. We
partition the variables in three subsets, each of which containing �n/3� variables
constrained to form a chain of ≤-constraints. The variables in each subset are
constrained in a way that determine at least �n/3� − 1 �=-diamonds. In each
generated CSP, the percentage of �=-constraints is about 50.

4.2 Experimental Results

First we present the results for the convex PA and then those for the full PA.
Figure 6 shows the performance of tgc and pc for Domains A and B. The re-
sults for Domain A (plot on the left side of the figure) indicate that for large
CSPs tgc is up to about three orders of magnitude faster than pc. The re-
sults for Domain B (plot on the right side of the figure) indicate that the very
good performance of tgc relative to pc does not depend on the sparseness of

 1

 10

 100

 1000

 10000

 1e+05

 1e+06

 0 500 1000 1500 2000 2500 3000

Number of point variables

Domain AMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC
 10

 100

 1000

 10000

 1e+05

 0 100000 200000 300000 400000 500000

S
pa

rs
e

gr
ap

hs

Number of input constraints

Domain BMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC

Fig. 6. Average CPU-times of tgc and pc in Domains A and B. For Domain A, on the
x-axis we have the number of point variables, while for Domain B we have the number
of edges (input constraints) in the timegraph. In both cases on the y-axis we have the
CPU-milliseconds (logarithmic scale).

314 A. Gerevini and A. Saetti

 0.1

 1

 10

 100

 1000

 10000

 1e+05

 1e+06

 0 500 1000 1500 2000 2500 3000

Number of point variables

Domain CMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC
 0.1

 1

 10

 100

 1000

 10000

 1e+05

 1e+06

 0 500 1000 1500 2000 2500 3000

Number of point variables

Domain DMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC

Fig. 7. Average CPU-times of tgc and pc in Domains C and D. On the x-axis we have
the number of point variables, on the y-axis the CPU-milliseconds (logarithmic scale).

 1

 10

 100

 1000

 10000

 1e+05

 1e+06

 0 500 1000 1500 2000 2500 3000

Number of point variables

Domain EMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC-FG
 1

 10

 100

 1000

 10000

 1e+05

 1e+06

 1e+07

 0 500 1000 1500 2000 2500 3000

Number of point variables

Domain FMilliseconds

TGC - timegraph + chain closure
TGC - timegraph + chain closure + all queries

PC-FG

Fig. 8. Average CPU-times of tgc and pc-fg in Domains D and E. On the x-axis
we have the number of point variables, on the y-axis we have the CPU-milliseconds
(logarithmic scale).

the input CSP: regardless the sparseness of the CSP, tgc is always much faster
than pc.

Figure 7 shows the performance of the compared approaches in Domains C and
D (sparse CSPs which exhibit chain structure). In these domains the performance
gap is even more dramatic than for randomly generated CSPs, obtaining an
improvement of up to four orders of magnitude, without considering the CPU-
time for performing all queries, and three orders, considering all queries.

Figure 8 concerns CSPs over the full PA, i.e., Domains E and F. tgc is
up to two orders of magnitude faster than pc-fg. Here the improvements are
less dramatic (but still very significant), because of the cost of dealing with
�=-constraints, which can be the most expensive processing step both in the
construction of the timegraph with chain closure and in pc-fg.

Finally, we also tested a simple alternative method for computing the minimal
CSP using the timegraph representation. Instead of computing the chain closure,
we use the original data structures and query algorithms to compute, for every
pair of variables, the corresponding strongest entailed relation. We compared

Efficient Computation of Minimal Point Algebra Constraints 315

the CPU-times of this simple approach and the one computing the chain closure
using our test domains. The results of this experiment indicate that computing
the chain closure is advantageous. Our method is up to 300 times faster than
making all queries in the timegraph without chain closure. An exception to this
behavior are particular CSPs that have a very strong chain structure (e.g., when
the timegraph has only one chain), where an extremely high percentage of pair
of nodes lie on the same chain. In these special cases the two timegraph-based
approaches perform similarly.

5 Conclusions

We have presented a new efficient method for computing the minimal CSP of
a CSP over the Point Algebra. For sparse CSPs the worst-case complexity of
our method improves the complexity of known methods based on enforcing path
consistency. In practice, an experimental analysis using various types of data sets
shows that our approach is much faster than computing the minimal CSP using
known techniques, both for CSPs with a chain structure and for general randomly
generated (sparse and dense) CSPs. A price to pay for the efficiency gain is
the more complex algorithms and implementation (however, the implementation
used in our experiments will be made publicly available).

While the techniques presented in this paper build on the timegraph rep-
resentation, we believe that our method can be applied to other graph-based
representation, such as the metagraph of the spmg system [1], which uses series-
parallel graphs instead of chains. Future work includes investigating an algorithm
for the metagraph closure in the context of spmg and additional experiments.

Acknowledgments. We would like to thank Nicola Ferrari and Nicola Morotti
for their help with the implementation of the timegraph algorithms.

References

1. Delgrande, J., Gupta, A., Van Allen, T.: A comparison of point-based approaches
to qualitative temporal reasoning. Artificial Intelligence 131, 135–170 (2001)

2. Gerevini, A.: Processing qualitative temporal constraints. In: Handbook of Tempo-
ral Reasoning in Artificial Intelligence, pp. 247–276. Elsevier, Amsterdam (2005)

3. Gerevini, A., Schubert, L.: Efficient algorithms for qualitative reasoning about
time. Artificial Intelligence 74, 207–248 (1995)

4. Gerevini, A., Schubert, L.: On computing the minimal labels in time point algebra
networks. Computational Intelligence 11(3), 443–448 (1995)

5. Golumbic, C.M., Shamir, R.: Complexity and algorithms for reasoning about time:
a graph-theoretic approach. Journal of the Association for Computing Machinery
(ACM) 40(5), 1108–1133 (1993)

6. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelli-
gence 58(1-3), 297–321 (1992)

7. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal rela-
tions. Computational Intelligence 6, 132–144 (1990)

316 A. Gerevini and A. Saetti

8. van Beek, P., Manchak, D.W.: The design and experimental analysis of algorithms
for temporal reasoning. Journal of Artificial Intelligence Research 4, 1–18 (1996)

9. Vilain, M., Kautz, H.A.: Constraint propagation algorithms for temporal reasoning.
In: Proceedings of the Fifth National Conference of the American Association for
Artificial Intelligence (AAAI-86), pp. 377–382. Morgan Kaufmann, San Francisco
(1986)

10. Vilain, M., Kautz, H.A., van Beek, P.: Constraint propagation algorithms for tem-
poral reasoning: a revised report. In: Weld, D.S., de Kleer, J. (eds.) Readings in
Qualitative Reasoning about Physical Systems, pp. 373–381. Morgan Kaufmann,
San Mateo, CA (1990)

MUST: Provide a Finer-Grained
Explanation of Unsatisfiability

Éric Grégoire, Bertrand Mazure, and Cédric Piette

CRIL-CNRS & IRCICA
Université d’Artois

rue Jean Souvraz SP18
F-62307 Lens Cedex France

{gregoire,mazure,piette}@cril.fr

Abstract. In this paper, a new form of explanation and recovery technique for the
unsatisfiability of discrete CSPs is introduced. Whereas most approaches amount
to providing users with a minimal number of constraints that should be dropped in
order to recover satisfiability, a finer-grained alternative technique is introduced.
It allows the user to reason both at the constraints and tuples levels by exhibiting
both problematic constraints and tuples of values that would allow satisfiability
to be recovered if they were not forbidden. To this end, the Minimal Set of Un-
satisfiable Tuples (MUST) concept is introduced. Its formal relationships with
Minimal Unsatisfiable Cores (MUCs) are investigated. Interestingly, a concept
of shared forbidden tuples is derived. Allowing any such tuple makes the cor-
responding MUC become satisfiable. From a practical point of view, a two-step
approach to the explanation and recovery of unsatisfiable CSPs is proposed. First,
a recent approach proposed by Hemery et al.’s is used to locate a MUC. Second, a
specific SAT encoding of a MUC allows MUSTs to be computed by taking advan-
tage of the best current technique to locate Minimally Unsatisfiable Sub-formulas
(MUSes) of Boolean formulas. Interestingly enough, shared tuples coincide with
protected clauses, which are one of the keys to the efficiency of this SAT-related
technique. Finally, the feasibility of the approach is illustrated through extensive
experimental results.

Keywords: CSP, constraint networks, explanation, unsatisfiability, MUC, MUS,
MUST.

1 Introduction

In this paper, we are concerned with unsatisfiable finite CSPs, namely finite Constraint
Satisfaction Problems for which no solution exists. Recent approaches to explain such a
form of unsatisfiability have been defined at the constraints level. For example, Hemery
et al. [1] have proposed an approach called DC(wcore) to detect Minimally Unsat-
isfiable Cores (MUCs) of CSPs, i.e. unsatisfiable subsets of constraints of the initial
CSP that are such that dropping any one the constraints allows the resulting subset to
become satisfiable. In this paper, a finer-grained alternative technique is introduced.
Indeed, dropping constraints can be too much destructive. Finer-grained information
could be provided to the user, allowing him (her) not only to pinpoint the causes of

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 317–331, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 É. Grégoire, B. Mazure, and C. Piette

unsatisfiability at the constraints level, but also detect the tuples of values that are for-
bidden by the constraints and that would lead to satisfiability if they were allowed by
those constraints.

In this respect, the contribution of this paper is twofold. On the one hand, a Minimally
Unsatisfiable Set of Tuples (MUST) concept is introduced: it is aimed at encompassing
the aforementioned notion of tuples that can allow satisfiability to be regained. The for-
mal relationships between MUSTs and MUCs are investigated. Interestingly, a concept
of shared forbidden tuples is derived. Allowing any shared tuple makes the correspond-
ing MUC become satisfiable. On the other hand, a two-step approach to the explanation
and recovery of unsatisfiable CSPs is proposed. A specific SAT encoding of a MUC
allows MUSTs to be computed by taking advantage of the best current technique to
locate Minimally Unsatisfiable Sub-formulas (MUSes) of Boolean formulas. Interest-
ingly enough, shared tuples coincide with protected clauses [2], which are one of the
keys to the efficiency of this SAT-related technique.

Accordingly, the paper is organized as follows. First, some basic definitions about
CSPs and MUCs are provided. In section 3, MUSTs are introduced and linked to MUCs
in section 4. Next, an original two-step approach to explain and recover from unsatis-
fiable CSPs is described. In section 5, a SAT-related approach to compute MUSTs and
shared forbidden tuples of a MUC is introduced. The feasibility of the approach is il-
lustrated through extensive experimental results in section 6. Section 7 compares the
contribution presented in this paper with the current existing works. In the conclusion,
some interesting paths for future research are described.

2 Background: CSPs and MUCs

In this section, the reader is provided with basic concepts about CSPs and MUCs.

Definition 1. A finite Constraint Satisfaction Problem (in short, CSP) is a pair P =
〈V ,C〉 where

1. V is a finite set of n variables {v1, . . . , vn} s.t. each variable vi ∈ V has an as-
sociated finite instantiation domain, denoted dom(vi), which contains the set of
possible values for vi,

2. C is a finite set of m constraints {c1, . . . , cm} s.t. each constraint cj ∈ C involves a
subset of variables of V, called scope and denoted V ar(cj), and has an associated
relation R(cj), which contains the set of tuples allowed for the variables of its
scope.

Definition 2. Solving a CSP P = 〈V ,C〉 consists in checking whether P admits at least
one solution, i.e. an assignment of values for all variables of V s.t. all constraints of
C are satisfied. If P admits at least one solution then P is called satisfiable else P is
called unsatisfiable.

In this paper, it will prove useful to adopt an alternative but equivalent definition for
CSPs, expressed in terms of forbidden tuples of values.

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 319

(a) Constraint Network (b) Micro-structure

Fig. 1. Graph-representations of Example 1

Definition 3. Let 〈V, C〉 be a CSP and let c ∈ C s.t. V ar(c) = {v1
c , . . . , vl

c}. A forbid-
den tuple of values is a member of dom(v1

c) × · · · × dom(vl
c) s.t. R(c) is not satisfied.

The set of forbidden tuples of values for a constraint c is denoted T (c).

Accordingly, CSPs can be redefined as follows.

Definition 4. A finite CSP is a pair P = 〈V ,C〉 where

1. V is a finite set of n variables {v1, . . . , vn} s.t. each variable vi ∈ V has an as-
sociated finite instantiation domain, denoted dom(vi), which contains the set of
possible values for vi,

2. C is a finite set of m constraints {c1, . . . , cm} s.t. each constraint cj ∈ C involves a
subset of variables of V , called scope and denoted V ar(cj), and is given a relation
T (cj), which contains the set of tuples forbidden for the variables of its scope.

Accordingly, P will also be denoted 〈V, {(V ar(c1), T (c1)), (V ar(c2), T (c2)), . . . ,
(V ar(cn), T (cn))}〉.

Definition 5. A constraint c ∈ C of the CSP P = 〈{v1, . . . , vn}, C〉 is falsified by an
assignment A ∈ dom(v1)×· · ·×dom(vn) iff the projection of A on V ar(c) is included
in T (c).

In the following, (forbidden) tuple will be a shorthand for forbidden tuple of values,
and binary CSPs will be considered only, namely CSPs where constraints involve two
variables. Using binary CSPs do not restrict the impact of our works, since it is well-
known that every discrete CSP can be reduced into a binary one, in polynomial time.

Example 1. Let V be {i,j,k,l,m} where each variable has the same domain {1,2,3}.
Let C be a set of 7 constraints. In Figure 1(a), the CSP P = 〈V , C〉 is represented by

320 É. Grégoire, B. Mazure, and C. Piette

a so-called constraint network, namely a non-oriented graph, where each variable is a
node and each constraint is an edge, labelled with its corresponding relation. It is also
useful to represent a CSP by its micro-structure, which is a graph where the values
of each variable are listed, and edges between values represent forbidden tuples. The
micro-structure of this example is depicted in Figure 1(b).

When a CSP is infeasible, it exhibits at least one Minimally Unsatisfiable Core, or
MUC. A MUC is a subpart of a CSP that is unsatisfiable and that does not contain any
proper subpart that is also unsatisfiable.

Definition 6. Let P = 〈V, C〉 and P ′ = 〈V ′, C′〉 be two CSPs. P ′ is an unsatisfiable
core, in short a core, of P iff

1. P ′ is unsatisfiable
2. V ′ ⊆ V and C′ ⊆ C

P ′ is a Minimal Unsatisfiable Core (MUC) of P iff

1. P ′ is a core of P
2. there does not exist any proper core of P ′

Example 2. In the previous example, P is unsatisfiable. Indeed, P contains the MUC
P ′ = 〈V, {i < j, j < k, k < i}〉: no assignment of values for i, j and k can be
found such that these three constraints are satisfied, and dropping any constraint leads
to satisfiability.

Computing one MUC for an unsatisfiable CSP is an NP-hard problem. More precisely,
checking whether a constraint belongs to a MUC or not is in Σp

2 [3]. Moreover, the

number of MUCs inside a CSP can be exponential in the worst-case; it is in O(Cm/2
m),

where m is the number of constraints in the CSP. It should be noted that MUCs can
share non-empty intersections. Several techniques have been proposed in the literature
to compute MUCs, the DC(wcore) approach introduced recently by Hemery et al. [1]
is claimed by its authors to be the most efficient one, most often.

3 MUSTs

Restoring the satisfiability of a CSP can be achieved through restoring the satisfiability
of each of its MUCs. A natural way to break the unsatisfiability of a MUC is to drop
any of its constraints. However, dropping some constraints as a whole can appear too
much destructive. On the contrary, we might prefer to weaken one or several constraints,
instead of removing them. One way to do that is to provide the user with some forbidden
tuples that should be allowed in order to recover satisfiability.

Let us introduce the following MUST concept and study to which extent it can be a
first good step in that direction. A MUST (Minimally Unsatisfiable Set of Tuples) of an
unsatisfiable CSP P is an unsatisfiable CSP P ′ that is such that the sets of forbidden
tuples of its constraints are subsets of the corresponding sets w.r.t. P and such that
allowing any of the tuples of P ′ will render P ′ satisfiable.

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 321

Fig. 2. Graphical representations of Example 3

Definition 7. Let P = 〈V, {(V ar(c1), T (c1)), . . . , (V ar(cm), T (cm))}〉 be an unsat-
isfiable CSP. The CSP P ′ = 〈V, {(V ar(c1), T ′(c1)), . . . , (V ar(cm), T ′(cm))}}〉 is a
MUST (Minimally Unsatisfiable Set of Tuples) of P if and only if :

1. P ′ is unsatisfiable
2. ∀i s.t. 1 ≤ i ≤ m, T ′(ci) ⊆ T (ci)
3. ∀i s.t. 1 ≤ i ≤ m, ∀ T ′′(ci) ⊂ T ′(ci),

〈V, {(V ar(c1), T ′(c1)), ..., (V ar(ci), T ′′(ci)), ..., (V ar(cm), T ′(cm))}〉 is satisfi-
able

Hence, a MUST can be interpreted as a tentative way to explain infeasibility at a lower
level of abstraction than the constraints one does. At this point, it is important to note
that this definition for a MUST of a CSP P does not require that allowing one of the
forbidden tuples of the MUST will make P become satisfiable. Indeed, it is easy to
prove that an unsatisfiable CSP can exhibit an exponential number of MUSTs in the
worst case and that their set-theoretic intersection can be empty. Thus, the removal of
one forbidden tuple might not be enough to regain satisfiability. Furthermore, as the
following example shows, tuples contained in a MUST might even not take part into
the actual cause of the infeasibility of the CSP.

Example 3

Let P = 〈V, C〉 s.t. V = {v1, v2, v3}, with dom(v1) = dom(v3) = {A}, dom(v2) =
{A, B}, and C = {c1 = ({v1, v2}, {(A, B)}), c2 = ({v2, v3}, {(A, A), (B, A)})}.
In Figure 2, both the graph and the micro-structure of this CSP are given. Clearly,
P is unsatisfiable and exhibits only one MUC, made of the c2 constraint, since this
one prevents any assignment from being valid between v2 and v3. On the contrary,
considering a lower level of abstraction, we see that P exhibits two MUSTs, namely:

– PM1 = 〈V, {({v1, v2}, {(A, B)}), {({v2, v3}, {(A, A)})}}〉
– PM2 = 〈V, {({v2, v3}, {(A, A), (B, A)})}〉

PM1 is a MUST that contains tuples from both constraints. It does not correspond to
any MUC of P . PM2 is a MUST that is also a MUC of P . Moreover, PM1 contains the
only forbidden tuple linking v1 and v2, which does not participate to the unsatisfiability
of P .

322 É. Grégoire, B. Mazure, and C. Piette

Although these results might sound negative, in the next section it is shown that
MUSTs form an adequate concept to explain unsatisfiability at the tuples level, provided
that MUSTs are considered within MUCs.

4 MUSTs Within MUCs

It is well-known that any unsatisfiable CSP exhibits at least one MUC (which can be
the CSP itself). Unsurprisingly, any unsatisfiable CSP also exhibits at least one MUST.
Indeed, MUCs are unsatisfiable CSPs, which ensures that at least one MUST can be
extracted from any MUC of a CSP.

Proposition 1. At least one MUST can be extracted from any unsatisfiable CSP.

Proof. Let P = 〈V, C〉 be an unsatisfiable CSP. Assume that P does not contain any
MUST. Thus, P itself is not a MUST: hence there exists a forbidden tuple of P s.t.
allowing it gives rise to another unsatisfiable CSP containing no MUST, namely ∃c ∈
C, ∃t ∈ T (c) such that P 1 = 〈V, (C\c) ∪ (V ar(c), T (c)\t)〉 is also unsatisfiable, and
does not exhibit any MUST. Iterating this reasoning, it is easily proved by induction
that this would lead to the existence of a CSP P ′ = 〈V, ∅〉 that should be unsatisfiable,
whereas such a CSP is clearly satisfiable. �

Moreover, stronger relations link MUCs and MUSTs, as shown by the following propo-
sition.

Proposition 2. Let P be a MUC that contains m constraints. There exists at least m
tuples s.t. allowing any one of them makes P regain satisfiability. These tuples belong
to all MUSTs of P .

Proof. Since P = 〈V, C〉 is a MUC, whenever any of its m constraints ci is dropped,
the resulting CSP is satisfiable. Let A be an assignment that satisfies P ′ = 〈V, C\ci〉.
ci is violated by A: indeed, in the opposite case, P would be satisfiable and would
not be a MUC. The projection of A on V ar(ci) is included in T (ci), according to
definition 5. Thus, removing this forbidden tuple is sufficient to make P feasible. The
same argument can be used for any of the m constraints of P . Thus, there exists at least
m tuples such that omitting one of them makes the MUC regain feasibility. Clearly,
these tuples necessarily belong to all the sources of unsatisfiability, and consequently
to every MUST of the MUC. Hence, the set-theoretic intersection of all MUSTs of P
contains at least m tuples. �

In this respect, some tuples allow the unsatisfiability of the MUC to be “broken”, simply
by allowing any of them. These tuples necessarily belong to all sources of unsatisfiabil-
ity of the MUC, and consequently to every MUST of the MUC. Accordingly, it is thus
not possible to discover two MUSTs of a MUC with an empty set-theoretic intersection.
Tuples belonging to every MUST of a MUC P will be called shared tuples of P .

Definition 8. Let P be a MUC. The shared tuples of P are the forbidden tuples belong-
ing to all MUSTs of P .

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 323

Fig. 3. Micro-structure of Example 4

Allowing any shared tuple allows the corresponding MUC to be broken. Moreover,
computing a MUST of a MUC P delivers a super-set of the set of shared tuples.

Example 4. Let a CSP P = 〈{v1, v2, v3}, {c1, c2, c3}〉 s.t.

1. ∀i ∈ {1, 2, 3}, dom(vi) = {A, B}
2. c1 = ({v1, v2}, {(A, B), (B, A)})
3. c2 = ({v2, v3}, {(A, B), (B, A), (B, B)})
4. c3 = ({v1, v3}, {(A, A), (B, B)})

The micro-structure of P is given in Figure 3. Let us note that P is a MUC since P is
unsatisfiable and dropping any of its constraints yields a satisfiable CSP. P exhibits two
MUSTs; their micro-structures are given in Figure 4. By considering the set-theoretic
intersection of those MUSTs, one can obtain the shared tuples of P . The shared tuples
are represented using boldface edges in Figure 5, while the other tuples are represented
using dotted lines. Clearly, allowing one shared tuple allows us to restore the satisfi-
ability of both MUSTs and their corresponding MUC. However, allowing any other
forbidden tuple of these MUSTs does not guarantee the satisfiability of the initial MUC
to be restored. This example also shows us that the CSP formed with the shared tuples
of a MUC is not necessarily unsatisfiable.

These last results plead for a two-step policy for the explanation of unsatisfiability in
terms of MUCs, MUSTs and shared tuples. Indeed, looking for MUSTs in the general
case does not seem the most promising approach since MUSTs can coincide with no
MUC at all. On the contrary, an interesting approach would require to search for MUCs
as a first step. MUCs provide explanations of unsatisfiability that are expressed in terms
of a minimal number of constraints. The user can drop one such constraint to break
the unsatisfiability of the MUC. Alternatively, he (she) could rather search for MUSTs
corresponding to the discovered MUC. More precisely, if he (she) manages to discover
shared tuples, the user would be provided with a set of forbidden tuples that is such that
allowing just one such tuple is enough to break the unsatisfiability of the MUC. In such
a way, the user would be given the ability to weaken problematic constraints instead
of dropping one whole constraint. Such a policy is to be iterated until all (remaining)
MUCs of the resulting CSP have been addressed.

Several algorithms have been proposed to compute one MUC. Thus, the next issue
that is to be addressed is how both MUSTs and shared tuples could be computed within

324 É. Grégoire, B. Mazure, and C. Piette

Fig. 4. Micro-structure of the two MUSTs of Example 4

Fig. 5. Shared tuples of Example 4

a MUC. In the following, it is shown that, modulo a specific SAT encoding, shared
tuples exactly coincide with so-called protected clauses [2], which play a central role
in the efficiency of the currently most efficient technique to compute MUCs in the
Boolean case, namely MUSes (Minimally Unsatisfiable Sub-formulas). In this respect,
a Boolean translation of MUCs that allows us to benefit from the efficiency of this
powerful computational technique will be provided.

5 Using OMUS to Compute MUSTs and Shared Tuples

Computing a MUST could be performed through several traditional techniques from
the CSP and the operational research domains, such as the destructive, additive or
dichotomic minimization procedures [4]. However, those approaches would deliver
MUSTs, only. The computation of shared tuples would require either a linear num-
ber of additional step-by-step tests of satisfiability, or to consider all solutions of each
relaxation obtained by removing one constraint from the computed MUC. On the con-
trary, an approach allowing both a MUST and shared tuples to be computed at the same
time is introduced in this section.

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 325

When one MUC has been obtained trough e.g. Hemery et al.’s DC(wcore) tech-
nique [1], it is translated inside the Boolean framework in such a way that the compu-
tation of MUSTs and shared tuples of the MUC is achieved through the computation
of MUSes, namely minimally unsatisfiable sets of clauses of a CNF formula. The se-
lected translation schema is a form of direct encoding [5] that consists in encoding each
domain value of each variable by a different Boolean variable Cvi . Accordingly, the
number of variables in the Boolean framework is given by the sum of the sizes of the
domains of the variables of the MUC. Let P = 〈V, C〉 be a MUC, the following clauses
are then created.

1. at-Least-one clauses ensure that at least one possible value for each variable vi is
selected in a solution
Cv1 ∨ Cv2 ∨ ... ∨ Cvm ∀v ∈ V with dom(v) = {v1, v2, ..., vm}

2. at-Most-one clauses ensure that at most one value is selected for each variable
¬Cva ∨ ¬Cvb

∀v ∈ V ∀(va, vb) ∈ dom(v) × dom(v)
3. Conflict clauses encode forbidden tuples

¬Cvi ∨ ¬Cvj ∀c ∈ C ∀(vi, vj) ∈ T (c)

This form of encoding has been adopted because it allows a forbidden tuple to
be translated into a unique clause. Moreover, the “at-Most-one clauses” are actually
not added to the generated formula. Indeed, those clauses have been proved optional
[6]; moreover, omitting them enables us to ensure that minimality is preserved in both
frameworks. Thus, each MUS of the generated Boolean formula corresponds to a
MUST of the infeasible CSP. Computing one MUST amounts to computing one MUS
in this Boolean framework, provided that every at-Least-one clauses belong to the
MUS.

More precisely, we make use of the OMUS technique by Grégoire et al. [2], which
is currently one of the most efficient complete techniques to discover one MUS inside
an unsatisfiable SAT instance. One key to the efficiency of this approach is the concept
of protected clauses. Interestingly enough, protected clauses appear to encode shared
tuples.

The OMUS technique is based on the so-called critical clause concept, which is a
clause that is falsified under a given assignment of values and that is such that satisfying
it by a minimal change of the assignment will always conduct at least another clause
to be falsified in its turn. Roughly, the OMUS technique is a two-step approach. First, a
superset of a MUS is computed by iterating the computation of the number of times each
clause is critical during local search runs and by dropping clauses with the lowest scores.
Second, a fine-tune process allows an exact MUS to be delivered. Interestingly, each
time there is just one clause that is not satisfied w.r.t. some variables assignment during
the local search run, it is marked and never be dropped from the formula. These clauses
are called protected, and belong to all MUSes of the Boolean formula. According to this
encoding, protected clauses coincide with shared tuples of the translated MUC. These
tuples are thus delivered together with the MUST, without any computing overhead.
Furthermore, the first step of this local-search-based algorithm sometimes delivers an
unsatisfiable set of protected clauses, which forms a MUS, and the second step of the
algorithm is avoided.

326 É. Grégoire, B. Mazure, and C. Piette

Algorithm 1. direct_encode

Input: a CSP: 〈V, C〉
Output: a set of clauses Σ viewed as a CNF formula
begin1

Σ ←− ∅ ;2

foreach vi ∈ V do3

Σ ←− Σ
⋃ { ∨

∀j∈dom(vi)

xij} ; /* “At-least-one” clauses */
4

foreach c ∈ C do5

foreach t ∈ T (c) do6

Σ = Σ
⋃ { ∨

∀(vi∈V ar(c) and j∈dom(vi))
s.t. j is the forbidden value of vi in t

¬xij} ;

7

return Σ ;8

end9

Algorithm 2. mus2must

Input: a MUS: Σ and a MUC: 〈V, {(V ar(c1), T (c1)), ..., (V ar(cm), T (cm))}〉
Output: a MUST: 〈V, {(V ar(c1), T

′(c1)), ..., (V ar(cm), T ′(cm))}〉
begin1

foreach c ∈ C s.t. C = {(V ar(c1), T (c1)), ..., (V ar(cm), T (cm))} do2

T ′(c) ←− ∅ ;3

foreach t ∈ T (c) do4

if ((
∨

∀(vi∈V ar(c) and j∈dom(vi))
s.t. j is the forbidden value of vi in t

¬xij) ∈ Σ) then

5

T ′(c) ←− T ′(c) ∪ {t};6

return 〈V, {(V ar(c1), T
′(c1)), ..., (V ar(cm), T ′(cm))}〉 ;7

end8

6 Experimental Studies

In order to assess the practical value of these techniques, an algorithm called MUSTER
(MUST-ExtRaction) has been implemented and run on various benchmarks from the
last CSP competition [7]. This software makes thus use of (a C variant of) Hemery
et al.’s DC(wcore) technique to extract a MUC from the considered CSP. Then, the
MUC is converted into a Boolean clausal formula according to the aforementioned
direct-encoding described in Algorithm 1. A MUS is then computed thanks to Grégoire
et al.’s OMUS procedure [2]. As described above, there is a one-to-one correspondence
between this MUS and a MUST from the CSP; this latter one is delivered, together with
detected shared tuples, using a simple translation procedure described in Algorithm 2.
The MUSTER method is summarized in Algorithm 3.

All experiments have been conducted on a Pentium IV, 3Ghz under Linux Fedora
Core 5. A significant sample of results are given on Table 1, which contains 3 main
columns, namely Instance, Extracted MUC and Extracted MUST. The first column
provides information about the considered unsatisfiable CSP: namely, the benchmark

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 327

Algorithm 3. MUSTER

Input: a CSP: 〈V, C〉
Output: a MUST: 〈V, {(V ar(c′1), T

′′(c′1)), ..., (V ar(c′m), T ′′(c′m))}〉
begin1

〈V, C′〉 ←− DC(wcore)(〈V,C〉) ; /* 〈V, C′〉 is a MUC s.t. C′ ⊆ C */2

/* and C′ = {(V ar(c′1), T (c′1)), ..., (V ar(c′m), T (c′m))} */
ΣCNF ←− direct_encode(〈V, C′〉) ;3

ΣMUS ←− OMUS(ΣCNF) ; /* ΣMUS ⊆ ΣCNF */4

〈V, {(V ar(c′1), T
′′(c′1)), ..., (V ar(c′m), T ′′(c′m))}〉 ←− mus2must(ΣMUS , 〈V, C′〉);5

/* ∀ 1 ≤ i ≤ m T ′′(c′i) ⊆ T (c′i) */
return 〈V, {(V ar(c′1), T

′′(c′1)), ..., (V ar(c′m), T ′′(c′m))}〉 ;6

end7

name, the number of involved constraints and the number of forbidden tuples that the
constraints represent. In the second one, the main information about the MUC computed
by DC(wcore) is given: namely, the number of constraints of the MUC, the number of
tuples that they represent, and the computing time in seconds that was spent. Finally, the
third main column provides the main information about the computed MUST: namely,
its number of tuples, the number of discovered shared tuples, and the computing time
in seconds that was spent. A time-out was set to 3 hours of CPU time.

First, let us note that a MUST was extracted within a reasonable amount of time for
most benchmarks, which represent hard to solve problems. For instance, a MUC made
of 13 constraints is discovered for the composed-75-1-2-1 CSP, which contains
624 contraints. This MUC forbids 845 tuples. Actually, this set can be reduced to just
344 tuples, which form one MUST of the benchmark. Moreover, the user is provided
with a set of 104 tuples such that if one of these latter tuples is allowed, then the unsat-
isfiable part of the CSP represented by the MUC is fixed. Similar results were obtained
for e.g. scen11_f10, which is an instance of the famous Radio Link Frequency As-
signment Problem (RLFAP). This latter benchmark involves almost 800,000 forbidden
tuples. However, only some of these them really participate to the unsatisfiability of
the CSP. Indeed, a MUC that contains less than 5,000 tuples is exhibited, and this one
has been reduced into a MUST made of 3,077 tuples. In this MUST, allowing one tu-
ple among the 2,728 discovered shared ones is enough to allow the MUC to regain
feasibility.

Obviously enough, due to the high-level computational complexity of the addressed
problem, we cannot expect our approach to solve all problems within a reasonable
amount of time. For example, although a MUST was extracted for the Queen-Knight
problem qk_8_8_5_add, MUSTER was not able to deliver any of its shared tuples,
although we know that these latter tuples are contained in the 10149 tuples that form the
computed MUST. Let us also note that the same MUC and MUST have been discovered
for both qk_8_8_5_add and qk_8_8_5_mul problems. This is easily explained:
those problems result from various combinations between the 8 queens problem and 5
knights one. Since the 5 knights problem is not feasible, a same explanation of unsatis-
fiability can be delivered for all combinations of this problem with other CSPs.

328 É. Grégoire, B. Mazure, and C. Piette

Table 1. Extracting a MUST

Instance Extracted MUC Extracted MUST
name #con #tuples #con #tuples time (s) #tuples #st1 time (s)

composed-25-1-2-0 224 4,440 14 910 10.72 354 119 13.08
composed-25-1-2-1 224 4,440 15 975 9.09 339 59 17.47
composed-25-1-25-8 247 4,555 9 585 8.85 259 116 6.25
composed-75-1-2-1 624 10,440 13 845 66.42 344 104 10.85
composed-75-1-2-2 624 10,440 14 910 66.74 376 48 14.44
composed-75-1-25-8 647 10,555 16 1,040 59.09 461 51 23.69
composed-75-1-80-6 702 10,830 11 715 61.48 278 55 8.17
composed-75-1-80-7 702 10,830 16 1,040 379.85 420 75 17.23
composed-75-1-80-9 702 10,830 12 780 86.16 306 89 9.01
qk_10_10_5_add 55 48,640 5 47,120 19.68 24,855 0 3081.1
qk_10_10_5_mul 105 49,140 5 47,120 1.29 24,855 0 2812.99
qk_8_8_5_add 38 19,624 5 18,800 3.33 10,149 0 544.7
qk_8_8_5_mul 78 19,944 5 18,800 0.66 10,149 0 531.24
graph2_f25 2,245 145,205 43 4,498 427.36 2470 1,516 426.05
qa_3 40 800 15 583 0.32 203 152 8.32
dual_ehi-85-297-14 4,111 102,234 40 1,145 3.35 311 142 40.26
dual_ehi-85-297-15 4,133 102,433 35 1,083 4.03 310 172 25.85
dual_ehi-85-297-16 4,105 102,156 36 1,032 4.68 301 159 29.05
dual_ehi-85-297-17 4,102 102,112 43 1,239 4.83 348 172 42.21
dual_ehi-85-297-18 4,120 102,324 33 972 3.48 271 141 30.4
dual_ehi-90-315-21 4,388 108,890 37 1,120 3.16 354 129 35
dual_ehi-90-315-22 4,368 108,633 41 1,218 4.57 410 187 43.69
dual_ehi-90-315-23 4,375 108,766 29 835 2.86 251 131 12.23
dual_ehi-90-315-24 4,378 108,793 31 974 4.57 315 167 25.42
dual_ehi-90-315-25 4,398 108,974 38 1,106 3.89 375 179 30.41
scen6_w2 648 513,100 7 8,020 53.78 4,872 2,953 1107.39
scen6_w1_f2 319 274,860 21 21,146 488.64 - - time out
scen11_f10 4,103 738,719 16 4,588 164.27 3,077 2,728 438.26
scen11_f12 4,103 707,375 16 4,588 122.12 3,053 2,728 419.83

Finally, let us comment on the number of shared tuples. Proposition 2 ensures that a
MUC made of m constraints contains at least m shared tuples. However, the number of
shared tuples is often larger in practice. For example, a MUC made of 43 constraints is
extracted from graph2_f25: so, at least 43 shared tuples could have been expected.
Actually, 1,516 such tuples were delivered, enabling the user to just select one con-
straint among 43 ones, and then just select and allow one tuple among an average of 35
candidate ones, to regain feasibility.

7 Related Works

The approach introduced in this paper can be interpreted as a refinement of explanation
techniques that provide users with MUCs in case of unsatisfiability. There have been

1 #st: #shared tuples.

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 329

only a few research results about extracting MUCs from CSPs, or MUSes in the Boolean
case. In this respect, the approach in this paper takes advantage of one of the most often
efficient technique to compute MUCs [1] and of the currently most efficient technique
compute MUSes [2], in order to deliver MUSTs and shared tuples.

In the CSP framework, there have been several other works about the identification
of (minimal) conflict sets of constraints (e.g. [8]) that are recorded during the search
in order to perform various forms of intelligent backtracking, like dynamic backtrack-
ing [9] [10] or conflict-based backjumping [11]. In [12] a non-intrusive method was
proposed to detect them. However, there have been few research works about the prob-
lem of extracting MUCs themselves. A method to find all MUCs from a given set of
constraints has been presented in [13] and in [14], which corresponds to an exhaus-
tive exploration of a so-called CS-tree but is limited by the combinatorial blow-up in
the number of subsets of constraints. Other approaches are given in [15] and in [16],
where an explanation that is based on the user’s preferences is extracted. Also, the PaLM
framework [17], implemented in the constraint programming system Choco [18], is an
explanation tool that can answer for instance the question: why is there no solution that
contains the value vi for some variable A? Moreover, in case of unsatisfiability, PaLM
is able to provide a core, but this one is not guaranteed to be minimal. The DC(wcore)
approach that is used in this paper appears to improve a previous method introduced in
[19] to extract a MUC, that was proposed in the specific context of model-based diag-
nosis. It also proves more competitive than the use of the QuickXPlain [12] method
to compute MUCs.

In the Boolean framework, the problem of extracting a MUS from an unsatisfiable
CNF formula has also received much attention. In [20], Bruni has proposed an ap-
proach that approximates MUSes by means of an adaptative search guided by clauses
hardness. Zhang and Malik have described in [21] a way to extract MUSes by learning
nogoods involved in the derivation of the empty clause by resolution. In [22], Lynce
and Marques-Silva have proposed a complete and exhaustive technique to extract one
smallest MUS of a SAT instance. Together with Mneimneh, Andraus and Sakallah [23],
the same authors have also proposed an algorithm that makes use of iterative max-
SAT solutions to compute such smallest unsatisfiable subsets of clauses. Oh and her
co-authors have presented in [24] a Davis, Putnam, Logemann and Loveland DPLL-
oriented approach that is based on a marked clause concept to allow one to approximate
MUSes. Let us also mention a complete approach by Liffiton and Sakallah [25], re-
cently improved by a non-standard use of local search [26], that attempts to compute
the exhaustive set of MUSes of a propositional formula.

Finally, let us note that the problem of finding an Irreductible Infeasible Subsys-
tem has also been the subject of specific research efforts in mathematical programming
[4][27].

8 Conclusions and Perspectives

These results open many interesting research perspectives.
An unsatisfiable CSP can exhibit several MUCs that can share non-empty set-

theoretic intersections. Regaining feasibility through permitting shared tuples thus

330 É. Grégoire, B. Mazure, and C. Piette

requires the MUSTER process to be iterated until all remaining MUCs in the resulting
CSP have been addressed. Clearly, the order according to which MUCs are addressed
influences the tuples that are delivered to the users. In this respect, it could be fruitful
to develop order-independent techniques that directly deliver sets of tuples that would
make the CSP feasible if these latter tuples were allowed. In this respect, recent results
by Grégoire et al. [28] that allows covers of MUSes to be computed, i.e. sets of MUSes
that cover all basic infeasibility causes, could be exploited in that direction. The con-
cept of shared tuples would have to be revised accordingly, and specific computational
techniques would have to be devised in order to compute that.

Although it appears to be highly competitive in practice, our technique to compute
shared tuples remains uncomplete since it does not guarantee that all shared tuples will
be delivered. Another interesting path for future research would consist in developping
complete techniques that guarantee, modulo a possible exponential blow-up, the com-
putation of all shared tuples.

In this paper, basic formal results about MUSTs have been provided. Clearly, much
more can be done in this respect. Variant definitions coud be provided, in particular
variants that would not rely on the MUC concept to address infeasibility.

Also, several MUSTs can be inter-dependent within a CSP: studying the formal prop-
erties of their relationships is also a promising path for future research.

References

1. Hemery, F., Lecoutre, C., Saïs, L., Boussemart, F.: Extracting MUCs from constraint net-
works. In: ECAI’06. Proceedings of the 17th European Conference on Artificial Intelligence,
pp. 113–117 (2006)

2. Grégoire, E., Mazure, B., Piette, C.: Extracting MUSes. In: ECAI’06. Proceedings of the
17th European Conference on Artificial Intelligence, pp. 387–391 (2006)

3. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactual. Artificial Intelligence 57, 227–270 (1992)

4. Chinneck, J.: Feasibility and Viability. In: Advances in Sensitivity Analysis and Parametric
Programming, ch. 14, vol. 6. Kluwer Academic Publishers, Boston (USA) (1997)

5. de Kleer, J.: A comparison of ATMS and CSP techniques. In: Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI’89), pp. 290–296 (1989)

6. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

7. CSPcomp: CSP competition, http://cpai.ucc.ie/06/competition.html
8. Petit, T., Bessière, C., Régin, J.: A general conflict-set based framework for partial constraint

satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, Springer, Heidelberg (2003)
9. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research 1, 25–46

(1993)
10. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dynamic

backtracking. In: Principles and Practice of Constraint Programming, pp. 249–261 (2000)
11. Prosser, P.: Hybrid algorithms for the constraint satisfaction problems. Computational Intel-

ligence 9(3), 268–299 (1993)
12. Junker, U.: QuickXplain: Conflict detection for arbitrary constraint propagation algorithms.

In: IJCAI’01 Workshop on Modelling and Solving problems with constraints (CONS-1)
(2001)

http://cpai.ucc.ie/06/competition.html

MUST: Provide a Finer-Grained Explanation of Unsatisfiability 331

13. Han, B., Lee, S.: Deriving minimal conflict sets by CS-Trees with mark set in diagnosis from
first principles. IEEE Transactions on Systems, Man, and Cybernetics 29, 281–286 (1999)

14. de la Banda, M., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable subsets. In: Pro-
ceedings of the Fifth ACM-SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDL’03), pp. 32–43 (2003)

15. Mauss, J., Tatar, M.M.: Computing minimal conflicts for rich constraint languages. In: Pro-
ceedings of the 15th European Conference on Artificial Intelligence (ECAI’02), pp. 151–155
(2002)

16. Junker, U.: QuickXplain: Preferred explanations and relaxations for over-constrained prob-
lems. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04),
pp. 167–172 (2004)

17. Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint programming.
In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 118–133. Springer, Heidelberg (2000)

18. Laburthe, F., Team, T.O.P.: Choco: implementing a cp kernel. In: Dechter, R. (ed.) CP 2000.
LNCS, vol. 1894, Springer, Heidelberg (2000),
http://www.choco-constraints.net

19. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-
determined constraint satisfaction problems. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI’93), vol. 1, pp. 276–281. Morgan Kaufmann,
San Francisco (1993)

20. Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive core
search. Discrete Applied Mathematics 130(2), 85–100 (2003)

21. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formula.
In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg
(2004)

22. Lynce, I., Marques-Silva, J.: On computing minimum unsatisfiable cores. In: International
Conference on Theory and Applications of Satisfiability Testing (2004)

23. Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques Silva, J.P., Sakallah, K.A.: A branch-
and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In: Bacchus, F.,
Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 467–474. Springer, Heidelberg (2005)

24. Oh, Y., Mneimneh, M., Andraus, Z., Sakallah, K., Markov, I.: AMUSE: a minimally-
unsatisfiable subformula extractor. In: Proceedings of the 41th Design Automation Confer-
ence (DAC 2004), pp. 518–523 (2004)

25. Liffiton, M., Sakallah, K.: On finding all minimally unsatisfiable subformulas. In: Bacchus,
F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)

26. Grégoire, E., Mazure, B., Piette, C.: Boosting a complete technique to find MSSes and
MUSes thanks to a local search oracle. In: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI’07), vol. 2, pp. 2300–2305 (2007)

27. Atlihan, M., Schrage, L.: Generalized filtrering algorithms for infeasibility analysis. Com-
puters and Operations Research (to appear, 2007)

28. Grégoire, E., Mazure, B., Piette, C.: Local-search extraction of MUSes. Constraints Journal:
Special issue on Local Search in Constraint Satisfaction 12(3) (to appear, 2007)

http://www.choco-constraints.net

An Integrated White+Black Box Approach for

Designing and Tuning Stochastic Local Search

Steven Halim1, Roland H.C. Yap1, and Hoong Chuin Lau2

1 School of Computing, National University of Singapore
{stevenha,ryap}@comp.nus.edu.sg

2 School of Information Systems, Singapore Management University
hclau@smu.edu.sg

Abstract. Stochastic Local Search (SLS) is a simple and effective para-
digm for attacking a variety of Combinatorial (Optimization) Problems
(COP). However, it is often non-trivial to get good results from an SLS;
the designer of an SLS needs to undertake a laborious and ad-hoc algo-
rithm tuning and re-design process for a particular COP. There are two
general approaches. Black-box approach treats the SLS as a black-box
in tuning the SLS parameters. White-box approach takes advantage of
humans to observe the SLS in the tuning and SLS re-design. In this pa-
per, we develop an integrated white+black box approach with extensive
use of visualization (white-box) and factorial design (black-box) for tun-
ing, and more importantly, for designing arbitrary SLS algorithms. Our
integrated approach combines the strengths of white-box and black-box
approaches and produces better results than either alone. We demon-
strate an effective tool using the integrated white+black box approach
to design and tune variants of Robust Tabu Search (Ro-TS) for Quadratic
Assignment Problem (QAP).

1 Introduction

Stochastic Local Search (SLS) algorithms, also called Metaheuristics (e.g. Tabu
Search, Iterated Local Search, etc) [1], have been extensively used to tackle
large-scale NP-hard Combinatorial (Optimization) Problems (COP), often with
impressive results. However, algorithm designers usually need to spend substan-
tial effort to design and tune the SLS implementations to get good results.

Real world COPs are often new problems or variants of classic COPs but
may not be well studied or no algorithm is known. It is frustrating that even
if the COP C′ resembles a classic COP C for which a good SLS S is known, a
direct application of SLS S on COP C′ will usually not immediately yield good
performance. Thus, it is necessary to adapt an existing or create a new SLS for
COP C′. It is often said that it is easy to create a working SLS for a COP,
but hard to tune the SLS to achieve good performance on problem instances
[1,2,3,4,5].

Most research has only focused on the problem of fine-tuning the parameter
values for SLS. Pure tuning assumes that the appropriate SLS components and

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 332–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Integrated White+Black Box Approach 333

search strategies are already known and we just need to find the appropriate
parameters for those components and strategies. In this paper, we consider the
SLS design and tuning problem as a holistic problem of finding a suitable config-
uration including parameter values, choice of components, and search strategies
for an SLS in order to give good results for the class of COP instances.

There are two general approaches for this SLS design and tuning problem [5]:

1. The black-box approach uses automatic fine-tuning. It aims to develop spe-
cial ‘tuning algorithms’ to explore the SLS configuration space systemati-
cally and as efficient as possible. The human designs the SLS and specifies
an initial configuration space to be explored by the automated tuning algo-
rithm. The tuning algorithm finds the best configuration within the given
configuration space and computational resource requirements. Examples of
the black-box approaches are F-Race [3], CALIBRA [4], Search Parameter
Optimization [6], and iMDF [7].

2. The white-box approach leverages the use of human intelligence and/or visual
perception. It aims to create tools or methods to help analyze the perfor-
mance of the SLS so that the algorithm designer has a basis for tweaking
the SLS implementation. Thus, the SLS may be redesigned to extend beyond
the initial configuration space. Examples of the white-box approaches are:
Statistical Analysis (Fitness Distance Correlation, Run Time Distribution,
etc) [1,8], Sequential Parameter Optimization [9], Viz [10], etc.

Neither approach addresses all aspects of the SLS design and tuning. Black-box
approaches are simple to apply, but will not help if the best configuration hap-
pens to be ‘outside the box’ of the initial configuration space (e.g. instance A with
size 30 requires configuration 1, instance B with size 50 requires configuration
2 but the best configuration is a function of the instance size rather choosing
between configuration 1 or 2). White-box approaches can give the algorithm
designer insights into the search process, but are less effective for fine-tuning.

In this paper, we propose an integrated white+black box approach to address
the SLS design and tuning problem. The fitness landscape and search trajectory
visualization [10,11] opens the SLS ‘box’ to allow better understanding of the
current ‘problem(s)’ being faced by the SLS trajectory when searching in the
fitness landscape of the COP instance. This allows the algorithm designer to
narrow down the potentially huge set of SLS configuration space into a much
smaller and focused configuration space. Black-box tuning then further fine-
tunes the SLS on this focused configuration space using factorial design [12].
This process is iterated: use the visualization to verify the new SLS behavior,
obtain more complete picture of the fitness landscape, generate new hypothesis
or redesign the SLS if necessary, fine-tune the SLS with black-box tuning, and
so on until the performance criteria are met.

Ideally our approach is valuable when facing new or not well understood
problems. However, it would be more difficult to evaluate our approach on such
problems since not enough may be known. As such, we evaluate our approach
on classic COPs: the Traveling Salesman Problem (TSP) for illustration and the

334 S. Halim, R.H.C. Yap, and H.C. Lau

Quadratic Assignment Problem (QAP). We demonstrate that one can combine
the strengths of both white+black box approaches to get better results than
either alone. Furthermore, we take into account the practical effort and resource
requirements for industrial problems: we want to design and tune SLS for good
results within limited development time and limited running time.

We have developed a tool Viz for our integrated white+black box approach.
Viz can visualize the COP fitness landscape and the SLS trajectory on the
fitness landscape. Black-box tuning is supported using factorial design on the
given configuration space. The details of the tools are outside the scope of this
paper, see [10,11]. The website http://sls.visualization.googlepages.com
contains further details and also a video which complements the presentation
here. The online PDF version of this paper is in color and can be magnified.

We remark that systematic search algorithms usually also employ heuristics.
As an example, Multi-Tac [13] configures search heuristics for backtracking
search by learning configuration rules which are applied on backtracking search
algorithm schemas. While our approach is not directly relevant to configure
exact algorithms, combining human intelligence and searching in the algorithm
configuration space is a promising avenue for further research.

2 The Basic Ideas

2.1 White-Box: Fitness Landscape and Search Trajectory Analysis

The notion of fitness landscape has been shown to be useful for understanding
the behavior (search trajectory) of SLS algorithms [1,8,14].

Given a COP instance π, the fitness landscape of π, FL(π), is defined as the
tuple 〈S(π), d(s1, s2), g(π)〉 [8], where S(π) is the set of solutions of the COP
instance (the search space); d(s1, s2) : S × S → � is a distance metric which is
natural for the COP in question (e.g. bond distance for TSP, Hamming distance
for QAP, etc); and g(π) : S → � is the objective function. One can think of
the fitness landscape as a surface with solutions as points on the surface, points
are separated according to their distance, and the height reflects the fitness
(objective value) of that solution.

The search trajectory of an SLS algorithm on this FL(π) is defined as a finite
sequence (s0, s1, . . . , sk) where si ∈ S(π) and ∀i ∈ {1, 2, . . . , k}, (si−1, si) is
either a local move done by the SLS according to its neighborhood N(π) or a
stronger diversification move beyond N(π) [1]. Note that in this definition, a
solution si can be satisfiable or not.

Understanding the characteristics of the fitness landscape empowers the al-
gorithm designer to tailor the SLS implementation so that the search performs
a better trajectory on the fitness landscape [1,8,14]. However, matching an SLS
algorithm to the fitness landscape(s) of an instance or class of instances of a
COP is not easy:

1. Different problem instances of the same COP may have quite different fitness
landscapes [1].

An Integrated White+Black Box Approach 335

2. The SLS behavior depends on the fitness landscape [1,8,14]. SLS with the
same configuration may behave differently on different fitness landscapes.

3. The selected configuration (parameters [3,4], heuristics components [2], and
search strategies [5]), the implementation details, and any unexpected pro-
gramming bugs, determine the actual SLS behavior. This behavior may be
wrong, e.g. doing diversification when we expect the SLS to do intensification
on the fitness landscape — the metaheuristic failure modes [15]).

4. Stochastic elements mean the SLS can take different search trajectories in
replicated runs.

White-box techniques such as Fitness Distance Correlation (FDC) [1,8] for ana-
lyzing fitness landscape properties and Run Time Distribution (RTD) [1,16] for
analyzing potential search stagnation, are commonly used to assist matching an
SLS with the fitness landscape. However, while FDC and RTD are useful, they
do not explain the details of the SLS behavior on the COP fitness landscape.

In [10,11], we show how the abstract fitness landscape and search trajectory
visualization in Viz can enhance the understanding of the SLS behavior on the
COP fitness landscape. The main visualization ideas embedded inside Viz are
briefly explained below.

Viz uses a notion of Anchor Point (AP) set which is a fixed set of local optima
found by SLS runs on a COP instance. The AP set are diverse, high quality, and
important solutions in the search runs (e.g. best found, frequently visited). The
visualization layouts the AP points in an abstract 2-D space according to their
distance metric w.r.t other APs. This forms the landscape visualization. Next,

Fig. 1. An example of abstract fitness landscape and search trajectory visualization in
Viz. The fitness landscape is represented by 5 APs {A,B,C,D,E} with quality labels
shown in sub-figure ‘Legend’. There are 4 SLS runs. Run 1→SLS starts from a very bad
AP A, walks to a medium quality AP E, and then cycles around AP C. Run 2→SLS
starts from a bad AP B, walks to a point near AP C (larger circle: assume blue point F
in Run 2 is near AP C), then moves to a very bad AP A – a poor intensification. Run
3→SLS starts from a very bad AP A, gradually walks to a medium AP C, escapes
from it, then arrives at a good AP D – a good intensification, better than Run 1 in
escaping AP C. Run 4→The SLS trajectory bypasses a very bad AP A and is not
near any other known APs – failure to navigate to promising region.

336 S. Halim, R.H.C. Yap, and H.C. Lau

for each SLS run, we plot the positions of every solution or point in the search
trajectory w.r.t its distance to AP points in the fitness landscape visualization.
However, points that are too far from known APs are not visualized. See Fig 1
for the illustration of this visualization.

Our integrated white+black box approach uses Viz to first understand the
characteristics of the fitness landscape of the COP (e.g. the fitness landscape
is rugged). This helps the algorithm designer in predicting which search strate-
gies will likely work well on the fitness landscape of the COP instance. The
prediction can then be verified via visualization to see whether the SLS encoun-
ters any ‘problem(s)’ (e.g. stuck in a local optima as in Fig 1, Run 1). The
algorithm designer uses these insights to think outside the box, make informed
changes (e.g. adding a strong diversification strategy), and also narrow down the
possible configuration space (e.g. avoid SLS configurations that make the SLS
harder to escape from local optima such as lowering the tabu tenure in Tabu
Search).

The white-box component leverages on the strengths of humans to analyze
and learn from the visualizations. Although this is subjective and visualization
is limited to points that have been visited, the process can be made intuitive
and fruitful insights can be gained.

2.2 Black-Box Tuning: Factorial Design

Ideally, given an initial SLS configuration space, black-box tuning algorithms
can be used to systematically find the most suitable configuration in the given
configuration space to attack the COP at hand. However in practice, the size of
the SLS configuration space size may be huge. As such, the algorithm designer
must give a ‘sufficiently narrow’ configuration space for the black-box tuning
algorithm to work with since tuning time would otherwise take too long. Fur-
thermore, if the best configuration happens to be ‘outside the box’ (the initial
configuration space), then it cannot be found by fine-tuning alone.

Our integrated white+black box approach combines the strengths of both ap-
proaches to complement their weaknesses. After gaining insights into the fitness
landscape and the SLS behaviors on the fitness landscape via visualization, the
algorithm designers can use the insights to tweak the design of SLS, either by us-
ing known or new heuristic tweaks (e.g. adding a strong diversification strategy).
This narrows down the configuration space substantially. The new algorithm can
then be more easily fine-tuned (e.g. precisely how much diversification).

While a white-box approach may be usable for designing good SLS algorithm,
it is still tedious for humans to explore the narrowed configuration space manu-
ally. Automatic black-box tuning algorithms are best for this situation. We have
chosen to implement a full factorial design [12] in Viz system since we can obtain
smaller configuration spaces through the white-box visualization process. How-
ever, other black-box tuning tools such as F-Race [3], CALIBRA [4], or iMDF
[7] can be used in this phase.

An Integrated White+Black Box Approach 337

3 An Integrated White+Black Approach

The methodology of the integrated white+black box approach is summarized in
Fig 2. While the general approach is not new (compared with [9]), what is novel
here is how visualization has been integrated in the white-box steps 3–6, 8, and
black-box tuning algorithm in the black-box step 7. As we will show, the use
of automatic visualizations in Viz1 makes it much easier to analyze the fitness
landscapes and SLS behaviors. Viz also has integrated support for black-box
tuning in step 7 and some other handy automation for running SLS experiments
and computing statistical analysis in step 9.

Fig. 2. Flow chart of the integrated white+black box approach

We first briefly illustrate some aspects of our integrated approach on the
Traveling Salesman Problem (TSP). The chosen SLS is Iterated Local Search
(TSP-ILS). It performs a 4-Opt perturbation, then the move operator swaps
several pair of tour edges to reach a 2-Opt TSP local optimum. If the new local
optimum is better, TSP-ILS will move to the new local optimum [16].

In Fig 3, we see that good quality (blue circle) and medium quality (green
triangle) APs form one big cluster in the middle of the visualization (shown by
the solid black arrows) and are close to each other when compared with the di-
ameter of the fitness landscape (partially shown by the dashed red arrows). This
shows a well known phenomenon called ‘Big Valley’. We observe that outside
this Big Valley region, we mostly see very bad (tiny black dot) APs. For such
fitness landscape, it is suggested that the SLS should simply concentrate on the
Big Valley region rather than wandering too far from it [1,8,16].
1 Viz includes visualizations such as the fitness landscape and search trajectory (see

Fig 1), objective value over time, FDC scatter plot visualization, etc.

338 S. Halim, R.H.C. Yap, and H.C. Lau

Fig. 3. Visualization of TSP fitness landscape and ILS behavior. See text for details.

TSP-ILS already uses this strategy. However, visualization shows that some-
times it is stuck in a local optimum and unable to escape. Animation reveals
that TSP-ILS is stuck in a place shown in Fig 3, label ‘A’. This phenomenon is
also observable with RTD analysis by [16]. In [16], the authors suggested to use
a stronger diversification than 4-Opt: ‘FDD-diversification’ after a cut-off time
has elapsed without any improvement. Without going into details, the improved
behavior is observable in Fig 3, label ‘B’ where the tweaked TSP-ILS-T is now
able to escape from several local optima attractors and progresses closer towards
the center of the screen (the best-known solution). With white-box analysis, one
can derive reasonable variants of FDD-diversification. The range of the cut-off
time can be predicted using white-box approaches like the RTD or visualization
analysis above but the exact value is best determined with black-box tuning.

4 An Extended Case Study with Ro-TS for QAP

We use an extended case study where we apply our approach in Fig 2 to a realistic
problem. It explains in more detail the individual steps in our approach.

We remark that in order to fit within the page constraints, we have taken
the liberty of presenting this case study from the final step viewpoint. Most of
the visualizations make use of the final AP set from good and bad runs from
the entire development process. In the actual development process, we learn the
fitness landscape structure and the search trajectory behavior incrementally via
some pilot runs. For a discussion of incremental learning of fitness landscape and
search trajectory with visualization, see [11].

4.1 Experiment Set-Up: QAP Instances and Baseline Algorithm

The COP used is the Quadratic Assignment Problem (QAP) with benchmark
instances from QAPLIB [17]. We have picked tai30a/30b/35a/35b/50a/50b as
training instances and tai40a/40b/60a/60b/sko42/ste36b as test instances.

We have intentionally chosen a classic COP for this experiment so that the
reader can more easily appreciate the problem and results. The best known (BK)
objective values for each QAP instance are in the benchmark library. We have
defined the following solution quality measures: good (< 1%-off BK), medium
(1%− 2%-off BK), bad (2%− 3%-off BK), and very bad (> 3%-off BK).

The initial baseline SLS for QAP in this case study is Robust Tabu Search
(Ro-TS) [18] which has been shown to give good performance on QAP. We

An Integrated White+Black Box Approach 339

Table 1. Initial Ro-TS-I Configuration

Component Choice Remark

Neighborhood O(n2) 2-Opt Natural (swap) move operation for QAP.
Objective Function O(1) delta Measure delta as shown in [18]
Tabu Tenure (TT) n The default tabu tenure length
Tabu ‘Table’ [18] pair i − j Item i cannot be swapped with item j for TT steps
Aspiration Criteria Better Override tabu if move leads to a better solution
Search Strategy ‘Ro-TS’ [18] Change TT within [90%∗n, 110%∗n] after 2n steps

implemented a variant of Ro-TS called Ro-TS-I (Initial) which replicates the
neighborhood and tabu mechanism in [18]. The details are in Table 1.

We do not expect to outperform the state-of-the-art algorithms on well stud-
ied and classic problems as they have been reached after extensive development
efforts over a long period of time. For QAP, many good SLS algorithms, including
Ro-TS, can find the BK objective value of many QAP instances in QAPLIB with
long runs. Thus, to prevent the ceiling effect, we have fixed the number of itera-
tions of every SLS run to be quite ‘small’: 5n2 iterations where n is the instance
size. The experiment goal is to design and tune the best SLS+configuration for
attacking the selected QAP instances within that limited 5n2 iteration bound.

4.2 Preliminary Analysis

The initial results of Ro-TS-I on training instances are shown in Table 2. We
observe that within the limited iteration bound, the initial results are reasonably
good for tai30a/35a/35b/50a but not for tai30b/50b (underlined). We want to
investigate why we get these results and redesign an improved SLS.

We apply fitness landscape visualization on the QAP training instances. We
observe a possible difference between tai35a (and tai30a/50a) with tai35b (and
tai30b/50b). See Fig 4 text for details.

A working hypothesis from this observation is that there are at least two
classes of QAP instances. By looking at the fitness landscape visualizations
and/or data matrices of the QAP instances, we classify tai30a/35a/50a (train-
ing), tai40a/60a/sko42 (test) as QAP (type A) instances and tai30b/35b/50b
(training), tai40b/60b/ste36b (test) as QAP (type B) instances. This is con-
sistent with the characteristics of these classes which differ in the smoothness
(type A) or ruggedness (type B) in the fitness landscape visualization and in the
uniformity (type A) and non-uniformity (type B) of their data matrices.

In Table 2, we observe that Ro-TS-I already has reasonable performance on
the type A instances. This may be because the gap among local optima is small
— the quality of most APs are medium (green triangle). The animations of
search trajectories of Ro-TS-I do not indicate any obvious sign of Ro-TS-I being
stuck in a local optimum.

Since the QAP (type A) landscape is smoother, it is hard to decide where to
navigate as ‘everything’ looks good. Diversifying too much may not be effective
since the search will likely end up in another region with similar quality. We thus

340 S. Halim, R.H.C. Yap, and H.C. Lau

Fig. 4. Fitness landscape overview of tai35a and tai35b automatically generated from
Viz. See Fig 1 sub-figure ‘Legend’ for the meaning of the shapes and colors. The best
found solution is always in the center. APs in tai35a and tai35b are spread throughout
the fitness landscape. However, the quality of the APs in tai35a seems to be more
‘uniform’ (most are green triangles) than tai35b (all types of AP quality exist). The
actual Ro-TS-I behaviors on QAP (type A/B) instances are shown with red dotted
lines. Our hypotheses on ideal good trajectories are shown with blue dashed lines.

formulate the hypothesis that it is better to reduce the possibility of missing the
best solution within a close region where the SLS is currently in. Fig 4 (left)
illustrates our hypothesis and shows the ideal desired trajectory (blue dashed
lines) searches around nearby good local optima rather than Ro-TS-I trajectory
(red dotted lines) which moves away from the good local optima region.

On the other hand, the performance of the same Ro-TS-I on the type B
instances is very bad as seen in Table 2. In Fig 6 (left) we observe that Ro-TS-I
is stuck in very bad APs (textual explanation of the visualization: the search
trajectory enters a region near some APs, then until the last iteration, it is still
near the same APs). If the quality of the solutions in that region happens to be
bad, the final best found solution reported will also be bad.

The QAP (type B) landscape is more rugged, i.e. the local optima are deeper
and more spread out. We thus hypothesize that within the limited iteration
bound, rather than attempting to escape deep local optima with its own strength
(e.g. via a tabu mechanism), it is better for the SLS to perform frequent strong
diversification. Fig 4 (right) illustrates our hypothesis where the desired tra-
jectory (blue dashed lines) only makes short runs in a region before jumping
elsewhere rather than the trajectory of Ro-TS-I (red dotted lines) which strug-
gles to escape a deep local optimum.

4.3 Tweaking Ro-TS-I to Ro-TS-A for QAP (type A) Instances

The search coverage2 of Ro-TS-I on QAP (type A) instances is not good (see
Fig 5, left). Visualization3 shows that Ro-TS-I sometimes gets near to known
good APs but does not in the end navigate to those APs.

2 APs that are near any points in search trajectory are highlighted.
3 In Viz, a circle drawn on an AP shows that the SLS trajectory pass through an area

near that AP. The diameter of the enclosing circle shows the approximate distance.

An Integrated White+Black Box Approach 341

Fig. 5. Search coverage of Ro-TS-I (left) and Ro-TS-A (right) on QAP (type A) in-
stance. Ro-TS-I (left) is already ‘near’ the best found AP but then wanders somewhere
else (see the large red circles, animation not shown). On the other hand, a lower Tabu
Tenure Range in Ro-TS-A (right) enables it to take different search trajectory which
covers some medium and good quality APs (see the large blue circles).

Initially, we thought that in order to make Ro-TS-I focus on a particular re-
gion, we should increase the intensification from a 2-Opt into a 3-Opt swap move
neighborhood. Although this is more costly, it might allow better results from the
region where the SLS is currently searching in. However, this idea turned out to be
ineffective as no significant improvement in the search behavior was seen. To in-
vestigate, we added an algorithm specific visualization that shows a spike if 3-Opt
code is executed. We were surprised that we almost never saw any spikes (only
rarely when attacking tai35a). This may be because the smooth fitness landscape
causes most moves that exchange 3 facilities at once in a QAP solution are worse
than those that exchange 2 facilities at once. Also, the larger neighborhood slows
down the SLS significantly. The results do not show significant improvement (see
Table 2) so this configuration was not pursued.

We came up with another hypothesis for the SLS algorithm. During short
runs, there may be some Ro-TS-I moves which lead to known good APs that are
under tabu status and are not overridden by aspiration criteria.

The idea for robustness in Ro-TS [18] is to change tabu tenure randomly
during the search within a defined Tabu Tenure Range (TTR) every Z*n steps.
The TTR is defined as the interval [TTL, TTL+TTD] which has two parameters:
Tabu Tenure Low (TTL) and Tabu Tenure Delta (TTD). To encourage Ro-TS-I
to do more intensification, we decrease its TTR from the recommendation in
[18]: [90%*n, 110%n] into a lower range and changing the robust tabu tenure
value more often — after n steps (Z=1), not 2n steps (Z=2) as in Table 1.

We do not know the best TTR for Ro-TS-I, except that it should be lower. We
use systematic black-box tuning with full factorial design on TTL={40, 70} and
TTD={20, 40} and obtain TTR=[40%*n, 80%*n] (TTL=40, TTD=40) as the
TTR that works best on the training instances and also slightly but consistently
outperforms the original Ro-TS-I (see Table 2).

We call Ro-TS-I with lower TTR as Ro-TS-A. We observed that although
TTR is smaller, it is still enough to ensure Ro-TS-A avoids solution cycling

342 S. Halim, R.H.C. Yap, and H.C. Lau

Fig. 6. Search coverage of Ro-TS-I (left) and Ro-TS-B (right) on QAP (type B) in-
stance. Ro-TS-I (left) is stuck around very bad APs (see the large red circles). On the
other hand, Ro-TS-B (right) employs frequent strong diversifications and we see that
it visits several APs of varying qualities (see the large blue circles) that are (very) far
from each other.

issues. This may be because it is quite easy to escape from any local optima
of smooth fitness landscape of type A instances. Fig 5 (right) shows the search
coverage of Ro-TS-A which seems better than the search coverage of Ro-TS-I.

4.4 Tweaking Ro-TS-I to Ro-TS-B for QAP (type B) Instances

Visualization reveals that Ro-TS-I is stuck near very bad APs. This leads to a
very bad performance (see Fig 6, left). With the understanding that the fitness
landscape of type B instances is rugged, we conclude that the inability of Ro-TS-I
to escape those APs is because the APs are part of deep local optima regions.

To alleviate this situation, we add a strong diversification strategy into the
Ro-TS-I. We consider Ro-TS-I to be stuck in a deep local optimum after n
non-improving moves (Z=1). To escape, we employ a strong diversification mech-
anism which preserves max(0, n-X) items and randomly permutates the assign-
ment of the other min(n, X) items in the current solution. The value of X is
sufficiently large: close to n but not equal to n, otherwise it would be tantamount
to random restart. The rationale for this strong diversification heuristic is that
we see in the fitness landscape that good APs (blue circles) in type B instances
are located quite far apart but not as far as the problem diameter n.

How should the diversification strength X be determined? One can manually
experiment with different values of X on various training instances but it is
better to do systematic black-box tuning. We automatically tune using 1-factor
design on X={5, 10, . . . , n}. With tai30b and tai35b as training instances, we
get good results when X=15. However, X=15 is not the best configuration for
tai50b (see Table 2). We found that fixing the value of X to a constant (Fixed-
Diversification) tends to make the Ro-TS-I overfit the training instances.

After fine-tuning the fixed-diversification strategy, we realized that X should
not be fixed for all type B instances but rather be robust within a range correlated
with the instance size. The value of X is randomly changed within this range

An Integrated White+Black Box Approach 343

after each diversification step. This helps maintaining the consistency of the
performance quality across various QAP (type B) instances.

As the pilot runs using a fixed-diversification strategy yield reasonably good
results when X is set around the half of the instance size n, we apply full factorial
design on Xlow={ 4

10n, 5
10n} and Xhigh={ 6

10n, 7
10n} to try various X within the

interval [Xlow, Xhigh] settings systematically. We arrived at a good range for
X=[4

10n, 6
10n] that works best on the training instances.

We call the revised SLS as Ro-TS-B. Animation shows that Ro-TS-B visits
several far away APs of varied quality, where each AP is visited only in a brief
period. However, some APs visited by Ro-TS-B have good quality and thus the
overall performance is good. See Fig 6 (right) and Table 2.

4.5 Benchmarking on the Test Instances

We now compare the initial and final SLS algorithms on the test instances using
the same iteration bound. The results are given in Table 2. We observe that
on average Ro-TS-A performs slightly better than Ro-TS-I on type A instances
while Ro-TS-B is significantly better than Ro-TS-I on type B instances. Note
that for type A instances, since the fitness landscape is more smooth, any im-
provements will be small. The results here are also comparable with the updated
Ro-TS results in [19].

We see that applying either Ro-TS-A or Ro-TS-B to its opposite instance
class mostly gives no or negative improvements (underlined). This result shows
that we have successfully tailored the SLS algorithm to match different fitness
landscape of these instances.

5 Comparison with a Pure Black-Box Approach

We compared our integrated white+black approach with a pure black-box ap-
proach on several tuning scenarios. Note that we have not compared against a
pure white-box approach as the comparison would be subjective.

We use CALIBRA [4] as the black-box tuning algorithm. CALIBRA works
by iteratively trying different configurations from the given configuration space
(using fractional factorial design) to set-up the SLS, run the SLS on training
instances, and obtain results from the black-box SLS (e.g. best found solution
quality). CALIBRA uses the results from the SLS runs to determine which con-
figuration to try next.

For the experiments with CALIBRA, we chose the following default range
of values for the initial configuration space {Z,Str,TTL,TTD,X} with size 1152
(3*2*8*6*4). The size of this configuration space is purposely larger and includes
most of the configuration space used in Section 4. Note that this configuration
would not be necessarily obvious from the initial Ro-TS-I configuration.

1. Execute strategy after Z*n iterations without improvement, Z: {1, 2, 3},
2. Strategy (Str): {1: Lower-TTR, 2: Fixed-Diversification},
3. Tabu Tenure Low (TTL): {30, 40, . . . , 100},

344 S. Halim, R.H.C. Yap, and H.C. Lau

Table 2. The results of Ro-TS-I, Ro-TS-A, and Ro-TS-B on training and test instances
— averaged over 10 runs per instance. The instance size n, Best Known (BK) objective
value, maximum iteration bound (5n2 iterations), run times (except column ‘3-Opt’),
average percentage-off x̄ and standard deviation σ from BK are given.

Training Instances

Instance n Best Known Iters Time
Ro-TS-I > 3-Opt < Ro-TS-A
x̄ σ x̄ σ x̄ σ

tai30a 30 1818146 4500 3s 0.99 0.46 1.00 0.38 0.85 0.32
tai35a 35 2422002 6125 5s 1.24 0.22 1.14 0.16 0.98 0.29
tai50a 50 4938796 12500 18s 1.62 0.11 1.67 0.15 1.42 0.21

Instance n Best Known Iters Time
Ro-TS-I > X=15 < Ro-TS-B
x̄ σ x̄ σ x̄ σ

tai30b 30 637117113 4500 3s 16.18 0.00 0.14 0.11 0.17 0.17
tai35b 35 283315445 6125 5s 2.90 1.06 0.20 0.14 0.25 0.26
tai50b 50 458821517 12500 18s 7.58 0.01 0.79 0.84 0.15 0.14

Test Instances

Instance n Best Known Iters Time
Ro-TS-I Ro-TS-A Ro-TS-B
x̄ σ x̄ σ x̄ σ

tai40a 40 3139370 8000 8s 1.25 0.19 1.22 0.25 1.63 0.26
sko42 42 15812 8820 9s 0.21 0.08 0.11 0.06 0.16 0.09
tai60a 60 7205962 18000 34s 1.60 0.17 1.53 0.14 2.12 0.16

ste36b 36 15852 6480 6s 6.20 1.21 7.28 0.92 0.65 0.73
tai40b 40 637250948 8000 8s 9.01 0.00 9.04 0.09 0.01 0.02
tai60b 60 608215054 18000 35s 2.38 0.47 2.93 0.36 0.17 0.13

Table 3. CALIBRA results on tuning Ro-TS-IC . The 1st column is the scenario ID.
The 3rd column gives the selected configuration when CALIBRA is trained using train-
ing instances specified in the 2nd column. The 4th-9th columns give the percentage-off
and standard deviation w.r.t BK values on the test instances — averaged over 10 runs.

Sc Training Set Configuration tai40a sko42 tai60a ste36btai40b tai60b

1.
tai30a/tai30b {3, 2, 40, 10, 20} 1.23 0.09 1.59 0.90 1.86 1.70
tai50a/tai50b (0.29) (0.08) (0.20) (0.80) (1.55) (0.24)

2.
tai30b/tai35b {3, 1, 90, 40, -} 1.26 0.28 1.55 5.12 8.93 2.09
tai50b (0.16) (0.09) (0.21) (1.30) (0.16) (0.02)

3.
tai30a/tai35a {3, 1, 40, 40, -} 1.25 0.16 1.50 7.13 9.04 2.93
tai50a (0.19) (0.06) (0.15) (1.01) (0.09) (0.33)

4.
tai30b/tai35b {1, 2, 90, 40, 20} 1.81 0.16 1.70 0.93 0.05 0.94
tai50b (0.24) (0.11) (0.16) (0.89) (0.09) (0.71)

4. Tabu Tenure Delta (TTD): {0, 10, . . . , 50},
5. Diversification strength X (only used when Str=2), X : {20, 25, . . . , 35}.

CALIBRA is used to configure our baseline algorithm Ro-TS-I for 20 minutes per
scenario (that is, with ≈ 30 seconds for Ro-TS-I runs on QAP instances of size
30/35/50, this roughly allows CALIBRA to examine ≈ 20 ∗ 60/30 ≈ 40 different

An Integrated White+Black Box Approach 345

configurations. This is sufficient for our experiments as CALIBRA seems to hit
a local optimum of the configuration space after around 30 configurations. The
various CALIBRA configured algorithms are called Ro-TS-IC .

In scenario 1, we assume that we do not know that there are 2 different fitness
landscape characteristics in QAP instances used. We see that CALIBRA chooses
a ‘balanced’ configuration {3, Fixed-Diversification, 40, 10, 20}when trained with
mixed type A and type B instances. This Ro-TS-IC yields balanced performance
on both types but poorer than the specialized Ro-TS-A or Ro-TS-B on type A or
type B instances, respectively (compare with Table 2).

In scenario 2, we deliberately omitted Fixed-Diversification as the choice for the
second parameter (Str). By doing so, CALIBRA is forced to choose the ‘best’ con-
figuration: {3, Lower-TTR, 90, 40, -} in the smaller box with size 576 when given
type B training instances. This Ro-TS-IC produces very bad results for type B test
instances (comparewithRo-TS-B results inTable 2) and shows thatpureblack-box
tuning algorithm cannot find a good configuration outside the box by itself.

Scenario 3 and scenario 4 are similar to the full factorial design using Viz in
Section 4 but now with bigger configuration space. Note that CALIBRA uses
fractional factorial design.

In scenario 3, since CALIBRA is trained with type A instances, it converges to
a configuration that works well for type A but works badly for type B instances.
Ro-TS-IC (compare with Z=1 in the configuration of Ro-TS-A) obtains better
results for tai60a but not for tai40a and sko42. However, the performance of
Ro-TS-IC is more or less similar to Ro-TS-A in this scenario.

The opposite situation from scenario 3 occurs in scenario 4 where this time the
configured Ro-TS-IC performs much better on type B instances. Note that since
a black-box tuning algorithm cannot think out of the box to correlate X with
instance size, it selects the ‘best’ X given the training instances. We get X=20
which is good for tai40b but bad for ste36b and tai60b — a case of over-fitting.
Ro-TS-IC has worse performance than Ro-TS-B in this scenario.

Fig. 7. The development of the two Ro-TS variants

6 Conclusion

In this paper, we have shown an integrated white+black box approach for design-
ing and tuning SLS algorithms. We demonstrate that starting from a good base-
line SLS, Robust Tabu Search, on a realistic problem, QAP, we are able to derive
two algorithm variants with better performance. Fig 7 summarizes the develop-
ment steps with reference to SLS algorithms devised and tuned in Section 4. The
white-box steps are necessarily subjective. However, since Robust Tabu Search is

346 S. Halim, R.H.C. Yap, and H.C. Lau

already quite good on QAP and given that each major step in the SLS algorithm
development is well supported by visualizations and tools, we believe that this
gives evidence that our approach is both valuable and effective.

In practice, for real-life COPs, the goal is to design an SLS algorithm with
good performance under limited resources. To reduce the development time,
we would also need techniques and more importantly tools which can help in
SLS design and tuning. Our integrated white+black box approach combines
the strengths of leveraging the developer intuition by using generic automated
visualization tools with generic automatic parameter tuning. The techniques
presented here should be relevant to anyone designing a new SLS, particularly
when dealing with new COPs.

References

1. Hoos, H.H., Stuetzle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2005)

2. Charon, I., Hudry, O.: Mixing Different Components of Metaheuristics. In: Meta-
Heuristics: Theory and Applications, pp. 589–603. Kluwer Academic Publishers,
Dordrecht (1996)

3. Birattari, M.: The Problem of Tuning Metaheuristics as seen from a machine learn-
ing perspective. PhD thesis, Université Libre de Bruxelles (2004)

4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms Using Fractional Exper-
imental Designs and Local Search. Operations Research 54(1), 99–114 (2006)

5. Halim, S., Lau, H.C.: Tuning Tabu Search Strategies via Visual Diagnosis. In:
Meta-Heuristics: Progress as Complex Systems Optimization. Kluwer, Dordrecht
(2007)

6. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction
and Automated Tuning of Randomized and Parametic Algorithms. In: Principles
and Practice of Constraint Programming, pp. 213–228 (2006)

7. Lau, H.C., Xiao, F.: Toward an Intelligent Metaheuristics Framework. In: Meta-
heuristics International Conference (2007)

8. Merz, P.: Memetic Algorithms for Combinatorial Optimization: Fitness Landscapes
& Effective Search Strategies. PhD thesis, University of Siegen, Germany (2000)

9. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The
New Experimentalism. Springer, Heidelberg (2006)

10. Halim, S., Yap, R.H.C., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining Lo-
cal Search Behavior. In: User Interface Software and Technology, pp. 57–66 (2006)

11. Halim, S., Yap, R.H.C.: Designing and Tuning SLS through Animation and Graph-
ics - an extended walk-through. In: SLS: Stochastic Local Search Workshop (2007)

12. NIST: e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook

13. Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Constraints 1(1/2), 7–43 (1996)

14. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer, Heidelberg
(2006)

15. Watson, J.P.: On Metaheuristics ”Failure Modes”. In: Metaheuristics International
Conference, pp. 910–915 (2005)

http://www.itl.nist.gov/div898/handbook

An Integrated White+Black Box Approach 347

16. Stuetzle, T., Hoos, H.H.: Analyzing the Run-Time Behavior of Iterated Local
Search for the TSP. In: Essays and Surveys in Metaheuristics, pp. 449–453. Kluwer,
Dordrecht (1999)

17. QAPLIB: Quadratic Assignment Problem Library,
http://www.seas.upenn.edu/qaplib

18. Taillard, E.: Robust Tabu Search for Quadratic Assignment Problem. Parallel Com-
puting 17, 443–455 (1991)

19. Taillard, E.: Comparison of Iterative Searches for the Quadratic Assignment Prob-
lem. Location Science 3, 87–105 (1995)

http://www.seas.upenn.edu/qaplib

Limitations of Restricted Branching in Clause Learning

Matti Järvisalo and Tommi Junttila

Helsinki University of Technology (TKK)
Laboratory for Theoretical Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
matti.jarvisalo@tkk.fi, tommi.junttila@tkk.fi

Abstract. The techniques for making decisions, i.e., branching, play a central
role in complete methods for solving structured CSP instances. In practice, there
are cases when SAT solvers benefit from limiting the set of variables the solver
is allowed to branch on to so called input variables. Theoretically, however, re-
stricting branching to input variables implies a super-polynomial increase in the
length of the optimal proofs for DPLL (without clause learning), and thus input-
restricted DPLL cannot polynomially simulate DPLL. In this paper we settle the
case of DPLL with clause learning. Surprisingly, even with unlimited restarts,
input-restricted clause learning DPLL cannot simulate DPLL (even
without clause learning). The opposite also holds, and hence DPLL and input-
restricted clause learning DPLL are polynomially incomparable. Additionally,
we analyse the effect of input-restricted branching on clause learning solvers in
practice with various structural real-world benchmarks.

1 Introduction

Modern complete satisfiability (SAT) solvers provide an efficient way of solving various
real-world problems as propositional satisfiability. Typical SAT solvers aimed at solving
such structured problems are based on the conjunctive normal form (CNF) level Davis-
Putnam-Logemann-Loveland procedure (DPLL) [1,2] and incorporate techniques such
as intelligent branching heuristics, randomisation and restarts [3], and clause learn-
ing [4] for boosting search efficiency.

In SAT based approaches to structured problems such as bounded model checking [5]
and automated planning [6], the CNF encoding is often derived from a transition rela-
tion, where the behaviour of the underlying system is dependent on the input—initial
state, nondeterministic choices, et cetera—of the system. Since irrelevant decisions may
have an exponential effect on the running times of the solver, techniques for making
decisions, i.e., branching, play a central role in complete SAT methods aimed at solv-
ing typically very large real-world problem instances. Empirical case studies [7,8,9,10]
have shown that, in some cases, SAT solvers benefit from restricting the variables the
solver is allowed to branch on to so called input (or independent) variables, correspond-
ing to the input of the underlying system. Since the system behaviour is determined by
its input, input-restricted branching DPLL remains complete. Intuitively, this drops the
search space size from 2N to 2I with I << N , where I and N are the number of input
variables and all variables in the CNF encoding, respectively.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 348–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Limitations of Restricted Branching in Clause Learning 349

From another point of view, one can investigate the best-case performance of SAT
algorithms through proof complexity [11], by studying the relative power of their un-
derlying inference systems (or proof systems) in terms of the shortest existing proofs in
the systems. For two proof systems S,S′, we say that S′ (polynomially) simulates S if,
for all infinite families {Fn} of unsatisfiable CNF formulas, there is a polynomial that
bounds for all Fn the length of the shortest proofs in S′ w.r.t. the length of the shortest
proofs in S. If S′ simulates S and vice versa, then S and S′ are polynomially equiva-
lent. If S′ cannot simulate S and vice versa, then S and S′ are incomparable. From the
practical point of view, if S′ cannot simulate S, we know that any implementation of
S′ can suffer a notable decrease in efficiency compared to implementations of S. For
example, through a formal characterisation CL of DPLL with clause learning, Beame
et al. [12] show that CL can provide exponentially shorter proofs than DPLL, and thus
DPLL cannot simulate CL.

Considering restricting branching in DPLL algorithms to input variables, a natural
question to ask is whether the power of the underlying inference systems of DPLL based
solvers is affected by the input-restriction. For DPLL without clause learning, this ques-
tion is answered in [13]: input-restricted DPLL cannot simulate DPLL.

In this paper we settle the case of input-restricted CL: it turns out that input-restricted
CL cannot simulate CL. This implies that all implementations of clause learning DPLL,
even with optimal heuristics, have the potential of suffering a notable efficiency de-
crease if branching is restricted to input variables. In fact, we show that even with
unlimited restarts and the ability to create conflicts at will, input-restricted CL cannot
even simulate the basic DPLL without clause learning. This is surprising, since the un-
restricted version of this variant of CL can efficiently simulate general resolution [12],
being thus very powerful compared to DPLL. Additionally, we evaluate the effect of
input-restricted branching on clause learning with various structural real-world bench-
marks, and explain why branching restrictions are difficult to apply with typical clause
learning search techniques.

As preliminaries, in Sect. 2 we define Boolean circuits, which we use for representing
structural formulas, and discuss the close relation of circuits and CNF formulas. We
then review the Resolution proof system and characterisations of DPLL and CL, and
discuss known results concerning their relative efficiency (Sect. 3). The main theoretical
and experimental contributions of this paper are presented in Sect. 4–5.

2 Boolean Circuits and Propositional Satisfiability

The correspondence between system input of a real-world problem and propositional
variables in the flat CNF encoding is not evident. However, in SAT based approaches,
direct CNF encodings of a problem domain are rarely used: the problem at hand is
typically encoded with a general propositional formula φ, which is then translated into
a CNF formula by introducing additional variables for the sub-formulas of φ. Boolean
circuits (see e.g. [14]) offer a natural way of presenting propositional formulas in a
compact DAG-like structure with sub-formula sharing, which helps in lowering the
number of additional variables needed. The system input of the original problem is also
reflected as input gates in Boolean circuits.

350 M. Järvisalo and T. Junttila

A Boolean circuit over a finite set G of gates is a set C of equations of the form g :=
f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {f, t}n → {f, t} is a Boolean function,
such that (i) each g ∈ G appears at most once as the left hand side in the equations in C,
and (ii) the underlying graph 〈G, E(C) = {〈g′, g〉∈G ×G | g := f(. . . , g′, . . .)∈C}〉
is acyclic. When convenient, we identify C with its underlying DAG. If 〈g′, g〉 ∈ E(C),
then g′ is a child of g and g is a parent of g′. For any g ∈ G, if g := f(g1, . . . , gn)
is in C, then g is an f -gate (or of type f), otherwise it is an input gate. A gate with
no parents is an output gate. A (partial) truth assignment for C is a (partial) function
τ : G→ {f, t}. A truth assignment τ is consistent with C if τ(g) = f(τ(g1), . . . , τ(gn))
for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cτ is a pair 〈C, τ〉, where C is a Boolean circuit and
τ is a partial truth assignment for C. With respect to a 〈C, τ〉, each 〈g, v〉 ∈ τ is a
constraint, and g is constrained to v if 〈g, v〉 ∈ τ . A truth assignment τ ′ satisfies Cτ if
(i) τ ′ is consistent with C, and (ii) τ ′ ⊇ τ . If some truth assignment satisfies Cτ then Cτ
is satisfiable and otherwise unsatisfiable.

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1 t

t1

Fig. 1. A constrained circuit

For notational convenience, when well-defined, the
join of constrained circuits Aτ = 〈A, τ 〉 and Bθ =
〈B, θ〉 is Aτ ∪ Bθ := 〈A ∪ B, τ ∪ θ〉. Without loss of
generality, we restrict the set of Boolean functions avail-
able as gate types to

(i) NOT(v) is t iff v is f,
(ii) OR(v1, . . . , vn) is t iff at least one of v1, . . . , vn

is t,
(iii) AND(v1, . . . , vn) is t iff all v1, . . . , vn are t, and
(iv) XOR(v1, v2) is t iff exactly one of v1, v2 is t.

As an example, Fig. 1 shows a Boolean circuit for a
full-adder with the carry-out bit c1 constrained to t. Formally, this constrained circuit is
〈C, τ〉, where C = {c1 := OR(t1, t2), t1 := AND(t3, c0), o0 := XOR(t3, c0), t2 :=
AND(a0, b0), t3 := XOR(a0, b0)} and τ = {〈c1, t〉}.

2.1 From Circuits to CNF, and CNF Formulas as Circuits

Given a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x. As usual, we identify x with x. A clause is a
disjunction of distinct literals and a CNF formula is a conjunction of clauses. When
convenient, we view a clause as a finite set of literals and a CNF formula as a finite set
of clauses. The sets of variables appearing as positive and negative literals in a CNF
F are denoted by vars+(F) and vars−(F), respectively, and the set of variables by
vars(F); for a clause C, vars+(C), vars−(C), and vars(C) are defined similarly.

Given a CNF formula F , a (partial) assignment for F is a (partial) function τ :
vars(F) → {t, f}. With slight abuse of notation, if τ(x) = v, then τ(x) = ¬v, where
¬t = f and ¬f = t. A clause is satisfied by τ if it contains at least one literal l such
that τ(l) = t. An assignment τ satisfies F if it satisfies every clause in F . A formula
is satisfiable if there is an assignment that satisfies it, and unsatisfiable otherwise. We
apply the stardard “Tseitin translation” to map each constrained Boolean circuit 〈C, τ〉
into an equi-satisfiable CNF formula cnf(〈C, τ 〉). To obtain a small CNF formula, the

Limitations of Restricted Branching in Clause Learning 351

Table 1. Translating a constrained Boolean circuit 〈C, τ〉 to the CNF formula cnf(〈C, τ 〉)

circuit 〈C, τ〉 clauses in cnf(〈C, τ〉)
g := NOT(g1) ∈ C {x̄g, x̄g1}, {xg, xg1}
g := OR(g1, . . . , gn) ∈ C {x̄g, xg1 , . . . , xgn}, {xg, x̄g1},. . . ,{xg, x̄gn}
g := AND(g1, . . . , gn) ∈ C {x̄g, xg1},. . . ,{x̄g, xgn}, {xg, x̄g1 , . . . , x̄gn}
g := XOR(g1, g2) ∈ C {x̄g , x̄g1 , x̄g2}, {x̄g, xg1 , xg2}, {xg, x̄g1 , xg2}, {xg, xg1 , x̄g2}
〈g, t〉 ∈ τ {xg}
〈g, f〉 ∈ τ {x̄g}

idea is to introduce a variable xg for each gate g in the circuit, and then to describe the
functionality of each gate with a linear number of clauses (Table 1).

Any CNF formula F = {C1, . . . , Ck} can naturally be seen as a Boolean circuit.
Basically, F is a Boolean circuit with an AND of ORs which represent the clauses.
Formally, circuit(F) := 〈C, τ 〉 is defined by associating an input gate gx with each
x ∈ vars(F), a NOT-gate gx̄ with each x ∈ vars−(F), an OR-gate gCi with each clause
Ci ∈ F , an AND-gate gF with F , and defining τ = {〈gF , t〉} and

C = {gF := AND(gC1 , . . . , gCk
)} ∪ {

gx̄ := NOT(gx) | x ∈ vars−(F)
} ∪{

gCi := OR(gli,1 , . . . , gli,ni
) | Ci = {li,1, . . . , li,ni} ∈ F

}
.

3 Resolution, DPLL, and CL with Variants

We now review proof systems for CNF formulas, namely, Resolution, and characterisa-
tions of DPLL and CL [12] (DPLL with clause learning). We will apply these in Sect. 4.

3.1 Resolution

The well-known Resolution proof system (RES) is based on the resolution rule. Let
C, D be clauses, and x a Boolean variable. The resolution rule lets us derive the clause
C ∪D from the clauses {x} ∪C and {x̄} ∪D by resolving on x. A RES proof (for the
unsatisfiability) of a CNF formula F is a sequence of clauses π = (C1, C2, . . . , Cm =
∅), where each Ci, 1 ≤ i ≤ m, is either (i) a clause in F (an initial clause), or (ii)
derived with the resolution rule from two clauses Cj , Ck where 1 ≤ j, k < i (a derived
clause). The length of π is m, the number of clauses occurring in it.

Many refinements of Resolution, in which the structure of RES proofs is restricted,
have been proposed and studied. Here of particular interest is Tree-like Resolution
(T-RES) that requires the refutations to be representable as trees. This implies that a
derived clause, if subsequently used multiple times in the refutation, must be derived
anew each time starting from initial clauses.

Superpolynomial lower bounds on proof length in RES have been shown for various
families of CNF formulas. Among the most studied such families is the pigeon-hole
principle, which states that there is no injective mapping from an m-element set into an
n-element set if m > n (i.e., m pigeons cannot sit in less than m holes so that every
pigeon has its own hole). We consider the case m = n+1 encoded as the CNF formula

352 M. Järvisalo and T. Junttila

PHPn+1
n :=

n+1∧
i=1

(n∨
j=1

pi,j

)
∧

n∧
j=1

n∧
i=1

n+1∧
i′=i+1

(p̄i,j ∨ p̄i′,j),

where each pi,j is a Boolean variable with the interpretation “pi,j is t if and only if the
ith pigeon sits in the jth hole”.

Theorem 1 (Haken [15]). There is no polynomial length RES proof of PHPn+1
n .

It is also known that T-RES is a proper refinement of RES. This originates from the facts
that regular resolution cannot simulate RES [16], and T-RES in turn cannot simulate
regular resolution [17].

Corollary 1 (of [16,17]). T-RES cannot polynomially simulate RES.

3.2 DPLL

Most modern complete SAT solvers are based on the DPLL procedure [1,2]. Given a
CNF formula F as input, DPLL is a depth-first search procedure building a partial as-
signment τ on vars(F) through branching and unit propagation (UP). By branching
the current partial assignment τ is extended with τ(x) = v, v ∈ {f, t}, for some unas-
signed variable x. Unit propagation refers to the process of immediately applying the
unit clause rule with which the current partial assignment τ is extended with τ(l) = t
if there is a clause {l1, . . . , lk, l} ∈ F such that τ(li) = f for each 1 ≤ i ≤ k. A branch
is extended until (i) there is a clause C ∈ F for which τ(l) = f for each literal l ∈ C,
or (ii) τ satisfies F . In case (i), τ is conflicting with the particular clause, and DPLL
backtracks to the last branching decision whose other branch has not been tried yet, and
flips the particular decision in τ . A DPLL search terminates when either a satisfying
assignment is found, or when all possible branches have been covered, in which case F
is determined as unsatisfiable.

As a proof system, the strength of DPLL does not depend on whether UP is applied.
Any application of the unit clause rule on a clause C can be simulated by branching
on the remaining unassigned literal l ∈ C; assigning l a conflicting value by branching
causes immediately backtracking. It is well-known that DPLL and T-RES can polyno-
mially simulate each other; one can show that for any unsatisfiable CNF formula, with
UP seen as branching, the branches tried by DPLL correspond one-to-one with the paths
of a T-RES proof with the conflicting clauses as leafs.

Fact 1. DPLL and T-RES are polynomially equivalent.

Considering the branch at an arbitrary stage of DPLL, the variables assigned by branch-
ing are called decision variables and those assigned values by UP are implied variables,
with analogous definitions for decision literals and implied literals. The decision level
of a decision variable x is one more than the number of decision variables in the branch
before branching on x. The decision level of an implied variable x is the number of
decision variables in the branch when x is assigned a value. The decision level of DPLL
at any stage is the number of decision variables in the current branch.

Implication graphs capture naturally the ways of deriving all implied literals from
decision literals by UP.

Limitations of Restricted Branching in Clause Learning 353

Definition 1. The implication graph G at a given stage of DPLL is a directed graph
with edges labeled with sets of clauses. An implication graph is constructed as follows.

1. Create a node for each decision literal, labeled with that literal.
2. While there is a clause C = {l1, . . . , lk, l} such that l̄1, . . . , l̄k label nodes in G,

(a) Add a node labeled l if not already in G.
(b) Add edges 〈li, l〉 for 1 ≤ i ≤ k, if not already present.

3. Add a special node Λ to G. For any variable x with both labels x and x̄ in G, add
edges 〈x, Λ〉 and 〈x̄, Λ〉. Any such x, x̄ are conflict literals, and the variable x is a
conflict variable.

An implication graph contains a conflict if it contains a conflict variable; DPLL has a
conflict at a given stage if the implication graph at the stage contains a conflict.

3.3 Clause Learning

Most state-of-the-art complete SAT solvers today apply DPLL enhanced with conflict
analysis [4], resulting in Clause Learning (CL). Like the basic DPLL, CL performs
branching and UP until a conflict is reached. If this happens without any branching, CL
determines the formula F unsatisfiable. In other cases, the conflict is analyzed, and a
learned clause (or conflict clause), which describes the “cause” of the conflict, is added
to F . After this CL continues by backtracking as DPLL does, or can backjump to an
earlier decision level that “caused” the conflict (as discussed in more detail below).

At a given stage of a CL search procedure, a clause is called known if it either appears
in the original CNF formula or has been learned earlier during the search. Conflict
analysis is based on a conflict graph, which captures one way of reaching the conflict
at hand form the decision variables by using UP on known clauses.

Definition 2. Given an implication graph G containg a conflict, a conflict graph H =
(V, E) based on G is any acyclic subgraph of G having the following properties.

1. H contains Λ and exactly one conflict literal pair x, x̄.
2. All nodes in H have a path to Λ.
3. Every node l ∈ V \ {Λ} either corresponds to a decision literal or has precisely

the nodes l̄1, l̄2, . . . , l̄k as predecessors where {l1, l2, . . . , lk, l} is a known clause.

A conflict graph describes a single conflict and contains only decision and implied
literals that can be used in reaching the conflict when applying the unit clause rule in
some order. Hence the way of implementing unit propagation in a solver has an effect
on the choice of the conflict graph.

Conflict clauses are associated with cuts in a conflict graph. Fix a conflict graph
contained in an implication graph with a conflict. A conflict cut is any cut in the conflict
graph with all the decision variables on one side (the reason side) and at least one
conflict literal on the other side (the conflict side). Those nodes on the reason side with
at least one edge going to the conflict side in a conflict cut form a cause of the conflict;
with the associated literals set to t, UP can arrive at the conflict at hand. The negations
of these literals from the conflict clause associated with the conflict cut. The strategy
for fixing a conflict cut is called the learning scheme. A learning scheme which always
learns a currently unknown clause is non-redundant.

354 M. Järvisalo and T. Junttila

A clause learning proof (or CL proof) under a learning scheme is a CL search tree us-
ing that learning scheme. The length of the proof is the number of branching decisions.
The proof system CL consists of CL proofs under any learning scheme.

While the practical efficiency gains of implementing clause learning into DPLL
based algorithms are well-established, the first formal study on the power of clause
learning is [12]: CL can provide exponentially shorter proofs than T-RES, and thus

Corollary 2 (of Fact 1 and [12]). DPLL cannot polynomially simulate CL.

Typically implemented clause learning schemes are based on unique implication points
(UIPs) [4]. A UIP of a conflict graph is a node u on the maximal decision level d such
that all paths from the decision variable x at level d to Λ go through u. Such a u always
exists, since x satisfies this condition; intuitively u is a single reason for the conflict
at level d. Thus one can always choose a conflict cut that results in a conflict clause
with a UIP as the only variable from the maximal decision level. Such a conflict clause
causes the value of the UIP to be immediate flipped when backtracking. Furthermore,
UIP learning enables conflict-driven backtracking (or backjumping), in which DPLL
backtracks to the maximal decision level of the variables other than the UIP in the
conflict clause. A popular version of UIP learning is the 1-UIP scheme, where the UIP
closest to Λ is chosen. Different learning schemes are evaluated in [18].

Restarts are also often implemented in modern solvers. When a restart occurs, the
decisions and unit propagations made so far are undone, and the search continues from
decision level 0. The clauses learned so far remain known after the restart. Intuitively,
restarts help in escaping from getting stuck in hard-to-prove subformulas. In practice,
the choice of when and how often to restart is again part of the strategy of a solver.
When any number of restarts are allowed during search, CL has unlimited restarts.

Beame et al. [12] define CL-- as CL with branching allowed also on literals already
set at the current stage of DPLL. Although being non-typical in practice, this enables
creating immediate conflicts at will. Although it is not known whether CL can simulate
RES, it has been shown that this is true for CL-- using restarts.

Theorem 2 (Beame et al. [12]). RES and CL-- with unlimited restarts and any non-
redundant learning scheme are polynomially equivalent.

In the following, we will explicitly mention when restarts are allowed.

3.4 Input-Restricted Branching DPLL and CL

In structural application domains of SAT solvers, such as planning and bounded model
checking of hardware and software, Boolean circuits offer a natural presentation form
for the problem descriptions. Typically, such problems are based on a transition relation,
where the behaviour of the underlying system is dependent solely on the input of the
system. In the Boolean circuit encoding 〈C, τ〉, the input is represented by the set of
input gates (sometimes called independent variables) of the circuit, inputs(C). Since
the circuit can be evaluated when all gates in inputs(C) have values, branching in DPLL
with unit propagation can be restricted to the variables associated with inputs(C)—
denoted by DPLLinputs and CLinputs for clause learning—without losing completeness.
Intuitively, the idea is that since |inputs(C)| is often much less than the total amount |G|

Limitations of Restricted Branching in Clause Learning 355

of gates in C, search space size is reduced from 2|G| to 2|inputs(C)|, where |inputs(C)| <<
|G|. From the view of proof complexity, however, in [13] a formal study on the effect
of restricting branching in DPLL (without clause learning) to inputs reveals that this
weakens the proof system considerably.

Theorem 3 (Järvisalo et al. [13]). DPLLinputs cannot polynomially simulate DPLL.

The rest of the paper is dedicated to investigating the effect of restricting branching to
inputs in the case of clause learning, which is posed as an open question in [13].

4 Separating Input-Restricted and Unrestricted CL

We will now consider the relative power of input-restricted and unrestricted CL and
DPLL. This will result in a refined relative efficiency hierarchy of DPLL and CL (Fig. 3).

Since the cnf translation associates a variable for each gate in a circuit, when appro-
priate we will use the term “(e.g., branch on, set value to) gate g” when referring to the
variable xg associated with g in the CNF translation of the circuit. Correspondingly, a
DPLL or CL proof of a constrained circuit Cτ means a proof of the translation cnf(Cτ).
Lemma 1. There is an infinite family {Cτn} of constrained Boolean circuits for which
DPLL has exponentially longer minimal proofs than CLinputs.

Proof. Take any infinite family {Fn} of CNF formulas that is a witness of Corollary 2.
Define the family of Boolean circuits {circuit(F) | F ∈ {Fn}}. The formula result-
ing from UP on cnf(circuit(F)) without branching corresponds to the result of unit
propagation on F without branching. Thus DPLL will only branch on the variables in
cnf(circuit(F)) that are associated with the input gates of circuit(F). Thus CLinputs can
simulate CL on cnf(circuit(F)), and the claim follows by Corollary 2. �
Corollary 3. Neither DPLL nor DPLLinputs can polynomially simulate CLinputs.

To highlight the strength of clause learning even when branching is restricted to input
gates, we now give an example of a family {XOR-UNSATn} of Boolean circuits on
which CLinputs can simulate CL, although DPLLinputs cannot simulate DPLL on the
family. The circuit XOR-UNSATn := UNSAT∪〈XORan ∪XORbn, ∅〉 consists of two
parts: (i) the constant size circuit UNSAT := circuit({{a, b}, {a, b̄}, {ā, b}, {ā, b̄}})
and (ii) two copies (for a and b, ρ ∈ {a, b}) of the circuit structure

XORρn := {ρ := XOR(xρ1,1, x
ρ
1,2)} ∪

n−1⋃
i=1

i+1⋃
j=1

{xρi,j := XOR(xρi+1,j , x
ρ
i+1,i+2)}.

XOR-UNSAT2 is shown in Fig. 2. Now, since UP will result in a conflict in the UNSAT
subcircuit for any value of the gate a, XOR-UNSATn yields a trivial (constant length)
proof in DPLL. It is also easy to see that minimal length proofs of XOR-UNSATn are
exponential w.r.t. n in DPLLinputs. Due to the structure of XORn, in order to propagate a
value for the gate a or b, DPLLinputs has to branch on all of the inputs in the correspond-
ing XORρn subcircuit. With the backtracking process of DPLL this implies that minimal
length DPLLinputs proofs of XOR-UNSATn are exponential w.r.t. n.

356 M. Järvisalo and T. Junttila

XORXOR xb
1,2xb

1,1

xb
2,1

xb
2,2 xb

2,3

a

xa
2,1xa

2,2

xa
1,1

XOR XORxa
1,2

xa
2,3

t
AND

b XORXOR

OR OR OR OR

NOT NOT

Fig. 2. XOR-UNSATn for n = 2

However, CLinputs can produce linear
length proofs on the family. Let CLinputs

branch according to the sequence (xan,1 =
f, . . . , xan,n = f). After this, UP cannot
still propagate any values. Then branch
with xan,n+1 = f. Now UP sets values
for all xai,j , without a conflict. The values
for xa1,1 and xa1,2 propagate a value for a,
which then propagates a conflict at a gate
in UNSAT. Notice that xa1,1 and xa1,2 are
the only reasons for the value of a. In any
conflict graph associated with the branch-
ing sequence (xan,1 = f, . . . , xan,n+1 = f),
a is an UIP, and, furthermore, constitutes
a reason for the conflict on its own. Hence
CLinputs can learn as a unit clause the opposite value of a, and backjump to the deci-
sion level zero. This opposite value will then propagate a contradiction without branch-
ing, and CLinputs terminates. It is interesting to notice how CLinputs can branch on
(xan,1 = f, . . . , xan,n+1 = f) and still avoid backtracking on these decisions since there
is the bottleneck at gate a due to the construction of XOR-UNSATn. This shows the
power of clause learning with conflict-driven backtracking due to its ability to backjump
over an exponential size search space by detecting small locally inconsistent subformu-
las. With this intuition, it is evident that the results in [13] on the power DPLLinputs w.r.t.
DPLL cannot be directly adopted for proving the analogous result for CLinputs.

Although CLinputs can simulate CL on this specific family, this is generally not the
case. In fact, it turns out that CLinputs cannot even simulate DPLL, as detailed next. We
will apply the concept of redundant gates in constraint Boolean circuits.

Definition 3. A gate g in a constrained Boolean circuit 〈〈G, E〉, τ〉 is redundant if (i)
g is unconstrained, and (ii) g is not a descendant of any constrained gate g′ in 〈G, E〉.
We will assume that circuits do not contain redundant input gates; such inputs can
always be assigned an arbitrary truth value without affecting satisfiability.

Lemma 2. Redundant gates do not occur in any conflict graph at any stage of CL--inputs

whether or not restarts are allowed.

Proof. For a constrained circuit 〈〈G, E〉, τ 〉, a subcircuit 〈〈G′, E′〉, τ ′〉 induced by
G′ ⊆ G is E′ = {〈g, g′〉 ∈ E ∩ (G′ ×G′)} and τ ′ = {〈g, ε〉 ∈ τ | g ∈ G′}.

Assume that the lemma holds at a stage where CL--inputs has made m conflicts. Con-
sider the (m + 1)th conflict. We prove by induction on the structure of Cτ that no
redundant gates occur in the conflict graph at the (m + 1)th conflict. The base case,
considering a subcircuit with n = 1 gates, is trivial. Assume that the claim holds for
all subcircuits with at most n gates. Let Cτn+1 be any subcircuit of Cτ induced by a set
Gn+1 of n + 1 gates. Remove an arbitrary output gate g := f(g1, . . . , gk) from Cτn+1
to obtain a subcircuit induced by Gn+1 \ {g} with n gates. Such a g cannot be an input
gate, since else it would not be connected to the rest of the circuit Cτ . Thus g is not
branchable.

Limitations of Restricted Branching in Clause Learning 357

The case that g is not redundant is trivial. Now assume that g is redundant. Since there
are no known learned clauses containing redundant gates before the (m + 1)th conflict,
the only way to set a value for g is by UP from values set on (a subset of) {g1, . . . , gk}.
Any value for each gi can be the result of UP on values for Gn+1 \ {g}, or of branching
in the case gi is an input gate. For example, consider the case g := OR(g1, g2). If g1
has the value t, g is propagated the value t. After this, the value of g cannot propagate
a value for g2, nor can any value of g2 propagate f for g. Other cases are similar. Thus
the value of g cannot be used in propagating a value for any gate in Cτn+1, and therefore
g cannot occur in any conflict graph for CL--inputs. �

Redundant gates can be removed from any constrained Boolean circuit without af-
fecting its satisfiability. However, they may have an effect on the length of minimal
proofs. Cook [19] gives a way of introducing a polynomial number of clauses which
can be interpreted as redundant gates to circuit(PHPn+1

n) so that, contrarily to circuit
(PHPn+1

n), the extended circuit yields polynomial length proofs in RES. As a circuit
structure, this extension is defined as EXTn :=

⋃n
l=1 EXTl, where

EXTl :=
l⋃
i=1

l−1⋃
j=1

{eli,j := OR(el+1
i,j , oli,j), oli,j := AND(el+1

i,l , el+1
l+1,j)},

and each eni,j is the input gate gpi,j associated with the variable pi,j in PHPn+1
n . By [19]

we immediately have a polynomial length RES proof 1 π = (C1, . . . , Cm = ∅) of
cnf(circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉). Using π, we define the construct

E(π) :=
m−1⋃
i=2

{hi := AND(gCi , hi−1)} ∪
m−1⋃
i=1

{ĝ := NOT(g) | xg ∈ vars−(Ci)}

m−1⋃
i=1

{gCi := OR(α(li,1), . . . , α(li,ki)) | Ci = {li,1, . . . , li,ki}}

where h1 is the gate gC1 , α(xg) = g, and α(x̄g) = ĝ. The construct encodes π in
a way that allows polynomial length DPLL proofs of EPHPn = circuit(PHPn+1

n) ∪
〈EXTn, ∅〉∪〈E(π), ∅〉, while there is no polynomial length CL--inputs proof of EPHPn.
Intuitively this is because E(π) allows DPLL to “verify” the resolution proof of PHPn+1

n

extended with EXTn step-by-step, while CL--inputs cannot make use of the redundant
gates of EXTn and E(π).

Lemma 3. For the infinite family {EPHPn} of constrained Boolean circuits, CL--inputs

with unlimited restarts has superpolynomially longer minimal proofs than DPLL.

Proof. A polynomial length DPLL proof of EPHPn is witnessed by the branching
sequence (h1 = f, h2 = f, . . . , hm−1 = f), as detailed next. By induction on i, we will

1 Due to space constraint, we do not give π explicitly. Intuitively, EXTl allows reducing
PHPl+1

l to PHPl
l−1 with a polynomial number of resolution steps. For more details, see

the report version [20].

358 M. Järvisalo and T. Junttila

show that, if h1 = t, . . . , hi−1 = t, then branching with hi = f results in a conflict by
UP, and hence immediately setting hi = t.

The base case. The gate h1 = gC1 represents the first clause C1 in π, and C1 must
belong to cnf(circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉). As C1 is a result of applying the cnf
translation to a gate g in circuit(PHPn+1

n) ∪ 〈EXTn, ∅〉 (which is part of EPHPn),
setting h1 = f will result in a conflict after UP because the functional definition or the
constraint of the gate g is violated. For example, if g := OR(g1, g2) and C1 = {xg, x̄g1},
then h1 = gC1 := OR(g, ĝ1), ĝ1 := NOT(g1), and the assignment h1 = f will propagate
g = f and g1 = t, violating the definition of g and thus resulting in a conflict.

Now assume as the induction hypothesis that we have hi′ = t for all 1 ≤ i′ < i.
Recall that hi := AND(gCi , hi−1). By branching with hi = f, UP sets gCi = f by
the induction hypothesis. If the ith clause Ci in π belongs to cnf(circuit(PHPn+1

n) ∪
〈EXTn, ∅〉), branching on gCi = f will result in a conflict after UP as in the base case.
Otherwise Ci has been derived from two clauses, Cj = C′j∪{xg} and Ck = C′k∪{x̄g},
in π for 1 ≤ j, k < i, by resolving on a variable xg . By the induction hypothesis we
have hj = t and hk = t, and thus gCj = t and gCk

= t by UP. On the other hand, as
gCi = f, all the gates corresponding to the literals in C′j ∪ C′k are assigned to f by UP,
implying that UP will assign both g = t and g = f as gCj = gCk

= t. Thus a conflict is
reached, closing the branch hi = f, and hi = t is set by backtracking.

Finally, since Cm = ∅ ∈ π, there are unit clauses Cj = {xg} and Ck = {x̄g} in π,
where 1 ≤ j, k < m. W.l.o.g., assume j < k. By induction, at latest after branching
with hk = f and setting hk = t by backtracking, we will have gCj = gCk

= t in the
branch, and thus both g = t and g = f, a conflict. The result is a linear DPLL proof.

Now consider proofs of EPHPn in CL--inputs. The non-input gates in 〈EXTn, ∅〉 ∪
〈E(π), ∅〉 are all redundant in EPHPn, and they cannot be part of a reason for any con-
flict in CL--inputs (Lemma 2). Thus any CL--inputs proof of EPHPn contains a CL--inputs

proof of PHPn+1
n , which cannot be of polynomial length (Theorems 1 and 2). �

Directly by Lemmas 1 and 3 we have

Theorem 4. CL--inputs (with or without restarts) and DPLL are incomparable.

Corollary 4. CL--inputs with unlimited restarts cannot polynomially simulate CL.

Remark 1. We use redundant gates in the EPHPn construction for simplicity of the
proof of Lemma 3; by a simple modification of EPHPn one can construct as a witness
for Lemma 3 a constrained circuit with no redundant gates and a single output as the
only constrained gate.

Remark 2. Since redundant gates can be removed from constrained Boolean circuits
without affecting the sets of satisfying assignments, such gates are typically removed in
practice before the CNF translation by so called cone-of-influence reduction. However,
as witnessed by EPHPn in Lemma 3, applying cone-of-influence can have a drastic
negative effect on the minimal length proofs. It is especially interesting to notice that
DPLL solvers with full one-step lookahead can detect the small proofs of EPHPn wit-
nessed by the branching sequence (h1 = f, h2 = f, . . . , hn−1 = f).

Figure 3 gives a refined relative efficiency hierarchy for the proof systems considered in
this paper. An arrow without a slash from system S to S′ means that S can polynomially

Limitations of Restricted Branching in Clause Learning 359

CL--

RES

DPLLinputs

CLinputs CL--inputs

T-RES

DPLL CL

[13] [12]
[12]

Fact 1

corollary of [16, 17]

*

*

*

*

**

*

Fig. 3. A refined relative efficiency hierarchy for the proof systems considered in this paper

simulate S′, and with a slash that S cannot simulate S′. Arrows labeled with ∗ are due
to trivial subsumption. The new results, detailed in the following, are represented by
dashed arrows. Disregarding transitivity of the results, missing arrows represent ques-
tions which are open to the best of our knowledge.

5 Experiments

We evaluate the effect of input-restriction on the functionality of modern clause learning
solver techniques. The benchmark set used in the experiments consists of instances from
various application domains, for which Boolean circuits offer a natural representation
form: super-scalar processor verification [21], integer factorisation based on hardware
multipliers [22], equivalence checking of hardware multipliers [23], bounded model
checking (BMC) for deadlocks in asynchronous parallel systems as labelled transition
systems (LTS) [24], and linear temporal logic (LTL) BMC of finite state systems with a
linear encoding [25]. We use standard PCs with 2-GHz AMD 3200+ processors and 2
GBs of memory running Linux, with a timeout of 1 hour and a memory limit of 1 GB.

For solving the Boolean circuit instances, we apply BCMinisat2 (version 0.26),
which we have modified in order to restrict branching to input variables. BCMinisat is
a Boolean circuit front-end for the successful clause learning SAT solver Minisat [26]
(version 1.14). BCMinisat accepts as input Boolean circuits with various Boolean func-
tions allowed as gate types, performs circuit-level preprocessing, including Boolean
propagation, substructure sharing, and cone-of-influence reductions to the circuit, nor-
malising the circuit into a form which can be translated into CNF applying a standard
translation in the style of cnf defined in Table 1. BCMinisat feeds the resulting CNF
translations and the input-restriction to Minisat, which then solves the CNF. For each
circuit, we obtain 15 CNF instances by permuting the CNF variable numbering.

Minisat implements 1-UIP clause learning. After each conflict the heuristic value
of each variable on the conflict side and in the conflict clause is incremented by one,
and the values of all variables are decremented by 5%. To avoid hindering efficiency
by learning massive amounts of clauses, the solver also uses a scheme for forgetting
learned clauses that have not occurred on the conflict side in recent conflicts.

2 Part of the BCTools package, http://www.tcs.hut.fi/∼tjunttil/bcsat/

http://www.tcs.hut.fi/~tjunttil/bcsat/

360 M. Järvisalo and T. Junttila

Table 2. Minimum (min), median (med), and maximum (max) of number of decisions for
BCMinisat and BCMinisatinputs, with number of timeouts in parenthesis. The sat column gives
the satisfiability of the instance, and #inputs gives the number of unassigned input variables in
the CNF translation (percentage in parentheses). For ud and bb, see the text body.

Number of decisions
BCMinisat BCMinisatinputs

Instance sat min med max min med max #inputs ud bb

Super-scalar processor verification
fvp.2.0.3pipe.1 no 61531 384386 1225134 - (15) - (15) - (15) 186 (8.2) - -
fvp.2.0.3pipe 2 ooo.1 no 75962 184798 426489 - (15) - (15) - (15) 305 (11.7) - -
fvp.2.0.4pipe 1 ooo.1 no 188992 209048 271982 - (15) - (15) - (15) 544 (10.4) - -
fvp.2.0.4pipe 2 ooo.1 no 1033607 2094617 5241781 - (15) - (15) - (15) 547 (9.8) - -
fvp.2.0.5pipe 1 ooo.1 no 336281 746231 1838599 - (15) - (15) - (15) 845 (8.9) - -

Equivalence checking hardware multipliers
eq-test.atree.braun.8 no 180449 285665 339805 65785 73834 82372 16 (2.3) 88.5 0.02
eq-test.atree.braun.9 no 898917 1055511 1317785 323688 385398 389890 18 (2.0) 106.6 0.02
eq-test.atree.braun.10 no 3755375 4540598 5089443 1428957 1590390 1787295 20 (1.8) 127.9 0.01

Integer factorisation
atree.sat.34.0 yes 156733 228792 761620 24820 208880 277896 60 (0.6) 21.9 0.04
atree.sat.36.50 yes 251218 721474 937152 316590 571533 788762 64 (0.6) 18.4 0.04
atree.sat.38.100 yes 284980 1095192 - (1) 190330 498092 1082729 68 (0.6) - -
atree.unsat.32.0 no 141419 163508 180973 123502 138797 162546 57 (0.7) 15.3 0.04
atree.unsat.34.50 no 248371 287351 404418 223130 244382 301464 60 (0.6) 18.0 0.04
atree.unsat.36.100 no 527237 623889 915810 431576 480469 578331 64 (0.6) 19.4 0.03
braun.sat.32.0 yes 27480 82122 140150 5675 81269 135093 61 (2.2) 25.6 0.05
braun.sat.34.50 yes 30717 152224 353464 43924 110614 223306 65 (2.1) 25.3 0.05
braun.sat.36.100 yes 129771 447716 589449 86134 374884 752645 69 (2.0) 19.4 0.05
braun.unsat.32.0 no 107617 122550 156004 96894 119437 150121 60 (2.2) 10.4 0.06
braun.unsat.34.50 no 215624 263845 341855 213199 258446 316819 64 (2.0) 9.1 0.06
braun.unsat.36.100 no 514725 623671 807610 533575 640111 674470 68 (1.9) 8.9 0.06

BMC for deadlocks in LTSs
dp 12.i.k10 no 513935 639756 987595 2497570 - (10) - (10) 480 (16.0) - -
key 4.p.k28 no 121552 147063 169386 138361 184875 220107 967 (10.9) 3.7 0.53
key 4.p.k37 yes 56784 321552 1549271 7574 663152 - (1) 1507 (9.8) - -
key 5.p.k29 no 193139 223867 310207 230844 343255 405686 1212 (10.7) 3.9 0.54
key 5.p.k37 yes 104496 421324 1540174 19027 1041807 - (3) 1796 (9.8) - -
mmgt 4.i.k15 no 210288 287599 457009 582998 1105986 2170048 456 (10.9) 4.2 0.41
q 1.i.k18 no 168156 353421 507246 375493 929019 1349785 566 (13.1) 3.7 0.49

LTL BMC by linear encoding
1394-4-3.p1neg.k10 no 141822 155295 164900 138468 148545 156839 1845 (5.6) 6.6 0.34
1394-4-3.p1neg.k11 yes 72988 128708 203647 34619 55575 189434 2023 (5.5) 9.0 0.32
1394-5-2.p0neg.k13 no 125840 143928 158320 146144 156527 186468 1940 (5.0) 6.7 0.32
brp.ptimonegnv.k23 no 106338 130577 259025 193839 302930 356313 461 (6.7) 4.1 0.28
brp.ptimonegnv.k24 yes 43013 96775 162114 13699 74907 260481 481 (6.7) 5.5 0.27
csmacd.p0.k16 no 229192 316082 376280 269520 341751 381248 1794 (2.9) 4.9 0.28
dme3.ptimo.k61 no 314659 549686 1658757 - (15) - (15) - (15) 6375 (26.3) - -
dme3.ptimo.k62 yes 427100 688505 1545603 - (15) - (15) - (15) 6506 (26.3) - -
dme3.ptimonegnv.k58 no 324770 568864 962967 - (15) - (15) - (15) 5982 (26.3) - -
dme3.ptimonegnv.k59 yes 303921 480073 1136938 - (15) - (15) - (15) 6113 (26.3) - -
dme5.ptimo.k65 no 497190 735741 1839619 - (15) - (15) - (15) 10750 (26.8) - -

5.1 Results

Table 2 gives the minimum, median, and maximum number of decisions for BCMin-
isat and input-restricted BCMinisat (BCMinisatinputs) for each benchmark instance. For
the instances based on hardware multiplication designs, for which the number of unas-
signed input variables is 2% or less out of all unassigned variables, BCMinisatinputs

shows an advantage over BCMinisat w.r.t. the number of decisions. However for the
hardware verification and BMC instances, the overall performance of BCMinisatinputs

Limitations of Restricted Branching in Clause Learning 361

is much worse, with timeouts on all verification and half of the LTL BMC instances.
The possible gains of input-restriction seems to correlate with a very low relative num-
ber of input variables. On the equivalence checking instances, we notice that the num-
ber of decision for BCMinisatinputs is more than the brute-force upper bound, e.g., for
eq-test.atree.braun.10 around 1.4− 1.8 × 106, compared to the brute-force
bound 220 ≈ 1.0 × 106. Considering that we are using a state-of-the-art clause learn-
ing solver, this surprising result is most likely due to conflict clause forgetting; when
forgetting a conflict clause C, the solver may have to re-examine the search space char-
acterised as unsatisfiable by C.

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000
#i

ns
ta

nc
es

 s
ol

ve
d

Time (s)

Minisat
Minisat on inputs

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000
#i

ns
ta

nc
es

 s
ol

ve
d

Time (s)

Minisat
Minisat on inputs

Fig. 4. Solved instances

Figure 4 gives a cumulative plot of the number
of solved instances, showing a drastic decrease in
performance for the input-restriction. The effect of
input-restriction varies depending on whether un-
satisfiable or satisfiable instances are considered
(leftmost and middle plots in Fig. 5). For the unsatis-
fiable instances the plot correlates well with Corol-
lary 4, with timed out runs on the horizontal line. For
satisfiable instances, there seems to be no clear win-
ner, although when selecting from the relative small
set of input variables, the probability of choosing
a satisfying assignment is intuitively greater. A no-
ticeable point is that, while BCMinisatinputs makes
less decisions, e.g, on the equivalence checking instances, unrestricted BCMinisat is at
least as efficient as BCMinisatinputs w.r.t. running times. Interestingly, this is due to the
fact that unrestricted BCMinisat often manages more decisions per second (on the right
in Fig. 5).

We also observe that the VSIDS heuristic might not work as intended with the input-
restriction. The number of unbranchable variables which have better heuristic values
than the best branchable variable can be high per decision (median of averages: ud in
Table 2), e.g., for eq-test.atree.braun.10 on the average there are, per deci-
sion, over 100 unbranchable variables with better heuristic scores than the best branch-
able one. From another point of view, the fraction of increments on branchable variables
from the number of all increments to heuristic values during search can be in some cases

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

 1000

 10000

 1000 10000

M
in

is
at

 o
n

in
pu

ts

Minisat

Number of decisions / second

 1000

 10000

 1000 10000

M
in

is
at

 o
n

in
pu

ts

Minisat

Number of decisions / second

Fig. 5. Scatter plots: running times on unsatisfiable (left) and satisfiable (middle) instances; num-
ber of decisions / second (right)

362 M. Järvisalo and T. Junttila

even as low as 1% (median: bb in Table 2)—running the risk of VSIDS degenerating
into a random heuristic. These observations imply that in order to incorporate branching
restrictions in clause learning solvers, the restriction itself should be taken into account
in developing suitable heuristics and learning schemes.

6 Conclusions

We investigate the effect of restricting branching in clause learning SAT solving on
the efficiency of the underlying inference system from the view of proof complexity.
Although the unrestricted version of the considered variant of clause learning can ef-
ficiently simulate general resolution, being thus very powerful compared to DPLL, we
show the surprising result that input-restricted clause learning cannot even simulate the
basic DPLL without clause learning. This implies that all implementations of clause
learning DPLL, even with optimal heuristics, have the potential of suffering a notable
efficiency decrease if branching is restricted to input variables. Notably, the results di-
rectly apply to SAT based approaches to solving Boolean combinations of more general
constraints, for example, Satisfiability Modulo Theories, where the propagation mecha-
nisms for the Boolean combinations can be seen as a form of unit propagation. The ex-
perimental evidence shows that by restricting branching the robustness of SAT solvers
can decrease, and that input-branching does not go well with clause learning based
heuristics of modern solvers.

Acknowledgements. The authors thank Ilkka Niemelä and Emilia Oikarinen for fruitful
discussions. Järvisalo gratefully acknowledges the financial support of Helsinki Gradu-
ate School in Computer Science and Engineering, Academy of Finland (grant #211025),
the Emil Aaltonen Foundation, and the Technological Foundation TES.

References

1. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–
215 (1960)

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
CACM 5(7), 394–397 (1962)

3. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: AAAI, pp. 431–437. AAAI Press, Stanford, California, USA (1998)

4. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. Comp. 48(5), 506–521 (1999)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: DAC, pp. 317–320. ACM Press, New York (1999)

6. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363. Wiley, Chichester
(1992)

7. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits
of bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer, Heidelberg (2001)

8. Giunchiglia, E., Massarotto, A., Sebastiani, R.: Act, and the rest will follow: Exploiting de-
terminism in planning as satisfiability. In: AAAI, pp. 948–953. AAAI Press, Stanford, Cali-
fornia, USA (1998)

Limitations of Restricted Branching in Clause Learning 363

9. Strichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

10. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables in propo-
sitional satisfiability. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS
(LNAI), vol. 2424, pp. 296–307. Springer, Heidelberg (2002)

11. Cook, S.A., Reckhow, R.: On the relative efficiency of propositional proof systems. J. Symb.
Logic 44, 36–50 (1977)

12. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential
of clause learning. JAIR 22, 319–351 (2004)

13. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
Boolean circuits. AMAI 44(4), 373–399 (2005)

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)
15. Haken, A.: The intractability of resolution. TCS 39(2–3), 297–308 (1985)
16. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM J. Comp. 22(4), 661–

683 (1993)
17. Urquhart, A.: The complexity of propositional proofs. B. Symb. Logic 1(4), 425–467 (1995)
18. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in

boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)
19. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT

News 8(4), 28–32 (1976)
20. Järvisalo, M.: Impact of restricted branching on clause learning SAT solving. Research Re-

port A107, Helsinki University of Technology, Laboratory for Theoretical Computer Science
(2007), See
http://www.tcs.hut.fi/Publications/

21. Velev, M., Bryant, R.: Superscalar processor verification using efficient reductions of the
logic of equality with uninterpreted functions to propositional logic. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 37–53. Springer, Heidelberg (1999)

22. Pyhälä, T.: Factoring benchmarks for SAT-solvers (2004),
http://www.tcs.hut.fi/Software/genfacbm/

23. Järvisalo, M.: Equivalence checking multiplier designs, SAT Competition 2007 benchmark
description (2007),
http://www.tcs.hut.fi/∼mjj/benchmarks/

24. Jussila, T., Heljanko, K., Niemelä, I.: BMC via on-the-fly determinization. International Jour-
nal on Software Tools for Technology Transfer 7(2), 89–101 (2005)

25. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model checking.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 186–200. Springer,
Heidelberg (2004)

26. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

http://www.tcs.hut.fi/Publications/
http://www.tcs.hut.fi/Software/genfacbm/
http://www.tcs.hut.fi/~mjj/benchmarks/

Dynamic Management of Heuristics for Solving

Structured CSPs

Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{philippe.jegou,samba-ndojh.ndiaye,cyril.terrioux}@univ-cezanne.fr

Abstract. This paper deals with the problem of solving efficiently struc-
tured CSPs. It is well known that (hyper)tree-decompositions offer the
best approaches from a theoretical viewpoint, but from the practical
viewpoint, these methods do not offer efficient algorithms. Therefore,
we introduce here a framework founded on coverings of CSP by acyclic
hypergraphs. We study their properties and relations, and evaluate theo-
retically their interest with respect to the solving of structured problems.
This framework does not define a new decomposition, but makes easier
a dynamic management of the CSP structure during the search, and so
an exploitation of dynamic variables ordering heuristics in the solving
method. Thus, we provide a new complexity result which outperforms
significantly the previous one given in the literature about heuristics for
solving a decomposed problem. Finally, we present experimental results
to assess the practical interest of these notions.

1 Introduction

In the past, the interest for the exploitation of structural properties of a problem
was attested in various domains: for checking satisfiability in SAT [1,2,3], for solv-
ing CSP [4], in Bayesian or probabilistic networks [5,6], in relational databases
[7,8], for constraint optimization [9,10]. Complexity results based on topological
properties of the network structure have been proposed. Generally, these results
rely on the properties of a tree-decomposition [11] or a hypertree-decomposition
[12] of the network, which can be considered as an acyclic hypergraph (a hyper-
tree) covering the network. If we consider tree-decomposition, the time complex-
ity of the best structural methods is O(exp(w+1)), with w the width of the used
tree-decomposition. If we consider hypertree-decomposition, the time complex-
ity is then O(exp(k)), with k the width of the used hypertree-decomposition. It
has been shown that hypertree-decomposition is better than tree-decomposition
[12], while it is recently outperformed by a generalized hypertree-decomposition
[13,14]. Note that these theoretical complexities can really outperform the clas-
sical one which is O(exp(n)) (k < w < n) with n the number of variables of the
considered CSP.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 364–378, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Management of Heuristics for Solving Structured CSPs 365

However, while several methods and theoretical results have been proposed,
the practical interests of such approaches have not been proved yet, except in
some recent works around CSPs [15] or Valued CSPs [16,17,10]. This is due to
the fact that the good complexity bounds are often reached to the detriment of
the practical efficiency. Precisely, approaches based on hypertree-decompositions
and their generalizations assume that relations associated to constraints are ex-
pressed by tables, what is unrealistic, in practice, for many real life problems.
Moreover, to ensure complexity bounds, the decompositions perform joins of re-
lations. For solving CSPs, such an approach is generally unrealistic due to the size
of the generated relations. Indeed, solving structured CSPs sometimes requires
to manage joins of relations defined on several tens of attributes (i.e. variables),
which is clearly impossible in practice. On the other hand, the methods that have
shown their feasibility and their practical interest are based on assignments of
variables. These methods can exploit the practical efficiency of backtracking-
based algorithms with filtering, while they ensure complexity bounds without
problems related to practical space complexity, contrary to approaches based
on management of relations as hypertree-decomposition. Yet, some methods ex-
ploiting the structure of the problem, based on heuristics guaranteeing no good
complexity bound, have shown the interest of such an approach [3].

In this paper, we propose to make a trade-off between good theoretical com-
plexity bounds and the peremptory necessity to exploit efficient heuristics as often
as possible. From this viewpoint, this work can be considered as an extension of
the works recently presented in [17] in the field of AND/OR Branch-and-Bound
Search in Constraint Optimization, or in [18] in the field of tree-decomposition
methods for CSPs. Our contribution is more precisely an extension of the approach
presented in [18]. Furthermore, we propose a framework different from the pre-
vious one, better theoretical results and a practical validation of this approach.
Actually, we prefer here the more general and useful concept of covering acyclic
hypergraph to the concept of tree-decomposition. Note that we do not aim here to
define a new decomposition method for solving CSPs, nor to propose new bounds
for complexity. We introduce a framework that makes possible to implement de-
composition methods which can be more efficient than previously, because they
can exploit efficient heuristics. Note that generally, decomposition methods define
a decomposition of the constraint network, and then solve the associated CSP ex-
ploiting statically this structure. Here, our goal is to exploit dynamically sets of
structures induced by the considered decomposition.

Given a hypergraph H = (X, C) related to the graphical representation of
the considered problem, we consider a covering of this hypergraph by an acyclic
hypergraph HA = (X, E): the set of vertices is the same while for each edge
Ci ∈ C, there is an edge Ei ∈ E covering Ci (Ci ⊂ Ei). Now, given HA, we
can define various classes of acyclic hypergraphs which cover HA. These classes
are defined on the basis of criteria related to the nature of coverings and the
relations existing with the solving methods: bounding the value of parameters
such as tree-width, preservation of the separators in HA, merging of neighboring
hyperedges or ability to implement effective heuristics, in particular dynamic

366 P. Jégou, S.N. Ndiaye, and C. Terrioux

ones. First, these coverings are studied theoretically in order to determine their
characteristics and properties. After, we show that they permit to preserve al-
ready known complexity results and also to improve some of them. Moreover, we
indicate how they offer a framework for a dynamic management of the structure:
during a search, we can take into account not only one acyclic hypergraph cover-
ing, but a set of coverings in order to manage heuristics dynamically. Thanks to
this formal framework, we present a new algorithm (called BDH for ”Backtrack-
ing on Dynamic covering by acyclic Hypergraphs”) for which it is easy to extend
heuristics. For example, for dynamic variable ordering, we can add dynamically
a set of Δ variables for the choices. Moreover, we show how an implementation is
made possible easily, allowing us to show the practical interest of this approach.

In the next section, we recall some results on structural decompositions. Sec-
tion 3 introduces various classes of acyclic hypergraph coverings and show their
relations. The fourth section describes how these classes can be exploited on the
algorithmic level and gives the theoretical complexity they guarantee. Finally,
we presents an experimental analysis before concluding.

2 Decompositions Methods for Solving CSPs Efficiently

A constraint satisfaction problem (CSP) is defined by a tuple (X, D, C, R). X is
a set of n variables which must be assigned in their respective finite domain from
D, by satisfying a set C of constraints which are defined on a set of relations R.
A solution is an assignment of every variable which satisfies all the constraints.
Here a constraint Ci ∈ C is defined by a subset of variables (Ci ⊂ X), while the
associated relation Ri expresses a set of tuples of values defined on domains of
variables belonging to Ci, all tuples in Ri satisfying the constraint Ci. The CSP
structure can be represented by the hypergraph (X, C), called the constraint
hypergraph (if all the constraints of a CSP are defined by pairs of variables, then
we consider a constraint graph).

In this paper, we assume that the relations can be represented by tables,
predicates, functions, or (in)equations. This remark is important in the field of
decomposition methods. Indeed, several results assume that relations are repre-
sented by tables. From a theoretical viewpoint, this is possible since we consider
finite domains, but from a practical viewpoint, this restriction can be unrealistic.
Let us consider a constraint defined by the inequation x1 + x2 + . . . xc > c, with
domains Di = {1, . . . 1000}, i = 1, . . . , c. The memory size of the table for repre-
senting the associated relation is then c.(1000c − 1), which is clearly unrealistic
even for small values of c.

The basic concept which interests us here is the acyclicity of networks. Often,
this concept is expressed by considering the tree-decomposition of constraint
graphs, hypertree-decomposition of constraint hypergraphs, or more generally,
coverings of variables and constraints by acyclic hypergraphs. We recall these
different decompositions.

Tree-decomposition is based on graphs. Nevertheless, given a constraint hy-
pergraph, we can exploit it by considering its primal graph. Let H = (X, C) be

Dynamic Management of Heuristics for Solving Structured CSPs 367

a hypergraph, with X a finite set of vertices and C = {C1, C2, . . . Cm} a set of
edges (sometimes called hyperedges) which are nonempty subsets of X . Here we
consider only reduced hypergraphs, that is hypergraphs such that for all edges
Ci of H , Ci is not a proper subset of another edge of H . The primal graph of H
is the graph G = (X, A) where A = {{x, y} : ∃Ci ∈ C such that {x, y} ⊂ Ci}.
Definition 1. A tree-decomposition of a graph G = (X, A) is a pair (E, T)
where T = (I, F) is a tree with nodes I and edges F and E = {Ei : i ∈ I} a
family of subsets of X, s.t. each subset (called cluster) Ei is a node of T and
verifies:

(i) ∪i∈IEi = X,
(ii) for each edge {x, y} ∈ A, there exists i ∈ I with {x, y} ⊂ Ei, and
(iii) for all i, j, k ∈ I, if k is in a path from i to j in T , then Ei ∩Ej ⊂ Ek.

The width w of a tree-decomposition (E, T) is equal to maxi∈I |Ei| − 1. The
tree-width w∗ of G is the minimal width over all the tree-decompositions of G.

Assume that we have a tree-decomposition of width w for the constraint net-
work. The best structural methods based on a tree-decomposition of a CSP
have a time complexity in O(exp(w + 1)), while their space complexity can be
reduced to O(exp(s)) where s is the size of the largest intersection Ei∩Ej (gen-
erally considered as minimal separators) between neighboring clusters of the
tree-decomposition. Tree-Clustering (TC [4]) is based on this notion, but has
never shown its efficiency for real life problems. This is due to the fact that TC
runs in finding firstly all solutions of each subproblem induced by the variables
in each Ei. An example of an efficient method exploiting tree-decomposition is
BTD [15], which does not compute all solutions of subproblems. This method
applies a backtracking driven by the tree-decomposition and preserves complex-
ity bounds in O(exp(w + 1)). Note that this kind of methods can be considered
as driven by the assignment of variables (or as ”variables driven” methods). As
a consequence, it does not need to represent relations in tables.

From a theoretical viewpoint, methods based on tree-decomposition are less
interesting than those based on hypertree-decomposition and their generaliza-
tions [12].

Definition 2. Given a hypergraph H = (X, E), a hypertree for the hypergraph
H is a triple (T, χ, λ) where T = (N, F) is a rooted tree, and χ and λ are labelling
functions which associate to each vertex p ∈ N two sets χ(p) ⊂ X and λ(p) ⊂ E.
If T ′ = (N ′, F ′) is a subtree of T , we define χ(T ′) = ∪v∈N ′χ(v). We denote the
set of vertices N of T by vertices(T), and the root of T by root(T). Moreover,
for any p ∈ N , Tp denotes the subtree of T rooted at p.

Definition 3. Given a hypergraph H = (X, E), a hypertree-decomposition of H
is a hypertree HD = (T, χ, λ) for H which satisfies all the following conditions:

(i) for each edge Ei ∈ E, ∃p ∈ vertices(T) such that Ei ⊂ χ(p),
(ii) for each vertex x ∈ X, the set {p ∈ vertices(T) : x ∈ χ(p)} induces a

(connected) subtree of T ,

368 P. Jégou, S.N. Ndiaye, and C. Terrioux

(iii) for each p ∈ vertices(T), χ(p) ⊂ ∪Ei∈λ(p)Ei,
(iv) for each p ∈ vertices(T),∪Ei∈λ(p)Ei ∩ χ(Tp) ⊂ χ(p).

An edge Ei ∈ E is strongly covered in HD if there exists p ∈ vertices(T) such
that Ei ⊂ χ(p) and Ei ∈ λ(p). A hypertree-decomposition HD is a complete
decomposition of H if every edge of H is strongly covered in HD. The width
k of a hypertree-decomposition HD = (T, χ, λ) is maxp∈vertices(T)|λ(p)|. The
hypertree-width k∗ of H is the minimum width over all its hypertree-decomposi-
tions.

Remark that acyclic hypergraphs are precisely those hypergraphs having a hy-
pertree width one.

While tree-decomposition consists in grouping the vertices in clusters (i.e.
variables in subproblems), hypertree-decomposition consists in grouping the con-
straints (and so the relations) in nodes of the hypertree. Given a hypertree-
decomposition of a CSP, the method exploiting it consists in solving first each
node of T , and then solving the acyclic induced problem. Thus its time com-
plexity is O(|P|k+1log(|P|)) where |P| denotes the size of the CSP P and k
the width of the considered hypertree-decomposition of H = (X, C). This com-
plexity can be limited to O(rk+1log(r)) where r is the maximum size for all
tables representing relations in the considered CSP. This cost is related to the
cost of computing each node of the hypertree, which is bounded by the cost of
joins between k relations, which is rk. Now, if we consider complexity space, the
complexity is related to the size of the largest relation induced for each node
of the hypertree, that is also O(rk). This kind of methods can be considered as
”relations driven” approaches. Indeed, the time complexity bounds of these ap-
proaches outperform those guaranteed by methods as TC or BTD. Nevertheless,
the relations associated to constraints must be represented by tables, or at least,
the relations associated to nodes of the hypertree must be represented by tables.
This restriction can make these approaches unusable in practice. Moreover, like
TC, they must compute first all the solutions in each node of the hypertree by
joining relations in it. Consequently, as for TC, these methods will require a too
expensive amount of memory space in practice making them unusable again.
Thus, they are generally unrealistic to solve real instances of CSPs, and then, at
the present time, the proof of their practical efficiency has never been shown.

So, while from a theoretical viewpoint, it appears that (generalized-)hyper-
tree-decompositions should be considered, we prefer consider here ”variables
driven” decompositions. In this paper, we will refer to the covering of constraint
networks by acyclic hypergraphs. Different definitions of acyclicity have been
proposed. Here, we consider the classical definition called α− acyclicity in [7].

Definition 4. Let H = (X, C) be a hypergraph. A covering by an acyclic hyper-
graph (CAH) of the hypergraph H is an acyclic hypergraph HA = (X, E) such
that for each edge Ci ∈ C, there exists Ej ∈ E such that Ci ⊂ Ej. The width α of
a CAH (X, E) is equal to maxEi∈E |Ei|. The CAH-width α∗ of H is the minimal
width over all the CAHs of HA. Finally, CAH(H) is the set of the CAHs of H.

Dynamic Management of Heuristics for Solving Structured CSPs 369

1E

2E
3E

4E

5E
6E

E 7

E 8

E 9E10

E13

E14

E15

E11
E12

A

B C

D

E

F

G
H

I

J
K

L R

S

T

U

V

W

M

N

P
Q

O

E 8

2E

3E

4E

1E

E 9

E 7 E13

E14 E15E10

E11

E12
5E

6E

E 8
E10

E 72E

3E

4E

E13

1E

6E
5E

E14

E15
E11 E12

E 9

Fig. 1. A graph on 23 vertices under a covering by an acyclic hypergraph (of 15 edges)
and 2 possible tree-decompositions

The notion of covering by acyclic hypergraph (called hypertree embedding in
[19]) is very close to the one of tree-decomposition. Particularly, it is easy to
see that for a tree-decomposition (E, T) of the primal graph of H = (X, C), the
pair (X, E) is a CAH of the hypergraph H . Moreover, the CAH-width α∗ of H
is equal to the tree-width of G plus one. However, the concept of CAH is less
restrictive. Indeed, for a given (hyper)graph, it can exist a single CAH whose
width is α, while it can exist several tree-decompositions of width w such that
α = w + 1. An example is given in figure 1, where for a constraint network, we
have one CAH (with α = 4) and two possible tree-decompositions (with w = 3).
Given a CSP with a CAH of width α, the time complexity of better structural
methods for solving it is O(exp(α)) while its space complexity can be reduced
to O(exp(s)) where s is the size of the largest intersection Ei ∩ Ej in HA.

he next section presents different classes of covering acyclic hypergraphs.

3 Coverings by Classes of Acyclic Hypergraphs

In the sequel, given a hypergraph H = (X, C) and one of its CAHs HA = (X, E),
we study several classes of acyclic coverings of HA. These coverings correspond
to coverings of hyperedges (elements of E) by other hyperedges (larger but less
numerous), which belong to a hypergraph defined on the same set of vertices
and which is acyclic. In all the cases, these extensions are defined with respect
to a particular CAH HA, called CAH of reference. Here, we do not introduce a
new decomposition of hypergraph. We study different ways for covering and so
to solve a CSP by decomposition. Our objective is to formalize different classes
of acyclic coverings, to manage dynamically, during search, acyclic coverings of
the considered CSP. We hope by this mean, to manage dynamic heuristics to
optimize backtrack search while preserving complexity results.

Definition 5. The set of coverings of a CAH HA = (X, E) of a hypergraph
H = (X, C) is defined by CAHHA = {(X, E′) ∈ CAH(H) : ∀Ei ∈ E, ∃E′j ∈ E′ :
Ei ⊂ E′j}.

370 P. Jégou, S.N. Ndiaye, and C. Terrioux

The following classes of coverings will be successive restrictions of this first class
CAHHA . But, let us define before that the notions of neighboring hyperedges in
a hypergraph H = (X, C).

Definition 6. Let Cu and Cv be two hyperedges in H such that Cu∩Cv �= ∅. Cu
and Cv are neighbours if �Ci1 , Ci2 , . . . , CiR such that R > 2, Ci1 = Cu, CiR = Cv
and Cu ∩ Cv � Cij ∩ Cij+1 , with j = 1, . . . , R− 1.
A path in H is a sequence of hyperedges (Ci1 , . . . CiR) such that ∀j, 1 ≤ j < R, Cij
and Cij+1 are neighbours. A cycle in H is a path (Ci1 , Ci2 , . . . CiR) such that
R > 3 and Ci1 = CiR . H is α− acyclic iff H contains no cycle.

The first restriction imposes that the edges Ei covered (even partially) by a
same edge E′j are connected in HA, i.e. mutually accessible by paths. This class
is called set of connected-coverings of a CAH HA = (X, E) and is denoted
CAHHA [C+]. It is possible to restrict this class by restricting the nature of
the set {Ei1 , Ei2 , . . . EiR}. On the one hand, we can limit the considered set
to paths (class of path-coverings of a CAH denoted CAHHA [P+]), and on the
other hand by taking into account the maximum length of connection (class
of family-coverings of a CAH denote CAHHA [F+]). We can also define a class
(called unique-coverings of a CAH and denoted CAHHA [U+]) which imposes the
covering of an edge Ei by a single edge of E′. Finally, it is possible to extend the
class CAHHA in another direction (class of close-coverings of a CAH denoted
CAHHA [B+]), ensuring neither connexity, nor unicity: we can cover edges with
empty intersections but which have a common neighbor.

Definition 7. Given a graph H and a CAH HA of H:

– CAHHA [C+] = {(X, E′) ∈ CAHHA : ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR
with Eij ∈ E and ∀Eiu , Eiv , 1 ≤ u < v ≤ R, there is a path in H between
Eiu and Eiv defined on edges belonging to {Ei1 , Ei2 , . . . EiR}}.

– CAHHA [P+] = {(X, E′) ∈ CAHHA : ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR
with Eij ∈ E and Ei1 , Ei2 , . . . EiR is a path in H}.

– CAHHA [F+] = {(X, E′) ∈ CAHHA : ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR
with Eij ∈ E and ∃Eiu , 1 ≤ u ≤ R, ∀Eiv , 1 ≤ v ≤ R and v �= u, Eiu and Eiv
are neighbours }.

– CAHHA [U+] = {(X, E′) ∈ CAHHA : ∀Ei ∈ E, ∃!E′j ∈ E′ : Ei ⊂ E′j}.
– CAHHA [B+] = {(X, E′) ∈ CAHHA : ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR

with Eij ∈ E and ∃Ek ∈ E such that ∀Eiv , 1 ≤ v ≤ R Ek �= Eiv and Ek and
Eiv are neighbours }.

If ∀E′i ∈ E′, E′i = Ei1∪Ei2∪. . .∪EiR , these classes will be denoted CAHHA [X]
for X = C, P, F, U or B.

The concept of separator is essential in the methods exploiting the structure,
because space complexity directly depends on their size. This concept is intro-
duced here to impose a new restriction. This one will make it possible to limit
the separators to an existing subset of those in the hypergraph of reference:

Dynamic Management of Heuristics for Solving Structured CSPs 371

Definition 8. The set of separator-based coverings of a CAH HA = (X, E) is
defined by CAHHA [S] = {(X, E′) ∈ CAHHA : ∀E′i, E′j ∈ E′, i �= j, ∃Ek, El ∈
E, k �= l : E′i ∩ E′j = Ek ∩ El}.
In fact, this class imposes both the unicity and the connexity. It thus corresponds
to restrictions of the two classes [U] and [C]. One deduces from it that the unicity
of covering and the connexity of the covered edges impose the conservation of
the separators of HA:

Theorem 1. CAHHA [S] = CAHHA [U] ∩ CAHHA [C]

By lack of place, we do not provide the proof of theorems 1-6.
Let us note that this classification is not exhaustive. We could consider addi-

tional classes but their interest and thus their study would probably be limited.
Finally, the computation of an element of these various classes is easy in terms
of complexity. For example, given H and HA (HA can be obtained as a tree-
decomposition), we can compute H ′A ∈ CAHHA [S] by merging neighboring edges
of HA.

2E’ 1E’
7E’

3E’

5E’

6E’

4E’

A

B C

G

K

L R

M

P
Q

O

E

I

N

V
U W

T

D

S

J

H

F

1E’
2E’

3E’
4E’

5E’

6E’

7E’

C
F

I

Q

H

K
J

G

E
B

A
S

T

V
U

W

R
D

M

L

N
P

O

(a) (b)

Fig. 2. (a) In this covering, neither connexity (E′
6 = E11 ∪ E12), nor unicity (E5 ⊂

E′
4 ∩ E′

3) and then separators (e.g. E′
4 ∩ E′

3) are satisfied. This covering belongs to
CAHHA [C+]. (b) This covering belongs to CAHHA [S].

In all the cases, one can observe that the value of the CAH-width increase
inside these classes, and then is larger than α, the width associated to the hy-
pergraph of reference HA. In particular, for the classes of the type CAHHA [X+],
it is an additive increase:

Theorem 2. ∀H ′A ∈ CAHHA [X+] with X = C, P, F, U or B, ∃Δ ≥ 0 such that
α′ ≤ α + Δ.

Concerning the other classes, the increase is multiplicative. Indeed, in each case,
covering is related to the merging of edges of (X, E):

Theorem 3. ∀H ′A ∈ CAHHA [C], ∃δ ≥ 1 such that α′ ≤ δ(α − s−) + s−, where
s− is the minimum size of separators.

For classes CAHHA [U] and CAHHA [B], edges can be deconnected and conse-
quently with empty intersections. So, we cannot take into account the size of
separators:

372 P. Jégou, S.N. Ndiaye, and C. Terrioux

Theorem 4. ∀H ′A ∈ CAHHA [U] ∪ CAHHA [B], ∃δ ≥ 1 such that α′ ≤ δ.α.

These remarks are useful because they have consequences on the complexity of
the algorithms which will exploit these coverings. They show in particular that
classes CAHHA [C] (and then [P], [F] and [S]) must be privileged rather than
classes CAHHA [U] or CAHHA [B]. Concerning the size of the separators, one can
observe that for the class CAHHA [S], the value s associated to HA is an upper
bound for any considered hypergraph H ′A. Formally:

Theorem 5. ∀H ′A ∈ CAHHA [S], s′ ≤ s.

This study indicates us the most promising classes. From a theoretical viewpoint,
it seems that a class as CAHHA [S] could be the most useful, on condition that
we limit the size of the induced width.

In the sequel, we exploit these concepts at the algorithmic level. So, each
CAH is thus now equipped of a privileged edge - the root - from which the
search begins. Consequently, the connections between edges of the hypergraph
will be oriented. Thus, certain concepts introduced before will be now expressed
with words such as ”hyperedge father”, ”hyperedge son” or ”hyperedge brother”
like for trees.

4 Algorithmic Exploiting of the CAHs

Several methods have been proposed to exploit properties related to the acyclic-
ity of constraint networks. We have chosen to extend BTD. This method has
shown its practical interest and it is easy to extend it to other formalisms
[9,20,10]. It relies on the concept of tree-decomposition of graph, but its adapta-
tion to acyclic hypergraphs is easy. BTD explores the search space by assigning
the variables according to an order induced by a tree-decomposition (E, T). BTD
initially chooses a node E1 as the root of T . Thus, T is now directed. For a node
Ei, Father(Ei) denotes its father node, and Sons(Ei) the set of its sons. BTD
carries out a backtracking search, by using an induced order and maintaining
an assignment A of the variables. During the search, BTD assigns the variables
VEi of the current cluster Ei. Assume that it succeeds to extend the current
assignment on these variables. If Ei is a leaf of T , the search continues on an-
other part of the problem. If Ei has sons, BTD will continue the search on a son
Ej ∈ Sons(Ei). Note that the assignment A[Ei∩Ej] allows in fact to disconnect
the problem in two independent subproblems. One independent subproblem is
the one located below Ei which is rooted in Ej . Then two possibilities arise.
Either, A[Ei ∩Ej] has never been computed until now and then the search con-
tinues on the subproblem rooted in Ej ; or, A[Ei∩Ej] has been computed before.
In case the subproblem rooted in Ej has a consistent extension of A[Ei ∩ Ej],
this information has been recorded as a structural good of Ei with respect to
Ej (i.e. a consistent assignment on the separator Ei ∩ Ej which can be consis-
tently extended on the subproblem rooted on Ej). Otherwise, the subproblem
rooted in Ej has no consistent extension of A[Ei ∩ Ej]. This information has

Dynamic Management of Heuristics for Solving Structured CSPs 373

been recorded as structural nogood of Ei with respect to Ej (i.e. a consistent as-
signment on Ei ∩ Ej which cannot be extended consistently on the subproblem
rooted on Ej). In these two cases, the search will be immediately stopped on this
part of the problem, either by a success (good), or by a failure (nogood). The
efficiency of BTD is based on these principles. The time complexity of BTD is
O(exp(w + 1)). Its space complexity can be limited to O(exp(s)), although this
complexity is never reached in practice.

We propose an extension of BTD, called BDH (for ”Backtracking on Dynamic
covering by acyclic Hypergraphs”), and based on dynamic exploitation of the
CAH. This approach will make it possible to effectively integrate more dynamic
variable ordering heuristics. Such heuristics are necessary to ensure an effective
practical solving. In order to make the implementation easier and to guarantee
interesting time and space complexity bounds, we will only consider hypergraphs
in CAHHA [S], with H the constraint hypergraph of the given problem and HA

its reference hypergraph.
Firstly, we must exploit an orientation of the hypergraph by considering edges

as nodes and distinguishing an edge E1 as the root. The neighbouring edges of
E1 are its sons and recursively the neighbouring edges of an edge Ei are its sons
except the one on the path from the root to Ei, actually its father. Let Ei be a
node, Father(Ei) denotes its father node and Sons(Ei) its son set. The descent
of Ei is the set of variables in the edges contained in the acyclic sub-hypergraph
rooted on Ei. The subproblem rooted on Ei is the subproblem induced by the
variables in the descent in Ei.

BDH has 4 inputs: A the current assignment, E′i the current edge, VE′
i
the set

of unassigned variables in E′i and H ′A the current hypergraph. This hypergraph
is computed recursively. The choice (heuristic) of a new covering hypergraph H ′′A
in CAHHA [S] is made before the beginning of the search on a subproblem. BDH
solves recursively the subproblems rooted on E′i and returns true if A can be
consistently extended on this subproblem and false otherwise. At the first call,
the assignment A is empty, the subproblem rooted on E1 corresponds to the
whole problem and HA is the hypergraph of reference. Like in BTD, the order
according to which variables are assigned is partially induced by the current
hypergraph H ′A. During the search, the covering hypergraph is modified to take
into account the evolutions of the problem. While VE′

i
is not empty, BDH chooses

a variable x in VE′
i

(line 16) and a value in its domain (line 18) (if not empty)
that verifies all the constraints (included those induced by the nogoods). Then
BDH(A ∪ {x← v}, E′i, VE′

i
\{x}, H ′A) is called in the rest of the edge (line 19).

When all the variables in E′i are assigned, the algorithm chooses a son E′j of the
current edge (line 4) (if exists). If A[E′i ∩ E′j] is a good (line 5), we know that
A can be consistently extended on Desc(E′j) (descent of E′j). Likewise, if E′i
contains a separator sk = Eku ∩ Eku′ of HA, with Eku′ a son of Eku , such that
the subproblem rooted on E′j is included in the one rooted on Eku′ and if A[sk]
is a good (line 7), we know that A can be consistently extended on Desc(Eku′).
So A can also be consistently extended on Desc(E′j). Thus a forward-jump is
performed and the algorithm keeps on the search on the rest of the problem.

374 P. Jégou, S.N. Ndiaye, and C. Terrioux

Algorithm 1. BDH(A, E′
i, VE′

i
, H′

A)

if VE′
i

= ∅ then1
Cons← true ; F ← Sons(E′

i)2
while F �= ∅ and Cons do3

Choose E′
j in F ; F ← F\{E′

j}4

if A[E′
j ∩ E′

i] is a good then Cons← true5

else6
if ∃sk = Eku ∩Ek

u′ in HA s.t. Ek
u′ ∈ Sons(Eku), sk ⊂ E′

i, E
′
j ⊂ Desc(Ek

u′)7
and A[sk] is a good then Cons← true
else8

Choose H′′
A induced by H′

A and E′
j with root E′′

19

Cons← BDH(A, E′′
1 , E

′′
1 \(E′′

1 ∩ E′
i), H

′′
A)10

if Cons then Record the good A[E′′
1 ∩E′

i]11

else Record the nogood A[E′′
1 ∩ E′

i]12

if Cons then ∀Eu ∩ Ev ⊂ E′
i, record the good A[Eu ∩Ev]13

return Cons14

else15
Choose x ∈ VE′

i
; dx ← Dx ; Cons← false16

while dx �= ∅ and ¬Cons do17
Choose v in dx ; dx ← dx\{v}18
if A∪ {x← v} satisfies constraints and nogoods then19

Cons← BDH(A ∪ {x← v}, E′
i, VE′

i
\{x}, H′

A)

return Cons20

Since the nogoods are used like constraints, the assignment A is stopped in E′i
if it contains a nogood. If E′i contains no (no)good, then the search continues
on the subproblem rooted on E′j . If A admits a consistent extension on this
subproblem, A[E′i ∩E′j] is recorded as a good (line 11) and true is returned, else
A[E′i ∩E′j] is recorded as a nogood (line 12) and false is returned. If BDH fails
to consistently extend A on E′i then it returns false.

This extension of BTD brings several advantages. It makes it possible to pro-
pose a large number of heuristics since we are freed from the initial structure HA

(e.g. the next variable to assign is not necessarily chosen in one single edge Ej).
Then BDH can exploit all the (no)goods recorded on all the separators of the
reference CAH included separators which are currently included in a larger edge
in the current CAH, while BTD with a class 5 order only exploits (no)goods on
the intersection of two clusters of the current covering. The space complexity is
not modified (O(exp(s))) because the search is based on the same set of sepa-
rators that those of HA. Finally, its implementation is straightforward because
only hypergraphs of CAHHA [S] will be considered and these hypergraphs will
be obtained by a simple merging of neighboring edges in HA.

Theorem 6. BDH is sound, complete and terminates.

BDH uses a subset of hypergraphs in CAHHA [S]. The theorem 2 states that
there exists Δ ≥ 0 such that for all H ′A in this subset, α′ ≤ α + Δ. The time
complexity of the method depends on Δ. Besides, Δ can be parametrized : it
is possible to bound the value of Δ and only consider covering hypergraphs in
CAHHA [S] whose width is bounded by α + Δ. Anyway, the time complexity of
BDH is given by the following theorem.

Dynamic Management of Heuristics for Solving Structured CSPs 375

Theorem 7. The time complexity of BDH is O(exp(α + Δ + 1)).

Proof. Let (X, D, C, R) be a CSP, HA the reference CAH of H = (X, C). Let
V be a set of α + Δ + 1 variables such that ∃Eu1 , . . . , Eur , a path in HA (with
r ≥ 2 since |V | = α + Δ + 1 and α is the maximum size of the edges of HA),
V ⊂ Eu1 ∪ . . . ∪ Eur and Eu2 ∪ . . . ∪ Eur−1 � V (resp. Eu1 ∩ Eu2 � V) if
r ≥ 3 (resp. r = 2). We will prove first that any assignment on V is computed
only twice. ∀H ′A ∈ CAHHA [S], ∃E′i1 , . . . , E′ir′ , a path, (with r′ ≥ 2 since the
maximum size of the edges in H ′A is α + Δ) such that V ⊂ E′i1 ∪ . . . ∪ E′ir′ and
E′i2 ∪ . . . ∪ E′ir′−1

� V (resp. E′i1 ∩ E′i2 � V) if r′ ≥ 3 (resp. r′ = 2). Let A be
an assignment to extend on V . The order in which the variables of A will be
assigned is induced by H ′A ∈ CAHHA [S]. We suppose in the following that the
edges covering V are ordered w.r.t. the order they are assigned: E′ij is visited
before E′ij′ if j < j′. Thus Eu1 is the first assigned edge among those of the path
in HA covering V and s1 = Eu1 ∩ Eu2 is included in E′i1 because Eu1 ⊂ E′i1 .

If E′i1 ∩ E′i2 = s1, the solving of the subproblem rooted on E′i2 with the
assignment A leads to the recording of one (no)good on the separator s1: A[s1].
Let B be a new assignment that we try to extend on V with the same values in
A[V] and H ′′A ∈ CAHHA [S] induce the order in which the variables of B were
assigned. ∃E′′j1 , . . . , E′′jr′′ , r′′ ≥ 2, a path in H ′′A such that V ⊂ E′′j1 ∪ . . . ∪ E′′jr′′
and E′′j2 ∪ . . . ∪ E′′jr′′−1

� V (resp. E′′j1 ∩ E′′j2 � V) if r′′ ≥ 3 (resp. r′ = 2). Since
s1 ⊂ E′′j1 , as soon as E′′j1 is totally assigned, A[s1] stops the assignment on V .
Thus A[V] is computed twice only on α + Δ variables of V at worst.

Now we suppose E′i1 ∩E′i2 �= s1. If A[E′i1 ∩E′i2] can be consistently extended
on the subproblem rooted on E′i2 then A[E′i1 ∩E′i2] is recorded as a good. Since
s1 ⊂ E′i1 , if this current assignment A can be consistently extended on the
unassigned variables in the subproblem rooted on E′i1 then A[s1] is recorded as
a good. Otherwise, this assignment cannot be consistently extended on at least
one subproblem rooted on E′t′ an edge of H ′A such that E′t′ �= E′il , l = 1, . . . , r′

and E′t′ ∩ E′i1 �= ∅. Thus A[E′i1 ∩ E′t′] is recorded as a nogood. When we try to
extend B on V , if A[s1] is a good then for the same reasons as previously A[V]
is computed twice only on α + Δ variables of V at worst.

If A[s1] is not a good then A[E′i1 ∩E′t′] is recorded as a nogood. Nevertheless,
it is possible to compute A[V] twice if (E′i1 ∩ E′i2) ∪ (E′i1 ∩ E′t′) ⊂ E′′jr′′ . If
B[E′′j1 ∩E′′j2] can be consistently extended on the subproblem rooted on E′′j2 then
B[E′′j1 ∩ E′′j2] is recorded as a good. Since s1 ⊂ E′′j1 , either B[s1] is recorded as
a good or A[E′′j1 ∩ E′′t′′] is recorded as a nogood, with E′′t′′ an edge of H ′′A such
that E′′t′′ �= E′′jl , l = 1, . . . , r′′ and (E′′t′′ ∩ E′′j1) �= ∅. If B[s1] is a good then B[V]
is computed again only on α + Δ variables of V at worst.

If B[E′′j1 ∩ E′′t′′] is a nogood: two nogoods are recorded on two separators in
V . As soon as the first one of these separators is totally assigned, the nogood
related to this separator stops the assignment on V . Thus A[V] is not computed
again.

If B[E′′j1 ∩E′′j2] cannot be consistently extended on the subproblem rooted on
E′′j2 then B[E′′j1 ∩E′′j2] is recorded as a nogood. Since two nogoods are recorded,
A[V] is not computed again.

376 P. Jégou, S.N. Ndiaye, and C. Terrioux

If A[E′i1 ∩ E′i2] cannot be consistently extended on the subproblem rooted
on E′i2 then we use the same reasoning as in the first part of this proof to
demonstrate that A[V] is computed only twice at worst.

e prove that any assignment on V is computed only twice at worst. Now, we
suppose that H is covered by a set of Vi which verifies that Vi contains α+Δ+1
variables such that ∃Eu1 , . . . , Eur , a branch in H (with r ≥ 2), V ⊂ Eu1∪. . .∪Eur

and Eu2 ∪ . . . ∪ Eur−1 � V (resp. Eu1 ∩ Eu2 � V) if r ≥ 3 (resp. r = 2). It is
sufficient to cover each branch in H by some Vi (they can intersect). On each Vi
covering H an assignment is computed twice at worst. The number of possible
assignments on Vi is dα+Δ+1. Thus the number of possible assignments on the
variables of the problem is bounded by numberVi .d

α+Δ+1, with numberVi the
number of sets Vi covering H . Since the number of Vi is bounded, then the time
complexity of BDH is in O(exp(α + Δ + 1)). �

5 Experimental Study

In this section, we assess the efficiency of BDH on benchmarks (structured ran-
dom CSPs) presented in [18] with the same empirical protocol and PC. The
reference hypergraph is computed thanks to the triangulation of the constraint
graph H performed in [18]. We also use the best heuristics given in this paper
for an efficient traversal of a hypergraph: minexp. Now, we define some heuris-
tics for computing the covering hypergraphs dynamically. In order to reduce the
space complexity, we merge edges in the following heuristics only if their inter-
section size is greater than 5 unless the size of the resulting edge is greater than
1.5α (Δ is bounded by 0.5α). According to the order edges are considered, dif-
ferent covering hypergraphs are computed. We define an order on edges based on
the traversal heuristic minexp. Br: the current edge is merged with its first son
(w.r.t. minexp), the first son of this one and so on, if the size of their separator is
greater than 5 and while the size of the resulting edge is less than 1.5α. Br+vp:
first, the reference hypergraph is modified such that edges with less than 3 vari-
ables not included in their parent are merged to it. Then the heuristic Br is
used to compute dynamically covering hypergraphs. Table 1 shows the runtime
of BDH with heuristics Br, Br + vp, as well as with heuristics based on minexp
in the Classes 3 and 4 defined in [18] (with a hypergraph with maximum size
of edge intersections bounded by 5 for the Class 4). The Class 4 obtains better
results than the Class 3. The heuristic Br has very good results, close to Class 4
ones, and succeeds in solving all the instances in (250, 20, 20, 99, 10, 25, 10) while
two are not solved in the Class 4 within 1,800 s. Having a better reference hyper-
graph w.r.t. the solving allows the heuristic Br + vp to obtain generally the best
results. These experiments highlight the great importance of a good reference
hypergraph (w.r.t. the solving) for the search. Furthermore a dynamic exploita-
tion of this hypergraph structure leads to significant improvements. Let us note
that BDH with heuristics in Classes 3 and 4 is identical to BTD so it obtains
similar results to BTD’s ones in [18] for these classes. Moreover, the methods
FC and MAC fail in solving most of these instances within 1,800 s. Likewise,

Dynamic Management of Heuristics for Solving Structured CSPs 377

Table 1. Runtime (in s) on random partial structured CSPs: (a) Class 3, (b) Class
Br, (c) Class Br + vp and (d) Class 4

CSP (n, d, w, t, s, ns, p) (a) (b) (c) (d)

(150, 25, 15, 215, 5, 15, 10) 2.04 1.78 1.93 1.76
(150, 25, 15, 237, 5, 15, 20) 8.84 1.23 1.12 1.10
(150, 25, 15, 257, 5, 15, 30) 4.20 1.40 1.30 3.19
(150, 25, 15, 285, 5, 15, 40) 3.08 1.17 0.27 0.23
(250, 20, 20, 107, 5, 20, 10) 14.87 10.49 12.89 13.14
(250, 20, 20, 117, 5, 20, 20) 11.43 6.97 13.18 5.98
(250, 20, 20, 129, 5, 20, 30) 29.24 3.62 2.80 2.87
(250, 20, 20, 146, 5, 20, 40) 12.26 6.99 3.97 7.89
(250, 25, 15, 211, 5, 25, 10) 7.18 4.19 3.79 4.64
(250, 25, 15, 230, 5, 25, 20) 3.86 2.76 1.69 2.36
(250, 25, 15, 253, 5, 25, 30) 3.86 3.73 2.61 2.08
(250, 25, 15, 280, 5, 25, 40) 56.66 13.87 11.88 12.33
(250, 20, 20, 99, 10, 25, 10) 112.88 82.07 78.16 144.20
(500, 20, 15, 123, 5, 50, 10) 7.11 2.23 2.00 3.12
(500, 20, 15, 136, 5, 50, 20) 6.11 3.01 3.23 4.13

TC and so the hypertree-decomposition method do not succeed in solving most
of these instances due to an expensive time and space consumption.

6 Conclusion

In this paper, we have proposed a framework based on an old concept: the
covering of a problem by acyclic hypergraphs. We have shown that such an
approach seems to be more useful than the tree-decomposition based one. In
particular, this approach offers more flexibility to the variable ordering heuristic
and obtains better theoretical and practical results. Moreover, it turns to be
operational in practice, what is not the case for the hypertree-decomposition
method and its generalizations.

Firstly, these coverings have been studied theoretically in order to determine
their characteristics and properties. After, we have focused our study on a partic-
ular class of coverings that preserves time and space complexity results and also
improves some of them. One of the major results presented in this paper is the
theorem indicating that the addition of Δ variables to offer freedom in a dynamic
variable ordering, induces a limited time complexity in O(exp(α+Δ+1)), which
outperforms previous results significantly (namely O(exp(2(w + Δ + 1) − s−))
with s− the minimum size of separators [18] and α = w + 1). Furthermore, we
have shown that our approach makes easier the implementation and permits to
improve practical efficiency showing thus the practical interest of this approach.
This work, introduced within the framework of CSPs, must now be extended to
other formalisms like SAT, MAX-SAT, VCSP or probabilistic networks.

Acknowledgments. This work is supported by a “programme blanc” ANR
grant (STAL-DEC-OPT project).

378 P. Jégou, S.N. Ndiaye, and C. Terrioux

References

1. Rish, I., Dechter, R.: Resolution versus Search: Two Strategies for SAT. Journal
of Automated Reasoning 24, 225–275 (2000)

2. Huang, J., Darwiche, A.: A structure-based variable ordering heuristic for SAT.
In: Proceedings of IJCAI, pp. 1167–1172 (2003)

3. Li, W., van Beek, P.: Guiding Real-World SAT Solving with Dynamic Hypergraph
Separator Decomposition. In: Proceedings of ICTAI, pp. 542–548 (2004)

4. Dechter, R., Pearl, J.: Tree-Clustering for Constraint Networks. Artificial Intelli-
gence 38, 353–366 (1989)

5. Dechter, R.: Bucket Elimination: A Unifying Framework for Reasoning. Artificial
Intelligence 113(1-2), 41–85 (1999)

6. Darwiche, A.: Recursive conditioning. Artificial Intelligence 126, 5–41 (2001)
7. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic

database schemes. J. ACM 30, 479–513 (1983)
8. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions and Tractable

Queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)
9. Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction

problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709–723. Springer,
Heidelberg (2003)

10. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft
Local Consistency in Weighted CSP. In: Proceedings of AAAI, pp. 22–27 (2006)

11. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width.
Algorithms 7, 309–322 (1986)

12. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decompo-
sition Methods. Artificial Intelligence 124, 282–343 (2000)

13. Cohen, D., Jeavons, P., Gyssens, M.: A Unified Theory of Structural Tractability
for Constraint Satisfaction and Spread Cut Decomposition. In: Proc. of IJCAI, pp.
72–77 (2005)

14. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. of
SODA, pp. 289–298 (2006)

15. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence 146, 43–75 (2003)

16. Jégou, P., Terrioux, C.: Decomposition and good recording for solving Max-CSPs.
In: Proc. of ECAI, pp. 196–200 (2004)

17. Marinescu, R., Dechter, R.: Dynamic Orderings for AND/OR Branch-and-Bound
Search in Graphical Models. In: Proc. of ECAI, pp. 138–142 (2006)

18. Jégou, P., Ndiaye, S.N., Terrioux, C.: Dynamic Heuristics for Backtrack Search on
Tree-Decomposition of CSPs. In: Proc. of IJCAI, pp. 112–117 (2007)

19. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
20. Sachenbacher, M., Williams, B.C.: Bounded Search and Symbolic Inference for

Constraint Optimization. In: Proc. of IJCAI, pp. 286–291 (2005)

A Compression Algorithm for Large Arity

Extensional Constraints�

George Katsirelos and Toby Walsh

NICTA and UNSW
{george.katsirelos,toby.walsh}@nicta.com.au

Abstract. We present an algorithm for compressing table constraints
representing allowed or disallowed tuples. This type of constraint is used
for example in configuration problems, where the satisfying tuples are
read from a database. The arity of these constraints may be large. A
generic GAC algorithm for such a constraint requires time exponential
in the arity of the constraint to maintain GAC, but Bessière and Régin
showed in [1] that for the case of allowed tuples, GAC can be enforced in
time proportional to the number of allowed tuples, using the algorithm
GAC-Schema.

We introduce a more compact representation for a set of tuples, which
allows a potentially exponential reduction in the space needed to repre-
sent the satisfying tuples and exponential reduction in the time needed
to enforce GAC. We show that this representation can be constructed
from a decision tree that represents the original tuples and demonstrate
that it does in practice produce a significantly shorter description of
the constraint. We also show that this representation can be efficiently
used in existing algorithms and can be used to improve GAC-Schema
further. Finally, we show that this method can be used to improve the
complexity of enforcing GAC on a table constraint defined in terms of
forbidden tuples.

1 Introduction

The table constraint is an important constraint that is available in most con-
straint toolkits. With this, we are able to express directly a set of acceptable
assignments to a set of variables. These constraints can be generated from data
that has been read from a database in a configuration problem, or may encode
users’ preferences, among other applications. The table constraint is usually
propagated using GAC-Schema, an algorithm proposed in [1] and studied fur-
ther in [9, 8, 4] among others.

In this paper, we introduce a compression algorithm for table constraints.
This algorithm attempts to capture the structure that may exist in a table but
� NICTA is funded by the Australian Government’s Department of Communications,

Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program. Thanks to
Fahiem Bacchus and Nina Narodytska for their insightful comments.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 379–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

380 G. Katsirelos and T. Walsh

is not explicitly encoded. In order to achieve this, we propose an alternative
representation of tuples that may capture an exponential number of tuples in
polynomial space, although each compressed tuple may be larger than the arity
n of the constraint. GAC-Schema can be adapted easily to work with such
compressed tuples. Since the runtime of GAC-Schema is proportional to the
number of tuples in the table and we do not increase the cost of examining a
single tuple significantly, we can reasonably expect it to perform better after we
reduce the number of tuples in this way. The approach can also be extended
from the sets of allowed tuples to work also on constraints that are expressed
as sets of forbidden tuples. This can potentially deliver great improvements in
runtime, as the complexity of GAC-Schema+Forbidden is exponential in the
arity of the constraint, whereas with our approach it becomes proportional to
the number of forbidden tuples.

The rest of the paper is organized as follows. We first present the necessary
background in section 2, then we describe the compression algorithm in sec-
tion 3. In section 4 we describe how GAC-Schema can be modified to work on
compressed tables. In section 5, we extend this approach to work on tables of
forbidden tuples. Finally, in section 6 we present experimental confirmation that
GAC-Schema using compressed tuples is faster.

2 Background

A constraint satisfaction problem P is a tuple (V ,D, C), where V is a set of
variables, D is a function mapping a variable to a domain of values and C is
a set of constraints. Given V ∈ V and x ∈ D(V), we say that V = x is an
assignment, it assigns to V the value x. The goal is to find a set of assignments
that satisfy the constraints, assigning exactly one value to each variable.

An assignment set is a set of assignments A = {X1 = a1, . . . , Xk = ak}
such that no variable is assigned more than one value. We use scope(A) to
denote the set of variables assigned values in A. A constraint C consists of an
ordered set of variables, scope(C), and a set of assignment sets. Each of these
specifies an assignment to the variables of scope(C) that satisfies C. We say
that an assignment set A is consistent if it satisfies all constraints it covers:
∀C.scope(C) ⊆ scope(A)⇒ ∃A′.A′ ∈ C ∧A′ ⊆ A. Thus, a solution to the CSP
is a consistent assignment set containing all of the variables of the CSP.

We deal here with backtracking search algorithms. Constraint propagation is
used during backtracking search to filter the domains of variables so that values
that cannot be part of a solution are removed from the domains of unassigned vari-
ables. Most solvers maintain generalized arc consistency for the table constraint.

Definition 1 (Support). A support of a constraint C is a set of assignments
to exactly the variables in scope(C) such that C is satisfied. A support of C that
includes the assignment V = x is called a support of V = x in C.

Definition 2 (Generalized arc consistency (GAC)). A constraint C is
GAC if there exists a support for all values in the current domains of the vari-
ables in scope(C). A problem P is GAC if all of its constraints are GAC.

A Compression Algorithm for Large Arity Extensional Constraints 381

Constraints can be defined in several ways, including as a set of satisfying as-
signments; as a set of non-satisfying assignments; as a predicate; or algebraically.
In this paper, we deal with the first two (extensional) representations.

3 The Compression Algorithm

Representation. Let C be a constraint that is represented in extension as a set
of satisfying tuples. Let UC = {U1, . . . , Uu} be the set of satisfying tuples that
define the constraint, n = |scope(C)| and d = maxV ∈scope(C)|D(V)|.

The set of tuples UC represents the propositional disjunction c(U1)∨. . .∨c(Uu),
where c(Ui) is V1 = di1 ∧ . . . ∧ Vn = din, the propositional form of the tuple
Ui = 〈di1, . . . , din〉. From now on, we refer to these as u-tuples. The compres-
sion scheme that we propose transforms the constraint into a conjunction of
compressed tuples. Each compressed tuple Ci corresponds to a more compact
propositional formula c(Ci) of the form (V1 = di,1,1 ∨ . . . ∨ V1 = di,1,ki,1) ∧ . . . ∧
(Vn = di,n,1 ∨ . . . ∨ Vn = di,n,ki,n). A compressed tuple can then be written
Ci = 〈(di,1,1, . . . , di,1,ki,1), . . . , (di,n,1, . . . , di,n,ki,n)〉. A compressed tuple Ci ad-
mits any set of assignments that assigns one of di,1,1, . . . , di,1,ki,1 to V1, one of
di,2,1, . . . , di,2,ki,1 to V2 and so on. Note that a compressed tuple can represent a
potentially exponential number of u-tuples. Specifically it will accept any combi-
nation of the ki,1 values for V1, ki,2 values for V2 and so on, so that it represents
ki,1ki,2 . . . ki,n u-tuples. We refer to this representation as c-tuples. The set of
u-tuples represented by a c-tuple c is written u(c).

This compact representation is not new, as it has been used before in different
contexts. Milano and Focacci[3] used it in the context of symmetry breaking,
while Katsirelos and Bacchus[6] used it in the context of nogood learning.

Clearly not all sets of tuples can be compressed in this way. For any set of
domains, there exist two maximum sets of tuples that cannot be compressed.
We derive them by ordering all possible tuples lexicographically and choosing
those with an even (odd) index in this ordering. In general, a set of tuples can be
expressed more succinctly as c-tuples if there exist clusters of tuples with pairwise
Hamming distance 1. For example, consider the set U1 = {〈1, 1, 1〉, 〈1, 2, 2〉}.
Since the two tuples have Hamming distance 2, this cannot be expressed any
more succinctly as a set of c-tuples. The set U2 = {〈1, 1, 1〉, 〈1, 2, 1〉, 〈1, 2, 2〉} has
two pairs of tuples with Hamming distance 1, while the other two have distance
two, and can therefore be expressed either as C2 = {〈(1)(1, 2)(1)〉, 〈(1)(2)(2)〉} or
C′2 = {〈(1)(1)(1)〉, 〈(1)(1)(1, 2)〉}. Finally, by adding one more tuple, the set U3 =
{〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈1, 2, 2〉}, all tuples have pairwise Hamming distance
1 and can be expressed as the single c-tuple 〈(1)(12)(12)〉.

Note this representation cannot improve the efficiency of existing algorithms
(e.g. AC-*[12]) for propagating binary constraints. Since the arity of these con-
straints is two, each compressed tuple can at best represent a quadratic number
of uncompressed tuples. However, when AC-* examines a value to determine
whether it still has a support, it will only examine the tuples that contain this
value. There is a linear number of such tuples, which can each be checked in
constant time. On the other hand checking the single compressed tuple is done

382 G. Katsirelos and T. Walsh

in linear time also, so in the best case using compressed tuples for binary con-
straints yields no improvement.

The applicability of the representation is also reduced for tables where some
of the variables are functionally dependent on some others. Consider for example
the arithmetic constraint X = Y +Z. For every value of Y and Z, X is uniquely
defined. Thus, we can only attempt to represent more compactly the set of values
of Y and Z that yield a specific value of X . The functional dependency of X on Y
and Z effectively partitions the space of possibly more compact representations
among the different values of X and reduces the arity of the table by 1, as far
as the compression scheme is concerned.

Decision trees. We derive a set of c-tuples from the original u-tuples by creating
a decision tree T (U) that describes the u-tuples and then deriving c-tuples from
the decision tree.

A decision tree is a structure that can describe a Boolean function. Each non-
leaf node v of the tree is labeled with a test l(v). Each leaf is labeled with either
1 or 0. In order to evaluate the Boolean function f(x), we start at the root and
test x against l(v). The left child of v is visited if the test succeeds and right
child if it fails. When a leaf is reached, the value of f(x) is determined to be the
same as the label of the leaf. For convenience, we also label the edge to the left
child of v with l(v) and the edge to the right child of v with ¬l(v).

Here we treat a set of tuples UC as a function fUC : {0, 1}dn → {0, 1} where
the tests are literals that correspond to all dn possible assignments. f evaluates
to 1 if its arguments form a tuple in UC and 0 otherwise. Let T (UC) be a decision
tree that describes fUC . A u-tuple u ∈ UC agrees with a node v if v is the root
or if it agrees with the parent P (v) of v and v is the left child of P (v) and
l(P (v)) ∈ u or v is the right child of P (v) and l(P (v)) /∈ u. A tuple u ∈ UC

is associated with a node v if it agrees with it and the set of all such tuples is
U(v). By this definition, each u-tuple agrees with at most one of the child nodes
of v. Additionally, we enforce that each tuple u ∈ U(v) must agree with exactly
one child of v1 so all the nodes at a level of the tree describe a partition of UC .
If U(v) = ∅ then the node is empty. A literal s (resp. ¬s) is implied in v iff
∀u ∈ U(v) s ∈ u (resp. ∀u ∈ U(v) s /∈ u.)

We can determine the set of tuples poss(v) described by a node v by enumer-
ating all the possible u-tuples that agree with v. A node v completely describes
the set of tuples U(v) associated with it if poss(v) = U(v).

Finally, a c-tuple can be constructed from a node v. Let S(v) be the set of
literals that label the edges in the path from v to the root of the tree. S(v, V) is
the set of values of V that appear in a literal in S(v) if ∃d|V = d ∈ S(v), else it is
D(V)−{d} |V = d ∈ S(v). Then the c-tuple c(v) that describes exactly the same
tuples as v is c(v) = 〈(d1 ∈ D(V1) − S(v, V1)) . . . (dn ∈ D(Vn) − S(v, Vn))〉. For
example, if S(v) = {V1 = 1, V2 = 2, V2 = 3, V3 = 1, V3 = 2, V4 = 2} and D(V1) =
D(V2) = D(V3) = D(V4) = {1, 2, 3, 4}, then c(v) = 〈(1)(1, 4)(3, 4)(2)〉. We see
that c(v) admits all u-tuples in poss(v).

1 If this is not true, then T (UC) is not a decision tree for the function fUC .

A Compression Algorithm for Large Arity Extensional Constraints 383

Proposition 1. Let v be a node in the decision tree. The c-tuple c(v) admits
exactly the tuples poss(v).

Proof. Let u be a tuple in poss(v). We only need to show that for each variable
V , u assigns d to V if and only if V = d is part of c(v). Since u(c(v)) contains
all combinations of assignments to each variable, this is enough to show u ∈
u(c(v)) ⇐⇒ u ∈ poss(v) for all u. Let u assign the value d to variable V . Since
u agrees with v then either V = d ∈ S(v) or V = d /∈ S(v). In the first case, c(v)
also assigns d to V . In the second case, c(v) will contain all assignments to V in
D(V) − S(v, V). But since V = d /∈ S(v) then d ∈ D(V) − S(v, V). Therefore
V = d ∈ c(v). �

If v completely describes U(v), c(v) also completely describes U(v) and the u-
tuples in U(v) can be replaced by c(v). This means that given a decision tree
that represents a set of clauses, the set of c-tuples that are constructed from the
non-empty leaves of the tree are exactly equivalent to the original u-tuples.

Example. Let C1(V1, V2) be a constraint such that D(V1) = D(V2) =
{0, . . . , d− 1} and U(C1) = {〈0, 1〉, . . . , 〈0, d− 1〉, 〈1, 1〉}. This constraint al-
lows every tuple where V1 = 0 and the tuple 〈1, 1〉. In figure 1(a) we show
an optimal decision tree and the tuples associated with each leaf node. We
also show in 1(b) and 1(c) the decision trees for C2(V1, V2) with U(C2) =
{〈0, 0〉, . . . , 〈0, d− 2〉, 〈1, 0〉, . . . , 〈1, d− 2〉, . . . , 〈d− 2, 0〉, . . . , 〈d− 2, d− 2〉} and
C3(V1, V2) with U(C3) = {〈0, 0〉, . . . , 〈0, d− 3〉, 〈1, d− 2〉, 〈1, d− 1〉}, respec-
tively. In this figure, a round node v is an internal node of the decision tree
and is labeled with the literal that we branch on at v. A square node v is a leaf
node and is either labeled by ∅, in which case is empty, or it completely describes
the tuples U(v) and it is labeled with the corresponding c-tuple. The left child
of a node that branches on s contains tuples that contain s and thus the edge
to the parent is labeled with =, while the right child contains tuples that do not
contain s and the edge to the parent is labeled with =.

Constructing decision trees. The problem of constructing a minimum decision
tree (with minimum average branch length) is NP-hard [5]. We have tried to
solve this problem to optimality using constraint programming techniques, but
were unsuccessful in improving significantly over generate-and-test. Thus, we use
a heuristic approach.

Algorithms that construct decision trees follow an outline similar to that of
TableToDecisionTree, shown in figure 2 (see, for example [10]). This algo-
rithm is straightforward. At each node it checks whether any implied literals
exist and extends the tree with a node for each of them. If no implied literals
exist, it selects a literal to branch on and then expands each of the child nodes. If
it creates an empty node (where |U(v)| = 0) or a node that completely describes
U(v), it stops. After construction of the tree, a c-tuple is generated from each
leaf v that completely describes U(v).

The complexity of the algorithm depends on how much work the splitting
heuristic needs to do to select a literal to branch on. Here, we only deal with

384 G. Katsirelos and T. Walsh

V1 = 0

〈(0)(0, . . . , d − 1)〉

V1 = 1

V2 = 1
∅

〈(1)(1)〉 ∅

= �=

= �=

= �=

(a)

V1 = d − 1

∅

V2 = d − 1

∅
〈(0, . . . , d − 2)(0, . . . d − 2)〉

= �=

=
�=

V1 = 0

V2 = 0V2 = d − 1

∅
V2 = d − 2

∅
〈(0)(0, . . . , d − 3)〉

V2 = d − 3

∅
〈(1)(d − 2, d − 1)〉

= �=

= �=

= �=

. . .

= �=

(b) (c)

Fig. 1. Optimal decision trees for the constraints (a) C1, (b) C2 and (c) C3. Each node
is labeled with the literal on which to branch. Round nodes contain both tuples and
non-tuples, while square nodes are leaves and are either empty and labeled with ∅ or
contain tuples only and are labeled with a c-tuple.

TableToDecisionTree(U C, v:Node)
1. if v is empty ∨ v is complete
2. return
3. if ∃ s s.t. s is implied
4. v′ = {Parent:v, EdgeLiteral:s}
5. TableToDecisionTree(U(v′), v′)
6. else
7. s =ChooseLiteral(U(v))
8. v1 = {Parent:v, EdgeLiteral:s}
9. v2 = {Parent:v, EdgeLiteral:¬s}
10. TableToDecisionTree(U(v1), v1)
11. TableToDecisionTree(U(v2), v2)

Fig. 2. Compression algorithm

heuristics that examine the frequency with which literals appear in U(v). If Vl

is the set of nodes at level l of the binary tree, then we know that the sets
U(v), v ∈ Vl are a partition of UC , therefore at each level of the tree each tuple
in UC will be examined exactly once. Since all tuples have length n, the cost of
choosing a literal to branch on for every node at a level is O(|UC |n). The depth
of the tree is bounded by the total number of literals nd, since a literal cannot be

A Compression Algorithm for Large Arity Extensional Constraints 385

branched on more than once in the same branch. Thus the total cost of building
the tree is O(|UC |n2d). Note however that this assumes that no compression can
be achieved on the table. In practice the runtimes are often much lower.

Splitting heuristics. The splitting heuristics we will examine are based on count-
ing the frequency with which literals appear in U(v). We write f(s, v) for the
number of times s appears in a tuple in U(v) and f(¬s, v) = |U(v)| − f(s, v).
We describe the following heuristics.

– MaxFreq. This heuristic chooses the literal with maximum f(s, v) (or mini-
mum f(¬s, v)). The reasoning is that the c-tuples that will be constructed in
the subtree containing s have a better chance of representing more u-tuples,
since s appears often. For example, consider the constraint C1 discussed ear-
lier, with U(C1) = {〈0, 0〉, . . . , 〈0, d〉, 〈1, 1〉}, with an optimal decision tree
shown in figure 1(a). Since V1 = 0 appears d times, MaxFreq will make
the optimal choice at the root. The branch that contains V1 = 0 completely
describes all u-tuples for which V1 = 0, thus the algorithm stops expand-
ing at this point. The other branch only contains the tuple 〈1, 1〉 which will
be left uncompressed. Thus this heuristic finds an optimal branching for
this example. On the other hand, consider the constraint C2 with U(C2) =
{〈0, 0〉, . . . , 〈0, d− 2〉, 〈1, 0〉, . . . , 〈1, d− 2〉, . . . , 〈d− 2, 0〉, . . . , 〈d− 2, d− 2〉},
whose optimal decision tree is shown in figure 1(b). Each literal in this set
of u-tuples appears exactly d−1 times, except for V1 = d−1 and V2 = d−1
which do not appear at all, so MaxFreq chooses one of those that appear
d − 1 times arbitrarily. Assume it chooses V1 = 0. On the positive branch,
each literal of V2 appears once except for V2 = d−1, so once again MaxFreq
chooses one arbitrarily. This continues until each c-tuple containing V1 = 0
is placed on a separate branch, therefore no compression occurs. On the neg-
ative branch of V1 = 0, each literal of V1 appears d−1 times and each literal
of V2 appears d− 2 times, so another literal of V1 is chosen and the process
repeats so that no compression occurs. However, U(C2) is compressible to
the single c-tuple 〈(0, . . . , d− 2)(0, . . . , d− 2〉, so clearly MaxFreq does not
perform optimally in every case.

– MinFreq. This chooses the literal with the minimum f(s, v). If many u-
tuples are similar but contain many different assignments to a single variable
V , then branching on all the values of V that do not appear in the u-tuples
will quickly lead to a subtree that contains these similar u-tuples that can
hopefully be compressed efficiently. It is easy to see that for the constraint
C2 mentioned above MinFreq will find the optimal compression. On the
other hand, it will not do so for the constraint C1.

– MinMinFreq. This chooses the literal with the minimum min(f(s, v),
f(¬s, v)). This is an attempt to combine MinFreq and MaxFreq, by using
f(s, v) and f(¬s, v) respectively as measures of the fitness of a literal. At each
node, the best literals chosen by both heuristics are compared against each
other using this measure and the best one is branched on. We can see that
both C1 and C2 are compressed optimally using MinMinFreq. However, for

386 G. Katsirelos and T. Walsh

the constraint C3 with U(C3) = {〈0, 0〉, . . . , 〈0, d− 3〉, 〈1, d− 2〉, 〈1, d− 1〉}
(decision tree in figure 1(c)), we have f(V1 = 0) = d − 2, f(V1 = 1) = 2
and f(V2 = k) = 1 for all k. In order to produce the optimum compression
{〈(0)(0, . . . , d− 3)〉, 〈(1)(d− 2, d− 1)〉}, the heuristic needs to branch either
on the literal V0 = 0 or on V0 = 1. However, MinMinFreq will not choose
either of these and neither will MinFreq. MaxFreq will choose the correct
literal to branch on, but we showed that it performs worse in C2.

– MinDiff. This chooses the literal with the minimum |f(s, v) − f(¬s, v)|.
This heuristic tries to create a more balanced tree, therefore a smaller one.
MinDiff will perform optimally on C1 and C3 but not C2.

– MaxGain. This is the heuristic used by ID3 [10] and C4.5 [11]. It calculates
first the information content I(v) for the current node. For each literal s, it
calculates the expected information E(s) of the subtree that will be created
by branching on s and chooses s so that I(v)−E(s) is maximum. This means
that it chooses the literal that gains the most information. The decision tree
under the node v is treated as a source of a message ’T’ or ’N’ for tuples
that belong or do not belong, respectively, to U(v). Then the information of
that tree is

I(v) = − |U(v)|
|poss(v)| log2

|U(v)|
|poss(v)| −

|poss(v)− U(v)|
|poss(v)| log2

|poss(v)− U(v)|
|poss(v)|

The expected information required if we branch on the literal s is

E(s) =
|poss(v ∪ {s}))|
|poss(v)| I(v ∪ {s}) +

|poss(v ∪ {¬s})|
|poss(v)| I(v ∪ {¬s})

where n ∪ {s} and n ∪ {¬s} are the child nodes of v resulting by branching
on s.
Since I(v) is common to all literals, MaxGain chooses the literal that min-
imizes E(s).

Empirical results. We implemented and tested this compression algorithm on all
the instances from the 2005 CSP competition [13] that contain non-binary ta-
bles. We tested for compression efficiency and runtime performance. We omitted
binary instances and binary table constraints in non-binary instances, because
as we already pointed out, modern algorithms for maintaining arc consistency
in binary constraints cannot benefit from compression.

In table 1 we show the compression achieved with three of the heuristics we
mentioned (MinMinFreq, MinDiff and MaxGain) for some of the instances
we tested. For each instance, we report the number of tables that were com-
pressed, the average number of tuples t and the average number of literals l per
table and for each splitting heuristic the ratios t/tc, l/lc and the average time
to compress a table. The ratio t/tc is the ratio of the number of tuple in the
original table versus the number of tuples in the compressed table, while l/lc
is the ratio of the total number of literals in the expression. Note that for each
constraint C, l is simply t · |scope(C)|. The ratio t/tc gives an indication to how

A Compression Algorithm for Large Arity Extensional Constraints 387

Table 1. Compression efficiency for instances from the 2005 CSP competition. The
best ratios t/tC and l/lC are highlighted.

MinMinFreq MinDiff MaxGain

Instance # Tables Avg t Avg l t/tc l/lc time t/tc l/lc time t/tc l/lc time
Golomb-12-sat 4 2631.25 7893.75 1.0 1.0 1.16 1.0 1.0 2.24 1.0 1.0 2.72

Golomb-12-unsat 8 4776.88 14330.62 1.0 1.0 2.05 1.0 1.0 3.15 1.0 1.0 4.36
0-TSP-10 3 7651.0 22953.0 1.0 1.0 12.45 1.0 1.0 24.78 1.0 1.0 26.46
series10 1 90.0 270.0 1.0 1.0 0.0 1.36 1.22 0.0 1.36 1.22 0.0

cril sat nb 0 27 1482.11 15076.22 19.65 13.14 0.01 1.98 1.73 0.03 5.25 4.21 0.01
cril unsat nb 6 9 281.33 1125.33 50.6 18.06 0.0 29.03 9.6 0.0 38.36 12.76 0.0
cril unsat nb 7 9 292.67 1170.67 61.61 20.04 0.0 40.28 11.58 0.0 45.56 13.59 0.0

gr 55 11 a3 1.0 1540 4620.0 1.0 1.0 0.17 1.0 1.0 0.09 1.0 1.0 0.23
random-3-20-20-60-632-forced-1 60 2944.0 8832.0 3.14 1.9 0.06 6.85 2.32 0.04 7.18 2.35 0.06
random-3-24-24-76-632-forced-1 74 5001.28 15003.85 3.6 1.99 0.13 8.15 2.4 0.07 8.48 2.42 0.11
random-3-28-28-93-632-forced-1 91 7967.01 23901.03 4.13 2.08 0.25 9.56 2.47 0.15 9.97 2.49 0.21

renault-merged 89 2182.76 14455.07 7.32 4.08 0.04 51.92 7.65 0.01 14.34 5.53 0.04

efficient the compression was. l/lc is an accurate representation of the memory
savings that have been achieved.

We show only one representative instance from most families. The results
tend to be the same for all instances of one family, as they tend to reuse the
same tables. The exception to this is the Golomb ruler problem where the tables
express arithmetic tables over domains that grow with the number of marks on
the ruler, therefore the tables themselves grow as well. We show results for the
largest satisfiable and largest unsatisfiable instance of the Golomb ruler problem.
The cril family of problem also does not follow this pattern, because it is a
collection of instances from different domains.

We see that not all domains are amenable to applying our technique. This is
to be expected, as it is possible that the tuples cannot be more compactly repre-
sented. On the other hand, for three domains the technique works very well and
for those we present results for more instances. In the domains where the tech-
nique achieves no reduction in the number of tuples, the overhead of attempting
and failing to compress the tables is generally small. The only families where it is
even noticeable are the Golomb ruler and travelling salesman problems, in which
case it takes 20 seconds and 60 seconds, respectively, to examine all tables of the
instance. Moreover, in many cases the tables are shared among many instances
and therefore compression can be considered an offline procedure that can be
performed once before solving a set of instances.

In the three domains where compression achieves improvement, we see that no
splitting heuristic dominates. Moreover, the differences can be dramatic. In the
cril family the heuristic MinMinFreq outperforms both the other ones and
in the instance cril sat nb 0 the ratio l/lc is 7 times higher than for MinDiff
and 3 times higher than for MaxGain. On the other hand, in the renault con-
figuration problem, MinDiff performs best and in random problems MaxGain
is the better choice.

In our experiments, we also tried to use the C4.5 algorithm [11]. Although the
ideas for the construction of decision trees are similar, C4.5 was created with ma-
chine learning applications in mind, where the purpose is to improve the ability
of the decision tree to correctly classify tuples that have not yet been seen. As a
result, the software is not suitable for our purposes. We believe however that our
use of the MaxGain heuristic captures the major ideas behind C4.5.

388 G. Katsirelos and T. Walsh

4 Modifying GAC-Schema

The GAC-Schema algorithm was proposed in three different variations:
GAC-Schema+Allowed, GAC-Schema+Forbidden, GAC-Schema+
Predicate. The first two are intended to work with constraints expressed in
extension by satisfying or conflicting tuples, respectively. The third works with
constraints defined by a predicate which succeeds for satisfying complete assign-
ments. Here, we only deal with GAC-Schema+Allowed (to which we refer
simply as GAC-Schema). In section 5, we will also deal with GAC-Schema+
Forbidden.

GAC-Schema uses the procedure seekNextSupport to identify a support
for a value V = x. seekNextSupport iterates over the tuples in the table that
contain V = x until it finds a support for V = x, i.e. a tuple such that none of its
values have been pruned. In order to minimize the number of checks performed
by seekNextSupport, GAC-Schema maintains a current support for each
unpruned value. A current support for X = a is a tuple that contains X = a
and is valid. In the context of uncompressed tuples, a tuple is valid if none of the
values that it contains are pruned. It maintains this information in three data
structures: S(U) is the set of values that are currently supported by the tuple
U ; SC(X = a) is the set of tuples that contain X = a and are currently supports
for some values; lastC(X = a) is the last support of value X = a returned by
seekNextSupport. When a value X = a is pruned, new support has to be
found for values that have lost their current support because of this pruning.
These values are in the set P =

⋃
U∈Sc(X=a) S(U). For each value Y = b ∈ P ,

a new support is first sought among Sc(Y = b) and then among tuples that
contain Y = b and have index higher than lastC(Y = b). If no support is found
by either procedure, the value is pruned. If a support U is found in SC(Y = b),
then Y = b is placed in S(U). If a support σ is found by seekNextSupport, it
becomes the new current support for Y = b and the data structures are updated
accordingly. Multidirectionality is exploited by placing the new support σ in
SC(Z = c) for every other value in σ.

In order to work on a table of compressed tuples, we first modify the definition
of a valid tuple, which is needed by seekNextSupport. A c-tuple is invalid
when there exists a variable in the scope of the constraint such that all its values
in the c-tuple are pruned. Note that this allows for a simple but significant
optimization: if all values of a variable appear in a compressed tuple, we can
simply avoid checking them altogether. However, the complexity of checking
whether a c-tuple is valid is O(nd), as a c-tuple can contain many values from
each variable, as opposed to O(n) for a u-tuple. On the other hand, the greater
the length of the c-tuple, the more u-tuples it represents, so we can expect that
the greater complexity of performing a single constraint check is balanced by the
fact that we need to perform fewer of them.

In order to have GAC-Schema work with c-tuples, we need to note the
following. First, when we prune a value X = a, it is not necessary that all
tuples in SC(X = a) will be invalid, as they may contain other values of X that
have not been pruned. Second, since a c-tuple is valid as long as one value from

A Compression Algorithm for Large Arity Extensional Constraints 389

each variable is not pruned, it is not necessary to examine the tuple for validity
every time one of the values it contains is pruned. We see that the structure
SC(X = a) serves two purposes: it identifies tuples that may become invalid if
X = a is pruned and it identifies tuples that have already been found to support
other values and may be a support for X = a. In the case of uncompressed
tuples, the two are necessarily identical, as the pruning of a value X = a will
invalidate all tuples X = a appears in. In the case of compressed tuples, we need
to maintain two different structures for the two purposes. The first one is called
WC and the second SC . WC will always be a (not necessarily strict) subset of
SC . Every time a tuple σ is identified as a support for a variable, we choose one
value X = a ∈ σ from each variable in the scope of the constraint and place σ in
WC(X = a). This optimization is similar in spirit to the watch literal technique
used in SAT solvers to unit propagate propositional clauses.

5 GAC-Schema with Forbidden Tuples

Recall that in constructing a decision tree to compress a set of tuples, we view
this set as a Boolean function that evaluates to 1 if its arguments form a tuple
in U and 0 otherwise. If we were to use this method on a constraint that is
represented as a set of forbidden tuples, we would have no useful way of using the
compressed tuples to perform propagation, as the instantiation of the function
seekNextSupport for GAC-Schema+Forbidden does not iterate over the
tuples, but needs to check whether or not an arbitrary tuple is forbidden.

Note however that we can convert between the two equivalent representations
of a constraint as a set of forbidden or allowed tuples. A constraint on vari-
ables V1, . . . , Vn with domains D1, . . . , Dn represented as the set of forbidden
tuples U is equivalent to a constraint represented by the set of allowed tuples
D1 × . . .×Dn − U . In terms of the corresponding Boolean function, this means
that the function evaluates to 1 if its arguments form a tuple not in U and 0
otherwise. This suggests that we can use our compression method to compress
the equivalent constraint that is expressed as a set of satisfying tuples, without
actually generating the satisfying tuples. This is done by generating c-tuples
from the leaves that are empty, as opposed to those that completely describe
U(v). These compressed tuples are allowed and can be used with GAC-Schema
with c-tuples.

For example, consider the ternary table constraint C(V1, V2, V3), with
D(V1) = D(V2) = D(V3) = {1, 2, 3} that disallows the tuples 〈1, 2, 3〉 and
〈3, 2, 1〉. The optimal decision tree for this table is shown in figure 3. In this
decision tree, the leaves that would normally contain the two tuples are instead
labeled with the empty set, while the leaves that would be empty are used to con-
struct c-tuples. The resulting set of allowed c-tuples is
{〈(1, 2, 3)(1, 3)(1, 2, 3)〉, 〈(1)(2)(1, 2)〉, 〈(2)(2)(1, 2, 3)〉, 〈(3)(2)(2, 3)〉}.

Even though the number of allowed tuples may be exponentially larger than
the number of forbidden tuples, the number of allowed compressed tuples will
not be significantly bigger than the number of forbidden tuples.

390 G. Katsirelos and T. Walsh

V2 = 2

V1 = 1

V3 = 3

∅ 〈(1)(2)(1, 2)〉

〈(1, 2, 3)(1, 3)(1, 2, 3)〉
V1 = 3

V3 = 1

〈(2)(2)(123)〉

∅ 〈(3)(2)(23)〉

=

=

= �=

�=

�=

= �=

= �=

Fig. 3. Constructing a set of allowed c-tuples from a table constraint with forbidden
tuples

Proposition 2. Let C be a constraint on variables V1, . . . , Vn with domains
D1 = . . . = Dn = D and |D| = d, represented as a set of forbidden tuples F .
The size of the set C of compressed tuples generated from the empty leaves of
the decision tree T (F) is O(nd|F |).
Proof. Consider a leaf v that completely describes F (n). Assume that at every
node along this branch, following the alternative branch leads to an empty leaf.
This is the maximum number of empty leaves that may correspond to each
complete leaf. Since the maximum length of any branch is nd and there exist at
most |F | non-empty branches (in which case the set cannot be compressed), the
maximum number of empty leaves is O(nd|F |). �

Note that this upper bound is a worst case scenario, which assumes that the
decision tree is maximal, thus the set of allowed u-tuples that represent the
constraint cannot be compressed.

6 Empirical Results

We implemented the algorithm GAC3.1r [7] with and without compressed tuples.
We compared the runtime for searching 100,000 nodes (for random problems)
or 1 million nodes (for the rest) for table constraints with compressed and un-
compressed tuples, in the subset of families from section 3 where our heuristic
algorithms were able to produce a smaller representation. We present our find-
ings for some representative instances in table 2. We used the best splitting
heuristic for each instance, as determined by the results in table 1.

For each instance we present the number of variables, number of constraints,
number of tables (which may differ from the number of constraints, as many
constraint may share the same table,) the ratio t/tc and l/lc and finally the time
needed to search 100,000 nodes and the number of constraint checks, in millions.

We see that in random problems using the compressed representation is uni-
formly better. The reduction in the number of constraint checks corresponds
with the reduction in runtime over the simple version of the algorithm. In the
cril instances, the picture is somewhat different. While the reduction in the

A Compression Algorithm for Large Arity Extensional Constraints 391

Table 2. CPU time and number of constraint checks needed to search 100,000 nodes
(for random problems) or 1,000,000 (for the cril instances) using both the uncom-
pressed and compressed representation for table constraints, in instances from the
2005 CSP competition

w/compression w/out compression
Instance #Vars #Cons #Tables t/tc l/lc Time #CC×106 Time #CC×106

random-3-20-20-60-632-forced-1 20 60 60 6.85 2.32 76.26 994.90 182.32 2010.40
random-3-20-20-60-632-forced-8 20 58 58 6.74 2.30 73.48 945.76 164.42 1935.04
random-3-20-20-60-632-forced-9 20 59 59 6.78 2.31 120.65 1165.17 234.57 2339.77
random-3-24-24-76-632-forced-1 24 74 74 8.15 2.40 158.87 1661.22 407.64 3207.54
random-3-24-24-76-632-forced-8 24 76 76 8.28 2.42 207.80 2033.63 503.94 4659.31
random-3-24-24-76-632-forced-9 24 74 74 8.12 2.40 97.79 1132.62 288.58 2922.41
random-3-28-28-93-632-forced-1 28 91 91 9.56 2.47 268.93 2495.32 739.16 6297.27
random-3-28-28-93-632-forced-8 28 92 92 9.67 2.48 245.00 2375.20 560.28 5470.00
random-3-28-28-93-632-forced-9 28 91 91 9.59 2.48 494.69 4543.70 1046.52 6440.60

cril sat nb 0 108 35 27 19.65 13.14 22.57 127.14 159.57 362.49
cril unsat nb 6 36 153 9 50.60 18.06 10.99 11.25 11.77 66.89
cril unsat nb 7 36 153 9 61.61 20.04 19.21 25.76 20.08 130.79

number of constraint checks is significant, the difference in runtime does not
reflect this. In the instance cril sat nb 0, the number of constraint checks is
reduced by a factor of 13, but the runtime is only reduced by a factor of 7. In
the other two instances, the number of constraint checks is reduced by a factor
of 6, but the runtime is approximately the same with and without compression.
Part of the reason for this is that these instances contain other constraints, so
the improvement in speed is not apparent. For example, we found by profiling,
that propagating the table constraints for the cril unsat nb 6 only took ap-
proximately 15% of the total runtime for the uncompressed problem, therefore
the improvement of .8 seconds actually corresponds to a 55% improvement in
the time spent propagating the table constraints. This is still less than expected
based on the number of constraint checks performed, however.

Finally, we also ran the renault configuration problem with both compressed
and uncompressed tuples. In that problem, propagation takes too little time and
thus in tests to find the first 2 million solutions, both algorithms performed
identically. In profiling the programs, we found that propagation takes less 1%
of the total runtime and the majority of the time is instead spent on other
aspects of backtracking search.

7 Related Work

Our work on constructing small decision trees overlaps with similar work that
has been performed in machine learning [10, 11]. As we mentioned earlier, the
decision trees constructed for machine learning applications are intended to be
used to classify as yet unseen tuples. Misclassification of some tuples is acceptable
if it means keeping the size of the decision tree smaller. In our case, all tuples
are known and we cannot accept any error in the classification.

GAC-Schema has been studied extensively. The work however has focused
on more efficient search of the set of supporting tuples. Lhomme and Régin pro-
posed the holotuple data structure [9] to avoid checking some tuples. Lecoutre
and Szymanek proposed using binary search to locate a valid support [8]. Both

392 G. Katsirelos and T. Walsh

these techniques are essentially orthogonal to using compressed tuples and can
be used in conjunction with them.

In [4], it is proposed to use tries to represent the set of satisfying tuples.
The tries can be viewed as a way to compress the shared prefixes of tuples.
Even though tries have one leaf per tuple, finding a support may skip up to
dn−m invalid tuples if it encounters a pruned value at level m < n of the trie.
However, tries are restricted to having the same ordering along every branch,
while our method of constructing decision trees is not restricted in this way.
Moreover, in our method many branches may be combined (as we perform bi-
nary branching on the decision trees.) Thus, the reduction in the number of
constraint checks that can be achieved using our method may be significantly
better.

Finally, in [2] it is proposed to build a DAG where each node represents a
range of values for a variable. A path from the root to a leaf in the DAG is
equivalent to one c-tuple. However, no method is proposed to derive this DAG
from an arbitrary set of tuples.

As far as we are aware, we are also the first to propose using this technique
to propagate table constraints with sets of forbidden tuples.

8 Conclusions

We have presented an algorithm for compressing table constraints, for both the
case when the table consists of allowed tuples and when the table consists of
forbidden tuples. The representation produced contains c-tuples, each of which
may correspond to exponentially many uncompressed tuples. Existing algorithms
that enforced GAC on tables with allowed tuples can be adapted to work with
c-tuples while maintaining the central structure of the algorithm that involves
examining (c-)tuples for validity. As a result, compression can also deliver expo-
nential time savings. Moreover, compression allows us to enforce GAC on tables
with forbidden tuples in time polynomial in the number of forbidden tuples,
while the best result so far has been exponential in the arity of the constraint.
Finally, we demonstrated that this technique works in practice, using instances
from the 2005 CSP Competition. Moreover, instances where compression does
not work can be detected relatively quickly.

Besides improving table constraint propagation, this work raises some ques-
tions. First, it appears that the heuristics developed in machine learning for
creating small decision trees are not necessarily better than simpler alternatives.
It would be interesting to develop better heuristics to create smaller trees. Alter-
natively, more effort could be put into finding better solutions to this NP-hard
problem by utilizing constraint programming techniques. Finally, we intend to
evaluate our methods on table constraints with forbidden tuples and integrate
with other improvements to the GAC-Schema algorithm, such as the holotuples
data structure of [9].

A Compression Algorithm for Large Arity Extensional Constraints 393

References

[1] Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: Pre-
liminary results. In: Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, Nagoya, Japan, pp. 398–404 (1997)

[2] Carlsson, M.: Filtering for the case constraint. Talk given at Advanced School on
Global Constraints, Samos, Greece (2006)

[3] Focacci, F., Milano, M.: Global cut framework for removing symmetries. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239. Springer, Heidelberg (2001)

[4] Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised
arc consistency for extensional constraints. In: Proceedings of the Twenty Second
Conference on Artificial Intelligence (to appear 2007)

[5] Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete.
Information Processing Letters 5(1), 15–17 (1976)

[6] Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of the
Twentieth National Conference on Artificial Intelligence (2005)

[7] Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In: Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence,
pp. 125–130 (2007)

[8] Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204. Springer, Heidelberg
(2006)

[9] Lhomme, O., Régin, J.-C.: A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-05) (2005)

[10] Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
[11] Quinlan, J.: Programs for Machine Learning. Morgan Kaurmann Publishers, San

Francisco (1993)
[12] Régin, J.-C.: AC-*: A configurable, generic and adaptive arc consistency algo-

rithm. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 505–519. Springer,
Heidelberg (2005)

[13] van Dongen, M., Lecoutre, C., Wallace, R., Zhang, Y.: 2005 CSP solver compe-
tition. In: van Dongen, M. (ed.) Second International Workshop on Constraint
Propagation and Implementation (2005)

Valid Inequality Based Lower Bounds for WCSP

Mohand Ou Idir Khemmoudj and Hachemi Bennaceur

LIPN - UMR 7030 CNRS - Université Paris 13 F-93430 Villetaneuse, France�

{MohandOuIdir.Khemmoudj,Hachemi.Bennaceur}@lipn.univ-paris13.fr

Abstract. Most of efficient WCSP solving methods are based on arc
consistency notion used to transform a WCSP into an equivalent one
easier to solve. There are several forms of arc consistency : AC* [9], DAC*
[8], FDAC* [8], EDAC* [4]. Recently, an Optimal Soft Arc Consistency
(OSAC) was proposed [2]. But this technique requires much computing
time since it is based on a large linear program. We propose in this
work a new valid transformation based on modeling of the WCSP as a
linear program easier to solve than the computing of OSAC. Preliminary
experiments on random and structured problems are presented, showing
the advantage of our technique.

1 Introduction

The WCSP problem (Weighted Constraint Satisfaction Problem) consists in sat-
isfying in an optimal way a set of weighted constraints. Most of WCSP solving
methods are based on arc consistency notion used to transform a WCSP to an
equivalent one easier to solve. In this purpose, several forms of arc consistency
were proposed : AC* [9], DAC* [8], FDAC* [8], EDAC* [4]. Recently, an Opti-
mal Soft Arc Consistency (OSAC) [2] was proposed. Its disadvantage is that it
requires much computing time since it is based on a large linear program.

We present in this paper a new equivalence preserving transformation for
binary WCSP. Our technique is based on valid inequality notion. We will say
that a system of inequalities is valid if its optimal value is lower than the cost of
an optimal solution of the WCSP. We demonstrate that it is always possible to
build a valid system, composed from one inequality per constraint of the WCSP,
whose value is equal to the OSAC lower bound. The construction of such optimal
system being expensive in computing time, we propose then another way to build
a good valid system and not necessarily optimal. It is obtained by solving the
continuous relaxation of an Integer Linear Program equivalent to the WCSP,
itself based on valid inequalities.

We empirically evaluated our technique on instances of the Radio Link Fre-
quency Assignment Problem and on random Max-CSPs. The results show clearly
the practical advantage of this technique. In addition to these interesting prac-
tical results, we present theoretical results establishing links between arc con-
sistency techniques and Linear Programming. This leads to open new research
prospects to develop WCSP solving methods combining local consistency
techniques and Linear Programming.
� This work is supported in part by the French Electricity Board (EDF).

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 394–408, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Valid Inequality Based Lower Bounds for WCSP 395

2 Preliminaries

In this section, we present the WCSP formalism and its graphic representation
used in this paper. Then, we describe a mathematical formulation of a WCSP
known in the CSP literature.

2.1 WCSP Formalism

Formally, a binary WCSP is defined by a quadruplet (X, D, C, Sv) where :

1. Sv = ({0, 1, ..., h},⊕,≤) is a valuation structure :
– ≤ is the usual order relation among integers;
– h is an integer (it is an upper bound);
– ⊕ is an operation used to combine costs :
• a⊕ b = min(a + b, h);

• a� b =
{

a− b if a �= h;
h otherwise

2. X = {X1, X2, . . . , Xn} is a set of n variables;
3. D = {D1, D2, . . . , Dn} is a set of n domains where each Di is the set of

di ≤ d possible values for the variable Xi;
4. C is a set composed from a constant constraint c∅, n unary weighted con-

straints c1, c2, ..., cn and e weighted binary constraints1. The unary and
binary constraints are cost functions : a unary constraint ci associates a
cost ci(k) ∈ {0, 1, ..., h} for each value k ∈ Di of the variable Xi. A bi-
nary constraint cij associates a cost cij(k, l) ∈ {0, 1, ..., h} for each pair
(k, l) ∈ Di × Dj . When a constraint c ∈ C assigns cost h, it means that
c forbids the corresponding assignment, otherwise it is permitted by c with
the corresponding cost.

The cost of an assignment I = (v1, v2, ..., vn) ∈ ∏
Xi∈X

Di, denoted V (I), is the

sum of all costs : V (I) = c∅ ⊕
∑

Xi∈X

ci(vi)⊕
∑

cij∈C

cij(vi, vj).

An assignment I is consistent if V (I) < h. The problem is to find a consistent
assignment with minimum cost, which is NP-hard.

In this paper we assume that h is infinite. In this case, the laws ⊕ and � are
equivalent to the usual laws of addition and subtraction.

2.2 Graphic Representation of a WCSP

The WCSP can be represented by a graph G(V, A) where V is the set of its
vertices and A is the set of its edges. The set V is composed from n subsets
V1, V2, ..., Vn. Each subset Vi contains a vertex (i, k) for each value k ∈ Di (Vi =
{(i, k) : k = 1, ..., di}). The vertex (i, k) is labeled by ci(k) if ci(k) > 0. There
exists an edge in A between two vertices (i, k) and (j, l) if cij ∈ C and cij(k, l) >
0. We denote < (i, k), (j, l) > the edge between the vertices (i, k) and (j, l). The
edge < (i, k), (j, l) > is labeled by cij(k, l) if cij(k, l) > 1.

1 We assume the existence of the constraints c∅, c1, c2, ..., cn. If no such constraint is
defined, we can always define dummy ones c∅ = 0 and ci(k) = 0, ∀k ∈ Di.

396 M.O.I. Khemmoudj and H. Bennaceur

2.3 Mathematical Formulation of a WCSP

In [7], a 0-1 linear formulation is proposed for WCSP. Let IPK denotes this
formulation. It introduces for each variable Xi ∈ X , di binary variables
xi(1), xi(2), ..., xi(di) constrained to satisfy the following system :

(S)

{ ∑
k∈Di

xi(k) = 1 ∀Xi ∈ X

xi(k) ∈ {0, 1} ∀Xi ∈ X, ∀k ∈ Di

The system (S) expresses all the possible complete assignments of the WCSP.

Remark 1. The constraints Xi =
∑

k∈Di

kxi(k) ∀Xi ∈ X may be added to the

system (S) to explicitly express the link between the introduced binary variables
and the finite domain variables of the WCSP.

In IPK, a binary variable yij(k, l) is introduced for each constraint cij ∈ C and
each pair (k, l) ∈ Di ×Dj . So, the WCSP is expressed as follows :

IPK

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min c∅ +
n∑

i=1

∑
k∈Di

ci(k)xi(k) +
∑

cij∈C

∑
k∈Di

∑
l∈Dj

cij(k, l)yij(k, l)

s.c xi(k) =
∑

l∈Dj

yij(k, l) ∀cij ∈ C, ∀k ∈ Di

xj(l) =
∑

k∈Di

yij(k, l) ∀cij ∈ C, ∀l ∈ Dj

x ∈ S

where x is the vector of the binary variables xi(k), ∀Xi ∈ X, ∀k ∈ Di; the
objective expresses complete assignements total costs and the constraints force
each yij(k, l) variable to take the value 1 iff xi(k) = 1 and xj(l) = 1. The
disadvantage of this model is its large size : O(nd+ed2) variables and O(2ed+n)
constraints.

Let LPK denotes the continuous relaxation of IPK. Recently, an interesting
result is presented in [2]. In this paper, the authors proposed a linear program
with continuous variables and show that its solving allows to compute a lower
bound (OSAC, Optimal Soft Arc Consistency) better than those computed by
techniques based on arc consistency such as FDAC* and EDAC*. The linear
program they propose is the dual of LPK.

3 The Main Objective

The main objective of our work is to transform a WCSP into an equivalent2 one
increasing the lower bound c∅. The following example will be used to present our
motivations and to illustrate the equivalence preserving transformation proposed
in this paper.
2 Two WCSP are equivalent iff they associate the same cost to each complet assign-

ment.

Valid Inequality Based Lower Bounds for WCSP 397

(1,1)

V1 (1,2)

(1,3)

(2,1) (2,2) (2,3)

(3,1)

(3,2)

(3,3)

(4,1) (4,2) (4,3)

V2

V4

V3

a)

(1,1)

V1 (1,2)

(1,3)

(2,1) (2,2) (2,3)
c∅ = 2

(3,1)

(3,2)

(3,3)

(4,1) (4,2) (4,3)

V2

V4

V3

b)

Fig. 1. Two equivalent WCSP

Example 1. Figure 1 shows two equivalent WCSPs. The graph a) represents an
example of Max-CSP with 4 variables (X = {X1, X2, X3, X4}) having the same
domain {1, 2, 3}, and 6 constraints (C = {c12, c13, c14, c23, c24, c34}). This exam-
ple of Max-CSP is completely arc consistent (it is FAC* since ∀Xi ∈ X, ∀k ∈
Di, ∀cij ∈ C, ∃l ∈ Dj : cj(l) + cij(k, l) = 0). Thus, all the based on arc consis-
tency methods compute the trivial lower bound 0. The technique proposed in [2]
leads to transform this example of WCSP to the equivalent WCSP on the graph
b) with c∅ = 2. However, in general, this technique is very expensive in comput-
ing time since it is based on the solving of the dual of the continuous relaxation
LPK of IPK.

Our transformation approach leads to compute lower bounds closer to the OSAC
lower bound. However, it is less time consuming than OSAC. This approach is
based on the notion of valid binary inequality introduced below.

4 Linear Models Based on Valid Inequalities

In our previous works [5,6], we introduced the concept of binary clique and we
showed how to exploit it for solving Max-CSP. Recall that a binary clique Γij

associated to a constraint cij is a union of two subsets Ei and Ej of Vi and Vj

respectively such that (i, k) /∈ Ei ∨ (j, l) /∈ Ej , ∀(k, l) ∈ Di ×Dj : cij(k, l) = 0.
A binary clique Γij is maximal if there is not another binary clique Γ ′ij such

that Γij ⊂ Γ ′ij . In the Max-CSP framework, a set Γ of binary cliques is said
complete if and only if for each constraint cij and for each pair (k, l) ∈ Di×Dj :
cij(k, l) �= 0, the set Γ contains at least one binary clique Γij associated to cij

such that (i, k) ∈ Γij and (j, l) ∈ Γij .

Example 2. In the graph a) of figure 1, Γ12 = {(1, 1), (1, 2), (2, 1), (2, 2)} is a
maximal binary clique relatively to the constraint c12. In the CSP context, this
clique may be formulated by the linear inequality x1(1)+x1(2)+x2(1)+x2(2) ≤ 1.

398 M.O.I. Khemmoudj and H. Bennaceur

We introduce in this section the concept of valid binary inequality which gener-
alizes that of binary clique and we show how to exploit it to define useful linear
models for solving WCSP. We first introduce for each binary constraint cij ∈ C,
a cost variable ηij ≥ 0. The vector of the variables ηij is denoted η.

Definition 1 (Valid binary inequality). Let cij be a constraint of a WCSP
and let us consider the following inequality :

∑
k∈Di

aij(i, k)xi(k) +
∑
l∈Dj

aij(j, l)xj(l) ≤ bij + ηij (1)

where aij(i, k) ∈ R ∀k ∈ Di, aij(j, l) ∈ R ∀l ∈ Dj , bij ∈ R.
The variables which appear in this inequality are the cost variable ηij associ-

ated to the constraint cij and the binary variables associated to the values of the
two variables Xi and Xj. We say that it is a binary inequality associated to
cij. It is valid if and only if it can be always satisfied with a cost ηij lower than
the cost induced by the constraint cij . That is,

aij(i, k) + aij(j, l) ≤ bij + cij(k, l) ∀(k, l) ∈ Di ×Dj .

An inequality of type (1) is a weighted clique if its coefficients (aij(i, k)∀k ∈
Di, aij(j, l)∀l ∈ Dj , bij) are integers and such that :

aij(i, k) = 0 ∨ aij(j, l) = 0 ∀(k, l) ∈ Di ×Dj : cij(k, l) = 0.

Example 3. The two valid inequalities 2x1(1) + x1(2) + x2(1) + 2x2(2) ≤ 2 +
η12 and 3x1(1) + 3

2x1(2) + 3
2x2(1) + 3x2(2) ≤ 3 + η12 can be associated to the

constraint represented by the graph a) on figure 2. Both these two inequalities
are not weighted binary cliques since the vertices (1, 2) and (2, 1) are not linked
and the variables x1(2) and x2(1) occur with non null coefficients in the two
inequalities. The fact that the coefficients of the last inequality are not all integers
is another reason which makes that it is not regarded as being a weighted binary
clique.

For each constraint of the WCSP, it is possible to associate several binary valid
inequalities. In the following, we say that a system Ax ≤ b + η is valid if it is
composed from binary inequalities all valid.

2

2

3

(1,2) (2,2)

(1,1)

V2V1

(2,1)

c12

a)

(2,1)

V1 V2

1 (1,1)

(2,2) 2(1,2)

c12

b)

Fig. 2. Two equivalent weighted constraints

Valid Inequality Based Lower Bounds for WCSP 399

Theorem 1. If Ax ≤ b + η is a linear system whose all constraints are valid
inequalities of type (1) then each lower bound of the linear program

IP (A, b)

⎧
⎨
⎩

min c∅ +
n∑

i=1

∑
k∈Di

ci(k)xi(k) +
∑

cij∈C

ηij

s.c : Ax ≤ b + η, x ∈ S, η ≥ 0

is also a lower bound of the WCSP.

Proof. Since the system Ax ≤ b+η is valid then we can associate to any optimal
solution I = (v1, v2, ..., vn) of the WCSP the solution (x, η) of IP (A, b) where
xi(vi) = 1 ∀Xi ∈ X ; xi(k) = 0 ∀Xi ∈ X, ∀k ∈ Di\{vi} and ηij = cij(vi, vj)∀cij ∈
C. The solution (x, η) is not necessarily optimal and its cost V (x, η) is by con-
struction equal to the cost V (I) of I. The optimal value of IP (A, b) is then a
lower bound of the WCSP. Thus, any lower bound of IP (A, b) is also a lower
bound of the WCSP.

Corollary 1. If Ax ≤ b + η is valid and if for each constraint cij of the WCSP
and for each pair (k, l) ∈ Di × Dj, the system Ax ≤ b + η contains at least
one inequality associated to cij such as aij(i, k) + aij(j, l) = bij + cij(k, l) then
IP (A, b) is equivalent to the WCSP.

5 Using Valid Inequalities for Preprocessing WCSP

We propose in this section a technique exploiting valid inequalities for prepro-
cessing WCSP. We first present the valid operations used to transform a WCSP
to an equivalent one. Then, we show how to build good linear systems in order
to benefit as well as possible from these operations.

5.1 Equivalence Preserving Transformation

Let Ax ≤ b + η be a system containing one valid inequality of type (1) per
constraint cij ∈ C of the WCSP and let us consider the following operations :

op1 cij(k, l)← cij(k, l) + bij − aij(i, k)− aij(j, l) ∀cij ∈ C, ∀(k, l) ∈ Di ×Dj;
op2 ci(k)← ci(k) +

∑
j:cij∈C

aij(i, k) ∀Xi ∈ X, ∀k ∈ Di;

op3 ui ← min
k∈Di

ci(k)∀Xi ∈ X ;

op4 ci(k)← ci(k)− ui ∀Xi ∈ X, ∀k ∈ Di;

op5 c∅ ← c∅ +
n∑

i=1
ui −

∑
cij∈C

bij .

These operations can be seen as a succession of classical projections directed by
the linear system Ax ≤ b + η of valid inequalities. Note that, for every variable
Xi ∈ X and for each binary constraint cij ∈ C, ui is the amount of cost projected
from ci to c∅, bij is the amount of cost projected from c∅ to cij and the amounts
aij(i, k) and aij(j, l) are projected from cij to ci(k) and cj(l) respectively.

400 M.O.I. Khemmoudj and H. Bennaceur

Theorem 2. The above operations (op1, op2, op3, op4 and op5) are valid : they
transform the WCSP into another equivalent one.

Proof. We show that the cost of any complete assignment I = (v1, v2, ..., vn)
remains the same after achieving this transformation:

c∅ +
n∑

i=1
ui −

∑
cij∈C

bij +
n∑

i=1

(
ci(vi) +

∑
j:cij∈C

aij(i, vi)− ui

)

+
∑

cij∈C

(cij(vi, vj) + bij − aij(i, vi)− aij(j, vj))

=

c∅ +
n∑

i=1
ci(vi) +

∑
cij∈C

cij(vi, vj)

+
n∑

i=1
ui −

n∑
i=1

ui −
∑

cij∈C

bij +
∑

cij∈C

bij +
n∑

i=1

∑
j:cij∈C

aij(i, vi)−
∑

cij∈C

(aij(i, vi) + aij(j, vj))

=

c∅ +
n∑

i=1
ci(vi) +

∑
cij∈C

cij(vi, vj).

Remark 2. The value of c∅ obtained after performing the transformation is
a lower bound. This is guaranteed by the fact that Ax ≤ b + η is valid : af-
ter achieving the transformation, we have ci(k) ≥ 0 ∀Xi ∈ X, ∀k ∈ Di and
cij(k, l) ≥ 0 ∀cij ∈ C, ∀(k, l) ∈ Di × Dj. The resulting WCSP may contain
fractional valuations when the coefficients of A and b are not all integers.

Remark 3. We can consider individually the constraints and use the corre-
sponding valid inequalities to perform the five operations. In this case, if bij > 0
then the value of c∅ may be decreased after considering the constraint cij. This
possibility (bij > 0), which is not allowed in previous based on arc consistency
techniques, can be exploited to develop local search techniques based on arc con-
sistency authorizing temporary decreasing of the lower bound in order to escape
from local consistency closures.

5.2 Optimal System of Valid Inequalities

Any system of valid inequalities can be used to transform a WCSP into an equiv-
alent one. It can be interesting to choose the system which allows the computing
of the largest lower bound, i.e. the system leading to maximize the quantity
n∑

i=1
ui −

∑
cij∈C

bij without producing negative valuations.

For this aim, the following linear program can be solved :

LP ∗

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
n∑

i=1
ui −

∑
cij∈C

bij

aij(i, k) + aij(j, l) ≤ bij + cij(k, l) ∀cij ∈ C, ∀(k, l) ∈ Di ×Dj

ui −
∑

j:cij∈C

aij(i, k) ≤ ci(k) ∀Xi ∈ X, ∀k ∈ Di

Valid Inequality Based Lower Bounds for WCSP 401

The constraints of this linear program express the condition that nonnegative
valuations will be produced at the end of the transformation, otherwise the
obtained value of c∅ is not guaranteed to be a lower bound.

Theorem 3. The value V (LP ∗) of the linear program LP ∗ is equal to the lower
bound of OSAC.

Proof. Since we must satisfy the assignment constraints
∑

k∈Di

xi(k) = 1 and
∑

l∈Dj

xj(l) = 1, the following set

{
∑

k∈Di

(M + aij(i, k))xi(k) +
∑
l∈Dj

(M + aij(j, l))xj(l) ≤ 2M + bij + ηij : M ∈ R}

is composed from inequalities all equivalents. So, if the coefficient bij is not null
in a valid inequality associated to the constraint cij ∈ C then we can choose
M = − bij

2 to form an equivalent valid inequality with bij = 0. We deduce that
if all bij in LP ∗ are set equal to 0 then the optimal value remains the same. The
linear program LP ∗ with all bij equal to 0 corresponds exactly to the dual of
LPK used in [2] to compute the OSAC lower bound.

Remark 4. The constraints aij(i, k) + aij(j, l) ≤ bij + cij(k, l) of LP ∗ express
the validity of the inequalities used for the transformation. Note that if we consider
individually the constraints, then we can choose nonnegative the coefficients of the
valid inequalities in order to be sure that during all the transformation process, the
valuations are always nonnegative. This is not a restriction since the coefficients
bij(∀cij ∈ C) are not necessarily all nulls as in OSAC [2]. Indeed, it is always possi-
ble to choose a sufficiently large constant M in order to transform a valid inequality
of type (1) to an equivalent one with only nonnegative conefficients.

The disadvantage of LP ∗ is that it requires much computing time since it is of
a large size : O(ed + n) variables and O(ed2 + nd) constraints.

5.3 Heuristic Approach to Build Valid Inequality Systems

The solving of LP ∗ allows the determination of an optimal system among all
systems containing one valid inequality per constraint of the WCSP : it is a
system which can be used to transform the WCSP into an equivalent one and
to increase to the maximum the lower bound c∅. However, the solving of LP ∗ is
expensive in computing time. To attenuate this disadvantage, we propose to use
another valid inequality system which is not necessarily optimal to transform
the WCSP.

The system that we propose is obtained by solving the continuous relaxation
of an Integer Linear Program (ILP) equivalent to the WCSP. All the inequalities
of this ILP are weighted cliques. In order to form them, each constraint cij ∈ C
of the WCSP is first decomposed into several constraints, each one associates to
each pair of Di ×Dj the same cost or the cost 0. This decomposition is done by
the algorithm 1.

402 M.O.I. Khemmoudj and H. Bennaceur

Algorithm 1. Constraint decomposition

Require: a constraint cij

Ensure: pij binary constraints c1
ij , c

2
ij , ..., c

pij

ij : cij(k, l) =
pij∑
q=1

cq
ij(k, l) ∀(k, l) ∈ Di×Dj

1: STOP ← false, q ← 0
2: while STOP = false do
3: if ∃(k, l) ∈ Di × Dj : cij(k, l) > 0 then
4: α ← min{cij(k, l) : cij(k, l) > 0, (k, l) ∈ Di × Dj}
5: q ← q + 1
6: cq

ij(k, l) ← min(cij(k, l), α), ∀(k, l) ∈ Di × Dj

7: cij(k, l) ← max(0, cij(k, l) − α), ∀(k, l) ∈ Di × Dj

8: else
9: STOP ← true, pij ← q

10: end if
11: end while

(2,1)

V1 V2

(1,1)

(2,2)(1,2)

(2,1)

V1 V2

(1,1)

(2,2)(1,2)

c112 c212

2

2

2

Fig. 3. Decomposition result of the constraint given by the graph a) on figure 2

Example 4. The constraints represented by figure 3 are the result of the decom-
position of the constraint represented by the graph a) on figure 2.

Remark 5. The algorithm 1 produces at most O(d2) constraints.

After the decomposition of all the constraints, a complet set of weighted cliques
Γc [6] is built : we associate for each constraint cq

ij , produced by the decomposi-
tion, di +dj maximal weighted cliques (one for each value of the two variables Xi

and Xj). Namely, for any value k of Xi and for any constraint cq
ij involving the

variable Xi we associate the maximal weighted clique MC({(i, k)}, j, q) built as
follows:

1. Ej = {(j, l) : l ∈ Dj, c
q
ij(k, l) �= 0};

2. Ei = {(i, k′) : k′ ∈ Di, c
q
ij(k

′, l) �= 0 ∀(j, l) ∈ Ej};
3. MC({(i, k)}, j, q) = Ei ∪Ej .

In the same way, for any value l of Xj and for any constraint cq
ij involving the

variable Xj we associate the maximal weighted clique MC({(j, l)}, i, q) built as
follows :

1. Ei = {(i, k) : k ∈ Di, c
q
ij(k, l) �= 0};

2. Ej = {(j, l′) : l′ ∈ Dj , c
q
ij(k, l′) �= 0 ∀(i, k) ∈ Ei};

3. MC({(j, l)}, i, q) = Ei ∪ Ej .

Valid Inequality Based Lower Bounds for WCSP 403

For each constraint cq
ij we associate a cost variable ηq

ij and we formulate by an
inequality of type (1) each weighted clique Γij ∈ Γc associated to cq

ij as follows:

– bij = max
(k,l)∈Di×Dj

cq
ij(k, l);

– aij(i, k) = bij if (i, k) ∈ Γij , aij(i, k) = 0 otherwise;
– aij(j, l) = bij if (j, l) ∈ Γij , aij(j, l) = 0 otherwise.

Example 5. The formulation of the weighted cliques which we associate to the
constraints c1

12 and c2
12 given by figure 3 is as follows:

2x1(1) + 2x2(1) + 2x2(2) ≤ 2 + η1
12

2x1(2) + 2x2(2) ≤ 2 + η1
12

2x1(1) + 2x2(1) ≤ 2 + η1
12

2x1(1) + 2x1(2) + 2x2(2) ≤ 2 + η1
12

x1(1) + x2(2) ≤ 1 + η2
12

x1(2) ≤ 1 + η2
12

x2(1) ≤ 1 + η2
12

x1(1) + x2(2) ≤ 1 + η2
12

Let IP (Γc) denotes the complete linear system which consists in determining

a solution in S minimizing the objective
n∑

i=1

∑
k∈Di

ci(k)xi(k) +
∑

cij∈C

pij∑
q=1

ηq
ij and

satisfying the valid inequalities corresponding to the set Γc of weighted cliques,
where pij is the number of constraints produced by the decomposition of cij .
The IP (Γc) system is an Integer Linear Program of type IP (A, b) where all its
inequalities are weighted cliques. It is equivalent to the WCSP.

Once IP (Γc) is built, its continuous relaxation LP (Γc) is solved and the ob-
tained dual variable values are used to aggregate its inequalities in order to
produce only one inequality for each initial constraint of the WCSP.

Example 6. Suppose that the constraint c12 given by the graph a) on figure 2
is one of the e binary constraints of a WCSP, IP (Γc) is the linear system con-
structed after the decomposition of these e constraints and λ is an optimal dual
solution of the continuous relaxation LP (Γc). The vector λ contains one com-
ponent for each inequality in LP (Γc). Let (1

2 , 0, 0, 1, 0, 0, 0, 0) be the components
which correspond to the inequalities associated to c12. These inequalities are then
aggregated as follows :

1
2 .

(
2x1(1) + 2x2(1) + 2x2(2) ≤ 2 + η1

12
)

+ 0.
(
2x1(2) + 2x2(2) ≤ 2 + η1

12
)

+ 0.
(
2x1(1) + 2x2(1) ≤ 2 + η1

12
)

+ 1.
(
2x1(1) + 2x1(2) + 2x2(2) ≤ 2 + η1

12
)

+ 0.
(
x1(1) + x2(2) ≤ 1 + η2

12
)

+ 0.
(
x1(2) ≤ 1 + η2

12
)

+ 0.
(
x2(1) ≤ 1 + η2

12
)

+ 0.
(
x1(1) + x2(2) ≤ 1 + η2

12
)

= 3x1(1) + 2x1(2) + x2(1) + 3x2(2) ≤ 3 + η1
12 + η2

12

404 M.O.I. Khemmoudj and H. Bennaceur

The obtained inequality is simplified by replacing η1
12 + η2

12 by η12. We obtain :
3x1(1) + 2x1(2) + x2(1) + 3x2(2) ≤ 3 + η12.

Now, we dispose from a system3 with one valid inequality per initial constraint
(before the decomposition) which can be used to transform the WCSP.

Example 7. If we use the valid inequality 3x1(1) + 2x1(2) + x2(1) + 3x2(2) ≤
3+η12 to perform the five operations op1, op2,..., op5 on the constraint c12 given
by the graph a) on the figure 2 then we obtain the equivalent constraint given by
the graph b) on the same figure.

Example 8. Let us consider the WCSP on the graph a) of figure 1 again. The
corresponding Γc contains 36 maximal cliques. The solving of LP (Γc) supplies
an optimal dual solution which we use to aggregate the cliques in order to produce
the following complete system of one inequality per constraint of the WCSP :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min η12 + η13 + η14 + η23 + η24 + η34
t.q x1(1) + x1(2) + x2(1) + x2(2) ≤ 1 + η12

x1(1) + x1(3) + x3(1) + x3(3) ≤ 1 + η13
x1(2) + x1(3) + x4(1) + x4(2) ≤ 1 + η14
x2(2) + x2(3) + x3(1) + x3(2) ≤ 1 + η23
x2(1) + x2(3) + x4(1) + x4(3) ≤ 1 + η24
x3(2) + x3(3) + x4(2) + x4(3) ≤ 1 + η34
x ∈ S, η ≥ 0

This system is then used to transform the initial Max-CSP to the equivalent
WCSP given by the graph b). Note that, the performing of the five operations
(op1, op2, ..., op5) directed by the first inequality decreases temporary the lower
bound from 0 to -1 (see remark 3). The transformation directed by the 5 other
inequalities leads to increase the lower bound from -1 to 2. During the transfor-
mation process, since the coefficients in the valid system used are all nonnegative,
the valuations are always nonnegative and not only at the end of the transforma-
tion (see remark 4). So we believe, as this example shows, that valid inequalities
with nonnegative integer coefficients can be exploited to develop local search tech-
niques based on arc consistency authorizing the temporary decreasing of the lower
bound in order to escape from local consistency closures.

For this example, our approach and the OSAC technique [2] lead to the same
result.

Remark 6. Each valid inequality can be transformed into another valid inequal-
ity with integer coefficients as follows :

1. bij ← �bij�;
2. aij(j, l)← min{bij , �aij(j, l)�} ∀l ∈ Dj;
3. aij(i, k)← bij + min{cij(k, l)− aij(j, l), l ∈ Dj} ∀k ∈ Di.

3 This system can be not optimal since it is not selected among all the systems of one
inequality per constraint. An optimal system of one inequality per constraint can be
computed by solving LP ∗.

Valid Inequality Based Lower Bounds for WCSP 405

Thus, if Ax ≤ b + η is a system of valid inequalities with fractional coefficients
and if we perform the above instructions to each inequality then we will obtain
a new system which we can use4 to transform the WCSP into an equivalent one
with integer valuations. Such transformation is necessary if the solving method
is not adapted to the case of WCSP with fractional valuations.

5.4 Recapitulation

The following algorithm summarizes steps to be followed in order to benefit as
much as possible from the preprocessing we propose :

Algorithm 2. LP (Γc) + MEDAC

1: multiply by a sufficiently large constant M the valuations of the WCSP (see remark
6);

2: use algorithm 1 to decompose all constraints of the WCSP;
3: construct a complete set Γc of weighted cliques;
4: use an optimal dual solution of LP (Γc) to aggregate its cliques in order to produce

a new system of one valid inequality per constraint of the initial WCSP;
5: transform these inequalities into inequalities with integer coefficients (see remark

6);
6: use the obtained valid inequalities to transform the WCSP into an equivalent

WCSP;
7: solve the obtained WCSP by MEDAC and divide by M the cost of the obtained

solution in order to give its cost in the initial WCSP.

6 Experiments

6.1 Lower Bounds

We have compared the bounds V (LP (Γc)), OSAC and EDAC∗. The former two
bounds were computed by using ILOG CPLEX (using the barrier algorithm).
The bound EDAC∗ is computed by using the solver toolbar [3].

The first set of instances processed are six classes of random Max-CSP with
domain size 10 created by a random generator following the protocol defined in
[8] : sparse loose (SL, 40 var), dense loose (DL, 30 var), complete loose (CL, 25
var), sparse tight (ST, 25 var), dense tight (DT, 25 var) and complete tight (CT,
15 var) (see http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softCSP for more de-
tails). For each class, 50 different problems were considered.

The left table on figure 4 shows the average values of the three lower bounds
on tight problems (on loose problems, the three techniques compute the trivial
lower bound 0). The right table shows the average time in seconds to compute
the bounds OSAC and V (LP (Γc)). The necessary time to compute EDAC∗ is
in order of microseconds5.
4 The disadvantage of restricting to use inequalities with integer coefficients can be

attenuated by multiplying all the valuations by a same sufficiently large integer M
and by solving the new obtained WCSP.

5 The machine used is a 2,80GHz Pentium with 2GB of RAM and a Linux operating
system.

406 M.O.I. Khemmoudj and H. Bennaceur

Binf ST DT CT

V (LP (Γc)) 11 18.30 53.89

OSAC 12.30 19.80 54.75

EDAC∗ 4.26 9.96 44.46

cpu-time (s) SL DL CL ST DT CT

V (LP (Γc)) 0.29 0.1 0.15 0.09 0.10 0.12

OSAC 1.97 0.84 11.80 0.34 0.55 1.63

EDAC∗ 0 0 0 0 0 0

Fig. 4. Lower bounds comparison on random Max-CSP

scen07 scen08 graph11 graph13
Binf cpu-time (s) Binf cpu-time (s) Binf cpu-time (s) Binf cpu-time (s)

V (LP (Γc)) 30346.7 118.66 44.1278 167.88 2952.34 50.94 9797.5 147.01

OSAC 31453.1 1461.94 48.3225 1999.21 2957 109.87 9797.5 2031.51

EDAC∗ 10000 0.01 6 0.04 2710 0.01 8722 0.03

Fig. 5. Lower bounds comparison on structured WCSP

The bounds V (LP (Γc)), OSAC and EDAC∗ are also compared on 4 instances
of the Radio Link Frequency Assignment Problem of the CELAR [1]. The prob-
lem considered are the scen0{7,8}reduc.wcsp and graph1{1,3}reducemore.wcsp
(see the Benchmarks section in [3]).

As the tables on figures 4 and 5 show, the bounds OSAC and V (LP (Γc))
are extremely powerful, providing lower bounds which are much better than
EDAC∗. However, these two bounds require much more computing time than
the computing of EDAC∗. The bounds OSAC and V (LP (Γc)) are close but
V (LP (Γc)) requires much less computing time than OSAC.

6.2 Preprocessing

To evaluate the preprocessing which we propose, we have solved the random
Max-CSP presented in the previous subsection by the two methods MEDAC
and LP (Γc) + MEDAC. The constant M used by LP (Γc) + MEDAC is cho-
sen equal to 1000 and as in [2], the code of toolbar has been modified
accordingly6.

The table on the figure 6 reports the average size of the tree search and
the average cpu-time required by the two methods to solve the problems
considered.

On the loose problems, the preprocessing proposed does not yield any im-
provement. This is due to the lower bound V (LP (Γc)) which is equal to 0 for
these problems. However, it is worth noting that the computing time of the
preprocessing is insignificant comparatively to the global solving time.

On the tight problems, the preprocessing that we propose is very effective
especially on the class DT where the number of nodes explored and the global
solving time were significantly reduced.
6 If a solution of cost 3M is found for example then, since the cost solutions are

multiples of M , the upper bound is fixed to 2M + 1 in order to eliminate solutions
of cost higher than 2M .

Valid Inequality Based Lower Bounds for WCSP 407

MEDAC LP (Γc) + MEDAC
#nodes cpu-time (s) #nodes cpu-time (s)

SL 24872.1 2.605 24872.1 2.762

DL 14706 1.376 14706 1.467

CL 202132 25.515 202132 25.741

ST 7993.38 0.774 2440.88 0.601

DT 22025 2.374 5856.34 1.601

CT 156588 16.751 67036.5 16.730

Fig. 6. Preprocessing evaluation

7 Conclusion

In this paper, we have introduced the valid inequality notion and have shown
how it can be exploited to solve binary Max-CSP and WCSP problems.

We proposed an equivalence preserving transformation based on valid inequal-
ity notion and demonstrated that it is always possible to construct an optimal
system of one valid inequality per constraint of the WCSP, on which the trans-
formation can be based. The computing time necessary to search for a such
optimal system is disadvantageous. Thus, we proposed an heuristic to search for
a good (not necessarily optimal) system of one valid inequality per constraint of
the WCSP. The proposed technique is based on continuous relaxation LP (Γc)
of an integer linear system IP (Γc) equivalent to the WCSP.

The lower bound produced by solving LP (Γc) is compared with the bound
produced by the best known heuristic technique (EDAC∗) based on arc consis-
tency and with the bound produced by the optimal soft arc consistency (OSAC).
The obtained results show that the value of LP (Γc) is very close to the bound
produced by OSAC and much higher than the bound produced by EDAC∗.

Despite the relatively high necessary time to solve LP (Γc), we have shown that
it is useful to exploit it in a preprocessing phase. Indeed, our experiments show
that this preprocessing is effective for tight problems and for loose problems, the
necessary computing time to solve LP (Γc) is insignificant comparatively to the
global solving time.

Furthermore, this article presents new interesting research prospects. Our
prospects are :

1. the study of the possible enhancement of heuristic based on arc consistency
such as EDAC∗ by using techniques based on valid inequality notion to
escape from local consistency closures;

2. the extension of our study to WCSP with n-ary constraints.

References

1. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link Frequency
Assignment. Constraints 4(1), 79–89 (1999)

2. Cooper, M., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: IJCAI, pp.
68–73 (2007)

408 M.O.I. Khemmoudj and H. Bennaceur

3. de Givry, S., Heras, F., Larrosa, J., Rollon, T., Schiex, T.: The SoftCSP and Max-
SAT benchmarks and algorithm web site (2006),
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softcsp

4. de Givry, S., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer to
full arc consistency in weighted CSPs. In: IJCAI, pp. 84–89 (2005)

5. Khemmoudj, M.O.I., Bennaceur, H.: Clique Inference Process for Solving Max-CSP.
In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 746–750. Springer, Heidelberg
(2006)

6. Khemmoudj, M.O.I., Bennaceur, H.: Clique Based Lower Bounds for Max-CSP.
Technical report 2006-02, LIPN (2006)

7. Koster, A.: Frequency Assignment: Models and Algorithms. PhD Thesis. UM (Maas-
tricht, The Netherlands) (1999)

8. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for Weighted
CSP. In: IJCAI, pp. 239–244 (2003)

9. Schiex, T.: Arc Consistency for Soft Constraints. In: Dechter, R. (ed.) CP 2000.
LNCS, vol. 1894, pp. 411–424. Springer, Heidelberg (2000)

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softcsp

Advisors for Incremental Propagation

Mikael Z. Lagerkvist and Christian Schulte

School of Information and Communication Technology
KTH - Royal Institute of Technology, Sweden

{zayenz,cschulte}@kth.se

Abstract. While incremental propagation for global constraints is
recognized to be important, little research has been devoted to how
propagator-centered constraint programming systems should support in-
cremental propagation. This paper introduces advisors as a simple and
efficient, yet widely applicable method for supporting incremental propa-
gation in a propagator-centered setting. The paper presents how advisors
can be used for achieving different forms of incrementality and evaluates
cost and benefit for several global constraints.

1 Introduction

Global constraints are essential in constraint programming as they are useful for
modeling and crucial for efficient and powerful propagation. For many propaga-
tors implementing global constraints, incrementality is important for efficiency.

The key features to support incremental propagation are state for propagators
(to store datastructures for incremental propagation) and modification informa-
tion (which variables have been modified and how have their domains changed).
Without state, incrementality is impossible. Without modification information,
the asymptotic complexity of a propagator is at least linear in the number of
variables: a propagator must scan all its variables for modification.

Propagation comes in two flavors: variable- or propagator-centered. Variable-
centered propagation is controlled by the set of modified variables with some
additional information (for example, variable and constraint in AC3 [17], variable
and value in AC4 [18]). Propagator-centered propagation is controlled by the set
of propagators still to be propagated, see for example [2].

Providing modification information to a propagator is straight-forward with
variable-centered propagation, and is used in systems such as Choco [15], ILOG
Solver [13], and Minion [10]. This is not true for propagator-centered propagation
which is for example used in CHIP [8], SICStus [7], and Gecode [9,23]. While
propagator-centered propagation typically lacks support for modification infor-
mation, it is simple and has important advantages such as fixpoint reasoning,
priorities, and priority-based staging [23].

This paper presents advisors as a simple, efficient, yet widely applicable
method for supporting incremental propagation in a propagator-centered set-
ting. The idea for advisors is not new; similar concepts called demons are used
in CHIP [8] and SICStus [6]. This paper, however, is the first attempt to define
a model, to describe an implementation, and to analyze advisors.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 409–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

410 M.Z. Lagerkvist and C. Schulte

Basic requirements and approach. For propagator-centered propagation, it is not
too difficult to record for a propagator its modified variables. However, informa-
tion about modified variables is often not what a propagator needs. For example,
when a variable x is modified, a propagator might need to know the position of
x in an array, or the node in a variable-value graph corresponding to x. That is,
a propagator requires propagator-specific information.

Providing information on domain change is difficult in a propagator-centered
setting: the information is specific to each propagator, in contrast to variable-
centered propagation where the information is the same for all constraints. More-
over, domain change information should be computed on demand: the overall
efficiency of a system should not be compromised.

Taking these issues into account, advisors are programmed for a particular
propagator to support propagator-specific modification information. Like prop-
agators, advisors are generic in that they can be used with arbitrary variable
domains. Advisors are second-class citizens compared to propagators: advisors
cannot propagate, they can only advise propagators to achieve incremental and
more efficient propagation. The second-class citizen status is deliberate: advi-
sors are designed to be the simplest possible extension to support incremental
propagation while introducing close to no overhead.

Contributions. The contributions of the paper are as follows:

– a simple, general, and implementation-independent model for propagation
with advisors in a propagator-centered setup;

– a description of essential properties tomake advisedpropagationwell-behaved;
– implementation aspects and design decisions for advisors;
– examples of how to use advisors for global constraints.

Plan of the paper. The next section reviews propagator-based propagation in
a setup that is extended to advised propagation in Sect. 3. Implementation as-
pects and an assessment of cost and potential benefit follow in Sect. 4. Section 5
demonstrates how advisors can be used in practice. The following section con-
cludes the paper.

2 Simple Propagation

This section introduces the basic notions for constraint propagation with prop-
agators. The setup is slightly uncommon: a propagator is a function that takes
a domain and a state as input and returns a log as a sequence of tell operations
and a new state, where the log describes the domain obtained by propagation.
State and log will be essential for propagation with advisors. This paper focuses
entirely on propagators. Information on how a propagator faithfully implements
a constraint can for example be found in [22].

Domains. A domain d is a complete mapping from a finite set of variables V
into the set of subsets of a finite subset of the integers. A domain d1 is stronger

Advisors for Incremental Propagation 411

than a domain d2, written d1 ≤ d2, if d1(x) ⊆ d2(x) for all x ∈ V . A domain d1 is
strictly stronger than a domain d2, written d1 < d2, if d1 ≤ d2 and d1 �= d2. The
disagreement set dis (d1, d2) of domains d1 and d2 is {x ∈ V | d1(x) �= d2(x)}.
Domains d1 and d2 are equal with respect to a set of variables X ⊆ V , written
d1 =X d2, if d1(x) = d2(x) for all x ∈ X .

Tells and logs. A tell x ∼ n describes how to update a domain, where x ∈ V and
n ∈ Z and ∼ is one of the relation symbols ≤, ≥, �=. The domain update d[x ∼ n]
of a domain d by a tell x ∼ n is as follows: d[x ∼ n] (x) = {m ∈ d(x) | m ∼ n}
and d[x ∼ n] (y) = d(y) if x �= y. Note that d[t] ≤ d for any tell t and domain
d. A tell t is pruning for a domain d, if d[t] < d. The relation symbols in a tell
capture domain updates typically found in systems.

Propagators describe the result of propagation by a tuple of tells, called log.
The domain update d[l] of a domain d by a log l successively applies the updates
from l to d. The update d[〈〉] by the empty log is d itself. For a non-empty log
〈t1, . . . , tn〉 with n > 0, the update d[〈t1, . . . , tn〉] is defined as (d[t1])[〈t2, . . . , tn〉].
Clearly, d[l] ≤ d for any log l and domain d.

A log 〈t1, . . . , tn〉 is pruning for a domain d, if n = 0, or t1 is pruning for d
and 〈t2, . . . , tn〉 is pruning for d[t1]. Note that the empty log is pruning and that
a pruning log can contain multiple tells for the same variable.

Propagators. A propagator can use state for incremental propagation where the
exact details are left opaque. A propagator is a function p that takes a domain
d and a state s as input and returns a pair 〈l, s′〉 of a log l and a new state s′.
The domain obtained by propagation is the update d[l] of d by l. It is required
that l is pruning for d (capturing that a propagator only returns pruning and
hence relevant tells but not necessarily a minimal log).

As a simplifying assumption, the result of propagation is independent of state:
for a propagator p and a domain d for any two states si with p(d, si) = 〈li, s′i〉
(i = 1, 2) it holds that d[l1] = d[l2]. Hence, the result of propagation p[[d]] is
defined as d[l] where p(d, s) = 〈l, s′〉 for an arbitrary state s.

A propagator p is contracting: by construction of a log, p[[d]] ≤ d for all
domains d. A propagator p must also be monotonic: if d1 ≤ d2 then p[[d1]] ≤ p[[d2]]
for all domains d1 and d2. A domain d is a fixpoint of a propagator p, if p[[d]] = d
(that is, if p(d, s) = 〈l, s′〉 for states s, s′, the log l is empty).

Variable dependencies. A set of variables X ⊆ V is sufficient for a propagator
p, if it satisfies the following properties. First, no output on other variables is
computed, that is, d =V−X p[[d]] for all domains d. Second, no other variables
are considered as input: if d1 =X d2, then p[[d1]] =X p[[d2]] for all domains d1, d2.

For each propagator p a sufficient set of variables, its dependencies, var[p] ⊆ V
is defined. Dependencies are used in propagation as follows: if a domain d is a
fixpoint of a propagator p, then any domain d′ ≤ d with var[p] ∩ dis (d, d′) = ∅
is also a fixpoint of p. To better characterize how propagators and variables are
organized in an implementation, the set of propagators prop[x] depending on a
variable x is defined as: p ∈ prop[x] if and only if x ∈ var[p].

412 M.Z. Lagerkvist and C. Schulte

N ← P ;
while N �= ∅ do

remove p from N ;
〈l, s〉 ← p(d, state[p]);
d′ ← d[l]; state[p] ← s;
N ← N ∪ ⋃

x∈dis(d,d′) prop[x];

d ← d′;
return d;

Algorithm 1. Simple propagation

Propagation. Propagation is shown in Algorithm 1. It is assumed that all prop-
agators are contained in the set P and that state[p] stores a properly initialized
state for each propagator p ∈ P .

The set N contains propagators not known to be at fixpoint. The remove
operation is left unspecified, but a realistic implementation bases the decision
on priority or cost, see for example [23]. Computing the propagators to be added
to N does not depend on the size of the log l. While the log can have multiple
occurrences of a variable, each variable from dis (d, d′) is considered only once.

Algorithm 1 does not spell out some details. Failure is captured by computing
a failed domain (a domain d with d(x) = ∅ for some x ∈ V) by propagation. A
real system will also pay attention to entailment or idempotency of propagators.
Propagation events describing how domains change are discussed in Sect. 4.

The result computed by Algorithm 1 is well known: the weakest simultaneous
fixpoint for all propagators p ∈ P stronger than the initial domain d. For a proof
of this fact in a related setup, see for example [1, page 267].

3 Advised Propagation

Advised propagation adds advisors to the model to enable a broad and inter-
esting range of techniques for incremental propagation while keeping the model
simple. Simplicity entails in particular that capabilities of propagators are not
duplicated, that the overhead for advisors is low, and that the essence of Algo-
rithm 1 is kept. Ideally, a system with advisors should execute propagators not
using advisors without any performance penalty.

The design of advisors takes two aspects into account: how an advisor gives
advice to propagators (output) and what information is available to an advisor
(input). Advisors are functions, like propagators are functions. From the discus-
sion in the introduction it is clear that the input of an advisor must capture
which variable has been changed by propagation and how it has been changed.

Based on the input to an advisor function, the only way an advisor can give
advice is to modify propagator state and to decide whether a propagator must
be propagated (“scheduled”). Modifying the state of a propagator enables the
propagator to perform more efficient propagation. Deciding whether a propaga-
tor must be propagated enables the advisor to avoid useless propagation.

The model ties an advisor to a single propagator. This decision is natural:
the state of a propagator should only be exposed to advisors that belong to

Advisors for Incremental Propagation 413

that particular propagator. Additionally, maintaining a single propagator for an
advisor simplifies implementation.

Advisors. An advisor a is a function that takes a domain d, a tell t, and a state
s as input and returns a pair a(d, t, s) = 〈s′, Q〉 where s′ is a state and Q a
set of propagators. An advisor a gives advice to a single propagator p, written
as prop[a] = p where p is referred to as a’s propagator (not to be confused
with the propagators prop[x] depending on a variable x). The set of propagators
Q returned by a must be either empty or the singleton set {p}. The intuition
behind the set Q is that an advisor can suggest whether its propagator p requires
propagation (Q = {p}) or not (Q = ∅). To ease presentation, adv[p] refers to the
set of advisors a such that prop[a] = p.

As for propagators, the model does not detail how advisors handle state: if
a(d, t, si) = 〈s′i, Qi〉 (i = 1, 2) then Q1 = Q2. In contrast to propagators, advisors
have no own state but access to their propagators’ state (an implementation most
likely will decide otherwise).

Dependent advisors. Like propagators, advisors depend on variables. An advisor
a, however, depends on a single variable var[a] ∈ V . This restriction is essential:
whenever an advisor a is executed, it is known that var[a] has been modified.
Similar to propagators, the set of advisors adv[x] depending on a variable x is:
a ∈ adv[x] if and only if x = var[a] (not to be confused with the advisors adv[p]
for a propagator p).

Variables of a propagator p and variables of its advisors are closely related.
One goal with advised propagation is to make informed decisions by an advisor
when a propagator must be re-executed. The idea is to trade variables on which
the propagator depends for advisors that depend on these variables.

The set of advised variables avar[p] of a propagator is defined as {x ∈ V | exists
a ∈ adv[p] with var[a] = x}. For a propagator p, the set of dependent variables
and advisors var[p] ∪ avar[p] must be sufficient for p: if a domain d is not a
fixpoint of p (that is, p[[d]] < d), then for all pruning tells x ∼ n for d′ such that
d′[x ∼ n] = d holds, x ∈ var[p] or a(d, x ∼ n, s) = 〈s′, {p}〉 for some advisor
a ∈ adv[x] ∩ adv[p].

Propagation. Algorithm 2 performs advised propagation. The only difference to
simple propagation is that the update by the log computed by a propagator
executes advisors.

Advisors are executed for each tell t in the order of the log l. Each advisor
can schedule its propagator by returning it in the set Q and potentially modify
the state of its propagator. Note the difference between variables occurring in
the log l and variables from dis (d, d′): if a variable x occurs multiply in l, also
all advisors in adv[x] are executed multiply. Variables in dis (d, d′) are processed
only once. The reason for processing the same variable multiply is to provide
each tell x ∼ n as information to advisors.

Again, the propagation loop computes the weakest simultaneous fixpoint for
all propagators in P . Consider the loop invariant: if p ∈ P − N , then d is a
fixpoint of p. Since the set of advised variables and dependencies of a propagator

414 M.Z. Lagerkvist and C. Schulte

N ← P ;
while N �= ∅ do

remove p from N ;
〈l, s〉 ← p(d, state[p]);
d′ ← d; state[p] ← s;
foreach x ∼ n ∈ l do

d′ ← d′[x ∼ n];
foreach a ∈ adv[x] do

〈s, Q〉 ← a(d′, x ∼ n, state[prop[a]]);
state[prop[a]] ← s; N ← N ∪ Q;

N ← N ∪ ⋃
x∈dis(d,d′) prop[x];

d ← d′;
return d;

Algorithm 2. Advised propagation

is sufficient for a propagator and an advisor always provides sufficient advice,
the loop invariant holds. Hence, the result of advised propagation is as before.

The algorithm makes a rather arbitrary choice of how to provide tell informa-
tion to an advisor: it first updates the domain d′ by x ∼ n and then passes the
updated domain d′[x ∼ n] together with x ∼ n to the advisor. It would also be
possible to pass the not-yet updated domain d′ and x ∼ n. This decision is dis-
cussed in more detail in Sect. 4.

An essential aspect of advised propagation is that it is domain independent :
the only dependencies on the domain of the variables are the tells. All remaining
aspects readily carry over to other variable domains.

The algorithm reveals the benefit of making advisors second-class citizens with-
out propagation rights. Assume that an advisor could also perform propagation
(by computing a log). Then, after propagation by an advisor, all advisors would
need to be reconsidered for execution. That would leave two options. One option
is to execute advisors immediately, resulting in a recursive propagation process for
advisors. The other is to organize advisors that require execution into a separate
datastructure. This would clearly violate our requirement of the extension to be
small and to not duplicate functionality. Moreover, both approaches would have
in common that it would become very difficult to provide accurate information
about domain changes of modified variables.
Dynamic dependencies. One simplifying assumption in this paper is that propa-
gator dependencies and advised variables are static: both sets must be sufficient
for all possible variable domains. Some techniques require dynamically changing
dependencies, such as watched literals in constraint propagation [11]. The ex-
tension for dynamic dependencies is orthogonal to advisors, for a treatment of
dynamic dependency sets see [24].

4 Implementation

This section discusses how advisors can be efficiently implemented: it details the
model and assesses the basic cost and the potential benefit of advisors. Advisors
will be included in Gecode 2.0.0 [9].

Advisors for Incremental Propagation 415

Advisors. Advisors are implemented as objects. Apart from support for construc-
tion, deletion, and memory managment, an advisor object maintains a pointer
to its propagator object. The actual code for an advisor is implemented by a
runtime-polymorphic method advise of the advisor’s propagator. The call of
advise corresponds to the application of an advisor in the model. Both advisor
and modification information are passed as arguments to advise. As an advisor’s
propagator implements advise, the advisor does not require support for runtime
polymorphism and hence uses less memory.

Advisors are attached to variables in the same way as propagators are. Systems
typically provide one entry per propagation event where dependent propagators
are stored (corresponding to prop[x] for a variable x). Typically, the propagators
are organized in a suspension list, whereas in Gecode they are stored in an array.
To accommodate for advisors, a variable x provides an additional entry where
dependent advisors adv[x] are stored. This design in particulars entails that
advisors do not honor events (to be discussed below).

Logs. The log in the model describes how propagation by a propagator should
modify the domain of its variables. Most systems do not implement a log but per-
form the update by tells immediately. This is also the approach taken in Gecode.
A notable exception is SICStus Prolog, which uses a datastructure similar to logs
for implementing global constraints [14].

Performing updates immediately also executes advisors immediately. This dif-
fers from the model: the model separates propagator and advisor execution. In
an implementation with immediate updates, the advisors of a propagator will be
run while the propagator is running itself. When designing advisors and propa-
gators this needs to be taken into account, in particular to guarantee consistent
management of the propagator’s state.

Modification information. During propagation, the domain and the tell provide
information to an advisor which variable has changed and how it has changed.
This information, provided as a suitable data structure, is passed as an argument
to the advise function of an advisor object.

As discussed in Sect. 3, there are two options: either first modify the domain
and then call the advisor, or the other way round. We chose to first modify the
domain as in Algorithm 2: many advisors are only interested in the domain after
update and not in how the domain changed.

There is an obvious tradeoff between information accuracy and its cost. The
most accurate information is Δ(x) = d′(x) − d′[x ∼ n] (x) as the set of values
removed by x ∼ n from d′. Accuracy can be costly: whenever a variable x
is modified by a tell, Δ(x) must be computed regardless of whether advisors
actually use the information.

As a compromise between accuracy and cost, our implementation uses the
smallest interval I(x) = {min Δ(x), . . . , maxΔ(x)} as approximation. Hence,
for a domain d′ the interval for the pruning tell x ≤ n is {n + 1, . . . , max d′(x)},
for x ≥ n is {min d′(x), . . . , n − 1}, and for x �= n is {n}. For other domain
operations, such as the removal of arbitrary values, ∅ can be passed to signal
that anything might have changed.

416 M.Z. Lagerkvist and C. Schulte

Propagation events. Systems typically use propagation events to characterize
changes to domains by tells. For finite domain systems, common propagation
events are: the domain becomes a singleton, the minimum or maximum changes,
or the domain changes. Sets of dependent variables for propagators are then
replaced by event sets: only when an event from a propagator’s event set occurs,
the propagator is considered for re-execution.

The same approach can be taken for advisors: using sets of advised events
rather than sets of advised variables. In our implementation, advisors do not use
propagation events for the following reasons. Events are not essential for a system
where propagator execution has little overhead [23,24]. Per event type additional
memory is required for each variable. Events for advisors would increase the
memory overhead even in cases no advisors are being used. The domain change
information available to an advisor subsumes events, albeit not with the same
level of efficiency.

Performance assessment. Advisors come at a cost. For memory, each variable x
requires an additional entry for adv[x] regardless of whether advisors are used or
not. If an advisor for a variable x and a propagator p is used rather than using
x as a dependency of p (that is, x ∈ var[p]), additional memory for an advisor
is required (this depends on the additional information an advisor stores, in
our implementation the minimal overhead is 8 bytes on a 32-bit machine). For
runtime, each time a variable x is modified by a tell, the tell information must
be constructed and the advise function of all advisors in adv[x] must be called.

Table 1. Performance assessment: runtime

Example base a-none a-run a-avoid

stress-exec-1 45.38 +0.2% +55.1% +63.5%

stress-exec-10 114.93 +0.9% +88.7% +98.7%

queens-n-400 519.14 ±0.0% +1316.7% +634.5%

queens-s-400 14.57 +0.7% +28.6% +12.2%

Table 1 shows the runtime for systems using advisors compared to a sys-
tem without advisors (base, runtime given in milliseconds). The system a-none
provides advisors without using them, a-run uses advisors that always schedule
their propagators (fully replacing propagator dependencies by advised variables),
whereas advisors for a-avoid decide whether the execution of a propagator can
be avoided. All runtime are relative to base.

All examples have been run on a Laptop with a 2 GHz Pentium M CPU
and 1024 MB main memory running Windows XP. Runtimes are the average of
25 runs, the coefficient of deviation is less than 5% for all benchmarks.

The example stress-exec-1 posts two propagators for x < y and y > x
with d(x) = d(y) = {0, . . . , 1000000}, whereas stress-exec-10 posts the same
propagators ten times. The advisor for avoiding propagation (system a-avoid)
checks by max d(x) < max d(y) and min d(x) > min d(y) whether its propagator
is already at fixpoint. queens-n-400 uses O(n2) binary disequality propagators,

Advisors for Incremental Propagation 417

Table 2. Performance assessment: memory

Example base a-none a-run a-avoid

queens-n-400 24 656.0 ±0.0% +67.6% +67.6%

queens-s-400 977.0 ±0.0% +5.6% +5.6%

whereas queens-s-400 uses 3 alldifferent propagators to solve the 400-Queens
problem.

These analytical examples clarify that the overhead of a system with advisors
without using them is negligible and does not exceed 1%. Advisors for small and
inexpensive propagators as in stress-exec-* and queens-n-400 are too ex-
pensive, regardless of whether propagation can be avoided. Only for sufficiently
large propagators (such as in queens-s-400), the overhead suggests that ad-
visors can be beneficial. Exactly the same conclusions can be drawn from the
memory overhead shown in Table 2, where memory is given as peak allocated
memory in KB.

Table 3. Performance assessment: break-even

Example base a-none a-avoid

bool-10 0.01 +0.2% −16.6%

bool-100 0.09 +7.6% −22.3%

bool-1000 1.43 +33.0% −30.2%

bool-10000 238.23 +20.6% −94.7%

Table 3 gives a first impression that advisors can actually be useful. bool-n
has a single propagator propagating that the sum of 4n + 1 Boolean variables
is at least 2n where 2n variables are successively assigned to 0 and then propa-
gated. System a-avoid uses 2n +1 advisors (constant runtime) where the other
systems use a single propagator (linear runtime) with 2n+1 dependencies (using
techniques similar to those from [10]). As the number of variables increases, the
benefit of advisors truly outweigh their overhead.

5 Using Advisors

This section demonstrates advisors for implementing incremental propagation.
Central issues are to avoid useless propagation, to improve propagation effi-
ciency, and to simplify propagator construction.

Extensional constraints. We consider two algorithms for implementing n-ary
extensional constraints, GAC-2001 [5] and GAC-Schema [4]. Implementing GAC-
Schema with advisors is straightforward. If a variable is modified, support for
the deleted values is removed from the support lists. If a value loses a support, a
new support is found. If no support can be found, the value is deleted. Advisors
remove supports, while the propagator deletes values. However, advisors as well
as the propagator can potentially find new supports.

418 M.Z. Lagerkvist and C. Schulte

Table 4. Runtime and propagation steps for extensional propagation

Example base cheap expensive

rand-10-20-10-0 4 010.33 16 103 −11.4% −24.3% +164.0% −57.9%

rand-10-20-10-1 64 103.00 290 163 −23.1% −37.1% +163.7% −63.0%

rand-10-20-10-2 68 971.00 257 792 −16.0% −18.3% +239.5% −56.6%

rand-10-20-10-3 7 436.80 34 046 −20.8% −36.5% +165.5% −63.2%

rand-10-20-10-4 4 362.33 16 988 −1.6% −29.7% +168.6% −65.4%

rand-10-20-10-5 28 009.20 84 805 −16.3% −7.4% +224.5% −53.8%

crowded-chess-5 1.44 586 −1.1% +0.7% +7.4% +0.5%

crowded-chess-6 468.29 2 720 −17.1% −2.7% +273.7% −3.1%

Table 4 compares runtime (left in a table cell) and number of propagator
executions (right in a table cell) for different extensional propagators. base is
the GAC-2001 propagator, cheap is a GAC-Schema propagator where the prop-
agator searches for new supports, and expensive is a GAC-Schema propagator
where advisors search for new supports.

Examples rand-10-20-10-n are random instances from the Second Interna-
tional CSP Solver Competition, and are originally from [16]. crowded-chess-n
is a structured problem where several different chess pieces are placed on an
n × n chess board. The placement of bishops and knights is modeled by two
n2-ary extensional constraints on 0/1 variables.

Table 4 clarifies that using an incremental approach to propagate extensional
constraints reduces the number of propagator executions. Using advisors to re-
move supports also reduces runtime. Finding new supports by advisors reduces
the number of propagations the most, but is also consistently slowest: many
more supports are entered into the support-lists as new supports are searched
for eagerly. In contrast, searching for a new support in the propagator is done
on demand. There is also a problem with priority inversion, where expensive
advisors are run before cheap propagators.

As for memory, GAC-Schema will naturally use more memory than GAC-
2001 since it uses an additional large datastructure. For the random problems,
the memory overhead is around 5 to 6 times.

Regular. The regular constraint, introduced by Pesant in [19], constrains the
values of a variable sequence to be a string of a regular language. The propa-
gator for the regular constraint is based on a DFA for a regular language. The
propagator’s state maintains all possible DFA transitions for the values of the
variables: values are pruned if they are no longer supported by a state reachable
via a chain of possible transitions. The algorithm used in our experiments devi-
ates slightly from both variants presented in [19]: it is less incremental in that it
rescans all support information for an entire variable, if one of the predecessor
or successor states for a variable is not any longer reachable.

Advisors for regular store the index of the variable in the variable sequence.
When an advisor is executed, it updates the supported values taking the informa-
tion on removed values into account. If a predecessor or a successor state changes

Advisors for Incremental Propagation 419

reachability after values have been updated, the advisor can avoid scheduling the
propagator. This can potentially reduce the number of propagator invocations.
Besides improving propagator execution, advisors lead to a considerably simpler
architecture of the propagator: advisors are concerned with how supported val-
ues are updated, while the propagator is concerned with analyzing reachability
of states and potentially telling which variables have lost support.

Table 5. Runtime and propagation steps for regular

Example base advise domain

nonogram 803.13 122 778 +11.6% +3.1% +11.9% +3.1%

placement-1 214.35 2 616 ±0.0% −44.8% −0.5% −44.8%

placement-2 7 487.81 91 495 −4.4% −50.4% −4.8% −50.4%

Table 5 compares runtime (left in a table cell) and number of propagator
executions (right in a table cell) not using advisors (base), using advisors but
ignoring domain change information (advise), and using advisors and domain
change information (domain). The memory requirements are the same for all
examples. nonogram uses regular over 0/1 variables to solve a 25 × 25 nonogram
puzzle, placement-* uses regular to place irregularly shaped tiles into a rectangle
(8 × 8 with 10 tiles, 10 × 6 with 12 tiles).

The advisor-based propagators reduce the number of propagation steps by
half in case there is little propagation (propagation for nonogram is rather strong
due to its 0/1 nature). But the reduction in propagation steps does not translate
directly into a reduction in runtime: executing the regular propagator in vain is
cheap. With larger examples a bigger improvement in runtime can be expected,
suggested by the improvement for placement-2 compared to placement-1.

Alldifferent. The propagator used for domain-consistent alldifferent follows [21].
The key to making it incremental is how to compute a maximal matching in
the variable-value graph: only if a matching edge (corresponding to a value)
for a variable x is removed, a new matching edge must be computed for x. An
observation by Quimper and Walsh [20] can be used to avoid propagation: if a
variable domain changes, but the number of values left still exceeds the number
of variables of the propagator, no propagation is possible.

Table 6. Runtime and propagation steps for alldifferent

Example base avoid advise domain

golomb-10 1 301.80 3 359 720 +5.6% ±0.0% +12.9% −18.6% +11.2% −18.6%

graph-color 191.90 150 433 +1.7% −3.4% +3.1% −8.1% +4.9% −7.3%

queens-s-400 3 112.13 2 397 −0.1% −0.1% +27.4% −0.3% +23.3% −0.3%

Table 6 shows the number of propagator executions and runtimes for exam-
ples using the domain-consistent alldifferent constraint. base uses no advisors,

420 M.Z. Lagerkvist and C. Schulte

for avoid advisors use the above observation to check whether the propagator
can propagate, for advise advisors maintain the matching and use the obser-
vation, and for domain advisors maintain the matching by relying entirely on
domain change information. For domain, the observation is not used to simplify
matching maintenance by advisors. golomb-10 finds an optimal Golomb ruler
of size 10, graph-color colors a graph with 200 nodes based on its cliques, and
queens-s-400 is as above.

While the number of propagator invocations decreases, runtime never de-
creases. Using the observation alone is not beneficial as it does not outweigh the
overhead of advisors. The considerable reduction in propagator executions for
advise and domain is due to early detection of failure: advisors fail to find a
matching without executing their propagator. The increase in runtime is not sur-
prising: edges are matched eagerly on each advisor invocation. This is wasteful as
further propagation can remove the newly computed matching edge again before
the propagator runs. Hence, it is beneficial to wait until the propagator actually
runs before reconstructing a matching. Another problem with eager matching
is similar to the observations for extensional constraints: prioritizing matching
by advisors over cheaper propagators leads to priority inversion between cheap
propagators and expensive advisors.

Advisors again lead to an appealing separation of concerns, as matching be-
comes an orthogonal issue. However, the examples clarify another essential as-
pect of incremental propagation: even if a propagator does not use advisors, it
can perform incremental propagation (such as matching incrementally). And for
some propagators, it can be important to defer computation until perfect in-
formation about all variables is available when the propagators is actually run.
Being too eager by using advisors can be wasteful.

Summary. The above experiments and the observations in Sect. 4 can be sum-
marized as follows. Advisors are essential to improve asymptotic complexity for
some propagators (in particular for propagators with sub-linear complexity, such
as Boolean or general linear equations [12]). Advisors help achieving a good fac-
torization of concerns for implementing propagators. However, the effort spent
by an advisor must comply with priorities and must not be too eager. Efficiency
improvements might only be possible for propagators with many variables.

6 Conclusions

This paper has added advisors to a propagator-centered setup for supporting
more efficient propagation. Advisors are simple and do not duplicate functional-
ity from propagators (no propagation and immediate execution). In particular,
advisors satisfy the key requirement to not slow down propagation when not
being used. That makes advisors a viable approach also for other propagator-
centered constraint programming systems.

Advisors are shown to be useful for: increasing efficiency, in particular im-
proving asymptotic complexity, and achieving a better factorization of concerns

Advisors for Incremental Propagation 421

in the implementation of propagators (relying on the fact that advisors are pro-
grammable). The paper has clarified two other issues. First, advisors must com-
ply with priorities in a propagator-centered approach with priorities. Second, for
some propagators it is more important that an incremental algorithm is used
rather than running the algorithm eagerly on variable change.

Advisors, like propagators, are generic. It can be expected that for variable
domains with expensive domain operations (such as sets), the domain change
information provided to an advisor can be more useful than for finite domain
propagators. Adapting advisors for a particular variable domain only needs to
define which domain change information is passed to an advisor by a tell.

Acknowledgments. We are grateful to Guido Tack and the anonymous re-
viewers for helpful comments. The authors are partially funded by the Swedish
Research Council (VR) under grant 621-2004-4953.

References

1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cam-
bridge, United Kingdom (2003)

2. Benhamou, F.: Heterogeneous constraint solving. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 62–76. Springer, Heidelberg
(1996)

3. Benhamou, F. (ed.): CP 2006. LNCS, vol. 4204. Springer, Heidelberg (2006)
4. Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: Prelim-

inary results. In: IJCAI, vol. 1, pp. 398–404 (1997)
5. Bessière, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc

consistency algorithm. Artificial Intelligence 165(2), 165–185 (2005)
6. Carlsson, M.: Personal communication (2006)
7. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–
206. Springer, Heidelberg (1997)

8. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.:
The constraint logic programming language CHIP. In: Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems FGCS-88, Tokyo, Japan,
pp. 693–702 (December 1988)

9. Gecode Team. Gecode: Generic constraint development environment (2006), Avail-
able from http://www.gecode.org

10. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 98–102. IOS
Press, Amsterdam (2006)

11. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
Minion. In: Benhamou [3], pp. 284–298.

12. Harvey, W., Schimpf, J.: Bounds consistency techniques for long linear constraints.
In: Beldiceanu, N., Brisset, P., Carlsson, M., Laburthe, F., Henz, M., Monfroy, E.,
Perron, L., Schulte, C. (eds.) Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, a workshop of CP 2002, number TRA9/02, pp.
39–46, 55 Science Drive 2, Singapore 117599 (September 2002)

http://www.gecode.org

422 M.Z. Lagerkvist and C. Schulte

13. ILOG Inc., Mountain View, CA, USA. ILOG Solver 6.3 reference Manual (2006)
14. Intelligent Systems Laboratory: SICStus Prolog user’s manual, 4.0.0. Technical

report, Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden
(2007)

15. Laburthe, F.: CHOCO: implementing a CP kernel. In: Beldiceanu, N., Harvey, W.,
Henz, M., Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) Pro-
ceedings of TRICS: Techniques foR Implementing Constraint programming Sys-
tems, a post-conference workshop of CP 2000, number TRA9/00, pp. 71–85, 55
Science Drive 2, Singapore 117599 (September 2000)

16. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou [3], pp. 284–298.

17. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1),
99–118 (1977)

18. Mohr, R., Masini, G.: Good old discrete relaxation. In: Kodratoff, Y. (ed.) Proceed-
ings of the 8th European Conference on Artificial Intelligence, Munich, Germany,
pp. 651–656. Pitmann Publishing (1988)

19. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace [25], pp. 482–495.

20. Quimper, C.-G., Walsh, T.: The all different and global cardinality constraints on
set, multiset and tuple variables. In: Hnich, B., Carlsson, M., Fages, F., Rossi,
F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 1–13. Springer, Heidelberg
(2006)

21. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, Seattle, WA,
USA, vol. 1, pp. 362–367. AAAI Press, Stanford, California, USA (1994)

22. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming.
Foundations of Artificial Intelligence, ch. 14, pp. 495–526. Elsevier Science Pub-
lishers, Amsterdam, The Netherlands (2006)

23. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Wallace [25],
pp. 619–633. An extended version is available as [24]

24. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines (2006), Available
from http://arxiv.org/abs/cs.AI/0611009

25. Wallace, M. (ed.): CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

http://arxiv.org/abs/cs.AI/0611009

Breaking Symmetry of Interchangeable
Variables and Values�

Y.C. Law1, J.H.M. Lee1, Toby Walsh2, and J.Y.K. Yip1

1 Deparment of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

{yclaw,jlee,ykyip}@cse.cuhk.edu.hk
2 National ICT Australia and School of CSE, University of New South Wales, Sydney, Australia

tw@cse.unsw.edu.au

Abstract. A common type of symmetry is when both variables and values par-
tition into interchangeable sets. Polynomial methods have been introduced to
eliminate all symmetric solutions introduced by such interchangeability. Unfor-
tunately, whilst eliminating all symmetric solutions is tractable in this case, prun-
ing all symmetric values is NP-hard. We introduce a new global constraint called
SIGLEX and its GAC propagator for pruning some (but not necessarily all) sym-
metric values. We also investigate how different postings of the SIGLEX con-
straints affect the pruning performance during constraint solving. Finally, we test
these static symmetry breaking constraints experimentally for the first time.

1 Introduction

When solving complex real-life problems like staff rostering, symmetry may dramati-
cally increase the size of the search space. A simple and effective mechanism to deal
with symmetry is to add static symmetry breaking constraints to eliminate symmetric
solutions [1,2,3,4]. Alternatively, we can modify the search procedure so that symmetric
branches are not explored [5,6,7]. Unfortunately, eliminating all symmetric solutions is
NP-hard in general. In addition, even when all symmetric solutions can be eliminated
in polynomial time, pruning all symmetric values may be NP-hard [8]. One way around
this problem is to develop polynomial methods for special classes of symmetries.

One common type of symmetry is when variables and/or values are interchangeable.
For instance, in a graph colouring problem, if we assign colours (values) to nodes (vari-
ables), then the colours (values) are fully interchangeable. That is, we can permute the
colours throughout a solution and still have a proper colouring. Similarly, variables may
be interchangeable. For example, if two nodes (variables) have the same set of neigh-
bours, we can permute them and keep a proper colouring. We call this variable and
value interchangeability. It has also been called piecewise symmetry [9] and structural
symmetry [10]. Recent results show that we can eliminate all symmetric solutions due

� We thank the anonymous referees for their constructive comments. The work described in this
paper was substantially supported by grants (Project no. CUHK4131/05 and CUHK4219/04E)
from the Research Grants Council of the Hong Kong SAR. NICTA is funded by DCITA and
ARC through Backing Australia’s Ability and the ICT Centre of Excellence program.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 423–437, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

424 Y.C. Law et al.

to variable and value interchangeability in polynomial time. Sellmann and Van Henten-
tryck gave a polynomial time dominance detection algorithm for dynamically break-
ing such symmetry [10]. Subsequently, Flener, Pearson, Sellmann and Van Hentenryck
identified a set of static symmetry breaking constraints to eliminate all symmetric solu-
tions [9]. In this paper, we propose using a linear number of the new SIGLEX constraint
for breaking such symmetry. A SIGLEX constraint orders the interchangeable variables
as well as the interchangeable values. Its propagator is based on a decomposition using
REGULAR constraints [11].

2 Background

A constraint satisfaction problem (CSP) consists of a set of n variables, each with a
finite domain of possible values, and a set of constraints specifying allowed combi-
nations of values for given subsets of variables. A constraint restricts values taken by
some subset of variables to a subset of the Cartesian product of the variable domains.
Without loss of generality, we assume that variables initially share the same domain
of m possible values, d1 to dm. Each finite domain variable takes one value from this
domain. We also assume an ordering on values in which di < dj iff i < j. A solution
is an assignment of values to variables satisfying the constraints.

A global constraint has a parameterised number of variables. We will use four com-
mon global constraints. The first, AMONG([X1, .., Xn], v, M), holds iff |{i | Xi ∈
v}| = M . That is, M of the variables from X1 to Xn take values among the set v.
Combining together multiple AMONG constraints gives the global cardinality constraint
[12]. GCC([X1, .., Xn], [d1, .., dm], [O1, .., Om]) holds iff |{i | Xi = dj}| = Oj for
1 ≤ j ≤ m. That is, Oj of the variables from X1 to Xn take the value dj . If Oj ≤ 1
for all j then no value occurs more than once and we have an all different constraint.
ALLDIFF([X1, . . . , Xn]) holds iff Xi �= Xj for 1 ≤ i < j ≤ n. Finally, a global con-
straint that we will use to encode other global constraints is the REGULAR constraint
[11]. LetM = (Q, Σ, δ, q0, F) denote a deterministic finite automaton (DFA) where Q
is a finite set of states, Σ an alphabet, δ : Q×Σ → Q a partial transition function, q0
the initial state and F ⊆ Q the set of final states. REGULAR([X1, . . . , Xn],M) holds
iff the string [X1, . . . , Xn] belongs to the regular language recognised byM. Quimper
and Walsh encode a linear time GAC propagator for the REGULAR constraint using
ternary constraints [13]. They introduce variables for the state of the DFA after each
character, and post ternary constraints ensuring that the state changes according to the
transition relation. One advantage of this encoding is that we have easy access to the
states of the DFA. In fact, we will need here to link the final state to a finite domain
variable.

Systematic search constraint solvers typically explore partial assignments using back-
tracking search, enforcing a local consistency at each search node to prune values for
variables which cannot be in any solution. We consider a well known local consistency
called generalized arc consistency. Given a constraint C on finite domain variables, a
support is an assignment to each variable of a value in its domain which satisfies C. A
constraint C on finite domain variables is generalized arc consistent (GAC) iff for each
variable, every value in its domain belongs to a support.

Breaking Symmetry of Interchangeable Variables and Values 425

3 Variable and Value Interchangeability

We suppose that there is a partition of the n finite domain variables of our CSP into a
disjoint sets, and the variables within each set are interchangeable. That is, if we have
a solution {Xi = dsol(i) | 1 ≤ i ≤ n} and any bijection σ on the variable indices
which permutes indices within each partition, then {Xσ(i) = dsol(i) | 1 ≤ i ≤ n} is
also a solution. We also suppose that there is a partition of the m domain values into b
disjoint sets, and the values within each set are interchangeable. That is, if we have a
solution {Xi = dsol(i) | 1 ≤ i ≤ n} and any bijection σ on the value indices which
permutes indices within each partition, then {Xi = dσ(sol(i)) | 1 ≤ i ≤ n} is also a
solution. If n = a we have just interchangeable values, whilst if m = b we have just
interchangeable variables. We will order variable indices so that Xp(i) to Xp(i+1)−1 is
the ith variable partition, and value indices so that dq(j) to dq(j+1)−1 is the jth value
partition where 1 ≤ i ≤ a, 1 ≤ j ≤ b. In other words, p(i) and q(j) give the starting
indices of the ith variable partition and the jth value partition respectively.

Example 1. Consider a CSP problem representing 3-colouring the following graph:

X2

X1

X3

X4

X5

��
��
�
�
����

���
�
��

Nodes are labelled with the variables X1 to X5. Values correspond to colours. X1 and
X2 are interchangeable as the corresponding nodes have the same set of neighbours.
If we have a proper colouring, we can permute the values assigned to X1 and X2
and still have a proper colouring. Similarly, X3, X4 and X5 are interchangeable. The
variables thus partition into two disjoint sets: {X1, X2} and {X3, X4, X5}. In addition,
we can uniformly permute the colours throughout a solution and still have a proper
colouring. Thus, the values partition into a single set: {d1, d2, d3}. In graph colouring,
variable partitions can be identified by checking whether two nodes have the same set
of neighbours, while in general problems, the underlying symmetry can be discovered
automatically [14].

Flener et al. [9] show that we can eliminate all solutions which are symmetric due to
variable and value interchangeability by posting the following constraints:

Xp(i) ≤ .. ≤ Xp(i+1)−1 ∀ i ∈ [1, a] (1)

GCC([Xp(i), .., Xp(i+1)−1], [d1, .., dm], [Oi
1, .., O

i
m]) ∀ i ∈ [1, a] (2)

(O1
q(j), .., O

a
q(j)) ≥lex .. ≥lex (O1

q(j+1)−1, .., O
a
q(j+1)−1) ∀ j ∈ [1, b] (3)

(O1
k, .., O

a
k) is called the signature of the value dk, which gives the number of occur-

rences of the value dk in each variable partition. Note that the signature is invariant to
the permutation of variables within each equivalence class. By ordering variables within
each equivalence class using (1), we rule out permuting interchangeable variables. Sim-
ilarly, by lexicographically ordering the signatures of values within each equivalence
class using (3), we rule out permuting interchangeable values.

426 Y.C. Law et al.

Example 2. Consider again the 3-colouring problem in Example 1. There are 30 proper
colourings of this graph. When we post the above symmetry breaking constraints, the
number of proper colourings reduces from 30 to just 3:

(a)
d1

d1

d2

d2

d2

��
��
�

�
����

���
�
��

(b)
d1

d1

d2

d2

d3

��
��
�
�
����

���
�
��

(c)
d2

d1

d3

d3

d3

��
��
�

�
����

���
�
��

Each colouring is representative of a different equivalence class. In fact, it is the lexi-
cographically least member of its equivalence class. On the other hand, the following
colourings are eliminated by the above symmetry breaking constraints:

(d)
d1

d2

d3

d3

d3

��
��
�

�
����

���
�
��

(e)
d1

d1

d3

d3

d3

��
��
�
�
����

���
�
��

(f)
d1

d1

d2

d3

d3

��
��
�

�
����

���
�
��

For instance, the proper colouring given in (e) is symmetric to that in (a) since if we
permute d2 with d3 in (e), we get (a). The proper colouring given in (e) is eliminated by
the symmetry breaking constraint (O1

2 , O
2
2) ≥lex (O1

3 , O
2
3) since O1

2 = O1
3 = 0 (neither

d2 nor d3 occur in the first equivalence class of variables) but O2
2 = 0 and O2

3 = 3 (d2
does not occur in the second equivalence class of variables but d3 occurs three times).

Suppose BREAKINTERCHANGEABILITY(p, q, [X1, .., Xn]) is a global constraint that
eliminates all symmetric solutions introduced by interchangeable variables and values.
That is, BREAKINTERCHANGEABILITY orders the variables within each equivalence
class, as well as lexicographically orders the signatures of values within each equivalence
class. It can be seen as the conjunction of the ordering, GCC and lexicographic ordering
constraints given in Equations (1), (2) and (3). Enforcing GAC on such a global constraint
will prune all symmetric values due to variable and value interchangeability. Not surpris-
ingly, decomposing this global constraint into separate ordering, GCC and lexicographic
ordering constraints may hinder propagation.

Example 3. Consider again the 3-colouring problem in Example 1. Suppose X1 to
X5 have domains {d1, d2, d3}, the signature variables O1

1 , O
1
2 , O

1
3 have domains

{0, 1, 2}, whilst O2
1, O

2
2 , O

2
3 have domains {0, 1, 2, 3}. Flener et al.’s decomposi-

tion and the binary not-equals constraints between variables representing neighbour-
ing nodes are GAC. However, by considering (a), (b) and (c), we see that GAC on
BREAKINTERCHANGEABILITY and the binary not-equals constraints ensures X1 =
d1, X2 �= d3, X3 �= d1, X4 �= d1 and X5 �= d1.

As decomposing BREAKINTERCHANGEABILITY hinders propagation, we might con-
sider a specialised algorithm for achieving GAC that prunes all possible symmetric val-
ues. Unfortunately enforcing GAC on such a global constraint is NP-hard [8].

Breaking Symmetry of Interchangeable Variables and Values 427

4 A New Decomposition

We propose an alternative decomposition of BREAKINTERCHANGEABILITY. This de-
composition does not need global cardinality constraints which are expensive to propa-
gate. In fact, Flener et al.’s decomposition requires a propagator for GCC which prunes
the bounds on the number of occurrence of values. The decomposition proposed here
uses just REGULAR constraints which are available in many solvers or can be easily
added using simple ternary transition constraints [13]. This new decomposition can be
efficiently and incrementally propagated.

The results in Table 5 of [15] suggest that propagation is rarely hindered by decom-
posing a chain of lexicographic ordering constraints into individual lexicographic order-
ing constraints between neighbouring vectors. Results in Table 1 of [16] also suggest
that propagation is rarely hindered by decomposing symmetry breaking constraints for
interchangeable values into symmetry breaking constraints between neighbouring pairs
of values in each equivalence class. We therefore propose a decomposition which only
considers the signatures of neighbouring pairs of values in each equivalence class.

This decomposition replaces BREAKINTERCHANGEABILITY by a linear number
of symmetry breaking constraints, SIGLEX. These lexicographically order the signa-
tures of neighbouring pairs of values in each equivalence class, as well as order vari-
ables within each equivalence class. We decompose BREAKINTERCHANGEABILITY

into SIGLEX(k, p, [X1, .., Xn]) for q(j) ≤ k < q(j + 1) − 1, 1 ≤ j ≤ b. The global
constraint SIGLEX(k, p, [X1, .., Xn]) itself holds iff:

Xp(i) ≤ .. ≤ Xp(i+1)−1 ∀ i ∈ [1, a] (4)

AMONG([Xp(i), .., Xp(i+1)−1], {dk}, Oi
k) ∀ i ∈ [1, a] (5)

AMONG([Xp(i), .., Xp(i+1)−1], {dk+1}, Oi
k+1) ∀ i ∈ [1, a] (6)

(O1
k, .., O

a
k) ≥lex (O1

k+1, .., O
a
k+1) (7)

SIGLEX orders the variables within each equivalence class and lexicographically or-
ders the signatures of two interchangeable and neighbouring values. To propagate each
SIGLEX constraint, we give a decomposition using REGULAR constraints which does
not hinder propagation.

Theorem 1. GAC can be enforced on SIGLEX(k, p, [X1, .., Xn]) in O(n2) time.

Proof: We first enforce the ordering constraints Xp(i) ≤ .. ≤ Xp(i+1)−1 on each
variable partition. We then channel into a sequence of four valued variables using the
constraints: Y k

i = (Xi > dk+1) + (Xi ≥ dk+1) + (Xi ≥ dk). That is, Y k
i = 3 if

Xi > dk+1, Y k
i = 2 if Xi = dk+1, Y k

i = 1 if Xi = dk, and Y k
i = 0 if Xi < dk.

Within the ith variable partition, we enforce GAC on a REGULAR constraint on Y k
p(i)

to Y k
p(i+1)−1 to compute the difference between Oi

k and Oi
k+1 and assign this difference

to a new integer variable Di
k. The automaton associated with this REGULAR constraint

has state variables Qk
p(i) to Qk

p(i+1)−1 whose values are tuples containing the difference
between the two counts seen so far as well as the last value seen (so that we can ensure
that values for Y k

i are increasing). From (δ, y), the transition function on seeing Y k
i

moves to the new state (δ +(Y k
i = 2)− (Y k

i = 1), max(y, Y k
i)) if and only if Y k

i ≥ y.

428 Y.C. Law et al.

The initial state is (0, 0). We set the difference between the two counts in the final
state variable equal to the new integer variable Di

k (which is thus constrained to equal
Oi
k+1 − Oi

k) Finally, we ensure that the vectors, (O1
k, .., O

a
k) and (O1

k+1, .., O
a
k+1) are

ordered using a final REGULAR constraint on the difference variables, D1
k to Da

k . The
associated automaton has 0/1 states, a transition function which moves from state b to
b ∨ (Di

k < 0) provided Di
k ≤ 0 or b = 1, an initial state 0 and 0 or 1 as final states.

The constraint graph of all the REGULAR constraints is Berge-acyclic. Hence enforc-
ing GAC on these REGULAR constraints achieves GAC on the variables Y k

i [17]. Con-
sider a support for the Y k

i variables. We can extend this to a support for the Xi variables
simply by picking the smallest value left in their domains after we have enforced GAC
on the channelling constraints between the Xi and Y k

i variables. Support for values left
in the domains of the Xi variables can be constructed in a similar way. Enforcing GAC
on this decomposition therefore achieves GAC on SIGLEX(k, p, [X1, .., Xn]).

Assuming bounds can be accessed and updated in constant time and a constraint is
awoken only if the domain of a variable in its scope has been modified, enforcing GAC
on the ordering constraints takes O(n) time, on the channelling constraints between Xi

and Y k
i takes O(n) time, on the first set of REGULAR constraints which compute Di

k

takes O(n2) time, and on the final REGULAR constraint takes O(na) time. As a ≤ n,
enforcing GAC on SIGLEX takes O(n2) time.

We compare this with the GCC decomposition in [9]. This requires a GCC propagator
which prunes the bounds of the occurrence variables. This will take O(mn2 + n2.66)
time [12]. To break the same symmetry, we need to post up to O(m) SIGLEX con-
straints, which take O(mn2) time in total to propagate. In the best case for this new
decomposition, m grows slower than O(n0.66) and we are faster. In the worst case, m
grows as O(n0.66) or worse and both propagators take O(mn2) time. The new decom-
position is thus sometimes better but not worse than the old one. We conjecture that
the two decompositions are incomparable. The GCC decomposition reasons more glob-
ally about occurrences, whilst the SIGLEX decomposition reasons more globally about
supports of increasing value. Indeed, we can exhibit a problem on which the SIGLEX

decomposition gives exponential savings. We predict that the reverse is also true.

Theorem 2. On the pigeonhole problem PHP (n) with n interchangeable variables
and n + 1 interchangeable values, we explore O(2n) branches when enforcing GAC
and breaking symmetry using the GCC decomposition irrespective of the variable and
value ordering, but we solve in polynomial time when enforcing GAC using SIGLEX.

Proof: The problem has n+1 constraints of the form
∨n
i=1 Xi = dj for 1 ≤ j ≤ n+1,

with Xi ∈ {d1, .., dn+1} for 1 ≤ i ≤ n. The problem is unsatisfiable by a simple
pigeonhole argument. Enforcing GAC on SIGLEX(i, [X1, . . . , Xn]) for i > 0 prunes
di+1 from X1. Hence, X1 is set to d1. Enforcing GAC on SIGLEX(i, p, [X1, . . . , Xn])
for i > 1 now prunes di+1 from X2. The domain of X2 is thus reduced to {d1, d2}.
By a similar argument, the domain of each Xi is reduced to {d1, . . . di}. The SIGLEX

constraints are now GAC. Enforcing GAC on the constraint
∨n
i=1 Xi = dn+1 then

proves unsatisfiability. Thus, we prove that the problem is unsatisfiable in polynomial
time. On the other hand, using the GCC decomposition, irrespective of the variable
and value ordering, we will only terminate each branch when n−1 variables have been
assigned (and the last variable is forced). A simple calculation shows that the size of the

Breaking Symmetry of Interchangeable Variables and Values 429

search tree as least doubles as we increase n by 1. Hence we will visit O(2n) branches
before declaring the problem unsatisfiable.

5 Some Special Cases

Variables are not Interchangeable

Suppose we have interchangeable values but no variable symmetries (i.e. a = n and b <
m). To eliminate all symmetric solutions in such a situation, Law and Lee introduced
value precedence [4]. This breaks symmetry by constraining when a value is first used.
More precisely, PRECEDENCE(k, [X1, .., Xn]) holds iff min{i |Xi = dk∨i = n+1} <
min{i |Xi = dk+1∨ i = n+2}. That is, the first time we use dk is before the first time
we use dk+1. This prevents the two values being interchanged. It is not hard to show
that the SIGLEX constraint is equivalent to value precedence in this situation.

Theorem 3. PRECEDENCE(k, [X1, .., Xn]) is equivalent to SIGLEX(k, p, [X1, .., Xn])
when n = a (i.e., p(i) = i for i ∈ [1, n]).

Proof: If n = a then the vectors computed within SIGLEX, namely (O1
k, .., O

a
k) and

(O1
k+1, .., O

a
k+1), are n-ary 0/1 vectors representing the indices at which dk and dk+1

appear. Lexicographically ordering these vectors ensures that either dk is used before
dk+1 or neither are used. This is equivalent to value precedence.

In this case, the propagator for SIGLEX mirrors the work done by the propagator for
PRECEDENCE given in [16]. Although both propagators have the same asymptotic cost,
we might prefer the one for PRECEDENCE as it introduces fewer intermediate variables.

All Variables and Values are Interchangeable

Another special case is when all variables and values are fully interchangeable (i.e.
a = b = 1). To eliminate all symmetric solutions in such a situation, Walsh introduced a
global constraint which ensures that the sequence of values is increasing but the number
of their occurrences is decreasing [16]. More precisely, DECSEQ([X1, .., Xn]) holds
iff X1 = d1, Xi = Xi+1 or (Xi = dj and Xi+1 = dj+1) for 1 ≤ i < n and
|{i | Xi = dk}| ≥ |{i | Xi = dk+1}| for 1 ≤ k < m. Not surprisingly, the SIGLEX

constraint ensures such an ordering of values.

Theorem 4. DECSEQ([X1, .., Xn]) is equivalent to SIGLEX(k, p, [X1, .., Xn]) for 1 ≤
k < m when a = b = 1 (i.e., p : {1} → {1}).
Proof: Suppose SIGLEX(k, p, [X1, .., Xn]) holds for 1 ≤ k < m. Then O1

k ≥ O1
k+1

for 1 ≤ k < m. Now O1
k = |{i | Xi = dk}|. Hence |{i | Xi = dk}| ≥ |{i | Xi =

dk+1}| for 1 ≤ k < m. Suppose O1
1 = 0. Then O1

k = 0 for 1 ≤ k ≤ m and no values
can be used. This is impossible. Hence O1

1 > 0 and d1 is used. As X1 ≤ .. ≤ Xn,
X1 = d1. Suppose that dk is the first value not used. Then O1

k = 0. Hence O1
j = 0 for

all j > k. That is, all values up to dk are used and all values including and after dk are
not used. Since Xi ≤ Xi+1, it follows that Xi = Xi+1 or (Xi = dj and Xi+1 = dj+1)
for 1 ≤ i < n. Thus, DECSEQ([X1, .., Xn]) holds. The proof reverses easily.

430 Y.C. Law et al.

6 Variable Partition Ordering

Suppose there are two variable partitions {X1, X2} and {X3, X4, X5}, and all domain
values d1, . . . , d5 are interchangeable. Section 4 suggests that we can break the sym-
metry using SIGLEX(k, p, X) for 1 ≤ k < 5, where X = [X1, . . . , X5], p(1) = 1 and
p(2) = 3. In fact, the symmetry can be also broken by posting the SIGLEX constraints in
another way: SIGLEX(k, p′, X ′) for 1 ≤ k < 5, where X ′ = [X ′1, X

′
2, X

′
3, X

′
4, X

′
5] =

[X3, X4, X5, X1, X2], p′(1) = 1 and p′(2) = 4. The former posting places the parti-
tion {X1, X2} in front of {X3, X4, X5} in SIGLEX, and vice versa for the latter. The
two postings eliminate different symmetric solutions, i.e., the solutions of the two post-
ings are different. We observe that in the presence of ALLDIFF constraints, the order
of the variable partitions placed in the SIGLEX constraints affects propagation. In the
following, we study the issue of variable partition ordering in details.

In the above example, suppose that we also have ALLDIFF([X1, X2]) and
ALLDIFF([X3, X4, X5]), and we enforce GAC on these constraints. GAC on the for-
mer set of SIGLEX constraints alone removes d2, . . . , d5 from the domain of X1 (due
to the lexicographic ordering on the signatures), making X1 grounded. This triggers
propagation on ALLDIFF([X1, X2]) that removes d1 from the domain of X2. Further
propagation on the constraints results in X1 ∈ {d1}, X2 ∈ {d2}, X3 ∈ {d1, d3},
X4 ∈ {d1, d2, d3, d4} and X5 ∈ {d1, d2, d3, d4, d5}. Note that all variables in the par-
tition {X1, X2} are grounded.

On the other hand, if we use the constraints SIGLEX(k, p′, X ′) for 1 ≤ k < 5,
then enforcing GAC on these constraints and the two ALLDIFF constraints results in
X1 ∈ {d1, d4}, X2 ∈ {d1, d2, d4, d5}, X3 ∈ {d1}, X4 ∈ {d2} and X5 ∈ {d3}. This
time, all variables in the partition {X3, X4, X5} are grounded.

In general, not every variable partition would contain an ALLDIFF constraint. If,
however, all domain values are interchangeable and the first variable partition placed in
the SIGLEX constraints contains an ALLDIFF, GAC on the SIGLEX and ALLDIFF con-
straints will either cause a domain wipe-out or ground all variables in the first partition.

Theorem 5. Enforcing GAC on ALLDIFF([Xp(1), . . . , Xp(2)−1]) and the set of SIGLEX

constraints decomposed from BREAKINTERCHANGEABILITY causes either domain
wipe-out or Xi = di for p(1) ≤ i ≤ min(p(2)− 1, m) if b = 1.

Proof: Consider two cases m < p(2)−1 or m ≥ p(2)−1. The former causes a domain
wipe-out, as there are fewer domain values than variables in the ALLDIFF constraint.

For the latter case, we first prove by induction that Xi �∈ {di+1, . . . , dm}∀p(1) ≤
i ≤ p(2) − 1. When i = p(1) = 1, suppose conversely X1 = dk for any 1 < k ≤ m.
As SIGLEX implies X1 ≤ . . . ≤ Xp(2)−1, we get O1

k ≥ 1 and O1
1 = 0. But O1

k > O1
1

violates the lexicographic order on the signatures. Hence, X1 �= dk for 1 < k ≤ m,
i.e., X1 = d1. Assume the cases are true ∀1 ≤ i′ < i. Suppose conversely Xi = dk,
for any i < k ≤ m. Since ∀i′ < i, Xi′ �∈ {dk−1, dk}, we get O1

k ≥ 1 and O1
k−1 = 0,

which contradicts with the lexicographic order. This completes the induction.
We can now prove that for p(1) ≤ i < p(2), either Xi = di or Xi has empty domain.

Since X1 /∈ {d2, . . . , dm}, obviously either X1 = d1 or X1 has empty domain. Suppose
X1 = d1, enforcing GAC on ALLDIFF([Xp(1), . . . , Xp(2)−1]) will remove d1 from
the domains of X2, . . . , Xp(2)−1. Now, X2 �= d1 and X2 /∈ {d3, . . . , dm}. Then we

Breaking Symmetry of Interchangeable Variables and Values 431

have X2 = d2 or X2 has empty domain. We can repeat the process of enforcing GAC
on ALLDIFF([Xp(1), . . . , Xp(2)−1]) to consequently make either Xi = di or domain
wipe-out for p(1) ≤ i < p(2).

Therefore, if more than one variable partition contains an ALLDIFFconstraint, then
placing the largest variable partition at the front in the SIGLEX constraints ensures
the most variables are grounded, and therefore the most simplification of the problem.
This can be seen from the above example, in which the first posting grounds only two
variables, while the second posting grounds three. Furthermore, in the ALLDIFF con-
straints, a grounded variable in a larger partition triggers more prunings than one in a
smaller partition, and enforcing GAC on SIGLEX tends to prunes values from variables
earlier in the variable sequence, due to the ≥lex ordering on the signatures. Therefore,
it is a good idea to place larger variable partitions at the front in the SIGLEX constraints
to increase the chance of more prunings due to a grounded variable. This gives us a
heuristic to rearrange the variables in the SIGLEX constraints so that (1) variable par-
titions with ALLDIFF constraints are ordered before those without ALLDIFF, and (2)
among those variable partitions with ALLDIFF constraints, order them in decreasing
partition size.

Theorem 5 applies to problems where all domain values are interchangeable. When
there is more than one value partition (b > 1), enforcing GAC on the SIGLEX con-
straints does not necessarily ground the first variable in the first partition, since the first
value dq(j) in every partition j can remain in its domain, making no subsequent ground-
ings of the other variables in the partition by the SIGLEX and ALLDIFF constraints.
Nonetheless, propagation by other problem constraints or variable instantiations during
search can eventually ground variables and trigger the prunings by the ALLDIFF con-
straints. Therefore, in the case of b > 1, it is still worthwhile to reorder the variables
using this heuristic. Note that this variable partition ordering heuristic helps improve
the amount of pruning for the SIGLEX decomposition. Although it can be applied also
to the GCC decomposition, the heuristic may not help here.

The discussion brings out an interesting question about posting symmetry breaking
constraints. Ideally, symmetry breaking constraints remove all but one solution from
each equivalence class of solutions. Different postings of the symmetry breaking con-
straints can leave a different solution. This is true for SIGLEX and also other symmetry
breaking constraints. In terms of eliminating symmetric solutions, it does not matter
which solution we leave. However, in terms of propagation, apparently the different
postings give different behaviour. This is one of the first times it has been shown that
breaking symmetry to leave a particular distinguished element of a symmetry class can
reduce search. It would be interesting to study this systematically and formally in the
future.

7 Implementation Notes

The proof of Theorem 1 already gives an overview of the implementation of the SIGLEX

global constraint, which involves enforcing the≤ ordering of the Xi variables, the chan-
nelling between the Xi and Y k

i variables, and a + 1 REGULAR constraints, where a is
the number of variable partitions. The first a REGULAR constraints are used to do the

432 Y.C. Law et al.

counting, while the last one enforces the≥lex ordering using the final state information
associated with the automata in the first a REGULAR constraints. The maintenance of
the ≤ ordering and the channeling is straightforward. The REGULAR constraint, how-
ever, has to be slightly modified to fit the requirement of our implementation. In partic-
ular, we introduce an extra finite domain variable Fs to the REGULAR constraint so that
REGULAR([X1, . . . , Xn], Fs,M) means Fs is the final state of the string [X1, . . . , Xn]
admissible by the DFAM = (Q, Σ, δ, q0, F), where Q is the set of all states, Σ is the
alphabet, δ is the state transition, q0 is the initial state, and F is the set of final states.

Pesant [11] proposes a GAC propagator for the original REGULAR constraint by
maintaining an associated layered directed multigraph (N1, . . . , Nn+1, A), where n is
the number of variables in the constraint. Let Σ = {v1, . . . , vn}. Each layer N i =
{qi0, . . . , qi|Q|−1} contains a node qil for each state ql ∈ Q and directed arcs in A appear
only between two consecutive layers. The graph is acyclic by construction. There exists
an arc from qik to qi+1

l iff there exists some vj in the domain of Xi such that δ(qk, vj) =
ql. The arc is labelled with the value vj allowing the transition between the two states.

The multigraph is consistent if each node has a non-zero in-degree and a non-zero
out-degree. Suppose a multigraph is inconsistent, i.e., there exists a node with either
in-degree or out-degree being zero. We can make the multigraph consistent again by
removing the node together with all its incoming or outgoing arcs from the graph. When
the arc from qik to qi+1

l is removed, we check if the out-degree of qik become zeros and
if the in-degree of qi+1

l becomes zero to ensure consistency of the multigraph. Pesant
[11] gives a theorem stating that REGULAR([X1, . . . , Xn],M) is GAC iff the domain
of Xi is equal to the set of all labels from the outgoing arcs originating from nodes in
layer N i of a consistent multigraph associated withM.

In the original constraint REGULAR([X1, . . . , Xn],M), propagation is triggered
when some values are deleted from the domain of some variable Xi. This corre-
sponds to removing arcs from the associated multigraph ofM. In the new constraint
REGULAR([X1, . . . , Xn], Fs,M), we have to allow also triggerings caused by value
deletions from the domain of Fs. This corresponds to removing a node in layer Nn+1

of the associated multigraph ofM. If such a removal causes inconsistency in the multi-
graph, Pesant’s procedure is still able to restore consistency. We can easily verify that
REGULAR is GAC iff the domain of Xi is equal to the set of all labels from the outgoing
arcs originating from nodes in layer N i of a consistent multigraph associated withM,
and the domain of Fs is the set of nodes (states) in layer Nn+1.

We show in the proof of Theorem 1 that a SIGLEX constraint can be decomposed
into several REGULAR constraints without hindering propagation, since the constraint
graph of the decomposition is Berge-acyclic. However, we provide a global constraint
implementation for SIGLEX as it provides opportunities for efficiencies. In our imple-
mentation, we achieved GAC on SIGLEX using a two-pass iteration. In the first pass, we
enforce GAC on the decomposed constraints in a forward manner, from the ≤ ordering
constraints on the Xi variables to the final REGULAR constraint for the ≥lex ordering.
In the second pass, the constraints are propagated again but in the reverse order. This
two-pass iteration guarantees that each constraint in the decomposition is propagated at
most twice but GAC is still enforced on one SIGLEX constraint as a whole.

Breaking Symmetry of Interchangeable Variables and Values 433

8 Experiments

To test the efficiency and effectiveness of the SIGLEX constraints, we perform exper-
iments on the graph colouring and concert hall scheduling problems. We compare the
SIGLEX constraints against (1) the GCC decomposition (GCC) and (2) PRECEDENCE

constraints with ≤ ordering constraints (ValPrec). All three methods break both the
variable and value interchangeability. When using SIGLEX constraints, we consider
two variable partition orderings: the data file ordering (SigLex) and the decreasing par-
tition size ordering (SigLex-dec) introduced in Section 6. The experiments are run on
a Sun Blade 2500 (2 × 1.6GHz US-IIIi, 2GB RAM) using ILOG Solver 4.4. The time
limit is 1 hour. The variable ordering heuristic is to choose first a variable with the
smallest domain. Both benchmark problems are optimisation problems, and we report
the number of fails and CPU time to find and prove the optimum in the results.

8.1 Graph Colouring

In graph colouring, nodes having the same set of neighbours form a partition and are
interchangeable. We generate random graphs using four parameters 〈n, r, p, q〉, where
n is the number of nodes and r is the maximum node partition size. We start from an in-
dependent graph (graph with no arcs) with n nodes and ensure node interchangeability
while adding arcs to the graph in two steps. First, the subgraph containing nodes of two
partitions must be either a complete bipartite or independent graph. In Example 1, the
graph between partitions {X1, X2} and {X3, X4, X5} is complete bipartite. The pa-
rameter p is the proportion of complete bipartite subgraphs between pairs of partitions.
Second, the subgraph in one partition must also be either complete or independent. In
Example 1, both subgraphs of the two partitions are independent. The parameter q is
the proportion of complete subgraphs among the partitions. A complete subgraph in a
partition is modelled using an ALLDIFF constraint on the variable partition.

With the four parameters, we generate two types of random graphs using different
distributions on the variable partition size. In the first type, the number of nodes ni
in the ith partition is uniformly distributed in [1, r]. Since n is initially fixed, if the
generated value of a particular ni makes the total number of nodes exceed n, then the
ith partition will be the final partition and its size ni will be chosen such that the total
number of nodes is exactly n. The second type has a biased distribution. The size of the
first n2 � partitions are preset to 1, i.e., n2 � of the nodes are not interchangeable at all.
The remaining nodes are then partitioned using a uniform distribution like in the first
type. The latter type of graphs models a common scenario in real life problems where
variable interchangeability occurs in only a subset of the variables. We test with various
values of n, r = 8, p = 0.5 and q ∈ {0.5, 1}, and 20 instances are generated for each
set of parameters. Fig. 1(a) and (b) show the experimental results for the uniform and
biased distributions respectively. A data point is plotted only when at least 90% of the
instances are solved within the time limit. All graphs are plotted in the log-scale.

At the same parameter setting, the instances of biased distribution are more difficult
to solve than those of uniform distribution, since the former instances have fewer sym-
metries than the latter and thus fewer symmetry breaking constraints can be posted to
reduce the search space. Nevertheless, for both distributions, SigLex and SigLex-dec

434 Y.C. Law et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem, r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem, r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem, r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem, r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

(a) Uniform distribution: q = 0.5 (top) or 1.0 (bottom)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem(Biased), r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem(Biased), r: 8, q: 0.5

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Graph Colouring Problem(Biased), r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Graph Colouring Problem(Biased), r: 8, q: 1

ValPrec
SigLex

SigLex-dec
GCC

(b) Biased distribution: q = 0.5 (top) or 1.0 (bottom)

Fig. 1. Graph colouring: average number of fails (left) and time (right)

Breaking Symmetry of Interchangeable Variables and Values 435

took fewer number of fails than GCC and ValPrec in almost all parameter settings.
The fewer number of fails, however, does not always lead to better run times, due to the
overhead incurred by the introduction of intermediate variables inside the implementa-
tion of the SIGLEX constraint. ValPrec is competitive only for small values of n. The
relative performance of SigLex and SigLex-dec over GCC and ValPrec increases as
q increases. Among the two variable partition orderings in SIGLEX, SigLex-dec has
much better performance than SigLex in both number of fails and run time, confirming
the effectiveness of our proposed heuristic. The performance advantage of SigLex-dec
over the other models becomes larger as both n and q increases.

8.2 Concert Hall Scheduling

A concert hall director receives n applications to use the k identical concert halls. Each
application specifies a period and an offered price to use a hall for the whole period. The
concert hall scheduling problem [18] is to decide which applications to accept in order
to maximise the total income. Each accepted application should be assigned the same
hall during its whole applied period. We use a variable to represent each application
whose domain is {1, . . . , k +1} in two value partitions. Values 1, . . . , k represent the k
interchangeable halls, while the value k + 1 represents a rejected application. Variables
representing identical applications (same period and offered price) are interchangeable
and form a partition. We generate problem instances with a maximum of r = 8 identical
applications, and the size of each partition is generated uniformly. We test with n from
20 to 40 in steps of 2, r = 8 and k ∈ {10, 14}. Experimental results are shown in Fig. 2.

Regarding the number of fails, SigLex-dec achieves the best result and ValPrec
performs the worst. Regarding the run time, SigLex-dec also achieves the best for
almost all cases. SigLex has a slower run-time on this problem, despite a better number
of fails than ValPrec and GCC. This is again due to the implementation overhead in the
SIGLEX constraint. The decreasing variable partition ordering heuristic helps hugely to
improve the pruning performance and hence outweigh the overhead to reduce the run
time. We also generated instances using a biased distribution like in graph colouring
and obtained similar experimental results. Due to space limitation, we skip the details.

Note that the concert hall scheduling problem does not really have ALLDIFF con-
straints in the variable partitions. However, the problem constraints are very similar to
ALLDIFF: two variables Xi and Xj representing two interchangeable applications can-
not take the same value (hall) if the two applications are not rejected. That is, Xi �= Xj

if Xi �= k + 1 and Xj �= k + 1. The propagation behaviour of such kind of constraint
is still similar to that of ALLDIFF. Thus, the decreasing size variable partition ordering
can still help improve the pruning performance.

9 Related Work

Puget proved that symmetries can always be eliminated by the additional of suitable
constraints [1]. Crawford et al. presented the first general method for constructing such
symmetry breaking constraints, which are so-called “lex-leader” constraints [2]. They
also argued that it is NP-hard to eliminate all symmetric solutions in general. The full
set of lex-leader constraints can often be simplified. For example, when variables are

436 Y.C. Law et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Concert Hall Problem, r: 8, k: 10

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Concert Hall Problem, r: 8, k: 10

ValPrec
SigLex

SigLex-dec
GCC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 F
ai

ls

n

Concert Hall Problem, r: 8, k: 14

ValPrec
SigLex

SigLex-dec
GCC

 0.1

 1

 10

 100

 1000

 20 22 24 26 28 30 32 34 36 38 40

A
vg

er
ag

e
T

im
e

n

Concert Hall Problem, r: 8, k: 14

ValPrec
SigLex

SigLex-dec
GCC

Fig. 2. Concert hall scheduling (uniform distribution): average number of fails (left) and time
(right), k = 10 (top) or 14 (bottom)

interchangeable and must take all different values, Puget showed that the lex-leader
constraints simplify to a linear number of binary inequality constraints [19]. To break
value symmetry, Puget introduced one variable per value and a linear number of bi-
nary constraints [20]. Law and Lee formally defined value precedence and proposed
a specialised propagator for breaking the special type of value symmetry between two
interchangeable values [4]. Walsh extended this to a propagator for any number of inter-
changeable values [16]. Finally, an alternative way to break value symmetry statically
is to convert it into a variable symmetry by channelling into a dual viewpoint and using
lexicographic ordering constraints on this dual view [3,18]. Different postings of sym-
metry breaking constraints can leave a different solution from each equivalence class
of solutions and affect search performance. Frisch et al. discussed choosing a good
posting to give the best propagation and allow new implied constraints [21]. Smith
presented experiments with different symmetry breaking constraints using the graceful
graph problem, but did not give heuristics for choosing a good posting [22].

10 Conclusions

We have considered breaking the symmetry introduced by interchangeable variables
and values. Whilst there exist polynomial methods to eliminate all symmetric solutions,
pruning all symmetric values is NP-hard. We have introduced a new propagator called
SIGLEX for pruning some (but not necessarily all) symmetric values. The new propaga-
tor is based on a decomposition using REGULAR constraints. We have also introduced

Breaking Symmetry of Interchangeable Variables and Values 437

a heuristic for ordering the variable partitions when posting SIGLEX constraints that
improves pruning. Finally, we have tested these symmetry breaking constraints experi-
mentally for the first time and shown that they are effective in practice.

References

1. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Proc.
of ISMIS’93, pp. 350–361 (1993)

2. Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for search
problems. In: Proc. of KR’96, pp. 148–159 (1996)

3. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetry in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

4. Law, Y.C., Lee, J.: Global constraints for integer and set value precedence. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)

5. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001.
LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

6. Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: Proc. of ECAI’00,
pp. 599–603 (2000)

7. Roney-Dougal, C., Gent, I., Kelsey, T., Linton, S.: Tractable symmetry breaking using re-
stricted search trees. In: Proc. of ECAI’04, pp. 211–215 (2004)

8. Walsh, T.: Breaking value symmetry. In: Proc. of CP’07 (2007)
9. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and dynamic structural sym-

metry breaking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 695–699. Springer,
Heidelberg (2006)

10. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proc. of IJCAI’05, pp.
298–303 (2005)

11. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 295–482. Springer, Heidelberg (2004)

12. Quimper, C., van Beek, P., Lopez-Ortiz, A., Golynski, A.: Improved algorithms for the
global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556.
Springer, Heidelberg (2004)

13. Quimper, C., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

14. Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005)

15. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms for lexico-
graphic ordering constraints. Artificial Intelligence 170, 803–908 (2006)

16. Walsh, T.: Symmetry breaking using value precedence. In: Proc. of ECAI’06, pp. 168–172
(2006)

17. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database
schemes. J. ACM 30, 479–513 (1983)

18. Law, Y.C., Lee, J.: Symmetry breaking constraints for value symmetries in constraint satis-
faction. Constraints 11, 221–267 (2006)

19. Puget, J.F.: Breaking symmetries in all different problems. In: Proc. of IJCAI’05, pp. 272–
277 (2005)

20. Puget, J.F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

21. Firsch, A., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied constraints:
A constraint modelling pattern. In: Proc. of ECAI’04, pp. 171–175 (2004)

22. Smith, B.: Sets of symmetry breaking constraints. In: Proc. of SymCon’05. (2005)

Path Consistency by Dual Consistency

Christophe Lecoutre, Stéphane Cardon, and Julien Vion

CRIL – CNRS FRE 2499,
rue de l’université, SP 16
62307 Lens cedex, France

{lecoutre,cardon,vion}@cril.univ-artois.fr

Abstract. Dual Consistency (DC) is a property of Constraint Networks (CNs)
which is equivalent, in its unrestricted form, to Path Consistency (PC). The prin-
ciple is to perform successive singleton checks (i.e. enforcing arc consistency
after the assignment of a value to a variable) in order to identify inconsistent
pairs of values, until a fixpoint is reached. In this paper, we propose two new
algorithms, denoted by sDC2 and sDC3, to enforce (strong) PC following the
DC approach. These algorithms can be seen as refinements of Mac Gregor’s al-
gorithm as they partially and totally exploit the incrementality of the underlying
Arc Consistency algorithm. While sDC3 admits the same interesting worst-case
complexities as PC8, sDC2 appears to be the most robust algorithm in practice.
Indeed, compared to PC8 and the optimal PC2001, sDC2 is usually around one
order of magnitude faster on large instances.

1 Introduction

Constraint Networks (CNs) can naturally represent many interesting problems raised
by real-world applications. To make easier the task of solving a CN (i.e. the task of
finding a solution or proving that none exists), one usually tries to simplify the problem
by reducing the search space. This is called inference [7].

Consistencies are properties of CNs that can be exploited (enforced) in order to make
inferences. Domain filtering consistencies [6] allow to identify inconsistent values while
relation filtering consistencies allow to identify inconsistent tuples (pairs when relations
are binary) of values. For binary networks, Arc Consistency (AC) and Path Consistency
(PC) are respectively the most studied domain and relation filtering consistencies. Many
algorithms have been proposed to enforce PC on a given CN, e.g. PC3 [18], PC4 [9],
PC5 [21], PC8 [5] and PC2001 [2].

Recently, a new relation filtering consistency, called Dual Consistency (DC) has been
introduced [12]. The principle is to record inconsistent pairs of values identified after
any variable assignment followed by an AC enforcement. Just like SAC (Singleton Arc
Consistency), a domain filtering consistency, DC is built on top of AC. Interestingly,
when applied on all constraints of a binary instance (including the implicit universal
ones), DC is equivalent to PC, but when it is applied conservatively (i.e. only on explicit
constraints of the binary network), Conservative DC (CDC) is stronger than Conserva-
tive PC (CPC). In [12], CDC is investigated: in particular, its relationship with other
consistencies is studied and a cost-effective algorithm, called sCDC1, is proposed.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 438–452, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Path Consistency by Dual Consistency 439

In this paper, we focus on DC and propose two new algorithms to enforce (strong)
PC by following the principle underlying DC. It means that we establish (strong) PC
by performing successive singleton checks (enforcing AC after a variable assignment)
as initially proposed by Mac Gregor [16]. These two algorithms, denoted by sDC2 and
sDC3, correspond to refined versions of the algorithm sCDC1, as they partially and
totally exploit the incrementality of the underlying AC algorithm, respectively.

In terms of complexity, sDC2 admits a worst-case time complexity in O(n5d5) and
a worst-case space complexity in O(n2d2) where n is the number of variables and d
the greatest domain size. On the other hand, by its full exploitation of incrementality,
sDC3 admits an improved worst-case time complexity in O(n3d4) while keeping a
worst-case space complexity in O(n2d2). It makes sDC3 having the same (worst-case)
complexities as PC8, the algorithm shown to be the fastest to enforce PC so far [5].

The paper is organized as follows. First, we introduce constraint networks and con-
sistencies. Then, we describe two new algorithms to enforce strong path consistency,
following the dual consistency approach, and establish their worst-case complexities.
Finally, before concluding, we present the results of an experimentation we have con-
ducted.

2 Constraint Networks and Consistencies

A Constraint Network (CN) P is a pair (X , C) where X is a finite set of n vari-
ables and C a finite set of e constraints. Each variable X ∈ X has an associated
domain, denoted domP (X), which represents the set of values allowed for X . Each
constraint C ∈ C involves an ordered subset of variables of X , called scope and
denoted scp(C), and has an associated relation denoted relP (C), which represents
the set of tuples allowed for the variables of its scope. When possible, we will write
dom(X) and rel(C) instead of domP (X) and relP (C). Xa denotes a pair (X, a)
with X ∈ X and a ∈ dom(X) and we will say that Xa is a value of P . d will
denote the size of the greatest domain, and λ the number of allowed tuples over all
constraints of P , i.e. λ =

∑
C∈C |rel(C)|. If P and Q are two CNs defined on the

same sets of variables X and constraints C , then we will write P ≤ Q iff ∀X ∈ X ,
domP (X) ⊆ domQ(X) and ∀C ∈ C relP (C) ⊆ relQ(C). P < Q iff P ≤ Q and
∃X ∈ X | domP (X) ⊂ domQ(X) or ∃C ∈ C | relP (C) ⊂ relQ(C). A binary
constraint is a constraint which only involves two variables. In the following, we will
restrict our attention to binary networks, i.e., networks that only involve binary con-
straints. Further, without any loss of generality, we will consider that the same scope
cannot be shared by two distinct constraints. The density D of a binary CN is then
defined as the ratio 2e/(n2 − n).

A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be satisfi-
able iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is
the NP-complete task of determining whether a given constraint network is satisfiable.
Constraint networks can be characterized by properties called consistencies. The usual
way to exploit them is to enforce them on a CN, while preserving the set of solutions.
It then consists in identifying and removing some inconsistent values (e.g. with arc

440 C. Lecoutre, S. Cardon, and J. Vion

consistency), inconsistent pairs of values (e.g. with path consistency), etc. Here, “incon-
sistent” means that the identified values, pairs of values, etc. correspond to nogoods, i.e.
cannot participate to any solution. We start introducing the consistencies we are inter-
ested in at the level of pairs of values. From now on, we will consider a binary constraint
network P = (X , C).

Definition 1. A pair (Xa, Yb) of values of P such that X �= Y is:

– arc-consistent (AC) iff either �C ∈ C | scp(C) = {X, Y } or (Xa, Yb) ∈ rel(C);
– path-consistent (PC) iff (Xa, Yb) is AC and ∀Z ∈ X | Z �= X ∧ Z �= Y , ∃c ∈

dom(Z) such that (Xa, Zc) is AC and (Yb, Zc) is AC.

We can now introduce Arc Consistency (AC) and Path Consistency (PC) with respect
to a CN.

Definition 2. A value Xa of P is AC iff ∀Y (�= X) ∈ X , ∃b ∈ dom(Y) | (Xa, Yb) is
AC. P is AC iff ∀X ∈X , dom(X) �= ∅ and ∀a ∈ dom(X), Xa is AC.

Definition 3. A pair (X, Y) of distinct variables of X is PC iff ∀a ∈ dom(X), ∀b ∈
dom(Y), (Xa, Yb) is PC. P is PC iff any pair of distinct variables of X is PC.

AC admits the following property: for any network P , there exists a greatest subnetwork
of P which is arc-consistent, denoted by AC(P). Remark that if any variable in AC(P)
has an empty domain, P is unsatisfiable. We will denote this by AC(P) = ⊥. For any
value Xa, we will write Xa ∈ AC(P) iff a ∈ domAC(P)(X) (we will consider that
Xa /∈ ⊥). Finally, P |X=a represents the network obtained from P by restricting the
domain of X to the singleton {a}. The singleton check of a pair (X, a) corresponds to
determine whether or not AC(P |X=a) = ⊥. When the check is positive, we say that
(X, a) is singleton arc inconsistent. We can now introduce Dual Consistency (DC) [12].

Definition 4. A pair (Xa, Yb) of values of P such that X �= Y is dual-consistent (DC)
iff Yb ∈ AC(P|X=a) and Xa ∈ AC(P|Y =b). A pair (X, Y) of distinct variables of X ,
is DC iff ∀a ∈ dom(X), ∀b ∈ dom(Y), (Xa, Yb) is DC. P is DC iff any pair of distinct
variables of X is DC.

Surprisingly, DC appears to be equivalent to PC although it was predictable since Mc-
Gregor had already proposed an AC-based algorithm to establish sPC [16]. A proof can
be found in [12].

Proposition 1. DC = PC

Finally, from any relation filtering consistency, it is possible to obtain a new consis-
tency by additionally considering Arc Consistency. Classically, a network is strong
path-consistent, denoted sPC, iff it is both arc-consistent and path-consistent. We can
remark that enforcing AC (only once) on a PC network is sufficient to obtain an sPC
network.

Path Consistency by Dual Consistency 441

3 New Algorithms to Enforce Strong Path Consistency

The two algorithms that we propose to establish sPC are called sDC2 and sDC3. Before
describing them, we need to quickly introduce a basic AC algorithm, FC and a direct
adaptation of sCDC1. Remember that the general principle is to perform successive
singleton checks until a fix-point is reached.

3.1 AC and FC

The description of the sDC algorithms (which enforce sPC since DC = PC) is given
in the context of using an underlying coarse-grained AC algorithm, such as AC3 [15],
AC2001/3.1 [2] or AC3rm [13], with a variable-oriented propagation scheme. If P =
(X , C) is a CN, then AC(P, Q) with Q ⊆ X means enforcing arc consistency on P
from the given propagation set Q. Q contains all variables that can be used to detect
arc-inconsistent values in the domain of other variables.

The description is given by Algorithm 1. As long as there is a variable in Q, one is
selected and the revision of any variable connected to it (via a constraint) is performed.
A revision is performed by a call to the function revise (e.g. see [2]) specific to the
chosen coarse-grained arc consistency algorithm, and entails removing values in the
domain of the given variable that have become inconsistent with respect to the given
constraint. When a revision is effective (at least one value has been removed), the set Q
is updated. We will not discuss here about potential optimizations.

Algorithm 1. AC (P = (X , C): Constraint Network, Q: Set of Variables)

while Q �= ∅ do1

pick and delete X from Q2

foreach C ∈ C | X ∈ scp(C) do3

let Y be the second variable involved in C4

if revise(C,Y) then5

Q ← Q ∪ {Y }6

In the sequel, we will also refer to Forward Checking (FC) [10] which is an algorithm
that maintains a partial form of arc consistency. More precisely, whenever a variable is
assigned during search, only unassigned variables connected to it are revised. This is
described by Algorithm 2. Remark that the worst-case time complexity of a call to FC
is O(nd) since there are at most n − 1 revisions and the revision of a variable against
an assigned variable is O(d).

Algorithm 2. FC (P = (X , C): Constraint Network, X: Variable)

foreach C ∈ C | X ∈ scp(C) do1

let Y be the second variable involved in C2

revise(C,Y)3

442 C. Lecoutre, S. Cardon, and J. Vion

3.2 Algorithm sDC1

Here, our purpose is to establish sPC (strong PC). As we know that CDC (i.e. DC only
considered between variables connected by a constraint) is equivalent to PC when the
constraint graph is complete, we can slightly adapt the algorithm sCDC1 introduced in
[12]. We quickly describe this algorithm (in order to make this paper self-contained as
much as possible), called sDC1, before proposing some improvements to it.

In Algorithm 3, AC is enforced first (line 1), and then, at each iteration of the main
loop, a different variable is considered (let us call it the current variable). Assuming here
that X is ordered, first(X) returns the first variable of X , and next-modulo(X , X)
returns the variable that follows X in X , if it exists, or first(X) otherwise. Calling
checkV ar1 at line 6 enables us to make all possible inferences from X (this is de-
picted below). If any inference is performed, true is returned and arc consistency is
re-established (line 7). Remark that, when the domain of the current variable is single-
ton, no inference can be made anymore since the network is always maintained arc-
consistent. This is the reason of the test at line 5 (not present in sCDC1).

Algorithm 3. sDC1(P = (X , C): CN)

P ← AC(P,X)1

X ← first(X)2

marker ← X3

repeat4

if |dom(X)| > 1 then5

if checkV ar1(P, X) then6

P ← AC(P, {X})7

marker ← X8

X ← next-modulo(X , X)9

until X = marker10

Performing all inferences with respect to a variable X is achieved by calling the
function checkV ar1 (Algorithm 4). For each value a in the domain of X , AC is en-
forced on P |X=a. If a is singleton arc-inconsistent, then a is removed from the domain
of X (line 5). Otherwise (lines 8 to 12), for any value Yb present in P and absent in P ′,
the tuple (Xa, Yb) is removed from rel(C).

In [12], it is proved that sCDC1 always terminates, enforces sCDC and admits a
worst-case time complexity of O(λend3). A direct consequence is that sDC1 enforces
sPC and admits a worst-case time complexity of O(λn3d3).

3.3 Algorithm sDC2

The algorithm sDC2 can be seen as a refinement of sDC1. The idea is to limit the cost
of enforcing AC each time we have to perform a singleton check. In sDC1, we apply
AC(P |X=a, {X}). This is strictly equivalent to AC(FC(P |X=a, X), Q) where Q de-
notes the set of variables of P whose domain has been reduced by FC(P |X=a, X). In-
deed, when applying AC(P |X=a, {X}), we first start by revising each variable Y �= X

Path Consistency by Dual Consistency 443

Algorithm 4. checkVar1(P = (X , C): CN, X: Variable): Boolean

modified ← false1

foreach a ∈ domP (X) do2

P ′ ← AC(P |X=a, {X})3

if P ′ = ⊥ then4

remove a from domP (X)5

modified ← true6

else7

foreach Y ∈ X | Y �= X do8

let C ∈ C | scp(C) = {X, Y }9

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do10

remove (Xa, Yb) from relP (C)11

modified ← true12

return modified13

against X , and put this variable in the propagation queue if some value(s) of its do-
main has been removed. The first pass of AC enforcement is then equivalent to for-
ward checking. Except for the first singleton check of (X, a), in sDC2, we will apply
AC(FC(P |X=a, X), Q′) where Q′ is a set of variables built from some information
recorded during propagation. The point is that necessarily Q′ ⊆ Q, which means that
sDC2 is less expensive than sDC1 (since some useless revisions may be avoided, and,
as we will see, the cost of managing the information about propagation is negligible).
Roughly speaking, we partially exploit the incrementality of the underlying arc consis-
tency algorithm in sDC2. An arc consistency algorithm is said incremental if its worst-
case time complexity is the same when it is applied one time on a given network P and
when it is applied up to nd times on P where, between two consecutive executions, at
least one value has been deleted. All current arc consistency algorithms are incremental.

To enforce sPC on a given network P , one can then call the second algorithm we pro-
pose, sDC2 (see Algorithm 5). This algorithm differs from sDC1 by the introduction of
a counter and a data structure, denoted lastModif , which is an array of integers. The
counter is used to count the number of turns of the main loop (see lines 4 and 6). The
use of lastModif is defined as follows: for each variable X , lastModif [X] indicates
the number of the last turn where one inference concerning X has been performed.
Such an inference can be the removal of a value in dom(X) or the removal of a tuple
in the relation associated with a constraint involving X . When the function checkV ar2
returns true, it means that at least one inference concerning X has been performed.
This is why lastModif [X] is updated (line 10). Then, AC is maintained (line 11), and
if at least one value has been removed since X is the current variable (nbV alues(P)
indicates the cumulated number of values in P), we consider that each variable has been
“touched” at the current turn. Of course, a more subtle update of the array lastModif
can be conceived (looking for variables really concerned by the inferences performed
when maintaining AC). From experience, it just bloats the algorithm without any no-
ticeable benefit.

444 C. Lecoutre, S. Cardon, and J. Vion

Algorithm 5. sDC2(P = (X , C): CN)

P ← AC(P,X)1

X ← first(X)2

marker ← X3

cnt ← 04

repeat5

cnt ← cnt + 16

if |dom(X)| > 1 then7

nbV aluesBefore ← nbV alues(P)8

if checkV ar2(P, X, cnt) then9

lastModif [X] ← cnt10

P ← AC(P, {X})11

if nbV alues(P) �= nbV aluesBefore then12

lastModif [Y] ← cnt, ∀Y ∈ X13

marker ← X14

X ← next-modulo(X , X)15

until X = marker16

All inferences, if any, concerning a given variable X , are achieved by calling the
function checkV ar2 (Algorithm 6). For each value a of dom(X), if this is the first call
to checkV ar2 for X (line 3), then we proceed as usually. Otherwise, incrementality
is partially exploited by removing first at least all values that were removed by the
last AC enforcement of (X, a). This is done by calling FC. Then, we apply AC from
a propagation queue composed of all variables that were concerned by at least one
inference during the last |X | − 1 calls to checkV ar2. The remaining of the function
is identical to checkV ar1, except for the update of lastModif (line 13) whenever a
tuple is removed (lastModif [X] is not updated since done at line 10 of Algorithm 5).

Proposition 2. The algorithm sDC2 enforces sPC.

Proof. First, it is immediate that any inference performed by sDC2 is correct. Complete-
ness is guaranteed by the following invariant: when P ′ ← AC(FC(P |X=a, X), Q)
with Q = {Y | cnt − lastModif [Y] < |X |}) is performed at line 4 of Algorithm
6, we have P ′ = AC(P |X=a, X). It simply means that P ′ is either arc-consistent or
equal to ⊥. The reason is that the network P is maintained arc-consistent whenever a
modification is performed (line 11 of Algorithm 5) and that any inference performed
with respect to a value Xa has no impact on P |X=b, where b is any other value in the do-
main of the variable X . The invariant holds since, whenever an inference is performed,
it is recorded in lastModif . �
Proposition 3. The worst-case time complexity of sDC2 is O(λn3d3) and its worst-
case space complexity is O(n2d2).

Proof. Remember that the worst-case time and space complexities of sDC1 are respec-
tively O(λn3d3) and O(n2d2). Hence, to obtain the same result for sDC2, it suffices
to remark that the cumulated worst-case time complexity of line 13 of Algorithm 5 is
O(n2d), and that the space complexity of the new structure lastModif is θ(n). �

Path Consistency by Dual Consistency 445

Algorithm 6. checkVar2(P = (X , C): CN, X: Variable, cnt: integer): Boolean

modified ← false1

foreach a ∈ domP (X) do2

if cnt ≤ |X | then P ′ ← AC(P |X=a, {X})3

else P ′ ← AC(FC(P |X=a, X), {Y | cnt − lastModif [Y] < |X |})4

if P ′ = ⊥ then5

remove a from domP (X)6

modified ← true7

else8

foreach Y ∈ X | Y �= X do9

let C ∈ C | scp(C) = {X, Y }10

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do11

remove (Xa, Yb) from relP (C)12

lastModif [Y] ← cnt13

modified ← true14

return modified15

3.4 Algorithm sDC3

To fully exploit the incrementality of an AC algorithm such as AC31 when enforcing
strong path consistency, we simply need to introduce the specific data structure of AC3
with respect to each value (it is then related to the approach used in [1] for the algo-
rithm SAC-OPT). The set QXa , which denotes this structure, represents the propagation
queue dedicated to the problem P |X=a. The principle used in sDC3 is the following: If
P1 corresponds to AC(P |X=a, X), and Pi with i > 1 denotes the result of the ith AC
enforcement wrt Xa, then Pi+1 corresponds to AC(P ′i , QXa) where P ′i is a network
such that P ′i < Pi and QXa = {X ∈ X | domP ′

i (X) ⊂ domPi(X)}. The cumu-
lated worst-case time complexity of making these successive AC enforcements wrt Xa

is clearly O(ed3) = O(n2d3) since AC3 is incremental and from one call to another, at
least one value has been removed from one domain.

To enforce sPC on a given network P , sDC3 (see Algorithm 7) can then be called.
As mentioned above, a propagation queue QXa is associated with any value Xa. We
also introduce a queue Q to contain the set of values for which a singleton check must
be performed. Note that Xa ∈ Q iff QXa �= ∅. Initially, AC is enforced on P , all
dedicated queues are initialized with a special value denoted (which is equivalent to
X , although considered as being different) and Q is filled up. Then, as long as Q is not
empty, one value is selected from Q, a singleton check is performed with respect to this
value and potentially some tuples are removed.

When checkV alue (see Algorithm 8) is called, it is possible to determine whether
or not this is the first call for the given value Xa. Indeed, if QXa = , this is the case,
and then we just have to make a classical AC enforcement on P |X=a. Otherwise, we
enforce AC by using FC and the dedicated propagation queue QXa . If a is detected as
singleton arc inconsistent, it is removed and we look for any value Yb being compatible

1 To establish our complexity results for sDC3, we do not need to use an optimal AC algorithm.

446 C. Lecoutre, S. Cardon, and J. Vion

Algorithm 7. sDC3(P = (X , C): CN)

P ← AC(P,X)1

QXa ←
, ∀X ∈ X , ∀a ∈ dom(X)2

Q ← {Xa | X ∈ X ∧ a ∈ domP (X)}3

while Q �= ∅ do4

pick and remove an element Xa from Q5

R ← checkV alue(P, Xa)6

removeTuples(P,R)7

Algorithm 8. checkValue(P = (X , C): CN, Xa: Value): Set of Tuples

R ← ∅1

if QXa =
 then P ′ ← AC(P |X=a, {X})2

else P ′ ← AC(FC(P |X=a, X), QXa)3

QXa ← ∅4

if P ′ = ⊥ then5

remove a from domP (X)6

foreach Y ∈ X | Y �= X do7

foreach b ∈ domP (Y) | (Xa, Yb) is AC do8

add Yb to Q ; add X to QYb9

else10

foreach Y ∈ X | Y �= X do11

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do12

add (Xa, Yb) to R13

return R14

Algorithm 9. removeTuples(P = (X , C): CN, R: Set of Tuples)

initsize ← |R|1

cnt ← 02

while R �= ∅ do3

cnt ← cnt + 14

pick and delete the first element (Xa, Yb) of R5

remove (Xa, Yb) from relP (C) where C ∈ C | scp(C) = {X, Y }6

if cnt > initsize then7

add Xa to Q ; add Y to QXa8

add Yb to Q ; add X to QY,b9

foreach Z ∈ X | Z �= X ∧ Z �= Y do10

foreach c ∈ domP (Z) | (Zc, Xa) is AC ∧ (Zc, Yb) is AC do11

if � ∃d ∈ domP (X) | (Zc, Xd) is AC ∧ (Xd, Yb) is AC then12

add (Zc, Xa) to the end of R13

if � ∃d ∈ domP (Y) | (Zc, Yd) is AC ∧ (Xa, Yd) is AC then14

add (Zc, Yb) to the end of R15

Path Consistency by Dual Consistency 447

with Xa. For each such value, we add X to QYb
(and Yb to Q) since the next time we

will make an AC enforcement wrt Yb, the value Xa which was present so far will have
disappeared. We then need to take this into account, thanks to X ∈ QYb

, in order to
guarantee that AC is really enforced. If a is not detected as singleton arc inconsistent,
we look for tuples that can be removed. Here, they are simply put in a set R.

When removeTuples (see Algorithm 9) is called, each tuple (Xa, Yb) is considered
in turn in order to remove it (line 6). Then, we add Y to QXa (and Yb to Q): the next
time we will make an AC enforcement wrt Yb, the value Xa which was present so far
(otherwise, the tuple will have already been removed) will have disappeared. Adding
X to QYb

is not necessary if the tuple (Xa, Yb) has been put in R during the execution
of checkV alue (by recording the initial size of the set R and using a counter, we can
simply determine that). Indeed, if this is the case, it means that Yb was removed during
the last AC enforcement wrt Xa. Finally, we have to look for any value Zc which is
both compatible with Xa and Yb. If there is no value Xd compatible with both Zc and
Yb, it means that the tuple Zc, Xa can be removed. Similarly, if there is no value Yd

compatible with both Zc and Xa, it means that the tuple Zc, Yb can be removed.

Proposition 4. The algorithm sDC3 enforces sPC.

Sketch of proof. The following invariant holds: when P ′ ← AC(FC(P |X=a, X), QXa)
is performed at line 3 of Algorithm 8, we have P ′ = AC(P |X=a, X). �

Proposition 5. The worst-case time complexity of sDC3 is O(n3d4) and its worst-case
space complexity is O(n2d2).

Proof. The worst-case time complexity of sDC3 can be computed from the cumulated
worst-case time complexity of checkV alue and the cumulated worst-case time com-
plexity of removeTuples. First, it is easy to see that, in the worst-case, the number
of calls to checkV alue, for a given value Xa, is O(nd). Indeed, between two calls,
at least one tuple t of a relation, associated with a constraint involving X and another
variable, such that t[X] = a is removed. The cumulated worst-case time complexity of
making the network FC, wrt Xa, is then O(nd × nd) = O(n2d2) whereas the cumu-
lated worst-case time complexity of enforcing AC, wrt Xa, is O(ed3) = O(n2d3) if
we use AC3 due to its incrementality. Lines 6 to 9 can only be executed once for Xa (it
is only O(nd)) and the cumulated worst-case time complexity of executing lines 11 to
13, wrt Xa, is O(n2d2). As a result, we obtain a cumulated worst-case time complexity
of checkV alue with respect to any value in O(n2d3) and then a cumulated worst-case
time complexity of checkV alue in O(n3d4) since there are O(nd) values.

On the other hand, the cumulated number of turns of the main loop of removeTuples
is O(n2d2) since the number of tuples in the constraint network is O(n2d2) and since, at
each turn, one tuple is removed (see line 6 of Algorithm 9). As the worst-case time com-
plexity of one turn of the main loop of removeTuples is O(nd2), we can deduce that
the cumulated worst-case time complexity of removeTuples is then O(n3d4). From
those results, we deduce that the worst-case time complexity of sDC3 is O(n3d4).
In terms of space, remember that representing the instance is O(n2d2). The data struc-
tures introduced in sDC3 are the sets QXa which are O(n2d), the set Q which is O(nd)
and the set R which is O(n2d2). We then obtain O(n2d2). �

448 C. Lecoutre, S. Cardon, and J. Vion

Remark that if we use an optimal AC algorithm such as AC2001, the worst-case time
complexity of sDC3 remains O(n3d4) but the worst-case space complexity becomes
O(n3d2) since the last structure, in O(n2d) of AC2001 must be managed indepen-
dently for each value. It can also be shared but, contrary to [1], the interest is limited
here. On the other hand, one can easily adopt AC3rm since the specific structure of
AC3rm, in O(n2d), can be naturally shared between all values.

3.5 Complexity Issues

As λ is bounded by O(n2d2), sDC1 and sDC2 may be up to O(n5d5). This seems
to be rather high (this is the complexity of PC1), but our opinion is that, similarly to
sCDC1, both algorithms quickly reach a fix-point (i.e. the number of times the function
checkV ar1 or checkV ar2 is called for a given variable is small in practice) because
inferences about inconsistent values and, especially pairs of values, can be immediately
taken into account. Besides, sDC2 partially benefits from incrementality, and so is close
to sDC3 which admits a nice worst-case time complexity in O(n3d4).

On the other hand, the following proposition indicates that the time wasted to ap-
ply one of the three introduced algorithms on a network which is already sPC is quite
reasonable. The three algorithms have essentially the same behaviour.

Proposition 6. Applied to a constraint network which is sPC, the worst-case time com-
plexity of sDC1, sDC2 and sDC3 is O(n3d3).

Proof. If the network is sPC, the number of singleton checks will be O(nd). As a
singleton check is O(ed2) = O(n2d2) if we use an optimal AC algorithm, we obtain
O(n3d3). �

Proposition 7. The best-case time complexity of sDC1, sDC2 and sDC3 is O(n2d2).

Proof. The best case is when all constraints are universal (i.e. when all tuples are al-
lowed). Indeed, in this case, enforcing AC corresponds to calling FC since we just need
to check that any value of any variable is compatible with the current assignment. A
singleton check is then O(nd), and the overall complexity is O(n2d2). �

There is another interesting case to be considered. This is when after the first pass of
AC (actually, FC), many revisions can be avoided by exploiting Proposition 1 of [3].
Considering a network that is sPC and assuming that all revisions can be avoided by
using this revision condition [17], the worst-case time complexity becomes O(nd.(nd+
n2)) = O(n2d.max(n, d)) as for each singleton check the number of revisions which
comes after FC is O(n2), each one being O(1) since the revision effort is avoided. This
has to be compared with the cost of the initialization phase of PC8 and PC2001 which
is O(n3d2) in the same context. It means that one can expect here an improvement by
a factor O(min(n, d)).

4 Experiments

In order to show the practical interest of the approach described in this paper, we have
conducted an experimentation on a i686 2.4GHz processor equipped with 1024 MiB

Path Consistency by Dual Consistency 449

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 15 20 25 30 35 40 45

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 15 20 25 30 35 40 45

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC2001
sPC8
sDC1
sDC2
sDC3

(a) d = 10, e = 612

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC2001
sPC8
sDC1
sDC2
sDC3

(b) d = 10, e = 1225

 0

 50

 100

 150

 200

 250

 300

 350

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 50

 100

 150

 200

 250

 300

 350

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2
sDC3

(c) d = 50, e = 612

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 30 35 40 45 50 55 60 65 70

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 30 35 40 45 50 55 60 65 70

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2
sDC3

(d) d = 50, e = 1225

 0

 200

 400

 600

 800

 1000

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2

(e) d = 90, e = 612

 0

 100

 200

 300

 400

 500

 600

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 100

 200

 300

 400

 500

 600

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2

(f) d = 90, e = 1225

Fig. 1. Average results obtained for 100 random binary instances of classes 〈50, d, e, t〉

450 C. Lecoutre, S. Cardon, and J. Vion

 0

 10

 20

 30

 40

 50

 60

 46 48 50 52 54 56 58 60 62

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sDC1
sDC2
sDC3

Fig. 2. Zoom on the average behaviour of sDC1, sDC2 and sDC3 below the threshold for 100
random binary instances of classes 〈50, 50, 1225, t〉

RAM. We have compared the CPU time required to enforce sPC on (or show the incon-
sistency of) a given network with algorithms sDC1, sDC2, sDC3, sPC8 and sPC2001.
The underlying Arc Consistency algorithm used for sDC algorithms was (an optimized
version for binary constraints of) AC3rm [13] equipped with the revision condition
mechanism [3,17].

We have first tested the different algorithms against random instances. We have col-
lected results for classes of the form 〈50, d, 1225, t〉with d ∈ {10, 50, 90} and t ranging
from 0.01 to 0.99. We also tried classes of the form 〈50, d, 612, t〉, that is to say ran-
dom instances involving 50% of universal explicit constraints and 50% of constraints
of tightness t. Figure 1 shows the average cpu time required to enforce sPC on these
different classes. The shaded area on each sub-figure indicates tightnesses for which
more than 50% of generated instances were proved to be inconsistent. First, we can
remark that when the domain size d is set to 50 (resp. 90), sPC2001 (resp. sDC3) runs
out of memory. This is the reason why they do not appear on all sub-figures. Second,
when we focus our attention on the three algorithms introduced in this paper, we can
make the following observations. For small tightnesses, sDC1, sDC2 and sDC3 have a
similar behaviour, which can be explained by the fact that no propagation occurs. For
tightnesses below the threshold (see Figure 2) , sDC3 has a better behaviour than sDC1
and sDC2 since it benefits from a full exploitation of incrementality. At and above the
threshold, sDC3 is highly penalized by its fine grain, which prevents it from quickly
proving inconsistency. This is particularly visible in Figure 1(d). On the other hand, the
main result of this first experimentation is that sDC2, while being slightly more efficient
than sDC1, is far more efficient than sPC8 (and sPC2001). For small tightnesses, there is
a significant gap (up to two orders of magnitude for d = 90) existing between sDC2 and
sPC8, which is partly due to the fact many revisions can be avoided as discussed in Sec-
tion 3.5, while for tightnesses around the threshold, it is still very important (about one
order of magnitude for d = 90). We can even observe that the gap increases when the
density decreases, which is not surprising since the number of allowed tuples increases
with the number of universal constraints and the fact that classical PC algorithms deal
with allowed tuples.

Path Consistency by Dual Consistency 451

Table 1. Results obtained on academic queens and langford instances; cpu in seconds and
mem(ory) in MiB

Instances sPC8 sPC2001 sDC1 sDC2 sDC3

queens-30
cpu 5.06 5.37 2.22 2.28 2.60

mem 17 76 17 17 37

queens-50
cpu 50.9 − 4.6 4.5 5.3

mem 30 22 22 149

queens-80
cpu 557.9 − 26.8 24.7 −

mem 97 44 44

queens-100
cpu 1549 − 62 58 −

mem 197 73 73

langford-3-16
cpu 45.45 66.66 4.91 4.44 57.8

mem 27 612 21 21 129

langford-3-17
cpu 63.48 − 6.06 6.07 76.79

mem 34 22 22 157

langford-3-20
cpu 140 − 11 9.7 198

mem 43 26 26 250

langford-3-30
cpu 1247 − 60 50 −

mem 138 56 56

Table 1, built from two series of academic instances, confirms the results obtained for
random instances. Indeed, on such structured instances, sDC2 is about 20 times more
efficient than sPC8 for large ones, whatever inference occurs or not. The queens in-
stances are already sPC, which is not the case of the langford instances.

5 Conclusion

In this paper, we have introduced two algorithms to enforce strong path consistency.
The algorithm sDC2 has been shown to be a good compromise between the basic sDC1
and the more refined sDC3. Even if the worst-case time complexity of sDC2 seems
rather high, its close relationship with sDC3, which admits a complexity close to the
optimal, suggests its practical efficiency. In practice, on random instances, sDC2 is
slightly slower than sDC3 when the number of inferences is limited, but far faster at
the phase transition of path consistency. Compared to sPC8 and the optimal sPC2001,
sDC2 is usually around one order of magnitude faster on large instances.

Maybe, one can wonder about the interest of PC algorithms when the constraint
graph is not complete. Indeed, when a pair of values is identified as not being PC, it
has to be removed from the network. When no constraint binding the two involved
variables exists in the CN, a new one has to be inserted (consequently, changing the
constraint graph). To avoid this drawback, it is possible to enforce relation filtering
consistencies in a conservative way, i.e. without adding new constraints, This gives rise
to consistencies such as CDC and CPC. Of course, some pairs of values identified as in-
consistent must be ignored, and consequently, some information is lost. However, there
exists an alternative to inserting new constraints: recording nogoods, especially as this
approach [8,20] has been recently re-investigated by the CSP community [11,4,19,14].
As a perspective of this work, we project to enforce strong path consistency by combin-
ing nogood recording with an adaptation of sDC2. Interestingly, it could be applied to
any constraint network (even one involving non binary constraints).

452 C. Lecoutre, S. Cardon, and J. Vion

References

1. Bessiere, C., Debruyne, R.: Optimal and suboptimal singleton arc consistency algorithms.
In: Proceedings of IJCAI’05, pp. 54–59 (2005)

2. Bessiere, C., Régin, J.C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency
algorithm. Artificial Intelligence 165(2), 165–185 (2005)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Support inference for generic filtering. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 721–725. Springer, Heidelberg (2004)

4. Boutaleb, K., Jégou, P., Terrioux, C.: (no)good recording and robdds for solving structured
(v)csps. In: Proceedings of ICTAI’06, pp. 297–304 (2006)

5. Chmeiss, A., Jégou, P.: Efficient path-consistency propagation. International Journal on Ar-
tificial Intelligence Tools 7(2), 121–142 (1998)

6. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial Intelligence
Research 14, 205–230 (2001)

7. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
8. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of AAAI’94, pp. 294–300

(1994)
9. Han, C.C., Lee, C.H.: Comments on Mohr and Henderson’s path consistency. Artificial In-

telligence 36, 125–130 (1988)
10. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14, 263–313 (1980)
11. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of AAAI’05, pp.

390–396 (2005)
12. Lecoutre, C., Cardon, S., Vion, J.: Conservative dual consistency. In: Proceedings of

AAAI’07, pp. 237–242 (2007)
13. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In: Proceedings of

IJCAI’07, pp. 125–130 (2007)
14. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In: Proceedings

of IJCAI’07, pp. 131–136 (2007)
15. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118

(1977)
16. McGregor, J.J.: Relational consistency algorithms and their application in finding subgraph

and graph isomorphisms. Information Sciences 19, 229–250 (1979)
17. Mehta, D., van Dongen, M.R.C.: Reducing checks and revisions in coarse-grained MAC

algorithms. In: Proceedings of IJCAI’05, pp. 236–241 (2005)
18. Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelligence 28,

225–233 (1986)
19. Richaud, G., Cambazard, H., O’Sullivan, B., Jussien, N.: Automata for nogood recording in

constraint satisfaction problems. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204. Springer,
Heidelberg (2006)

20. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint satisfaction
problems. International Journal of Artificial Intelligence Tools 3(2), 187–207 (1994)

21. Singh, M.: Path consistency revisited. International Journal on Artificial Intelligence Tools 5,
127–141 (1996)

Exploiting Past and Future: Pruning by

Inconsistent Partial State Dominance

Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal

CRIL – CNRS FRE 2499,
rue de l’université, SP 16
62307 Lens cedex, France

{lecoutre,sais,tabary,vidal}@cril.univ-artois.fr

Abstract. It has recently been shown, for the Constraint Satisfaction
Problem (CSP), that the state associated with a node of the search tree
built by a backtracking algorithm can be exploited, using a transposi-
tion table, to prevent the exploration of similar nodes. This technique
is commonly used in game search algorithms, heuristic search or plan-
ning. Its application is made possible in CSP by computing a partial
state – a set of meaningful variables and their associated domains – pre-
serving relevant information. We go further in this paper by providing
two new powerful operators dedicated to the extraction of inconsistent
partial states. The first one eliminates any variable whose current do-
main can be deduced from the partial state, and the second one extracts
the variables involved in the inconsistency proof of the subtree rooted
by the current node. Interestingly, we show these two operators can be
safely combined, and that the pruning capabilities of the recorded partial
states can be improved by a dominance detection approach (using lazy
data structures).

1 Introduction

Backtracking search is considered as one of the most successful paradigm for
solving instances of the Constraint Satisfaction Problem (CSP). Many improve-
ments have been proposed over the years. They mainly concern three research
areas: search heuristics, inference and conflict analysis. To prevent future con-
flicts, many approaches have been proposed such as intelligent backtracking (e.g.
Conflict Based Backjumping [19]), and nogood recording or learning [11].

In the context of satisfiability testing (SAT), studies about conflict analysis
have given rise to a new generation of efficient conflict driven solvers called
CDCL (Conflict Driven Clause Learning), e.g. Zchaff [22] and Minisat [8]. This
has led to a breakthrough in the practical solving of real world instances. The
progress obtained within the SAT framework has certainly contributed to a
renewed interest of the CSP community to learning [15,4,16].

In [17], a promising approach, called state-based search, related to learning,
has been proposed. The concept of transposition table, widely used in game
search algorithms and planning, has been adapted to constraint satisfaction.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 453–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

454 C. Lecoutre et al.

More precisely, at each node of the search tree proved to be inconsistent, a
partial snapshot of the current state (a set of meaningful variables and their
associated domains) is recorded, in order to avoid a similar situation to occur
later during search. To make this approach quite successful, two important is-
sues must be addressed: limiting the space memory required, and improving the
pruning capabilities of recorded partial states. Extracting partial states as small
as possible (in terms of variables) is the answer to both issues. Different state
extraction operators, which have yielded promising practical results, have been
proposed in [17].

In this paper, we go further by providing two new powerful extraction opera-
tors. The first one eliminates any variable whose current domain can be deduced
from the partial state, and the second one extracts the variables involved in the
inconsistency proof of the subtree rooted by the current node. Interestingly, we
show that these two operators can be combined. Also, we improve the pruning
capabilities of the recorded inconsistent partial states using an advanced data
structure based on the SAT well-known watched literal technique, and domi-
nance detection (only equivalence detection was addressed in [17]).

Fig. 1. Partial state ex-
traction from past and
future

Figure 1 illustrates our approach. At each node of
the search tree, past and future can be exploited. On
the one hand, by collecting information from the past,
i.e. on the path leading from the root to the current
node, redundant variables of any identified partial state
(extracted using any other operator) can be removed.
This is called explanation-based reasoning. On the
other hand, by collecting information from the future,
i.e during the exploration of the subtree, variables not
involved in the proof of unsatisfiability can be removed.
This is called proof-based reasoning. Pruning by incon-
sistent state dominance is made more efficient through
the combination of both reasonings.

2 Technical Background

A Constraint Network (CN) P is a pair (X , C) where X is a finite set of n
variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain, denoted domP (X) or simply dom(X), which contains the set
of values allowed for X . The set of variables of P will be denoted by vars(P).
A pair (X, a) with X ∈ X and a ∈ dom(X) will be called a value of P . An
instantiation t of a set {X1, ..., Xq} of variables is a set {(Xi, vi) | i ∈ [1, q] and
vi ∈ dom(Xi)}. The value vi assigned to Xi in t will be denoted by t[Xi]. Each
constraint C ∈ C involves a subset of variables of X , called scope and denoted
scp(C), and has an associated relation, denoted rel(C), which represents the
set of instantiations allowed for the variables of its scope. A constraint C ∈ C
with scp(C) = {X1, . . . , Xr} is universal in P iff ∀v1 ∈ dom(X1), . . . ,∀vr ∈
dom(Xr), ∃t ∈ rel(C) such that t[X1] = v1, . . . , t[Xr] = vr. If P and Q are two

Exploiting Past and Future: Pruning by Inconsistent Partial State 455

CNs defined on the same sets of variables X and constraints C , we will write
P � Q iff ∀X ∈ X , domP (X) ⊆ domQ(X). A solution to P is an instantiation
of vars(P) such that all the constraints are satisfied. The set of all the solutions
of P is denoted sol(P), and P is satisfiable iff sol(P) �= ∅.

The Constraint Satisfaction Problem (CSP) is the NP-complete task of deter-
mining whether or not a given CN is satisfiable. A CSP instance is then defined
by a CN, and solving it involves either finding one (or more) solution or deter-
mining its unsatisfiability. To solve a CSP instance, one can modify the CN by
using inference or search methods. Usually, domains of variables are reduced by
removing inconsistent values, i.e. values that cannot occur in any solution. In-
deed, it is possible to filter domains by considering some properties of constraint
networks. Generalized Arc Consistency (GAC) remains the central one. It is for
example maintained during search by the algorithm MGAC, called MAC in the
binary case.

From now on, we consider a backtracking search algorithm (e.g. MGAC) using
a binary branching scheme, in order to solve a given CN P . This algorithm
builds a tree search and employs an inference operator φ that enforces a domain
filtering consistency [6] at any step of the search called φ-search. We assume that
φ satisfies some usual properties such as monotony and confluence. φ(P) is the
CN derived from P obtained after applying the inference operator φ. If there
exists a variable with an empty domain in φ(P) then P is clearly unsatisfiable,
denoted φ(P) = ⊥. Given a set of decisions Δ, P |Δ is the CN derived from P
such that, for any positive decision (X = v) ∈ Δ, dom(X) is restricted to {v},
and, for any negative decision (X �= v) ∈ Δ, v is removed from dom(X).

We assume that any inference is performed locally, i.e. at the level of a single
constraint C, during the propagation achieved by φ. The inference operator φ
can be seen as a collection of local propagators associated with each constraint,
called φ-propagators. These propagators can correspond to either the generic
revision procedure of a coarse-grained GAC algorithm called for a constraint, or
to a specialized filtering procedure (e.g. in the context of global constraints).

3 Inconsistent Partial States

In this section, we introduce the central concept of partial state of a constraint
network P . It corresponds to a set of variables of P with their potentially reduced
associated domains.

Definition 1. Let P = (X , C) be a CN , a partial state Σ of P is a set of pairs
(X, DX) with X ∈X and DX ⊆ domP (X) such that any variable of X appears
at most once in Σ.

The set of variables occurring in a partial state Σ is denoted by vars(Σ), and
for any (X, DX) ∈ Σ, domΣ(X) denotes DX . At a given step of a backtrack-
ing search, a partial state can be associated with the corresponding node of
the search tree. This partial state is naturally built by taking into account all
variables and their current domains, and will be called the current state.

456 C. Lecoutre et al.

A network can be restricted over one of its partial state Σ by replacing in P
the domain of each variable occurring in Σ with its corresponding domain in Σ.
The restricted network is clearly smaller (�) than the initial network.

Definition 2. Let P = (X , C) be a CN and Σ be a partial state of P . The
restriction ψ(P, Σ) of P over Σ is the CN P ′ = (X , C) such that ∀X ∈ X ,
domP ′

(X) = domΣ(X) if X ∈ vars(Σ), and domP ′
(X) = domP (X) otherwise.

A partial state Σ of a CN P is said to be inconsistent with respect to P when
the network defined as the restriction of P over Σ is unsatisfiable.

Definition 3. Let P be a CN and Σ be a partial state of P . Σ is an inconsistent
partial state of P (IPSP for short), iff ψ(P, Σ) is unsatisfiable.

A partial state Σ is said to dominate a CN P if each variable of Σ occurs in P
with a smaller domain.

Definition 4. Let P and P ′ be two CNs such that P ′ � P , and Σ be a partial
state of P . Σ dominates P ′ iff ∀X ∈ vars(Σ), domP ′

(X) ⊆ domΣ(X).

The following proposition is at the core of state-based reasoning by dominance
detection.

Proposition 1. Let P and P ′ be two CNs such that P ′ � P , and Σ be an
IPSP . If Σ dominates P ′, P ′ is unsatisfiable.

Proof. It is immediate since we can easily deduce that ψ(P ′, Σ) � ψ(P, Σ) from
P ′ � P and the definition of ψ. �

In the context of solving a constraint network P using a backtracking search, this
proposition can be exploited to prune nodes dominated by previously identified
IPSP . An IPSP can be extracted from a node proved to be the root of an
unsatisfiable subtree. Although the current state associated to such a node is an
IPSP itself, it cannot obviously be encountered later during search: to be useful,
it must be reduced. That is why in what follows, we propose two new operators
(and adapt an existing one) which eliminate some variables from a state proved
unsatisfiable, while preserving its status of IPSP .

Finally, it is important to relate the concept of (inconsistent) partial state
with those of Global Cut Seed [10] and pattern [9]. The main difference is that
a partial state can be defined from a subset of variables of the CN, whereas
GCS and patterns, introduced to break global symmetries, contain all variables
of the CN. On the other hand, it is close to the notion of nogood as introduced
in [20], where it is shown that a nogood can be reduced to a subset of variables,
those involved in the decisions taken along the current branch leading to an
inconsistent node. In our context, we will show that it is possible to build a
partial state by removing variables involved or not in taken decisions.

Exploiting Past and Future: Pruning by Inconsistent Partial State 457

4 Universality-Based Extraction

In [17], three different operators have been introduced to extract constraint sub-
networks whose state can be recorded in a transposition table. These operators
allow to remove so-called s-eliminable (ρsol), u-eliminable (ρuni) and r-eliminable
(ρred) variables. The principle is to determine whether or not the subnetwork
corresponding to the current node of the search tree is equivalent to one already
recorded in the table. If this is the case, this node can be safely discarded.

In this paper, we apply this approach to state dominance detection and pro-
pose new advanced operators. Only, the ρuni operator will be considered in our
context, as s-eliminable variables are also u-eliminable (ρsol is interesting to
count solutions), and the removal of r-eliminable variables is immediate when
considering dominance detection. We propose a new formulation of this operator.

Definition 5. Let P = (X , C) be a CN . The operator ρuni(P) denotes the
partial state Σ = {(X, domP (X)) | X ∈ X and ∃C ∈ C | X ∈ scp(C) and C
is not universal in P}. A variable X ∈ X \ vars(Σ) is called an u-eliminable
variable of P .

The following proposition establishes that ρuni can extract inconsistent partial
states at any node of a search tree proved to be the root of an unsatisfiable
subtree.

Proposition 2. Let P and P ′ be two CNs such that P ′ � P . If P ′ is unsatisfi-
able then ρuni(P ′) is an IPSP .

Proof. As shown in [17], the constraint subnetwork defined from the variables of
Σ = ρuni(P ′) is unsatisfiable. Its embedding in any larger constraint network
entails its unsatisfiability. �

5 Proof-Based Extraction

Not all constraints of an unsatisfiable constraint network are necessary to prove
its unsatisfiability. Some of them form (Minimal) Unsatisfiable Cores (MUCs)
and different methods have been proposed to extract them. Indeed, one can
iteratively identify the constraints of a MUC following a constructive [5], a de-
structive [1] or a dichotomic approach [14,13]. More generally, an unsatisfiable
core can be defined as follows:

Definition 6. Let P = (X , C), P ′ = (X ′, C ′) be two CNs. P ′ is an un-
satisfiable core of P if P ′ is unsatisfiable, X ′ ⊆ X , C ′ ⊆ C and ∀X ′ ∈
X ′, domP ′

(X ′) = domP (X ′).

Interestingly, it is possible to associate an IPSP with any unsatisfiable core ex-
tracted from a network P ′ � P . This is stated by the following proposition.

Proposition 3. Let P and P ′ be two CNs such that P ′ � P . For any unsatis-
fiable core P ′′ of P ′, Σ = {(X, domP ′′

(X)) | X ∈ vars(P ′′)} is an IPSP .

458 C. Lecoutre et al.

Proof. If Σ is not an IPSP , i.e. if ψ(P, Σ) is satisfiable, there exists an assignment
of a value to all variables of vars(Σ) such that all constraints of P are satisfied.
As any constraint of P ′′ is included in P ′, and so in P , this contradicts our
hypothesis of P ′′ being an unsatisfiable core. �

As an inconsistent partial state can be directly derived from an unsatisfiable
core, one can be interested in extracting such cores from any node proved to
be the root of an unsatisfiable subtree. Computing a posteriori a MUC from
scratch using one of the approaches mentioned above seems very expensive since
even the dichotomic approach is in O(log(e).ke) [13] where ke is the number of
constraints of the extracted core. However, it is possible to efficiently identify
an unsatisfiable core by keeping track of all constraints involved in the proof of
unsatisfiability [1]. Such constraints are the ones used during search to remove,
through their propagators, at least one value in the domain of one variable. We
adapt this “proof-based” approach to extract an unsatisfiable core from any node
of the search tree by incrementally collecting relevant information.

Algorithm 1 depicts how to implement our method inside a backtracking φ-
search algorithm. The recursive function solve determines the satisfiability of
a network P and returns a pair composed of a Boolean (that indicates if P
is satisfiable or not), and a set of variables. This set is either empty (when P
is satisfiable) or represents a proof of unsatisfiability. A proof is composed of
the variables involved in the scope of the constraints that triggered at least one
removal during φ-propagation.

At each node, a proof, initially empty, is built from all inferences produced
when enforcing φ and the proofs (lines 6 and 8) associated with the left and right
subtrees (once a pair (X, a) has been selected). When the unsatisfiability of a
node is proved after having considered two branches (one labelled with X = a
and the other with X �= a), one obtains a proof of unsatisfiability (line 10) by
simply merging the proofs associated with the left and right branches. Remark
that the worst-case space complexity of managing the different local proofs of
the search tree is in O(n2d) since storing a proof is O(n) and there are at most
O(nd) nodes per branch.

Using Algorithm 1, we can introduce a new advanced extraction operator that
only retains variables involved in a proof of unsatisfiability. This operator can

Algorithm 1. solve(P = (X , C): CN): (Boolean, Set of Variables)

localProof ← ∅1

P ′ = φ(P) // localProof updated according to φ2

if P ′ = ⊥ then return (false, localProof)3

if ∀X ∈ X , |dom(X)| = 1 then return (true, ∅)4

select a pair (X, a) with |dom(X)| > 1 ∧ a ∈ dom(X)5

(sat, leftProof) ← solve(P ′|X=a)6

if sat then return (true, ∅)7

(sat, rightProof) ← solve(P ′|X �=a)8

if sat then return (true, ∅)9

// leftProof ∪ rightProof is a proof of inconsistency for P ′
10

return (false, localProof ∪ leftProof ∪ rightProof)11

Exploiting Past and Future: Pruning by Inconsistent Partial State 459

be incrementally used at any node of a search tree proved to be the root of an
unsatisfiable subtree.

Definition 7. Let P be a CN such that solve(P) = (false, proof). The operator
ρprf (P) denotes the partial state Σ = {(X, domP (X)) | X ∈ proof}. A variable
X ∈ vars(P) \ vars(Σ) is called a p-eliminable variable of P .

Proposition 4. Let P and P ′ be two CNs such that P ′ � P . If P ′ is unsatisfi-
able then ρprf (P ′) is an IPSP .

Proof. Let P = (X , C) and solve(P ′) = (false, proof). Clearly, P ′′ = (proof,
{C ∈ C | scp(C) ⊆ proof}) is an unsatisfiable core of P ′. ρprf (P ′) is equal to
{(X, domP ′

(X)) | X ∈ proof} which is proved to be an IPSP by Prop. 3. �

In practice, in Algorithm 1, one can call the ρprf operator to extract an IPSP
at line 10. Interestingly enough, the following proposition establishes that ρprf

is stronger than ρuni (i.e. allows to extract partial states representing larger
portions of the search space).

Proposition 5. Let P be an unsatisfiable CN. ρprf(P) ⊆ ρuni(P).

Proof. An universal constraint cannot occur in an unsatisfiability proof. An u-
eliminable variable only occurs in universal constraints, so is p-eliminable. �

It must be noted that, unlike ρuni, extracting an inconsistent partial state using
ρprf can only be performed when the subtree has been completely explored. As a
consequence, it is not possible to use this operator for pruning equivalent states
using a transposition table whose keys correspond to partial states. Nevertheless,
ρprf can be fully exploited in the context of dominance detection.

6 Explanation-Based Extraction

In this section, we propose a second advanced extraction operator of (inconsis-
tent) partial states. Unlike the proof-based extraction operator, this new one
can be applied each time we reach a new node by analyzing all propagation
performed so far. The principle of this operator is to build a partial state by
eliminating the variables whose domains can be inferred from the other ones.
This is made possible by keeping track, for any value removed from the initial
network, of the constraint at the origin of its removal. This kind of original ex-
planations can be related to the concept of implication graphs used in the SAT
community. In the context of achieving arc consistency for dynamic CSPs [2],
such explanations were also exploited to put values back into domains when
constraints are retracted.

In constraint satisfaction, eliminating explanations are classically decision-
based, which means that each removed value is explained by a set of positive
decisions, i.e. a set of variable assignments. This is usually exploited to perform

460 C. Lecoutre et al.

some kind of intelligent backtracking (e.g. [7,19,12]). Interestingly, it is possible
to define explanations in a more general way by taking into account not only
some decisions taken during search but also some constraints of the original
network.

Explanations recorded for each removal can be represented using an implica-
tion graph as used in the satisfiability context [22]. Given a set of decisions (the
current partial instantiation), the inference process can be modelled using a fine-
grained implication graph. More precisely, for each removed value, one can record
positive and negative decisions implying this removal (through clauses). For our
purpose, we can simply reason using a coarse-grained level of the implication
graph. Whenever a value (X, a) is removed during the propagation associated
with a constraint C, the (local) eliminating explanation of (X, a) is simply given
by C. In other words, as our aim is to circumscribe a partial state (smaller than
the current state in terms of variables), we only need to know for each removed
value (X, a), the variables (in fact, those involved in C) responsible of its re-
moval. From this information, it is possible to build a directed graph G where
nodes correspond to variables and arcs to dependencies between variables. More
precisely, an arc exists in G from a variable Y to a variable X if there exists a
removed value (X, a) such that its local explanation is a constraint involving Y .
Also, a special node denoted by nil is considered, and an arc exists from nil to
a variable X if this variable is involved in a (positive or negative) decision. The
implication graph can then be used to extract an inconsistent partial state from
a subset of variables S (that already represents an inconsistent partial state)
by eliminating any variable with no incoming arc from a variable outside S. Of
course, such an extraction is not interesting if S is X since it necessary produces
a set of variables corresponding to all decisions.

Important: For all definitions and propositions below, we consider given two
CNs P = (X , C) and P ′ such that P ′ corresponds to a node of the φ-search
tree of P . We obviously have P ′ � P .

Definition 8. For any (X, a) such that X ∈ X and a ∈ domP (X)\domP ′
(X),

the local eliminating explanation of (X, a), denoted by exp(X, a) is, if it exists,
the constraint C whose associated φ-propagator has removed (X, a) along the
path leading from P to P ′, and nil otherwise.

These explanations can be used to extract a partial state from a CN wrt P and
a set of variables S. This partial state contains the variables of S that cannot
be “explained” by S.

Definition 9. ∀S ⊆ X , ρexpP,S(P ′) is the partial state Σ = {(X, domP ′
(X)) |

X ∈ S and ∃a ∈ domP (X) \ domP ′
(X) such that (exp(X, a) = nil or ∃Y ∈

scp(exp(X, a)) such that Y /∈ S). A variable X ∈ S \ vars(Σ) is called an
i-eliminable variable of P ′ wrt P and S.

Proposition 6. Let Σ be a partial state of P ′ and Σ′ = ρexpP,vars(Σ)(P
′). We

have: φ(ψ(P, Σ′)) = φ(ψ(P, Σ)).

Exploiting Past and Future: Pruning by Inconsistent Partial State 461

Proof sketch. The only variables whose domain may differ between ψ(P, Σ′)
and ψ(P, Σ) are the i-eliminable variables of the set Δ = vars(Σ) \ vars(Σ′).
We also have ∀X ∈ vars(Σ′), domψ(P,Σ′)(X) = domψ(P,Σ)(X) = domP ′

(X)
and ∀X ∈ Δ, domψ(P,Σ′)(X) = domP (X). This means that the domains of the
variables in Σ′ are in the state they were after performing all decisions and
propagations that lead to P ′, and the domains of the variables of Δ are reset to
the state they were in P . Also, every variable X ∈ vars(P) \ vars(Σ) is such
that domψ(P,Σ′)(X) = domψ(P,Σ)(X).

Let RΔ = {(X, a) | X ∈ Δ ∧ a ∈ domP (X) \ domP ′
(X)} be the set of

values removed for the variables of Δ on the branch leading from P to P ′. For
any (X, a) ∈ RΔ, we have an explanation C = exp(X, a) such that C �= nil
and scp(C) ⊆ vars(Σ) since X is i-eliminable. In other words, the removal of
values from RΔ were triggered along the path leading to P ′ by constraints (the
explanations) only involving variables of Σ, that is variables of Σ′ and Δ itself.

In ψ(P, Σ′), we can trigger the removal of all values in RΔ in the order they
were performed along the path leading to P ′. Indeed, following the same order,
the explanation associated with each value of RΔ can trigger its removal again
as (1) the domains of the variables of Σ′ are kept after their reduction in the
branch leading to P ′ (∀X ∈ Σ′, domψ(P,Σ′)(X) = domP ′

(X)), (2) variables of
Δ are reset to their state in P (∀X ∈ Δ, domψ(P,Σ′)(X) = domP (X)) and (3)
the explanation of any removal only involves variables of Σ. This can be shown
by a recurrence on the order values are removed in the branch leading to P ′.
Finally, as the removed values represent the only difference between ψ(P, Σ′) and
ψ(P, Σ), by confluence of φ, we can conclude that φ(ψ(P, Σ′)) = φ(ψ(P, Σ)). �

The following corollary (whose proof is a direct consequence of Proposition 6) is
particularly interesting since it states that we can safely use ρexp after any other
one which produces an IPSP .

Corollary 1. Let Σ be a partial state of P ′ and Σ′ = ρexpP,vars(Σ)(P
′). If Σ is an

IPSP then Σ′ is an IPSP .

It follows that the next two operators are guaranteed to produce an IPSP .

Definition 10. ρprexP (P ′) = ρexpP,vars(Σ)(P
′) with Σ = ρprf (P ′). ρunexP (P ′) =

ρexpP,vars(Σ)(P
′) with Σ = ρuni(P ′).

The ρexp operator can be implemented with a two-dimensional array exp such
that for any pair (X, a) removed from P during a φ-search, exp[X, a] represents
its local eliminating explanation. When a positive decision X = a is taken,
exp[X, b] ← nil for all remaining values b ∈ dom(X) | b �= a, and when a
negative decision X �= a is taken, exp[X, a]← nil. The space complexity of exp
is O(nd) while the time complexity of managing this structure is O(1) whenever
a value is removed or restored during search. The worst-case time complexity of
ρexp is O(ndr) where r denotes the greatest constraint arity. Indeed, there are
at most O(nd) removed values which admit a local eliminating explanation.

462 C. Lecoutre et al.

Fig. 2. Extracting partial states using ρuni, ρexp and ρunex

Figure 2 illustrates (on consistent partial states) the behavior of ρuni, ρexp

and their combination ρunex. The problem at hand involves four variables (X ,
Y , Z, W) and three constraints (X �= Y , Y ≥ Z, Y ≤ W). When the decision
X = 3 is taken, the explanation associated with the removal of 1 and 2 from
dom(X) is set to nil. These removals are propagated to Y through the constraint
X �= Y , yielding the removal of 3 from dom(Y). The explanation of this removal
is thus set to X �= Y . This removal is then propagated to Z and W : 3 is removed
from dom(Z) through the propagation of Y ≥ Z which constitutes its explana-
tion, and 0 is removed from dom(W) through the propagation of Y ≤ W . No
more propagation is possible, and the resulting network is denoted by P ′. The
dependency graph exploited later by ρexp is then built from these explanations.

Applying ρuni to P ′ leads to the elimination of X yielding the partial state
Σ1, as X is now only involved in universal constraints. Indeed, the remaining
value 3 in dom(X) is compatible with the two remaining values 1 and 2 in
dom(Y) within the constraint X �= Y . The three other variables are involved in
constraints which are not universal.

Applying ρexp to P ′ and S = vars(P) leads to the elimination of Y , Z and
W , yielding the partial state Σ2 = {(X, {3})}. Indeed, X is the only variable
from which a removal is explained by nil (S being all variables of P ′, this is the
only relevant condition for determining variables of interest). This illustrates the
fact that applying ρexp to all variables of a constraint network has no interest: as
we obtain the set of decisions of the current branch, the partial state can never

Exploiting Past and Future: Pruning by Inconsistent Partial State 463

be encountered (or dominated) again without restarts. Note that we would have
obtained the same result with a classical decision-based explanation scheme.

More interesting is the application of ρunex. Once ρuni has been applied, giving
the partial state Σ1 whose variables are {Y, Z, W}, ρexp is applied to determine
which variables of Σ1 have domains that can be determined by other variables
of Σ1. The variable Y is the only one for which all removals cannot be explained
by constraints whose scope involve variables inside Σ1 only, as the explanation
X �= Y of the removal (Y, 3) involves now a variable outside the variables of
interest. This yields the partial state Σ3 = {(Y, {1, 2})}, that contains a variable
which is not a decision, and which can then be exploited later during search.

7 Dominance State Detection

In the context of a φ-search algorithm, we give now some details about the
exploitation of the reduction operators. At each node associated with an un-
satisfiable network, one can apply one (or a combination) of the operators to
extract an inconsistent partial state, and record it in an IPSP base. The IPSP
can then be exploited later during search either to prune nodes of the search
tree, or to make additional inferences.

Equivalent nodes can be pruned using transposition tables as proposed in [17],
but ρprf cannot be exploited this way. Indeed, when a node is opened, computing
a key for it (to be used in the transposition table) is impossible: it requires the
complete exploration of the subtree rooted by this node. As such, equivalence
detection through the transposition table cannot be performed. However, a node
dominated by an IPSP stored in the base can be safely pruned.

One can go further, by identifying the values whose presence would lead to
expand nodes dominated by an IPSP . Similarly to [16], such inferences can be
done thanks to the lazy data structure of watched literals [18] used to manage the
IPSP base. A watched literal of an IPSP Σ is a pair (X, a) such that X ∈ vars(Σ)
and a ∈ domΣ(X). It is said to be valid when a ∈ dom(X) \ domΣ(X). Two
watched literals are associated with each inconsistent partial state Σ. Σ is valid
if its two watched literals are valid. When a value a is removed from dom(X),
the set of the IPSP where (X, a) is watched is not valid anymore. To maintain
the validity of these inconsistent partial states, we must for each of them, either
find another valid watched literal, or remove the values in dom(Y) ∩ domΣ(Y)
where (Y, b) is the second watched literal. Exploiting this structure, we have the
guarantee that the current node cannot be dominated by an IPSP .

Note that, when using the ρprf operator, inferences must be performed with
caution. Indeed, the IPSP Σ responsible of an inference participates to the proof
of unsatisfiability of the current node. Σ can be seen as an additional constraint
of the initial network: each variable occurring in vars(Σ) must then also occur
in the proof. Finally, whatever the operators are used, variables whose current
domain has never been reduced on the current branch can be safely eliminated.
Indeed, the dominance for such variables is guaranteed to hold.

464 C. Lecoutre et al.

Table 1. Number of solved instances per series (1, 800 seconds allowed per instance).

Series #Inst brelaz dom/ddeg dom/wdeg

¬ρ ρuni ρprex ¬ρ ρuni ρprex ¬ρ ρuni ρprex

aim 48 32 25 (29) 39 32 25 (29) 38 48 43 (47) 48
dubois 13 4 0 (2) 13 4 1 (2) 13 5 13 (3) 11

ii 41 10 10 (10) 13 10 9 (10) 16 20 18 (19) 31
os-taillard-10 30 5 5 (5) 5 4 4 (4) 4 10 10 (10) 13

pigeons 25 13 17 (19) 13 13 17 (19) 13 13 16 (18) 10
pret 8 4 4 (4) 8 4 4 (4) 8 4 8 (4) 8

ramsey 16 3 3 (3) 6 5 3 (5) 5 6 5 (6) 6
scens-11 12 0 0 (0) 0 0 0 (0) 4 9 7 (8) 9

193 71 64 (72) 92 73 63 (73) 105 115 120 (115) 136

8 Experiments

In order to show the practical interest of the new operators introduced for domi-
nance detection, we have conducted an experimentation on a Xeon processor ca-
denced at 3 GHz and 1GiB RAM. We have used benchmarks from the second CSP
solver competition (http://cpai.ucc.ie/06/Competition.html) including bi-
nary and non binary constraints expressed in extensional and intentional form.
We have used MGAC (in our solver Abscon1) with various combinations of extrac-
tion operators and variable ordering heuristics. Performance is measured in terms
of cpu time in seconds (cpu), number of visited nodes (nodes), memory in MiB
(mem) and average number of variables eliminated when building inconsistent
partial states (elim). For ρuni, we considered the same restriction as the one men-
tioned in [17]: only the variables with a singleton domain involved in constraints
binding at most one non singleton-domain variable are removed (to avoid check-
ing the universality of constraints). We also experimented equivalence detection
(using a transposition table) with the operator ρred proposed in [17]: as ρred is
related to ρuni since they have the same behaviour for dominance detection, the
obtained results are given between brackets in the columns of ρuni.

Table 1 presents the results obtained on some series of structured instances. We
do not provide any results on random instances as, unsurprisingly, our learning ap-
proach is not adapted to them. The tested configurations are labelled ¬ρ (MGAC
without state-based reasoning), ρuni and ρprex, each one being combined with the
three heuristics brelaz, dom/ddeg and dom/wdeg [3]. The first thing that we can
observe is that, whatever the heuristic is used, more instances are solved using
ρprex. Also, note that the performance of the dominance detection approach can be
damaged when ρuni is used: more instances are solved with brelaz and dom/ddeg
using equivalence detection (results between brackets). Indeed, for ρuni, the size
of the IPSP can often be quite high, which directly affects dominance checking;
whereas equivalence detection can be performed in nearly constant time using a
hash table.

Table 2 focuses on some instances with the same tested configurations (brelaz
is omitted, as similar results are obtained with dom/ddeg). One can first observe a
drastic reduction in the number of expanded nodes using dominance detection, es-
pecially with ρprex. This is mainly due to the high averagepercentage of eliminated
1 http://www.cril.univ-artois.fr/∼lecoutre/research/tools/abscon.html

http://cpai.ucc.ie/06/Competition.html
http://www.cril.univ-artois.fr/~lecoutre/research/tools/abscon.html

Exploiting Past and Future: Pruning by Inconsistent Partial State 465

Table 2. Results on some structured instances (1, 800 seconds allowed per instance)

dom/ddeg dom/wdeg

¬ρ ρuni ρprex ¬ρ ρuni ρprex

BlackHole-4-4-e-0
cpu 2.39 2.31 (1.9) 2.36 2.3 3.07 (2.25) 3.37
nodes 6, 141 1, 241 (1, 310) 931 6, 293 3, 698 (4, 655) 5, 435

(#V = 64) elims 0 13.61 (14.16) 58.88 0 14.35 (14.84) 58.02

aim-100-1-6-1
cpu 11.54 65.16 (19.2) 2.45 2.14 2.45 (2.34) 2.2
nodes 302K 302K (302K) 737 987 998 (909) 616

(#V = 200) elims 0 161.80 (161.78) 190.22 0 174.94 (176.18) 189.78

aim-200-1-6-1
cpu − − (−) 4.059 3.4 4.44 (6.56) 3.18
nodes 6, 558 9, 063 7, 637 (26, 192) 1, 814

(#V = 400) elims 382.73 0 356.39 (348.35) 388.63

composed-25-10-20-9
cpu 7.39 6.02 (6.95) 2.65 2.56 2.77 (2.56) 2.47
nodes 75, 589 20, 248 (54, 245) 184 323 315 (323) 164

(#V = 105) elims 0 48.90 (48.95) 87.75 0 67.02 (65.91) 89.25

driverlogw-09-sat
cpu 422.2 189.71 (378.87) 83.85 13.69 14.61 (13.13) 12.25
nodes 118K 37, 258 (98, 320) 17, 623 12, 862 8, 592 (11, 194) 6, 853

(#V = 650) elims 0 511.69 (514.14) 541.81 0 513.21 (523.26) 544.05

dubois-20
cpu 183.38 110.71 (78.94) 1.4 65.95 1.62 (47.72) 1.96
nodes 24M 787K (2, 097K) 379 8, 074K 1, 252 (1, 660K) 2, 133

(#V = 60) elims 0 42.00 (48.50) 56.63 0 52.25 (45.93) 51.17

dubois-30
cpu − − (−) 1.7 − 2.41 (−) 3.39
nodes 724 4, 267 12, 190

(#V = 90) elims 86 81.2 78.5

ii-8a2
cpu 16.87 − (44.23) 4.09 3.08 3.99 (3.69) 2.99
nodes 214K (214K) 5, 224 4, 390 4, 391 (4, 390) 1, 558

(#V = 360) elims 0 (276.08) 317.04 0 291.67 (291.90) 316.98

ii-8b2
cpu − − (−) 7.92 9.16 26.86 (22.48) 6.71
nodes 2, 336 11, 148 11, 309 (11, 148) 3, 239

(#V = 1, 152) elims 1, 090 0 979.59 (980.08) 1, 050

os-taillard-10-100-3
cpu − − (−) − − − (−) 467.26
nodes 134K

(#V = 100) elims 66.90

pigeons-15
cpu − 53.34 (5.63) − − 882.41 (23.62) −
nodes 106K (115K) 517K (900K)

(#V = 15) elims 6.99 (7.49) 8.13 (8.63)

pret-150-25
cpu − − (−) 3.11 − 59.66 (6.32) 4.4
nodes 9, 003 203K (97, 967) 17, 329

(#V = 150) elims 135.72 132.62 (133.71) 137.67

pret-60-25
cpu 66.71 3.17 (3.38) 1.79 76.57 1.97 (1.94) 2.0
nodes 7, 822K 17, 530 (47, 890) 1, 503 7, 752K 2, 631 (4, 080) 2, 501

(#V = 60) elims 0 45.56 (45.71) 52.32 0 51.47 (52.46) 51.98

ramsey-16-3
cpu 72.72 − (108.41) 18.25 − − (−) −
nodes 1, 162K (1, 162K) 46, 301

(#V = 120) elims 0 (84.44) 105.49

ramsey-25-4
cpu 3.86 4.18 (4.11) 4.15 3.81 4.17 (4.14) 4.04
nodes 591 591 (591) 570 590 (591) (590) 537

(#V = 300) elims 0 191.62 (191.40) 274.72 0 159.81 (159.73) 269.36

scen11-f6
cpu − − (−) 371.02 42.15 13.15 (10.17) 5.56
nodes 110K 217K 16, 887 (18, 938) 2, 585

(#V = 680) elims 655.80 0 22.72 (22.17) 654.81

variables from IPSP (around 90% for ρprex, much less for ρuni), which compen-
sates the cost of managing the IPSP base. The bad results with ρprex on pigeons
instances can be explained by the fact that many positive decisions are stored in
unsatisfiability proofs when propagating the IPSP base.

Table 3 exhibits some results obtained for hard RLFAP instances. We only
consider dom/wdeg here, but with all extraction operators mentioned in this
paper. Clearly, the dominance detection approach with ρuni suffers from mem-
ory consumption: due to the size of the IPSP , two instances remain unsolved.

466 C. Lecoutre et al.

Table 3. Results on hard RLFAP instances using dom/wdeg (1, 800 seconds allowed)

Instance ¬ρ ρuni ρunex ρprf ρprex

cpu 9.0 10.4 (8.54) 12.3 (9.6) 5.7 5.5
scen11-f8 mem 29 164 (65) 49 (37) 33 33

(#V = 680) nodes 15, 045 13, 319 (13, 858) 13, 291 (13, 309) 1, 706 1, 198
elim 39.0 (38.1) 590.2 (590.2) 643.3 656.0
cpu 26.0 11.1 (9.23) 10.4 (10.06) 5.5 5.6

scen11-f7 mem 29 168 (73) 49 (37) 33 33
(#V = 680) nodes 113K 13, 016 (14, 265) 12, 988 (13, 220) 2, 096 1, 765

elim 25.2 (25.4) 584.1 (584.7) 647.5 654.8
cpu 41.2 15.0 (10.61) 15.5 (10.14) 6.4 6.8

scen11-f6 mem 29 200 (85) 53 (37) 33 33
(#V = 680) nodes 217K 16, 887 (18, 938) 16, 865 (17, 257) 2, 903 2, 585

elim 22.7 (22.1) 588.6 (589.3) 648.8 654.8
cpu 202 − (72.73) 195 (98.16) 31.5 12.2

scen11-f5 mem 29 256 342 (152) 53 41
(#V = 680) nodes 1, 147K 257K 218K (244K) 37, 309 14, 686

elim 24.1 592.6 (583.36) 651.6 655.7
cpu 591 − (−) 555 (261.67) 404 288

scen11-f4 mem 29 639 (196) 113 93
(#V = 680) nodes 3, 458K 365K (924K) 148K 125K

elim 586.6 (593.1) 651.7 655.0

Combining ρuni with ρexp (i.e. ρunex) allows to save memory (between brackets,
we have the results for ρred combined with ρexp). However, the best performance is
obtained when combining explanation-based and proof-based reasoning, i.e. with
ρprex. Note that the average size of the inconsistent partial states recorded in the
base is very small: they involve about 680− 655 = 25 variables.

To summarize, the results that we have obtained with the new extraction oper-
ators and the dominance detection approach outperform, both in space and time,
those obtained with the operator ρred which is dedicated to equivalence detec-
tion (ρred combined with ρexp gives similar results as ρred alone, except a memory
reduction for a few instances). Besides, it allowed to solve more instances in a rea-
sonable amount of time. We believe the results can still be improved since we did
not control the partial states recorded in the base (and this has a clear impact
when the resolution is difficult, as e.g. for the instance scen11-f4).

9 Conclusion

In this paper, we have introduced two operators that enable the extraction of an
(inconsistent) partial state at each node of a search tree. Whereas the former col-
lects information above the current node (propagation analysis from the root to
the node) to perform an explanation-based extraction, the latter collects it be-
low (subtree analysis) to perform a proof-based extraction – making these two
approaches complementary. Next, we have shown that inconsistent partial states
can be efficiently exploited to prune the search space by dominance detection.

State-based search as studied in [17] and in this paper can be seen as an
approach to automatically break some form of local symmetries. A direct
perspective of this new paradigm is to combine it with SBDD (Symmetry Break-
ing by Dominance Detection) [9,10,20,21].

Exploiting Past and Future: Pruning by Inconsistent Partial State 467

Acknowledgments

This paper has been supported by the CNRS and the ANR “Planevo” project
noJC05 41940.

References

1. Baker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: Proceedings of IJCAI’93, pp.
276–281 (1993)

2. Bessière, C.: Arc-consistency in dynamic constraint satisfaction problems. In: Pro-
ceedings of AAAI’91, pp. 221–226 (1991)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI’04, pp. 146–150 (2004)

4. Boutaleb, K., Jégou, P., Terrioux, C.: (no)good recording and robdds for solving
structured (v)csps. In: Proceedings of ICTAI’06, pp. 297–304 (2006)

5. de Siqueira, J.L., Puget, J.F.: Explanation-based generalisation of failures. In: Pro-
ceedings of ECAI’88, pp. 339–344 (1988)

6. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial In-
telligence Research 14, 205–230 (2001)

7. Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction
problems. Artificial Intelligence 136, 147–188 (2002)

8. Eén, N., Sorensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)

9. Fahle, T., Schamberger, S., Sellman, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

10. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh,
T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

11. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of AAAI’94, pp.
294–300 (1994)

12. Ginsberg, M.: Dynamic backtracking. Artificial Intelligence 1, 25–46 (1993)
13. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from con-

straint networks. In: Proceedings of ECAI’06, pp. 113–117 (2006)
14. Junker, U.: QuickXplain: preferred explanations and relaxations for over-

constrained problems. In: Proceedings of AAAI’04, pp. 167–172 (2004)
15. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of

AAAI’05, pp. 390–396 (2005)
16. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from

restarts. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 1,
147–167 (2007)

17. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Transposition Tables for Constraint
Satisfaction. In: Proceedings of AAAI’07, pp. 243–248 (2007)

18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: Proceedings of DAC’01, pp. 530–535 (2001)

19. Prosser, P.: Hybrid algorithms for the constraint satisfaction problems. Computa-
tional Intelligence 9(3), 268–299 (1993)

20. Puget, J.F.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005)
21. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proceedings

of IJCAI’05, pp. 298–303 (2005)
22. Zhang,L.,Madigan,C.F.,Moskewicz,M.W.,Malik, S.: Efficient conflict driven learn-

ing in aBoolean satisfiability solver. In:Proceedingsof ICCAD’01, pp. 279–285 (2001)

Scheduling Conditional Task Graphs

Michele Lombardi and Michela Milano

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. This paper describes a complete and efficient solution to the schedul-
ing of conditional task graphs whose nodes are activities and whose arcs can be
labelled with a probability distribution. Tasks are executed if a set of conditions
hold at scheduling execution time. The model is therefore stochastic. The min-
imization of the expected makespan implies an exponential-sized description of
the objective function. We propose an analytic formulation of the stochastic ob-
jective function based on the task graph analysis, and a conditional constraint that
handles it efficiently. Experimental results show the effectiveness of our approach
in comparison with (1) an approach using a deterministic objective function and
(2) scenario based constraint programming taking into account all scenarios or
only a part of them.

1 Introduction

We propose an original approach to the scheduling of conditional task graphs in pres-
ence of unary and cumulative resources, minimizing the expected makespan. Condi-
tional Task Graphs (CTG) are directed acyclic graphs containing activities, linked by
precedence relations. Some of the activities represent branches: at run time, only one
of the successors of a branch is chosen for execution, depending on the occurrence of
a condition labelling the corresponding arc. Since the truth or the falsity of those con-
ditions is not known a priori, the problem is stochastic. Therefore, we have to take into
account all possible scenarios during the schedule construction.

CTGs are ubiquitous to a number of real life problems. In compilation of computer
programs [5], for example, CTGs are used to explicitly take into account the presence of
conditional instructions. Similarly, in the field of system design [17] CTGs are used to
describe applications with if-then-else statements; in this case tasks represent processes
and arcs are data communications. Once a hardware platform and an application is
given, to design a system amounts to allocate platform resources to processes and to
compute a schedule: in this context, taking into account branches allows better resource
usage, and thus lower costs. In the conditional planning approach [10,14], plans are
generated prior to execution, but they include both observation actions and conditional
branches which may or may not be executed depending on the execution time result of
certain observations.

While a number of incomplete approaches have been proposed for this problem [16],
[12], [17], to our knowledge, the only complete approaches working on conditional task
graphs are described in [6] [11], and [8]; the first two papers only take into account
unary resources (or, equivalently, disjunctive constraints), while in the latter unary and

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 468–482, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scheduling Conditional Task Graphs 469

cumulative resources are considered in a system design application under the mini-
mization of the expected communication cost. The objective function we consider in
this paper is far more complicated since it implies a declarative exponential-sized de-
scription.

We propose an efficient way to overcome this problem by defining an expected
makespan constraint that uses an analytic formulation of the stochastic objective func-
tion. This constraint and all the problem constraints considering conditional activities
rely on two data structures: the Branch Fork Graph (BFG) that compactly represents all
possible scenarios and the ω-tree, a BFG subgraph selecting a set of scenarios which in-
clude or exclude a specified group of nodes. If a condition named Control Flow Unique-
ness (CFU) holds, the algorithms working on the BFG are polynomial. CTGs satisfying
CFU are common to a number of application. The BFG and the ω-tree provide a general
and powerful tool for defining other conditional global constraints such as the condi-
tional edge finder, the conditional precedence graph. This is subject of current research.

Experimental results are very promising. We have evaluated the approach on a set of
600 instances measuring the time to compute a solution, and compared the quality of the
schedule to an approach using a deterministic objective function. In addition we have
compared our methods with scenario based constraint programming [13] considering
either all scenarios, or a fraction of them. In all comparisons our approach wins, out-
performing the scenario based constraint programming both considering all scenarios
or only a part of them.

In the literature other sources of uncertainty are taken into account: for example in
stochastic scheduling [2] stochastic activity durations are considered, in simple tem-
poral network with uncertainty again unknown durations are considered. Other papers
deal with so called alternative activities (see [1,3]) whose execution is decided by the
user at scheduling construction time.

The paper is organized as follows: we first describe the problem considered and the
corresponding model in section 2; then the expected makespan constraint is proposed
in section 3 along with the branch fork graph used for computing task probabilities,
and the filtering algorithm used to prune end variables. Experimental results follow in
section 4. Conclusion and current research description conclude the paper.

2 Problem Description and Model

The problem we tackle is the scheduling of Conditional Task Graphs (CTG) in presence
of unary and cumulative resources. A CTG (figure 1A) is a triple 〈T, A, C〉, where T
is the set of nodes modelling generic tasks, A is the set of arcs modelling precedence
constraints, and C is a set of conditions, each one associated to an arc, modelling what
should be true in order to choose that branch during execution (e.g. the condition of an
if-then-else construct). A node with more than one outgoing arc is said to be a branch if
all arcs are conditional (e.g., t1 in figure 1A), a fork if all arcs are not conditional (e.g.,
t0 in figure 1A); mixed nodes are not allowed. A node with more than one ingoing arc
is an or-node (e.g., t15 in figure 1A) if all arcs are mutually exclusive, it is instead an
and-node (e.g., t21 in figure 1A) if all arcs are not mutually exclusive; again, mixed
nodes are not allowed.

470 M. Lombardi and M. Milano

Fig. 1. A: Example of CTG; B: Mapping between CTG and the corresponding BFG

Since the truth or the falsity of conditions is known at scheduling execution time
and the scheduler has no control on it, the problem is stochastic. In particular, we can
associate to each branch a stochastic variable B with probability space 〈C,A, p〉, where
C is the set of possible branch exit conditions c, A the set of events (one for each
condition) and p the branch probability distribution; we compactly denote as c the event
{B = c}, and therefore p(c) = p({B = c}) is the probability that condition c is true
(see figure 1C).

We can associate to each node ti an activation function f(ti) expressed as a boolean
composition of branch outcome events (compactly denoted as conditions) that trigger
the execution of the corresponding activity. For example in the graph of figure 1A
f(t2) = a, f(t8) = ¬a ∧ b, f(t17) = (¬d ∧ e) ∨ (d ∧ e). Each activation function
f(ti) also implicitly identifies a set of paths in the CTG sufficient for ti to execute.

In the CTG each node represents a task (also called activity). Tasks are non preemp-
tive, have fixed duration, and execute within a specified time window (defined by the
earliest start time and the latest end time) and require for their execution either unary
or cumulative resources. The objective function we consider is the minimization of the
expected makespan. For this purpose we propose an expected makespan constraint, de-
scribed in section 3. The solution of the CTG scheduling problem can be given either
in terms of a scheduling table [16] or as a unique schedule. In the first case each task is
assigned to a different start time, depending on the scenario. Unluckily, the size of such
table grows exponentially as the number of branches increases. We therefore chose to
provide a single schedule, where each task is assigned a unique start time, regardless
it executes or not. All constraints should be satisfied whatever scenario appears at ex-
ecution time. For example, in figure 2 we show a small CTG and the corresponding
solution. If conditions ¬a and b will be true at run time, only tasks t0, t1, t3, t4 and t6
will actually execute.

Scheduling Conditional Task Graphs 471

Fig. 2. Temporal task grouping

This choice goes in the line of the notion of strong consistency and controllability
defined in [11]. In addition, for some classes of problems such as compilation of com-
puter programs, this is the only kind of solution which can be actually executed ([12]).
Resource constraints have to be modified to take into account the presence of mutually
exclusive tasks. Two tasks ti and tj are said to be mutually exclusive (mutex(ti,tj)) if
they never appear in the same scenario, so that they can access the same resource with-
out competition. For example tasks t2 and t3 (or tasks t4 and t5) in figure 2 can overlap
on the same unary resource since they are mutually exclusive. In fact tasks t2 and t3
are respectively triggered by conditions a and ¬a, which are never true in the same
scenario.

A unary resource, can be implemented by means of a conditional disjunctive con-
straint [6], which enforces:
∀ti, tj mutex(ti, tj) ∨ end(ti) ≤ start(tj) ∨ end(tj) ≤ start(ti)
We model cumulative resources by means of conditional timetable constraints, pro-

posed in [8]; the filtering algorithm is based on the branch/fork graph, described in sec-
tion 3.1. We substantially adopted the same algorithm, but we reduced the worst case
complexity from O(n2

anc) to O(n2
a log(nc)), where na, nc are the number of activities

and conditions respectively.
Conditional constraints for unary and cumulative resources, as well as the new

makespan constraint we propose, integrate well with a standard branch and bound pro-
cedure (which we use in this paper), as well as in many other CP search methods.

3 Expected Makespan Constraint

For a deterministic task graph, the makespan is simply the end time of the last task; it
can be expressed as:

makespan = max
i
{end(ti)}

If the task graph is conditional the last task depends on the occurring scenario. In a
conditional task graph, each scenario ω contains a specific set of tasks (say tasks(ω));
for each scenario the makespan is max{end(ti) | ti ∈ tasks(ω)}. Thus, the most
natural declarative expression for the expected makespan would be:

E(makespan) =
∑
ω

p(ω)max{end(ti) | ti ∈ tasks(ω)} (1)

472 M. Lombardi and M. Milano

where p(ω) is the probability of the scenario ω. Unluckily the number of scenarios is
exponential in the number of branches, which limits the direct use of expression (1)
to small, simple instances. Therefore, we chose to define and adopt a way to compute
legal bounds on the makespan variable and the end times of all tasks in a procedural
fashion. The procedure we identified was used to devise a sound and complete filtering
algorithm for the expected makespan constraint (see section 3.6).

The idea is the following. First note that the computation of the expected makespan
is tractable when the order of the end variables of tasks is known.

Consider the example in figure 2: note that, since t5 is the last task, the makespan of
all scenarios containing t5 is end(t5). Similarly, since t4 is the last but one task, end(t4)
is the makespan value of all scenarios containing t4 and not containing t5, and so on.

In general, let t0, t1, . . . , tna−1 be the sequence of CTG tasks ordered by increasing
end time; let the order be completely specified, then:

E(makespan) =
∑
i

p(ti ∧ ¬ti+1 ∧ . . . ∧ ¬tna−1) end(ti) (2)

The sum contains na terms, where na is the number of activities. Note that this number
can be decreased by considering tail tasks only (i.e. tasks with no successor) Once the
end order of tasks is fixed, we can thus compute the expected makespan in polynomial
time, provided we are able to efficiently compute the probability weights in expression
(2). In general, during search, the order of tasks is not fixed. It is always possible,
however, to identify minimum and maximum length task sequences (note that they are
possibly infeasible), compute their makespan with expression (2) and prune the task
end variables accordingly.

Expression (2) can be used to devise a filtering algorithm to prune the makespan and
the end variables during search and embed it in a new expected makespan constraint:
emakespan(mkspan, ends, mappings, graph) where mkspan is the makespan vari-
able, ends is an array with the end variables, mappings is an array which tells for each
task the CTG node it is mapped to. Finally, the graph must be known in order to com-
pute the associate BFG. Note that, in order to improve efficiency, one could build the
constraint by specifying the end variables of tail tasks only.

In the next sections we will first show how to efficiently compute probabilities in
expression 2. We propose to use a structure called Branch/Fork graph that compactly
represents all scenarios, and a way to query it to obtain the needed probabilities. In sec-
tion 3.6 we will present the filtering algorithms for the makespan and the end variables.

3.1 Branch/Fork Graph

A Branch/Fork Graph (BFG) intuitively represents the skeleton of all possible control
flows and compactly encodes all scenarios of the corresponding CTG.

A BFG is a bichromatic acyclic directed graph. Nodes are either branch (“B”, the
solid dots in figure 1B) or fork (“F”, the circles in figure 1B). There is a branch node
in the BFG for each branch node in the CTG. F nodes instead group CTG nodes that
belong to the same scenarios. Therefore, a BFG can be built from its associated CTG,
provided we know the activation functions f(ti) of the tasks. All functions are supposed

Scheduling Conditional Task Graphs 473

to be in disjunctive normal form, i.e. as disjunction of minterms, where a minterm is a
conjunction of one or more conditions (f(ti) = m0∨m1∨. . . and mj = cj0∧cj1∧. . .).

There is a mapping between CTG nodes and BFG nodes. For example, in figure 1,
tasks t2, t3 and t4 are CTG nodes mapped to the same F node Fa in the BFG. They
in fact, belong to the same scenario and have the same activation function. Figure 1B
shows the CTG and the corresponding BFG along with the task mappings.

Let F (ti) be the set of F nodes the task ti is mapped to: if F (ti) contains an F node
Fj and all its descendants, we can remove all of them from F (ti) and keep only Fj
to compact the representation. For instance t5 should be mapped to F¬a, Fb, F¬b, Fc,
F¬c, but it is actually mapped only to F¬a.

Some structural properties of the BFG follow:

1. B node parents are always F nodes
2. B node parents represent mutually exclusive minterms/paths
3. outgoing arcs of B nodes originate mutually exclusive minterms/paths
4. F node parents represent non mutually exclusive minterms/paths
5. outgoing arcs of F nodes originate non mutually exclusive minterms/paths

We have defined a BFG construction procedure described in [9] that we skip here for
lack of space. The construction procedure we outlined has exponential time complexity;
in practice it can be replaced by a polynomial one, if a property named control flow
uniqueness holds.

3.2 Control Flow Uniqueness

We are interested in conditional graphs satisfying Control Flow Uniqueness (CFU) a
condition introduced in [8]. CFU is satisfied if for each non head task ti there is at
least a predecessor tj such that: f(tj)∧cji ⇒ f(ti), where cji is the condition possibly
labeling arc (j, i); if there is no such condition cji = true. Note that if two predecessor
tasks tj and tk both satisfy the expression above, then they are mutually exclusive. Tasks
with a single predecessor trivially satisfy the expression above; the same holds for or-
nodes since all their predecessors are mutually exclusive, therefore CFU translates into a
restriction on and-nodes only. In particular CFU requires each and-node to be triggered
by a single “main” predecessor, or, in other words, that every and-node must be on a
single control path. For example in figure 3A, task t5 is sufficient to trigger the execution
of t8 (since t7 executes in all scenarios) and thus CFU holds. On the opposite, in figure
3B, neither t4 nor t5 alone are sufficient to activate t7 and CFU is not satisfied. In many
practical cases CFU is not restrictive assumption: for example, when the graph results
from the parsing of a computer program written in a high level language (such as C++,
Java, C#) CFU is naturally enforced by the scope rules of the language.

Control flow uniqueness translates into some additional structural properties for the
BFG (proofs are omitted due to lack of space but can be found in [9]):

– If CFU holds, every F node has a single parent and it is always a B node
– If CFU holds, every F node splits its descendants into separated subgraphs

474 M. Lombardi and M. Milano

Fig. 3. A: a CTG which satisfies; CFU B: a CTG which does not satisfy CFU

From these properties, we deduce that if CFU holds the BFG is a bichromatic alter-
nate graph. Moreover, since every branch node with m outgoing arcs originates exactly
m F nodes, the BFG has exactly nc + 1 F nodes, where nc is the number of conditions.

CFU is also a necessary condition for the two structural properties listed above to
hold; therefore we can check CFU by trying to build a BFG with a single parent for
each F node: if we cannot make it, then the original graph does not satisfy the condition.

3.3 BFG and Scenarios

The most interesting feature of a BFG is that it can be used to select and encode groups
of scenarios in which arbitrarily chosen nodes execute/do not execute. If we have al-
gorithms to extract interesting features of these scenario groups, such as their maxi-
mum/minimum weight (see [8]) or their probability (algorithm devised further on), we
can turn the BFG into a powerful tool to build many useful conditional constraints, for
example the expected makespan constraint we develop in this work.

Groups of scenarios are encoded in the BFG as sets of ω-trees:

Definition 1 (ω-tree). An ω-tree is any subgraph of the BFG satisfying the following
properties:

1. the subgraph includes the root node
2. if the subgraph includes an F node, it includes also all its children
3. if the subgraph includes an F node, it includes also all its parents
4. if the subgraph includes a B node, it includes also one and only one of its children

Note that, despite its name, an ω-tree is not necessarily a tree: this is always the case
only if CFU (which is not required by definition 1) is satisfied (figure 4B). Any ω-tree
translates to a single scenario where all and only the conditions it includes are true. By
relaxing condition 4 in definition (1) we get subsets of the BFG representing sets of
omega trees, and thus sets of scenarios (see figure 4C).

3.4 Querying the BFG

We now need a way to select subgraphs representing sets of scenarios which include
or exclude a specified group of nodes. We consider selection rules specified by means
of boolean queries in Conjunctive Normal Form (CNF). Each basic term of the query

Scheduling Conditional Task Graphs 475

Fig. 4. (A) BFG for the graph in figure 1A - (B) an ω-tree - (C) a subgraph representing a set of
ω-trees

can be ti (with meaning “task ti executes”) or ¬ti (with meaning “task ti does not
execute”). Some examples of valid queries are:

q0 = ti ∧ tj q1 = ti ∧ ¬tj ∧ ¬tk q2 = (ti ∨ tj) ∧ tk

The idea at the base of the query processing procedure is that, since the complete
BFG represents all possible scenarios, we can select a subset of them by removing F
nodes which do not satisfy the boolean query. Thus, in order to be processed, queries
are negated and translated in Disjunctive Normal Form (DNF):

¬q0 = ¬ti ∨ ¬tj ¬q1 = ¬ti ∨ tj ∨ tk ¬q2 = (¬ti ∧ ¬tj) ∨ ¬tk

Each element in the negated disjunction now has to be mapped to a set of F nodes to
be removed from the BFG. This requires to compute for each F and B node an inclusion
label and an exclusion label:

1. Inclusion labels: A CTG task ti is in the inclusion label i(Fj) of a F node Fj if
Fj ∈ F (ti) or if ti is in the inclusion label of any of its parents (that are B nodes). A
CTG task ti is in the inclusion label i(Bj) of a B node Bj if ti is in the inclusion label
of all of its parents. In practice ti ∈ i(Fj) (resp. i(Bj)) if it does execute in any ω-tree
containing Fj (resp. Bj).

2. Exclusion labels: A CTG task ti is in the exclusion label e(Fj) of an F node Fj if
ti is in the exclusion label of any parent, or if parent of Fj is a B node and it exists a
brother F node Fk such that ti is mapped on a descendant of Fk and ti is not mapped
on a descendant of Fj . A CTG task ti is in the exclusion label e(Bj) of a B node Bj

if ti is in the exclusion label of all its parents. In practice ti ∈ e(Fj) (resp. e(Bj)) if it
cannot execute in an ω-tree containing Fj (resp. Bj).

Note that we are interested only in F node labels; B nodes labels are used only in the
building process. Once inclusion and exclusion labels are computed, each term of the
disjunctions can be mapped to a set of F nodes. For example:

476 M. Lombardi and M. Milano

ti → {Fj | ti ∈ i(Fj)}
¬ti → {Fj | ti ∈ e(Fj)}
ti ∧ tk → {Fj | ti, tk ∈ i(Fj)}
ti ∧ ¬tk → {Fj | ti ∈ i(Fj), tk ∈ e(Fj)}

As already said, queries are processed by removing from the complete BFG the F
nodes corresponding to each term of the negated query. For example, on the graph of
figure 1A (correspondent BFG in figure 1B or 4A), the query q = t21 ∧ ¬t3 ∧ ¬t16 =
¬(¬t21∨t3∨t16) is processed by removing from the BFG F¬c, Fa and F¬e, since t21 ∈
e(F¬c), t3 ∈ i(Fa) and t16 ∈ i(F¬e). The resulting subgraph is shown in figure 4C.

If during the process a B node loses all children the output of the query is an empty
subgraph. Once the inclusion and exclusion labels are computed, a query is always
processed in linear time.

3.5 Computing Subgraph Probabilities

Querying the BFG provides us with a first set of tools needed to achieve our primary
objective, i.e. computing weights in expression (2) in polynomial time. Remember a
weight is in the form: w(ti) = p(ti ∧ ¬ti+1 ∧ . . .¬tna−1)

Since the BFG can be queried for identifying a subgraph satisfying condition ti ∧
¬ti+1 ∧ . . .¬tna−1, then in order to compute a weight we only need to extract the
probability of a given subgraph. In the following we show a probability computation
algorithm for BFGs derived from graphs satisfying Control Flow Uniqueness; we also
assume branch probabilities are independent.

Statement 1: Since every F node with m children splits the set of possible branch com-
binations E = B0 × B1 × . . . × Bb−1 into m partial sets E0, E1, . . .Em−1 such that:
P (E) =

∏
i P (Ei) That means, the partial set of combinations are independent, since

they share no branch variable.

Statement 2: Every branch node with m children splits the set of scenarios Ω in a family
{Ω0, Ω1, . . .} such that Ω =

⋃
i Ωi and Ωi ∩Ωj = ∅. Thus: P (Ω) =

∑
i P (Ωi)

Again the probabilities of sets Ωi can be computed in an independent fashion.

Relying on those observations, the probability of a subgraph can be computed via a
backward visit as show in algorithm 1, which runs in linear time.

As an example, consider the subgraph of figure 4C (condition probabilities are in
figure 1C). The computation starts from the leaves (we consider Fb, F¬b, Fc): at the
beginning p(Fb) = 1, p(F¬b) = 1, p(fc) = 1 (line 2 in the algorithm). Then, proba-
bilities of B nodes are the weighted sum of those of their children (line 6); for example
p(b1) = p(b)p(Fb) + p(¬b)p(F¬b) = 0.4× 1 + 0.6× 1 = 1 and p(b2) = p(c)p(Fc) =
0.6× 1 = 0.6. Probabilities of F nodes are instead the product of those of their children
(line 8), and so p(F¬a) = p(b1)p(b2) = 1 × 0.6 = 0.6. The visit proceeds backwards
until p(F0) is computed, which is also the probability of the subgraph.

3.6 Filtering Algorithm

We now have sufficient tools to efficiently compute weights in the makespan expression
(2) and to prune the makespan variable and the end time variables of each task.

Scheduling Conditional Task Graphs 477

Algorithm 1. Subgraph probability
1: let L be the set of nodes to visit and V the one of visited nodes. Initially L contains all

subgraph leaves and V = ∅
2: for each F and B node keep a probability value p(n). Initially p(n) = 1 for all F nodes,

p(n) = 0 for all B nodes
3: while L �= ∅ do
4: pick a node n ∈ L
5: if n is an F node with parent np and ap = (np, n) then
6: p(np) = p(np) + p(n)p(ap)
7: else if n is a B node with parent np then
8: p(np) = p(np)p(n)
9: end if

10: V = V ∪ {n}
11: L = L \ {n}
12: if all children of np are in V then
13: L = L ∪ {np}
14: end if
15: end while
16: return p(root)

As far as the makespan variable is concerned, its minimum value is achieved for
the (possibly not feasible) configuration where all end variables assume their minimal
value. Similarly, the maximum makespan corresponds to the configuration where all
task ends are set to their maximal value. Note that in both situation the order of tasks
is completely specified: we refer to their sequence in the two configurations as Smin
and Smax. Sequence Smin is sorted by increasing min(end(ti)), Smax by increasing
max(end(ti)). We can prune the makespan variable by enforcing:

mkspan(Smin) ≤ mkspan ≤ mkspan(Smax) (3)

where mkspan(Smin) and mkspan(Smax) are the makespan values of configurations
Smin, Smax computed by means of expression (2).

In order to improve computational efficiency, we can use F nodes instead of tasks
in the computation of mkspan(Smin) and mkspan(Smin). Remember that there is a
mapping between tasks (CTG nodes) and F nodes. Each F node is assigned a min and a
max end value computed as follows:

maxend(Fj) = max{max(end(ti)) | ti is mapped to Fj}
minend(Fj) = max{min(end(ti)) | ti is mapped to Fj}

Therefore, the two sequences Smin, Smax can store F nodes (sorted by minend and
maxend) instead of activities and their size can be reduced to at most nc+1 (where nc is
the number of conditions). For example, suppose we have the bounds for the following
F nodes: minend(F0) = 10, maxend(F0) = 40, minend(F1) = 12, maxend(F1) = 80,
minend(F2) = 30, maxend(F2) = 60, and minend(F3) = 50, maxend(F3) = 70. The
sequence Smin is {F0 → F1 → F2 → F3}, while Smax is {F0 → F2 → F3 → F1}.

Each time a variable end(ti) mapped to Fjchanges, values maxend and minend of
Fj are updated and possibly some nodes are swapped in the sequences Smin, Smax.

478 M. Lombardi and M. Milano

If maxend(F1) changes to 65, F1 and F3 are swapped in Smax. These updates can be
done with complexity O(na + nc), where na is the number of tasks.

The makespan bound calculation of constraints (3) can be done by substituting tasks
with F nodes in expression (2):

E(makespan) =
∑
i

p(Fi ∧ ¬Fi+1 ∧ . . . ∧ ¬Fnc−1) end(Fi) (4)

where end(Fi) ∈ [minend(Fi), maxend(Fi)] and probabilities can be computed again
by querying the BFG. The overall worst case complexity for the pruning of the makespan
variable is O(c2 log(c)).

Fig. 5. Upper bound on end variables

Since we are dealing with a makespan minimization problem, it is crucial for the
efficiency of the search process to exploit makespan domain updates to filter the end
variables.

Bounds for end(Fi) (and thus for the end variables of tasks) can be computed again
with expression (4); for example to compute the upper bound we have to subtract from
the maximum makespan value (max(mkspan)) the minimum contribution of all F
nodes other than Fi:

UB(end(Fi)) =
max(mkspan)−∑

j �=i p(Fj ∧ ¬Fj+1 ∧ . . .)minend(Fj)
p(Fi ∧ ¬Fi+1 ∧ . . .)

(5)

where F0, . . . , Fi−1, Fi, Fi+1, . . . is the sequence where the contribution of Fj , j = i is
minimized. Unfortunately, this computation is affected by the position of Fi. In princi-
ple, we should compute a bound for all possible assignments of end(Fi), while keeping
the contribution of other F nodes minimized. The configuration where the contribution
of all F nodes is minimized is Smin: we can compute a set of bounds for end(Fi) by
“sweeping” its position in the sequence, and repeatedly applying formula (5). An ex-
ample is shown in figure 5, where a bound is computed for F0 (step 1 in figure 5). We
start by computing a bound based on the current position of F0 in the sequence (step
2 in figure 5); if such a bound is less than endmin(F1), then maxend(F0) is pruned,

Scheduling Conditional Task Graphs 479

otherwise we swap F0 and F1 in the sequence and update the probabilities (or weights)
accordingly in expression (4). The process continues by comparing F0 with F2 and
so on until maxend(F0) is pruned or the end of Smin is reached. Lower bounds for
minend(Fi) can be computed similarly, by reasoning on Smax.

A detailed description of the filtering procedure is given in Algorithm 2. The F nodes
are processed as listed in Smin (line 2); for each Fj the algorithm starts to scan the
next intervals (line 6). For each interval we compute a bound (lines 7 to 11) based on
the maximum makespan value (max(mkspan)), the current F node probability/weight
(wgt) and the contribution of all other F nodes to the makespan lower bound (rest).

If the end of the list is reached or the bound is within the interval (line 12) we prune
all end variables of tasks mapped on Fj (line 13) and the next F node is processed. If
the bound exceeds the current interval, we move to the next one. In the transition the
current F node possibly gains weight by “stealing” it from the activity just crossed (lines
15 to 18): wgt and rest are updated accordingly.

Algorithm 2. End variables pruning (upper bound)
1: let Smin = F0, F1, . . . , Fk−1

2: for j = 0 to k − 1 do
3: compute result of query q = Fj ∧ ¬Fj+1 ∧ . . . ∧ Fk−1 and probability p(q)
4: wgt = p(q)
5: rest = mkLB − minend(Fj)wgt
6: for h = j to k − 1 do
7: if wgt > 0 then

8: UB =
max(mkspan) − rest

wgt
9: else

10: UB = ∞
11: end if
12: if h = (k − 1) or UB ≤ minend(Fh+1) then
13: set UB as upper bound for all tasks mapped on Fj

14: else
15: remove element ¬Fh+1 from query q and update p(q)
16: newwgt = p(q)
17: rest = rest − (newwgt − wgt)minend(Fh+1)
18: wgt = newwgt
19: end if
20: end for
21: end for

The algorithm takes into account all the F nodes (complexity O(c)), for each of them
analyzes the subsequent intervals (compl. O(c)) and update weights at each transition
(compl. O(log(c))). The overall complexity is thus O(c2 log(c)).

4 Experimental Results

Our approach has been implemented using the state of the art solvers ILOG Solver
6.3 and Scheduler 6.3. We tested the approach on 600 randomly generated instances

480 M. Lombardi and M. Milano

Table 1. Performance tests

acts URes T(C) F(C) > TL
C

W
stc

C

W
37-45 3-4 1.54 3115 0 0.83 0.80
45-50 3-5 2.67 4943 0 0.88 0.84
50-54 3-5 9.00 17505 0 0.88 0.85
54-57 4-5 25.68 52949 1 0.88 0.85
57-60 4-5 29.78 77302 1 0.94 0.90
60-65 4-6 24.03 28514 0 0.85 0.80
65-69 4-6 32.12 47123 2 0.90 0.84
69-76 4-6 96.45 101800 14 0.86 0.82
76-81 5-6 144.67 134235 21 0.90 0.86
81-86 5-6 143.31 130561 17 0.84 0.75
86-93 5-6 165.74 119930 25 0.93 0.87
93-109 5-6 185.56 127321 28 0.93 0.87

representing a hardware design problem, where a multi task application (described by
means of a CTG) has to be scheduled on a multiprocessor hardware platform. The
problem features complex precedence relations, unary resources (the processors) and
a single cumulative resource (modelling a shared bus). Instances range from 37 to 109
tasks, 2 to 5 “heads” (tasks with no predecessor), 3 to 11 “tails” (tasks with no succes-
sor), 1 to 135 scenarios. The number of unary resources ranges from 3 to 6. Duration
and resource usage parameters are randomly generated, but based on real values. Of
course all instances satisfy the control flow uniqueness. We ran experiments with a time
limit of 300 seconds; all tests were executed on a AMD Turion 64, 1.86 GHz.

We performed a first group of tests to evaluate the efficiency of the expected
makespan conditional constraint and the quality of the solutions provided, and a second
group to compare the performances of our solver with the scenario-based one. Table
1 shows the results for the first group of tests; here we evaluate the performance of
the solver using conditional constraints (referred to as C) and compare the quality of
the computed schedules versus an identical model where the deterministic makespan is
minimized (referred to as W). In this last case, no expected makespan constraint is used
and the objective function is deterministic. Each row identifies a group of 50 instances.
For each group we report the minimum and maximum number of activities (acts), the
minimum and maximum number of unary resources (URes), the average solution time
(T(C)), the average number of fails (F(C)) and the number of instances which could not
be solved within the time limit (> TL). The computing time of the two approaches is
surprisingly roughly equivalent for all instances.

In column C/W we report the makespan value ratio which shows an average improve-
ment of 12% over the deterministic objective. The gain is around 16% if we consider
only the instances where the makespan is actually improved (column stc C/W).

Table 2 compares the conditional model with the scenario-based solver, where cu-
mulative resources are implemented with one constraint per scenario and the expected
makespan is expressed with the declarative formula (1). In both models unary resources
are implemented with conditional constraints.

Scheduling Conditional Task Graphs 481

Table 2. Comparison with the scenario-based solver

scens T(C) F(C) > TL
T(S)

T(C)
> TL

T(S80)

T(C)
> TL

S80

C

T(S50)

T(C)
> TL

S50

C

1-2 41.00 49517 5 22.60 5 22.66 5 1.00 0.58 3 0.77
2-3 66.02 97928 8 19.85 10 19.93 10 1.00 1.69 7 0.80
3-4 43.80 54744 5 35.05 8 35.12 8 1.00 9.19 5 0.79
4-5 49.94 51179 6 73.75 9 73.63 9 1.00 57.03 8 0.80
5-6 66.39 58223 9 48.74 12 16.64 12 0.98 0.77 8 0.82
6-6 51.26 85611 5 6.52 8 6.11 8 0.96 41.99 8 0.80
6-8 38.85 34572 5 82.21 11 71.09 9 0.98 84.41 3 0.80
8-9 57.78 58636 9 66.32 10 63.70 10 0.98 26.76 9 0.85

9-12 52.96 51126 5 89.52 13 86.97 13 0.98 40.43 6 0.85
12-14 117.93 86954 17 45.60 22 43.02 22 0.97 37.35 18 0.84
14-20 95.74 81721 11 32.62 22 31.85 21 0.99 28.76 15 0.90
20-135 178.88 135086 24 66.19 37 65.56 37 1.00 22.09 35 0.912

Again, rows of table 2 report average results for groups of 50 instances; groups are
sorted by increasing number of scenarios. The table reports the solution time and fails of
the conditional solver (T(C), F(C)) and the performance ratios w.r.t the scenario based
solver with 100% (S), 80% (S80) and 50% (S50) of the most likely scenarios. The four
columns “> TL” show the number of instances not solved within the time limit for each
approach. Finally, columns S50/C and S80/C show the accuracy of the solution provided
by S50 and S80 solvers.

As it can be seen the conditional model outperforms the scenario based one by an av-
erage factor of 49.08. By reducing the number of considered scenarios the performance
gap decreases; nevertheless, the conditional solver remains always better than S80; it is
outperformed by S50 when the number of scenarios is low, but the solution provided
has an average 17% inaccuracy. Moreover, neither S50 nor S80 guarantee feasibility in
all cases.

5 Conclusion

In this paper we have proposed an efficient way to schedule conditional task graphs min-
imizing the expected makespan. The approach is based on the analysis of the conditional
task graph and on the extraction of scenario probability. We show that the approach has
similar performances with an approach using a deterministic objective function and out-
performs the scenario based constraint programming even if not all scenarios are consid-
ered. The current research is aimed at implementing other global conditional constraints
such as the edge finder and the precedence graph by exploiting the BFG and the ω-tree
structures.

References

1. Barták, R., Ćepek, O.: Temporal Networks with Alternatives: Complexity and Model.
In: Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS), pp. 641–646. AAAI Press, Stanford, California, USA (2007)

482 M. Lombardi and M. Milano

2. Beck, J.C., Wilson, N.: Proactive Algorithms for Scheduling with Probabilistic Durations.
In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI05) (2005)

3. Beck, J.C., Fox, M.S.: Scheduling Alternative Activities, pp. 680–687. AAAI/IAAI (1999)
4. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSOCs via

decomposition and no-good generation. In: Proceedings of the International Conference in
Principles and Practice of Constraint Programming (2005)

5. Faraboschi, P., Fisher, J.A., Young, C.: Instruction scheduling for instruction level parallel
processors. Proceedings of the IEEE 89, 1638–1659 (2001)

6. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems 8 (2003)

7. Laborie, P.: Algorithms for propagating resource constraints in ai planning and scheduling:
Existing approaches and new results. Journal of Artificial Intelligence 143, 151–188 (2003)

8. Lombardi, M., Milano, M.: Stochastic Allocation and Scheduling for Conditional Task
Graphs in MPSoCs. In: Proceedings of the International Conference in Principles and Prac-
tice of Constraint Programming (2006)

9. Lombardi, M., Milano, M.: Scheduling Conditional Task Graphs LIA Technical Report LIA-
005-97 (2007),
http://www-lia.deis.unibo.it/research/TechReport.html

10. Kim, P., Williams, B., Abramson, M.: Executing Reactive, Model-based Programs through
Graph-based Temporal Planning. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI) (2001)

11. Vidal, T., Fargier, H.: Handling Contingencies in temporal constraint network: from consis-
tency to controllability. Journal of Experimental and Theoretical Artificial Intelligence 11,
23–45 (1999)

12. Shin, D., Kim, J.: Power-aware scheduling of conditional task graphs in real-time multipro-
cessor systems. In: Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED). ACM, New York (2003)

13. Tarim, A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A scenario-based
approach. Constraints 11, 53–80 (2006)

14. Tsamardinos, I., Vidal, T., Pollack, M.: CTP: A New Constraint-Based Formalism for Con-
ditional, Temporal Planning. Constraints 8, 365–388 (2003)

15. Walsh, T.: Stochastic constraint programming. In: Proceedings of the European Conference
on Artificial Intelligence, ECAI (2002)

16. Wu, D., Al-Hashimi, B., Eles, P.: Scheduling and mapping of conditional task graph for the
synthesis of low power embedded systems. Computers and Digital Techniques, IEE Proceed-
ings 150(5), 262–273 (2003)

17. Xie, Y., Wolf, W.: Allocation and scheduling of conditional task graph in hardware /software
co-synthesis. In: Proc. of Design, Automation and Test in Europe Conf. (2001)

http://www-lia.deis.unibo.it/research/TechReport.html

Towards Robust CNF Encodings

of Cardinality Constraints

Joao Marques-Silva1 and Inês Lynce2

1 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

2 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

Abstract. Motivated by the performance improvements made to SAT
solvers in recent years, a number of different encodings of constraints into
SAT have been proposed. Concrete examples are the different SAT en-
codings for ≤ 1 (x1, . . . , xn) constraints. The most widely used encoding
is known as the pairwise encoding, which is quadratic in the number of
variables in the constraint. Alternative encodings are in general linear,
and require using additional auxiliary variables. In most settings, the
pairwise encoding performs acceptably well, but can require unaccept-
ably large Boolean formulas. In contrast, linear encodings yield much
smaller Boolean formulas, but in practice SAT solvers often perform un-
predictably. This lack of predictability is mostly due to the large number
of auxiliary variables that need to be added to the resulting Boolean for-
mula. This paper studies one specific encoding for ≤ 1 (x1, . . . , xn) con-
straints, and shows how a state-of-the-art SAT solver can be adapted to
overcome the problem of adding additional auxiliary variables. Moreover,
the paper shows that a SAT solver may essentially ignore the existence of
auxiliary variables. Experimental results indicate that the modified SAT
solver becomes significantly more robust on SAT encodings involving
≤ 1 (x1, . . . , xn) constraints.

1 Introduction

In recent years SAT solvers have increasingly been used in practical applica-
tions, including planning, hardware and software model checking, among many
others. The encoding of an increasing number of computational problems into
SAT raises the challenge of encoding different constraints into SAT. Among the
constraints for which dedicated CNF encodings have been proposed, a special
emphasis has been given to cardinality constraints [2,3]. In addition, past work
addressed special forms of cardinality constraints, including ≤ 1 (x1, . . . , xn)
constraints [11,13,1]. Observe that, given the straightforward CNF encoding of
≥ 1 (x1, . . . , xn) constraints, the encoding of ≤ 1 (x1, . . . , xn) constraints also
serves for encoding = 1 (x1, . . . , xn) constraints. In practice, the constraints
≥ 1 (x1, . . . , xn), ≤ 1 (x1, . . . , xn) and = 1 (x1, . . . , xn) find a large number of
applications.

A number of alternative encodings have been proposed for ≤ 1 (x1, . . . , xn)
constraints. Encodings can be linear, logarithmic or quadratic, in the number

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 483–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

484 J. Marques-Silva and I. Lynce

of variables, and may or may not guarantee arc-consistency. The most widely
used encoding, that is often referred to as the pairwise encoding, is quadratic
in the number of variables in the constraint and guarantees arc-consistency.
Interestingly, most available benchmarks containing ≤ 1 (x1, . . . , xn) constraints
use the pairwise encoding.

In most settings, the pairwise encoding performs acceptably well, but can re-
quire unacceptably large Boolean formulas. In contrast, linear encodings yield
much smaller Boolean formulas, but in practice SAT solvers often perform un-
predictably. This lack of predictability is mostly due to the large number of
auxiliary variables that need to be added to the resulting Boolean formula.

This paper addresses one concrete linear encoding for ≤ 1 (x1, . . . , xn) con-
straints which guarantees arc-consistency [21], and identifies several properties
associated with the auxiliary variables used. One consequence is that a SAT
solver may essentially ignore the existence of auxiliary variables, and so this in-
directly overcomes the problem of adding additional auxiliary variables. Experi-
mental results indicate that a SAT solver that filters auxiliary variables becomes
significantly more robust.

The paper is organized as follows. The next section surveys encodings for
≤ 1 (x1, . . . , xn) constraints. Section 3 provides a brief perspective of recent
backtracking SAT solvers, referred to as conflict-driven clause-learning (CDCL)
SAT solvers. Section 4 outlines some of the properties of the sequential counter
encoding of [21]. Experimental results are analyzed in section 5. The paper con-
cludes in section 6, by analyzing how some of the results proposed in the paper
can be extended to other cardinality constraints and encodings, and by outlining
directions for future research.

2 Related Work

A large body of research exists on encoding constraints into CNF [16,23,22,11,13]
[12,6,1,10,4]. In addition, dedicated encodings have been proposed for specific
types of constraints, including cardinality constraints [2,3].

A special case of cardinality constraints are those of the form ≤ 1 (x1, . . . , xn),
which are widely used in practice. The most often used CNF encoding for ≤
1 (x1, . . . , xn) constraints is referred to as the pairwise encoding. Given a ≤
1 (x1, . . . , xn) constraint, the pairwise encoding is formulated as follows:

∧

S ⊆ {1, ..., n}
|S| = 2

⎛
⎝∨

j∈S

¬xj

⎞
⎠ (1)

This encoding introduces no additional auxiliary variables, but grows quadrati-
cally with the number of variables in the constraint.

An alternative is to use additional variables, thus obtaining asymptotically
more efficient encodings. A number of linear encodings has been proposed over

Towards Robust CNF Encodings of Cardinality Constraints 485

the years [11,13,12,1,21,23]. Some of these encodings do not guarantee arc-
consistency (e.g. [23]) whereas others do [11,21].

One recent CNF encoding for cardinality constraints ≤ k (x1, . . . , xn) is based
on sequential counters [21]. The resulting CNF encoding is denoted by LT n,k

SEQ.
A special case of cardinality constraints is considered, namely ≤ 1 (x1, . . . , xn)
constraints. The associated encoding will be denoted by LT n,1

SEQ.
An arbitrary number of ≤ 1 (x1, . . . , xn) constraints is assumed, each being

represented by an index k. Hence, each constraint is of the form:

nk∑
i=1

xk
i ≤ 1 (2)

Where nk is the number of variables in the constraint. From [21], the CNF
encoding for the above constraint becomes:

(¬xk
1 ∨ sk

1) ∧ (¬xk
n ∨ ¬sk

n−1)
∧

1<i<nk

(
(¬xk

i ∨ sk
i) ∧ (¬sk

i−1 ∨ sk
i) ∧ (¬xk

i ∨ ¬sk
i−1)

)

(3)
Where sk

i , 1 ≤ k ≤ n − 1, are auxiliary variables. When clear from context, the
index k is dropped, and so the LT n,1

SEQ encoding becomes:

(¬x1 ∨s1)∧(¬xn ∨¬sn−1)
∧

1<i<n

((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1)) (4)

The remainder of the paper focus on the sequential counter CNF encoding and
shows that this encoding has a number of interesting properties that can be
exploited by a clause learning SAT solver. Before, however, the organization of
backtracking SAT solvers is briefly overviewed.

3 CDCL SAT Solvers

This section provides a necessarily brief perspective of modern CDCL SAT
solvers. CDCL SAT solvers follow the organization of the DPLL algorithm [8,7],
but integrate a number of effective techniques, including clause learning [17,5],
lazy data structures [18] and search restarts [15]. CDCL SAT solvers have evolved
from the original solvers [17,5,24], which essentially proposed clause learning, to
the more recent CDCL SAT solvers, that also integrate lazy data structures and
search restarts [18,14,9].

In the following sections, a number of concepts associated with CDCL SAT
solvers will be used. These concepts are briefly reviewed below (see [17,18,14,9]
for additional detail).

A CDCL SAT solver is usually organized into three main engines [17,18,9]:
the decision engine, used for branching; the deduction engine, used for unit prop-
agation and identification of unsatisfied clauses (or conflicts); and the diagnosis
engine, used for clause learning.

486 J. Marques-Silva and I. Lynce

A decision level is associated with each assigned variable. Decision levels mea-
sure the depth of the search tree in terms of the number of variables the SAT
algorithm has branched on. Variables can be assigned a Boolean value, either
resulting from a decision (or branching step), or as the result of unit propa-
gation [8]. Variables assigned as the result of unit propagation are said to be
implied. With each implied variable the SAT algorithm also associates a reason
or antecedent, representing the clause that explains why the variable is implied.
The set of assigned variables and associated reasons implicitly represent the
implication graph [17].

The process of clause learning consists of traversing the implication graph from
a given unsatisfied clause by using the reasons of implied variable assignments,
and recording unsatisfied literals assigned at decision levels less than the current
one. The resulting set of recorded literals is then used to create a new clause,
which serves for backtracking non-chronologically, and for preventing the same
conflict from occurring again during the search process.

Moreover, all effective CDCL solvers use unique implication points (UIPs)
[17,25]. UIPs represent dominators in the implication graph of unsatisfied clauses
with respect to the most recent decision variable. Whereas some of the early
CDCL SAT solvers would use UIPs to learn more clauses [17], more recent
CDCL SAT solvers stop clause learning at the first UIP [25]. Albeit stopping
at the first UIP usually yields a larger number of decision steps, it is also an
observed fact that a smaller number of learnt clauses results in faster execution,
and most often this results in smaller run times [25].

Finally, and besides the hallmarks of all CDCL SAT solvers, a number of
additional techniques have been quite successfully used in recent solvers. These
include deletion policies for learnt clauses [14,9,20], techniques for organization
of literals in learnt clauses [19], and the representation of binary clauses as direct
implications [20].

4 Filtering Auxiliary Variables

This section revisits the LT n,1
SEQ CNF encoding (see section 2), and introduces

a number of its properties. Some of these properties allow eliminating most (or
even all) of the auxiliary variables for branching purposes. Moreover, this section
also outlines how to adapt a SAT solver for filtering auxiliary variables.

4.1 Analysis of the ≤ 1 (x1, . . . , xn) Encoding

This section identifies a number of properties of the LT n,1
SEQ encoding. These

properties essentially allow a SAT solver to ignore all (or at least most) of the
auxiliary variables.

The first property is used throughout this section, for proving additional prop-
erties of the LT n,1

SEQ encoding.

Proposition 1. Consider the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1,

. . . , xn). Furthermore, assume that all x and s variables are unassigned, and
that a given variable xi is assigned value 1. Then, the following holds:

Towards Robust CNF Encodings of Cardinality Constraints 487

1. All sj variables, with 1 ≤ j < i, are implied to value 0.
2. All sj variables, with i ≤ j ≤ n − 1, are implied to value 1.
3. All xj variables, with j �= i, are implied to value 0;

Proof. The result follows from the analysis of (4). The third clause guarantees
that si is implied value 1. Subsequently, the fourth clause implies that every sj ,
with n − 1 ≥ j > i, is implied value 1. The fifth clause guarantees that si−1 is
implied value 0. Subsequently, the fourth clause implies that every sj , with i >
j ≥ 1, is implied value 0. Analysis of the first and last case is also straightforward.
Finally, the third and fourth clauses ensure that every xj , with j �= i, is implied
value 0. Again, analysis of the first and last case is straightforward. �

The next step is to evaluate the role of the auxiliary variables used in the LT n,1
SEQ

encoding.

Proposition 2. For any complete satisfying assignment to the variables x1,
. . . , xn of (2), the following holds:

1. All clauses of (4) containing literals of x variables are satisfied.
2. There exist assignments to the auxiliary variables s1, . . . sn that satisfy the

clauses of (4) containing no literals of x variables.

Proof. If (2) is satisfied, then at most one of the xi variables is assigned value 1.
Hence, two cases need to be considered: either all xi variables are assigned value
0, or exactly one variable xi is assigned value 1 and the remaining x variables are
assigned value 0. Now consider the LT n,1

SEQ (4) encoding of (2). For the first case,
the xi variables satisfy all clauses that contain a literal in an x variable. Hence,
only the clauses (¬si−1 ∨ si) need to be satisfied, and this can be achieved by
assigning value 0 to all si variables. For the second case, exactly one variable xi

is assigned value 1. (4) ensures that all auxiliary variables are assigned a given
value. This is immediate from proposition 1. �

The previous result guarantees that by branching only of non-auxiliary variables,
either a satisfying assignment exists, in which case it is simple to find consistent
assignments to the auxiliary variables, or no satisfying assignment exists, in
which case it is unnecessary to branch on the auxiliary variables.

It is possible to extend the previous result further, by analyzing the clause
learning process of a SAT solver, when branching is restricted to the non-
auxiliary variables. As a result, in what follows, the SAT solver is assumed to
branch only on non-auxiliary variables.

The following results assert that, when branching is restricted only to non-
auxiliary variables, the participation of auxiliary variables in conflicts is fairly
constrained. This allows effectively discarding auxiliary variables from learnt
clauses.

Proposition 3. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

if the value of an auxiliary variable si is implied at decision level l, then all other
auxiliary variables associated with the same constraint are implied at the same
decision level, or a conflict is identified.

488 J. Marques-Silva and I. Lynce

Proof. From (4), the value of an auxiliary variable s is implied by the value
of an x variable only when the x variable is assigned value 1. Without loss of
generality, let xi be the variable that is assigned value 1. Then, all s variables
with index no less than i are assigned value 1, and all s variables with index less
than i are assigned value 0 (see proposition 1). If more than one x variable is
assigned value 1, then a conflict is identified. �

Proposition 4. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

auxiliary variables can only be implied by single implication paths from non-
auxiliary variables.
Proof. For any CNF encoding LT n,1

SEQ of constraint 1 (x1, . . . , xn), all auxiliary
variables are assigned by unit propagation on binary clauses. Hence, the result
follows. �

Proposition 5. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

learnt clauses can contain a single auxiliary variable si, which is a UIP variable.

Proof. (Sketch)1 The clause learning algorithm used by most SAT solvers [17,18]
[14,9] records literals from clauses traced during the conflict analysis procedure.
These literals must be assigned at decision levels less than the current decision
level, or otherwise the literal corresponds to the UIP variable.
Since all auxiliary variables are assigned by unit propagation on binary clauses,
and all must be assigned at the most recent decision level, then the conflict anal-
ysis procedure cannot record literals associated with auxiliary variables, unless
variable tracing stops at a UIP corresponding to an auxiliary variable. �

Proposition 6. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

and during clause learning, if a si variable is a UIP, then it can be replaced by
a single non-auxiliary variable xk.

Proof. (Sketch) Proposition 4 guarantees that auxiliary variables are implied
as the result of a single implication path. Hence, it suffices to trace this single
implication path to eventually reach a single non-auxiliary variable. �

Proposition 7. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

any learnt clause ω can be replaced by a learnt clause of the same size that only
contains non-auxiliary variables.

Proof. From proposition 5, auxiliary variables can occur in learnt clauses only if
they are traced as a UIP. From proposition 6 this traced variable can be replaced
by a single non-auxiliary variable. Hence the result follows. �

As a result, the main conclusion is that by branching only on non-auxiliary
variables, then a satisfying assignment can be identified, if it exists. Otherwise,
by branching only on non-auxiliary variables, unsatisfiability can be proved.

Moreover, by analyzing the clause learning process of a CDCL SAT solver, it
is possible to conclude that learnt clauses need not contain auxiliary variables.
1 A detailed proof would require a more formal definition of the organization of a

CDCL SAT solver.

Towards Robust CNF Encodings of Cardinality Constraints 489

Hence, the SAT solver can effectively only consider non-auxiliary variables for
branching and clause learning purposes.

In practice, branching only on non-auxiliary variables may not be the most ef-
fective strategy. As a result, one challenge is to evaluate which auxiliary variables
can be deemed more effective for branching purposes.

Proposition 8. For the CNF encoding LT n,1
SEQ of constraint ≤ 1 (x1, . . . , xn),

and such that all auxiliary variables are unassigned, then the assignments s0 = 1
and the assignment sn−1 = 0 originate the largest number of implied assign-
ments, or a conflict is identified.
Proof. Assume a conflict is not identified. A simple inductive argument suffices.
s1 = 1 implies s2 = 1, and the same holds true for all i, 1 ≤ i ≤ n − 2, si = 1
implies si+1 = 1. In addition, all variables xi, 1 < i ≤ n, are assigned value 0.
Similarly, sn−1 = 0 implies sn−2 = 0, and the same holds true for all i, 2 ≤ i ≤
n − 1, si = 0 implies si−1 = 0. In contrast with the previous case, all variables
xi, 1 ≤ i < n, are assigned value 0.

Clearly, all the other auxiliary variables yield no more implied assignments
than these auxiliary variables. �

Hence, a possible approach for deciding which auxiliary variables to consider
for branching purposes is to select the first and last auxiliary variables of each
LT n,1

SEQ encoding, the first variable is preferred to be assigned value 1, and the
last is preferred to be assigned value 0.

Motivated by the previous results, a number of possible variable branching
heuristics can thus be devised:

1. Branch on all variables, both non-auxiliary and auxiliary. This branching
heuristic will be implemented by any existing CDCL SAT solver.

2. Branch only on non-auxiliary variables. This branching heuristic attempts
to replicate the branching steps in the pairwise encoding.

3. Branch only on non-auxiliary variables, and on the auxiliary variables for
which one of the value assignments guarantees the largest number of implied
assignments. The rationale is that if branching on some auxiliary variables
is useful, then these should be the preferred variables to branch on.

In order to implement the last two branching heuristics, a CDCL SAT solver
needs to be adapted to accept branching directives from the CNF formula de-
scription. This can be achieved by specifying these directives as comments in
the standard input format for SAT solvers. Section 5 evaluates these branching
heuristics.

4.2 Modifications to a CDCL SAT Solver

This section focus on CDCL SAT solvers, and shows how the SAT solver can
be modified to allow filtering auxiliary variables for branching purposes, as out-
lined in the previous section. The MiniSat [9] SAT solver is assumed, since the
proposed modifications are straightforward to implement in MiniSat. Regard-
ing the three main engines of a CDCL SAT solver, the deduction engines re-
quires no modification, the decision engine needs to filter variables not used for

490 J. Marques-Silva and I. Lynce

branching purposes, and the diagnosis engine needs to exchange learnt literals
on non-branching variables by literals on branching variables. A more detailed
description of the modifications to the CDCL SAT solver is given below.

Internal Data Structures. When creating new variables, the SAT solver is
informed of whether a variable is non-auxiliary, and so needs to be considered
for variable branching purposes, or whether it is auxiliary, and so needs not
be considered for variable branching purposes. For the auxiliary variables, the
first and last auxiliary variables of each LT n,1

SEQ encoding can also be optionally
considered for branching purposes. In addition to specifying the variables that
can serve for branching purposes, with each such variable the preferred value
can also be specified. In these cases, the preferred value is always used when the
SAT solver branches on that variable.

The Decision Engine. When selecting a variable for branching, the SAT solver
is modified to only consider variables that can serve as branching variables.
Hence, the decision engine only branches on variables that were initially declared
to be eligible as branching variables. Moreover, if a preferred value is associated
with a given variable, then the decision engine uses the preferred value when
branching on that variable.

The Diagnosis Engine. When learning a conflict clause, if the UIP condition
holds and if the current variable is auxiliary, then the clause learning process
continues. The results of the previous section (see Propositions 6 and 7) guaran-
tee that the UIP condition will remain valid until a non-auxiliary UIP variable is
identified or until a auxiliary branching variable is identified. As shown earlier,
the size of learnt clauses is unchanged by filtering auxiliary variables.

5 Experimental Results

The ideas described above have been implemented in the most recent version
of the MiniSat SAT solver [9] - MiniSat2, a cleaned up version of the winning
entry of SAT-Race 2006. MiniSat is a CDCL solver, containing all the features of
the current state-of-the-art solvers: conflict-clause learning, conflict-driven back-
jumping, dynamic variable ordering heuristic and two watched-literal scheme.

We have considered two different encodings:

1. The pairwise encoding (pw), which has a quadratic number of clauses but no
additional variables.

2. The sequential counter encoding (sc), representing LT n,1
SEQ, which has a linear

number of clauses and also a linear number of auxiliary variables.

The sequential counter encoding has been evaluated for two additional con-
figurations of the MiniSat SAT solver:

1. sc-d: for this configuration the decision variables are selected from the
non-auxiliary variables only (and therefore auxiliary variables cannot be se-
lected).

Towards Robust CNF Encodings of Cardinality Constraints 491

2. sc-dh: for this configuration the decision variables are selected from the non-
auxiliary variables and also from two auxiliary variables: s1 and sn−1 (again
the remaining auxiliary variables cannot be selected). In case any of these
two auxiliary variables are selected, hints are given for the value to assign
to these variables: if variable s1 is selected then it is assigned value 1, and
if variable sn−1 is selected then it is assigned value 0. These assignments
originate the largest number of implied assignments.

For the results given below, the main goal is to evaluate (1) the performance of
the pairwise encoding against the sequential encoding in terms of the CPU time
and the memory required and (2) the improvements achieved by the filtering of
auxiliary variables. All the results were obtained on an Intel Xeon 5160 (3.0GHz
with 4GB of RAM) and a timeout (TO) of 1000s.

5.1 Problem Instances

A number of problems were evaluated, all containing many ≤ 1 (x1, . . . , xn)
constraints. These problems were the following: the n-queens problem, the pigeon
hole problem, the round-robin problem, the all-interval series problem, the graph
coloring problem and the Latin squares problem extended with constraints on
(broken) diagonals 2. The analysis of results is divided into two classes: instances
for the n-queens problem, which modern SAT solvers can tackle, and instances
from the other problems considered, since for these problems modern SAT solvers
can solve only a few instances.

5.2 Results for the N-Queens Problem

The n-queens problem is the problem of placing n chess queens on an n × n
chessboard such that no two queens share the same row, column, or diagonal,
i.e. there is at most one queen in each row, column or diagonal. We may represent
this problem with n × n Boolean variables, where each variable corresponds to
one entry in the chess board. We then require 2× n constraints ≤ 1 (x1, . . . , xn)
to guarantee that there is only one queen per row and one queen per column.
In addition, we require 4n − 6 constraints to guarantee that there is at most
one queen per diagonal. We have generated n-queens problems ranging from
n = 100 to n = 300 using both the pairwise (pw) and the sequential counter
(sc) encoding. CNF formulas generated by both encodings were solved using
the MiniSat SAT solver. In addition, two modified versions of MiniSat (sc-d
and sc-dh) were evaluated for the sequential encoding.

Figure 1 gives the CPU time (in seconds) for solving the n-queens problems
using the four different approaches. From this figure a few conclusions can be
drawn:
2 The quasigroup completion problem was also evaluated near the phase transition.

For this problem the number of literals in the sequential encoding is in general larger
than the number of literals in the pairwise encoding. Given that some entries in the
quasigroup are already defined, the number of entries to be distinct is reduced.

492 J. Marques-Silva and I. Lynce

0.1

1

10

100

1000

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 1. Results on run times

10

100

1000

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 2. Results on memory used

– The sequential encoding, when used with the plain MiniSat solver (sc) is quite
unstable and in general takes more time than any other approach. Also, it is
not able to solve 51 problem instances within the allowed CPU time (1000s).

– The pairwise encoding (pw) although being stable requires in general up to
one order of magnitude more time than the two other approaches using the
sequential encoding (sc-d and sc-dh).

Towards Robust CNF Encodings of Cardinality Constraints 493

– Both sc-d and sc-dh are more competitive than the pw approach. This
contrasts with the sc approach. Not only the size of the search space in sc is
larger but also the search gets lost recording useless clauses and being unable
to find a solution.

Figure 2 evaluates the memory consumed by MiniSat (in MB) for solving a
given problem instance following one of the four approaches. Again, from this
figure a few conclusions can be drawn:
– The pairwise encoding (pw) requires more memory than both the sc-d and

sc-dh approaches. The memory difference most often exceeds one order of
magnitude. This difference is significant in practice: the pw requires around
1600 MB for the larger problem instances, whereas 75 MB suffice for the
sc-d and sc-dh approaches.

– Although the CNF formula is exactly the same for sc, sc-d and sc-dh, the
amount of memory required by sc is significantly larger. This is due to the
clauses recorded during the search, resulting from the conflicts.

100

1000

10000

100000

1e+06

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 3. Results for the number of decisions.

Figure 3 gives the number of decisions, corresponding to the number of nodes
in the search tree, required by each of the approaches for solving a given problem
instance.

– The sc approach explores by far the largest number of nodes. This is in part
due to the larger search space. Moreover, it is also clear that the heuristic
used is far from being accurate for this encoding.

– Both sc-d and pw approaches explore the smallest number of nodes. Given
that sc-d only branches on non-auxiliary variables, both approaches may
explore the same search space. This means that each one of the heuristics
used by each one of the approaches is very effective for that specific approach.

494 J. Marques-Silva and I. Lynce

– The sc-dh approach explores more nodes than sc-d and pw. This comes as
no surprise given that the search space is larger. For each ≤ 1 (x1, . . . , xn)
constraint we may have two more decision variables. However, given the
CPU times, these variables when taken as decisions are not as harmful as
the other auxiliary variables when taken as decisions in the sc approach. This
is probably due to the hints on the values to be assigned to the auxiliary
variables.

10000

1e+06

1e+08

100 150 200 250 300

pw
sc

sc-d
sc-dh

Fig. 4. Results for the number of conflicts

Finally, figure 4 reveals the number of conflicts that are found during the
search. This figure further clarifies the differences between the sc-d and the
sc-dh approaches. Interestingly, sc-dh has the smallest number of conflicts,
even though the number of decision nodes is significant, as shown in the previous
figure. Our interpretation is that many decisions are irrelevant, but a few are
extremely useful. This makes the conflict clauses in general shorter and therefore
able to prune more effectively the search space.

5.3 Results for Other Problems

This section presents results for a number of other instances which are also en-
coded with ≤ 1 (x1, . . . , xn) constraints. Example instances from the all-interval
series, pigeon-hole, Latin squares and round-robin problems are considered. For
these problems only a few instances are considered. Other instances are not con-
sidered, either because run times are negligible or because modern SAT solvers
exceed the allowed CPU time limit.

The results are summarized in Table 5.3. As observed for the n-queens prob-
lem, the approaches sc, sc-dh and sc-d tend to perform more robustly than the

Towards Robust CNF Encodings of Cardinality Constraints 495

Table 1. Results on additional instances

Bench pw sc sc-d sc-h
mem time mem time mem time mem time

ais16 6.74 5.12 3.68 0 8.06 45.12 7.29 24.57
ais17 13.27 77.33 3.8 0 6.51 8.24 9.28 53.95
ais18 — TO 15.57 550.02 18.56 860.78 16.12 401.24

php9 3.54 2.4 3.54 1.6 3.54 4.76 3.54 4.18
php10 4.06 31.73 3.66 15.74 3.79 43.26 3.78 45.75
php11 5.45 526.03 4.41 189.51 4.52 652.91 4.53 741.6

ls8 7.45 40.51 7.31 64.58 6.71 33.51 6.61 34.56

rr10 17.28 1.03 13.11 1.83 12.91 1.74 8.77 0.39
rr12 41.23 4.28 90.85 50.26 20.21 3.71 106.79 50.79

gc-anna 9.93 18.87 10.71 39.98 9.98 27.56 10.52 42.05
gc-david 9.47 29.66 9.3 30.64 9.59 41.64 9.41 33.17
gc-huck 8.77 32.71 7.66 25.01 8.23 33.14 8.48 30.69

pw approach, with a few outliers. In terms of memory used, no concrete pattern
was identified in the results, in part because of the small number of instances
that can be considered. For instances with similar run times, the sc encodings
use significantly less memory than the pw encoding (e.g. rr10 and php10).

6 Conclusions

This paper studies techniques for improving the robustness of linear size encod-
ings of ≤ 1 (x1, . . . , xn) constraints. The sequential counter (LT n,1

SEQ) encoding
of [21] is considered. For this encoding, the additional auxiliary variables used
for encoding ≤ 1 (x1, . . . , xn) constraints can essentially be ignored by the SAT
solver. A related result is that auxiliary variables can be discarded from learnt
clauses, without affecting the number of literals of each learnt clause. An addi-
tional result is that auxiliary variables are guaranteed to yield different numbers
of implied variables, and so this yields a natural ranking of auxiliary variables
for branching purposes.

A number of different strategies for selecting branching variables are outlined
and experimentally evaluated. Experimental results indicate that filtering most
of the auxiliary variables is an effective technique, yielding significantly more
robust CDCL SAT solvers, and may represent a valid alternative to the space-
consuming pairwise encoding.

A future line of research is to devise techniques for extending the work in this
paper, by being more precise at filtering auxiliary variables that are not effective
for branching purposes. The properties identified for the LT n,1

SEQ encoding also
suggest a family of branching heuristics, besides the ones outlined in the paper.
These heuristics allow increasing number of decision variables ranked by the
number of guaranteed implied assignments. One possible application of these
heuristics would be to instruct SAT solvers to switch between branching heuris-
tics after each search restart.

496 J. Marques-Silva and I. Lynce

Finally, another line of research is to extend the results in the paper to other
cardinality constraints. Results equivalent to the ones proposed in this paper,
namely Proposition 2, are expected to exist for most linear encodings of con-
straint ≤ 1 (x1, . . . , xn), and for encodings of general cardinality constraints
≤ k (x1, . . . , xn). A more challenging question is how some of the other results
proposed in the paper, namely the ones related with clause learning, can be
adapted either to other encodings of constraint ≤ 1 (x1, . . . , xn) or to general
cardinality constraints ≤ k (x1, . . . , xn).

Acknowledgments. This work is partially supported by Fundação para a
Ciência e Tecnologia under research projects POSC/EIA/61852/2004 and POSI/
SRI/41926/01, EPSRC grant EP/E012973/1, and EU project IST/033709.

References

1. Ansótegui, C., Manyá, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Proceedings of the International Conference on
Theory and Applications of Satisfiability Testing, pp. 1–15 (2004)

2. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Proceedings of the International Conference on Principles and Practice
of Constraint Programming, pp. 108–122 (2003)

3. Bailleux, O., Boufkhad, Y.: Full CNF encoding: The counting constraints case.
In: Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (2004)

4. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2
(March 2006)

5. Bayardo Jr., R., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the National Conference on Artificial Intelligence,
pp. 203–208 (July 1997)

6. Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical
logic. In: Proceedings of the International Symposium on Multiple-Valued Logics,
pp. 221–226 (2001)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the Association for Computing Machinery 5, 394–397 (1962)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the Association for Computing Machinery 7, 201–215 (1960)

9. Eén, N., Sörensson, N.: An extensible SAT solver. In: Proceedings of the Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pp. 502–518
(May 2003)

10. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2 (March 2006)

11. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the European Conference
on Artificial Intelligence, pp. 121–125 (2002)

12. Gent, I.P., Nightingale, P.: A new encoding of AllDifferent into SAT. In: Pro-
ceedings 3rd International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pp. 95–110 (September 2004)

Towards Robust CNF Encodings of Cardinality Constraints 497

13. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with
ties and incomplete lists. In: Proceedings of the European Conference on Artificial
Intelligence, pp. 141–145 (2002)

14. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: Proceedings
of the Design Automation and Test in Europe Conference, pp. 142–149 (March
2002)

15. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: Proceedings of the National Conference on Artificial Intelligence,
pp. 431–437 (July 1998)

16. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3), 275–286 (1990)

17. Marques-Silva, J., Sakallah, K.: GRASP: A new search algorithm for satisfiability.
In: Proceedings of the International Conference on Computer-Aided Design, pp.
220–227 (November 1996)

18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Engineering an effi-
cient SAT solver. In: Design Automation Conference, pp. 530–535 (June 2001)

19. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: Review
and innovations. Master’s thesis, Hebrew University of Jerusalem (November 2002)

20. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Si-
mon Fraser University (February 2004)

21. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
Proceedings of the International Conference on Principles and Practice of Con-
straint Programming, pp. 827–831 (October 2005)

22. Walsh, T.: SAT v CSP. In: Proceedings of the International Conference on Princi-
ples and Practice of Constraint Programming, pp. 441–456 (September 2000)

23. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2), 63–69 (1998)

24. Zhang, H.: SATO: An efficient propositional prover. In: Proceedings of the Inter-
national Conference on Automated Deduction, pp. 272–275 (July 1997)

25. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: Proceedings of the International Con-
ference on Computer-Aided Design, pp. 279–285 (2001)

AND/OR Multi-valued Decision Diagrams for
Constraint Optimization

Robert Mateescu, Radu Marinescu, and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{mateescu,radum,dechter}@ics.uci.edu

Abstract. We propose a new top down search-based algorithm for compiling
AND/OR Multi-Valued Decision Diagrams (AOMDDs), as representations of the
optimal set of solutions for constraint optimization problems. The approach is
based on AND/OR search spaces for graphical models, state-of-the-art AND/OR
Branch-and-Bound search, and on decision diagrams reduction techniques. We
extend earlier work on AOMDDs by considering general weighted graphs based
on cost functions rather than constraints. An extensive experimental evaluation
proves the efficiency of the weighted AOMDD data structure.

1 Introduction

The compilation of graphical models, including constraint and probabilistic networks,
has recently been under intense investigation. Compilation techniques are useful when
an extended off-line computation can be traded for fast real-time answers. Typically, a
tractable compiled representation of the problem is desired. Since the tasks of interest
are in general NP-hard, this is not always possible in the worst case. In practice, how-
ever, it is often the case that the compiled representation is much smaller than the worst
case bound, as was observed for Ordered Binary Decision Diagrams (BDDs) [1] which
are extensively used in hardware and software verification.

In the context of constraint networks, compilation schemes are very useful for in-
teractive solving or product configuration type problems [2,3]. These are combinatorial
problems where a compact representation of the feasible set of solutions is necessary.
The system has to be complete (to represent all solutions), backtrack-free (to never en-
counter dead-ends) and real-time (to provide fast answers).

In this paper we present a compilation scheme for constraint optimization, which has
been of interest recently in the context of post-optimality analysis [4]. Our goal is to ob-
tain a compact representation of the set of optimal solutions, by employing techniques
from search, optimization and decision diagrams. Our approach is based on three main
ideas: (1) AND/OR search spaces for graphical models [5]. Their key feature is the
exploitation of problem structure during search, sometimes yielding exponential im-
provement over structure-blind search methods. (2) Branch-and-Bound search for opti-
mization, applied to AND/OR search spaces [6]. (3) Reduction rules similar to OBDDs,
that lead to the compilation of the search algorithm trace into an AND/OR Multi-Valued
Decision Diagram (AOMDD) [7]. The novelty over previous results consists in: (1) the

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 498–513, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 499

1111
0011
1101
0001
1110
0010
0100
0000

f(ABC)CBA

(a) Table

B

A

C

0 0

C

0 1

B

C

0 1

C

0 1

(b) Ordered tree

B

A

C C

0 1

B

C C

(c) Isomorphism

B

A

C

0 1

B

C

(d) Redundancy

B

A

0 1

C

(e) OBDD

Fig. 1. Boolean function representations

treatment of general weighted graphs based on cost functions, rather than constraints.
(2) a top down search based approach for generating the AOMDD, rather than Variable
Elimination based as in [7]. (3) Extensive experimental evaluation that proves the effi-
ciency of the weighted AOMDD. We show that the compilation scheme can often be
accomplished relatively efficiently and that we sometimes get a substantial reduction
beyond the initial trace of state-of-the-art search algorithms.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem (COP) is a triple P = 〈X,D,F〉, where
X = {X1, ..., Xn} is a set of variables, D = {D1, ..., Dn} is a set of finite domains
and F = {f1, ..., fr} is a set of cost functions. Cost functions can be either soft or hard
(constraints). Without loss of generality we assume that hard constraints are represented
as (bi-valued) cost functions. Allowed and forbidden tuples have cost 0 and∞, respec-
tively. The scope of function fi, denoted scope(fi) ⊆ X, is the set of arguments of
fi. The goal is to find a complete value assignment to the variables that minimizes the
global cost function, namely to find x = arg minX

∑r
i=1 fi.

Given a COP instance, its primal graph G has a node for each variable and connects
any two nodes whose variables appear in the scope of the same function. The induced
graph of G relative to an ordering d of its variables is obtained by processing the nodes
in reverse order of d. For each node all its earlier neighbors are connected, including
neighbors connected by previously added edges. The width of a node is the number of
edges connecting it to nodes lower in the ordering. The induced width (also equal to the
treewidth) of a graph along d, denoted w∗(d), is the maximum width of nodes in the
induced graph. The pathwidth of a graph along d, pw∗(d), is equal to the induced width
of the graph with extra edges added between any node and its successor in d.

2.2 Binary Decision Diagrams

Decision diagrams are widely used in many areas of research to represent decision
processes. In particular, they can be used to represent functions. Due to the fundamental
importance of Boolean functions, a lot of effort has been dedicated to the study of
Binary Decision Diagrams (BDDs), which are extensively used in formal verification.

A BDD is a representation of a Boolean function. Given B = {0, 1}, a Boolean
function f : Bn → B, has n arguments, X1, · · · , Xn, which are Boolean variables,

500 R. Mateescu, R. Marinescu, and R. Dechter

2111

8

011
2101

8

001
2110

8

010

8

100

8

000

f1(ABC)CBA

5111
6011
5101
6001
2110
0010

8

100
1000

f2(ABD)DBA

4111

8

011
3101

8

001
4110

8

010
3100

8

000

f3(BDE)EDB

(a) Functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Primal graph

A

E

B

DC

[]

[A]

[AB]

[BD]

[AB]

(c) Pseudo tree

B

10

A

10

C

10

8 8

D

10

1 8

E

10

8 3

C

10

8 2
D

10

0 2

E

10

8 3
E

10

8 4

B

10

C

10

8 2
D

10

6 5

E

10

8 3
E

10

8 4

C

10

8 2
D

10

6 5

E

10

8 3
E

10

8 4

(d) AND/OR search tree

Fig. 2. AND/OR search tree for COP

and takes Boolean values. A Boolean function can be represented by a table (see Figure
1(a)), but this is exponential in n, and so is the binary tree representation in Figure
1(b). OBDDs [1] provide a more compact representation, that also supports efficient
operations, by imposing the same order to the variables along each path in the binary
tree, and then applying the following two reduction rules exhaustively: (1) isomorphism:
merge nodes that have the same label and the same respective children (Figure 1(c)); (2)
redundancy: eliminate nodes whose low (zero) and high (one) edges point to the same
node (see Figure 1(d)). The resulting OBDD is shown in Figure 1(e).

2.3 AND/OR Search Spaces for COP

The AND/OR search space [5] is a unifying framework for advanced algorithmic
schemes for graphical models, including constraint networks and cost networks. Its
main virtue consists in exploiting independencies between variables during search,
which can provide exponential speedups over traditional structure-blind search meth-
ods. The search space is defined using a backbone pseudo-tree [8].

Definition 1 (pseudo-tree). Given an undirected graph G = (X, E), a directed rooted
tree T = (X, E′) defined on all its nodes is called pseudo-tree if any edge of G that is
not included in E′ is a back-arc in T , namely it connects a node to an ancestor in T .

AND/OR Search Trees Given a COP instanceP , its primal graph G and a pseudo tree
T of G, the associated AND/OR search tree, ST , has alternating levels of OR and AND
nodes. The OR nodes are labeled Xi and correspond to the variables. The AND nodes
are labeled 〈Xi, xi〉 (or just xi) and correspond to value assignments of the variables.
The structure of the AND/OR search tree is based on the underlying pseudo tree T .

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 501

The root of the AND/OR search tree is an OR node labeled with the root of T . The
children of an OR node Xi are AND nodes labeled with assignments 〈Xi, xi〉 that are
consistent with the assignments along the path from the root. The children of an AND
node 〈Xi, xi〉 are OR nodes labeled with the children of variable Xi in T . The AND/OR
search tree can be traversed by a depth first search (DFS) algorithm, thus using linear
space to compute the value of the root node. It was shown [8,9]:

Theorem 1. Given a COP instance P and a pseudo tree T of depth m, the size of the
AND/OR search tree based on T is O(n·km), where k bounds the domains of variables.
A COP having treewidth w∗ has a pseudo tree of depth at most w∗ log n, therefore it
has an AND/OR search tree of size O(n · kw∗ logn).

Weighted AND/OR Search Trees. The OR-to-AND arcs from nodes Xi to xi in an
AND/OR search tree are annotated by weights derived from the cost functions in F.

Definition 2 (weight). The weight w(Xi, xi) of the arc from the OR node Xi to the
AND node xi is the sum of all the cost functions whose scope includes Xi and is fully
assigned along the path from the root to xi, evaluated at the values along the path.

The AND/OR search tree in Figure 2(d) shows the weights on the OR-to-AND arcs.
Given a weighted AND/OR search tree, each node can be associated with a value:

Definition 3 (value). The value v(n) of a node n in a weighted AND/OR tree is defined
recursively as follows (where succ(n) are the children of n):

(i) v(n) = 0, if n = xi is a terminal AND node;
(ii) v(n) =

∑
n′∈succ(n) v(n′), if n = xi is an internal AND node;

(iii) v(n) = minn′∈succ(n)(w(n, n′) + v(n′)), if n = Xi is an OR node.

It is easy to see that the value v(n) of a node in the AND/OR search tree ST is the
minimal cost solution to the subproblem rooted at n, subject to the current variable
instantiation along the path from the root to n. If n is the root of ST , then v(n) is the
minimal cost solution to the initial problem [6,5].

Example 1. Figure 2 shows an example of AND/OR search tree for a COP with binary
variables. The cost functions are given in Figure 2(a). The value ∞ indicates a hard
constraint. The primal graph is given in Figure 2(b), and the pseudo tree in Figure 2(c).
The square brackets indicate the context of the variables, a notion explained below. The
AND/OR search tree is given in Figure 2(d). The numbers on the OR-to-AND arcs are
the weights corresponding to the function values. Note that the tree is pruned whenever
a weight shows inconsistency (e.g., for A = 0, B = 0, D = 1).

AND/OR Search Graphs. The AND/OR search tree may contain nodes that root iden-
tical conditioned subproblems. These nodes are said to be unifiable. When unifiable
nodes are merged, the search space becomes a graph. Its size becomes smaller at the
expense of using additional memory by the search algorithm. The depth first search
algorithm can therefore be modified to cache previously computed results, and retrieve
them when the same nodes are encountered again. Some unifiable nodes can be iden-
tified based on their contexts. We can define graph based contexts for both OR nodes

502 R. Mateescu, R. Marinescu, and R. Dechter

B

10

A

10

C

10

8 8

D

10

1 8

C

10

8 2
D

10

0 2

B

10

C

10

8 2
D

10

6 5

E

10

8 3
E

10

8 4

C

10

8 2
D

10

6 5

E

10

8 3
E

10

8 4

(a) Context minimal AND/OR graph

E

10

8 4
E

10

8 3

0

B

10

A

10

D

10

1 8

D

10

0 2
C

10

8 2
D

10

6 5

1

(b) AOMDD

Fig. 3. AND/OR graphs for COP

and AND nodes, just by expressing the set of ancestor variables in T that completely
determine a conditioned subproblem. It can be shown that using caching based on OR
contexts makes caching based on AND contexts redundant, so we only use OR caching.

Given a pseudo tree T of an AND/OR search space, the context of an OR node
X , denoted by context(X) = [X1 . . . Xp], is the set of ancestors of X in T ordered
descendingly, that are connected in the primal graph to X or to descendants of X . The
context of X separates the subproblem below X from the rest of the network.

Definition 4 (context minimal AND/OR graph). Given a COP instance P and a
pseudo-tree T , the context minimal AND/OR graph, denoted by CT is obtained from
the AND/OR search tree of P along T by merging all the context unifiable OR nodes.

Theorem 2 ([9,5]). Given a COP P , its primal graph G and a pseudo tree T , the size
of the context minimal AND/OR search graph CT is O(n · kw∗

T (G)), where w∗T (G) is
the induced width of G over the DFS traversal of T , and k bounds the domain size.

Example 2. Figure 2(c) shows a pseudo tree and the context of each variable in square
brackets. The context minimal AND/OR graph is given in Figure 3(a). Note that only
the cache table of E will get cache hits during the depth first search traversal (E is the
only level of OR nodes that has more than one incoming arc). It can be determined from
the pseudo tree inspection that all variables except for E generate dead-caches [5,10]
(also explained in following section), and their cache tables need not be stored.

3 Weighted AND/OR Multi-valued Decision Diagrams

The context minimal AND/OR graph offers an effective way of identifying some unifi-
able nodes. However, merging based on context is not complete, i.e. there may still be
unifiable nodes in the search graph that do not have identical contexts. The context-
based merging uses only information available from the ancestors in the pseudo tree.
If all the information from the descendants would also be available, it could lead to
the identification of more unifiable nodes. This comes at a higher cost, however, since
information from descendants in the pseudo tree means that the entire associated sub-
problem has to be solved. Orthogonal to the problem of unification, some of the nodes

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 503

in an AND/OR search graph may be redundant, for example when the set of solutions
rooted at variable Xi is not dependent on the specific value assigned to Xi.

The above criteria suggest that once an AND/OR search graph is available (e.g.,
after search terminates, and its trace is saved) reduction rules based on isomorphism
and redundancy (similar to OBDDs) can be applied further, reducing the size of the
AND/OR search graph that was explicated by search. In order to apply the reduction
rules, it is convenient to group each OR node and its children into a meta-node:

Definition 5 (meta-node). A meta-node v in a weighted AND/OR search graph con-
sists of an OR node labeled var(v) = Xi and its ki AND children labeled xi1 , ..., xiki

that correspond to its value assignments. Each AND node labeled xij points to a list of
child meta-nodes, u.childrenj, and also stores the weight w(Xi, xij).

The reduction rules are straightforward. Two meta-nodes are isomorphic if they have the
same variable label and the same respective lists of children and weights. A meta-node
is redundant if all its lists of children and weights are respectively identical.

When reduction rules are applied exhaustively to an AND/OR search graph, the re-
sult is an AND/OR Multi-Valued Decision Diagram (AOMDD). The AOMDD data
structure for constraint networks (where weights are all 1) was introduced in [7], along
with a Variable Elimination type algorithm to generate it, based on the apply operator,
similar to the OBDD case.

An example of a AOMDD appears in Figure 3(b), representing the exhaustive reduc-
tion of the context minimal AND/OR graph in Figure 3(a). The terminal nodes labeled
with 0 and 1 denote inconsistent and consistent assignments, respectively. Note that
when A = 1, B is redundant and its common list of children becomes the list of chil-
dren for A = 1, namely the problem already splits into two independent components
after A = 1, even though this can not be read from the pseudo tree in Figure 2(c).

4 Compiling COPs into AOMDDs

We next define the AOMDD describing the set of optimal solutions to a COP and
present a general scheme for generating these compiled data structures.

Definition 6. Given a set of tuples S over variables X and a tree T over X, T ex-
presses S iff there exists an AND/OR tree guided by T that expresses all and only
tuples in S.

Proposition 1. If T is a pseudo-tree of a COP P , then T can be used to express Sopt,
the set of optimal solutions of P .

Definition 7. Given a COP P , its set of optimal solutions Sopt and a pseudo tree T of
P , its AOMDDoptT is the AOMDD that expresses all and only Sopt relative to T .

The target is to generate AOMDDopt
T of a COP. The idea is to use a pseudo tree T

that can express all solutions and explore a subset of its context minimal AND/OR
graph, CT that contains all the optimal solutions and then process it so that it will
represent only optimal solutions and be completely reduced relative to isomorphism
and redundancy. Therefore, any search algorithm for optimal solutions that explores the

504 R. Mateescu, R. Marinescu, and R. Dechter

context minimal graph can be used to generate the initial trace. The better the algorithm
we use, the more efficient the procedure would be because the initial trace will be tight
around the context minimal graph that is restricted to the optimal solutions.

In recent years several Branch-and-Bound and Best-First search algorithms were
developed to search the context minimal AND/OR graph for solving COPs [6,10,11].
In this paper we use a depth-first AND/OR Branch-and-Bound (AOBB) algorithm.

4.1 AND/OR Branch-and-Bound Search

AOBB traverses the context minimal AND/OR search graph in a depth-first manner via
full caching. It interleaves forward expansion of the current partial solution subtree
with a backward cost revision step that updates node values, until search terminates.
The efficiency of the algorithm also depends on the strength of its heuristic evaluation
function (i.e., lower bound). Specifically, each node n along the path from the root has
an associated static heuristic function h(n) underestimating v(n) that can be computed
efficiently when the node n is first expanded. The algorithm then improves the heuristic
function dynamically during search. The dynamic heuristic function fh(n) is computed
based on the search space below n that has already been explored [6], and is used to
prune irrelevant portions of the search space, based on the Branch-and-Bound principle.

In the forward step the algorithm expands alternating levels of OR and AND nodes.
Since we are using OR caching, before expanding an OR node, its cache table is
checked. If the same context was encountered before, it is retrieved from the cache,
and its successors set is set to empty which will trigger the cost revision step. If an OR
node is not found in the cache, it is expanded in the usual way. Before expanding an
AND node n, the algorithm updates the heuristic function fh(a) for every ancestor a
of n along the current path, and discontinues search below n if, for some a, fh(a) is
greater or equal than the best cost solution found at a (the upper bound).

The backward cost revision step is triggered when a closed node has an empty set
of successors. This means that all its children have been evaluated, and its final value
can now be computed. If the current node is the root, then the search terminates with its
value. OR nodes update their values by minimization, while AND nodes combine their
children values by summation.

4.2 The Compilation Algorithm

The compilation algorithm, called AOBB-COMPILE, is described in Algorithm 1. It
extends the AND/OR Branch-and-Bound algorithm described above by compiling the
trace of the search into an AND/OR Multi-Valued Decision Diagram representing all
optimal solutions to the input COP instance.

The algorithm is based on two mutually recursive steps, similar to AOBB: EXPAND
and REVISE which call each other until the search terminates. The fringe of the search
is maintained on a stack called OPEN. The current node is n, its parent p, and the current
path πn. The children of the current node in the AND/OR search graph are denoted by
succ(n). The AND/OR decision diagram being constructed is denoted by AOMDD.
Each node u in the AND/OR search graph has a pointer, denoted by u.metanode, to
the corresponding meta-node in AOMDD.

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 505

In the EXPAND step, when the current OR node n is expanded, AOBB-COMPILE
creates a new meta-node corresponding to n and adds it to AOMDD. If n is already
present in cache, then AOBB-COMPILE ensures that the meta-node corresponding to
n’s parent in the context minimal search graph points to the meta-node that was created
when n was first expanded.

In the REVISE step when node values are propagated backwards, the algorithm also
attempts to reduce the diagram by removing isomorphic meta-nodes. Specifically, if
n is the current OR node being evaluated and if there exists a meta-node m which
is isomorphic with n.metanode, then the parents of n.metanode in the AOMDD are
updated to point to m instead of n.metanode, which is then removed from the diagram.

The compiled AOMDD may contain sub-optimal solutions that were visited during
the Branch-and-Bound search but were not pruned. Therefore, a second pass over the
decision diagram is necessary to remove any path which does not appear in any opti-
mal solution (omitted from the algorithm due to space limitations). Specifically, in the
second pass AOBB-COMPILE traverses the AOMDD in a depth-first manner for every
meta-node u along the current path from the root, it prunes u.childrenj from the dia-
gram if (

∑
u′∈u.childrenj

v(u′)+w(Xi, xij)) > v(u), namely the optimal cost solution
to the problem below the j child of u is not better than the optimal cost solution at u.

Theorem 3. Given a COP instance P = 〈X,D,F〉 and a pseudo tree T of P , the
AOMDD generated by AOBB-COMPILE along T is AOMDDoptT .

The complexity of AOBB-COMPILE is bounded time and space by the trace generated,
which is O(n · exp(w∗)). However, the heuristic evaluation function used by AOBB
typically restricts the trace far below this complexity bound.

5 Experiments

In this section we evaluate empirically the compilation scheme on two common classes
of optimization problems: Weighted CSPs (WCSP) [12] and 0/1 Integer Linear Pro-
grams (0/1 ILP) [13]. In our experiments we compiled the search trace relative to iso-
morphic meta-nodes only, without removing redundant nodes. Also we did not perform
the second top-down pass over the diagram to remove additional sub-optimal solutions.

5.1 Weighted CSPs

Weighted CSP [12] extends the classic CSP formalism with soft constraints which as-
sign positive integer costs to forbidden tuples (allowed tuples have cost 0). The goal is
to find a complete assignment with minimum aggregated cost. The model has numerous
applications in domains such as resource allocation, scheduling or planning.

We consider the compilation algorithm based on the AND/OR Branch-and-Bound
algorithm with pre-compiled mini-bucket heuristics and full caching introduced by [10]
and denoted by AOBB(i). The parameter i represents the mini-bucket i-bound and
controls the accuracy of the heuristic.

For each test instance we report the number of OR nodes in the context minimal
AND/OR search graph (#cm) visited by AOBB(i), and the number of meta-nodes in

506 R. Mateescu, R. Marinescu, and R. Dechter

Algorithm 1. AOBB-COMPILE
Data: A COP instanceP = 〈X,D,F〉, pseudo-tree T , root s, heuristic function fh .
Result: AOMDD containing the optimal solutions to P .
v(X1)←∞; OPEN ← {X1};AOMDD ← ∅; / / Initialize1
while OPEN
= ∅ do2

n← top(OPEN); remove n from OPEN3
let πn be the assignment along the path from the root to n4
if n is an OR node, labeled Xi then / / EXPAND5

if Cache(n, context(Xi))
= ∅ then6
v(n)← Cache(n, context(Xi))7
succ(n)← ∅8
let p = 〈Xj , xj〉 be the AND parent of n in the AND/OR search graph9
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {n.metanode}10

else11
succ(n)← {〈Xi, xi〉|〈Xi, xi〉 is consistent with πn}12
for 〈Xi, xi〉 ∈ succ(n) do13

v(〈Xi, xi〉)← 0; h(〈Xi, xi〉)← heuristic(Xi,xi)14
w(Xi, xi)←

∑
f∈F,Xi∈scope(f) f(πn)15

create a new meta-node m for Xi and add it to AOMDD16
let p = 〈Xj , xj〉 be the AND parent of n in the AND/OR search graph17
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {m}18

Add succ(n) on top of OPEN19

else if n is an AND node, labeled 〈Xi, xi〉 then20
for a ∈ ancestors(Xi, xi) do21

if (a is OR) and (fh(a) > v(a)) then22
n.deadend← true23
n.metanode.childrenxi

← UNSOLV ED24
break25

if n.deadend == false then26
succ(n)← {Xj |Xj ∈ childrenT (Xi)}27
v(Xj)←∞; h(Xj)← heuristic(Xj)28
Add succ(n) on top of OPEN29
if succ(n) == ∅ then30

n.metanode.childrenxi
← SOLV ED31

while succ(n) == ∅ do // REVISE32
let p be the parent of n33
if n is an OR node, labeled Xi then34

if Xi == X1 then // Search is complete35
return AOMDD36

Cache(n, context(Xi))← v(n)37
v(p)← v(p) + v(n)38
n.metanode.value← v(n)39
if findIsomorphism(n.metanode) == true then40

letm be the meta-node isomorphic with n.metanode41
redirect the links of n.metanode’s parents in AOMDD to point to m42
AOMDD ← AOMDD − {n.metanode}43

if n is an AND node, labeled 〈Xi, xi〉 then44
v(p)← min(v(p), w(Xi, xi) + v(n))45

remove n from succ(p)46
n← p47

the resulting AND/OR decision diagram (#aomdd), as well as their ratio defined as
ratio = #cm

#aomdd . In some cases we also report the compilation time. We record the
number of variables (n), the number of constraints (c), the depth of the pseudo-trees (h)
and the induced width of the graphs (w∗) obtained for the test instances. The pseudo-
trees were generated using the min-fill heuristic, as described in [6].

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 507

Fig. 4. The trace of AND/OR Branch-and-Bound search (nodes) versus the AOMDD size
(aomdd) for the SPOT5 networks. Compilation time limit 1 hour.

Earth Observing Satellites. The problem of scheduling an Earth observing satellite is
to select from a set of candidate photographs, the best subset such that a set of imper-
ative constraints are satisfied and the total importance of the selected photographs is
maximized. We experimented with problem instances from the SPOT5 benchmark [14]
which can be formulated as non-binary WCSPs. For our purpose we considered a sim-
plified MAX-CSP version of the problem where the goal is to minimize the number of
imperative constraints violations (i.e., we ignored the importance of the photographs).

Figure 4 displays the results for experiments with 6 SPOT5 networks. Each subgraph
depicts the trace of AOBB(i) and the size of the resulting AND/OR decision diagram as
a function of the i-bound of the mini-bucket heuristic. For comparison, we also include

508 R. Mateescu, R. Marinescu, and R. Dechter

Table 1. CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm) and the
AOMDD size (#aomdd) for the ISCAS’89 circuits. Compilation time limit 1 hour.

AOBB+SMB(i)

iscas n w* i=10 i=12 i=14 i=16
c h time #cm #aomdd time #cm #aomdd time #cm #aomdd time #cm #aomdd

s386 172 19 0.50 2,420 811 0.17 1,132 558 0.21 527 360 0.38 527 360
172 44 ratio = 2.98 ratio = 2.03 ratio = 1.46 ratio = 1.46

s953 440 66 - - 981.20 186,658 37,084 22.46 22,053 9,847
464 101 ratio = 5.03 ratio = 2.24

s1423 748 24 21.12 21,863 9,389 7.47 13,393 6,515 5.09 10,523 6,043 2.01 5,754 4,316
751 54 ratio = 2.33 ratio = 2.06 ratio = 1.74 ratio = 1.33

s1488 667 47 250.18 83,927 20,774 4.48 15,008 3,929 10.72 23,872 5,375 5.54 5,830 3,246
667 67 ratio = 4.04 ratio = 3.82 ratio = 4.44 ratio = 1.80

s1494 661 48 138.61 63,856 18,501 387.73 125,030 22,393 37.78 31,355 11,546 39.75 30,610 12,467
661 69 ratio = 3.45 ratio = 5.58 ratio = 2.72 ratio = 2.46

c432 432 27 1867.49 395,766 41,964 1.29 7,551 4,024 1.30 7,112 3,693 0.74 1,120 881
432 45 ratio = 9.43 ratio = 1.88 ratio = 1.93 ratio = 1.27

c499 499 23 363.78 93,936 33,157 6.66 12,582 7,051 271.26 88,131 23,502 16.75 17,714 9,536
499 74 ratio = 2.83 ratio = 1.78 ratio = 3.75 ratio = 1.86

Table 2. CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm) and the
AOMDD size (#aomdd) for the planning instances. Compilation time limit 1 hour.

AOBB+SMB(i)

planning n w* i=6 i=8 i=10 i=12
c h time #cm #aomdd time #cm #aomdd time #cm #aomdd time #cm #aomdd

bwt3ac 45 16 77.45 28,558 12,152 45.76 22,475 11,106 8.92 3,878 2,537 99.00 1,775 1,252
d=11 301 34 ratio = 2.35 ratio = 2.02 ratio = 1.53 ratio = 1.42
bwt3bc 45 11 54.22 23,560 10,544 29.62 18,734 9,422 8.61 3,455 2,243 85.73 1,599 1,141
d=11 301 33 ratio = 2.23 ratio = 1.99 ratio = 1.54 ratio = 1.40
bwt3cc 45 19 32.55 19,643 9,122 20.03 15,696 8,149 8.51 3,113 2,046 85.57 935 731
d=11 301 42 ratio = 2.15 ratio = 1.93 ratio = 1.52 ratio = 1.28
depot01ac 66 14 1.45 7,420 2,504 0.73 4,056 1,995 0.42 1,214 830 1.48 506 432
d=5 298 33 ratio = 2.96 ratio = 2.03 ratio = 1.46 ratio = 1.17
depot01bc 66 14 1.31 7,068 2,358 0.55 3,333 1,641 0.39 1,316 886 1.47 514 432
d=5 298 33 ratio = 3.00 ratio = 2.03 ratio = 1.49 ratio = 1.19
depot01cc 66 14 1.36 7,156 2,411 0.82 4,333 2,196 0.38 1,262 841 1.47 269 219
d=5 298 33 ratio = 2.97 ratio = 1.97 ratio = 1.50 ratio = 1.23

i=2 i=4 i=6 i=8

driverlog01ac 71 9 1.37 7,490 2,134 0.41 3,143 1,412 0.05 279 237 0.10 451 331
d=4 271 38 ratio = 3.51 ratio = 2.23 ratio = 1.18 ratio = 1.36
driverlog01bc 71 9 1.36 7,447 2,128 0.42 3,098 1,389 0.04 231 210 0.07 247 212
d=4 271 38 ratio = 3.50 ratio = 2.23 ratio = 1.10 ratio = 1.17
driverlog01cc 71 9 1.61 7,741 2,185 0.10 883 622 0.04 279 237 0.07 295 239
d=4 271 38 ratio = 3.54 ratio = 1.42 ratio = 1.18 ratio = 1.23
mprime03ac 49 9 2.12 7,172 1,562 0.66 3,343 863 0.11 595 386 0.16 111 94
d=10 185 23 ratio = 4.59 ratio = 3.87 ratio = 1.54 ratio = 1.18
mprime03bc 49 9 2.07 7,266 1,573 0.68 3,486 849 0.12 641 396 0.10 111 94
d=10 185 23 ratio = 4.62 ratio = 4.11 ratio = 1.62 ratio = 1.18
mprime03cc 49 9 1.47 5,469 1,391 0.45 2,336 721 0.12 534 366 0.10 111 94
d=10 185 23 ratio = 3.93 ratio = 3.24 ratio = 1.46 ratio = 1.18

the results obtained with the OR version of the compilation scheme that explores the
traditional OR search space.

We observe that the resulting AOMDD is substantially smaller than the context min-
imal AND/OR graph traversed by AOBB(i), especially for relatively small i-bounds
that generate relatively weak heuristic estimates. For instance, on the 408 network, we

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 509

were able to compile an AOMDD 11 times smaller than the AND/OR search graph ex-
plored by AOBB(8). As the i-bound increases, the heuristic estimates become stronger
and they are able to prune the search space significantly. In consequence, the difference
in size between the AOMDD and the AND/OR graph explored decreases. When look-
ing at the OR versus the AND/OR compilation schemes, we notice that AOMDD is
smaller than the OR MDD, for all reported i-bounds. On some of the harder instances,
the OR compilation scheme did not finish within the 1 hour time limit (e.g., 408, 505).

ISCAS’89 Benchmark Circuits. ISCAS’89 circuits are a common benchmark used in
formal verification and diagnosis (http://www.fm.vslib.cz/ kes/asic/iscas/). For our pur-
pose, we converted each of these circuits into a non-binary WCSP instance by removing
flip-flops and buffers in a standard way, creating hard constraints for gates and uniform
unary cost functions for the input signals. The penalty costs were distributed uniformly
randomly between 1 and 10.

Table 1 shows the results for experiments with 7 circuits. The columns are indexed
by the mini-bucket i-bound. We observe again that the difference in size between the
resulting AOMDD and the AND/OR search graph explored by AOBB(i) is more promi-
nent for relatively small i-bounds. For example, on the c432 circuit and at i = 10, the
AOMDD is about 9 times smaller than the corresponding AND/OR graph.

Planning. We also experimented with problems from planning in temporal and metric
domains (http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS). These instances
were converted into binary WCSPs as follows: each fluent of the planning graph is
represented by a variable with domain values representing possible actions to produce
this fluent. Hard binary constraints represent mutual exclusions between fluents and ac-
tions, and activity edges in the graph. Soft unary constraints represent action costs. The
goal is to find a valid plan which minimizes the sum of the action costs.

Table 2 shows the results for experiments with 12 planning networks. On this do-
main we only observe minor differences between the size of the compiled AOMDD
and the corresponding AND/OR search graph. This is due to very accurate mini-bucket
heuristics which cause the AND/OR Branch-and-Bound to avoid expanding nodes that
correspond to solutions whose cost is above the optimal one.

5.2 0/1 Integer Linear Programs

A 0/1 Integer Linear Programming (0/1 ILP) [13] consists of a set of integer decision
variables (restricted to values 0 or 1) and a set of linear constraints (equalities or inequal-
ities). The goal is to minimize a global linear cost function subject to the constraints. 0/1
ILPs can formulate many practical problems such as capital budgeting, cargo loading,
combinatorial auctions or maximum satisfiability problems.

We consider the AND/OR Branch-and-Bound algorithm developed in [15] and de-
noted by AOBB, as the basis for our AND/OR compilation scheme. The heuristic evalu-
ation function used by AOBB is computed by solving the linear relaxation of the current
subproblem with the SIMPLEX method [16] (our code used the implementation from the
open source library lp solve 5.5 available at http://lpsolve.sourceforge.net/5.5/).

MIPLIB Instances. MIPLIB is a library of Mixed Integer Linear Programming in-
stances that is commonly used for benchmarking integer programming algorithms. For

510 R. Mateescu, R. Marinescu, and R. Dechter

Table 3. The trace of AND/OR Branch-and-Bound search (#cm) versus the AOMDD size
(#aomdd) for the MIPLIB instances. Compilation time limit 1 hour.

miplib (n, c) (w*, h) time #cm #aomdd ratio
p0033 (33, 15) (19, 21) 0.52 441 164 2.69
p0040 (40, 23) (19, 23) 0.36 129 77 1.66
p0201 (201, 133) (120, 142) 89.44 12,683 5,499 2.31
lseu (89, 28) (57, 68) 454.79 109,126 21,491 5.08

Fig. 5. The trace of AND/OR Branch-and-Bound search versus the AOMDD size for the
regions-upv and regions-npv combinatorial auctions

our purpose we selected four 0/1 ILP instances of increasing difficulty. Table 3 reports
a summary of the experiment. We observe that the AOMDD is smaller than the cor-
responding AND/OR search graph, especially for harder problems where the heuristic
function generates relatively weak estimates. Results on these instances have been re-
ported in [4], but we note that they are only for optimal solutions, while we also include
suboptimal ones here. Also, in [4] they use of-the-shelf optimized BDD packages, while
we use our own far-from-optimized implementation, and in particular we do not use re-
dundancy reduction in these experiments. Moreover, the order of variables plays an
enormous part in compilation and it may be the case that the ordering selected by the
BDD tools is far superior (albeit OR ordering).

Combinatorial Auctions. In combinatorial auctions, an auctioneer has a set of goods,
M = {1, 2, ..., m} to sell and the buyers submit a set of bids, B = {B1, B2, ..., Bn}.
A bid is a tuple Bj = 〈Sj , pj〉, where Sj ⊆ M is a set of goods and pj ≥ 0 is a
price. The winner determination problem is to label the bids as winning or loosing so
as to maximize the sum of the accepted bid prices under the constraint that each good
is allocated to at most one bid. We used the 0/1 ILP formulation described in [17].

Figure 5 shows results for experiments with combinatorial auctions drawn from the
regions distribution of the CATS 2.0 test suite [17]. The suffixes npv and upv in-
dicate that the bid prices were drawn from either a normal or uniform distribution.
These problem instances simulate the auction of radio spectrum in which a government
sells the right to use specific segments of spectrum in different geographical areas.
We looked at auctions with 100 goods and increasing number of bids. Each data point

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 511

Table 4. The trace of AND/OR Branch-and-
Bound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SAT pret instances

pret (w*, h) time #cm #aomdd ratio
pret60-25 (6, 13) 2.74 593 255 2.33
pret60-40 (6, 13) 3.39 698 256 2.73
pret60-60 (6, 13) 3.31 603 222 2.72
pret60-75 (6, 13) 2.70 565 253 2.23
pret150-25 (6, 15) 18.19 1,544 851 1.81
pret150-40 (6, 15) 29.09 2,042 922 2.21
pret150-60 (6, 15) 30.09 2,051 877 2.34
pret150-75 (6, 15) 29.08 2,033 890 2.28

Fig. 6. The trace of AND/OR Branch-and-
Bound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SAT dubois instances

represents an average over 10 random instances. For comparison, we also included re-
sults obtained with the OR compilation scheme. On this domain, we observe that the
compiled AOMDD improves only slightly over the size of the AND/OR search graph.
This is because the context minimal AND/OR graph is already compact enough due to
very accurate heuristic estimates.

Maximum Satisfiability (MAX-SAT). Given a set of Boolean variables the goal of
MAX-SAT is to find a truth assignment to the variables that violates the least number of
clauses. The MAX-SAT problem can be formulated as a 0/1 ILP [18]. We experimented
with problem classes pret and dubois from the SATLIB (http://www.satlib.org/)
library, which were previously shown to be difficult for 0/1 ILP solvers (CPLEX)
[19].

Table 4 shows the results for experiments with 8 pret instances. These are unsatisfi-
able instances of graph 2-coloring with parity constraints. The size of these problems is
relatively small (60 variables with 160 clauses for pret60 and 150 variables with 400
clauses for pret150, respectively). However, they have a very small context with size
6 and a shallow pseudo-tree with depths between 13 and 15. For this problem class we
observe that the AND/OR decision diagrams have about 2 times fewer nodes than the
AND/OR search graphs explored by AOBB. This is because the respective search spaces
are already small enough, and this does not leave much room for additional merging of
isomorphic nodes in the diagram.

Figure 6 displays the results for experiments with random dubois instances with
increasing number of variables. These are 3-SAT instances with 3 × degree variables
and 8 × degree clauses, each of them having 3 literals. As in the previous test case,
the dubois instances have very small contexts of size 6 and shallow pseudo-trees
with depths ranging from 10 to 20. The AND/OR decision diagrams compiled for these
problem instances are far smaller than the corresponding AND/OR search graphs, es-
pecially for some of the larger instances. For example, at degree 320, the corresponding
AOMDD is 40 times smaller than the trace of AOBB.

512 R. Mateescu, R. Marinescu, and R. Dechter

6 Conclusion and Discussion

We presented a new search based algorithm for compiling the optimal solutions of a
constraint optimization problem into a weighted AND/OR Multi-Valued Decision Dia-
gram (AOMDD). Our approach draws its efficiency from: (1) AND/OR search spaces
for graphical models [5] that exploit problem structure, yielding memory intensive
search algorithms exponential in the problem’s treewidth rather than pathwidth. (2)
Heuristic search algorithms exploring tight portions of the AND/OR search space. In
particular, we use here a state-of-the-art AND/OR Branch-and-Bound search algorithm
[6,10], with very efficient heuristics (mini-bucket, or simplex-based), that in practice
traverses only a small portion of the context minimal graph by exploiting the pruning
power of the cost function. (3) Reduction techniques similar to OBDDs further reduce
the trace of the search algorithm.

The paper extends earlier work on AOMDDs [7] by considering weighted AOMDDs
based on cost functions, rather than constraints. This can now easily be extended to
any weighted graphical model, for example to probabilistic networks. Finally, using
an extensive experimental evaluation we show the efficiency and compactness of the
weighted AOMDD data structure.

For future work, we mention the possibility of using best-first AND/OR search for
the compilation task, whose virtue is that it does not expand nodes whose heuristic
evaluation function is larger than the optimal cost.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers 35, 677–691 (1986)

2. Fargier, H., Vilarem, M.: Compiling CSPs into tree-driven automata for interactive solving.
Constraints 9(4), 263–287 (2004)

3. Hadzic, T., Andersen, H.R.: A BDD-based polytime algorithm for cost-bounded interactive
configuration. In: National Conference on Artificial Intelligence (AAAI-2006) (2006)

4. Hadzic, T., Hooker, J.: Cost-bounded binary decision diagrams for 0-1 programming. In:
International Conference on Integration of AI and OR Techniques (CPAIOR-2007) (2007)

5. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artificial Intelli-
gence 171, 73–106 (2007)

6. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI-2005), pp. 224–229 (2005)

7. Mateescu, R., Dechter, R.: Compiling constraint networks into AND/OR multi-valued deci-
sion diagrams (AOMDDs). In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 329–343.
Springer, Heidelberg (2006)

8. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satis-
faction problems. In: International Joint Conferences on Artificial Intelligence (IJCAI-1985),
pp. 1076–1078 (1985)

9. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for the
constraint satisfaction problem. In: National Conference on Artificial Intelligence (AAAI-
1996), pp. 298–304 (1996)

10. Marinescu, R., Dechter, R.: Memory intensive branch-and-bound search for graphical mod-
els. In: National Conference on Artificial Intelligence (AAAI-2006) (2006)

AND/OR Multi-valued Decision Diagrams for Constraint Optimization 513

11. Marinescu, R., Dechter, R.: Best-first AND/OR search for graphical models. In: National
Conference on Artificial Intelligence (AAAI-2007) (2007)

12. Bistarelli, S., Montanari, U., Rossi, F.: Semiring based constraint solving and optimization.
Journal of ACM 44, 309–315 (1997)

13. Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley, Chichester (1988)
14. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management. Con-

straints 4, 293–299 (1999)
15. Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for pure 0/1 integer linear

programming problems. In: International Conference on Integration of AI and OR Tech-
niques (CPAIOR-2006), pp. 152–166 (2006)

16. Dantzig, G.: Maximization of a linear function of variables subject to linear inequalities.
Activity Analysis of Production and Allocation (1951)

17. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial
auction algorithms. ACM Electronic Commerce, 66–76 (2000)

18. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for max-SAT and weighted
max-SAT. Satisfiability Problem: Theory and Applications, 519–536 (1997)

19. de Givry, S., Larrosa, J., Schiex, T.: Solving max-SAT as weighted CSP. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833. Springer, Heidelberg (2003)

Parallelizing Constraint Programs Transparently

Laurent Michel1, Andrew See1, and Pascal Van Hentenryck2

1 University of Connecticut, Storrs, CT 06269-2155
2 Brown University, Box 1910, Providence, RI 02912

Abstract. The availability of commodity multi-core and multi-processor
machinesandthe inherentparallelism inconstraintprogrammingsearchof-
fer significant opportunities for constraint programming.They also present
a fundamental challenge: how to exploit parallelism transparently to speed
upconstraintprograms.Thispaper showshowtoparallelize constraintpro-
grams transparently without changes to the code. The main technical idea
consists of automatically lifting a sequential exploration strategy into its
parallel counterpart, allowing workers to share and steal subproblems. Ex-
perimental results showthat theparallel implementationmayproduces sig-
nificant speedups on multi-core machines.

1 Introduction

Recent years have witnessed a transition in processor design from improve-
ments in clock speed to parallel architectures. Multi-core and multiprocessor
machines are now commodity hardware, a striking example of which is the re-
cent announcement of the 80 core prototype developed by Intel [3]. Constraint
programming (CP) search naturally offers significant opportunities for parallel
computing, yet very little research has been devoted to parallel constraint pro-
gramming implementations. Notable exceptions include CHIP/PEPSys [12] and
its successors ECLiPSe [6], Parallel Solver [7], and Mozart [10].

The paper tackles the challenge eloquently stated by Schulte and Carlsson
[11]: how to exploit the resources provided by parallel computers and making their
useful exploitation simple. One of the difficulties here is the rich search languages
typically supported by modern constraint programming languages (e.g., [9,7,13]).
Indeed, CP search is best described by the equation

CP Search = Nondeterministic Program + Exploration Strategy

indicating that a CP search procedure consists of a nondeterministic program
implicitly describing the search tree and an exploration strategy specifying how
to explore the search space. For instance, in Comet, the nondeterministic pro-
gram is expressed using high-level nondeterministic instructions such as tryall,
while the exploration strategy is specified by a search controller, i.e.,

CP Search in Comet = Nondeterministic Program + Search Controller.

This research shows how to transparently parallelize such rich and expressive
search procedures. The parallelization is purely built on top of the Comet sys-
tem and involves no modification to its runtime. The key technical idea is to

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 514–528, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallelizing Constraint Programs Transparently 515

1 CPSolver cp();
2 LDS lds(cp);
3 range S = 1..8;
4 var<CP>{int} q[S](m,S);
5 m.post(allDifferent(all(i in S) q[i] + i));
6 m.post(allDifferent(all(i in S) q[i] - i));
7 m.post(allDifferent(q));
8 exploreall<cp> {
9 forall(i in S) by q[i].getSize()

10 tryall<cp>(v in S : q[i].memberOf(v))
11 label(q[i],v);
12 }

Fig. 1. A Constraint Program for the N-Queens Problem

automatically lift the search controller of a constraint program into a parallel
controller implementing the same exploration strategy in parallel. This paral-
lelization does not require any change to the CP program and reuses the very
same nondeterministic program and search controller. More precisely, the par-
allelization creates a number of workers, each of which executes the original
constraint program with the generic parallel controller instead of the original
search controller. The generic parallel controller, which encapsulates the original
search controller, implements a work-stealing strategy in which an idle worker
steals CP subproblems from other workers. Experimental results show that such
a transparent parallelization may produce significant speedups compared to the
sequential implementation.

The paper briefly reviews the concepts of nondeterministic programs and
search controllers from the Comet system, since these are at the core of the
parallel implementation. The paper then presents the transparent paralleliza-
tion of a constraint program and its implementation. It reports experimental
results showing the benefits of the approach and contrasts this implementation
with earlier work, emphasizing the transparency and genericity of the approach.

2 Nondeterministic Programs and Search Controllers

Nondeterministic Programs Comet features high-level abstractions for nonde-
terministic search such as try and tryall, preserving an iterative programming
style while making nondeterminism explicit. Figure 1 shows a constraint pro-
gram for finding all solutions to the queens problem, illustrating some of the
nondeterministic abstractions. Line 1 declares a CP solver and line 4 defines the
decision variables. Lines 5–7 state the problem constraints, while lines 8–12 spec-
ify the nondeterministic search. The exploreall instruction in line 8 specifies
that all solutions are required. The search procedure iterates over all variables
ordered by smallest domains (line 9), nondeterministically chooses a value for
the selected variable (line 10), and assigns the value to the variable (line 11).

516 L. Michel, A. See, and P. Van Hentenryck

1 interface SearchController {
2 void start(Continuation s,Continuation e);
3 void addChoice(Continuation c);
4 void fail();
5 void startTry();
6 void label(var<CP>{int} x,int v);
7 ...
8 }

Fig. 2. Interface of Search Controllers

The nondeterministic choice is expressed using a tryall instruction. Note that
lines 8–12 specify a nondeterministic program that describes the search tree to
explore. The nondeterministic instructions are concerned with the control flow
only and are implemented using continuations.

Search Controllers. It is the role of the search controller to implement the explo-
ration strategy (i.e., in which order to explore the search nodes), as well as how
to save and restore search nodes. In Figure 1, the search controller is declared in
line 2 and implements an LDS strategy. It is then used (through the CP solver)
in the nondeterministic instructions in lines 8 and 10. The interface of search
controllers is partially specified in Figure 2 and it is useful to review the seman-
tics of some of its methods. Method start is called by instructions starting a
nondeterministic search (e.g., the exploreall or minimize instructions). It re-
ceives two continuations s and e as parameters. Continuation e (for exit) is called
when the search is complete. Continuation s (for start) can be called each time
a restart is executed: When called, it restarts execution at the beginning of the
nondeterministic search. Method addChoice adds a new choice point (described
by a continuation) and method fail is called upon failure. Method startTry is
called when a try or a tryall instruction is executed. Finally, method label is
called to instantiate a variable to a specific value.

The connection between nondeterministic programs and controllers relies on
source-to-source rewritings. For instance, the rewriting for the try instruction

try<sc> LEFT | RIGHT
−→ sc.startTry();

bool rightBranch = true;
continuation c { rightBranch=false;

sc.addChoice(c);
LEFT; }

if (rightBranch) RIGHT;

first invokes the startTrymethod of the controller. It then creates a continuation
c to represent the right choice, adds the choice point to the controller, and
executes the left branch. When the system wishes to return to the right choice, it
calls the continuation c, executing the conditional statement. Since rightBranch
is true in the continuation, the body RIGHT is executed.

Parallelizing Constraint Programs Transparently 517

An LDS Controller. The LDS controller is shown in Figure 3 and is organized
around a queue of search node. A search node is represented by a pair (c, p),
where c is the continuation produced by the nondeterministic program and p
is a semantic path [2,4], i.e., the sequence of constraints added on the path
from the root to the search node. The most significant methods are addChoice
(lines 7–9) and fail (lines 10–17). Method addChoice enqueues a search node
composed of the continuation and a checkpoint which encapsulates the semantic
path from the root to the node. Method fail calls the exit continuation if
the queue is empty (line 11). Otherwise, it dequeues a search node (line 13),
restores the search state (line 14), and calls the continuation (line 15) to resume
execution. To restore a search state j from node i, the implementation finds the
longest common prefix k in the sequence of i and j, backtracks to k, and posts
all the remaining constraints of j. Note that the state restoration may fail in
optimization applications when new bounds have been found elsewhere in the
tree, in which case the fail method is called recursively.

1 class LDS implements SearchController {
2 CPSolver _cp; Continuation _exit; CPNodeQueue _Q;
3 LDS(CPSolver cp) { _cp = cp; _Q = new CPNodeQueue(); }
4 void start(Continuation s,Continuation e) { _exit = e; }
5 void exit() { call(_exit);}
6 void startTry() {}
7 void addChoice(Continuation c) {
8 _Q.enQueue(new CPNode(new CheckPoint(_cp),c));
9 }

10 void fail() {
11 if (_Q.emtpy()) exit();
12 else {
13 CPNode next = _Q.deQueue();
14 if (next.restore(_cp)==Failure) fail();
15 else call(next.getContinuation());
16 }
17 }
18 void label(var<CP>{int} x,int v) {
19 if (_m.label(x,v)==Failure) fail();
20 }
21 }

Fig. 3. The Controller for Limited Discrepancy Search

3 Transparent Parallelization of Constraint Programs

The parallelization of constraint programs is illustrated in Figure 4, which shows
a parallel constraint program to solve the n-queens problem with 4 workers. It
features a ParallelCPSolver instruction specifying the number of workers and
enclosing the constraint program. Observe that the parallelization is entirely
transparent and does not require any modification to the constraint program
besides replacing the sequential CP solver by its parallel counterpart. In this

518 L. Michel, A. See, and P. Van Hentenryck

program, all the workers use an LDS exploration strategy. It is also possible
to design a similar parallelization in which different workers implement differ-
ent exploration strategies by using, say, a factory to create search controllers.
The next two sections describes the implementation, starting with the high-level
architecture before diving into the implementation.

1 ParallelCPSolver cp(4) {
2 LDS lds(cp);
3 range S = 1..8;
4 var<CP>{int} q[S](m,S);
5 m.post(allDifferent(all(i in S) q[i] + i));
6 m.post(allDifferent(all(i in S) q[i] - i));
7 m.post(allDifferent(q));
8 exploreall<cp> {
9 forall(i in S) by q[i].getSize()

10 tryall<cp>(v in S : q[i].memberOf(v))
11 label(q[i],v);
12 }
13 }

Fig. 4. Parallelizing the Constraint Program for the N-Queens Problem

4 High-Level Description of The Parallel Architecture

Each worker is associated with a thread and executes its own version of the
constraint program. The workers collaborate by sharing subproblems, naturally
leveraging the semantic paths used in the underlying search controllers. The col-
laboration is based on work stealing: When a worker is idle, it steals subproblems
from active workers. Work stealing has some strong theoretical guarantees [1]
and was successfully used in parallel (constraint) logic programming systems as
early as in the 1980s (e.g., [14,12]) and in recent systems. Figure 5 illustrates
work stealing. The left part depicts the search tree explored by a busy worker.
The right part shows the new search tree after a steal operation: The stolen
subproblems 4, 5, and 6 are placed in a problem pool (top right) and the search
tree of the active worker is updated accordingly (bottom right).

In a continuation-based implementation of nondeterminism, the search nodes
corresponding to open subproblems (e.g., subproblems 4–6 and 7–9 in Figure 5)
have not been created yet: for instance, these nodes are created by lines 13–15
using continuation C1 in the LDS controller in Figure 3. This lazy creation of
search nodes is important for efficiency reasons. However, when an idle worker
wants to steal these nodes, the busy worker has to generate them itself (since
the continuation references its own stack). As a result, each worker is organized
as a simple finite state machine, alternating the exploration of its search tree
and the generation of subproblems to be stolen (see Figure 6). The transition
from exploration to generation occurs when an idle worker requests a node, in
which case the busy worker explicitly generates the top-level subproblems and

Parallelizing Constraint Programs Transparently 519

{ }
1

2

3

4 5 6 C1

7 8 9 C1

4 5 6

2

3 7 8 9 C1

root

root

Problem
Pool

Fig. 5. Work Stealing in the Parallel Architecture

 Worker Thread

ExplorationExploration Generation

steal=true

steal=false

Fig. 6. The Finite State Machine for Workers

Worker i

{ }
1

2

3

4 5 6 C1

7 8 9 C2

Generation
Controller

4 5 6 Problem
Pool

Search
Controller

1 , C1

2 , C2

3 , C3

Worker j

Step 2:
Worker is notified of a
shortage of subproblems in
the shared pool and steals
locally to replenish

Step 1:
Worker j is starving and requests
a subproblem to the shared
problem pool. It blocks until a
problem becomes available.

Search
Controller

Empty

4

Step 5:
Worker wakes up and
consumes a problem
from pool

4 , C4

Step 6:
I n i t i a t e a s e a r c h
starting from problem 4

Step 3:
G e n e r a t e e x p l i c i t
subproblems from stolen
node and continuation

Step 4:
Worker i del ivers new
subproblems to the pool

Step 7:
Worker i resumes normal
strategy. The node (1,C1) is
no longer in its pending
local nodes

C3

Fig. 7. The Work-Stealing Protocol

returns to its exploration. The work-stealing protocol is depicted in Figure 7
which describes all the steps in detail. The workers interact through a problem
pool which store subproblems available for stealing. The pool may be distributed

520 L. Michel, A. See, and P. Van Hentenryck

across the workers or centralized. A centralized problem pool did not induce any
noticeable contention in our parallel implementation, as it is organized as a
producer/consumer buffers manipulating only pointers to subproblems.

The overall architecture has several fundamental benefits. First, it induces
only a small overhead in exploration mode, since the workers execute a sequential
engine with a lightweight instrumentation to be discussed in the next section.
Second, the workers only exchange subproblems, making it possible for them
to execute different search strategies if desired. This would not be possible if
syntactic paths were used instead. Third, because the workers are responsible for
generating subproblems available for stealing, the architecture applies directly
to any exploration strategy: the strategy is encapsulated in the search controller
and not visible externally.

5 Implementation

This section explains how to transparently parallelize a constraint program for
the architecture presented above. The fundamental idea is to instrument the
constraint program with a generic parallel search controller which lifts any ex-
ploration strategy into a parallel exploration strategy.

The Source to Source Transformation. The first step consists of rewriting the
ParallelCPSolver cp(4) instruction to make the threads, the problem pool,
and the parallel controller explicit. Figure 8 depicts the result of the transforma-
tion. The changes are located in Lines 1–4. Line 1 creates the problem pool. Line
2 uses the parall instruction of Comet [5] to create a thread for each of the
four workers. Each thread executes the body of the loop (a closure) and has its
own CP solver. Line 4 is important: It creates a parallel search controller. This
parallel controller becomes the controller for the CP solver and is used by the
nondeterministic instructions (through the CP solver) during the search. Note
that line 5 adds the LDS controller to the parallel controller.

The Generic Parallel Controller. The implementation core is the parallel search
controller whose architecture is depicted in Figure 9. The figure shows that
the CP solver references the parallel controller which encapsulates two sub-
controllers: the exploration controller for the search exploration (e.g., a DFS
or an LDS controller) and the generation controller for generating subproblems.
Subproblems are simply specified by semantic paths. Indeed, the initial con-
straint store and a semantic path define a subproblem, which can be solved by
the search procedure. This is exactly the idea of semantic decomposition proposed
in [4], which we apply here to the parallelization of constraint programs. We now
describe the parallel controller in three steps to cover (1) the search initialization,
(2) the transition between exploration and generation, and (3) subproblem gen-
eration. Observe that workers execute their own parallel controller: They only
share the problem pool which is synchronized.

The Search Initialization. Figure 10 illustrates the two methods at the core of
the initialization process. Recall that method start is called at the beginning

Parallelizing Constraint Programs Transparently 521

1 ProblemPool pool();
2 parall(i in 1..4) {
3 CPSolver cp();
4 ParallelController par(cp,pool);
5 LDS lds(cp);
6 range S = 1..8;
7 var<CP>{int} q[S](cp,S);
8 m.post(allDifferent(all(i in S) q[i] + i));
9 m.post(allDifferent(all(i in S) q[i] - i));

10 m.post(allDifferent(q));
11 exploreall<cp> {
12 forall(i in S) by q[i].getSize()
13 tryall<cp>(v in S : q[i].memberOf(v))
14 label(q[i],v);
15 }
16 }

Fig. 8. The Parallel Constraint Program after Source to Source Transformation

Parallel Controller
DFS

Controller

CPSolver

Generator
Controller

Fig. 9. The Architecture of the Parallel Controller

of the search (e.g., when the exploreall or minimize instructions are called).
The start method of the generic parallel controller has two functionalities: (1)
it must ensure that a single worker starts its exploration to avoid redundant
computation; (2) it must allow all workers to steal work once they have com-
pleted their current execution. The start method solves the second problem
by creating a continuation steal (lines 3–6) used to initialize the exploration
controller in line 5. This means that the exploration controller, when calling its
exit continuation, will now execute the instruction in line 7 to steal work in-
stead of leaving the search. The first problem mentioned above is solved by the
instruction in line 7. The problem pool is used to synchronize all the workers.
A single worker is allowed to start exploring; the others start stealing. Note also
that, when the first worker has finished its first exploration, it will also return
to line 7 and start stealing work, since the test in line 7 succeeds exactly once.

Stealing work is depicted in lines 9–17. The worker requests a problem from
the pool (line 10), i.e., it tries to steal problems from other workers. This call
to a method of the problem pool only returns when the worker has found a
subproblem or when all the workers are looking for work. When a subproblem
is available, the parallel controller uses semantic decomposition: It restores the
subproblem for its worker and restarts an entirely new search. That means (1)
executing the start method on the subcontroller (line 13) and (2) restarting the

522 L. Michel, A. See, and P. Van Hentenryck

search by calling the start continuation received by the start method (line
14) to restart execution from scratch. If no search problem is available, no work
can be stolen anywhere and the worker exits (which means that its thread waits
on a barrier to meet all the other threads in the parall instruction [5]).

1 void ParallelController::start(Continuation s,Continuation e) {
2 _start = s; _exit = e;
3 continuation steal {
4 _steal = steal;
5 _explorationController.start(null,_steal);
6 }
7 if (!_pool.firstWorker()) stealWork();
8 }
9 void ParallelController::stealWork() {

10 Checkpoint nextProblem = _pool.getProblem();
11 if (nextProblem != null) {
12 nextProblem.restore(_cp);
13 _explorationController.start(null,_steal);
14 call(_start);
15 }
16 else call(_exit);
17 }

Fig. 10. The Search Initialization in the Parallel Controller

1 void ParallelController::startTry() {
2 if (_generatingMode) _generationController.startTry();
3 else if (!_stealRequest) _explorationController.startTry();
4 else transition();
5 }
6 void ParallelController::transition() {
7 CPNode node = _explorationController.steal();
8 if (node != null) {
9 _generatingMode = true;

10 Checkpoint currentState = new Checkpoint(_cp);
11 continuation resume {
12 node.restore(_cp);
13 _generationController.start(null,resume);
14 call(node.getContinuation());
15 }
16 currentState.restore(_cp);
17 _generatingMode = false;
18 }
19 _explorationController.startTry();
20 }

Fig. 11. Mode switching in the Parallel Controller

Parallelizing Constraint Programs Transparently 523

The Transition Between Exploration and Generation. The transition between
exploration and generation, as well as method delegation to the appropriate sub-
controller, is depicted in Figure 11. Method startTry explains what happens
at the beginning of every nondeterministic instruction. In generation mode, the
parallel controller delegates to the generation controller (line 2); in exploration
mode, as long as there are no stealing request, it delegates to the exploration
controller (line 3). Otherwise, the parallel controller transitions to generation
mode (line 4). To transition, the parallel controller first tests whether there is
something to steal, in which case the instructions in lines 9–15 are executed.
These instructions are responsible to start the generation of the nodes as dis-
cussed in Section 4. The parallel controller first steals the local node (line 10)
(e.g., checkpoint 1 and continuation C1 in Figure 7), restores the subproblem
(line 12), calls the start method on the generation controller to initiate the
generation process (line 13), and executes the continuation to produce the sub-
problems (line 14). Observe that the generation controller is called with a new
exit continuation resume; upon exiting, the generation controller executes this
continuation to return to line 16 allowing the worker to return to exploration
mode. Indeed, line 16 restores the current state, while line 17 indicates that the
parallel controller is in exploration mode. Finally, line 19 is executed to delegate
the startTry call to the exploration controller.

1 void GenerationController::label(var<CP>{int} x,int val) {
2 if (_store.label(x,val)==Failure)
3 fail();
4 else {
5 _pool.add(new CheckPoint(_cp));
6 fail();
7 }
8 }

Fig. 12. The Implementation of the Generation Controller

The Generation Controller. The generation controller explores the children of a
node, sending their subproblems to the problem pool. It can be viewed as a sim-
ple DFS controller failing each time a new subproblem is created. For instance,
Figure 12 depicts the implementation of method label for the generation con-
troller. Compared to the LDS controller in Figure 3, it adds lines 4–7 to produce
the child subproblem to the problem pool and then fails immediately.

Optimization. In the description so far, workers only exchange subproblems.
In optimization applications, it is critical for the workers to communicate new
bounds on the objective function. The parallel workers use events to receive new
bounds asynchronously. The instruction

whenever _pool@newBound(int bound)
_bestFound = min(_bestFound,bound);

524 L. Michel, A. See, and P. Van Hentenryck

1 void ParallelController::addChoice(Continuation f) {
2 if (!_cp.setBound(_bestBound)) fail();
3 if (_generatingMode) _generationController.addChoice(f);
4 else _explorationController.addChoice(f);
5 }

Fig. 13. Using Bounds in the Parallel Controller

updates the best found solution in the parallel controller. The bound can then
be used in the addChoice method to fail early as shown in Figure 13.

6 Experimental Results

We now describe the experimental results showing the feasibility of transparent
parallelization. Before presenting the results, it is important to point out some
important fact of parallel implementations. First, optimization applications may
exhibit interesting behaviors. Some are positive: superlinear speedups may occur
because the parallel version finds better solutions quicker and thus prunes the
search space earlier. Some are negative: the parallel implementation may explore
some part of the search tree not explored by the sequential implementation, re-
ducing the speed-up. Typically, in optimization applications, we also give results
factoring these behaviors by reporting the time to prove optimality given an op-
timal solution at the start of the search. Second, the parallel implementation of
a search strategy produces a different search strategy because of work stealing.
This strategy may be less or more effective on the problem at hand.

Experimental Setting. The results use an Apple PowerMac with two dual-core
Intel Xeon 2.66 GHz processors (4 cores total), 4MB L2 Cache per processor, and
2GB of RAM running Mac OSX 10.4.9. Our implementation links our own in-
house dynamic library for finite domains to the Comet system and implements
the parallel controller in Comet itself. No change to the Comet runtime system
were requested from its implementors. Results are the average of 10 runs. It is
important to mention that parallel threads are in contention for the cache and
for memory on multicore machines, which may have adverse effects on runtime.

Table 1. Experimental Results on the Queens Problem using DFS and LDS

Runtime (s) Speedup (vs. seq) Speedup (vs. 1w)
N seq 1w 2w 3w 4w 1w 2w 3w 4w 2w 3w 4w

DFS 12 1.25 1.46 0.81 0.57 0.47 0.85 1.55 2.19 2.67 1.81 2.56 3.11
DFS 14 36.6 41.9 22.8 16.6 13.5 0.87 1.60 2.19 2.70 1.84 2.52 3.09
DFS 16 1421 1611.7 863.19 653.88 488.22 0.88 1.65 2.17 2.91 1.87 2.46 3.30

LDS 12 2.12 2.33 1.47 1.15 0.91 0.91 1.45 1.84 2.33 1.59 2.02 2.56
LDS 14 178 73.05 42.46 39.26 33.06 2.4 4.2 4.5 5.3 1.72 1.86 2.21

Parallelizing Constraint Programs Transparently 525

Table 2. Experimental Results on a Scene Allocation Problem

Runtime (s) Speedup (vs. seq) Speedup (1w)

seq 1w 2w 3w 4w 1w 2w 3w 4w 2w 3w 4w

DFS 257 267 138 96 74 0.96 1.86 2.70 3.49 1.94 2.80 3.62
DFS-P 248 264 138 94 72 0.94 1.80 2.64 3.45 1.92 2.82 3.68

LDS 435 376 200 164 121 1.16 2.18 2.66 3.60 1.88 2.30 3.11
LDS-P 388 362 190 160 115.7 1.07 2.04 2.43 3.35 1.90 2.27 3.13

Table 3. Experimental Results on Graph Coloring using DFS

Runtime Speedup (seq) Speedup (1w)

seq 1w 2w 3w 4w 1w 2w 3w 4w 2w 3w 4w
0 18.0 21.4 16.7 8.3 7.7 .84 1.07 2.16 2.33 1.28 2.57 2.78
1 39.8 46.9 16.3 12.3 10.5 .85 2.44 3.23 3.79 2.87 3.8 4.46
2 148.5 176.0 93.2 65.3 51.3 .84 1.59 2.27 2.89 1.89 2.70 3.40
3 323.8 385.6 198.1 141.9 111.1 .84 1.63 2.28 2.91 1.94 2.72 3.47

0-P 9.7 11.6 6.1 4.4 3.4 .84 1.60 2.20 2.85 1.9 2.63 3.41
1-P 22.6 26.9 14.1 10.0 7.9 .84 1.60 2.26 2.86 1.9 2.69 3.40
2-P 147.9 178.2 92.7 64.9 51.1 .83 1.60 2.28 2.89 1.92 2.75 3.49
3-P 324.0 390.0 199.1 141.2 111.0 .83 1.62 2.29 2.91 1.95 2.76 3.51

The Queens Problem. Table 1 depicts the results for finding all solutions to
the queens problem using DFS. The table reports the times in seconds for the
sequential program and for the parallel version with 1–4 workers. Columns 7–
10 give the speedups with respect to the sequential version and columns 11–13
with respect to a single worker. The results show that the speedups increase
with the problem sizes, reaching almost a speedup of 3 with 4 processors over
the sequential implementation and 3.30 over a single worker. The overhead of a
single worker compared to the sequential implementation is reasonable (about
13% for 16-queens). The last two lines depict the results for LDS: these results
were surprising and show superlinear speedups for 14 queens due to the different
exploration strategy induced by work stealing. Indeed, each time a node is stolen,
a new LDS search is restarted with a smaller problem generating fewer waves. As
a result, the size of the LDS queue is smaller, inducing time and space benefits.1

Scene Allocation. Table 2 reports experimental results on a scene allocation
problem featuring a global cardinality constraint and a complex objective func-
tion. The search procedure does not use symmetry breaking and the instance
features 19 scenes and 6 days. The first two lines report results on DFS and the
last two on LDS. The second and fourth lines report times for the optimality
proof. DFS exhibits nice speedups reaching 3.45 for the proof and 3.49 overall.
Observe also the small overhead of 1 worker over the sequential implementation.
LDS exhibits superlinear speedups for 1 and 2 workers and nice speedups overall.
1 The first worker always generates some problems in the pool (its steal request flag

is initialized to true) which explains the superlinear speedup even with one worker.

526 L. Michel, A. See, and P. Van Hentenryck

Table 4. Experimental Results on Golomb Rulers

N seq 1w 2w 3w 4w

DFS 12 209/305 217/313 (0.97) 35/99 (3.08) 35/76 (4.01) 35/64 (4.76)
DFS 13 2301/5371 2354/5421 (0.99) 254/2228 (2.41) 254/1536 (3.49) 254/1195 (4.49)

LDS 12 575/1494 411/757 (1.97) 135/427 (3.49) 129/379 (3.94) 131/334 (4.47)

Graph Coloring. Table 3 illustrates results on four different instances of graph
coloring with 80 vertices and edge density of 40%. The search procedure uses
symmetry breaking. The overhead of the single worker is more significant here
(about 20%) since there is little propagation and the cost of maintaining the
semantic paths is proportionally larger. The top half of the table shows the total
execution time, while the bottom part shows the time for proving optimality
(given the optimal solution). Once again, the parallel implementation shows
good speedups for a problem in which maintaining semantic paths is costly.

Golomb Rulers. The Golomb rulers problem is to place N marks on a ruler
such that the distances between any two marks are unique. The objective is
to find the shortest such ruler for N marks. The propagation is more time-
consuming on this benchmark. Table 4 shows the speedups for Golomb 12–13
using DFS and Golomb 12 using LDS. The table reports, for each entry, the time
to find the optimal solution, the total time, and the speedup. The speedups are
always superlinear in this benchmark and the overhead of a single worker is small
compared to the sequential implementation. Moreover, for DFS which dominates
LDS here, the speedups scale nicely, moving from 3.49 with three processors to
4.49 with 4 processors (N=13), although the optimal solution is found after about
254 seconds in both. This is particularly satisfying since complex applications
are likely to spend even more time in propagation than this program, showing
(again) the potential of parallel computing for constraint programming. It is
also important to mention that the sequential implementation is only about 20%
slower than Gecode for the same number of choice points on this benchmark,
although Comet is a very high-level garbage-collected language which imposes
some overhead on our finite-domain library.

7 Related Work

The main novelty of this paper is the transparent parallelization of advanced con-
straint programming searches. To our knowledge, no other systems feature a sim-
ilar functionality which addresses the challenge recently formulated by Schulte
and Carlsson [11]. We review related work in constraint programming to empha-
size the originality of our proposal.

Parallel constraint logic programming was pioneered by the CHIP/PEPSys
system [12] and elaborated in its successors [6]. These systems offer transparent
parallelization. However, they were implemented at a time when there was no
clean separation between the nondeterministic program and the exploration

Parallelizing Constraint Programs Transparently 527

strategy (DFS was the exploration strategy). Moreover, these systems induce a
performance penalty when parallelism is not used, since they must use advanced
data structures (hash-windows, binding arrays, enhanced trailing) to support
parallelism transparently [12]. The proposal in this paper is entirely implemented
on top of Comet and requires no change to its runtime system.

Perron describes Parallel Solver in [7] and reports experimental results in [8],
but he gives almost no detail on the architecture and implementation. Paral-
lel Solver builds on Ilog Solver which supports exploration strategies elegantly
through node evaluators and limits [7]. However, Ilog Solver uses syntactic paths
which induce a number of pitfalls when, say, global cuts and randomization are
used. It is not clear how work is shared and what is involved in parallelizing a
search procedure, since no code or details are given.

Oz/Mozart was a pioneering system in the separation of nondeterministic pro-
grams and exploration strategies, which are implemented as search engines [9].
Schulte [10] shows how to exploit parallelism in Oz/Mozart using a high-level
architecture mostly similar to ours. At the implementation level, workers are im-
plemented as search engines and can generate search nodes available for stealing
from a master. The actual implementation, which consists of about 1,000 lines of
code, is not described in detail. It seems that syntactic paths are used to represent
subproblems. Moreover, since search engines implement an entire search proce-
dure, the worker cannot transparently lift another engine into a parallel search
engine without code rewriting. In contrast, search controllers in Comet do not
implement the complete search procedure: they just encapsulate the exploration
order (through the addNode and fail methods) and save/restore search nodes. It
is the conjunction of the nondeterministic program (control flow through contin-
uation) and search controllers (exploration order and node management) which
implements the search procedure and makes transparent parallelization possible.
Note also that the code of the parallel controller is very short.

8 Conclusion

This paper showed how to transparently parallelize constraint programs ad-
dressing a fundamental challenge for CP systems. The key technical idea is to
lift a search controller into a parallel controller supporting a work-stealing ar-
chitecture. Experimental results show the practicability of the approach which
produces good speedups on a variety of benchmarks. The parallel controller is
built entirely on top of the Comet system and hence the approach induces no
overhead when parallelism is not used. The architecture also allows different
workers to use different strategies. Advanced users can write their own paral-
lel controllers for specific applications, as the architecture is completely open.
Future research will be concerned with a distributed controller: This requires
distributing the problem pool which must become a shared object and replacing
threads by processes, but these abstractions are also available in Comet.

Acknowledgments. This research is partially supported by NSF awards DMI-
0600384 and IIS-0642906 and ONR Award N000140610607.

528 L. Michel, A. See, and P. Van Hentenryck

References

1. Blumhofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. In: FOCS ’94 (1994)

2. Choi, C.W., Henz, M., Ng, K.B.: Components for State Restoration in Tree Search.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239. Springer, Heidelberg (2001)

3. Intel Corp.: Teraflops research chip (2007)
4. Michel, L., Van Hentenryck, P.: A Decomposition-Based Implementation of Search

Strategies. ACM Transactions on Computational Logic 5(2) (2004)
5. Michel, L., Van Hentenryck, P.: Parallel Local Search in Comet. In: van Beek, P.

(ed.) CP 2005. LNCS, vol. 3709. Springer, Heidelberg (2005)
6. Mudambi, S., Schimpf, J.: Parallel CLP on Heterogeneous Networks. In: ICLP-94

(1994)
7. Perron, L.: Search Procedures and Parallelism in Constraint Programming. In:

Jaffar, J. (ed.) Principles and Practice of Constraint Programming – CP’99. LNCS,
vol. 1713. Springer, Heidelberg (1999)

8. Perron, L.: Practical Parallelism in Constraint Programming. In: CP-AI-OR’02
(2002)

9. Schulte, C.: Programming Constraint Inference Engines. In: Smolka, G. (ed.) Prin-
ciples and Practice of Constraint Programming - CP97. LNCS, vol. 1330. Springer,
Heidelberg (1997)

10. Schulte, C.: Parallel Search Made Simple. In: TRICS’2000 (2000)
11. Schulte, C., Carlsson, M.: Finite Domain Constraint Programming Systems. In:

Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
12. Van Hentenryck, P.: Parallel Constraint Satisfaction in Logic Programming: Pre-

liminary Results of CHIP within PEPSys. In: ICLP’89 (1989)
13. Van Hentenryck, P., Michel, L.: Nondeterministic Control for Hybrid Search. In:

CP-AI-OR’05 (2005)
14. Warren, D.H.D.: The SRI Model for Or-Parallel Execution of Prolog. Abstract

Design and Implementation Issues. In: ISLP-87 (1987)

MiniZinc: Towards a Standard CP Modelling

Language

Nicholas Nethercote1, Peter J. Stuckey1, Ralph Becket1, Sebastian Brand1,
Gregory J. Duck1, and Guido Tack2

1 National ICT Australia and the University of Melbourne, Victoria, Australia
{njn,pjs,rafe,sbrand,gjd}@csse.unimelb.edu.au

2 Programming Systems Lab, Saarland University, Saarbrücken, Germany
tack@ps.uni-sb.de

Abstract. There is no standard modelling language for constraint pro-
gramming (CP) problems. Most solvers have their own modelling lan-
guage. This makes it difficult for modellers to experiment with different
solvers for a problem.

In this paper we present MiniZinc, a simple but expressive CP mod-
elling language which is suitable for modelling problems for a range of
solvers and provides a reasonable compromise between many design pos-
sibilities. Equally importantly, we also propose a low-level solver-input
language called FlatZinc, and a straightforward translation from MiniZ-
inc to FlatZinc that preserves all solver-supported global constraints.
This lets a solver writer support MiniZinc with a minimum of effort—
they only need to provide a simple FlatZinc front-end to their solver, and
then combine it with an existing MiniZinc-to-FlatZinc translator. Such
a front-end may then serve as a stepping stone towards a full MiniZinc
implementation that is more tailored to the particular solver.

A standard language for modelling CP problems will encourage ex-
perimentation with and comparisons between different solvers. Although
MiniZinc is not perfect—no standard modelling language will be—we
believe its simplicity, expressiveness, and ease of implementation make
it a practical choice for a standard language.

1 Introduction

Many constraint satisfaction and optimisation problems can be solved by CP
solvers that use finite domain (FD) and linear programming (LP) techniques.
There are many different solving techniques, and so there are many solvers.
Examples include Gecode [1], ECLiPSe [2], ILOG Solver [3], Minion [4], and
Choco [5].

However, these solvers use different, incompatible modelling languages that
express problems at varying levels of abstraction. This makes life difficult for
modellers—if they wish to experiment with different solvers, they must learn
new modelling languages and rewrite their models. A standard CP modelling
language supported by multiple solvers would mitigate this problem.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 529–543, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

530 N. Nethercote et al.

A standard CP modelling language could also make solver benchmarking sim-
pler. For example, if the CSPlib benchmark library problems [6] had their natural
language specifications augmented with standard machine-readable descriptions,
it could stimulate competition between solver writers and lead to improvements
in solver technology.

For these reasons, we believe a standard CP modelling language is desirable.
The main challenges in proposing such a language are (a) finding a reasonable
middle ground when different solvers have such a wide range of capabilities—
particularly different levels of support for global constraints—and (b) encourag-
ing people to use the language. In this paper we make the following two contri-
butions that we believe solve these two problems.

A CP modelling language suitable as a standard. Section 2 introduces
MiniZinc, a medium-level declarative modelling language.1 MiniZinc is high-level
enough to express most CP problems easily and in a largely solver-independent
way; for example, it supports sets, arrays, and user-defined predicates, some over-
loading, and some automatic coercions. However, MiniZinc is low-level enough
that it can be mapped easily onto many solvers. For example, it is first-order,
and it only supports decision variable types that are supported by most existing
CP solvers: integers, floats, Booleans and sets of integers. Other MiniZinc fea-
tures include: it allows separation of a model from its data; it provides a library
containing declarative definitions of many global constraints; and it also has a
system of annotations which allows non-declarative information (such as search
strategies) and solver-specific information (such as variable representations) to
be layered on top of declarative models.

A simple way to implement MiniZinc. Solver writers (who may not have
language implementation skills) will not want to do a large amount of work to
support a modelling language. Therefore we provide a way for solver writers
to provide reasonable MiniZinc support with a minimum of effort. Section 3
introduces FlatZinc, a low-level solver input language that is the target language
for MiniZinc. FlatZinc is designed to be easy to translate into the form required
by a CP solver. Section 4 then defines a standard translation from MiniZinc to
FlatZinc, which involves only well-understood transformations such as predicate
inlining and reification. Importantly it allows a solver to use native definitions
of any global constraints it supports, while decomposing unsupported ones into
lower-level constraints. Even though this transformation will not be ideal for all
solvers, it provides an excellent starting point for an implementation.

At the paper’s end, Section 5 describes our supporting tool set and presents
some experimental results, Section 6 presents related work, and Section 7 dis-
cusses future work and concludes.

1 Modelling is sometimes divided into “conceptual” and “design” modelling. But these
are just two points on a spectrum of “how many modelling decisions have been
made” that spans from the highest level (e.g. natural language) to the lowest level
(e.g. solver input formats). For this reason we follow the simpler programming lan-
guage terminology and talk about high-, medium- and low-level languages.

MiniZinc: Towards a Standard CP Modelling Language 531

The core MiniZinc language is not particularly novel, as is appropriate for
a standard language—it incorporates ideas from many existing modelling lan-
guages. The novel features are: (a) the use of predicates to allow more extensible
modelling, (b) the use of annotations to provide non-declarative and solver-
specific information, (c) the use of a lower-level language and a standard trans-
lation to make it easy to connect the language to existing solvers, and (d) the
preservation of calls to supported global constraints in that translation.

We believe that MiniZinc’s characteristics—simplicity, expressiveness, and
ease of initial support—make it a practical choice for a standard language.

2 MiniZinc

2.1 Specifying a Problem

A MiniZinc problem specification has two parts: (a) the model, which describes
the structure of a class of problems; and (b) the data, which specifies one par-
ticular problem within this class. The pairing of a model with a particular data
set is a model instance (sometimes abbreviated to instance).

The model and data may be in separate files. Data files can only contain
assignments to parameters declared in the model. A user specifies data files on
the command line, rather than naming them in the model file, so that the model
file is not tied to any particular data file.

2.2 A MiniZinc Example

Each MiniZinc model is a sequence of items, which may appear in any order.
Consider the MiniZinc model and example data for a restricted job shop schedul-
ing problem in Figures 1 and 2.

Line 0 is a comment, introduced by the ‘%’ character.
Lines 1–5 are variable declaration items. Line 1 declares size to be an integer

parameter, i.e. a variable that is fixed in the model. Line 20 (in the data file)
is an assignment item that defines the value of size for this instance. Variable
declaration items can include assignments, as in line 3. Line 4 declares s to be
a 2D array of decision variables. Line 5 is an integer variable with a restricted
range. Decision variables are distinguished by the var prefix.

Lines 7–8 show a user-defined predicate item, no_overlap, which constrains
two tasks given by start time and duration so that they do not overlap in time.

Lines 10–17 show a constraint item. It uses the built-in forall to loop over
each job, and ensure that: (line 12) the tasks are in order; (line 13) they finish
before end; and (lines 14–16) that no two tasks in the same column overlap in
time. Multiple constraint items are allowed, they are implicitly conjoined.

Line 19 shows a solve item. Every model must include exactly one solve item.
Here we are interested in minimising the end time. We can also maximise a
variable or just look for any solution (“solve satisfy”).

There is one kind of MiniZinc item not shown by this example: include items.
They facilitate the creation of multi-file models and the use of library files.

532 N. Nethercote et al.

0 % (square) job shop scheduling in MiniZinc
1 int: size; % size of problem
2 array [1..size,1..size] of int: d; % task durations
3 int: total = sum(i,j in 1..size) (d[i,j]); % total duration
4 array [1..size,1..size] of var 0..total: s; % start times
5 var 0..total: end; % total end time
6
7 predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =
8 s1 + d1 <= s2 \/ s2 + d2 <= s1;
9
10 constraint
11 forall(i in 1..size) (
12 forall(j in 1..size-1) (s[i,j] + d[i,j] <= s[i,j+1]) /\
13 s[i,size] + d[i,size] <= end /\
14 forall(j,k in 1..size where j < k) (
15 no_overlap(s[j,i], d[j,i], s[k,i], d[k,i])
16)
17);
18
19 solve minimize end;

Fig. 1. MiniZinc model (jobshop.mzn) for the job shop problem.

20 size = 2;
21 d = [2,5,
22 3,4];

Fig. 2. MiniZinc data (jobshop2x2.data) for the job shop problem

There is currently no way to control the output produced at run-time. We
plan to add such control in the near future (see Section 7).

2.3 Types and Insts

MiniZinc provides three scalar types: Booleans, integers, and floats; and two
compound types: sets, and arrays. There are no user-defined types, however we
will see shortly that restricted types such as integer and float ranges are allowed.
Scalars and sets have a built-in (lexicographical) ordering.

As well as having a type, each variable has an instantiation (often abbreviated
to inst), which indicates if it is fixed in the model to a known value (a parameter,
shortened to par) or not (a decision variable, shortened to var). A pairing of a
type and an inst is called a type-inst.

Booleans, integers and floats may be parameters or decision variables. Ex-
ample syntax for scalars: par bool, var int, float; if the inst is omitted it
defaults to par. There is no automatic coercion of integers to floats.

Sets can only contain par scalars. Sets of integers can be par or var, but all
other sets must be par. For example: var set of int is legal, but var set of
bool and set of var int are illegal.

MiniZinc: Towards a Standard CP Modelling Language 533

Arrays must be par, i.e. of fixed length. They can be multi-dimensional. Each
dimension’s index set is a contiguous range of integers. Arrays may contain par
or var scalars or sets of integers. For example, array[0..9,5..10] of var int
is a 2D array of integer decision variables.

The following set expressions can be used as types: set ranges, set literals, and
par set variables. Float ranges can also be used as types. The meaning is as if
the type was declared as a normal type and then constrained, for example:

0..3: v1; % int: v1; constraint v1 in 0..3;
var {1,3,5}: v2; % var int: v2; constraint v2 in {1,3,5};
var 0.1 .. 9.5: v4; % var float: v4;

% constraint 0.1 <= v4 /\ v4 <= 9.5;

MiniZinc has some polymorphism: some operations are overloaded to work
with multiple type-insts (see Section 2.5); certain arrays are automatically co-
erced, and the type of each anonymous variable ‘_’ (see Section 2.4) is inferred;
and par values are automatically coerced to var values as necessary.

2.4 Expressions

MiniZinc has several kinds of expression.
Variable names can serve as expressions. Also, there is a special identifier ‘_’

that represents an unconstrained, anonymous decision variable (of any type). It
is particularly useful when partially initialising arrays, e.g. in a Sudoku puzzle.

Scalar literals are written in standard ways, for example: true, false, 23,
-44.5, 2.3e-05.

Sets are written using set literals or set comprehensions. For example: {1,2,3}
or { i * j | i,j in 1..10 where i != j }. Comprehensions can have multiple vari-
ables per generator, multiple generators, and each generator can have a filtering
where clause.

Arrays are written similarly, using array literals or array comprehensions. For
example: [2,_,3,_] or [2*i | i in 1..5]. Array literals are automatically
coerced to different index ranges so long as the element type and lengths match;
lines 21 and 22 of the job shop model shows an example with a 2D array.

If-then-else expressions (e.g. if C1 then A else B endif) and let expres-
sions (e.g. let { int: x = 1, int: y = 2 } in x + y) are supported; the
latter are used within predicates to declare local variables (see Section 2.6).
The condition of an if-then-else must be par.

Most predicate and function calls use the usual syntax, e.g. even(n). Some
built-in functions, such as ‘+’, are operators—their names are non-alphanumeric,
and calls to them are written using infix or prefix notation. There is also spe-
cial syntax for combining an array comprehension with a call—a generator call
P(Gs)(E) is equivalent to P([E | Gs]); the parentheses around the E are manda-
tory so as to avoid possible ambiguity when the generator call is part of a larger
expression. Figure 1 includes an example, sum(i,j in 1..size)(d[i,j]), which
is syntactic sugar for sum([d[i,j] | i,j in 1..size]).

534 N. Nethercote et al.

2.5 Built-in Operations

MiniZinc has many useful built-in operators, predicates and functions. They
include: comparisons (e.g. <, ==), arithmetic operations (e.g. +, *, sum, min),
logical operations (e.g. /\, xor, forall), set operations (e.g. union, subset,
in, card), array operations (e.g. length, index_set), coercions (e.g. round,
int2float, bool2int), and bounds operations (ub, lb, dom).

Most are overloaded to work with parameters and decision variables. Some
are overloaded to work with multiple types, e.g. arithmetic operations work with
both integers and floats, and comparisons support all types.

2.6 Predicates

Users can define their own predicates in MiniZinc. The job shop model shows
an example, no_overlap. Predicates may not be recursive, but can call other
predicates. Predicates implicitly return a Boolean value. Predicates may have
local variables; they are introduced via let expressions. For example:

predicate even(var int:x) = let { var int: y } in x == 2 * y;

Any predicate containing a non-par local variable cannot be called in a possibly-
negated context (e.g. inside a not, or <->), because the local variable(s) would
be effectively universally quantified, which most solvers do not support.

2.7 Global Constraints

MiniZinc has a global constraints library. It can be used in models via an in-
clude item: include "globals.mzn". The default version of this library con-
tains predicate definitions of many global constraints, such as all_different,
cumulative, etc.

Crucially, this library can be tailored by solver writers for use with individual
solvers. All global constraints that are not supported by the solver should be
left untouched, so calls to them can be inlined during the MiniZinc-to-FlatZinc
translation. For example:

predicate disjoint(var set of int:S, var set of int:T) =
S intersect T == {};

In contrast, global constraints that are supported by a solver can have their
definition removed (but not their declaration). Calls to these global constraints
will be left untouched by the MiniZinc-to-FlatZinc conversion.

Type-overloaded global constraints that are supported by the solver can be
defined separately for each type. For example, the overloaded all_different
might be defined as:

predicate all_different(array[int] of var float:x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

predicate all_different(array[int] of var int:x) =
gecode_all_different(x); % native Gecode version for ints

MiniZinc: Towards a Standard CP Modelling Language 535

Finally, although MiniZinc provides a standard definition for each global con-
straint, a solver writer can arbitrarily replace each definition with an alternative
definition in MiniZinc that may suit their solver better, if that is easier than
providing a native implementation.

2.8 Modelling Techniques

MiniZinc is deliberately small to make it easier to translate. Some common CP
modelling techniques need to be indirectly modelled in MiniZinc.

Enumerated types can be modelled using named sets of integers, for example:

set of int: Colour = 1..3;
Colour: Red = 1; Colour: Green = 2; Colour: Blue = 3;
array[Colour,Colour] of var int: clashing;

Extensional relations can be modelled using multiple arrays with the same in-
dices, e.g. (x, y) ∈ {(1, 2.0), (−2, 3.4), (6, −1000.0)} is modelled as:

array[1..3] of int: r1 = [1, -2, 6];
array[1..3] of float: r2 = [2.0, 3.4, -1000.0];
var 1..3: i; var int: x; var int: y;
constraint x == r1[i] /\ y == r2[i];

However this does not allow negatively defined relations such as (x, y) �∈ {(5, 6),
(8, 9)}.

2.9 Adding Non-declarative and Solver-Specific Information

MiniZinc (as described so far) includes no information about how models should
be solved. In practice we need a way to attach such non-declarative and solver-
specific information to the model to support efficient solving.

Our solution is to use annotations. MiniZinc defines some standard annota-
tions that should be supported by most solvers. Also, because a solver is free to
ignore annotation information, more solver-specific annotations can be used.

Annotations consist of an identifier, with optional arguments appearing in
parentheses. We use string literals for many annotation arguments. Annotations
are attached to variable declarations, expressions, and solve items using the
(left-associative) operator :: which binds tighter than all other operators, as
illustrated by the examples in Figure 3.

Line 30 shows a variable annotations. Here we assume that bounds instructs
the solver to use a special implementation that only maintains bounds.

Line 31 shows two constraint annotations: the first (domain) instructs the
solver to use a domain-consistent (GAC) version of the all_different con-
straint; the second (priority) assigns the constraint a priority equal to the size
of its argument array. Another constraint annotation is bounds, which indicates
that bounds propagation should be used for the constraint.

Lines 32–34 give an example of an annotated solve item, where the search
strategy is specified for an FD solver. Solve annotations are based on the search

536 N. Nethercote et al.

30 array [1..size,1..size] of var 0..total: a :: bounds;
31 constraint all_different(a) :: domain :: priority(length(a));
32 solve :: int_search([end],"input_order","indomain_min","complete")
33 :: int_search(a,"smallest","indomain_min","lds(3)")
34 minimize end;

Fig. 3. Example annotations on variables, constraints and solve items

predicate of ECLiPSe. The parameters to the int_search annotation indicate:
(a) the variables being fixed via the strategy, (b) the variable selection strategy,
(c) the value choice method, and (d) the exploration strategy. Combinations of
strategies can be specified in order. The strategy in the example is: first set end
to its least value and then try setting start times by setting the variable with
the smallest possible value to this value, and only consider limited discrepancy
search with a limit of 3 discrepancies.

3 FlatZinc

FlatZinc is mostly a subset of MiniZinc. We wait until Section 4 before giving a
FlatZinc example, in order to show how MiniZinc-to-FlatZinc translation works.

Model structure. Unlike MiniZinc, FlatZinc has no model/data separation,
nor multi-file models—a FlatZinc model instance must be in a single file.

Items. Some of the MiniZinc items are supported: constraint items, variable
declarations (with optional assignments) and solve items. The rest are not: in-
clude items, stand-alone assignment items, and user-defined predicates. Unlike
MiniZinc, in FlatZinc variables must be defined before they are used.

Types and type-insts. Some MiniZinc types (and their insts) are supported:
Booleans, integers and floats (including range-restricted ones), and sets. Arrays
are supported but must be one-dimensional, and they are always indexed from
0..length − 1. Also, there is no type or type-inst polymorphism—for example,
the built-in int_plus is distinct from float_plus. Implicit par -to-var coercions
are supported, as in MiniZinc.

Expressions. Some of MiniZinc’s expressions are supported: identifiers, scalar
literals, set literals, array literals, predicate calls, and array accesses with a par
index. Expressions not supported are: anonymous variables, set and array com-
prehensions, if-then-else expressions, let expressions, generator calls, and array
accesses with a var index (which must be done via element constraints). Also,
no operators are supported (but negative numbers such as -1 are allowed—the
‘-’ is considered part of the numeric literal.)

Built-ins. The main way in which FlatZinc is not a subset of MiniZinc is that
it has different built-in operations. These are operations that a CP solver is
expected to support natively. Most of them correspond directly to a MiniZinc
operation, although the names are different because FlatZinc has no operators

MiniZinc: Towards a Standard CP Modelling Language 537

40 array[0..3] of var 0..14: s;
41 var 0..14: end;
42 var bool: b1;
43 var bool: b2;
44 var bool: b3;
45 var bool: b4;
46 constraint int_lin_le ([1,-1], [s[0], s[1]], -2);
47 constraint int_lin_le ([1,-1], [s[2], s[3]], -3);
48 constraint int_lin_le ([1,-1], [s[1], end], -5);
49 constraint int_lin_le ([1,-1], [s[3], end], -4);
50 constraint int_lin_le_reif([1,-1], [s[0], s[2]], -2, b1);
51 constraint int_lin_le_reif([1,-1], [s[2], s[0]], -3, b2);
52 constraint bool_or(b1, b2, true);
53 constraint int_lin_le_reif([1,-1], [s[1], s[3]], -5, b3);
54 constraint int_lin_le_reif([1,-1], [s[3], s[1]], -4, b4);
55 constraint bool_or(b3, b4, true);
56 solve minimize end;

Fig. 4. FlatZinc translation of the MiniZinc job shop model

or overloading. They include: comparison constraints (e.g. int_eq, float_gt),
linear (in)equalities (e.g. int_lin_eq), arithmetic constraints (e.g. int_plus),
logical constraints (e.g. bool_or, bool_not), set constraints (e.g. set_subset,
set_card), element constraints (e.g. array_int_element), and coercion con-
straints (e.g. bool2int). There are also reified versions of many constraints which
take an additional Boolean argument, e.g. int_eq_reif, set_subset_reif.

Also, a FlatZinc model instance may include calls to any global constraints
that the target solver supports natively, as Section 2.7 explained.

Annotations. FlatZinc’s annotations are the same as MiniZinc’s, although any
expressions within them must of course be valid FlatZinc expressions.

Writing a FlatZinc front-end. A FlatZinc front-end for a solver must parse
the FlatZinc, and translate declarations and constraints into whatever form the
solver requires. The grammar can be expressed in a way that most type and
inst errors manifest as syntax errors, which reduces the work that must be done
by the FlatZinc front-ends. Any FlatZinc constraints not handled by the solver
can be converted into run-time aborts. These steps are easy by language imple-
mentation standards, because FlatZinc is so simple. Section 5 describes how our
existing tools help further with this task. A solver writer must also specialise
globals.mzn, which is a trivial exercise in removing predicate bodies.

4 Translating MiniZinc to FlatZinc

The translation from MiniZinc to FlatZinc has two parts: flattening, and the rest.
We use the FlatZinc translation in Figure 4 of the MiniZinc model instance from
Section 2.2 as an example. Line 40 is the original 2D array of decision variables,

538 N. Nethercote et al.

mapped to a zero-indexed 1D array. Line 41 is the original end variable. Lines
42–45 are variables introduced by Boolean decomposition. Lines 46–55 are the
constraints. Lines 46 and 47 result from line 12, lines 48 and 49 result from line
13, and lines 50–55 result from lines 14–15 and 7–8.

4.1 Flattening

Flattening involves the following simple steps that statically reduce the model
and data as much as possible. There is no fixed order to the steps because some
enable others, which can then enable further application of previously applied
steps. Therefore, they must be repeated, e.g. by iterating until a fixpoint is
reached, or by re-flattening child nodes of expressions that have been flattened.

Parameter substitution. This step substitutes any atomic literal value as-
signed to a global or let-local scalar parameter throughout the model, and re-
moves the declaration and assignment. For example, with size = 2 we substi-
tute 2 for size, but size = 2 + y would not be substituted until fully reduced.

Built-ins evaluation. This step evaluates all calls to built-ins that have fixed,
atomic literal arguments. For example, 2-1 (from size-1, after parameter sub-
stitution) in the jobshops example becomes 1.

Comprehension unrolling. This step unrolls all set and array comprehensions,
once the generator ranges are fully reduced.

Compound built-in unrolling. This step unrolls compound built-ins (those
that involve the folding of an operation over an array of elements, such as sum
and forall) by replacing them with multiple lower-level operations.

We will use lines 11, 14 and 15 of Figure 1 as the starting point of a running
example. They unroll to give the following conjunction (the first conjunct has
i=1, j=1 and k=2; the second has i=2, j=1 and k=2).

no_overlap(s[1,1], d[1,1], s[2,1], d[2,1]) /\
no_overlap(s[1,2], d[1,2], s[2,2], d[2,2])

Fixed array access replacement. This step replaces all array accesses involv-
ing fixed indices and fixed elements with the appropriate value. Once all the
accesses of an array have been replaced, its declaration and assignment can be
removed. For example, our running example becomes:

no_overlap(s[1,1], 2, s[2,1], 3) /\
no_overlap(s[1,2], 5, s[2,2], 4)

If-then-else evaluation. This step evaluates each if-then-else expression, once
its condition is fully reduced. This is always possible because if-then-else condi-
tions must be fixed.

Predicate inlining. This step replaces each call to a defined predicate with its
body, substituting actual arguments for formal arguments. This is easy because
predicates cannot be recursive, either directly or mutually. Calls to predicates

MiniZinc: Towards a Standard CP Modelling Language 539

lacking a definition (such as those in the MiniZinc globals library) are left as-is.
For example, the first conjunct from our running example becomes:

s[1,1] + 2 <= s[2,1] \/ s[2,1] + 3 <= s[1,1]

4.2 Post-flattening

After flattening, we apply the following steps once each, in the given order.

Stand-alone assignment removal. This step removes each stand-alone as-
signment by merging it with the appropriate variable declaration.

Let floating. This step moves let-local decision variables to the top-level and
renames them appropriately.

Boolean decomposition. This step decomposes all Boolean expressions that
are not top-level conjunctions. It replaces each sub-expression with a new Boolean
variable (also adding a declaration for each variable), and adds conjuncts equat-
ing these new variables with the sub-expressions they replaced. This facilitates
the later introduction of reified constraints. For example, our running example
becomes:

((b1 \/ b2) <-> true) /\
((s[1,1] + 2 <= s[2,1]) <-> b1) /\
((s[2,1] + 3 <= s[1,1]) <-> b2)

Declarations are also added for the new Boolean variables b1 and b2.

Numeric decomposition. This step decomposes numeric equations or inequa-
tions in a manner similar to Boolean decomposition, by renaming each non-linear
sub-expression with a new variable.

Set decomposition. This step decomposes compound set expressions into prim-
itive set constraints in a manner similar to Boolean/numeric decomposition.

(In)equality normalisation. This step normalises (in)equations, e.g. it con-
verts >= into <=, moves sub-expressions so the right-hand side is constant, and
replaces negations with multiplications by −1. This facilitates the later intro-
duction of linear (in)equality constraints. For example, the second conjunct from
our running example becomes:

(s[1,1] + (-1)*s[2,1] <= -2) <-> b1

Array simplification. This step simplifies all arrays to one-dimensional, zero-
indexed arrays. It also updates any remaining array accesses accordingly. For
example, our running example becomes:

(s[0] + (-1)*s[2] <= -2) <-> b1

Anonymous variable naming. This step replaces each anonymous variable
(‘_’) with a newly introduced variable of the appropriate type.

Conversion to FlatZinc built-ins. This step converts the remaining MiniZinc
built-ins and array accesses (which all must have at least one non-par argument)

540 N. Nethercote et al.

into FlatZinc built-ins. The FlatZinc built-ins may be type-specialised, and will
be reified if the MiniZinc built-in occurs inside a Boolean expression (other than
conjunction).

The most complex case involves linear (in)equalities. Each one is replaced with
a (type-specific, possibly reified) linear predicate, unless it can be replaced with
a simpler arithmetic constraint. For example, our running example becomes:

int_lin_le_reif([1,-1], [s[0], s[2]], -2, b1)

The next case is that array accesses involving non-fixed indices are replaced
with FlatZinc element constraints such as array_int_element.

The remaining cases are simpler, as each remaining MiniZinc operation has a
corresponding FlatZinc operation. For example, (b1 \/ b2) <-> true becomes
bool_or(b1, b2, true), and x * y = z becomes int_times(x, y, z).

Top-level conjunction splitting. This step splits top-level conjunctions into
multiple constraint items, e.g. constraint a /\ b; becomes two items.

4.3 Annotations

Most annotations are maintained during the translation. Fixed expressions within
annotations are evaluated like other expressions. When annotated expressions are
unrolled, the annotation is copied to the resulting operations. When expressions
are reified, their annotations are lost.

4.4 Summary

The translation above provides much of what a solver writer would want. But it
is clearly not ideal for every underlying solver. For example, solvers may be more
efficient on the undecomposed versions of Boolean constraints [7] or non-linear
constraints. We plan to investigate methods to control which transformations
should be applied for a particular solver when we have more experience.

5 Tool Set and Experiments

We have a MiniZinc front-end that parses, checks types and instantiations, and
converts to FlatZinc. It has two different MiniZinc-to-FlatZinc converters: one
written using the term-rewriting system Cadmium [8] (which produced Figure 4
as shown, modulo some variable renaming and item reordering), and the other
written in Mercury. The Cadmium implementation allows us to omit various
steps of the translation.

Our MiniZinc global constraints library includes around a dozen global con-
straints, all less than 20 lines of code. Clearly there are many more to be included.

We have several FlatZinc front-ends. The first one, FlatZinc/G12, is a FlatZ-
inc interpreter for the G12 constraint platform. It uses FD and FD set solvers
written in Mercury, and one of several LP solvers such as CPLEX and GLPK.
The second front-end, FlatZinc/Gecode, is a FlatZinc interpreter for Gecode [1].
It was implemented from scratch in less than one week by one of the authors (a

MiniZinc: Towards a Standard CP Modelling Language 541

Size (LOC) Trans. time (s) Solve time (s)
Benchmark MZ FZ Ge Merc Cd Ge FZ/Ge FZ/G12 FZ/Ecl

alpha 54 55 65 0.05 0.70 0.22 0.23 0.35 0.67
eq20 66 82 61 0.12 0.68 0.00 0.00 0.01 0.02
packing2 41 1145 138 0.12 0.73 0.02 0.14 0.15 0.52
warehouses 47 517 100 0.14 0.98 0.00 0.02 0.79 0.04

Fig. 5. Experimental Results. Column 1 gives the benchmark names. Columns 2–4
give the code sizes of the MiniZinc, FlatZinc and native-Gecode versions. Column
5–6 give the translation times for the Mercury and Cadmium MiniZinc-to-FlatZinc
translators. Columns 7–10 give the solve times for the native Gecode, FlatZinc/Gecode,
FlatZinc/G12 and FlatZinc/Eclipse versions.

Gecode developer) with no prior knowledge of FlatZinc. Reuse of the lex and yacc
parser he developed should further reduce development time for other solver writ-
ers. The third front-end, FlatZinc/Eclipse, is a prototype front-end for ECLiPSe
that plugs into FlatZinc/G12; it was written in one afternoon using Cadmium. Fi-
nally, we also have a translator from FlatZinc to the Minion format [4], but we do
not present results for it. Although Minion’s file format appears similar to FlatZ-
inc, the conversion is non-trivial: Minion offers various tuning options (notably a
choice of operationally different variable types and constraint propagators), and
it allows only basic control over search.

Figure 5 shows some results comparing native Gecode (v1.3.1) to FlatZinc/
Gecode and FlatZinc/G12. The benchmarks were taken from the Gecode exam-
ples suite and ported to MiniZinc. All implementations use the same search strat-
egy for each benchmark. The test machine was a 2.0 GHz Pentium M with 2GB
of RAM and 2MB L2 cache running Fedora Core 4 (Linux kernel 2.6.15). All Mer-
cury code was compiled with Mercury rotd-2007-02-05, and C and C++ code was
compiled with GCC 4.0.2. All timings are the best of five runs.

The code sizes show that MiniZinc models are compact, much more so than
native Gecode programs—Gecode is not a modelling language, its constraints
are written as low-level C++ calls to the Gecode library, and a Gecode model
is thus a C++ program. The code sizes also show that FlatZinc models are
(unsurprisingly) bigger than MiniZinc models, sometimes greatly so; this is due
to FlatZinc’s lack of looping constructs.

The translation times show that the MiniZinc-to-FlatZinc translation is fast
in Mercury, but slower in Cadmium. Note that the translation step itself only
accounts for part of the time taken—these numbers include the overhead of
parsing, topological sorting and type-checking of the MiniZinc code, as well as
printing of the FlatZinc. Also, these programs have not been tuned and so there
is scope for further speed improvement.

The FlatZinc/Gecode solve time results show that FlatZinc models are com-
petitive with the native Gecode models, and thus that the MiniZinc-to-FlatZinc
translation is reasonable.

Although there is clearly more work to be done with other benchmarks and
other front-ends, these results provide some evidence that MiniZinc and FlatZinc

542 N. Nethercote et al.

provide a way to write reasonably efficient models. It was difficult to ensure that
the native Gecode versions were equivalent to the MiniZinc versions, because
Gecode’s search specifications are subtly different to MiniZinc’s. This is more
evidence that having a standard language would help with benchmarking.

The Gecode front-end is available at www.gecode.org/flatzinc.html. The
other tools, the MiniZinc benchmarks, and a full specification of MiniZinc and
FlatZinc are available at www.g12.csse.unimelb.edu.au/minizinc/.

6 Related Work

MiniZinc is (mostly) a subset of Zinc [9], a solver-independent modelling lan-
guage designed to allow very high-level modelling and user-controlled translation
of each high-level model to an appropriate solver-level model. Although we be-
lieve Zinc would be an excellent standard CP modelling language, the language is
large enough that implementing it is a serious challenge. MiniZinc removes much
of the complexity of Zinc—particularly user-defined types, various coercions, and
user-defined functions—in order to make compilation simpler. Essence [10] and
ESRA [11] are two other high-level, solver-independent modelling languages.
MiniZinc should provide a good target language for them (as well as for Zinc).

MiniZinc is closely related to OPL [12]. Indeed, a cut-down version of OPL was
proposed some time ago as a basis for a standard CP modelling language [13].
Compared to OPL, MiniZinc lacks complex types, resources, and programmable
search specifications, among other things. The advantages of MiniZinc over OPL
are its simplicity, the independence of models from global constraints supported
by the solver, and the ease with which solver writers can utilise it (thanks to
FlatZinc). Thus it should be easier to support as a proposed standard.

FlatZinc is similar to several low-level solver formats. The most significant
of these is the verbose, XML format used by the CSP solver competitions [14].
Important differences with MiniZinc are: it has no separation of model and data,
it is restricted to integers, it lacks arrays and looping constructs, and it has no
solution to the problem of varied global constraints. Compared to this format,
MiniZinc is more expressive and concise, and FlatZinc allows a similarly easy
implementation for solver writers.

7 Conclusion and Future Work

Our main goal with MiniZinc was to define a language that is not too big but
expressive enough to succinctly capture most CP problems. Our hope is that
by providing simple-to-use tools for manipulating MiniZinc and FlatZinc it will
be easy for solver writers to support this proposed standard, which will lead to
benefits for both solver users and solver writers.

There are some obvious ways to extend MiniZinc which could be contem-
plated. Some of these are features of Zinc, for example: more type and instance
polymorphism, user-defined functions, tuple types, and output items that al-
low control of the output from the solver. All involve a trade-off between mod-
elling ease and implementation complexity. Other possible extensions include: a

MiniZinc: Towards a Standard CP Modelling Language 543

module system; a way of selectively applying parts of the MiniZinc-to-FlatZinc
translation (e.g. omitting Boolean decomposition for solvers that handle Boolean
constraints more directly); and the application of common sub-expression elimi-
nation to the MiniZinc-to-FlatZinc translation. Experience will guide the intro-
duction of such extensions.

Finally, we intend to write FlatZinc translators to SAT and MIP solver input
languages to further ease comparisons between different solving technologies.

Acknowledgments

Thanks to Christian Schulte, Mikael Lagerkvist, Joachim Schimpf, Kim Marriott
and Mark Wallace for helpful discussions about MiniZinc and FlatZinc, and the
anonymous reviewers for feedback on earlier versions of this paper.

References

1. Schulte, C., Lagerkvist, M., Tack, G.: Gecode, http://www.gecode.org/
2. Apt, K., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge

University Press, Cambridge (2006)
3. ILOG: ILOG Solver, http://www.ilog.com/products/solver/
4. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable constraint solver. In:

Proceedings of ECAI 2006, Riva del Garda, Italy (August 2006)
5. Laburthe, F.: CHOCO: implementing a CP kernel. In: Proceedings of TRICS 2000,

Singapore, pp. 71–85 (2000)
6. Gent, I.P., Walsh, T.: CSPLIB: a benchmark library for constraints. In: Jaffar, J.

(ed.) Principles and Practice of Constraint Programming – CP’99. LNCS, vol. 1713,
pp. 480–481. Springer, Heidelberg (1999)

7. Brand, S., Yap, R.H.: Towards “Propagation = Logic + Control”. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 102–116. Springer, Hei-
delberg (2006)

8. Duck, G., Stuckey, P., Brand, S.: ACD term rewriting. In: Etalle, S., Truszczyński,
M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 117–131. Springer, Heidelberg (2006)

9. Garcia de la Banda, M., Marriott, K., Rafeh, R., Wallace, M.: The modelling
language Zinc. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 700–705.
Springer, Heidelberg (2006)

10. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design
of ESSENCE: A constraint language for specifying combinatorial problems. In:
Proceedings of IJCAI-07, Hyderabad, India (January 2007)

11. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for
modelling combinatorial problems. In: Proceedings of LOPSTR 2003, Uppsala,
Sweden, pp. 214–232 (August 2003)

12. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

13. Wallace, M.: Personal communication (January 2007)
14. van Dongen, M., et al.: Second international CSP solver competition,

http://cpai.ucc.ie/06/Competition.html

http://www.gecode.org/
http://www.ilog.com/products/solver/
http://cpai.ucc.ie/06/Competition.html

Propagation = Lazy Clause Generation

Olga Ohrimenko1, Peter J. Stuckey1, and Michael Codish2

1 NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng. University
of Melbourne, Australia

2 Department of Computer Science, Ben-Gurion University, Israel

Abstract. Finite domain propagation solvers effectively represent the
possible values of variables by a set of choices which can be naturally
modelled as Boolean variables. In this paper we describe how we can
mimic a finite domain propagation engine, by mapping propagators into
clauses in a SAT solver. This immediately results in strong nogoods for
finite domain propagation. But a naive static translation is impractical
except in limited cases. We show how we can convert propagators to
lazy clause generators for a SAT solver. The resulting system can solve
scheduling problems significantly faster than generating the clauses from
scratch, or using Satisfiability Modulo Theories solvers with difference
logic.

1 Introduction

Propagation is an essential aspect of finite domain constraint solving which tack-
les hard combinatorial problems by interleaving search and restriction of the
possible values of variables (propagation). The propagators that make up the
core of a finite domain propagation engine represent tradeoffs between the speed
of inference of information versus the strength of the information inferred. Good
propagators represent a good tradeoff at least for some problem classes. The
success of finite domain propagation in solving hard combinatorial probles arises
from these good tradeoffs, and programmable search.

Propositional satisfiability (SAT) solvers are becoming remarkably powerful
and there is an increasing number of papers which propose encoding hard com-
binatorial (finite domain) problems in SAT. The success of modern SAT solvers
is largely due to a combination of techniques including: watch literals, 1UIP
nogoods and the VSIDS variable ordering heuristic [13].

In this paper we propose modelling combinatorial problems in SAT, not by
modelling the constraints of the problem, but by modelling/mimicking the prop-
agators used in a finite domain model of the problem. Variables are modelled in
terms of the changes in domain that occur during the execution of propagation.
We can then model the domain changing behaviour of propagators as clauses.

Encoding finite domain propagation uncovers an Achilles’ heel of SAT solvers.
While modern SAT solvers can often handle problems with millions of constraints
and hundreds of thousands of variables, many problems are difficult to encode
into SAT without breaking these implicit limits. We propose a hybrid approach.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 544–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Propagation = Lazy Clause Generation 545

Instead of introducing clauses representing propagators a priori, we execute the
original (finite domain) propagators as lazy clause generators inside the SAT
solver. Propagators introduce their propagation clauses precisely when they are
able to trigger new unit propagation. The resulting hybrid combines the ad-
vantages of SAT solving, in particular powerful and efficient nogood learning
and backjumping, with the advantages of finite domain propagation, simple and
powerful modelling and specialized and efficient propagation of information.

This paper contributes a hybrid system for implementing propagation-based
finite domain solving with a SAT solver and demonstrates its successful appli-
cation to hard open-shop scheduling benchmarks. We compare the hybrid solver
with a static approach that introduces the propagation clauses a priori, and with
Satisfiability Modulo Theories (SMT) [14] solving using difference logic. Our pro-
totype implementation can significantly improve on the carefully engineered SAT
and SMT solvers.

In the remainder of the paper we first introduce terminology, and then prop-
agation rules, a method of understanding propagator behaviour. We show how
these can be expressed as CNF formulae, and introduce the lazy clause genera-
tion approach. After experiments we compare with related work and conclude.

2 Propagation-Based Constraint Solving

We consider a typed set of variables V = VI ∪ VS made up of integer variables,
VI , and sets of integers variables, VS . We use lower case letters such as x and y
for integer variables and upper case letters such as S and T for sets of integers.
A domain D is a complete mapping from V to finite sets of integers (for the
variables in VI) and to finite sets of finite sets of integers (for the variables in
VS). We can understand a domain D as a formula ∧v∈V(v ∈ D(v)) stating for
each variable v that its value is in its domain.

Let D1 and D2 be domains and V ⊆ V . We say that D1 is stronger than
D2, written D1 � D2, if D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2
are equivalent modulo V , written D1 =V D2, if D1(v) = D2(v) for all v ∈ V .
The intersection of D1 and D2, denoted D1 � D2, is defined by the domain
D1(v) ∩D2(v) for all v ∈ V .

We use range notation: For integers l and u, [l .. u] denotes the set of integers
{d | l � d � u}, while for sets of integers L and U , [L .. U] denotes the set
of sets of integers {A | L ⊆ A ⊆ U}. A convex domain D is where D(T) is a
range for all T ∈ VS . We restrict attention to convex domains. We assume an
initial domain Dinit which is convex such that all domains D that occur will be
stronger i.e. D � Dinit.

A valuation θ is a mapping of integer and set variables to correspondingly
typed values, written {x1 	→ d1, . . . , xn 	→ dn, S1 	→ A1, . . . , Sm 	→ Am}. We
extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,
we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ(v) ∈ D(v) for all v ∈ vars(θ).

546 O. Ohrimenko, P.J. Stuckey, and M. Codish

A constraint is a restriction placed on the allowable values for a set of variables.
We define the solutions of a constraint c to be the set of valuations θ that make
that constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}.

We associate with every constraint c a set of propagators, prop(c). A propaga-
tor f ∈ prop(c) is a monotonically decreasing function on domains such that for
all domains D � Dinit: f(D) � D and {θ ∈ D | θ ∈ solns(c)} = {θ ∈ f(D) | θ ∈
solns(c)}. This is a weak restriction since, for example, the identity mapping is
a propagator for any constraint. In this paper we restrict ourselves to set bounds
propagators that map convex domains to convex domains.

The output variables output(f) ⊆ V of a propagator f are the variables
changed by the propagator: v ∈ output(f) if ∃D � Dinit such that f(D)(v) �=
D(v). The input variables input(f) ⊆ V of a propagator f is the small-
est subset V ⊆ V such that for each D � Dinit: D =V D′ implies that
f(D) � D′ =output(f) f(D′) � D. Only the input variables are useful in com-
puting the application of the propagator to the domain.

Example 1. For the constraint c ≡ x1 + 1 � x2 the function f defined by
f(D)(x1) = {d ∈ D(x1) | d � maxD(x2) − 1} and f(D)(v) = D(v), v �= x1
is a propagator for c. Its output variables are {x1} and its input variables are
{x2}. Let D1(x1) = {3, 4, 6, 8} and D1(x2) = {1, 5}, then f(D1)(x1) = {3, 4}
and f(D1)(x2) = {1, 5}. �

A propagation solver for a set of propagators F and current domain D,
solv (F, D), repeatedly applies all the propagators in F starting from domain
D until there is no further change in resulting domain. solv (F, D) is the weakest
domain D′ � D which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F . In other
words, solv (F, D) returns a new domain defined by

solv (F, D) = gfp(λd.iter (F, d))(D) iter(F, D) =�f∈F f(D).

where gfp denotes the greatest fixpoint w.r.t � lifted to functions.

3 SAT and Unit Propagation

A proposition p is a Boolean variable from a universe of Boolean variables, P . A
literal l is either: a proposition p, its negation ¬p, the false literal ⊥, or the true
literal �. The complement of a literal l, ¬l is ¬p if l = p or p if l = ¬p, while
¬⊥ = � and ¬� = ⊥. A clause C is a disjunction of literals. An assignment
is either a set of literals A excluding ⊥ such that ∀p ∈ P .{p,¬p} �⊆ A, or the
failed assignment {⊥}. We define A � {⊥}, and A�A′ = A∪A unless the union
contains ⊥ or {p,¬p} for some literal p in which case A �A′ = {⊥}.

An assignment A satisfies a clause C if one of the literals in C appears in
A. A theory T is a set of clauses. An assignment is a solution to theory T if it
satisfies each C ∈ T .

A SAT solver takes a theory T and determines if it has a solution. Complete SAT
solvers typically involve some form of the DPLL algorithm which combines search
andpropagationby recursively fixing the value of a proposition to either� (true) or

Propagation = Lazy Clause Generation 547

⊥ (false) and using unit propagation to determine the logical consequences of each
decision made so far. The unit propagation algorithm finds all unit resolutions of
an assignment A with the theory T . It can be defined as follows where C denotes a
clause:

up(A, C) =

⎧⎨
⎩
{⊥} ∀l ∈ C.¬l ∈ A
A � {l} ∃l ∈ C, ,¬l �∈ A, ∀l′ ∈ (C \ {l}).¬l′ ∈ A
A otherwise

UP(A, T) = lfp.(λa.
⊔

C∈T up(a, C))(A)

4 Atomic Constraints and Propagation Rules

Atomic constraints and propagation rules were originally devised for reasoning
about propagation redundancy [1]. They provide a way of describing the behaviour
of propagators.

An atomic constraint represents the basic changes in domain that occur during
propagation.For integer variables, the atomic constraints represent the elimination
of values from an integer domain, i.e.xi � d, xi � d, xi �= d orxi = d wherexi ∈ VI

and d is an integer. For set variables, the atomic constraints represent the addition
of a value to a lower bound set of integers or the removal of a value from an upper
bound set of integers, i.e. e ∈ Si or e �∈ Si where e is an integer and Si ∈ VS . We
also consider the atomic constraint false which indicates that unsatisfiabity is the
direct consequence of propagation.

Define a propagation rule as C � c where C is a conjunction of atomic con-
straints, and c is a single atomic constraint such that �|= C → c. A propagation rule
C � c defines a propagator (for which we use the same notation) in the obvious
way.

(C � c)(D)(v) =
{{θ(v) | θ ∈ D ∩ solns(c)} if vars(c) = {v} and |= D → C

D(v) otherwise.
In another words, C � c defines a propagator that removes values from D

based on c only when D implies C. We can characterize an arbitrary propagator f
in terms of the propagation rules that it implements. A propagator f implements
a propagation rule C � c iff |= D → C implies |= f(D)→ c for all D � Dinit .

Example 2. A common propagator f for the constraint x1 = x2 × x3 [11] is

f(D)(x1) = D(x1) ∩ [min S .. maxS]
where S={(minD(x2))× (min D(x3)), (min D(x2))× (maxD(x3)),
(max D(x2))× (minD(x3)), (max D(x2))× (max D(x3))}

f(D)(x2) = D(x2) if minD(x3) < 0 ∧maxD(x3) > 0
D(x2) ∩ [min S .. maxS] otherwise
where S = {(minD(x1))/(minD(x3)), (min D(x1))/(max D(x3)),
(max D(x1))/(minD(x3)), (max D(x1))/(max D(x3))}

and symmetrically for x3.1 Note that f does not enforce any notion of consis-
tency.
1 Division by zero has to be treated carefully here, see [11] for details.

548 O. Ohrimenko, P.J. Stuckey, and M. Codish

The propagator f implements the following propagation rules (among many
others) for Dinit(x1) = Dinit(x2) = Dinit(x3) = [−20 .. 20].

x1 � 10 ∧ x2 � 6 � x3 � 1
x1 � 10 ∧ x2 � 9 � x3 � 1

x2 � −1 ∧ x2 � 1 ∧ x3 � −1 ∧ x3 � 1 � x1 � 1 �

Let rules(f) be the set of all possible propagation rules implemented by f .
This definition of rules(f) is usually unreasonably large, and full of redundancy.
For example the second propagation rule in Example 2 is clearly weaker than
the first.

A set of propagation rules F ⊆ rules(f) implements f iff solv (F, D) = f(D),
for all D � Dinit .

In order to reason more effectively about propagation rules for a given prop-
agator f , we want to have a concise representation rep(f) such that rep(f)
implements f .

A propagation rule C′ � c′ is directly redundant with respect to another rule
C � c if Dinit |= C′ → C ∧ c → c′ and not Dinit |= C → C′ ∧ c′ → c. A
propagation rule r for propagator f is tight if it is not directly redundant with
respect to any rule in rules(f). Obviously we would prefer to only use tight
propagation rules in rep(f) if possible.

Example 3. Consider the reified difference inequality c ≡ x0 ⇔ x1 + 1 � x2
where Dinit(x0) = {0, 1}, Dinit(x1) = {0, 1, 2}, Dinit(x2) = {0, 1, 2}. Then a set
of tight propagation rules rep(f) implementing the domain propagator f for c is

x1 � 0 ∧ x2 � 1 � x0 = 1
x1 � 1 ∧ x2 � 2 � x0 = 1

x0 = 1 � x2 � 1
x0 = 1 ∧ x1 � 1 � x2 � 2

x0 = 1 � x1 � 1
x0 = 1 ∧ x2 � 1 � x1 � 0

x1 � 2 � x0 = 0
x1 � 1 ∧ x2 � 1 � x0 = 0

x2 � 0 � x0 = 0
x0 = 0 ∧ x1 � 1 � x2 � 1
x0 = 0 ∧ x1 � 0 � x2 � 0
x0 = 0 ∧ x2 � 1 � x1 � 1
x0 = 0 ∧ x2 � 2 � x1 � 2

For constraints of the form x0 ⇔ x1 + d � x2 we can build rep(f) linear in the
domain sizes of the variables involved. �

5 Clausal Representations of Propagators

Propagators can be understood simply as a collection of propagation rules. This
gives the key insight for understanding them as conjunctions of clauses, since we
can translate propagation rules to clauses straightforwardly.

5.1 Atomic Constraints and Boolean Variables

Changes in domains of variables are the information recorded by a propaga-
tion solver. In this sense they are the “decisions” made or stored representing

Propagation = Lazy Clause Generation 549

the sub-problem. In translating propagation to Boolean reasoning these deci-
sions become the Boolean variables. We introduce a, novel to our knowledge,
encoding of integer domains as Booleans, combining the DIMACS encoding
(see e.g. [18]) with that of [2]. It uses Boolean variables [[x = d]], d ∈ Dinit(x),
[[x � d]], min Dinit(x) � d < maxDinit(x). Set bounds domains are encoded as
usual with the Boolean variables [[e ∈ Si]], e ∈ max Dinit(Si).

The Boolean variables directly represent changes to domains made by atomic
constraints. Let lit be the mapping of atomic constraints to Boolean literals. We
define

lit(false) = ⊥
lit(xi = d) = [[xi = d]]
lit(xi �= d) = ¬[[xi = d]]
lit(e ∈ Si) = [[e ∈ Si]]
lit(e �∈ Si) = ¬[[e ∈ Si]]

lit(xi � d) =
{� d = min Dinit(xi)

[[xi � d]] otherwise

lit(xi � d)=
{� d = maxDinit(xi)
¬[[xi � d− 1]] otherwise

where min Dinit(xi) � d � maxDinit(xi) and e ∈ max Dinit(Si). Note
that lit is a bijection except where the result is �, hence lit−1(l) is defined as
long as l �= �. Note also that for “Boolean” integers where Dinit(x) = [0 .. 1] we
have that [[x = 1]] ↔ ¬[[x = 0]] ↔ ¬[[x � 0]] so we can just use a single Boolean
variable to represent the integer.

There is a mapping from the domain of a variable v to an assignment on the
Boolean variables [[xi � d]], [[xi = d]], and [[e ∈ Si]] defined as:

assign(D, v) = {lit(c) | v ∈ D(v) |= c, v ∈ vars(c)}
assign(D) =

{{⊥} ∃v ∈ V .D(v) = ∅⋃
v∈V assign(D, v) otherwise

5.2 Consistency of Domains

Representations of set variables are automatically consistent with respect to a set
of literals, but this is not the case for representations of integer variables, since
we could assert for example [[x = 3]] and [[x � 2]] simultaneously. For a variable
x where Dinit(x) = [l .. u] we maintain the consistency of assignment by adding
the clauses DOM (x):

¬[[x � d]] ∨ [[x � d + 1]] l � d < u− 1
¬[[x = d]] ∨ [[x � d]] l � d < u

¬[[x = d]] ∨ ¬[[x � d− 1]] l < d � u
[[x = l]] ∨ ¬[[x � l]]

[[x = d]] ∨ ¬[[x � d]] ∨ [[x � d− 1]] l < d < u
[[x = u]] ∨ [[x � u− 1]]

which encode [[x � d]] → [[x � d + 1]] and [[x = d]] ↔ ([[x � d]] ∧ ¬[[x � d− 1]]).
For a set variable S, we define DOM (S) = {}, and then for all variables, DOM =
∪{DOM (v) | v ∈ V}.

With these domain clauses, unit propagation on a translated set of atomic
constraints generates all the consequences of the atomic constraints, i.e. faithfully
represents a domain.

550 O. Ohrimenko, P.J. Stuckey, and M. Codish

Theorem 1. Let C be a set of atomic constraints on variable v, and D =
solv ({true � c|c ∈ C}, Dinit) then assign(D, v) = UP({}, {lit(c) | c ∈
C} ∪DOM (v)).

The usual encoding of finite domains into SAT is the so called DIMACS en-
coding using only the variables [[x = d]] (see e.g. [18]). It enforces consistency
of domains for Dinit(x) = [l .. u] with the clause ∨u

d=l[[x = d]] and the O(n2)
clauses ∧l�d1<d2�u¬[[x = d1]] ∨ ¬[[x = d2]]. Note our encoding is linear and has
equally strong unit propagation.

If for a variable x we are only interested in the atomic constraints x � d and
x � d (i.e. bounds propagation on x) then we can omit the propositions [[x = d]]
and the corresponding clauses from DOM (x).

We can map unit propagation fixpoints of DOM (v) to domains D(v). Suppose
A = UP(A,DOM (v)), then define domain(A, v) = {d | ∀l ∈ A.l involves v, v =
d |= l}.

We will be interested in minimal assignments that model a domain D. Let
A = UP(A,DOM (v)), then an information equivalent assignment is any A′

where A = UP(A′,DOM (v)). Define minassign(A, v) as the set A′ of minimal
cardinality where A = UP(A′,DOM (v)), and preferring positive equational lit-
erals, over inequality literals, over negative equational literals.

Example 4. The set A = {[[x = 1]], [[x � 1]],¬[[x � 2]],¬[[x = 0]],¬[[x = 2]]} is a
fixpoint of DOM (x) assuming Dinit(x) = [0 .. 2]. minassign(A, x) = {[[x = 1]]},
since A = UP({[[x = 1]]},DOM (x)).

The set A′ = {[[x � 1]],¬[[x = 2]]} is also a fixpoint of DOM (x). Here
minassign(A, x) = {[[x � 1]]} even though A′ = UP({¬[[x = 2]]} is information
equivalent, because inequalities are preferred over negated equality literals. �

5.3 Propagation Rules to Clauses

The translation from propagation rules to clauses is straightforward:

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c)

Example 5. The translation of the propagation rule:

x2 � −1 ∧ x2 � 1 ∧ x3 � −1 ∧ x3 � 1 � x1 � 1

is the clause C0 ≡ [[x2 � −2]] ∨ ¬[[x2 � 1]] ∨ [[x3 � −2]] ∨ ¬[[x3 � 1]] ∨ [[x1 � 1]]
The advantage of the inequality literals is clear here: to define this clause using
only [[x = d]] propositions for the domains given in Example 2 requires a clause
of ≈100 literals. �

The translation of propagation rules to clauses gives a system of clauses where
unit propagation is at least as strong as the original propagators.

Theorem 2. Let R be a set of propagation rules such that D′ = solv (R, D). Let
A = UP(assign(D), DOM∪⋃{cl(r) | r ∈ R}) then A = {⊥} or A ⊇ assign(D′).

Propagation = Lazy Clause Generation 551

In particular if we have clauses representing all the propagators F then unit
propagation is guaranteed to be at least as strong as finite domain propagation.

Corollary 1. Let rep(f) be a set of propagation rules implementing propagator
f . Let A = UP(assign(D),DOM ∪⋃{cl(r) | f ∈ F, r ∈ rep(f)}). Then A = {⊥}
or A ⊇ assign(solv (F, D)).

Example 6. Notice that the clausal representation may be “stronger” than the
propagator. Consider the propagator f for x1 = x2 × x3 defined in Exam-
ple 2. Then the clause C0 defined in Example 5 is in the Boolean represen-
tation of the propagator. Given ¬[[x2 � −2]], [[x2 � 1]],¬[[x3 � −2]],¬[[x1 � 1]] we
infer ¬[[x3 � 1]]. But given the domain D(x1) = [2 .. 20], D(x2) = [−1 .. 1],
and D(x3) = [−1 .. 20] then f(D)(x3) �= [2 .. 20]. In fact the propagator f can
determine no new information. �

Given the Corollary above it is not difficult to see that, if it uses the same search
strategy as a propagation based solver for propagators F , a SAT solver using
clauses

⋃{cl(r) | f ∈ F, r ∈ rep(f)}) needs no more search space to find the
same solution(s).

But there is a difficulty in this approach. Typically rep(f) is extremely large.
The size of rep(f) for the propagator f for x1 = x2× x3 of Example 2 is around
100,000 clauses. But clearly most of the clauses in rep(f) must be useless in any
computation, otherwise the propagation solver would make an enormous number
of propagation steps, and this is almost always not the case. This motivates the
fundamental approach of this paper which is to represent propagators lazily as
clauses, only adding a clause to its representation when it is able to propagate
new information.

6 Lazy Clause Generation

The key idea is rather than apriori representing a propagator f by a set of clauses,
we execute the propagator during the SAT search and record what propagation
rules actually fired as clauses.

We execute a SAT solver over theory T ⊇ DOM . At each fixpoint of unit prop-
agation we have an assignment A. This corresponds to a domain D = domain(A).
We then execute (individually) each propagator f ∈ F on this domain obtaining
new domain D′ = f(D). We then select a set of propagation rules R imple-
mented by f such that solv(R, D) = D′ and add the clauses {cl(r) | r ∈ R} to
the theory T in the SAT solver.

We do not execute the propagation solver to fixpoint (although this is possible)
because adding a single new clause may cause failure which means the work is
wasted.

Given the above discussion we need to modify our propagators, so that rather
than returning a new domain they return a set of propagation rules that would
fire adding new information to the domain.

Let lazy(f) be the function from domains to sets of propagation rules R ⊆
rules(f) such that if f(D) = D′ then lazy(f)(D) = R where solv (R, D) = D′,

552 O. Ohrimenko, P.J. Stuckey, and M. Codish

and for each C � c ∈ R not D |= c (that is they generate new information).
Ideally R ⊆ rep(f) for some concise representation rep(f) of the propagator f ,
but this may be difficult to achieve.

We can automatically create lazy(f) from f as follows. Let f(D) = D′ and
let Cv = minassign(D′, v)− assign(D, v) be the new information (propositions)
about v determined by propagating f on domain D. Then a correct set of rules
R = lazy(f)(D) is the set of propagation rules

∧v∈input(f){lit−1(l′) | l′ ∈ minassign(D, v)}� lit−1(l)

for each v ∈ output(f) and each l ∈ Cv

We can almost certainly do better than this. Usually a propagator is well
aware of the reasons why it discovered some new information.

Example 7. Consider the propagator f for x1 = x2 × x3 defined in Example 2.
Applied to D(x1) = [−10 .. 18], D(x2) = {3, 5, 6}, D(x3) = [1 .. 3] it determines
f(D)(x1) = [3 .. 18]. The new information is ¬[[x1 � 2]]. The naive propagation
rule defined above is

x1 � −10 ∧ x1 � 18 ∧ x2 � 3 ∧ x2 �= 4 ∧ x2 � 6 ∧ x3 � 1 ∧ x3 � 3 � x1 � 3

It is easy to see from the definition of the propagator, that the bounds of x1 and
the missing values in x2 are irrelevant, so the propagation rule could be

x2 � 3 ∧ x2 � 6 ∧ x3 � 1 ∧ x3 � 3 � x1 � 3

but in fact it could also correctly simply be x2 � 3 ∧ x3 � 1 � x1 � 3 but this
is not so obvious from the definition of f . The final rule is tight. �
Example 8. Consider the propagator f for x0 ↔ x1 + 1 � x2 from Example 3
When applied to the domain D(x0) = {0, 1}, D(x1) = {1, 2}, D(x2) = {0} it
determines f(D)(x0) = {0}. We can define lazy(f) to return propagation rules
in rep(f) as defined in Example 3. For this case lazy(f)(D) could return either
{x1 � 1 ∧ x2 � 1 � x0 = 0} or {x2 � 0 � x0 = 0}. �
Given we understand the implementation of propagator f , it is usually straight-
forward to see how to implement lazy(f).

Example 9. Let c ≡ ∑n
i=1 aixi −

∑m
i=n+1 bixi � d be a linear constraint where

ai > 0, bi > 0. The bounds propagator f for c is defined as

f(D)(xi) = D(xi) ∩
[
−∞ .. �S−ai min D(xi)

ai
�
]

1 � i � n

f(D)(xi) = D(xi) ∩
[
�S−bi max D(xi)

bi
� .. +∞

]
n + 1 � i � m

where S = d−∑n
i=1 ai min D(xi)+

∑m
i=n+1 bi maxD(xi). If the bounds changes

for some xi, 1 � i � n, so ui = max f(D)(xi) < max D(xi) then the propagation
rule lazy(f) generates is

n∧
j=1,j �=i

xi � min D(xi) ∧
m∧

j=n+1

xi � max D(xi) � xi � ui

similarly for xi, n + 1 � i � m. Note that this is not necessarily tight.

Propagation = Lazy Clause Generation 553

We claim extending a propagator f to create lazy(f) is usually straightforward.
For example, Katsirelos and Bacchus [9] explain how to create lazy(f) (or the
equivalent in their terms) for the alldifferent domain propagator f by under-
standing the algorithm for f . For a propagator f defined by indexicals [17], we
can straightforwardly construct lazy(f) since the indexical definition illustrates
directly which atomic constraints contributed to the result. Direct constructions
of lazy(f) may not necessarily be tight. For propagators implemented using Bi-
nary Decision Diagrams we can automatically generate tight propagation rules
using BDD operations [7]. If we want to generate tight propagation rules from
arbitrary propagators f then we may need to modify the algorithm for f more
substantially to obtain lazy(f).

Example 10. We can make the propagation rules of Example 9 tight by weaken-
ing the bounds on some other variables. Let r = ai(ui+1)−(S−ai min D(xi))−1
be the remainder before rounding down will increase the bound. If there exists
aj � r where min D(xj) > min Dinit(xj) then we can weaken the propagation
rule replacing the atomic constraint xj � min D(xj) by xj � min D(xj) − rj

where rj = min{� r
aj
�, min D(xj)−minDinit(xj)}. This reduces the remainder r

by ajrj . Similarly if there exists bj � r. We can repeat the process until r < aj

and r < bj for all j. The result is tight.
For example given 100x1 + 50x2 + 10x3 + 9x4 � 100 where Dinit(x1) =

Dinit(x2) = Dinit(x3) = Dinit(x4) = [−3 .. 10] where D(x1) = D(x2) =
D(x3) = D(x4) = [0 .. 10] then the propagation gives S = 100. The new upper
bound on x1 is u1 = 1, and r = 100× 2− (100− 100× 0)− 1 = 99. The initial
propagation rule is

x2 � 0 ∧ x3 � 0 ∧ x4 � 0 � x1 � 1

We have a2 < r so we can decrease the coefficient of x2 by min{� 9950�, 3} = 1.
There is still a remainder of r = 99− 1× 50 = 49. We can reduce the coefficient
of x3 by 3 (the maximum since this takes it to the initial lower bound). This
still leaves r = 49 − 3 × 10 = 19. We can reduce the coefficient of x4 by 2, the
remainder is now 1, and less than any coefficient. The final tight propagation
rule is

x2 � −1 ∧ x3 � −3 ∧ x4 � −2 � x1 � 1 �

Regardless of the tightness of propagation rules, the lazy clause generation
approach ensures that the unit propagation that results is at least as strong as
applying the propagators themselves.

Theorem 3. Let A = UP(assign(D),DOM ∪{cl(r) | r ∈ ∪f∈F lazy(f)(D), }
then A = {⊥} or A ⊇ assign(iter(F, D)).

Because we only execute the propagators at a fixpoint of unit propagation, gen-
erating a propagation rule whose right hand side gives new information means
the clause cannot previously occur. The advantage of tight propagators is that,
if the set of propagation rules R generated by lazy(f) is tight, over the lifetime
of a search it will not involve any direct redundancy.

554 O. Ohrimenko, P.J. Stuckey, and M. Codish

7 Building a Lazy Clause Generator System

We construct a lazy clause generator, by adding a cut-down propagation engine
into a SAT solver. The interface between the propagators and the SAT solver is
managed as follows. Each Boolean variable is associated with an integer or set
atomic constraint. After the SAT solver reaches a fixpoint of unit propagation,
we run over the newly fixed Boolean literals. For each Boolean literal l which is
decided or inferred, we make the corresponding change to the domain defined
by the atomic constraint lit−1(l). We queue the propagators possibly effected by
the change, and then execute them. If we find a propagation that modifies the
domain of some integer or set variable, we construct the propagation rule that
explains it and add this as a clause permanently2 to the SAT solver, and add its
unit consequence to the SAT solvers literal queue (queue of decisions and unit
consequences). If we find a clause that causes failure we immediately invoke the
SAT solvers conflict resolution procedure. Otherwise when the queue is empty,
we invoke the SAT solver on the new literals discovered by propagation, and the
process repeats.

On failure for each Boolean literal l which is removed from the current as-
signment, we undo the change of atomic constraint lit−1(l). Note that since
all individual domain changes are reflected in Boolean literals this is sufficient.
For example suppose [[x � 5]] was inferred at an earlier point in execution so
maxD(x) = 5. Then suppose [[x � 2]] is inferred. In forward execution we will
modify max D(x) = 2, but unit propagation will also infer [[x � 3]] and [[x � 4]].
On backtracking we walk up the trail of decided and inferred variables. When
we unset [[x � 4]] we reset max D(x) = 5, and then when unsetting [[x � 3]] and
[[x � 2]] we do not change it further.

8 Experiments

We have built a prototype lazy clause generator system using MiniSat [12] version
2.0 beta as the starting point. We give experiments using open-shop scheduling
problems from [3]. The experiments are run on a 3GHz Intel Pentium D with
4Gb RAM running Debian Linux 3.1. Each of the constraints in these problems is
of the form x1∨x2, x1 +d � x2 or x0 ⇔ x1 +d � x2 where d is a constant. These
problems are also amenable to solving using SAT modulo difference logic. All
of the propagators we use are tight bounds propagators so we only use Boolean
variables of the form [[x � d]] and the first class of clause for DOM (x). Using the
full domain representation approximately doubles the computation time of the
lazy approach. We use static translations for the first two kinds of constraints
and lazy propagators for the reified difference inequalities.

We compare our lazy clause generation approach versus the static approach
of [16] using MiniSat version 2.0 beta as the SAT solver, and versus the Barcelogic
DPLL(T) solver version 1.1 using its difference logic theory solver [5]. We do not
compare against other finite domain propagation solvers, because without very
2 We do not currently allow nogood minimzation to remove these clauses, though

perhaps we should.

Propagation = Lazy Clause Generation 555

Table 1. Open shop scheduling suite gp (80 instances)

Benchmark Time(sec) Conflict number Clause ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

gp04-09 0.38 6.84 1.31 0.17 32 21 39 5.15 5.15
gp05-01 1.41 27.32 6.53 0.27 39 19 61 5.67 5.67
gp08-09 5.09 136.62 32.25 0.86 129 53 121 9.05 9.05
gp10-07 16.25 347.60 99.30 9.53 622 622 1400 11.05 10.97
gp10-10 21.68 410.34 115.79 7.80 995 857 1371 10.85 10.82

Arith. mean 6.04 113.46 30.05 2.59 311 242 492 7.43 7.40
Geom. mean 2.49 47.43 11.14 0.59 100 48 94 7.03 7.02

sophisticated encodings and search strategies [10], they are not competitive on
these problems, since they lack nogoods.

These scheduling problems are optimization problems. we search for the min-
imal makespan (completion time for all jobs). The minimization is conducted by
dichotomic search over the space of possible makespans, see [16] for details. We
note that dichtomic optimization search is in a sense advantageous to the static
approach since it generates clauses once which are effectively used in solving
multiple (linked) satisfaction subproblems.

Since these are large suites of benchmarks, we show summary results as well
as a few individual instances to illustrate the spread of results. In each table we
show the user time to find and prove the optimal solution for: the lazy approach
cut sat, the static approach csp2sat (and just the time spend in the SAT
solver for the static approach sat), and the SMT approach smt. We also give
the number of conflicts for each approach, and the average and minimum across
all subproblems in the dichotomic search of the ratio of clauses for the static
approach divided by the total created by the lazy approach.

The open-shop scheduling suite gp shown in Table 1 is easy for all approaches.
For these problems csp2sat spends most of its time just generating the clauses.
While clearly SMT requires more search to find the solution, given the tiny
description of the problem for SMT it is very rapid. Note that some of these
problems were only closed in 2005 [10], so they are not considered easy for
technologies without nogoods.

The open-shop scheduling suite tai shown in Table 2 is more difficult. As the
problem size grows the advantage of the lazy and static approaches grows over
the SMT approach. The search space explored by the lazy approach is around
twice that of the static approach, but it is still uniformly faster. Note also that
the larger the example the smaller the percentage of clauses generated by the
lazy approach.

The open-shop scheduling suite j shown in Table 3 is much harder. The three
hardest problems j7-per0-0, j8-per0-1, and j8-per10-2 which were closed re-
cently [16] are examined separately. The lazy approach is better than the static
approach except for j7-per10-2, and better than SMT on the larger problems.
To save experimental time for the three hardest problems we only try to find a
solution with optimal makespan (a single subproblem) (dichotomic search for the

556 O. Ohrimenko, P.J. Stuckey, and M. Codish

Table 2. Open shop scheduling suite tai (60 instances)

Benchmark Time(sec) Conflict number Clause ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

tai 5x5 1 0.42 4.64 1.08 0.95 887 774 1679 6.33 5.53
tai 7x7 6 16.23 23.75 10.37 452.15 12722 4397 264167 7.38 5.38
tai 10x10 1 7.52 78.76 18.65 674.99 3614 1599 108764 12.90 10.63
tai 10x10 10 3.80 79.32 17.97 33.34 1431 2675 7848 13.21 12.66
tai 20x20 4 269.89 1361.31 369.42 601.35 11247 3782 39831 26.23 24.42
tai 20x20 8 424.78 1420.77 428.60 6035.09 56092 15891 345876 24.42 20.51

Arith. mean 62.42 317.95 88.39 631.78 6611 3597 43231 13.17 12.03
Geom. mean 4.02 42.47 9.98 21.12 1783 1231 5565 11.20 10.14

Table 3. Open shop scheduling suite j (48+3 instances)

Benchmark Time(sec) Conflict number Cl. ratio
cut sat csp2sat sat smt cut sat csp2sat smt ave min

j3-per0-2 0.29 4.02 0.89 0.15 57 20 31 3.46 3.46
j6-per0-0 500.68 703.66 638.23 277.67 158117 137911 212512 6.22 5.35
j7-per10-1 25.45 84.75 36.84 47.83 8967 5019 23478 8.23 7.75
j7-per10-2 1451.79 1437.52 1379.42 3136.69 303011 250942 1625354 6.90 5.04
j8-per20-0 19.02 104.56 36.57 552.40 5493 3138 186300 9.36 8.55

Arith. mean 113.48 252.97 226.08 298.71 25430 29877 110525 6.51 6.21
Geom. mean 3.19 29.37 8.96 2.66 780 559 937 6.30 6.04

j7-per0-0-sat 8443 5246 5210 11470 991907 533852 4328222 3.92 3.92
j8-per0-1-sat 19031 34322 34246 32413 1828054 1452649 8539727 5.90 5.90
j8-per10-2-sat 2205 1395 1322 3846 209822 160075 1316112 5.52 5.52

largest problem takes over 2 days for csp2sat). Surprisingly csp2sat improves
on cut sat for two of these problems, showing that having all the clause infor-
mation from the beginning can be advantageous. The main extra cost appears
to be the size of nogoods generated.

Overall, cut sat solves faster than csp2sat except for j7-per0-0,
j8-per10-2 and j7-per10-2. While it requires more search than csp2sat, the
massive reduction in clauses pays off. The lowest clause ratio that occurs in any
instance is 3.46. Overall cut sat generally improves upon smt the harder the
examples become.

Finally we also experimented with some well-known problems using (non-
tight) bounds propagators for large linear equations (see Example 9). For none
of these problems could the static approach generate the clauses within hours,
and SMT modulo difference logic is not applicable, so we compare with Gecode
1.3.1 [6] a highly optimized propagation solver. The lazy approach uses an alld-
ifferent propagator equivalent to bounds propagation on disequations (x1 �= x2)
and SAT VSIDS search, while Gecode uses its native distinct propagator and
default labelling. Both solvers look for all solutions. The results are shown in
Table 4. Clearly nogoods can substantially reduce the search for these problems,
and the lazy approach is at least competitive with Gecode.

Propagation = Lazy Clause Generation 557

Table 4. Linear equations examples (average of 100 runs)

Benchmark Time(sec) Conflicts/Failures
cut sat gecode cut sat gecode

eq10 0.010 0.070 28 94
eq20 0.011 0.070 18 54
alpha 0.089 0.263 180 7435
money 0.010 0.069 68 3

9 Related Work and Conclusion

The paper [16] explains how to statically encode linear arithmetic constraints
into CNF (to give tight clauses) using the propositions [[x � d]]. They closed
three very hard open-shop scheduling problems using their static approach, but
the approach is manifestly impractical when the linear constraint involves a
significant number of variables. Our lazy approach makes the encoding of linear
arithmetic possible for large linear constraints, and allows encoding of arbitrary
propagators.

The closest related work to this paper is the hybrid BDD and SAT bounds
propagation set solver described in [7]. There a BDD-based set solver and a
SAT solver are integrated and the BDD set solver passes clauses describing its
propagations to the SAT solver in order to make use of the nogood capabilities of
the SAT solver. Using BDD propagators, the construction of tight propagation
rules can be automatic. Here we extend the approach beyond set variables to
support integer variables, eliminate the propagation solver by embedding the
minimal amount of machinery required into the SAT solver.

There is a substantial body of work on look back methods in constraint sat-
isfaction (see e.g. [4], chapter 6), but there was little evidence until recently of
success for look back methods that combine with propagation. The work of Kat-
sirelos and Bacchus [8] showed that one could use nogood technology derived
from SAT for storing and managing nogoods in a CSP system using FC-CBJ.
In further work [9] they consider how to generate explanations (which are ef-
fectively clauses) of propagation for a number of global constraints, in order to
support nogoods in a CP solver. They consider the usual DIMACS encoding of
integers {[[x = d]]} and hence do not consider bounds propagation.

Roussel [15] gave a linear encoding of domains (not including inequality lit-
erals) which has the same unit propagation strength as our new encoding, but
requires more variables and literals.

The lazy propagation approach can be viewed as a special form of Satisfiability
Modulo Theories [14] solver, where each propagator is considered as a separate
theory, and theory propagation is used to learn clauses.

In conclusion, we have constructed a hybrid SAT finite domain propagation
solver using lazy clause generation that captures some of the advantages of both
paradigms. It can tackle hard scheduling problems efficiently without complex
search strategies. Where large amounts of search are required we expect it to be
more effective than propagation based solvers because it includes nogoods and

558 O. Ohrimenko, P.J. Stuckey, and M. Codish

conflict directed backjumping. But we have only really scratched the surface of
the possibilities of the lazy approach.

References

1. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Propagation redundancy in redundant
modelling. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 229–243. Springer,
Heidelberg (2003)

2. Crawford, J., Baker, A.: Experimental results on the application of satisfiability
algorithms to scheduling problems. In: Procs. AAAI-94, pp. 1092–1097 (1994)

3. CSP2SAT: (December 2006), http://bach.istc.kobe-u.ac.jp/csp2sat/
4. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
5. Barcelogic for SMT: (February 2007),

http://www.lsi.upc.es/∼oliveras/bclt-main.html
6. GECODE: (February 2007), http://www.gecode.org
7. Hawkins, P., Stuckey, P.J.: A Hybrid BDD and SAT Finite Domain Constraint

Solver. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 103–117.
Springer, Heidelberg (2005)

8. Katsirelos, G., Bacchus, F.: Unrestricted nogood recording in CSP search. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 873–877. Springer, Heidelberg (2003)

9. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: The Twentieth Na-
tional Conference on Artificial Intelligence (AAAI-05), pp. 390–396 (2005)

10. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained
Project Scheduling. In: Proceedings IJCAI 2005, pp. 181–186 (2005)

11. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT
Press, Cambridge (1998)

12. MiniSat: (December 2006),
http://www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of DAC-2001 (2001)

14. Niewenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

15. Roussel, O.: Some notes on the implementation of csp2sat+zchaff, a sim- ple trans-
lator from CSP to SAT. In: Proceedings of the 2nd International Workshop on
Constraint Propagation and Implementation, pp. 83–88 (2005)

16. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP to
SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer,
Heidelberg (2006)

17. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and evalu-
ation of the constraint language cc(FD). JLP 37(1–3), 139–164 (1998)

18. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000)

http://bach.istc.kobe-u.ac.jp/csp2sat/
http://www.lsi.upc.es/~oliveras/bclt-main.html
http://www.gecode.org
http://www.cs.chalmers.se/Cs/Resarch/FormalMethods/MiniSat/

Boosting Probabilistic Choice Operators

Matthieu Petit� and Arnaud Gotlieb

IRISA – INRIA, Campus Beaulieu, 35042 Rennes Cedex, France
{Matthieu.Petit,Arnaud.Gotlieb}@irisa.fr

Abstract. Probabilistic Choice Operators (PCOs) are convenient tools
to model uncertainty in CP. They are useful to implement randomized
algorithms and stochastic processes in the concurrent constraint frame-
work. Their implementation is based on the random selection of a value
inside a finite domain according to a given probability distribution. Un-
fortunately, the probabilistic choice of a PCO is usually delayed until
the probability distribution is completely known. This is inefficient and
penalizes their broader adoption in real-world applications. In this pa-
per, we associate to PCO a filtering algorithm that prunes the variation
domain of its random variable during constraint propagation. Our al-
gorithm runs in O(n) where n denotes the size of the domain of the
probabilistic choice. Experimental results show the practical interest of
this approach.

1 Introduction

Motivations. Reasoning with uncertainty is an important issue in Constraint
Programming as many real-world problems (resource management, network traf-
fic analysis, energy trading) invariably include incomplete or unknown parame-
ters. Besides the original probabilistic extension of Constraint Satisfaction Prob-
lems proposed by Fargier and Lang [4], these last years have seen the development
of several frameworks that offer capabilities to model uncertainty with probabil-
ities. In 2000, Walsh proposed Stochastic Constraint Programming that extends
CP by including both decision variables, that can be set, and stochastic variables
that follow a given probability distribution [16,14]. In the concurrent constraint
framework, Di Pierro and Wiklicky [2] and Gupta, Jagadeesan and Saraswat
[6] introduced Probabilistic Choice Operators (PCOs) in concurrent constraint
processes to implement randomized algorithms [3] and stochastic processes [5].
In all these frameworks, random draws have to be performed over completely
known probability distributions. But, as noted by Yorke-Smith and Gervet [17],
for many real-world problems, exact probability distributions are unknown or
just implicitly defined via some additional constraints. For example, in resources
assignment problems, one often knows that the probability to sell an item during
summer time is five times lower than the probability to sell it during winter but
we don’t know the exact probability distribution to sell it over the year. In some

� This work is part of the GENETTA project granted by the Brittany region.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 559–573, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

560 M. Petit and A. Gotlieb

problems, the probability distribution itself is what we are looking for. Typical
examples include biased games models, hardware and software constraint-based
verification. For example, consider the Statistical Structural Testing technique
[15] in Software Engineering. The problem aims at finding a distribution proba-
bility over the input domain of a program, that maximizes the coverage of some
structural criteria, such as all statements or all paths. Up to know, there is no
satisfactory automated technique for biasing the choice of test data that meet
this objective. It has been shown in [9] that this problem can be modelled as a
stochastic constraint solving problem for which the solution is the probability
distribution. In order to model accurately such problems, probabilistic choices
are currently delayed until complete information over the probability distribu-
tion is available. In terms of constraint modelling, this corresponds to enumerate
the possible probability distributions and to solve each of the corresponding sto-
chastic constraint system. This is inefficent and penalizes the broader adoption
of PCOs in real-world applications.

Contributions. In this paper, we associate to PCOs a filtering algorithm that
prunes the domain of the stochastic variable of the probabilistic choice. Our
purpose is to boost the probabilistic decision even if the probability distribution
is unknown or just known via some additional constraints. The main idea is to
benefit from the early random draw of an auxiliary stochastic variable in order
to prune the variation domain of the probability distribution during constraint
propagation. Thanks to the availability of this random value, our filtering algo-
rithm can eliminate the values of the probabilistic choice that are incompatible
with current state of the PCO. Interestingly, this algorithm runs in O(n) where
n denotes the size of the domain of the probabilistic choice.

As a basic example, consider the stochastic optimization problem of Fig.1
inspired from a production planning problem. The problem aims at finding a
value for X that minimizes X − Y where Y is a stochastic variable, the value
of which is given by the random draw of a biased die. Suppose we ignore the
exact bias of the die and we just know that the 6-face of the die is two times
more overloaded than the 1-face, the 5-face is two times more overloaded than
the 2-face, and the 4-face is two times more overloaded than the 3-face. The
PCO choose picks up at random a value of the die according to the unknown
distribution probability [1, 2, 3, 4, 5, 6] − [W1, W2, W3, W4, W5, W6] where Wi
denotes the weight associated to face i of the die.

The simplest approach to solve this problem consists in labeling first on
the possible distribution probabilities in order to allow the random draw of
Y (option no filtering in Fig.1). Unfortunately, this approach rapidely be-
comes intractable. R denotes the mean CPU time (in sec.) obtained by launch-
ing 2000 times the solving process. When our filtering algoithm is used (op-
tion domain bound), the possible probability distributions are pruned before
labelling. On this example, our gain is more than one order of magnitude in
average.

Boosting Probabilistic Choice Operators 561

s optim(Opt) :-
X in 1..6,
domain([W1,W2,W3,W4,W5,W6], 1, 10),
choose(Y,[1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt), % PCO call
X #>= Y,
2*W1 #= W6, % 6-face is two times more overloaded than 1-face
2*W2 #= W5,
2*W3 #= W4,
labeling([minimize(X-Y)],[X,W1,W2,W3,W4,W5,W6]).

?- bench([s optim([no filtering]), 2000, R).
R = 9.479 ?

?- bench([s optim([domain bound]), 2000, R). % filtering on choose
R = 0.646 ?

Fig. 1. A stochastic optimization problem on SICStus 3.11, Intel-Pentium 2Ghz, 1Go
RAM, WinXP

We implemented our filtering algorithm in several PCOs of the SICStus Pro-
log library PCC(FD). Experimental results show the practical interest of our
approach.

Organization. The paper is organized as follows : Section 2 briefly describes
the theoretical background on PCOs required to understand the rest of the
paper. Section 3 presents the principles of filtering associated to PCO. Section 4
describes our implementation of several PCOs in SICStus Prolog, while section 5
presents the experimental results. Finally, Section 6 indicates several perspectives
to this work.

2 Background on Probabilistic Choice Operators

Probabilistic Choice Operators have been introduced originally within the Con-
current Constraint framework of Saraswat. In the first subsection, we start by
briefly recalling the principles of the theoretical scheme: Probabilistic Concurrent
Constraint Programming (PCCP). In the second subsection, we focus on Finite
Domains which form a computational domain of the generic scheme PCCP.

2.1 Probabilistic Concurrent Constraint Programming

Concurrent Constraint Programming (CCP)
We start by recalling some syntax and semantics elements of CCP. In CCP,
processes are executed concurrently and can interact with each other through
a common constraint store. A CCP language is parameterized by a constraint
system [12], which is composed of a set of primitive constraints and an entailment
relation. The syntax of a CCP language is given by the following grammar:

Process ::= tell(C) | if C then Process |
new X in Process | Process‖Process.

562 M. Petit and A. Gotlieb

where tell(C) adds the constraint C to the constraint store, if C then Process
asks whether C is entailed by the current constraint store and adds the con-
straints of Process if C is entailed, new X in Process adds the constraints
of Process to the store while hiding the variable X from other processes, and
finally, ‖ represents the parallel composition that can be interpreted as a logical
conjunction in a Logic Programming environment. Well known examples of CCP
languages include cc(FD)[7], AKL[8] or Oz/Mozart[13] just to name a few.

Probabilistic Choice Operators
A few years ago, Gupta et al. [6,5] and Di Pierro and Wiklicky [2,3] proposed to
add probabilistic choice operators to CCP. In our presentation, we will confine
ourselves to the PCO choose [6]. Formally, the operator choose(X, LawX , P ro−
cess) injects a stochastic variable X along with a probabilistic law LawX into a
concurrent process Process. For the sake of simplicity, we suppose that LawX

takes the form of a pair [v1, . . . , vn]− [w1, . . . , wn] where [v1, . . . , vn] denotes the
list of possible (distinct) values for X , called the domain of the probabilistic
choice, while [w1, . . . , wn] denotes the list of non-negative weights associated to
the vi, called the probability distribution of the probabilistic choice. In the rest
of the paper, dom(X) = [v1, . . . , vn] denotes a sorted finite set of integer values
associated to variable X . min(X) (resp. max(X)) denotes the minimum (resp.
maximum) of dom(X).

Operationally, choose(X, [v1, . . . , vn] − [w1, . . . , wn], P rocess) executes
ProcessX←vi with a probability pi. ProcessX←vi denotes the concurrent process
P where X has been substituted by vi and pi denotes the probability of the event
X = vi which is computed by the following formula:

pi =
wi∑n

j=1 wj
.

Just to make things more concrete, we illustrate the processing of a PCCP
request on a basic example extracted from [5]:

Example 1.

P = choose(X, [0, 1] − [1, 1], tell(X = Z)) ‖
choose(Y, [0, 1] − [1, 1], if Z = 1 then tell(Y = 1)).

Roughly speaking, three possible terminal configurations can be obtained: Z is
constrained to 0 with the probability 1

2 (event X = 0), Z is constrained to 1
with the probability 1

4 (event X = 1 ∧ Y = 1) and false is obtained with the
probability 1

4 (event X = 1 ∧ Y = 0).

2.2 Probabilistic Choice Operator over Finite Domains

PCCP is parameterized by a computational domain over which the constraints
are interpreted. In this paper, we focus on Finite Domains and we provide an
operational semantics for PCO onto Finite Domains.

Boosting Probabilistic Choice Operators 563

Uncertainty on the Probabilistic Choice
The simulation (random draw) of values for the stochastic variable X in a PCO
is always possible when LawX is fully instantiated. On the contrary, when there
is some uncertain data within the probabilistic choice, the simulation is delayed
until all the parameters (domain, probability distribution) become instantiated.
The set of uncertain data is characterized by the following definition.

Definition 1. Let X be a stochastic variable, let LawX = [v1, . . . , vn]−[W1, . . . ,
Wn] be its probabilistic choice where W1, . . . , Wn are Finite Domains variables,
then the set of the possible probability distributions, called SLX associated to X
is defined as follows:

SLX �
{
[v, . . . , vn] − [w1, . . . , wn]

∣∣w1 ∈ dom(W1), . . . , wn ∈ dom(Wn)
}

This definition will be useful when we will introduce our filtering algorithm to
prune the domain of the stochastic variable X . The filtering algorithm will be
illustrated on the following example.

Example 2. Consider the example of a biased die where the 6-face is two times
overloaded than the 1-face.

W6 = 2 ∗ W1 ∧ choose(X, [1, 2, 3, 4, 5, 6] − [W1, W2, W3, W4, W5, W6], X = Die)

Suppose that dom(W1) = 1..2, dom(W2) = 2..2, dom(W3) = 2..2, dom(W4) =
2..2, dom(W5) = 2..2 and dom(W6) = 2..4, then uncertainty on the unknown
bias of the die is given by the following set:

SLX = { [1, 2, 3, 4, 5, 6] − [1, 2, 2, 2, 2, 2], [1, 2, 3, 4, 5, 6]− [1, 2, 2, 2, 2, 3],
[1, 2, 3, 4, 5, 6] − [1, 2, 2, 2, 2, 4], [1, 2, 3, 4, 5, 6]− [2, 2, 2, 2, 2, 2],
[1, 2, 3, 4, 5, 6] − [2, 2, 2, 2, 2, 3], [1, 2, 3, 4, 5, 6]− [2, 2, 2, 2, 2, 4]}.

PCOs as Constraint Combinators
As said above, in the presence of uncertainty, the simulation of PCO should be
delayed. Then, we considered PCOs as constraint combinators. This allows to
reason on probabilistic choices that are only partially known and opens the door
to apply constraint reasoning on PCOs. In this view, the probability distribution
associated to a PCO is just constrained by a set of constraints on its possible
values.

Base on that, constraint propagation over the choose operator can be defined.
When choose is equipped with a filtering algorithm, one speak of the constraint
combinator choose. choose(X, LawX , P rocess) succeeds whenever X is valuated
and Process succeeds. When the probabilistic choice is only partially instanti-
ated, choose is introduced into the propagation queue of the constraint solver
and then, a filtering algorithm that is detailed below is launched to prune the
domain of values for X . When no more pruning can be performed, the combi-
nator falls asleep. It is awoken whenever the domain of at least one variable of
the distribution probability is modified and then the combinator is reintroduced
in the propagation queue. This process iterates until a fix point is reached, i.e.
a state where no more deduction on the domain of X is obtained.

564 M. Petit and A. Gotlieb

3 Principle of the Filtering on choose

In this section, we introduce the principles of the filtering on the choose com-
binator. This filtering algorithm permits to prune early the domain of the pro-
babilistic choice. The main idea is to benefit from the early random draw of an
auxiliary variable, the value of which is exploited within the filtering algorithm.
First subsection is devoted to recall the principle of simulating random choice
over Finite Domains. This principle is the basis of our filtering algorithm. Second
subsection presents the correction properties on the choose combinator, while
the third subsection presents the filtering algorithm. In this subsection, we prove
correctness and termination of our algorithm and also give its complexity.

3.1 Simulation of a Stochastic Variable over Finite Domains

Stochastic variables over Finite Domains are usually simulated with the values
of a uniform stochastic variable over [0; 1]. This uniform stochastic variable is
noted U . Our filtering algorithm for choose(X, LawX , P rocess) exploits an a
priori random value of U to prune dom(X).

Definition 2 (Distribution function). Let X be a stochastic variable, let
LawX = [v1, . . . , vn] − [w1, . . . , wn] be its probabilistic choice and U an uniform
stochastic variable over [0; 1], then a distribution function is a function f that
maps a random value of U to a value of X, as follows:

f : [0; 1] → Dom(X)

u �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1 if u ∈
[
0, w1�

n
i=1 wi

[

...
...

vn if u ∈
[�n−1

i=1 wi�n
i=1 wi

, 1
[.

It is trivial to see that the probability of the event X = vi is equal to P (u ∈
[pr1 + . . . + pri−1, pr1 + . . . + pri]) = (pr1 + . . . + pri)− (pr1 + . . . + pri−1) = pri,
as expected.

For example, consider the distribution function f associated to a non-biased
die, given by Fig. 2. Here, the distribution probability is given by [1, 2, 3, 4, 5, 6]−
[1, 1, 1, 1, 1, 1] and u = 0.6. As a result, X = f(0.6) = 4.

Associated to each probability distribution of SLX , a distribution function f
is defined. The set of distribution functions associated to SLX is noted FX . For
example, the set FX of Example 2 is represented by Fig.3.

X=1 X=2 X=3 X=4 X=5 X=6

0 1/6 1/3 1/2 2/3 5/6 1

 X=f(0.6)=4

u

f

Fig. 2. Simulation of the stochastic variable X with a uniform probability distribution
on {1, 2, 3, 4, 5, 6}

Boosting Probabilistic Choice Operators 565

3.2 Stochastic Consistencies on the choose Combinator

We propose to characterize the consistency level achieved by our filtering com-
binator by using the notion of stochastic consistency. Stochastic consistency is
a local consistency parameterized by an uniform random value u. In our frame-
work, we define two stochastic consistencies on the choose(X, LawX , P rocess)
combinator.

Definition 3. (Stochastic domain consistency)
Let u be a uniform random value and FX be the set of distribution functions as-
sociated to LawX , then the combinator choose(X, LawX , P rocess) is stochastic
domain consistent iff

∀vi ∈ dom(X), ∃f ∈ FX such that f(u) = vi

Definition 4. (Stochastic bound consistency)
Let u be a uniform random value and FX be the set of distribution functions as-
sociated to LawX , then the combinator choose(X, LawX , P rocess) is stochastic
bound consistent iff

∃f1, f2 ∈ FX such that f1(u) = min(X) and f2(u) = max(X)

From the definitions, it is clear that stochastic domain consistency implies stochas-
tic bound consistency.

3.3 Filtering on dom(X)

Given an uniform random value, the principle of the filtering algorithm is to
detect values for the stochastic variable than cannot be randomly chosen.

The Algorithm
For a given u, reasoning on the set of possible probability distributions FX and
the set of probability distributions SLX yields to prune dom(X). For each value
v of dom(X), we compute a support for the event X = v, i.e the set of values for
u such as v can be randomly chosen. Formally, this support is defined as follows.

Definition 5. (Support of X = v)
Let i be the indice of v in [v1, . . . , vn]

∀i ∈ [1, . . . , n], Supp{X=v} =
⋃

[v1...,vn]−[w1,...,wn]∈SLX

[∑i−1
j=1 wj∑n
j=1 wj

,

∑i
j=1 wj∑n
j=1 wj

[

Our filtering algorithm is based on the following property:

∀v ∈ [v1, . . . , vn], u /∈ Supp{X=v} ⇒ X �= v

However, the computation of Supp{X=v} is based on the labelling of each
element of SLX and in the worst case, the number of elements of SLX is expo-
nential with the size of the probabilistic choice. Indeed, this is the cardinality

566 M. Petit and A. Gotlieb

of the Cartesian product of the domains of the weight variables. As a conse-
quence, we propose to approximate the computation of Supp{X=v} using only
the bounds of this union of intervals. This is shown on Algorithm 1 that presents
our filtering algorithm. It takes as inputs X , LawX and u and removes values
from dom(X) that cannot be randomly chosen. For each value v ∈ dom(X), the
bounds of Supp{X=v}, noted Min Sup{X=v} and Max Sup{X=v}, are computed
by the function Intproba. If u /∈ [Min Supp{X=v}; Max Supp{X=v}], then v
is removed from dom(X).

The efficiency of the filtering algorithm relies directly on the efficient com-
putation of the bounds of each support Supp{X=v}. Fortunately, theses bounds
can be computed from the result of an analytical study that is described below.

Algorithm 1. Filteralgo

Input : X,LawX and u

forall v ∈ dom(X) do
[Min Sup{X=v}; Max Sup{X=v}] ← IntProba(v, LawX);
if u /∈ [Min Sup{X=v}; Max Sup{X=v}] then

v is removed from dom(X)

end
end

A Method to Compute an Approximation of Supp{X=v}
The method aims at computing the two elements of SLX such that Supp{X=v} is
minimized and maximized. For that, we compute the minimum (resp. maximum)

value of
�i−1

j=1 wj
�n

j=1 wj
(resp.

�i
j=1 wj

�n
j=1 wj

) for each distribution probability of SLX where
i denotes the indice of v in [v1, . . . , vn]. Computing min[v1...,vn]−[w1,...,wn]∈SLX(�i−1

j=1 wj
�

n
j=1 wj

)
and max[v1...,vn]−[w1,...,wn]∈SLX

(�i
j=1 wj�
n
j=1 wj

)
is efficient by using the

two following analytical results.
Without any loss of generality, we suppose that

∑n
j=1 min(Wj) > 0. Then,

∀i ∈ [1, . . . , n],

min
[v1...,vn]−[w1,...,wn]∈SLX

(∑i−1
j=1 wj∑n
j=1 wj

)
=

∑i−1
j=1 min(Wj)∑i−1

j=1 min(Wj) +
∑n

j=i max(Wj)

and

∀i ∈ [1, . . . , n],

max
[v1...,vn]−[w1,...,wn]∈SLX

(∑i−1
j=1 wj∑n
j=1 wj

)
=

∑i
j=1 max(Wj)∑i

j=1 max(Wj) +
∑n

j=i+1 min(Wj)

The complete proofs of these equations can be done by refutation and is available
in [11].

Boosting Probabilistic Choice Operators 567

13/11 5/11 7/11 9/11

1

11/13

1/4 5/12 7/12 3/4

11/6 1/3 1/2 5/6

12/13 4/13 6/13 8/13 10/13

11/7 2/7 3/7 4/7 5/7

2/3

1/11

1/12

3/130

0

0

0

0

9/137/135/13

u

u

u

u

u

u

[1,2,3,4,5,6]−[1,2,2,2,2,2]

[1,2,3,4,5,6]−[1,2,2,2,2,3]

[1,2,3,4,5,6]−[1,2,2,2,2,4]

[1,2,3,4,5,6]−[2,2,2,2,2,2]

[1,2,3,4,5,6]−[2,2,2,2,2,3]

[1,2,3,4,5,6]−[2,2,2,2,2,4]

X=6X=5X=4X=3X=2X=1

0

Fig. 3. Set of the distribution functions of the example 2 die

Consider again the example 2 and the set FX given in Fig. 3. The values of
Supp{X=v} are computed by our algorithm and are shown below.

Supp{X=1} = [0 ; 1
6

[
Supp{X=4} =

[5
13 ; 2

3

[
Supp{X=2} =

[1
13 ; 1

3

[
Supp{X=5} =

[7
13 ; 5

6

[
Supp{X=3} =

[3
13 ; 1

2

[
Supp{X=6} =

[9
13 ; 1[

X = 1 is removed from dom(X) by the filtering algorithm when u /∈ [0; 1
6 [, X = 2

is removed from dom(X) when u /∈
[1

13 ; 1
3

[
and so on.

Termination and Correction
The filtering algorithm iterates over the possible values of dom(X) then its
termination is trivially demonstrated, as the set dom(X) is finite.

Correction of the algorithm can be proved by showing that it permits to
achieve a chosen level of consistency. Based on our definition 3 and 4 of sto-
chastic consistencies , we show that Filteralgo achieves only stochastic bound
consistency. Due to the approximation of Supp{X=v}, stochastic domain consis-
tency cannot be achieved by our algorithm.

We only give a sketch of the proof that is available in [11]. We have to prove
that after the execution of Filteralgo, there exist two distribution functions
f1 and f2 of FX such that f1(u) = min(X) and f2(u) = max(X). Given a value
vj for the minimum (resp. the maximum) of dom(X) in [v1, . . . , vn], the proof
consists in finding an element of SLX [w1, . . . , wj−1, wj , . . . , wn] such that u ∈[�j−1

i=1 wj�
n
i=1 wj

,
�j

i=1 wj�
n
i=1 wj

[
. A case-based reasoning on the distinct values of min(X)

and max(X) in [v1, . . . , vn] completes the proof.

568 M. Petit and A. Gotlieb

Complexity
The complexity of the filtering algorithm relies on the computation of Supp{X=v}
and each bound of Supp{X=v} is obtained by computing ∀i ∈ 1 . . . n,∑i

j=1 min(Wj) and
∑i

j=1 max(Wj). So, the results are computed in a linear
time w.r.t. the size of dom(X).

As the rest of the algorithm is restricted to a “membership testing”, Filter-
algo runs in O(n) where n is the size of the domain of X .

4 Implementation

In this section, we describe our implementation of the filtering algorithm within
several PCOs. This implementation is based on the library PCC(FD) [10] that
contains three PCOs defined using the global constraint interface of SICStus Pro-
log [1]. These three combinators are based on choose(X, LawX , P rocess), but
distinguish themselves by the definition of LawX . In all the cases, the probabi-
listic choice Domain−Distribution takes the form of Prolog terms compound of
unbound parameters that model uncertainty. These combinators are as follows:

- choose, where Domain is a list of values and Distribution is a list of finite
domain variables that represent weights;

- choose_range, where Domain is a range represented with two distinct FD
variables Min and Max, and Distribution is a list of finite domain variables
that represent weights;

- choose_decision, where Domain is the boolean domain {0, 1} and Distri-
bution is a pair of distinct finite domain variables that represent weights.

When a PCO is posted in the constraint store, the predicate random/1 allows
to obtain a uniform pseudo-random value for U . During the constraint propa-
gation, PCOs choose, choose_range and choose_decision are awoken when
the domain of the stochastic variable X or the domain of weight variables are
pruned. Then, the filtering algorithm is launched as soon as new information on
the probabilistic choice is available.

Some options are available to parameterize the filtering capabilities of the
algorithm. The domain bound option is used to launch our implementation of
Filteralgo, while the no filtering option permits to switch off the filtering
algorithm. The inconsistency check option checks whether Process is par-
tially consistent w.r.t. dom(X). This option is useful to improve the pruning
capabilities of the filtering algorithm but is also more costly.

5 Experimental Validation

In this section, we present the experimental results we obtained on two applica-
tions of PCOs. The first one concerns biased games models that play a prevalent
role in many applications. The second one is a resource planning application
adapted from [16].

Boosting Probabilistic Choice Operators 569

5.1 Biased Games Model

In this subsection, we consider two dice games: 421 and less than 8. We start by
briefly describing the models of the games and then we present the experimental
results.

Models
421. The 421 game consists in drawing three N-face dice. The game is won when
faces 4, 2 and 1 are drawn without considering the valuation order of the dice.
The problem we adress here is to play 421 with a biased die for which the exact
bias is unknown.

A model that considers only a 6-face die is given below by the predicate
four_two_one/3. In the model, the unknown bias is formalized via the Finite
Domains variables [W1, .., W6] representing the weights of the probability dis-
tribution. Each weight has a value in 1..10 and additionnal constraints on the
bias are given by the constraints 2*W1#=W6, 2*W2#=W5 ,2*W4#=W3.

four_two_one([D1,D2,D3],[W1,W2,W3,W4,W5,W6],Opt) :-
domaine([W1,W2,W3,W4,W5,W6],1,10),
2*W1=W6, 2*W2=W5 ,2*W4=W3,
choose(D1, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D2, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D3, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
all_different([D1,D2,D3]),
D1+D2+D3#=7.

The predicate four_two_one([D1,D2,D3],Distribution,Opt) is true iff D1, D2
and D3 have been valuated to 4, 2 and 1, which is modelled by the two latter
constraints.

Less Than 8. This game consists in drawing five N-face dice. The game is won
when the sum of the values of the dice are less or equal than 8. The game with
6-face dice is modelled by less_than_8/2 predicate.

less_than_8([D1,D2,D3,D4,D5],[W1,W2,W3,W4,W5,W6],Opt) :-
domain[W1,W2,W3,W4,W5,W6],1,10),
4*W6 #= W1,3*W5 #= W2,2*W4 #= W3,
choose(D1, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D2, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D3, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D4, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
choose(D5, [1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[],Opt),
D1+D2+D3+D4+D5 #=<8.

Results
Our experiment seeks for a valuation of Distribution (the bias of the die) such
as the game is always won by the player. We parameterized our model with
N , the number of the faces of the die in order to evaluate the boosting of our
filtering algorithm. For both games, the request was iterated 2000 times in order

570 M. Petit and A. Gotlieb

to avoid the factor of good luck due the choice of the uniform random value. A
large number of iterations has been chosen in order to get a significant sampling
of request. Experimental results were obtained on a Win XP machine powered
by a 2GHz Intel Pentium with 1Go memory running SICStus 3.11. We compare
two approaches: in the first one, no filtering was launched during constraint
propagation (no filtering) while in the second one, our filtering algorithm was
applied (domain bound).

421 dice game

0

50

100

150

200

250

300

4 6 8 10

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Less than 8 dice game

0

20

40

60

80

100

120

140

160

4 6 8 10

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Fig. 4. Experimental results on 421 and less than 8

The results are given in Fig.4. Both curves with the no filtering option present
a combinatorial explosion when N grows while they remain proportional when
option domain bound is selected. This confirms that our filtering algorithms
boosts combinators when additional constraints on the probabilistic choice are
available. Note that the overhead due to our algorithm during constraint propa-
gation remains modest. Note also that our results are nearly the same regardless
the labelling heuristic that is used. This comes from the symmetry of the prob-
lems.

5.2 Books Production Planning

Models
Our books production planning constraint model is adapted from the classical
M quarter production planning problem of [16]. In our model, the demand of
books is modelized by the PCO choose(Demand, [100, 101, 102, 103, 104, 105] −
[W100, W101, W102, W103, W104, W105], [], Opt) where the weights Wi denote the
unknown probability distribution. So, we solve the problem with an unknown
probability distribution but we don’t solve the original stochastic constraint
system aiming at satisfying the clientele eighty percent of the time. Additional
constraints on Wi come from the variability on book demands over the year.
For example, during winter, the book editor expects that the demand would be
greater and then the probability of sold 105 books is 2 times greater than the
probability of sold 100 (2*W100#=W105).

Boosting Probabilistic Choice Operators 571

book_production(M,Opt) :-
domain([W100,W101,W102,W103,W104,W105],1,10),
2*W100#=W105,2*W101#=W104,2*W102#=W103,
choose(Demand,[100,101,102,103,104,105]-

[W100,W101,W102,W103,W104,W105],[],Opt),
Prod#>=Demand, Surplus #= Prod-Demand,
Cost #= Surplus+Cost_Rest,
M1 is M-1,
book_production_rec(M1,Prod_Rest,Surplus,Cost_Rest,Opt),
append([Prod|Prod_Rest],[W100,W101,W102,W103,W104,W105],Lab_List),
labeling([minimize(Cost)],Lab_List).

book_production_rec(0,[],_Surplus,0,_Opt).

book_production_rec(M,[Prod|Prod_Rest],Surplus,Cost,Opt) :-
choose(Demand,[100,101,102,103,104,105]-

[W100,W101,W102,W103,W104,W105],[],Opt),
Prod#>=Demand-Surplus,
Surplus2 #= Prod-Demand+Surplus,
Cost #= Prod-Demand+Surplus+Cost_Rest,
M1 is M-1,
book_production_rec(M1,Production_Rest,Surplus2,Cost_Rest).

Book Production Problem for m=1

0

10

20

30

40

50

60

2 4 6 8

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Book Production Problem for m=2

0

100

200

300

400

500

600

2 4 6 8 10

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Fig. 5. Results on Book Production assignment for M = 1 and M = 2

Results
In our experiments, two parameters are used to control the model: the vari-
ation domain of the book demand N and the number of considered quarters
M . The experimental results are given by Fig.5. They present a similar pro-
file than the results we got on biased games models. In fact, this is explained
by the similar constraints that we use on the weights. However, when changing
these constraints in the experiment (removing 2*W1#=W6,2*W2#=W5,2*W3#=W4
and adding W1+W6#=5, W1-W6#=3,W2+W5#=5,W2-W5=3,W3+W4#=5 and W3-W4#=3),
we got different results that are shown in Fig.6. In this case where the under-
lying problem is more constrained, the CPU time elapsed in labelling is less
important as constraint propagation becomes more efficient. Hence, we suggest

572 M. Petit and A. Gotlieb

Book Production Problem for m=1

0

0,05

0,1

0,15

0,2

0,25

0,3

2 4 6 8

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Book Production Problem for m=2

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

2 4 6 8

N

R
eq

ue
st

 r
un

ni
ng

 ti
m

e
in

 m
s

Domain Bound

No Filtering

Fig. 6. Results on Book Production assignment for a new model of the demand

to use our filtering algorithm in priority for problems where the probability
distribution is weakly constrained and it is difficult to find a bias such as the
constraints systems are satisfied.

6 Conclusions

In this paper, we have proposed a filtering algorithm associated to combina-
tors that model Probabilistic Choice Operators in the presence of uncertainty.
This algorithm exploits the early draw of an auxiliary uniform random value to
prune the variation domain of the stochastic variable. Our experimental results
obtained on two applications shows that our approach boost the implementa-
tion of PCOs as a constraint combinators. Our filtering algorithm runs in O(n)
but achieves only stochastic bound consistency. It is an open question to know
whether efficient (polynomial) algorithms for PCOs can be found to achieve sto-
chastic domain consistency. Our future work will be devoted to both extend
the application domain of PCOs in the presence of uncertainty and find new
algorithms to achieve better level of consistency.

References

1. Carlsson, M., Ottosson, G., Carlson, B.: An Open–Ended Finite Domain Constraint
Solver. In: Proceedings of Programming Languages: Implementations, Logics, and
Programs (1997)

2. Di Pierro, A., Wiklicky, H.: On probabilistic CCP. In: APPIA-GULP-PRODE,
Grado, Italy, pp. 225–234 (1997)

3. Di Pierro, A., Wiklicky, H.: Implementing randomised algorithms in constraint logic
programming. In: Proceedings of the ERCIM/Compulog Workshop on Constraints
(2000)

4. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: A probabilis-
tic approach. In: Proceedings of the European Conference on Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty, Grenada, pp. 97–104. Springer,
Heidelberg (1993)

Boosting Probabilistic Choice Operators 573

5. Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic processes as concurrent
constraint programs. In: Proceedings of Symposium on Principles of Programming
Languages (1999)

6. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Probabilistic concurrent constraint
programming. In: Proceedings of the International Conference Conference on Con-
currency Theory, pp. 243–257. Springer, Heidelberg (1997)

7. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(fd). Technical Report CS-93-02, Brown Uni-
versity (1993)

8. Janson, S., Haridi, S.: Programming paradigms of the Andorra kernel language. In:
Proceedings of the International Symposium on Logic Programming, San Diego,
USA, pp. 167–186 (1991)

9. Petit, M., Gotlieb, A.: Probabilistic choice operators as global constraints: appli-
cation to statistical software testing. In: Proceedings of International Conference
on Logic Programming – Poster Presentation. LNCS, pp. 471–472 (2004)

10. Petit, M., Gotlieb, A.: Library of probabilistic constraint combinators over finite
domain (May 2006), available at http://www.irisa.fr/lande/petit/tools.html

11. Petit, M., Gotlieb, A.: Constraint-based reasoning on probabilistic choice operators.
Research Report 6165, INRIA, 04 (2007)

12. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Proceedings of Symposium on Principles of Program-
ming Languages, Orlando, Florida, pp. 333–352 (1991)

13. Smolka, G.: The Oz programming model. In: van Leeuwen, J. (ed.) Computer
Science Today. LNCS, vol. 1000, pp. 324–343. Springer, Heidelberg (1995)

14. Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1), 53–80 (2006)

15. Thévenod-Fosse, P., Waeselynck, H.: An investigation of statistical software testing.
Journal of Sotware Testing, Verification and Reliability 1(2), 5–25 (1991)

16. Walsh, T.: Stochastic constraint programming. In: Proceedings of the 15th Euro-
pean Conference on Artificial Intelligence, Lyon, France, pp. 111–115. IOS Press,
Amsterdam, Trento, Italy (2002)

17. Yorke-Smith, N., Gervet, C.: Certainty closure: A framework for reliable constraint
reasoning with uncertainty. In: Proceedings of the International Conference on
Principles and Practice of Constraint Programming, Kinsale, Ireland. LNCS, pp.
769–783. Springer, Heidelberg (2003)

http://www.irisa.fr/lande/petit/tools.html

A Multi-engine Solver for Quantified Boolean Formulas

Luca Pulina and Armando Tacchella�

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
{Luca.Pulina,Armando.Tacchella}@unige.it

Abstract. In this paper we study the problem of yielding robust performances
from current state-of-the-art solvers for quantified Boolean formulas (QBFs).
Building on top of existing QBF solvers, we implement a new multi-engine solver
which can inductively learn its solver selection strategy. Experimental results con-
firm that our solver is always more robust than each single engine, that it is stable
with respect to various perturbations, and that such results can be partially ex-
plained by a handful of features playing a crucial role in our solver.

1 Introduction

The problem of evaluating quantified Boolean formulas (QBFs) is one of the corner-
stones of Complexity Theory. In its most general form, it is the prototypical PSPACE-
complete problem, also known as QSAT [1]. Introducing limitations on the number and
the placement of alternating quantifiers, QSAT is complete for each class in the polyno-
mial hierarchy (see, e.g., [2]). Therefore, QBFs can be seen as a low-level language in
which high-level descriptions of several hard combinatorial problems can be encoded to
find a solution by means of a QBF solver. The quantified constraint satisfaction problem
is one relevant example of such classes (see, e.g., [3]), and it has been shown that QBFs
can provide compact propositional encodings in many automated reasoning tasks (see,
e.g., [4,5,6]). To make such approach effective, QBF solvers ought to be robust, i.e., able
to perform well across different problem classes. The results of the yearly QBF solvers
competitions [7] show, on the contrary, that QBF solvers are rather brittle. This is to
be expected, since every heuristic algorithm will occasionally find problem instances
that are exceptionally hard to solve, while the same instances can easily be tackled by
resorting to another algorithm, or by using a different heuristic (see, e.g., [8]).

In this paper we study the problem of yielding robust performances from current
state-of-the-art QBF solvers. We start by considering syntactic features of QBFs, e.g.,
the number of variables, the number of quantifier alternations and other inexpensively
computable parameters. We focus on the results of the last QBF solvers competition
(QBFEVAL’06) [7], and show that the above features are sufficient to hint the best
solver to run on each formula. To empirically validate our conclusions, we implement
AQME (Adaptive QBF Multi-Engine), a new QBF solver which is based on existing
state-of-the-art systems, and which can learn its engine selection strategy using dif-
ferent inductive models. We validate AQME performances against its engines using

� The authors wish to thank the Italian Ministry of University and Research for its financial
support, and the anonymous reviewers who helped to improve the original manuscript.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 574–589, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Multi-engine Solver for Quantified Boolean Formulas 575

QBFEVAL’06 formulas, and a sample of QBFEVAL’07 formulas that have been used
neither in the design of AQME, nor in previous validations. Our experiments confirm
that AQME is more robust than each single engine. Considering various perturbations
of the QBFEVAL’06 dataset, we show that AQME is also stable, i.e., its performances
are fairly independent of the dataset on which its engine selection strategy is learned.
Finally, we show that these results can be partially explained by a handful of features
which play a crucial role in AQME. Such features can be related to differences among
the engines of AQME, and thus they bring supporting evidence to our design.

Our approach is inspired by the literature on algorithm portfolios [8,9], and it is
related also to [10], wherein the implementation of the SATZILLA solver portfolio
for propositional satisfiability (SAT) is described. However, both [8] and [9] do not
consider Machine Learning techniques in order to learn and adapt the engine selection
policy, whilst the results of [10] are limited to SAT. Since QSAT is a generalization
of SAT, our work considers problem classes in PSPACE that extend beyond NP, and
provides results that are typical of such classes. An independent contribution along the
same way of ours is [11], wherein the problem of dynamically adapting the heuristics
of a solver is also considered.

The paper is structured as follows. In Section 2 we review the syntax of QBFs, the
features that we consider, and the essentials of the datasets from QBFEVAL’06/07. In
Section 3 we discuss the design of AQME, and in Section 4 we present the experimental
validation of AQME on the QBFEVAL’06/07 datasets. In Section 5 we present results
about the stability of AQME under different point of views, and the experiments aimed at
isolating the features playing a crucial role in AQME. We conclude the paper in Section 6
with some final remarks.

2 Preliminaries

The syntax of QBFs Consider a set P of propositional letters. A variable is an element
of P. A literal is a variable or the negation of a variable. In the following, for any literal
l, |l| is the variable occurring in l, and l is ¬l if l is a variable, and is |l| otherwise. A
literal is positive if |l| = l and negative otherwise. A clause C is an n-ary (n ≥ 0)
disjunction of literals such that, for any two distinct disjuncts l, l′ in C, it is not the case
that |l| = |l′|. A propositional formula is a k-ary (k ≥ 0) conjunction of clauses. A
QBF is an expression of the form

Q1Z1...QkZkΦ k ≥ 0 (1)

where, for each 1 ≤ i ≤ k, Qi is a quantifier, either existential Qi = ∃ or universal
Qi = ∀, such that Qi �= Qi+1, and the set of variables Zi = zi,1, . . . zi,mi is a quantified
set. The expression QiZi stands for Qizi,1 . . .Qizi,mi , and Φ is a propositional formula
in the variables Z1, . . . , Zk. The expression Q1Z1 . . . QkZk is the prefix and Φ is the
matrix of (1). A literal l is existential if |l| ∈ Zi for some 1 ≤ i ≤ k and ∃Zi belongs
to the prefix of (1), and it is universal otherwise. In the prefix, k − 1 is the number
of alternations, and k − i + 1 is the level of all the variables contained in the set Zi
(1 ≤ i ≤ k); the level of a literal l is the same as |l|. Similarly to variables, if Qi = ∃
then the quantifier set Zi is existential, and universal otherwise.

576 L. Pulina and A. Tacchella

Representing QBFs In order to perform inductive inference on QBFs, we transform
them into vectors of numeric values, where each value represents a specific feature. In
particular, we consider the following basic features:

– c, total number of clauses; c1, c2, c3 total number of clauses with 1, 2 and more than two
existential literals, respectively; ch, cdh total number of Horn and dual-Horn clauses, respec-
tively;

– v, total number of variables; v∃, v∀, total number of existential and universal variables, re-
spectively; ltot, total number of literals; vs, vs∃, vs∀, distribution of the number of variables
per quantifier set, considering all the variables, and focusing on existential and universal
variables, respectively; s, s∃, s∀, number of total, existential and universal, quantifier sets;

– l, distribution of the number of literals in each clause; l+, l−, l∃, l∃+, l∃−, l∀, l∀+, l∀−,
distribution of the number of positive, negative, existential, positive existential, negative ex-
istential, universal, positive universal, negative universal number of literals in each clauses,
respectively.

– r, distribution of the number of variable occurrences r+, r−, r∃, r∃+, r∃−, r∀, r∀+, r∀−,
distribution of the number of positive, negative, existential, positive existential, negative ex-
istential, universal, positive universal, negative universal variable occurrences, respectively;
wr, wr+, . . . (as above), distributions of the number of variable occurrences weighted ac-
cording to the level in the prefix.

We also consider the following combined features:

– p, distribution of the values of the products, computed for each existential variable x, be-
tween the number of occurrences of x and the number of occurrences of ¬x; wp, the same
as p, where each product is weighted according to the prefix level.

– c
v

, the classic clauses-to-variables ratio, and for each x ∈ {l, r,wr} the following ratios (on
mean values):

• x+
x

, x−
x

, x+
x−

, balance ratios;

• x∃
x

,
x∃+

x
,

x∃−
x

,
x∃+
x∃

,
x∃−
x∃

,
x∃+
x∃−

,
x∃+
x+

,
x∃−
x− , balance ratios (existential part);

• x∀
x

,
x∀+

x
,

x∀−
x

,
x∀+
x+

,
x∀−
x− ,

x∀+
x∀

,
x∀−
x∀

,
x∀+
x∀−

, balance ratios (universal part);

– c1
c

, c2
c

, c3
c

, ch
c

, cdh
c

, ch
cdh

, i.e., balance ratios between different kinds of clauses.

The choice of the above features is dictated by several factors, including previous
related work (see, e.g. [10]), inexpensiveness, and, in the case of (w)r and (w)p, also
specific considerations about the nature of QBFs. Notice that totals such as, e.g., c or v,
yield a very abstract representation of QBFs, i.e., specific values of such features may
correspond to several – possibly diverse – QBFs. On the other hand, distributions such
as, e.g., l or r, give a more detailed representation of the underlying QBF, at the expense
of an increased complexity. For each distribution we consider only its mean and its stan-
dard deviation from the mean, measuring the center and the spread of the distribution,
respectively. Overall, for each QBF we compute 141 features, which is a fairly large
number compared to previous related work (e.g., SATZILLA [10] computes “only” 83
features). However, the median CPU time spent to compute all the 141 features, e.g., on
the QBFEVAL’06 formulas, is 0.04s (min. 0.00s, max. 2.04s), so we can afford to keep
all of them and avoid missing something important, at least in the preliminary stages.

The QBF solvers competition. QBFEVAL’06 [7] is the first competition of QBF solvers,
and the fourth event in a series dating back to 2003. The data used in this paper are

A Multi-engine Solver for Quantified Boolean Formulas 577

Table 1. QBFEVAL’06/07 datasets synopses: “#” is the number of formulas per suite, and the
remaining columns are the statistics – (Min)imum, (Med)ian, and (Max)imum – regarding the
number of existential (v∃), and universal (v∀) variables, the number of quantified sets (s), the
number of clauses (c) and the total number of literals (ltot).

QBFEVAL’06 # v∃ v∀ s c ltot
Suite Min Med Max Min Med Max Min Med Max Min Med Max Min Med Max

Ansotegui 10 1931 3404.5 8797 16 31 48 5 10 17 12973 28140 78971 48613 108335 314239
Ayari 18 162 2348 27767 48 256 1080 2 4 7 530 4480.5 34659 3110 16981.5 90169
Biere 74 14 970 4497 1 25.5 440 3 3 17 37 2764 13063 85 6448 30479
Gent-Rowley 3 3949 4629 8038 50 50 90 21 21 31 12868 15588 27363 45367 55567 96780
Herbstritt 28 1145 3904 6728 41 139 189 7 9 11 3091 10648 18742 7211 24844 43730
Ling 6 63 65 102 7 7.5 10 3 3 3 446 560.5 1832 2805 3742 16884
Mneimneh-Sakallah 11 94 819 2107 23 153 437 3 3 3 254 2665 6967 647 6850 18165
Pan 85 32 904 5254 8 37 264 2 27 133 743 3274 131072 1784 8840 1310720
Rintanen 77 184 1052 4017 1 9 896 2 3 3 601 3568 178750 1505 9557 362756
Scholl-Becker 6 273 1058 1113 1 2.5 11 3 3 23 746 3646.5 3877 1762 8918.5 9500

QBFEVAL’07 # v∃ v∀ s c ltot
Suite Min Med Max Min Med Max Min Med Max Min Med Max Min Med Max

Biere 47 105 7642 48097 2 101 1172 3 3 3 304 21538 143239 708 50254 334223
Herbstritt 39 472 3219 33803 0 13 170 1 3 341 1120 7428 95242 2546 16528 221130
Mangassarian-Veneris 7 2280 5548 68488 1 4 4 3 3 3 6263 16664 182894 14767 59412 517102
Palacios 7 171 1320 4191 4 7 11 3 3 3 1026 51076 67530 3477 152916 589575

obtained by running 16 versions of 11 solvers, namely OPENQBF, QBFL, QUAFFLE,
QUBE, SSOLVE, YQUAFFLE, 2CLSQ, PREQUANTOR, QUANTOR, SKIZZO and SQBF.
The first six solvers above are pure search-based engines, i.e., they are an extension
to QSAT of the DLL algorithm for SAT [12], while the other ones are based on tech-
niques such as Q-resolution [13], skolemization (see, e.g., [14]), variable expansion
(see, e.g., [15]), or a combination thereof, possibly including also search as in 2CLSQ1

and SKIZZO. Formulas used in QBFEVAL’06 were submitted to the competition and
picked from QBFLIB [16]. In this paper we consider fixed structure formulas (FSFs for
short) used in QBFEVAL’06. Intuitively, FSFs are resulting from encodings and/or ar-
tificial generators where a setting of the problem parameters yields a unique instance
(see [17]). The competition ran in two tracks: the short track, where the solvers were
limited to 600 CPU seconds, and the marathon track, where we alloted a time limit of
6000 CPU seconds. The memory was limited to 900MB in both tracks. Considering
the results of the marathon track, out of 427 FSFs, 371 were solved (87% of the initial
selection), 234 (55%) were declared satisfiable and 137 (32%) were declared unsatisfi-
able. The top-five solvers were: 2CLSQ, PREQUANTOR, SQBF, SKIZZO-0.9-ABS and
QUANTOR. QUBE5.0, running hors-concours, was the best search-based solver, and
it would have ranked fifth if running as a regular competitor. In the following, when
speaking of the “QBFEVAL’06 dataset” we refer to a subset of 318 formulas obtained
by discarding those that were easily solved by most of the competitors. A synopsis of
such dataset is provided in Table 1 (top). For testing AQME against its engines, we also
harness a random sample of 100 formulas from the QBFEVAL’07 [7] dataset such that
no formula in this dataset is part of the QBFEVAL’06 dataset as well. A synopsis of the
“QBFEVAL’07 dataset” is also shown in Table 1 (bottom), and a complete description
of the problems in each suite for QBFEVAL’06/07 datasets can be found in [16].

1 2CLSQis indeed a multi-stage solver: a preprocessor is run in the first stage, and the solver
QUANTOR is run in the second stage; if the second stage is not successful within a short time
limit, a third stage based on a search-based decision procedure is accomplished.

578 L. Pulina and A. Tacchella

Table 2. Classification of formulas according to their features and correspondence with solvers

Cluster ID 1 2 3 4 5 6 7 8 9 10 11

Formulas 6 3 30 15 28 7 1 2 4 2 26
Search 100% 67% 83% 100% 100% – – – – – –
Hybrid – 33% 17% – – 100% 100% 100% 100% 100% 100%

2CLSQ – – 50% – – 43% 100% 50% 50% 100% 96%
OPENQBF 100% – – – – – – – – – –
PREQUANTOR – – 13% – – 29% 100% 50% 50% 100% 96%
QUAFFLE – – – – – – – – – – –
QUANTOR – – 10% – – 29% 100% 50% 50% 100% 96%
QUBE 100% – 77% 100% 100% – – – – – –
SQBF – – – – – 29% 100% 50% 50% 100% 96%
SKIZZO – 33% 10% – – 100% 100% 100% 100% 100% 77%
SSOLVE 100% 67% 17% – – – – – – – –
YQUAFFLE – – – 40% – – – – – – –

3 Designing a Multi-engine Solver for QBFs

The first and foremost design issue when developing AQME is whether the features de-
scribed previously are sufficient to determine the best engine to run on each formula. We
would like our features to be at least as descriptive as to discriminate between search-
based solvers and the remaining ones, that we call “hybrid” in the following. Consider-
ing the QBFEVAL’06 dataset, we remove 194 formulas that were solved both by search
and hybrid solvers, to end up with 124 formulas that are solved either by search solvers
or hybrid ones, but not by both. We apply partition around medoids (PAM), a classical
divisive clustering algorithm [18], to classify the formulas. We estimate the number of
clusters using the silhouette coefficient of clustering quality [18], where the silhouette
value is computed for each element of a cluster, ranging from -1 (bad) to 1 (good). We
consider optimal the clustering such that the average silhouette is maximized, and we
choose the number of clusters accordingly. In our experiments, eleven clusters yielded
the maximum average silhouette value of 0.9. Finally, we compare the clusters with the
percentage of formulas solved by search and hybrid solvers respectively. If the initial
choice of features was a good one, then we expect to find a clear correlation between
cluster membership and the likelihood of being solved by a particular kind of solver.

In Table 2 we present the results of the above analysis. In the table, each column
corresponds to a cluster (Cluster ID) where we detail the number of formulas in the
cluster (Formulas), the percentage of such formulas that were solved by search solvers
(Search), and by hybrid solvers (Hybrid), respectively. For the sake of completeness,
we report also the data about individual solvers or families thereof – QUBE, SKIZZO

and SSOLVE data are the cumulative numbers considering the three versions of each
solver as one. With the only exception of clusters #2 and #3, the features described in
Section 2 enable us to automatically partition QBFs into classes such that we can pre-
dict with reasonable accuracy whether the best solver in each class is search-based or
not. This is an indication that the features we consider are good candidates to hint the
best engine to run on each formula. As a side effect, we can also see that our distinc-
tion between search and hybrid solvers does make sense, at least on the QBFEVAL’06
dataset. Indeed, search solvers perform badly on the clusters #6 – #11 dominated by
hybrid solvers, while on the other clusters, either search solvers dominate, or there is
always at least one search solver that performs better than any hybrid one.

A Multi-engine Solver for Quantified Boolean Formulas 579

The second design issue concerns the inductive models to implement in AQME. An
inductive model is comprised of a classifier, i.e., a function that maps an unlabeled in-
stance (a QBF) to a label (a solver), and an inducer, i.e., an algorithm that builds the
classifier. In the following, we call training set the dataset on which inducers are trained,
and test set the dataset on which classifiers are tested. While there is an overwhelming
number of inductive models in the literature (see, e.g., [19]), we can somewhat limit
the choice considering that AQME has to deal with numerical attributes (QBF features)
and multiple class labels (engines). Moreover, we would like to avoid formulating spe-
cific hypotheses about the features, and thus we prefer inducers that are not based on
hypotheses of normality or (in)dependence among the features. Finally, we also pre-
fer inducers that do not require complex ad-hoc parameter tuning. Considering all the
above, we chose to implement four inductive models in AQME, namely:

Decision trees (AQME-C4.5). A classifier arranged in a tree structure, wherein each inner node
contains a test on some attributes, and each leaf node contains a label; we use C4.5 [20] to
induce decision trees.

Decision rules (AQME-RIPPER). A classifier providing a set of “if-then-elsif” constructs,
wherein the “if” part contains a test on some attributes and the “then” part contains a la-
bel; we use RIPPER [21] to induce decision rules.

Logistic regression (AQME-MLR). A classifier providing a linear estimation, i.e., a hyperplane,
of the hypersurfaces that separate the class labels in the feature space; we use the multinomial
logistic regression (MLR) inducer described in [22].

1-nearest-neighbor (AQME-1NN). A classifier yielding the label of the training instance which
is closer to the given test instance, whereby closeness is evaluated using some proximity
measure, e.g. Euclidean distance; we use the method described in [23] to store the training
instances for fast lookup.

The above methods are fairly robust, efficient, they are not subject to stringent hy-
potheses2 on the training data, and they do not need complex parameter tuning. They
are also “orthogonal”, as they use algorithms based on radically different approaches.

One final remark concerns the solvers that should be used as the basic engines in
AQME. While it is clear that at least one search and one hybrid solver should be selected,
some preliminary experiments showed that choosing only the best search (QUBE5.0)
and hybrid (2CLSQ) solvers is not rewarding. On the other hand, using all the sixteen
competitors altogether rises the chance of getting a bad prediction because of aliasing.
We opted for an intermediate solution based on our knowledge of the solvers, wherein
we include five search solvers, namely QUBE3.0, QUBE5.0, SSOLVE+UT, QUAFFLE,
and YQUAFFLE, and three hybrid ones, namely 2CLSQ, QUANTOR, and SKIZZO-0.9-
STD. In the following, we will refer to SKIZZO-0.9-STD as SKIZZO, and to SSOLVE-UT

as SSOLVE.

4 Experimental Evaluation

All the experiments that we performed ran on a farm of 10 identical rack-mount PCs,
equipped with 3.2GHz PIV processors, 1GB of RAM and running Ubuntu/GNU Linux

2 MLR is guaranteed to yield optimal discriminants – in the least squares sense – only when the
dataset is partitioned into classes characterized by a multivariate normal distribution. If this is
not the case, MLR can still provide us with a reasonable, albeit suboptimal, classification.

580 L. Pulina and A. Tacchella

Table 3. Estimating the accuracy of various versions of AQME using cross validation

AQME-C4.5 AQME-MLR AQME-1NN AQME-RIPPER Best Engine
CV N # Time α1 α2 # Time α1 α2 # Time α1 α2 # Time α1 α2 # Time
1 32 30 12723 0.93 0.97 30 12723 0.93 0.97 29 18724 0.90 0.97 31 6740 0.96 0.97 25 43565
2 32 32 201 0.99 1 32 201 0.99 1 31 6196 0.97 0.97 32 658 0.99 0.98 25 42630
3 31 31 60 0.99 1 31 60 0.99 1 31 153 0.99 0.99 30 6060 0.97 0.97 20 66668
4 32 32 4098 0.98 1 32 4098 0.98 1 31 10095 0.95 0.98 29 22087 0.88 0.97 25 51609
5 32 30 12832 0.93 0.97 30 12832 0.93 0.97 32 955 0.99 1 30 12959 0.93 0.97 22 60601
6 32 31 10543 0.94 0.98 31 10543 0.94 0.98 31 10278 0.95 0.98 28 28294 0.84 0.97 22 64267
7 32 31 6156 0.97 0.97 31 6156 0.97 0.97 32 158 1 1 30 13515 0.93 0.97 21 67569
8 31 31 1030 0.99 1 31 1030 0.99 1 29 12954 0.93 0.97 27 24375 0.87 0.97 22 55954
9 32 32 2990 0.98 0.98 32 2990 0.98 0.98 32 1074 0.99 0.99 32 1071 0.99 0.99 24 50055
10 32 32 1509 0.99 1 32 1509 0.99 1 30 13426 0.93 0.97 31 7509 0.96 0.97 25 47211

Median 3544 0.98 0.99 3544 0.98 0.99 8146 0.96 0.98 10234 0.94 0.97 53782

(distribution Edgy 6.10). We evaluated the performances of AQME3 in two rounds of
experiments. In the first round, we wish to estimate its performances on the QBFEVAL’06
dataset. To this end, we consider accuracy, usually defined as the ratio of correctly pre-
dicted instances versus the total number of instances in the test set (see, e.g., [19]). Such
definition is not adequate in our case, since it assumes that all the wrong predictions have
the same – unitary – cost. Indeed, in AQME a wrong prediction has a cost which depends on
the performances of the solver predicted in place of the best one. Therefore, we consider
different kind of accuracies defined as:

α1 := 1 −
∑
ϕ∈Γ t(ϕ)
L|Γ | α2 := 1 − 1

|Γ |
∑
ϕ∈Γ

t(ϕ) − t∗(ϕ)
t(ϕ)

(2)

where Γ is a set of formulas, t(ϕ) is the time spent by the selected engine evaluating
ϕ, L is the time limit imposed on the engines, and t∗(ϕ) is the time spent by the best
engine on ϕ. The parameter α1 is close to 1 when AQME solves most of the formulas
in Γ without getting close to the time limit L. The parameter α2 does not depend on L:
if α2 is close to 1, then the time spent by AQME on most formulas is close to the ideal
solver always faring the best time among the engines. Both α1 and α2 are valid for our
purposes, but α1 turns out to be slightly more conservative as we show in the following.

We estimate the accuracy of AQME on the QBFEVAL’06 dataset using cross-validation
(see, e.g., [19]), described in [24] to be one of the most reliable methods for our purposes.
In particular, as suggested in [24], we use a ten-times ten-fold stratified cross-validation,
whereby the original dataset is divided into ten subsets, or folds, such that each subset
is a stratified sample, i.e., it contains exactly the same proportions of class labels that
are present in the original dataset. Once the folds are computed, nine out of ten are used
for training an inducer, and the remaining one is used to test the classifier. The process
is repeated ten times, each time using a different fold for testing, and thus yielding ten
different samples of the accuracy value. We can then compute some statistic, e.g., the
median, to reach our final estimate of the accuracy.

In Table 3 we show the detailed results of cross-validation. In the table (going from
left to right), the first column (CV) denotes the i-th fold being used as test set (1 ≤
i ≤ 10); the second column (N) contains the number of formulas in each fold; the five

3 The working implementation of AQME is freely available upon request to the authors.

A Multi-engine Solver for Quantified Boolean Formulas 581

Table 4. AQME vs. its engines on the QBFEVAL’07 dataset

Solver AQME-C4.5 AQME-MLR QUBE5.0 AQME-RIPPER QUBE3.0 SKIZZO

66 65 61 60 57 57
Time 983 1109 1076 868 291 1379

Solver AQME-1NN 2CLSQ SSOLVE YQUAFFLE QUANTOR QUAFFLE

54 53 53 51 45 42
Time 1008 108 1251 84 42 253

groups of columns contain the results of AQME (labeled after the model), and the per-
formances of the best single engine on each fold (Best engine). In each group, except
the fifth, four columns report, respectively, the number of formulas solved (#), the cu-
mulative CPU seconds to solve them (Time) – including the default time limit value
(6000s) for the instances that were not solved – and the accuracy obtained by AQME

on the fold according to the definitions (2) (α1 and α2); in the fifth group, the columns
“#” and “Time” have the same meaning, and we do not report an accuracy value. The
last row of Table 3, reports the median cumulative CPU time, and the median accuracy
for all the versions of AQME. Notice that we do not report the time spent to train the
inducer, to compute the features and to classify the instances, since it is negligible with
respect to the time spent to evaluate QBFs.

As we can see from Table 3, AQME is more efficient and robust than the best engine
on each fold. Overall, even AQME-RIPPER, the weakest version of AQME according to
these experiments, is cumulatively much faster than an ideal solver yielding top perfor-
mances on each fold.4 The accuracy estimate tells us that both AQME-C4.5 and AQME-
MLR have a very thin chance of missing the best solver for a given QBF. Incidentally,
these models turn out to yield exactly the same predictions on this dataset. Notice that
the overall accuracy is never less than the 0.85 threshold, even under unfavorable con-
ditions. As we anticipated, α1 is slightly more conservative than α2, so we view the the
former as a more realistic estimator for the real (unknown) accuracy.

In the second round of experiments, we train AQME on the whole QBFEVAL’06
dataset, and we run it against its engines on the QBFEVAL’07 dataset. This is a typi-
cal deployment scenario, wherein the classifiers are used to predict the best solver on
previously unseen QBFs. In Table 4 we show the results of the above experiment. The
table is split in two parts, the one on top reporting the results of the best six solvers, and
the one at the bottom reporting the remaining ones. Each part has three rows, including
the name of the solver and the performance data, with the same meaning as in Table 3.

Looking at Table 4, and considering that 27 formulas out of 100 were not solved by
any engine within a time limit of 600 seconds, we can see that AQME mostly confirms
the results obtained on the QBFEVAL’06 dataset. In particular, the accuracy of C4.5
and MLR is almost the same, and it is higher than RIPPER and 1NN. C4.5 and MLR
also yield the best solvers on this dataset, with 66 and 65 formulas solved, respectively.
The best engine (QUBE5.0) ranks only third-best since it cannot solve 5 formulas from
the “Biere” suite: C4.5 and MLR solve them by picking QUANTOR and 2CLSQ instead.
On the other hand, notice that 1NN is ranking below all the other AQME versions and
three of its engines, namely QUBE5.0, QUBE3.0, and SKIZZO. The cause of 1NN

4 The fact that the cumulative median time of the “Best engine” is that of an ideal solver, stems
from the fact that the best solver on each of the folds shown in Table 3 is not always the same.

582 L. Pulina and A. Tacchella

behavior can be ascribed to the fact that this method is quite prone to overfitting the
training data, and thus generalize poorly, but in this case it is also linked to a dimen-
sionality problem, since the training set contains formulas whose features have rela-
tively small values compared to the ones in the test set. Therefore, the distance between
the test formulas and the training formulas computed by 1NN could be pretty much
the same for all the test formulas, thus resulting in a substantial aliasing. Another factor
to be considered, which explains also the weak performances of RIPPER, is that the
QBFEVAL’07 test set is quite challenging for AQME trained on QBFEVAL’06 dataset,
since the former favors search solvers over hybrid ones – QUBE5.0 and QUBE3.0 per-
form as well as or better than, e.g., SKIZZO – while the contrary is true for the latter –
the top-five solvers in QBFEVAL’06 are all hybrid, with the exception of QUBE5.0. As
we will see in Section 5.1, a training set biased in favor of a given solver may hurt the
performances of AQME more than other kinds of perturbations. However, in spite of the
unfavorable scenario, at least two versions of AQME are able to stand out and guarantee
a a more robust behavior than any of the engines.

5 Validating the Multi-engine Approach

The results presented in Section 4 are very positive. However, there are at least two
questions of interest that remain unanswered. The first is whether the results that we
obtained are valid only within the context of QBFEVAL’06. Since any classifier learned
in AQME will always be dependent on the training data – as any approach based on
inductive inference (see, e.g., [19]) – the real question is how strong is such dependence.
In Section 5.1 we study this problem by investigating the stability of AQME in the face
of perturbations that can affect the dataset used for training/testing. Since the features
described in Section 2 have shown interesting properties, the second question is whether
only some of them are important, and whether we can find any relationships between
such features and the basic engines. We devote Section 5.2 to study this problem.

5.1 Assessing (in)Dependence from the QBFEVAL’06 Dataset

The first experiment that is aimed at understanding the effect of random changes in
the composition of the dataset used for training/testing. We compute several pairs of
training/test sets by removing instances uniformly at random without repetition from
the QBFEVAL’06 dataset. The removed instances are used to build test sets, while the
remaining instances are used for training. By increasing the percentage of removed in-
stances, we can increase the level of departure with respect to the original dataset, and
thus we can assess the stability of our results with respect to an increasing perturba-
tion. We remove 10% to 50% of the original instances, in increments of 10%, and we
randomly generate 50 training/testing sets for each percentage of removed instances.

In Table 5 we show the results of our experiments. The first column contains the
solver names, and it is followed by five groups of columns, one for each percentage of
removed instances, with an indication of the cardinality of the test set; the two subgroups
“B” (resp. “W”) show the best (resp. worst) case performances of each solver across 50
sampled test sets. The columns “#” and “Time” contain the number of instances solved

A Multi-engine Solver for Quantified Boolean Formulas 583

Table 5. Results obtained by randomly choosing increasingly smaller datasets for training

10% (32) 20% (63) 30% (95) 40% (126) 50% (159)
B W B W B W B W B W

Time # Time # Time # Time # Time # Time # Time # Time # Time # Time
AQME-1NN 32 162 28 616 63 995 57 928 95 1049 88 4757 126 6542 116 9049 158 4713 147 11707
AQME-C4.5 32 164 30 2312 63 324 59 933 95 1843 90 7028 126 2427 119 7178 158 7202 149 5977
AQME-RIPPER 32 171 28 1012 63 1595 54 6422 93 1122 84 9342 123 7250 107 12868 156 7588 131 9702
AQME-MLR 32 182 28 134 62 271 56 1537 93 972 87 2338 123 2686 110 5487 156 11791 140 5820
2CLSQ 27 2021 18 261 50 5351 38 2773 77 15655 62 9495 95 11752 81 8431 121 13329 102 7384
SKIZZO 24 1644 16 5036 47 3414 36 5701 73 13274 57 6666 91 15763 78 17965 114 16903 100 33631
QUBE5.0 24 3298 14 3352 44 6140 33 5695 68 18318 49 9253 87 21702 72 5929 107 20244 89 19293
SSOLVE 23 10847 13 3666 41 18574 28 18335 61 27736 43 6760 67 23668 60 16443 96 39064 77 32658
QUANTOR 21 156 12 86 42 45 30 3265 64 408 47 3544 79 3940 66 3806 101 776 79 359
QUBE3.0 20 6563 8 4471 32 7530 17 10959 46 7867 29 11971 57 19515 36 10325 75 18256 49 11792
YQUAFFLE 19 1097 5 499 29 3233 16 893 43 11110 24 8867 53 11109 35 9597 72 21023 47 10133
QUAFFLE 16 980 6 5869 29 5453 15 1491 43 8481 25 7646 53 9090 37 8592 66 14927 47 4936

and the cumulative CPU seconds to solve them, respectively. The top-three performers
in each subgroup are highlighted with bold text.5

Looking at Table 5, we can conclude that the performances of AQME are substantially
stable and fairly independent of the relative composition of the training vs. the test sets.
Notice that, considering the best case scenarios, and with the only exception of the
“50%” group, at least one version of AQME is able to solve all the instances in the test
set. Moreover, the ratio between the number of instances solved in the best case scenario
and in the worst case scenario for AQME is closer to 1 than all its engines. This indicates
that AQME is more robust than its components for all but substantial departures from
the QBFEVAL’06 dataset.

The second experiment that we describe is aimed at understanding how much AQME

is sensitive to perturbations that diminish the maximum amount of CPU time granted
to the solvers. The time limit in QBFEVAL’06 is 6000s. For this experiment, we con-
sidered four datasets extracted from QBFEVAL’06 by setting the time limit to 10, 5, 1
and 0.5 seconds, and then considering all the formulas that were solved by at least one
competitor within each given time limit. We used the time-capped datasets as training
sets, and the remaining instances as test sets. Notice that the size of the sets increases as
the time limit decreases, so this experiment explores the possibility of training AQME

with a small number of easy-to-solve formulas, and then deploying it on a large number
of hard-to-solve ones.

In Table 6 we show the results of the above experiment. The table is arranged simi-
larly to Table 5, modulo the fact that best- and worst-case performances coincide, since
the test sets are obtained deterministically. Looking at Table 6, we can see that even
when training on relatively easy formulas (the 0.5 group), the four AQME versions per-
form substantially better than every other engine. This result confirms that AQME mod-
els are relatively immune to changes in the training set that have an impact on the time
resources alloted to the solvers.

Our third experiment aims to establish how much AQME is sensitive to a training set
that is biased in favor of a given solver. For each engine, we consider all the formulas
that it can evaluate within the time limit as the training set, and the remaining formulas
as the test set. In Table 7 we show the results of the above experiment. The first column
contains the solver names, and it is followed by eight group of columns, one for each

5 In case of ties on the number of problems solved, the solver yielding the smallest time is
preferred.

584 L. Pulina and A. Tacchella

Table 6. Results obtained by choosing increasingly easier datasets for training

10s (49) 5s (61) 1s (110) 0.5s (140)
Time # Time # Time # Time

AQME-C4.5 46 14501 56 14569 100 14893 130 16013
AQME-1NN 45 14451 55 14476 96 22807 129 17769
AQME-MLR 37 12798 39 7322 92 8094 115 12985
AQME-RIPPER 34 9397 49 12271 91 10125 114 9652
QUBE5.0 25 16622 29 16653 55 18354 80 23496
2CLSQ 13 2238 20 2334 52 7961 66 17781
SKIZZO 13 11780 21 14341 52 22956 65 23554
QUBE3.0 12 8503 12 8503 21 9505 30 10554
QUANTOR 11 3542 18 3634 45 4156 56 4409
SSOLVE 11 6178 12 8124 27 17329 36 19653
YQUAFFLE 5 3011 5 3011 14 4381 24 13424
QUAFFLE 2 87 2 87 17 3689 24 4305

Table 7. Results obtained by biasing the dataset used for training

2CLSQ QUAFFLE QUANTOR QUBE3.0 QUBE5.0 SKIZZO SSOLVE YQUAFFLE
Time # Time # Time # Time # Time # Time # Time # Time

AQME-1NN 75 19859 155 21624 57 11741 178 5519 106 4890 82 15276 79 13205 153 14631
AQME-C4.5 81 13493 118 2309 80 12896 174 9816 88 4893 87 15632 80 13681 147 10319
AQME-RIPPER 70 16441 148 14640 96 22764 130 4214 99 4944 57 14636 118 14565 149 10699
AQME-MLR 58 14812 159 25304 61 16585 166 4099 93 4754 71 14511 80 17981 143 8942
2CLSQ – – 112 14509 50 19759 118 2762 99 885 33 16888 71 14115 116 3877
QUAFFLE 6 246 – – 22 870 28 6088 17 4737 13 651 27 3455 26 4833
QUANTOR 8 3655 86 4348 – – 106 4450 86 647 14 311 61 1182 100 4396
QUBE3.0 17 6851 33 7043 47 12586 – – 4 4299 33 8742 35 8151 20 11131
QUBE5.0 74 15225 98 16723 103 17567 80 10069 – – 88 17368 93 15399 94 19687
SKIZZO 25 11571 111 25276 48 19581 126 29832 105 27100 – – 64 20431 121 21946
SSOLVE 21 13197 83 35501 53 35980 86 28130 68 25035 22 23094 – – 92 37296
YQUAFFLE 8 649 24 5239 34 4913 13 10664 11 7379 21 3293 34 9899 – –

engine of AQME whereupon the training set is biased. The number of instances in each
of the eight test sets is (from left to right): 96, 202, 138, 197, 121, 104, 146, and 204.
The table is then arranged as Table 6. When the training set is biased in favor of a given
solver, a dash indicates that the corresponding test set does not contain any formula that
can be evaluated by such solver within the time limit.

Looking at the results of Table 7, we can see that a biased training set poses a serious
challenge to AQME, but, with the exception of the training set biased on QUANTOR,
at least one of its versions is always the best solver in each group. According to the
specific bias, a different version of AQME, if any, is best. In particular, AQME-1NN is the
best solver when the bias is in favor of QUBE3.0, QUBE5.0 and YQUAFFLE; AQME-
C4.5, AQME-RIPPER and AQME-MLR are the best solvers when the bias is in favor of
2CLSQ, SSOLVE, and QUAFFLE, respectively. Notice that when the bias is in favor of
2CLSQ, QUBE5.0, SKIZZO, and SSOLVE, then the solvers QUBE5.0, and SKIZZO are
very close to the performances of AQME. These results can be explained if we consider
that removing a specific solver may substantially alter the proportion of formulas in the
training/test sets that are more likely to be solved by search rather than hybrid solvers.
For instance, since QUBE5.0 is the best search solver, the test set corresponding to the
training set biased on QUBE5.0 will be comprised almost completely by formulas that
are more likely to be solved by hybrid solvers, which explains the good performances
of SKIZZO in this case.

A Multi-engine Solver for Quantified Boolean Formulas 585

RIPPER C4.5 MLR

1NN

wr∀−
wr−

∗

wr∀+
wr

∗ r∀+
r

r∀−
r

r∀−
r−

wr∀
wr

wr∀−
wr

wr∀−
wr−

∗

wr∀
wr

∗ r∀+
r

wr∀+
wr

wr∀−
wr

r∀
r

r∀−
r

r∀−
r−

–

RIPPER

l∗ r∗∃ p∗
wr∀
wr

∗
wr∀+

wr

∗

l− , r∃+ r+

r− c
v

r∀+
r

r∀
r

r∀−
r

r∀−
r−

wr∀−
wr

wr∀−
wr−

l∗ l∗− p∗ r∗∃
r∃− c

v

C4.5
l∗ l∗− r∗∃ p
r∃− c

v

FS M FS+M
Solver # Time # Time # Time
QUBE5.0 61 1076 61 1076 61 1076
AQME-RIPPER 58 335 54 712 53 1426
SKIZZO 57 1379 57 1379 57 1379
QUBE3.0 57 291 57 291 57 291
AQME-MLR 53 1274 53 1219 53 1013
SSOLVE 53 1251 53 1251 53 1251
2CLSQ 53 108 53 108 53 108
YQUAFFLE 51 84 51 84 51 84
AQME-1NN 46 614 51 625 51 1176
AQME-C4.5 45 75 55 1083 58 1096
QUANTOR 45 42 45 42 45 42
QUAFFLE 42 253 42 253 42 253

Fig. 1. Relevant features common to various models implemented in AQME (left) and AQME vs.
its engines on the QBFEVAL’07 dataset considering only subsets of features (right)

5.2 Assessing the Relevant Features

In all the experiments presented so far, we train and test AQME considering the whole
set of features, and the results are rewarding. Now we are interested to know (i) whether
a subset of the features considered still enables AQME to reach acceptable performances
and (ii) whether such features have some relationship with algorithmic differences
among its engines. Our main task is thus to isolate a subset of features that are rele-
vant, i.e., such that AQME restricted to these features can reach, or at least get close
to, the same performances obtained using the whole set of features. We would like the
features in such a set to be model-independent, i.e., relevant for all the models imple-
mented in AQME. Clearly, since different features may be relevant for different models,
model-independent features should hint more clearly to the relationships, if any, be-
tween properties of QBFs and differences among the engines of AQME.

The question then becomes how to find the relevant features, since exhaustive search
over 2k subsets of k features is impractical. We consider feature forward selection (FS),
a greedy search in the space of possible subsets of features (see, e.g., [19]). FS starts
with an empty subset of features. Each feature that is not already in the current subset
is tentatively added to it, and the resulting set of features is evaluated using, e.g., cross
validation. The effect of adding each feature in turn is quantified, the best one is chosen,
and the procedure continues. If no feature produces an improvement, the search ends.
Since FS guarantees to find a locally optimal set of features, we compensate for this
by considering the sets computed by FS augmented by all the features that are highly
correlated with the elements of such sets. We assess correlation using Kendall τ , a
coefficient that tests how much the trend of a feature is related to the trend of another.
We consider two features to be significantly correlated whenever |τ | ≥ 0.9.

Figure 1 (left) contains the results of the above analysis arranged in a matrix, where
each cell corresponds to a set obtained by intersecting the subsets of relevant features
for any two models implemented in AQME. In each cell, the features marked with a

586 L. Pulina and A. Tacchella

“*” are the ones originally spotted by FS, and mean values are considered for fea-
tures corresponding to a distribution of values. According to our experiments there
are no common relevant features between AQME-MLR and AQME-1NN, and thus no
model-independent ones. However, non-empty intersections can be found across RIP-
PER, C4.5, and 1NN, as well as across RIPPER, C4.5, and MLR. We denote such
intersections with F1 and F2:

F1 = {wr∀wr ,
wr∀+
wr ,

wr∀−
wr ,

wr∀−
wr− ,

r∀+
r ,

r∀−
r ,

r∀−
r− }

F2 = {l, l−, p, r∃, r∃−, cv}
(3)

The features in F1 are all variations of the ratio between the average (weighted) number
of universal variable occurrences vs. the average (weighted) number of variable occur-
rences (r∀r). Small (resp. large) values of this ratio indicate that the universal variables
tend to occur less (resp. more) than the average. If we consider the runtime distribu-
tion of search vs. hybrid solvers on the QBFEVAL’06 dataset, we have that search
solvers tend to perform better on small values of r∀

r , while the contrary is true for hy-
brid solvers. This is probably related to the fact that (a) the QBFEVAL’06 dataset is
biased in favor of satisfiable formulas, and (b), for such formulas search solvers tend to
spend a lot of time in checking all the combinations of universal variables. Solvers that
are not based on search, on the other hand, do perform better on these kind of formulas,
as long as they do not apply expansion of universal variables. In the case of weighted
occurrences, since outer variables in the prefix have higher weight, either the number
of levels is small, or the bulk of existential variables occurrences concerns variables
appearing in the outer level of the prefix. Since the median number of quantifier sets in
the QBFEVAL’06 dataset is 3 (min. 2, max. 133)6 the first explanation is the one that
applies to our results.

The features in F2 are related to the distribution of the number of literals per clause
(l, and l−), the distribution of the values of the products between negative and positive
occurrences of existential variables (p, and the related r∃ and r∃−), and the clauses-to-
variables ratio (cv). If we consider the runtime distribution of search vs. hybrid solvers,
we have that search solvers tend to perform better for small values of the above param-
eters. For l (and l−), we conjecture that this is related to the fact that in search solvers
the number of steps, i.e., variable assignments, required to falsify a clause is propor-
tional to the number of its literals, and thus longer clauses can hurt performances of
search solvers. In the case of p, search solvers should be relatively insensitive to this
parameter, while for solvers based, e.g., on variable elimination by Q-resolution, this
parameter gives a rough estimate of the effort required to eliminate a variable. While
it is somewhat peculiar that large values of p favor hybrid solvers in the QBFEVAL’06
dataset, considering also the results about cv and other features, we conjecture that this
is due to the fact that hybrid solvers are able to solve some of the largest formulas in the
dataset, and that this effect may be prevalent over others.

In order to check the significance of the features in the subsets F1 and F2 with respect
to the whole set of features, we use the QBFEVAL’06 and QBFEVAL’07 datasets to

6 The corresponding distribution is right-skewed, i.e., it has a long tail on the right, but most
formulas have a fairly small number of quantifier sets.

A Multi-engine Solver for Quantified Boolean Formulas 587

train and test AQME, respectively. We consider F1 ∪ F2 features, as well as others that
may discriminate between search and hybrid solvers, and precisely:

– The number of quantifier sets s, a rough indicator of complexity.
– The mean value of vs∃ and vs∀, which are related to (i) the number of different

Skolem functions, and the size of the parameters of a Skolem function, respectively,
as well as (ii) the number of variables to be resolved away with Q-resolution or
expanded, respectively (see [15,14]).

– l∃
l and l∀

l which are related to the mean number of variables that could be trans-
formed to a Skolem function, and the mean number of variables that could be ex-
panded with respect to the total variables in a clause;

– l−
l and l+

l which are related to the size of the antecedent and of the consequent,
respectively, looking at each clause as an implication.

The results of the above experiment are shown in the table on Figure 1 (right). The
organization of the table is the same used for the experiments of Section 5.1. The three
groups of columns correspond to considering the features in F1 ∪ F2 alone (FS), the
features outlined above (M), or both subsets of features (FS+M). Looking at the table,
we can see that in the case of the “FS” selection, only AQME-RIPPER is able to keep
up with the best performers in the dataset, namely QUBE5.0, SKIZZO and QUBE3.0,
while AQME-MLR ranks only fourth best, and AQME-1NN and AQME-C4.5 perfor-
mances are quite weak. Still, at least for AQME-RIPPER, most of the performances in
Table 4, can be explained in terms of F1 ∪ F2 only. In the “M” selection, even if AQME

ranks fourth at most, the performances of its four inductive models are more consistent
than in the “FS” selection: C4.5, RIPPER, MLR and 1NN solve 55, 54, 53 and 51 prob-
lems, respectively. From this, we can see that features that are supposedly linked to the
engine internals are more likely to behave in a model-independent fashion. Looking at
the “FS+M” selection, we can see that the performances of AQME with the combination
of automatic and manual feature selection are very close to the performances that can be
obtained using the whole set of features. Even if the performances are still weaker than
in Table 4, we are now considering only 20 features out of 141, so it is fair to say that
these are the features that matter most in the performances of AQME. In particular, with
respect to the results of Table 4, AQME-C4.5 and AQME-1NN have a negative gap of
three instances (58 vs. 61 and 51 vs. 54, respectively), while AQME-MLR and AQME-
RIPPER have a negative gap of 12 and 7 instances, respectively. It is also interesting to
notice that while RIPPER, C4.5 and MLR are quite sensitive to changes in the feature
space, 1NN performances are not, possibly because of a floor effect.

6 Conclusions

In this paper we have shown that a set of inexpensive syntactic features can hint the
choice of the best engine to run on a given QBF. We have provided experimental evi-
dence that our multi-engine solver AQME is a robust alternative to current state-of-the-
art QBF solvers. We have also shown that AQME is stable with respect to perturbations
that may affect the QBFEVAL’06 dataset on which it is engineered. Finally, we have
provided some experimental evidence about the significant features leveraged by AQME

588 L. Pulina and A. Tacchella

and their connection with algorithmic differences among its engines. The validation of
AQME is still in progress, and further work will include broadening the set of formulas
whereon we validate the performances of AQME, the study of dynamic adaptive mech-
anisms, and a deeper study of the features guiding the choice of the best engine to run
on each formula.

References

1. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: 5th Annual
ACM Symposium on the Theory of Computation (1973)

2. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
3. Gent, I.P., Nightingale, P., Rowley, A.: Encoding Quantified CSPs as Quantified Boolean

Formulae. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI
2004) (2004)

4. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. In: Proc. 4th Intl. Workshop
on Bounded Model Checking (BMC’06) (2006)

5. Ansotegui, C., Gomes, C.P., Selman, B.: Achille’s heel of QBF. In: Proc. of AAAI (2005)
6. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving Advanced Reasoning Tasks Using

Quantified Boolean Formulas. In: Seventeenth National Conference on Artificial Intelligence
(AAAI 2000), pp. 417–422. MIT Press, Cambridge (2000)

7. Narizzano, M., Pulina, L., Taccchella, A.: QBF solvers competitive evaluation (QBFEVAL)
(2003-2007), http://www.qbflib.org/qbfeval

8. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational
problems. Science 3 (1997)

9. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126 (2001)
10. Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., Hoos, H.: SATzilla: An Algo-

rithm Portfolio for SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542,
pp. 13–14. Springer, Heidelberg (2005)

11. Samulowitz, H., Memisevic, R.: Learning to Solve QBF. In: AAAI’07. Proc. of 22nd Con-
ference on Artificial Intelligence (2007)

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

13. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas.
Information and Computation 117(1), 12–18 (1995)

14. Benedetti, M.: sKizzo: a Suite to Evaluate and Certify QBFs. In: Nieuwenhuis, R. (ed.) Au-
tomated Deduction – CADE-20. LNCS (LNAI), vol. 3632. Springer, Heidelberg (2005)

15. Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542. Springer, Heidelberg (2005)

16. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001), www.qbflib.org

17. Narizzano, M., Pulina, L., Tacchella, A.: The third QBF solvers comparative evalua-
tion. Journal on Satisfiability, Boolean Modeling and Computation 2, 145–164 (2006),
http://jsat.ewi.tudelft.nl/

18. Kaufman, L., Rousseeeuw, P.J.: Finding Groups in Data. Wiley, Chichester (1990)
19. Witten, I.H., Frank, E.: Data Mining, 2nd edn. Morgan Kaufmann, San Francisco (2005)
20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco

(1993)
21. Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference on Machine

Learning, pp. 115–123 (1995)

http://www.qbflib.org/qbfeval
www.qbflib.org
http://jsat.ewi.tudelft.nl/

A Multi-engine Solver for Quantified Boolean Formulas 589

22. Le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statis-
tics 41, 191–201 (1992)

23. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning, 37–66 (1991)
24. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model

selection. In: Proc. of Intl. Joint Conference on Artificial Intelligence (IJCAI) (2005)

Decomposing Global Grammar Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 Omega Omptimization
2 NICTA and UNSW

Abstract. A wide range of constraints can be specified using automata or formal
languages. The GRAMMAR constraint restricts the values taken by a sequence of
variables to be a string from a given context-free language. Based on an AND/OR
decomposition, we show that this constraint can be converted into clauses in con-
junctive normal form without hindering propagation. Using this decomposition,
we can propagate the GRAMMAR constraint in O(n3) time. The decomposition
also provides an efficient incremental propagator. Down a branch of the search
tree of length k, we can enforce GAC k times in the same O(n3) time. On spe-
cialized languages, running time can be even better. For example, propagation of
the decomposition requires just O(n|δ|) time for regular languages where |δ| is
the size of the transition table of the automaton recognizing the regular language.
Experiments on a shift scheduling problem with a constraint solver and a state
of the art SAT solver show that we can solve problems using this decomposition
that defeat existing constraint solvers.

1 Introduction

Many problems in areas like planning, scheduling, routing, and configuration can be
naturally expressed and efficiently solved using constraint programming (CP). One rea-
son for the success of CP is that it provides a simple and declarative method for solving
a wide range of difficult combinatorial problems. However, we are still some way from
the “model and run” capability of solvers for mixed integer programming (MIP) and
propositional satisfiability (SAT). A major direction of research in CP is therefore di-
rected towards developing new ways for the user to state their problem constraints that
can then be efficiently reasoned about.

One very promising method for rostering and other domains is to specify constraints
via grammars or automata that accept some language. With the REGULAR constraint
[1], we can specify the acceptable assignments to a sequence of variables by means of
a deterministic finite automaton. For instance, we might want no more than two con-
secutive shift variables to be assigned to night shifts. One limitation of the REGULAR

constraint is that we cannot compactly specify everything we might like using just de-
terministic finite automaton. For example, there are regular languages which can only
be defined by a deterministic automaton with an exponential number of states. One
extension is to consider regular languages specified by non-deterministic automata, as
such automata can be exponentially smaller [2].

Researchers have considered moving above regular languages in the Chomsky hier-
archy. For example, the GRAMMAR constraint [3,2] permits us to specify constraints

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 590–604, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Decomposing Global Grammar Constraints 591

using any context-free grammar. However, this generalization has appeared till now to
be mostly of theoretical interest, given the high cost of propagating the GRAMMAR

constraint. The aim of this paper is to show that the global GRAMMAR constraint has
practical promise. Context-free grammars can provide compact specifications for com-
plex constraints, making it easier both to specify the problem as well as to reason with
the constraints. For example, in the shift-scheduling benchmarks reported in this paper,
we used a grammar with a dozen or so productions, whilst the corresponding automaton
has thousand of states. The grammar is thus arguably much simpler to specify than the
automaton. In addition, we argue that, using a simple decomposition of the GRAMMAR

constraint, we can propagate such a specification efficiently and effectively.
We will show that the global GRAMMAR constraints be implemented using a simple

AND/OR decomposition based on the well known CYK parser. We prove that this de-
composition does not hinder propagation; unit propagation on the decomposition prunes
all possible values. Decomposing global constraints in this way brings several advan-
tages. First, we can easily add this global constraint to any constraint solver. Here,
for example, we use the decomposition to add the GRAMMAR constraint to both a con-
straint toolkit and a state of the art SAT solver. Second, decomposition gives an efficient
incremental propagator. The solver can simply wake up just those constraints contain-
ing variables whose domains have changed, ignoring those parts of the decomposition
that do not need to be propagated. This gives a propagator whose worst case cost down
a whole branch of the search tree is just the same as calling it once. Third, decom-
position gives a propagator which we can backtrack over efficiently. Modern SAT and
CP solvers use watch literals so that we can backtrack one level up the search tree in
constant time. This decomposition provides us with this efficiency.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints. The domain of the variable X will be written
dom(X). A constraint restricts values taken by some subset of variables to a subset of
the Cartesian product of their domains. A solution is an assignment of one value to each
variable satisfying all the constraints. Systematic constraint solvers typically construct
partial assignments using backtracking search, enforcing a local consistency to prune
values for variables which cannot be in any solution. We consider one of the most
common local consistencies: generalized arc consistency. A support for a constraint C
is an assignment to each variable of a value in its domain which satisfies C. A constraint
C is generalized arc consistent (GAC) iff for each variable, every value in its domain
belongs to a support. Finally, a CSP is GAC iff each constraint is GAC.

We will consider global constraints which are specified in terms of a grammar or
automaton which accepts just valid assignments for a sequence of n variables. Such
constraints are useful in a wide range of scheduling, rostering and sequencing prob-
lems to ensure certain patterns do or do not occur over time. For example, we may
wish to ensure that anyone working three night shifts then has two or more days off.
Such a constraint can easily be expressed using a context-free language. Context-free
languages are exactly those accepted by non-deterministic push-down automaton. A

592 C.-G. Quimper and T. Walsh

context-free language can be specified by a set of productions in Chomsky normal form
in which the left-hand side has just one non-terminal, and the right-hand have just one
terminal or two non-terminals. We will use capital letters for non-terminals and lower-
case letters for terminals. We shall also assume that S is the unique non-terminal start
symbol. Even though the production A→ Bc is not in the Chomsky normal form since
the symbol c is not a non-terminal, we will consider this production as a shorthand for
the productions A→ BZ and Z → c which are both in the Chomsky normal form.

A sequence belongs to a context-free language iff there exists a parsing tree whose
root is the start symbol S, and whose leaves in order reproduce the sequence. A parsing
tree for a non-terminal is a tree whose root is labelled with the given non-terminal,
whose leaves are labelled with terminals and whose inner-nodes are labelled with other
non-terminals. When the productions are in the Chomsky normal form, a node A in
the parsing tree either has two children B and C where A → BC is a production in
the grammar, or has one child t where A → t is again a production in the grammar
and t is a terminal. Given a grammar defining a context-free language, the GRAMMAR

constraint accepts just those assignments to a sequence of n variables which are strings
in the given context-free language [2,3].

Example 1. Consider the following context-free grammar, G

A→ aA | a B → bB | b S → AB

SupposeX1,X2 andX4 ∈ {a, b}.Then enforcing GACon GRAMMAR(G, [X1, X2, X3])
prunes b from X1 and a from X3 as the only supports are the sequences aab and abb.

The REGULAR constraint [1] is a special case of the GRAMMAR constraint. This accepts
just those assignments which come from a regular language. Regular languages are
strictly contained with context-free languages. A regular language can be specified by
productions in which the left-hand side has just one non-terminal, and the right-hand
has just one terminal, or one terminal and one non-terminal. Alternatively, it can be
specified by means of a (non-)deterministic finite automaton.

3 Decomposition of the GRAMMAR Constraint

We show here how to propagate the GRAMMAR constraint using a simple AND/OR
decomposition based on the well known CYK parser. This parser uses dynamic pro-
gramming bottom up to construct all possible parsings for all possible sub-strings. We
backtrack over the table constructed by the parser to decompose the constraint into a
Boolean formula. We introduce two types of Boolean variables: the variables x(t, i, 1)
which are true iff Xi, the ith CSP variable, has the terminal symbol t in its domain, and
the variables x(A, i, j) which are true iff the ith to i + j − 1th symbols can be parsed
as the non-terminal A. The truth of x(A, i, j) can be expressed in terms of the truth of
other variables based on the CYK update rule: A is parsing for symbols i to i + j − 1
iff there is some production A → BC in the grammar, B is a parsing for symbols i
to i + k − 1, and C is a parsing for symbols i + k to i + j − 1. Algorithm 1 gives
an O(|G|n3) time procedure for constructing the decomposition. This algorithm takes

Decomposing Global Grammar Constraints 593

as input the grammar G and the constrained variables X1, . . . , Xn and returns a set of
Boolean formulae. The algorithm first creates a table V where each entry contains a
set of non-terminals such that the non-terminal A belongs to V [i, j] if A can parse the
symbols i to i + j − 1. In the second phase, the algorithm backtracks in the table V to
create a variable x(A, i, j) for each non-terminal A ∈ V [i, j] that can contribute to the
production of the non-terminal S at the top of the parsing tree.

input : A context-free grammar G in its Chomsky normal form
input : The constrained variables X1, . . . , Xn

output: A set of Boolean formulae equivalent to the GRAMMAR constraint or
“Unsatisfiable” if the constraint is unsatisfiable

for i = 1 to n do1

V [i, 1] ← {A | A → a ∈ G, a ∈ dom(Xi)} ∪ dom(Xi)2

for j = 2 to n do3

for i = 1 to n − j + 1 do4

// Store in V [i, j] all the non-terminals that can generate the sequence5

// Xi . . . Xi+j−16

V [i, j] ← {A | A → BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S �∈ V [1, n] then8

return “Unsatisfiable”9

N ← {x(S, 1, n)} // Set of variables10

Y ← ∅ // Set of equivalences11

for j = n downto 2 do12

for i = 1 to n − j + 1 do13

for x(A, i, j) ∈ N do14

// Store in D the pairs of variables on which the CYK rule applies15

D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A → BC ∈ G,16

B ∈ V [i, k], C ∈ V [i + k, j − k]}17

for 〈a, b〉 ∈ D do18

N ← N ∪ {a, b} // Add nodes to the decomposition19

Y ← Y ∪ {x(A, i, j) ≡ ∨
〈a,b〉∈D a ∧ b} // Add relation20

for i = 1 to n do21

N ← N ∪ {x(a, i, 1) | a ∈ dom(Xi), A → a ∈ G, x(A, i, 1) ∈ N}22

Y ← Y ∪ {x(A, i, 1) ≡ x(a, i, 1) | A → a ∈ G, x(A, i, 1) ∈ N, a ∈ dom(Xi)}23

dom(Xi) ← {a | x(a, i, 1) ∈ N}24

return The set of clauses Y25

Algorithm 1. CYK-prop(G, [X1, . . . , Xn])

Example 2. Consider again the context-free grammar, G from Example 1, again applied
to a sequence of length 3.

A→ aA | a B → bB | b S → AB

594 C.-G. Quimper and T. Walsh

Algorithm 1 constructs the following formulae:

x(A, 1, 1) ≡ x(a, 1, 1)
x(A, 2, 1) ≡ x(a, 2, 1)
x(B, 3, 1) ≡ x(b, 3, 1)

x(A, 1, 2) ≡ x(a, 1, 1) ∧ x(A, 2, 1)
x(B, 2, 2) ≡ x(b, 2, 1) ∧ x(B, 3, 1)

x(S, 1, 3) ≡ (x(A, 1, 1) ∧ x(B, 2, 2)) ∨ (x(A, 1, 2) ∧ x(B, 3, 1))

The formulae created by Algorithm 1 can be represented by a rooted DAG. Every
leaf is labelled with a variable x(t, i, 1) where t is a terminal symbol and i is an integer
between 1 and n. Every inner-node is either a conjunction or a disjunction. Formulae
of the form x ≡ b are represented by a single leaf node with two labels: x and b. For
formulae of the form x ≡ (a1 ∧ b1) ∨ . . . ∨ (ak ∧ bk), we create k and-nodes with two
children each, ai and bi. We label each and-node with the expression ai ∧ bi. The k
and-nodes have the or-node labelled with x as common parent.

Based on this DAG, we propose the following CNF decomposition. For every or-
node x with children c1, . . . , ck, we post the following constraint forcing at least one
child to be true when the or-node x is true.

¬x ∨ ci ∨ . . . ∨ ck (1)

For every and-node x with children c1 and c2, we post the following constraints to
enforce all children to be true whenever the and-node x is true.

¬x ∨ c1 (2)

¬x ∨ c2 (3)

∧

∨

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1) x(b, 3, 1)

∧

∨
∧ ∧

∨

x(A, 1, 2) ≡ ≡ x(B, 2, 2)

x(A, 2, 1) x(B, 3, 1)

x(S, 1, 3) ≡

x(A, 1, 1)

Fig. 1. DAG corresponding to the example grammar

Decomposing Global Grammar Constraints 595

For every node x, except the root x(S, 1, n), we post the following constraint on its
ancestors a1, . . . , ak, to force the node x to be true only if one of its ancestors is true.

¬x ∨ a1 ∨ . . . ∨ ak (4)

We force the root node x(S, 1, n) to be true. Finally, for every position 1 ≤ i ≤ n,
we force one and only one terminal to be true.

∨
t

x(t, i, 1) ∀ 1 ≤ i ≤ n (5)

¬x(t, i, 1) ∨ ¬x(u, i, 1) ∀ i ∀ t 	= u (6)

Note that constraints (4) are redundant as they are logically implied by the others.
However, they are added to the encoding to ensure that unit propagation on the decom-
position prunes all possible values.

Example 3. Letw be the node x(b, 2, 1)∧x(B, 3, 1), ybe the node x(A, 1, 2)∧x(B, 3, 1),
and z be the node x(A, 1, 1) ∧ x(B, 2, 2) in the DAG of Figure 1. We show the CNF
clauses constraining the variable y.

Clause (1) applied to x(S, 1, 3) becomes ¬x(S, 1, 3) ∨ y ∨ z. This ensures that if
x(S, 1, 3) is true, one of its children is also true. Clauses (2) and (3) applied to y become
¬y ∨ x(A, 1, 2) and ¬y ∨ x(B, 3, 1). If the and-node y is true, both of its children are
also true. Clause (4) constrains the variable y in three different ways. When the clause
is directly applied to y, it becomes¬y∨x(S, 1, 3) forcing y to be true only if it produces
x(S, 1, 3). Similarly, the node x(A, 1, 2) belongs to a parsing tree only if y is true. We
therefore have ¬x(A, 1, 2) ∨ y. Finally, the node x(B, 3, 1) is true only if either of
its parents y or w is true. We therefore have ¬x(B, 3, 1) ∨ w ∨ y. There are no other
constraints on variable y.

4 Theoretical Properties

We first prove that this decomposition of the global GRAMMAR constraint is correct.
The correctness follows quite quickly from the proof of the correctness of the CYK
parser, and is similar to the correctness proofs for the previous propagators for the
GRAMMAR constraint [3,2].

Theorem 1. The GRAMMAR constraint is satisfiable iff x(S, 1, n) can be true.

Proof: Suppose the GRAMMAR constraint is satisfiable. There exists a parsing tree T
proving that the sequence X1, . . . , Xn belongs to the language. We first prove that for
every node in the parsing tree, there is a corresponding variable created by Algorithm 1.
We then show that all these variables can be set to true. The first phase of the algorithm
(line 0 to line 7) stores in V [i, j] every non-terminal that can produce the symbols for
Xi to Xi+j−1. The second phase of the algorithm (line 9 to line 24) creates a node
x(A, i, j) for every terminal A that can produce the symbols for Xi to Xi+j−1 and
participates to the production of the non-terminal S at the root of the parsing tree. The
correctness of this statement follows from [3,2]. Therefore, for every node in the parsing
tree T , we have a corresponding variable x(X, i, j).

596 C.-G. Quimper and T. Walsh

We prove by induction on the depth of the parsing tree that every variable corre-
sponding to a node in the parsing tree can be set to true. As a base case, the leaves of
the parsing tree correspond to the nodes x(Xi, i, 1) in the DAG that we set to true.
The other leaves of the DAG are set to false. The clauses (5) and (6) are satisfied
since there is one and only one leaf set to true at each position. Let A be a node in
the parsing tree with children B and C where A generates a sequence of length j at
position i and B generates a sequence of length k. Consequently, there exists a pro-
duction A → BC ∈ G, a variable x(A, i, j), a variable x(B, i, k), and a variable
x(C, i + k, j − k). On line 19, Algorithm 1 has made the node x(A, i, j) the parent
of the pair x(B, i, k) ∧ x(C, i + k, j − k) since the production A → BC and both
nodes x(B, i, k) and x(C, i + k, j − k) exist. By our induction hypothesis, we assume
that the variables x(B, i, k) and x(C, i + k, j − k) are true. The and-node can be set
to true while satisfying the clauses (2) and (3). Since the and-node is true, we can set
the variable x(A, i, j) to true and satisfy clause (1). Finally, the clause (4) is satisfied
for the variables x(B, i, k) and x(C, i+ k, j− k) and the and-node. When applying the
induction step to all nodes in the parsing tree in post-order, we obtain that the root node
x(S, 1, n) can be set to true.

Suppose there exists a solution to the CNF clauses where x(S, 1, n) is true. Clause 1
guarantees that at least one child is also true. This child is an and-node with two children
that are also true thanks to the clauses (2) and (3). We continue this reasoning until
reaching the leaf nodes. All the visited nodes form a parsing tree whose leaves, when
listed from left to right, are a sequence satisfying the GRAMMAR constraint.

Notice that the constraint (4) was not used in the second part of proof of Theorem 1. This
constraint is not necessary to detect the satisfiability of the constraint. Constraint (4) is
in fact redundant. It is however essential to prove our next result.

We show that the decomposition of the GRAMMAR constraint does not hinder propa-
gation. This is less immediate than the previous result. In particular, we find it surprising
that unit propagation alone is enough to achieve GAC here. This does not follow directly
from the completeness proofs for previous GAC propagators [3,2]. Indeed, we had to
add redundant constraints to the decomposition to give this property.

Theorem 2. Unit propagation on the CNF clauses achieves GAC on the GRAMMAR

constraint.

Proof: We assume that all CNF clauses are consistent. The constraint (4) guarantees
that every node that can be true has an ancestor that can also be true. By successively
applying the argument from a leaf node x, we obtain a path connecting the leaf x to
the root node x(S, 1, n) such that every variable on this path can be set to true. Let
x(A, i, j) be a variable on the path. Let c1, . . . , cn be the child variables of x(A, i, j) in
the DAG. From the constraint (1), we conclude that there exists at least one and-node
among the children that can be true. Let ci be one such child that has b1 and b2 as
children. The constraints (2) and (3) guarantee that both children can be true. We repeat
this argument until reaching the leaves. Every node thus explored form a parsing tree
whose leaves are a support for the variable x. Therefore, one can build a support for
every node in the DAG that can be set to true.

Decomposing Global Grammar Constraints 597

The constraint (5) ensures that if a character belongs to all supports, its corresponding
leaf is fixed to true. Finally, the constraint (6) ensures that a character fixed to true
removes all supports for the other characters at the same position.

Finally, we show that we can propagate this decomposition efficiently. The run-time
complexity of Algorithm 1 is the same as that of the CYK parser, i.e. Θ(n3|G|) where
|G| is the size of the grammar.

Theorem 3. The running time complexity of Algorithm 1 is O(|G|n3) where n is the
length of the sequence and |G| is the number of productions in the grammar.

Proof: Line 2 iterates n times over the O(|G|) productions resulting in a time complex-
ity of O(|G|n). The set V [i, j] created on line 7 tests all combinations of productions
and integers between 1 and j for a total number of O(|G|n) tests. Since there are O(n2)
sets V [i, j], the complexity sums up to O(|G|n3). The running time of the for loop on
line 12 is dominated by the computation on line 15. Let Z be the set of non-terminals
in the grammar. Let f(A) be the number of productions in the grammar G whose left
hand side is the non-terminal A. We have

∑
A∈Z f(A) = |G|. Line 15 takes O(nf(A))

time to execute as we test for each production that generates A and every integer k. The
cumulative time spent on this line is therefore given by the following expression.

O(
n∑

j=2

n−j+1∑
i=1

∑
A∈Z

nf(A)) = O(n
n∑

j=1

n∑
i=1

∑
A∈Z

f(A)) (7)

= O(|G|n3) (8)

The running time of Algorithm 1 is thus O(|G|n)+O(|G|n3)+O(|G|n3)=O(|G|n3).

The size of the graph and the number of CNF clauses are bounded by the number of
and-nodes in the DAG which is O(n3|G|). Notice that whilst Algorithm 1 performs
Θ(n3|G|) tests on line 7, not all these tests add a non-terminal to the set V [i, j]. More-
over, not all the non-terminals in V [i, j] lead to the creation of a node on lines 15 to 18.

We are now ready to analyse the running time complexity of maintaining GAC on the
decomposition. We assume that the solver wakes up a constraint only when a variable
in its scope is fixed to a specific value. For a CNF clause of arity k, this event occurs
at most k times down the branch of the search tree. We have no assumptions regarding
in which order the constraints are awaken. However, we assume that the propagator
of a CNF clause of arity k maintains GAC in O(k) time down a branch of the search
tree. This assumption can be satisfied by encoding the k-ary CNF clause

∨k
i=1 xi using

the following clauses: x1 ∨ y2, ¬yi ∨ xi ∨ yi+1 for 1 < i < k, and ¬yk ∨ xk. Since
each of the k clauses is awaken at most three times down a branch of the search tree
and each propagation takes constant time, propagating the original CNF clause requires
O(k) time down a branch of the search tree. Notice that other implementations of the
CNF clause propagator might be more efficient in practice. See [13] for instance for an
implementation using watched literals.

Theorem 4. Amortised over a branch of the search tree of length k, we can enforce
GAC k times on the GRAMMAR constraint using the decomposition in O(n3|G|) time.

598 C.-G. Quimper and T. Walsh

Proof: We assume that propagating a CNF clause of arity k takes O(k) time down
a branch of the search tree. We conclude that the propagation time, down a branch
of the search tree, is proportional to the number of literals in the CNF clauses. Since
the graph inducing the CNF clauses is of size O(n3|G|), the number of literals in the
CNF clauses is also O(n3|G|). Consequently, we obtain a running time complexity of
O(n3|G|) down a branch of the search tree.

This improves upon the Θ(n3|G|) time complexity of the monolithic propagators for
the GRAMMAR constraint given in [2,3]. We note that our decomposition is the first
incremental propagator proposed in the literature.

5 Regular Languages

In some cases, we can specify problem constraints using a simple grammar. For in-
stance, we often only need a regular language [1]. Regular languages are strictly con-
tained within context-free languages. They can be specified with productions of the
form of A→ aB or A→ a. We show that for regular languages, Algorithm 1 creates a
smaller DAG, resulting in faster propagation.

Theorem 5. Unit propagation on the CNF decomposition enforces GAC on the
REGULAR constraint in O(n|G|) time.

Proof: If all productions are of the form of A → aB or A → a, a node x(A, i, j)
can belong to a parsing tree only if i = n − j + 1. The size of the graph is therefore
bounded by O(n|G|) and-nodes which limits the number of literals in the CNF clauses
to O(n|G|). Using the same assumption and argument as Theorem 4, we conclude that
propagating the CNF-clauses down a branch of the search tree takes O(n|G|) time.

The running time complexity for pruning regular languages using this decomposition
matches the complexity of the propagator for the REGULAR constraint based on dy-
namic programming [1]. In fact, the clauses constructed by Algorithm 1 are essentially
the hidden variable encoding of the ternary decomposition of the REGULAR constraint
given in [2].

Example 4. The language anbm used in Example 1 can be recognized by the automaton
of Figure 2. This automaton can be translated to a regular grammar as follows.

S → aA A→ aA | bB | b B → bB | b
Algorithm 1 constructs the graph depicted in Figure 3 over a sequence of three variables.
From this graph, we construct clauses representing the Boolean formulae:

S A B
a

a

b

b

Fig. 2. Automaton recognizing the language anbm for n, m ≥ 1

Decomposing Global Grammar Constraints 599

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1)
x(A, 3, 1)

∧

∨

∧

∧

∨

≡ x(A, 2, 2)

x(B, 3, 1)

x(S, 1, 3) ≡

x(b, 3, 1)

Fig. 3. DAG corresponding to the regular grammar of Example 4

x(a, 1, 1) ∧ (x(a, 2, 1) ∧ x(b, 3, 1)) ∨ (x(b, 2, 1) ∧ x(b, 3, 1))

This gives constraints logically equivalent to:

X1 = a, (X2 = a ∧X3 = b) ∨ (X2 = b ∧X3 = b)

6 Conditional Productions

We have also found it useful in practice to go slightly outside context-free grammars.
These extensions permit us to specify in a simple manner that, for instance, a work day
must have a span of between 6 to 8 hours, or that a certain activity can only be executed
after 2pm. To specify such conditions, we make productions in the grammar conditional
on Boolean functions of the relevant indices. This can be quickly incorporated into our
decomposition. We attach the Boolean functions fA(i, j), fB(i, j), and fC(i, j) to every
production A→ BC ∈ G. These functions restrict where the production can be applied
in a sequence. For instance, the non-terminal A can only be produced by the production
A→ BC if A generates a sub-string of length j starting at position i where fA(i, j) is
true. Similarly, the production can be applied only if B generates a sub-string of length
j starting at position i where fB(i, j) is true. To support these constrained productions,
we change line 7 in Algorithm 1 with the following one.

V [i, j]← {A | A→ BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k],
fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k)}

We also replace line 15 with the following one.

600 C.-G. Quimper and T. Walsh

D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A→ BC ∈ G,

B ∈ V [i, k], C ∈ V [i + k, j − k], fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k))}
Productions of the form A → a only require a function fA(i) as they necessarily

produce sequences of length one. Moreover, the production of a terminal can be con-
trolled by removing the terminal from the domain of the variables Xi. We therefore
replace line 2 with the following one.

V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi), fA(i)} ∪ dom(Xi)

We also replace line 23 with the following one.

Y ← Y ∪ {x(A, i, 1) ≡ x(a, i, 1) | A→ a ∈ G, x(A, i, 1) ∈ N, a ∈ dom(Xi), fA(i)}

7 Experimental Results

To test the practical utility of this decomposition of the GRAMMAR constraint, we ran
some experiments using the shift-scheduling benchmark introduced in [4]. The schedule
of an employee in a company is subject to the following rules. An employee either
works on an activity ai, has a break (b), has lunch (l), or rests (r). When working on an
activity, the employee works on that activity for a minimum of one hour. An employee
can change activities after a break or a lunch. A break is fifteen minutes long and a
lunch is one hour long. Lunches and breaks are scheduled between periods of work. A
part-time employee works at least three hours but less than six hours a day and has one
break. A full-time employee works between six and eight hours a day and have a break,
a lunch, and a break in that order. Employees rest at the beginning and the end of the
day. At some time of the day, the business is closed and employees must either rest,
break, or have lunch. We divide a day into 96 time slots of 15 minutes. During time slot
t, at least d(t, ai) employees must be assigned to activity ai. Our goal is to minimize
first the number of employees and then the number of hours worked.

We model the schedule of an employee with a sequence of 96 characters (one per
time slot) that must be accepted by the following grammar G.

R→ rR | r L→ lL | l Ai → aiAi | ai

W → Ai P →WbW F → PLP

S → RPR | RFR

We add some restrictions on some productions. For W → Ai, we have fW (i, j) ≡
j ≥ 4 since an employee works on an activity for at least one continuous hour. In
F → PLP , we have fL(i, j) ≡ (j = 4) since a lunch is one hour long. In S →
RPR, we have fP (i, j) ≡ 13 ≤ j ≤ 24 since a part-time employee works at least
three hours and at most six hours plus a fifteen minute break. In S → RFR, we have
fF (i, j) ≡ 30 ≤ j ≤ 38 which represents between six and eight hours of work plus
an hour and a half of idle time for the lunch and the breaks. Finally, the productions
Ak → akAk | ak are constrained with fAk

(i, j) ≡ open(i) where open(t) returns
true if t is within business hours. When solving the problem with m employees, the

Decomposing Global Grammar Constraints 601

model consists of m sequences S1, . . . , Sm subject to this GRAMMAR constraint. The
0/1 variable x(j, t, c) is set to 1 if the tth character of sequence Sj is c. We post the
constraint

∑
j x(j, t, ai) ≥ d(t, ai) in order to satisfy the demand for each activity ai

at time t. To break symmetry, we force the sequences to be in lexicographical order.
We implemented a program that takes as input a benchmark instance and the gram-

mar G and prepares the input for the MiniSat+ solver [5]. MiniSat+ is a pseudo-Boolean
solver that allows constraints of the form x1 + . . . + xn ≥ k where xi is a Boolean
variable. Such inequality constraints are useful to make sure that the demand d(t, ai) is
satisfied. CNF clauses are encoded with linear equations where the sum of the literals in
a clause must be equal to or greater than one. The negation of a variable x is expressed
with 1 − x. We tested two CNF encodings of the GRAMMAR constraint: one encoding
that includes the redundant clause (4) allowing unit propagation to achieve GAC as well
as one encoding where the clauses (4) are omitted and GAC is not maintained.

We also implemented a CP model in ILog Solver 6.2 using either this decomposition
of the GRAMMAR constraint or the previous monolithic propagator for the GRAMMAR

constraint based on the CYK parser [2,3]. The model has a matrix of variables where
each row corresponds to the schedule of an employee and is subject to a GRAMMAR

constraint. Each column is subject to a global cardinality constraint (GCC) to ensure
that the number of occurrences of an activity satisfies the demand. We added lexico-
graphic constraints between the rows of the column to break symmetries. We used a
static variable that was essential to the success of the experiment: we filled in the table
from left to right, and assigned variables to the values r, b, l, a1 and a2 in that order.

Our experiments used MiniSat+ on a Intel Dual Core 2.0 GHz with 1 Gb of RAM
using Mac OS X 10.4.8 and ILog Solver on a AMD Dual Core Opteron 2.2 GHz with
4 Gb of RAM. The reader should be careful when comparing the times as the clock
speeds of the computers are slightly different. MiniSat+ is halted after finding the op-
timal solution or when the search is suspended by a lack of memory. ILog solver was
halted after one hour of computation as it never proved the optimality of a solution.
Table 1 presents the results for 17 satisfiable instances of the benchmark involving one
or two activities. The CP model performed very well at finding a good solution. Many
solutions were returned after a few hundreds of backtracks. However, no solutions were
proved optimal after one hour of computation. Notice that the decomposition performs
significantly better than the monolithic propagator as it explores many more backtracks
within the same period of time. The decomposition therefore explores a larger portion
of the search tree. For some instances, it finds some satisfiable solutions within one hour
whereas the monolithic propagator does not.

The MiniSat+ solver returned a feasible solution for all instances regardless of the
encoding. For 8 instances, the solver also proved optimality of the solutions. However,
the two encodings we used did not prove optimality for the same instances. The main
weakness of the MiniSat+ solver was its memory consumption as 9 times out of 17, the
search was stopped by the lack of memory. Notice that the encoding that omits clauses
of the form (4) is often faster than the encoding achieving GAC. We conjecture that, in
this case, MiniSat is finding itself the redundant constraints using no-good learning.

Even though Algorithm 1 can produce a graph with up to O(n3|G|) nodes, we no-
ticed that in practice many nodes are never created. The size of the resulting DAG

602 C.-G. Quimper and T. Walsh

Table 1. Benchmark problems solved by MiniSat+. GAC SAT : results from MiniSat+ with all
CNF clauses; SAT : results from MiniSat+ with all CNF clauses but clause (4); Mono: results
from a CP solver using the monolithic propagator; Decomp: results from a CP solver using the
decomposition; |A|: number of activities; #: problem number; m: number of employees; sol:
number of worked hours (boldfonted if best solution found amongst the different methods); time
(s): CPU time in seconds to find and prove the optimality of a solution. Times are omitted when
the search is suspended by a lack of memory; bt: number of backtracks (boldfonted if least back-
tracks amongst methods that prove optimality); opt: solution was proved optimal. ILog solver did
not prove any problems optimal within one hour of computation.

|A| # m GAC SAT SAT Mono Decomp
sol time bt opt sol time bt opt sol bt sol bt

1 2 4 26.0 2666 507215
√

26.0 1998 443546
√

26.75 28072 26.25 625683
1 3 6 37.25 1128199 36.75 1953562 37.0 34788 37.0 4771577
1 4 6 38.0 256 84999

√
38.0 287 91151

√
- 15539 38.0 56488

1 5 5 24.0 153 67376
√

24.0 60 40008
√

24.0 40163 24.0 7914413
1 6 6 33.0 98 48638

√
33.0 70 40361

√
- 11537 33.0 33405

1 7 8 49.5 236066 49.5 682715 49.0 27635 49.0 2663721
1 8 3 20.5 80 36348

√
20.5 44 25502

√
21.0 24343 20.5 635589

1 10 9 54.0 202699 54.25 507749 - 9365 - 519446
2 1 5 25.0 453 146234 25.0 301 103918

√
25.0 1180 25.0 3828461

2 2 10 58.75 313644 59.0 151076 58.0 14887 58.0 2116602
2 3 6 38.25 236850 38.25 214203 41.0 1419 41.0 214201
2 4 11 71.25 230777 69.75 239519 - 9983 - 774942
2 5 4 23.75 2945 644496

√
23.75 1876 522780

√
26.5 25573 26.25 117105

2 6 5 26.75 4831 777572
√

27.25 2162816 26.75 10681 26.75 1054531
2 8 5 31.5 244837 31.75 391858 32.0 218 31.5 3771831
2 9 3 19.0 2283 701474

√
19.0 1227 481395

√
19.25 20473 19.0 45516

2 10 8 55.0 372870 55.0 333520 - 9968 - 909857

is much smaller in practice than the theoretical bound of O(n3|G|). For instance, the
grammar G for problems with one activity can be written in Chomsky normal form in
15 productions. The upper bound on the number of and-nodes in the DAG is 15 963

2 =
6635520 nodes whilst there were 71796 nodes on average with these instances.

We also tried modelled the schedule of an employee using an automaton. Due to the
constraints on the number of hours a full-time and a part-time employee must work,
many states in the automaton needed to be duplicated resulting in an automaton with
several thousands of states. Moreover, patterns such as those produced by the non-
terminals P and W cannot be reused in an automaton without further duplicating states.
The DAG based on the regular language ended up much larger than the one produced
by the context-free grammar.

8 Related Work

Vempaty introduced the idea of representing the solutions of a CSP by a deterministic
finite automaton [6]. Such automaton can be used to answer questions about satisfiabil-
ity, validity and equivalence. Amilhastre generalized these ideas to non-deterministic

Decomposing Global Grammar Constraints 603

automata, and proposed heuristics to minimize the size of the automata [7]. This ap-
proach was then applied to configuration problems [8]. Boigelot and Wolper developed
decision procedures for arithmetic constraints based on automata [9].

Pesant introduced the REGULAR constraint and gave a complete propagation algo-
rithm based on dynamic programming [1]. Coincidently Beldiceanu, Carlsson and Petit
proposed specifying global constraints by means of finite automaton augmented with
counters [10]. Propagators for such automaton are constructed automatically from the
specification of the automaton by means of a decomposition into simpler constraints.
Quimper and Walsh proposed a closely related decomposition of the REGULAR con-
straint and showed that it was effective and efficient in practice [2]. Demassay et al. [4]
used a column generation technique to solve a shift scheduling problem. The columns
are generated with a CP solver using the COST-REGULAR constraint, a variation of the
REGULAR constraint while the optimization process is driven by the simplex method.
Côté et al. [11] encoded the REGULAR constraint into a MIP and efficiently solved some
instances of the shift scheduling problem using the same automaton as Demassay et al.
This encoding takes the modelling of constraints using formal languages beyond the
scope of constraint programming. One of our contributions is to continue this theme by
taking constraints specified using formal languages into the domain of SAT solvers.

Quimper and Walsh proposed the GRAMMAR constraint and gave two different prop-
agators, one based on the CYK and the other on the Earley parser [2]. Coincidently,
Sellmann proposed the GRAMMAR constraint and gave a propagator based on the CYK
parser [3]. Finally Golden and Pang proposed the use of string variables which are spec-
ified using regular expressions or finite automata and show how to propagate matching,
containment, cardinality and other constraints on such string variables [12].

9 Conclusion

We have studied the global GRAMMAR constraint. This restricts a sequence of vari-
ables to belong to a context-free language. Such a constraint is useful for a wide range
of problems in scheduling, rostering and related domains. Based on an AND/OR de-
composition, we showed how the GRAMMAR constraint can be converted into clauses
in conjunctive normal form. This decomposition does not hinder propagation since unit
propagation on the decomposition achieves GAC on the original GRAMMAR constraint.
Using this decomposition, we can enforce GAC on the GRAMMAR constraint in O(n3)
time. By using the decomposition, we also improve upon existing propagators by being
incremental. On specialized languages, running time can be even better. In particular,
on regular languages we require just O(n|δ|) time where |δ| is the size of the transition
table of the automaton recognizing the language. Experiments on a shift scheduling
problem with a state of the art SAT solver demonstrated that we can solve problems
this way that defeat existing constraint solvers. The decomposition of global constraints
opens up a number of possibilities which we are only starting to explore. For example, it
may make it easier to construct no-goods, as well as cost measures for over-constrained
problems. Finally, a decomposition may make it easier to construct constraint based
branching heuristics.

604 C.-G. Quimper and T. Walsh

Acknowledgements

The second author is funded by DCITA and the ARC through Backing Australia’s Abil-
ity and the ICT Centre of Excellence program. We would like to thank Louis-Martin
Rousseau for useful comments and for providing the benchmark.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 295–482. Springer, Heidelberg (2004)

2. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204. Springer, Heidelberg (2006)

3. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 530–544. Springer, Heidelberg (2006)

4. Demassey, S., Pesant, G., Rousseau, L.: A cost-regular based hybrid column generation ap-
proach. Constraints 11, 315–333 (2006)

5. Eén, N., Sörensso, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfia-
bility, Boolean Modelling and Computation 2, 1–26 (2006)

6. Vempaty, N.R.: Solving constraint satisfaction problems using finite state automata. In: 10th
National Conf. on AI, pp. 453–458. AAAI, Stanford, California, USA (1992)

7. Amilhastre, J.: Representation par automate d’ensemble de solutions de problèmes de satsi-
faction de contraintes. PhD thesis, Universite Montpellier II / CNRS, LIRMM (1999)

8. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
CSPs - application to configuration. Artificial Intelligence 135, 199–234 (2002)

9. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: An
overview. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 1–19. Springer, Hei-
delberg (2002)

10. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint check-
ers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg
(2004)

11. Côté, M.C., Gendron, B., Rousseau, L.M.: The regular constraint for integer programming
modeling. In: 4th Int. Conf. on Integration of AI and OR Techniques in Constraint Program-
ming (CPAIOR 07), pp. 29–43 (2007)

12. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 377–391. Springer, Heidelberg (2003)

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: CHAFF: engineering an ef-
ficient SAT solver. In: Proc. of the 38th Design Automation Conf (DAC’01), pp. 530–535
(2001)

Structural Relaxations by Variable Renaming

and Their Compilation for Solving MinCostSAT

Miquel Ramı́rez1 and Hector Geffner2

1 Universitat Pompeu Fabra
Passeig de Circumvalació 8

08003 Barcelona Spain
miquel.ramirez@upf.edu

2 ICREA & Universitat Pompeu Fabra
Passeig de Circumvalació 8

08003 Barcelona Spain
hector.geffner@upf.edu

Abstract. Searching for optimal solutions to a problem using lower
bounds obtained from a relaxation is a common idea in Heuristic Search
and Planning. In SAT and CSPs, however, explicit relaxations are sel-
dom used. In this work, we consider the use of explicit relaxations for
solving MinCostSAT, the problem of finding a minimum cost satisfying
assignment. We start with the observation that while a number of SAT
and CSP tasks have a complexity that is exponential in the treewidth,
such models can be relaxed into weaker models of bounded treewidth
by a simple form of variable renaming. The relaxed models can then
be compiled in polynomial time and space, so that their solutions can
be used effectively for pruning the search in the original problem. We
have implemented a MinCostSAT solver using this idea on top of two
off-the-shelf tools, a d-DNNF compiler that deals with the relaxation,
and a SAT solver that deals with the search. The results over the entire
suite of 559 problems from the 2006 Weighted Max-SAT Competition are
encouraging: SR(w), the new solver, solves 56% of the problems when
the bound on the relaxation treewidth is set to w = 8, while Toolbar,
the winner, solves 73% of the problems, Lazy, the runner up, 55%, and
MinCostChaff, a recent MinCostSAT solver, 26%. The relation between
the proposed relaxation method and existing structural solution meth-
ods such as cutset decomposition and derivatives such as mini-buckets is
also discussed.

1 Introduction

The idea of searching for optimal solutions to a problem using lower bounds
obtained from a relaxation has been common in both Heuristic Search and Plan-
ning. In Pattern Databases, for example, certain state variables are abstracted
away from the problem, and the resulting weaker problem is solved exhaustively.
A table stored in memory saves the distance to the goal from any state of the re-
laxation which provides then a lower bound in the original problem for any state

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 605–619, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

606 M. Ramı́rez and H. Geffner

where the value of the variables that have not been abstracted away coincides [1].
The best results for the Rubik’s Cube, for example, have been obtained in this
way [2]. Likewise, some of the best domain-independent planners use distance
estimators obtained from an explicit relaxation where ’deletes’ are dropped out
of the problem [3].

In SAT and CSPs, the general idea of solving a problem by first solving a
relaxation is implicit in many methods, even if explicit relaxations are seldom
used. For example, node-consistency can be thought as a relaxation where non-
unary constraints are excluded, and similarly, arc-consistency can be thought as
iterating over relaxed problems that contain a single constraint [4].

In this work, we consider the use of explicit relaxations and their use in Min-
CostSAT: the problem of obtaining a minimum cost satisfying assignment of a
CNF formula, where the cost of an assignment adds up the cost of the literals
that are true [5]. We start with the observation that while a number of tasks over
graphical models such as SAT and CSPs have a complexity that is exponential
in the treewidth of the underlying interaction graph [6], such models can be
relaxed into weaker models of bounded treewidth by a suitable form of variable
renaming, where a variable that appears in many factors (clauses, constraints,
etc.) is replaced by many fresh new variables that appear in few. Provided that
the relaxed model has a bounded treewidth, the relaxation can be compiled in
polynomial time and space, so that its solutions, obtained from the compiled
representation without search can be used to prune the search in the original
problem, very much as it is done with Pattern Databases in Heuristic Search.

Using these ideas, we have implemented a MinCostSAT solver that we call
SR(w), on top of two off-the-shelf tools: the d-DNNF compiler due to Darwiche
[7] and the MiniSAT 2.0 solver due to Sörensson & Eén [8]. Given a MinCost-
SAT problem over a CNF theory T , SR(w) maps T into the ’renamed’ relaxation
T− which is compiled into d-DNNF [9], a form akin to OBDDs that supports
a number of queries and transformations in polynomial time and in particular,
MinCostSAT (called ’preferred models’ in [10]). The compilation is exponential
in the treewidth of the relaxation T− that we control and call the target treewidth
w. The optimal solution to the original theory T is obtained by performing a
DPLL-style branch-and-bound search over T implemented on top of MiniSAT
exploiting both the lower bounds obtained from the compilation of T− and capa-
bilities such Unit Propagation and Clause Learning. The resulting MinCostSAT
solver, SR(w), is then evaluated empirically over the entire suite of problems
from the 2006 Weighted Max-SAT competition [11].

2 MinCostSAT

MinCostSAT is the problem of obtaining a minimum cost satisfying truth as-
signment of a CNF propositional formula. If the formula is denoted by T , the
cost c(s) of a truth assignment s over T is defined as follows:

c(s) def=
{∑

l:s|=l c(l) if s |= T

∞ otherwise
(1)

Structural Relaxations by Variable Renaming and Their Compilation 607

where l stands for literals and c(l) stands for the cost of literal l. The optimal
cost c∗(T) of T is the cost of the best (minimum cost) assignment s. In some
formulations, costs are defined only on positive literals, with the costs of negative
literals assumed to be zero [12]. Non-negative costs on negative literals ¬x can
then be captured by introducing new positive literals x′ set to x′ ≡ ¬x. In this
work we do not need this assumption and accommodate costs on both positive
and negative literals. Without loss of generality, however, we assume that all
costs are non-negative; indeed, a positive increment can always be added to
the cost of any pair of complementary literals x and ¬x without changing the
solutions so that none has negative cost and at most one has a positive cost.

MinCostSAT is a (boolean) special case of the class of constraint optimiza-
tion problems called Valued CSPs (VCSPs)[13]. Another special case of VCSPs
closely related to MinCostSAT is Weighted MAX-SAT, where the cost of an
assignment reflects the costs of the clauses that are violated by it [14]. The
transformation of one into the other is simple and involves the addition of a
linear number of variables or clauses, and they both subsume other variations
like MAX-SAT, (Weighted) MIN-ONE, (Weighted) MAX-ONE, and (Weighted)
Partial MAX-SAT [5,15].

3 Relaxing Graphical Models by Renaming Variables

Current state-of-the-art MinCostSAT and Weighted MAX-SAT perform a branch
and bound search, pruning the space by various forms of constraint propagation
that take into account both the constraints and their weights [16,17,18,19]. In this
work, we approach the search in MinCostSAT from a slightly different perspec-
tive. Rather than pruning values by local consistency methods, we compute explicit
lower bounds by solving optimally a global relaxation. This relaxation is defined
structurally in terms of the constraint or interaction graph that represents the
interactions among the variables in the problem [6].

Relaxations by Variable Renaming

We start with the observation that any graphical model can be relaxed into a
weaker model of bounded treewidth by a simple form of variable renaming, where
a variable that appears in many factors is replaced by many fresh new variables
that appear in few. For example, a graphical model over variables x1, . . . , xn

where there is a factor for each variable pair, has an interaction graph that is
a full clique and a treewidth equal to n − 1. Yet, if a variable xi is replaced by
a different ’alias’ variable xj

i in each of the factors where it appears, a relaxed
model is obtained with treewidth n − 2. Actually, if the same is done for all the
variables x1, . . . , xn, the treewidth of the relaxed model is reduced to 1.

If T is the propositional MinCostSAT theory, we will refer by T− to the
relaxed theory obtained by replacing some or all occurrences of some variables
xi in T by a set of new variables xj

i that we call ’aliases’. There is a lot of freedom
in the choice of the variables xi in T to rename, in the number xj

i of aliases to

608 M. Ramı́rez and H. Geffner

introduce for each renamed variable xi, and in the scope of these aliases (i.e.,
the set of clauses in T where xi is replaced by xj

i). A renaming scheme defines
these three aspects.

For simplicity, we consider only schemes where the scopes of the clauses in-
cluding the aliases are disjoint (no occurrence of a renamed xi is replaced by
more than one alias), and span all the clauses where xi appears (so that re-
named variables xi do not appear in the relaxation T−). Such schemes can be
described by defining the set of variables xi in T to be renamed (relaxed) along
with the alias xj

i to be used in place of xi in each of the clauses where xi appears.
For example, given a theory T with four clauses:

C1 : x1 ∨ x2 , C2 : ¬x1 ∨ x3 , C3 : x2 ∨ ¬x3 , C4 : x1 ∨ x4

an admissible renaming can be obtained by replacing x2 by the alias x1
2 in clause

C1 and by the alias x2
2 in C3, resulting in the relaxation T−:

C′1 : x1 ∨ x1
2 , C2 : ¬x1 ∨ x3 , C′3 : x2

2 ∨ ¬x3 , C4 : x1 ∨ x4

The interaction graphs of both of these theories are displayed in Figure 1, from
which it is possible to see that T has treewidth 2, while T− has treewidth 1.

x1

x2

x3

x4

x1

x21

x3

x4

x22T T-

Fig. 1. The interactions graphs of T and T− where variable x2 in T is renamed into
the aliases x1

2 and x2
2. The corresponding treewidths are 2 and 1.

We say that variable xi is fully renamed when the different occurrences of xi

in T are replaced by different aliases xj
i in T−.1 When the variables are renamed

fully, the only aspect that a renaming scheme must define is the set of variables to
rename. For this we make use of the notion of w-cutsets: these are sets of variables
xi in T whose instantiation ensures that the (induced) treewidth of the resulting
theory is bounded by w. This notion, introduced in [20], has been proposed as an
alternative way for combining structural and search methods: basically, one can
choose an small target treewidth w, search then exhaustively over the possible in-
stantiations v of the w-cutset Cw, solving the resulting theories Tv by structural
methods with a complexity exponential only on w. For a bounded w, the com-
plexity of this method is dominated by the exhaustive search over the possible
instantiations over the w-cutset variables and hence is exponential in |Cw|.
1 It is assumed that no variable in T appears twice in a given clause. If not, multiple

occurrences can be collapsed into one when they all have the same sign, and else the
clause is a tautology and can be deleted.

Structural Relaxations by Variable Renaming and Their Compilation 609

The method that we propose makes use of the w-cutset notion too but by
using renaming rather than instantiation for simplifying T into a tractable form,
does not require an exhaustive search over the w-cutset variables, except in the
worst case.

The theory T− obtained by renaming fully all the variables xi in a w-cutset
of T , can be processed indeed in time that is exponential in w, in the same
way as the theory Tv that is obtained from T by instantiating such variables.
Yet, while in the latter case the complexity bound follows from the (induced)
treewidth of its interaction graph, in the former, it does not. This is because
treewidth is a rough structural notion affected by the size of the clauses, a size
that can be reduced by instantiating variables in a clause but not by renaming
such variables. Finer structural measures like hypertree width [21] that take into
account the size and scope of the constraints, can be used instead for character-
izing the complexity bounds that follow from renaming. We will take however
a simpler route and refer to the simplified (induced) treewidth of a theory T as
the (induced) treewidth of its simplified interaction graph: this is the interaction
graph of T with the nodes representing the variables that occur in a single clause
of T removed.

Theorem 1. Let T be a CNF formula and let S be a w-cutset for T . Then the
relaxation T− obtained by fully renaming each variable xi in S has a simplified
treewidth bounded by w.

A simplified treewidth bounded by w ensures a complexity exponential in w over
the typical queries in graphical models provided that variables that appear in a
single factor can be eliminated in time that does not grow with the size of the
factor. This is certainly true in our context for variables that appear in a single
clause, as individual clauses can be compiled into d-DNNF (see below) in linear-
time [9]. The alias variables xj

i that result from fully renaming a variable xi in
T fall into this class. Note also that simplified treewidth of w implies treewidth
of w when no factor has a size greater than w.

For simplicity, when no confusion arises, we will use the term treewidth to refer
to simplified treewidth, and refer to the relaxation method that maps the theory
T into T− according to Theorem 1, as w-cutset renaming. This is a polynomial
and fast operation. The theory T− above, whose interaction graph is shown in
Figure 1 is a w-cutset renaming relaxation of T , with w = 1 for the w-cutset
S = {x2}.

In order to compute a w-cutset, the GWC algorithm presented in [22] can be
used. The GWC algorithm greedily and incrementally builds a minimal set of
variables S that ensures |Ci/S| ≤ w over the maximal cliques Ci in the min-fill
tree-decomposition of the model. In our solver, we just substitute the min-fill
ordering by minimum induced width (MIW) [6] which scales up better for large
theories at a small cost in size of the cutsets.

In the experiments, we consider also an alternative relaxation method that
we call w-mini-bucket renaming as it is based on the mini-bucket approximation
scheme [23]. The w-mini-bucket renaming scheme runs the mini-buckets pro-
cedure symbolically. That is, propagating only the scopes of the primitive and

610 M. Ramı́rez and H. Geffner

induced functions but not the functions themselves. Each scope keeps track also
of the set of primitive functions (clauses) it was derived from. If x1, · · · , xi,
· · · , xk, · · · , xn is the ordering in which the variables are processed, then when
processing the bucket of variable xi, if the number of variables xk �= xi, k ≥ i
appearing on that bucket is above the w bound, the scopes in the bucket are par-
titioned into sets s1, . . . , sm none of which has more than w variables xk, k > i.
The variable xi is then renamed into xj

i in all the clauses that are associated
with the scopes in sj .

Like w-cutset renaming, w-mini-bucket renaming yields relaxations T− with
treewidth bounded by w, but unlike the former it does not use full variable
renaming, as an alias may end up appearing in different clauses. As we will see,
the experimental results for the two methods tend to be similar, with an slight
edge for w-cutset renaming.

4 Compiling the Relaxation into d-DNNF

If the relaxation T− has bounded (simplified) treewidth, then all the MinCost-
SAT sub-problems problems T− ∪ s− arising in the search where s− is a set of
T− literals, can be solved from scratch in polynomial time and space by variable
elimination [24]. A more efficient solution, which is more elegant too, can be ob-
tained however by compiling the formula in a suitable way so that the solutions to
these sub-problems can be efficiently ’retrieved’ from a compiled representation.
For formulas expressed in CNF, Darwiche’s CNF to d-DNNF compiler [7] allows
us to do exactly that in time and space exponential in the formula treewidth [9].

A formula T in d-DNNF is a rooted DAG (Directed Acyclic Graph) whose
leaves are the positive and negative literals associated with the variables in T
along with the constants true and false, and whose internal nodes stand for con-
junctions or disjunctions (AND and OR nodes, respectively). A d-DNNF formula
is thus in Negated Normal Form (NNF) as it contains only the connectives for
conjunctions, disjunctions, and negations, and negation occurs only in literals [9].
The d-DNNF representation enforces two additional constraints, decomposabil-
ity (no variable shared among sub-formulas represented by the children of an
AND node) and determinism (no model shared among sub-formulas represented
by the children of an OR node), that enable a large number of otherwise in-
tractable queries and transformations to be done in time which is linear in the
size of the DAG representation [25]. For example, the procedure for computing
the cost of a formula T in d-DNNF can be expressed in term of the value of the
function c∗(n) computed bottom up over the nodes n of the DAG as follows [10]:

c∗(n) =

������
�����

0 if n = true
∞ if n = false
c(L) if n = L where L is a literal different than true and false�

i c∗(ni) if n is an AND node with children ni

mini c∗(ni) if n is an OR node with children ni

(2)

If the DAG represents the compilation of T− then the cost c∗(T−) is given by
the value c∗(n) of the root node, while the cost c∗(T− ∪ s−) of the theory T−

Structural Relaxations by Variable Renaming and Their Compilation 611

extended with a set of literals s− is obtained from the same bottom-up recursion
but setting the costs c(L) of the literals L whose negation is in s− to ∞. Finally,
while the costs c∗(T− ∪ s−) are obtained in a single bottom-up pass over the
DAG, a minimum cost model M of T can be obtained by a subsequent top-down
pass, collecting the literals in the leaves that can be reached from the root node,
following all of the children of every reached AND node, and a single best child
(min. cost) of every reached OR node [10].

In order to ensure that the relaxation T− compiles in time and space exponen-
tial in the target (simplified) treewidth w set for the relaxation, we must instruct
the d-DNNF compiler to use an elimination ordering over the variables in T− (in
the form of a decomposition tree [26]) related to the variable ordering used for
obtaining T− from T . For this, if T− was obtained by w-cutset renaming, we just
place the alias variables xj

i first in the ordering, while if T− was obtained by w-
mini-bucket renaming, the aliases xj

i are introduced in place of the renamed vari-
ables xi in the order in which they were ’eliminated’ (symbolically) during the re-
laxation. These elimination orders ensure that the compiler processes the relaxed
theories T− in time and space exponential in the target width w in the worst case.

5 The Cost of Renamed Variables

If there are costs c(xi) > 0 or c(¬xi) > 0 associated to variables xi in T that
have been renamed in T−, we need to decide how to allocate these costs to their
aliases xj

i . One possibility is to ignore such costs by setting the costs of all alias
literals to zero. This ensures that the compilation of T− yields lower bounds
for T , but they are not as informed as they could be. Setting the costs of the
all the alias literals xj

i and ¬xj
i to the cost of the corresponding literals xi and

¬xi can lead to overestimation and hence does not necessarily produce lower
bounds. Actually, a simple option that uses the costs over renamed variables
xi and yields lower bounds is to transfer these costs to a particular, designated
alias variable xj

i , thus setting c(xj
i) and c(¬xj

i) to c(xi) and c(¬xi) respectively,
leaving the cost of all other alias literals in zero. This is actually the choice that
we have made in our solver where such designated alias variables are selected
greedily using the idea of Maximal Independent Sets (MIS) [27,12]. We have also
tried an scheme where the cost of a renamed literal is split uniformly over it alias
literals, that also ensures admissibility (lower bounds), but found the results to
be slightly inferior.

A MIS ω is a subset of clauses that is maximally independent in the sense
that no two clauses in ω share a variable. We build a MIS greedily, starting from
the set S of clauses in T− that include some alias variable xj

i . Then iteratively
a clause C with maximum “average cost” defined in [12]:

∑
li∈C c(li)

|{li ∈ Cj}| (3)

is chosen and added to ω, while all clauses featuring an alias variable xk
i coming

from the same renamed variable xi as an alias variable xj
i in C are removed

612 M. Ramı́rez and H. Geffner

from S. This process continues until no more clauses are left in S. The alias
literals xj

i or ¬xj
i in a clause of ω get then all the weight from the renamed

literals xi and ¬xi, ensuring that this cost allocation yields a lower bound over
the relaxation and also that the alias literals that get these weights are more
tightly constrained.

6 The Search

The search algorithm looks for the best model of T by looking for the best model
of the relaxation T− that satisfies the constraints xk

i = xj
i for all the aliases xk

i

and xj
i of the same renamed variables xi in T . This is achieved by a branch-

and-bound DPLL-style search over T whose state s is a set s of literals over the
renamed variables xi that represents the commitments made so far. Initially s is
empty. Then in each step, the best model M of T−∪s− and its cost c∗(T−∪s−)
are computed, where s− is the set of alias literals that correspond to s: namely,
all xj

i (resp. ¬xj
i) are in s− if xi (resp. ¬xi) in s. The lower bound LB(s) is

set to c∗(T− ∪ s−). The search does not continue beneath s if either LB(s)
is not smaller than the current upper bound (a bound conflict), the boolean
constraint propagation procedures derives an empty clause (a logical conflict),
or if M has no discrepancies (a solution). Else, a variable xi with a discrepancy
in M is selected (an alias pair xj

i and xk
i such that xj

i �= xk
i in M) the state

s is extended with either xi or ¬xi, and the process is iterated. By setting a
small target width w, the relaxation procedure that yields T− from T , ensures
that the compilation of T− can be done in polynomial time and space, and the
compilation in turn ensures that the best model M of T− ∪ s− and its costs can
be computed efficiently for any set of literals s−.

This basic search procedure is implemented on top of MiniSAT 2.0 [8], thus
relying on the efficient boolean constraint propagation provided by the two-
literal watching rule [28] which is performed right after every commitment. We
also use its (dynamic) VSIDS variable selection heuristic [28] but branch only
on the variables xi that have been renamed, choosing always first the value xi

or ¬xi with least cost c(xi) or c(¬xi). For relaxations T− obtained by w-cutset
renaming this means that in the worst case, the size of the search space will
be exponential in the size of the w-cutset used. Within this space, however, the
lower bounds LB(s) obtained from the compiled relaxation and the pruning that
they produce, will normally keep the search away from this worst case scenario,
as the experimental results below show.

7 Learning from Bound Conflicts

The implementation of the search on top of a SAT solver benefits from the ability
of to learn new clauses during search after logical failures. It is well known that
clause learning is a key technique in current solvers that can reduce the search
space quite drastically [29,30]. The success of learning from logical conflicts in
SAT, suggested to look at the problem of learning from bound conflicts as when

Structural Relaxations by Variable Renaming and Their Compilation 613

the lower bound LB(s) does not improve the current upper bound UB for a given
state s; i.e., when LB(s) ≥ UB. In the context of solvers whose inference is based
on unit propagation, this problem has been approached in [31] and [12] where
a set of literals that explains the bound conflict is obtained and negated. Our
solver, however, does not use only unit resolution but also and mainly optimal
inference over the compiled relaxation T−. The trivial way to learn in such
setting is by simply recording the clause ¬s when LB(s) ≥ UB. This, however,
while enables us to preserve the conflict-directed implementation of MiniSAT,
has not pruning effect. A much more effective alternative is to find the smallest
possible subset s′ in s that explains the bound conflict, i.e., a subset s′ ⊆ s such
that LB(s′) ≥ UB. Interestingly, it is possible to use the compiled d-DNNF
representation of T− for computing such ’causes’ for failure even if there is no
guarantee that such causes are minimal. The idea is simple and requires only a
single downward pass over the DAG representing the compilation of T−.

Basically, starting from the root node of the DAG representing the compilation
of T− we perform a top-down scan, skipping some nodes, while collecting the
literals l in the leaves that are reached, retaining from this set only the literals l
in s. Of course, if no node is skipped in this scan, we will get back the set s itself.
Yet as we will see there are three types of nodes n that can be skipped because
the commitments beneath them in the graph, if any, are not relevant either to
the cost of their parent node in the graph or the bound failure. For this, let
c∗(n) be the cost of node in n in the DAG when evaluated in the context of the
commitments s− and let c∗0(n) be the value of the same node when evaluated in
the context with no commitments at all (i.e., with s− assumed empty, as in the
beginning of the search).

Clearly if c∗(n) = c∗0(n), it means that the commitments beneath n are not
relevant to its cost given s0. Likewise, if n is an OR-node, the commitments
beneath the child n1 are not relevant to the cost of n either if c∗0(n1) > c∗(n).
Last, if n is an AND-node, the commitments beneath the child n1 can be ignored
if c∗0(n1) + c∗(n2) ≥ UB as the commitments beneath the other child n2 suffice
to explain the bound failure.

By performing and exhaustive scan of the DAG representing T− after finding
that LB(s) ≥ UB, starting from the root node while skipping nodes as above, it
is then possible to get a reduced set of alias literals t− ⊆ s− such that LB(t) ≥
UB as well. The conflict clause ¬t is then fed to the 1st Unique Implication
Point [29] heuristic implemented by MiniSAT 2.0, that derives the blocking clause
and the decision level to backtrack to.

8 Empirical Evaluation

The MinCostSAT solver SR(w) accepts a MinCostSAT problem in the form of
a cost function c and a CNF theory T . Using w-cutset renaming, it then maps
T into a relaxation T− which is compiled in d-DNNF using Darwiche’s c2d
compiler, and sets the cost of the renamed literals according to the MIS procedure
described above. It then carries a DPLL-style branch-and-bound search on top of

614 M. Ramı́rez and H. Geffner

MiniSAT 2.0 that benefits from the lower bounds obtained from the relaxation,
as well as from unit propagation and clause learning from both logical and bound
conflicts.

The experiments below have all been run on a grid consisting of 76 nodes,
each one being a dual-processor Xeon “Woodcrest” dual core computer, with a
clock speed of 2.33 GHz and 8 Gb of RAM. Execution time was limited to 1,800
seconds.

Overall Performance

Table 1 compares SR(w) against three state-of-the-art Weighted-MAX SAT and
MinCostSAT solvers over the 559 problems of the 2006 Weighted SAT Competi-
tion [11]: the winner of the competition, toolbar [17], the runner-up, Lazy [32], and
the recent MinCostSAT solver, MinCostChaff [12] all ran on the same platform.
The problems were converted into MinCostSAT by adding a slack variable x into
each non-unary clause and setting c(x) to the weight of the clause. Unary clauses
over a literal x (¬x) were removed and their weight was assigned to ¬x (x) resp.
Last, hard clauses, represented with a very large weight in Weighted MAX-SAT,
were modeled as hard clauses (crisp constraints).

The competition problems fall into different categories: MinCostSAT, where
all clauses are hard constraints and literals are weighted, Weighted Max-SAT,
where all clauses are soft and weights are associated to constraints, and Weighted
Partial Max-SAT which have a mix of both hard and soft constraints. This is
explicitly indicated in Table 1.

The value of the target treewidth w used in the SR(w) solver is w = 8. The
performance for other values of w is analyzed below. From the results shown,
it is clear that SR(w) does well in relation to state-of-the-art MinCostSAT and
Weighted-MAX solvers, trailing only Toolbar, while showing an slight edge over
Lazy, which does a lot better in these instances than MinCostChaff. The best
relative performance of SR(w) is on the Weighted Partial Max-SAT problems,
where in two domains (WCSP; dense tight and sparse tight) manages to solve
10 and 17 instances where the other solvers solve none.

Impact of Target Width, Learning, and Renaming Schemes

Table 2 shows the number of problems solved by SR(w) for different bounds w =
1, 2, 4, 8, 16, . . . on the (simplified) treewidth of the relaxation. Interestingly, the
best coverage is not obtained for the extreme values of w but for w = 8 and w = 16.
The last column shows the results corresponding to the relaxationT− = T . In such
a case, the theories T , if they compile, are solved without search (no variables are
renamed), so that column is testing the CNF to d-DNNF compiler, which does
pretty well, solves by itself the same number of problems as MinCostChaff. Fur-
ther details on some of the instances for various values of w are shown in Table 3
and Table 4, illustrating the typical trade-off between search and inference: for
relaxations with larger w, the search visits less number of nodes, but the compi-
lation is more expensive in terms of space and time, and the overhead per node in

Structural Relaxations by Variable Renaming and Their Compilation 615

Table 1. Overall performance over the 2006 Weighted SAT Competition instances. S is
the number of solved instances in each domain and T the average time needed to solve
them in seconds. Domains are split into native MinCostSAT, Weighted Partial Max-
SAT, and Weighted Max-SAT. Times for SR(w) include the relaxation, compilation
and search, for the target treewidth fixed at w = 8 which results in the best coverage
over these instances.

SR(w) toolbar-3.1 Lazy MinCostChaff

Set Name N S T S T S T S T

Auctions (paths) 30 20 136.28 28 244.49 21 123.69 0 0
Auctions (sched.) 30 18 131.97 30 82.93 28 0.65 6 317
Auctions (regions) 30 30 171.07 30 3.39 30 41.39 13 173
Max-Clique (brock) 12 0 – 4 59.14 4 66.57 0 0
Max-Clique (c-fat) 7 3 23.92 7 10.99 7 0.07 1 973
Max-Clique (ham.) 6 2 23.92 5 67.03 5 119.02 3 627
Max-Clique (John.) 4 2 1.40 3 34.96 3 25.98 2 782
Max-Clique (Kell.) 2 1 16.63 1 20.67 1 27.50 0 0
Max-Clique (Mann) 4 1 0.06 2 48.63 1 0.18 1 1,472
Max-Clique (p hat) 12 1 1,813.73 7 385.63 7 367.21 3 1,591
Max-Clique (san) 11 0 – 4 649.00 1 6.03 0 0
Max-Clique (sanr) 4 0 – 3 463.08 2 466.25 0 0

Max-One 45 40 130.65 45 129.93 30 357.29 1 1,623
WCSP (SPOT5) 21 9 16.24 5 81.03 3 533.96 2 277

QCP 25 6 242.99 11 133.25 7 255.79 25 43

MinCostSAT 243 133 54.7% 185 76.1% 150 61.7% 57 23.5%

WCSP (S-L) 20 20 40.22 18 344.46 10 351.52 17 252
WCSP (D-L) 20 10 722.98 16 446.24 13 629.06 3 339
WCSP (D-T) 30 10 546.82 0 0.00 0 0.00 0 0
WCSP (S-T) 20 17 413.89 0 0.00 0 0.00 0 0

WCSP (SPOT5) 21 9 16.24 4 83.02 3 655.94 8 1,189

Wt. Partial Max-SAT 111 66 59.5% 38 34.2% 26 23.4% 28 25.2%

WCSP (S-L) 20 13 6.93 20 3.33 18 299.49 15 285
WCSP (D-L) 20 11 656.23 20 17.51 20 260.34 1 970
WCSP (D-T) 30 27 270.02 30 33.44 0 0.00 0 0
WCSP (S-T) 20 13 60.22 20 161.54 0 0.00 0 0

Wt. Max-Cut (spin.) 5 2 0.43 3 49.71 2 0.14 2 820
Wt. Max-Cut (brock) 12 2 0.10 12 9.20 12 11.62 0 0
Wt. Max-Cut (c-fat) 7 4 15.44 7 7.35 7 15.50 1 881

Wt. Max-Cut (hamm.) 6 0 – 4 67.97 5 285.10 3 638
Wt. Max-Cut (john.) 4 1 12.10 3 54.79 3 47.45 2 731
Wt. Max-Cut (keller) 2 0 – 2 10.33 2 11.20 0 0
Wt. Max-Cut (mann) 4 2 78.20 4 1,034.70 4 640.47 1 1,492
Wt. Max-Cut (p-hat) 12 6 193.53 12 1,138.46 12 7.03 2 1,415
Wt. Max-Cut (san) 11 1 541.14 11 54.73 11 36.53 0 0
Wt. Max-Cut (sanr) 4 1 1,575.30 4 39.59 4 16.86 0 0

Wt. Ramsey 48 33 124.83 35 3.27 29 42.72 34 17

Wt. Max-SAT 205 116 56.6% 187 91.2% 129 62.9% 61 29.8%

Total 559 315 56.4% 410 73.3% 305 54.6% 146 26.1%

616 M. Ramı́rez and H. Geffner

Table 2. Impact of target treewidth parameter w in SR(w): Number of problems
solved for each value of w. The last column with w = tw, means no relaxation at all so
that T− = T . In such a case, the problem is solved without search from the d-DNNF
compilation of T , when the compilation is successful.

Domains I w=1 w=2 w=4 w=8 w=16 w=32 w=64 w=tw

Auction (paths) 30 5 10 12 20 25 24 7 29
Auction (sched.) 30 18 17 18 18 20 22 17 26
Auction (regions) 30 24 25 28 30 30 30 29 30

Max-Clique 62 10 10 11 10 10 6 4 11
Max-One 45 42 42 42 40 17 0 0 9

WCSP (SPOT5) 42 8 8 8 18 8 7 0 12
QCP 25 10 10 9 6 0 0 0 0

WCSP (S-L) 40 12 22 32 33 31 0 0 0
WCSP (D-L) 40 1 1 3 21 0 0 0 0
WCSP (D-T) 60 0 0 2 37 28 0 0 9
WCSP (S-T) 40 1 0 0 30 29 0 0 2

Wt. Max-Cut (spin.) 5 1 2 2 2 1 0 0 1
Wt. Max-Cut 62 2 7 7 17 10 0 0 7
Wt. Ramsey 48 25 25 26 33 15 0 0 10

Total Solved 559 159 179 200 315 224 89 57 146

% solved 28.4% 32.0% 35.8% 56.4% 40.1% 15.9% 10.2% 26.1%

Table 3. A closer look at some instances from the SPOT5 domain: tw is the instance
upper bound treewidth as estimated by the MIW ordering, w is the treewidth bound
that produced the best total time for SR(w) over each instance, and Relax, Comp, and
Search are the relaxation, compilation and search times all in seconds.

Problem # vars. # Clauses tw w # Nodes Relax Comp Search Total

8.wcsp.dir 20 21 6 4 2 0.001 0.010 0.000 0.011
1502.wcsp.dir 515 427 7 4 20 0.045 0.040 0.003 0.088
503.wcsp.dir 317 849 13 12 7 0.036 0.120 0.002 0.158
404.wcsp.dir 187 966 23 16 162 0.022 0.070 0.019 0.111
54.wcsp.dir 154 441 23 8 428 0.011 0.040 0.036 0.087
29.wcsp.dir 139 629 31 16 98 0.016 0.080 0.026 0.122

1504.wcsp.dir 1,577 6,312 43 32 339 0.853 16.380 38.971 56.204
505.wcsp.dir 552 3,296 46 45 3 0.182 19.230 0.132 19.544
408.wcsp.dir 392 3,013 55 32 1372 0.113 0.670 10.458 11.241
42.wcsp.dir 361 1,883 61 32 10,654 0.084 4.660 733.013 737.757

the search (which is linear in the size of the compilation) is greater. Indeed most
of the failures for widths w ≤ 32 are search timeouts.

Table 5 shows the combined impact of the treewidth bound w, the renaming
scheme (w-cutset vs. w-mini-buckets), and learning (turned on and off) on two in-
stances.As it canbe seen, learning canhelp a lot, in particular, for small values ofw,
while thedifferences between the results obtainedwithw-cutset andw-mini-bucket
renaming are not so clear cut.

Structural Relaxations by Variable Renaming and Their Compilation 617

Table 4. A closer look at the performance for various relaxation treewidths w over the
29.wcsp.dir instance from Table 3. d-DNNF size denotes the number of nodes in the
d-DNNF DAG while # nodes refers to the number of nodes during search.

w d-DNNF size # Nodes Relax. Comp. Search Total

1 5,581 453,758 0.03 0.04 131.14 131.21
2 5,130 76,231 0.02 0.03 7.65 7.7
4 4,922 4,737 0.02 0.03 0.41 0.46
8 11,240 482 0.02 0.05 0.07 0.13
16 25,721 98 0.02 0.08 0.03 0.12
30 35,822 3 0.01 0.32 0 0.34

Table 5. Number of nodes in the search and total run-time (in parenthesis) over a
random Max-3-SAT instance. w denotes the treewidth bound on the relaxation. MIW
estimate was 29.

w-mini-buckets renaming w-cutset renaming

w Learning No learning Learning No learning

1 21,373 (21.99) 98,461 (102.6) 14,399 (15.88) Timeout
2 25,162 (28.3) 129,859 (143.63) 9,302 (10.1) 556,181 (546.47)
4 64,716 (76.61) 146,377 (168.29) 11,218 (18.71) 75,511 (105.81)
8 11,627 (60.63) 18,473 (96.17) 4,889 (40.08) 9,669 (67.25)
16 474 (196.96) 695 (300.37) 238 (186.59) 737 (533.52)

9 Discussion

We have presented an structural relaxation scheme based on renaming variables
that maps a CNF theory T into a relaxation T− with a (simplified) treewidth
bounded by a parameter w. We have then used this relaxation for developing a
MinCostSAT solver that obtains its lower bounds from a suitable compilation
of the relaxation into d-DNNF. The observed performance of this solver, imple-
mented on top of a state-of-the-art SAT solver that benefits also from efficient
unit propagation and clause learning, suggests that the idea of compiling struc-
tural relaxations for guiding the search, is an idea worth exploring in further
depth that may be applicable in other contexts too. This approach is closely
related to other methods that aim to combine structural and search-methods
and in particular to Dechter’s mini-buckets. Indeed, if the relaxation is done
by the scheme that mimics mini-buckets which we call w-mini-bucket renaming,
we would be obtaining the same sort of structural lower bounds. On the other
hand, by appealing to explicit relaxations, our approach is more general as it is
not tied to a particular renaming scheme, can benefit from existing tools such as
SAT solvers and d-DNNF compilers, and deals in a natural way with dynamic
variable ordering. Just in time for the last version of this paper, we have learned
about an independent but closely related relaxation scheme in the context of
Bayesian Networks to appear at UAI-07 [33].

618 M. Ramı́rez and H. Geffner

Acknowledgements

We thank the anonymous reviewers for useful comments, R. Dechter for an
informative exchange on treewidth, and N. Sörenssón, D. Le Berre, and Z. Fu for
answering various questions about MiniSAT and MinCostChaff. We also thank
the authors of the tools, the c2d compiler and MiniSAT, used in our solver, and
R. Isla from UPF for help with the cluster. H. Geffner is partially supported by
grant TIN2006-15387-C03-03 from MEC, Spain.

References

1. Culberson, J.C., Schaeffer, J.: Pattern Databases. Comp. Int. 14 (1998)
2. Korf, R.E.: Finding Optimal Solutions to Rubik’s Cube Using Pattern Patabases.

In: Proc. AAAI-98 (1998)
3. Bonet, B., Geffner, H.: Planning as Heuristic Search. Art. Int. 129 (2001)
4. Mackworth, A.K.: Consistency in Networks of Relations. Art. Int. 8 (1977)
5. Li, X.Y.: Optimization Algorithms for the Minimum–Cost Satisfiability Problem.

PhD thesis, North Carolina State University (2004)
6. Dechter, R.: Constraint Processing. Morgan Kauffman, San Francisco (2003)
7. Darwiche, A.: New Advances in Compiling CNF to Decomposable Negational Nor-

mal Form. In: Proc. ECAI’04 (2004)
8. Eén, N., Söressón, N.: MiniSAT: an Extensible SAT Solver. Technical report,

Chalmers University (2005)
9. Darwiche, A.: Decomposable Negation Normal Form. Journal of the ACM 48(4),

608–647 (2001)
10. Marquis, P., Darwiche, A.: Compiling Propositional Weighted Bases. Artificial In-

telligence 157(1–2), 81–113 (2004)
11. Argelich, J., et al.: First Evaluation of Max-SAT solvers (2006), Available at

http://www.iiia.csic.es/maxsat06
12. Fu, Z., Malik, S.: Solving the Minimum Cost Satisfiability Problem using SAT

Based Branch-and-Bound Search. In: Proc. of ICCAD’06 (2006)
13. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaille, G., Fargier, H.:

Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Compari-
son. Constraints 4(3), 199–240 (2004)

14. Papadimitrou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
15. Giunchiglia, E., Maratea, M.: Solving Optimization Problems with DLL. In: Proc.

of ECAI’06 (2006)
16. Larrosa, J., Heras, F.: Resolution in Max-SAT and its Relation to Local Consis-

tency in Weighted CSPs. In: Proc. of IJCAI-05, pp. 193–199 (2005)
17. Larrosa, J., Heras, F.: New Inference Rules for Efficient Max-SAT Solving. In:

Proc. AAAI’06 (2006)
18. Li, C.M., Manyá, F., Planes, J.: Detecting Disjoint Inconsistent Subformulas for

Computing Lower Bounds for Max-SAT. In: Proc. AAAI’06 (2006)
19. de Givry, S., Larrosa, J., Messeguer, P., Schiex, T.: Solving Max-SAT as Weighted

CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidel-
berg (2003)

20. Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping,
Learning and Cutset Decomposition. Artificial Intelligence 43(3), 273–312 (1990)

http://www.iiia.csic.es/maxsat06

Structural Relaxations by Variable Renaming and Their Compilation 619

21. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

22. Bidyuk, B., Dechter, R.: On Finding Minimal w-cutset. In: Proc. UAI-04 (2004)
23. Dechter, R.: Mini–Buckets: a General Scheme for Generating Approximations in

Automated Reasoning. In: Proc. of IJCAI-97, pp. 1297–1303 (1997)
24. Dechter, R.: Bucket Elimination: a Unifying Framework for Reasoning. Artificial

Intelligence 113(1–2), 41–85 (1999)
25. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. Journal of AI Re-

search 17, 229–264 (2002)
26. Darwiche, A.: Recursive Conditioning. Artificial Intelligence 126(1–2), 5–41 (2001)
27. Coudert, O., Madre, J.C.: New Ideas for Solving Covering Problems. In: Proc. of

DAC’95, pp. 641–646 (1995)
28. Moskewicz, M.W., Madigan, C.F., et al.: Chaff: Engineeering an Efficient SAT

Solver. In: Proc.of DAC-01 (2001)
29. Zhang, L., Madigan, C.F., et al.: Efficient Conflict Driven Learning in a Boolean

Satisfiability Solver. In: Proc. of ICCAD’01 (2001)
30. Silva, J.P.M., Sakallah, K.A.: GRASP – A New Search Algorithm for Satisfiability.

In: Proc. of ICCAD’96, pp. 220–227 (1996)
31. Manquinho, V., Marques-Silva, J.: Search Pruning Techniques in SAT-based

Branch-and-Bound Algorithms for the Binate Covering Problem. IEEE Trans. on
CAD and Integrated Circuit and Systems 21, 505–516 (2002)

32. Alsinet, T., Manyá, F., Planes, J.: Improved Exact Solvers for Weighted Max-SAT.
In: Proc. of the 8th SAT conference (2005)

33. Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating upper
bounds in bayesian networks. In: Proceedings UAI-07 (to appear, 2007)

Bound-Consistent Deviation Constraint

Pierre Schaus, Yves Deville, and Pierre Dupont

Department of Computing Sciences and Engineering
Université catholique de Louvain, Belgium

{pierre.schaus,yves.deville,pierre.dupont}@uclouvain.be

Abstract. Deviation is a recent constraint to balance a set of variables
with respect to a given mean. We show that the propagators recently
introduced are not bound-consistent when the mean is rational. We in-
troduce bound-consistent propagators running in linear time with respect
to the number of variables. We evaluate the improvement in terms of ef-
ficiency and pruning obtained with the new propagators on the Balanced
Academic Curriculum Problem.

1 Introduction

Global constraints to obtain a balanced assignment on a set of variables has
not received much attention up to now. Some possible applications for such
constraints are the following: fairly distribute the night and weekend shifts in
physician scheduling in emergency rooms [2], balance the tardiness of tasks in a
scheduling problem, balance the violations among soft global constraints, balance
the load of work between periods in a timetabling problem [1], and generate
spatially balanced scientific experiments [3].

The constraint deviation has been recently introduced in [7]. This constraint
guarantees an assignment on a set of variables to be balanced around a given
mean. More precisely deviation constrains a set of variables to present a given
mean and constrains the sum of deviations to this mean. A closely related con-
straint using a different measure of balance is spread [5,6]. The propagators for
spread run in quadratic time with respect to the number of variables against
linear time for deviation . The semantic of deviation is given in the following
definition.

Definition 1. Given n finite domain variables X = (X1, X2, ..., Xn), one inte-
ger value s and one finite domain variable Δ, deviation(X , s, Δ) holds if and
only if

n∑
i=1

Xi = s and Δ ≥
n∑

i=1

|n · Xi − s|.

In other words, deviation(X , s, Δ) is the conjunction of two constraints. One
sum constraint enforcing the sum of the variables to be equal to s and one
deviation constraint enforcing the sum of absolute deviations of n · Xi to the
sum s to be less than or equal to Δ 1. Another formulation is that the mean
1 Bound-consistency is NP-Complete when it is constrained to be equal to Δ [7].

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 620–634, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bound-Consistent Deviation Constraint 621

(or average) of variables Xi must be equal to s/n and the sum of deviations
to this mean must be smaller than Δ/n. The definition of deviation might
seem restrictive since the sum is fixed. However in many practical applications
the sum is known: one often needs to distribute (weighted) items into categories
(nurses, shifts,...) and balance the loads of the categories.

The domain of a variable A is denoted Dom(A), the maximum and minimum
values in Dom(A) are denoted Amin and Amax respectively.

Two propagators can be imagined for the deviation constraint:

1. Increasing of Δmin given domains of variables in X and value s.
2. Narrowing of Dom(Xi) given the values Δmin, s and the domains Dom(Xj)

with Xj ∈ X and i �= j.

This paper gives bound-consistent filtering algorithms for both propagators run-
ning in linear time Θ(n).

Section 2 motivates the need for new propagators by explaining the weaknesses
of the bounds computed in [7]. The improved bound-consistent ones considered in
this paper are introduced. Section 3 and 4 give linear time filtering algorithms for
propagators 1 and 2 respectively. Finally, Section 5 experiments the improvement
made by the new propagators on the Balanced Academic Curriculum Problem.

2 Weakness of Existing Propagators

This section starts with some notations useful for the rest of the paper. Then
the weaknesses of the bounds computed in [7] are explained and the improved
bound-consistent ones considered in this paper are introduced.

An integer interval between integer numbers a and b is denoted [a..b] ⊆ Z

while the rational interval is denoted [a, b] ⊆ Q. An assignment on the variables
X = (X1, X2, ..., Xn) is denoted by the tuple x and the ith entry of this tuple
by x[i]. We denote by s↓ the largest multiple of n from s not larger than s:
s↓ = �s/n� · n and by s↑ the value s↓ + n. The rational interval domain of Xi is
IQ
i = [Xmin

i , Xmax
i] and its integer interval domain is IZ

i = [Xmin
i .. Xmax

i].

Definition 2 (Bound Consistency). A global constraint C(X1, ..., Xk) is
bound-consistent if and only if the minimum value and maximum value of every
variable Xi with i ∈ [1..k] has a support in the constraint assuming the other
variables Xj �=i take their value from [Xmin

j ..Xmax
j].

Filtering algorithms from [7] are simple and efficient (run-time in Θ(n)). How-
ever, for integer finite domains, these algorithms are bound-consistent only when
s mod n = 0 that is when the mean s/n is an integer. The reason is the relaxing
assumption that the domains are rational intervals instead of integer intervals
when computing the bounds. Definition 3 gives the expressions of the computed
bounds in [7] and the bound-consistent ones considered in this paper.

622 P. Schaus, Y. Deville, and P. Dupont

Definition 3. ΔQ denotes the minimal sum of deviations with rational interval
domains:

ΔQ = min
x

{
n∑

i=1

|n · x[i] − s|
∣∣ ∀i : x[i] ∈ IQ

i and
n∑

i=1

x[i] = s}. (1)

ΔZ denotes the minimal sum of deviations with integer interval domains ob-
tained by substituting Q by Z in equation (1).

X
Q

i denotes the maximal consistent value for Xi with rational interval do-
mains:

X
Q

i = max
x

{ x[i]
∣∣ ∀j : x[j] ∈ IQ

j and (2)
n∑

j=1

x[j] = s and
n∑

j=1

|n · x[j] − s| ≤ Δmax}.

X
Z

i denotes the maximal consistent value for Xi with integer interval domains
obtained by substituting Q by Z in equation (2).

Corresponding definitions for XQ
i and XZ

i are obtained by replacing maxi-
mization over x by minimization in equation (2).

The two propagators described in [7] filtering Δ and X apply respectively the
filtering rules

Δmin ← max(Δmin, ΔQ) and (3)

Dom(Xi) ← Dom(Xi) ∩ [XQ
i , X

Q

i] ∀i ∈ [1..n]. (4)

These filtering rules are bound-consistent if the domains of the Xi’s are ratio-
nal intervals [Xmin

i , Xmax
i]. When the domains of the Xi’s are integer intervals

[Xmin
i ..Xmax

i], the corresponding bound-consistent filtering rules are obtained
by substituting Q by Z in equations (3) and (4). Nevertheless, rules (3) and (4)
can be used for integer domains as well since they are obtained by relaxing the
domains to rational intervals. The relations between the bounds are XZ

i ≥ XQ
i ,

X
Z

i ≤ X
Q

i and ΔZ ≥ ΔQ. In the particular case of s mod n = 0, the bounds are
completely equivalent. As illustrated in the two following examples, the relaxing
assumption of rational interval domains can lead to miss some possible filtering
with respect to a bound-consistent filtering.

Example 1 (Filtering of Δ). Assume two variables X = (X1, X2) with domains
[−5..5] and a sum constraint s = 1. Obviously ΔQ = 0 is obtained with the tuple
x = (0.5, 0.5) while ΔZ = 2 is obtained with the tuple x = (1, 0) or x = (0, 1).

Example 2 (Filtering of X). Assume ten variables with domains [−5..5], a sum
constraint s = 7 and a maximum sum of deviations Δmax = 42. One can see
that X

Q

i = 7
10 + 21

10 = 2.8 and XQ
i = 7

10 − 21
10 = −1.4. This solution is obtained

if eight variables are assigned to the mean 7/10 and the other two are as far
as possible from the mean that is one above the mean and the other below the

Bound-Consistent Deviation Constraint 623

mean at an equal distance 21
10 . For this configuration, the maximum deviation

Δmax = 42 is reached. When only integer assignments are permitted, the result
is X

Z

i = 1 and XZ
i = 0. Indeed, for an assignment composed of seven values 1

and three values 0, the maximal deviation is reached (Δmax = 42). Clearly there
is no other integer assignment with a lower deviation. Hence the filtering of [7]
would achieve Dom(Xi) = [−1..2] while a bound-consistent filtering would give
Dom(Xi) = [0..1].

3 A Bound-Consistent Lower Bound for the Deviation

The previous section shows in Example 1 that when every domain overlaps the
mean, the lower bound for the deviation computed by propagators in [7] is equal
to 0 since every variable can be assigned to the mean s/n. This lower bound
is not bound-consistent when the mean is rational (when s mod n �= 0). Next
theorem gives a lower bound for Δ that can be computed in constant time and
greater than 0 in this case.

Theorem 1. A lower bound for the deviation Δ is:

0 ≤ 2 · (n − s mod n) · (s mod n) ≤ ΔZ.

Proof. This lower bound is obtained by enlarging every domain Dom(Xi) such
that s/n gets inside: ∀i ∈ [1..n] : s/n ∈ [Xmin

i , Xmax
i]. Then in an assignment of

minimum deviation, every variable are either assigned to s↓ or to s↑ = s↓+ n. If
we denote by y the number of variables (n·Xi) assigned to s↓ , the sum constraint
can be written: y·s↓+(n−y)·(s↓+n) = s·n. Hence y = n−(s−s↓) = n−s mod n.
Using this, a lower bound of ΔZ is (n − s mod n) · (s mod n) + (s mod n) · (n −
s mod n) = 2 · (n − s mod n) · (s mod n). �

The lower bound introduced in Theorem 1 is bound-consistent only if every
domain overlaps the mean s/n. The remaining of this section introduces a linear
time algorithm to compute a valid assignment satisfying the sum constraint and
minimizing the sum of deviations in the general case when the domains do not
necessarily overlap the mean. More formally the algorithm computes a tuple x
satisfying the relation 2:

argmin
x

{(
n∑

i=1

|n · x[i] − s|)
∣∣∀i : x[i] ∈ IZ

i and
n∑

i=1

x[i] = s}.

To alleviate notations, the tuple n · x is used instead of x. Note that n · x
corresponds to an integer assignment only if it is composed of values which are
multiple of n. The algorithm executes in two phases: a greedy part followed by
a repair part.

– Greedy: The sum constraint is dropped. Each n · x[i] is set to the closest
multiple of n from s in Dom(n · Xi).

2 argminx f(X) is the set of x such that f(x) is minimal.

624 P. Schaus, Y. Deville, and P. Dupont

– Repair: If the sum constraint is satisfied that is
∑n

i=1 x[i] = s, then n · x
is a solution to the problem. Otherwise the sum is larger or smaller than s.
We consider the larger case:

∑n
i=1 x[i] > s (the other case is similar). Then

some entries of n · x must be decreased until the sum constraint is satisfied.
An entry n · x[i] = s↑ > n · Xmin

i is called an overlapping entry. The choice
of the entries to decrease is important. Decreasing an entry which is smaller
than s by n results in an augmentation by n of the sum of deviations. But
decreasing an overlapping entry by n (that is from n · x[i] = s↑ to s↓) only
increases the sum of deviations by (2 · (s mod n) − n) (see Figure 1). This
last quantity is smaller or equal to n. Consequently, all overlapping entries
are first considered in any order to be decreased by n to satisfy the sum
constraint. If the sum constraint is not yet satisfied after this operation, the
following property holds:

∀i : n · x[i] ≤ s or n · Xmin
i ≥ s.

In other words, each entry n · x[i] lies either on the lower bound of the
corresponding variable domain or lies below s and can if necessary be further
decreased. Consequently every entry below s, not yet on its lower bound,
can be decreased at most to its lower bound (n · Xmin

i). This results in an
augmentation of the sum of deviations equal to the amount of the decreasing.
These entries are used to satisfy the sum constraint. They are decreased
maximally in an arbitrary order until the sum constraint is satisfied.

The greedy part is achieved by iterating once over the variables. There are at
most n overlapping variables candidates to a repair. Finally, there are at most
n variables needed to be further decreased to satisfy the sum constraint. Hence
the total complexity is Θ(n) to compute the bound-consistent lower bound ΔZ.

Lemma 1. The greedy + repair algorithm computes an assignment x such that∑n
i=1 x[i] = s and

∑n
i=1 |n · x[i] − s| = ΔZ.

Proof. It can be verified that tuple x after the greedy part until the termination
of the algorithm satisfies the following invariant:

x ∈ min
y

{(
n∑

i=1

|n · y[i] − s|)
∣∣

n∑
i=1

y[i] =
n∑

i=1

x[i] and ∀j : y[j] ∈ IQ
j }.

Since each modifiation of x make the sum over x strictly closer to s and since the
algorithm terminates whenever the sum is equal to s, the correctness follows. �

Example 3 (Computing ΔZ). Assume six variables with domain bounds repre-
sented on Figure 2 and given in the following table:

i 1 2 3 4 5 6
Xmax

i 16 12 14 16 12 15
Xmin

i 11 10 12 15 10 12
n · Xmax

i 96 72 84 96 72 90
n · Xmin

i 66 60 72 90 60 72

Bound-Consistent Deviation Constraint 625

s
n

smod n

n smod n

n x i

s s n n

s s n n n

Fig. 1. Decreasing of an overlapping variable by n. The horizontal plain line represents
the sum constraint s. The horizontal dashed lines are placed at s↑ and s↓.

60
66

72
78

84
90

96

s ●

●

●

●

●

●

60
66

72
78

84
90

96

s

● ● ●

●

●

●

Fig. 2. Illustration of Example 3 to compute ΔZ. Horizontal lines represents the mul-
tiples of n = 6. On the left, the result of the greedy part and on the right the result of
the repair part are represented with symbol ◦.

The sum constraint is s = 76. After completion of the greedy part, the tuple
n · x is equal to (78, 72, 78, 90, 72, 78). An illustration of n · x is given on the left
of Figure 2 (symbols ◦). For this tuple

∑n
j=1 n · x[j] = 468 > 456. Since the

sum is too high, some entries of n · x must be decreased. First candidates are
overlapping entries n ·x[1], n ·x[3] and n ·x[6]. The decrease by n = 6 of any two
of them is sufficient to satisfy the sum constraint. The right of Figure 2 shows
the final tuple n · x. The value of ΔZ is then

∑n
j=1 |n · x[j] − s| = 32.

4 Bound-Consistent Lower and Upper Bounds for Xi

This section explains how to compute X
Z

i the maximum value in IZ
i consistent

with deviation(X , s, Δ) . Note that computing XZ
i is a similar problem sym-

metric with respect to s. The previous section gives an algorithm to find the
minimum deviation in linear time. A shaving process using this algorithm can
be sketched:

626 P. Schaus, Y. Deville, and P. Dupont

– Assign Xi successively to increasing values of its extended domain IZ
i .

– For each value compute ΔZ.
– X

Z

i is the largest value in IZ
i with ΔZ ≤ Δmax.

The complexity of this shaving procedure is O(e · n) for Xi where e is the the
size of the largest domain over X and O(e · n2) for all variables in X .

A better algorithm is possible to lower the complexity to Θ(n). Indeed, for each
variable Xi, it is possible to compute a function over the domain interval IZ

i giving
for each value the minimum deviation if Xi were assigned to that value. As shown
in Subsection 4.1, this function has a simple analytical form composed of two con-
tiguous increasing linear functions. Given this function, X

Z

i is found in constant
time by intersecting it with the horizontal line at Δmax (see Figure 3). Subsection
4.2 gives an algorithm to compute the function for every variable in Θ(n).

Z

max

I iXi

Fig. 3. Computation of X
Z

i on basis of the minimum deviation function defined on IZ
i

4.1 Function of the Minimum Deviation on IZ
i

The computation of the function giving the minimum deviation on the domain
of Xi is conceptually based on any assignment mi on X which maximizes the
ith entry among all the assignments of minimal sum of deviations ΔZ :

mi ∈ argmax
n·x

{x[i]
∣∣∀j �= i : x[j] ∈ IZ

j and
n∑

j=1

|n · x[j] − s| = ΔZ

and
n∑

j=1

x[j] = s}.

Any assignment with the ith entry larger than mi[i] has a deviation larger than
the deviation of mi. If mi[i] ≥ n · Xmax

i , then X
Z

i = Xmax
i . We now assume

mi[i] < n · Xmax
i .

The minimum deviation function on [mi[i], n · Xmax
i] can take different forms

following the value mi[i]. Three cases are possible for mi[i] given in Property 1.

Property 1

– If mi[i] < s↓ then mi[i] = n · Xmax
i .

– If mi[i] = s↓ then ∀j �= i : either mi[j] = n · Xmin
i or mi[j] ≤ s↓.

– If mi[i] ≥ s↑ then ∀j �= i : either mi[j] = n · Xmin
i or mi[j] ≤ s↑.

Bound-Consistent Deviation Constraint 627

Property 1 can be verified starting from an assignment obtained from the greedy+
repair algorithm from Section 3 and then by increasing the ith entry as much as
possible while keeping the sum constraint satisfied and the deviation unchanged.
Each case from Property 1 is considered in turn in the next three paragraphs giving
the evolution of the minimum deviation on IZ

i for each case.

Case mi[i] < s↓:

In this case, n · XZ

i = mi[i] because the entry mi[i] cannot be increased since it
is already to its maximum possible value.

Case mi[i] = s↓:

If mi[i] is increased by n, the only entries which can be decreased are below s↓

(Property 1). Consequently when mi[i] is increased by n the deviation increases
by n − (s − s↓) + (s↑ − s). Term n represents the decrease of an entry below s↓

and the term −(s − s↓) + (s↑ − s) represents the increase by n of mi[i]. If mi[i]
is further increased by n, the deviation increases by 2 ·n. Indeed, mi[i] ≥ s↑ and
the other entries candidate to be decreased are below s↓.

Example 4. This example considers 4 variables with domains given in next table:

i 1 2 3 4
Xmax

i 7 5 6 7
Xmin

i 3 0 5 5
n · Xmax

i 28 20 24 28
n · Xmin

i 12 0 20 20

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. The assignment
m1 = (16, 12, 20, 20) is represented on Figure 4 with symbols ◦. The deviation
of this assignment is 12. If m1[1] is increased by 4 that is from 16 to 20, the
deviation increases by −(s − s↓) + (s↑ − s) = −1 + 3. For the sum constraint

0
4

8
12

16
20

24
28

s
●

●

● ●

● m1

●

16 20 24 28

12
18

34

●

●

Fig. 4. Figure of Example 4. On the left is the representation of m1 with symbols ◦
and the successive values of m1[1]. On the right is the evolution of the deviation with
the successive values of m1[1].

628 P. Schaus, Y. Deville, and P. Dupont

0
4

8
16

24
32

40

s
● ● ●

●

● m1
●

20 24 28 32 36 40

18
22

46

●

●

Fig. 5. Figure of Example 5. On the left is the representation of m1 and the successive
values of m1[1]. On the right is the evolution of the deviation with the successive values
of m1[1].

s = 17 to remain satisfied, another entry must be decreased by 4. The only
possible entry is m1[2] making the deviation increase by 4. The deviation of
m1 is thus increased from 12 to 18 when m1[1] is set to 20 (represented by
the symbols � on the Figure 4). If m1[1] is further increased, the deviation is
increased by 2 · 4 = 8 at every step. Hence when m1[1] is increased to 28 the
deviation is 34 (represented by the symbol •)

Case mi[i] ≥ s↑:

If mi[i] is increased by n the deviation of mi increases by n. For the sum con-
straint to remain satisfied, another entry must also be decreased by n. To keep the
deviation of mi minimal, priority must be given to entries mi[j] = s↑ > n ·Xmin

j .
Indeed, the decrease of such an entry induces a smaller increase in the deviation
than for an entry under s. The whole effect on the deviation is an augmentation
of n−(s↑−s)+(s−s↓) = 2.(s−s↓). Note that if only entries n·Xmin

j < mi[j] ≤ s↓

are available, the deviation augments by 2 · n. This reasoning makes it possible
to predict the evolution of the deviation in Θ(1) on basis of two information’s
about mi:

– mi[i].
– oi = #{mi[j]

∣∣j �= i and mi[j] = s↑ and mi[j] > n · Xmin
j }. This number

corresponds to the number of entries in mi that can be decreased by n
causing an augmentation of the deviation of only −(s↑ − s) + (s − s↓).

The minimum deviation increases by 2 · (s − s↓) every n during oi steps. After
that it increases by 2 · n every n.

Example 5. This example cosiders 4 variables with domains given in next table:

Bound-Consistent Deviation Constraint 629

i 1 2 3 4
Xmax

i 10 5 6 2
Xmin

i 3 4 3 0
n · Xmax

i 40 20 24 8
n · Xmin

i 12 16 12 0

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. Assignment
m1 = (20, 20, 20, 8) is represented on Figure 5 with symbol ◦. The deviation of
this assignment is 18 and o1 = 2 because of the second and third entries. The
evolution of the deviation is given on the Figure 5.

4.2 Computation of the Evolution of the Minimum Deviation for
Every Variable

The previous subsection explains how the minimum deviation on IZ
i evolves

starting from a special assignment called mi. We briefly summarize the possible
cases of evolution of the deviation when mi[i] is incremented by n.

– mi[i] < s↓: The deviation can not increase anymore.
– mi[i] = s↓: The deviation increases first by n − (s − s↓) + (s↑ − s) the first

time m[i] is increased by n. Then it increases by 2 · n every increase by n of
mi[i].

– mi[i] ≥ s↑: The deviation increases by 2 · (s − s↓) every n during oi steps.
After that it increases by 2 · n every increase by n of mi[i].

The only necessary information to predict the evolution of the deviation is the
entry mi[i] and the counter oi. To simplify the notations we denote by m[i] the
entry mi[i] and by o[i] the counter oi. Algorithm 1 computes m[i] and o[i] for
1 ≤ i ≤ n in Θ(n). The algorithm assumes that the deviation constraint is
consistent.

– Lines 4-5 do a greedy assignment for each variable multiple of n closest from
s inside its domain.

– Lines 9-13 consider the case when the sum constraint is (by chance) respected
after the greedy assignment.

– Lines 15-21 try to make the sum constraint satisfied by moving assignment
of variables which overlap the value s.

– Lines 22-23 update the sets overlaps and overlaps(s↑) after the possible
modifications in lines 15-23.

– Lines 24-31 consider the case where the sum constraint could be satisfied
after modifications of lines 15-23.

– Lines 32-35 and 36-41 holds respectively when the sum is too large or too
low even after the modifications of lines 15-23. If the sum is too large, some
entries must be decreased. It is implicitly assumed that entries j �= i can
be potentially decreased. Hence m[i] = nx[i] and o[i] is 0 because, all other
entries are already at their minimum or under s. If the sum it too small, m[i]
is obtained by increasing nx[i] such that the sum is satisfied. If the ith entry
was overlapping, o[i] is the current number of overlapping entries minus one.

630 P. Schaus, Y. Deville, and P. Dupont

Algorithm 1. Compute m and o

Data: X and s such that s ∈ [
�n

i=1 Xmin
i ,
�n

i=1 Xmax
i]

Result: m and o
nx, m, o integer arrays of size n1

sum ← 0 /*
�n

i=1 nx[i] */2

s∗ ← (s − s↓) ≤ (s↑ − s) ? s↓ : s↑ /* the multiple of n closest to s */3

for i ← 1 to n do4

Set nx[i] to the multiple of n closest to s in [n · Xmin
i , n · Xmax

i]5

overlaps ← {i | nx[i] = s↑ > n · Xmin
i or nx[i] = s↓ < n · Xmax

i }6

overlaps(s↑) ← {i ∈ overlaps | nx[i] = s↑}7

sum ←�n
i=1 nx[i]8

if sum = n · s then9

for i ← 1 to n do10

m[i] ← nx[i]11

if i ∈ overlaps(s↑) then o[i] ← #overlaps(s↑) − 112

else o[i] ← #overlaps(s↑)13

else14

if (sum > n · s and s∗ = s↑) or (sum < n · s and s∗ = s↓ and s∗ �= s)15

then
δ ← sum > n · s ? − n : n16

for i ∈ overlaps do17

if sum = n · s then break18

else19

nx[i] ← nx[i] + δ20

sum ← sum + δ21

overlaps ← {i | nx[i] = s↑ > n · Xmin
i or nx[i] = s↓ < n · Xmax

i }22

overlaps(s↑) ← {i ∈ overlaps | nx[i] = s↑}23

if sum = n · s then24

for i ← 1 to n do25

if i ∈ overlaps and #overlaps(s↑) > 0 then26

m[i] = s↑27

o[i] = #overlaps(s↑) − 128

else29

m[i] = nx[i]30

o[i] = #overlaps(s↑)31

else if sum > n · s then32

for i ← 1 to n do33

m[i] = nx[i]34

o[i] = 035

else /* sum < n · s */36

for i ← 1 to n do37

m[i] = nx[i] + n · s − sum38

if n · Xmin
i < s < n · Xmax

i and #overlaps(s↑) > 0 then39

o[i] = #overlaps(s↑) − 140

else o[i] = #overlaps(s↑)41

Bound-Consistent Deviation Constraint 631

It can be seen that Algorithm 1 has a time complexity of Θ(n). Indeed, in all
cases a constant number of operations is performed for each variable.

Example 6. This example considers the following domains:

i 1 2 3 4 5 6

Xmax
i 16 11 14 14 12 15

Xmin
i 11 9 12 13 10 12

n · Xmax
i 96 66 84 84 72 90

n · Xmin
i 66 54 72 78 60 72

The sum constraint is s = 74, n · s = 444 and s∗ = s↓ = 72.

– Lines 4-8: After the greedy assignment, nx = (72, 66, 72, 78, 72, 72). The sum
is 432 which is smaller than 444. Hence the condition to execute lines 9-13
is not satisfied. We have also overlaps = {1, 3, 6} and overlaps(s↑) = φ.

– Lines 15-23 will result in nx = (78, 66, 78, 78, 72, 72). The sum is now 444,
overlaps = {1, 3, 6} and overlaps(sup) = {1, 3}.

– Since sum = n.s is satisfied, lines 24-32 are executed next. Entries 1, 3 and
6 satisfy the if statement line 26 while entries 2, 4 and 5 does not. Hence
results are m = (78, 66, 78, 78, 72, 78) and o = (1, 2, 1, 2, 2, 1)

5 Experimental Results

This section compares the existing propagators from [7] with the presented
bound-consistent propagators on the Balanced Academic Curriculum Problem
(BACP). We also give an expression of the minimum difference between two de-
viation values and experiment the usage of this difference to speed up the Branch
and Bound search. All experiments were performed on an Intel� Pentium� M
1.86GHz with 1GB of memory and with the Gecode 1.3.1 Solver.

The objective of the BACP is to assign courses to periods while balancing
the workload of periods and respecting prerequisites relations between pair of
courses. The CP model we consider to solve BACP is precisely the one introduced
in [4]. The objective function in [4] is to minimize the maximum load over periods.
In contrast, our objective function is to minimize the deviation of loads of periods
from the mean load.

The search performed to solve BACP is a DFS Branch and Bound search.
Hence, each time a solution is found, the next solution is constrained to have
a smaller deviation. More information can be given on the next solution to be
found. Indeed the smallest difference δ between two possible deviation values is

δ = min{2 · s mod n , 2 · (n − s mod n)} when s mod n �= 0.
δ = 2 · n when s mod n = 0.

The expression min{2 · s mod n , 2 · (n − s mod n)} can be understood easily.
The value 2·s mod n corresponds to the move represented by arrows labeled 1 on
Figure 6 while the value 2 · (n − s mod n) corresponds to the move represented

632 P. Schaus, Y. Deville, and P. Dupont

s
n

smod n

n smod n
s

s

Fig. 6. Illustration of the smallest distance between two possible deviations

with arrows labeled 2. The value δ can be used to speed-up the Branch and
Bound search. Indeed, if a solution is found with a deviation of Δ, the next
solution can be constrained to present a deviation less than or equal to Δ − δ.

Three real instances are available on CSPLIB. These instances are summarized
in the following table:

n (#periods) #courses #prerequisites s (total load) s mod n
8 46 38 133 5
10 42 34 134 4
12 66 65 204 0

We report here the instances of 8 and 10 periods because the instance with
12 periods presents an integer mean load (s mod n = 0). Hence proposed prop-
agators, as checked experimentally, behave exactly as the ones from [7] on the
instance with 12 periods.

The two instances were solved with 4 configurations:

– the propagators proposed in [7] (Deviation),
– the bound-consistent propagators (BC Deviation),
– the propagators proposed in [7] with the lower bound from Theorem 1 and

the value δ during the Branch and Bound search (Deviation*) and
– the bound-consistent propagators and the value δ during the Branch and

Bound search (BC Deviation*).

Table 1 gives statistics on the last 5 bounds found during the Branch and
Bound search for each configuration. The reported statistics are the time and
the number of leaf nodes explored so far (# L.N.). The last line gives the statistics
to prove the optimality of the last bound found.

It appears from Table 1 that the new propagators become really useful when
the upper bound Δmax becomes tight. Moreover, the new propagators permit to
prove optimality of the last bound within less than one second for both instances
while it not possible in a reasonable time (not finished after 20 minutes) with
existing propagators from [7]. The usage of the lower bound and the δ value
permits to prove the optimality of the last bound with propagators from [7]. We

Bound-Consistent Deviation Constraint 633

Table 1. Instances of 8 and 10 periods. Statistics about the last 5 bounds during the
B&Bound The time and the number of leaf nodes (# L.N.) are given for each bound

8 Periods

Deviation BC Deviation

Bound Time(ms) # L.N. Time(ms) # L.N.

50 20 447 40 441
46 30 454 40 443
40 30 456 40 445
36 40 559 40 450
30 40 561 40 451

proof ∞ ∞ 40 1517

10 Periods

84 50 857 60 857
76 50 862 60 862
64 50 864 60 864
56 70 1060 60 891
48 18370 368486 60 896

proof ∞ ∞ 60 3288

8 Periods

Deviation* BC Deviation*

Bound Time(ms) # L.N. Time(ms) # L.N.

62 20 365 20 320
56 20 370 20 325
50 20 375 20 330
40 20 378 20 332
30 30 483 20 337

proof 30 1644 20 1172

10 Periods

84 40 855 50 770
76 40 860 60 822
64 40 862 60 826
56 60 1058 60 853
48 24660 574539 60 858

proof 24660 2021299 60 3191

Table 2. Comparison of the propagators on 500 randomized versions of the 8 periods
instance: number of unsolved instances

s mod n = 0 s mod n �= 0

Nb instances 55 445

Deviation 0 391
BC Deviation 0 0

Deviation* 0 229
BC Deviation* 0 0

can also see that even with the bound consistent propagators, the number of
explored nodes is decreased: 1, 172 < 1, 517 for 8 periods and 3, 191 < 3, 288 for
10 periods.

The objective of the next experiments is to study on more instances the gain
obtained with the new propagators. We generated 500 instances from the original
8 periods instance. For each instance, the weight given to each course is a random
integer in [1..5] and 30 prerequisites relations are randomly chosen out the 38.
Each instance was solved with the four configurations. The time limit given is
of 5 seconds. Table 2 gives the number of unsolved instances.

It appears that all instances can be easily solved with the bound-consistent
propagators. This is not the case with propagators from [7] since 301 instances
remain unsolved. The use of the lower bound from Theorem 1 and the δ value
permits to solve 162 additional instances with propagators from [7]. The value
s mod n has a strong influence on the old propagators but it does not influence
the new propagators. All the 55 instances with s mod n = 0 could be solved
with all configurations. This is not surprising since propagators proposed in [7]
are also bound-consistent in this case.

634 P. Schaus, Y. Deville, and P. Dupont

6 Conclusion

The deviation constraint recently introduced in [7] guarantees an assignment
on a set of variables to be balanced around a given mean. It constrains the set of
variables to present a given mean and the deviation with respect to this mean.
The main advantage of the propagators proposed in [7] is their simplicity. How-
ever, these propagators are bound-consistent only when the mean is an integer.
We experiment on the Balanced Academic Curriculum Problem (BACP) that
instances are very difficult to solve with propagators from [7] when this property
does not hold. We give a simple lower bound on the deviation which can be found
in constant time and help to solve some additional problems when the sum is
not a multiple of n. Our main contributions are bound-consistent propagators
for any rational mean value running in linear time. In contrast with propagators
presented in [7], bound-consistent propagators solve efficiently any instance of
the BACP from CSPLIB. Finally, we give a way to speedup the Branch and
Bound search when the objective is to minimize the deviation.

Acknowledgment. The authors wish to thank Grégoire Dooms for various inter-
esting discussions, especially for the Theorem 1 which was the starting point of
this article. Tkanks to the reviewers for their helpful comments. This research is
supported by the Walloon Region, project Transmaze (516207).

References

1. Castro, C., Manzano, S.: Variable and value ordering when solving balanced acad-
emic curriculum problem. In: Proc. of the ERCIM WG on constraints (2001)

2. Gendreau, M.l., Ferland, J., Gendron, B., Hail, N., Jaumard, B., Lapierre, S., Pesant,
G., Soriano, P.: Physician scheduling in emergency rooms. In: Proc. of PATAT (2006)

3. Gomes, C., Sellmann, M., van Es, C., van Es, H.: The challenge of generating spa-
tially balanced scientific experiment designs. In: Proc. of CP-AI-OR (2004)

4. Hnich, B., Kiziltan, Z., Walsh, T.: Modelling a balanced academic curriculum prob-
lem. In: Proceedings of CP-AI-OR (2002)

5. Pesant, G., Regin, J.-C.: Spread: A balancing constraint based on statistics. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

6. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: Simplication and extension of
spread. In: 3th Workshop on Constraint Propagation And Implementation (2006)

7. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: The deviation constraint. In: Pro-
ceedings of CP-AI-OR, vol. 4510, pp. 269–284 (2007)

Constructive Interval Disjunction

Gilles Trombettoni1 and Gilles Chabert2

1 University of Nice-Sophia and COPRIN Project, INRIA, 2004 route des
lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, France

2 ENSIETA, 2 rue François Verny, 29806 Brest cedex 09, France
trombe@sophia.inria.fr, gilles.chabert@ensieta.com

Abstract. This paper presents two new filtering operators for numerical
CSPs (systems with constraints over the reals) based on constructive dis-
junction, as well as a new splitting heuristic. The fist operator (CID) is a
generic algorithm enforcing constructive disjunction with intervals. The
second one (3BCID) is a hybrid algorithm mixing constructive disjunc-
tion and shaving, another technique already used with numerical CSPs
through the algorithm 3B. Finally, the splitting strategy learns from the
CID filtering step the next variable to be split, with no overhead.

Experiments have been conducted with 20 benchmarks. On several
benchmarks, CID and 3BCID produce a gain in performance of orders
of magnitude over a standard strategy. CID compares advantageously to
the 3B operator while being simpler to implement. Experiments suggest
to fix the CID-related parameter in 3BCID, offering thus to the user a
promising variant of 3B.

1 Introduction

We propose in this paper new advances in the use of two refutation principles
of constraint programming: shaving and constructive disjunction. We first intro-
duce shaving and then proceed to constructive disjunction that will be considered
an improvement of the former.

The shaving principle is used to compute the singleton arc-consistency (SAC)
of finite-domain CSPs [3] and the 3B-consistency of numerical CSPs [7]. It is
also in the core of the SATZ algorithm [9] proving the satisfiability of boolean
formula. Shaving works as follows. A value is temporarily assigned to a vari-
able (the other values are temporarily discarded) and a partial consistency is
computed on the remaining subproblem. If an inconsistency is obtained then
the value can be safely removed from the domain of the variable. Otherwise,
the value is kept in the domain. This principle of refutation has two drawbacks.
Contrarily to arc consistency, this consistency is not incremental [2]. Indeed,
the work of the underlying refutation algorithm on the whole subproblem is the
reason why a single value can be removed. Thus, obtaining the singleton arc
consistency on finite-domain CSPs requires an expensive fixed-point propaga-
tion algorithm where all the variables must be handled again every time a single
value is removed [3]. SAC2 [1] and SAC-optim [2] and other SAC variants ob-
tain better average or worst time complexity by managing heavy data structures

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 635–650, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

636 G. Trombettoni and G. Chabert

for the supports of values (like with AC4) or by duplicating the CSP for every
value. However, using these filtering operators inside a backtracking scheme is
far from being competitive with the standard MAC algorithm in the current
state of research. In its QuickShaving [8], Lhomme uses this shaving principle
in a pragmatic way, i.e., with no overhead, by learning the promising variables
(i.e., those that can possibly produce gains with shaving in the future) during the
search. Researchers and practitioners have also used for a long time the shaving
principle in scheduling problems. On numerical CSPs, the 2B-consistency is the
refutation algorithm used by 3B-consistency [7]. This property limited to the
bounds of intervals explains that 3B-consistency filtering often produces gains
in performance.

Example. Figure 1 (left) shows the first two steps of the 3B-consistency algo-
rithm. Since domains are continuous, shaving does not instantiate a variable to
a value but restricts its domain to a sub-interval of fixed size located at one of
the endpoints. The subproblems are represented with slices in light gray. The 2B-
consistency projects every constraint onto a variable and intersects the result of
all projections. In the leftmost slice, 2B-consistency leads to an empty box since
the projections of the first and the second constraint onto x2 are two intervals I1
and I2 with empty intersection. On the contrary, the fixed-point of projections
in the rightmost slice is a nonempty box (with thick border).

The second drawback of shaving is that the pruning effort performed by the
partial consistency operator to refute a given value is lost, which is not the case
with constructive disjunction1.

Constructive disjunction was proposed by Van Hentenryck et al. in the nineties
to handle efficiently disjunctions of constraints, thus tackling a more general
model than the standard CSP model [17]. The idea is to propagate independently
every term of the disjunction and to perform the union of the different pruned
search spaces. In other terms, a value removed by every propagation process
(run with one term/constraint of the disjunct) can be safely removed from the
ground CSP. This idea is fruitful in several fields such as scheduling, where a
common constraint is that two given tasks cannot overlap, or 2D bin packing
problems where two rectangles must not overlap.

Constructive disjunction can also be used to handle the classical CSP model
(where the problem is viewed as a conjunction of constraints). Indeed, every
variable domain can be viewed as a unary disjunctive constraint that imposes
one value among the different possible ones (x = v1 ∨ ... ∨ x = vn, where x is
a variable and v1, ..., vn are the different values). In this specific case, similarly
to shaving, the constructive disjunction principle can be applied as follows. Ev-
ery value in the domain of a variable is assigned in turn to this variable (the
other values are temporarily discarded), and a partial consistency on the cor-
responding subproblems is computed. The search space is then replaced by the
union of the resulting search spaces. One advantage over shaving is that the

1 Note that optimized implementations of SAC reuse the domains obtained by subfil-
tering in subsequent calls to the shaving of a same variable.

Constructive Interval Disjunction 637

(sub)filtering steps performed during constructive disjunction are better reused.
This constructive “domain” disjunction is not very much exploited right now
while it can sometimes produce impressive gains in performance. In particular,
in addition to all-diff constraints [14], incorporating constructive domain dis-
junctions into the famous Sudoku problem (launched, for instance, when the
variables/cases have only two remaining possible values/digits) often leads to a
backtrack-free solving. The same phenomenon is observed with shaving but at
a higher cost [15].

This observation has precisely motivated the research described in this pa-
per devoted to the application of constructive domain disjunction to numerical
CSPs. The continuous nature of interval domains is particularly well-suited for
constructive domain disjunction. By splitting an interval into several smaller in-
tervals (called slices), constructive domain disjunction leads in a straightforward
way to the constructive interval disjunction (CID) filtering operator introduced
in this paper.

After useful notations and definitions introduced in Section 2, Sections 3 and
4 describe the CID partial consistency and the corresponding filtering operator.
A hybrid algorithm mixing shaving and CID is described in Section 5. Section 6
presents a new CID-based splitting strategy. Finally, experiments are presented
in Section 7.

2 Definitions

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1. A numerical CSP (NCSP) P = (X, C, B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a real
value in the interval xi and B is the cartesian product (called a box) x1 × ...×
xn. A solution of P is an assignment of the variables in X satisfying all the
constraints in C.

Remark 1. Since real numbers cannot be represented in computer architectures,
the bounds of an interval xi should actually be defined as floating-point numbers.

CID filtering performs a union operation between two boxes.

Definition 2. Let Bl and Br be two boxes corresponding to a same set V of
variables.
We call hull of Bl and Br, denoted by Hull(Bl, Br), the minimal box including
Bl and Br.

To compute a bisection point based on a new (splitting) strategy, we need to
calculate the size of a box. In this paper, the size of a box is given by its perimeter.

Definition 3. Let B = x1 × ...× xn be a box. The size of B is
∑n

i=1(xi − xi),
where xi and xi are respectively the upper and lower bounds of the interval xi.

638 G. Trombettoni and G. Chabert

3 CID-consistency

The CID-consistency is a new partial consistency that can be obtained on numer-
ical CSPs. Following the principle given in introduction (i.e., combining interval
splitting and constructive disjunction), the CID(2)-consistency can be formally
defined as follows (see Figure 1).

Definition 4. (CID(2)-consistency)
Let P = (X, C, B) be an NCSP. Let F be a partial consistency.

Let Bl
i be the sub-box of B in which xi is replaced by [xi, x̌i] (where x̌i is the

midpoint of xi). Let Br
i be the sub-box of B in which xi is replaced by [x̌i,xi].

A variable xi in X is CID(2)-consistent w.r.t. P and F if
B = Hull(F (X, C, Bl

i), F (X, C, Br
i)). The NCSP P is CID(2)-consistent if all

the variables in X are CID(2)-consistent.

Fig. 1. Shaving and CID-consistency on a simple example with two constraints. The
constraints are represented with their intersection in dark gray. Left: The first two
steps of 3B. Right: the result of VarCID on variable x1 (with 2 slices). The subboxes
Bl

1 and Br
1 are represented with thick borders; the resulting box appears in dotted

lines.

For every dimension, the number of slices considered in the CID(2)-consistency is
equal to 2. The definition can be generalized to the CID(s)-consistency in which
every variable is split into s slices.

In practice, like 3B-w-consistency, the CID-consistency is obtained with a pre-
cision that avoids a slow convergence onto the fixed-point. We will consider that a
variable is CID(2,w)-consistent if the hull of the corresponding left and right boxes
resulting from subfiltering reduces no variable more than w.

Definition 5. (CID(2,w)-consistency)
With the notations of Definition 4, put B′ = Hull(F (X, C, Bl

i), F (X, C, Br
i)).

A variable xi in X is CID(2,w)-consistent if |xi| − |x′i| ≤ w, where xi and x′i are
the domain of xi in resp. B and B′.
TheNCSP isCID(2,w)-consistent if all the variables inX areCID(2,w)-consistent.

Constructive Interval Disjunction 639

AlgorithmCIDdetails theCID(s,w)-consistencyfiltering algorithm.Like the 3B-
consistency algorithm, CID iterates on all the variables until a stop criterion, de-
pending on w, is reached (see Definition 5): the Repeat loop is interrupted when no
variable interval has been reduced more than w 2.

Every variable xi is “varcided”, i.e., handled by the procedure VarCID. The
domain of xi is split into s slices of size |xi|

s each by the procedure SubBox.
The partial consistency operator F (e.g., 2B or a variant of the latter called
Box-consistency [16]) filters the corresponding sub-boxes, and the union of the
resulting boxes is computed by the Hull operator. Note that if the subfiltering
operator F applied to a given sub-box sliceBox detects an inconsistency, then
the result sliceBox’ is empty, so that there is no use of performing the union
of sliceBox’ with the current box in construction.

Algorithm CID (s: number of slices, w: precision, in-out P = (X, C, B): an NCSP,
F : subfiltering operator and its parameters)

repeat
Pold ← P
LoopCID (X, s, P , F)

until StopCriterion(w, P , Pold)

end.
Procedure LoopCID (X, s, in-out P , F)

for every variable xi ∈ X do
VarCID (xi, s, P , F)

end

end.
Procedure VarCID (xi, s, (X, C, in-out B), F)

B′ ← empty box
for j ← 1 to s do

sliceBox ← SubBox (j, s, xi, B) /* the jth sub-box of B on xi */
sliceBox’ ← F (X, C, sliceBox) /* perform a partial consistency */
B′ ← Hull(B′, sliceBox’) /* Union with previous sub-boxes */

end
B ← B′

end.

4 A CID-Based Solving Strategy

To find all the solutions of a numerical CSP, we propose a strategy including
a bisection operation, CID filtering and an interval Newton [10]. Between two
bisections, two operations are run in sequence:

1. a call to CID (how to fix the parameters is discussed just below),
2. a call to an interval Newton operator.
2 From a theoretical point of view, in order that the stop criterion leads to a (non unique)

fixed-point, it is necessary to return the box obtained just before the last filtering, i.e.,
the box in Pold in Algorithm CID.

640 G. Trombettoni and G. Chabert

The Right Set of Parameters for CID Filtering

First of all, the subfiltering operators we chose for CID are 2B and Box. The
classical user-defined parameter w-hc4 (percentage of the interval width) is used
by the subfiltering operator (Box or 2B) inside CID to control the propagation
loop. The parameter s is the number of slices used by the VarCID procedure.

Although useful to compute the CID-consistency property, the fixed-point re-
peat loop used by Algorithm CID does not pay off in practice (see below). In other
words, running more than once LoopCID on all the variables is always counterpro-
ductive, even if the value of w is finely tuned. Thus, we have set the parameter w
to∞, that is, we have discarded w from the user-defined parameters.

Endowed with the parameters s and w-hc4, CID filtering appears to be an effi-
cient general-purpose operator that has the potential to replace 2B/Box (alone)
or 3B. For some (rare) benchmarks however, the use of only 2B/Box appears to
be more efficient.

To offer a compromise between pure 2B/Box and CID, we introduce a third
parameter n′ defined as the number of variables that are varcided between two
bisections in a round-robin strategy: given a predefined order between variables,
a VarCID operation is called on n′ variables (modulo n), starting at the lattest
varcided variable plus one in the order. (This information is transmitted through
the different nodes of the tree search.) Thus, if n′ is set to 0, then only 2B/Box
filtering is called between two bisections; if n′ = n (n is the number of variables
in the system), then CID is called between two bisections.

We shall henceforth consider that CID has three parameters: the number of
slices s, the propagation criterion w-hc4 of 2B/Box used for subfiltering and the
number n’ of varcided variables.

Default Values for CID Parameters

So far, we have proposed an efficient general-purpose combination of CID, inter-
val Newton and bisection. However, such a strategy is meaningful only if default
values for CID are available. In our solver, the default values provide the following
CID operator: CID(s=4, w-hc4=10%, n’=n).

Experiments have led us to select s = 4 (see Section 7.2):

– The optimal number of slices lies between 2 and 8.
– Selecting s = 4 generally leads to the best performance. In the other cases,

the performance is not so far from the one obtained with a tuned number of
slices.

Discarded Variants

Several variants of CID or combinations of operators have been discarded by our
experiments. Mentioning these discarded algorithms may be useful.

First, different combinations of bisection, CID and interval Newton have been
tried. The proposed combination is the best one, but adding an interval Newton
to the 2B/Box subfiltering (i.e., inside CID filtering) produces interesting results
as well.

Constructive Interval Disjunction 641

Second, we recommend to forget the fixed-point parameter w in CID. Indeed,
a lot of experiments confirmed that relaunching LoopCID several times in a row
between two bisections is nearly never useful. The same phenomenon has been
observed if the relaunch criterion concerns several dimensions, i.e., if the reduc-
tion of box size (perimeter or volume) is sufficiently large. A third experiment
running LoopCID twice between two splits leads to the same conclusion. Finally,
the same kind of experiments have been conducted with no more success to de-
termine which specific variables should be varcided again in an adaptive way.
All these experiments give us the strong belief that one LoopCID, i.e., varciding
all the variables once, is rather a maximal power of filtering.

Third, in a previous workshop version of this paper, we had proposed a CID246
variant of CID, in which the number s of slices was modified between two splits:
it was alternatively 2, 4 or 6 : s = ((i modulo 3) + 1)× 2), where i indicates the
ith call to LoopCID. The comparison with the standard CID was not fair because
the parameter s in CID was set to 2. It turns out that CID with s = 4 yields
nearly the same results as CID246 while being simpler.

Finally, we also investigated the option of a reentrant algorithm, under the
acronym k-CID. As k-B-consistency [7] generalizes the 3-B-consistency, it is pos-
sible to use (k − 1)-CID as subfiltering operator inside a k-CID algorithm. Like
4-B-consistency, 2-CID-consistency remains a theoretical partial consistency that
is not really useful in practice. Indeed, the pruning power is significant (hence a
small number of required splits), but the computational time required to obtain
the solutions with 2-CID plus bisection is often not competitive with the time
required by 1-CID plus bisection.

5 3B, CID and a 3BCID Hybrid Version

As mentioned in the introduction, the CID partial consistency has several points
in common with the well-known 3B-consistency partial consistency [7].

Definition 6. (3B(s)-consistency)
Let P = (X, C, B) be an NCSP. Let Bl

i be the sub-box of B in which xi is
replaced by [xi,xi + |xi|

s]. Let Br
i be the sub-box of B in which xi is replaced by

[xi − |xi|
s ,xi].

Variable xi is 3B(s)-consistent w.r.t. P if 2B(X, C, Bl
i) �= ∅ and 2B(X, C, Br

i)
�= ∅. The NCSP P is 3B(s)-consistent if all the variables in X are 3B(s)-
consistent.

For practical considerations, and contrarily to finite-domain CSPs, a partial con-
sistency of an NCSP is generally obtained with a precision w [7]. This precision
avoids a slow convergence to obtain the property. Hence, as in CID, a parameter
w is also required in the outer loop of 3B.

When the subfiltering operator is performed by Box consistency, instead of
2B-consistency, we obtain the so-called Bound consistency property [16].

The 3B algorithm follows a principle similar to CID, in which VarCID is re-
placed by a shaving process, called VarShaving in this paper. In particular, both

642 G. Trombettoni and G. Chabert

algorithms are not incremental, hence the outside repeat loop possibly reruns
the treatment of all the variables, as shown in Algorithm 3B.

Algorithm 3B (w: stop criterion precision, s : shaving precision, in-out
P = (X, C, B): an NCSP, F : subfiltering operator and its parameters)

repeat
for every variable xi ∈ X do

VarShaving (xi, s, P , F)
end

until StopCriterion(w, P)

end.

The procedure VarShaving reduces the left and right bounds of variable xi

by trying to refute intervals with a width at least equal to |xi|
s . The following

proposition highlights the difference between 3B filtering and CID filtering.

Proposition 1. Let P = (X, C, B) be an NCSP. Consider the box B′ obtained
by CID(s,w) w.r.t. 2B and the box B′′ obtained by 3B(s,w) 3. Then, CID(s,w)
filtering is stronger than 3B(s,w) filtering, i.e., B′ is included in or equal to B′′.

This theoretical property is based on the fact that, due to the hull operation in
VarCID, the whole box B can be reduced on several, possibly all, dimensions.
With VarShaving, the pruning effort can impact only xi, losing all the temporary
reductions obtained on the other variables by the different calls to F .

Proposition 1 states that the pruning capacity of CID is greater than the one
of 3B. In the general case however, 3B-consistency and CID-consistency are not
comparable because s is the exact number of calls to subfiltering F inside VarCID
(i.e., the upper bound is reached), while s is an upper bound of the number of
calls to 2B by VarShaving. Experiments will confirm that a rough work on a
given variable with CID (e.g., setting s = 4) yields better results than a more
costly work with 3B (e.g., setting s = 10).

The 3BCID Filtering Algorithm

As mentioned above, the 3B and CID filtering operators follow the same scheme,
so that several hybrid algorithms have been imagined. The most promising ver-
sion, called 3BCID, is presented in this paper.

3BCID manages two parameters : the numbers sCID and s3B of slices for the
CID part and the shaving part. Every variable xi is handled by a shaving and a
VarCID process as follows.

The interval of xi is first split into s3B slices handled by shaving. Using a
subfiltering operator F , a simple shaving procedure tries to refute these slices to
3 An additional assumption related to floating-point numbers and to the fixed-point

criterion is required in theory to allow a fair comparison between algorithms: the
2B/Box subfiltering operator must work with a subdivision of the slices managed by
3B and CID.

Constructive Interval Disjunction 643

the left and to the right (no dichotomic process is performed). Let sleft (resp.
sright) be the leftmost (resp. rightmost) slice of xi that has not been refuted by
subfiltering, if any. Let x′i be the remaining interval of xi, i.e., sleft ≤ x′i ≤ x′i ≤
sright.

Then, if x′i is not empty, it is split into sCID slices and handled by CID. One
performs the hull of the (at most) sCID + 2 boxes handled by the subfiltering
operator F : sleft, sright and the sCID slices between sleft and sright.

It is straightforward to prove that the obtained partial consistency is stronger
than 3B(s3B)-consistency.

The experiments will show that 3BCID with sCID = 1 can be viewed as an
improved version of 3B where constructive disjunction produces an additional
pruning effect with a low overhead.

6 A New CID-Based Splitting Strategy

There are three main splitting strategies (i.e., variable choice heuristics) used
for solving numerical CSPs. The simplest one follows a round-robin strategy and
loops on all the variables. Another heuristic selects the variable with the largest
interval. A third one, based on the smear function [10], selects a variable xi

implied in equations whose derivative w.r.t. xi is large.
The round-robin strategy ensures that all the variables are split in a branch

of the search tree. Indeed, as opposed to finite-domain CSPs, note that a vari-
able interval is generally split (i.e., instantiated) several times before finding a
solution (i.e., obtaining a small interval of width less than the precision). The
largest interval strategy also leads the solving process to not always select a
same variable as long as its domain size decreases. The strategy based on the
smear function sometimes splits always the same variables so that an interleaved
schema with round-robin, or a preconditionning phase, is sometimes necessary
to make it effective in practice.

We introduce in this section a new CID-based splitting strategy. Let us first
consider different box sizes related to (and learnt during) the VarCID procedure
applied to a given variable xi :

– Let OldBoxi be the box B just before the call to VarCID on xi. Let NewBoxi

be the box obtained after the call to VarCID on xi.
– Let Bl′

i and Br′
i be the left and right boxes computed in VarCID, after a

reduction by the F filtering operator, and before the Hull operation.

The ratio ratioBis leads to an “intelligent” splitting strategy. The ratio

ratioBis= f(Size(Bl′
i),Size(Br′

i))
Size(NewBox) , where f is any function that aggregates the

size of two boxes (e.g., sum), in a sense computes the size lost by the Hull
operation of VarCID. In other words, Bl′

i and Br′
i represent precisely the boxes

one would obtain if one splits the variable xi (instead of performing the hull
operation) immediately after the call to VarCID; NewBox is the box obtained by

644 G. Trombettoni and G. Chabert

the Hull operation used by CID to avoid a combinatorial explosion due to a
choice point.

Thus, after a call to LoopCID, the CID principle allows us to learn about a
good variable interval to be split: one selects the variable having led to the lowest
ratioBis. Although not related to constructive disjunction, similar strategies
have been applied to finite-domain CSPs [4,13].

Experiments, not reported here, have compared a large number of variants of
ratioBis with different functions f . The best variant is ratioBis

= Size(Bl′
i)+Size(Br′

i)
Size(NewBox) .

7 Experiments

We have performed a lot of comparisons and tests on a sample of 20 instances.
These tests have helped us to design efficient variants of CID filtering.

7.1 Benchmarks and Interval-Based Solver

Twenty benchmarks are briefly presented in this section. Five of them are sparse
systems found in [11]: Hourglass, Tetra, Tangent, Ponts, Mechanism. They
are challenging for general-purpose interval-based techniques, but the algorithm
IBB can efficiently exploit a preliminary decomposition of the systems into small
subsystems [11]. The other benchmarks have been found in the Web page of
the COPRIN research team or in the COCONUT Web page where the reader
can find more details about them [12]. The precision of the solutions. i.e., the
size of interval under which a variable interval is not split, is 1e − 08 for all
the benchmarks, and 5e− 06 for Mechanism. 2B is used for all the benchmarks
but one because it is the most efficient local consistency filtering when used
alone inside 3B or CID. Box+2B is more adequate for Yamamura8. All the selected
instances can be solved in an acceptable amount of time by a standard algorithm
in order to make possible comparisons between numerous variants. No selected
benchmark has been discarded for any other reason!

All the tests have been performed on a Pentium IV 2.66 Ghz using the
interval-based library in C++ developed by the second author. This new solver
provides the main standard interval operators such as Box, 2B, interval New-
ton [10]. The solver provides round-robin, largest-interval and CID-based split-
ting strategies. Although recent and under developement, the library seems com-
petitive with up-to-date solvers like RealPaver [5]. For all the presented solving
techniques, including 3B and 3BCID, an interval Newton is called just before a
splitting operation iff the width of the largest variable interval is less than 1e−2.

7.2 Results Obtained by CID

Table 1 reports the results obtained by CID(s, w-hc4, n′), as defined in Section 4.
The drastic reduction in the number of required bisections (often several or-

ders of magnitude) clearly underlines the filtering power of CID. In addition,

Constructive Interval Disjunction 645

Table 1. Comparison between [CID + interval Newton + round-robin bisection strat-
egy] and [a standard strategy]: 2B/Box + interval Newton + round-robin splitting.
n is the number of variables. The column #s yields the number of solutions. The
first column w-hc4 is the user-defined parameter w-hc4 used by 2B or Box. The last 3
columns s, w-hc4 and n′ indicate the values of parameters that have been tuned for CID
(first CID column). The second CID column reports the results of CID when s = 4 and
w-hc4= 10%, i.e., when only n′ is tuned. The third CID column reports the results of
CID when s = 4 and n′ = n, i.e., when only w-hc4 is tuned. The fourth CID column re-
ports the results of CID with the default values for parameters, i.e., s = 4, w-hc4= 10%,
n′ = n. Every cell contains two values: the CPU time in seconds to compute all the
solutions (top), and the number of required bisections (bottom). For every benchmark,
the best CPU time is bold-faced.

Name n #s w-hc4 2B/Box CID CID CID CID s w-hc4 n′

+ Newton (s, whc4, n′) (4, 10%, n′) (4, whc4, n) (4, 10%, n)
BroydenTri 32 2 15% 758 0.12 0.28 0.19 0.45 4 80% 40

2e+07 46 44 65 50
Hourglass 29 8 5% 24 0.44 0.44 0.52 0.52 4 10% 17

1e+05 109 109 80 80
Tetra 30 256 0.02% 401 10.1 11.6 11.7 14.5 4 30% 20

1e+06 2116 1558 1690 1320
Tangent 28 128 15% 32 3.7 3.7 4.9 5.1 4 50% 28

1e+05 692 692 447 450
Reactors 20 38 5% 156 15.6 16.4 16.7 17.7 4 15% 18

1e+06 2588 2803 2381 2156
Trigexp1 30 1 20% 371(3.4) 0.12 0.15 0.14 0.14 8 2% 30

5025 1 3 2 3
Discrete25 27 1 0.01% 5.2 0.62 1.08 0.84 2.13 8 0.5% 35

1741 2 3 12 99
I5 10 30 2% 692 126 147 150 157 6 2% 5

3e+06 23105 60800 20874 32309
Transistor 12 1 10% 179 66 79.4 91.4 91.4 8 10% 6

1e+06 11008 31426 16333 16333
Ponts 30 128 5% 10.8 2.7 2.9 2.9 3.1 4 30% 25

34994 388 338 380 304
Yamamura8 8 7 1% 13 7.5 9.5 9.5 9.5 4 10% 4

1032 104 60 60 60
Design 9 1 10% 395 275 278 313 313 5 10% 2

3e+06 200272 256000 76633 76633
D1 12 16 5% 4.1 1.7 1.7 1.7 1.7 4 10% 12

35670 464 464 464 464
Mechanism 98 448 0.5% TO(111) 43.1 45.2 46.6 47.8 4 2% 50

24538 3419 3300 2100 2420
Hayes 8 1 0.01% 155 75.8 77 111 147 4 80% 2

3e+05 1e+05 1e+05 81750 58234
Kin1 6 16 10% 84 76.8 76.8 83.5 87.4 4 10% 3

70368 6892 6892 4837 4100
Eco9 8 16 10% 26 18 19.4 26.6 26.6 3 10% 1

2e+05 55657 46902 10064 10064
Bellido 9 8 10% 80 94.4 94.4 106 106 4 10% 3

7e+05 1e+05 1e+05 45377 45377
Trigexp2-9 9 0 20% 61.8 50.4 65.14 62.4 68.4 6 10% 9

3e+05 4887 14528 11574 9541
Trigexp2-5 5 0 20% 3.0 3.8 4.6 6.2 6.6 2 20% 1

13614 10221 4631 2293 1887
Caprasse 4 18 30% 2.6 2.73 3.0 4.7 5.1 2 5% 1

37788 18176 12052 5308 5624

646 G. Trombettoni and G. Chabert

impressive gains in running time are obtained by CID for the benchmarks on
the top of the table, as compared to standard strategy using 2B or 2B+Box, an
interval Newton and a round-robin splitting policy4.

CID often obtains better running times than the standard strategy, except
on Bellido, Trigexp2-5 and Caprasse, for which the loss in performance is
small. However, it is not reasonable to propose to the user an operator for which
three parameters must be tuned by hand. That is why we have also reported
the last three CID columns where only 0 or 1 parameter has been tuned. The
default values (fourth CID column with s = 4, w-hc4= 10%, n′ = n) yield very
good results: it outperforms the standard strategy in 15 of the 21 instances. In
particular, setting s = 4 provides the best results in 12 of the 21 instances.

The second and third CID columns report very good results obtained by a
filtering algorithm with only one parameter to be tuned (like with 2B or Box).
Hence, since CID with only parameter n′ to be tuned (second CID column) allows
a continuum between pure 2B and CID (n′ = 0 amounts to a call to 2B), a first
recommendation is to propose this CID variant in interval-based solvers.

The second recommendation comes from a combinatorial consideration. In
a sense, constructive interval disjunction can be viewed as a “polynomial-time
splitting” since VarCID performs a polynomial-time hull after having handled the
different slices. However, the exponential aspect of (classical) bisection becomes
time-consuming only when the number of variables becomes high. This would
explain why CID cannot pay off on Trigexp2-5 and Caprasse which have a very
small number of variables and lead to no combinatorial explosion due to bisec-
tion. (The intuition is confirmed by the better behavior of CID on the (scalable)
variant of Trigexp2 with 9 variables.) Thus, the second recommendation would
be to use CID on systems having a minimal number of variables, e.g., 5 or 8.

7.3 Comparing CID, 3B and 3BCID

Table 2 reports the results obtained by CID, 3B and 3BCID (see Section 5). All
the results have been obtained with a parameter w-hc4 set to 5%.

Several trials have been performed for every algorithm, and the best result is
reported in the table. For 3B, seven values have been tried for the parameter s3B:
4, 5, 7, 10, 20, 50, 100.

For CID, nine values of the parameters have been tried: five values for the
number of slices sCID (2, 3, 4, 6, 8; fixing n′ = n), and four values for the pa-
rameter n′ (1, 0.5n, 0.75n, 1.2n; fixing sCID = 4). For 3BCID, eight combinations
of parameters have been tried: four values for sCID (1,2,3,4) combined with two
values for s3B (10, 20).
The main conclusions drawn from Table 2 are the following:

– 3BCID and CID always outperform 3B. Even the standard strategy outper-
forms 3B for 9 benchmarks in the bottom of the table.

4 Note that this strategy is inefficient for Trigexp1 (solved in 371 seconds) and for
Mechanism (that is not solved after a timeout (TO) of several hours). However, a
reasonable running time can be obtained with a variant of 2B that push all the
constraints of the NCSP in the propagation queue after every bisection.

Constructive Interval Disjunction 647

Table 2. Comparison between CID, 3B and 3BCID. The first three columns recall resp.
the name of the benchmark, its number of variables and the CPU time in seconds
required by the strategy 2B/Box + Newton + bisection with round-robin. The other
columns report the CPU time required to solve the benchmarks with CID, 3B and 3BCID.
The best CPU time result is bold-faced.

Name n 2B/Box CID 3B 3BCID(sCID = 1) 3BCID(sCID = 2)

BroydenTri 32 758 0.23 0.22 0.18 0.19

Hourglass 29 24 0.45 0.73 0.43 0.50

Tetra 30 401 13.6 20.7 17.1 18.8

Tangent 28 32 4.13 8.67 3.18 4.13

Reactors 20 156 18.2 24.2 15.5 16.9

Trigexp1 30 3.4 0.10 0.26 0.12 0.11

Discrete25 27 5.2 1.37 2.19 1.26 1.13

I5 10 692 139 144 115 123

Transistor 12 179 71.5 77.9 49.3 46.9

Ponts 30 10.8 3.07 5.75 4.19 4.43

Yamamura8 8 13 9.0 9.1 10.3 10.7

Design 9 395 300 403 228 256

D1 12 4.1 1.78 2.99 1.64 1.76

Mechanism 98 111 79 185 176 173

Hayes 8 155 99 188 102 110

Kinematics1 6 84 76.1 136 76.6 81.4

Eco9 8 26 19.3 40.1 27.0 30.3

Bellido 9 80 95 143 93 102

Trigexp2-9 9 61.8 52.2 74.5 39.9 45.1

Caprasse 4 2.6 3.1 9.38 4.84 5.35

– 3BCID is competitive with CID. 3BCID is better than CID concerning 11 bench-
marks. CID remains even better for Mechanism. We wonder if it is related to
its large number of variables.

The good news is that the best value for sCID in 3BCID is often sCID = 1. In only
four cases, the best value is greater, but the value sCID = 1 also provides very good
results. This suggests to propose 3BCID with sCID = 1 as an alternative of 3B. In
other words, 3BCID with sCID = 1 can be viewed as a promising implementation
of 3B. This is transparent for a user who has to specify the same parameter s3B,
the management of constructive disjunction being hidden inside 3BCID (that
performs a Hull operation of at most 3 boxes since sCID = 1).

7.4 Comparing Splitting Strategies

Table 3 applies the three available splitting strategies to CID with n′ = n and
s = 4. We underline some observations.

The new CID-based splitting strategy is better than the other strategies on
13 of the 20 instances, especially on Design. The largest interval strategy is the
best on only one instance. The round-robin strategy is the best on 6 instances.

648 G. Trombettoni and G. Chabert

Table 3. Comparison on CID with three splitting strategies: Round-robin, Largest
interval and the new CID-based strategy.

Filtering CID CID CID
Splitting Round-robin Largest Int. CID-based

BroydenTri 0.21 0.18 0.17

Hourglass 0.52 0.51 0.37

Tetra 12.1 28.2 16.4

Tangent 3.7 21.7 5.2

Reactors 17.0 13.2 12.7

Trigexp1 0.15 0.19 0.14

Discrete25 0.84 1.49 1.06

I5 151 421 179

Transistor 93 36 41

Ponts 2.92 5.51 2.31

Yamamura8 9.5 6.9 5.1

Design 318 334 178

D1 1.72 2.96 2.50

Mechanism 47 49 46

Hayes 115 564 318

Kinematics1 83 70 63

Eco9 26.7 31.4 26.1

Bellido 107 102 99

Trigexp2-9 62 55 53

Caprasse 5.16 5.43 5.04

On the 7 instances for which the CID-based strategy is not the best, the loss in
performance is significant on Hayes.

The behavior of the CID-based strategy with s = 6 (not reported here) is even
better, the round-robin strategy being the best on only 3 instances. This would
suggest that the ratioCID learned during a VarCID operation is more accurate
with a higher number of slices.

8 Conclusion

This paper has introduced two new filtering operators based on the constructive
disjunction principle exploited in combinatorial problems. The first experimental
results are very promising and we believe that CID and 3BCID have the potential
to become standard operators in interval constraint solvers. The CID operator also
opens the door to a new splitting strategy learning from the work of CID filtering.

The experiments lead to clear recommendations concerning the use of these
new filtering operators. First, CID can be used with fixed values of parameters s
and w-hc4, letting the user only tune the third parameter n′ (i.e., the number of
variables that are varcided between 2 bisections). This allows the user to select
in a sense a rate of CID filtering, n′ = 0 producing the pure 2B/Box. Used this
way, CID could maybe subsume existing filtering operators. Second, 3BCID with
s = 1 can be provided as a promising alternative of a 3B operator.

Constructive Interval Disjunction 649

Several questions remain open. It seems that, due to combinatorial consider-
ations, CID is not convenient for small problems while it seems more interesting
for large-scale systems. A more complete experimental study should confirm or
contradict this claim. Also, 3BCID should be compared to the weak-3B operator
implemented in RealPaver [5]5. A comparison with filtering algorithms based on
linearization, like Quad [6], will be performed as well.

Moreover, the CID-based splitting strategy merits a deeper experimental
study. In particular, a comparison with the smear function will be performed
once the latter is implemented in our solver.

An interesting future work is to propose adaptive variants of CID that can
choose which specific variable should be varcided or bisected next.

Acknowledgements

Special thanks to Olivier Lhomme for useful discussions about this research. Also
thanks to Bertrand Neveu, Arnold Neumaier and the anonymous reviewers.

References

1. Barták, R., Erben, R.: A new Algorithm for Singleton Arc Consistency. In: Proc.
FLAIRS (2004)

2. Bessière, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency
Algorithms. In: Proc. IJCAI, pp. 54–59 (2005)

3. Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Con-
straint Satisfaction Problem. In: Proc. IJCAI, pp. 412–417 (1997)

4. Geelen, P.A.: Dual Viewpoint Heuristics for Binary Constraint Satisfaction Prob-
lems. In: Proc. ECAI’92, pp. 31–35 (1992)

5. Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Trans. on Mathematical Software 32(1), 138–156
(2006)

6. Lebbah, Y., Michel, C., Rueher, M.: A Rigorous Global Filtering Algorithm for
Quadratic Constraints. Constraints Journal 10(1), 47–65 (2005)

7. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
8. Lhomme, O.: Quick Shaving. In: Proc. AAAI, pp. 411–415 (2005)
9. Min Li, C., Anbulagan: Heuristics Based on Unit Propagation for Satisfiability

Problems. In: Proc. IJCAI, pp. 366–371 (1997)
10. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)
11. Neveu, B., Chabert, G., Trombettoni, G.: When Interval Analysis helps Interblock

Backtracking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 390–405.
Springer, Heidelberg (2006)

12. Web page of COPRIN: www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/
benches.html
COCONUT benchs:
www.mat.univie.ac.at/∼neum/glopt/coconut/Benchmark/Benchmark.html

5 An implementation of both operators in a same solver would lead to a fair compar-
ison.

file:www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
file:www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

650 G. Trombettoni and G. Chabert

13. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

14. Régin, J.C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proc.
AAAI, pp. 362–367 (1994)

15. Simonis, H.: Sudoku as a Constraint Problem. In: CP Workshop on Modeling and
Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)

16. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for
Global Optimization. MIT Press, Cambridge (1997)

17. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation, and Evalu-
ation of the Constraint Language CC(FD). J. Logic Programming 37(1–3), 139–164
(1994)

An LP-Based Heuristic for Optimal Planning

Menkes van den Briel1, J. Benton2, Subbarao Kambhampati2,
and Thomas Vossen3

1 Arizona State University, Department of Industrial Engineering,
2 Department of Computer Science and Engineering,

Tempe AZ, 85287, USA
{menkes,j.benton,rao}@asu.edu

3 University of Colorado, Leeds School of Business,
Boulder CO, 80309, USA
vossen@colorado.edu

Abstract. One of the most successful approaches in automated plan-
ning is to use heuristic state-space search. A popular heuristic that is used
by a number of state-space planners is based on relaxing the planning
task by ignoring the delete effects of the actions. In several planning do-
mains, however, this relaxation produces rather weak estimates to guide
search effectively. We present a relaxation using (integer) linear program-
ming that respects delete effects but ignores action ordering, which in
a number of problems provides better distance estimates. Moreover, our
approach can be used as an admissible heuristic for optimal planning.

Keywords: Automated planning, improving admissible heuristics,
optimal relaxed planning

1 Introduction

Many heuristics that are used to guide heuristic state-space search planners are
based on constructing a relaxation of the original planning problem that is easier
to solve. The idea is to use the solution to the relaxed problem to guide search
for the solution to the original problem. A popular relaxation that has been
implemented by several planning systems, including UNPOP [17,18], HSP [4,5],
and FF [15], involves using relaxed actions in which the delete effects of the
original actions are ignored.

For example, FF estimates the distance between an intermediate state and
the goals by creating a planning graph [3] using relaxed actions. From this graph,
FF extracts in polynomial time a relaxed plan whose corresponding plan length
is used as an inadmissible, but effective, distance estimate. One can transform
this approach into an admissible heuristic by finding the optimal relaxed plan,
also referred to as h+ [14], but computing such a plan is NP-Complete [8]. In
order to extract the optimal relaxed plan one must extend the relaxed planning
graph to level off [3] so that all reachable actions can be considered.

Although ignoring delete effects turns out to be quite effective for many plan-
ning domains, there are some obvious weaknesses with FF’s relaxed plan heuris-
tic. For example, in a relaxed plan no atom changes more than once, if an

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 651–665, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

652 M. van den Briel et al.

atom becomes true it remains true as it is never deleted. However, in a plan
corresponding to the original problem an atom may be added and deleted sev-
eral times. In order to improve the quality of the relaxed plan we consider a
relaxation based on relaxed orderings.

In particular, we view a planning problem as a set of interacting network
flow problems. Given a planning domain where states are defined in terms of
n boolean or multi-valued state variables (i.e. fluents), we view each fluent as
a separate flow problem, where nodes correspond to the values of the fluent,
and arcs correspond to the transitions between these values. While network flow
problems are computationally easy, what makes this flow problem hard is that
the flows are “coupled” as actions can cause transitions in multiple fluents.

We set up an IP formulation where the variables correspond to the number
times each action is executed in the solution plan. The objective is to minimize
the number of actions, and the constraints ensure that each pre-condition is
supported. However, the constraints do not ensure that pre-conditions are sup-
ported in a correct ordering. Specifically, for pre-conditions that are deleted we
setup balance of flow constraints. That is, if there are m action instances in
the plan that cause a transition from value f of fluent c, then there must be
m action instances in the plan that cause a transition to value f of c. More-
over, for pre-conditions that are not deleted we simply require that they must
be supported.

The relaxation that we pursue in this paper is that we are not concerned
about the specific positions of where the actions occur in the plan. This can,
to some extent, be thought of as ignoring the ordering constraints that ensure
that the actions can be linearized into a feasible plan. An attractive aspect of our
formulation is that it is not dependent on the length of the plan. Previous integer
programming-based formulations for planning, such as [7,9,21], use a step-based
encoding. In a step-based encoding the idea is to set up a formulation for a given
plan length and increment it if no solution can be found. The problem with
such an encoding is that it may become impractically large, even for medium
sized planning tasks. In a step-based encoding, if l steps are needed to solve a
planning problem then l variables are introduced for each action, whereas in our
formulation we require only a single variable for each action.

The estimate on the number of actions in the solution plan, as computed by
our IP formulation, provides a lower bound on the optimal (minimum number of
actions) plan. However, since solving an IP formulation is known to be compu-
tationally intractable, we use the linear programming (LP) relaxation which can
be solved in polynomial time. We will see that this double relaxation is still com-
petitive with other admissible heuristics after we add non-standard and strong
valid inequalities to the formulation. In particular, We show that the value of
our LP-relaxation with added inequalities, gives very good distance estimates
and in some problem instances even provides the optimal distance estimate.

While the current paper focuses on admissible heuristics for optimal sequential
planning, the flow-based formulation can be easily extended to deal with more
general planning problems, including cost-based planning and over-subscription

An LP-Based Heuristic for Optimal Planning 653

planning. In fact, a generalization of this heuristic leads to state-of-the-art
performance in oversubscription planning with non-uniform actions costs, goal
utilities as well as dependencies between goal utilities [2].

This paper is organized as follows. In Section 2 we describe our action se-
lection formulation and describe a number of helpful constraints that exploit
domain structure. Section 3 reports some experimental results and related work
is described in Section 4. In Section 5 we summarize our main conclusions and
describe some avenues for future work.

2 Action Selection Formulation

We find it useful to do the development of our relaxation in terms of multi-valued
fluents (of which the boolean fluents are a special case). As such, we will use the
SAS+ formalism [1] rather than the usual STRIPS/ADL one as the background
for our development. SAS+ is a planning formalism that defines actions by their
prevail-conditions and effects. Prevail-conditions describe which variables must
propagate a certain value during the execution of the action and effects describe
the pre- and post-conditions of the action.

To make the connection between planning and network flows more straight-
forward, we will restrict our attention to a subclass of SAS+ where each action
that has an post-condition on a fluent also has a pre-condition on that fluent.
We emphasize that this restriction is made for ease of exposition and can be
easily removed; indeed our work in [2] avoids making this restriction.

2.1 Notation

We define a SAS+ planning task as a tuple Π = 〈C, A, s0, s∗〉, where

– C = {c1, ..., cn} is a finite set of state variables, where each state variable c ∈
C has an associated domain Vc and an implicitly defined extended domain
V +

c = Vc ∪{u}, where u denotes the undefined value. For each state variable
c ∈ C, s[c] denotes the value of c in state s. The value of c is said to be defined
in state s if and only if s[c] �= u. The total state space S = Vc1 × ... × Vcn

and the partial state space S+ = V +
c1

× ... × V +
cn

are implicitly defined.
– A is a finite set of actions of the form 〈pre, post, prev〉, where pre denotes

the pre-conditions, post denotes the post-conditions, and prev denotes the
prevail-conditions. For each action a ∈ A, pre[c], post[c] and prev[c] denotes
the respective conditions on state variable c. The following two restrictions
are imposed on all actions: (1) Once the value of a state variable is defined,
it can never become undefined. Hence, for all c ∈ C, if pre[c] �= u then
pre[c] �= post[c] �= u; (2) A prevail- and post-condition of an action can
never define a value on the same state variable. Hence, for all c ∈ C, either
post[c] = u or prev[c] = u or both.

– s0 ∈ S denotes the initial state and s∗ ∈ S+ denotes the goal state. We say
that state s is satisfied by state t if and only if for all c ∈ C we have s[c] = u
or s[c] = t[c]. This implies that if s∗[c] = u for state variable c, then any
defined value f ∈ Vc satisfies the goal for c.

654 M. van den Briel et al.

While SAS+ planning allows the initial state, the goal state and the pre-conditions
of an action to be partial, we assume that s0 is a total state and that all precon-
ditions are defined for all state variables on which the action has post-conditions
(i.e. pre[c] = u if and only if post[c] = u). The assumption that s0 is a total state
is common practice in automated planning. However, the assumption that all pre-
conditions are defined is quite strong, therefore, we will briefly discuss a way to
relax this second assumption in Section 5.

An important construct that we use in our action selection formulation is the
so-called domain transition graph [13]. A domain transition graph is a graph
representation of a state variable and shows the possible ways in which values
can change. Specifically, the domain transition graph DTGc of state variable c
is a labeled directed graph with nodes for each value f ∈ Vc. DTGc contains a
labeled arc (f1, f2) if and only if there exists an action a with pre[c] = f1 and
post[c] = f2 or pre[c] = u and post[c] = f2. The arc is labeled by the set of
actions with corresponding pre- and post-conditions. For each arc (f1, f2) with
label a in DTGc we say that there is a transition from f1 to f2 and that action
a has an effect in c.

We use the following notation.

– DTGc = (Vc, Ec): is a directed domain transition graph for every c ∈ C
– Vc: is the set of possible values for each state variable c ∈ C
– Ec: is the set of possible transitions for each state variable c ∈ C
– V a

c ⊆ Vc represents the prevail condition of action a in c
– Ea

c ⊆ Ec represents the effect of action a in c
– AE

c := {a ∈ A : |Ea
c | > 0} represents the actions that have an effect in c,

and AE
c (e) represents the actions that have the effect e in c

– AV
c := {a ∈ A : |V a

c | > 0} represents the actions that have a prevail condition
in c, and AV

c (f) represents the actions that have the prevail condition f in c
– V +

c (f): to denote the in-arcs of node f in the domain transition graph Gc;
– V −c (f): to denote the out-arcs of node f in the domain transition graph Gc;

Moreover, we define the composition of two state variables, which is related
to the parallel composition of automata [10], as follows.

Definition 1. (Composition) Given the domain transition graph of two state
variables c1, c2, the composition of DTGc1 and DTGc2 is the domain transition
graph DTGc1||c2 = (Vc1||c2 , Ec1||c2) where

– Vc1||c2 = Vc1 × Vc2

– ((f1, g1), (f2, g2)) ∈ Ec1||c2 if f1, f2 ∈ Vc1 , g1, g2 ∈ Vc2 and there exists an
action a ∈ A such that one of the following conditions hold.

• pre[c1] = f1, post[c1] = f2, and pre[c2] = g1, post[c2] = g2
• pre[c1] = f1, post[c1] = f2, and prev[c2] = g1, g1 = g2

• pre[c1] = f1, post[c1] = f2, and g1 = g2

We say that DTGc1||c2 is the composed domain transition graph of DTGc1 and
DTGc2.

An LP-Based Heuristic for Optimal Planning 655

Example. Consider the set of actions A = {a, b, c, d} and set of state vari-
ables C = {c1, c2} whose domain transition graphs have Vc1 = {f1, f2, f3},
Vc2 = {g1, g2} as the possible values, and Ec1 = {(f1, f3), (f3, f2), (f2, f1)},
Ec2 = {(g1, g2), (g2, g1)} as the possible transitions as shown in Figure 1. More-
over, AE

c1
= {a, b, c}, AE

c2
= {b, d} are the actions that have an effect in c1 and

c2 respectively, and AV
c1

= ∅, AV
c2

= {a} are the actions that have a prevail
condition in c1 and c2 respectively. The effect and prevail condition of action
a are represented by Ea

c1
= (f1, f3) and V a

c2
= g1 respectively and the set of

in-arcs for node g1 is given by V +
c2

(g1) = {(g2, g1)}. Note that, since prevail con-
ditions do not change the value of a state variable, we do not consider them to
be transitions. The common actions in the composed domain transition graph,
that is, actions in AE

c1
∩ AE

c2
can only be executed simultaneously in the two

domain transition graphs. Hence, in the composition the two domain transition
graphs are synchronized on the common actions. The other actions, those in
AE

c1
\AE

c2
∪ AE

c2
\AE

c1
, are not subject to such a restriction and can be executed

whenever possible.

f3

f2

f1

g2

g1

b

c

d

DTGc1 DTGc2

a

b

f1,g2

f2,g1

f2,g2

f3,g1

f3,g2

f1,,g1

DTGc1 || c2

a

a

b

c

c

d

d

Fig. 1. Two domain transition graphs and their composition

2.2 Formulation

Our action selection formulation models each domain transition graph in the
planning domain as an appropriately defined network flow problem. Interactions
between the state variables, which are introduced by the pre-, post-, and prevail-
conditions of the actions, are modeled as side constraints on the network flow
problems. The variables in our formulation indicate how many times an action is
executed, and the constraints ensure that all the action pre-, post-, and prevail-
conditions must be respected. Because we ignore action ordering, we are solving
a relaxation on the original planning problem. Our relaxation, however, is quite
different from the more popular relaxation that ignores the delete effects of the
actions.

Variables. We define two types of variables. We create one variable for each
ground action and one for each state variable value. The action variables indicate

656 M. van den Briel et al.

how many times each action is executed and the variables representing state
variable values indicate which values are achieved at the end of the solution
plan. The variables are defined as follows.

– xa ∈ Z
+, for a ∈ A; xa ≥ 0 is equal to the number of times action a is

executed.
– yc,f ∈ {0, 1}, for c ∈ C, f ∈ Vc; yc,f is equal to 1 if the value f in state

variable c is achieved at the end of the solution plan, and 0 otherwise.

Objective function. The objective function that we use minimizes the number
of actions. Note, however, that we can deal with action costs by simply multi-
plying each action variable with a cost parameter ca. Goal utilities can be dealt
with by including the summation

∑
c∈C,f∈Vc:f=s∗[c] uc,fyc,f , where uc,f denotes

the utility parameter for each goal.

∑
a∈A

xa (1)

Constraints. We define three types of constraints. Goal constraints ensure that
the goals in the planning task are achieved. This is done by fixing the variables
corresponding to goal values to one. Effect implication constraints define the
network flow problems of the state variables. These constraints ensure that the
effect of each action (i.e. transition in the domain transition graph) is supported
by the effect of some other action. That is, one may execute an action that
deletes a certain value if and only if one executes an action that adds that
value. These constraints also ensure that all goals are supported. The prevail
condition implication constraints ensure that the prevail conditions of an action
must be supported by the effect of some other action. The M in these constraints
denotes a large constant and allows actions with prevail conditions to be executed
multiple times as long as their prevail condition is supported at least once. Note
that, the initial state automatically adds the values that are present in the initial
state.

– Goal constraints for all c ∈ C, f ∈ Vc: f = s∗[c]

yc,f = 1 (2)

– Effect implication constraints for all c ∈ C, f ∈ Vc

∑

e∈V +
c (f):b∈AE

c (e)

xb + 1{if f = s0[c]} =
∑

e∈V −
c (f):a∈AE

c (e)

xa + yc,f (3)

– Prevail condition implication constraints for all c ∈ C, f ∈ Vc: a ∈ AV
c (f)

∑

e∈V +
c (f):b∈AE

c (e)

xb + 1{if f = s0[c]} ≥ xa/M (4)

An LP-Based Heuristic for Optimal Planning 657

One great advantage of this IP formulation over other step-based encodings
is its size. The action selection formulation requires only one variable per action,
whereas a step-based encoding requires one variable per action for each plan
step. In a step-based encoding, if l steps are needed to solve a planning problem
then l variables are introduced for each action.

Note that any feasible plan satisfies the above constraints. In a feasible plan
all goals are satisfied, which is expressed by the constraints (2). In addition,
in a feasible plan an action is executable if and only if its pre-conditions and
prevail conditions are supported, which is expressed by constraints (3) and (4).
Since any feasible will satisfy the constraints above, the formulation provides
a relaxation to the original planning problem. Hence, an optimal solution to
this formulation provides a bound (i.e. an admissible heuristic) on the optimal
solution of the original planning problem.

2.3 Adding Constraints by Exploiting Domain Structure

We can substantially improve the quality of LP-relaxation of the action selection
formulation by exploiting domain structure in the planning problem. In order
to automatically detect domain structure in a planning problem we use the so-
called causal graph [22]. The causal graph is defined as a directed graph with
nodes for each state variable and directed arcs from source variables to sink
variables if changes in the sink variable have conditions in the source variable.
In other words, there is an arc in the causal graph if there exists an action that
has an effect in the source variable and an effect or prevail condition in the source
variable. We differentiate between two types of arcs by creating an effect causal
graph and a prevail causal graph as follows ([16] use labeled arcs to make the
same distinction).

Definition 2. (Effect causal graph) Given a planning task Π = 〈C, A, s0, s∗〉,
the effect causal graph Geffect

Π = (V, Eeffect) is an undirected graph whose vertices
correspond to the state variables of the planning task. Geffect

Π contains an edge
(c1, c2) if and only if there exists an action a that has an effect in c1 and an
effect in c2.

Definition 3. (Prevail causal graph) Given a planning task Π = 〈C, A, s0, s∗〉,
the prevail causal graph Gprevail

Π = (V, Eprevail) is a directed graph whose nodes
correspond to the state variables of the planning task. GprevailΠ contains a di-
rected arc (c1, c2) if and only if there exists an action a that has a prevail con-
dition in c1 and an effect in c2.

By analyzing the effect causal graph, the prevail causal graph, and the domain
transition graphs of the state variables, we are able to tighten the constraints
of the integer programming formulation and improve the value of the corre-
sponding LP relaxation. In particular, we add constraints to our formulation if
certain (global) causal structure and (local) action substructures are present in
the causal graphs and domain transition graphs respectively.

658 M. van den Briel et al.

Example. The effect causal graph and prevail causal graph corresponding to
the example shown in Figure 1 is given by Figure 2. Since action b has an effect
in state variables c1 and c2 there is an edge (c1, c2) in Geffect

Π . Similarly, since
action a has an effect in c1 and a prevail condition in c2 there is an arc (c2, c1)
in Gprevail

Π .

c1 c2

GeffectG

c1 c2

GprevailG

Fig. 2. The effect causal graph and prevail causal graph corresponding to Figure 1

Type 1 Domain Structure Constraints. The first set of domain structure
constraints that we add to the action selection formulation deals with cycles
in the causal graph. Causal cycles are undesirable as they describe a two-way
dependency between state variables. That is, changes in a state variable c1 will
depend on conditions in a state variable c2, and vice versa. It is possible that
causal cycles involve more than two state variables, but we only consider 2-
cycles (i.e. cycles of length two). A causal 2-cycle may appear in the effect causal
graph and in the prevail causal graph. Note that, since the effect causal graph
is undirected, any edge in the effect causal graph corresponds to a 2-cycle.

For every 2-cycle involving state variables c1 and c2 we create the composition
DTGc1||c2 if the following conditions hold.

– For all a ∈ AE
c1

we have a ∈ (AE
c2

∪ AV
c2

)
– For all a ∈ AE

c2
we have a ∈ (AE

c1
∪ AV

c1
)

In other words, for every action a that has an effect in state variable c1 (c2)
we have that a has an effect or prevail condition in state variable c2 (c1). This
condition will restrict the composition to provide a complete synchronization of
the two domain transition graphs. Now, for each composed domain transition
graph that is created we define an appropriately defined network flow problem.
The corresponding constraints ensure that the two-way dependencies between
state variables c1 and c2 are respected.

– Type 1 domain constraints for all c1, c2 ∈ C such that DTGc1||c2 is defined
and f ∈ Vc1 , g ∈ Vc2

∑

e∈V +
c1||c2 (f,g):b∈AE

c1||c2(e)

xb + 1{if f = s0[c1] ∧ g = s0[c2]} =

∑

e∈V −
c1||c2 (f,g):a∈AE

c1||c2 (e)

xa (5)

Example. In order to provide some intuition as to why these constraints are im-
portant and help improve the action selection formulation, consider the following

An LP-Based Heuristic for Optimal Planning 659

scenario. Assume we are given the set of actions A = {a, b} and the set of state
variables C = {c1, c2}, such that Ea

c1
= (f1, f2), Ea

c2
= (g2, g3), Eb

c1
= (f2, f3),

and Eb
c2

= (g1, g2). The effect implication constraint (3) allows the effect of
action a support the effect of action b in c1, and it allows the effect of action b
support the effect of action a in c2. However, in the composed domain transition
graph, it is clear that neither action a or b can support each other. Hence, if
actions a and b are selected in the solution plan, then the solution plan must
include one or more other actions in order to satisfy the network flow constraints
in the composed domain transition graph.

f3

f2

f1

g3

g2

g1

f1,g2

f1,g3

f2,g1

f2,g2f2,g3

f3,g1

f3,g2

f3,g3

f1,,g1

b

a

a

b

b

a

DTGc1 DTGc2 DTGc1 || c2

Fig. 3. Actions a and b can both support each other in either DTGc1 and DTGc2 , but
not in DTGc1||c2

Type 2 Domain Structure Constraints. The second set of domain struc-
ture constraints that we add to the action selection formulation deals with the
structure given in Figure 4. That is, we have an arc (c1, c2) in the prevail causal
graph that is not in a 2-cycle. In addition, we have a pair of actions a and b
that have different prevail conditions in c1 and different effects in c2, such that
a supports b in c2.

Since actions a and b are mutex (action b deletes a post-condition of ac-
tion a) they cannot be executed in parallel. Therefore, in a solution plan we
must have that either a is executed before b, or that b is executed before
a. If the solution plan executes a before b, then the network flow problem
corresponding to state variable c1 must have flow out of f1. On the other
hand, if b is executed before a, then the network flow problem corresponding
to state variable c2 must have flow out of g3. These flow conditions may seem
rather obvious, they are ignored by the action selection formulation. There-
fore, we add the following constraints to our formulation to ensure that the
flow conditions with respect to the domain structure given in Figure 4
are satisfied.

660 M. van den Briel et al.

c1 c2

DTGc1 DTGc2GprevailG

g1

g2

g3

a

b

f1

f2

a

b

Fig. 4. Domain structure for type 2 domain structure constraints

– Type 2 domain constraints for all c1, c2 ∈ C such that (c1, c2) ∈ Eprevail,
(c2, c1) /∈ Eprevail and f1, f2 ∈ Vc1 , g1, g2, g3 ∈ Vc2 , e1 ∈ V +

c2
(g2), e2 ∈ V −c2

(g2)
: a ∈ AE

c2
(e1), b ∈ AV

c2
(e2), g3 = head(e2)

xa + xb − 1 ≤
∑

e∈V −
c1 (f1):a′∈AE

c (e)

xa′ +
∑

e∈V −
c2 (g3):b′∈AE

c (e)

xb′ (6)

3 Experimental Results

In this section, we give a general idea of the distance estimates that both admis-
sible and inadmissible heuristics provide on a set of planning benchmarks from
the international planning competitions (IPCs). In particular, we will compare
the results of our action selection formulation (with and without the domain
structure constraints) with four distance estimates: (1) the admissible distance
estimate given by a step based formulation that is very similar to Lplan [9], (2)
the admissible distance estimate h+, which represents the length of the optimal
relaxed plan in which the delete effects of the actions are ignored [14], (3) the in-
admissible distance estimate hFF , which represents the relaxed plan heuristic of
the FF planner [15], and (4) the optimal distance estimate given by Satplanner
[19] using the -opt flag.

We use Logistics and Freecell from IPC2, Driverlog and Zenotravel from IPC3,
and TPP from IPC5. In addition, we included a few results on well known
Blocksworld problems. We focus on these domains mainly because we assume
that all pre-conditions are defined. There are several planning domains where
this assumption does not hold which limits our experimentation. In Section 5,
however, we briefly discuss how we can relax this assumption. All our tests were
performed on a 2.67GHz Linux machine with 1GB of memory using a 15 minute
timeout. The heuristics that use linear programming were solved using ILOG
CPLEX 10.1 [11], a commercial LP/IP solver.

Table 1 summarizes the results. The results represent the distance estimate in
terms of the number of actions from the initial state to the goals. LP and LP−

shows the results of our action selection formulation with and without the do-
main structure constraints respectively. Lplan shows the results of a formulation
that is very similar Lplan (the actual planner is not publicly available). They were

An LP-Based Heuristic for Optimal Planning 661

Table 1. Distance estimates from the initial state to the goal (values shown shown in
bold equal the optimal distance). A dash ‘-’ indicates a timeout of 15 minutes, and a
star ‘∗’ indicates that the value was rounded to the nearest decimal.

Problem LP LP− Lplan h+ hF F Optimal

logistics4-0 20 16.0∗ 17 19 19 20
logistics4-1 19 14.0∗ 15 17 17 19
logistics4-2 15 10.0∗ 11 13 13 15
logistics5-1 17 12.0∗ 13 15 15 17
logistics5-2 8 6.0∗ 7 8 8 8
logistics6-1 14 10.0∗ 11 13 13 14
logistics6-9 24 18.0∗ 19 21 21 24
logistics12-0 42 32.0∗ 33 39 39 -
logistics15-1 67 54.0∗ - 63 66 -
freecell2-1 9 9 9 9 9 9
freecell2-2 8 8 8 8 8 8
freecell2-3 8 8 8 8 9 8
freecell2-4 8 8 8 8 9 8
freecell2-5 9 9 9 9 9 9
freecell3-5 12 12 13 13 14 -
freecell13-3 55 55 - - 95 -
freecell13-4 54 54 - - 94 -
freecell13-5 52 52 - - 94 -
driverlog1 7 3.0∗ 7 6 8 7
driverlog2 19 12.0∗ 13 14 15 19
driverlog3 11 8.0∗ 9 11 11 12
driverlog4 15.5∗ 11.0∗ 12 12 15 16
driverlog6 11 8.0∗ 9 10 10 11
driverlog7 13 11.0∗ 12 12 15 13
driverlog13 24 15.0∗ 16 21 26 -
driverlog19 96.6∗ 60.0∗ - 89 93 -
driverlog20 89.5∗ 60.0∗ - 84 106 -
zenotravel1 1 1 1 1 1 1
zenotravel2 6 3.0∗ 5 4 4 6
zenotravel3 6 4.0∗ 5 5 5 6
zenotravel4 8 5.0∗ 6 6 6 8
zenotravel5 11 8.0∗ 9 11 11 11
zenotravel6 11 8.0∗ 9 11 13 11
zenotravel13 24 18.0∗ 19 23 23 -
zenotravel19 66.2∗ 46.0∗ - 62 63 -
zenotravel20 68.3∗ 50.0∗ - - 69 -
tpp01 5 3.0∗ 5 4 4 5
tpp02 8 6.0∗ 7 7 7 8
tpp03 11 9.0∗ 10 10 10 11
tpp04 14 12.0∗ 13 13 13 14
tpp05 19 15.0∗ 17 17 17 19
tpp06 25 21.0∗ 23 21 21 -
tpp28 - 150.0∗ - - 88 -
tpp29 - - - - 104 -
tpp30 - 174.0∗ - - 101 -
bw-sussman 4 4 6 5 5 6
bw-12step 4 4 8 4 7 12
bw-large-a 12 12 12 12 12 12
bw-large-b 16 16 18 16 16 18

662 M. van den Briel et al.

obtained by running a step-based encoding that finds minimum length plans.
The values in this column represent the plan length at which the LP-relaxation
returns a feasible solution. h+ shows the length of the optimal relaxed plan and
hFF shows the length of FF’s extracted relaxed plan. Finally, Optimal shows
the results of Satplanner using the -opt flag, which returns the minimum length
plan. Note that, Satplanner does not solve a relaxation, but the actual planning
problem, so the values in this column represent the optimal distance estimate.

When comparing the results of LP with Lplan and h+, we see that in many
problem instances LP provides better distance estimates. However, there are
a few instances in the Freecell and Blocksworld domains in which both Lplan
and h+ provide better estimates. The action selection formulation does clearly
outperform both Lplan and h+ in terms of scalability and time to solve the LP-
relaxation. Lplan, generally takes the most time to solve each problem instance as
it spends time finding a solution on a plan length for which no feasible solution
exists. Both Lplan and h+ fail to solve several of the large instances within
the 15 minutes timeout. The LP-relaxation of the action selection formulation
typically solves all small and some medium sized problem instances in less than
one second, but the largest problem instances take several minutes to solve and
on the largest TPP problem instances it times out at 15 minutes.

When we compare the results of LP with hFF we are comparing the difference
between an admissible and an inadmissible heuristic. The heuristic computation
of FF’s relaxed plan is very fast as it solves most problem instances in a fraction
of a second. However, the distance estimate it provides is not admissible as it
can overestimate the minimum distance between two states (see for example,
driverlog7 and zenotravel6). The results that our action selection formulation
provides are admissible and thus can be used in an optimal search algorithm.
Moreover, in some problem instances the quality of our distance estimate is
outstanding. For example, in the Logistics, Driverlog, and Zenotravel domains,
the distance estimate given by LP equals the optimal distance in all problem
instances for which Satplanner found the optimal solution.

Finally, when comparing the results of LP with LP− we see that the domain
structure constraints help improve the value of the LP-relaxation in many prob-
lem instances except in instances in the Freecell and Blocksworld domains. Both
these domains seem to have domain structure that we have not captured yet in
our constraints. While this may seem like a problem, we rather take this as a
challenge, as we believe that more domain structure can be exploited.

4 Related Work

Admissible heuristics for optimal planning (such as, minimize the number of
actions in the solution plan or minimize the cost of the actions in the solution
plan) are very scarce and often provide poor distance estimates. On the other
hand, inadmissible heuristics are plentiful and have shown to be very effective in
solving automated planning problems. HSPr∗ [12] is one of the few approaches
that describes admissible heuristics for planning. HSPr∗ creates an appropriately

An LP-Based Heuristic for Optimal Planning 663

defined shortest-path problem to estimate the distance between two states. Our
work differs from HSPr∗ as we use linear programming to solve a relaxation of
the original planning problem.

The use of linear programming as an admissible heuristic for optimal planning
was introduced by the Lplan planning system [9]. However, the idea was never
incorporated in other planning systems due to poor performance results. Lplan
sets up an IP formulation for step-based planning. Thus, when the LP-relaxation
of the IP has a solution for plan length l, but not for plan length l − 1, then
the minimum length plan must be at least l steps long. The drawbacks with
the LP-relaxation to a step-based encoding is that goal achievement can be
accumulated over different plan steps. In general, the quality of the LP-relaxation
of an IP formulation depends on how the problem is formulated ([21] describe
the importance of developing strong IP formulations in automated planning).

5 Conclusions

We described an integer programming formulation whose LP-relaxation can be
used as an admissible heuristic for optimal planning, including planning prob-
lems that involve costs and utilities. In fact, in ongoing work we have successfully
incorporated our LP-based heuristic in a search algorithm that solves oversub-
scription planning problems [2].

Our action selection formulation and the heuristic it provides differs in two
ways from other formulations that have been used in planning: (1) we do not
use a step based encoding, and so, do not have to deal with a bound on the plan
length in the IP formulation, and (2) we ignore action ordering, which provides
a rather different view on relaxed planning than the more popular approach that
ignores the delete effects of the actions.

The experimental results show that the action selection formulation oftentimes
provides better distance estimates than a step-based encoding that is similar
to Lplan [9]. It outperforms this step-encoding with respect to scalability and
solution time, making it a viable distance estimate for a heuristic state-space
planner. Moreover, in most problem instances it outperforms h+ [14], which
provides the optimal relaxed plan length when delete effects are ignored. Hence,
the relaxation based on ignoring action orderings seems to be stronger than the
relaxation based on ignoring delete effects.

Unlike most admissible heuristics that have been described in the planning
literature, we can use the action selection formulation to provide an admissible
distance estimate for various optimization problems in planning, including but
not limited to, minimizing the number of actions, minimizing the cost of actions,
maximizing the number of goals, and maximizing the goal utilities. There are
several interesting directions that we like to explore in future work.

First, we would like to relax the assumption that all preconditions are defined.
This would allow us to create a general action selection formulation and tackle a
much broader range of planning domains. We simply need to replace the current
action variables with variables that represent the action effects the action prevail

664 M. van den Briel et al.

conditions. In case an action has one or more undefined pre-conditions we create
one effect variable for each possible value that the pre-condition may take and
introduce an extra prevail variable as well. We have a preliminary implementa-
tion of this general action selection formulation [2], but have not yet extended
it with the domain structure constraints.

Second, it would be interesting to analyze planning domains more carefully
and see if there are more domain structures that we can exploit. We already have
encountered two domains, namely Freecell and Blocksworld, that may suggest
that other domain structures could be discovered.

Acknowledgements. This research is supported in part by the NSF grant
IIS308139, the ONR grant N000140610058, and by the Lockheed Martin subcon-
tract TT0687680 to Arizona State University as part of the DARPA integrated
learning program.

References

1. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational
Intelligence 11(4), 625–655 (1995)

2. Benton, J., van den Briel, M.H.L., Kambhampati, S.: A hybrid linear programming
and relaxed plan heuristic for partial satisfaction planning problems. In: Proceed-
ings of the 17th International Conference on Automated Planning and Scheduling
(to appear 2007)

3. Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceed-
ings of the 14th International Joint Conference on Artificial Inteligence, pp. 1636–
1642 (1995)

4. Bonet, B., Loerincs, G., Geffner, H.: A fast and robust action selection mecha-
nism for planning. In: Proceedings of the 14th National Conference on Artificial
Intelligence, pp. 714–719 (1997)

5. Bonet, B., Geffner, H.: Planning as heuristic search. Aritificial Intelligence 129(1),
5–33 (2001)

6. Botea, A., Müller, M., Schaeffer, J.: Fast planning with iterative macros. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, pp.
1828–1833 (2007)

7. van den Briel, M.H.L., Kambhampati, S., Vossen, T.: Reviving integer program-
ming Approaches for AI planning: A branch-and-cut framework. In: Proceedings
of the 15th International Conference on Automated Planning and Scheduling, pp.
310–319 (2005)

8. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 26(1-2), 165–204 (1995)

9. Bylander, T.: A linear programming heuristic for optimal planning. In: Proceedings
of the 14th National Conference on Artificial Intelligence, pp. 694–699 (1997)

10. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Dordrecht (1999)

11. ILOG Inc.: ILOG CPLEX 8.0 user’s manual. Mountain View, CA (2002)
12. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings

of the International Conference on Artificial Intelligence Planning and Scheduling
(2000)

An LP-Based Heuristic for Optimal Planning 665

13. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

14. Hoffmann, J.: Where ”ignoring delete lists” works: Local search topology in plan-
ning benchmarks. Journal of Artificial Intelligence Research 24, 685–758 (2005)

15. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

16. Jonsson, P., Bäckström, C.: Tractable plan existence does not imply tractable plan
generation. Annals of Mathematics and Artificial Intelligence 22(3), 281–296 (1998)

17. McDermott, D.: A heuristic estimator for means-ends analysis in planning. In:
Proceedings of the 3rd International Conference on Artificial Intelligence Planning
Systems, pp. 142–149 (1996)

18. McDermott, D.: Using regression-match graphs to control search in planning. Ar-
tificial Intelligence 109(1-2), 111–159 (1999)

19. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Albert-Ludwigs-Universität Freiburg, Institut für
Informatik, Technical report 216 (2005)

20. Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of
the 14th International Conference on Automated Planning and Scheduling, pp.
150–159 (2004)

21. Vossen, T., Ball, B., Lotem, A., Nau, D.S.: On the use of integer programming
models in AI planning. In: Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pp. 304–309 (1999)

22. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence,
pp. 1178–1195 (1997)

A Cost-Based Model and Algorithms for

Interleaving Solving and Elicitation of CSPs�

Nic Wilson, Diarmuid Grimes, and Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

n.wilson@4c.ucc.ie, d.grimes@4c.ucc.ie, e.freuder@4c.ucc.ie

Abstract. We consider Constraint Satisfaction Problems in which con-
straints can be initially incomplete, where it is unknown whether certain
tuples satisfy the constraint or not. We assume that we can determine
such an unknown tuple, i.e., find out whether this tuple is in the con-
straint or not, but doing so incurs a known cost, which may vary between
tuples. We also assume that we know the probability of an unknown tu-
ple satisfying a constraint. We define algorithms for this problem, based
on backtracking search. Specifically, we consider a simple iterative al-
gorithm based on a cost limit on which unknowns may be determined,
and a more complex algorithm that delays determining an unknown in
order to estimate better whether doing so is worthwhile. We show exper-
imentally that the more sophisticated algorithms can greatly reduce the
average cost.

1 Introduction

In Constraint Satisfaction Problems it is usually assumed that the CSP is avail-
able before the solving process begins, that is, the elicitation of the problem is
completed before we attempt to solve the problem. As discussed in the work on
Open Constraints and Interactive CSPs [1,2,3,4,5], there are situations where it
can be advantageous and natural to interleave the elicitation and the solving.
We may not need all the complete constraints to be available in order for us
to find a solution. Furthermore, it may be expensive, in terms of time or other
costs, to elicit some constraints or parts of the constraints, for example, in a
distributed setting. Performing a constraint check in certain situations can be
computationally very expensive. We may need to pay for an option to be avail-
able, or for the possibility that it may be available. Some constraints may be
related to choices of other agents, which they may be reluctant to divulge be-
cause of privacy issues or convenience, and so it could cost us something to find
these out. Or they may involve an uncertain parameter, such as the capacity of a
resource, and it could be expensive, computationally or otherwise, to determine
more certain information about this.
� This material is based upon works supported by the Science Foundation Ireland

under Grant No. 05/IN/I886.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 666–680, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Cost-Based Model for Interleaving Solving and Elicitation 667

In this paper we consider approaches for solving such partially-specified CSPs
which take these costs into account. Constraints may be initially incomplete:
it may be unknown whether certain tuples satisfy the constraint or not. It is
assumed in our model that we can determine such an unknown tuple, i.e., find out
whether this tuple is in the constraint or not, but doing so incurs a known cost,
which may vary between tuples. We also assume that we know the probability of
an unknown tuple satisfying a constraint. An optimal algorithm for this situation
is defined to be one which incurs minimal expected cost in finding a solution.

Example

To illustrate, consider a problem with two variables X and Y , where X takes values
1, 2, 3 and 4, so D(X) = {1, 2, 3, 4}, and the domain, D(Y), of Y is {5, 6}. There
are two incomplete constraints, the first, c1, is a unary constraint on X , and the
second, c2, is a binary constraint on the two variables. It is (currently) unknown
if X = 1 satisfies constraint c1. The probability p1 that it does so is 0.9. We can
determine (i.e., find out) if X = 1 satisfies constraint c1, but this test incurs a cost
of K1 = 50. We write c1(X = 1) = υ1, where υ1 represents an unknown boolean
value. It is also unknown if values 2, 3 and 4 satisfy c1. We have c1(X = 2) = υ2,
c1(X = 3) = υ3 and c1(X = 4) = υ4. The cost of determining unknowns υ2, υ3
and υ4 is each 70, and the probability of success of each is 0.8. Tuples (2, 6), (3, 5)
and (4, 6) all satisfy the binary constraint, whereas tuples (2, 5), (3, 6) and (4, 5)
do not. It is unknown whether tuples (1, 5) and (1, 6) satisfy the constraint. We
have c2(X = 1, Y = 5) = υ5, and c2(X = 1, Y = 6) = υ6, and c2(X = 2, Y =
6) = c2(X = 3, Y = 5) = c2(X = 4, Y = 6) = 1. The other tuples have value 0.
Unknowns υ5 and υ6 each have cost 200 and probability of success 0.1.

Consider a standard backtracking search algorithm with variable ordering
X, Y and value ordering 1, 2, 3, 4 for X and 5, 6 for Y . The algorithm will first
incur a cost of 50 in determining υ1. This unknown will be determined success-
fully with 90% chance, and if so, then X = 1 satisfies c1. After that, υ5 will be
determined, costing 200, but with only 0.1 chance of success. If both υ1 and υ5
are successfully determined then (X = 1, Y = 5) is a solution of the CSP. How-
ever, this has only chance 0.9×0.1 = 0.09 of happening, and cost 50+200 = 250
is incurred.

It can be shown that the expected cost incurred by this algorithm is approx-
imately 464 and can be written as E1 + qE2, where q = 0.1 + 0.93 = 0.829,
E1 = 50 + 0.9(200 + 0.9× 200) = 392 and E2 = 70 + 0.2(70 + 0.2× 70) = 86.8.
(E1 is the expected cost in the X = 1 branch, E2 is the expected cost conditional
on having reached the X = 2 constraint check, and q is the chance that the algo-
rithm fails to find a solution with X = 1.) This is far from optimal, mainly because
determining unknowns υ5 and υ6 is very expensive, and they also have only small
chance of success. An optimal algorithm for this problem (i.e., one with minimal
expected cost) can be shown to have expected cost E2+(0.23×389.5) ≈ 90, which
can be achieved with a backtracking search algorithm which determines unknowns
in the X = 2, 3, 4 branches before determining unknowns in the X = 1 branch. �

668 N. Wilson, D. Grimes, and E.C. Freuder

Algorithms with low expected cost will clearly need to consider the costs and
the probabilities. A backtracking algorithm should ideally not always determine
any unknown it meets, but allow the possibility of delaying determining an
unknown, to check whether it seems worthwhile doing so.

We define algorithms for this problem, based on backtracking search. Such
algorithms can be crudely divided into three classes:

– Type 0: determining all unknowns to begin with;
– Type 1: determining unknowns as we meet them in the search;
– Type 2: making decisions about whether it’s worth determining an unknown,

making use of cost and probabilistic information.

The normal solving approaches for CSPs fall into Type 0, where the full CSP is
elicited first and we then solve it, based on backtracking search with propagation
at each node of the search tree. Algorithms for open constraints, which don’t
assume any cost or probability information, can be considered as being Type 1.
In this paper we construct Type 2 algorithms, which make use of the cost and
probabilistic information.

We consider a simple iterative algorithm based on a limit on the costs of
unknowns that may be determined; for each cost limit value, we perform a
backtracking search; if this fails to find a solution we increment the cost limit,
and search again. With this algorithm it can easily happen that we pay a cost
of determining an unknown tuple, only to find that that particular branch fails
to lead to a solution for other reasons, as in the example, with unknown υ1.
A natural idea is to delay determining an unknown, in order to find out if
it is worth doing so. Our main algorithm, described in Section 4, usually will
not immediately determine an unknown, but explore more deeply first. The
experimental results in Section 5 strongly suggest that this can be worthwhile.

Related Work: The motivation for this work is related to part of that for Open
Constraints [1,2,3,6], and Interactive CSPs [4,5], with a major difference being
our assumption of there being cost and probabilistic information available ([2]
considers costs in optimisation problems, but in a rather different way). Although
these kinds of methods could be used for our problem, not taking costs and
probabilities into account will, unsurprisingly, tend to generate solutions with
poor expected cost, as illustrated by the example and our experimental results.

Another approach is to ignore the probabilistic information, and look for
complete assignments that will incur minimal cost to check if they are solutions.
Weighted constraints methods e.g., [7] can be used to search for such assign-
ments. If all the probabilities were equal to 1 then this would solve the problem.
However, it may well turn out that all the lowest cost assignments also have rel-
atively low probability. Consider the example with K5 (the cost of determining
υ5) changed to be 10 instead of 200. The assignment which then needs mini-
mum cost to discover if it’s a solution is (X1 = 1, X2 = 5); this again leads to a
suboptimal algorithm. Alternatively, one could search for complete assignments
which have highest probability of being a solution, as in Probabilistic CSPs [8].

A Cost-Based Model for Interleaving Solving and Elicitation 669

Although this may perform satisfactorily if all the costs are equal, with varying
costs it seems that the costs should be taken into account. Consider the example,
but where p5, the probability that υ5 = 1, is changed from 0.1 to 0.9. The as-
signment with greatest chance of being a solution is (X1 = 1, X2 = 5); however
the cost of finding this solution is 250, so trying this solution first is far from
optimal.

The next section describes the model and problem more formally. Section 3
analyses the related problem of determining if a particular complete assignment
is a solution. This analysis is important for our main algorithm, which is de-
scribed in Section 4. Section 5 describes the experimental testing and results,
and Section 6 discusses extensions.

2 A Formal Model for Interleaving Solving and
Elicitation

Standard CSPs: Let V be a set of variables, which are interpreted as decision
variables, so that we have the ability to choose values of them. Each variable
X ∈ V has an associated domain D(X). For any subset W of V , let D(W) be
the set of assignments to W , which can be written as

∏
X∈W D(X). Associated

with each (standard) constraint c over V , is a subset Vc of V , which is called its
scope. Define a (standard) constraint c over V to be a function from D(Vc) to
{0, 1}. We will sometimes refer to a set of constraints C over V as a Constraint
Satisfaction Problem (CSP) over V . Let S be an assignment to all the variables
V . S is said to satisfy constraint c if c(S′) = 1, where S′ is S restricted to Vc. S
is a solution of CSP C (or, S satisfies C) if it satisfies each constraint in C.

The Unknowns: As well as decision variables V , we consider a disjoint set of
variables U , which we call the set of unknowns. These are uncertain variables,
and we have no control over them. They are all boolean variables. We assume
that, for any unknown υ ∈ U , we can determine (i.e., discover) the value of υ,
that is, whether υ = 1 or υ = 0. So we assume we have some procedure Det(·)
that takes an unknown υ as input and returns 1 or 0. We also assume that there
is a certain cost Kυ ∈ [0,∞) for executing this procedure on υ, and that we
have probabilistic information about the success of this procedure. In particular
we assume that we know the probability pυ of success, i.e., the probability that
Det(υ) = 1.

Incomplete Constraints: An incomplete constraint c over (V,U) has an associated
subset Vc of V called its scope. c is a function from D(Vc) to {0, 1}∪U . Hence, to
any tuple t ∈ D(Vc), c assigns 1, 0 or some unknown. c is intended as a partial
representation of some standard constraint c∗ over Vc. c(t) = 1 is interpreted as
t satisfies the constraint c∗. Also, c(t) = 0 is interpreted as t doesn’t satisfies
the constraint c∗; otherwise, if c(t) ∈ U , then it is unknown if t satisfies the
constraint. We will sometimes refer to a set of incomplete constraints over (V,U)
as an incomplete CSP. An Expected Cost-based Interactive CSP (ECI CSP) is

670 N. Wilson, D. Grimes, and E.C. Freuder

formally defined to be a tuple 〈V, D,U , K, p, C〉, for set of variables V , set of
unknowns U , functions K : U → [0,∞), p : U → [0, 1], and where C is a set of
incomplete constraints over (V,U).

Associated with an incomplete constraint c are two standard constraints with
the same scope. The known constraint c is given by c(t) = 1 if and only if c(t) = 1
(otherwise, c(t) = 0). A tuple satisfies c if and only if it is known to satisfy c∗.
The potential constraint c is given by c(t) = 0 if and only if c(t) = 0 (otherwise,
c(t) = 1). A tuple satisfies c if it could potentially satisfy c∗. For a given set
of incomplete constraints C, the Known CSP is the set of associated known
constraints: C = {c : c ∈ C}, and the Potential CSP C is the set of associated
potential constraints: {c : c ∈ C}.

Suppose that c(t) = υ, and we determine υ and find out that υ = 1. Then
we now know that t does satisfy the constraint, so we can replace c(t) = υ by
c(t) = 1. Define c[υ := 1] to be the incomplete constraint generated from c by
replacing every occurrence of υ by 1. We define c[υ := 0] analogously. More
generally, let ω be an assignment to a set W ⊆ U of unknowns, and let c be an
incomplete constraint. c[ω] is the incomplete constraint obtained by replacing
each υ in W by its value ω(υ). We define C[ω] to be {c[ω] : c ∈ C}. C[ω] is thus
the incomplete CSP updated by the extra knowledge ω we have about unknowns.

Incomplete CSP C is solved by assignment S (to variables V) in the context
ω if S is a solution of the associated known CSP C[ω]. In other words, if S is
known to be a solution of C given ω. An incomplete CSP C is insoluble in the
context ω if the associated potential CSP C[ω] has no solution. In this case, even
if all the other unknowns are found to be equal to 1, the CSP is still insoluble.

Policies for Solving ECI CSPs

An algorithm for solving an incomplete CSP involves sequentially determining
unknowns until we can find a solution. Of course, the choice of which unknown
to determine next may well depend on whether previous unknowns have been
determined successfully or not. In the example in Section 1, if we determine υ1
and discover that υ1 = 0 then there is no point in determining unknown υ5.

What we call a policy is a decision making procedure that sequentially chooses
unknowns to determine. The choice of unknown to determine at any stage can
depend on information received from determining unknowns previously. The
sequence of decisions ends either with a solution to the known part of the CSP, or
with a situation in which there is no solution, even if all the undecided unknown
tuples are in their respective constraints. In more abstract terms a policy can be
considered as follows:-

Given an assignment ω to some (possibly empty) setW of unknowns, a policy
does one of the following:

(a) returns a solution of the Known CSP (given ω);
(b) returns “Insoluble” (it can only do this if the Potential CSP (given ω) is

insoluble);
(c) choose another undetermined unknown.

A Cost-Based Model for Interleaving Solving and Elicitation 671

In cases (a) and (b) the policy terminates. In case (c), the chosen unknown υ is
determined, with value b = 1 or 0. ω is then extended with υ = b, and another
choice is made by the policy, given ω ∪ [υ = b]. The sequence continues until the
problem is solved or proved unsatisfiable.

Define a scenario to be a complete assignment to all the unknowns. Let Pr(α)
be the probability of scenario α occurring. In the case of the variables U being
independent, we have Pr(α) =

∏
υ :α(υ)=1 pυ ×

∏
υ :α(υ)=0(1− pυ). In a scenario

α, a policy iteratively chooses unknowns to determine until it terminates; let
Wα be the set of unknowns determined; the policy incurs a particular cost, say,
Kα, which equals

∑
υ∈Wα

Kυ. The expected cost of a policy is then equal to∑
α Pr(α)Kα, where the summation is over all scenarios α.

Evaluating Policies. We evaluate policies in terms of their expected cost. So,
we aim to define algorithms that implement policies which have relatively low
expected cost.

Using Dynamic Programming to Generate an Optimal Policy

Although the problem involves minimising expected cost over all policies, the
structure of the decisions—dynamically choosing a sequence from a (large) set of
objects—does not fit very naturally into such formalisms as Influence Diagrams
[9], Markov Decision Processes [10] and Stochastic Constraint Programming [11].
We describe below a simple dynamic programming [12] algorithm for generating
an optimal policy.

Consider ECI CSP 〈V, D,U , K, p, C〉. Let ω be an assignment to some set
of unknowns W ⊆ U . Define A(ω) to be the minimal expected cost over all
policies for solving 〈V, D,U−W , K, p, C[ω]〉, the ECI CSP updated with ω. Then
A(ω) = 0 if either the associated Known CSP C[ω] is soluble or the associated
Potential CSP C[ω] is insoluble. Otherwise, any policy chooses some unknown
υ ∈ U −W to determine, incurring cost Kυ and with chance pυ of finding that
υ = 1. If υ = 1 then we have incomplete CSP C(ω ∪ [υ := 1]) to solve, which
has minimal expected cost A(ω ∪ [υ := 1]). Therefore, A(ω) can be written as

min
υ∈U−W

(
Kυ + pυA(ω ∪ [υ := 1]) + (1− pυ)A(ω ∪ [υ := 0])

)
.

The minimal expected cost over all policies for solving the original ECI CSP is
equal to A[
], where
 is the assignment to the empty set of variables. We can
thus find the minimal expected cost by using a simple dynamic programming
algorithm, iteratively applying the above equation, starting with all scenarios
(or from minimal assignments ω such that C[ω] is insoluble); we can also find
an optimal policy in this way, by recording, for each ω, a choice υ ∈ U − W
which minimises the expression for A(ω). However, there are 3|U| different pos-
sible assignments ω, so this optimal algorithm will only be feasible for problems
with very small |U|, i.e., very few unknowns (whereas problem instances in our
experiments in Section 5 involve more than 2,000 unknowns). More generally, it
seems that we will need to use heuristic algorithms.

672 N. Wilson, D. Grimes, and E.C. Freuder

3 Evaluating a Complete Assignment

In this section we consider the problem of testing if a given complete assignment
is a solution of an ECI CSP 〈V, D,U , K, p, C〉; the key issue is the order in which
we determine the associated unknowns. This analysis is relevant for our main
algorithm described in Section 4.

Associated with each potential solution S (i.e., solution of the associated po-
tential CSP C) is a set of unknowns, which can be written as: {c(S) : c ∈ C}∩U .
An unknown υ is in this set if and only if there exists some constraint c such
that c(S) = υ. Label these unknowns as U = {υ1, . . . , υm}; we abbreviate pυi

to pi, and Kυi to Ki. We also define ri = Ki/(1 − pi), where we set ri = ∞
if pi = 1. Assignment S is a solution of the unknown CSP if and only if each
of the unknown values in U is actually a 1. In this section we assume that the
unknowns are independent variables, so that the probability that S is a solution
of the CSP is p1p2 · · · pm, which we write as P (U).

To evaluate set of unknowns {υ1, . . . , υm}, we determine them in some order
until either we find one which fails, i.e., until Det(υi) = 0, or until we have deter-
mined them all. Associated with an unknown υi is the cost Ki and success prob-
ability pi. Suppose we evaluate the unknowns in the sequence υ1, . . . , υm. We
start by determining υ1, incurring cost K1. If υ1 is successfully determined (this
event has chance p1), we go on to determine υ2, incurring additional cost K2,
and so on. The expected cost in evaluating these unknowns in this order is there-
fore K1 + p1K2 + p1p2K3 + · · ·+ p1p2 · · · pm−1Km. Let Rπ be the expected cost
incurred in evaluating unknowns {υ1, . . . , υm} in the order π(1), π(2), . . . , π(m),
i.e., with υπ(1) first, and then υπ(2), etc. Expected cost Rπ is therefore equal to
Kπ(1) + pπ(1)Kπ(2) + pπ(1)pπ(2)Kπ(3) + · · ·+ pπ(1)pπ(2) · · · pπ(m−1)Kπ(m).

Proposition 1. For a given set of unknowns {υ1, . . . , υm}, Rπ is minimised by
choosing π to order unknowns with smallest ri (= Ki/(1− pi)) first, i.e., setting
ordering π(1), π(2), . . . , π(m) in any way such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(m).

For a set of unknowns U = {υ1, . . . , υm} we define R(U) to be Rπ, where π is
chosen so as the minimise the cost, by ordering the unknowns to have smallest
ri first (as shown by Proposition 1).

Imagine a situation where we are given an ECI CSP, and a complete assign-
ment S which is a possible solution. We will consider an expected-utility-based
analysis of whether it is worth determining these unknowns, to test if S is a
solution, where cost is negative utility. Suppose the utility of finding that S is a
solution is Q. The chance of finding that S is a solution is P (U), so the expected
reward is P (U) × Q. If we determine all the unknowns U (based on the mini-
mal cost order) then the expected cost is R(U). Therefore the overall expected
gain is (P (U) × Q) − R(U), so there is a positive expected gain if and only if
P (U)×Q > R(U), i.e., if and only if Q > R(U)/P (U).

A Cost-Based Model for Interleaving Solving and Elicitation 673

A natural approach, therefore, for solving an Expected Cost-based Interactive
CSP is to search for solutions whose associated set of unknowns U has relatively
low value of R(U)/P (U). In particular, we can perform iterative searches based
on an upper bound on R(U)/P (U), where this upper bound is increased with
each search. This is the basis of our main algorithm, described in the next section.

The monotonicity property, shown by the following proposition, is important
since it allows the possibility of subtrees being pruned: if a partial assignment
S has associated set of unknowns U , and we find that R(U)/P (U) is more than
our cost bound Q, then we can backtrack, since the set of unknowns U ′ associ-
ated with any complete assignment extending S will also have R(U ′)/P (U ′) > Q.
Since U is finite, it is sufficient to show the result for the case when U ′ contains
a single extra unknown (as we can then repeatedly add extra unknowns one-by-
one to prove the proposition). The result for this case follows quite easily by
expanding R(U).

Proposition 2. Let U and U ′ be any sets of unknowns with U ⊆ U ′ ⊆ U . Then
R(U)/P (U) ≤ R(U ′)/P (U ′).

4 Iterative Expected Cost-Bound Algorithm

In this section we define our main algorithm for solving a given Expected Cost-
based CSP 〈V, D,U , K, p, C〉. The key idea behind this algorithm is to allow
the possibility of delaying determining an unknown associated with a constraint
check, until it has explored further down the search tree; this is in order to see
if it is worth paying the cost of determining that unknown. The algorithm per-
forms a series of depth-first searches; each search is generated by the procedure
TreeSearch. The structure of each search is very similar to that of a standard
backtracking CSP algorithm.

The behaviour in each search (i.e., in each call of TreeSearch) depends on the
value of a global variable Q, which is involved in a backtracking condition, and
is increased with each tree search. For example, in the experiments described in
Section 5, we set Qinitial = 20 and define Next(Q) to be Q × 1.5, so that the
first search has Q set to 20, the second search has Q = 30, and then Q = 45, and
so on. The value of Q can be roughly interpreted as the cost that the algorithm
is currently prepared to incur to solve the problem.1

The procedure TopLevel first initialises the cost incurred (GlobalCost) to
zero. It then performs repeated tree searches until a solution is found (see proce-
dure ProcessNode(·) below) or until all unknowns have been determined; in the
latter case, it then performs one further tree search (which is then an ordinary
CSP backtracking algorithm).

1 Our experimental results for the main algorithm (without the size limit modifica-
tion) tally very well with this interpretation, with the average Q for the last iteration
being close to the average overall cost incurred (within 25% of the average cost for
each of the four distributions used).

674 N. Wilson, D. Grimes, and E.C. Freuder

Procedure TopLevel

GlobalCost := 0; Q := Qinitial

repeat
TreeSearch
Q := Next(Q)
until all unknowns have been determined

TreeSearch

Procedure TreeSearch

Unknownsroot := ∅;
Construct child N of root node
ProcessNode(N)

The core part of the algorithm is the procedure ProcessNode(N). Let N be
the current node, and let Pa(N) be its parent, i.e., the node above it in the
search tree. Associated with node N is the set UnknownsN of current unknowns.
At a node, if any of the current unknowns evaluates to 0 then there is no solution
below this node. Conversely, if all of the current unknowns at a node evaluate
to 1 then the current partial assignment is consistent with all constraints that
have been checked so far. If all the current unknowns at a leaf node evaluate to
1 then the current assignment is a solution.

At a search node, we perform, as usual, a constraint check for each constraint
c whose scope Vc has just been fully instantiated (i.e., such that (i) the last
variable instantiated is in the scope, and (ii) the set of variables instantiated
contains the scope). A constraint check returns either 1, 0 or some unknown.
The algorithm first determines if any constraint check fails, i.e., if it returns 0.
If so, we backtrack to the parent node, in the usual way, assigning an untried
value of the associated variable, when possible, and otherwise backtracking to its
parent node. Propagation can be used in the usual way to eliminate elements of a
domain which cannot be part of any solution extending the current assignment.

The set DirectUnknownsN , of unknowns directly associated with the node
N , is defined to be the set of unknowns which are generated by the constraint
checks at the node. The set of current unknowns at the node, UnknownsN , is
then initialised to be the union of DirectUnknownsN and the current unknowns
of the parent node.

The algorithm then tests to see if it is worth continuing, or if it is expected to
be too expensive to be worth determining the current set of unknowns. The back-
tracking condition is based on the analysis in Section 3. We view Q as represent-
ing (our current estimate of) the value of finding a solution. Then the expected
gain, if we determine all the unknowns in UnknownsN , is P (UnknownsN) × Q
where P (UnknownsN) is the chance that all the current unknowns evaluate to 1.
The expected cost of determining these unknowns sequentially is R(UnknownsN),
as defined in Section 3, since we evaluate unknowns with smallest ri first. So,
determining unknowns UnknownsN is not worthwhile if the expected gain is less
than the expected cost: P (UnknownsN) × Q < R(UnknownsN). Therefore we
backtrack if R(UnknownsN)/P (UnknownsN) > Q.

A Cost-Based Model for Interleaving Solving and Elicitation 675

We then construct a child node in the usual way, by choosing the next variable
Y to instantiate, choosing a value y of the variable, and extending the current
assignment with Y = y. If Y is the last variable to be instantiated then we
use the ProcessLeafNode(·) procedure on the new node; otherwise we use the
ProcessNode(·) procedure on the new node.

The ProcessLeafNode(·) procedure is similar to ProcessNode(·), except that
we can no longer delay determining unknowns, so we determine each current
unknown until we fail, or until all have been determined successfully. We deter-
mine an unknown with smallest ri = Ki/(1− pi) first (based on Proposition 1).
If an unknown υi is determined unsuccessfully, then there is no solution beneath
this node. In fact, if N ′ is the furthest ancestor node of N which υi is directly
associated with (i.e. such that DirectUnknownsN ′ � υi), then there is no so-
lution beneath N ′. Therefore, we jump back to N ′ and backtrack to its parent
node Pa(N ′). If all the unknowns UnknownsN have been successfully determined
then the current assignment, which assigns a value to all the variables V , has
been shown to be a solution of the CSP, so the algorithm has succeeded, and we
terminate the algorithm.

Procedure ProcessNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN
if R(UnknownsN)/P (UnknownsN) > Q

then backtrack to parent node
Construct child node N ′ of N
if N ′ is a leaf node (all variables are instantiated)

then ProcessLeafNode(N ′) else ProcessNode(N ′)

Procedure ProcessLeafNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN
if R(UnknownsN)/P (UnknownsN) > Q then backtrack to parent node
while Unknowns non-empty do:

Let υi be unknown in UnknownsN with minimal ri
Determine υi;
GlobalCost := GlobalCost+ Ki

if υi determined unsuccessfully
then Jump Back to furthest ancestor node associated with υi

and backtrack to its parent node
UnknownsN := UnknownsN − {υi}
end (while)

Return current (complete) assignment as a solution and STOP

If we apply this algorithm to the example in Section 1 (again using variable
ordering X, Y , and numerical value ordering), no unknown will be determined
until we reach an iteration where Q is set to being at least 87.5. Then the first leaf
node N that the algorithm will reach is that associated with the assignment (X =

676 N. Wilson, D. Grimes, and E.C. Freuder

1, Y = 5). UnknownsN is equal to {υ1, υ5}. r1 = K1/(1− p1) = 50/0.1 = 500 >
r5 = 200/0.9, so R({υ1, υ5}) = K5+p5K1 = 205, and R({υ1, υ5})/P ({υ1, υ5}) =
205/(0.9 × 0.1) ≈ 2278, so the algorithm will backtrack; similarly for the leaf
node associated with assignment (X = 1, Y = 6). The leaf node corresponding
to (X = 2, Y = 6) has current set of unknowns {υ2}. Since R({υ2})/P ({υ2}) =
70/0.8 = 87.5 ≥ Q, unknown υ2 will be determined. If it evaluates to 1 then
(X = 2, Y = 6) is a solution, and the algorithm terminates. Otherwise, υ3
and υ4 will be next to be determined. In fact, for this example, the algorithm
generates an optimal policy, with expected cost of around 90.

One approach to improving the search efficiency of the algorithm is to set a
limit SizeLimit on the size of the current unknown set UnknownsN associated
with a node. If |UnknownsN | becomes larger than SizeLimit then we repeatedly
determine unknowns, in increasing order of ri, and remove the unknown from
the current set until |UnknownsN | = SizeLimit. It is natural then to change the
backtracking condition to take this into account. In particular, we can change
the test to be (CostDetSuccN + R(UnknownsN))/P (UnknownsN) > Q, where
CostDetSuccN is the cost incurred in (successfully) determining unknowns in
ancestors of the current node, which can be considered as the cost that has
already been spent in consistency checking of the current assignment.

In the algorithm whenever we determine an unknown in UnknownsN we choose
an unknown υi with minimum ri. This is in order to minimise the expected cost of
determining the set of current unknowns, because of Proposition 1. Alternatively,
one could bias the ordering towards determining more informative unknowns.
For example, suppose UnknownsN includes two unknowns υi and υj , where υi
is associated with a unary constraint, and υj is associated with a constraint of
larger arity. Even if ri is slightly more than rj , it may sometimes be better to
determine υi before υj since υi may well be directly associated with many other
nodes in the search tree.

5 Experimental Testing

The problem instances used in the experiments were generated as follows: A sol-
uble random binary extensional CSP is generated with parameters 〈n, d, m, t〉,
where n is the number of variables, d the uniform domain size, m the graph density
and t the constraint tightness, with the parameters chosen so that each instance
is likely to be fairly easily soluble. For each constraint in this CSP we randomly
select a number of the allowed tuples and randomly select the same number of the
disallowed tuples to be assigned unknown. Each such tuple is assigned a differ-
ent unknown υi, which is assigned a probability pi chosen independently from a
uniform distribution taking values between 0 and 1. Each υi is allocated its true
value (which the algorithms only have access to when they determine ui): this is
assigned 1 with probability pi, otherwise it is assigned 0 (where υi = 1 means that
the associated tuple satisfies the constraint).

We use four different distributions for cost, where costs are integers in our ex-
periments. Each distribution has minimum value 1 and has median around 50. For
k = 1, 2, 3, 4 using the kth distribution, each cost Kυ is an independent sample of

A Cost-Based Model for Interleaving Solving and Elicitation 677

the random variable: 50× (2× rand)k rounded up to be an integer, where rand
is a random number taking values between 0 and 1 with a uniform distribution.
Therefore k = 1 has a linear distribution, k = 2 is a scaled (and truncated) square
root distribution, and so on.

The parameters for 〈n, d, m, t〉 were 〈20, 10, 0.163, 0.4〉 and 〈20, 10, 0.474, 0.3〉.
Each problem set contained 100 problems. No problem was soluble without de-
termining at least one unknown. For 〈20, 10, 0.163, 0.4〉, the first problem param-
eters, we generated four problem sets by using four different cost distributions;
for the other problem set we used the linear (k = 1) cost distribution.

The following five algorithms were tested (where, according to the terminology
in Section 1, the first is Type 1, and the others are Type 2):

Basic Algorithm: The basic algorithm works like a normal CSP depth-first search
algorithm (maintaining arc consistency, and with min domain variable ordering)
except that it determines each unknown as soon as it is encountered. As usual,
a constraint check is performed as soon as all the variables in the constraint’s
scope are instantiated. When a constraint check returns an unknown υi, we
immediately determine υi, incurring cost Ki. If υi is determined successfully,
i.e., υi is found to be 1, then the constraint check is successful.

Basic Iterative (Cost-Bound Algorithm): This algorithm performs iterative
searches, parameterised by increasing cost bound q; each search is similar to
the basic algorithm, except that all unknowns with cost greater than q are re-
moved from search for the current iteration (that is, they are set to 0, which
allows for improved pruning through propagation). If a solution is found, search
terminates; otherwise, the search is complete, after which search restarts with
q incremented by a constant, qinc. The process continues until either a solution
has been found or all unknowns have been determined and the algorithm has
proven insolubility. For the experiments reported below, q starts off with value
0, and qinc is 5.

Main Iterative (Expected Cost-Bound Algorithm): This is the main algorithm
described in Section 4. For this and the next two algorithms, Qinitial is set to
20, with a multiplicative increment of 1.5.

Main Algorithm with Size Limit: This is the adapted version of the last algorithm
discussed at the end of Section 4, which incorporates a limit SizeLimit on the
cardinality of the set Unknowns of current unknowns, so that if |Unknowns| >
SizeLimit then elements of Unknowns are determined until either one is found
to be 0 or |Unknowns| = SizeLimit. In the experiments reported below, we set
SizeLimit to 5.

Mixed Algorithm: This algorithm modifies the main Expected Cost-Bound al-
gorithm by having, for each iteration, a cost bound q on each unknown being
considered, in order to improve the search efficiency (because of additional prop-
agation), whilst maintaining cost effectiveness. It therefore is a kind of hybrid
of the main algorithm and the basic iterative cost-bound algorithm described
above. Let maxK be the maximum cost of any unknown in the current problem

678 N. Wilson, D. Grimes, and E.C. Freuder

instance. On the first search all unknowns with cost greater than 30%(maxK) are
removed from search, so that q starts at 30%(maxK); on each iteration this bound
q is incremented by qinc = 5%(maxK).
We also implemented a cost-based value ordering heuristic. The heuristic chooses
the value which has minimum total cost over the constraints between the variable
and its instantiated neighbors. The improvements for the iterative algorithms
were minimal so we only present the results for the basic algorithm with the
value ordering (“Basic Value”).

Table 1. Results For Different Cost Distributions. Costs are Averaged Over 100 Prob-
lems. Bottom row gives mean search nodes for linear problem set.

Basic Basic Basic Main Size Mixed
Value Iterative Iterative Limit

Linear
(k = 1) 3272 2625 1711 152 495 178

Square
(k = 2) 4574 3414 900 105 346 113

Cube
(k = 3) 6823 4997 566 79 231 77

Fourth
(k = 4) 11123 8401 344 50 180 52

Linear
Search Nodes 57 55 652 2.1 × 106 1.2 × 106 1.2 × 105

Notes: Problem parameters 〈20, 10, 0.163, 0.4〉.

Discussion: Table 1 gives the results for the average costs on four different prob-
lem sets. These all had the same parameters 〈n, d, m, t〉 but costs were generated
for unknowns using the distributions described above. The “main iterative” al-
gorithm performs best in terms of average cost: the basic iterative algorithm
incurs between around 7 to 11 times more cost for these instances, and the ba-
sic algorithm has average cost one or two orders of magnitude worse than the
main iterative algorithm. (Naturally, all the algorithms do much better than
determining all the unknowns prior to search, at a cost of more than 100,000.)

Unsurprisingly, the main iterative algorithm is vastly slower than the basic
algorithms, generating on average around two million total search tree nodes for
each problem instance, whereas the basic iterative generates only a few hundred.
The last two algorithms both aim to improve the efficiency somewhat. The “Size
Limit” algorithm cuts search tree nodes by more than 50% compared to the main
algorithm, but incurs roughly three or more times as much average cost. The
mixed algorithm trades off cost and search efficiency much more effectively for
these instances, with only slightly worse average costs, but generating only a
fraction of the search tree nodes, less than 6% for the linear distribution, and
less than 30% for the other distributions.

The other problem set showed similar behaviour, though even more extreme:
in the 〈20, 10, 0.0823, 0.75〉 problem set with the linear distribution, the mixed
algorithm average cost was 222, compared to 5022 for the basic iterative. The

A Cost-Based Model for Interleaving Solving and Elicitation 679

size limit algorithm average cost was 1320, and generated more than nine times
as many nodes as the mixed algorithm.

6 Extensions and Summary

Extending the algorithms: Our main algorithm can be considered as searching
for complete assignments with small values of R(U)/P (U), where U is the set of
unknowns associated with the assignment, P (U) is the probability that all of U
are successfully determined (and hence that the assignment is a solution), and
R(U) is the expected cost of checking this. There are other ways of searching
for assignments with small values of R(U)/P (U), in particular, one could use
local search algorithms or branch-and-bound algorithms. Such algorithms can be
used to generate promising assignments, which we can sequentially test to see if
they are solutions or not. If not, then we move on to the next potential solution
(possibly updating the problem to take into account determined unknowns).

The efficiency of our main algorithm and a branch-and-bound algorithm would
probably be greatly increased if one could design an efficient propagation mecha-
nism of an upper bound constraint on R(U)/P (U). Failing that, one might use a
propagation method for weighted constraints [7] to prune subtrees of assignments
with total associated cost above a threshold, or with probabilities below a thresh-
old (the latter using a separate propagation, making use of the log/exponential
transformation between weighted constraints and probabilistic constraints).

Extensions of the model: Our model of interleaving solving and elicitation is a
fairly simple one. There are a number of natural ways of extending it to cover
a wider range of situations. In particular, the framework and algorithms can be
easily adapted to situations where there is a cost incurred for determining a set
of unknowns (rather than a single unknown); for example, there may be a single
cost incurred for determining all the unknowns in a particular constraint. The
paper has focused especially on the case of the probabilities being independent;
however, the model and algorithms can be applied in non-independent cases as
well. Our model and algorithms also apply to the case where determining an
unknown may leave it still unknown; unsuccessfully determining an unknown
then needs to be reinterpreted as meaning that we are unable to find out if
the associated tuple satisfies the constraint or not. Our current model allows a
single unknown to be assigned to several tuples; although this can allow some
representation of intensional constraints, we may also wish to allow non-boolean
unknowns, for example, for a constraint X − Y ≥ λ where λ is an unknown
constant.

In many situations, it could be hard to reliably estimate the success proba-
bilities and costs, in particular, if a cost represents the time needed to find the
associated information. However, since the experimental results indicate that
taking costs and probabilities into account can make a very big difference to
the expected cost, it could be very worthwhile making use of even very crude
estimates of costs and probabilities.

680 N. Wilson, D. Grimes, and E.C. Freuder

Summary

The paper defines a particular model for when solving and elicitation are in-
terleaved, which takes costs and success probabilities into account. A formal
representation of such a problem is defined. A dynamic programming algorithm
can be used to solve the problem optimally, i.e., with minimum expected cost;
however this is only computationally feasible for situations in which there are
few unknowns, i.e., very little unknown information. We define and experimen-
tally test a number of algorithms based on backtracking search, with the most
successful (though computationally expensive) ones being based on delaying de-
termining an unknown until more information has been received.

References

1. Faltings, B., Macho-Gonzalez, S.: Open constraint satisfaction. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 356–370. Springer, Heidelberg (2002)

2. Faltings, B., Macho-Gonzalez, S.: Open constraint optimization. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 303–317. Springer, Heidelberg (2003)

3. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artificial Intelli-
gence 161(1–2), 181–208 (2005)

4. Cucchiara, R., Lamma, E., Mello, P., Milano, M.: An interactive constraint-based
system for selective attention in visual search. In: International Syposium on
Methodologies for Intelligent Systems, pp. 431–440 (1997)

5. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.: Con-
straint propagation and value acquisition: why we should do it interactively. In:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-99), pp. 468–477 (1999)

6. Lallouet, A., Legtchenko, A.: Consistencies for partially defined constraints. In:
Proc. International Conference on Tools with Artificial Intelligence (ICTAI’05)
(2005)

7. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Ar-
tificial Intelligence 159(1–2), 1–26 (2004)

8. Fargier, H., Lang, J.: Uncertainty in Constraint Satisfaction Problems: a prob-
abilistic approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 97–104. Springer, Heidelberg (1993)

9. Howard, R., Matheson, J.: Influence diagrams. In: Readings on the Principles and
Applications of Decision Analysis, pp. 721–762 (1984)

10. Puterman, M.: Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Chichester (1994)

11. Tarim, S.A., Manadhar, A., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1), 53–80 (2006)

12. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

On Universal Restart Strategies for

Backtracking Search

Huayue Wu and Peter van Beek

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

{hwu,vanbeek}@cs.uwaterloo.ca

Abstract. Constraint satisfaction and propositional satisfiability prob-
lems are often solved using backtracking search. Previous studies have
shown that a technique called randomization and restarts can dramat-
ically improve the performance of a backtracking algorithm on some
instances. We consider the commonly occurring scenario where one is to
solve an ensemble of instances using a backtracking algorithm and wish
to learn a good restart strategy for the ensemble. In contrast to much
previous work, our focus is on universal strategies. We contribute to the
theoretical understanding of universal strategies and demonstrate both
analytically and empirically the pitfalls of non-universal strategies. We
also propose a simple approach for learning good universal restart strate-
gies and demonstrate the effectiveness and robustness of our approach
through an extensive empirical evaluation on a real-world testbed.

1 Introduction

Constraint satisfaction and propositional satisfiability problems are often solved
using backtracking search. It has been widely observed that backtracking algo-
rithms can be brittle on some instances. Seemingly small changes to a variable or
value ordering heuristic, such as a change in the ordering of tie-breaking schemes,
can lead to great differences in running time. An explanation for this phenom-
enon is that ordering heuristics make mistakes. Depending on the number of
mistakes and how early in the search the mistakes are made (and therefore how
costly they may be to correct), there can be a large variability in performance
between different heuristics. A technique called randomization and restarts has
been proposed for taking advantage of this variability [1,2,3,4].

A restart strategy (t1, t2, t3, ...) is an infinite sequence where each ti is either a
positive integer or infinity. The idea is that a randomized backtracking algorithm
is run for t1 steps. If no solution is found within that cutoff, the algorithm is
run for t2 steps, and so on. The usual method for randomizing a backtracking
algorithm is to randomize the variable or value ordering heuristics (e.g., [2,4]).

Luby, Sinclair, and Zuckerman [1] examine restart strategies in the more gen-
eral setting of Las Vegas algorithms. A Las Vegas algorithm is a randomized
algorithm that always gives the correct answer when it terminates, however the
running time of the algorithm varies from one run to another and can be modeled

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 681–695, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

682 H. Wu and P. van Beek

as a random variable. Let f(t) be the probability that a backtracking algorithm
A applied to instance x stops after taking exactly t steps; f(t) is referred to
as the runtime distribution of algorithm A on instance x. Luby, Sinclair, and
Zuckerman [1] show that, given full knowledge of the runtime distribution of an
instance, the optimal strategy for that instance is given by (t∗, t∗, t∗, . . .), for
some fixed cutoff t∗. Of course, the runtime distribution of an instance is not
known in practice.

A fixed cutoff strategy is an example of a non-universal strategy: designed to
work on a particular instance—or, more precisely, a particular runtime distri-
bution. When applied to another instance for which it was not designed, non-
universal strategies are open to catastrophic failure, where the strategy provably
will fail on the instance no matter how much time is alloted to the backtracking
search. The failure is due to all cutoffs being too small, before there is suffi-
cient probability of solving the instance. To avoid failure, such restart strategies
are sometimes set with cutoffs much too high with a serious consequent hit in
performance (see, e.g., Huang [5] and references therein).

In contrast to non-universal strategies, universal strategies are designed to be
used on any instance. Luby, Sinclair, and Zuckerman [1] were the first to propose
a universal strategy (hereafter, the Luby strategy). The Luby strategy is given by
(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .) and grows linearly (each ti is bounded
above by (i+1)/2). Walsh [6] proposes the universal strategy (1, r, r2, . . .), where
the restart values are geometrically increasing. In practice, it has been found that
a geometric factor in the range 1 < r < 2 often works well on both SAT and
CSP instances [6,7].

We consider a setting where an ensemble or sequence of instances are to be
solved over time. Such a setting often arises in practice. For example, a common
scenario in scheduling and rostering is that at regular intervals on the calendar
a similar scheduling problem must be solved. For a further example, in our
evaluation testbed of instruction scheduling, thousands of instances arise each
time a compiler is invoked on some software project. In such a setting, the
question we address is whether we can learn a good restart strategy in an offline
manner from a small sample of the instances. In contrast to previous work, our
focus is on learning good universal strategies.

In this paper, we make the following three contributions. First, we demon-
strate both analytically and empirically the pitfalls of non-universal strategies,
as learned by previously proposed approaches.

Second, we examine the worst-case performance of the universal strategies.
The Luby universal strategy is known to be within a log factor of optimal in
the worst-case [1]. However, bounds on the worst-case performance of the Walsh
universal strategy are not known. We show that the performance of the Walsh
strategy is not bounded with respect to the optimal value in the worst-case.
The proof of the theorem provides some intuition behind good choices for the
geometric factor that have previously been determined empirically. We also prove
that the Walsh strategy guarantees a performance improvement under certain
conditions.

On Universal Restart Strategies for Backtracking Search 683

Finally, we examine the practical performance of the universal strategies. Pre-
vious empirical evaluations have reported that the Luby universal strategy can
perform poorly in practice (e.g., [4,8,9,10]) and the Walsh strategy has not been
thoroughly evaluated empirically. We show that the performance of the univer-
sal strategies can sometimes be considerably improved by parameterizing the
strategies and estimating the optimal settings for these parameters from a small
sample of instances. The two parameters that we consider are a scale parameter
s and a geometric factor parameter r. The Walsh strategy already contains the
geometric factor. Luby, Sinclair, and Zuckerman [1, p.179] note that a geometric
factor can also be incorporated into their universal strategy. For example, the
first few terms of the Luby strategy with a geometric factor of 3 are given by, 1,
1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 9, The scale parameter, as the name suggests,
scales, or multiplies, each cutoff in a restart strategy. For example, the first few
terms of a scaled Walsh strategy are given by (s, sr, sr2, . . .), for some given scale
s and geometric factor r. Parameterizing the strategies improves performance
while retaining any optimality and worst-case guarantees. We demonstrate the
effectiveness and robustness of our approach through an extensive empirical eval-
uation on a real-world testbed of instruction scheduling problems.

2 Related Work

In this section, we relate our work to previously proposed methodologies for
learning good restart strategies for an ensemble of instances. In each methodol-
ogy, one begins by choosing a sample of instances from the ensemble.

Restart strategies are often informally chosen using trial-and-error methods
where one runs experiments on a sample of instances in order to find good strate-
gies (e.g., [4,11]). Zhan [7] performs extensive experiments to evaluate which
geometric factor r for the universal strategies works best across problem classes.
In preliminary work, we suggested that the universal strategies could be further
parameterized using a scale factor s and that the parameters could be tuned to
improve performance [12]. Independently, Eén and Sörensson [13] incorporates
a scaled (s = 150) Walsh strategy into their SAT solver, but they offer no jus-
tification for the choice of value. More recently, Huang [5] extensively compares
fixed cutoff restart strategies with particular scaled Luby and Walsh strategies
on SAT benchmarks in the context of conflict clause learning. Huang notes that
none of the strategies evaluated was consistently best across all benchmark fami-
lies, which suggests that adapting a strategy to a benchmark family is important.

More formal methods for choosing good restart strategies have also been pro-
posed. Ó Nualláin, de Rijke, and van Benthem [14] consider the case where an
ensemble consists of instances drawn from two known runtime distributions—a
runtime distribution for satisfiable instances and one for unsatisfiable—but the
runtime distribution for any given instance is unknown. They sketch how esti-
mates of these runtime distributions can be used to derive good restart strategies.
However, the work is preliminary and no experimental results are reported.

Kautz et al. [8,9] consider the case where an ensemble consists of instances
drawn from n different runtime distributions. They show that with this

684 H. Wu and P. van Beek

additional information, one can use dynamic programming to derive good restart
strategies and that these restart strategies can be further improved by incorpo-
rating observations from during the search process itself. However, their approach
is developed and experimentally evaluated in a scenario where a new instance is
chosen each time the backtracking algorithm is restarted. Unfortunately, this is
not a realistic scenario. In practice, one is interested in solving each instance in
the ensemble, not just any instance.

Ruan, Horvitz, and Kautz [10] determine a good restart strategy as follows.
One first empirically constructs the runtime distributions for each of the in-
stances in the sample. The instances are then clustered such that the runtime
distributions of the instances in a cluster have low variability. Each cluster of
runtime distributions yields a sub-ensemble runtime distribution which is the
normalized sum of the runtime distributions of the instances it contains. These
sub-ensemble runtime distributions are then used to construct a single, final
strategy using dynamic programming. However, the resulting learned strategies
are non-universal and thus are open to catastrophic failure.

Gagliolo and Schmidhuber [15] propose learning a good restart strategy on-
line as instances of the ensemble are solved. The restart strategy learned is an
interleaving of the Luby universal strategy and a fixed cutoff. In essence, the
fixed cutoff is determined by constructing a single runtime distribution from the
samples seen so far, and choosing a restart strategy that minimizes the expected
runtime on that runtime distribution. Because of the interleaved Luby strategy,
the learned strategy is not open to catastrophic failure. However, we argue (see
subsequent sections) that the fixed cutoff learned in this approach may not be
useful in many practical settings.

3 Theoretical Results

In this section we contribute to the theoretical understanding of the universal
restart strategies. For universal strategies there are two worst-case bounds of
interest: worst-case bounds on the expected runtime of a strategy and worst-
case bounds on the tail probability of a strategy. The tail probability is the
probability that the strategy runs for more than t steps, for some t.

3.1 Bounds on Expected Runtime

Luby, Sinclair, and Zuckerman [1] show that, for any runtime distribution, the
Luby strategy is within a log factor of the optimal fixed cutoff strategy for that
distribution. They also show that, given no knowledge of the runtime distrib-
ution, no universal strategy can have a better bound than being within a log
factor of optimal. The question we address is, how far can the Walsh strategy
be from the optimal fixed cutoff strategy for a runtime distribution? Does it
attain the best-possible log factor bound and, if not, can it be bound by some
other polynomial or exponential function? Unfortunately, the answer is no to
all of these questions. The first notable property we establish is that the Walsh
strategy, although it appears to work well in practice, unfortunately comes with

On Universal Restart Strategies for Backtracking Search 685

no formal guarantee on its worst-case performance as it can be unbounded worse
than the optimal fixed cutoff strategy.

Theorem 1. The expected runtime of a Walsh strategy of the form, (1, r, r2, . . .),
r > 1, can be unbounded worse than that of the optimal fixed cutoff strategy.

Proof. The proof is constructive; given a Walsh strategy, we give a method for
constructing a runtime distribution such that the expected runtime of the Walsh
strategy on the runtime distribution is unbounded. Let A be the algorithm being
applied by the strategy. For any given Walsh strategy of the form (1, r, r2, . . .),
r > 1, define a runtime probability distribution for A as follows,1

f(t) =

⎧
⎨
⎩

1
l t = 1
1 − 1

l t = ∞
0 otherwise

where l = r/(r−1). Note that the optimal strategy for this runtime distribution
is the fixed cutoff strategy (1, 1, 1, . . .) with expected runtime l. The expected
runtime E[T] of the Walsh strategy is given by,

E[T] =
1
l

+ (1 − 1
l
)
(1 + 1)

l
+ (1 − 1

l
)2

(1 + 1 + r)
l

+ · · ·

=

(∞∑
i=0

(1 − 1
l
)i

) (
1
l

+
1
l
(1 − 1

l
) +

r

l
(1 − 1

l
)2 + · · ·

)

= l

(
1
l

) (
1 + (1 − 1

l
) + r(1 − 1

l
)2 + · · ·

)

= 1 + (1 − 1
l
)
∞∑

i=0

(r − r

l
)i

= 1 + (1 − 1
l
)
∞∑

i=0

1i.

Thus the expected runtime E[T] is unbounded with respect to that of the optimal
fixed cutoff strategy. ��

The proof of the theorem provides some practical guidance for selecting a value
for the geometric factor r. Values in the range 1 < r < 2 are safer, and the
smaller the probability of a short run, the closer the geometric factor r must be
to 1, or the strategy may not converge.

1 Note that the condition t = ∞ in the runtime probability distribution simplifies the
proof. However, for real CSP and SAT instances there always exists a t for which
P (T ≤ t) = 1; i.e. the runtime distributions are finite as a backtracking algorithm
will always (eventually) terminate. At the expense of complicating the proof, the
condition t = ∞ can also be formulated as t = rk and it can be shown that the
Walsh strategy can be exponentially worse than the optimal fixed cutoff strategy.

686 H. Wu and P. van Beek

3.2 Bounds on Tail Probability

Recall that the tail probability of an algorithm A on some instance is the prob-
ability that the algorithm runs for more than t steps on that instance, for some
t. Similarly, the tail probability of a restart strategy on some instance is the
probability that the strategy runs for more than t steps. Luby, Sinclair, and
Zuckerman [1] show that, no matter what the runtime distribution of the orig-
inal algorithm A, if we apply A using the Luby strategy, the tail probability of
the restart strategy decays superpolynomially as a function of t (i.e., faster than
polynomially). Here we establish a more restricted result for the Walsh strategy
by focusing on heavy-tailed probability distributions of the Pareto-Lévy form.
Gomes et al. [3,4] show that this family of distributions can be a good fit to the
runtime distributions of backtracking algorithms with randomized heuristics in
the cases where restarts improve performance the most. In Pareto distributions,
the tail probability has the form,

P [T > t] ∼ Ct−α, where α > 0, C > 0.

In contrast to the classic exponentially decaying tail, a heavy-tailed distribution
is one where the tail probability decays polynomially. In terms of a backtracking
algorithm, a heavy-tail model implies that there is a significant probability that
the backtracking search will run for a long time, and the longer the backtracking
search has been running, the longer additional time it can be expected to run.

Theorem 2. If the runtime distribution of the original algorithm A is a heavy-
tailed probability distribution of the Pareto-Lévy form and A is applied using a
Walsh strategy of the form, (1, r, r2, . . .), r > 1, the tail probability of the restart
strategy decays superpolynomially.

Proof. Let F (t) = 1 − Ct−α be the cumulative distribution of the runtime of
algorithm A; i.e., the probability that A stops after taking t or fewer steps. The
idea is to first bound the tail probability of the restart strategy from above by
a piecewise linear function which is further bounded by a smooth function that
decays faster than heavy tail. Let it = arg maxi(ri ≤ t) = �logr t�.

P [T > t] ≤ P [T > rit]

=
it∏

l=0

(
1 − F

(
rl

))

= C�logr t�+1 r−α
��logr t�

l=0 l

Since
∑�logr t�

l=0 l = 1
2 (1 + �logr t�)�logr t� ≥ 1

2 (1 + (logr t − 1))(logr t − 1) =
1
2 (log2

r t − logr t), together with the fact that r > 1, we have,

P [T > t] ≤ C�logr t�+1 r−
α
2 (log2

r t−logr t)

= C�logr t�+1 t−
α
2 (logr t−1)

On Universal Restart Strategies for Backtracking Search 687

In the case where C < 1, we have,

P [T > t] ≤ C logr t t−
α
2 (logr t−1)

= t−
α
2 logr t+R

where R = α
2 + logr C. In the case where C ≥ 1, we have,

P [T > t] ≤ C logr t+1 t−
α
2 (logr t−1)

= Ct−
α
2 logr t+R

The basic form of the tail probability is e− log2 t. Although slower than exponen-
tial, it no longer decays polynomially and thus is not heavy tailed. ��
A practical consequence of the theorem is that for instances for which a Pareto
distribution is a sufficiently good fit, the Walsh strategy is guaranteed to reduce
the probability of very long runs. Moreover, it is quick to check that both the
mean and the variance are finite for the cumulative distribution P [T ≤ t] =
1−e− log2 t, and thus the mean and variance of the Walsh strategy are also finite.
In contrast, the mean of the Pareto distribution is unbounded if α ≤ 1 and the
variance is unbounded if α ≤ 2. Thus, for certain settings of the parameter α
in the Pareto distribution, the Walsh strategy is guaranteed to give an expected
performance gain over not performing restarts.

4 Analytical Study

In this section we use a simple analytic example to illustrate the pitfalls of using
fixed cutoff and other non-universal strategies on an ensemble of instances. For
the purposes of this study, we assume that there is no limit on computational
resources—i.e., we wish to run the strategy on each instance in the ensemble until
a solution is found. In such a scenario, the appropriate performance measure is
the expected cost of solving the ensemble.

Consider an ensemble of n instances where the (unknown) runtime distribu-
tion of the kth instance is given by fk(t), k = 0, . . . , n − 1,

fk(t) =

⎧
⎨
⎩

p t = 10k

1 − p t = 10n

0 otherwise.

where p ≥ 1
8 (the lower bound on p is to ensure that restarts are helpful for all

possible values of n and k).
Following Gagliolo and Schmidhuber [15], suppose that we learn a fixed cutoff

by collecting a sample of the ensemble, constructing a single runtime distribution
for the sample, and finally choosing the fixed cutoff that minimizes the expected
runtime of the strategy given the runtime distribution. In the limiting case where
the sample is the entire ensemble, the runtime distribution would be given by,

f(t) =

⎧⎨
⎩

p/n t = 10k, k = 0, . . . , n − 1
1 − p t = 10n

0 otherwise.

688 H. Wu and P. van Beek

It can easily be shown that (1, 1, . . .) is the optimal fixed cutoff strategy for the
above runtime distribution. However, if we actually run the strategy on each in-
stance of the ensemble, the expected runtime of solving the ensemble is unbounded
(i.e., the process will not terminate). This is true for any fixed cutoff strategy (t,
t, . . .) where t < 10n−1. Further, if we interleave the learned cutoff with the Luby
strategy, the result would only degrade the performance of the Luby.

Following Ruan, Horvitz, and Kautz [10], suppose that we learn a cutoff strat-
egy by constructing a runtime distribution for each instance in the sample, clus-
tering the runtime distributions into a small number of classes, and learning a
restart strategy from the clustered runtime distributions. It can be shown that,
under reasonable assumptions about the method for clustering the runtime dis-
tributions, unless the sample consists of the entire ensemble and the number
of clusters is equal to n, the expected runtime of the learned strategy on the
ensemble of instances can be unbounded.

As a point of comparison, it is easy to show that for each instance k with
runtime distribution fk(t), k = 0, . . . , n−1, the optimal restart strategy for that
instance is the fixed cutoff strategy (t∗k, t∗k, . . .) with t∗k = 10k. For the ensemble
of n instances, if we use the optimal restart strategy for each instance (i.e., the
fixed cutoff strategy (t∗k, t∗k, . . .) is used on instance k), the expected runtime
of solving the ensemble is (10n − 1)/(9p). Similarly, the expected runtime of the
strategy using the cutoff t = ∞ (i.e., running the backtracking algorithm to
completion on each instance) can be derived and is obviously finite. Thus, the
non-universal restart strategies learned by previous proposals can be unbounded
worse than the gold standard strategy of using the fixed cutoff t∗k and unbounded
worse than performing no restarts at all.

The universal strategies, by design, avoid this pitfall. But the question now
is, how well do they perform? For a given n and p, we can experimentally deter-
mine the expected runtime of the Luby and Walsh strategies on the ensemble of
instances, for various parameter settings. Table 1 summarizes a representative
example, the case where n = 6 and p = 1/8. Ratios less then one in the table
represent a speed-up; greater than one represent a slowdown. The default value
of the scale parameter s is 1 and the default value of the geometric parameter r
is 2 for the Luby strategy and 1.1 for the Walsh strategy.

There are two aspects of this analytic example that are worth noting. First,
the pitfall that a learned non-universal restart strategy can be arbitrarily worse
than no restarting at all arose even when perfect information about the runtime

Table 1. Ratio of expected runtime of the Luby and Walsh restart strategies over (a)
the expected runtime of the gold standard strategy t∗k, and (b) the expected runtime
when no restarts are performed

restarts using t∗k no restarts
Parameter settings Luby Walsh Luby Walsh

Optimal 2.51 3.26 0.42 0.55
Default 14.17 3.30 2.39 0.56

On Universal Restart Strategies for Backtracking Search 689

distributions was available (i.e., the sample consisted of the entire ensemble).
The pitfall is exacerbated when only estimates are available. In particular, the
pitfall would be likely to arise whenever there exist instances in the ensemble
that are inherently harder to solve than others. We would argue that these con-
ditions would often hold in practice, an assertion that our empirical study in the
next section supports. Second, the universal strategies avoid the pitfall and offer
speedups for various parameter settings. In the next section, we introduce more
realistic runtime distributions and study how robustly and accurately good para-
meter settings can be estimated and just how much the parameterized universal
strategies can lead to performance gains.

5 Empirical Study

In this section we present the results of an extensive empirical evaluation of our
approach on real-world scheduling instances. We performed two sets of experi-
ments. In the first set of experiments, we consider a scenario that often arises in
practice where a solution must be found within some given amount of compu-
tational resources. In these experiments we used a limit on the amount of CPU
time. In such a scenario, the appropriate performance measure is the number of
problems in the ensemble which are not solved. In the second set of experiments,
we consider a scenario where a backtracking search is run to completion. In such
a scenario, the appropriate performance measure is the expected time to solve
all of the problems in the ensemble. We begin by presenting the experimental
setup that is in common to the two sets of experiments, followed by the results
of the experiments themselves.

5.1 Experimental Setup

We used instruction scheduling problems for multiple-issue pipelined processors
in our experiments. Instruction scheduling is one of the most important steps in
improving the performance of object code produced by a compiler. The task is to
find a minimal length schedule for a basic block—a straight-line sequence of code
with a single entry point and a single exit point—subject to precedence, latency,
and resource constraints. We formulated a constraint programming model and
solved the instances using backtracking search. In the model, there is a variable
for each instruction, the domains of the variables are the time cycles in which the
instruction could be scheduled, and the constraints consist of linear inequalities,
global cardinality constraints, and other specialized constraints. The scheduler
was able to solve almost all of the basic blocks that we found in practice, in-
cluding basic blocks with up to 2600 instructions. We refer the reader to [16]
for further details on the problem, the model, and the backtracking algorithm.
The point we wish to emphasize here is that, prior to our examination of restart
strategies, considerable effort went into improving the constraint programming
model, backtracking algorithm, and heuristics to reduce the number of unsolved
problems.

690 H. Wu and P. van Beek

To randomize the backtracking algorithm, the dynamic variable ordering heuris-
tic randomly picked a variable from the top 5 variables (or fewer, if there were fewer
variables left). The backtracking algorithm is capable of performing three levels of
constraint propagation:

Level = 0 bounds consistency
Level = 1 singleton bounds consistency
Level = 2 singleton bounds consistency to a depth of two

We repeated the experiments for each level of constraint propagation. For our
experiments, we used scheduling instances that arise from the SPEC 2000 and
MediaBench benchmark suites, two standard real-world benchmarks in compiler
research. These benchmark suites consist of source code for software packages
that are chosen to be representative of a variety of programming languages and
types of applications. We had available to us a total of 6,377 hard scheduling
instances from 28 different software packages. For our sample of instances, or
training set, we used all 927 of the hard scheduling instances from the galgel,
gap, mpeg, and jpeg software packages. We chose these four software packages
for two reasons. First, the instances give approximately fifteen percent of the
scheduling instances and, second, these software packages provide a good cross
section of the data as they include both integer and floating point instructions
as well as a variety of programming languages and types of applications. For our
test set, we used the remaining 5,450 hard scheduling instances.

For each instance in the training and test sets, we collected 1000 samples
of its runtime distribution by each time running the randomized backtracking
algorithm on the instance and recording the amount of time taken in seconds.
The samples are censored in that we ran the backtracking algorithm with a
timeout mechanism; if the instance was not solved within 10 minutes, the back-
tracking algorithm was terminated and the maximum amount of 10 minutes was
recorded. (All times were recorded to 1/100 of a second, the resolution of the
system clock.) These empirical runtime distributions were then used to learn
and test the various restart strategies.

All of the runtime experiments were performed on a cluster which consists
of 768 machines running Linux, each with 4 GB of RAM and four 2.2 GHz
processors.

5.2 Experiment 1

In our first set of experiments, we set a time limit of 10 minutes per instance
and determined whether learning good parameter settings from a training set
can reduce the number of problems in the test set which are not solved.

To learn good parameter settings for the Luby and Walsh strategies, we dis-
cretized the scale s into orders of magnitude, 10−1, . . . , 105, and the geometric r
into 2, 3, . . . , 10 (Luby) and 1.1, 1.2, . . . , 2 (Walsh). The best parameter settings
were then estimated by choosing the values that minimized the expected number
of instances not solved for the training set. The strategies with the estimated
parameter settings were then evaluated on the test set. Table 2 summarizes the

On Universal Restart Strategies for Backtracking Search 691

Table 2. Expected number of scheduling instances in the test set not solved within
a deadline of 10 minutes, for various fixed cutoff strategies (see text); the Luby and
Walsh strategies with default, estimated, and optimal parameter settings; and various
levels of constraint propagation

Fixed cutoff Luby Walsh

Level t∗k t̂single t = 10m def. est. opt. def. est. opt.

0 118.6 233.0 193.2 124.1 125.2 123.0 141.2 140.1 140.0
1 25.7 637.0 33.9 37.6 28.4 28.4 34.5 27.9 27.8
2 84.3 2,056.0 85.0 187.0 85.0 85.0 166.1 85.0 85.0

Table 3. Percentage increase in the expected number of scheduling instances in the
test set not solved relative to the gold standard t∗k, for various restart strategies and
levels of constraint propagation

Fixed cutoff Luby Walsh

Level t∗k t̂single t = 10m def. est. opt. def. est. opt.

0 0.0% 96.5% 62.9% 4.6% 5.6% 3.7% 19.0% 18.1% 18.0%
1 0.0% 2,378.6% 31.9% 46.3% 10.5% 10.5% 34.2% 8.6% 8.2%
2 0.0% 2,338.9% 0.8% 121.8% 0.8% 0.8% 97.0% 0.8% 0.8%

Max 0.0% 2,378.6% 62.9% 121.8% 10.5% 10.5% 97.0% 18.1% 18.0%

results. Table 3 presents the same information except now stated in terms of
percentage change. For comparison purposes, we show the results for three fixed
cutoff strategies: (i) the gold standard strategy t∗k where, for each instance k
in the test set, the optimal fixed cutoff strategy for that instance is used; (ii)
the fixed cutoff strategy t̂single that would be learned from the training set by
the method of Gagliolo and Schmidhuber [15]; and (iii) the fixed cutoff strategy
where the cutoff is set equal to the deadline of 10 minutes; i.e., there are no
restarts.

It can be seen that on this testbed the fixed cutoff strategy t̂single performs
poorly. Parameterizing the universal strategies and estimating good parameter
settings can give quite reasonable performance improvements over the default
or unparameterized universal strategies in some cases. Further, the parameter
settings estimated from the training set lead to performance that approaches
that of the optimal parameter settings (the parameter settings that, among all
possible parameter settings, lead to the best performance on the test set). As
well, it is worth noting that in some cases the default parameter settings lead to
worse performance than when there are no restarts.

We also measured the robustness of our approach for learning good universal
restart strategies by performing a sensitivity analysis. To be broadly useful,
our approach should not rely on extremely accurate estimates of the optimal
settings of the parameters. Rather, there should be a wide range of values for the
parameters that are effective and small changes in the accuracy of the estimates
should give small changes in the overall performance of the strategy.

692 H. Wu and P. van Beek

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

av
er

ag
e

pe
rc

en
ta

ge
 in

cr
ea

se

distance

Luby, geometric
Walsh, geometric
Luby, scale
Walsh, scale

Fig. 1. Average (over all levels of constraint propagation) percentage increase in the
expected number of instances not solved in the test set relative to the optimal para-
meter settings, for various distances

To measure the robustness, we began with the optimal parameter settings
and systematically introduced inaccuracies in the parameters and observed the
effect on performance. For each parameter setting that was a given distance
from the optimal setting, we determined the percentage increase in the number
of problems that could not be solved. For example, for a distance of 1, scale
parameters that were one order of magnitude smaller and larger than the optimal
setting were tested. The results are summarized in Figure 1. It can be seen that
on this testbed: (i) the setting of the scale parameter is the most important for
both the Luby and the Walsh strategies, (ii) estimates of the scale parameter
that are off by one or two orders of magnitude are still effective, and (iii) the
Walsh strategy is somewhat more robust than the Luby.

5.3 Experiment 2

In our second set of experiments, we removed the time limit and determined
whether learning good parameter settings from a training set can reduce the time
needed to solve all of the problems in the test set. Recall that in the runtime dis-
tributions that we gathered, the samples were censored in that the backtracking
algorithm was terminated if an instance was not solved within 10 minutes. In
this experiment we wished to run the backtracking algorithm to completion. It
proved infeasible to actually do this on our benchmark instances—the instances
that we let run without a timeout ran for days without terminating—and so we
took a compromise approach as follows.

Gomes et al. [4] show that Pareto distributions of the form F (t) = 1 − Ct−α

are a good fit to runtime distributions that arise from backtracking algorithms
with randomized heuristics when applied to a diverse set of problems. In our
experimental runtime data, we replaced the timeouts by values sampled from
the tail of a Pareto distribution with C = 1 and α = 0.5. With these choices

On Universal Restart Strategies for Backtracking Search 693

Table 4. Expected time (days:hours:minutes) to solve all of the scheduling instances in
the test set, for various fixed cutoff strategies (see text); the Luby and Walsh strategies
with default, estimated, and optimal parameter settings; and various levels of constraint
propagation

Fixed cutoff Luby Walsh

Level t∗k t̂single t = ∞ def. est. opt. def. est. opt.

0 4:13:54 ∞ 295:07:03 62:13:07 7:14:29 7:14:29 17:17:19 7:03:53 7:03:53
1 1:00:22 ∞ 53:11:59 13:23:17 1:08:12 1:08:12 3:16:35 1:06:17 1:06:17
2 3:11:46 ∞ 122:23:52 49:18:45 3:23:00 3:23:00 13:22:30 3:17:04 3:17:04

Table 5. Percentage increase in the expected time to solve all of the scheduling
instances in the test set relative to the gold standard t∗k, for various restart strategies
and levels of constraint propagation

Fixed cutoff Luby Walsh

Level t∗k t̂single t = ∞ def. est. opt. def. est. opt.

0 0.0% ∞ 6,348.4% 1265.8% 66.1% 66.1% 287.0% 56.4% 56.4%
1 0.0% ∞ 5,169.1% 1275.9% 32.2% 32.2% 263.6% 24.3% 24.3%
2 0.0% ∞ 3,423.8% 1326.3% 13.4% 13.4% 299.3% 6.3% 6.3%

Max 0.0% ∞ 6,348.4% 1326.3% 66.1% 66.1% 299.3% 56.4% 56.4%

for C and α, of the instances that previously had timed out, approximately
59.2% of the instances are now “solved” within one hour, 91.9% are solved
within one day, 98.9% are solved within one month, and all are solved within
one year.

To learn good parameter settings for the Luby and Walsh strategies, we dis-
cretized the scale s into orders of magnitude, 10−1, . . . , 107, and the geometric r
into 2, 3, . . . , 10 (Luby) and 1.1, 1.2, . . . , 2 (Walsh). The best parameter settings
were then estimated by choosing the values that minimized the time to solve all
of the instances in the training set. The strategies with the estimated parameter
settings were then evaluated on the test set. Table 4 summarizes the results.
Table 5 presents the same information except now stated in terms of percentage
change.

It can be seen that on this testbed parameterizing the universal strategies
and estimating good parameter settings gives performance improvements over
the default universal strategies in all cases (ranging from a minimum reduction
of from 3 days down to 1 day to a maximum reduction of from 62 days down to 7
days). Further, the estimated parameter settings are accurate—in each case the
estimated parameter settings turned out to be the optimal parameter settings.
As well, we note that with just the default parameters, the Walsh strategy is
much better than the Luby strategy. However, once we estimate and use good
parameter settings, the Luby and Walsh strategies achieve quite comparable
performance.

694 H. Wu and P. van Beek

5.4 Discussion

We conclude this section with a discussion relating our experimental results
with previous theoretical results, as at first glance it may appear that there
is a conflict. Recall that Luby, Sinclair, and Zuckerman [1] show that, for any
runtime distribution, the Luby strategy with default parameter settings is within
a log factor of the optimal fixed cutoff strategy for that distribution. This may
appear to contradict the experimental results that we report for the default
Luby strategy. However, the theoretical result hides constant factors, which can
be important in practice. The constant factors can in fact be large as one moves
from the theoretician’s time step to a more practical proxy such as clock time
or number of backtracks. As well, we note that the optimality result does not
hold in the case where limits are placed on computational resources, such as a
deadline [17].

Recall also that Luby, Sinclair, and Zuckerman [1] show that, given no knowl-
edge of the runtime distribution, no universal strategy can have a better bound
than being within a log factor of optimal. This may appear to contradict the
experimental results that we report for the universal strategies with estimated
parameter settings. However, we note that the result does not hold in the case
where we are allowed to sample from the ensemble—as we do here—and learn
about the runtime distribution. As well, the theoretical result is a worst-case
analysis and the proof relies on a pathological distribution which may not arise
in practice.

6 Conclusions

We presented a theoretical worst-case analysis of the Walsh universal strategy.
The analysis provides some insights into suitable ranges in practice for the geo-
metric parameter of the strategy. We also presented an approach for learning
good universal restart strategies in the commonly occurring scenario where an
ensemble of instances is to be solved. We demonstrated the effectiveness and
robustness of our approach through an extensive empirical evaluation on a real-
world testbed. Together these results increase our theoretical understanding of
universal restart strategies and increase their applicability in practice.

Acknowledgments. This work was made possible by the facilities of the Shared
Hierarchical Academic Research Computing Network (SHARCNET).

References

1. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47, 173–180 (1993)

2. Harvey, W.D.: Nonsystematic backtracking search. PhD thesis, Stanford University
(1995)

3. Gomes, C., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Proceedings of the Third International Conference on Principles and
Practice of Constraint Programming, Linz, Austria, pp. 121–135 (1997)

On Universal Restart Strategies for Backtracking Search 695

4. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. J. of Automated Reasoning 24, 67–100
(2000)

5. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, pp. 2318–2323 (2007)

6. Walsh, T.: Search in a small world. In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, Stockholm, pp. 1172–1177 (1999)

7. Zhan, Y.: Randomisation and restarts. MSc thesis, University of York (2001)
8. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.

In: Proceedings of the Eighteenth National Conference on Artificial Intelligence,
Edmonton, pp. 674–681 (2002)

9. Ruan, Y., Horvitz, E., Kautz, H.: Restart policies with dependence among runs:
A dynamic programming approach. In: Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming, Ithaca, New
York, pp. 573–586 (2002)

10. Ruan, Y., Horvitz, E., Kautz, H.: Hardness aware restart policies. In: IJCAI Work-
shop on Stochastic Search Algorithms (2003)

11. Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-
world SAT instances. In: Proceedings of the Fourteenth National Conference on
Artificial Intelligence, Providence, Rhode Island, pp. 203–208 (1997)

12. Wu, H., van Beek, P.: Restart strategies: Analysis and simulation (Doctoral Ab-
stract). In: Proceedings of the Ninth International Conference on Principles and
Practice of Constraint Programming, Kinsale, Ireland, p. 1001 (2003)

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

14. Ó Nualláin, B., de Rijke, M., van Benthem, J.: Ensemble-based prediction of SAT
search behaviour. Electronic Notes in Discrete Mathematics, vol. 9 (2001)

15. Gagliolo, M., Schmidhuber, J.: Learning restarts strategies. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India,
pp. 792–797 (2007)

16. Malik, A.M., McInnes, J., van Beek, P.: Optimal basic block instruction scheduling
for multiple-issue processors using constraint programming. In: Proceedings of the
18th IEEE International Conference on Tools with Artificial Intelligence, Wash-
ington, DC, pp. 279–287. IEEE Computer Society Press, Los Alamitos (2006)

17. van Moorsel, A.P.A., Wolter, K.: Analysis of restart mechanisms in software sys-
tems. IEEE Trans. on Software Engineering 32, 547–558 (2006)

Hierarchical Hardness Models for SAT

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{xulin730,hoos,kevinlb}@cs.ubc.ca

Abstract. Empirical hardness models predict a solver’s runtime for a
given instance of an NP-hard problem based on efficiently computable
features. Previous research in the SAT domain has shown that better
prediction accuracy and simpler models can be obtained when mod-
els are trained separately on satisfiable and unsatisfiable instances. We
extend this work by training separate hardness models for each class,
predicting the probability that a novel instance belongs to each class,
and using these predictions to build a hierarchical hardness model using
a mixture-of-experts approach. We describe and analyze classifiers and
hardness models for four well-known distributions of SAT instances and
nine high-performance solvers. We show that surprisingly accurate clas-
sifications can be achieved very efficiently. Our experiments show that
hierarchical hardness models achieve higher prediction accuracy than the
previous state of the art. Furthermore, the classifier’s confidence corre-
lates strongly with prediction error, giving a useful per-instance estimate
of prediction error.

1 Introduction

For NP-hard problems such as SAT, even the best known algorithms have worst-
case running times that increase exponentially with instance size. In practice,
however, many large instances of NP-hard problems can still be solved within
a reasonable amount of time. In order to understand this phenomenon, much
effort has been invested in understanding the “empirical hardness” of such prob-
lems [15,18]. One recent approach uses linear basis-function regression to obtain
models that can predict the time required for an algorithm to solve a given SAT
instance [18]. These empirical hardness models can be used to gain insight into
the factors responsible for an algorithm’s performance, or to induce distributions
of problem instances that are challenging for a given algorithm. They can also be
leveraged to select among several different algorithms for solving a given problem
instance [13,14,20] and can be applied in automated algorithm configuration and
tuning [9]. Empirical hardness models have proven very useful for combinatorial
auction winner determination [15], a prominent NP-hard optimization problem.
In Section 2, we introduce some background knowledge about empirical hardness
models as well as our experimental setup.

Considering the SAT problem in particular, previous work has shown that if
instances are restricted to be either only satisfiable or only unsatisfiable, very
different models are needed to make accurate runtime predictions for uniform
random SAT instances. Furthermore, models for each type of instance are simpler

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 696–711, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hierarchical Hardness Models for SAT 697

and more accurate than models that must handle both types, which means that
better empirical hardness models can be built if we know the satisfiability of
instances. In this work we further investigate this idea by considering a variety
of both structured and unstructured SAT instances and several state-of-the-art
SAT solvers. The detailed experimental results are described in Section 3.

In Section 4, we study the feasibility of predicting the satisfiability of a novel
SAT instance from a known distribution, using Sparse Multinomial Logistic Re-
gression (SMLR) [11] as our classifier. Our experimental results are very promis-
ing. Even for uniform random 3-SAT instances generated at the phase transition,
the prediction accuracy was greater than 86%. For the trickiest problems we en-
countered (SAT-encoded graph coloring problems on small-world graphs), the
prediction accuracy was still greater than 73%.

Armed with a reasonably accurate (but imperfect) classifier, in Section 5 we
consider the construction of hierarchical hardness models in order to make run-
time predictions. We do so by using a mixture-of-experts approach with fixed
(“clamped”) experts—in other words, with conditional models trained on sat-
isfiable instances and unsatisfiable instances separately. We evaluate both con-
ditional models and then return a weighted sum of the two predictions, where
these weights are given by a learned function that depends on both the instance
features and the classifier’s prediction. We found that using such hierarchical
models improved overall prediction accuracy. Furthermore, the classifier’s con-
fidence correlated with prediction accuracy, giving useful per-instance evidence
about the quality of the runtime prediction.

2 Background

For a given problem instance, empirical hardness models predict the runtime of
an algorithm based on polytime-computable instance features. We have investi-
gated a wide variety of different regression techniques in past work [15]. Here,
we use the same linear basis-function ridge regression method that has previ-
ously proven to be very successful in predicting runtime on uniform random SAT
and combinational auctions [18,15] and focus on combining models specialized
to different types of instances.

2.1 Empirical Hardness Models

In order to predict the runtime of an algorithm A on a distribution I of problem
instances, we run algorithm A on n instances drawn from I and compute for each
instance i ∈ I a feature vector xi = (xi,1, . . . , xi,k). We then fit a function f(x)
that, given the features xi of an instance i, approximates A’s runtime on i, yi. To
improve numerical stability by eliminating highly correlated features, we reduce
the set of features through forward selection. Then we perform a basis function
expansion of our feature set. Our basis functions can include arbitrarily complex
functions of sets of features, or can simply be the raw features themselves; in
this work, quadratic basis functions are used. Finally, we perform another pass of
forward feature selection and select a subset of extended features φi = φ(xi) =
[φ1(xi), . . . , φd(xi)] for which our models achieve the best performance on a
given validation data set.

698 L. Xu, H.H. Hoos, and K. Leyton-Brown

We then use ridge regression to fit the free parameters w of the linear func-
tion fw(xi) = w�φ(xi). We compute w = (δI + Φ�Φ)−1Φ�ỹ, where ỹ =
(ỹ1, . . . , ỹn), and ỹi is a transformation of the runtime yi. In this work, we use
ỹi = log yi. The n × d matrix Φ contains the feature values for all training in-
stances, and δ is a small regularization constant that prevents arbitrarily large
parameter values in w and increases numerical stability. Given a new, unseen
instance j, a runtime prediction is made by computing its features xj and eval-
uating fw(xj) = w�φ(xj).

Empirical hardness models have a probabilistic interpretation. The features
x and the empirical algorithm runtime y, when seen as random variables, are
related as in the following graphical model:

x y

In this model, we observe the feature vector x, and the probability distribution
over runtime y is conditionally dependent on x. Since we train a linear model
using least squares fitting, we have implicitly chosen to represent P (y|x) as
a Gaussian with mean w�φ(x) and some fixed variance β. What we call a
prediction of an empirical hardness model is really E(y|x), the mean of this
distribution conditioned on the observed feature vector.

2.2 Experimental Setup

For the experiments conducted throughout this study, we selected two distribu-
tions of unstructured SAT instances and two of structured instances:

– rand3-fix: uniform-random 3-SAT with 400 variables from the solubility
phase transition (clauses-to-variables ratio 4.26) [2,19]; we generated 20,000
instances with a satisfiable/unsatisfiable ratio of 50.7/49.3.

– rand3-var:uniform-random3-SATwith400variablesandclauses-to-variables
ratios randomly selected from 3.26 to 5.26; we generated 20,000 instances with
a satisfiable/unsatisfiable ratio of 50/50.

– QCP: random quasi-group completion (the task of determining whether the
missing entries of a partial Latin square can be filled in to obtain a complete
Latin square [7]); using a range of parameter settings, we generated 30,620
SAT-encoded instances with a satisfiable/unsatisfiable ratio of 58.7/41.3.

– SW-GCP: graph-coloring on small-world graphs [6]; using a range of param-
eter settings, we generated 20,000 SAT-encoded instances with a satisfi-
able/unsatisfiable ratio of 55.9/44.1.

The latter two types of SAT distributions have been widely used as a model of
hard SAT instances with interesting structure; we used the same instance gen-
erators and SAT encodings as the respective original studies. Each instance set
was randomly split into training, validation and test sets, at a ratio of 70:15:15.
All parameter tuning was performed with a validation set; test sets were used
only to generate the final results reported in this paper. Note that since the test

Hierarchical Hardness Models for SAT 699

sets we used for our experiments are very big (at least 3000 instances each), we
can expect similar performance for the whole distribution. For each instance, we
computed the 84 features described by Nudelman et al. [18]; these features can
be classified into nine categories: problem size, variable-clause graph, variable
graph, clause graph, balance features, proximity to Horn formulae, LP-based,
DPLL search space, and local search space. We used only raw features as basis
functions for classification, because even a simple quadratic basis function ex-
pansion exceeded the 2GB of RAM available to us. For regression, we used raw
features as well as quadratic basis functions for better runtime prediction accu-
racy. We evaluated the accuracy of logarithm runtime prediction using root mean
squared error (RMSE). In order to reduce the number of redundant features, we
used forward selection and kept the model with the smallest cross-validation
error (this was done independently for each of the learned hardness models).

For uniform random 3-SAT instances, we ran four solvers that are known to
perform well on these distributions: kcnfs [3], oksolver [12], march dl [8], and
satz [16]. For structured SAT instances, we ran six solvers that are known to per-
form well on these distributions: oksolver, zchaff [22], sato [21], satelite [4],
minisat [5], and satzoo [5]. Note that in the 2005 SAT competition, satelite
won gold medals for the Industrial and Handmade SAT+UNSAT categories;
minisat and zchaff won silver and bronze, respectively, for Industrial SAT+UN
SAT; and kcnfs and march dl won gold and silver, respectively, in the Random
SAT+UNSAT category.

All of our experiments were performed using a cluster consisting of 50 com-
puters equipped with dual Intel Xeon 3.2GHz CPUs with 2MB cache and 2GB
RAM, running Suse Linux 9.1. All runs of any solver that exceeded 1 CPU hour
were terminated and recorded in our database of experimental results with a
runtime of 1 CPU hour; this timeout occurred in fewer than 3% of all runs.

3 Conditional and Oracular Empirical Hardness Models

From previous research [18], we know that for uniform-random 3-SAT instances,
much simpler and more accurate empirical hardness models can be learned when
all instances are either satisfiable or unsatisfiable. In the following, we refer to
these as conditional models, and to models trained on satisfiable and unsat-
isfiable instances as unconditional models. Let Msat (Munsat) denote a model
trained only on satisfiable (unsatisfiable) instances. If we had an oracle that knew
which conditional model performed better for a given instance, models equipped
with such an oracle could achieve more accurate runtime predictions. We call
such a (hypothetical) scheme an oracular model. (Note that our oracle chooses
the best model for a particular instance, not the model trained on data with
the same satisfiability status as the instance. This may seem counterintuitive; it
will be discussed in detail below. For now, note simply that in most cases the
two sorts of oracles would select the same model.) We can infer from the results
of Nudelman et al. [18] that on uniform-random 3-SAT, oracular models could
achieve much higher prediction accuracies than unconditional models. In fact,
the performance of an oracular model bounds the performance of a conditional
model from above.

700 L. Xu, H.H. Hoos, and K. Leyton-Brown

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatiisfiable

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 1. Comparison of oracular model (left, RMSE=0.247) and unconditional model
(right, RMSE=0.426). Distribution: QCP, solver: satelite.

−4 −2 0 2 4 6
−4

−2

0

2

4

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−4 −2 0 2 4 6
−4

−2

0

2

4

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 2. Actual vs predicted runtime using only Msat (left, RMSE=1.493) and only
Munsat (right, RMSE=0.683), respectively. Distribution: QCP, solver: satelite.

In the experiments conducted for this work, we found that the usefulness
of oracular models extends to solvers and distributions not studied previously.
Figure 1 shows the difference between using oracular models and unconditional
models on structured SAT instances (distribution: QCP, solver: satelite). For
oracular models, we observed almost perfect predictions of runtime for unsatisfi-
able instances and more noisy, but unbiased predictions for satisfiable instances
(Figure 1, left). Figure 1 (right) shows that the runtime prediction for unsatisfi-
able instances made by unconditional models can exhibit both less accuracy and
more bias.

Even though using the best conditional model can result in higher prediction
accuracy, we found that there is a big penalty for using the wrong conditional
model to predict the runtime of an instance. Figure 2 (left) shows that if we
used Msat for runtime prediction on an unsatisfiable instance, the prediction
error was often very large. The large bias in the inaccurate predictions is due
to the fact that models trained on different types of instances are very different.
As shown in Figure 2 (right), similar phenomena occur when we use Munsat to
predict the runtime on a satisfiable instance.

Hierarchical Hardness Models for SAT 701

Table 1. Accuracy of hardness models for different solvers and instance distributions

RMSE for rand3-var models RMSE for rand3-fix models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

satz 5.481 3.703 0.385 0.329 0.459 0.835 0.420 0.343
march dl 1.947 3.705 0.396 0.283 0.604 1.097 0.542 0.444
kcnfs 4.766 4.765 0.373 0.294 0.550 0.983 0.491 0.397

oksolver 8.169 4.141 0.443 0.356 0.689 1.161 0.596 0.497

RMSE for QCP models RMSE for SW-GCP models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

zchaff 1.866 1.163 0.675 0.303 1.230 1.209 0.993 0.657
minisat 1.761 1.150 0.574 0.305 1.280 1.275 1.022 0.682
satzoo 1.293 0.876 0.397 0.240 0.709 0.796 0.581 0.384
satelite 1.493 0.683 0.426 0.247 1.232 1.226 0.970 0.618
sato 2.373 14.914 0.711 0.375 1.682 1.887 1.353 0.723

oksolver 1.213 1.062 0.548 0.427 1.807 2.064 1.227 0.601

Our results are consistent across data sets and solvers; as shown in Table 1,
oracular models always achieved higher accuracy than unconditional models.
The very large prediction errors in Table 1 for Msat and Munsat indicate that
these models are very different. In particular, the RMSE for using models trained
on unsatisfiable instances to predict runtimes on a mixture of instances was as
high as 14.914 (distribution: QCP, solver: sato).

Unfortunately, oracular models rely on information that is unavailable in prac-
tice: the respective accuracies of our two models on a given (test) instance. Still,
the prediction accuracies achieved by oracular models suggest that it may be
promising to find some practical way of combining conditional models. For the
rest of this paper, we will investigate the question of how this can be done. We
will be guided both by the potential benefit of relying on conditional models
(oracular models outperform unconditional models) and by the danger in doing
so (if we make the wrong choices, prediction error can be much higher than when
using an unconditional model).

4 Predicting the Satisfiability of SAT Instances

In this section, we will consider the most obvious candidate for a practical ap-
proximation of the oracle from the previous section: a classifier that predicts
whether or not a given (test) instance is satisfiable. Even if this classifier were
perfect—which it surely could not be in general, given the NP-completeness of
SAT—it would not choose the better of Msat and Munsat on a per-instance basis,
as our oracular model does. However, on our datasets it would do nearly as well,
making the same choices as the oracular model 98% of the time for rand3-var,
86% for rand3sat-fixed, 92% for QCP, and 77% for SW-GCP.

To build such models, we used Sparse Multinomial Logistic Regression (SMLR)
[11], a recently developed, state-of-the-art sparse classification algorithm. Like
relevance vector machines and sparse probit regression, SMLR learns classifiers

702 L. Xu, H.H. Hoos, and K. Leyton-Brown

rand3−var rand3−fix QCP S W-QC P
0.5

0.6

0.7

0.8

0.9

1
C

la
ss

ifi
ca

tio
n

A
cc

ur
ar

y sat.
unsat.
all

Classification Accuracy
Dataset on sat. on unsat. overall

rand3sat-var 0.9791 0.9891 0.9840
rand3sat-fix 0.8480 0.8814 0.8647

QCP 0.9801 0.9324 0.9597
SW-GCP 0.7516 0.7110 0.7340

Fig. 3. Classification accuracy for different data sets

that use sparsity-promoting priors to control the expressivity of the learned clas-
sifier, thereby tending to result in better generalization. SMLR encourages param-
eter weights either to be significantly large or exactly zero. It also learns a sparse
multi-class classifier that scales favorably in both the number of training samples
and the input dimensionality, which is important for our problems since we have
tens of thousands of samples per data set. We also evaluated other classifiers,
such as support vector machines [10], but we found that SMLR achieved the
best classification accuracy.

We applied SMLR to build a classifier that would distinguish between satis-
fiable and unsatisfiable SAT instances, using the same set of raw features that
were available to the regression model, although in this case we did not find it
necessary to use a basis-function expansion of these features. The difference was
in the response variable: here we defined it as the probability that an instance
is satisfiable, rather than an algorithm’s runtime on that instance. Of course,
although the output of the classifier is real-valued, all the training data was
labelled as satisfiable with probability 1 or with probability 0.

Since SAT is NP-hard and our feature computation and model evaluation
are polynomial-time, we cannot expect perfect classification results in general.
However, NP-hardness is a worst-case notion; there is no theoretical result that
rules out often correctly guessing whether instances from known distributions
are satisfiable. Complexity theory simply tells us that our classifier must some-
times make mistakes (unless P = NP); as we show below, it does. Indeed, NP-
hardness does not imply that all—or even most—instances of a problem are in-
deed intractable. This is precisely why these problems can be successfully tackled
with heuristic algorithms, such as those studied here.

Considering the difficulty of the classification task, our experimental results
are very good. Overall accuracy on test data (measured as the fraction of the
time the classifier assigned more than 50% of probability mass to the correct
class) was as high as 98%, and never lower than 73%. Furthermore, the classifier
was usually very confident about the satisfiability of an instance (i.e., returned
probabilities very close to 0 or 1), and the more confident the classifier was, the
more accurate it tended to be. These results are summarized in Figures 3–5.

For the rand3-var data set (Figure 4, left), the overall classification error
was only 1.6%. Using only the clauses-to-variables ratio (greater or less than
4.26) as the basis for predicting the satisfiability of an instance yields an error
of 3.7%; therefore, by using SMLR rather than this simple classifier, the clas-
sification error is halved. On the QCP data set (Figure 4, right), classification
accuracy was 96%, and the classifier was extremely confident in its predictions.

Hierarchical Hardness Models for SAT 703

 0 0.25 0.5 0.75 1
0

0.5

1
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probability of satisfiable

F
ra

ct
io

n

0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.25 0.5 0.75 1
0

0.2

0.4

Probability ofsatisfiable

F
ra

ct
io

n

Fig. 4. Classification accuracy vs classifier output (top) and fraction of instances within
the given set vs classifier output (bottom). Left: rand3-var, right: QCP.

 0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probability of satisfiable

F
ra

ct
io

n

 0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probabilit of satisfiable

F
ra

ct
io

n

Fig. 5. Classification accuracy vs classifier output (top) and the fraction of instances
within the given set vs classified output (bottom). Left: rand3-fix, right: SW-GCP.

Since all instances for rand3sat-fix (Figure 5, left) are generated at the phase
transition, it is surprising to see a polynomial-time technique perform so well
(accuracy of 86%). For SW-GCP (Figure 5, right) the classification accuracy is
much lower (73%). We believe that this is primarily because our features are
less predictive on this instance distribution, which is consistent with the results
we obtained from unconditional hardness models for SW-GCP. Note that the frac-
tion of instances for which the classifier was confident is smaller for the last two
distributions than for rand3-var and QCP. However, even for SW-GCP we still see
a strong correlation between the classifier’s output and classification accuracy
on test data.

One further interesting finding is that our classifiers can achieve very high
accuracies even given very small sets of features. For example, on the QCP data,
the SMLR classifier achieves an accuracy of 93% with only 5 features. The five
most important features for classification on all four data sets are shown in Ta-
ble 2. Interestingly, local-search based features turned out to be very important
for classification in all four data sets.

704 L. Xu, H.H. Hoos, and K. Leyton-Brown

Table 2. The five most important features (listed from most to least important) for
classification as chosen by backward selection. (For details on the features, see [18].)

Data sets rand3-var rand3-fix

gsat BestCV Mean saps BestSolution CoeffVariance
Five saps BestStep CoeffVariance gsat BestSolution Mean

features lobjois mean depth over vars saps BestCV Mean
VCG VAR max lobjois mean depth over vars

saps BestSolution Mean gsat BestCV Mean
Accuracy (5 features) 98.4% 86.5%

Accuracy (all features) 98.4% 86.5%

Data sets QCP SW-GCP

lobjois log num nodes over vars vars reduced depth
Five saps BestSolution Mean gsat BestCV Mean

features saps BestCV Mean nvars
vars clauses ratio VCG VAR min

saps BestStep CoeffVariance saps BestStep Mean
Accuracy (5 features) 93.0% 73.2%

Accuracy (all features) 96.0% 73.4%

To the best of our knowledge, our work represents the first attempt to predict
the satisfiability of SAT instances using machine learning techniques. Overall,
our experiments show that a classifier may be used to make surprisingly accurate
polynomial-time predictions about the satisfiability of SAT instances. As dis-
cussed above, such a classifier cannot be completely reliable (unless P = NP).
Nevertheless, our classifiers perform very well for the widely-studied instance
distributions considered here. This finding may be useful in its own right. For
example, researchers interested in evaluating incomplete SAT algorithms on large
numbers of satisfiable instances drawn from a distribution that produces both
satisfiable and unsatisfiable instances could use a complete search algorithm to
label a relatively small training set, and then use the classifier to filter instances.

5 Hierarchical Hardness Models

Given our findings to far, it would be tempting to construct a hierarchical model
that uses a classifier to pick the most likely conditional model and then simply
returns that model’s prediction. However, while this approach could sometimes
be a good heuristic, it is not theoretically sound. Intuitively, the problem is that
the classifier does not take into account the accuracies of the different conditional
models. For example, recall Figure 2, which showed the prediction accuracy of
Msat and Munsat for satelite on QCP. We saw that Msat was much less accurate
for unsatisfiable instances than Munsat was for satisfiable instances. Thus if
we encountered an instance that the classifier considered slightly more likely
satisfiable than unsatisfiable, we would still expect to obtain a more accurate
prediction from Munsat than from Msat.

A more principled way of combining conditional models can be derived based
on the probabilistic interpretation of empirical hardness models introduced in

Hierarchical Hardness Models for SAT 705

Section 2.1. As before (see Figure 6, left) we have a set of features that are al-
ways observed and a random variable representing runtime that is conditionally
dependent on the features. Now we combine the features with our classifier’s
prediction s, yielding the feature vector (x, s). We also introduce a new random
variable z ∈ {sat, unsat}, which represents the oracle’s choice of which condi-
tional model will perform best for a given instance. Instead of selecting one of the
predictions from the two conditional models for runtime y, we use their weighted
sum

P (y|(x, s)) =
∑

z∈{sat,unsat}
P (z|(x, s)) · PMz (y|(x, s)), (1)

where PMz (y|(x, s)) is the probability of y evaluated according to model Mz.
Since the models were fit using ridge regression, we can rewrite Eq. (1) as

P (y|(x, s)) =
∑

z∈{sat,unsat}
P (z|(x, s)) · N (y|wzx, βz), (2)

where wz and βz are the weights and standard deviation of model Mz. Thus,
we will learn weighting functions P (z|(x, s)) to maximize the likelihood of our
training data according to P (y|(x, s)). As a hypothesis space for these weighting
functions we chose the commonly used softmax function

P (z = sat|(x, s)) =
ev�(x,s)

1 + ev�(x,s)
, (3)

where v is a vector of free parameters that must be learned [1]. Then we have
the following loss function to minimize, where E(yi,z|x) is the prediction of Mz

and ȳi is the real runtime:

L =
N∑

i=1

(
ȳi −

(∑
k∈{sat,unsat}

P (z = k|(xi, si)) · E(yi,z|xi)
))2

. (4)

This can be seen as a mixture-of-experts problem with the experts clamped to
Msat and Munsat (see, e.g., [1]). For implementation convenience, we used an
existing mixture of experts implementation, which is built around an EM algo-
rithm and which performs iterative reweighted least squares in the M step [17].
We modified this code slightly to clamp the experts and to set the initial values
of P (z|(x, s)) to s (i.e., we initialized the choice of experts to the classifier’s
output). To evaluate the model and get a runtime prediction for test data, we
simply compute the features x and the classifier’s output s, and then evaluate

E(y|(x, s)) =
∑

k∈{sat,unsat}
P (z|(x, s)) · w�k φ(x), (5)

where wk are the weights from Mk and φ(x) is the basis function expansion of
x. Thus, the classifier’s output is not used directly to select a model, but rather
as a feature upon which our weighting functions P (z|(x, s)) depend, as well as
for initializing the EM algorithm.

706 L. Xu, H.H. Hoos, and K. Leyton-Brown

x, s z y

features &
probability

of satisfiable

model
selection

oracle
runtime

.Feature only Init. only None Unconditional

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

R
M

S
E

 r
at

io
)

Models

Fig. 6. Left: Graphical model for our mixture-of-experts approach. Right: Comparison
of hierarchical hardness models’ relative performance: RMSE of full hierarchical model
÷ RMSE of indicated model. Data set: QCP, Solvers: 6 solvers for QCP.

5.1 Experimental Results

Our first experiment used the QCP dataset to investigate the importance of the
classifier’s output to hierarchical models. Figure 6 (right) shows box plots com-
paring five scenarios. The first four are hierarchical models with classifier output
used (1) both for EM initialization and as a feature to the weighting function;
(2) only as a feature; (3) only for initialization; and (4) not at all. We also con-
sider the case of an unconditional model. For each scenario except for the first
we report the ratio between its RMSE and that of the first model. The best
performance was achieved by full models (all ratios are less than 1). The ratio
for keeping the feature only is nearly 1, indicating that the EM initialization
is only slightly helpful. All of the hierarchical models outperform the uncon-
ditional model, indicating the power of leveraging conditional models; however,
when we build a hierarchical model that disregards the classifier’s output entirely
we achieve only slightly better median RMSE than the unconditional model.

The broader performance of different unconditional, oracular and hierarchical
models is shown in Table 3. For rand3-var, the accuracy of classification was
very high (classification error was only 1.6%). Our experiments confirmed that
hierarchical hardness models can achieve almost the same runtime prediction
accuracy as oracular models for all four solvers considered in our study. Figure 7
shows that using the hierarchical hardness model to predict satz’s runtime is
much better than using the unconditional model.

On the rand3-fix dataset, results for all four solvers were qualitatively
similar: hierarchical hardness models gave slightly but consistently better run-
time predictions than unconditional models. On this distribution the gap in pre-
diction accuracy between unconditional and oracular models is already quite
small, which makes further significant improvements more difficult to achieve.
Detailed analysis of actual vs predicted runtimes for satz (see Figure 8) showed
that particularly for unsatisfiable instances, the hierarchical model tends to pro-
duce slightly more accurate predictions. Further investigation confirmed that
those instances in Figure 8 (right) that are far away from the ideal prediction

Hierarchical Hardness Models for SAT 707

Table 3. Comparison of oracular, unconditional and hierarchical hardness models. The
second number of each entry is the ratio of the model’s RMSE to the oracular model’s
RMSE. (∗For SW-GCP, even the oracular model has large runtime prediction error.)

RMSE (rand3-var models) RMSE (rand3-fix models)
Solvers oracular uncond. hier. oracular uncond. hier.

satz 0.329 0.385(85%) 0.344(96%) 0.343 0.420(82%) 0.413(83%)
march dl 0.283 0.396(71%) 0.306(92%) 0.444 0.542(82%) 0.533(83%)
kcnfs 0.294 0.373(79%) 0.312(94%) 0.397 0.491(81%) 0.486(82%)

oksolver 0.356 0.443(80%) 0.378(94%) 0.497 0.596(83%) 0.587(85%)

RMSE (QCP models) RMSE (SW-GCP models)∗
Solvers oracular uncond. hier. oracular uncond. hier.

zchaff 0.303 0.675(45%) 0.577(53%) 0.657 0.993(66%) 0.983(67%)
minisat 0.305 0.574(53%) 0.500(61%) 0.682 1.022(67%) 1.024(67%)
satzoo 0.240 0.397(60%) 0.334(72%) 0.384 0.581(66%) 0.581(66%)
satelite 0.247 0.426(58%) 0.372(66%) 0.618 0.970(64%) 0.978(63%)

sato 0.375 0.711(53%) 0.635(59%) 0.723 1.352(53%) 1.345(54%)
oksolver 0.427 0.548(78%) 0.506(84%) 0.601 1.337(45%) 1.331(45%)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 7. Actual vs predicted runtime for satz on rand3-var. Left: unconditional model
(RMSE=0.387); right: hierarchical model (RMSE=0.344).

line(y = x) have low classification confidence. (We further discuss the relation-
ship between classification confidence and runtime prediction accuracy at the
end of this section.)

For the structured QCP instances, we observed similar runtime prediction ac-
curacy improvements by using hierarchical models. Since the classification ac-
curacy for QCP was higher than the classification accuracy for rand3-fix, we
expected bigger improvements when using the hierarchical hardness model com-
pared to the rand3-fix case. Our experimental results confirmed this hypothesis
(Figure 9). For example, a hierarchical model for the satelite solver achieved
a RMSE of 0.372, compared to 0.462 obtained from an unconditional model
(whereas the oracular model yielded RMSE 0.247).

However, the runtime prediction accuracy obtained by hierarchical hardness
models depends on the quality of the underlying conditional models (experts).
In the case of data set SW-GCP (see Figure 10), we found that both unconditional
and oracular models had fairly large prediction error (RMSE about 0.6; since

708 L. Xu, H.H. Hoos, and K. Leyton-Brown

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 8. Actual vs predicted runtime for satz on rand3-fix. Left: unconditional model
(RMSE=0.420); right: hierarchical model (RMSE=0.413).

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 9. Actual vs predicted runtime for satelite on QCP. Left: unconditional model
(RMSE=0.426); right: hierarchical model (RMSE=0.372).

we used log runtime, this means that runtime predictions were off by about half
an order of magnitude on average). As mentioned in Section 4, we believe that
this is because our features are not as informative when applied to this data set
as for the other three instance distributions. This is also consistent with the fact
that the classification error on SW-GCP is much higher (26.6%, compared to 4.0%
on QCP and 13.5% on rand3sat-fix).

When investigating the relationship between the classifier’s confidence and
regression runtime prediction accuracy, we found that higher classification con-
fidence tends to be indicative of more accurate runtime predictions. This rela-
tionship is illustrated in Figure 11 for the satelite solver on the QCP data set:
when the classifier is more confident about the satisfiability of an instance, both
prediction error (Figure 11, left) and RMSE (Figure 11, right) are smaller.1

Though space constraints preclude a detailed discussion, we also observed
that the features important for classification were similarly important for regres-
sion. For instance, only using the three features that were most important for

1 Closer inspection of the raw data shown in Figure 11, left, revealed that a large
number of the data points appear at (0, 0) and (1, 0). This is also reflected in the
shape of the curve in the right pane of Figure 11.

Hierarchical Hardness Models for SAT 709

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 10. Actual vs predicted runtime for zchaff on SW-GCP. Left: unconditional model
(RMSE=0.993); right: hierarchical hardness model (RMSE=0.983).

 0 0.25 0.5 0.75 1
−4

−3

−2

−1

0

1

2

3

4

Probability of satisfiable

E
rr

or
 fo

r
pr

ed
ic

tio
n

satisfiable
unsatisfiable

 0 0.25 0.5 0.75 1
0

0.5

1

1.5
R

M
S

E

Probability of satisfiable

Fig. 11. Classifier output vs runtime prediction error (left); relationship between clas-
sifier output and RMSE (right). Data set: QCP, solver: satelite.

classification on QCP data, we achieved runtime prediction RMSE within 10% of
the full model’s accuracy for satelite.

6 Conclusions and Future Work

We have shown that there are big differences between models trained only on
satisfiable and unsatisfiable instances, not only for uniform random 3-SAT (as
was previously reported in [18]), but also for distributions of structured SAT
instances, such as QCP and SW-GCP. Furthermore, these models have higher pre-
diction accuracy than the respective unconditional models. A classifier can be
used to distinguish between satisfiable and unsatisfiable instances with surpris-
ingly high (though not perfect) accuracy. We have demonstrated how such a
classifier can be combined with conditional hardness models into a hierarchical
hardness model using a mixture-of-experts approach. In cases where we achieved
high classification accuracy, the hierarchical models thus obtained always offered
substantial improvements over an unconditional model. When the classifier was
less accurate, our hierarchical models did not offer a substantial improvement
over the unconditional model; however, hierarchical models were never signifi-

710 L. Xu, H.H. Hoos, and K. Leyton-Brown

cantly worse. It should be noted that our hierarchical models come at virtually
no additional computational cost, as they depend on the same features as used
for the individual regression models. The practical usefulness of our approach
was recently demonstrated by our algorithm portfolio solver for SAT, SATzilla-
07, which, utilizing hierarchical hardness models, placed 1st in three categories
of the 2007 SAT competition [20].

In future work, we intend to investigate new instance features to improve both
classification and regression accuracy on SW-GCP. Furthermore, we will test our
approach on more real-world problem distributions, such as software and hard-
ware verification problems. We also plan to study hierarchical models based on
partitioning SAT instances into classes other than satisfiable and unsatisfiable—
for example, such classes could be used to build different models for different
underlying data distributions in heterogeneous data sets.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: IJCAI-91, pp. 331–337 (1991)

3. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: IJCAI-01, pp. 248–253 (2001)

4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Hoos, H.H., Mitchell, D.G.
(eds.) SAT 2004. LNCS, vol. 3542, pp. 502–518. Springer, Heidelberg (2005)

6. Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: Combining structure and
randomness. In: AAAI-99, pp. 654–660 (1999)

7. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. of Automated Reasoning 24(1),
67–100 (2000)

8. Heule, M., Maaren, H.V.: march dl: Adding adaptive heuristics and a new branch-
ing strategy. J. on Satisfiability, Boolean Modeling and Computation 2, 47–59
(2006)

9. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

10. Joachims, T.: Making large-scale support vector machine learning practical. In:
Advances in Kernel Methods: Support Vector Machines, pp. 169–184 (1998)

11. Krishnapuram, B., Carin, L., Figueiredo, M., Hartemink, A.: Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 957–968 (2005)

12. Kullmann, O.: Heuristics for SAT algorithms: Searching for some foundations.
Technical report (September 1998)

13. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boost-
ing as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 899–903. Springer, Heidelberg (2003)

14. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: IJCAI-03, pp. 1542–1543 (2003)

Hierarchical Hardness Models for SAT 711

15. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

16. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In:
Smolka, G. (ed.) Principles and Practice of Constraint Programming - CP97.
LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

17. Murphy, K.: The Bayes Net Toolbox for Matlab. In: Computing Science and Statis-
tics: Proc. of the Interface, vol. 33 (2001), http://bnt.sourceforge.net/

18. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

19. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artificial Intelligence 81, 17–29 (1996)

20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The design and
analysis of an algorithm portfolio for SAT. In: CP-07 (2007)

21. Zhang, H.: SATO: an efficient propositional prover. In: Proc. of the Int’l. Conf. on
Automated Deduction, pp. 272–275 (1997)

22. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: Proc. of the Int’l. Conf. on Computer
Aided Design, pp. 279–285 (2001)

http://bnt.sourceforge.net/

SATzilla-07: The Design and Analysis of

an Algorithm Portfolio for SAT

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{xulin730,hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. It has been widely observed that there is no “dominant”
SAT solver; instead, different solvers perform best on different instances.
Rather than following the traditional approach of choosing the best
solver for a given class of instances, we advocate making this decision
online on a per-instance basis. Building on previous work, we describe
a per-instance solver portfolio for SAT, SATzilla-07, which uses so-
called empirical hardness models to choose among its constituent solvers.
We leverage new model-building techniques such as censored sampling
and hierarchical hardness models, and demonstrate the effectiveness of
our techniques by building a portfolio of state-of-the-art SAT solvers
and evaluating it on several widely-studied SAT data sets. Overall, we
show that our portfolio significantly outperforms its constituent algo-
rithms on every data set. Our approach has also proven itself to be
effective in practice: in the 2007 SAT competition, SATzilla-07 won
three gold medals, one silver, and one bronze; it is available online at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most fundamental
problems in computer science. SAT is interesting for its own sake, but also be-
cause instances of other NP-complete problems can be encoded into SAT and
solved by SAT solvers. This approach has proven effective for planning, schedul-
ing, graph coloring and software/hardware verification problems. The conceptual
simplicity of SAT facilitates algorithm development, and significant research and
engineering efforts have led to sophisticated algorithms with highly-optimized
implementations. By now, many such high-performance SAT solvers exist. Al-
though there are some general patterns describing which solvers tend to be good
at solving certain kinds of instances, it is still often the case that one solver is
better than others at solving some problem instances from a given class, but
dramatically worse on other instances. Indeed, we know that no solver can be
guaranteed to dominate all others on unrestricted SAT instances [2]. Thus, prac-
titioners with hard SAT problems to solve face a potentially difficult algorithm
selection problem [26]: which algorithm(s) should be run in order to minimize
some performance objective, such as expected runtime?

The most widely-adopted solution to such algorithm selection problems is
to measure every candidate solver’s runtime on a representative set of problem

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 712–727, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 713

instances, and then to use only the algorithm which offered the best (e.g., average
or median) performance. We call this the “winner-take-all” approach. Its use has
resulted in the neglect of many algorithms that are not competitive on average
but that nevertheless offer very good performance on particular instances. The
ideal solution to the algorithm selection problem, on the other hand, would be
to consult an oracle that tells us the amount of time that each algorithm would
take to solve a given problem instance, and then to select the algorithm with
the best performance.

Unfortunately, computationally cheap, perfect oracles of this nature are not
available for SAT or any other NP-complete problem, and we cannot precisely
determine an arbitrary algorithm’s runtime on an arbitrary instance without ac-
tually running it. Nevertheless, our approach to algorithm selection in this paper
is based on the idea of building approximate runtime predictors, which can be
seen as heuristic approximations to perfect oracles. Specifically, we use machine
learning techniques to build an empirical hardness model, a computationally in-
expensive way of predicting an algorithm’s runtime on a given problem instance
based on features of the instance and the algorithm’s past performance [24,19].
This approach has previously yielded effective algorithm portfolios for the win-
ner determination problem (WDP) in combinatorial auctions [18,17]; however,
there exist relatively few state-of-the-art solvers for WDP.

To show that algorithm portfolios based on empirical hardness models can
also effectively combine larger sets of highly-optimized algorithms, we consider
the satisfiability problem in this work. Specifically, we describe and analyze
SATzilla, a portfolio-based SAT solver that utilizes empirical hardness mod-
els for per-instance algorithm selection. SATzilla goes back to 2003, when its
original version was first submitted to the SAT competition. In that competition,
SATzilla placed 2nd in the random instances category, 2nd in the handmade in-
stances (satisfiable only) category, and 3rd in the handmade instances category.
Here, we describe a substantially improved version of SATzilla, which uses new
techniques, such as censored sampling and hierarchical hardness models, as well
as an updated set of solvers. This new solver, dubbed SATzilla-07, was entered
into the 2007 SAT competition and placed 1st in the handmade, handmade (un-
satisfiable only) and random categories, 2nd in the handmade (satisfiable only)
category, and 3rd in the random (unsatisfiable only) category. Here, we give a de-
tailed description and performance analysis for SATzilla-07, something which
was never published for the original of SATzilla.

There exists a fair amount of work related to ours. Lobjois et al. studied the
problem of selecting between branch-and-bound algorithms [20] based on an es-
timate of search tree size due to Knuth. Gebruers et al. employed case-based
reasoning to select a solution strategy for instances of a CP problem [8]. One
problem with such classification approaches [12] is that they use a misleading
error metric, penalizing misclassifications equally regardless of their cost. For
the algorithm selection problem, however, using a sub-optimal algorithm is ac-
ceptable if the difference between its runtime and that of the best algorithm is

714 L. Xu et al.

small. (Our SATzilla approach can be considered to be a classifier with an error
metric that depends on the difference in runtime between algorithms.)

Further related work includes “online” approaches that switch between algo-
rithms during runtime. Gomes et al. built a portfolio of stochastic algorithms
for quasi-group completion and logistics scheduling problems [10]; rather than
choosing a single algorithm, their approach achieved performance improvements
by running multiple algorithms. Lagoudakis & Littman employed reinforcement
learning to solve an algorithm selection problem at each decision point of a
DPLL solver for SAT in order to select a branching rule [16]. Low-knowledge al-
gorithm control by Carchrae & Beck employed a portfolio of anytime algorithms,
prioritizing each algorithm according to its performance so far [3]. Gagliolo &
Schmidhuber learned dynamic algorithm portfolios that also support running
several algorithms at once [7], where an algorithm’s priority depends on its pre-
dicted runtime conditioned on the fact that it has not yet found a solution.

2 Building Portfolios with Empirical Hardness Models

The general methodology for building an algorithm portfolio we use in this work
follows that of Leyton-Brown et al. [18] in its broad strokes, but we have made
significant extensions here. Portfolio construction happens offline, as part of
algorithm development, and comprises the following steps:

1. Identify a target distribution of problem instances.
2. Select a set of candidate solvers that have relatively uncorrelated runtimes

on this distribution.
3. Use domain knowledge to identify features that characterize problem in-

stances.
4. On a training set of problem instances, compute these features and run each

algorithm to determine running times.
5. Optionally, identify one or more solvers to use for pre-solving instances, by

examining the algorithms’ runtimes. These pre-solvers will later be run for a
short amount of time before features are computed (step 9 below), in order
to ensure good performance on very easy instances.

6. Using a validation data set, determine which solver achieves the best average
runtime (i.e., is the winner-take-all choice) on instances that would not have
been solved by the pre-solvers.

7. Construct an empirical hardness model for each algorithm.
8. Choose the best subset of solvers to use in the final portfolio. We formalise

and automatically solve this as a simple subset selection problem: from all
given solvers, select a subset for which the respective portfolio (which uses
the empirical hardness models learned in the previous step) achieves the
lowest total runtime on the validation set.

Then, online, to solve a given instance, the following steps are performed:

9. Optionally, run each pre-solver for up to some fixed cutoff time.
10. Compute feature values. If feature computation cannot be finished for some

reason (error, timeout), select the solver identified in step 6 above.

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 715

11. Otherwise, predict each algorithm’s runtime using the empirical hardness
models from step 7 above.

12. Run the algorithm predicted to be fastest. If one solver fails to finish its run
(e.g., it crashes), run the algorithm predicted to be next-fastest.

In this work, we apply this general strategy to SAT and consider two different
settings. In the first, discussed in Section 4, we investigate a problem distri-
bution based on SAT-encoded quasi-group completion instances, which we ob-
tained from an existing generator. On this fairly homogeneous distribution, we
attempt to minimize average runtime. In our second setting, discussed in Sec-
tion 5, we study several different distributions defined by sets of representative
instances: the different categories of the SAT competition. These distributions
are all highly heterogeneous. Our goal here is to maximize the SAT competi-
tion’s scoring function: Score(P, Si) = 1000 · SF(P, Si)/ΣjSF(P, Sj), where the
speed factor SF(P, S) = timeLimit(P)/(1 + timeUsed(P, S)) reflects the fraction
of the maximum time allowed for an instance S that was used by solver P .1

Notice that when minimizing average runtime it does not much matter which
solver is chosen for an easy instance on which all solvers are relatively fast, as
the overall average will remain essentially unchanged. Given the competition’s
scoring function, however, we must always strive to choose the fastest algorithm.

3 Constructing Empirical Hardness Models

The success of an algorithm portfolio built using the methodology above depends
on our ability to learn empirical hardness models that can accurately predict a
solver’s runtime for a given instance using efficiently computable features. In
experiments presented in this paper, we use the same ridge regression method
(linear in a set of quadratic basis functions) that has previously proven to be
very successful in predicting runtime on uniform random k-SAT and on ombi-
natorial auction winner determination [24,19]. Other learning techniques (e.g.,
lasso regression, SVM regression, and Gaussian process regression) are also pos-
sible; it should be noted that our portfolio methodology is independent of the
method used for estimating an algorithm’s runtime.

Feature selection and ridge regression. To predict the runtime of an algo-
rithm A on an instance distribution D, we run algorithm A on n instances drawn
from D and compute for each instance i a set of features xi = [xi,1, . . . , xi,m].
We then fit a function f(x) that, given the features xi of instance i, yields a pre-
diction, yi, of A’s runtime on i. Unfortunately, the performance of learning algo-
rithms can suffer when some features are uninformative or highly correlated with
other features, and in practice both of these problems tend to arise. Therefore, we
first reduce the set of features by performing feature selection, in our case forward
selection. Next, we perform a quadratic basis function expansion of our feature
set to obtain additional pairwise product features xi,j · xi,k for j = 1 . . .m and
k = j + 1 . . .m. Finally, we perform another pass of forward selection on this

1 Please see http://www.satcompetition.org/2007/rules07.html for details.

http://www.satcompetition.org/2007/rules07.html

716 L. Xu et al.

extended set to determine our final set of basis functions, such that for instance i
we obtain an expanded feature vector φi = φ(xi) = [φ1(xi), . . . , φd(xi)], where
d is the number of basis functions. We then use ridge regression to fit the free pa-
rameters w of the function fw(x) as follows. Let ỹ be a vector with ỹi = log yi.
Let Φ be an n × d matrix containing the vectors φi for each instance in the
training set, and let I be the identity matrix. Finally, let δ be a (small) regular-
ization constant (to penalize large coefficients w and thereby increase numerical
stability). Then, we compute w = (δI + Φ�Φ)−1Φ�ỹ. Given a previously un-
seen instance j, a log runtime prediction is obtained by computing the instance
features xj and evaluating fw(xj) = w�φ(xj).

Accounting for Censored Data. As is common with heuristic algorithms for
solving NP-complete problems, SAT algorithms tend to solve some instances
very quickly, while taking an extremely long amount of time to solve other in-
stances. Indeed, this property of SAT solvers is precisely our motivation for
building an algorithm portfolio. However, this property has a downside: runtime
data can be very costly to gather, as individual runs can literally take weeks
to complete, even when other runs on instances of the same size take only mil-
liseconds. The common solution to this problem is to “censor” some runs by
terminating them after a fixed cutoff time.

The bias introduced by this censorship can be dealt with in three ways. (We
evaluate these three techniques experimentally in Section 4; here we discuss
them conceptually.) First, censored data points can be discarded. Since the role
of empirical hardness models in an algorithm portfolio can be seen as warning
us away from instance-solver pairs that will be especially costly, this approach is
highly unsatisfactory—the hardness models cannot warn us about parts of the
instance space that they have never seen.

Second, we can pretend that all censored data points were solved at exactly the
cutoff time. This approach is better, as it does record hard cases and recognizes
them as being hard. (We have used this approach in past work.) However, it
still introduces bias into hardness models by systematically underestimating the
hardness of censored instances.

The third approach is to build models that do not disregard censored data
points, but do not pretend that the respective runs terminated successfully at the
cutoff time either. This approach has been extensively studied in the “survival
analysis” literature in statistics, which originated in actuarial questions such as
estimating a person’s lifespan given mortality data and the ages and features of
other people still alive. (Observe that this problem is the same as ours, except
that for us data points are always censored at the same value. This subtlety
turns out not to matter.) Gagliolo et al. showed that censored sampling can
have substantial impact on the performance of restart strategies for solving SAT
[21]. Different from their solution, we chose the simple, yet effective method by
Schmee & Hahn [27] to deal with censored samples. In brief, this method consists
of repeating the following steps until convergence:

1. Estimate the runtime of censored instances using the hardness model, con-
ditioning on the fact that each runtime equals or exceeds the cutoff time.

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 717

2. Train a new hardness model using true runtimes for the uncensored instances
and the predictions generated in the previous step for the censored instances.

Using Hierarchical Hardness Models. This section Summarizes Ideas from
a Companion paper [29]. Previous research on empirical hardness models for
SAT has shown that we can achieve better prediction accuracy and simpler
models than with models trained on mixed instance sets (“unconditional mod-
els”; Muncond) if we restrict ourselves to only satisfiable or unsatisfiable instances
[24]. Of course, in practice we cannot divide instances in this way; otherwise we
would not need to run a SAT solver in the first place. The idea of a hierarchical
hardness model is to first predict an instance’s satisfiability using a classification
algorithm, and then to predict its hardness conditioned on the classifier’s predic-
tion. We use the Sparse Multinomial Logistic Regression (SMLR) classifier [14],
but any classification algorithm that returns the probability of belonging to each
class could be used. We train empirical hardness models (Msat, Munsat) using
quadratic basis-function regression for both satisfiable and unsatisfiable training
instances. Then we train a classifier to predict the probability that an instance
is satisfiable. Finally, we build hierarchical hardness models using a mixture-of-
experts approach with clamped experts: Msat and Munsat. We evaluate both
models on test data, and weight each model’s prediction by the predicted useful-
ness of that model. (Further details can be found in the companion paper [29].)

4 Evaluating SATzilla-07 on the QCP Data Set

In the following, we will describe the design and empirical analysis of an al-
gorithm portfolio for solving relatively homogeneous QCP instances. The pri-
mary motivation for this part of our work was to demonstrate how our ap-
proach works in a relatively simple, yet meaningful, application scenario. At the
same time, we did not want to make certain aspects of this application, such as
solver selection, overly specific to the QCP instance distribution. The equally
important goal of a full-scale performance assessment is addressed in Section 5,
where we apply SATzilla-07 to a broad range of instances from past SAT
competitions.

1. Selecting Instances. In the quasi-group completion problem (QCP), the
objective is to determine whether the unspecified entries of a partial Latin square
can be filled to obtain a complete Latin square. QCP instances are widely used
in the SAT community to evaluate the performance of SAT solvers. We gen-
erated 23 000 QCP instances around the solubility phase transition, using the
parameters given by Gomes & Selman [9]. Specifically, the order n was drawn
uniformly from the interval [26, 43], and the number of holes H (open entries
in the Latin square) was drawn uniformly from [1.75, 2.3] × n1.55. We then con-
verted the respective QCP instances to SAT CNF format. On average, the SAT
instances in the resulting QCP data set have 3 784 variables and 37 755 clauses,
but there is significant variability across the set. As expected, there were almost
equal numbers of satisfiable and unsatisfiable instances (50.3% vs 49.7%).

718 L. Xu et al.

2. Selecting Candidate Solvers. In order to build a strong algorithm portfo-
lio, it is necessary to choose solvers whose runtimes are relatively uncorrelated.
We have tended to find that solvers designed for different problem domains
are less correlated than solvers designed for the same domain. On QCP, there
is very little runtime correlation (Pearson’s r = −0.055) between Eureka [23]
(INDUSTRIAL) and OKsolver [15] (RANDOM), which makes these two solvers per-
fect candidates for SATzilla-07. On the other hand, the runtime correlation be-
tween Eureka (INDUSTRIAL) and Zchaff Rand [22] (INDUSTRIAL) is much higher
(r = 0.81), though still low enough to be useful.

These solvers were chosen because they are known to perform well on various
types of SAT instances (as can be seen, e.g., from past SAT competition results).
It should be noted, however, that on QCP, they are dominated by other solvers,
such as Satzoo [5]; nevertheless, as previously explained, our goal in this eval-
uation was not to construct a highly QCP-specific portfolio, but to demonstrate
and validate our general approach.

3. Choosing Features. Instance features are very important for building accu-
rate hardness models. Good features should correlate well with (solver-specific)
instance hardness, and they should be cheap to compute, since feature compu-
tation time counts as part of SATzilla-07’s runtime.

Nudelman et al. [24] described 84 features for SAT instances. These features
can be classified into nine categories: problem size, variable-clause graph, variable
graph, clause graph, balance features, proximity to Horn formulae, LP-based,
DPLL probing, and local search probing. For the QCP data set, we ignored all LP-
based features, because they were too expensive to compute. After eliminating
features that were constant across our instance set, we ended up with 70 raw
features. The computation time for the local search and DPLL probing features
was limited to 4 CPU seconds each.

4. Computing Features and Runtimes. All our experiments were performed
using a computer cluster consisting of 55 machines with dual Intel Xeon 3.2GHz
CPUs, 2MB cache and 2GB RAM, running Suse Linux 9.1. All runs of any solver
that exceeded 1 CPU hour were aborted (censored). The time for computing all
features of a given instance was 13 CPU seconds on average and never exceeded
60 CPU seconds.

We randomly split our data set into training, validation and testing sets at a
ratio of 70:15:15. All parameter tuning was performed on the validation set, and
the test set was used only to generate the final results reported here. Although
test and validation sets of 15% might seem small, we note that each of them
contained 3 450 instances.

5. Identifying Pre-solvers. Since in this experiment, our goal was simply to
minimize expected runtime, a pre-solving step was unnecessary.

6. Identifying the Winner-take-all Algorithm. We computed average run-
times for all solvers on the training data set, using the cutoff time of 3600 CPU
seconds for unsuccesful runs and discarding those instances that were not solved

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 719

−2 −1 0 1 2 3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

Fig. 1. Actual vs predicted runtime for OKsolver on selected (easy) instances from
QCP with cutoff time 10−0.5. Left: trained with complete data; right: censored data
points are discarded, RMSE for censored data: 1.713.

−2 −1 0 1 2 3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

Fig. 2. Actual vs predicted runtime for OKsolver on selected (easy) instances from
QCP with cutoff time 10−0.5. Left: set runtime for censored data points as cutoff time,
RMSE for censored data: 0.883; right: using the method of Schmee & Hahn [27], RMSE
for censored data: 0.608.

by any of the solvers (the latter applies to 5.2% of the instances from the QCP
instance set). The average runtimes were 546 CPU seconds for OKsolver, 566
CPU seconds for Eureka, and 613 CPU seconds for Zchaff Rand; thus, OKsolver
was identified as the winner-take-all algorithm.

7. Learning Empirical Hardness Models. We learned empirical hardness
models as described in Section 3. For each solver, we used forward selection to
eliminate problematic features and kept the model with the smallest validation
error. This lead to empirical hardness models with 30, 30 and 27 features for
Eureka, OKsolver and Zchaff Rand, respectively. When evaluating these mod-
els, we specifically investigated the effectiveness of our techniques for censored
sampling and hierarchical models.

Censored Sampling. We gathered OKsolver runtimes on a set of all-satisfiable
QCP instances of small order. The instances were chosen such that we could
determine true runtimes in all cases; we then artificially censored our runtime

720 L. Xu et al.

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 ru

nt
im

e
[s

ec
]

satisfiable
unsatisfiable

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 ru

nt
im

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 3. Actual vs predicted runtime plots for Eureka on QCP. Left: model using a model
selection oracle, RMSE=0.630; right: unconditional model, RMSE=1.111.

0

0.2

0.4

0.6

0.8

1

[0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]
[0.9,1]

Fr
ac

tio
n

bin size
classification accuracy inside the bin

Probability of satisfiable
−2 0 2 4 6

−2

−1

0

1

2

3

4

5

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 ru

nt
im

e
[s

ec
]

satisfiable
unsatisfiale

Fig. 4. Left: Performance of the SMLR classifier on QCP. Right: Actual vs predicted
runtime for Eureka on QCP using a hierarchical hardness model, RMSE=0.938.

data, using a cutoff time of 10−0.5 CPU seconds, and compared the various
methods for dealing with censored data surveyed in Section 3 on the resulting
data. Fig. 1 (left) shows the runtime predictions achieved by the hardness model
trained on ideal, uncensored data (RMSE=0.146). In contrast, Fig. 1 (right)
shows that throwing away censored data points leads to very noisy runtime
prediction for test instances whose true runtimes are higher than the cutoff
time (RMSE for censored data: 1.713). Fig. 2 (left) shows the performance of
a model trained on runtime data in which all censored points were labelled as
having completed at exactly the cutoff time (RMSE for censored data: 0.883).
Finally, Fig. 2 (right) shows that a hardness model trained using the method
of Schmee & Hahn [27] yields the best prediction accuracy (RMSE for censored
data: 0.608). Furthermore, we see good runtime predictions even for instances
where the solver’s runtime is up to half an order of magnitude (a factor of three)
greater than the cutoff time. When runtimes get much bigger than this, the
prediction becomes much noisier, albeit still better than we observed earlier.
(We obtained similar results for the two other solvers, Eureka and Zchaff Rand.

Hierarchical Hardness Models. Fig. 3 compares the runtime predictions made by
a model with access to a model selection oracle (Moracular), and an unconditional

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 721

0

100

200

300

400

500

600

Eureka

OKsolver

Zchaff_Rand

SATzilla
−07

Oracle

Av
er

ag
e

R
un

tim
e

[s
ec

]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [sec]

So
lv

ed
 P

er
ce

nt
ag

e

Oracle
SATzilla-07
Eureka
OKsolver
Zchaff_Rand

Feature Time

Fig. 5. Left: Average runtime for different solvers on QCP; the hollow box for
SATzilla-07 represents the time used for computing instance features (13 CPU sec
on average). Right: Empirical cumulative distribution functions (CDFs) for the same
runtime data.

model (Muncond) for the Eureka solver on the QCP instance set. Moracular defines an
upper bound on performance with the conditional model. Overall, Muncond tends
to make considerably less accurate predictions (RMSE= 1.111) than Moracular

(RMSE=0.630). We report the performance of the classifier and hierarchical hard-
ness models in Fig. 4. The overall classification accuracy is 89%; as shown in Fig. 4
(left), the classifier is nearly certain, and usually correct, about the satisfiability of
most instances. Although our hierarchicalhardnessmodel did not achieve the same
runtimepredictionaccuracyasMoracular, its performance is 36%closer to this ideal
than Muncond in terms of RMSE. (Note that hierarchical models are not guaran-
teed to achieve better performance than unconditional models, since the use of the
wrong conditional model on certain instances can cause large prediction errors.)
Similar results are obtained for the two other solvers, OKsolver and Zchaff Rand.

8. Solver Subset Selection. Using our automated subset selection procedure,
we determined that all three solvers performed strongly enough on QCP that
dropping any of them would lead to reduced portfolio performance.

9. Performance Analysis. We compare the average runtime of SATzilla-07,
an algorithm selection scheme based on a perfect oracle and all of SATzilla-07’s
component solvers in Fig. 5 (left). On the test data set, all component solvers
have runtimes of around 600 CPU seconds on average; OKsolver, the “winner-
take-all” choice, has an average runtime of 543 CPU seconds. SATzilla-07’s
average runtime, 205 CPU seconds, is much lower. Although SATzilla-07’s
performance is much better than any of its components, it still does significantly
worse than the oracle. In particular, it chooses the same solver as the oracle only
for 62% of the instances. However, in most of these cases, the runtimes of the
solvers picked by SATzilla-07 and the oracle are very similar, and only for 12%
of the QCP instances, the solver chosen by SATzilla-07 is more than 10 CPU
seconds slower.

A more nuanced view of the algorithms’ empirical performance is afforded by
the cumulative distribution functions (CDFs) of their runtimes over the given in-
stance set; these show the fraction of instances that would have been solved if

722 L. Xu et al.

runtime was capped at a given bound. As seen from Fig. 5 (right), for very short
runtimes, SATzilla-07 performs worse than its component solvers, because it
requires about 13 CPU seconds (on average) to compute instance features. For
higher runtimes, SATzilla-07 dominates all of its component solvers, and within
the 1 CPU hour cutoff, SATzilla-07 solves about 6% more instances.

5 SATzilla-07 for the 2007 SAT Competition

In this section, we describe the SATzilla-07 solvers entered into the 2007 SAT
competition and demonstrate that these achieve state-of-the-art performance on
a variety of real-world instance collections from past SAT competitions. The
purpose of the SAT competitions is to track the state of the art in SAT solving,
to assess and promote new solvers, and to identify new challenging benchmarks.
In 2007, more than 30 solvers entered the SAT competition. Solvers were scored
taking into account both speed and robustness. There were three main categories
of instances, RANDOM, HANDMADE (or CRAFTED), and INDUSTRIAL.

We submitted three different versions of SATzilla-07 to the 2007 SAT compe-
tition. Two versions specifically targeted the RANDOM and HANDMADE categories.2

In order to study an even more heterogeneous instance distribution, a third ver-
sion of SATzilla-07 attempted to perform well in all three categories of the
competition; we call this meta-category BIG-MIX.

Following our general procedure for portfolio construction (see Section 2), the
three versions of SATzilla-07 were obtained as follows.

1. Selecting Instances. In order to train empirical hardness models for any of
the above scenarios, we required instances that would be similar to those used
in the real competition. For this purpose we used instances from the respective
categories in all previous SAT competitions, as well as in the 2006 SAT Race
(which only featured industrial instances). Instances that were repeated in pre-
vious competitions were also repeated in our data sets. Overall, there are 4 811
instances (all of them used in BIG-MIX), 2 300 instances in category RANDOM and
1 490 in category HANDMADE. About 75% of these instances can be solved by at
least one solver within 1 800 CPU seconds on our reference machine.

2. Selecting Solvers. We considered a wide variety of solvers from previous SAT
competitions and the2006SATRace for inclusion inourportfolio.Wemanually an-
alyzed the results of these competitions, selecting all algorithms that yielded the
best performance on some subset of instances. Since our focus was on both sat-
isfiable and unsatisfiable instances, we did not choose any incomplete algorithms
(with the exception of SAPS as a pre-solver). In the end we selected seven high-
performance solvers as candidates for SATzilla-07: Eureka [23], Zchaff Rand
[22],Kcnfs2006 [4],Minisat2.0 [6],March dl2004 [11],Vallst [28], andRsat [25].
Since preprocessing has proven to be an important element for some algorithms in
previous SAT competitions, we considered seven additional solvers (labeled “+”

2 We built a version of SATzilla-07 for the INDUSTRIAL category after the submission
deadline and found its performance to be qualitatively similar to the results we
present here: on average, it is twice as fast as the best single solver, Eureka.

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 723

in the following) that first run the Hyper preprocessor [1], followed by one of the
above algorithms on the preprocessed instance. This doubled the number of our
component solvers to 14.

3. Choosing features. In order to limit the additional cost for computing
features, we limited the total feature computation time per instance to 60 CPU
seconds. Again, we used the features of Nudelman et al. [24], but excluded a
number of computationally expensive features, such as clause graph and LP-
based features. The computation time for each of the local search and DPLL
probing features was limited to 1 CPU second. The number of raw features used
in SATzilla-07 is 48.

4. Computing features and runtimes. We collected feature and runtime
data using the same environment and process as for the QCP data set, but because
of time constraints and the large number of solvers, we reduced the cutoff time
to 1 800 CPU seconds.

5. Identifying pre-solvers. Since the scoring function used in the 2007 SAT
competition rewards quick algorithm runs, we cannot afford the feature com-
putation for very easy instances (for which runtimes greater than one second
are already too large). Thus, we have to solve easy instances before even com-
puting any features. Good algorithms for pre-solving solve a large proportion
of instances quickly; based on an examination of the training runtime data we
chose March dl2004 and the local search algorithm SAPS (UBCSAT implementa-
tion with the best fixed parameter configuration identified by Hutter et al. [13])
as pre-solvers. Within 5 CPU seconds on our reference machine, March dl2004
solved 32%, 30.5%, and 29.9% of the instances in our RANDOM, HANDMADE and
BIG-MIX data sets, respectively. For the remaining instances, we let SAPS run for
2 CPU seconds, because we found its runtime to be almost completely uncor-
related with March dl2004 (r = −0.014 for the 398 remaining instances solved
by both solvers). SAPS solved 12.0%, 6.9%, and 3.6% of the remaining RANDOM,
HANDMADE and BIG-MIX instances, respectively.

6. Identifying winner-takes-all algorithm. Each solver’s performance is
reported in Table 1; as can be seen from this data, the winner-take-all solvers
for BIG-MIX, RANDOM and HANDMADE happened always to be March dl2004.

7. Learning empirical hardness models. We learned empirical hardness
models as described in Section 3, using the Schmee & Hahn [27] procedure for
dealing with censored data as well as hierarchical empirical hardness models [29].

8. Solver subset selection. Based on the results of automatic exhaustive
subset search as outlined in Section 2, we obtained portfolios comprising the
following solvers for our three data sets:

– BIG-MIX: Eureka, kcnfs2006, March dl2004, Rsat;
– RANDOM: March dl2004, kcnfs2006, Minisat2.0+;
– HANDMADE: March dl2004, Vallst, March dl2004+, Minisat2.0+, Zchaff Rand+

724 L. Xu et al.

Table 1. Percentage of instances solved by each algorithm and average runtime over
these instances. “+” means with preprocessing; preprocessing is not carried out for
industrial instances as it would often time out.

BIG-MIX RANDOM HANDMADE
Solvers Avg. Time Solved [%] Avg. Time Solved [%] Avg. Time Solved [%]
Eureka 319 42 310 28 335 42

Kcnfs2006 287 37 257 56 428 26
March dl2004 200 52 200 57 226 55
Minisat2.0 328 52 302 44 361 53

Rsat 318 52 318 45 333 52
Vallst 334 41 369 30 220 47

Zchaff Rand 295 38 241 25 258 40
Eureka+ 320 29 352 43

Kcnfs2006+ No preprocessing 251 56 403 27
March dl2004+ carried out 200 57 220 54
Minisat2.0+ for industrial 313 44 355 53

Rsat+ instances 310 44 365 52
Vallst+ 366 30 191 48

Zchaff Rand+ 272 26 233 41

0

100

200

300

400

500

600

700

800

900

1000

Eureka

Kcnfs2006

March_dl2004
Rsat

SATzilla
−07

Oracle

A
ve

ra
ge

 R
un

tim
e

[s
ec

]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [sec]

S
ol

ve
d

pe
rc

en
ta

ge

Oracle
SATzilla-07
Eureka
Kcnfs2006
March_dl2004
Rsat

Fig. 6. Left: Average runtime, right: runtime CDF for different solvers on BIG-MIX; the
average feature computation time was 6 CPU seconds

9. Performance analysis. For all three data sets we obtained excellent results:
SATzilla-07 always outperformed all its constituent solvers in terms of average
runtime and instances solved at any given time. The SAT/UNSAT classifierwas
surprisingly effective in predicting satisfiability of RANDOM instances, where it
reached a classification accuracy of 93%. For HANDMADE and BIG-MIX, the clas-
sification accuracy was still at a respectable 78% and 83% (i.e., substantially
better than random guessing).

For BIG-MIX, the frequencies with which each solver was selected by a per-
fect oracle and SATzilla-07 were found to be similar. However, this does not
mean that our hardness models made perfect predictions. Only for 27% of the in-
stances, SATzilla-07 picked exactly the same solver as the oracle, but it selected
a “good solver” (no more than 10 CPU seconds slower) for 66% of the instances.
This indicates that many of the mistakes made by our models occur in situations
where it does not matter much, because the selected and the best algorithms
have very similar runtimes. Although the runtime predictions were not perfect,
SATzilla-07 achieved very good performance (see Fig. 6). Its average runtime

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 725

0

100

200

300

400

500

600

700

800

900

1000

Kcnfs2006

March_dl2004

Minisat2.0+

SATzilla
−07

Oracle

A
ve

ra
ge

 R
un

tim
e

[s
ec

]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [sec]

S
ol

ve
d

pe
rc

en
ta

ge

Oracle
SATzilla-07
Kcnfs2006
March_dl2004
Minisat2.0+

Fig. 7. Left: Average runtime, right: runtime CDF for different solvers on RANDOM; the
average feature computation time was 3 CPU seconds

0

200

400

600

800

1000

1200

1400

1600

March_dl2004
Vallst

March_dl2004+

Minisat2.0+

Zchaff_Rand+

SATzilla
−07

Oracle

A
ve

ra
ge

 R
un

tim
e

[s
ec

]

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Runtime [sec]

S
ol

ve
d

pe
rc

en
ta

ge

Oracle
SATzilla-07
March_dl2004
Vallst
March_dl2004+
Minisat2.0+
Zchaff_Rand+

Fig. 8. Left: Average runtime, right: runtime CDF for different solvers on HANDMADE;
the average feature computation time was 3 CPU seconds

(272 CPU seconds) was half that of the best single solver, March dl2004 (530
CPU seconds), and it solved 17% more instances than any single solver within
the given time limit.

For data set RANDOM, Fig. 7 (left) shows that SATzilla-07 performed better
than the best solver, March dl2004, with an average runtime that was 36%
lower. However, this difference is not as large as for the QCP and BIG-MIX data
sets, which is not surprising since even the oracle cannot improve much upon
March dl2004 in the RANDOM case. The runtime CDF plot (Fig. 7, right) shows
that the performance of both, SATzilla-07 and March dl2004, was close to that
of the oracle, but SATzilla-07 dominated March dl2004; in particular, for the
same overall cutoff time, SATzilla-07 solved 5% more instances.

The performance results for HANDMADE were even better. Using five component
solvers, SATzilla-07was more than twice as fast on average than the best single
solver (see Fig. 8, left). TThe CDF plot in Fig. 8 (right) shows that SATzilla-07
dominated all its components and solved 11% more instances than the best
single solver; overall, its performance was found to be very close to that of the
oracle.

726 L. Xu et al.

6 Conclusions

Algorithms can be combined into portfolios to build a whole greater than the
sum of its parts. In this work, we have significantly extended earlier work on
algorithm portfolios for SAT that select solvers on a per-instance basis using
empirical hardness models for runtime prediction. We have demonstrated the
effectiveness of our new portfolio construction method, SATzilla-07, on a large
set of SAT-encoded QCP instances as well as on three large sets of SAT com-
petition instances. Our own experiments show that our SATzilla-07 portfolio
solvers always outperform their components. Furthermore, SATzilla-07’s excel-
lent performance in the recent 2007 SAT competition demonstrates the practical
effectiveness of our portfolio approach. SATzilla is an open project. We believe
that with more solvers and training data added, SATzilla’s performance will
continue to improve. SATzilla-07 is available online at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

References

1. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality
reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp.
341–355. Springer, Heidelberg (2004)

2. Bertsekas, D.P.: Linear Network Optimization, Algorithms and Codes. MIT Press,
Cambridge, MA (1991)

3. Carchrae, T., Beck, J.C.: Applying machine learning to low-knowledge control of
optimization algorithms. Computational Intelligence 21(4), 372–387 (2005)

4. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: IJCAI-01, pp. 248–253 (2001)

5. Eén, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

6. Eén, N., Sörensson, N.: Minisat v2.0 (beta). Solver description, SAT Race (2006)
7. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Annals of

Mathematics and Artificial Intelligence 47(3-4), 295–328 (2007)
8. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to select solution

strategies in constraint programming. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR
2005. LNCS (LNAI), vol. 3620, pp. 222–236. Springer, Heidelberg (2005)

9. Gomes, C.P., Selman, B.: Problem structure in the presence of perturbations. In:
AAAI-97, pp. 221–226 (1997)

10. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–
62 (2001)

11. Heule, M., Maaren, H.V.: march dl: Adding adaptive heuristics and a new branch-
ing strategy. Journal on Satisfiability, Boolean Modeling and Computation 2, 47–59
(2006)

12. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H., Selman, B., Chickering, D.M.: A
Bayesian approach to tackling hard computational problems. In: Proc. of UAI-01,
pp. 235–244 (2001)

13. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla

SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT 727

14. Krishnapuram, B., Carin, L., Figueiredo, M., Hartemink, A.: Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 957–968 (2005)

15. Kullmann, O.: Investigating the behaviour of a SAT solver on random formulas
(2002),
http://cs-svr1.swan.ac.uk/∼csoliver/Artikel/OKsolverAnalyse.html

16. Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL
procedure for satisfiability. In: LICS/SAT, vol. 9, pp. 344–359 (2001)

17. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boost-
ing as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 899–903. Springer, Heidelberg (2003)

18. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: IJCAI-03, pp. 1542–1543 (2003)

19. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

20. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: AAAI-98, pp. 353–358 (1998)

21. Schmidhuber, J., Gagliolo, M.: Impact of censored sampling on the performance of
restart strategies. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 167–181.
Springer, Heidelberg (2006)

22. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: an efficient SAT solver. In: Bacchus, F.,
Walsh,T. (eds.) SAT2005.LNCS, vol. 3569, pp. 360–375. Springer,Heidelberg (2005)

23. Nadel, A., Gordon, M., Palti, A., Hanna, Z.: Eureka-2006 SAT solver. Solver de-
scription, SAT Race (2006)

24. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

25. Pipatsrisawat, K., Darwiche, A.: Rsat 1.03: SAT solver description. Technical Re-
port D-152, Automated Reasoning Group, UCLA (2006)

26. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

27. Schmee, J., Hahn, G.J.: A simple method for regression analysis with censored
data. Technometrics 21(4), 417–432 (1979)

28. Vallstrom, D.: Vallst documentation (2005),
http://vallst.satcompetition.org/index.html

29. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In:
CP-07 (2007)

http://cs-svr1.swan.ac.uk/~csoliver/Artikel/OKsolverAnalyse.html
http://vallst.satcompetition.org/index.html

Filtering for Subgraph Isomorphism

Stéphane Zampelli1, Yves Deville1, Christine Solnon2,
Sébastien Sorlin2, and Pierre Dupont1

1 Université catholique de Louvain, Department of Computing Science and
Engineering, Place Sainte-Barbe 2, 1348 Louvain-la-Neuve (Belgium)

{sz,yde,pdupont}@info.ucl.ac.be
2 LIRIS, CNRS UMR 5205, University of Lyon I, 43 Bd du 11 Novembre, 69622

Villeurbanne Cedex (France)
{christine.solnon,sebastien.sorlin}@liris.cnrs.fr

Abstract. A subgraph isomorphism problem consists in deciding if there
exists a copy of a pattern graph in a target graph. We introduce in this
paper a filtering algorithm dedicated to this problem. The main idea is
to label every node with respect to its relationships with other nodes of
the graph, and to define a partial order on these labels in order to ex-
press compatibility of labels for subgraph isomorphism. This partial order
over labels is used to filter domains. Labelings can also be strengthened by
adding information from the labels of the neighbors. Such a strengthening
can be applied iteratively until a fixpoint is reached. Practical experiments
illustrate that our new filtering approach is more effective on difficult in-
stances of scale free graphs than state-of-the-art algorithms and other CP
approaches.

1 Introduction

Graphs are widely used in real-life applications to represent structured objects,
e.g., molecules, images, or biological networks. In many of these applications,
one looks for a copy of a pattern graph into a target graph [1]. This problem,
known as subgraph isomorphism, is NP-complete [2] in the general case.

There exists dedicated algorithms for solving subgraph isomorphism problems,
such as [3,4]. However, such dedicated algorithms can hardly be used to solve
more general problems, with additional constraints, or approximate subgraph
isomorphism problems, such as the one introduced in [5].

An attractive alternative to these dedicated algorithms is Constraint Program-
ming (CP), which provides a generic framework for solving constraint satisfaction
problems (CSP). Indeed, subgraph isomorphism problems may be formulated as
CSP in a straightforward way [6,7]. To make CP competitive with dedicated
approaches for these problems, [8] has introduced a global monomorphism con-
straint, and an associated filtering algorithm, together with redundant Alldiff
constraints. [5] has extended this work to approximate subgraph isomorphism,
and has shown that CP is competitive with dedicated approaches.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 728–742, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Filtering for Subgraph Isomorphism 729

Contribution. In this paper, we introduce a new filtering algorithm for the
subgraph isomorphism problem that exploits the global structure of the graph
to achieve a stronger partial consistency. This work takes inspiration from the
partition refinement procedure used in Nauty [9] and Saucy [10] for finding graph
automorphisms: the idea is to label every node by some invariant property, such
as node degrees, and to iteratively extend labels by considering labels of adjacent
nodes. Similar labelings are used in [11,12] to define filtering algorithms for the
graph isomorphism problem: the idea is to remove from the domain of a variable
associated to a node v every node the label of which is different from the label
of v. The extension of such a label-based filtering to subgraph isomorphism
problems mainly requires to define a partial order on labels in order to express
compatibility of labels for subgraph isomorphism: this partial order is used to
remove from the domain of a variable associated to a node v every node the
label of which is not compatible with the label of v. We show that this extension
is more effective on difficult instances of scale free graphs than state-of-the-art
subgraph isomorphism algorithms and other CP approaches.

Outline of the Paper. Section 2 presents the subgraph isomorphism problem
and related CP models. Section 3 describes the theoretical framework of our
filtering: it first introduces the concept of labeling, and shows how labelings can
be used for filtering; it then shows that labelings can be iteratively strengthened
by adding information from labels of neighbors. Section 4 introduces the prac-
tical framework and describes how to compute a label strengthening. An exact
algorithm as well as an approximate version are provided. Experimental results
are described in Section 5.

2 Subgraph Isomorphism

2.1 Definitions

An (undirected) graph G = (N, E) consists of a node set N and an edge set
E ⊆ N × N , where an edge (u, v) is a couple of nodes.

A subgraph isomorphism problem between a pattern graph Gp = (Np, Ep)
and a target graph Gt = (Nt, Et) consists in deciding whether Gp is isomorphic
to some subgraph of Gt. More precisely, one should find an injective function
f : Np → Nt such that ∀(u, v) ∈ Np × Np, (u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et. The
problem is also called subgraph monomorphism problem or subgraph matching
in the literature. The function f is called a subgraph matching function.

In the following, we assume Gp = (Np, Ep) and Gt = (Nt, Et) to be the
underlying instance of subgraph isomorphism problem. We also define Node =
Np ∪ Nt, Edge = Ep ∪ Et, np = #Np, nt = #Nt, n = #Node, dp and dt the
maximal degree of the graphs Gp and Gt, and d = max(dp, dt).

2.2 CP Models for Subgraph Isomorphism

A subgraph isomorphism problem can be formulated as a CSP in a straightfor-
ward way [6,7,8]. A variable xu is associated with every node u of the pattern

730 S. Zampelli et al.

graph and its domain is the set of target nodes. A global Alldiff constraint [13]
ensures that the matching function is injective. Edge matching is ensured by a
set of binary constraints:

∀(u, v) ∈ Np × Np, c2(xu, xv) ≡ ((u, v) ∈ Ep ⇒ (xu, xv) ∈ Et) .

3 Theoretical Framework

This section introduces a new filtering algorithm for subgraph isomorphism. We
will show in the next section how filtering can be achieved in practice from this
theoretical work.

3.1 Subgraph Isomorphism Consistent Labelings

Definition 1. A labeling l is defined by a triple (L, 	, α) such that

– L is a set of labels that may be associated to nodes;
– 	⊆ L × L is a partial order on L;
– α : Node → L is a total function assigning a label α(v) to every node v.

A labeling induces a compatibility relation between nodes of the pattern graph
and the target graph.

Definition 2. The set of compatible couples of nodes induced by a labeling
l = (L, 	, α) is defined by CCl = {(u, v) ∈ Np × Nt | α(u) 	 α(v)}
This compatibility relation can be used to filter the domain of a variable xu

associated with a node u of the pattern graph by removing from it every node v
of the target graph such that (u, v)
∈ CCl.

The goal of this work is to find a labeling that filters domains as strongly as
possible without removing solutions to the subgraph isomorphism problem, i.e.,
if a node v of the pattern graph may be matched to a node u of the target graph
by a subgraph matching function, then the label of v must be compatible with
the label of u. This property is called subgraph isomorphism consistency.

Definition 3. A labeling l is subgraph isomorphism consistent (SIC) iff for any
subgraph matching function f , we have ∀v ∈ Np, (v, f(v)) ∈ CCl.

In the context of graph isomorphism, such as in [9], as opposed to subgraph
isomorphism studied here, an SIC labeling is often called an invariant. In this
case, the partial ordering is replaced by an equality condition: two nodes are
compatible if they have the same label.

Many graph properties, that are “invariant” to subgraph isomorphism, may
be used to define SIC labelings such as, e.g., the three following SIC labelings:

– ldeg = (N, ≤, deg) where deg is the function that returns node degree;
– ldistancek

= (N, ≤, distancek) where distancek is the function that returns
the number of nodes that are reachable by a path of length smaller than k;

– lcliquek
= (N, ≤, cliquek) where cliquek is the function that returns the num-

ber of cliques of size k that contains the node.

Filtering for Subgraph Isomorphism 731

1

2 3 4

5

6

Pattern graph Gp

A

CB D E

F

G

Target graph Gt

Fig. 1. Instance of subgraph isomorphism problem

Example. Let us consider for example the subgraph isomorphism problem dis-
played in Fig. 1. Note that this instance has no solution as Gp cannot be mapped
into a subgraph of Gt. The labeling ldeg = (N, ≤, deg) assigns the following labels
to nodes.

deg(A) = deg(B) = deg(D) = deg(2) = deg(4) = 4
deg(C) = deg(E) = deg(F) = deg(G) = deg(1) = deg(3) = 3

deg(5) = deg(6) = 2

Hence, the set of compatible couples induced by this labeling is

CCldeg = {(u, v) | u ∈ {2, 4}, v ∈ {A, B, D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A, B, C, D, E, F, G}}

This set of compatible couples allows one to remove values C, E, F and G from
the domains of the variables associated with nodes 2 and 4.

3.2 Strengthening a Labeling

We propose to start from an elementary SIC labeling that is easy to compute such
as the ldeg labeling defined above, and to iteratively strengthen this labeling. The
strength of labelings is defined with respect to the induced compatible couples
as follows.

Definition 4. Let l and l′ be two labelings. l′ is strictly stronger than l iff
CCl′ ⊂ CCl, and l′ is equivalent to l iff CCl′ = CCl.

A stronger labeling yields a better filtering, as it contains less compatible couples.
To strengthen a labeling, the idea is to extend the label of a node by adding

information from the labels of its neighbors. This information is a multiset (as
several neighbors may have the same label). We shall use the following notations
for multisets.

Definition 5. Given an underlying set A, a multiset is a function m : A → N,
such that m(a) is the multiplicity (i.e., the number of occurrences) of a in m. The

732 S. Zampelli et al.

multiset m can also be represented by the bag {a0, . . . , a0, a1, . . .} where elements
are repeated according to their multiplicity.

For example, the multiset m that contains 2 occurrences of a, 3 occurrences
of b, and 1 occurrence of c is defined by m(a)=2, m(b)=3, m(c)=1, and ∀x
∈
{a, b, c}, m(x)=0. This multiset may also be represented by {a, a, b, b, b, c}.

Given a partial order on a set A, we extend the partial order to multisets over
A as follows.

Definition 6. Given two multisets m and m′ over a set A, and a partial order
	⊆ A×A, we define m 	 m′ iff there exists a total injective mapping t : m → m′

such that ∀ai ∈ m, ai 	 t(ai).

In other words, m 	 m′ iff for every element of m there exists a different element
of m′ which is greater or equal. For example, if we consider the classical ordering
on N, we have {3, 3, 4} 	 {2, 3, 5, 5}, but {3, 3, 4} is not comparable with {2, 5, 6}.
Note that comparing two multisets is not trivial in the general case, especially if
the order relation on the underlying set A is not total. This point will be handled
in the next section.

We now define the labeling extension procedure.

Definition 7. Given a labeling l = (L, 	, α), the neighborhood extension of l
is the labeling l′ = (L′, 	′, α′) such that:

– every label of L
′ is composed of a label of L and a multiset of labels of L,

i.e., L
′ = L · (L → N);

– the labeling function α′ extends every label α(v) by the multiset of the labels
of the neighbors of v, i.e., α′(v) = α(v) · m where ∀li ∈ L,
m(li) = #{u | (u, v) ∈ Edge ∧ α(u) = li};

– the partial order on the extended labels of L
′ is defined by l1 · m1 	′ l2 · m2

iff l1 	 l2 and m1 	 m2.

The next theorem states that the neighborhood extension of a SIC labeling is a
stronger (or equal) SIC labeling.

Theorem 1. Let l = (L, 	, α) be a labeling, and l′ = (L′, 	′, α′) be its neigh-
borhood extension. If l is an SIC labeling, then (i) l′ is also SIC, and (ii) l′ is
stronger than or equal to l.

Proof. (i): Let f be a subgraph matching function and v ∈ Np. We show that
α′(v) 	′ α′(f(v)), that is α(v) 	 α(f(v)) and m 	 m′, with m (resp. m′) the
multiset of the labels of the neighbors of v in Gp (resp. of f(v) in Gt):

– α(v) 	 α(f(v)) because l is SIC;
– m 	 m′ because m′ contains, for each neighbor u of v, the label α(f(u)) of

the node matched to u by the subgraph matching function f ; as l is SIC,
α(u) 	 α(f(u)), and thus m 	 m′.

(ii) : This is a direct consequence of the partial order on the extended labels in
L
′ (Definition 7) : α(u) 	 α(v) is one of the conditions to have α′(u) 	 α′(v). �

Filtering for Subgraph Isomorphism 733

Example. Let us consider again the subgraph isomorphism problem displayed
in Fig. 1, and the labeling ldeg = (N, ≤, deg) defined in 3.1. The neighborhood
extension of ldeg is the labeling l′ = (L′, 	′, α′) displayed below. Note that we
only display compatibility relationships li 	 lj such that li is the label of a node
of the pattern graph and lj is the label of a node of the target graph as other
relations are useless for filtering purposes.

α′(A) = 4 · {3, 3, 4, 4}
α′(B) = α′(D) = 4 · {3, 3, 3, 4}
α′(2) = α′(4) = 4 · {2, 2, 3, 3} 	′ 4 · {3, 3, 4, 4} and 4 · {3, 3, 3, 4}

α′(C) = 3 · {4, 4, 4}
α′(E) = α′(F) = 3 · {3, 4, 4} 	′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}
α′(1) = α′(3) = 3 · {3, 4, 4} 	′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}

α′(G) = 3 · {3, 3, 4}
α′(5) = α′(6) = 2 · {4, 4} 	′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}

Hence, the set of compatible couples induced by this extended labeling is

CCl′ = {(u, v) | u ∈ {2, 4}, v ∈ {A, B, D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A, C, E, F}}

As compared to the initial labeling ldeg, this set of compatible couples allows
one to further remove values B, D and G from the domains of the variables
associated with nodes 1, 3, 5 and 6.

3.3 Iterative Labeling Strengthening

The strengthening of a labeling described in the previous section can be repeated
by relabeling nodes iteratively, starting from a given SIC labeling l.

Definition 8. Let l = (L, 	, α) be an initial SIC labeling. We define the se-
quence of SIC labelings li = (Li, 	i, αi) such that l0 = l and li+1 = neighborhood
extension of li (i ≥ 0).

A theoretical filter can be built on this sequence. Starting from an initial SIC
labeling function l = l0, we iteratively compute li+1 from li and filter domains
with respect to the set of compatible couples induced by li until either a domain
becomes empty (thus indicating that the problem has no solution) or reaching
some termination condition.

A termination condition is to stop iterating when the sequence reaches a
fixpoint, i.e., a step where any further relabeling cannot change the strength of
the labeling. We show in [14] that such a fixpoint is reached in O(np · nt) steps,
when both the set of compatible couples and the number of different labels are
not changed between two consecutive steps.

Example. Let us consider again the subgraph isomorphism problem displayed
in Fig. 1, and let us suppose that the sequence of SIC labelings is started from

734 S. Zampelli et al.

l0 = ldeg = (N, ≤, deg) as defined in 3.1. After the first iteration, the neighbor-
hood extension l1 of l0 is the labeling displayed in the example of section 3.2.
To improve reading, we rename these labels as follows:

α1(A) = 4 · {3, 3, 4, 4} renamed m1
α1(B) = α1(D) = 4 · {3, 3, 3, 4} renamed m2
α1(2) = α1(4) = 4 · {2, 2, 3, 3} renamed m3 	1 {m1, m2}

α1(C) = 3 · {4, 4, 4} renamed m4
α1(E) = α1(F) = α1(1) = α1(3) = 3 · {3, 4, 4} renamed m5 	1 {m1, m4}

α1(G) = 3 · {3, 3, 4} renamed m6
α1(5)=α1(6)=2 · {4, 4} renamed m7 	1 {m1, m4, m5}

From labeling l1, we compute the following extended labels and partial order:

α2(A) = m1 · {m2, m2, m4, m5} renamed n1
α2(B) = m2 · {m1, m4, m5, m6} renamed n2
α2(C) = m4 · {m1, m2, m2} renamed n3
α2(D) = m2 · {m1, m4, m5, m5} renamed n4
α2(E) = m5 · {m1, m2, m6} renamed n5
α2(F) = m5 · {m2, m2, m6} renamed n6
α2(G) = m6 · {m2, m5, m5} renamed n7

α2(1) = α2(3) = m5 · {m3, m3, m5} renamed n8 	2 {n1, n3}
α2(2) = α2(4) = m3 · {m5, m5, m7, m7} renamed n9 	2 {n4}
α2(5) = α2(6) = m7 · {m3, m3} renamed n10 	2 {n1, n3, n5, n6}

The set of compatible couples induced by this labeling is

CCl2 = {(2, D), (4, D), (1, A), (1, C), (3, A), (3, C)}
∪ {(u, v) | u ∈ {5, 6}, v ∈ {A, C, E, F}}

This set of compatible couples allows one to remove values A and B from the
domains of the variables associated with nodes 2 and 4. Hence, the domains
of these two variables only contain one value (D), and thanks to the alldiff
constraint on the variables, an inconsistency is detected.

4 Practical Framework

Algorithm 1 describes the overall filtering procedure. Starting from an initial
SIC labeling, that may be, e.g., ldeg, this procedure first filters domains with
respect to this initial labeling (line 1) and then iteratively extends this labeling
(lines 4–8) and filters domains with respect to the new extended labeling (line
9) until some domain becomes empty, or a maximum number of iterations have
been performed, or a fixpoint is reached.

Labeling extension (lines 4–8) is decomposed into three steps:

– lines 4–6: αi is computed from αi−1; this step is done in O(#Edge);
– line 7: labels of L

i are renamed; this step is done in O(d · #Node);

Filtering for Subgraph Isomorphism 735

Algorithm 1. Filtering procedure

Input: two graphs Gp = (Np, Ep) and Gt = (Nt, Et) such that Np ∩ Nt = ∅,
an initial SIC labeling l0 = (L0, α0, �0),
initial domains D : Np → P(Nt),
a limit k on the number of iterations

Output: filtered domains
for every node u ∈ Np do: D(u) ← D(u) ∩ {v ∈ Nt|α0(u) �0 α0(v)}1

i ← 12

while ∀u ∈ Np, D(u) 	= ∅ and i ≤ k and fixpoint not reached do3

for every node u ∈ Np ∪ Nt do4

mi
u ← multiset containing an occurrence of αi−1(v), ∀(u, v) ∈ Ep ∪ Et5

αi(u) ← αi−1(u) · mi
u6

Li ← {αi(u)|u ∈ Np ∪ Nt}; rename labels in Li and αi
7

�i← {(αi(u), αi(v)) | u ∈ Np ∧ v ∈ D(u) ∧ test(mi
u, mi

v, �i−1)}8

for every node u ∈ Np do: D(u) ← D(u) ∩ {v ∈ Nt|αi(u) �i αi(v)}9

i ← i + 110

return D11

– line 8: the partial order 	i is computed, i.e., for every couple of nodes (u, v)
such that u is a node of the pattern graph and v is a node of the target graph
which was compatible with u at step i − 1, we test for the compatibility of
the multisets mi

u and mi
v to determine if the labels of u and v are still

compatible at step i. Testing the compatibility of two mulisets is not trivial.
We show in 4.1 how to do this exactly in O(d5/2), so that line 8 has a time
complexity of O(np ·nt ·d5/2). We then show in 4.2 how to compute an order
inducing a weaker filtering in O(nt · d · (np + dt · log nt)). These two variants
are experimentally compared in Section 5.

The filtering step (line 9) is done in O(np · nt).

4.1 Exact Computation of the Partial Order

Given two multisets mu and mv, and a partial order 	, the function test(mu, mv,
) determines if mu 	 mv, i.e., if there exists for each label occurrence in mu a
distinct label occurrence in mv which is greater or equal according to 	.

Property 1. Let G = (N = (Nu, Nv), E) be the bipartite graph such that Nu

(resp. Nv) associates a different node with every label occurrence in the multiset
mu (resp. mv), and E contains the set of edges (i, j) such that i 	 j. We have
mu 	 mv iff there exists a matching that covers Nu in G.

Hopcroft [15] proposes an algorithm for solving this problem in O(|Nu| · |Nv| ·√
|N |). As the sizes of mu and mv are bounded by the maximal degree d, the

test function can be done in O(d5/2).

736 S. Zampelli et al.

4.2 Computation of an Approximated Order

If 	 is a total order, the function test(mu, mv,) can be implemented more
efficiently, by sorting each multiset and matching every label of mu with the
smallest compatible label of mv. In this case, the complexity of test is O(d·log d).

When 	 is not a total order, one may extend it into a total order ≤. This total
order can then be used in the test function to determine if mu ≤ mv. However,
the total order introduces new label compatibilities so that test(mu, mv, ≤) may
return true while test(mu, mv,) returns false. As a consequence, using this
approximated order may induce a weaker filtering.

In this section, we first introduce the theoretical framework that defines a new
neighborhood labeling extension based on a total order and proves its validity;
then we show how it can be achieved in practice.

Neighborhood Labeling Extension Based on a Total Ord er. The next
definition gives a simple condition on the total order to ensure its consistency
with respect to the partial order, i.e., to ensure that test(mu, mv,) = True ⇒
test(mu, mv, ≤) = True.

Definition 9. Let l = (L, 	, α) be a labeling. A consistent total order for l is a
total order ≤ on L such that ∀u ∈ np, ∀v ∈ nt, α(u) 	 α(v) ⇒ α(u) ≤ α(v)

We extend the order ≤ on multisets like for partial orders in Definition 6, i.e.,
m ≤ m′ iff there exists an injective function t : m → m′ such that ∀ai ∈ m, ai ≤
t(ai). Hence, m 	 m′ ⇒ m ≤ m′. Let us note however that this extension of ≤
to multisets only induces a partial order on multisets as some multisets may not
be comparable.

We can then define a new neighborhood extension procedure, based on a
consistent total order.

Definition 10. Let l = (L, 	, α) be a labeling, and ≤ be a consistent total order
for l. The neighborhood extension of l based on ≤ is the labeling l′≤ = (L′, 	′≤
, α′) where L

′ and α′ are defined like in Definition 7, and the order relation
	′≤⊆ L

′ × L
′ is defined by

l1 · m1 	′≤ l2 · m2 iff l1 	 l2 ∧ m1 ≤ m2

The next theorem shows that the neighborhood extension l′≤ based on ≤ may
be used in our iterative labeling process, and that it is stronger or equal to l.
However, it may be weaker than the neighborhood extension based on the partial
order 	. Indeed, the total order induces more compatible couples of labels than
the partial order.

Theorem 2. Let l = (L, 	, α), l′ = (L′, 	′, α′), and l′≤ = (L′, 	′≤, α′), be three
labelings such that l′ is the neighborhood extension of l and l′≤ is the neighborhood
extension of l based on a consistent total order ≤.

If l is an SIC labeling, then (i) l′≤ is SIC, (ii) l′≤ is stronger than (or equal
to) l, and (iii) l′ is stronger than (or equal to) l′≤.

Filtering for Subgraph Isomorphism 737

Proof. (ii) and (iii): For labeling l′, we have l1 ·m1 	′ l2 ·m2 iff l1 	 l2∧m1 	 m2.
As ≤ is consistent w.r.t. 	, we have m 	 m′ ⇒ m ≤ m′. Hence, CCl′ ⊆ CCl′≤ ⊆
CCl. (i) is a direct consequence of (iii), as l′ is SIC (Theorem 1). �
Different consistent total orders may be derived from a given partial order, lead-
ing to prunings of different strength: the less new couples of compatible nodes are
introduced by the total order, the better the filtering. However, we conjecture in
[14] that finding the best consistent total order is NP-hard. Hence, we propose
a heuristic algorithm that aims at computing a total order that introduces few
new compatible couples without guarantee of optimality. Let us note Lp (resp.
Lt) the set of labels associated with nodes of the pattern graph Gp (resp. target
graph Gt). We shall suppose without loss of generality1 that Lp ∩ Lt = ∅. The
idea is to sequence the labels of Lp ∪ Lt, thus defining a total order on these
labels, according to the following greedy principle: starting from an empty se-
quence, one iteratively adds some labels of Lp ∪ Lt at the end of the sequence,
and removes these labels from Lp and Lt, until Lp ∪ Lt = ∅.

To choose the labels added in the sequence at each iteration, our heuristic is
based on the fact that the new couples of compatible nodes are introduced by
new couples of compatible labels (ep, et) such that ep ∈ Lp and et ∈ Lt. Hence,
the goal is to sequence as late as possible the labels of Lp. To this aim, we first
compute the set of labels et ∈ Lt for which the number of labels ep ∈ Lp, ep 	 et

is minimal. To break ties, we then choose a label et such that the average number
of labels e′t ∈ Lt, ep 	 e′t, for every label ep ∈ Lp, ep 	 et, is minimal. Then, we
introduce in the sequence the selected label et, preceded by every label ep ∈ Lp

such that ep 	 et.
The time complexity of this heuristic algorithm is in O(nt · log nt · dp · dt).

Practical Computation of an Approximate Partial Order. In practice,
one has to compute a total order ≤i−1 that approximates the partial order 	i−1

at each iteration i of Algorithm 1. This must be done between lines 7 and 8.
Then each call to the test function, line 8, is performed with the total order ≤i−1

instead of the partial order 	i−1.
In this case, the time complexity of the computation of 	i (line 8) is in

O(nt · np · d · log d). This complexity can be reduced to O(nt · np · d) by first
sorting all the multisets. When adding the time complexity of the computation
of the total order by our heuristic algorithm, we obtain an overall complexity in
O(nt · d · (np + dt · log nt)).

4.3 Filtering Within a Branch and Propagate Framework

In this section, we introduce two optimizations that may be done when filtering
is integrated within a branch and propagate search, where a variable assignment
is done at each step of the search.
1 If a label e both belongs to Lp and Lt, it is always possible to rename e into e′ in

Lt (where e′ is a new label), and to add a relation e′′ � e′ for every label e′′ ∈ Lp

such that e′′ � e.

738 S. Zampelli et al.

A first optimization provides an entailment condition for the filtering. If the
initial labeling l0 is such that the maximum label of the pattern graph is smaller
or equal to the minimum label of the target graph, every label of nodes of the
pattern graph is compatible with all the labels of nodes of the target graph so
that no domain can be reduced by our filtering procedure.

A second optimization is done when, during the search, the variable associated
with a pattern node is assigned to a target node. In this case, the neighborhood
extension procedure is modified by forcing the two nodes to have a same new
label which is not compatible with other labels as follows:

Definition 11. Let l = (L, 	, α) be an SIC labeling, and let (u, v) ∈ Np × Nt

such that v ∈ xu. The propagation of xu = v on l is the new labeling l′ = (L′, 	′
, α′) such that

– L
′ = L ∪ {luv} where luv is a new label such that luv
∈ L;

– 	′=	 ∪{(luv, luv)} so that the new label luv is not comparable with any other
label except itself;

– α′(u) = α′(v) = luv and ∀w ∈ Nodes \ {u, v}, α′(w) = α(w)

This labeling l′ is used as a starting point of a new sequence of labeling exten-
sions. Note that this propagation is done every time a domain is reduced to a
singleton.

5 Experimental Results

Considered Instances. We evaluate our approach on graphs that are ran-
domly generated using a power law distribution of degrees P (d = k) = k−λ:
this distribution corresponds to scale-free networks which model a wide range of
real networks, such as social, Internet, or neural networks [16]. We have made
experiments with different values of λ, ranging between 1 and 5, and obtained
similar results. Hence, we only report experiments on graphs generated with the
standard value λ = 2.5.

We have considered 6 classes of instances, each class containing 20 different
instances. For each instance, we first generate a connected target graph which
node degrees are bounded between dmin and dmax. Then, a connected pattern
graph is extracted from the target graph by randomly selecting a percentage pn

(resp. pe) of nodes (resp. edges).
All instances of classes A, B, and C are non directed feasible instances that

have been generated with dmin = 5, dmax = 8, and pn = pe = 90%. Target
graphs in A (resp. B and C) have 200 (resp. 600 and 1000) nodes.

All instances of class D are directed feasible instances that have been generated
with dmin = 5, dmax = 8, and pn = pe = 90%. Target graphs have 600 nodes.
Edges of target graphs have been randomly directed. To solve these directed
instances, the filtering procedure is adapted by extending labelings with two
multisets that respectively contain labels of successors and predecessors.

All instances of classes E and F are non directed instances that have been
generated with dmin = 20, dmax = 300, and pn = 90%. Target graphs have

Filtering for Subgraph Isomorphism 739

300 nodes. Instances of class E are feasible ones that have been generated with
pe = 90%. Instances of class F are non feasible ones: for these instances, pattern
graphs are extracted from target graphs by randomly selecting 90% of nodes and
90% of edges, but after this extraction, 10% of new edges have been randomly
added.

For all experimentations reported below, each run searches for all solutions of
an instance.

Comparison of Different Variants of Our Filtering Algorithm. Algo-
rithm 1 has been implemented in Gecode (http://www.gecode.org), using CP
(Graph) and CP(Map) [17,18] which provide graph and function domain vari-
ables. The global subgraph isomorphism constraint has been combined with c2
constraints (as defined in Section 2.2) and a global AllDiff constraint which are
propagated by forward checking.

Table 1. Comparison of different variants of Algorithm 1: Exact (resp. Approx.) refers

to the implementation of test described in 4.1 (resp. 4.2); k gives the maximum number

of iterations. Each line successively reports the percentage of instances that have been

solved within a CPU time limit of 600s on an Intel Xeon 3,06 Ghz with 2Go of RAM;

the average run time for the solved instances; and the average number of failed nodes

in the search tree for the solved instances.

Solved instances (%) Average time Average failed nodes
Exact Approx. Exact Approx. Exact Approx.

k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8

A 100 100 100 100 100 100 2.2 0.6 23.4 1.3 1.9 3.2 440 14 0 13 0 0

B 100 100 100 100 100 100 61.4 5.6 144.2 24.5 28.7 59.6 1314 8 0 3 0 0

C 45 100 45 100 100 100 439.2 26.3 495.8 101.8 110.4 227.8 1750 13 0 2 0 0

D 100 100 100 100 100 100 0.7 2.6 99.6 7.5 24.7 56.3 2 0 0 0 0 0

E 80 60 0 75 80 85 126.7 98.6 - 35.2 18.8 36.7 4438 159 - 39 13 7

F 23 20 0 38 63 68 186.4 109.9 - 45.0 10.5 3.9 18958 3304 - 2323 481 107

Table 1 compares different variants of Algorithm 1, obtained by either com-
puting an exact partial order or an approximated one (as described in 4.1 and
4.2), and by considering different limits k on the number of iterations. In all
variants, the initial labeling l0 is the labeling ldeg defined in 3.1. Note that the
order of ldeg is a total order so that in this case the exact and approximated
variants are equivalent for k = 1.

Let us first compare the exact and approximated variants. The number of
failed nodes with Approx./k = 2 is greater than Exact/k = 2, but it is smaller
than with Exact/k = 1. This shows us that the total order computed by our
heuristic algorithm is a quite good approximation of the partial order. When
considering CPU-times, we note that Approx./k = 2 is significantly quicker
than Exact/k = 2.

Table 1 also shows that the best performing variant differs when considering
different classes of instances. Instances of class D are best solved when k = 0,
i.e., with the simple ldeg labeling: these instances are easy ones, as adding a

740 S. Zampelli et al.

direction on edges greatly narrows the search space. Instances of classes A, B
and C are more difficult ones, as they are not directed; these instances are best
solved when k = 1, i.e., after one iteration of the exact labelling extension.
Instances of classes E and F, which have significantly higher node degrees, are
very difficult ones. For these instances, and more particularly for those of class F
which are not feasible ones and which appear to be even more difficult, iterative
labeling extensions actually improve the solution process and the best results
are obtained when k = 8.

As a conclusion, these experimentations show us that (1) the approximated
variant offers a good compromise between filtering’s strength and time, and (2)
the optimal limit k on the number of iterations depends on the difficulty of
instances. The best average results are obtained with Approx./k = 4.

Comparison with State-of-the-Art Approaches. We now compare the
variant Approx./k=4 of Algorithm 1 with a state-of-the-art algorithm coming
from a C++ library called vflib [4], and with CP. We consider two different
CP models:

– c2 is the model using c2 constraints described in Section 2.2;
– c2 + c3 is the model that additionnaly uses c3 constraints introduced in [8].

These two models are combined with a global Alldiff constraint. For c2 and Alld-
iff constraints, two levels of consistency are considered, i.e., Forward Checking
(denoted by FC) and Arc Consistency (denoted by AC). Propagation of c3 fol-
lows [8]. All CP models have been implemented in Gecode using CP(Graph) and
CP(Map).

Table 2. Comparison of state-of-the-art approaches. Each line successively reports the

percentage of instances that have been solved within a CPU time limit of 600s on an

Intel Xeon 3,06 Ghz with 2Go of RAM; the average run time for the solved instances;

and the average number of failed nodes in the search tree for the solved instances.

Solved instances (%) Average time Average failed nodes
vflib c2 c2+c3 App. vflib c2 c2+c3 App. vflib c2 c2+c3 App.

FC AC FC AC k=4 FC AC FC AC k=4 FC AC FC AC k=4

A 35 100 100 100 100 100 251.4 57.1 38.7 26.9 22.3 1.9 - 165239 19 67 0 0

B 0 0 0 0 0 100 - - - - - 28.7 - - - - - 0

C 0 0 0 0 0 100 - - - - - 110.4 - - - - - 0

D 100 100 100 5 0 100 0.8 7.9 81.7 542.7 - 24.7 - 2402 0 0 0 0

E 0 0 5 33 20 80 - - 362.0 319.5 397.6 18.8 - - 154 21 7 13

F 0 0 0 10 5 63 - - - 381.7 346.5 10.5 - - - 52 14 481

Table 2 compares all these approaches and shows us that, except for easy
instances of class D which are best solved by vflib, all other classes of instances
are best solved by Approx./k=4. When comparing the different CP models, we
note that adding redundant c3 constraints significantly improves the solution

Filtering for Subgraph Isomorphism 741

process except for the easy instances of class D which are better solved with
simpler models.

6 Conclusion

We introduced a new filtering algorithm for the subgraph isomorphism problem
that exploits the global structure of the graph in order to achieve a stronger par-
tial consistency. This work extends a filtering algorithm for graph isomorphism
[12] where a total order defined on some graph property labelling is strengthened
until a fixpoint. The extension to subgraph isomorphism has been theorically
founded. The order is partial and can also be iterated until a fixpoint. However,
using such a partial order is ineffective. Instead, one can map this partial order
to a total order. Performing such a mapping is hard, and can be efficiently ap-
proximated throught a heuristic algorithm. Experimental results show that our
propagators are efficient against state-of-the-art propagators and algorithms.

Future work includes the development of dynamic termination criteria for
the iterative labeling, the experimental study of other degree distributions, the
analysis of alternative initial labelings.

Acknowledgments

The authors want to thank the anonymous reviewers for the helpful comments.
This research is supported by the Walloon Region, project Transmaze
(WIST516207).

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

2. Garey, M., Johnson, D.: Computers and Intractability. Freeman and Co., New York
(1979)

3. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

4. Cordella, L., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for match-
ing large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations
in Pattern Recognition, Cuen, pp. 149–159 (2001)

5. Zampelli, S., Deville, Y., Dupont, P.: Approximate constrained subgraph matching.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 832–836. Springer, Heidelberg
(2005)

6. Régin, J.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle.
Application à la Chimie Organique. PhD thesis (1995)

7. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT
1998. LNCS, vol. 1764, pp. 238–252. Springer, Heidelberg (2000)

8. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical. Structures in Comp. Sci. 12(4), 403–422 (2002)

742 S. Zampelli et al.

9. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

10. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in
symmetry detection for cnf. In: Proc. Design Automation Conference (DAC), pp.
530–534. IEEE/ACM (2004)

11. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In:
Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 287–301.
Springer, Heidelberg (2004)

12. Sorlin, S., Solnon, C.: A new filtering algorithm for the graph isomorphism problem.
In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204. Springer, Heidelberg (2006)

13. Regin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Amer.
Assoc. Artificial Intelligence. Proc. 12th Conf. American Assoc. Artificial Intelli-
gence, vol. 1, pp. 362–367 (1994)

14. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph
matching. Technical Report INGIRR2007-03, Université Catholique de Louvain
(2007)

15. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

16. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and
What It Means. Plume (2003)

17. Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph computa-
tion domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

18. Deville, Y., Dooms, G., Zampelli, S., Dupont, P.: Cp(graph+map) for approximate
graph matching. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 33–48.
Springer, Heidelberg (2005)

Solution Counting Algorithms for

Constraint-Centered Search Heuristics

Alessandro Zanarini and Gilles Pesant

École Polytechnique de Montréal
Montreal, Canada

{azanarini,pesant}@crt.umontreal.ca

Abstract. Constraints have played a central role in cp because they
capture key substructures of a problem and efficiently exploit them to
boost inference. This paper intends to do the same thing for search,
proposing constraint-centered heuristics which guide the exploration of
the search space toward areas that are likely to contain a high number
of solutions. We first propose new search heuristics based on solution
counting information at the level of individual constraints. We then de-
scribe efficient algorithms to evaluate the number of solutions of two
important families of constraints: occurrence counting constraints, such
as alldifferent, and sequencing constraints, such as regular. In both
cases we take advantage of existing filtering algorithms to speed up the
evaluation. Experimental results on benchmark problems show the effec-
tiveness of our approach.

1 Introduction

Constraint Programming (cp) is a powerful technique to solve combinatorial
problems. It applies sophisticated inference to reduce the search space and a
combination of variable and value selection heuristics to guide the exploration
of that search space. Despite many research efforts to design generic and robust
search heuristics and to analyze their behaviour, a successful cp application often
requires customized, problem-centered search heuristics or at the very least some
fine tuning of standard ones, particularly for value selection. In contrast, Mixed
Integer Programming (mip) and sat solvers feature successful default search
heuristics that basically reduce the problem at hand to a modeling issue.

Constraints have played a central role in cp because they capture key sub-
structures of a problem and efficiently exploit them to boost inference. This
paper intends to do the same thing for search, proposing constraint-centered
heuristics. A constraint’s consistency algorithm often maintains data structures
in order to incrementally filter out values that are not supported by the con-
straint’s set of valid tuples. These same data structures may be exploited to
evaluate how many valid tuples there are. Up to now, the only visible effect of
the consistency algorithms has been on the domains, projecting the set of tuples
on each of the variables. Additional information about the number of solutions
of a constraint can help a search heuristic to focus on critical parts of a problem

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 743–757, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

744 A. Zanarini and G. Pesant

or promising solution fragments. Polytime approximate or exact algorithms to
count the number of solutions of several common families of constraints were
given in [12]. For some families, little work was required to provide close or even
exact evaluations of the number of solutions for a constraint, given the existing
consistency algorithm and its data structures.

There is a large body of scientific literature on search heuristics to solve csps.
Most of the popular dynamic variable selection heuristics favour small domain size
and large degree in the constraint graph (mindom, dom/deg,dom/ddeg, dom/wdeg,
Brelaz). For value selection, minimizing the number of conflicts with neighbouring
variables is popular. We mention below the closest related work on search. Kask et
al. [9] approximate the total number of solutions extending a partial solution to a
csp and use it in a value selection heuristic, choosing the value whose assignment
to the current variable gives the largest approximate solution count. An implemen-
tation optimized for binary constraints performs well compared to other popular
strategies. Refalo [14] proposes a generic variable selection heuristic based on the
impact the assignment of a variable has on the reduction of the remaining search
space, computed as the Cartesian product of the domains of the variables. It re-
ports promising results on benchmark problems. The main difference between our
work and these is that we focus on individual constraints whereas they consider the
problemas awhole.As an interesting connection for constraint-centeredheuristics,
Patel and Chinneck [10] investigate several variable selection heuristics guided by
the constraints that are tight at the optimal solution of the relaxation, to find fea-
sible solutions of mips.

Contributions. There are two main contributions in this work. First, we de-
scribe and experiment with new search heuristics based on solution counting
information at the level of individual constraints. Second, we propose efficient
algorithms to evaluate the number of solutions of two important families of con-
straints: occurrence counting constraints (alldifferent) and sequencing con-
straints (regular). With respect to [12], what is proposed for the former is a
considerable improvement and for the latter it details what was only alluded to
before.

Plan of the paper. Section 2 presents some key definitions and describes the
search heuristics we propose. Section 3 gives an algorithm to compute the num-
ber of solutions of regular constraints. Section 4 summarizes the literature on
counting solutions of alldifferent constraints and proposes a related algorithm
more suited to our purpose. Section 5 presents comparative experimental results
supporting our proposal. Finally Section 6 summarizes our work and mentions
some of the arising research issues.

2 Generic Constraint-Centered Heuristic Search
Framework

Whereas most generic dynamic search heuristics in constraint programming rely
on information at the fine-grained level of the individual variable (e.g. its domain

Solution Counting Algorithms for Constraint-Centered Search Heuristics 745

size and degree), we investigate dynamic search heuristics based on coarser, but
more global, information. Global constraints are successful because they encap-
sulate powerful specialized filtering algorithms but firstly because they bring out
the underlying structure of combinatorial problems. That exposed structure can
also be exploited during search. The heuristics proposed here revolve around
the knowledge of the number of solutions of individual constraints, the intuition
being that a constraint with few solutions corresponds to a critical part of the
problem with respect to satisfiability.

Definition 1 (solution count). Given a constraint γ(x1, . . . , xk) and respec-
tive finite domains Di 1≤i≤k, let #γ(x1, . . . , xk) denote the number of solutions
of constraint γ.

Search heuristics following the fail-first principle (detect failure as early as pos-
sible) and centered on constraints can be guided by a count of the number of
solutions left for each constraint. We might focus the search on the constraint
currently having the smallest number of solutions, recognizing that failure nec-
essarily occurs through a constraint admitting no more solution.

max = 0;1

for each constraint γ(x1, . . . , xk) do2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x�, d�) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x� = d�”;8

Algorithm 1. The Maximum Solution Density (MaxSD) search heuristic

We can go one step further with solution count information and evaluate it
for each variable-value pair in an individual constraint.

Definition 2 (solution density). Given a constraint γ(x1, . . . , xk), respective
finite domains Di 1≤i≤k, a variable xi in the scope of γ, and a value d ∈ Di, we
will call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density1 of pair (xi, d) in γ. It measures how often a certain assign-
ment is part of a solution.

We can favour the highest solution density available with the hope that such
a choice generally brings us closer to satisfying the whole csp. Our choice may
combine information from every constraint in the model, be restricted to a single
constraint, or even to a given subset of variables. Algorithms 1 to 3 define the
search heuristics with which we will experiment in Section 5.
1 Also referred to as marginal in some of the literature.

746 A. Zanarini and G. Pesant

max = 0;1

choose constraint γ(x1, . . . , xk) which minimizes #γ;2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x�, d�) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x� = d�”;8

Algorithm 2. The Minimum Solution Count, Maximum Solution Density

(MinSC;MaxSD) search heuristic

max = 0;1

Let S = {xi : |Di| > 1 and minimum};2

for each variable xi ∈ S do3

for each constraint γ with xi in its scope do4

for each value d ∈ Di do5

if σ(xi, d, γ) > max then6

(x�, d�) = (xi, d);7

max = σ(xi, d, γ);8

return branching decision “x� = d�”;9

Algorithm 3. The Smallest Domain, Maximum Solution Density (MinDom;MaxSD)

search heuristic

3 Counting for Regular Constraints

The regular(X, Π) constraint [11] holds if the values taken by the sequence of fi-
nite domain variables X = 〈x1, x2, . . . , xn〉 spell out a word belonging to the reg-
ular language defined by the deterministic finite automaton Π = (Q, Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is a partial
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final (or
accepting) states. The filtering algorithm associated to this constraint is based
on the computation of paths in a graph. The automaton is unfolded into a lay-
ered acyclic directed graph G = (V, A) where vertices of a layer correspond to
states of the automaton and arcs represent variable-value pairs. We denote by
v�,q the vertex corresponding to state q in layer �. The first layer only contains
one vertex, v1,q0 ; the last layer only contains vertices corresponding to accepting
states, vn+1,q with q ∈ F . This graph has the property that paths from the
first layer to the last are in one-to-one correspondence with solutions of the con-
straint. The existence of a path through a given arc thus constitutes a support
for the corresponding variable-value pair [11]. Figure 1 gives an example of a
layered directed graph built for one such constraint on five variables.

The time complexity of the filtering algorithm is linear in the size of the
graph (the number of variables times the number of transitions appearing in the
automaton). Essentially, one forward and one backward sweep of the graph are

Solution Counting Algorithms for Constraint-Centered Search Heuristics 747

sufficient. An incremental version of the algorithm, which updates the graph as
the computation proceeds, has a time complexity that is linear in the size of the
changes to the graph.

3.1 Counting Paths in the Associated Graph

Given the graph built by the filtering algorithm for regular, what is the addi-
tional computational cost of determining its number of solutions? As we already
pointed out, every (complete) path in that graph corresponds to a solution.
Therefore it is sufficient to count the number of such paths. We express this
through a simple recurrence relation, which we can compute by dynamic pro-
gramming. Let #op(�, q) denote the number of paths from v�,q to a vertex in the
last layer. Then we have:

#op(n + 1, q) = 1

#op(�, q) =
∑

(v�,q,v�+1,q′)∈A
#op(� + 1, q′), 1 ≤ � ≤ n

The total number of paths is given by

#regular(X, Π) = #op(1, q0)

in time linear in the size of the graph even though there may be exponentially
many of them. Therefore this is absorbed in the asymptotic complexity of the
filtering algorithm.

The search heuristics we consider require not only solution counts of con-
straints but solution densities of variable-value pairs as well. In the graph of
regular, such a pair (xi, d) is represented by the arcs between layers i and i+1
corresponding to transitions on value d. The number of solutions in which xi = d
is thus equal to the number of paths going through one of those arcs. Consider
one such arc (vi,q, vi+1,q′): the number of paths through it is the product of the
number of outgoing paths from vi+1,q′ and the number of incoming paths to vi,q.
The former is #op(i + 1, q′) and the latter, #ip(i, q), is just as easily computed:

#ip(1, q0) = 1

#ip(� + 1, q′) =
∑

(v�,q,v�+1,q′)∈A
#ip(�, q), 1 ≤ � ≤ n

where #ip(�, q) denotes the number of paths from v1,q0 to v�,q.
In Figure 1, the left and right labels inside each vertex give the number of

incoming and outgoing paths for that vertex, respectively. For example, the arc
between the vertex labeled “2; 2” in layer L3 and the vertex labeled “5; 2” in
layer L4 has 2× 2 = 4 paths through it.

Let A(i, d) ⊂ A denote the set of arcs representing variable-value pair (xi, d).
The solution density of pair (xi, d) is thus given by:

σ(xi, d, regular) =

∑
(vi,q ,vi+1,q′)∈A(i,d) #ip(i, q) ·#op(i + 1, q′)

#op(1, q0)

748 A. Zanarini and G. Pesant

x1 x2 x3 x4 x5

L2 L3 L4 L5 L6L1

 1;7

 1;6

 1;1

 1;5

 1;5

 1;4

 1;1

 1;5

 1;2

 5;2

 3;1

 1;2

 1;2 4;1

 19;1

 1;1

 8;1

 6;1

 2;2

 1;19

Fig. 1. The layered directed graph built for a regular constraint on five variables.
Vertex labels represent the number of incoming and outgoing paths.

Once these quantities are tabulated, the cost of computing the solution density
of a given pair is in the worst case linear in |Q|, the number of states of the
automaton.

3.2 An Incremental Version

Because a constraint’s filtering algorithm is called on frequently, the graph for
regular is not created from scratch every time but updated at every call. Given
that we already maintain data structures to perform incremental filtering for
regular, should we do the same when determining its solution count and solution
densities?

For the purposes of the filtering algorithm, as one or several arcs are removed
between two given layers of the graph as a consequence of a value being deleted
from the domain of a variable, other arcs are considered for removal in the
previous (resp. following) layers only if the out-degree (resp. in-degree) of some
vertices at the endpoints of the removed arcs becomes null. Otherwise no further
updates need to be propagated. Consequently even though the total amount of
work in the worst case is bounded above by the size of the graph, it is often
much less in practice.

In the case of solution counting, the labels that we added at vertices contain
finer-grained information requiring more extensive updates. Removing an arc
will change the labels of its endpoints but also those of every vertex reachable
downstream and of every vertex upstream which can reach that arc. Here the
total amount of work in practice may be closer to the worst case. Therefore
maintaining the additional data structures could prove to be too expensive.

3.3 A Lazy Evaluation Version

We may not be interested in the value of #op() and #ip() for every combina-
tion of arguments — for example in some search heuristics we may only want
the solution densities for a particular variable. One way to avoid useless work

Solution Counting Algorithms for Constraint-Centered Search Heuristics 749

is to lazily evaluate the #op()/#ip() values as we require them. Memory func-
tions combine the goal-oriented, top-down approach of recursive calls with the
compute-once ability of dynamic programming. The request for a solution den-
sity triggers the computation of the required #op()/#ip() values. If that value
has been computed before, it is simply looked up in a table. Otherwise, it is
computed recursively and tabulated before it is returned to avoid recomputing
it. In some cases only a small fraction of the vertex labels are actually computed,
especially if we do not require the solution count of the constraint: if we only
compare variable-value pairs within a constraint, solution densities can be re-
placed by the number of solutions in which each pair participates, thus avoiding
the computation of #op(1, q0).

On the Nonogram problem introduced in Section 5, the lazy evaluation version
was slightly faster than the version computing from scratch and up to five times
faster than the version maintaining the data structures. Consequently we used
the lazy evaluation version in our experiments.

4 Counting for Alldifferent Constraints

The alldifferent constraint restricts a set of variables to be pairwise
different [15].

Definition 3 (Value Graph). Given a set of variables X = {x1, . . . , xn} with
respective domains D1, . . . , Dn, we define the value graph as a bipartite graph
G = (X ∪DX , E) where DX =

⋃
i=1,...,n Di and E = {{xi, d} | d ∈ Di}.

There exists a bijection between a maximum matching of size |X | on the value
graph and a solution of the related alldifferent constraint. Finding the num-
ber of solutions is then equivalent to counting the number of maximum matchings
on the value graph.
Maximum matching counting is also equivalent to the problem of computing the
permanent of a (0-1) matrix. Given a bipartite graph
G = (V1 ∪ V2, E), with |V1| = |V2| = n, the related n × n adjacency matrix
A has element ai,j equal to 1 if and only if vertex i is connected to vertex j. The
permanent of a n× n matrix A is formally defined as:

per(A) =
∑
σ∈Sn

∏
i

ai,σ(i) (1)

where Sn denotes the symmetric group, i.e. the set of n! permutations of [n].
Given a specific permutation, the product is equal to 1 if and only if all the
elements are equal to 1 i.e. the permutation is a valid maximum matching in the
related bipartite graph. Hence, the sum over all the permutations gives us the
total number of maximum matchings. In the following, we will freely use both
matrix and graph representations.

750 A. Zanarini and G. Pesant

4.1 Computing the Permanent

Permanent computation has been studied for the last two centuries and it is
still a challenging problem to address. Even though the analytic formulation of
the permanent resembles that of the determinant, there has been few advances
on its exact computation. In 1979, Valiant [16] proved that the problem is #P -
complete, even for 0-1 matrices, that is, under reasonable assumptions, it cannot
be computed in polynomial time. The focus then moved to approximating the
permanent. We can identify at least four different approaches for approximat-
ing the permanent: elementary iterative algorithms, reductions to determinants,
iterative balancing, and Markov Chain Monte Carlo methods.

Elementary Iterative Algorithms. Rasmussen proposed in [13] a very simple re-
cursive estimator for the permanent. This method works quite well for dense
matrices but it breaks down when applied to sparse matrices; its time complex-
ity is O(n3ω) recently improved to O(n2ω) by Fürer [3] (here ω is a function
satisfying ω → ∞ as n → ∞). Further details about these approaches will be
given in the next section.

Reduction to Determinant. The determinant reduction technique is based on
the resemblance of the permanent and the determinant. This method randomly
replaces some 1-entry elements of the matrix by uniform random elements {±1}.
It turns out that the determinant of the new matrix is an unbiased estimator of
the permanent of the original matrix. The proposed algorithms either provide
an arbitrarily close approximation in exponential time [2] or an approximation
within an exponential factor in polytime [1].

Iterative Balancing. The work of Linial et al. [8] exploits a lower bound on the
permanent of a doubly stochastic2 n× n matrix B: per(B) ≥ n!/nn. The basic
idea is to use the linearity of permanents w.r.t. multiplication with constants and
transform the original matrix A to an approximated doubly stochastic matrix
B and then exploit the lower bound. The algorithm that they proposed runs in
O(n5 log2 n) and gives an approximation within a factor of en.

Markov Chain Monte Carlo Methods. Markov Chains can be a powerful tool to
generate almost uniform samples. They have been used for the permanent in [6]
but they impose strong restrictions on the minimum vertex degree. A notable
breakthrough was achieved by Jerrum et al. [7]: they proposed the first poly-
nomial approximation algorithm for general matrices with non-negative entries.
Nonetheless this remarkable result has to face its impracticality due to a very
high-computational complexity Õ(n26) improved to Θ(n10 log2 n) later on.

Note that for our purposes we are not only interested in computing the total
number of solutions but we also need that solution densities for each variable-
value pair. Moreover, we need fast algorithms that work on the majority of the
matrices; since the objective is to build a search heuristic based on counting
information, we would prefer a fast algorithm with less precise approximation
2

∑
i ai,j =

∑
j ai,j = 1.

Solution Counting Algorithms for Constraint-Centered Search Heuristics 751

over a slower algorithm with better approximation guarantees. With that in
mind, Markov Chain-based algorithms do not fit our needs (they are either too
slow or they have a precondition on the minimum vertex degree). Determinant
based algorithms are either exponential in time or give too loose approximations
(within an exponential factor) as well as algorithms based on matrix scaling. The
approach that seems to suit our needs better is elementary iterative algorithms.
It combines a reasonable complexity with a good approximation. Although it
gives poor results for sparse matrices, those cases are likely to appear close
to the leaves of the search tree where an error by the heuristics has a limited
negative impact.

4.2 Rasmussen’s Estimator and Its Extensions

Suppose we want to estimate a function Q (in our case the permanent): a tradi-
tional approach is to design an estimator that outputs a random variable X whose
expected value is equal to Q. The estimator is unbiased if E(X) and E(X2) are
finite. A straightforward application of Chebyshev’s inequality shows that if we
conduct O(E(X2)

E(X)2 ε−2) independent and identically distributed trials and we take
the mean of the outcomes then we have guarantee of ε-approximation. Hence the
performance of a single run of the estimator and the ratio E(X2)

E(X)2 (critical ratio)
determine the efficiency of the algorithm.

In the following, we denote by A(n, p) the class of random (0-1) n×n matrices
in which each element has independent probability p of being 1. We write XA for
the random variable that estimate the permanent of the matrix A; Ai,j denotes
the submatrix obtained from A by removing row i and column j. The pseudo-
code of Rasmussen’s estimator is shown in Algorithm 4; despite its simplicity
compared to other techniques, the estimator is unbiased and shows good exper-
imental behaviour. Rasmussen gave theoretical results for his algorithm applied
to random matrices belonging to the class A(n, p ≥ 1/2). He proved that for
“almost all” matrices of this class, the critical ratio is bounded by O(nω) where
ω is a function satisfying ω → ∞ as n → ∞; the complexity of a single run
of the estimator is O(n2), hence the total complexity is O(n3ω). Here “almost
all” means that the algorithm gives a correct approximation with probability
that goes to 1 as n → ∞. While this result holds for dense matrices, it breaks
down for sparse matrices. Note however that there are still matrices belonging
to A(n, p = 1/2) for which the critical ratio is exponential. Consider for instance
the upper triangular matrix:

U =

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 . . . 1

. . .
...
1

⎞
⎟⎟⎟⎠

For this particular matrix Rasmussen’s estimator has expected value E(XU) = 1
and E(X2

U) = n!, hence the approximation is likely to be very poor.

752 A. Zanarini and G. Pesant

if n = 0 then1

XA = 12

else3

W = {j : a1,j = 1};4

if W = ∅ then5

XA = 0;6

else7

Choose j u.a.r. from W ;8

Compute XA1,j ;9

XA = |W | · XA1,j ;10

Algorithm 4. Rasmussen’s estimator

Fürer et al. [3] enhanced Rasmussen’s algorithm with some branching strate-
gies in order to pick up more samples in the critical parts of the matrix.
It resembles very closely the exploration of a search tree. Instead of choosing
u.a.r. a single column j from W , Fürer picks up a subset J ⊆W and it iterates
on each element of J . The number of times it branches is logarithmic in the size
of the matrix, and for a given branching factor he showed that a single run of
the estimator still takes O(n2) time. The advantage of this approach resides in
the theoretical convergence guarantee: the number of required samples is only
O(ω) instead of Rasmussen’s O(nω), thus the overall complexity is O(n2ω).
Both Fürer and Rasmussen estimators allow to approximately compute the to-
tal number of solution of an alldifferent constraint. However if we need to
compute the solution density σ(xi, d, γ) we are forced to recall the estimators on
the submatrix Ai,d. Hence the approximated solution density is:

σ(xi, d, γ) ≈ E(XAi,d
)

E(XA)
(2)

Adding Propagation to the Estimator. A simple way to improve the qual-
ity of the approximation is to add propagation to Rasmussen’s estimator. After
randomly choosing a row i and a column j, we can propagate on the subma-
trix Ai,j in order to remove all the 1-entries (edges) that do not belong to any
maximum matching (the pseudo-code is shown in Algorithm 5). This broadens

if n = 0 then1

XA = 12

else3

Choose i u.a.r. from {1 . . . n};4

W = {j : ai,j = 1};5

Choose j u.a.r. from W ;6

Propagation on Ai,j ;7

Compute XAi,j ;8

XA = |W | · XAi,j ;9

Algorithm 5. Estimator with propagation

Solution Counting Algorithms for Constraint-Centered Search Heuristics 753

the applicability of the method; in matrices such as the upper triangular matrix,
the propagation can easily lead to the identity matrix for which the estimator
performs exactly. However, as a drawback, the propagation takes an initial pre-
computation of O(

√
nm) plus an additional O(n + m) each time it is called [15]

(here m is the number of ones of the matrix i.e. edges of the graph). A single
run of the estimator requires n propagation calls, hence the time complexity is
O(nm); the overall time complexity is then O(n2mω).

A particularity of the new estimator is that it removes a priori all the 1-entries
that do not lead to a solution. Hence it always samples feasible solutions whereas
Rasmussen’s ends up with infeasible solutions whenever it reaches a case in which
W = ∅. This opens the door also to an alternative evaluation of the solution den-
sities; given the set of solution samples S, we denote by Sxi,d ⊆ S the subset of
samples in which xi = d. The solution densities are approximated as:

σ(xi, d, γ) ≈ |Sxi,d|
|S| (3)

Experimental results showed a much better approximation quality for the com-
putation of the solution densities using samples (3) instead of using submatrix
counting (2). It is worth pointing out that Fürer’s provides several samples in
a single run but highly biased from the decisions taken close to the root of the
search tree; thus it cannot be used to compute solution densities from samples.
Due to the better results obtained using samples, we decide not to apply prop-
agation methods to Fürer’s.

Table 1. Estimators performance

% Removals 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Counting Error
Rasmussen 1.32 1.76 3.66 5.78 7.19 13.80 22.65
Fürer 0.69 1.07 1.76 2.17 2.52 4.09 5.33
CountS 1.44 1.51 2.48 2.30 4.31 3.94 1.23

Average Solution Density Error
Rasmussen 1.13 1.83 3.12 5.12 7.85 13.10 23.10
Fürer 0.58 0.92 1.55 2.49 3.74 6.25 8.06
CountS 0.73 0.76 0.80 1.01 1.33 1.81 2.03

Maximum Solution Density Error
Rasmussen 3.91 6.57 11.60 19.86 30.32 42.53 40.51
Fürer 2.09 3.20 5.75 9.36 15.15 21.18 15.01
CountS 2.64 2.60 2.89 3.90 5.39 6.03 2.61

EstimatorBenchmarks. We compared three estimators: Rasmussen’s, Fürer’s,
and ours (the version based on samples,“CountS”). Due to the very high compu-
tational time required to compute the exact number of solutions, we performed
systematic experiments on alldifferent of size 10, 11 and 12 with varying per-
centage of domain value removals. Table 1 shows the error on the total number
of solutions, the average and the maximum error on the solution densities (all the

754 A. Zanarini and G. Pesant

errors are expressed in percentage). The number of samples used is 100 times the
size of the instance. The time taken for counting is slightly higher than one tenth of
a second for our methods compared to one tenth for Fürer’s and a few hundredths
for Rasmussen’s. On the other side, exact counting can take up to thousands of
seconds for very loose instances to a few hundredths of a second. Due to lack of
room, we do not show the tests with a common time limit: the situation is pretty
much the same, with our method showing the best approximations. Note that we
also tested our method with instances of bigger size (up to 30) and even with few
samples (10 times the instance size): the average error remains pretty low (again
on the order of 2-4%) as well as the maximum error. The current implementation
of our approach makes use of Ilog Solver 6.2; we believe that a custom implemen-
tation can gain in performance, avoiding the overhead due to model extraction
and to backtrack information bookkeeping.

5 Experimental Results

We evaluate the proposed constraint-centered search heuristics on two bench-
mark problems modeled with the alldifferent and regular constraints.

Nonogram. A Nonogram (problem 12 of CSPLib) is built on a rectangular n×m
grid and requires filling in some of the squares in the unique feasible way ac-
cording to some clues given on each row and column. As a reward, one gets
a pretty monochromatic picture. Each individual clue indicates how many se-
quences of consecutive filled-in squares there are in the row (column), with their
respective size in order of appearance. Each sequence is separated from the oth-
ers by at least one blank square but we know little about their actual position
in the row (column). Such clues can be modeled with regular constraints (the
actual automata Ari ,Acj are not difficult to derive but lie outside the scope of
this paper):

regular((xij)1≤j≤m,Ari) 1 ≤ i ≤ n
regular((xij)1≤i≤n,Acj) 1 ≤ j ≤ m
xij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m

These puzzles typically require some amount of search, despite the fact that
domain consistency is maintained on each clue. We experimented with 75 in-
stances3 of sizes ranging from 16× 16 to 24× 24.

We compared four search heuristics: random selection for both variable and
value, dom/ddeg variable selection with min conflicts value selection, MaxSD,
and MinSC;MaxSD. A variable selection heuristic based solely on domain size is
not useful for this problem since every unbound variable has an identical domain
of size 2. Note also that for the same reason the min conflicts value selection does
not discriminate at all.

Table 2 reports the average and median number of backtracks and the to-
tal computation time for these heuristics. dom/ddeg is definitely ill-suited for

3 Instances taken from http://www.blindchicken.com/∼ali/games/puzzles.html

Solution Counting Algorithms for Constraint-Centered Search Heuristics 755

Table 2. Number of backtracks and computation time (in seconds) for 75 Nonogram
instances

heuristic avg btk median btk total time

random var/val 348.0 16 40.7
dom/ddeg ; min conflicts 33640.4 146 4405.2
MaxSD 236.0 2 57.0
MinSC;MaxSD 48.5 3 8.9

such a problem: the statistics reported should even be higher since ten instances
where interrupted after five minutes of computation. A purely random heuristic
performs fairly well here, which can be explained by the binary domains of the
variables: even a random choice of value has a 50% chance of success. MaxSD per-
forms better than the random heuristic in terms of backtracks but not enough to
offset its higher computational cost, yielding a slightly higher computation time.
MinSC;MaxSD is the best of the four, with a significantly lower average number
of backtracks and the best computation time. The difference in performance be-
tween our two heuristics is actually strongly influenced by a few instances for
which MaxSD behaved poorly: if we look at the median number of backtracks,
the two are very close and markedly lower than for the random heuristic.

Quasigroup with Holes. A Latin Square of order n is defined on a n × n grid
whose squares each contain an integer from 1 to n such that each integer appears
exactly once per row and column. The Quasigroup with Holes (QWH) problem
gives a partially-filled Latin Square instance and asks to complete it. It is easily
modeled as:

alldifferent((xij)1≤j≤n) 1 ≤ i ≤ n
alldifferent((xij)1≤i≤n) 1 ≤ j ≤ n
xij = d (i, j, d) ∈ S
xij ∈ {1, 2, . . . , n} 1 ≤ i, j ≤ n
We tested four search heuristics: dom/ddeg variable selection with min conflicts

value selection (one of the most robust heuristics for QWH), MinDom;MaxSD,
MaxSD, and a lazy version of MaxSD. For counting, we used an exact algorithm
for 0.1 seconds and, in case of timeout, we ran CountS for another 0.1 seconds.
Note that the counting is done only if a domain event occurs, that is, the count-
ing algorithm is woken up in a way that is similar to constraint propagation. The
lazy version of maximum solution density recounts at each event when the search
is close to the tree root (whenever less than 20% of variables are assigned), ev-
ery 2 events when the unbound variables are between 20% and 50% and every 3
events thereafter. The four heuristics were tested on 40 balanced QWH instances
with about 41% of holes, randomly generated following [4]. We set the time limit
to 1200 seconds. Table 3 shows the results. The heuristics based on maximum
density were the ones performing better in term of backtracks (two orders of
magnitude of difference), total time and number of instances solved. We also
ran some tests on easier instances outside the phase transition: the dom/ddeg
heuristic did better than our heuristics in terms of running time but not in

756 A. Zanarini and G. Pesant

Table 3. Number of backtracks, computation time (in seconds) and the number of
unsolved instances for 40 hard QWH instances of order 30

heuristic avg btk median btk total time unsolved

dom/ddeg ; min conflicts 788887.1 365230.5 19070.7 10
MinDom;MaxSD 17626.3 10001.5 25983.8 19
MaxSD 5634.0 2534.2 11371.3 1
LazyMaxSD 7479.6 2243.7 10258.0 2

terms of number of backtracks. It is worth mentioning that the number of back-
tracks by our heuristics only diminished slightly on these easier instances, so the
heuristics appear fairly robust throughout the range. We also tried some simple
combinations of the solution densities (i.e. for each variable-value pair the sum
of the solution densities of the two alldifferent constraints) but we did not
experience any significant improvement.

6 Conclusion and Open Issues

This paper advocated using constraints not only for inference but also for search.
The key idea is to use solution counting information at the level of individual
constraints. We showed that for some widely-used constraints such information
could be computed efficiently, especially given the support already in place for
domain filtering. We also proposed novel search heuristics based on solution
counting and showed their effectiveness through experiments. From the point of
view of cp systems, we are really introducing a new functionality for constraints
alongside satisfiability testing, consistency and domain filtering, entailment, etc.
As we argued, providing this support does not necessarily require a lot of extra
work. It would, however, benefit from some thinking about how best to offer
access to solution counts and solution densities, from a programming language
design perspective.

We believe there are still several open issues regarding this work. Even though
we have had some success with the search heuristics we proposed, little has
been tried so far about combining the information originating from the different
constraints, which should increase robustness in cases where the constraints give
hugely conflicting information. We saw already that some compromises were
attempted for the alldifferent constraint to cut down its computation time
— a more in-depth investigation is required, including finding out a way to
make it more incremental. Finally there are many more families of constraints
for which efficient solution counting algorithms must be found.

Acknowledgements

The authors would like to thank the anonymous referees for helpful comments
and Michael Mac-Vicar for conducting some experiments.

Solution Counting Algorithms for Constraint-Centered Search Heuristics 757

References

1. Barvinok, A.: Polynomial time algorithms to approximate permanents and mixed
discriminants within a simply exponential factor. Random Structures and Algo-
rithms 14, 29–61 (1999)

2. Chien, S., Rasmussen, L., Sinclair, A.: Clifford Algebras and Approximating the
Permanent. In: Proc. 34th Annual ACM Symposium on Theory of Computing
(STOC), pp. 222–231. ACM Press, New York (2002)

3. Fürer, M., Kasiviswanathan, S.P.: An Almost Linear Time Approximation Algo-
rithm for the Permanent of a Random (0-1) Matrix. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 54–61. Springer, Heidelberg (2004)

4. Gomez, C.P., Shmoys, D.: Completing Quasigroups or Latin Squares: A Structured
Graph Coloring Problem. In: Proc. Computational Symposium on Graph Coloring
and Generalizations (2002)

5. Gomes, C.P., Sabharwal, A., Selman, B.: Model Counting: A New Strategy for
Obtaining Good Bounds. In: Proc. AAAI’06, pp. 54–61 (2006)

6. Huber, M.: Exact Sampling from Perfect Matchings of Dense Regular Bipartite
Graphs. Algorithmica 44, 183–193 (2006)

7. Jerrum, M., Sinclair, A., Vigoda, E.: A Polynomial-time Approximation Algorithm
for the Permanent of a Matrix with Non-Negative entries. In: Proc. 33th Annual
ACM Symposium on Theory of Computing (STOC), pp. 712–721. ACM Press,
New York (2001)

8. Linial, N., Samorodnitsky, A., Wigderson, A.: A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. Combinatorica 20, 545–
568 (2000)

9. Kask, K., Dechter, R., Gogate, V.: Counting-Based Look-Ahead Schemes for Con-
straint Satisfaction. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 317–331.
Springer, Heidelberg (2004)

10. Patel, J., Chinneck, J.W.: Active-Constraint Variable Ordering for Faster Feasibil-
ity of Mixed Integer Linear Programs. Mathematical Programming (2006)

11. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

12. Pesant, G.: Counting Solutions of CSPs: A Structural Approach. In: Proc. IJ-
CAI’05, pp. 260–265 (2005)

13. Rasmussen, L.E.: Approximating the permanent: a simple approach. Random
Structures and Algorithms 5, 349–361 (1994)

14. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

15. Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proc.
Twelfth National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 362–367.
AAAI Press, Stanford, California, USA (1994)

16. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

Min-Domain Ordering for Asynchronous
Backtracking�

Roie Zivan, Moshe Zazone, and Amnon Meisels

Department of Computer Science,
Ben-Gurion University of the Negev

Beer-Sheva, 84-105, Israel
{zivanr,moshezaz,am}@cs.bgu.ac.il

Abstract. Ordering heuristics are a powerful tool in CSP search algorithms.
Among the most successful ordering heuristics are heuristics which enforce a
fail first strategy by using the min-domain property [10,4,20,6]. Ordering heuris-
tics have been introduced recently to Asynchronous backtracking (ABT), for dis-
tributed constraints satisfaction (DisCSP) [27]. However, the pioneering study of
dynamically ordered ABT, ABT DO, has shown that a straightforward imple-
mentation of the min-domain heuristic does not produce the expected improve-
ment over a static ordering. The best ordering heuristic for asynchronous back-
tracking was found to be the Nogood-triggered heuristic.

The present paper proposes an asynchronous dynamic ordering which does not
follow the standard restrictions on the position of reordered agents in ABT DO.
Agents can be moved to a position that is higher than that of the target of the
backtrack (culprit).

Combining the Nogood-triggered heuristic and the min-domain property in
this new class of heuristics results in the best performing version of ABT DO.
The new version of retroactively ordered ABT is faster by a large factor than the
best form of ABT.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[24,21]). To achieve this goal, agents check the value assignments to their variables
for local consistency and exchange messages with other agents, to check consistency
of their proposed assignments against constraints with variables owned by different
agents [24,2].

A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves assignments of all agents to all their variables
and exchange of information among all agents, to check the consistency of assignments
with constraints among agents.

� Supported by the Lynn and William Frankel center for Computer Sciences and the Paul Ivanier
Center for Robotics and Production Management.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 758–772, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Min-Domain Ordering for Asynchronous Backtracking 759

Asynchronous Backtracking (ABT) is one of the most efficient and robust algo-
rithms for solving distributed constraints satisfaction problems. Asynchronous Back-
tracking was first presented by Yokoo [25,24] and was developed further and studied
in [9,3,17,2]. Agents in the ABT algorithms perform assignments asynchronously ac-
cording to their current view of the system’s state. The method performed by each
agent is in general simple. Later versions of ABT use polynomial space memory and
perform dynamic backtracking [3,2]. The versions of asynchronous backtracking in all
of the above studies use a static priority order among all agents.

An asynchronous algorithm with dynamic ordering was proposed by [23], Asyn-
chronous Weak Commitment (AWC). According to [24], AWC outperforms ABT
on specific applications (N-queens, Graph-coloring). The heuristic used by AWC is
very specific. Move any agent that sends back a Nogood to be first in the order of all
agents [24]. However, in order to be complete, AWC uses exponential space for storing
Nogoods [24]. This can be a problem when solving hard instances of DisCSPs.

An attempt to combine ABT with AWC was reported by [18]. In order to perform
asynchronous finite reordering operations [18] propose that the reordering operation
will be performed by abstract agents. In a later study the exact heuristic of Dynamic
Backtracking [8] was proposed for ABT with dynamic ordering [16]. The results pre-
sented in both studies [18,16] show minor improvements to ABT with static ordering.

A general algorithm for dynamic ordering in asynchronous backtracking, ABT DO,
was presented in [27]. The ABT DO algorithm uses polynomial space, similarly to
standard ABT . In the ABT DO algorithm the agents of the DisCSP choose orders
dynamically and asynchronously. Agents in ABT DO perform computation according
to the current, most updated order they hold. There are three rules on the changes of
orderings of agents in ABT DO. Each agent can change the order of agents who have
a lower priority than its own. An agent can propose an order change each time it replaces
its assignment. Each order is time-stamped according to the assignments performed by
agents [28].

Ordering heuristics are one of the most powerful tools for increasing the efficiency
of standard CSP search algorithms [10,4,6,22]. Heuristics which are successful for
sequential CSP algorithms were shown to fail to improve run-time when combined
with asynchronous backtracking [28]. Thus, an investigation of ordering heuristics for
asynchronous backtracking on DisCSPs is needed.

The results presented in [28] show that the performance of ABT DO is highly de-
pendent on the selected heuristic. The classic Min-Domain heuristic was implemented
by including the current domain size of agents in the messages they send. Surprisingly,
this heuristic which in centralized algorithms and in distributed algorithms using a se-
quential assignment protocol produces a large improvement over static order, was found
not to be efficient for Asynchronous Backtracking. A heuristic which achieved a sig-
nificant improvement was inspired by Dynamic Backtracking [8,1] in which the agent
which sends a Nogood is advanced in the new order to be immediately after the agent
to whom the Nogood was sent. The explanation for the success of this heuristic is that
it does not cause the removal of relevant Nogoods as do other heuristics [28].

In the present paper we investigate the relation between the success of this heuris-
tic and the min-domain heuristic which was found to be successful for sequential as-
signments (synchronous) algorithms on DisCSPs [5,14]. We demonstrate the effect of
Nogood loss as a result of reordering on the failure of the min domain heuristic. Re-
moval of Nogoods cause the return of values to the agent’s domains. This harms the

760 R. Zivan, M. Zazone, and A. Meisels

accuracy of the information that agents hold on the domain size of other agents. On the
other hand, the Nogood-triggered heuristic of [27] does not lose valid information and
moves agents with a potential of having a small domain to a higher position.

In order to maximize the min-domain property, a more flexible heuristic is proposed,
which violates the restrictions on the ordering of agents in [27]. We study changes of
order that move agents to a higher position, replacing agents that were ahead of them
including the first agent. This new type of heuristics is termed Retroactive ordering and
is based on a slightly modified version of ABT DO.

The results presented in the present paper show that moving the Nogood sender as
high as possible in the priority order is successful only if the domain size of agents
is taken into consideration. Our experiments show that the successful heuristics are
those that support a min-domain scheme in which agents are moved to a higher position
only if their current domain size is smaller than the current domain of agents they are
moved in front of. Moving an agent before the agents which are included in the Nogood
actually enlarges its domain. The best heuristic in the present paper is that agents which
generate a Nogood are placed in the new order between the last and the second last
agents in the generated Nogood. This heuristic is the asynchronous form of the Min-
Domain heuristic. Agents are moved to a higher position only if their domain is smaller
than the agents they pass on the way up. Our results on both random DisCSPs and
on structured DisCSPs show that the proposed heuristic improves the best results to
date [28] by a large factor.

Distributed CSPs are presented in Section 2. A description of Asynchronous back-
tracking with dynamic ordering (ABT DO) and its best heuristic is presented in Sec-
tion 3. Section 4 presents an investigation of the existing heuristics and offers rea-
sons for their performance in previous papers. Section 5 present the general scheme
of retroactive heuristics for ABT DO and a correctness proof. An extensive experi-
mental evaluation, which compares standard and retroactive heuristics of ABT DO is
in Section 7. The experiments were conducted on randomly generated DisCSPs and
on Course Scheduling problems. Section 8 presents a discussion of the relation between
the experimental results and the min-domain heuristic.

2 Distributed Constraint Satisfaction

A distributed constraint satisfaction problem - DisCSP is composed of a set of k agents
A1, A2, ..., Ak. Each agent Ai contains a set of constrained variables Xi1 , Xi2 , ..., Xini

.
Constraints or relations R are subsets of the Cartesian product of the domains of
the constrained variables. For a set of constrained variables Xik

, Xjl
, ..., Xmn , with

domains of values for each variable Dik
, Djl

, ..., Dmn , the constraint is defined as
R ⊆ Dik

× Djl
× ... × Dmn . A binary constraint Rij between any two variables

Xj and Xi is a subset of the Cartesian product of their domains; Rij ⊆ Dj × Di. In
a distributed constraint satisfaction problem DisCSP, constrained variables can belong
to different agents [25,21]. Each agent has a set of constrained variables, i.e. a local
constraint network.

An assignment (or a label) is a pair < var, val >, where var is a variable of some
agent and val is a value from var’s domain that is assigned to it. A compound label
(or a partial solution) is a set of assignments of values to a set of variables. A so-
lution P to a DisCSP is a compound label that includes all variables of all agents,

Min-Domain Ordering for Asynchronous Backtracking 761

that satisfies all the constraints. Agents check assignments of values against non-local
constraints by communicating with other agents through sending and receiving mes-
sages. Agents exchange messages with agents whose assignments may be in conflict [2].
Agents connected by constraints are therefore called neighbors. The ordering of agents
is termed priority, so that agents that are later in the order are termed “lower priority
agents” [24,2].

The following assumptions are routinely made in studies of DisCSP s and are as-
sumed to hold in the present study [24,2].

1. All agents hold exactly one variable.
2. Messages arrive at their destination in finite time.
3. Messages sent by agent Ai to agent Aj are received by Aj in the order they were

sent.

3 ABT with Dynamic Ordering

Each agent in ABT DO holds a Current order which is an ordered list of pairs. Ev-
ery pair includes the ID of one of the agents and a counter. Each agent can propose a
new order for agents that have lower priority (i.e. are in a lower position in the current
order), each time it replaces its assignment. This way the sending of an ordering pro-
posal message always coincides with an assignment message (an ok? message [26,27]).
An agent Ai can propose an order according to the following rules:

1. Agents with higher priority than Ai and Ai itself, do not change priorities in the
new order.

2. Agents with lower priority than Ai, in the current order, can change their priorities
in the new order but not to a higher priority than Ai itself (This rule enables a more
flexible order than in the centralized case).

The counters attached to each agent ID in the order list form a time-stamp. Initially,
all time-stamp counters are set to zero and all agents start with the same Current order.
Each agent Ai that proposes a new order, changes the order of the pairs in its own ordered
list and updates the counters as follows:

1. The counters of agents with higherpriority thanAi, according to theCurrent order,
are not changed.

2. The counter of Ai is incremented by one.
3. The counters of agents with lower priority than Ai in the Current order are set to

zero.

In ABT , agents send ok? messages to their neighbors whenever they perform an
assignment. In ABT DO, an agent can choose to change its Current order after
changing its assignment. If that is the case, besides sending ok? messages an agent
sends order messages to all lower priority agents. The order message includes the
agent’s new Current order.

An agent which receives an order message must determine if the received order is
more updated than its own Current order. It decides by comparing the time-stamps
lexicographically. Since orders are changed according to the above rules, every two
orders must have a common prefix of agents’ IDs. The agent that performs the change
does not change its own position and the positions of higher priority agents.

762 R. Zivan, M. Zazone, and A. Meisels

When an agent Ai receives an order which is more up to date than its Current order,
it replaces its Current order by the received order. The new order might change the lo-
cation of the receiving agent with respect to other agents (in the new Current order). In
other words, one of the agents that had higher priority than Ai according to the old order,
now has a lower priority than Ai or vice versa. Therefore, Ai rechecks the consistency
of its current assignment and the validity of its stored Nogoods (the explanations for re-
moving values from its domain [26,27]) according to the new order. If the current assign-
ment is inconsistent according to the new order, the agent makes a new attempt to assign
its variable. In ABT DO agents send ok? messages to all constraining agents (i.e. their
neighbors in the constraints graph). Although agents might hold in theirAgent views as-
signments of agents with lower priorities, according to their Current order, they elimi-
nate values from their domain only if they violate constraints with higher priority agents.

A Nogood message (i.e. a message carrying a partial assignment which was found
to be inconsistent [26,27]) is always checked according to the Current order of the
receiving agent. If the receiving agent is not the lowest priority agent in the Nogood
according to its Current order, it sends the Nogood to the lowest priority agent and
sends an ok? message to the sender of the Nogood. This is a similar operation to that
performed in standard ABT for any unaccepted (inconsistent) Nogood [2].

4 Investigation of Asynchronous Heuristics

In this section weoffer explanations for the failureof themin-domain heuristicand thesuc-
cess of the Nogood-triggered heuristic when used in asynchronous backtracking [27,28].
Consider the example in Figure 1. The agents are ordered by their indices. Each agent
has a single variable and three values, a, b and c, in its domain. The eliminated values are
crossed and each points to its eliminating explanation (i.e. the assignment which caused
its removal). The circled values represent the current assignments. In this example, agent
A5 has exhausted its domain and must create a Nogood. The Nogood it generates in-
cludes the assignments of A1 and A2 therefore the Nogood is sent to A2. According to
the rules of the ABT DO algorithm agent A2 can reorder agents A3, A4 and A5. Now,
if it will reorder them according to their current domain sizes then A3 and A4 will switch
places. But, since both of the values eliminated from the domain of A4 are in conflict with
the assignment of A3 then after they change places, these values will be returned to the
domain of A4 and its domain size will be larger than the domain of A3.

In contrast, if A2 reorders according to the Nogood-triggered heuristic then the only
agent to change places is A5 which is moved to be after A2 and before A3. Now, after A2
replaces its assignment we get the situation in Figure 2. We can see that an agent with a
small domain was moved forward while the others kept their domain sizes and places.

The example demonstrates why the min-domain heuristic fails when used in asyn-
chronous backtracking. In asynchronous backtracking, all agents hold an assignment
throughout the search. Conflicts with these assignments effect the size of domains of
other agents. For each value which is removed from an agent’s domain an explanation
Nogood is stored. When an agent is moved in front of an agent whose assignment is
included in one of its Nogoods, this Nogood must be eliminated and the correspond-
ing value is returned to the domain. Thus, in contrast to sequential ordering algorithms,
in asynchronous backtracking the resulting domain sizes after reordering cannot be
anticipated by the ordering agent. The example demonstrates how this phenomena does
not affect the Nogood-triggered heuristic.

Min-Domain Ordering for Asynchronous Backtracking 763

Fig. 1. Heuristics example before backtrack

Fig. 2. After reordering using the NG-triggered heuristic

Following the example one can see that the Nogood-triggered heuristic is successful
because in many cases it moves an agent with a small domain to a higher position.
Only values whose Nogood explanation includes the assignment of the culprit agent
are returned to the moving agent’s domain. In fact, the agent can be moved up passed
the culprit, and as long as it does not pass the second last assignment in the Nogood its
domain size will stay the same. In Figure 2, Agent A5 is moved right after agent A2. Its
domain size is one, since the Nogoods of its other two values are valid. If A5 is moved
before A2 its domain size will stay the same as both eliminating Nogoods include only
the assignment of A1. However, if A5 will be moved in front of A1 then all its values
will return to its domain. This possibility of moving an agent with a small domain
beyond the culprit agent to a higher position is the basic motivation for retroactive
ordering.

5 Retroactive Ordering Heuristics for ABT

In contrast to the rules of ABT DO of the previous section, the present paper proposes
a new type of ordering. The new type of ordering can change the order of agents with
higher priority than the agent which replaces its assignment. A retroactive heuristic
would enable moving the Nogood sender to a higher position than the Nogood receiver.
In order to preserve the correctness of the algorithm, agents must be allowed to store
Nogoods. In order to generate a general scheme for retroactive heuristics, one can

764 R. Zivan, M. Zazone, and A. Meisels

define a global space limit for the storage of Nogoods. The specific realization is to
limit the storage of Nogoods that are smaller or equal to some predefined size k.

The proposed ordering heuristic is triggered by the sending of a Nogood. The re-
ordering operation can be generated by either the Nogood generator or by the Nogood
receiver (but not by both). In contrast to [27,28] we choose the Nogood sender to be the
one to reorder. This is since the only agent which can lose a relevant Nogood as a re-
sult of the reordering is the Nogood sender (the only one moving to a higher position).
Therefore, since it is aware of its own state and the others do not lose information, the
Nogood sender is the best candidate for selecting the new order.
The new order is selected according to the following rules:

1. The Nogood generator can be moved to any position in the new order.
2. If the Nogood generator is moved to a position which is before the second last in

the Nogood (the one before the culprit) all the agents included in the Nogood must
hold the Nogood until the search is terminated.

3. Agents with lower priority than the Nogood receiver can change order but not move
in front of it (as in standard ABT DO).

According to the above rules, agents which detect a dead end are moved to a higher
position in the priority order. If the length of the created Nogood is larger than k, they
can be moved up to the place that is right after the agent which is the last to be included
in the Nogood according to the current order and is not the culprit (i.e. second last in
the Nogood).

If the length of the created Nogood is smaller or equal to k, the sending agent can be
moved to a position before all the participants in the Nogood and the Nogood is sent
and saved by all of them. In the extreme case where k is equal to the number of agents
in the DisCSP (i.e. k = N), the Nogood sender can always move to be first in the
priority order and the resulting algorithm is a generalization of AWC [24].

Figures 3 and 4 present the code of Retroactive ABT DO. The difference from
standard ABT DO in the code performed when a Nogood is received (Figures 3) de-
rives from the different possible types of Nogoods. A Nogood smaller or equal to k
is actually a constraint that will be stored by the agent until the search is terminated.
In the case of Nogoods which are longer than k, the algorithm treats them as in stan-
dard ABT DO i.e. accepts them only if the receiver is the lowest priority agent in the
Nogood and the Nogood is consistent with the Agent view and current assignment
of the receiver. In any case of acceptance of a Nogood, the agent searches for a new
assignment only if it happens to be the lowest priority agent in the Nogood. As stated
above, our choice is that only the Nogood generator is allowed to change order.

Procedure backtrack (Figure 4) is largely changed in the retroactive heuristic version
of ABT DO. When an agent creates a Nogood it determines whether it is larger than
k or not. If it is larger then a single Nogood is sent to the lowest priority agent in the
Nogood in the same way as in ABT DO. Consequently, the agent selects a new order
in which it puts itself not higher than the second lowest priority agent in the Nogood.
When the Nogood is smaller or equal to k, if it is the first time this Nogood is generated,
the Nogood is sent to all the agents included in the Nogood and the agent moves itself
to an unlimited position in the new order (In this case the function choose new order is
called with no limitations). In both cases, order messages are sent to all the lower priority
agents in the new order. The assignment of the lowest priority agent in the Nogood

Min-Domain Ordering for Asynchronous Backtracking 765

when received (ok?, (xj , dj) do:
1. add (xj , dj) to agent view;
2. remove inconsistent nogoods;
3. check agent view;

when received (order, received order) do:
1. if (received order is more updated than Current order)
2. Current order ← received order;
3. remove inconsistent nogoods;
4. check agent view;

when received (nogood, xj , nogood)
1. old value ← current value
2. if (nogood contains an agent xk

with lower priority than xi and nogood.size > K)
3. send (nogood, (xi, nogood)) to xk;
4. else
5. if (nogood consistent with {Agent view∪

current assignment} or nogood.size ≤ K)
6. store nogood;
7. if (nogood contains an agent xk that is not its neighbor)
8. request xk to add xi as a neighbor;
9. add (xk, dk) to agent view;
10 if(xi is with lowest priority in nogood)
11. check agent view;
12. if(old value = current value)
13. send (ok?, (xi, current value)) to xj ;

Fig. 3. Retroactive ABT DO algorithm (first part)

is removed from the Agent view, the relevant Nogoods are removed and the agent
attempts to re-assign its variable by calling check agent view.

Procedure check agent view (Figure 3)is slightly changed from that of ABT DO
[28] since the change of order in the new scheme is perfor med by the Nogood sender
and not by its receiver.

6 Correctness of Retroactive ABT DO

In order to prove the correctness of Retroactive ABT DO we assume the correctness of
the standard ABT DO algorithm (see proof in [28]) and prove that the changes made
for retroactive heuristics do not damage its correctness. We first prove the case for no
Nogood storage (k = 0):

Theorem 1. Retroactive ABT DO is correct when k = 0.

There are two differences between standard ABT DO and Retroactive ABT DO with
k = 0. First, order is changed whenever a Nogood is sent and not when an assignment
is replaced. This change does not make a difference in the correctness since when a
Nogood is sent there are two possible outcomes. Either the Nogood receiver replaces
its assignment, which makes it effectively the same as in standard ABT DO, or the
Nogood is rejected. A rejected Nogood can only be caused by a change of assignment

766 R. Zivan, M. Zazone, and A. Meisels

procedure backtrack
1. nogood ← resolve inconsistent subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. select (xj , dj) where xj has the lowest priority in nogood;
6. if(nogood.size > K)
7. Current order ← choose new order()

where xl has the second lowest priority in nogood;
8. send (nogood, xi, nogood) to xj ;
9. else if(is new(nogood))
10. new position ← unlimited
11. send (nogood, xi, nogood) to all agents in nogood;
12. store sent nogood;
13. Current order ← choose new order(xl)
14. send (order,Current order) to lower priority agents;
15. remove (xj , dj) from agent view;
16. remove all nogoods containing (xj , dj);
17. check agent view;

procedure check agent view
1. if(current assignment is not consistent with all

higher priority assignments in Agent view)
2. if(no value in Di is consistent with all higher priority

assignments in Agent view)
3. backtrack;
4. else
5. select d ∈ Di where Agent view and d are consistent;
6. current value ← d;
7. send (ok?,(xi, d)) to neighbors;

Fig. 4. The Retroactive ABT DO algorithm (second part)

either of the receiving agent or of an agent with higher priority. In all of these cases,
the most relevant order is determined lexicographically. Ties which could not have been
generated in standard ABT DO, are broken using the agents indexes.

The second change in the code for k = 0 is that in Retroactive ABT DO a Nogood
sender can move to a position in front of the agent that receives the Nogood. Since
the Nogood sender is the only agent moving to a higher position, it is the only one
that can lose a Nogood as a result. However, the Nogood sender removes all Nogoods
containing the assignment of the Nogood receiver and it does not pass any other agent
contained in the Nogood. Thus, no information is actually lost by this change. More-
over, the number of times two agents can move in front of one another without a higher
priority agent changing its assignment is bounded by their domain sizes. �

Theorem 2. RetroactiveABT DO is correct when n ≥ k > 0.

In order to prove that RetroactiveABT DO is correct for the case that n ≥ k > 0 we
need to show that infinite loops cannot occur. In the case of Nogoods which are smaller
or equal to k the case is very simple. All agents involved in the Nogood continue to
hold it, therefore the same assignment can never be produced again. The number of
these Nogoods with a limited length is finite. In finite time the algorithm reaches a state

Min-Domain Ordering for Asynchronous Backtracking 767

in which no permanent Nogoods are added. In this state, agents do not move in front
of the second last in the Nogoods generated and the previous proof holds. �

7 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-
putation [12,24], and communication load, in the form of the total number of messages
sent [12].

Non concurrent steps of computation, are counted by a method similar to the clock
synchronization algorithm of [11]. Every agent holds a counter of computation steps.
Every message carries the value of the sending agent’s counter. When an agent receives
a message it stores the data received together with the corresponding counter. When the
agent first uses the received counter it updates its counter to the largest value between
its own counter and the stored counter value which was carried by the message [29]. By
reporting the cost of the search as the largest counter held by some agent at the end of
the search, a measure of non-concurrent search effort that is close to Lamports logical
time is achieved [11]. If instead of steps of computation, the number of non concurrent
constraint checks is counted (NCCCs), then the local computational effort of agents
in each step is measured [13,29].

The first set of experiments was conducted on random networks of constraints of n
variables, k values in each domain, a constraints density of p1 and tightness p2 (which
are commonly used in experimental evaluations of CSP algorithms [19,15]). The con-
straint networks were generated with 20 agents (n = 20) each holding exactly one
variable, 10 values for each variable (k = 10) with two different constraints densities
p1 = 0.4 and p1 = 0.7.. The tightness value p2, is varied between 0.1 and 0.9, to cover
all ranges of problem difficulty. For each pair of fixed density and tightness (p1, p2) 50
different random problems were solved by each algorithm and the results presented are
an average of these 50 runs.

In order to confirm the dependency of the performance on the size of the current
domain of the moved agents, we compared ABT DO with ABT DO with a retroac-
tive heuristic in which agents are not allocated any additional Nogood storage. Agents
include in their messages the size of their current domains. This information is stored
in the agent’s Agent views (as in [28]). A Nogood generator moves itself to be in a
higher position than the culprit agent but it moves in front of an agent only if its current
domain is smaller than the domain of that agent. Otherwise, it places itself right after
the culprit agent as in standard ABT DO.

The Left Hand Side (LHS) of Figure 5 presents the results in NCCCs for ABT DO
and Retroactive ABT DO with the above heuristic. The retroactive version of
ABT DO (depicted in the figures as min-domain) improves the run-time performance
of ABT DO (depicted as ABT DO NG). In order to emphasize the relation to the
Min-Domain property, a third line in Figures 5, 6 and 8 represents retroactive ABT DO
without checking the domain sizes (depicted in the figures as After Second Last). This
version of retroactive ABT DO was the slowest among the three. Similar results for
the number of messages sent are presented on the Right Hand Side (RHS) of Figure 5.
In the case of network load, both versions of Retroactive ABT DO send less mes-
sages than standard ABT DO. For high density problems the difference between the
algorithms is similar but smaller (Figure 6).

768 R. Zivan, M. Zazone, and A. Meisels

Fig. 5. Non concurrent constraint checks performed and messages sent by Retroactive ABT DO
and ABT DO on low density DisCSPs (p1 = 0.4)

Fig. 6. Non concurrent constraint checks performed and messages sent by Retroactive ABT DO
and ABT DO on high density DisCSPs (p1 = 0.7)

In order to further demonstrate the dependency of the domain size of agents on the
success of the selected heuristic we performed an additional experiment on random
problems in which the size limit for keeping Nogoods is varied1. A Nogood generator
which created a Nogood of length larger than k places itself right after the Nogood re-
ceiver as in standard ABT DO. When the Nogood generator creates a Nogood smaller
or equal to k, it places itself first in the priority order and sends the generated Nogood
to all the participating agents. In the case of k = n the resulting algorithm is exactly
AWC. In the case of k = 0 the resulting algorithm is standard ABT DO. The LHS
of Figure 7 presents the number of NCCCs performed by the algorithm with k equal
to 0, 1, 3 and n (n = 15). The results show similar performance when k is small. The
performance of the algorithm deteriorates when k = 3 and the slowest performance is
when k = n. Similar results in the number of messages are presented on the RHS of
Figure 7.

The fact that a larger storage which enables more flexibility of the heuristic actually
causes a deterioration of the performance might come as a surprise. However, one must

1 In this experiment the problems were smaller (n = 15) since the algorithms run slower.

Min-Domain Ordering for Asynchronous Backtracking 769

Fig. 7. Non concurrent constraint checks performed and messages sent by Retroactive ABT DO
with different limits on Nogood size (p1 = 0.4)

Fig. 8. Non concurrent constraint checks performed and messages sent by Retroactive ABT DO
and ABT DO on Random Course Scheduling Problems

examine the effect of the specific heuristic used on the size of the domains of the agents
which are moved up in the order of priorities. An agent creates a Nogood when its
domain empties. After sending the Nogood it removes the assignment of the culprit
agent from its Agent view and returns to the domain only values whose eliminating
Nogood included the removed assignment. When the agent is moved in front of other
agents whose assignments were included in the generated Nogood it must return more
values to its domain (the values whose explanation Nogood included the assignment of
the agent which was passed). This of course does not happen for the case of a Nogood
of size one and that is why for k = 1 we get better results. Thus, moving an agent as
high as possible in the priority order actually results in moving upwards an agent with
a larger domain.

In the next set of experiments, the successful versions of ABT with retroactive dy-
namic ordering were compared on realistic structured problems. The generated prob-
lems were course scheduling in which each variable assigned to an agent represents a
single course which is taken by a number of students. Two variables are constrained if
there is a student attending both courses. The constraints are arrival constraints, i.e. if
the length of a course is t1 and the time to get from one course to the other is t2, then

770 R. Zivan, M. Zazone, and A. Meisels

the beginnings of each two constrained courses must satisfy: ct1 − ct2 ≥ t1 + t2. This
problem is equivalent to the published Meeting Scheduling Problems in which each
agent holds exactly one variable [7]. For a detailed description of how a large random
benchmark of problems with these realistic properties can be produced the reader is
referred to [7]. The results presented in Figure 8 show clearly that the advantage of the
retroactive heuristic which takes into account the domain sizes is more pronounced for
structured DisCSPs. Furthermore, on tight problems, the performance of the version of
retroactive ABT DO which does not take the domain sizes deteriorates.

8 Discussion

The results in the previous section show clearly the relation between the examined
heuristics and the Min-Domain property of the generated search tree. A well known
fact from centralized CSP algorithms [10,6] and from DisCSP algorithms with a
sequential assignment protocol [5] is that the Min-Domain heuristic is very powerful
and improves the run of the same algorithms using a static order. If we investigate the
Nogood-triggered heuristic of [27] we can see that in most cases this heuristic moves
to higher priority, agents with smaller domains. This is because an agent whose domain
was exhausted returns to its domain, after sending the Nogood, only the values in con-
flict with the assignment of the culprit agent. Thus, only a small number of values are
returned to its domain. It is not surprising that this heuristic was found to be very suc-
cessful in [27,28]. On the other hand, when an agent is moved to a higher position than
the agents in the Nogood it discovered, it must return additional values to its domain.
This contradicts the properties of the min-domain heuristic and was found to perform
poorly in practice. The case of k = 1 did show an improvement since the last assign-
ment in a detected Nogood is removed from the Agent view of the agent which found
the Nogood anyway.

In our best performing heuristic, agents are moved higher in the priority order as
long as their domain size is smaller than the domains of the agents before them and
as long as they do not pass the second last in the Nogood they have generated, which
would result in returning more values to their domain. Since the agent moving to a
higher position is not in conflict with the assignments of agents it has moved in front of,
its move will not cause the loss of Nogoods and therefore the information it holds on
the size of the current domains of these agents remains valid. The retroactive ordering
version has improved the results of [27,28] by a factor of 2. In the case of structured
problems, this heuristic was found to improve the run of the standard ABT DO by an
even larger factor.

9 Conclusion

A general scheme for retroactive heuristics in Asynchronous Backtracking with dy-
namic agent ordering was presented. The flexibility of the heuristic is dependent upon
the amount of memory that agents are allowed to use. However, moving agents to the
highest position possible was found to deteriorate the performance of the algorithm.
The best heuristic, moves to a higher priority only agents whose variable’s domains are
small but avoid the return of values to domains as a result of reordering. This brings to
an extreme the exploitation of the Min-Domain property, and improves the run of the
best heuristic reported so far [27,28] by a large factor.

Min-Domain Ordering for Asynchronous Backtracking 771

References

1. Baker, A.B.: The hazards of fancy backtracking. In: Proceedings of the 12th National Con-
ference on Artificial Intelligence (AAAI ’94), Seattle, WA, USA, July 31 - August 4 1994,
vol. 1, pp. 288–293. AAAI Press, Stanford, California, USA (1994)

2. Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without adding
links: a new member in the abt family. Artificial Intelligence 161(1-2), 7–24 (2005)

3. Bessiere, C., Maestre, A., Messeguer, P.: Distributed dynamic backtracking. In: Proc. Work-
shop on Distributed Constraint of IJCAI01 (2001)

4. Bessiere, C., Regin, J.C.: Mac and combined heuristics: two reasons to forsake fc (and cbj?)
on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer,
Heidelberg (1996)

5. Brito, I., Meseguer, P.: Synchronous,asnchronous and hybrid algorithms for discsp. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

6. Dechter, R.: Constraint Processing. Morgan Kaufman, San Francisco (2003)
7. Gent, I.P., Walsh, T.: Csplib: a benchmark library for constraints. In: Jaffar, J. (ed.) Principles

and Practice of Constraint Programming – CP’99. LNCS, vol. 1713. Springer, Heidelberg
(1999), http://csplib.cs.strath.ac.uk/

8. Ginsberg, M.L.: Dynamic Backtracking. J. of Artificial Intelligence Research 1, 25–46
(1993)

9. Hamadi, Y.: Distributed interleaved parallel and cooperative search in constraint satisfaction
networks. In: Proc. Intelligent Agent Technology, 2001 (IAT-01), Singappore (2001)

10. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14, 263–313 (1980)

11. Lamport, L.: Time, clocks, and the ordering of events in distributed system. Communication
of the ACM 2, 95–114 (1978)

12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)
13. Meisels, A., Razgon, I., Kaplansky, E., Zivan, R.: Comparing performance of distributed

constraints processing algorithms. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive
Agents and Multi-Agent Systems. LNCS (LNAI), vol. 2636, pp. 86–93. Springer, Heidelberg
(2003)

14. Meisels, A., Zivan, R.: Asynchronous forward-checking for distributed csps. Con-
straints 12(1) (2007)

15. Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction problems.
Artificial Intelligence 81, 81–109 (1996)

16. Silaghi, M.C.: Generalized dynamic ordering for asynchronous backtracking on discsps. In:
AAMAS 2006, DCR workshop, Hakodate, Japan (2006)

17. Silaghi, M.C., Faltings, B.: Asynchronous aggregation and consistency in distributed con-
straint satisfaction. Artificial Intelligence 161(1-2), 25–54 (2005)

18. Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Hybridizing abt and awc into a polynomial
space, complete protocol with reordering. Technical Report 01/#364, EPFL (May 2001)

19. Smith, B.M.: Locating the phase transition in binary constraint satisfaction problems. Artifi-
cial Intelligence 81, 155–181 (1996)

20. Smith, B.M., Grant, S.A.: Trying harder to fail first. In: European Conference on Artificial
Intelligence, pp. 249–253 (1998)

21. Solotorevsky, G., Gudes, E., Meisels, A.: Modeling and solving distributed constraint satis-
faction problems (dcsps). In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 561–562.
Springer, Heidelberg (1996)

22. Wallace, R.J.: Factor analytic studies of csp heuristics. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 712–726. Springer, Heidelberg (2005)

23. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satis-
faction problems. In: Proc. 1st Intrnat. Conf. on Const. Progr., Cassis, France, pp. 88–102
(1995)

http://csplib.cs.strath.ac.uk/

772 R. Zivan, M. Zazone, and A. Meisels

24. Yokoo, M.: Algorithms for distributed constraint satisfaction problems: A review. Au-
tonomous Agents & Multi-Agent Sys. 3, 198–212 (2000)

25. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction prob-
lem: Formalization and algorithms. IEEE Trans. on Data and Kn. Eng. 10, 673–685 (1998)

26. Yokoo, M., Hirayama, K.: Distributed Constraint Satisfaction Problems. Springer, Heidel-
berg (2000)

27. Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on discsps. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 32–46. Springer, Heidelberg (2005)

28. Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on discsps. Con-
straints 11(2,3), 179–197 (2006)

29. Zivan, R., Meisels, A.: Message delay and asynchronous discsp search. Archives of Control
Sciences 16(2), 221–242 (2006)

Answer Set Optimization for and/or

Composition of CP-Nets: A Security Scenario�

Stefano Bistarelli1,2, Pamela Peretti1, and Irina Trubitsyna3

1 Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
{bista,peretti}@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

3 DEIS Università della Calabria, Rende, Italy
irina@deis.unical.it

Abstract. Defence trees are used to represent attack and defence strate-
gies in security scenarios; the aim in such scenarios is to select the best set
of countermeasures have to be applied to stop all the vulnerabilities. To
represent the preference among the possible countermeasures of a given
attack, defence trees are enriched with CP-networks (CP-net for short).
However, for complex trees, composing CP-nets could be not always ef-
fective. In this paper we overcome these limitations by transforming each
CP-net in an Answer Set Optimization (ASO) program. The ASO pro-
gram, representing the overall scenario, is a special composition of the
programs associated to each branch of the defence tree. The best set of
countermeasure able to mitigate all the vulnerabilities is then obtained
by computing the optimal answer set of the corresponding ASO program.

1 Introduction

Security has become today a fundamental part of the enterprise investment. In
fact, more and more cases are reported showing the importance of assuring an
adequate level of protection to the enterprise’s assets. In order to focus the real
and concrete threat, a risk management process is needed to identify, describe
and analyze the possible vulnerabilities that have to be eliminated or reduced.
The final goal of the process is to make security managers aware of the possible
risks, and to guide them toward the adoption of a set of countermeasures which
can bring the overall risk under an acceptable level.

Defence trees, DT [3], have been introduced as a methodology for the analysis
of attack/defence security scenarios. A DT is an and-or tree, where leaves node
represent the vulnerabilities and the set of countermeasures available for their
mitigation, and nodes represent attacks composed by a set of actions that have
to be performed as a whole, and or nodes represent attacks that can succeed
also by completing only one of their child action. Notice that to defeat and
attacks it is enough to patch one of the vulnerabilities (by selecting a single
� This paper is partially supported by the MIUR PRIN 2005-015491.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 773–781, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

774 S. Bistarelli, P. Peretti, and I. Trubitsyna

countermeasure), whilst to stop or attacks, one countermeasure for each of the
actions composing the attack has to be selected.

The overall goal is to use the defence tree representation for the selection
of the best set of countermeasures (w.r.t. specific preference criteria such as
cost, efficiency, etc.), that can stop all the attacks to the system. To guide the
selection, CP-nets [5] have been proposed to model preferences over attacks
and countermeasures [4]. However, CP-nets are a graphical formalism that is
good and elegant for representing small scenarios, but not so effective for big
and complex scenarios. In particular, the methodology proposed in [4] aims at
composing together the CP-nets associated to each branch of the tree. Each CP-
net, in turn, represents the preferences among the countermeasure able to stop
a specific attack.

In this paper the preference among countermeasures and the dependency be-
tween attacks and countermeasures, represented as a CP-net, are translated in
answer set optimization (ASO) [8] programs. The and and or composition of the
branch is then obtained by a syntactic composition of the ASO programs, whose
semantics completely respects the intended meaning given in [4]. The semantics
of the obtained ASO program provides a set of ordered answer sets representing
the ordered sets of countermeasure to be adopted. To deal with ordered attacks
(from the more to the less dangerous), the model is extended by introducing
a corresponding rank among the preference rules of an ASO program. In this
case, a preference cycle among countermeasure could be generated in the result-
ing CP-net. The use of ranked ASO program avoids this problem; in fact, the
introduction of meta-preferences gives precedence to the adoption of counter-
measures covering the more dangerous of the attacks (and removing in this way
the possibility to obtain a cycle).

2 Defence Tree

Defence trees [3] are an extension of attack trees [12] and are used to represent
attack strategies that can be used a mitigation factor.

The root of the tree is associated with an asset of the IT system under consid-
eration and represents the attacker’s goal. Leaf nodes in the attack tree represent
simple subgoals which lead the attacker to damage the asset by exploiting a sin-
gle vulnerability. Non-leaf nodes (including the tree root) can be of two different
types: or-nodes and and-nodes. Subgoals associated with or-nodes are completed
as soon as any of its child nodes is achieved, while and-nodes represent subgoals
which require all of its child nodes to be completed (in the following we draw
an horizontal line between the arcs connecting an and-node to its children to
distinguish it from an or-node). The standard attack tree is then enriched by
decorating every leaf node with a set of countermeasures. Each countermeasure
associated with a leaf node represents a possible way of mitigating risk in an
attack scenario where that specific vulnerability is used.

Notice that in order to mitigate the risks deriving from an or-attack, the
system administrator has to introduce into the system a countermeasure for

ASO for and/or Composition of CP-Nets 775

a1 a2 a3 a4 a5 a6

C1

C2

C3

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

Steal
data stored
in a server

Attack the
system with a
remote login

Obtain
root privileges

Steal access
to a user with
root privileges

Corrupt
a user with

root privileges

Exploit an
on-line

vulnerability

Exploit a
web server

vulnerability

Update the
system

periodically

Separate the
contents on

the server

Stop
suspicious

attachment

Change the
password

periodically

Log out the pc
after the use

Add an
identification

token

Add an
identification

token

Distribute
responsab.

among users

Motivate
employees

Use an
anti-virus
software

Employ a
security guard

Install a
security door

Install a
safety lock

Access to
the server’s

room

Steal the
server

Go out
unobserved

Install a video
survellaince
equipment

Fig. 1. An example of defence tree

each possible action of the branch. To mitigate the risks associated with an and-
attack, instead, it is enough to introduce a countermeasure for one of the attack
actions in the and-attack to stop the entire attack.

In the following example we use a defence tree to model an attack/defence
scenario for an organization’s IT system.

Example 1. An enterprise’s server is used to store information about customers. Fig-

ure 1 shows the corresponding attack/defence scenario: rounded-box nodes denote the

attack strategies and the different actions the attacker needs to perform, while square

box denote the different countermeasures the system administrator can adopt. �

3 Answer Set Optimization Programs

Prioritized reasoning is an important extension of logic programming, that intro-
duce preference on partial and complete solutions. A variety of approaches was
proposed in the literature (see [10] for a survey of this topic). In this work we
uses two approaches for representing and reasoning with preference statements:
ASO and CR-prolog2.

The ASO approach uses preference rules in order to express the preference
relations among the combinations of atoms and introduces the preference order
among these rules. Moreover a tool implementing the ASO semantics and its
extensions, CHOPPER, has been recently proposed in [9].

An alternative way consists in the use of CR-prolog [1], a knowledge represen-
tation language based on the answer set semantic enriched with the introduction
of consistency-restoring rules that allows a formalization of events or exceptions
that are unlikely, unusual, or undesired. Its extension, CR-prolog2 [2] admits the
ordered disjunction in the head of rules and can be used to represent preferences
intended as strict preferences (as in CR-prolog) or desires (LPOD [7]).

An answer set optimization program (ASO) is a pair 〈P , Φ〉, where P is an
answer set program [11], called Generating Program, and Φ is called Preference
Program and consists of a finite set of preference rules of the form � : C1 >
· · · > Ck ← body, where body is a conjunction of literals, i.e. atoms or negation
of atoms, and Cis are boolean combinations of literals, i.e formulas built of atoms

776 S. Bistarelli, P. Peretti, and I. Trubitsyna

by means of disjunctions, conjunctions, strong (¬) and default (not) negation
with the restriction that strong negation is allowed to appear only in front of
atoms and default negation only in front of literals.

A preference rule � ∈ Φ introduces a preference order between C1, ..., Ck: Ci
is preferred to Cj , for i < j and i, j ∈ [1..k]. Thus Φ determines a preference
ordering on the answer sets described by P .

Let Φ = {�1, ..., �n} be a preference program and S be an answer set, then S
induces a satisfaction vector VS = (vS(�1), ..., vS(�n)) where: a) vS(�j) = I, if
�j is Irrelevant to S, i.e. (i) the body of �j is not satisfied in S or (ii) the body of
�j is satisfied, but none of the Cis is satisfied in S. b) vS(�j) = min{i : S |= Ci},
otherwise. The satisfaction vectors are used to compare the answer sets.

Let S1 and S2 be two answer sets, then (i) S1 ≥ S2 if VS1 ≤ VS2 , i.e. if
vS1(�i) ≤ vS2(�i) for every i ∈ [1..n]; (ii) S1 > S2 if VS1 < VS2 , i.e. if VS1 ≤ VS2

and for some i ∈ [1..n] vS1(�i) < vS2(�i).
A set of literals S is an optimal answer set of an ASO program 〈P , Φ〉 if S is an
answer set of P and there is no answer set S′ of P such then S′ > S.

The ASO strategy is further extended by introducing meta-preferences among
preference rules: a ranked ASO program is a sequence 〈P , Φ1, ..., Φn〉 consisting of
a generating program P and a sequence of pairwise disjoint preference programs
Φi. The rank of a rule r ∈ Φ1 ∪ · · · ∪ Φn, denoted rank(r), is the unique integer i
for which r ∈ Φi.

Intuitively, the rank of the preference rule determines its importance: prefer-
ence rules with lower rank are preferred over preference rules with higher rank.
The optimal answer sets can be obtained in the following way: firstly, all answer
sets optimal w.r.t. Φ1 have to be selected; then, have to be selected the ones
optimal w.r.t. Φ2; and so on. More formally, S1 ≥rank S2 if for every preference
rule r′ such that vS1(r′) ≤ vS2(r′) does not hold, there is a rule r′′ such that
rank(r′′) < rank(r′) and vS1(r′′) < vS2(r′′).

4 CP-Defence Trees

CP-networks [5] are a graphical formalism for representing and reasoning with
preference statements which proposes a ceteris paribus (all else being equal) in-
terpretation. The combination of defence trees and CP-nets has been recently
proposed [4] as a methodology to help the system administrator to analyze a
security scenario and to give him a model to represent preferences among coun-
termeasure.

The resulting structure, called CP-defence tree, integrating the CP-net de-
scribed in Figure 2 is presented in Figure 2(c). The CP-net graph G in Fig-
ure 2(a) highlights that the preference over countermeasures is conditioned by
the corresponding attack. CPT (A) describes the preference of protecting from
each attack ai ∈ A: the system administrator prefers to protect the action a2
to the action a1, a1 to the action a6 and so on. CPT (C) collects the prefer-
ences among the countermeasures, that protect each action. For instance, for
the action a3 the countermeasure c6 is preferable to c7.

ASO for and/or Composition of CP-Nets 777

A

C

G

(a)

a2 Â a1 Â a6 Â a5 Â a3 Â a4

a1 c1 Â c2 Â c3
a2 c5 Â c3 Â c4
a3 c6 Â c7
a4 c8 Â c9
a5 c11 Â c10
a6 c13 Â c12

CPT(A)

CPT(C)

(b)

c1

c2

c3

c10

c11

c12

c13

c6

c7

c8

c9

c5

c3

c4

a5 a6a3 a4a1

a1,2 a3,4

a2

a5,6

(c)

Fig. 2. A CP-defence tree

Considering Figure 2(c) the preference order over actions, described in
CPT (A), is represented with dotted arrows; while conditional preferences over
countermeasures, described in CPT (C), are represented by using solid arrows.
The arrows are directed from the less preferred to the more preferred outcome.

Thus, given an IT system represented as the root of the tree, the corresponding
CP-defence tree gives a graphical representation of the attack strategies that
an attacker can pursue to damage the system, the different actions composing
each attack and the countermeasures to be activated to stop them. Moreover, a
preference order among attacks and countermeasures is highlighted.

4.1 and/or Composition of Attacks

In order to find the preferred defence strategy, the approach, consisting in the
composition of preferences, was proposed in [4]. More in details, two different
methods establishing the preference order among the countermeasures able to
stop an and-attack and an or-attack were presented.

and-composition. To protect the system from an attack obtained by an and-
composition of actions, the system administrator can stop any one of them. When
an order among attacks is given the resulting strategy consist in the selection of
the best countermeasure for the most dangerous of the actions.

Sometime not only the best countermeasure have to be activated but some
of them (for instance because the countermeasure is only able to cover part of
the attack). In this case the system administrator need to consider not only the
best countermeasure, but the overall resulting countermeasure order.

More formally, given the and-attack, composed by two actions u and v, where
u 	 v, and given the sets of countermeasures Du and Dv, protecting from u and
v respectively, and two partial order (Du,	u) and (Dv,	v), the and-composition
of preferences is a new partial order (Du∪Dv,	v∧v), where a countermeasure c is
preferred to a countermeasure c′ if (i) it is preferred in at least one of the partial
orders (Du,	u), (Dv,	v), i.e. c 	u c′ or c 	v c′, otherwise (ii) c is the worst
countermeasure in (Du,	u), while c′ is the best countermeasure in (Dv,	v), i.e
∀x ∈ Du, x �	u c and ∀y ∈ Dv, c′ �	v y.

Thus, the and-composition, corresponding to the and-attack, preserves the
partial orderings among the countermeasures, corresponding to each attack ac-

778 S. Bistarelli, P. Peretti, and I. Trubitsyna

c

b

a

x

c

a

y Pand r1 : root ←
r2 : x ∨ y ← root
rx2 : a ∨ b ∨ c ← x
ry2 : a ∨ c ← y
�x : a > b > c ← x
�y : c > a ← y

Por r1 : root′ ←
r2 : x ← root′

r3 : y ← root′

rx2 : a ∨ b ∨ c ← x
ry2 : a ∨ c ← y
�x : a > b > c ← x
�y : c > a ← y

Fig. 3. An example of and/or attacks (with cycle) and the corresponding ASO pro-
grams

tion and introduces the bridge preference rule, connecting the corresponding
orderings. As an example consider the defence tree in the left side of Figure 3,
and consider an and-attack root, composed by two actions x and y, where y 	 x.
The order obtained by and-composition is c 	 a 	 b 	 c. We can notice that
in this case a cycle is obtained. Since the countermeasure of the worst attacks
have to be considered as preferred, the cycle is broken by removing one of the
preference among the countermeasure of the less dangerous attack x. More pre-
cisely, the preference relations, described in (Dy,	y) has to be considered as
more important, and the relation b 	x c, generating (transitively) the conflict,
has to be omitted.

As shown [6] not always is possible determine the most preferred outcome
from a CP-net with an inconsistent preference order (i.e. cycle). In order to
solve this problem we use the preference order over attacks in order to delete
some edges from the induced preference graph and break the cycle. If we don’t
use this information we can obtain more that one outcome and we can’t select
the most preferred countermeasure to stop an and-attack.

Let us now to consider how to model this by using ASO programs.

Example 2. Consider the attack action depicted in left side of Figure 3, the attack

action x and the preference order over the corresponding countermeasures a, b, and c

generate the following ASO program 〈Px, Φx〉:
Px rx1 : x ←, rx2 : a ∨ b ∨ c ← x Φx �x : a > b > c ← x

where the rule rx1 and rx2 introduce the action and the possible countermeasures,

while �x represents the preference order among them. The same result is obtained for

the attack action y, the corresponding 〈Py, Φy〉 program is:

Py ry1 : y ←, ry2 : a ∨ c ← y Φy �y : c > a ← y

In order to model the and-node root, a new program 〈Pand, Φy , Φx〉 is generated com-

bining the rules in 〈Px, Φx〉 and 〈Py, Φy〉 (see Figure 3). Pand introduces two new rules:

r1 represents the root action, while r2 combines the action x and y in such way that

only one of them must be stopped. The others rules are a added without any change.

The answer sets of Pand are M1 = {w, x, a}, M2 = {w, x, b}, M3 = {w, x, c}, M4 =

{w, y, c} and M5 = {w, y, a}. In order to establish the optimal answer set, the ASO

semantics firstly constructs the satisfaction vectors VM1 = [∞, 1]1, VM2 = [∞, 2],

VM3 = [∞, 3], VM4 = [1, ∞] and VM5 = [2, ∞], reporting the satisfaction degree of

1 In this application the irrelevance corresponds to the worst case.

ASO for and/or Composition of CP-Nets 779

each preference rule in the answer sets. Considering firstly �y and then �x the order

among the answer set is M4 > M5 > M1 > M2 > M3
2. Concluding, the new order

among the countermeasures is c > a > b. �

or-composition. The second method, called or-composition, was used to de-
termine a preference order in the selection of the countermeasures able to stop
an or-attack, i.e. an attack composed by a set of alternative actions one of which
has to be successfully achieved to obtain the goal. The protection from this kind
of attack consists in the protection from all the actions composing the or-attack.
Intuitively, the most preferred strategy has to select the best countermeasure for
each action or the countermeasure able to stop the bigger number of actions.

Again, in order to be able to select more than one countermeasure, a com-
plete order among all of them need to be created. More formally, given the
or-attack X , composed by k actions u1, . . . , uk, the sets of countermeasures
Du1 , . . . , Duk

protecting u1, . . . , uk respectively, and the orders among counter-
measure (Dui ,	ui) for i = {1, . . . , k}, then the or-composition is a new order
(DX ,	X). The order is defined over the set DX , whose elements C1, ..., Cn are
the sets of countermeasures covering all the attacks u1, ...uk, and 	X is defined
as follows: the set C is preferred to the set C′ if there is a permutation π such
that for all i ∈ [1, . . . , k], ci is not worst than c′π(i), i.e. for k = k′, ∃π s.t.
ci �≺ c′π(i). Notice also that when the same countermeasure is selected two times
(to cover two different attacks), we consider its presence only one time.

Using the logic programming and the ASO semantics we can determine the
preferred set of countermeasure faster than using the classical CP-net.

Example 3. As an example consider again the defence tree in the left side of Figure 3
and the or-attack root′ composed by three action x and y. The corresponding ASO
program 〈Por, Φy , Φx〉 is generated combing 〈Px, Φx〉, 〈Py, Φy〉 (see Figure 3). A new
rule r1, introduced in Por, represents root′, while the rules r2, r3 and r4 model the
or-attack, i.e. that all the three action must be stopped to stop the root.

The answer sets of Por are M1 = {root′, x, y, a} and M2 = {root′, x, y, c}3 and de-

scribes the application of two alternative sets of countermeasures {a} and {c}, protect-

ing from the or-attack. In order to establish the optimal answer set, the ASO semantics

firstly construct the satisfaction vectors VM1 = [1, 2] and VM2 = [2, 1]. Then it compares

these vectors, by firstly considering �y ∈ Φy, obtaining that VM2 < VM1 . Concluding,

M2 is the optimal answer set and {c} is the preferred set of countermeasures. �

Implementation. Given an IT system root and the corresponding CP-defence
tree T , the selection of the preferred defence strategy can be modelled by means
of the corresponding logic program with preferences, then an ASO program
2 Notice that both the answer set M1 and M5 contain countermeasure a. However, we

collect the countermeasure to be applied starting from the best model, so from M4

we collect c from M5 we collect a, and from M2 we collect b.
3 We reminded that the ASO semantics [8] only collect minimal answer set, so among

the set M1 = {root′, x, y, a} and M ′
1 = {root′, x, y, b, a} only M1 is considered because

M ′
1 is not minimal.

780 S. Bistarelli, P. Peretti, and I. Trubitsyna

solver can be used to automatically obtain the set of the best countermeasure.
We used for our security scenario analysis CPdt-Solver. CPdt-Solver is an
application-oriented version of CHOPPER [9], realizing ASO semantics over
the ranked answer set optimization program, under the assumption that I ≡ ∞.

The same scenarios can be represented also by using the CR-Prolog2 seman-
tics, the only difference is that the preference among the countermeasures and the
corresponding ordering can be written by using only one rule. An implementation
is available for download from http://www.krlab.cs.ttu.edu/Software/.

5 Conclusion

In this paper we use the ASO semantics as an instrument to represent and solve
the problem of countermeasure selection in a security scenario defined using
a defence tree and a CP-net. The CP-net is used to describe the dependency
among attacks and countermeasures, the preferences among the countermea-
sures, and (possibly) the order among attacks (depending from their seriousness
or other parameters), whilst the defense tree represent the scenario associating
each countermeasure to each attack action. The structure of the defence tree is
built bottom-up by connecting with and nodes actions to be performed at a whole
and with or node actions that by themselves can lead to a successful attack. In
particular, the composition of CP-net needed to deal with and/or nodes is sub-
stituted by a composition of the corresponding ASO program. The composition
of the ASO programs results extremely easy w.r.t. the composition of CP-net,
and automatically remove cycles that can be obtained with and-composition.

References

1. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
AAAI 2003. Int. Symp. on Logical Formalization of Commonsense Reasoning.
Spring Symposium Series, pp. 9–18 (2003)

2. Balduccini, M., Mellarkod, V.S.: Cr-prolog2: Cr-prolog with ordered disjunction.
In: ASP03 Answer Set Programming, vol. 78 (2003)

3. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense tree for economic evaluations of
security investment. In: 1st Int. Conf. on Availability, Reliability and Security
(ARES’06), pp. 416–423 (2006)

4. Bistarelli, S., Fioravanti, F., Peretti, P.: Using cp-nets as a guide for countermeasure
selection. In: ACM SAC2007. ACM Press, New York (2007)

5. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: Cp-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements.
JAIR 21 (2004)

6. Brafman, R.I., Dimopolous, Y.: Extended semantics and optimization algorithms
for cp-networks. Computational Intelligence 20(2), 218–245 (2004)

7. Brewka, G.: Logic programming with ordered disjunction. In: 18th Conf. on Arti-
ficial intelligence, pp. 100–105. American Association for AI (2002)

8. Brewka, G., Niemela, I., Truszczynski, M.: Answer set optimization. In: Proc. of
the 18th Int. Joint Conf. on Artificial Intelligence, pp. 867–872 (2003)

ASO for and/or Composition of CP-Nets 781

9. Caroprese, L., Trubitsyna, I., Zumpano, E.: Implementing prioritized reasoning in
logic programming. In: Proc. of the ICEIS (2007)

10. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Computational Intel-
ligence 20(2), 308–334 (2004)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databasesg. New Generation Computing 9, 365–385 (1991)

12. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s Journal (1999)

Uncertainty in Bipolar Preference Problems

Stefano Bistarelli1,2, Maria Silvia Pini3, Francesca Rossi3, and K. Brent Venable3

1 Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
2 Istituto di Informatica e Telematica, CNR, Pisa, Italy

Stefano.Bistarelli@iit.cnr.it
3 Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy

{mpini,frossi,kvenable}@math.unipd.it

Abstract. Preferences and uncertainty are common in many real-life problems.
In this paper, we focus on bipolar preferences and on uncertainty modelled via
uncontrollable variables. However, some information is provided for such vari-
ables, in the form of possibility distributions over their domains. To tackle such
problems, we eliminate the uncertain part of the problem, making sure that some
desirable properties hold about the robustness of the problem’s solutions and its
relationship with their preference. We also define semantics to order the solu-
tions according to different attitudes with respect to the notions of preference and
robustness.

1 Introduction

Bipolar preferences and uncertainty are present in many application fields, such as satel-
lite scheduling, logistics, and production planning. For example, in multi-agent prob-
lems, agents may express their preferences in a bipolar way, and variables may be under
the control of different agents. To give a specific example, just consider a conference re-
viewing system, where usually preferences are expressed in a bipolar scale. Uncertainty
can arise for the number of available conference rooms at the time of the acceptance
decision, and the goal could be to select the best papers while ensuring that they all can
be presented. In general, in many real-life situations agents express what they like and
what they dislike, thus often preferences are bipolar.

In this paper, bipolarity is handled via the formalism in [3]. Other formalisms can be
found in [8,1,4,5]. We choose to generalize to bipolar preferences the soft constraints
formalism [2] which is able to model problems with one kind of preferences (i.e., the neg-
ative preferences). Thus, each partial instantiation within a constraint will be associated
to either a positive or a negative preference.

Another important feature, which arises in many real world problems, is uncertainty.
We model uncertainty by the presence of uncontrollable variables. This means that the
value of such variables will not be decided by us, but by Nature or by some other agent.
Thus a solution will not be an assignment to all the variables but only to the controllable
ones. A typical example of uncontrollable variable, in the context of satellite scheduling,
is a variable representing the time when clouds will disappear. Although we cannot
choose the value for such uncontrollable variables, we have some information on the
plausibility of the values in their domains. In [7] this information, which is not bipolar,

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 782–789, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Uncertainty in Bipolar Preference Problems 783

is given by probability distributions. In this paper, we model this information by a
possibility distribution over the values in the domains of such variables. Possibilities are
useful when probability distributions are not available [11].

After defining formally bipolar preference problems with possibilistic uncertainty,
we define the notion of preference and robustness for the solutions of such problems,
as well as properties that they should respect, also in relation to the solution ordering.
We then concentrate on problems with totally ordered preferences defined over real
intervals, and we show how to eliminate the uncontrollable part of the problem by adding
new constraints on the controllable part to recall part of the removed information. This
approach is a generalization of the approach used in [9] to remove uncertainty from
problems with negative preferences only. The additional constraints are then considered
to define the robustness of the solutions. We define formally the preference and robustness
of the solutions, and we define some desirable properties related to such notions that the
solution ordering should have. Moreover, we introduce semantics that use such notions
to order the solutions, and we show that they satisfy the desired properties on the solution
ordering. In particular, they allow us to distinguish between highly preferred solutions
which are not robust, and robust but not preferred solutions. Also, they guarantee that,
if there are two solutions with the same robustness (resp., the same preference), then the
ordering is given by their preference (resp., robustness).

2 Background: Bipolar Preference Problems

Bipolar preference problems [3] are based on a bipolar preference structure, which
allows to handle both positive and negative preferences. This structure contains two
substructures, one for each kind of preferences.

When dealing with negative preferences, two main properties should hold: combi-
nation should bring to worse preferences, and indifference should be better than all the
other negative preferences. These properties can be found in a c-semiring [2], which is
the structure used to represent soft constraints. A c-semiring is a tuple (A, +, ×,0,1)
where: A is a set, 0,1 ∈ A, + and × are the additive and the combination operators.
Operator + induces a partial order, written ≤S, over A: a ≤S b iff a + b = b, 0 is its
minimum and 1 its maximum. When a ≤S b, we will say that b is better than a. Element
1 acts as indifference (in fact, ∀a ∈ A, a×1 = a), and ∀a, b ∈ A, a× b ≤ a, b. This in-
terpretation is natural when considering the weighted c-semiring (R+, min, +, +∞, 0),
where preferences are real positive numbers interpreted as costs, and thus as negative
preferences. Such costs are combined via the sum (+) and the best costs are the lower
ones (min). From now on, a c-semiring will be denoted as: (N, +n, ×n, ⊥n, �n).

When dealing with positive preferences, combination should bring to better prefer-
ences, and indifference should be lower than all the other positive preferences. These
properties can be found in a positive preference structure [3], that is a tuple (P, +p, ×p,
⊥p, �p), which is just like a negative one above, except that the combination op-
erator ×p returns a better element rather than a worse one. An example of a posi-
tive preference structure is (�+,max,sum,0,+∞), where preferences are positive real
numbers aggregated with sum and ordered by max (i.e., the best preferences are the
highest ones).

784 S. Bistarelli et al.

When we deal with both positive and negative preferences, the same properties de-
scribed above for a single kind of preferences should continue to hold. Moreover, all
the positive preferences must be better than all the negative ones and there should
exist an operator allowing for the compensation between positive and negative pref-
erences. A bipolar preference structure links a negative and a positive structure by
setting the highest negative preference to coincide with the lowest positive preference
to model indifference. More precisely, a bipolar preference structure [3] is a tuple (N ,
P, +, ×, ⊥, �, �) where, (P, +|P , ×|P , �, �) is a positive preference structure;
(N, +|N , ×|N , ⊥, �) is a c-semiring; + : (N ∪ P)2 −→ (N ∪ P) is an operator
s.t. an + ap = ap, ∀an ∈ N and ap ∈ P ; it induces a partial ordering on N ∪ P :
∀a, b ∈ P ∪ N , a ≤ b iff a + b = b; × : (N ∪ P)2 −→ (N ∪ P) (called the
compensation operator) is a commutative and monotonic operator. In the following,
we will write +n instead of +|N and +p instead of +|P . Similarly for ×n and ×p.
When × is applied to a pair in (N × P), we will sometimes write ×np. An example
of bipolar structure is the tuple (N=[−1, 0], P=[0, 1], +=max, ×, ⊥=−1, �=0, �=1),
where × is s.t. ×p= max, ×n=min and ×np=sum. Negative preferences are between
-1 and 0, positive preferences between 0 and 1, compensation is sum, and the order is
given by max.

A bipolar constraint is a constraint where each assignment of values to its variables
is associated to one of the elements in a bipolar preference structure. A bipolar CSP
(BCSP) 〈S, V, C〉 is a set of bipolar constraints C over a set of variables V defined on
the bipolar structure S.

We will sometimes need to distinguish between two kinds of constraints in a BCSP.
For this reason, we will use the notion of RBCSP, which is a tuple 〈S, V, C1, C2〉 such
that 〈S, V, C1 ∪ C2〉 is a BCSP.

Given a subset of variables I ⊆ V , and a bipolar constraint c = 〈def, con〉, the
projection of c over I , written c ⇓I , is a new bipolar constraint 〈def ′, con′〉, where
con′ = con ∩ I and def(t′) =

∑
{t|t↓con′=t′} def(t). In particular, the preference

associated to each assignment to the variables in con′, denoted with t′, is the best one
among the preferences associated by def to any completion of t′, t, to an assignment to
con. The notation t ↓con′ indicates the subtuple of t on the variables of con′.

A solution of a bipolar CSP 〈S, V, C〉 is a complete assignment to all variables in
V , say s. Its overall preference is ovpref(s) = ovprefp(s) × ovprefn(s) = (p1 ×p

. . . ×p pk)× (n1 ×n . . . ×n nl), where, for i := 1, . . . , k, pi ∈ P , for j := 1, . . . , l,
nj ∈ N , and ∃〈defi, coni〉 ∈ C s.t. pi = defi(s ↓coni) and ∃〈defj , conj〉 ∈ C s.t.
nj = def(s ↓conj). This is obtained by combining all the positive preferences associ-
ated to its subtuples on one side, all the negative preferences associated to its subtuples
on the other side, and then compensating the two preferences so obtained. This defi-
nition is in accordance with cumulative prospect theory [10] used in bipolar decision
making. A solution s is optimal if there is no other solution s′ with ovpref(s′) >
ovpref(s). Given a bipolar constraint c = 〈def, con〉 and one of its tuple t, it is pos-
sible to define two functions pos and neg as follows: pos(c)(t) = def(t) if def(t) ∈
P , otherwise pos(c)(t) = �, and neg(c)(t) = def(t) if def(t) ∈ N , otherwise
neg(c)(t) = �.

Uncertainty in Bipolar Preference Problems 785

3 Uncertain Bipolar Problems

Uncertain bipolar problems (UBCSPs) are characterized by a set of variables, which can
be controllable or uncontrollable, and by a set of bipolar constraints. Thus, a UBCSP is
a BCSP where some of the variables are uncontrollable. Moreover, the domain of every
uncontrollable variable is equipped with a possibility distribution, that specifies, for
every value in the domain, the degree of plausibility that the variable takes that value.
Formally, a possibility distribution π associated to a variable z with domain AZ is a
mapping from AZ to a totally ordered scale L (usually [0, 1]) s.t. ∀a ∈ AZ , π(a) ∈ L
and ∃ a ∈ AZ s.t. π(a) = 1, where 1 the top element of the scale L [11].

Definition 1 (UBCSP). An uncertain bipolar CSP is a tuple 〈S, Vc, Vu, Cc, Ccu〉, where

– S = (N, P, +, ×, ⊥, �, �) is a bipolar preference structure and ≤S is the ordering
induced by operator +;

– Vc = {x1, . . . xn} is a set of controllable variables;
– Vu = {z1, . . . zk} is a set of uncontrollable variables, where every zi ∈ Vu has

possibility distribution πi with scale [0, 1];
– Cc is the set of bipolar constraints that involve only variables of Vc

– Ccu is a set of bipolar constraints that involve at least a variable in Vc and a variable
in Vu and that may involve any other variable of (Vc ∪ Vu).

In a BCSP, a solution is an assignment to all its variables. In a UBCSP, instead, a solution
is an assignment to all its controllable variables.

An example of a UBCSP is presented in Figure 1 (a). It is defined by the tuple
〈S, Vc = {x, y}, Vu = {z1, z2}, Cc, Ccu}〉, where S is the bipolar structure considered
before, i.e., 〈[−1, 0], [0, 1], max, ×, −1, 0, 1〉, where × is s.t. ×p = max, ×n = min
and ×np = sum. The set of controllable variables is composed by x and y, while the
set of uncontrollable variables is composed by z1 and z2, which are characterized by
the possibility distributions π1 and π2. The set of constraints Cc contains 〈f, {x, y}〉,
while Ccu contains 〈q, {x, z1}〉 and 〈t, {x, z2}〉. Figure 1 (a) shows the positive and the
negative preferences within such constraints and the possibility distributions π1 and π2
over the domains of z1 and z2. Other parts of Figure 1 will be described later.

q(a,b) = +0.8

q(b,a) = −0.2
q(b,b) = +0.5
q(b,c) = +0.4

q(a,c) = −0.3

q(a,a) = −0.5

f(a,b) = −0.5
f(b,a) = +0.8
f(b,b) = +0.7

f(a,a) = −0.4
t(a,b) = −0.3
t(a,c) = +0.8

t(b,a) = +0.3
t(b,b) = −0.4
t(b,c) = +0.1

t(a,a) = −0.4

y

x

qp’’(a) = 0.3
qp’’(b) = 0.4

qp(a) = 0
qp(b) = 0

qn(b) = 0
qn(a) = 0

tp(a) = 0
tp(b) = 0

 qn’’(a) = −0.5
qn’’(a) = −0.2

y

f(a,b) = −0.5
f(b,a) = +0.8
f(b,b) = +0.7

f(a,a) = −0.4

 tn’’(a) = −0.4
tn’’(a) = −03

tn(a) = 0
tn(b) = 0

tp’’(a) = 0
tp’’(b) = 0.3

1a b c

1

0.6

z

1

.0.7

π

.
.

(b)

0.3
0.2

a b c

1

2

.

π2.
.

z

Dx=Dy={a,b}
Dz =Dz ={a,b,c}1 2

 z1

z2

x

r1

r2

r4

p1

p2

p3

p4

r3

s3=(y=a, x=b) pref(s3)=−0.5 rob(s3)=+0.1
s2=(y=b, x=a) pref(s2)=+0.8 rob(s2)=−0.2

s4=(y=b, x=a) pref(s4)=+0.7 rob(s4)=+0.1

s1=(y=a, x=a) pref(s1)=−0.4 rob(s1)=−0.2
(c)

(a)

Fig. 1. How to handle a UBCSP

786 S. Bistarelli et al.

4 Preference, Robustness, and Desirable Properties

Given a solution s of a UBCSP, we will associate a preference degree to it, written
pref(s), which summarizes all the preferences in the controllable part and that can be
obtained for some assignment to the uncontrollable variables decided by the Nature. It
is reasonable to assume that pref(s) belongs to the set of preferences in the considered
bipolar preference structure.

When we deal with UBCSPs, we have to consider another interesting aspect that
characterizes a solution, that is, its robustness with respect to the uncertainty, which
measures what is the impact of Nature on the preference obtained by choosing that
solution. The robustness of s will depend both on the preferences in the constraints
connecting both controllable and uncontrollable variables to s and on such possibility
distributions, and it is also reasonable that it will be an element of the bipolar preference
structure. This will allow us to use the operators of such a structure over the robustness
values. Before giving our definition of robustness of a solution s, that we will denote
with rob(s), we define two properties that such a definition should satisfy as in [6,9]. The
first one states that, if we increase the preferences of any tuple involving uncontrollable
variables, solution should have a higher value of robustness, the second one states that
the same result should hold if we lower the possibility of any value of the uncontrollable
variables.

Property 1. Given solutions sand s′ of a UBCSP, 〈S, Vc, Vu, Cc, Ccu〉, where every vi in
Vu is associated to a possibility distribution πi, if ∀ 〈def, con〉 ∈ Ccu and ∀a assignment
to the uncontrollable variables in con, def((s, a) ↓con) ≤S def((s′, a) ↓con), then it
should be that rob(s) ≤S rob(s′).

Property 2. Given a solution s of a UBCSP Qi = 〈S, Vc, Vu, Cc, Ccu〉. Assume vari-
ables in Vu are described by a possibility distribution πi, for i = 1, 2 s.t. ∀a assignment
to variables in Vu, π2(a) ≤ π1(a). Then it should be that robπ1(s) ≤S robπ2(s), where
robπi is the robustness computed in the problem with possibility distribution πi.

To understand which solutions are better than others in a UBCSP, it is reasonable to
consider a solution ordering, which should be reflexive and transitive. The notions of
robustness and preference should be related to this solution ordering, say �, by the
following properties 3, 4, and 5. Properties 3 and 4 state that two solutions which are
equally good with respect to one aspect (robustness or preference degree) and differ on
the other should be ordered according to the discriminating aspect. Property 5 states that,
if two solutions s and s′ are s.t. the overall preference of the assignment (s, a) to all the
variables is better than the one of (s′, a), ∀a assignment to the uncontrollable variables,
then s should be better than the other one.

Property 3. Given two solutions s and s′ of a UBCSP, if rob(s) = rob(s′) and pref(s)
>S pref(s′), then it should be that s � s′.

Property 4. Given two solutions s and s′ of a UBCSP s.t. pref(s) = pref(s′), and
rob(s) >S rob(s′), then it should be that s � s′.

Property 5. Given two solutions s and s′, a UBCSP Q = 〈S, Vc, Vu, Cc, Ccu〉, s.t.
ovpref(s, a) >S ovpref(s′, a), ∀a assignment to Vu, then it should be that s � s′.

Uncertainty in Bipolar Preference Problems 787

5 Removing Uncertainty: Preference, Robustness and Semantics

We now propose a procedure that extends to a bipolar context a common approach used
to deal with uncertainty, that eliminates uncontrollable variables preserving as much
information as possible [6,9]. Starting from this procedure, we define the robustness and
preference degrees that satisfy the desirable properties mentioned above.

The procedure, that we call Algorithm B-SP, generalizes to the case of positive
and negative totally ordered preferences defined over intervals of Z, Q, R (or struc-
tures isomorphic to them), Algorithm SP [9] for handling problems with fuzzy
preferences and uncontrollable variables associated to possibility distributions. The al-
gorithm takes as input a UBCSP Q = 〈S, Vc, Vu, Cc, Ccu〉, where every variable zi ∈ Vu

has a possibility distribution πi and where S = 〈N, P, +, ×, ⊥, �, �〉 is any bipo-
lar preference structure with N and P totally ordered intervals of Z, Q, R (or struc-
tures isomorph to them). Then, the algorithm translates the UBCSP Q in the RBCSP
Q′ = 〈S, Vc, Cc ∪ Cproj , Crob〉 (that is, in the BCSP 〈S, V, C ∪ Crob〉). This problem
Q′ is obtained from Q by eliminating its uncontrollable variables and the bipolar con-
straints in Ccu relating controllable and uncontrollable variables, and by adding new
bipolar constraints only among these controllable variables. These new constraints can
be classified in two sets, that we call Crob (robustness constraints) and Cproj (projection
constraints), that we describe in the following. Starting from this problem Q′, we then
define the preference degree (resp., the robustness degree) of a solution considering the
preference functions of the constraints in Cc ∪ Cproj (resp., in Crob).

The set of robustness constraints Crob is composed by the constraints obtained by rea-
soning on preference functions of the constraints inCcu and on the possibilities associated
to values in the domains of uncontrollable variables involved in such constraints. Crob is
built in three steps.

In the first step, that we denote normalization, every constraint c = 〈def, con〉 in Ccu

s.t. con ∩ Vc =X and con ∩ Vu =Z , is translated in two bipolar constraints 〈defp, con〉
and 〈defn, con〉, with preferences in [0, 1], where, ∀(tX, tZ) assignment to X ×Z , defp
(tX , tZ) = gp(pos(c)(tX , tZ)) and defn(tX , tZ) = gn(neg(c)(tX , tZ)). If the positive
(resp., negative) preferences are defined in the interval of R (or Q, Z), P = [ap, bp] (resp.,
N = [an, bn]) then gp: [ap, bp] → [0, 1] (resp., gn: [an, bn] → [0, 1]) is s.t. x �→ x−ap

bp−ap

(resp., x �→ x−an

bn−an
) by using the classical division and subtraction operations of R.

In the second step, denoted uncontrollability elimination, the constraint 〈defp, con〉
(resp., 〈defn, con〉) obtained before is translated in 〈defp′, X〉 (resp., 〈defn′, X〉),
where, ∀tX assignment to X , defp′(tX) = inftZ∈AZ sup(defp(tX , tZ), cS(πZ(tZ))),
and defn′(tX) = inftZ∈AZ sup(defn(tX , tZ), cS(πZ (tZ))), where cS is an order
reversing map w.r.t. ≤S in [0, 1], s.t. cS(cS(p)) = p and inf , which is the opposite of
the sup operator (derived from operator + of S), applied to a set of preferences, returns
its worst preference w.r.t. the ordering ≤S .

In the third step, denoted denormalization, the constraint 〈defp′, X〉 (resp., 〈defn′,
X〉) is translated in 〈defp′′, X〉 (resp., 〈defn′′, X〉), where ∀tX assignment to X ,
defp′′(tX)=g−1

p (defp′(tX)), and defn′′(tX)=g−1
n (defn′(tX)). The map g−1

p :[0, 1]
→ [ap, bp] is s.t. y �→ [y(bp − ap) + ap], and g−1

n :[0, 1] → [an, bn] is s.t. y �→
[y(bn − an) + an]. Summarizing, given c = 〈def, X ∪ Z〉 ∈ Ccu, its corresponding
robustness constraints in Crob are the constraints 〈defp′′, X〉 and 〈defn′′, X〉 above.

788 S. Bistarelli et al.

Projection constraints are added to the problem in order to recall part of the infor-
mation contained in the constraints in Ccu that will be removed later. They are useful to
guarantee that the preference degree of a solution, say pref(s), that we will define later,
is a value that can be obtained in the given UBCSP. The set of projection constraints
Cproj is defined as follows. Given a bipolar constraint c = 〈def, con〉 in Ccu, s.t.
con ∩ Vc = X and con ∩ Vu = Z , then the corresponding bipolar constraints in Cproj

are 〈defp, X〉 and 〈defn, X〉, where defp(tX) = inf{tZ∈AZ} pos(c) (tX , tZ) and
defn(tX) = sup{a∈AZ} neg(c) (tX , tZ). In other words, defn(tX) (resp., defp(tX))
is the best negative (resp., the worst positive) preference that can be reached for tX in c
for the various values tZ in the domain of the uncontrollable variables in Z .

Let us show via an example how B-SP works. Consider the UBCSP Q = 〈S, Vc =
{x, y}, Vu = {z1, z2}, Cc, Ccu〉 in Figure 1 (a). Figure 1 (b) shows the RBCSP Q′ =
〈S, Vc = {x, y}, Cc ∪ Cproj , Crob〉, built by algorithm B-SP. Cc is composed by
〈f, {x, y}〉. Cproj is composed by p1 = 〈qp, {x}〉, p2 = 〈qn, {x}〉, p3 = 〈tp, {x}〉
and p4 = 〈tn, {x}〉, while Crob by r1 = 〈qp′′, {x}〉, r2 = 〈qn′′, {x}〉, r3 = 〈tp′′, {x}〉
and r4 = 〈tn′′, {x}〉. Constraints in Crob are obtained by assuming gp the identity map,
and gn : [−1, 0] → [0, 1] s.t. n �→ n + 1.

Starting from the RBCSP Q′ = 〈S, Vc, Cc ∪ Cproj , Crob〉, obtained applying algo-
rithm B-SP to the BCSP Q, we associate to each solution of Q, a pair composed by a
degree of preference and a degree of robustness. The preference of a solution is obtained
by compensating a positive and a negative preference, where the positive (resp., the nega-
tive) preference is obtained by combining all positive (resp., negative) preferences of the
appropriate subtuples of the solution over the constraints in Cc ∪ Cproj , i.e., over initial
constraints of Q linking only controllable variables and over new projection constraints.
The robustness is obtained similarly, but considering only the constraints in Crob, i.e., the
robustness constraints. It is possible to prove that this definition of robustness satisfies
Properties 1 and 2.

Definition 2 (preference and robustness). Given a solution s of a UBCSP Q, let Q′ =
〈S, Vc, Cc ∪ Cproj , Crob〉 the RBCSP obtained from Q by algorithm B-SP. The prefer-
ence of s is pref(s) = prefp(s)×prefn(s), where × is the compensation operator of S,
prefp(s) = Π{〈def,con〉∈Cc∪Cproj} pos(c)(s ↓con), prefn(s) = Π{〈def,con〉∈Cc∪Cproj}
neg(c)(s ↓con). The robustness of s is rob(s) = robp(s) × robn(s), where robp(s) =
Π{〈def,con〉∈Crob} pos(c)(s ↓con), robn(s) = Π{〈def,con〉∈Crob} neg(c)(s ↓con).

A solution of a BCSP is associated to a preference and a robustness degree. We here define
semantics to order the solutions which depend on our attitude w.r.t. these two notions.
Assume to have A1 = (pref1, rob1) and A2 = (pref2, rob2). The first semantics,
which is called Risky, states that A1 �Risky A2 iff pref1 >S pref2 or (pref1 =
pref2 and rob1 >S rob2). The idea is to give more relevance to the preference degree.
The second semantics, called Safe, states that A1 �Safe A2 iff rob1 >S rob2 or
(rob1 =S rob2 and pref1 >S pref2). It represents the opposite attitude w.r.t. Risky
semantics, since it considers the robustness degree as the most important feature. The
last semantics, called Diplomatic, aims at giving the same importance to preference
and robustness. A1 �Dipl A2 iff (pref1 ≥S pref2 and rob1 ≥S rob2) and (pref1 >S

pref2 or rob1 >S rob2). By definition, the Risky, Safe and Diplomatic semantics satisfy
Properties 3 and 4. Additionally, Risky satisfies Property 5, if × in the bipolar structure

Uncertainty in Bipolar Preference Problems 789

is strictly monotonic. Property 3, 4 and 5 are desirable. However, there are semantics
that don’t satisfy them. For example, this happens with a semantics, that we denote
Mixed, that generalizes the one adopted in [6]: A1 �Mixed A2 iff pref1 × rob1 >S

pref2 × rob2, where × is the compensation operator in the bipolar structure.

6 Conclusions

We have studied problems with bipolar preferences and uncontrollable variables with a
possibility distribution over such variables. Our technical development, although being
an extension of two previous lines of work, which dealt with bipolarity only, or only
uncertainty, was not strighforward, since it was not clear if it was possible to deal
simultaneously with possibilistic uncertainty and bipolar preferences, making sure that
desirable properties hold. In fact, such a task could have required a bipolarization of
the possibility scale. Our results instead show that it is possible, without any added
bipolarization, to extend the formalism in [9] to bipolar preferences and the one in [3]
to uncertainty, preserving the desired properties.

Acknowledgements

This work has been supported by Italian MIUR PRIN project “Constraints and Prefer-
ences” (n. 2005015491).

References

1. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference mod-
eling: representation, fusion and optimal solutions. Information Fusion 7(1) (2006)

2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
Journal of the ACM 44(2), 201–236 (1997)

3. Bistarelli, S., Pini, M.S., Rossi, F., Venable, K.B.: Bipolar preference problems: framework,
properties and solving techniques. In: Azevedo, F.; Barahona, P.; Fages, F.; Rossi, F. (eds.)
CSCLP 2006. LNCS (LNAI), vol. 4651. Springer, Heidelberg (2001)

4. Dubois, D., Fargier, H.: On the qualitative comparison of sets of positive and negative af-
fects. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 305–316. Springer,
Heidelberg (2005)

5. Dubois, D., Fargier, H.: Qualitative decision making with bipolar information. In: KR’06, pp.
175–186 (2006)

6. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty. Appl. Intell. 6(4), 287–309 (1996)

7. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T.: A constraint satisfaction framework
for decision under uncertainty. In: UAI-95, pp. 167–174. Morgan Kaufmann, San Francisco
(1995)

8. Grabisch, M., Labreuche, Ch.: Bi-capacities - parts i and ii. Fuzzy Sets and Systems 151,
211–260 (2005)

9. Pini, M.S., Rossi, F., Venable, K.B.: Possibility theory for reasoning about uncertain soft
constraints. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 800–811.
Springer, Heidelberg (2005)

10. Tversky, A., Kahneman, D.: Advances in prospect theory: Cumulative representation of un-
certainty. Journal of Risk and Uncertainty 5, 297–323 (1992)

11. Zadeh, L.A.: Fuzzy sets as a basis for the theory of possibility. Fuzzy sets and systems, 13–28
(1978)

An Analysis of Slow Convergence in Interval

Propagation�

Lucas Bordeaux1, Youssef Hamadi1, and Moshe Y. Vardi2,��

1Microsoft Research Cambridge, UK
{lucasb,youssefh}@microsoft.com

2Rice University, USA
vardi@cs.rice.edu

Abstract. When performing interval propagation on integer variables
with a large range, slow-convergence phenomena are often observed: it
becomes difficult to reach the fixpoint of the propagation. This problem
is practically important, as it hinders the use of propagation techniques
for problems with large numerical ranges, and notably problems arising
in program verification. A number of attempts to cope with this issue
have been investigated, yet all of the proposed techniques only guarantee
a fast convergence on specific instances. An important question is there-
fore whether slow convergence is intrinsic to propagation methods, or
whether an improved propagation algorithm may exist that would avoid
this problem. This paper proposes the first analysis of the slow con-
vergence problem under the light of complexity results. It answers the
question, by a negative result: if we allow propagators that are general
enough, computing the fixpoint of constraint propagation is shown to
be intractable. Slow convergence is therefore unavoidable unless P=NP.
The result holds for the propagators of a basic class of constraints.

1 Motivation and Results of the Paper

Problems with Large Discrete Ranges. Constraint propagation is probably
the most developed component of CP (Constraint Programming) solvers, and
the propagation of many constraints has been intensely studied. In this paper we
consider variables ranging over a discrete domain and focus on interval propaga-
tion techniques, which are often used when dealing with numerical constraints.
(We assume that the reader is familiar with interval propagation, otherwise see
[2,3,4,5].) The question we address, put quickly, is whether interval propagation
is effective against variables with a large range. Note that a number of applica-
tions require variables with large ranges: the best example is perhaps software
verification, an area that heavily relies on constraint solving, but in which CP

� An unabridged version of this paper including the missing proofs is available as a
Microsoft Research Report.

�� Part of this work was done while this author was visiting Microsoft Research, Cam-
bridge, UK.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 790–797, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Analysis of Slow Convergence in Interval Propagation 791

techniques have so far failed to have a significant impact. In verification prob-
lems, the ranges of numerical variables are typically extremely large, because
the aim is typically one of the following:

– To verify a property for all integers. Typically, if the constraints are simple
enough, so-called “small-domain” properties are used to bring the problem
down to finite bounds. These properties guarantee that a solution can be
found within some finite bounds, iff the problem is satisfiable. These bounds
are however typically quite large: for instance for purely linear equality con-
straints, [13] proves that when we have m constraints over n variables, the
variables can be restricted to the range [0, n(ma)2m+1], where a is the max-
imum of the absolute values of the coefficients of the linear constraints. If
we have only 10 variables, 10 equalities and coefficients within [−10, 10], this
bound already goes as high as 10 ·10021 = 1043. These bounds can be refined
[15] but we cannot, in general, avoid the use of large numbers represented in
infinite-precision.

– To reflect machine encoding of numbers. In this case we typically compute
within bounds of about 232 or 264. Extra care typically has to be taken, so
that overflows are correctly handled (which requires “modular arithmetics”).
Here the domains are smaller, but nonetheless large enough for the slow
propagation problem to become a serious issue.

The Problem of Slow Convergence. When performing interval propagation
on numerical variables with a large range, slow-convergence phenomena have
been reported by many authors, e.g., [8,11]: propagation tends to go on for a
prohibitively long number of steps. The problem is easily understood by consid-
ering simple examples:

– Consider the problem X1 < X2 ∧ X2 < X1, with X1 and X2 ranging over
[0, 230]. Bound propagation alone detects the inconsistency. On this example,
standard propagation algorithms discover that X1 ∈ [1, 230] because 0 ≤
X2 < X1, then X2 ∈ [2, 230] because 1 ≤ X1 < X2, and propagation goes
ahead narrowing a lower or upper bound by one unit at every step. We
ultimately obtain empty intervals, but this requires about 230 operations.

– As mentioned in [11], the problem sometimes even occurs when we have a
single constraint. For instance if we take the constraint 2X1 + 2X2 = 1 with
X1 and X2 ranging over [−230, 230], we have a similar problem as before:
propagation slowly narrows the bounds of the intervals by a few units until
reaching empty intervals.

To solve these two examples, propagation will typically take several seconds.
The problem becomes much more severe whenever similar constraints are not
stated by themselves, but together with other constraints. In this case the run-
time can become arbitrarily high, as propagation may regularly reconsider many
propagators between each reduction of the bounds of X1 and X2.

It would be a mistake to consider slow convergence as a mere curiosity arising
only in annoying, yet artificial examples. Our experience is that the problem is

792 L. Bordeaux, Y. Hamadi, and M.Y. Vardi

unavoidable when solving problems in program verification, for instance prob-
lems from Satisfiability Modulo Theories1. In examples arising from our own
experiments in software verification, reaching the fixpoint of one propagation
step alone takes seconds or minutes on many instances, and up to 37 hours (in
finite precision!) in some of the longer examples where we waited until comple-
tion. Note that propagation is supposed to be the fast part of constraint solving:
it is done at every node of the branch & prune process, and we are supposed to
be exploring many nodes per second.

Attempted Solutions. Several solutions to the slow convergence problem have
been investigated in the literature. It was, for instance, suggested to:

– Detect some cases of slow convergence and find ways to prevent them. One
way would be to use symbolic techniques to get rid of constraints of the form
X1 < X2 ∧X2 < X1 and similar “cycles of inequalities”. A related approach
was suggested (in the continuous of real-valued intervals) in [12]. Unfortu-
nately, these methods only prevent particular cases of slow convergence.

– Reinforce interval propagation by other reasoning techniques. A noticeable re-
cent work on the issue is [11], which use congruence computations in addition
to interval propagation. Our experience, however, is that congruence reason-
ing hardly ever speeds-up propagation in practice, and that it is powerless
against very simple cases of slow convergence, e.g., X1 < X2 ∧ X2 < X1.

– Find a new algorithm that would avoid the pitfalls of the standard interval
propagation algorithm, and that would provably converge quickly. So far
no such algorithm has been proposed. (An interesting related work is [10]
which uses extrapolation methods to “guess” the possible fixpoint; this is an
exciting method but it offers, by definition, no proven guarantee.)

– Interrupt propagation after a given number of steps, for instance prevent the
propagation of variables whose width have been reduced by less than 5%.
This is a pragmatic solution that it easy to implement, its drawback is that
it leaves a search space partially reduced, relying on more branching.

– Do something else than interval propagation. For instance in [8], the authors
note the slow convergence phenomenon and introduce a method for dealing
with certain linear constraints between 2 variables; another significant ex-
ample is that state-of-the-art methods in satisfiability modulo theories use
bound reasoning methods that are not based on interval propagation, but
on linear relaxations [6].

Our Results. The approaches mentioned previously do not solve the slow con-
vergence problem: no approach allows to compute the fixpoint of interval prop-
agation while being guaranteed to avoid slow convergence. Can this problem
be circumvented, or is there an unsuspected, intrinsic reason why slow conver-
gence is unavoidable? We believe this is an important question for the field that,
surprisingly, has not been studied in the literature on CP theory.

1 www.smt-lib.org

An Analysis of Slow Convergence in Interval Propagation 793

The authors of [8] (introduction) are perfectly right in their analyzis of slow
convergence: it is due to the fact that the number of steps is proportional to the
width of the intervals (the width of an interval is here defined as the number
of integer values in the interval). The question is whether we can reduce this
to a number of steps that grows significantly less than linearly in the width.
This can be stated precisely by saying that the complexity should be polynomial
in the number of bits of the integer values encoded in the problem i.e., poly-
logarithmic in these integer values. In contrast, existing propagation algorithms
are easily seen to be polynomial in these integer values, i.e., exponential in the
number of bits of their encodings. Following classical terminology we call an
algorithm of the first type strongly polynomial and an algorithm of the second
type pseudo-polynomial (formal definitions are to be found in Section 2). The
question is therefore whether there exists a strongly polynomial algorithm for
interval propagation. We answer this question by the negative, under the P �=
NP assumption.

Our results make assumptions on the type of constraints that are propagated.
We first state the result in the general case, where arbitrary user-defined ”interval
propagators” can be defined (Prop. 1 and 2). We next show in Prop. 3 that the
result still holds even if we restrict ourselves to a simple class of propagators,
namely linear constraints plus one simple non-linear operation (squaring). We
leave open the question whether the intractability result still holds when we deal
with purely linear constraints. However, it is clear that CP was never meant to
deal solely with linear constraints and our results therefore show what we believe
is an intrinsic problem of interval propagation methods.

The next section gives more formal definitions of interval propagation which,
following a number of authors [1], we see as a form of fixpoint computation;
Section 3 will then list our main results. The missing proofs, as well as a more
detailed presentation, can be found in the unabridged version of this paper.

2 Interval Propagation and Fixpoint Computations

Closure Operators. Interval propagation is equivalent to the problem of com-
puting certain fixpoints of functions on Cartesian products of intervals. A Carte-
sian product of intervals will be called box, for short:

Definition 1 (Box). An n-dimensional box is a tuple B = 〈B1 · · ·Bn〉 where
each Bi is an interval. Inclusion over boxes is defined as follows: B ⊆ B′ iff
B1 ⊆ B′1 ∧ · · · ∧ Bn ⊆ B′n.

The functions we consider must have the following properties:

Definition 2 (Closure operator). We call closure operator a function f
which, given a box B, returns a box f(B), with the following properties (for
all B, B′):

1. f is “narrowing”: f(B) ⊆ B;
2. f is monotonic: if B ⊆ B′ then we have f(B) ⊆ f(B′);
3. f is idempotent: f(f(B)) = B.

794 L. Bordeaux, Y. Hamadi, and M.Y. Vardi

Computational Problems related to Fixpoints. A fixpoint of a closure
operator is a box that remains unchanged after application of the operator. We
are interested in common fixpoints, defined as follows:

Definition 3 (Common Fixpoint of a set of closure operators). Given a
set of closure operators {f1 · · · fm}, a common fixpoint of the operators is a box
B satisfying f1(B) = B ∧ · · · ∧ fm(B) = B.

We are given an initial n-dimensional box B, and a set of closure operators
{f1 · · · fm}. We consider the following computational problems (the first two
are ”function problems” in which we aim at computing a result, the third is a
”decision problem” in which we just aim at determining whether a certain result
exists):

Problem 1 (Computation of Common Interval Fixpoint). Compute a
box B′ such that (1) B′ ⊆ B and (2) B′ is non-empty and (3) B′ is a common
fixpoint of f1, . . . , fm. (a special return value is used to signal the case where no
non-empty fixpoint exists.)

Problem 2 (Computation of the Greatest Common Interval Fixpoint).
Compute a box B′ such that (1) B′ ⊆ B; (2) B′ is a common fixpoint of
f1, . . . , fm and (3) no box B′′ such that B′ ⊆ B′′ ⊆ B is a common fixpoint
of f1, . . . , fm. (An empty box should be returned if no other such fixpoint exists.)

Problem 3 (Existence of Common Interval Fixpoint). Determinewhether
there exists a non-empty box B′ ⊆ B which is a common fixpoint of f1, . . . , fm.

Greatest Fixpoint Computation by ”Chaotic Iteration”. To compute a
greatest fixpoint, the standard approach is to run what [1] refers to as a ”chaotic
iteration” algorithm which, in its simplest and least optimized form, can be
presented as follows:

Algorithm 1. Standard Algorithm for Greatest Fixpoint Computation
while there exists fi such that fi(B) �= B do

Choose one such fi

B ← fi(B)

The functions f1 . . . fm are applied to the box in turn, in any order that is com-
putationally convenient, until we reach a state where nothing changes. A basic
result, which directly follows from the Knaster-Tarski theorem [16], is that this
algorithm, although non-deterministic, always converges to the greatest common
fixpoint of f1 . . . fm. (The uniqueness of this fixpoint shows in particular, that
the box satisfying the requirements of Problem 2 is unique, and allows us to
refer to it as the (unique) greatest common interval fixpoint.)

An Analysis of Slow Convergence in Interval Propagation 795

Strongly Polynomial vs. Pseudo-Polynomial Algorithms. Denoting by
n the dimension of the considered box (i.e., number of variables), m the number
of operators whose fixpoint we compute, and w the maximum of the widths, we
use the following definitions, which follow classical terminology:

– A pseudo-polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n, m, w), for some polynomial P ;

– A strongly polynomial algorithm is an algorithm whose runtime is bounded
in the worst case by P (n, m, log w), for some polynomial P .

It is straightforward to check that the classical “chaotic iteration” algorithm
for interval propagation, as well as all the improved versions derived from it, are
only pseudo-polynomial, and can therefore be subject to slow convergence.

3 Intractability of Interval Propagation

In this section we present our main results, which show that, under some well-
defined assumptions concerning the operators, computing the fixpoint of these
operators cannot be achieved in strongly polynomial time.

General Case. We first consider the “general case”, in which the closure oper-
ators are defined as arbitrary functions. This captures, for instance, the ability
of systems like Constraint Handling Rules (CHR) [7], in which the propagators
can be user-defined.

We assume that the propagators f1 . . . fm are defined as programs (written
in any appropriate language, like CHR), which have the additional guarantee to
run in time polynomial in the length of the problem. This is because we want to
show that the problem is intractable even when restricted to simple propagators
(a hardness result would hardly be a surprise in the case where the execution
of a propagator is itself intractable.) More precisely, the input of the fixpoint
representation problem is as follows:

Input Representation 1. The input is given as a box B = 〈B1 . . . Bn〉 together
with a set of closure operators {f1 . . . fm} which are defined as programs whose
runtime is guaranteed to be worst-case polynomial in the total input size.

Proposition 1. If the input is encoded using Representation 1, the problem of
existence of a common interval fixpoint (Problem 3) is NP-complete. 2

2 The hardness part of this result can alternatively be proven as a direct consequence
of Prop. 3. We prove Prop. 1 separately for 3 reasons: it states the membership in
NP under the more general assumptions (the closure operators need be polytime
computable); it states the NP-hardness under the least restrictive assumptions (one-
dimensional case, two operators); Prop. 2 is best presented by first presenting the
proof of Prop. 1.

796 L. Bordeaux, Y. Hamadi, and M.Y. Vardi

Note that the result even holds in dimension one and for only two operators. In-
deed, if we consider non-idempotent narrowing operators instead of closure oper-
ators, it is easy to show that computing the fixpoint of one single operator in one
dimension is NP-complete. One can show, by straightforward modifications of the
proof, that the corresponding function problem, computing an arbitrary fixpoint
(Problem 1), is FNP-complete3. Interestingly, propagation algorithms do not com-
pute an arbitrary fixpoint, but the largest one (Problem 2). The problem is there-
fore an optimization problem and, in fact, its complexity is higher than FNP:

Proposition 2. If the input is encoded using Representation 1, the computation
of the greatest common fixpoint (Problem 2) is OptP-complete.

OptP is a class introduced in [9] to characterize the complexity of optimization
problems (many optimization problems are FNP-hard but not in FNP because
the optimality of the result cannot be checked in polynomial time).

Basic Numerical constraints. We now refine our analysis to the case where
we have “basic propagators”: what if the user does not have the possibility to
write her own propagators, but can only use a set of predefined propagators for
basic constraints? For the sake of concreteness we now focus on a simple set of
propagators, that we now define precisely.

Variables are numbered from 1 to n; the kth variable is denoted Xk and the
interval that is associated with this variable is denoted [lk, rk]. The notation
“[lk, rk] ← rhs” denotes an operator f which, given a box B, returns a box f(B)
in which the kth interval has been modified as specified by the right-hand side
(rhs), and all other intervals are unchanged.

We consider the following operators for a constraint Xi < Xj :

[li, ri] ← [li, min(ri, rj − 1)]
[lj , rj] ← [max(lj , li + 1), rj]

(1)

(For readers who would have trouble with the notation: the upper bound of the
ith interval, the one associated with Xi, is updated so that it is at most rj − 1,
and the lower bound of the jth interval is updated so that it is at least lj + 1.)

We consider the following operators for a constraint Xi = X2
j :

[li, ri] ← [max(li, l2j), min(ri, r
2
j)]

[lj , rj] ← [max(lj ,

√

li�), min(rj ,
√

ri�)]
(2)

We consider the following operators for a constraint aXi + bXj = c, where a,
b and c are non-negative integer constants:

[li, ri] ← [max(li,
 c−b·rj

a �), min(ri, c−b·lj
a �)]

[lj, rj] ← [max(lj ,
 c−a·ri

b �), min(rj , c−a·li
b �)]

(3)

3 FNP, or “functional” NP, is closely related to NP, the difference being that instead of
being asked whether a solution exists (say, to a SAT instance), we are asked to produce
a solution [14].

An Analysis of Slow Convergence in Interval Propagation 797

Input Representation 2. The problem is given as a box B = 〈B1 . . . Bn〉 to-
gether with a set of constraints {c1 . . . cm} which include the following 3 forms:

1. Xj < Xj, for some i, j ∈ 1..n;
2. Xi = X2

j , for some i, j ∈ 1..n; or
3. aXi + bXj = c, for some i, j ∈ 1..n and some constants a, b and c.

Proposition 3. If the input is encoded using Representation 2, the problem of
existence of a common interval fixpoint (Section 2, Problem 3) is NP-complete.

References

1. Apt, K.R.: The essence of constraint propagation. Theoretical Computer Science
(TCS) 221(1-2), 179–210 (1999)

2. Apt, K.R., Zoeteweij, P.: An analysis of arithmetic constraints on integer intervals.
Constraints (to appear)

3. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and
boolean constraints. J. of Logic Programming (JLP) 32(1), 1–24 (1997)

4. Cleary, J.G.: Logical arithmetic. Future Computing Systems 2(2), 125–149 (1987)
5. Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3),

281–331 (1987)
6. Dutertre, B., De Moura, L.M.: A fast linear arithmetic solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

7. Fruehwirth, T.W.: Theory and practice of constraint handling rules. J. of Logic
Programming (JLP) 37(1-3), 95–138 (1998)

8. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg
(1994)

9. Krentel, M.W.: The complexity of optimization problems. In: Proc. of ACM Symp.
on Theory of Computing (STOC), pp. 69–76. ACM Press, New York (1986)

10. Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric CSPs. Ar-
tificial Intelligence 139(1), 109–132 (2002)

11. Leconte, M., Berstel, B.: Extending a CP solver with congruences as domains for
program verification. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 22–33.
Springer, Heidelberg (2006)

12. Lhomme, O., Gottlieb, A., Rueher, M., Taillibert, P.: Boosting the interval nar-
rowing algorithm. In: Proc.of Joint Int. Conf. and Symp. on Logic Programming
(JICSLP), pp. 378–392. MIT Press, Cambridge (1996)

13. Papadimitiou, C.: On the complexity of integer programming. J. of the ACM 28(4),
765–768 (1981)

14. Papadimitriou, Ch.H.: Computational Complexity. Addison Wesley, Reading
(1994)

15. Seshia, S.A., Bryant, R.A.: Deciding quantifier-free presburger formulas using
parametrized solution bounds. Logical Methods in Computer Science, vol. 1(2)
(2005)

16. Tarski, A.: A lattice-theoretic fixpoint theorem and its applications. Pacific J. of
Mathematics 5, 285–309 (1955)

The Expressive Power of Valued Constraints:

Hierarchies and Collapses

David A. Cohen1, Peter G. Jeavons2, and Stanislav Živný2

1 Department of Computer Science, Royal Holloway, University of London, UK
d.cohen@rhul.ac.uk

2 Computing Laboratory, University of Oxford, UK
{peter.jeavons,stanislav.zivny}@comlab.ox.ac.uk

Abstract. In this paper we investigate the ways in which a fixed collec-
tion of valued constraints can be combined to express other valued con-
straints. We show that in some cases a large class of valued constraints,
of all possible arities, can be expressed by using valued constraints of a
fixed finite arity. We also show that some simple classes of valued con-
straints, including the set of all monotonic valued constraints with finite
cost values, cannot be expressed by a subset of any fixed finite arity, and
hence form an infinite hierarchy.

1 Introduction

Building a computational model of a combinatorial problem means capturing
the requirements and optimisation criteria of the problem using the resources
available in some given computational system. Modelling such problems using
constraints means expressing the requirements and optimisation criteria using
some combination of basic constraints provided by the system. In this paper we
investigate what kinds of relationships and functions can be expressed using a
given set of allowed constraint types.

The classical constraint satisfaction problem (CSP) model considers only the
feasibility of satisfying a collection of simultaneous requirements. Various ex-
tensions have been proposed to this model to allow it to deal with different
kinds of optimisation criteria or preferences between different feasible solutions.
Two very general extended frameworks that have been proposed are the semi-
ring CSP framework and the valued CSP (VCSP) framework [2]. The semi-ring
framework is slightly more general, but the VCSP framework is simpler, and
sufficiently powerful to describe many important classes of problems [6,18].

In this paper we work with the VCSP framework. In this framework every
constraint has an associated cost function which assigns a cost to every tuple of
values for the variables in the scope of the constraint. The set of cost functions
used in the description of the problem is called the valued constraint language.

As with all computing paradigms, it is desirable for many purposes to have
a small language which can be used to describe a large collection of problems.
Determining which problems can be expressed in a given language is therefore

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 798–805, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Expressive Power of Valued Constraints: Hierarchies and Collapses 799

a central issue in assessing the flexibility and usefulness of a constraint system,
and it is this question that we investigate here.

We make use of a number of algebraic tools that have been developed for this
question [15], and for the related question of determining the complexity of a
constraint language [3,6]. By applying these tools to particular valued constraint
languages, we show that some simple constraint classes provide infinite hierar-
chies of greater and greater expressive power, whereas other classes collapse to
sets of cost functions of fixed arity which can express all the other cost functions
in the class.

The paper is organised as follows. In Section 2, we define the standard val-
ued constraint satisfaction problem and the notion of expressibility for valued
constraints. In Section 3, we describe some algebraic techniques that have been
developed for valued constraints in earlier papers and show how they can be used
to investigate expressibility. In Section 4, we present our results. We show that
some valued constraints of fixed arities can express constraints of all possible
arities whereas some other sets of valued constraints cannot be expressed by any
subset of fixed finite arity. Due to the page limit we only state our results, but
all proofs are given in the full version of this paper [7]. Finally in Section 5, we
summarise our results and suggest some important open questions.

2 Valued Constraints and Expressibility

In this section we define the valued constraint satisfaction problem and discuss
how the cost functions used to define valued constraints can be combined to ex-
press other valued constraints. More detailed discussion of the valued constraint
framework, and illustrative examples, can be found in [2,6].

Definition 1. A valuation structure, Ω, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator, ⊕, such that for all α, β, γ ∈
Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2. An instance of the valued constraint satisfaction problem,
VCSP, is a tuple P = 〈V, D, C, Ω〉 where:

– V is a finite set of variables;
– D is a finite set of possible values;
– Ω is a valuation structure representing possible costs;
– C is a set of valued constraints. Each element of C is a pair c = 〈σ, φ〉

where σ is a tuple of variables called the scope of c, and φ ∈ Γ is a mapping
from D|σ| to Ω, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V, D, C, Ω〉, an assignment for P
is a mapping s : V → D. The cost of an assignment s, denoted CostP(s), is
given by the aggregation of the costs for the restrictions of s onto each constraint
scope, that is,

CostP(s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C
φ(〈s(v1), s(v2), . . . , s(vm)〉).

800 D.A. Cohen, P.G. Jeavons, and S. Živný

A solution to P is an assignment with minimal cost.

The complexity of finding an optimal solution to a valued constraint problem
will obviously depend on the forms of valued constraints which are allowed in
the problem [6]. In order to investigate different families of valued constraint
problems with different sets of allowed constraint types, we use the notion of a
valued constraint language, which is simply a set of possible cost functions
mapping Dk to Ω, for some fixed set D and some fixed valuation structure Ω.
The class of all VCSP instances where the cost functions of the valued constraints
are all contained in a valued constraint language Γ will be denoted VCSP(Γ).

In any VCSP instance, the variables listed in the scope of each valued con-
straint are explicitly constrained, in the sense that each possible combination of
values for those variables is associated with a given cost. Moreover, if we choose
any subset of the variables, then their values are constrained implicitly in the
same way, due to the combined effect of the valued constraints. This motivates
the concept of expressibility for cost functions, which is defined as follows:

Definition 4. For any VCSP instance P = 〈V, D, C, Ω〉, and any list
l = 〈v1, . . . , vm〉 of variables of P, the projection of P onto l, denoted πl(P),
is the m-ary cost function defined as follows:

πl(P)(x1, . . . , xm) def= min
{s:V→D | 〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostP(s).

We say that a cost function φ is expressible over a valued constraint language
Γ if there exists an instance P ∈ VCSP(Γ) and a list l of variables of P such
that πl(P) = φ. We call the pair 〈P , l〉 a gadget for expressing φ over Γ .

Note that any cost function expressible over Γ can be added to Γ without
changing the complexity of VCSP(Γ).

In this paper we shall examine the expressibility of cost functions over three
particular valuation structures which can be used to model a wide variety of
problems [6]:

Definition 5. Let Ω be a valuation structure and let φ : Dm → Ω be a cost
function.

– If Ω = {0,∞}, then we call φ a crisp cost function.
– If Ω = Q+, the set of non-negative rational numbers with the standard ad-

dition operation, +, then we call φ a finite-valued cost function.
– If Ω = Q+, the set of non-negative rational numbers together with infinity,

with the standard addition operation (extended so that a+∞ =∞, for every
a ∈ Q+), then we call φ a general cost function.

Note that with any relation R over D we can associate a crisp cost function φR
on D which maps tuples in R to 0 and tuples not in R to∞. On the other hand,
with any m-ary cost function φ we can associate an m-ary crisp cost function
defined by:

Feas(φ)(x1, . . . , xm) def=
{∞ if φ(x1, . . . , xm) =∞

0 if φ(x1, . . . , xm) <∞.

The Expressive Power of Valued Constraints: Hierarchies and Collapses 801

3 Expressive Power and Algebraic Properties

Adding a finite constant to any cost function does not alter the relative costs.
Hence, for any valued constraint language Γ with costs in Ω, we define the
expressive power of Γ , denoted 〈Γ 〉, to be the set of all cost functions φ such
that φ + c is expressible over Γ for some constant c ∈ Ω where c <∞.

A number of algebraic techniques to determine the expressive power of a given
valued constraint language have been developed in earlier papers. To make use
of these techniques, we first need to define some key terms.

The i-th component of a tuple t will be denoted by t[i]. Note that any op-
eration on a set D can be extended to tuples over D in the following way. For
any function f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dm, define
f(t1, . . . , tk) ∈ Dm to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.
Definition 6 ([9]). Let R be an m-ary relation over a finite set D and let f be
a k-ary operation on D. Then f is a polymorphism of R if f(t1, . . . , tk) ∈ R
for all choices of t1, . . . , tk ∈ R.

A valued constraint language, Γ , which contains only crisp cost functions (=
relations) will be called a crisp constraint language. We will say that f is a
polymorphism of a crisp constraint language Γ if f is a polymorphism of every
relation in Γ . The set of all polymorphisms of Γ will be denoted Pol(Γ).

It follows from the results of [13] that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms:

Theorem 7 ([13]). For any crisp constraint language Γ over a finite set

R ∈ 〈Γ 〉 ⇔ Pol(Γ) ⊆ Pol({R}).
Hence, a crisp cost function φ is expressible over a crisp constraint language Γ
if and only if it has all the polymorphisms of Γ .

We can extend the idea of polymorphisms to arbitrary valued constraint lan-
guages by considering the corresponding feasibility relations:

Definition 8 ([3]). The feasibility polymorphisms of a valued constraint
language Γ are the polymorphisms of the corresponding crisp feasibility cost func-
tions, that is,

FPol(Γ) def= Pol({Feas(φ) | φ ∈ Γ}).
However, to fully capture the expressive power of valued constraint languages it
is necessary to consider more general algebraic properties, such as the following:

Definition 9 ([4]). A list of functions, 〈f1, . . . , fk〉, where each fi is a function
from Dk to D, is called a k-ary multimorphism of a cost function φ : Dm → Ω
if, for all t1, . . . , tk ∈ Dm, we have

k∑
i=1

φ(ti) ≥
k∑
i=1

φ(fi(t1, . . . , tk)).

802 D.A. Cohen, P.G. Jeavons, and S. Živný

The next result shows that the multimorphisms of a valued constraint language
are preserved by all the cost functions expressible over that language.

Theorem 10 ([6]). If F is a multimorphism of a valued constraint language
Γ , then F is a multimorphism of 〈Γ 〉.
Hence, to show that a cost function φ is not expressible over a valued constraint
language Γ it is sufficient to identify some multimorphism of Γ which is not a
multimorphism of φ.

It is currently an open question whether the set of multimorphisms of a val-
ued constraint language completely characterizes the expressive power of that
language. However, it was shown in [3] that the expressive power of a valued
constraint language can be characterised by generalising the notion of multimor-
phism a little, to a property called a fractional polymorphism, which is essentially
a multimorphism where each component function has an associated weight value.

Definition 11 ([3]). A k-ary weighted function F on a set D is a set of
the form {〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a non-negative rational number
such that

∑n
i=1 ri = k and each fi is a distinct function from Dk to D.

For any m-ary cost function φ, we say that a k-ary weighted function F is a
k-ary fractional polymorphism of φ if, for all t1, . . . , tk ∈ Dm,

k∑
i=1

φ(ti) ≥
n∑
i=1

riφ(fi(t1, . . . , tk)).

For any valued constraint language Γ , we will say that F is a fractional poly-
morphism of Γ if F is a fractional polymorphism of every cost function in Γ .
The set of all fractional polymorphisms of Γ will be denoted fPol(Γ).

It was shown in [3] that the feasibility polymorphisms and fractional poly-
morphisms of a valued constraint language effectively determine its expressive
power.

Theorem 12 ([3]).
Let Γ be a valued constraint language with costs in Q+ such that, for all φ ∈ Γ ,

and all c ∈ Q+, cφ ∈ Γ and Feas(φ) ∈ Γ .

φ ∈ 〈Γ 〉 ⇔ FPol(Γ) ⊆ FPol({φ}) ∧ fPol(Γ) ⊆ fPol({φ}).

4 Results

In this section we present our results. We consider the expressive power of crisp,
finite-valued and general constraint languages. We consider the languages con-
taining all cost functions up to some fixed arity over some fixed domain, and
we also consider an important subset of these cost functions defined for totally
ordered domains, the so-called max-closed relations, which are defined below.

The function Max denotes the standard binary function which returns the
larger of its two arguments.

The Expressive Power of Valued Constraints: Hierarchies and Collapses 803

Definition 13. A cost function φ is max-closed if 〈Max,Max〉 ∈ Mul({φ}).
Definition 14. For every d ≥ 2 we define the following:

– Rd,m (Fd,m, Gd,m respectively) denotes the set of all crisp (finite-valued,
general respectively) cost functions over a domain of size d of arity at most
m, and Rd = ∪m≥0Rd,m, Fd = ∪m≥0Fd,m, and Gd = ∪m≥0Gd,m;

– Rmax
d,m (Fmax

d,m , Gmax
d,m respectively) denotes the set of all crisp (finite-valued,

general respectively) max-closed cost functions over an ordered domain of
size d of arity at most m, and Rmax

d = ∪m≥0Rmax
d,m , Fmax

d = ∪m≥0Fmax
d,m , and

Gmax
d = ∪m≥0Gmax

d,m .

Theorem 15. For all f ≥ 2 and d ≥ 3,

1. 〈R2,1〉 � 〈R2,2〉 � 〈R2,3〉 = R2; 〈Rd,1〉 � 〈Rd,2〉 = Rd.
2. 〈Rmax

2,1 〉 � 〈Rmax
2,2 〉 � 〈Rmax

2,3 〉 = Rmax
2 ; 〈Rmax

d,1 〉 � 〈Rmax
d,2 〉 = Rmax

d .
3. 〈Fmax

f,1 〉 � 〈Fmax
f,2 〉 � 〈Fmax

f,3 〉 � 〈Fmax
f,4 〉 · · ·

4. 〈Gmax
2,1 〉 � 〈Gmax

2,2 〉 � 〈Gmax
2,3 〉 = Gmax

2 ; 〈Gmax
d,1 〉 � 〈Gmax

d,2 〉 = Gmax
d .

The proof of Theorem 15 can be found in the full version of this paper [7], and
we just give a brief sketch here. As any relation can be expressed as a proposi-
tional formula, the collapse described in Statement (1) follows from the standard
Sat to 3-Sat reduction. The collapse of max-closed relations in Statement (2)
is proved by adapting the SAT to 3-SAT reduction. However, this gives only
a weaker result, Rmax

d = 〈Rmax
d,3 〉. To show that any max-closed relation over a

non-Boolean domain can be expressed by using only binary max-closed relations,
we characterise the polymorphisms of Rmax

d and prove that Rmax
d,2 does not have

any extra polymorphisms. The separation result in Statement (3) is obtained
by finding explicit multimorphisms for the finite-valued max-closed cost func-
tions of each different arity. Finally, the collapse result in Statement (4) follows
from a precise characterisation of the feasibility polymorphisms and fractional
polymorphisms of Gmax

d obtained using the Min-Cut Max-Flow theorem.

5 Conclusions and Open Problems

We have investigated the expressive power of valued constraints in general and
max-closed valued constraints in particular.

In the case of relations, we built on previously known results about the ex-
pressibility of an arbitrary relation in terms of binary or ternary relations. We
were able to prove in a similar way that an arbitrary max-closed relation can be
expressed using binary or ternary max-closed relations. The results about the
collapse of the set of all relations and all max-closed relations contrast sharply
with the case of finite-valued max-closed cost functions, where we showed an infi-
nite hierarchy. This shows that the VCSP is not just a minor generalisation of the
CSP – finite-valued max-closed cost functions behave very differently from crisp
max-closed cost functions with respect to expressive power. Finally, we showed
the collapse of general max-closed cost functions by investigating their feasibility

804 D.A. Cohen, P.G. Jeavons, and S. Živný

polymorphisms and fractional polymorphisms. This shows that allowing infinite
costs in max-closed cost functions increases their expressive power substantially,
and in fact allows them to express more finite-valued cost functions.

We remark that all of our results about max-closed cost functions obviously
have equivalent versions for min-closed cost functions, that is, those which have
the multimorphism 〈Min,Min〉. In the Boolean crisp case these are precisely the
relations that can be expressed by a conjunction of Horn clauses.

One of the reasons why understanding the expressive power of valued con-
straints is important is for the investigation of submodular functions. A cost
function φ is called submodular if it has the multimorphism 〈Min,Max〉. The
standard problem of submodular function minimisation corresponds to solving
a VCSP with submodular cost functions over the Boolean domain [5].

Submodular function minimisation (SFM) is a central problem in discrete
optimisation, with links to many different areas [10,16]. Although it has been
known for a long time that the ellipsoid algorithm can be used to solve SFM in
polynomial time, this algorithm is not efficient in practice. Relatively recently,
several new strongly polynomial combinatorial algorithms have been discovered
for SFM [10,11,12]. Unfortunately, the time complexity of the fastest published
algorithm for SFM is roughly of an order of O(n7) where n is the total number
of variables [11].

However, for certain special cases of SFM, more efficient algorithms are known
to exist. For example, the (weighted) Min-Cut problem is a special case of SFM
that can be solved in cubic time [10]. Moreover, it is known that SFM over a
Boolean domain can be solved in O(n3) time when the submodular function
f satisfies various extra conditions [1,8,17]. In particular, in the case of non-
Boolean domains, a cubic-time algorithm exists for SFM when f can be expressed
as a sum of binary submodular functions [5].

These observations naturally raise the following question: What is the most
general class of submodular functions that can be minimised in cubic time (or
better)? One way to tackle this question is to investigate the expressive power of
particular submodular functions which are known to be solvable in cubic time.
Any fixed set of functions which can be expressed using such functions will have
the same complexity [3].

One intriguing result is already known for submodular relations. In the case
of relations, having 〈Min,Max〉 as a multimorphism implies having both Min
and Max as polymorphisms. The ternary Median operation can be obtained
by composing the operations Max and Min, so all submodular relations have
the Median operation as a polymorphism. It follows that submodular relations
are binary decomposable [14], and hence all submodular relations are expressible
using binary submodular relations.

For finite-valued and general submodular cost functions it is an important
open question whether they can be expressed using submodular cost functions
of some fixed arity. If they can, then this raises the possibility of designing new,
more efficient, algorithms for submodular function minimisation.

The Expressive Power of Valued Constraints: Hierarchies and Collapses 805

Acknowledgements. The authors would like to thank Martin Cooper, Martin
Green, Chris Jefferson and András Salamon for many helpful discussions.

References

1. Billionet, A., Minoux, M.: Maximizing a supermodular pseudo-boolean function: a
polynomial algorithm for cubic functions. Discrete Applied Mathematics 12, 1–11
(1985)

2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints 4, 199–240 (1999)

3. Cohen, D., Cooper, M., Jeavons, P.: An algebraic characterisation of complexity for
valued constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 107–121.
Springer, Heidelberg (2006)

4. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: Soft constraints: Complexity
and multimorphisms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 244–258.
Springer, Heidelberg (2003)

5. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: A maximal tractable class of soft
constraints. Journal of Artificial Intelligence Research (JAIR) 22, 1–22 (2004)

6. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170, 983–1016 (2006)

7. Cohen, D., Jeavons, P., Živný, S.: The expressive power of valued constraints:
Hierarchies and Collapses. Technical Report CS-RR-07-02, Computing Laboratory,
University of Oxford, Oxford, UK (April 2007)

8. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. In: SIAM Monographs on Discrete Mathematics and
Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA,
vol. 7 (2001)

9. Denecke, K., Wismath, S.: Universal Algebra and Applications in Theoretical Com-
puter Science. Chapman and Hall/CRC Press (2002)

10. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete
Mathematics, vol. 58. Elsevier, Amsterdam (2005)

11. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM
Journal on Computing 32, 833–840 (2003)

12. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions. Journal of the ACM 48, 761–777
(2001)

13. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical
Computer Science 200, 185–204 (1998)

14. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artificial
Intelligence 101(1–2), 251–265 (1998)

15. Jeavons, P., Cohen, D., Gyssens, M.: How to determine the expressive power of
constraints. Constraints 4, 113–131 (1999)

16. Narayanan, H.: Submodular Functions and Electrical Networks, North-Holland,
Amsterdam (1997)

17. Queyranne, M.: Minimising symmetric submodular functions. Mathematical Pro-
gramming 82, 3–12 (1998)

18. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Program-
ming. Elsevier, Amsterdam (2006)

Eligible and Frozen Constraints for Solving Temporal
Qualitative Constraint Networks�

Jean-François Condotta1, Gérard Ligozat2, and Mahmoud Saade1

1 CRIL-CNRS, Université d’Artois, 62307 Lens Cedex, France
2 LIMSI-CNRS, Université de Paris-Sud, 91403 Orsay, France

{condotta, saade}@cril.univ-artois.fr,ligozat@limsi.fr

Abstract. In this paper we consider the consistency problem for qualitative con-
straint networks representing temporal or spatial information. The most efficient
method for solving this problem consists in a search algorithm using, on the
one hand, the weak composition closure method as a local propagation method,
and on the other hand, a decomposition of the constraints into subrelations of
a tractable set. We extend this algorithm with the notion of eligibility and the
notion of frozen constraints. The first concept allows to characterise constraints
which will not be considered during the search. The second one allows to freeze
constraints in order to avoid unnecessary updates.

1 Introduction

The temporal and spatial information concerning the situation of a particular set of
entities can be represented using particular constraint networks [1, 2] called qualitative
constraint networks (QCNs). Each constraint of a QCN represents a set of possible qual-
itative configurations between the temporal or spatial entities and is defined in terms of
a set of basic relations. The consistency problem consists in deciding whether a given
network has solutions which satisfy these constraints. A forceful method to check the
consistency of a QCN consists in instantiating successively each constraint of the QCN
by each one of the basic relations until a consistent scenario is found, or proved not to
exist. This algorithm has been improved in efficiency by using tractable classes [3, 4, 5].
The general idea is to have a set Split of relations (containing all basic relations) for
which the closure by weak composition method is complete. During search, the con-
straints are instantiated by relations in Split rather than by basic relations. We propose
a refinement of this algorithm based on the notion of eligibility. The principle of the
new algorithm is fairly simple: it consists in an early detection of constraints which do
not need to be instantiated for deciding the consistency of the initial network.

In many applications, using qualitative constraints, two kinds of constraints are rep-
resented in a QCN. The first kind corresponds to constraints used to enforce complex
structural requirements on the set of temporal or spatial objects present in the system.
These constraints can be called constraints of environment or structural constraints.
The second kind corresponds to critical constraints on the configurations on some ob-
jects. We refer to these constraints as to critical constraints or constraints of position.

� This work is supported in part by the CNRS and the ANR “Planevo” project nJC05_41940.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 806–814, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Eligible and Frozen Constraints for Solving Temporal Qualitative Constraint Networks 807

Even though these two categories of constraints are represented by relations of the same
qualitative algebra, we can distinguish them on various points. In particular, consider-
ing only the constraints of environment can be assumed to yield a consistent set. It is
the addition of constraints of position to this set which may result in an inconsistency.
In that case, it is this last kind of constraints which may be hard to solve. The search
of a solution must focus on them. Moreover, given a solution, only the partial solution
concerning the critical constraints is of interest from the point of view of the user. In
this paper, we introduce the concept of frozen constraints which allows to differentiate
these two kinds of constraints. A frozen constraint is a constraint which cannot be mod-
ified during the search of a solution. Typically, structural constraints will be considered
as frozen, whereas critical ones will not.

This paper is organized as follows: Section 2 gives a brief background on the tem-
poral and spatial qualitative formalisms. Section 3 is devoted to study of the algorithm
called consistentE in which we introduce the concept of constraint eligibility. Sec-
tion 4 describes experimental results for this algorithm. In Section 5, we introduce the
concept of frozen constraints and we modify our algorithm in order to take this notion
into account.

2 Background on Spatial and Temporal Qualitative Formalisms

We assume that we have a qualitative formalism defined on a finite set B of basic rela-
tions on a domain D. We assume that the arity of these relations is 2. We also assume
that the basic relations constitute a partition of D×D. A qualitative constraint network
(QCN) is a pair composed of a set of variables and a set of constraints. The set of vari-
ables represents spatial or temporal entities of the system. A constraint consists of a set
of basic relations (whose union is the set of possible instantiations of the two variables).
Formally, a QCN is a pair (V, C), where V is a finite set of of n variables v0, . . . , vn−1
and C is a map which, to each pair (vi, vj) of V associates a subset C(vi, vj) of basic
relations C(vi, vj) ⊆ B. C(vi, vj) will be also denoted by Cij . The set A is defined as
the set of all subsets of the set of basic relations B (A = 2B). For r ∈ A, and x, y ∈ D,
we denote by x r y the fact that there exists a basic relation a ∈ r such that (x, y) ∈ a.
Each element r of A may be considered as the union of all a ∈ r. We use the unqual-
ified term “relation” to refer to such a union of basic relations. The set A is provided
with the usual set-theoretic operations including intersection (∩) and union (∪). It is
also provided with the operation of converse (−1) and an operation of composition (◦)
called weak composition or qualitative composition. The weak composition a◦b of two
basic relations of a, b ∈ B is the relation r = {c : ∃x, y, z ∈ D, x a y, y b z and x c z}.
The weak composition of r ◦ s of r, s ∈ A is the relation t =

⋃
a∈r,b∈s{a ◦ b}. In the

sequel, we shall use the following definitions:

Definition 1. Let N = (V, C) a QCN, with V = {v0, . . . , vn−1}. A partial solution of
N on V ′ ⊆ V is a map σ from V ′ to D such that: σ(vi) C(vi, vj) σ(vj), for each
vi, vj ∈ V ′. A solution of N is a partial solution of V . N is consistent iff it admits a
solution.N is ◦-closed iff for each vk, vi, vj ∈ V , C(vi, vj) ⊆ C(vi, vk)◦C(vk , vj). A
sub-QCNN ′ ofN is a QCN (V, C′) where C′(vi, vj) ⊆ C(vi, vj) for each vi, vj ∈ V .

808 J.-F. Condotta, G. Ligozat, and M. Saade

We note N ′ ⊆ N the fact that N ′ is a sub-QCN of N . A scenario of N is a sub-QCN
(V, C′) of N such that C′(vi, vj) = {a} with a ∈ B. A consistent scenario of N is a
scenario of N which admits a solution. N ′ = (V ′, C′) is equivalent to N iff V = V ′

and if the two QCNs have the same solutions.

Given a QCN N = (V, C), there are several local constraint propagation algorithms
which can be used to obtain in polynomial time (O(|V |3) for some of them) a sub-
QCN which is ◦-closed and equivalent to N . In brief, the principle of these algorithms
is to iterate the operation C(vi, vj) ← C(vi, vj) ∩ (C(vi, vk) ◦ C(vk, vj)) for each
3-tuple of variables vi, vj , vk ∈ V until a fixed point is reached. In the following, the
expression “method of closure by weak composition” will denote such an algorithm.
The ◦-closed QCN obtained by application of the method of ◦-closure to a QCNN will
be denoted by wcc(N) and called the ◦-closure ofN . We have the following properties:

Proposition 1. Let N and N ′ be two QCNs: (a) wcc(N) ⊆ N , (b) wcc(wcc(N)) =
wcc(N), (c) if N ⊆ N ′ then wcc(N) ⊆ wcc(N ′).

3 The Search Algorithm with Eligibility

In this section we introduce a refinement of the algorithm proposed by Nebel [4] based
on the notion of eligibility. The principle of this algorithm consists in an early detection
of constraints which do not need to be instantiated for deciding consistency. In order to
do so, at each step of the search, in particular during the closure by weak composition,
we mark as non eligible each constraint defined by a relation belonging to the split-
ting set Split. Moreover, the selection of the next constraint to be instantiated is made
among the constraints marked as eligible. The search terminates when all constraints
are marked as non eligible. The main objective is to instantiate a minimal number of
constraints. Algorithm 1 gives the definition of consistentE (E stands for eligibility)
which implements our approach. This function takes as a parameter a QCN N and re-
turns a boolean value corresponding to the detection or not of the consistency of N .
Split ⊆ A is the set of relations used to split the constraints into tractable relations for
the instantiations. Split must contain all basic relations and be closed for the operation
of converse. In the case of the Interval Algebra, Split can be chosen as the set of con-
vex relations or the set of ORD-Horn relations. The first step of the algorithm consists
in marking as eligible each constraint of N defined by a relation not belonging to the
set Split and in marking as non eligible the other constraints. The algorithm returns
the result of the recursive call of the function consistentE′. Each execution of this
function begins with a call of the method of closure by weak composition. In addition
to the usual component of triangulation, this method detects the new constraints which
are defined by a relation of the set Split at a given time. These constraints are marked
as non eligible. The next step consists in selecting a constraint marked as eligible and
processing it: first, the constraint is split into relations belonging to the set Split; then,
each one of these relations is used to instantiate the chosen constraint. Search proceeds
by calling again consistentE′. It terminates when all constraints are marked as non
eligible or when all partial instantiations have failed.

Eligible and Frozen Constraints for Solving Temporal Qualitative Constraint Networks 809

Algorithm 1. Function consistentE(N), withN = (V, C) and n = |V |.
1: for i, j ∈ 0 . . . n− 1
2: if (Cij ∈ Split) mark Cij as non eligible else mark Cij as eligible
3: endFor
4: return consistentE′(N)

Function consistentE′(N), withN = (V, C).
1: if (wcc(N) == false) return false
2: Select a constraint Cij such that Cij is eligible
3: if such a constraint Cij does not exist return true
4: Split Cij into subrelations r1, . . . , rk such that rl ∈ Split

5: for l ∈ 1 . . . k do
6: Cij ← rl, Cji ← C−1

ij

7: Mark Cij and Cji as non eligible
8: if (consistentE′(N) == true) return true
9: endFor
10: return false

Function wcc(N), withN = (V, C) and n = |V |.
1: do
2: N ′ ← N
3: for i, j, k ∈ 0 . . . n− 1
4: Cij ← Cij ∩ (Cik ◦ Ckj), Cji ← C−1

ij

5: if (Cij == ∅) return false
6: if (Cij ∈ Split) mark Cij and Cji as non eligible
7: endFor
8: until (N ′ == N)
9: return true

The case where consistentE returns false corresponds to the case where all possible
partial solutions have been explored and have been detected as non consistent by the
weak composition closure method. In the case where consistentE terminates success-
fully, it is not guaranteed in general that the QCNN is a consistent network. Following
the line of reasoning proposed by Nebel [4] we can prove that the QCN N we obtain
is a ◦-closed QCN whose relations belong to Split. Hence, if the weak composition
closure method is complete for Split, the obtained network is a consistent network.

Theorem 1. If the method of closure by weak composition is complete for Split ⊆ 2B,
then consistentE is sound and complete for the consistency problem.

4 Experimental Results About Eligibility

We have implemented a series of tests on a set of qualitative constraint networks on
Allen’s algebra. These QCNs have been randomly generated according to a model
similar to those proposed in [6, 4]. This model has the following parameters: n is
the number of variables of the network; nonTrivialDensity (nTD) is a real num-
ber which corresponds to the probability of a constraint to be non trivial (i.e. different
from B); cardinalityDensity (cD) is a real number which corresponds to the proba-
bility of a basic relation to belong to a given non trivial constraint; consistent indicates
whether the generated network must be forced to be consistent by adding a consistent
scenario. The experiments reported in this paper are concerned with QCNs on Allen’s
calculus generated with 50 variables, with nonTrivialDensity ∈ {0.25, 0.5, 0.75}.
cardinalityDensity varies from 0.05 until 0.95 by a step of 0.05. For lack of space,
we only provide the results concerning consistent QCNs. For each data point, 100 QCNs

810 J.-F. Condotta, G. Ligozat, and M. Saade

have been generated and tested. All experiments have been implemented in JAVA using
the QAT (Qualitative Algebra Toolkit) library [7]. We have compared the consistentE
algorithm and the algorithm proposed by Nebel [4]. The set of ORD-Horn relations
[8, 9] is used for the set Split. During search the choice of constraints to be treated
(line 2 of consistentE′) is dynamic. The first heuristics we use, called Dom con-
sists in selecting a constraint having the lowest cardinality among all selectable con-
straints. The second heuristics is more original. We call it DomTriangle. As in the
previous heuristics, this heuristics considers the constraints having the lowest cardinal-
ity. To each of these constraints Cij the DomTriangle heuristics associates the weight
Σ(|Cik| + |Ckj| : Cik and Ckj are not trivial) and chooses one constraint having a
minimal weight.

Fig. 1. Percentages of number of QCN solved faster by consistentE for nonTrivialDensity ∈
{0.25, 0.5, 0.75}, with the Dom heuristics (left) and DomTriangle heuristics (right)

By examining the graphs in Fig. 1 we note that for most of the QCNs generated, the
algorithm consistentE terminates earlier. The advantage is more pronounced when
we use the DomTriangle heuristics rather than Dom. Moreover, as a general rule,
when the density nonTrivialDensity is lower the advantage is higher. A plausible
explanation of this phenomenon is that the lower this density is, the greater is the
number of trivial relations, and then the greater the number of ORD-Horn relations,
the earlier consistentE terminates. Table ?? recapitulates the time and number of
backtracks used during search. The average time is given in milliseconds. The first
column indicates the time used by the first call of the method of closure by weak
composition. The two following ones indicate the times of search used respectively
by consistentE and by Nebel’s algorithm. In the last two columns, the numbers of
backtracks are indicated. The resolution is particularly difficult for cD ∈ {0.6, 0.65}.
In these phase the number of backtracks is very high. consistentE is slower in some
cases. These cases are always in the difficult phase. We have also made experiments for
QCNs which are not forced to be consistent. The first results concerning these QCNs
are similar.

Eligible and Frozen Constraints for Solving Temporal Qualitative Constraint Networks 811

Table 1. Comparison of consistencyE and the Nebel’s algo., Dom(left), DomTriangle(right)

nTD=0.5 Twcc TE TN BKE BKN

cD=0.05 137 11 17 0 0
cD=0.1 138 9 14 0 0
cD=0.15 151 11 18 0 0
cD=0.2 162 14 24 0 0
cD=0.25 175 18 33 0 0
cD=0.3 198 24 45 0 0
cD=0.35 231 34 63 0 0
cD=0.4 268 55 98 0 0
cD=0.45 296 90 155 0 0
cD=0.5 290 296 387 0 0
cD=0.55 108 1289 1320 19 12
cD=0.6 72 37566 34338 1078 839
cD=0.65 59 28751 27061 785 640
cD=0.7 52 4964 10096 136 190
cD=0.75 47 717 987 0 2
cD=0.8 48 626 873 0 0
cD=0.85 42 520 752 0 0
cD=0.9 31 384 564 0 0
cD=0.95 17 179 281 0 0

nTD=0.5 Twcc TE TN BKE BKN

cD=0.05 135 11 17 0 0
cD=0.1 132 6 13 0 0
cD=0.15 142 9 17 0 0
cD=0.2 154 13 24 0 0
cD=0.25 175 19 34 0 0
cD=0.3 198 26 47 0 0
cD=0.35 225 33 62 0 0
cD=0.4 262 56 98 0 0
cD=0.45 298 94 153 0 0
cD=0.5 281 290 380 0 0
cD=0.55 109 1642 1724 29 23
cD=0.6 68 6272 6325 162 139
cD=0.65 51 14188 11260 429 297
cD=0.7 45 1078 1283 7 7
cD=0.75 40 715 935 0 0
cD=0.8 38 625 879 0 0
cD=0.85 36 522 748 0 0
cD=0.9 24 368 570 0 0
cD=0.95 13 167 263 0 0

5 Frozen Constraints

In order to illustrate the concepts of constraints of environment and critical constraints,
consider the q-queens problem. The problem consists in placing q queens (with q an
integer number) on a chessboard of size q × q such that no queen can capture another
queen. In order to represent this problem with qualitative constraints we can use a new
qualitative algebra that we call ACD25 (Algebra of Cardinal Directions 25). It is based
onto 25 basic relations defined on the discrete domain D = N × N . Roughly speak-
ing, each one of these 25 relations (see Figure 2 (c)) corresponds to a particular car-
dinal direction (North, South, . . .) and equally corresponds to a particular distance be-
tween the two points. The distance equals 0 (for the relation EQ), or 1 (for the relations
N, W, S, E, NW, SW, NE, SE) or greater than 1 for the 16 remaining relations. Us-
ing the ACD25 algebra we can express the queens problem using a QCN N = (V, C)
in the following way. A variable is introduced for each square of the chessboard and
for each queen. Hence, we obtain q× (q + 1) variables in V representing points of the
plane of the integer number. A first set of constraints is necessary to define the struc-
ture of the object corresponding to the chessboard. These constraints are constraints of
environment and give the relative position between a case and its adjacent cases, see
Figure 2 (a). This set of constraints is always consistent. The critical constraints will
correspond to the constraints on the positions of the queens. Firstly, we must constraint
each queen to be on the chessboard, more precisely we can constraint each queen to
be on exactly one line of the chessboard. For this, we force the ith queen to be to the
east (resp. to the west) of the first square (resp. the last square) of the ith of the chess-
board (see Figure 2 (b)). Finally, we define each constraint between two queens by the
basic relations illustrated in Fig. 2 (c) to make sure that a queen cannot capture another
queen. Note that given a solution of the QCN, we are only interested in the positions
of the queens on the chessboard, i.e. the constraints equal to {EQ} between a queen
and a square. We now introduce the concept of frozen constraints. This concept is an
elegant way of distinguishing and treating structural and critical constraints. A frozen
constraint is just a constraint which cannot be modified during the search for a solution.
Structural constraints will be considered as frozen, while critical constraints will not.
The first one are used to constrain “the domain” of the problem.

812 J.-F. Condotta, G. Ligozat, and M. Saade

NW

W

N

(a)
Qi

{EQ,E,AE}

{EQ,W,AW}

line i

(b)

SW

GNE

GNE

GSE

GSE

GSE

GNW

GNW

GNW

GSW

GSW

GSW

GN

GS

GS

GN

GS

GN

NW

S

EQ

GNW1 GNW1

GNW1

GNW2

GW

GSW1

GSW2

GSE1

GNE2

GSE2

GSE2GSW2

GNW2GNW2

GNW2

GW

GSW1

WW

NGNW2

GNE1

E

GSE2

GSE2 GSE2

GSE1

GSE1

GE

GNE2

GNE2 GNE2

GE

GSE1

GSE1GSE2

GSW2

SE

GSW2

GSW2

GSW1

GW

GSW1

GNE1

GE

NE

GNE1 GNE2

GNE2

GSE1

GNEGNE1GNE1 GNE1GNW1

GNW1

GNW1

GSW1

GSW1

GSW2

GNW2

(c)

Fig. 2. (a) Constraints between the squares, (b) the constraint between a queen and its line, (c) the
constraint between two queens

Algorithm 2. Function consistentEF (N), withN = (V, C) and n = |V |.
1: for i, j ∈ 0 . . . n− 1
2: if (Cij ∈ Split) or ((i, j) ∈ SFrozen) Mark Cij as non eligible else Mark Cij as eligible
3: endFor
4: return consistentEF ′(N)

Function consistentEF ′(N), withN = (V, C).
1: if (wccF (N) == false) return false
2: Select a constraint Cij such that Cij is eligible
3: if is such a constraint Cij does not exist return true
4: Split Cij in relations r1, . . . , rk such that rl ∈ Split

5: for l ∈ 1 . . . k do
6: Cij ← rl, Cji ← C−1

ij

7: Mark Cij and Cji as non eligible
8: if (consistentEF ′(N) == true) return true
9: endFor
10: return false

Function wccF (N), withN = (V, C) and n = |V |.
1: do
2: N ′ ← N
3: for i, j ∈ 0 . . . n− 1
4: if ((i, j) �∈ SFrozen)
5: for k ∈ 0 . . . n− 1
6: Cij ← Cij ∩ (Cik ◦ Ckj), Cji ← C−1

ij

7: if (Cij == ∅) return false
8: if (Cij ∈ Split) Mark Cij and Cji as non eligible
9: endFor
10: endFor
11: until (N ′ == N)
12: return true

We now extend the function consistentE in order to take into account the concept of
freezing. The freezing of a subset of the constraints will be made a priori. A frozen
constraint cannot be selected or instantiated during the search, nor updated during the
local propagation of constraints. This is translated into concrete terms in the definition
of the function consistentEF (E for eligibility and F for freezing) as defined in Al-
gorithm 2. SFrozen denotes the set of pairs of integer numbers representing the frozen
constraints. The main modifications made w.r.t. the previous algorithm are the follow-
ing ones. Firstly, we mark as non eligible each frozen constraint (line 2 of the function
consistentEF). Secondly, the method of closure by weak composition is modified to

Eligible and Frozen Constraints for Solving Temporal Qualitative Constraint Networks 813

consider only triangulation operations which can potentially modify a non frozen con-
straint. Applying this method is not guaranteed to yield an ◦-closed QCN but a weaker
one that we denote by 〈◦, SFrozen〉-closed. It is formally defined as follows:

Definition 2. Let N = (V, C) be a QCN. Let F ⊆ {0, . . . , n − 1} × {0, . . . , n − 1}
representing the set of frozen constraints. We say that N is ◦-closed w.r.t. F , denoted
by 〈◦, F 〉-closed, iff ∀i, j, k ∈ {0, . . . , n− 1}, (i, j) �∈ F implies Cij ⊆ Cik ◦ Ckj .

Consider a set of QCNs defined on the same set of variables V = {v0, . . . , vn−1}. Given
a set F ⊆ {0, . . . , n− 1} × {0, . . . , n− 1} representing a set of frozen constraints on
V and a set of relations S ⊆ 2B representing a splitting set. We say that the method of
〈◦, F 〉-closure by weak composition is complete for S iff for any N = (V, C) ∈ Q, if
N is 〈◦, F 〉-closed and for all (i, j) ∈ ({0, . . . , n− 1} × {0, . . . , n− 1}) \ F Cij ∈ S
then N is a consistent QCN or contains the empty relation as a constraint. We have:

Theorem 2. For any set of QCNs for which the closure by weak composition w.r.t.
SFrozen is complete for the set Split, consistentEF is sound and complete.

Consider the QCNs representing the q-queens problem. Take SFrozen = {(i, j) :
Cij is a constraint between two squares}. Define Split as the union of the set of basic
relations of ACD25 and the universal relation. We can prove that the closure by weak
composition w.r.t. SFrozen is complete for the set Split.

6 Conclusion

We proposed and studied algorithms for solving QCNs based on concepts of eligible
constraints and frozen constraints. We established the conditions under which these al-
gorithms are sound and complete. Using experimental data, we showed the interest of
our approach, in particular in terms of time of computation. Our experimental work
is still in progress, especially for confronting consistencyE and consistencyEF to
QCNs of greater sizes and to QCNs defined on other qualitative formalisms. It would
be interesting to use other splitting sets than the set of ORD-Horn relations, such as
the set of convex relations or the set of pointizable relations. Another future work con-
sists in developing alternative methods of local propagation of constraints, similarly to
the method of closure by weak composition. It would also be interesting to study the
behavior of the algorithms under these new methods.

References

[1] Allen, a.J.F.: An interval-based representation of temporal knowledge. In: Proc. of the Sev-
enth Int. Joint Conf. on Artificial Intelligence (IJCAI’81), pp. 221–226 (1981)

[2] Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Comput-
ing 1(9), 23–44 (1998)

[3] Ladkin, P.B., Reinefeld, A.: Effective solution of qualitative interval constraint problems.
Artificial Intelligence 57(1), 105–124 (1992)

[4] Nebel, B.: Solving hard qualitative temporal reasoning problems: Evaluating the efficienty
of using the ORD-Horn class. In: Proceeding of the Twelfth Conference on Artificial Intelli-
gence (ECAI’96) (1996)

814 J.-F. Condotta, G. Ligozat, and M. Saade

[5] Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning (1998)
[6] Beek, P.V., Manchak, D.W.: The design and experimental analysis of algorithms for temporal

reasoning. Journal of Artificial Intelligence Research 4, 1–18 (1996)
[7] Condotta, J.F., Ligozat, G., Saade, M.: The QAT: A Qualitative Algebra Toolkit. In: Pro-

ceedings of the thirteenth international conference on Temporal Representation an Reasoning
(TIME’2006), Hungary (2006)

[8] Nebel, B., Bürckert, H.J.: Reasoning About Temporal Relations: A Maximal Tractable Sub-
class of Allen’s Interval Algebra. Journal of the ACM 42(1), 43–66 (1995)

[9] Ligozat, G.: A New Proof of Tractability for ORD-Horn Relations. In: Proc. of the Thirteenth
Nat. Conference on Artificial Intelligence (AAAI’96), vol. 1, pp. 395–401 (1996)

The Log-Support Encoding of CSP into SAT

Marco Gavanelli

Dept. of Engineering, Ferrara University
http://www.ing.unife.it/docenti/MarcoGavanelli/

Abstract. Various encodings have been proposed to convert Constraint
Satisfaction Problems (CSP) into Boolean Satisfiability problems (SAT).
Some of them use a logical variable for each element in each domain:
among these very successful are the direct and the support encodings.

Other methods, such as the log-encoding, use a logarithmic number of
logical variables to encode domains. However, they lack the propagation
power of the direct and support encodings, so many SAT solvers perform
poorly on log-encoded CSPs.

In this paper, we propose a new encoding, called log-support, that
combines the log and support encodings. It has a logarithmic number
of variables, and uses support clauses to improve propagation. We also
extend the encoding using a Gray code. We provide experimental results
on Job-Shop scheduling and randomly-generated problems.

1 Introduction

One methodology for solving Constraint Satisfaction Problems (CSP) relies on
the conversion into boolean satisfiability (SAT) problems. The advantage is the
wide availability of free, efficient, SAT solvers, and the possibility to exploit
advances in SAT solvers without reimplementing them in CP. SAT solvers have
reached significant levels of efficiency, and new solvers are proposed, tested and
compared every year in annual competitions [2,20]. There are both complete SAT
solvers, based on systematic search (typically, variants of the DPLL procedure
[6]), and incomplete solvers, often based on local search.

Very popular encodings [23,18] assign a SAT variable to each element of a
CSP domain, i.e., for each CSP variable i and each value v in its domain, there
is a logical variable xi,v that is true iff i takes value v. The reason for such a
representation is that it lets the SAT solver achieve pruning: if the SAT solver
infers that xi,v is false, then the corresponding CSP variable i cannot take value
v. The most popular CSP-SAT encoding is the direct [23]; DPLL applied to a
SAT encoded CSP mimics the Forward Checking on the original CSP [11,23].
The support encoding [12] has the same representation of domains, but a different
representation of constraints. Unit propagation (used in DPLL solvers) applied
to the support-encoded CSP achieves the same pruning of arc-consistency on
the original CSP. Stronger types of consistency are proven in [3,7].

On the other hand, using a SAT variable for each value in a domain generates
a huge search space. Indeed, it lets the SAT solver perform powerful propagation,
but at a cost: the search space is exponential in the number of SAT variables.

In logarithmic encodings, each domain is represented by �log2 d� SAT variables
[15,14,9,23,18,1]. Such encodings can be tailored for specific constraints, such as

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 815–822, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

816 M. Gavanelli

not equal [10]. In general, however, they lack the ability to remove single values
from domains, which yields less powerful propagation when compared to CSP
solvers. Constraints are usually represented as in the direct encoding.

In this paper, we propose a new encoding, called Log-Support, that uses support
clauses ina logarithmicencoding.Thecodificationofdomainscanbeeithertheusual
binary representation, or based on a Gray code, in order to maximise the propaga-
tion power of support clauses. We apply the new encodings on randomly generated
problems and on benchmark job-shop scheduling problems, and compare the per-
formances of the SAT solvers Chaff [17] and MiniSat [8] on the encoded problems.

2 Preliminaries and Notation

A CSP consists of a set of variables, ranging on domains, and subject to con-
straints. We focus on binary CSPs, where constraints involve at most two vari-
ables. We call n the number of variables, and d the maximum domain cardinality.
The symbols i and j refer to variables, while v and w are domain values.

A SAT problem contains a formula built on a set of variables, which can take
only values true (or 1) and false (or 0). We call them logical variables or SAT
variables to distinguish them from CSP variables. The formula is often required
to be in conjunctive normal form, i.e., a set of clauses, i.e., disjunctions of literals
of the logical variables. A solution to a SAT problem is an assignment of values
true/false to the logical variables, such that all clauses are satisfied.

3 A Survey on Encodings

The Direct encoding. [23] uses a logical variable xi,v for each CSP variable
i and domain value v. For each CSP variable i, a clause (called at-least-one)
imposes that i takes at least one of the values in its domain: xi,1∨xi,2∨ . . .∨xi,d.
At-most-one clauses forbid the variable i to take two values: ∀j1 �= j2 we add
¬xi,j1 ∨ ¬xi,j2 . Constraints are encoded with conflict clauses: for each pair of
inconsistent assignments i← v, j ← w s.t. (v, w) /∈ ci,j , we have ¬xi,v ∨ ¬xj,w .

For example, consider the CSP: A ≤ B, with A and B ranging on {0, 1, 2}.
The direct encoding produces the clauses:

at-least-one a0 ∨ a1 ∨ a2 b0 ∨ b1 ∨ b2

at-most-one ¬a0 ∨ ¬a1 ¬a0 ∨ ¬a2 ¬b0 ∨ ¬b1 ¬b0 ∨ ¬b2
¬a1 ∨ ¬a2 ¬b1 ∨ ¬b2

conflict ¬a1 ∨ ¬b0 ¬a2 ∨ ¬b0 ¬a2 ∨ ¬b1

The Support Encoding. [16,12] represents domains as in the direct encoding,
i.e., we have at-least-one and at-most-one clauses. Constraints are based on the
notion of support. If an assignment i ← v supports the assignments j ← w1,
j ← w2, . . . , j ← wk, we impose that xi,v → xj,w1 ∨ xj,w2 ∨ . . . ∨ xj,wk

i.e., we
impose a support clause: ¬xi,v ∨ xj,w1 ∨ xj,w2 ∨ . . . ∨ xj,wk

.
The constraints of the previous example are represented as the support clauses:

¬a1 ∨ b1 ∨ b2, ¬b0 ∨ a0, ¬a2 ∨ b2 and ¬b1 ∨ a0 ∨ a1.

The Log-Support Encoding of CSP into SAT 817

The Log Encoding. [15,23,10] uses m = �log2 d� logical variables to represent
domains: each of the 2m combinations represents an assignment. For each CSP
variable i we have logical variables xb

i , where xb
i = 1 iff bit b of the value assigned

to i is 1. At-least-one and at-most-one clauses are not necessary; however, in case
the cardinality of domains is not a power of two, we need to exclude the values
in excess, with the so-called prohibited-value clauses [18] (although the number
of these clauses can be reduced [10]). If v is not in the domain of i, and v is rep-
resented with the binary digits 〈vm−1, . . . , v0〉, we impose ¬

(∧m−1
b=0 ¬(vb ⊕ xb

i)
)

where ⊕ means exclusive-or. Intuitively, ¬(s⊕ b) is the literal b if s is true, and
¬b if s is false. We obtain the prohibited-value clause

∨m−1
b=0 vb ⊕ xb

i .
Constraints can be encoded with conflict clauses. If two assignments i ← v,

j ← w are in conflict, and vb and wb are the binary representations of v and w,
we impose a clause of length 2m:

(∨m−1
b=0 vb ⊕ xb

i

)
∨

(∨m−1
b=0 wb ⊕ xb

j

)
.

In the running example, we will have:

prohibited-value ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0 ¬a1 ∨ a0 ∨ b1 ∨ b0
¬a1 ∨ a0 ∨ b1 ∨ ¬b0

4 The Log-Support Encoding

In the log-encoding, conflict clauses consist of 2m literals; unluckily, the length
of clauses typically influences negatively the performance of a SAT solver.

The DPLL applied to a support-encoded CSP performs a propagation equiva-
lent to arc-consistency on the original CSP [12]. One could think of applying sup-
port clauses to log encodings; an intuitive formulation is the following. If an as-
signment i← v supports the assignments j ← w1, . . . , j ← wk, we could impose,
as in the support encoding, that v → w1 ∨ . . . ∨ wk, and then encode in binary
form the values v and wi. However, the binary form of a value is a conjunction, so
the formula becomes

(∧
b ¬(vb ⊕ xb

i)
)→ (∧

b ¬(wb
1 ⊕ xb

j)
)∨. . .∨(∧

b ¬(wb
k ⊕ xb

j)
)

which, in conjunctive normal form, generates an exponential number of clauses1.
We convert in clausal form only implications that have exactly one literal in

the conclusion. Let us consider, as a first case, only the most significant bit.
In our running example, the assignment A ← 2 supports only B ← 2. We can
say that, whenever A takes value 2, the most significant bit of B must be 1:
a1 ∧ ¬a0 → b1. We add the support clause ¬a1 ∨ a0 ∨ b1, that is enough to rule
out two conflicting assignments:

prohibited-values ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

support ¬a1 ∨ a0 ∨ b1

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0

Note that this transformation is not always possible: we can substitute some
of the conflict clauses with one support clause only if all the binary form of
supported values agrees on the most significant bit.
1 One could reduce the number of clauses by introducing new variables, as in [3].

818 M. Gavanelli

Each support clause has length m + 1 and removes d/2 conflict clauses (of
length 2m). This is a significant reduction of the number of conflict clauses when
the assignments that satisfy the constraint are all grouped in the same half of
the domain. This happens in many significant constraints (e.g, >, ≤, =).

To sum-up, this encoding has the same number (n�log2 d�) of logical variables
required by the log-encoding, with a reduced number of conflict clauses (of length
2�log2 d�), which are substituted by support clauses (of length �log2 d�+ 1).

Improvements. The same scheme can be applied to the other direction (from
B to A), and to other bits (not just to the most significant one). In the running
example, we can add the support clauses b1∨b0∨¬a0, b1∨¬b0∨a1, b1∨¬b0∨¬a1
and, in this case, remove all the conflict clauses.

Suppose that a value v in the domain of variable i conflicts with two consecu-
tive values w and w+1 in the domain of j. Suppose that the binary representation
of the numbers w and w + 1 differs only for the least significant bit b0. In this
case, we can represent both the values w and w + 1 using only the m− 1 most
significant bits, so we can impose one single conflict clause of length 2m − 1.
This simple optimization can be considered as applying binary resolution [7] to
the two conflict clauses, and can be extended to sets of consecutive conflicting
values whose cardinality is a power of two.

4.1 Gray Code

The Gray code [13] uses a logarithmic number of bits, as the binary code; how-
ever, any two consecutive numbers differ only for one bit. So, by encoding the
values in the CSP domains with a Gray code, all intervals of size 2 are repre-
sentable, while in the classical binary code only half of them are representable.
For instance, suppose that a CSP variable A has a domain represented in 4-bit
binary code, and that during DPLL search its state is 001U, i.e., the first three
bits have been assigned, while the last has not been assigned yet. We can inter-
pret this situation as the current domain of A being {2, 3}. However, there is no
combination that can represent the domain {3, 4}. In the 4-bit Gray code, {2, 3}
is represented by configuration 001U and {3, 4} by 0U10.

With a Gray representation, the running example is encoded as follows:

prohibited-values ¬a1 ∨ a0 ¬b1 ∨ b0

support ¬a1 ∨ a0 ∨ b0 b1 ∨ b0 ∨ ¬a0
¬a1 ∨ ¬a0 ∨ b0 b1 ∨ b0 ∨ ¬a1
¬a1 ∨ ¬a0 ∨ b1 b1 ∨ ¬b0 ∨ ¬a1

By using a Gray code, the number of support clauses has increased from 4 to 6
(50%), while (in this case) no conflict clauses are necessary. The intuition is that
a higher number of support clauses should allow for more powerful propagation,
but in some cases it could also increase the size of the SAT problem. However, each
support clause has one CSP value in the antecedent and one of the bits in the con-
clusion, so for each constraint there are at most 2d�log2 d� support clauses. The
number of conflict clauses in the log-encoding cannot be higher than the number

The Log-Support Encoding of CSP into SAT 819

of pairs of elements in a domain, so d2. Recall also that conflict clauses are longer
than support clauses, so we can estimate the size of the (Gray) Log-Support en-
coding to be smaller than that of the log-encoding, when d is large.

5 Experimental Results

5.1 Randomly Generated Problems

The first set of experiments is based on randomly generated CSPs. A random
CSP is often generated given four parameters [21]: the number n of variables,
the size d of the domains, the probability p that there is a constraint on a given
pair of variables, and the conditional probability q that a pair of assignments is
consistent, given that there is a constraint linking the two variables.

In order to exploit the compact representation of log-encodings, we focussed
on CSPs with a high number of domain values. In order to keep the running time
within reasonable bounds, we had to keep small the number of CSP variables.

The Log-Support encoding was developed for constraints in which the set
of satisfying assignments is connected, and we can easily foresee that a Gray
code will have no impact on randomly generated constraint matrices. Thus, we
used a different generation scheme, in which satisfying assignments have a high
probability to be grouped in clusters. Note that also real-life constraints typically
have their satisfying assignments grouped together, and not completely sparse.

For each constraint (selected with independent probability p) on variables A
and B, we randomly selected a pair of values v and w respectively from the
domains of A and B. The pair (v, w) works as an “attractor”: the probability
that a constraint is satisfied will be higher near (v, w) and smaller far from that
point. Precisely, the probability that a pair of assignments (a, b) is satisfied is
q = 1−α

√
(a− v)2 + (b− w)2, where α is a coefficient that normalises the value

of q in the interval 0..1. A posteriori, we grouped the experiments with a same
frequency of satisfied assignments, and plotted them in the graph of Figure 1.

These experiments were performed running zChaff 2004.5.13 [17] and MiniSat
1.14 [8] on a Pentium M715 processor 1.5GHz, with 512MB RAM. A memory
limit was set at 150MB, and a timeout at 1000s. Each point is the geometric
mean of at least 25 experiments, where the conditions of timeout or out of
memory are represented by 1000s. Timing results include both the time spent
for the encoding and for solving the problem; however, the encoding time was
always negligible. Note that to perform the experiments we did not generate a
DIMACS file, because the time for loading the DIMACS could have been large
(see also the discussion in the next section).

From the graphs, we see that the log encoding is the slowest when the con-
straints are tight (q is small). This could be due to the fact that in the log-
encoding we have limited propagation of constraints, which makes hard proving
unsatisfiability. On the other hand, when the constraints are loose (q near 80-
90%), the log encoding performs better than the direct and support encodings.

The support encoding is often the best option for MiniSat, while Gray was the
best in the zChaff experiments. Moreover, the Log-Support/Gray encodings are

820 M. Gavanelli

Fig. 1. Experiments on randomly-generated problems (n = 7, d = 512, p = 30 and q
from 10 to 100). Times in ms. Left: Chaff, Right: MiniSat.

often competitive. For high values of q, the Log-Support/Gray encodings keep the
same behaviour of the log-encoding. This is reasonable, because when q is high,
few support clauses are inserted. On the other hand, when q is small, support
clauses have a strong influence, and allow the SAT solver to detect infeasibility
orders of magnitude faster than in the log-encoding. Both the Log-Support and
the Gray encodings are typically faster than the direct encoding.

Finally, the Gray encoding is slightly faster than the Log-Support, probably
due to the fact that more support clauses are present.

5.2 Job-Shop Scheduling Problems

We applied the encodings to the set of Job-Shop Scheduling Problems taken from
the CSP competition 2006 [22] (and originally studied in [19]). These problems
involve 50 CSP variables with variable domain sizes, from 114 to 159.

The results are in Figure 2: the plots show the number of problems that were
solvable within a time limit given in abscissa (the higher the graph, the better).

Fig. 2. Experiments on Job-Shop scheduling problems. Left: Chaff, right: MiniSAT.

The Log-Support Encoding of CSP into SAT 821

The log encoding performed worst, and both Chaff and MiniSat were able to
solve only a limited subset of the problems within 500s.

In the experiments performed with Chaff, the support encoding was able to
solve some of the problems very quickly; however, given more time, the Log-
Support was typically the best choice (it was able to solve more problems). In
the experiments with MiniSat, the best encoding was the direct, possibly because
of the special handling of binary clauses implemented in MiniSat. Notice that
for both solvers the support encoding performed worse than the Log-Support
and the Gray encodings. In these instances, the Gray encoding did not provide
improvements with respect to the Log-Support.

Chaff required on average 65MB of RAM to solve a direct-encoded CSP, 56MB
to solve a support-encoded CSP, and only 19MB to solve a problem encoded with
Log-Support or Gray. The size of the generated SAT instance is also interesting.
On average, a log-encoded CSP used 107 literals, from which we can estimate a
DIMACS file of about 55MB. The Log-Support and Grey encodings needed on
average 1.7 · 106 literals, with a DIMACS of about 9.5MB. The direct encoding
used 2.3 · 106 literals (14MB), and the support 7 · 106 (45MB).

We can conclude that the Log-Support and Gray encodings are significant
improvements with respect to the log encoding, both in terms of solution time
and size of the generated SAT problem. The direct encoding is often faster than
the Log-Support, but it requires more memory for Chaff to solve them, and the
DIMACS file is much larger. Thus the Log-Support and Gray encodings could
be interesting solution methods in cases with limited memory.

6 Conclusions and Future Work

We proposed two new encodings, called Log-Support, and Gray, for mapping CSPs
into SAT. The Log-Support and Gray encodings use a logarithmic number of SAT
variables for representing CSP domains, as in the well-known log-encoding. Ex-
periments show that the new encodings outperform the traditional log-encoding,
and is competitive with the direct and support encodings. Moreover, the size of
the encoded SAT is typically a fraction of the size required by other encodings.

In future work, we plan to define a platform for defining CSPs, in the line of
[5,4]. Such architecture could be populated with a variety of the many encodings
proposed in recent years [1], and with the Log-Support/Gray encodings.

Other optimisations could be performed on the log encodings. We cite the bi-
nary encoding [9], that uses a logarithmic number of logical variables to encode
domains, and it avoids imposing prohibited value clauses by encoding a domain
value with a variable number of SAT variables. In future work, we plan to experi-
ment with a variation of the Log-Support that exploits the same idea. Finally, we
plan to experiment the various encodings with other solvers, in particular, local-
search based.

Acknowledgements. This work has been partially supported by the MIUR
PRIN 2005 project Constraints and preferences as a unifying formalism for sys-
tem analysis and solution of real-life problems.

822 M. Gavanelli

References

1. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542. Springer, Heidelberg (2005)

2. Le Berre, D., Simon, L.: SAT competition (2005), www.satcompetition.org/2005/
3. Bessière, C., Herbrard, E., Walsh, T.: Local consistencies in SAT. In: Giunchiglia,

E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)
4. Cadoli, M., Mancini, T., Patrizi, F.: SAT as an effective solving technology for

constraint problems. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.)
ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 540–549. Springer, Heidelberg (2006)

5. Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artificial In-
telligence 162(1-2), 89–120 (2005)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

7. Dimopoulos, Y., Stergiou, K.: Propagation in CSP and SAT. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 137–151. Springer, Heidelberg (2006)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

9. Frisch, A., Peugniez, T.: Solving non-boolean satisfiability problems with stochastic
local search. In: Nebel, B. (ed.) IJCAI 2001, pp. 282–290 (2001)

10. Van Gelder, A.: Another look at graph coloring via propositional satisfiability. In:
Computational Symposium on Graph Coloring and its Generalizations (2002)

11. Genisson, R., Jegou, P.: Davis and Putnam were already forward checking. In:
Proc. of the 12th ECAI, pp. 180–184. Wiley, Chichester (1996)

12. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) ECAI’2002 (2002)
13. Gray, F.: Pulse code communication, U. S. Patent 2 632 058 (March 1953)
14. Hoos, H.: SAT-encodings, search space structure, and local search performance. In:

Dean, T. (ed.) IJCAI 99, pp. 296–303. Morgan Kaufmann, San Francisco (1999)
15. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.

In: IFIP World Computer Congress, North-Holland, pp. 253–258 (1994)
16. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction

networks. Artificial Intelligence 45, 275–286 (1990)
17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient SAT solver. In: Proc. of DAC 2001, pp. 530–535. ACM Press, New
York (2001)

18. Prestwich, S.: Local search on SAT-encoded colouring problems. In: Giunchiglia,
E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)

19. Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artificial Intelligence 86(1), 1–41 (1996)

20. Sinz, C.: The SAT race (2006), http://fmv.jku.at/sat-race-2006/
21. Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint satis-

faction problems. Artificial Intelligence 81(1-2), 155–181 (1996)
22. van Dongen, M., Lecoutre, C., Roussel, O.: Second international competition of

CSP and Max-CSP solvers (2006), http://www.cril.univ-artois.fr/CPAI06/
23. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–

456. Springer, Heidelberg (2000)

www.satcompetition.org/2005/
http://fmv.jku.at/sat-race-2006/
http://www.cril.univ-artois.fr/CPAI06/

Groupoids and Conditional Symmetry

I.P. Gent1, T. Kelsey1, S.A. Linton1, J. Pearson2, and C.M. Roney-Dougal3

1School of Computer Science, University of St Andrews, St Andrews, UK
2Uppsala University, Department of Information Technology, Uppsala, Sweden

3School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
{ipg,tom,sal}@cs.st-and.ac.uk, justin.pearson@it.uu.se,

colva@mcs.st-and.ac.uk

Abstract. We introduce groupoids – generalisations of groups in which
not all pairs of elements may be multiplied, or, equivalently, categories in
which all morphisms are invertible – as the appropriate algebraic struc-
tures for dealing with conditional symmetries in Constraint Satisfaction
Problems (CSPs). We formally define the Full Conditional Symmetry
Groupoid associated with any CSP, giving bounds for the number of
elements that this groupoid can contain. We describe conditions under
which a Conditional Symmetry sub-Groupoid forms a group, and, for
this case, present an algorithm for breaking all conditional symmetries
that arise at a search node. Our algorithm is polynomial-time when there
is a corresponding algorithm for the type of group involved. We prove
that our algorithm is both sound and complete – neither gaining nor
losing solutions.

1 Introduction

Conditional symmetries in CSPs are parts of a problem that become interchange-
able when some condition is satisfied. Typically the condition is that a subset of
the variables have been given particular values. Definitions of conditional sym-
metry, together with initial approaches for identifying and breaking them, are
given in [1,2,3,4]. A key problem is that the set of conditional symmetries of a
CSP does not, in general, form a group. This motivates the research question: is
there a suitable mathematical abstraction of conditional symmetry that can be
used to identify, classify and break such symmeteries in an arbitrary CSP?

We describe groupoids as the class of mathematical objects that are the appro-
priate abstraction for conditional symmetries. Using groupoids we can describe,
enumerate and analyse conditional symmetries for any CSP. Given a CSP, the
Full Conditional Symmetry Groupoid, containing elements that capture both
the symmetry and the condition under which it arises. This approach allows
us to classify conditional symmetries in terms of the sub-groupoid(s) in which
they are contained. Moreover, we can identify conditional symmetries that have
properties that allow us to develop effective symmetry breaking techniques.

Groupoids are generalisations of groups, in which not all elements can be
composed. A basic introduction to groupoids is given in [5]. The reason that we

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 823–830, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

824 I.P. Gent et al.

have to leave groups behind when talking about conditional symmetries is that
every element of a symmetry group can be applied to all partial assignments,
and hence one cannot capture the concept of “condition”.

2 Groupoids and Conditional Symmetries

We will use the following notation throughout: the set of variables will denoted
with a V , individual variables v1, . . . , vn and sometimes w. For simplicity, we
will assume that there is a single domain D for all variables (since constraints
can be added to give different domains for chosen variables). A literal of a CSP
is a pair (w, d) where w ∈ V and d ∈ D.

Definition 1. A partial assignment f is a set of literals that contains at most
one literal for each variable. A partial assignment g is an extension of f , if
f ⊆ g.

We say that a partial assignment f is complete if |f | = |V |. That is, all variables
are assigned values by f . A solution to a CSP is a complete partial assignment
that violates no constraint.

Definition 2. A groupoid is a set G, and a basis set B, together with a partial
operation, composition, and two maps s and t from G to B that together satisfy
the following:

1. composition, gh, of two elements, g and h in G is defined only when t(g) =
s(h) — this is what is meant by saying that the composition is partial;

2. if the products gh and hk are defined then g(hk) = (gh)k is defined;
3. for every g in G there are left and right identity elements λg and ρg s.t.

λgg = g = gρg;
4. Each element has an inverse g−1 s.t. gg−1 = λg and g−1g = ρg.

Often groupoids will be presented as collections of triples, (s(g), g, t(g)), with
composition of two elements g and h can written as: (s(g), g, t(g))(s(h), h, t(h)) =
(s(g), gh, t(h)), provided that t(g) = s(h). convention of “acting from the right”
so that gh means “do g then do h”.

A subgroupoid of a group G is a subset of the elements of G that itself forms
a groupoid under the same partial operation. The base set of a subgroupoid is
the set of all sources and targets that occur for elements of the subgroupoid.

We now turn to formalising conditional symmetries as groupoid elements. The
key problem in providing the definitions is that for composition to be defined,
the target of one element has to be equal to the source of the next. This makes
it impossible to represent sources and targets as the simple condition given by
the constraint. Instead, we have a separate groupoid element for every partial
assignment that satisfies a condition. We will develop the theory and show that
this leads to well-defined groupoids and useful theoretical results.

We will denote the image of an object α under a map φ by αφ. A literal
bijection of a CSP is a bijection φ from the set of literals of the CSP to itself.
The following definition begins the process of capturing the notion of a condition.

Groupoids and Conditional Symmetry 825

Definition 3. A literal bijection is a symmetry with respect to a, where a is
a subset of literals, if in its induced action on sets of literals, whenever f is a
solution that contains a then fφ is a solution and whenever f is a non-solution
that contains a then fφ is a non-solution.

Before defining conditional symmetry groupoids, we need precise descriptions of
conditions and symmetries arising from conditions. A condition is a predicate on
literals. Any such predicate can be described by listing the sets of literals upon
which it holds. If a symmetry in a CSP is present only when some condition
holds, we will describe this situation by adding one generator to the conditional
symmetry groupoid for each set of literals which satisfy the condition.

Definition 4. We define the full conditional symmetry groupoid G of a CSP
P to be the set of all triples as follows:

G = {(g, π, f) : g, f sets of literals, π a symmetry with respect to g, gπ = f}.

The product (in this order) of two groupoid elements (g, π, f), (h, σ, k) is defined
only if h = f in which case the product is (g, πσ, k) and gπσ will equal k.

We work throughout with subgroupoids of the full conditional symmetry groupoid
of the CSP. Note that if (g, π, f) ∈ G and h is a set of literals that contains g, then
(h, π, hπ) ∈ G, as π is a symmetry with respect to g only if it is a symmetry with
respect to all extensions of g. We say that (h, π, hπ) is an extension of (g, π, f),
and that the conditional symmetry groupoid is closed under extensions. We call
the first entry of each triple its precondition and the last its postcondition.

Lemma 1. With these definitions, the full conditional symmetry groupoid G of
a CSP is a groupoid.

Proof. The set of elements of G is clear, its base set is the power set of the set of
literals. We must show that composition, where defined, is associative and that
each element has left and right identities and inverses. Let (g1, π1, f1), (g2, π2, f2)
and (g3, π3, f3) ∈ G, and suppose that g2 = f1 and g3 = f2. Then

((g1, π1, f1)(g2, π2, f2))(g3, π3, f3) = (g1, π1π2, g
π1π2
1)(g3, π3, f3).

Now, g2 = f1 = gπ1
1 , so f2 = gπ2

2 = gπ1π2
1 . Hence g3 = f2 = gπ1π2

1 and the product
of the two groupoid elements in the previous displayed equation is defined, and
is equal to (g1, π1π2π3, g

π1π2π3
1). Conversely

(g1, π1, f1)((g2, π2, f2)(g3, π3, f3)) = (g1, π1, f1)(g2, π2π3, g
π2π3
2)

= (g1, π1π2π3, g
π1π2π3
1),

as required. The right identity of (g, π, f) is (f, 1, f), the left identity is (g, 1, g),
and the inverse is (f, π−1, g), where by 1 we mean the identity mapping on the
set of all literals.

826 I.P. Gent et al.

Lemma 2. The full conditional symmetry groupoid of a CSP has a well-defined
partial action on the set of all sets of literals, which maps (non-)solutions to
(non-)solutions.

Proof. The action of an element (g, π, f) on a set h of literals is as follows.
If g �⊆ h then the condition of (g, π, f) is not satisfied, and so the action is
undefined. If g ⊆ h then h(g,π,f) := hπ. To show that this is an action, we note
that h(g,π1,f)(f,π2,k) is defined if and only if g ⊆ h are sets of literals in which
case we have

h(g,π1,f)(f,π2,k) = h(g,π1π2,k) = hπ1π2 = (h(g,π1,f))(f,π2,k),

and that h(g,1,f) = h whenever g ⊆ h. Whenever h is a full assignment and
h(g,π,f) is defined, then, since π is a symmetry with respect to g and g ⊆ h, hπ

is a (non-)solution exactly when h is a (non-)solution.

Next we show that our notions of conditional symmetry strictly generalise the
standard notions of unconditional symmetry.

Lemma 3. The full conditional symmetry groupoid of a CSP P contains the
group of all symmetries of P .

Proof. Elements of the symmetry group of the CSP are of the form (∅, π, ∅).

In general, however, the full conditional symmetry groupoid of a CSP is far too
large for practial computation, and we must restrict the situation somewhat.

Lemma 4. The full conditional symmetry groupoid of a CSP P with |V | = n
and |D| = d has order at least 2dn and at most 2dn(dn)!.

Proof. A precondition can be any subset of literals and the corresponding permu-
tation can be any permutation of the full set of literals. The identity permutation
is a symmetry with respect to any set of literals.

Of course, in practise we cannot identify all conditional symmetries of a CSP
before solving it, so we identify as many non-identity conditional symmetries as
possible, and then form the resulting groupoid.

Definition 5. We say that a collection of conditional symmetry groupoid ele-
ments {(gi, πi, fi) : 1 ≤ i ≤ k} generate a conditional symmetry groupoid G
if G is the smallest subgroupoid of the full conditional symmetry groupoid that
contains all of the elements and is closed under extensions.

The reason why any conditional symmetry groupoid is defined to be closed un-
der extensions is that it must always be possible to consider conditions that are
stronger than those initially given: if (v1, α) implies some symmetry, then so
does {(v1, α), (v2, β)}. Later, when we discuss computing with conditional sym-
metry groupoids, we will describe a technique which avoids the creation of these
additional elements.

Groupoids and Conditional Symmetry 827

Lemma 5. The conditional symmetry groupoid G is generated by elements from
A := {(gi, πi, fi) : 1 ≤ i ≤ k} if and only if each element of G is a product of
elements that are extensions of elements of A and their inverses.

Proof. We first show that the set of all elements of the conditional symmetry
groupoid that are products of extensions of elements of A forms a groupoid and
is closed under extensions. It is clear that it is closed under the partial product
and the associativity follows from the associativity of the generalised conditional
symmetry groupoid. If (x0, σ, xk) = (x0, σ1, x1)(x1, σ2, x2) · · · (xk, σk+1, xk+1) is a
product of extensions of elements of A, then we note that (x, 1, x) is an extension of
a left identity of an element of A, and similarly for (y, 1, y), and that (xi, σ−1

i , xi−1)
and (xi+1, σ

−1
i+1, xi) are extensions of right and left inverses of elements of A. Thus

this set forms a groupoid. If (x, σ, y) is an extension of (x0, σ, xk) then it is clear
that it is a product of elements of the form (xi, σi+1, xi+1), where xi is a partial
assignment that extends xi.

Conversely, if (x, σ, y) is a product of extensions of elements of A then it
must be contained in any groupoid that contains A, and so is an element of the
groupoid generated by A. Thus the result follows.

3 Symmetry Breaking with Groupoids

Symmetry breaking by dominance detection for groups of symmetries uses the
following principle: given the current search node g then for each previously found
nogood f , and each symmetry π test the inclusion fπ ⊆ g. This can be done
either by some supplied procedure, as in SBDD, or by adding new constraints
that rule out all images under the symmetry group of extensions of f .

Lemma 6. If f ⊆ g are partial assignments, and (h, π, k) is an element of the
full conditional symmetry groupoid, then f (h,π,k) ⊆ g(h,π,k).

Proof. If h is not a subset of f , then neither map is defined. Otherwise, f (h,π,k) =
fπ = (f \ h)π ∪ k and g(h,π,k) = gπ = (g \ h)π ∪ k. Since (f \ h)π ⊆ (g \ h)π , we
have fπ ⊆ gπ as required.

When implementing SBDD efficiently for groups or groupoids, the fact that
groupoid actions are well-behaved with respect to extensions of partial assign-
ments means that only failures at the top of subtrees need be stored during
depth first search.

To check the dominance in SBDD in the group case we search for an element
π of the symmetry group such that g is an extension of fπ. The situation with
groupoids is a bit more complicated, as the action is only partial and so the
following two cases have to be checked:

– Does there exist a groupoid element (h, γ, k) such that f ⊆ h and g ⊆ fγ?
– Otherwise we must search for some extension, f ′, of f and a groupoid element

(h, γ, k) such that f ′ ⊆ h and g ⊆ f ′γ .

828 I.P. Gent et al.

Note that in case (ii) it is only worth considering extensions of f that assign
values to no more variables than g, and one should only consider extensions that
enable some new conditional symmetry to be used.

To avoid this two-case analysis, we reverse the normal process of SBDD and
instead look for conditional symmetries that map the current partial assignment
to a partial assignment that is an extension of the previous nogood.

Definition 6. A partial assignment g is dominated by a nogood f with respect
to a conditional symmetry groupoid G if there exists an element (h, γ, k) ∈ G
with h ⊆ g and f ⊆ gγ.

This simplification is possible because groupoids are closed under inversion, and
so if a map exists in one direction we can always consider its inverse.

Lemma 7. Let G be a conditional symmetry groupoid of a CSP P and let a be
a fixed partial assignment of P . The set of all elements of G of the form (a, π, a)
form a group.

Proof. Let (a, π1, a), (a, π2, a) ∈ G. The product (a, π1π2, a) is defined and is
of the correct form. Associativity holds because within this set of elements the
product of two elements is always defined. The element (a, 1, a) ∈ G and is the
identity of this subgroup. The inverse (a, π−1

1 , a) ∈ G is of the correct form.

Definition 7. Let P be a CSP with conditional symmetry groupoid G generated
by X := {(ai, πij , bi) : 1 ≤ i ≤ m, j ∈ Ji}. Let A be a partial assignment, and let

C :=
⋃
ai⊆A

ai.

Then the local group at A with respect to X, denoted LX(A) is the group con-
sisting of the permutations σ of all elements of G of the form (C, σ, C).

It follows from Lemma 7 that the group at A is always a group, if nonempty.
Since there is always the identity unconditional symmetry, the group at A is
always nonempty, although it may be the trivial group (C, 1, C).

Lemma 8. Checking for dominance under the LX(A) is sound.

Proof. Since all elements of LX(A) are symmetries with respect to a subset of
A, they will all map (non-)solutions extending A to (non-)solutions.

We now consider a special case where checking for dominance under the group
at A is also complete.

Theorem 1. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set X = {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji}, where each ai is a partial
assignment. Assume that for 1 ≤ i, k ≤ m we have a

πkj

i = ai for all j ∈ Jk.
Then checking for dominance under LX(A) is complete as well as sound.

Groupoids and Conditional Symmetry 829

Proof. Let H := LX(A). We show that if (g, σ, h) ∈ G and g ⊆ A then σ ∈ H . It
is clear that if σ is a product of πij for ai ⊆ A then σ ∈ H . We wish to show that
if σ is a product including at least one πkj for some ak �⊆ H then (g, σ, h) does
not act on A. It is clear that no extension of (ak, πkj , ak) can act on g as ak �⊆ A,
and hence that one cannot postmultiply any extension of (ak, πkj , ak) to make
it act on A. We show that one cannot premultiply any extension of (ak, πkj , ak)
by an element of G to make it act on A. Since aπil

k = ak for all l, if (x, σ, y) can
premultiply an extension of (ak, πkj , ak) then ak ⊆ y and so ak ⊆ x and hence
x �⊆ A and we are done.

Using this theorem, we can identify some special cases where testing dominance
is possible in polynomial time.

Theorem 2. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji} where each ai is a partial assignment.
Assume that for 1 ≤ i, k ≤ m, whenever ai ∪ ak is a partial assignment then
a
πkj

i = ai for all j ∈ Jk. If the actions of πij on the set of extensions of ai all
belong to a class of symmetries for which there exists a polynomial time algorithm
to determine group dominance, then testing conditional symmetry dominance
under the groupoid G can be done in polynomial-time at each node.

Proof. By Theorem 1 it is both sound and complete to test each partial assign-
ment A for dominance by previous nogoods using only the local group at A with
respect to X . The local group at A with respect to X can be constructed in
polynomial-time, by examining which conditions of which generators are subsets
of A and then generating a group with the corresponding permutations. Hence

Preprocessing For each generator (ai, πij , bi) do

(i) If ai �= bi then return “inapplicable”.
(ii) If πij is not a value symmetry on all literals in ai, and on all literals involving

variables not in ai then return “inapplicable”.
(ii) For each (ak, πkl, bk) with k �= i such that ai ∪ ak is a partial assignment do

• If aπkl
i �= ak then return “inapplicable”.

At node A

1. Make a set L of the generators of G such that ai ⊆ A.
2. Construct the local group LX(A), which is 〈σ : (a, σ, a) ∈ L〉.
3. For each nogood B do

(a) If B contains any literals with different variables from those in A, consider the
next nogood.

(b) Otherwise, by repeatedly computing point stabilisers check whether there ex-
ists a σ ∈ LX(A) such that for all (w, α) ∈ A with (w, β) ∈ B for some β we
have (w, α)σ = (w, β).

(c) If such a σ exists, return “dominated”.
4. Return “not dominated”.

Fig. 1. Algorithm for sound and complete conditional symmetry breaking

830 I.P. Gent et al.

if there exists a polynomial-time algorithm for testing whether A is dominated
by a nogood by an element of a group of symmetries then it can now be applied.

Corollary 1. Let G be a conditional symmetry groupoid of a CSP P , generated
by a set {(ai, πij , ai) : 1 ≤ i ≤ m, j ∈ Ji} where each ai is a partial assignment.
Assume that for 1 ≤ i, k ≤ m, whenever ai ∪ ak is a partial assignment then
a
πkj

i = ai for all j ∈ Jk. If the actions of πij on the set of extensions of ai are
value symmetries then testing conditional symmetry dominance is in P.

Proof. This is immediate from Theorem 2 and [6].

Fig. 1 shows a polynomial-time algorithm which takes as input a set of con-
ditional symmetry groupoid generators for a CSP and determines whether the
conditions of Corollary 1 apply and if so tests for groupoid dominance.

As in SBDD, we can safely backtrack when dominated, and continue to the
next search node otherwise. Our approach is not restricted to value symme-
tries. We can obtain polynomial-time algorithms whenever a polynomial-time
algorithm exists for symmetry breaking in the unconditional case.

4 Conclusions and Further Work

We have shown that careful use of the theory of groupoids allows us fully to
capture the notion of conditional symmetry in CSPs.

We have identified the algebraic structure of conditional symmetries. With this
we can study the whole set of conditional symmetries of a problem, rather than
just a small subset given to us by a programmer, and analyse sub- and super-
groupoids. We have shown the enormous numbers of conditional symmetries and
complicated structure that arises when we generate them all. We have provided
definitions and algorithms for conditional symmetry breaking. We have defined
a notion of dominance, allowing us to give an analogue of SBDD for conditional
symmetries. We have also shown that it is possible to identify useful conditional
symmetry sub-groupoids that are small enough to permit effective conditional
symmetries breaking.

References

1. Gent, I.P., McDonald, I., Smith, B.M.: Conditional symmetry in the all-interval
series problem. In: Symcon’03 (2003)

2. Gent, I.P., McDonald, I., Miguel, I., Smith, B.M.: Approaches to conditional sym-
metry breaking. In: SymCon’04 (2004)

3. Zhang, Y., Freuder, E.C.: Conditional interchangeability and substitutability. In:
SymCon’04 (2004)

4. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)

5. Brown, R.: From groups to groupoids: A brief survey. Bulletins of the London Math-
ematical Society 19, 113–134 (1987)

6. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.A.: Tractable symmetry break-
ing using restricted search trees. In: ECAI’04, pp. 211–215 (2004)

Sampling Strategies and Variable Selection in Weighted
Degree Heuristics�

Diarmuid Grimes and Richard J. Wallace

Cork Constraint Computation Centre and Department of Computer Science
University College Cork, Cork, Ireland

{d.grimes,r.wallace}@4c.ucc.ie

Abstract. An important class of CSP heuristics work by sampling information
during search in order to inform subsequent decisions. An example is the use
of failures, in the form of constraint weights, to guide variable selection in a
weighted degree procedure. The present research analyses the characteristics of
the sampling process in this procedure and the manner in which information is
used, in order to better understand this type of strategy and to discover further
enhancements.

1 Introduction

Recent years have seen the emergence of new and more powerful methods for choosing
variables and variable assignments during CSP search. In the past most heuristics based
their decisions on either the initial state of search or the current state of search. However
newer heuristics use within-problem learning, basing their decisions on past states, in
order to adapt to a given problem. Among these are Boussemart et al.’s “weighted-
degree” heuristic (wdeg) [1] and a variation on the weighted degree strategy that we
call “random probing” [2] [3]. The significance of these methods is that they can locate
specific sources of failure, including at one extreme insoluble subproblems.

In this work, we study these techniques in order to characterise them more ade-
quately, focusing on constraint weighting. (Although the following can be expanded to
problems involving n-ary constraints, for simplicity we limit our discussion to binary
CSPs.) We examine two aspects of these methods:

• the nature and quality of the information gained during sampling
• the manner in which this information is used during subsequent search

2 Characterising Algorithms Based on Constraint Weighting

2.1 Description of Heuristics Based on Constraint Weights

In the weighted degree procedure, a constraint’s weight is incremented during consis-
tency propagation whenever this constraint causes a domain wipeout. The weighted de-
gree of a variable is the sum of the weights of the constraints in the current search state

� This work was supported by Science Foundation Ireland under Grants 00/PI.1/C075 and
05/IN/1886.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 831–838, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

832 D. Grimes and R.J. Wallace

associated with the variable. The weighted degree heuristic (wdeg) chooses the variable
with largest weighted degree. (So the heuristic acts identically to the forward-degree
heuristic up until at least one failure has occurred.)

Domain information can also be incorporated by choosing the variable which min-
imises the ratio of domain-size to weighted degree (dom/wdeg). Given the general effec-
tiveness of the dom/wdeg strategy, this is the method used in most experiments reported
in this paper.

Random probing uses a more systematic method of sampling. It begins with a series
of “random probes”, in which variable selection is done randomly, and weights are
incremented in the usual fashion but are not used to guide search. Probing is run to a
fixed cutoff C, and for a fixed number of restarts R. On the last restart (final run), the
cutoff is removed and the wdeg or dom/wdeg heuristic uses the accumulated weights
for each variable. On the final run one can either use these weights as the final weights
for the constraints or continue to update them, thereby combining global weights with
weights that are local to the part of the search space one is in.

2.2 Characterisation of Constraint Weighting Procedures

The weighted degree procedures can be conceived in terms of an overall strategy that
combines two heuristic principles: the Fail-First principle and an additional Contention
Principle, which says that variables directly related to conflicts are more likely to cause
failure if they are chosen instead of other variables. A somewhat more precise statement
of this principle is:

Contention Principle. If a constraint is identified as a source of contention, then vari-
ables associated with that constraint are more likely to cause failure after instantiation.

This leads to the rule-of-thumb: Choose the variable associated with the most con-
tentious constraints, which is the basis for the weighted degree heuristic.

The validity of the Contention Principle depends on the undirected character of con-
straints. Suppose the domain of variable xk is wiped out after assigning values to vari-
ables x1, x2, . . ., xj . In this case, if xk is assigned a value before these other variables,
then at least one of the domains of the latter will be reduced. Moreover, the greater the
number of partial assignments affecting xk, the greater the likelihood that assigning xk

a value early in search will affect some other variable. (Note that a similar argument
can be made even if the domain of xk is only reduced.)

There are two aspects or phases in the weighted degree procedure (in any of its
forms): a sampling phase and a variable selection phase. In the sampling phase, we
are trying to sample likelihood of failure. This is done by tallying domain wipeouts.
A “wipeout” is a complex event consisting of a set of domain deletions that comprise
an entire domain. In addition, deletions are associated via episodes of constraint prop-
agation with a set of assignments. A wipeout therefore has two aspects: the reduction
itself and the ‘context’ of that reduction including both a set of assignments and the
constraint Cik associated with the final domain reduction. Constraint weights combine
these events into event-classes involving all the assignment sets that can lead to a wipe-
out of Dk via constraint Cik (note each of those assignment sets also leads to a wipeout
of domain Di via the same constraint).

Sampling Strategies and Variable Selection in Weighted Degree Heuristics 833

In the weighted degree algorithm sampling is done in the context of systematic
search. This means that the same basic event cannot be sampled more than once. At
the same time, sampling is heavily biased in favour of assignment tuples related to the
order of instantiation. Moreover, the bias changes during search because partial assign-
ments are increasingly determined by the results of the sampling itself. This creates a
negative feedback effect, since variables associated with high weights are selected ear-
lier in search, after which their weights are less likely to increase since their constraints
are removed from the current problem.

Random probing allows us to sample more systematically. In doing so, we may be
able to uncover cases of “global contention”, i.e. contention that holds across the entire
search space. We also assume that variables associated with global contention are most
likely to reduce overall search effort if they are instantiated at the top of the search tree.

In the variable selection phase, estimates of failure in the form of constraint weights
are used to guide heuristic selection. As noted above, constraint weights give an esti-
mate of overall contention associated with that variable. However, because of sampling
biases as well as possible dependencies among failures, the relative values of these
sums have an unknown relation to sizes of probabilities associated with the underlying
compound events.

3 Experimental Methods and Reference Results

The bulk of the present analysis employs two sets of problems: 100 random binary and
100 random k-colouring problems. To facilitate data collection, problem parameters
were chosen so that problems were fairly easy to solve, although in both cases, they
are in the critical complexity region. The basic sets of problems had solutions. In most
cases, results for more difficult problems of the same types corroborate the present ones.
Unless otherwise noted, all results are for chronological backtracking using maintained
arc consistency (MAC) with lexical value ordering. In experiments on search efficiency,
search was for one solution. For all results using the random probing strategy, means
given are means over 10 experiments, each experiment having a different random seed.

Table 1. Search Efficiency on Random and k-Colour. Problems with Selected Heuristics.

heuristic random colouring
lexical 253,607 4,547,058
max static deg 2000 22,460
Brelaz 3101 910
min dom/fwddeg 1621 1285
max fwddeg 2625 347,306
min dom/wdeg 1538 1029
max wdeg 2070 16,866

Notes. Random problems are <50,10,0.183,0.631>. k-colour
problems are <50,6,0.27>, where 6 is number of colours and
0.27 is density. Measure is mean search nodes.

834 D. Grimes and R.J. Wallace

Since we are trying to assess quality of search given different kinds and amounts of
information, measures of effort are confined to the search itself. So results for random
probing are for the final run following the sampling phase. In the final run, weights were
no longer incremented after failure (“frozen weights”). This allows us to assess qual-
ity of information provided by the probing without contamination by further updating
during the final run.

Selected results for various heuristics are shown in Table 1. These include the foun-
dation heuristics used by weighted degree and random probing, namely maximum
forward-degree and minimum domain/forward-degree. To indicate problem difficulty,
results for lexical variable ordering are also included.

4 Search Efficiency with Weighted Degree Strategies

Elsewhere we have collected results for a variety of problems using weighted degree and
random probing; these included both soluble and insoluble and random and structured
problems ([2], [3]). In these papers we have shown that, even with preprocessing work
included, the random probing approach improves over dom/wdeg and in some cases by
orders of magnitude. This work demonstrates the generality of the basic effects that we
wish to study in more depth in this paper.

Results for weighted degree using either max wdeg or min dom/wdeg as the heuris-
tic are shown at the bottom of Table 1. As expected, when the basic heuristics are
elaborated by incorporating the constraint weights, there is consistent improvement in
average search effort.

Probing results for random problems are shown in Table 2. The first thing that should
be noted is that for random problems every combination of restarts and node cutoff
gives an improvement over dom/wdeg. In the best cases there is about a 25% improve-
ment. At the same time, some combinations of restarts and cutoffs give better overall
performance than others. This means that different probing regimes yield information
of varying quality, so this is a significant aspect of probing. (Partial results have been
collected for random binary problems with the same parameters that had no solutions.
Similar improvements were found as for those reported above.)

Corresponding data for colouring problems are shown in Table 3. Somewhat different
parameter values were tested with the expectation that good estimates of failure would

Table 2. Search Efficiency with Random Probing with Different Restarts and Cutoff (random)

Restarts
Cutoff 10 20 40 80 160

25 1498 1369 1316 1263 1228
50 1346 1287 1237 1174 1205

100 1314 1228 1173 1223 1174
200 1237 1245 1196 1211 1177

Notes. <50,10,0.183,0.631> problems.
final run after probing, mean search nodes
across ten experiments, dom/frowdeg.

Sampling Strategies and Variable Selection in Weighted Degree Heuristics 835

Table 3. Search Efficiency with Random Probing with Different Restarts and Cutoff (colouring)

Restarts
Cutoff 10 40 100 200

50 6129 4526 3118 3710
100 5988 4123 3996 —
500 6463 4698 3837 —

Notes. <50,6,0.27> k-colouring problems.
Otherwise as in Table 2.

require more extensive search than with random problems because with inequality con-
straints propagation cannot occur until a domain is reduced to one value. In this case,
search after random probing is consistently inferior to the interleaving strategy used
by weighted degree, although these results are closer to those for the strong heuristics
listed in Table 1 than for the weak ones.

Results obtained to date suggest that interleaving after probing does not improve
search to a significant degree and may sometimes impair it. Thus, for the random prob-
lems, using 40 restarts and a 50-node cutoff gave a mean of 1285 search nodes (versus
1237 in Table 2). Comparable results were found for the colouring problems using 40
or 100 restarts with a 50-node cutoff. For much more difficult problems of this type,
freezing weights sometimes yields marked improvements in performance [3].

Another issue is whether probing with a node cutoff can mask a varying number
of failures and, therefore, differences in quality of sampling. In fact, there is a high
degree of consistency in the relation between failures and nodes. Thus, for the random
problems a failure-count cutoff of 50 was associated with a node-count of about 70,
with a total range of 60-87 across 100 problems and 4000 runs. Similar results were
found for the colouring problems. This means the basic results would not be altered if
failures were used instead of nodes. Nonetheless, in some subsequent experiments we
use failure-cutoffs in order to control this factor directly.

5 Empirical Analyses of Sampling and Variable Selection

Weighted-degree heuristics estimate the likelihood that failure will be induced by tal-
lying actual failures. Previous work has not addressed the issue of the actual method
of sampling or considered alternative sampling strategies. The key issues involve qual-
ity of sampling. In the first place, we can consider the specific type of event sampled.
Because we are looking for indicators that predict the likelihood of inducing failure, it
may be possible to sample events related to failure other than domain wipeout. In the
second place, we can sample under different methods of search, that differ in the degree
of consistency established or the manner in which conflict is detected.

5.1 Sampling Based on Different Specific Events Related to Failure

Here we look at sampling contention that is either an elaboration of failure counts or is
based on domain reductions. We consider the following:

836 D. Grimes and R.J. Wallace

• wipeout-tallies in which in each case the relevant constraint weight is increased by
the size of the domain reduction leading to the wipeout

• tallies of all deletions; i.e. whenever a domain is reduced in size during constraint
propagation, the weight of the constraint involved is incremented by 1

• tallies of all deletions where constraint weights are increased by the size of the
domain reduction

• tallies of all deletions except those leading to a wipeout

The last-mentioned ‘strategy’ was included to evaluate the hypothesis that sampling is
related to contention rather than to failure in particular.

Table 4. Search Efficiency with Different Sampling Strategies (Mean search nodes per problem)

dom/wdeg random probe-dom/wdeg
(40R50C)

wipeouts 1538 1265
wipe by #del 1592 1261
alldel 1523 1426
alldel by #del 1496 1461
dels/nowipe 1530 1499

Notes. <50,10,0.183,0.631> problems. “R” and “C” are restarts
and node-cutoff on each run before the final one.

The results show that any of these events can indicate contention (Table 4). For the
dom/wdeg heuristic, sampling either deletions and failures gives comparable results.
With random probing, direct sampling of failure is reliably better than sampling dele-
tions. This is further evidence that effectiveness of search after probing is affected by
quality of sampling, since events directly associated with failure (i.e. with greater de-
grees of contention) are better predictors of fail-firstness than conflicts that do not nec-
essarily imply failure. Nonethess, search is very efficient in all cases.

5.2 Sampling Based on Different Search Procedures

We compared three search methods for information gathering that weight constraints
that either cause domain wipeouts in systematic search or cause conflict in local search.
The first uses the breakout method for preprocessing weight generation (similar to
[4]), these weights are then used during complete search with dom/wdeg. The sec-
ond uses forward checking with random probing for information gathering, and the
third is random probing using MAC as in earlier sections. All three methods were fol-
lowed by complete search with MAC, using frozen weights. For both FC and MAC
random probing, there were 100 restarts with a failure cutoff of 30. Breakout was run
to a total weight cutoff of 3000. Thus, each method generated the same amount of
information.

Sampling Strategies and Variable Selection in Weighted Degree Heuristics 837

Table 5. Search Efficiency with Information. Gathered under Different Search Procedures.

probe-dom/wdeg probe-wdeg
Breakout 1863 3890
FC-probes 1492 3198
MAC-probes 1198 1595
Notes: <50,10,0.183,0.631> problems. Mean search nodes for
the final run across ten experiments.

As seen in Table 5, the weights learnt by MAC were superior to those learnt by either
FC or breakout for these problems. The magnitude of the improvement when using
MAC is even clearer if the domain size factor is removed from the heuristic. (Note that
if either breakout or FC produced weights of similar quality to MAC then, because of
the speedup they offer over MAC, they would be more efficient for preprocessing).

5.3 Analysis of Variable Selection

To further analyse the quality of search with sampling, measures of promise and fail-
firstness were collected. These are measures of the quality of search under two different
conditions: (i) when search is on a solution path, i.e. the present partial assignment
can be extended to a solution, (ii) when a mistake has been made and search is in an
insoluble subtree [5]. Quality is assessed by measuring the degree of adherence to an
optimal policy under each condition. It was expected that sampling would have its major
effect on fail-firstness.

Table 6. Adherence-to-Policy Assessments and Selected. Descriptive Measures for Orderings
Based on Sampling.

heuristic policy measures descriptive measures
promise badtree |dom| fwd-deg faildepth

dom/fwddeg .00041 437 3.3 8.2 7.7
dom/wdeg .00042 366 3.3 8.2 7.4
random probe (40R 50C) .00046 282 3.4 8.7 7.1

Notes. <50,10,0.183,0.631> problems. Means of 100 problem-means. “badtree” is
mean mistake-tree size. “|dom|” and “fwd-deg” are for variables chosen in search.

For fail-first assessments, search was for one solution; this gives somewhat less reli-
able results than with all-solutions search, but it is much less time-consuming. (Promise
calculations necessarily involve an all-solutions search.) To cope with the fact that vari-
able selection under interleaved sampling or random probing is not well-defined or
easily replicated, the following strategy was used. After a run, the solution was saved in
the order obtained. Quality assessment was based on this ordering, which was therefore
fixed throughout search. Although search is less efficient here than it would be if the
ordering were dynamic, it allows better assessment of information gained by the end
of sampling both for interleaved and sample-first methods. For comparison, the same
method was used with orderings produced by the min dom/fwddeg heuristic.

838 D. Grimes and R.J. Wallace

Results of this analysis show that the major difference is in the fail-firstness of these or-
derings, reflected in the magnitudes of mistake-tree sizes (Table 6). Measures of promise
are highly similar. With colouring problems, in contrast, the mean mistake-tree size was
appreciably greater for random probing-dom/wdeg than for dom/wdeg, 10,100 versus
318. Clearly, some features of these problems interfered with adequate sampling.

6 Conclusions

We developed a rationale for the weighted degree approach in terms of two principles of
performance, one of which is the well-known Fail-First Principle. We were also able to
show why another, the Contention Principle, is necessary in any complete explanation
of the weighted degree approach. To demonstrate the actual operation of the Fail-First
Principle, we showed that fail-firstness is indeed enhanced by strategies based on sam-
pling and that differences in overall efficiency of search are related to this property. We
have also been able to make some predictions on the basis of the Contention Principle
regarding novel sources of contention that were verified experimentally.

In these procedures, sampling produces estimates of the probability of failure. This
information is used in turn to predict differences in fail-firstness in order to inform
variable selection. We have given a detailed account of the nature of this sampling and
the use of this information in search.

In the course of this analysis, we were able to identify two potential shortcomings of
the original weighted degree method: a feedback relation between sampling and vari-
able selection that can hamper the discrimination of degrees of contention, and the
inability to use estimates of failure for selections early in search. Random probing was
designed to address these difficulties. However, the present work shows that there are
marked differences in effectiveness of different sampling strategies with different prob-
lems and with different search strategies. The basis for these differences remains to be
clarified. Now that we have a more adequate analytical framework, we should be able
to pursue these and other issues in a more informed manner.

References

1. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: Proc. Sixteenth European Conference on Artificial Intelligence-ECAI’04, pp.
146–150 (2004)

2. Grimes, D., Wallace, R.J.: Learning from failure in constraint satisfaction search. In: Ruml,
W., Hutter, F. (eds.) Learning for Search: Papers from the 2006 AAAI Workshop, pp. 24–31.
Tech. Rep. WS-06-11 (2006)

3. Grimes, D., Wallace, R.J.: Learning to identify global bottlenecks in constraint satisfaction
search. In: 20th International FLAIRS Conference (2007)

4. Eisenberg, C., Faltings, B.: Using the breakout algorithm to identify hard and unsolvable sub-
problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 822–826. Springer, Heidelberg
(2003)

5. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V., Petcu, A.,
Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 41–55. Springer, Hei-
delberg (2005)

A Case for Simple SAT Solvers�

Jinbo Huang

Logic and Computation Program
National ICT Australia

Canberra, ACT 0200 Australia
jinbo.huang@nicta.com.au

Abstract. As SAT becomes more popular due to its ability to handle
large real-world problems, progress in efficiency appears to have slowed
down over the past few years. On the other hand, we now have access to
many sophisticated implementations of SAT solvers, sometimes boasting
large amounts of code. Although low-level optimizations can help, we ar-
gue that the SAT algorithm itself offers opportunities for more significant
improvements. Specifically, we start with a no-frills solver implemented
in less than 550 lines of code, and show that by focusing on the central
aspects of the solver, higher performance can be achieved over some best
existing solvers on a large set of benchmarks. This provides motivation
for further research into these more important aspects of SAT algorithms,
which we hope will lead to future significant advances in SAT.

1 Introduction

Modern clause learning technology coupled with data structures for fast unit
propagation has greatly enhanced the efficiency and scalability of SAT, making it
practical to tackle real-world instances with millions of clauses. However, over the
past few years progress appears to have slowed down considerably. For example,
MiniSat 2.0, winner of SAT Race 2006 [13], solved no more instances in the race
than SatELiteGTI from 2005, and Cadence MiniSat v1.14 actually solved three
fewer instances than MiniSat v1.13 from 2005. Even more unfortunately, our
benchmarking shows that MiniSat 2.0 solves 59 fewer instances than BerkMin,
a solver written in 2002 based on the same clause learning framework [4], on a
set of 251 instances distributed by Miroslav Velev1 given a one-hour time limit.

In this paper we would like to investigate what contributes to such substantial
differences in performance between solvers. To begin with, clearly, difference in
the efficiency of implementation alone would not explain these differences in
performance we are witnessing, as that would imply, for example, that BerkMin
would outperform MiniSat 2.0 in general, which is not true. Given a set of 311
instances from IBM [14] also used in our benchmarking, MiniSat 2.0 solves 103
more instances than BerkMin.
� National ICT Australia is funded by the Australian Government’s Backing Aus-

tralia’s Ability initiative, in part through the Australian Research Council.
1 http://www.miroslav-velev.com/sat benchmarks.html.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 839–846, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

840 J. Huang

In fact, we venture to argue that the sophistication of implementation, al-
though responsible for some of the solver efficiency, may not be as critical as the
choices made in the central aspects of the solver. In support of this argument,
we start with a simple clause learning SAT solver written in less than 550 lines
of C++ (excluding comments and blank lines), called Tinisat [5], and show
that by improving its decision heuristic, a consistently high performance across
different benchmark families, including IBM and Velev, can be achieved.

While our experiments with Tinisat speak to the importance of the deci-
sion heuristic, there are other important aspects of clause learning, such as the
backtracking scheme, restart policy, and clause deletion policy. To offer a more
complete picture, and to illustrate how a simple and effective implementation is
possible, we devote the following section to a story that attempts to unify the var-
ious aspects of clause learning around a central theme so that their importance
can be better understood. We then describe the experiments done regarding the
decision heuristic, and finally the experiments that demonstrate the performance
of Tinisat on a large number of industrial benchmarks.

2 A Unifying View of Clause Learning

Clause learning originated in SAT as a means of pruning DPLL search trees.
The early SAT solver GRASP [9], for example, used clause learning to achieve
a form of nonchronological backtracking where branches known to contain no
solutions were skipped over during backtracking. Although the learning method
introduced by GRASP has been adopted by later SAT solvers, a subtle yet
critical change has occurred in how backtracking is done after learning a clause,
starting with Chaff [10]. In fact, the backtracking scheme used by Chaff, and most
of its successors, is so different from GRASP’s that the overall SAT algorithm
is no longer a binary DPLL search.

Repeated Probing. To better understand this change, we have previously
proposed an alternative formulation of clause learning as a simple 3-step cycle
[5], which we now refer to as repeated probing and give as Algorithm 1.

This formulation makes it explicit that clause learning is no traditional bi-
nary search enhanced with pruning, but something very different and, in fact,
simpler: It is a sequence of resolutions (line 2) and all components of the solvers
serve a common purpose of guiding the resolution process. Using this formula-
tion as the basis, we now embark on a unifying account of clause learning SAT
algorithms. We start with a review of the learning process itself [9], now under-
stood as a resolution process of which the learned clause is the final resolvent [2].

Algorithm 1. Repeated Probing
1: set variables till hitting a conflict; return SAT if all variables are set without conflict
2: derive a new clause by resolution; return UNSAT if empty clause is derived
3: unset some variables and go back to step 1.

A Case for Simple SAT Solvers 841

Clause Learning as Resolution. The process of learning commences upon
the generation of an empty clause under a particular assignment of truth val-
ues to a subset of the variables, and ends with the derivation of a new clause
that is entailed by the set of existing clauses. Recall that there are two types of
assignments: decision assignments and implications produced by unit propaga-
tion. As is customary, we label each (decision or implication) assignment with
the decision level in which it is made. In this paper we assume that the decision
level is initially 1, and is incremented before each decision is made—hence the
very first decision is made in level 2. This will allow us to label the literals that
are implied by the CNF formula with level 1, and use level 0 to signify a fatal
conflict. Note that the last case arises when a conflict occurs in decision level 1,
at which point the CNF formula is immediately declared unsatisfiable without
the need to go through the usual learning process.

To give a precise description of the learning process, we enlist the notion of
the antecedent clause [9] for an implication, which is defined to be the clause that
became unit and produced the implication. For example, after the assignments
[A, B], the clause c1 : A∨B ∨C becomes unit, and C is implied; clause c1 is then
the antecedent clause for the implication C. Note that given any clause cl, if a
literal of cl has become false due to an implication, then clause cl can always be
resolved against the antecedent clause for that implication.

The learning process maintains a clause cl that is initialized to be the clause in
which a conflict has just occurred (that is, whose literals have all been assigned
false). Clause cl is then repeatedly updated to be the resolvent of itself and the
antecedent clause for some implication that has made one of its literals false.
Learning methods generally agree on the order of the resolution steps, but differ
on the condition for terminating the loop. One of the most polular methods is
1-UIP [15], which terminates the resolution loop when clause cl contains exactly
one literal whose value is assigned in the current decision level.

A Common Purpose. Once one commits to a particular learning method,
it becomes clear that the sequence of clauses learned is completely determined
by the sequence of assignments made. Now, note that the latter is determined
in turn by nothing other than the combination of the decision heuristic, back-
tracking scheme, restart policy, and (recursively) the learned clauses that have
been added to the CNF formula (assuming a fixed implementation of unit prop-
agation). For unsatisfiable instances, the sequence of learned clauses ends in the
empty clause and determines the time and space efficiency of the algorithm. For
satisfiable instances, the sequence of assignments made determines the exact
point at which a solution is discovered.

Hence in all cases, the various components of the SAT solver can be under-
stood as serving a single, common purpose—that of determining the sequence of
assignments made and the sequence of clauses learned. Accordingly, the effective-
ness of these components can be understood solely in terms of their contributions
to the early termination of these sequences.

Backtracking Schemes. To understand the role of backtracking, let us now
go back to the repeated probing process given in Algorithm 1. Observe that each

842 J. Huang

probing is a flat sequence of (decision and implication) assignments leading to a
conflict (line 1), and each pair of consecutive probings share a prefix by means of
partially (or completely as a special case) erasing the assignments of the previous
probing in reverse chronological order (line 3)—this erasing of assignment is
exactly what is known as backtracking.

Backtracking in systematic depth-first search has traditionally been under-
stood as a means of (recursively) exploring each branch of a search node until a
solution is found in one. This is no longer the case in modern clause learning. In
the formulation of Algorithm 1, backtracking amounts to a heuristic for deciding
what prefix of the current sequence of assignments should carry over to the next.
The only property required of the heuristic is, naturally, that there should not
be an empty clause after backtracking.

The weakest condition that guarantees this requirement is to erase all assign-
ments in levels ≥ β, where β is the highest decision level among literals in the
clause just learned. This is in fact the backtracking scheme used in GRASP.

Any decision level < β, therefore, is a perfectly legal level to backtrack to.
Hence Algorithm 1 subsumes the framework of unrestricted backtracking de-
scribed in [8]. Although unrestricted backtracking can potentially result in bet-
ter performance, one has yet to come up with heuristics that compute good
backtracking points. Most current clause learning SAT solvers backtrack to (i.e.,
erase assignments in levels down to but excluding) the assertion level, which is
the second highest decision level among literals in the learned clause, resulting
in a generally more aggressive jump2 than GRASP’s backtracking.

Restarts. A restart is a backtrack to decision level 1, where all assignments are
erased except those implied by the CNF formula. In the context of Algorithm 1,
the utility of a restart can be best understood as giving the solver an opportunity
to make better decisions than it did in the last probing now that new information
is available in the form of the newly learned clauses [5].

Practical restart policies, however, do not guarantee that new decisions made
after a restart will be better than those made in the previous probing. One must
therefore also take into account the overhead of too frequent restarts (e.g., a
restart after each conflict), which arises from the erasing and redoing of assign-
ments that may not have been necessary.

Completeness. Using 1-UIP learning and under the assumption that all clauses
are kept, repeated probing as given in Algorithm 1 is complete in that it will
always terminate with an answer given sufficient resources.3 The key reason is
that each clause learned by 1-UIP is guaranteed to be distinct from all existing
clauses. In fact a stronger statement holds: Each of these learned clauses is
guaranteed to be subsumed by no existing clause [16]. Since there is only a finite

2 To our knowledge whether this type of backtracking can benefit solvers for the more
general constraint satisfaction problems is an interesting open question.

3 Zhang and Malik [17] proved the completeness of a restricted version of Algorithm 1
where the solver always backtracks to the assertion level, in which case learned
clauses need not be kept to ensure completeness.

A Case for Simple SAT Solvers 843

number of distinct clauses over a given number of variables, and each iteration
of Algorithm 1 produces a distinct clause, the loop must eventually terminate,
on both satisfiable and unsatisfiable instances.

Clause Deletion. When employed, clause deletion adds another dimension to
what determines the sequences of assignments and conflicts, as it affects both the
unit propagation and the learning process. As a direct result, different clauses
will be learned and different decisions made. This means that clause deletion can
be a double-edged knife: The reduced memory requirement and unit propagation
cost must be balanced against the potentially larger number of probings required.
In practice, solvers that employ clause deletion use heuristics to estimate the
usefulness of clauses and decide which clauses should be deleted at what time.

The completeness of the algorithm can also be impacted by clause deletion.
Some solvers intentionally ignore this issue as it does not seem to matter in
most practical cases [4]. Other solvers provide for increasingly long periods be-
tween deletions, or delete clauses in such a way that the total number of clauses
monotonically increases, thus ensuring completeness [10].

Concluding Remarks. In this section we have presented a comprehensive and
unifying view of modern clause learning SAT algorithms based on formulating
them as the process of repeated probing instead of DPLL search. This view ex-
poses the true semantics of these SAT algorithms as pure resolution procedures,
rather than DPLL searches enhanced with pruning. With this understanding,
the various components of a clause learning SAT solver, including the decision
heuristic, backtracking scheme, restart policy, and implementation of unit prop-
agation, are all unified behind a single, common purpose—that of guiding the
resolution process, which provides new insights into the roles played by and the
effectiveness of the respective components.

3 A Simple SAT Solver

Tinisat is directly implemented in the framework of repeated probing (Algo-
rithm 1). Pseudocode for its top-level procedure can be found in [5]. The final
version (with the new decision heuristic described below) has about 550 lines of
code, which breaks down as follows: CNF parsing (92 lines), clause pool mainte-
nance (83 lines), unit propagation (53 lines), clause learning (55 lines), decision
heuristic (67 lines), main loop (17 lines), miscellaneous (183 lines).

Restart Policy. Given the set of experiments reported in [5] where different
restart policies are compared, we decided to use Luby’s policy [7] (where a “unit
run” is 512 conflicts; see [5] for details), and devote our first set of experiments
to the discovery of a more robust decision heuristic.

Decision Heuristic. Our quest for a good decision heuristic was motivated by
the comparative performance of MiniSat and Berkmin described in the beginning
of the paper: MiniSat drastically outperforms BerkMin on the IBM benchmarks,
but equally drastically underperforms it on the Velev benchmarks.

844 J. Huang

Upon studying the documentations of the two solvers, we found that one ma-
jor difference between them was the decision heuristic: BerkMin favors variables
from recent conflict clauses, while MiniSat selects variables based on their scores
only. To verify if this was indeed a major reason for the drastic difference of solver
performance between benchmark groups, we did the following experiment: We im-
plemented a BerkMin-type heuristic in Tinisat, ran the solver on the same IBM
and Velev benchmarks, and compared its performance with that of MiniSat. We
used two versions of MiniSat for this purpose, MiniSat 2.0 and MiniSat 1.14, as
the former employs preprocessing while the latter and Tinisat don’t. This helps
ensure that what we observe is not just due to whether preprocessing is used.

In the results, we saw a shift of advantage similar to the case of BerkMin
vs. MiniSat: Tinisat with the BerkMin-type heuristic solved significantly fewer
IBM instances, but significantly more Velev instances, than both versions of
MiniSat. We then changed the decision heuristic of Tinisat to the MiniSat
type, so that it simply selected a variable of the highest score, and started to
repeat our experiment. It quickly became evident that Tinisat was now doing
very poorly on the Velev benchmarks.

The conclusion we drew from these experiments was that a new decision
heuristic was needed if the solver was to achieve a more robust performance
across different types of problems. After an extensive set of further experiments,
we found that the BerkMin type heuristic can be more robust if coupled with a
type of phase selection heuristic suggested in [12,11].

The overall heuristic now used in Tinisat is as follows. For each literal a score
is kept that is initially the number of its occurrences in the original clauses. On
learning a clause, the score of every literal is incremented by 1 for each of its
occurrences in clauses involved in resolution. The scores of all literals are halved
once every 128 conflicts. When a decision is called for, we pick a free variable
with the highest score (sum of two literal scores) from the most recently learned
clause that has not been satisfied; if no such clause exists (at most 256 clauses
are searched for this purpose) we pick any free variable with the highest score.

The variable is then set to a value as follows: Each variable has a field called
phase, initially set to the value with the higher score. On backtracking, every
variable whose assignment is erased has its phase set to that assignment, except
for variables set in the latest decision level. When chosen for decision, a variable
is set to its phase. However, this heuristic is bypassed if the two values differ in
score by more than 32, in which case the value with the higher score is used.
The intuition behind this phase selection heuristic is that the assignments made
prior to the last decision level did not lead to any conflict and may have satisfied
some subsets of the CNF, and hence repeating those same assignments may tend
to avoid solving some subproblems multiple times [12,11].

4 Final Experiments

We present here an extensive set of experiments conducted to evaluate the
performance of Tinisat against BerkMin, MiniSat 1.14, and MiniSat 2.0. An

A Case for Simple SAT Solvers 845

Table 1. Performance of Tinisat

Velev benchmarks (251)
Time Tinisat TinisatELite BM MS 1.14 MS 2.0
10min 124 131 99 95 92
15min 136 146 115 98 93
20min 153 152 121 98 93
30min 164 163 139 106 97
60min 183 182 161 116 102

IBM benchmarks (311)
Time Tinisat TinisatELite BM MS 1.14 MS 2.0
10min 238 248 172 238 269
15min 244 257 179 253 278
20min 253 267 183 257 290
30min 262 276 192 268 296
60min 279 289 201 280 304

SAT Race Q1 mixed benchmarks (50)
Time Tinisat TinisatELite BM MS 1.14 MS 2.0
10min 40 45 37 38 40
15min 44 47 41 39 43
20min 46 48 42 41 43
30min 48 49 43 42 44
60min 49 49 47 42 44

SAT Race Q2 mixed benchmarks (50)
Time Tinisat TinisatELite BM MS 1.14 MS 2.0
10min 31 36 28 32 32
15min 33 38 31 34 34
20min 35 39 31 38 35
30min 40 45 34 40 36
60min 43 45 37 41 39

SAT Race final mixed benchmarks (100)
Time Tinisat TinisatELite BM MS 1.14 MS 2.0
10min 49 59 38 53 59
15min 58 70 43 58 68
20min 61 74 46 66 71
30min 70 81 49 72 71
60min 77 87 63 76 74

additional solver called TinisatELite, created by coupling Tinisat with the
SatELite preprocessor [3], was also used. All experiments were run on a cluster
of 16 AMD X2 Dual Core Processors running at 2GHz with 4GB of RAM under
Linux, except those with BerkMin and MiniSat 1.14 on Velev, which were run
on AMD Athlon 64 processors at 2GHz with 2GB of RAM (prior to a hardware
upgrade). A one-hour time limit applied to all runs of all solvers.

Five benchmark groups have been used: 251 instances from Miroslav Velev,
311 instances from IBM Formal Verification [14], and the three groups of 50, 50,
and 100 instances used in the first qualification round, second qualification round,
and final round, respectively, of SAT Race 2006 [13]. The results are summarized
in Table 1 (detailed results available at http://rsise.anu.edu.au/˜jinbo/tinisat).
For each benchmark group and each solver, we report the number of instances
solved in 10, 15, 20, 30, and 60 minutes.

A high performance of Tinisat can be observed. For the 60-minute cut-off,
for example, both Tinisat and TinisatELite outperform all other solvers in
four of the groups. Most interestingly, the high degree of sensitivity to problem
type exhibited by BerkMin and MiniSat on the Velev and IBM benchmarks
appears to have been remedied in Tinisat, and a significant improvement in
overall performance has been achieved: Out of the 762 instances, Tinisat and
TinisatELite solves 68 and 89 more instances, respectively, than MiniSat 2.0.

5 Conclusion and Future Work

We have shown that by focusing on the central aspects of clause learning, a
simple solver can significantly outperform the best existing solvers with more

846 J. Huang

sophisticated implementations. Our successful quest for better decision heuris-
tics also provides evidence that there is still considerable room for improvement
even within the confines of the current clause learning framework. Some con-
crete opportunities for further improvement we see include more effective clause
deletion policies, more flexible backtracking, dynamic restart policies, and hy-
bridization of decision heuristics based on variable activity (as in typical clause
learning solvers) and unit propagation lookahead (as in Satz [6] and its variants,
which defeat clause learning solvers on many random and handmade problems).

References

1. Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning.
In: IJCAI, pp. 1194–1201 (2003)

2. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. JAIR 22, 319–351 (2004)

3. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

4. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: DATE, pp.
142–149 (2002)

5. Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI, pp.
2318–2323 (2007)

6. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-
lems. In: IJCAI, pp. 366–371 (1997)

7. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47(4), 173–180 (1993)

8. Lynce, I., Silva, J.P.M.: Complete unrestricted backtracking algorithms for satisfi-
ability. In: SAT (2002)

9. Marques-Silva, J., Sakallah, K.: GRASP—A new search algorithm for satisfiability.
In: ICCAD, pp. 220–227 (1996)

10. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: DAC, pp. 530–535 (2001)

11. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: SAT, pp. 294–299 (2007)

12. Pipatsrisawat, T., Darwiche, A.: SAT solver description: Rsat. In: SAT-Race (2006)
13. Sinz, C.: SAT Race (2006), http://fmv.jku.at/sat-race-2006
14. Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Bacchus,

F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 340–354. Springer, Heidelberg
(2005)

15. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning
in a Boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

16. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005)

17. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

http://fmv.jku.at/sat-race-2006

CP-Based Local Branching�

Zeynep Kiziltan1, Andrea Lodi2, Michela Milano2, and Fabio Parisini2

1 Computer Science Dep., University of Bologna, Italy
zeynep@cs.unibo.it

2 D.E.I.S., University of Bologna, Italy
{alodi,mmilano}@deis.unibo.it

Abstract. Local branching is a general purpose heuristic search method
successfully used in Mixed Integer Programming (MIP). We propose its
integration and extension in Constraint Programming (CP).

1 Local Branching Search Strategy

Formal Background. A Constraint Satisfaction Problem (CSP) consists of a
set of variables X = [X1, ..., Xn], each with a finite domain D(Xi) of values,
and a set of constraints specifying allowed combinations of values for subsets
of variables. A solution X̄ = [X̄1, ..., X̄n] is an assignment of X satisfying the
constraints. CP typically solves a CSP by exploring the space of partial assign-
ments using a backtrack tree search, enforcing a local consistency property using
either specialised or general purpose propagation algorithms. In constraint op-
timisation problems, even if a value in a domain can participate in a feasible
solution, it can be pruned if it cannot be a part of a better solution (called
cost-based filtering [4])). CP makes use of branch-and-bound search for finding
the optimal solution. We can exploit the additive bounding procedure [3] for
computing tight bounds for optimisation problems. This technique works using
reduced-costs which are computed as a result of the solution of a linear program.
A reduced-cost is associated to a variable and represents the additional cost to
pay to the optimal solution when it becomes part of the optimal solution.

Local Branching in MIP. The basic idea of Local Branching [2] is that, given
a reference solution to an optimisation problem, its neighbourhood can be de-
fined through a linear constraint stating a maximum Hamming distance wrt
such a solution. Thus, such a neighbourhood can be searched using tree search
with the hope of improving the solution quality. After the optimal solution in
the neighbourhood is found, the incumbent solution is updated to this new so-
lution and the search continues from this better solution. Assume we have a
tree search method for solving an optimisation problem P whose constrained
variables are X . For a given integer parameter k, the neighbourhood N (X̄, k) is
the set of feasible solutions of P satisfying the additional local branching con-
straint Δ(X, X̄) ≤ k which ensures that the sought assignment of X has at
� Andrea Lodi and Michela Milano are partially supported by the University of Padova

“Integrating Integer and Constraint Programming” (grant 2005 - CPDA051592).

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 847–855, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

848 Z. Kiziltan et al.

most k values different than the reference solution X̄. Given X̄, the solution
space associated with the current branching node is partitioned by means of the
disjunction Δ(X, X̄) ≤ k ∨ Δ(X, X̄) ≥ k + 1. Exploring each exhaustively
guarantees completeness. The neighbourhood structure is general-purpose, that
is, it is independent of the problem. The scheme can be made heuristic by im-
posing limits on the subtree exploration. In [2] several ideas are borrowed from
the metaheuristic literature to enhance the heuristic behaviour. The method
is particularly effective because the local branching constraints, stated as lin-
ear equations in the MIP model, contribute to the computation of the problem
bound. We refer the reader to [2] for the full description of the algorithm.

CP-based Local Branching. The local branching framework is not specific
to MIP. It can be integrated in any tree search. We therefore suggest the use of
general-purpose neighbourhood structures within a tree search with constraint
propagation. Like in MIP, neighbourhoods can be constructed via additional con-
straints in the original model and such constraints can be used both to tighten
the problem bound and for filtering purposes. Since this is a new constraint
problem, CP can directly be used to find the initial feasible solution and search
the neighbourhood, exploiting the power of constraint propagation. Thus, com-
plex constraints can be solved and infeasible solutions in the neighbourhoods can
be detected effectively by constraint propagation, which are difficult tasks for a
pure local search algorithm. Moreover, solution quality improves quickly by local
search around the best found solution, which we miss in the classical CP frame-
work. Furthermore, the use of tree search for performing local search guarantees
completeness unlike classical local search algorithms. Consequently, we expect
the following advantages over a pure CP-based or local search: (1) we obtain
better solutions within a time limit; (2) we improve solution quality quicker; (3)
we are able to prove optimality; (4) we prove optimality quicker. And finally,
the technique is general and applicable to any optimisation problem modelled
with constraints in contrast to many local search techniques designed only for
specific problems. We stress that we do not propose a mere implementation of
local branching in CP. We significantly change and extend the original frame-
work so as to accommodate it in the CP machinery smoothly and successfully.
Our contributions are:

Bound of the neighbourhood. Using a linear programming solver for com-
puting the bound of each neighbourhood is not computationally affordable in
CP. We have therefore studied a lighter way to compute the bound of the neigh-
bourhood which is efficient, effective and incremental.

Cost-based filtering. Cost-based filtering can be applied when reduced-costs
are available. Its use in CP is more aggressive than in MIP where it is mainly
applied during preprocessing (variable fixing). We show how we can extract valid
reduced-costs from the additive bounding procedure.

Restarting. In [2], diversification techniques are applied when for instance the
subtree rooted at the left node is proved to contain no improving solutions,

CP-Based Local Branching 849

instead of simply reversing the last local branching constraint and exploring the
rest of the tree using the same search method as of the subtrees. We propose
a new diversification scheme which finds a new feasible solution by keeping all
the reversed branching constraints and restarts local branching from the new
incumbent solution using the regular local branching framework. This diversi-
fication and its variations are applied together with intensification mechanisms
described next. Due to lack of space, we refer the reader to [6] for details.

Discrepancy. The parameter k is essential to the success of the method as
it defines the size of the neighbourhood. We propose two uses of k: (1) the
traditional one, with k being fixed for each neighbourhood; (2) the variable one,
with k ranging between k1 and k2. In this way, the neighbourhood defined by
k1 is searched first. While no improving solution is found, the neighbourhood is
enlarged up until k2-discrepancy subtree is completely explored. In addition, the
neighbourhoods are visited in slices. Instead of posting the constraint Δ(X, X̄) ≤
k, we impose k constraints of the form Δ(X, X̄) = j with j = 1 . . . k. We show
why this is important for the computation of the bound.

Heuristics. As search proceeds in local branching, we gather a set of incum-
bent solutions X̄1, ..., X̄m which are feasible and which get closer to the optimal
solution. We can exploit these incumbent solutions as a guide to search the sub-
trees. Being independent of the problem, such heuristics would provide us with
a general method suitable for this search strategy. We have developed a number
of useful heuristics, however we will not discus them here for reasons of space.

2 Additive Bounding for Local Branching

To integrate local branching inCP,weneeda local branching constraintΔ(X, X̄) ≤
k, where X̄ is an assignment of X representing the current reference solution and
k is an integer value. The constraint holds iff the sought assignment of X has at
mostk differentvalues than X̄.This constraint enforces that theHammingdistance
between X and X̄ is at most k. The CP model we consider is:

min
∑
i∈N

CiXi (1)

subject to AnySide cst(X) (2)
Δ(X, X̄) ≤ k (3)
Xi ∈ D(Xi) ∀i ∈ N (4)

where CiXi is the cost of assigning variable Xi, AnySide cst(X) is any set of
constraints on domain variables X . The purpose of this section is to exploit
the delta constraint (3), that implicitly represents the structure of the explored
tree, to tighten the problem bound and to perform cost based filtering [4]. To this
purpose, we have developed a local branching constraint lb cst(X, X̄, k, C) which
combines together the Δ constraint and the cost function C = min

∑
i∈N CiXi .

Using this constraint alone provides very poor problem bounds, and thus poor

850 Z. Kiziltan et al.

filtering. If instead we recognize in the problem a combinatorial relaxation Rel
which can be solved in polynomial time and provide a bound LBRel and a
set of reduced-costs c̄, we can feed the local branching constraint with c̄ and
obtain an improved bound in an additive bounding fashion. Additive bounding
is an effective procedure for computing bounds for optimisation problems [3]. It
consists in solving a sequence of relaxations of P , each producing an improved
bound. Assume, we have a set of bounding procedures B1, ..., Bm. We write Bi(c)
for the ith bounding procedure when applied to an instance of P with cost matrix
c. Each Bi returns a lower bound LBi and a reduced-cost matrix c̄. This cost
matrix is used by the next bounding procedure Bi+1(c̄). The sum of the bounds∑

i∈{1,...,m}LBi is a valid lower bound for P . An example of the relaxation Rel is
the Assignment Problem if the side constraints contain an alldifferent. Another
example is a Network Flow Problem if the side constraints contain a global
cardinality constraint. Clearly, a tighter bound can always be found feeding an
LP solver with the linear relaxation of the whole problem, including the local
branching constraints, as done in [2]. We have experimentally noticed that this
relaxation is too expensive in computational time to be used in a CP setting.

To explain how additive bounding can improve the bound obtained by the
local branching constraints, we use the usual mapping between CP and 0-1 Inte-
ger Programming (IP) models. Note that this model is useful to understand the
structure of the problems we are considering, but it is not solved by an IP solver.
We devise a special purpose linear time algorithm as we explain next. We define
a directed graph G = (N, A) where arc (i, j) ∈ A iff j ∈ D(Xi) where D(Xi) ⊆ N
and N = {1, . . . , n}. The corresponding IP model contains xij variables and x̄
as the IP equivalent variables and X̄ . The additive bounding procedure uses
two relaxations which correspond to Rel and Loc Branch that considers the
lb cst(X, X̄, k, C). The solution of Rel produces the optimal solution X∗, with
value LBRel and a reduced-cost matrix c̄. We can feed the second relaxation
Loc Branch with the reduced-cost matrix c̄ from Rel and we obtain:

LBLoc Branch = min
∑
i∈N

∑
j∈N

c̄ij xij (5)

s.t.
∑

(i,j)∈S

(1 − xij) ≤ k S = {(i, j)|x̄ij = 1} (6)

xij ∈ {0, 1}, ∀(i, j) ∈ A (7)

To have a tighter bound, we divide this problem into k problems correspond-
ing to each discrepancy from 1 to k and transforming the constraint (6) into∑

(i,j)∈S(1 − xij) = d with d = 1 to k. The optimal solution of each of these
subproblems can be computed as follows. We start from X̄ = [X̄1, ..., X̄n] and
then extract and sort in non-decreasing order the corresponding reduced-costs
c̄sorted = sort(c̄1X̄1

, ..., c̄nX̄n
). The new bound LBLoc Branch is the sum of the

first n − d smallest reduced-costs from c̄sorted. Overall, a valid bound for the
problem is LB = LBLoc Branch + LBRel. The use of the additive bounding here
is different from its use in [7], since we are starting from a reference solution X̄
which is not the optimal solution X∗ computed by the first relaxation.

CP-Based Local Branching 851

2.1 Cost-Based Filtering

After computing the lower bound in an additive fashion, we need an associated
reduced-cost matrix so as to apply cost-based filtering [4]. To do this, we have
to compute the reduced-cost matrix of the following problem:

LBLoc Branch = min
∑

(i,j)∈S

c̄ij xij (8)

∑
(i,j)∈S

xij = n − d (9)

xij ∈ [0, 1], ∀(i, j) ∈ S (10)

This problem is the d-th subproblem (5)-(7) obtained by: (i) removing variables
xij , ∀(i, j) �∈ S, (ii) writing constraint (6) in equality form with k = d and (iii)
relaxing the integrality requirement on the remaining variables. It is easy to see
that the two problems are indeed equivalent. First, the integrality conditions are
redundant as shown by the counting algorithm used in the previous section to
solve the problem. Second, since the variables xij , (i, j) �∈ S do not contribute to
satisfy constraint (9) they can be dropped to 0 because their reduced-costs are
non-negative. The dual of such a linear program is as follows:

LBLoc Branch = max(n − d)π0 +
∑

(i,j)∈S

πij (11)

π0 + πij ≤ c̄ij , ∀(i, j) ∈ S (12)
πij ≤ 0, ∀(i, j) ∈ S (13)

Let us partition set S into Smin containing the n − d pairs (i, j) having the
smallest reduced-costs and Smax containing the remaining d pairs. We also define
c̄max = max(i,j)∈Smin c̄ij . Then, it is not difficult to prove the following result.

Theorem 1. The dual solution (i) π0 = c̄max, (ii) πij = 0, ∀(i, j) ∈ Smax and
(iii) πij = c̄ij − π0, ∀(i, j) ∈ Smin is optimal for system (11)-(13).

We can now construct the reduced-cost matrix ĉ associated with the optimal
solution of system (8)-(10) as ĉij = 0, ∀(i, j) ∈ Smin and ĉij = c̄ij − c̄max, ∀(i, j) ∈
Smax. Finally, the reduced-costs of the variables xij , (i, j) �∈ S do not change.

2.2 Incremental Computation of the Bound

While exploring the subtrees, decisions are taken on variable instantiation and
as a consequence constraints are propagated and some domains are pruned. We
can therefore update the problem lower bound by taking into account the most
recent situation of the domains. The challenge is to do this in an incremental way,
not incurring much extra overhead. The first bound LBRel can be recomputed,
possibly incrementally. Using the new solution, we can update the second bound
LBLoc Branch in a simple way by using some special data structures. Consider

852 Z. Kiziltan et al.

the sets Smin and Smax defined previously. More precisely, we consider a list
Smax initially containing d ordered pairs (i, j) corresponding to the variable-
value assignment of the d greatest reduced-costs from c̄sorted and Smin containing
the n − d ordered pairs (i, j) corresponding to the n − d smallest reduced-costs
from c̄sorted. Whilst Smin contains the assignments (variable index - value) that
should remain the same w.r.t. X̄ since they have the smallest reduced-costs,
Smax contains the assignments that should change w.r.t. X̄ and that conceptually
assume a value corresponding to a 0 reduced-cost. Note that initially there are
n pairs whose first index goes from 1 to n in Smin ∪ Smax.

Assignment of j to Xi We distinguish four cases:

(i, j) ∈ Smax: A variable that was supposed to change w.r.t. X̄ is instead as-
signed the value in X̄. We should update Smin and Smax by maintaining
them ordered, as well as LBLoc Branch: 1) remove (i, j) from Smax; 2) re-
move (h, k) = max(m,n)∈Smin c̄mn from Smin and add it ordered in Smax; 3)
LBLoc Branch = LBLoc Branch + c̄ij − c̄hk.

(i, k) ∈ Smax with k �= j: A variable that was supposed to change w.r.t.
X̄, indeed changes. In the bound, this variable was assuming a value cor-
responding to a 0 reduced-cost, while now it assumes the value j whose
reduced-cost c̄ij may or may not be 0. We should update LBLoc Branch:
LBLoc Branch = LBLoc Branch + c̄ij .

(i, j) ∈ Smin: No changes are necessary because a variable that was supposed
to remain the same w.r.t. X̄ remains the same.

(i, k) ∈ Smin with k �= j:A variable that was supposed to remain the same w.r.t.
X̄ instead changes. We should update Smin and Smax as well as LBLoc Branch:
1) remove (h, k) = min(m,n)∈Smax c̄mn from Smax and insert it in the last po-
sition of Smin; 2) remove (i, k) from Smin; 3) LBLoc Branch = LBLoc Branch−
c̄ij + c̄hk.

Removal of j from D(Xi). The only important case is when (i, j) ∈ Smin,
where a variable that was supposed to remain the same w.r.t. X̄ and that con-
tributed to the computation of the bound changes. We assume Xi changes
to a value corresponding to the smallest reduced-cost (possibly 0) whose in-
dex is k, and then update Smin and Smax as well as LBLoc Branch: 1) remove
(h, k) = min(m,n)∈Smax c̄mn from Smax and insert it in the last position of Smin;
2) remove (i, j) from Smin; 3) LBLoc Branch = LBLoc Branch + c̄hk − c̄ij . That
is, the number of variables which must change is decreased from from d to d−1.

3 Experimental Results

We have conducted experiments to support the expected benefits of local branch-
ing in CP as stated in Section 1. Experiments are done using ILOG Solver 6.0
and ILOG Scheduler 6.0 on a 2Ghz pentium IV processor running Windows XP
with 512 MB RAM. Due to lack of space, we here report a summary of the
experimental set up and the results. Details can be found in [6]. ATSPTW is

CP-Based Local Branching 853

a time constrained variant of the Asymmetric Travelling Salesman Problem in
which each city has an associated visiting time and must be visited within a
specific time window. It is a difficult problem with applications in routing and
scheduling. The difficulty stems from its co-existing optimisation and scheduling
parts. Solving an ATSPTW thus requires strong optimisation and feasibility rea-
soning. Since the motivation of our work is to combine the power of constraint
propagation for solving feasibility problems with a local search method success-
ful in tackling optimisation problems, ATSPTW is our choice of problem domain
to test the benefits of local branching in CP. In the experiments, we adopt the
model in [5]. We test different variations of local branching in CP with a pure
CP-based search (called CP) which exploits backtracking in depth-first search
with constraint propagation along with suitable problem-specific search heuris-
tics. The alldifferent constraints and the cost function C in the model allow us
to exploit the cost-based filtering of [4] in CP . Moreover, they allow us to use
the Assignment Problem as Rel and apply the cost-based filtering described in
Section 2 in local branching. As we want local branching to improve solution
quality and to prove optimality fast, we consider setting k to 3 or 5 (called LB3
and LB5 resp.) and apply a variation of restarting if the subtree rooted at the
left node does not have any improving solution. We also adopt a hybrid method
(called LBH) which starts as LB3 but may end up as LB5 (if no improving
solution is found), exploiting different discrepancy values. In all local branch-
ing methods, the initial feasible solution is found using CP and each subtree is
searched in increasing value of discrepancy with a general heuristic specifically
developed for local branching. The experiments are performed on 242 heteroge-
neous instances taken from http://elib.zib.de. The results appear in tables
in which the participating number of instances are indicated in paranthesis.

Table 1. Instances where the methods provide different solution cost

(a) 5 minutes cut off.
Method # times Average % gap
(86) providing from the best solution

best solution CP LB3 LB5
The best
CP 15 0 5.51 7.24
LB3 13 12.77 0 22.99
LB5 28 25.65 4.72 0

Best
CP 3 0 0 0.73
LB3 30 15.97 0 0.07
LB5 27 17.75 0 0

(b) 30 minutes cut off.
Method # times Average % gap
(54) providing from the best solution

best solution CP LB3 LB5 LBH

The best
CP 8 0 5.42 6.07 5.46
LB3 2 11.67 0 0.52 0.52
LB5 8 20.69 3.82 0 2.70
LBH 7 26.28 3.77 30.01 0
Best
CP 0 N/A N/A N/A N/A
LB3 20 9.98 0 4.41 0
LB5 23 11.81 0.65 0 0
LBH 29 11.21 0.51 3.04 0

In Table 1(a), we report statistics on the instances for which the methods
provide solutions with different cost by the cut off time. We show in the second
column how many times a method provides the best solution and in the third
the average gap of the provided solution w.r.t. the best one obtained from the
other methods. The first group of rows are about the instances for which only 1
method gives the best solution, whilst in the second multiple methods provide
the best solution. Note that we here are not interested in any run-time. All

854 Z. Kiziltan et al.

methods are allowed to run until the cut off time and thus we are interested in
the best solution possible. The aim is to support our thesis that we can obtain
better solutions within a time limit. We observe that LB5 and LB3 are the
winners in the groups, respectively. Moreover, for the instances where CP is
the preferred method (the CP rows in both groups), the average gap of the
solutions provided by LB3 and LB5 are much smaller than the gap of the CP
solutions when LB3 or LB5 is preferred. In Table 2(a), we report statistics on
the instances for which the methods provide equally good solutions by the cut
off time. We give statistics by dividing the instances into three disjoint groups.
In the first, none of the methods can prove optimality by the cut off time,
so we compare the average time to find the best solution. In the second, all
methods prove optimality, so we check the average total run-time required to
prove optimality. The third group contains the instances which are a mix w.r.t.
completeness of the search. Since we cannot compare run-times in this case, we
look at the number of times each method proves optimality. Such statistics help
us support our theses that we can improve solution quality quicker and we can
prove optimality (quicker). We observe that LB3 is the winner in all groups,
with LB5 being preferrable over CP in two. Local branching thus provides clear
benefits over CP when solving ATSPTW. The results in the tables support our
theses. It is however difficult to decide between LB3 and LB5. In Tables 1(b)
and 2(b), similar results are reported when we impose a 30 minute cutoff time
instead. In addition, we compare with the previous methods also the hybrid
method LBH . Even if more time is given to all methods, the benefits of local
branching, in particular of LBH , are apparent. The results indicate that LBH

is the most robust method, combining the advantages of LB3 and LB5.

Table 2. Instances where the methods provide the same solution cost

(a) 5 minutes cut off.
Method Average comparison

All are cut off (7) Best solution time
CP 179.02
LB3 98.63
LB5 103.16

None is cut off (132) Total run-time
CP 38.04
LB3 35.43
LB5 60.50

Min. one & max. two # times proving
are cut off (13) optimality
CP 5
LB3 11
LB5 7

(b) 30 minutes cut off.
Methods Average comparison

All are cut off (2) Best solution time
CP 1184. 25
LB3 611. 68
LB5 490.02
LBH 450. 88
None is cut off (175) Total run-time
CP 185.52
LB3 113.39
LB5 142.69
LBH 114. 05
Min. one & max. three # times proving
are cut off (6) optimality
CP 1
LB3 5
LB5 5
LBH 4

References

1. Harvey, W., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI-95, pp. 607–615.
Morgan Kaufmann, San Francisco (1995)

2. Fischetti, M., Lodi, A.: Local branching. Math. Prog. 98, 23–47 (2003)

CP-Based Local Branching 855

3. Fischetti, M., Toth, P.: An additive bounding procedure for combinatorial optimiza-
tion problems. Oper. Res. 37, 319–328 (1989)

4. Focacci, F., Lodi, A., Milano, M.: Optimization-oriented global constraints. Con-
straints 7, 351–365 (2002)

5. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. IN-
FORMS J. on Comp. 14(4), 403–417 (2002)

6. Kiziltan, Z., Lodi, A., Milano, M., Parisini, F.: CP-based Local Branching. Technical
Report OR/07/8, University of Bologna (2007)

7. Lodi, A., Milano, M., Rousseau, L.M.: Discrepancy based additive bounding for the
alldifferent constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 510–524.
Springer, Heidelberg (2003)

Strong Controllability of Disjunctive Temporal
Problems with Uncertainty

Bart Peintner1, Kristen Brent Venable2, and Neil Yorke-Smith1

1 Artificial Intelligence Center, SRI International
{peintner,nysmith}@ai.sri.com

2 University of Padova, Italy
kvenable@math.unipd.it

Abstract. The Disjunctive Temporal Problem with Uncertainty (DTPU) is an
extension of the Disjunctive Temporal Problem (DTP) that accounts for events
not under the control of the executing agent. We investigate the semantics of
DTPU constraints, refining the existing notion that they are simply disjunctions
of STPU constraints. We then develop the first sound and complete algorithm
to determine whether Strong Controllability holds for a DTPU. We analyze the
complexity of our algorithm with respect to the number of constraints in different
classes, showing that, for several common subclasses of DTPUs, determining
Strong Controllability has the same complexity as solving DTPs.

1 Introduction

The Simple Temporal Problem (STP) [1] is a temporal constraint formalism widely used
for modeling and solving real-world planning and scheduling problems. Several exten-
sions of this framework have been proposed in the literature. The Disjunctive Temporal
Problem (DTP) [2] allows for non-convex and non-binary constraints by introducing dis-
junctions of STP constraints. The Simple Temporal Problem with Uncertainty (STPU)
[3] extends the STP by allowing two classes of events, controllable and uncontrollable.
Uncontrollable events are controlled by exogenous factors, often referred to as ‘Nature’.
The concept of consistency of an STP is replaced by varying notions of controllability
of an STPU. The level of controllability for a problem describes the conditions under
which an executor can guarantee all constraints will be satisfied, w.r.t. Nature’s behavior.
In problems that exhibit Strong Controllability (SC), there exists a time assignment to
all events that ensures all constraints will be satisfied whatever Nature’s realisation of
the uncontrollable events.

The recently introduced Disjunctive Temporal Problem with Uncertainty (DTPU)
[4] allows for both disjunctive constraints and contingent events. Such a coexistence is
intrinsic to many real-world planning and scheduling problems (e.g., [5]). In this paper
we focus on Strong Controllability of DTPUs, which provides an appropriate notion of
solution for application domains such as production planning, and in situations where the
entire schedule of actions must be known in advance. We present a sound and complete
algorithm to determine whether Strong Controllability of a DTPU holds. We then analyze
the complexity of the algorithm with respect to the quantity of different constraint types
and we show that for several common subclasses of DTPUs, determining SC has the
same complexity as solving a classical DTP without uncertainty.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 856–863, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strong Controllability of Disjunctive Temporal Problems with Uncertainty 857

2 Background

Temporal Problems. A Simple Temporal Problem [1] is defined by a set of time-point
variables X , which represent instantaneous events, and a set of quantitative constraints
C, which restrict the temporal distance between events. STP constraints are binary and
convex, taking the form Xj −Xi ∈ [aij , bij]. A distinguished event, denoted TR, marks
the start of time. Unary domain constraints thus can be modeled as binary relations to
TR. Solving an STP equates to deciding consistency and deriving its minimal network.
An STP is consistent iff it has a solution: an assignment to all variables such that all
constraints are satisfied. Consistency can be tested with an All-Pairs Shortest Path al-
gorithm, requiring O(n3) time for n variables [1]. The minimal network is the tightest
representation of the constraints that includes all solutions to the problem.

The Disjunctive Temporal Problem [2] generalizes the STP by admitting non-binary
temporal relations. DTP constraints consist of disjunctions of STP constraints: Xj1 −
Xi1 ∈ [ai1j1, bi1j1]∨Xj2 −Xi2 ∈ [ai2j2, bi2j2]∨· · ·∨Xj� −Xi� ∈ [ai�j�, bi�j�]. Note
that a variable may appear in more than one disjunct. While the worst-case complexity
of solving a DTP is NP-hard [2], in practice efficient solving techniques have been
developed (e.g., [6]), and tractability results are known for some classes of DTPs (e.g.,
[7]). A simple way to solve a DTP is to consider the component STPs obtained by
selecting one disjunct from each constraint. A DTP is consistent iff it contains a consistent
component STP. A search through the meta space of component STPs is the heart of
most constraint-based DTP solvers (e.g., [6]); these solvers have been shown to be very
efficient. The time complexity of the search depends on the number of component STPs.
In the worst case, for m constraints with a maximum of kdisjuncts each, there are O(km)
component STPs, and the complexity is O(n2mkm) [6].

Temporal Problem with Uncertainty. The STP and DTP formalisms assume that all
events are under the complete control of the execution agent. Recognizing that this as-
sumption is often not valid, the Simple Temporal Problem with Uncertainty (STPU) [3]
distinguishes two classes of variables, controllable Vc and uncontrollableVu. The values
of controllable variables are chosen by the execution agent and correspond to events in
standard STPs. The values of uncontrollable variables, by contrast, are determined by
exogenous factors (‘Nature’); such a realisation is observed but cannot be controlled
by the execution agent. The only information known prior to observation of an uncon-
trollable variable λ is that Nature will ensure that its value respects a single contingent
constraint λ − X ∈ [a,b], with a ≥ 0. Contingent constraints are assumed indepen-
dent, and Nature is assumed to be consistent. Besides contingent constraints, which we
distinguish by using a bold typeface, all other constraints in an STPU are executable.

The semantics of STPU constraints can be summarized as follows:

1. Contingent STPU constraints (S) model a priori information the agent is given
about when an event controlled by Nature can occur (e.g., “An experiment will end
(uncontrollable) between 5 and 10 minutes after it begins (controllable)”).

2. Executable STPU constraints (Se) model requirements the agent has between vari-
ables it controls and those controlled by Nature (e.g., “Data cannot be sent (control-
lable) until 3 minutes after the experiment ends (uncontrollable)”).

858 B. Peintner, K.B. Venable, and N. Yorke-Smith

3. (Executable) STP constraints (Sc) model temporal constraints between events un-
der the control of the agent (e.g., “The experiment cannot start until after 2 p.m.”).

Controllability of an STPU is the analogue of consistency of an STP. Three forms
have been defined [3]: strong, weak and dynamic. In this paper we extend the notion
of Strong Controllability (SC), a guarantee that a single assignment to all controllable
variables in the STPU will satisfy all constraints, regardless of the realisation. The time
complexity of determining strong controllability of an STPU is in class P [3].

3 Extending the DTP with Contingent Events

In the sequel, we will indicate with constraint a disjunctive temporal constraint and
with disjunct a single simple temporal constraint. Representationally, the extension of
an STPU to a DTPU is straightforward: we relax the restriction that each constraint
be binary and convex, and allow disjunctive constraints [4]. Like the STPU, we divide
the variables into two classes, controllable and uncontrollable, and retain the restriction
that each process of uncertain duration is represented by a single contingent constraint
between the process’s start and end time-points.

Definition 1 (DTPU). A Disjunctive Temporal Problem with Uncertainty is a tuple
〈Vc, Vu, C, Cu〉, where Vc, Vu are the sets of executable and uncontrollable variables,
respectively, C is a finite set of disjunctive temporal constraints over Vc∪Vu, and Cu ⊆ C
is the set of binary contingent constraints, one for each element of Vu.

Notice that w.r.t. the original definition in [4], the set of contingent constraints now
appears explicitly. A solution to a DTPU, s = sc ∪ su is a complete assignment to all
variables V = Vc ∪ Vu that satisfies all constraints in C. The controllable part of the
assignment, sc, is the decision, and the uncontrollable part, su, is the realisation.

Example 1. Consider the example of a Mars rover (Figure 1) tasked with drilling into
a rock (D denotes the start of the drilling action, D′ its end), taking an image (I , I ′),
and sending data collected during each action back to Earth (S, S′). The drilling task
consists of a preparation phase followed by two minutes of drilling. The preparation
phase has variable duration, depending in part on whether the type of rock requires a
different drill bit than is currently installed. The image task must occur at time 15, which
is when the object to photograph will be visible. Drilling causes significant vibration, so
the image cannot be taken during the last two minutes or during the minute after drilling
ends. Only in the small window [25, 30] can the rover begin data transmission.

The problem can be formalized as a DTPU as follows. The constraints describe
the durations and temporal ordering between the activities. In this example, Vc =
{TR, D, S, I, I ′}, Vu = {D′, S′}, and C contains nine constraints, two of which are dis-
junctive. The filled arrows represent contingent constraints: Cu contains two constraints,
S′ − S ∈ [4,5] and D′ − D ∈ [5,10] ∨ [15,20].

We define a component STPU P ′ of a DTPU P to be an STPU obtained by selecting one
disjunct from each constraint. Note that P ′ may include only a subset of the uncontrol-
lable variables of P . The DTPU in Figure 1 has four component STPUs, one for each
combination of disjuncts in the two disjunctive constraints.

Strong Controllability of Disjunctive Temporal Problems with Uncertainty 859

[5,10] v [15,20]

TR

D’ - I’ : [2,+] v I - D’ : [1,+]

[3,+] [4,5]

[25,30]

[1,+]

[0,+]

[15,15]

[1,1]

D D’ S S’

I’

contingent

executable

I

Fig. 1. Dashed arrows depict disjunctive constraints that involve more than two variables

In addition to constraints of type S, Sc and Se, a DTPU features the types:

1. DTP (D): A disjunction of two or more STP constraints (e.g., “The image action
must be ended 2 minutes before drilling begins (controllable) or the image action
must be started after drilling begins (controllable)”).

2. Executable DTPU (De): A disjunction of two or more executable STPU disjuncts
(e.g., “The image action must end 2 minutes before drilling ends (uncontrollable) or
the image action must start at least 1 minute after drilling ends (uncontrollable)”).

3. Mixed executable DTPU (Dme): A disjunction of STP and executable STPU con-
straints (e.g., “The image action must end before drilling starts (controllable) or the
image action must start at least 1 minute after drilling ends (uncontrollable)”).

4. Contingent DTPU (Dc): A disjunction of two or more contingent STPU constraints.
Nature chooses which disjunct will be satisfied. (e.g., “Drilling can take 5–10 minutes
or 15–20, depending on whether the correct bit is installed”).

It is important to recognize that by choosing a duration for uncertain processes (i.e.,
choosing a time for an uncontrollable variable), Nature is in effect ‘choosing’ a disjunct
from the contingent constraint modeling that process.

An eighth constraint type would be mixed DTPU constraints that contain both con-
tingent and executable disjuncts. Such constraints are outside our definition of a DTPU,
which specifies exactly one contingent constraint to model each uncontrollable variable.
Contingent constraints model the behavior of Nature: what the modeler declares will
happen, not what should happen. Thus, by definition, one of contingent disjuncts of a
mixed DTPU constraint will always be satisfied, making the executable disjuncts super-
fluous. If there were a realisation not satisfying one of the contingent disjuncts, then the
model of Nature would be incomplete.

4 Strong Controllability of a DTPU

We now address the problem of testing the Strong Controllability of a DTPU. Motivating
examples for SC include production planning, where schedules must be known in ad-
vance because of possible dependencies among activities performed by other agents, and
safety-critical domains where advanced approval is mandated of the schedule. Addition-
ally, when the executing agent lacks resources to reason about dynamic controllability,
as may be the case for a Mars rover, it can operate with SC.

860 B. Peintner, K.B. Venable, and N. Yorke-Smith

Let us partition the constraints C into three groups: multi-disjunct contingent con-
straints, CC = {Dc}; multi-disjunct executable constraints with at least one executable
STPU disjunct, CE = {De, Dme}; and all other constraints, CS = {S, Se, Sc, D}.
Note that CS includes all single disjunct constraints and all multi-disjunct constraints
over controllable variables. In Example 1, CC = {D′ − D ∈ [5,10] ∨ [15,20]},
CE = {D′ − I ′ ∈ [2, ∞) ∨ I − D′ ∈ [1, ∞)}, and the remaining seven constraints in
CS .

In general, it is not true that a DTPU is SC if it contains an SC component STPU, since
Nature can in effect choose a disjunct, and thus a decision strongly controlling only one
disjunct of a contingent DTPU constraint is not sufficient. However, this relationship does
hold if CC =
, which we say is a Simple-Natured DTPU. The converse is false unless
CE =
, since an SC solution may satisfy different disjuncts in different realisations.
When CE =
, we say that the DTPU is Simple-Nature-Dependent, since all executable
constraints that depend on uncontrollables are simple (single-disjunct).

We combine the idea of using the SC test for STPUs [8] with the now-standard meta-
CSP search of a DTP solver [6]. In our algorithm DTPU-SC, the DTPU constraints
are treated as CSP variables whose values correspond to the disjuncts of the DTPU
constraint. Hence, for each DTPU constraint Ci ∈ C with disjuncts D(Ci), a meta-CSP
variable Ci is created with a domain consisting of the disjuncts cij ∈ D(Ci).

Pseudocode of DTPU-SC is given in Algorithm 1. The three methods correspond to
the three classes of constraints, CS , CC , and CE , defined above. Initially, DTPU-SC is
called with partial component STPs A and AC empty, i.e., DTPU-SC(
,
, CS, CC , CE).
DTPU-SC either returns the empty set, indicating that DTPU P is not SC, or it returns
a set of decisions S such that any sc ∈ S strongly controls P .

Since finding a single SC component STPU is not sufficient for determining SC
of DTPUs, DTPU-SC must efficiently keep track of which component STPUs each
assignment controls during search. To help explain the operation of the algorithm, we
will first look at three special cases. Then we will address the general case.

Case 1: STPU First, consider the trivial case in which all constraints are single-disjunct.
Since only CS contains constraints, and all these constraints are simple, the DTPU P is
an STPU; thus SC can be determined with the existing STPU algorithm [8].

Case 2: Totally Simple Second, consider the case in which multi-disjunct constraints
are present, but the sets CC and CE are empty. In this common case, all constraints
involving uncontrollable variables have only a single disjunct. The DTPU is Simple-
Natured, and moreover is also Simple-Nature-Dependent; altogether, we describe the
DTPU as Totally Simple. An example of a Totally Simple DTPU is Vd = {TR,X}, Vu =

{Z}, C = {X − TR ∈ [1, 2] ∨ [5, 8], Z − TR ∈ [8, 10], Z − X ∈ [1, 5]}.
By the above, we can check SC by checking each component STPU for SC. If a

decision controls any component STPU, it controls the DTPU as well. It is straightfor-
ward to adapt existing meta-CSP DTP solvers to implement this algorithm. The first
method in Algorithm 1 does exactly this; the call to the second method, ALL-PATHS-
SC, in line 4 simply returns the minimal network of A in the case of a Totally Simple
DTPU. Before the incremental consistency check for a disjunct over an uncontrollable
variable (line 10), we convert the disjunct into a set of STP constraints using a call to

Strong Controllability of Disjunctive Temporal Problems with Uncertainty 861

Algorithm 1. Determine SC, return controlling minimal network

DTPU-SC(A, AC , CS , CC , CE)
1: S ← �
2: if CS = � then {A is a disjunct combination of CS}

3: G ← minimal-network(A)
4: S ← ALL-PATHS-SC(A, AC , CC , CE , G)
5: else
6: Ci ← select-variable(CS), C′

S ← CS − {Ci}
7: for each disjunct cij of D(Ci) do
8: A′

C ← AC ∪ cij {A′
C is an STP that ignores uncontrollable variables }

9: A′ ← A′ ∪ sc-transform(A′
C, cij) {Transform cij into disjuncts over controllable variables}

10: if consistent(A′) then
11: S ← DTPU-SC(A′, A′

C , C′
S , CC , CE)

12: if S �= � then return S
13: return S {Set of SC decisions or nil}

ALL-PATHS-SC(A, AC , CC , CE , G)
1: if CC = � then G ← G ∩ SATISFY-CE(A, AC ,CE)
2: else
3: Ci ← select-variable(CC), C′

C ← CC − {Ci}
4: for each disjunct cij of D(Ci) do
5: A′

C ← AC ∪ cij

6: A′ ← A ∪ sc-transform(A′
C, cij)

7: if consistent(A′) then
8: G ← ALL-PATHS-SC(A′, A′

C , C′
C , CE , G)

9: if G = � then return � {Fail if ANY disjunct fails}

10: else return �
11: return G

SATISFY-CE (A, AC ,CE)
1: H ← � {H will hold all assignments that satisfy any combination of CE}

2: if CE = � then H ← minimal-network(A) {A represents a complete component STPU}

3: else
4: Ci ← select-variable(CE), C′

E ← CE − {Ci}
5: for each disjunct cij of D(Ci) do
6: A′ ← A ∪ sc-transform(AC, cij) {Returns at most 1 constr.}

7: if consistent(A′) then H ← H ∪ SATISFY-CE(A′,AC , C′
E)

8: return H

sc-transform, which is a transformation adapted from STPUs [8]. sc-transform converts
a single disjunct (i.e., STPU constraint) over uncontrollable variables into an equivalent
set of disjuncts over controllable variables. If the input disjunct is contingent, this set can
be as large as the number of constraints over uncontrollable variables; if it is executable,
only a single disjunct will be produced.

The complexity of DTPU-SC for the case of a Totally Simple DTPU is the same as
solving a DTP: O(n2SkS), where S = |CS |. The only additions to the DTP algorithm
are lines 8 and 9, both of which amortize to O(1) time.

Case 3: Simple-Nature-Dependent When CC is non-empty, i.e., if the DTPU contains
multi-disjunct contingent constraints, Nature chooses the disjunct that must be satisfied

862 B. Peintner, K.B. Venable, and N. Yorke-Smith

for each contingent constraint, and an SC decision must control any combination of dis-
juncts from CC . Contrary to intuition, we cannot simply break the disjunctive constraints
apart. Consider the constraint D′ − D ∈ [5,10] ∨ [15,20]: if we break the constraint
into two STPU constraints, they will simply be inconsistent with one another.

The second method, ALL-PATHS-SC, extends the partial component STP A (generated
by the first method, i.e., by search through the CS constraints) using every feasible
disjunct combination of the constraints in CC . For each combination, it intersects the set
of decisions that control it with the set of decisions that control the previously checked
combinations. Thus, ALL-PATHS-SC returns the set G of all decisions that control each
combination. The call to the third method, SATISFY-CE, in line 1 simply returns the
minimal network of A if CE is empty.

For the Simple-Nature-Dependent DTPU, where CE is empty and CC non-empty, the
time complexity is O(n2SkS +n2(S)kCkS), where C = |CC |. The S element describes
the maximum number of consistency checks in ALL-PATHS-SC in line 7.

Case 4: General DTPU In the general case, both CC and CE are non-empty. The con-
straints in CE contain uncontrollable variables, but (since they are executable constraints)
only one disjunct must be satisfied for any realisation, and the agent may choose which
disjunct. With CE constraints, however, it is possible that a single SC decision satisfies
different disjuncts for different realisations. Hence, for each decision under consider-
ation, we must determine for each feasible disjunct combination in CC whether there
is a feasible disjunct combination in CE as well. While this is not difficult for a single
decision, DTPU-SC is searching in the meta-CSP space, and therefore is effectively rea-
soning about sets of decisions at once (recall that a minimal network represents a set of
decisions). Hence, method ALL-PATHS-SC must maintain a potentially non-convex list
of decisions G: the union of decisions that satisfy at least one disjunct combination of
CE for each disjunct combination of CC considered so far.

The third method in Algorithm 1, SATISFY-CE, searches through all disjunct combi-
nations of CE for those consistent with the SC decisions given as input (in the partial
STP A). Upon finding consistent disjunct combinations, it adds the resulting minimal
network to a union H . H therefore represents a non-convex set of decisions that control
the assignment to CC . Upon return, in line 1 of ALL-PATHS-SC, H is intersected with
G, assuring that G contains only assignments that control all combinations of CC con-
sidered so far. We note that efficient data structures and simplification methods for G
and H are key to reducing the complexity in practice of the repeated intersections.

In the general case, DTPU-SC considers kSkCkE disjunct combinations, where
E = |CE |. Therefore, SATISFY-CE requires O(n2EkEkCkS). Analyzing the inter-

section performed in line 1 of ALL-PATHS-SC yields O(n2kSSkSkC

). Since testing
consistency of a DTP is NP-hard, it is no surprise that deciding SC with DTPU-SC is
thus in the complexity class EXPSPACE.

Case 5: Simple-Nature Finally, we specialize the general case to the Simple-Natured
DTPU, where CE is non-empty but CC is empty, i.e., all contingent constraints are
simple. Using the above analysis, now C = 0, reducing the complexity to O(n2kS(S +
EkSkE)). We suspect that Simple-Nature DTPUs occur frequently in practice because
the need to model processes with uncertain, non-convex durations is relatively rare.

Strong Controllability of Disjunctive Temporal Problems with Uncertainty 863

5 Related and Future Work

Uncertainty in planning and scheduling tasks has been addressed in the literature in
different ways. For example in the Conditional Temporal Problem [9] it is the presence
in the problem of the variables (all of which are controllable) that is unknown. A similar
type of decision-point based uncertainty is captured in the Temporal Plan Network [10],
where decision nodes are used to explicitly introduce choices in activity execution that
the planner must make. Outside of the literature descended from the STP, there is a large
body of work on fuzziness and uncertainty in temporal reasoning (e.g., [11]). Another
interesting relation is that between DTPUs and Quantified CSPs [12]. Informally, Strong
Controllability corresponds to a forall-then-exists quantification over uncontrollable and
controllable variables, respectively.

For the future, we aim to analyze dynamic and weak controllability of DTPUs and
derive algorithms for testing them. We would also like to explore the potential of mixed
DTPU constraints with suitable semantics to capture decision-point based uncertainty.

Acknowledgments. This material is based in part upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract No. NBCHD030010.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of DARPA or the DOI-
NBC.

References

1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49, 61–95
(1991)

2. Stergiou, K., Koubarakis, M.: Backtracking algorithms for disjunctions of temporal con-
straints. Artificial Intelligence 120, 81–117 (2000)

3. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: From consis-
tency to controllabilities. JETAI 11, 23–45 (1999)

4. Venable, K.B., Yorke-Smith, N.: Disjunctive temporal planning with uncertainty. In: Proc. of
IJCAI’05, pp. 1721–1722 (2005)

5. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote Agent: To boldly go where no
AI system has gone before. Artificial Intelligence 103, 5–47 (1998)

6. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive temporal reason-
ing problems. Artificial Intelligence 151, 43–89 (2003)

7. Satish Kumar, T.K.: On the tractability of restricted disjunctive temporal problems. In: Proc.
of ICAPS’05., pp. 110–119 (2005)

8. Vidal, T., Ghallab, M.: Dealing with uncertain durations in temporal constraint networks
dedicated to planning. In: Proc. of ECAI-96, pp. 48–52 (1996)

9. Tsamardinos, I., Vidal, T., Pollack, M.E.: CTP: A new constraint-based formalism for condi-
tional, temporal planning. Constraints 8, 365–388 (2003)

10. Kim, P., Williams, B.C., Abramson, M.: Executing reactive, model-based programs through
graph-based temporal planning. In: Proc. of IJCAI’01, pp. 487–493 (2001)

11. Dubois, D., Fargier, H., Prade, H.: Fuzzy scheduling. European J. of Operational Research 147,
231–252 (2003)

12. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints. In: Van
Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer, Heidelberg (2002)

Exploiting Single-Cycle Symmetries

in Branch-and-Prune algorithms

Vicente Ruiz de Angulo and Carme Torras

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain

{ruiz,torras}@iri.upc.edu

Abstract. As a first attempt to exploit symmetries in continuous con-
straint problems, we focus on permutations of the variables consisting of
one single cycle. We propose a procedure that takes advantage of these
symmetries by interacting with a Branch-and-Prune algorithm without
interfering with it. A key concept in this procedure are the classes of
symmetric boxes formed by bisecting a n-dimensional cube at the same
point in all dimensions at the same time. We quantify these classes as a
function of n. Moreover, we propose a simple algorithm to generate the
representatives of all these classes for any number of variables at very
high rates. A problem example from the chemical field and a kinematics
solver are used to show the performance of the approach in practice.

1 Symmetry in Continuous Constraints Problems

Symmetry exploitation in discrete constraint problems has received a great deal
of attention lately [6,4,5,11]. On the contrary, symmetries have been largely
disregarded in continuous constraint solving, despite the important growth in
both theory and applications that this field has recently experienced [12,1,9].

Continuous (or numerical) constraint solving is often tackled using Branch-
and-Prune algorithms [13], which iteratively locate solutions inside an initial do-
main box, by alternating box subdivision (branching) and box reduction (prun-
ing) steps. Motivated by a molecular conformation problem, in this paper we
deal with the most simple type of box symmetry, namely that in which domain
variables (i.e., box dimensions) undergo a single-cycle permutation leaving the
constraints invariant. This can be seen, thus, as a form of constraint symmetry
in the terminology introduced in [3].

We are interested in solving the following general Continuous Constraint Sat-
isfaction Problem (CCSP): Find all points x = (x1, . . . , xn) lying in an initial
box of R

n satisfying the constraints f1(x) ∈ C1 , . . . , fm(x) ∈ Cm, where fi is a
function fi : R

n → R, and Ci is an interval in R.
We assume the problem is tackled using a Branch-and-Prune (B&P) algo-

rithm. The only particular feature that we require of this algorithm is that it
has to work with boxes in R

n.
We say that a function s : R

n → R
n is a point symmetry of the problem if

there exists an associated permutation σ ∈ Σm such that fi(x) = fσ(i)(s(x))

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 864–871, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exploiting Single-Cycle Symmetries in Branch-and-Prune Algorithms 865

and Ci = Cσ(i), ∀i = 1, . . . , m. We consider symmetry as a property that relates
points that are equivalent as regards to a CCSP. Concretely, from the above
definition one can conclude that x is a solution to the problem iff s(x) is a
solution to the problem. Let s and t be two symmetries of a CCSP with associated
permutations σs and σt. It is easy to see that the composition of symmetries
s(t(·)) is also a symmetry with associated permutation σs(σt(·)).

An interesting type of symmetries are permutations of the components of x.
Let D be a finite set. A cycle of length k is a permutation ψ such that there exist
distinct elements a1, . . . ak ∈ D such that ψ(ai) = ψ(a(i+1)mod k) and ψ(z) = z
for any other element z ∈ D. Such a cycle is represented as (a1, . . . ak). Every
permutation can be expressed as a composition of disjoint cycles. In this paper we
focus on a particular type of permutations, namely those constituted by a single
cycle. In its simplest form, this is s(x1, x2, . . . xn) = (xθ(1), xθ(2), . . . xθ(n)) =
(x2, x3...xn, x1), where θ(i) = (i + 1) mod n.

Example: n = 3, m = 4,x = (x1, x2, x3) ∈ [−1, 1]× [−1, 1]× [−1, 1],

f1(x) : x2
1 + x2

2 + x2
3 ∈ [5, 5] ≡ x2

1 + x2
2 + x2

3 = 5
f2(x) : 2x1 − x2 ∈ [0,∞] ≡ 2x1 − x2 � 0
f3(x) : 2x2 − x3 ∈ [0,∞] ≡ 2x2 − x3 � 0
f4(x) : 2x3 − x1 ∈ [0,∞] ≡ 2x3 − x1 � 0

There exists a symmetry s(x1, x2, x3) = (x2, x3, x1). The constraint permuta-
tion associated to s is σ(1) = 1, σ(2) = 3, σ(3) = 4, and σ(4) = 2.

For n � 3 there is never a unique symmetry for a given problem. If there
exists a symmetry s, then for example s2(x) = s(s(x)) is another symmetry. In
general, using the convention of denoting s0(x) the identity mapping, {si(x), i =
0 . . . n− 1} is the set of different symmetries that can be obtained by composing
s(x) with itself, while for i � n we have that si(x) = si mod n(x). Thus, a
single-cycle symmetry generates by composition n−1 symmetries, excluding the
trivial identity mapping. Some of them may have different numbers of cycles.
The algorithm presented in this paper deals with all the compositions of a single-
cycle symmetry, even if some of them are not single-cycle symmetries. The gain
obtained with the proposed algorithm will be shown to be generally proportional
to the number of different compositions of the selected symmetry. Therefore,
when several single-cycle symmetries exist in a CCSP problem, the algorithm
should be used with that generating the most symmetries by composition, i.e.,
with that having the longest cycle.

2 Box Symmetry

Since B&P algorithms work with boxes, we turn our attention now to the set of
points symmetric to those belonging to a box B ⊆ R

n.
Let s be a single-cycle symmetry corresponding to the circular variable shifting

θ introduced in the preceding section, and B = [x1, x1]× . . .× [xn, xn] a box in
R
n. The box symmetry function S is defined as S(B) = {s(x) s.t. x ∈ B} =

866 V. Ruiz de Angulo and C. Torras

[xθ(1), xθ(1)] × . . . × [xθ(n), xθ(n)] = [x2, x2] × . . . × [xn, xn] × [x1, x1]. The box
symmetry function has also an associated constraint permutation σ, which is
the same associated to s. Si will denote S composed i times. We say, then, that
Si(B) and Sj(B) are symmetric boxes, 0 � i, j < n, i �= j.

As in the case of point symmetry, box symmetry has implications for the
CCSP. If there is no solution inside a box B, there is no solution inside any of
its symmetric boxes either. A box B∫ ⊆ B is a solution iff Si(B∫) ⊆ Si(B) is a
solution box for any i ∈ {1 . . . n− 1}.

Box symmetry is an equivalence relation defining symmetry equivalence classes.
Let R(B) be the set of different boxes in the symmetry class of B, R(B) = {Si(B),
i ∈ {0, . . . , n − 1}}. We define the period P (B) of a box B as P (B) = |R(B)|.
Therefore R(B) = {Si(B), i ∈ {0, . . . , P (B) − 1}}. For example, for box B′ =
[0, 4]× [2, 5]× [2, 5]× [0, 4]× [2, 5]× [2, 5], P (B′) = 3.

In the following sections we will show that the implications of box symmetry
for a CCSP can be exploited to save much computing time in a meta-algorithm
that uses the B&P algorithm as a tool without interfering with it.

3 Algorithm to Exploit Box Symmetry Classes

The algorithm we will propose to exploit box symmetry makes much use of the
symmetry classes formed by bisecting a n-dimensional cube In (i.e., of period
1) in all dimensions at the same time and at the same point, resulting in 2n

boxes. We will denote L and H the two subintervals into which the original
range I is divided. For example, for n = 2, we have the following set of boxes
{L × L, L × H, H × L, H × H} whose periods are 1, 2, 2 and 1, respectively.
And their symmetry classes are: {L × L}, {L × H, H × L}, and {H × H}.
Representing the two intervals L and H as 0 and 1, respectively, and dropping
the × symbol, the sub-boxes can be coded as binary numbers. Let SRn be the set
of representatives, formed by choosing the smallest box in binary order from each
class. For example, SR2 = {00, 01, 11}. Note that the cube In to be partitioned
can be thought of as the the set of binary numbers of length n, and that SRn is
nothing more than a subset whose elements are different under circular shift.

Section 4 will show how many components SRn has, how they are distributed
and, more importantly, how can they be generated. The symmetry exploitation
algorithm we propose below uses the B&P algorithm as an external routine.
Thus, the internals of the B&P algorithm do not need to be modified.

The idea is to first divide the initial box into a number of symmetry classes.
Next, one needs to process only a representative of each class with the B&P
algorithm. At the end, by applying box symmetries to the solution boxes ob-
tained in this way, one would get all the solutions lying in the space covered
by the whole classes, i.e., the initial box. The advantage of this procedure is
that the B&P algorithm would have to process only a fraction of the initial box.
Assuming that the initial box is a n-cube covering the same interval [xl, xh] in
all dimensions, we can directly apply the classes associated to SRn. A procedure
to exploit single-cycle symmetries in this way is presented in Algorithm 1.

Exploiting Single-Cycle Symmetries in Branch-and-Prune Algorithms 867

Algorithm 1. CSym algorithm
Input: A n-cube, [xl, xh] × · · · × [xl, xh]; S: a single-cycle box symmetry;
B&P : a B&P algorithm.
Output: A set of boxes covering all solutions.

SolutionBoxSet ← EmptySet1

x∗ ← SelectBisectionPoint(xl, xh)2

foreach b ∈ SRn do3

B ← GenerateSubBox(b, xl, xh, x∗)4

SolutionBoxSet ← SolutionBoxSet ∪ ProcessRepresentative(B)5

return SolutionBoxSet6

Algorithm 2. The ProcessRepresentative function
Input: A box B; S: a single-cycle box symmetry; B&P : a B&P algorithm.
Output: The set of solution boxes contained in B and its symmetric boxes.

SolSet ← B&P (B)1

SymSolSet ← SolSet2

for i=1: P (B) − 1 do3

SymSolSet ← SymSolSet ∪ ApplySymmetry(SolSet, Si)4

return SymSolSet5

The operator GenerateSubBox(b, xl, xh, x
∗) returns the box corresponding

to binary code b when [xl, xh] is the range of the initial box in all dimensions
and x∗ is the point in which this interval is bisected. The iterations over line 4
of Algorithm 1 generate a set of representative boxes such that, together with
their symmetries, cover the initial n-cube.

ProcessRepresentative(B) returns all the solution boxes associated to B,
that is, the solutions inside B and inside its symmetric boxes. Since the number
of symmetries of B is P (B), the benefits of exploiting the symmetries of a class
representative is proportional to its period.

4 An Illustrative Example

Molecules can be modeled as mechanical chains by making some reasonable ap-
proximations, such as constant bond length and constant angle between consec-
utive bonds. Finding all valid conformations of a molecule can be formulated as
a distance-geometry [2] problem in which some distances between points (atoms)
are fixed and known, and one must find the set of values of unknown (variable)
distances by solving a set of constraints consisting of equalities or inequalities of
determinants formed with subsets of the fixed and variable distances [2].

The problem can be solved using a B&P algorithm [9,8]. Figure 1(a) displays
the known and unknown distances of the cycloheptane, a molecule composed
of a ring of seven carbon atoms. The distance between two consecutive atoms
of the ring is constant and equal everywhere. The distance between two atoms

868 V. Ruiz de Angulo and C. Torras

d1

d 6

d 3

d4

d
5

d7

d
2

(a) (b)

Fig. 1. (a) Cycloheptane. Disks represent carbon atoms. Constant and variable dis-
tances between atoms are represented with continuous and dashed lines, respectively.
(b) Three-dimensional projection of the cycloheptane solutions. The lightest (yellow)
boxes are the solutions found inside the representatives using the B&P algorithm (line
1 in Algorithm 2). The other colored boxes are the solutions obtained by applying
symmetries to the yellow boxes (line 4 in Algorithm 2).

connected to a same atom is also known and constant no matter the atoms. The
problem has several symmetries. One is s(d1, . . . , d7) = (dθ(1), dθ(2), . . . , dθ(7)) =
(d2, d3 . . . , d7, d1). When this symmetry is exploited with the CSym algorithm
the problem is solved in 4.64 minutes, which compares very favorably with the
31.6 minutes spent when using the algorithm in [8] alone. Thus, a reduction by
a factor close to n = 7 (i.e., the length of the symmetry cycle) in computing
time is obtained, which suggests that the handling of box symmetries doesn’t
introduce a significant overhead. Figure 1(b) shows a projection into d1 d2 and
d3 of the solutions obtained using CSym.

5 Counting and Generating Box Symmetry Classes

Let us define some quantities of interest:
-Nn: Number of elements of SRn.
-FPn: Number of elements of SRn that correspond to full-period boxes , i.e.,

boxes of period n.
-N p

n : Number of elements of SRn having period p.
Polya’s theorem [7] could be used to determine some of these quantities for

a given n by building a possibly huge polynomial and elucidating some of its
coefficients. We present a simpler way of calculating them by means of the for-
mulae below. A demonstration of their validity as well as expressions for similar
quantities distinguishing the number of 1’s can be found in [10]. We begin with
FPn:

FPn =
2n

n
−

∑
p∈div(n), p<n

p

n
FPp. (1)

Exploiting Single-Cycle Symmetries in Branch-and-Prune Algorithms 869

2 4 6 8 10 12

box dimensionality (i.e., number of variables)

0

50

100

150

200

250

300

350

nu
m

be
r

of
 c

la
ss

es
 o

f s
ym

m
et

ric
 b

ox
es

(a)

2 4 6 8 10 12 14 16 18 20

box dimensionality (i.e., number of variables)

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ul

l-p
er

io
d

cl
as

se
s

(b)

Fig. 2. (a) Number of elements of SRn as a function of n. (b) Percentage of full-period
elements in SRn as a function of n.

This recurrence has a simple baseline condition: FP1 = 2. Nn is calculated
with

Nn =
2n

n
+

∑
p∈div(n), p<n

n− p

n
FPp. (2)

Algorithm 3. ClassGen algorithm
Input: sum is the sum of the digits that remain to be written on the right

(from position pos to m); pos: the index of the next position to be
written; ctrol: the index of the current control element, whose value
cannot be surpassed in the next position; m: the length of the code;
A: array where class codes are being generated.

Output: A set of codes representing classes, SR.

SR ← EmptySet1

if pos = m then2

if sum < A[ctrol] then /* otherwise, SR will remain EmptySet */3

A[m] ← sum4

SR ← {A};5

else6

if pos �= 1 then7

LowerLimit = 08

UpperLimit ← Minimum(A[ctrol], sum)9

else10

LowerLimit = �sum/m�11

UpperLimit ← sum12

for i = UpperLimit to LowerLimit do13

A[pos] ← i14

if i = A[ctrol] then /* i = A[ctrol] = UpperLimit */15

SR ← SR
⋃

ClassGen(sum − i, pos + 1, ctrol + 1, m, A)16

else SR ← SR
⋃

ClassGen(sum− i, pos+ 1, 1, m, A); /* i < A[ctrol] */17

return SR18

870 V. Ruiz de Angulo and C. Torras

This formula is valid for n > 1. The remaining case is N1 = 2. Finally,

N p
n =

{
0 if p /∈ div(n)
FPp otherwise

(3)

Figure 2(a) displays the number of classes (Nn) as a function of n. The curve
indicates an exponential-like behavior. Figure 2(b) shows the percentage of full-
period classes in SRn (100 Nn

n /Nn). Note that the percentage of classes with pe-
riod different from n is significant for low n, but approaches quickly 0 as n grows.

The naive procedure to generate SRn involves a huge number of operations.
Here we suggest an algorithm capable of calculating SRn on the fly. We use
a compact coding of the binary numbers representing the boxes consisting of
chains of numbers. The first number in the code is the number of 0’s appearing
before the first 1. The i-th number in the code for i > 1 is the number of 0’s
between the (i− 1)-th and the i-th 1’s. For example, the number 0100010111 is
codified as 13100. The length of this numerical codification is the number of 1’s
of the codified binary number, which has been denoted by m.

Algorithm 3, explained in [10], generates SR
n
nm, the subset of the elements

of SRn having m 1’s and period n, from which the whole SRn can be obtained,
as showed also in [10]. The algorithm outputs a list of codes in decreasing nu-
merical order. For instance, the output obtained when requesting SR

9
93 with

ClassGen(6, 1, 1, 3, A) is: {600, 510, 501, 420, 411, 402, 330, 321, 312}.

6 Conclusions

We have approached the problem of exploiting symmetries in continuous con-
straint satisfaction problems using B&P algorithms. Our approach is general
and could be used also with other box-oriented algorithms, such as Branch-and-
Bound for nonlinear optimization. The particular symmetries we have tackled
are single-cycle permutations of the problem variables.

The suggested strategy is to bisect the domain, the initial n-cube, simultane-
ously in all dimensions at the same point. This forms a set of boxes that can be
grouped in box symmetry classes. A representative of each class is selected to
be processed by the B&P algorithm and all the symmetries of the representa-
tive are applied to the resulting solutions. In this way, the solutions within the
whole initial domain are found, while having processed only a fraction of it –the
set of representatives– with the B&P algorithm. The time savings tend to be
proportional to the number of symmetric boxes of the representative. Therefore,
symmetry exploitation is complete for full-period representatives.

We have also developed a method for generating the classes resulting from
bisecting a n-cube. The numerical analysis of the classes revealed that the aver-
age number of symmetries of the class representatives tends quickly to n as the
number of variables, n, grows. These are good news, since n is the maximum
number of symmetries attainable with single-cycle symmetries of n variables.
However, for small n there is still a significant fraction of the representatives not
having the maximum number of symmetries. Another weakness of the proposed
strategy is the exponential growth in the number of classes as a function of n.

Exploiting Single-Cycle Symmetries in Branch-and-Prune Algorithms 871

The problems with small and large n should be tackled with a more refined
subdivision of the initial domain in box symmetry classes, which is left for near
future work. We are also currently approaching the extension of this work to
deal with permutations of the problem variables composed of several cycles.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Education
and Science through the contract DPI2004-07358 and by the “Comunitat de
Treball dels Pirineus” under contract 2006ITT-10004.

References

1. Benhamou, F., Goulard, F.: Universally Quantified Interval Constraints. In:
Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

2. Blumenthal, L.: Theory and aplications of distance geometry. Oxford University
Press, Oxford (1953)

3. Cohen, D., Jeavons, P., Jefferson, Ch., Petrie, K.E., Smith, B.M.: Symmetry Defi-
nitions for Constraint Satisfaction Problems. Constraints 11(2-3), 115–137 (2006)

4. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking Row and Column Symmetries in Matrix Models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

5. Gent, I.P., Harvey, W., Kelsey, T.: Groups and Constraints: Symmetry Breaking
During Search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–
430. Springer, Heidelberg (2002)

6. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence 129, 133–163 (2001)

7. Polya, G., Read, R.C.: Combinatorial enumeration of groups, graphs and chemical
compounds. Springer, New York (1987)

8. Porta, J.M., Ros, L.l., Thomas, F., Corcho, F., Canto, J., Perez, J.J.: Complete
maps of molecular loop conformational spaces. Journal of Computational Chem-
istry (to appear)

9. Porta, J.M., Ros, L.l., Thomas, F., Torras, C.: A Branch-and Prune Solver for
Distance Constraints. IEEE Trans. on Robotics 21(2), 176–187 (2005)

10. de Angulo, R.V., Torras, C.: Exploiting single-cycle symmetries in continuous con-
straint satisfaction problems. IRI DT 2007/02 (June 2007),
http://www.iri.upc.edu/people/ruiz/articulos/symmetriesreport1.pdf

11. Puget, J.-F.: Symmetry Breaking Revisited. Constraints 10(1), 23–46 (2005)
12. Sam-Haroud, D., Faltings, B.: Consistency Techniques for Continuous Constraints.

Constraints 1(1-2), 85–118 (1996)
13. Vu, X.-H., Silaghi, M., Sam-Haroud, D., Faltings, B.: Branch-and-Prune Search

Strategies for Numerical Constraint Solving. Swiss Federal Institute of Technology
(EPFL) LIA-REPORT, vol. 7 (2006)

http://www.iri.upc.edu/people/ruiz/articulos/symmetriesreport1.pdf

Constraint Symmetry for the Soft CSP

Barbara M. Smith1, Stefano Bistarelli2,3, and Barry O’Sullivan4

1 School of Computing, University of Leeds, U.K.
bms@comp.leeds.ac.uk

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Dipartimento di Scienze, Universitá degli Studi “G. d’Annunzio”, Pescara, Italy
bista@sci.unich.it

4 Cork Constraint Computation Centre, University College Cork, Ireland
b.osullivan@4c.ucc.ie

Abstract. We introduce a definition of constraint symmetry for soft CSPs, based
on the definition of constraint symmetry for classical CSPs. We show that the
constraint symmetry group of a soft CSP is a subgroup of that of an associated
classical CSP instance. Where it is smaller, we can successfully exploit the ad-
ditional symmetries using conditional symmetry breaking. We demonstrate, in
a case-study of graph colouring, that eliminating the symmetry of the soft CSP
combined with conditional symmetry breaking can lead to huge reductions in the
search effort to find an optimal solution to the soft CSP.

1 Introduction

The importance of exploiting symmetry in combinatorial search problems is well known.
In this paper we focus on symmetries in soft constraint satisfaction problems (CSPs). We
follow previous work [2,4], but introduce a definition of constraint symmetry for soft
CSPs based on constraint symmetry for classical CSPs [5]. We show that the constraint
symmetry group of a soft CSP is a subgroup of the constraint symmetry group of the
associated classical CSP instance in which the soft constraints are treated as hard con-
straints. Symmetries of the classical CSP that are not symmetries of the soft CSP can
be expressed as conditional symmetries [6]. Conditional symmetry breaking can reduce
search effort if the optimal solution is also a solution to the classical CSP, or the proof
of optimality requires proving that there is no such solution. The additional symmetries
can sometimes be expressed as conditional symmetries that become active earlier in the
search. We demonstrate the usefulness of these ideas in a case-study of graph colouring.

We first outline the semiring framework for soft constraints, which is defined and
discussed in more detail in [3,1,8].

A classical CSP instance P is a triple 〈V, D, C〉 where V is a set of variables, D is
a universal domain, specifying the possible values for those variables, and C is a set of
constraints. Each constraint ci ∈ C consists of a scope, a list of variables from V , and a
relation over D. A solution to P is a mapping from V into D whose restriction to each
constraint scope is in the corresponding relation, i.e. is allowed by the constraint.

Soft constraints associate a qualitative or quantitative value either to the entire con-
straint or to each assignment of its variables [3]. In this paper, we use the framework

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 872–879, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constraint Symmetry for the Soft CSP 873

of semiring-based constraints [1]. A semiring structure S is a 5-tuple 〈A, +, ×,0,1〉;
as with a classical CSP, we also have a set of variables V with domain D. A is a set
of values, representing the levels of preference (or importance or cost) associated with
constraints or assignments; 0 and 1 are elements of A corresponding to complete unac-
ceptability and complete satisfaction respectively. A classical CSP fits into this frame-
work: the assignments allowed by a constraint have value 1 and those it forbids have
value 0. In general, in the semiring framework, a constraint ci is a function: given an
assignment to the variables in its scope, it returns a value in A.

The operator × is used to combine preference levels, for instance to compute the
preference level of a complete assignment from the preference levels of the individual
constraints. Combining a completely violated constraint, with semiring value 0, with
any other preference level, gives 0; combining any preference a ∈ A with 1 gives a.

The operator + is used to compare the levels of preference in A. A partial order ≤S

is defined over A such that a ≤S b (b is preferred to a) iff a+b = b. Within the ordering,
1 is the best element of A and 0 is the worst. An optimal solution to a semiring-based
soft CSP 〈V, D, C, S〉 is a complete assignment whose preference level is at least as
great as, or incomparable with, any other complete assignment.

2 Constraint Symmetry

In [5], a constraint symmetry of a classical CSP instance is defined as an automorphism
of a graph that represents the constraints, the microstructure complement; an automor-
phism of a graph or hypergraph is a bijective mapping of the vertices that preserves
the edges. We can adapt the definitions of microstructure complement and constraint
symmetry to semiring-based soft CSPs.

Definition 1 (Microstructure Complement of a Semiring-based CSP Instance). For
any semiring-based CSP instance P = 〈V, D, C, S〉, the microstructure complement
of P is a hyperedge-labelled hypergraph with the set of vertices V × D. For every
assignment whose semiring value �= 1, there is a hyperedge joining the vertices of the
associated tuple, labelled with the semiring value. There is also an edge, with label 0,
joining any pair of nodes representing different values for the same variable.

Definition 2 (Soft Constraint Symmetry). A constraint symmetry of a soft CSP in-
stance is an automorphism of its microstructure complement that preserves the hyper-
edge labels.

This is a more restrictive definition of symmetry in soft CSPs than the definitions given
in [2,4], which are analogous to solution symmetry as defined in [5]. As in classical
CSPs, the difficulty of identifying solution symmetries without solving the instance
makes constraint symmetry a more practically useful idea.

The semiring operators × and + do not affect the microstructure complement. More-
over, the automorphisms of the microstructure complement depend only on which hy-
peredges have the same label, rather than on the value of the label. Hence, the symme-
tries of a soft CSP do not depend on how complete assignments are valued, but only on
which sets of assignments are given the same preference values by the constraints.

874 B.M. Smith, S. Bistarelli, and B. O’Sullivan

Given a soft CSP instance Ps, there is an associated classical CSP instance Ph, in
which the soft constraints of Ps become hard constraints. Let Gh, Gs be the microstruc-
ture complement of Ph and Ps respectively. Since they have the same vertex set, an
automorphism of Gs corresponds to a bijective mapping on the vertices of Gh. Every
hyperedge in Gs is a hyperedge in Gh, and any mapping of Gs that maps hyperedges to
hyperedges with the same label must translate into a mapping of hyperedges to hyper-
edges in Gh. Hence, any automorphism of Gs that preserves the hyperedge labels must
be an automorphism of Gh and the constraint symmetry group of Ps is a subgroup of
that of Ph.

3 The Symmetries of the Soft n-Queens Problem

As an example of constraint symmetry in soft CSPs, we consider a soft version of the
n-queens problem, that allows solutions that do not satisfy all the constraints. As usual,
n queens are to be placed on squares of an n × n chessboard so that no two queens are
in the same row, column or diagonal. In the CSP model of the problem the variables
v1, . . . , vn represent the rows of the chessboard, and the values represent the columns.
The nodes of the microstructure complement correspond to the squares of the board.
The automorphisms of the graph, and so the constraint symmetries of this problem, are
the eight symmetries of the chessboard: reflections in the horizontal and vertical axes;
rotations through 90◦, 180◦ and 270◦; reflections in the two main diagonals; and the
identity symmetry, denoted by x, y, r90, r180, r270, d1, d2, i respectively.

Suppose that in the soft CSP, the value of the constraint vi = vj is |i − j|/n,
so that |i − j|/n is the label on the edge joining the vertices 〈vi, k〉 and 〈vj , k〉, for
k = 1, 2, ..., n. Similarly, the value of |vi − vj | = |i− j| is |i− j|/n. If the constraint is
satisfied, the value is 1. Hence the set of values A, when n = 4, say, is {0, 1

4 , 1
2 , 3

4 ,1}. In
the microstructure complement, any edge joining two nodes corresponding to squares
in different rows has a value different from 0, whereas edges joining nodes correspond-
ing to squares in the same row represent assigning two values to the same variable and
so have semiring value 0. Because the rows are now distinguished from the columns,
the chessboard symmetries are not all symmetries of the soft CSP. For example, r90
applied to a solution with two queens in the first column gives a layout with two queens
in the first row, which is not a solution. In the microstructure complement of the 4-
queens instance, r90 maps edges with labels 1

4 , 1
2 and 3

4 to edges with label 0. How-
ever, x, y, r180 and i map rows into rows and do preserve the edge labels; this is the
symmetry group of the soft CSP.

4 Conditional Symmetries

In solving a CSP, it is important to eliminate as much of the symmetry as possible;
any remaining symmetry in the problem may cause wasted effort in exploring subtrees
that are symmetrically equivalent to subtrees already explored. As in classical CSPs,
several methods are available to eliminate symmetry in soft CSPs; we can add further
constraints (with semiring value 0) to the CSP that ideally can be satisfied by exactly

Constraint Symmetry for the Soft CSP 875

one solution in each symmetry equivalence class, or we can use a dynamic symmetry
breaking method, as explored in [2,4].

The example of soft n-queens shows that a soft CSP instance Ps may have fewer
symmetries than its classical counterpart Ph in which the soft constraints become hard
constraints. If so, eliminating the symmetries of Ph in solving Ps would risk losing so-
lutions. However, in solving the soft CSP, the search may explore subproblems in which
any solution must also be a solution to Ph. The symmetries of Ph are then applicable,
and eliminating only the symmetries of Ps may lead to unnecessary search.

As an example, we consider a graph colouring problem. Colouring the nodes of a
graph so that no adjacent nodes have the same colour can be represented as a classical
CSP, with variables v1, v2, ..., vn representing the nodes in the graph. The domain of
each variable is {0, 1, ..., k − 1} where k is the number of colours allowed, For each
edge (i, j) in the graph there is a constraint in the CSP that vi �= vj . If k colours are
not sufficient to colour the graph, we might want to find the ‘best’ colouring with the
colours available, by attaching a cost to any assignment that does not satisfy the con-
straints. Suppose that the value of the assignment {vi = l, vj = l}, where nodes i and j
are adjacent, is max(2, l). We might view this as a simplification of a timetabling prob-
lem, where the cost of a clash for two events that should be at different times depends on
when the clash occurs. We combine the costs of violating constraints using arithmetic
addition, and we seek a solution with minimum overall cost. As each successive solu-
tion is found, future solutions are constrained to have a smaller total cost, by adding a
constraint on c, a variable representing the value of the solution. When it can be proved
that no better solution exists, the incumbent solution has been proved optimal.

In the classical CSP, the colours are interchangeable; hence, the size of the symmetry
group is k!, ignoring any symmetry in the graph. In the soft CSP, with the valuation
given, only the colours 0, 1, 2 are interchangeable. In a solution with overall cost 2, there
is one edge whose vertices have the same colour. Any better solution has no edge whose
vertices have the same colour. If the search finds a solution with c = 2, a constraint will
be added that in future c < 2. Given the costs of constraint violations, the search will
look for solutions with c = 0, corresponding to semiring value 1, i.e. it will look for
a solution to the classical CSP, Ph. At this point, the symmetries of the classical CSP
become valid, and it would be legitimate to eliminate them.

Ideally, the search should use the symmetries of Ph where possible, and the symme-
tries of the soft CSP, Ps, otherwise. The symmetries of Ph that are not also symmetries
of Ps can be viewed as conditional symmetries [6]. Conditional symmetries exist only
within a subproblem; in this case, within the subproblem where the semiring value is
constrained to be 1.

The conditional symmetries just described will only be useful in practice if the
search looks for solutions with semiring value 1; if the optimal solution to the soft CSP
has many violated constraints, the conditional symmetries will never become relevant.
However, some of these symmetries can be active even when the optimal solution is
not close to a solution to Ph. Consider the edges of the graph where the constraints
of Ph are violated, i.e. the edges whose nodes have the same colour. If the largest
colour assigned to the nodes of any of these edges is i, with i ≥ 2, then the colours
i + 1, ..., k − 1 are interchangeable. These are symmetries that are conditional on the

876 B.M. Smith, S. Bistarelli, and B. O’Sullivan

value of maxCol, a variable representing the largest colour used in a solution. Since
maxCol ≤ c, whenever a new solution is found and the constraint on c is tightened,
this translates into a tighter constraint on maxCol. There is a hierarchy of symmetries
conditional on maxCol: some will become active at an early stage of the search, while
as the search progresses and better solutions are found, more colours can be treated as
interchangeable. Experimental results showing the effect of eliminating both types of
conditional symmetry are given in the next section.

5 Experimental Evaluation

Experiments with symmetry breaking, including conditional symmetry breaking, are
presented in this section. More details can be found in a longer version of the paper [9].

We consider the soft graph colouring problem described in the last section, where the
aim is to find the best colouring with k colours. Recall that the symmetries of the soft
CSP are that the colours 0, 1, 2 are interchangeable. In addition, there are conditional
symmetries; in a subproblem where the value of the solution is constrained to be 0
(semiring value 1), all the colours are interchangeable, and if the largest colour assigned
to adjacent vertices cannot be more than i, the colours i+1, ..., k−1 are interchangeable.

In the CSP, the domain values represent the colours. Symmetries due to interchange-
able values can easily be eliminated using SBDS (Symmetry Breaking During Search)
[7], a dynamic symmetry breaking method that adds constraints on backtracking to a
choice point, say between vi = j and vi �= j. It uses a function for each symmetry to
construct the symmetric equivalent of vi �= j and adds this constraint on the vi �= j
branch, if the symmetry is not yet broken on the path to this point. For instance, for the
symmetry σjl that transposes the values j and l, it posts vi �= l. If σjl is conditional
on c = 0, SBDS constructs the constraint c �= 0 ∨ vi �= l; the constraints for other
conditional symmetries are analogous.

For our experiments we randomly generated connected graphs with 20 nodes, with
the probability of an edge between a pair of nodes set as 0.7. For these graphs, the
chromatic number, γ, i.e. the minimum number of colours required to give a perfect
colouring, is between 7 and 9. The problems were solved using ILOG Solver 6.0, using
its default optimization search to minimize the value of the solution.

We first solved 20 instances with k = γ, i.e. there is a perfect colouring. Symmetry
breaking makes little or no difference for 19 of the instances. However, the 20th instance
takes 1,530 backtracks to solve with conditional symmetry breaking, around 750,000
if just the soft symmetries (that the colours 0, 1, 2 are interchangeable) are eliminated,
and nearly 1.5 million with no symmetry breaking. A solution with value 2 is found
easily, both with and without symmetry breaking; both types of conditional symmetry
then become unconditional, and all colours are interchangeable. Symmetry breaking,
especially conditional symmetry breaking, is clearly worthwhile here, even though it
makes no difference for most individual instances.

Table 1 shows the results for a second set of 20 instances, which have optimal value
2 when k = γ− 1. We solved these using no symmetry breaking and three different
symmetry-breaking strategies. First, only the symmetries of the soft CSP are broken.
Secondly, we used the remaining symmetries of the classical CSP, conditional on c = 0.

Constraint Symmetry for the Soft CSP 877

Table 1. Comparison of symmetry-breaking using SBDS for soft graph colouring instances
whose optimal value is 2

No symmetry Soft Cond. symmetries: Cond. symmetries:
breaking symmetries c = 0 maxCol≤ l

F P time P time P time F P time
55,993.8 267,615.4 48.19 92,774.5 12.99 56,051.45 6.38 20,107.4 20,165.05 2.51

Table 2. Comparison of symmetry-breaking using SBDS for soft graph colouring instances
whose optimal value is 4

Soft symmetries Cond. symmetries: maxCol ≤ l

F P time F P time
69,510.1 587,828.9 82.40 58,924.5 383,446.45 61.52

Since the optimal value is 2, the proof of optimality requires proving that there is no
solution with value 0, and the conditional symmetries come into play at the proof stage.
Finally, we made the symmetries that transpose j, l where 2 < j < l, conditional on
maxCol < j rather than on c = 0. This allows the symmetry to be eliminated at an
earlier stage in the search. In Table 1, the columns headed ‘F’ show the average number
of backtracks to find a solution with value 2; the columns headed ‘P’ show the average
total number of backtracks, including the proof of optimality. The average time is in
seconds on a 1.7GHz Pentium PC running Windows 2000. For the first three strategies,
finding the optimal solution takes the same number of backtracks for every instance,
and the ‘F’ column is not repeated. With no symmetry breaking, the total search effort
is dominated by the proof of optimality. On the other hand, with symmetries conditional
on maxCol, the proof of optimality takes little additional effort once the optimal solution
is found; furthermore, it takes less than half as much effort to find the optimal solution
than with no symmetry breaking.

Finally, Table 2 shows the results for 20 instances whose optimal value is 4 when
k = γ−1; the optimal solutions have exactly two edges whose vertices are assigned the
same colour. These instances cannot be solved in a reasonable time without symmetry
breaking, and we do not show the results of using the symmetries conditional on c = 0,
because they never become active. For each instance, the search was terminated after 2
million backtracks. The limit was never reached with the conditional symmetries, but
with just the soft symmetries, the proof of optimality was not completed in 5 of the
20 instances, although the optimal solution was found. The averages for ‘P’ and run
time for the soft symmetries are based on the remaining 15 instances only, and so are
underestimates. If 2 million backtracks for each of the cutoff instances were included in
the average number of backtracks, it would increase to over 900,000. The symmetries
conditional on the value of maxCol are clearly very useful. For most instances, the
conditional symmetries have little or no effect on the search effort to find the optimal
solution, but they speed up the proof of optimality considerably.

The results presented in this section demonstrate that if the symmetry group of the
classical CSP is larger than that of the soft CSP, eliminating the resulting conditional

878 B.M. Smith, S. Bistarelli, and B. O’Sullivan

symmetries can lead to huge reductions in search effort. Making these symmetries con-
ditional on the value of the solution being the semiring value 1 is most useful when the
search has to prove that there is no such solution, as in Table 1. If the optimal solution
is worse, so that subproblems in which the value of the solution is constrained to be
1 never arise, these conditional symmetries never become active, and offer no benefit.
However, some of the additional symmetries may still be relevant during the search,
conditional on some other aspect of the solution. Table 2 shows that eliminating the
symmetries as early in the search as possible can give large reductions in search effort,
both in finding the optimal solution and in proving optimality.

6 Discussion and Conclusions

We have enriched the notions of symmetry for satisfiability and symmetry for all solu-
tions for soft CSPs [2,4] with the notion of constraint symmetry, defined analogously
to constraint symmetry for classical CSPs [5]. It was previously noted that symmetries
in soft CSPs are rarer than in classical CSPs [2,4]; we have shown that the constraint
symmetry group of a soft CSP instance Ps is a subgroup of that of the classical CSP in-
stance Ph in which the soft constraints become hard constraints, and in practice may be
smaller. The additional symmetries can be successfully exploited by using conditional
symmetry breaking. They can be eliminated in any subproblem in which the solution
to Ps is constrained to be a solution to Ph, i.e. to have semiring value 1; this happens
either if the optimal solution to Ps is also a solution to Ph, or if the proof of optimality
requires proving that there is no such solution.

The graph colouring example shows that the additional symmetries may become ap-
plicable at an earlier stage in the search, conditional on some property of the solution,
not necessarily its value. Although the graph colouring example is an artificial one con-
structed for illustration purposes, conditional soft symmetries that do not depend on the
value of the solution can occur in more realistic problems. For example, a simplified
version of a university timetabling problem was constructed for a competition in con-
nection with the PATAT conference in 2002-31, to test metaheuristic algorithms. The
problem has classes to be scheduled over 5 days with 9 hours in each day. In a feasible
timetable, every class is assigned a timeslot and a room; the hard constraints affecting
the assignment of classes to timeslots are that no student attends more than one class
at the same time. In the CSP defined by these hard constraints, the timeslots are inter-
changeable. There are also soft constraints that no student should have a class in the last
slot of the day, more than two classes consecutively, or a single class on any day. The
soft constraints destroy much of the symmetry, although the days as a whole are still
interchangeable. However, in any subproblem in which the “no class at the end of the
day” soft constraint is satisfied in day i, there is a reversal symmetry: we can reverse
the timetable for the first 8 timeslots of that day. Hence this is a conditional symmetry,
whose condition is that there is no class assigned to the last timeslot of day i.

Soft CSPs provide a context in which conditional symmetries come into their own;
whenever a soft CSP instance Ps has fewer symmetries than its classical CSP counter-
part Ph, the additional symmetries will hold in the subproblem in which the solution

1 See http://www.idsia.ch/Files/ttcomp2002/.

Constraint Symmetry for the Soft CSP 879

value is 1, if not sooner. In general, identifying conditional symmetries in a classical
CSP instance is difficult; there is no practicable way to identify the symmetries of all the
subproblems that could arise during search. Conditional symmetry breaking has hith-
erto relied on insight to identify useful conditional symmetries, as in [6]. However, the
conditional symmetries that arise in soft CSPs are well-defined: they are the constraint
symmetries of Ph that are not constraint symmetries of Ps.

Our empirical results on graph colouring problems demonstrate that eliminating both
the symmetry of the soft CSP and the conditional symmetry can lead to huge reductions
in the search effort to find an optimal solution. Where the soft CSP has less symmetry
than its classical counterpart, the additional symmetries will apply whenever the solu-
tion is constrained to have semiring value 1; however, some of these symmetries may
apply even when the search is considering much worse solutions. It is important to use
the conditional symmetries: the more symmetry is eliminated, and the earlier in search,
the better the results.

Acknowledgments

This work was completed while the first author was employed at the Cork Constraint
Computation Centre and was supported by Science Foundation Ireland under Grant
No. 05/IN/I886. The second author is partially supported by the MIUR project PRIN
2005-015491.

References

1. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962.
Springer, Heidelberg (2004)

2. Bistarelli, S., Kelleher, J., O’Sullivan, B.: Symmetry Breaking in Soft CSPs. In: Proceedings
of AI-2003, BCS Conference Series, pp. 199–212. Springer, Heidelberg (2004)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
Journal of ACM 44(2), 201–236 (1997)

4. Bistarelli, S., O’Sullivan, B.: Combining branch & bound and SBDD to solve soft CSPs. In:
Proceedings of SymCon Workshop (2004)

5. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry Definitions for
Constraint Programming. Constraints 11, 115–137 (2006)

6. Gent, I.P., Kelsey, T., Linton, S.A., McDonald, I., Miguel, I., Smith, B.M.: Conditional Sym-
metry Breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 256–270. Springer,
Heidelberg (2005)

7. Gent, I.P., Smith, B.M.: Symmetry Breaking During Search in Constraint Programming. In:
Horn, W. (ed.) Proceedings ECAI’2000, pp. 599–603 (2000)

8. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, vol. 9, pp. 281–328. Elsevier, Amsterdam (2006)

9. Smith, B.M., Bistarelli, S., O’Sullivan, B.: Constraint Symmetry for the Soft CSP. Technical
Report CPPod-22-2007, CPPod Research Group (2007) Available from
http://www.dcs.st-and.ac.uk/˜cppod/publications/reports/
cppod-22-2007.pdf

http://www.dcs.st-and.ac.uk/~cppod/publications/reports/cppod-22-2007.pdf
http://www.dcs.st-and.ac.uk/~cppod/publications/reports/cppod-22-2007.pdf

Breaking Value Symmetry�

Toby Walsh

NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

1 Introduction

One common type of symmetry is when values are symmetric. For example, if we
are assigning colours (values) to nodes (variables) in a graph colouring problem then
we can uniformly interchange the colours throughout a colouring. For a problem with
value symmetries, all symmetric solutions can be eliminated in polynomial time [1,2].
However, as we show here, both static and dynamic methods to deal with symmetry
have computational limitations. With static methods, pruning all symmetric values is
NP-hard in general. With dynamic methods, we can take exponential time on problems
which static methods solve without search.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a domain of
values, and a set of constraints specifying allowed combinations of values for given
subsets of variables. A solution is an assignment of values to variables satisfying the
constraints. Variables take one value from a given finite set. Symmetry occurs in many
constraint satisfaction problems. A value symmetry is a permutation of the values that
preserves solutions. More formally, a value symmetry is a bijective mapping σ on the
values such that if X1 = d1, . . . , Xn = dn is a solution then X1 = σ(d1), . . . , Xn =
σ(dn) is also. A variable symmetry, on the other hand, is a permutation of the variables
that preserves solutions. More formally, a variable symmetry is a bijective mapping
σ on the indices of variables such that if X1 = d1, . . . , Xn = dn is a solution then
Xσ(1) = d1, . . . , Xσ(n) = dn is also. Symmetries are problematic as they increase the
size of the search space. For instance, if we have m interchangeable values, symmetry
increases the size of the search space by a factor of m!.

Many constraint solvers explore the space of partial assignments enforcing some local
consistency. We consider four local consistencies for finite domain variables Given a
constraint C, a support is assignment to each variable of a value in its domain which
satisfies C. A constraint is generalized arc consistent (GAC) iff for each variable, every
value in its domain belongs to a support. A set of constraints is GAC iff each constraint is

� NICTA is funded by the Australian Government’s Department of Communications, Information
Technology and the Arts and the Australian Research Council through Backing Australia’s
Ability and the ICT Centre of Excellence program. Thanks to Chris Jefferson and Jean-Francois
Puget for useful comments.

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 880–887, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Breaking Value Symmetry 881

GAC. On binary constraints, GAC is simply called arc consistency (AC). A set of binary
constraints is singleton arc consistent (SAC) iff we can assign every variable with each
value in its domain and make the resulting problem arc consistent (AC). Finally, a set of
binary constraint is k-consistent iff each k − 1 assignment can be consistently extended
to a kth variable, and is strongly k-consistent iff it is j-consistency for all j ≤ k. We
will compare local consistency properties applied to sets of constraints, c1 and c2 which
are logically equivalent. As in [4], a local consistency property Φ on c1 is as strong as
Ψ on c2 iff, given any domains, if Φ holds on c1 then Ψ holds on c2; Φ on c1 is stronger
than Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 but not vice versa; Φ on c1 is equivalent
to Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 and vice versa.

3 Static Methods

One simple and common mechanism to deal with symmetry is to add constraints which
eliminate symmetric solutions [5]. Suppose we have a set Σ of value symmetries. Based
on [6], we can eliminate all symmetric solutions by posting a global constraint which
ensures that the solution is ordered lexicographically before any of its symmetries.
More precisely, we post the global constraint VALSYMBREAK(Σ, [X1, . . . , Xn]) which
ensures [X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)] for all σ ∈ Σ where X1 to Xn is a
fixed ordering on the variables. Unfortunately, pruning all values from such a symmetry
breaking constraint is NP-hard.

Theorem 1. Deciding if VALSYMBREAK(Σ, [X1, . . . , Xn]) is GAC is NP-complete,
even when |Σ| is linearly bounded.

Proof: Membership in NP follows by giving a support for every possible assignment. To
prove it is NP-hard, we give a reduction from a 3-SAT problem in N Boolean variables
and M clauses. We construct a CSP with N + M + 1 variables over 4N + 2 possible
values. The first 4N values partition into 2N interchangeable pairs. The values 4i − 3
and 4i − 2 are interchangeable, as are 4i − 1 and 4i for 1 ≤ i ≤ N . The values 4i − 3
and 4i − 2 represent xi being true, whilst the values 4i − 1 and 4i represent xi being
false. The final two values, 4N + 1 and 4N + 2 are not interchangeable. The first N
CSP variables represent a “truth assignment”. We have Xi ∈ {4i− 3, 4i− 2, 4i−1, 4i}
for 1 ≤ i ≤ N . The next M CSP variables ensure at least one literal in each clause
is true. For example, if the ith clause is xj ∨ ¬xk ∨ xl, then the domain of XN+i is
{4j − 3, 4j − 2, 4k − 1, 4k, 4l − 3, 4l − 2}. The final variable XN+M+1 is a “switch”
and has the domain {4N +1, 4N +2}. Note that all variables have symmetric domains.

We have two sets of constraints. First, we have the constraints odd(XN+M+1) →
odd(Xi) for 1 ≤ i ≤ N and odd(XN+M+1) → even(XN+j) for 1 ≤ j ≤ M . Second,
we have the constraints odd(XN+M+1) → PHP (N, N + 1) and even(XN+M+1) →
PHP (N, N) where PHP (i, j) is a pigeonhole constraint which holds iff the variables
X1 to Xi take j distinct values. Note that PHP (N, N + 1) is unsatisfiable and that
PHP (N, N) is satisfiable. Thus, the constructed CSP is unsatisfiable if XN+M+1 =
4N + 1 and satisfiable if XN+M+1 = 4N + 2. Note that if we take any solution of the
CSP and permute any of the interchangeable values, we still have a solution. Thus, if

882 T. Walsh

Σ is the set of symmetries induced by these interchangeable values, it is permissible to
add VALSYMBREAK(Σ, [X1, . . . , Xn]) to this CSP.

Suppose our branching heuristic sets the switch variable XN+M+1 to 4N + 1. En-
forcing AC on the binary constraints prunes the domains of Xi to {4i − 3, 4i − 1} for
1 ≤ i ≤ N . Similarly, the domain of XN+i is reduced to {4j − 2, 4k, 4l− 2}. Consider
now finding a support for VALSYMBREAK given this particular subproblem. XN+i can
only take the value 4j − 2 if Xj had previously been assigned 4j − 3. In other words,
XN+i can only take the value 4j − 2 if xj is set to true in the “truth assignment”. Sim-
ilarly, XN+i can only take the value 4k if Xk had previously been assigned 4k − 1. In
other words, XN+i can only take the value 4k if xk is set to false in the “truth assign-
ment”. Finally, XN+i can only take the value 4l − 2 if Xj had previously been assigned
4l − 3. In other words, XN+i can only take the value 4l − 2 if xl is set to true in the
“truth assignment”. Thus, at least one of the literals in the ith clause must have been set
to true in the “truth assignment”. Hence, there is a support for VALSYMBREAK iff the
original 3-SAT problem is satisfiable. By Theorem 3, |Σ| can be linearly bound. �

This is a somewhat surprising result. Whilst it is polynomial to eliminate all symmetric
solutions either statically [2] or dynamically [1], it is NP-hard to lookahead and prune
all symmetric values. Equivalently, whilst we can avoid visiting symmetric leaves of the
search tree in polynomial time, avoiding symmetric subtrees is NP-hard.

4 Dynamic Methods

An alternative to static methods which add constraints to eliminate symmetric solutions
are dynamic methods which modify the search procedure to ignore symmetric branches.
For example, with value symmetries, the GE-tree method can dynamically eliminate all
symmetric leaves in a backtracking search procedure in O(n4 log(n)) time [1]. However,
as we show now, such dynamic methods may not prune all symmetric subtrees which
static methods can do. Suppose we are at a particular node in the search tree explored
by the GE-tree method. Consider the current and all past variables seen so far. The GE-
tree method can be seen as performing forward checking on a static symmetry breaking
constraint over this set of variables. This prunes symmetric assignments from the domain
of the next branching variable. Unlike static methods, the GE-tree method does not prune
deeper variables. By comparison, static symmetry breaking constraints can prune deeper
variables, resulting in interactions with the problem constraints and additional domain
prunings. For this reason, static symmetry breaking methods can solve certain problems
exponentially quicker than dynamic methods.

Theorem 2. There exists a model of the pigeonhole problem with n variables and n+1
interchangeable values such that, given any variable and value ordering, the GE-tree
method explores O(2n) branches, but which static symmetry breaking methods can solve
in just O(n2) time.

Proof: The n + 1 constraints in the CSP are
∨n

i=1 Xi = j for 1 ≤ j ≤ n + 1, and
the domains are Xi ∈ {1, . . . , n + 1} for 1 ≤ i ≤ n. The problem is unsatisfiable by
a simple pigeonhole argument. Any of the static methods for breaking value symmetry
presented later in this paper will prune n+1 from every domain in O(n2) time. Enforcing

Breaking Value Symmetry 883

GAC on the constraint
∨n

i=1 Xi = n + 1 then proves unsatisfiability. On the other
hand, the GE-tree method irrespective of the variable and value ordering, will only
terminate each branch when n − 1 variables have been assigned (and the last variable is
forced). A simple calculation shows that the size of the GE-tree more than doubles as we
increase n by 1. Hence we will visit O(2n) branches before declaring the problem is
unsatisfiable. �

This theoretical result supports the experimental results in [2] showing that static methods
for breaking value symmetry can outperform dynamic methods. Given the intractability
of pruning all symmetric values in general, we focus in the rest of the paper on a
common and useful type of value symmetry where symmetry breaking methods have
been proposed that take polynomial time: we will suppose that values are ordered into
partitions, and values within each partition are uniformly interchangeable.

5 Generator Symmetries

One way to propagate VALSYMBREAK is to decompose it into individual lexicograph-
ical ordering constraints, [X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)] and use one of the
propagators proposed in [7] or [8]. Even if we ignore the fact that such a decomposition
may hinder propagation (see Theorem 2 in [8]), we have to cope with Σ, the set of sym-
metries being exponentially large in general. For instance, if we have m interchangeable
values, then Σ contains m! symmetries. To deal with large number of symmetries, Aloul
et al. suggest breaking only those symmetries corresponding to generators of the group
[9]. Consider the generators which interchange adjacent values within each partition. If
the m values partition into k classes of interchangeable values, there are just m−k such
generators. Breaking just these symmetries eliminates all symmetric solutions.

Theorem 3. If Σ is a set of symmetries induced by interchangeable values, and Σg

is the set of generators corresponding to interchanging adjacent values then posting
VALSYMBREAK(Σg, [X1, . . . , Xn]) eliminates all symmetric solutions.

Proof: Assume VALSYMBREAK(Σg, [X1, . . . , Xn]). Consider any two interchange-
able values, j and k where j < k, Let σj ∈ Σg be the symmetry which swaps just
j with j + 1. To ensure [X1, . . . , Xn] ≤lex [σj(X1), . . . , σj(Xn)], j must occur be-
fore j + 1 in X1 to Xn. By transitivity, j therefore occurs before k. Thus, for the
symmetry σ′ which swaps just j with k, [X1, . . . , Xn] ≤lex [σ′(X1), . . . , σ′(Xn)].
Consider now any symmetry σ ∈ Σ. The proof proceeds by contradiction. Suppose
[X1, . . . , Xn] >lex [σ(X1), . . . , σ(Xn)]. Then there exists some j with Xj > σ(Xj)
and Xi = σ(Xi) for all i < j. Consider the symmetry σ′ which swaps just Xj with
σ(Xj). As argued before, [X1, . . . , Xn] ≤lex [σ′(X1), . . . , σ′(Xn)]. But this contradicts
[X1, . . . , Xn] >lex [σ(X1), . . . , σ(Xn)] as σ and σ′ act identically on the first j variables
in X1 to Xn. Hence, [X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)]. �

Not surprisingly, reducing the number of symmetry breaking constraints to linear comes
at a cost. We may not prune all symmetric values.

884 T. Walsh

Theorem 4. If Σ is a set of symmetries induced by interchangeable values, and Σg

is the set of generators corresponding to interchanging adjacent values then GAC
on VALSYMBREAK(Σ, [X1, . . . , Xn]) is stronger than GAC on [X1, . . . , Xn] ≤lex
[σ(X1), . . . , σ(Xn)] for all σ ∈ Σg.

Proof: Clearly it is at least as strong. To show it is stronger, suppose all values are
interchangeable with each other. Consider X1 = 1, X2 ∈ {1, 2}, X3 ∈ {1, 3}, X4 ∈
{1, 4} and X5 = 5. Then enforcing GAC on VALSYMBREAK(Σ, [X1, . . . , X5]) prunes
1 from X2, X3 and X4. However, [X1, . . . , X5] ≤lex [σ(X1), . . . , σ(X5)] is GAC for
all σ ∈ Σg. . �

Finally, it is not hard to see that there are other sets of generators for the symmetries
induced by interchangeable values which do not necessarily eliminate all symmetric
solutions (e.g. with the generators which interchange the value 1 with any i, we do not
eliminate either the assignment X1 = 1, X2 = 2 or the symmetric assignment X1 = 1,
X2 = 3).

6 Puget’s Decomposition

With value symmetries, a second method that eliminates all symmetric solutions is a
decomposition due to [2]. Consider a surjection problem (where each value is used at least
once) with interchangeable values. We can channel into dual variables, Zj which record
the first index using the value j by posting the binary constraints: Xi = j → Zj ≤ i and
Zj = i → Xi = j for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. We can then eliminate all symmetric
solutions by insisting that interchangeable values first occur in some given order. That
is, we place strict ordering constraints on the Zk within each class of interchangeable
values. Puget notes that any problem can be made into a surjection by introducing m
additional new variables, Xn+1 to Xn+m where Xn+i = i. These variables ensure that
each value is used at least once. In fact, we don’t need additional variables. It is enough
to ensure that each Zj has a dummy value, which means that j is not assigned, and to
order (dummy) values appropriately. Unfortunately, Puget’s decomposition into binary
constraints hinders propagation.

Theorem 5. If Σ is a set of symmetries induced by interchangeable values, then GAC
on VALSYMBREAK(Σ, [X1, . . . , Xn]) is stronger than AC on Puget’s decomposition
into binary constraints.

Proof: It is clearly at least as strong. To show it is stronger, suppose all values are
interchangeable with each other. Consider X1 = 1, X2 ∈ {1, 2}, X3 ∈ {1, 3}, X4 ∈
{3, 4}, X5 = 2, X6 = 3, X7 = 4, Z1 = 1, Z2 ∈ {2, 5}, Z3 ∈ {3, 4, 6}, and Z4 ∈ {4, 7}.
Then all Puget’s symmetry breaking constraints are AC. However, enforcing GAC on
VALSYMBREAK(Σ, [X1, . . . , X5]) will prune 1 from X2. �

If all values are interchangeable with each other, we only need to enforce a slightly
stronger level of local consistency to prune all symmetric values. More precisely, enforc-
ing singleton arc consistency on Puget’s binary decomposition will prune all symmetric
values.

Breaking Value Symmetry 885

Theorem 6. If all values are interchangeable and Σ is the set of symmetries induced by
this then GAC on VALSYMBREAK(Σ, [X1, . . . , Xn]) is equivalent to SAC on Puget’s
decomposition into binary constraints.

Proof: Suppose Puget’s encoding is AC. We will show that there is at least one support
for VALSYMBREAK. We assign Z1 to Zm in turn, giving each the smallest remaining
value in their domain, and enforcing AC on the encoding after each assignment. This
will construct a support without the need for backtracking. At each choice point, we
ensure that a new value is used as soon as possible, thus giving us the most freedom
to use values in the future. Suppose now that Puget’s encoding is SAC. Then, by the
definition of SAC, we can assign any variable with any value in its domains and be sure
that the problem can be made AC without a domain wipeout. But if the problem can be
made AC, it has support. Thus every value in every domain has support. Hence enforcing
SAC on Puget’s decomposition ensures that VALSYMBREAK is GAC. �

We might wonder if singleton arc-consistency is enough for arbitrary value symmetries.
That is, does enforcing SAC on Puget’s encoding prune all symmetric values? We can
prove that no fixed level of local consistency is sufficient. Given the intractability of
pruning all symmetric values in general, this result is not surprising.

Theorem 7. For any given k, there exists a value symmetry and domains for which
Puget’s encoding is strongly k-consistent but is not k + 1-consistent.

Proof: We construct a CSP problem with 2k + 1 variables over 2(k + 1) possible
values. The 2(k + 1) values partition into k + 1 pairs which are interchangeable. More
precisely, the values i and k + 1 + i are interchangeable for 1 ≤ i ≤ k + 1. The first k
variables of the CSP have k + 1 values between them (hence, one value is not taken).
More precisely, Xi ∈ {i, i + 1} for 1 ≤ i ≤ k. The remaining k + 1 variables then
take the other k + 1 values. More precisely, Xk+i = k + 1 + i for 1 ≤ i ≤ k + 1. The
values 1 to k + 1 need to be used by the first k variables, X1 to Xk so that the last k + 1
variables, Xk+1 to X2(k+1) can use the values k + 2 to 2(k + 1). But this is impossible
by a pigeonhole argument. Puget’s encoding of this is strongly k-consistent. since any
assignment of k − 1 or less variables can be extended to an additional variable. On the
other hand, enforcing k + 1-consistency will discover that the CSP has no solution. �

Finally, we compare this method with the previous method based on breaking the sym-
metries corresponding to the generators which interchange adjacent values.

Theorem 8. If Σ is a set of symmetries induced by interchangeable values, and Σg is
the set of generators interchanging adjacent values then AC on Puget’s decomposition
for Σ is stronger than GAC on [X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)] for all σ ∈ Σg.

Proof: Suppose Puget’s decomposition is AC. Consider the symmetry σ which inter-
changes j with j + 1. Consider any variable and any value in its domain. We show how
to construct a support for this assignment. We assign every other variable with j if it
is in its domain, otherwise any value other than j + 1 and failing this, j + 1. Suppose
this is not a support for [X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)]. This means that in the
sequence from X1 to Xn, we had to use the value j + 1 before the value j. However, as

886 T. Walsh

Puget’s decomposition is AC, there is a value in the domain of Zj smaller than Zj+1.
This contradicts j + 1 having to be used before j. Hence, this must be a support. Thus
[X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)] is GAC for all σ ∈ Σg. To show that AC on
Puget’s decomposition is stronger consider again the example used in the proof of The-
orem 4. The lexicographical ordering constraint for each generator σ ∈ Σg is GAC
without any domain pruning. However, enforcing AC on Puget’s decomposition prunes
1 from X2, X3 and X4. �

7 Value Precedence

A third method to break symmetry due to interchangeable values uses the global prece-
dence constraint [3]. PRECEDENCE([X1, . . . , Xn]) holds iff min{i | Xi = j ∨ i =
n + 1} < min{i | Xi = k ∨ i = n + 2} for all j < k. That is, the first time we use
j is before the first time we use k for all j < k. Posting such a constraint eliminates
all symmetric solutions due to interchangeable values. In [10], a GAC propagator for
such a precedence constraint is given which takes O(nm) time. It is not hard to show
that PRECEDENCE([X1, . . . , Xn]) is equivalent to VALSYMBREAK(Σ, [X1, . . . , Xn])
where Σ is the set of symmetries induced by interchangeable values. Hence, enforc-
ing GAC on such a precedence constraint prunes all symmetric values in polynomial
time. Precedence constraints can also be defined when values partition into several in-
terchangeable classes; we just insist that values within each class first occur in a fixed
order. In [10], a propagator for such a precedence constraint is proposed which takes
O(n

∏
i mi) time where mi is the size of the ith class of interchangeable values. This is

only polynomial if we can bound the number of classes of interchangeable values. This
complexity is now not so surprising. We have shown that pruning all symmetric values
is NP-hard when the number of classes of interchangeable values is unbounded.

8 Related Work

Puget proved that symmetric solutions can be eliminated by the addition of suitable
constraints [5]. Crawford et al. presented the first general method for constructing vari-
able symmetry breaking constraints [6]. Petrie and Smith adapted this method to value
symmetries by posting a suitable lexicographical ordering constraint for each value sym-
metry [13]. Puget and Walsh independently proposed propagators for such symmetry
breaking constraints [7,8]. To deal with the exponential number of such constraints,
Puget proposed a global propagator which does forward checking in polynomial time
[7]. To eliminate symmetric solutions due to interchangeable values, Law and Lee for-
mally defined value precedence and proposed a specialized propagator for a pair of
interchangeable values [3]. Walsh extended this to a propagator for any number of in-
terchangeable values [10]. An alternative way to break value symmetry statically is
to convert it into a variable symmetry by channelling into a dual viewpoint and using
lexicographical ordering constraints on this dual view [14,12]. A number of dynamic
methods have been proposed to deal with value symmetry. Van Hentenryck et al. gave a
labelling schema for eliminating all symmetric solutions due to interchangeable values
[15]. Inspired by this method, Roney-Dougal et al. gave a polynomial method to con-
struct a GE-tree, a search tree without value symmetry [1]. Finally, Sellmann and van

Breaking Value Symmetry 887

Hentenryck gave a O(nd3.5 + n2d2) dominance detection algorithm for eliminating all
symmetric solutions when both variables and values are interchangeable [16].

9 Conclusion

Value symmetries can be broken either statically (by adding constraints to prune sym-
metric solutions) or dynamically (by modifying the search procedure to avoid symmetric
branches). We have shown that both approaches have computational limitations. With
static methods, we can eliminate all symmetric solutions in polynomial time but prun-
ing all symmetric values is NP-hard in general (or equivalently, we can avoid visiting
symmetric leaves of the search tree in polynomial time but avoiding symmetric subtrees
is NP-hard). With dynamic methods, we typically only perform forward checking and
can take exponential time on problems which static methods solve without search.

References

1. Roney-Dougal, C., Gent, I., Kelsey, T., Linton, S.: Tractable symmetry breaking using re-
stricted search trees. In: Proc. of ECAI-2004 (2004)

2. Puget, J.F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709. Springer, Heidelberg (2005)

3. Law, Y., Lee, J.: Global constraints for integer and set value precedence. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

4. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction
problem. In: Proc. of the 15th IJCAI (1997)

5. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Ko-
morowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689. Springer, Heidelberg (1993)

6. Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for search
problems. In: Proc. of the 5th Int. Conf. on Knowledge Representation and Reasoning (KR
’96) (1996)

7. Puget, J.F.: An efficient way of breaking value symmetries. In: Proc. of the 21st National
Conf., AAAI, Stanford, California, USA (2006)

8. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204.Springer, Heidelberg (2006)

9. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances in the presence
of symmetries. In: Proc. of the Design Automation Conf. (2002)

10. Walsh, T.: Symmetry breaking using value precedence. In: Proc. of the 17th ECAI (2006)
11. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In: Proc.

of the 19th National Conf. on AI. AAAI, Stanford, California, USA (2004)
12. Law, Y., Lee, J.: Symmetry Breaking Constraints for Value Symmetries in Constraint Satis-

faction. Constraints 11(2-3), 221–267 (2006)
13. Petrie, K.E., Smith, B.M.: Symmetry Breaking in Graceful Graphs. Technical Report APES-

56a-2003, APES Research Group (2003)
14. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking

row and column symmetry in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470. Springer, Heidelberg (2002)

15. Hentenryck, P.V., Agren, M., Flener, P., Pearson, J.: Tractable symmetry breaking for CSPs
with interchangeable values. In: Proc. of the 18th IJCAI (2003)

16. Sellmann, M., Hentenryck, P.V.: Structural symmetry breaking. In: Proc. of 19th IJCAI (2005)

Author Index

Andersen, H.R. 118

Bacchus, Fahiem 1, 133, 148
Bayer, Kenneth M. 164
Beaumet, Grégory 3
Becket, Ralph 529
Beldiceanu, N. 180
Benhamou, Beläıd 195
Bennaceur, Hachemi 394
Benton, J. 651
Bistarelli, Stefano 773, 782, 872
Bordeaux, Lucas 790
Brand, Sebastian 210, 529

Cardon, Stéphane 438
Carlsson, M. 180
Chabert, Gilles 635
Charmeau, Marie-Claire 3
Chenouard, Raphaël 18
Choi, Chiu Wo 33
Choueiry, Berthe Y. 164
Codish, Michael 544
Cohen, David A. 798
Collavizza, Hélène 49
Condotta, Jean-François 806

Darras, Sylvain 225
Davenport, Andrew 64
Dechter, Rina 498
Denmat, Tristan 241
Dequen, Gilles 225
Devendeville, Laure 225
Deville, Yves 620, 728
Dilkina, Bistra 256
Dooms, Grégoire 271
Ducassé, Mireille 241
Duck, Gregory J. 529
Dupont, Pierre 620, 728

Freuder, Eugene C. 666

Gargani, Antoine 77
Gavanelli, Marco 815
Geffner, Hector 605
Gelain, Mirco 286

Gennari, Rosella 90
Gent, I.P. 823
Gerevini, Alfonso 301
Ginsberg, Matt 2
Gomes, Carla P. 256
Gotlieb, Arnaud 241, 559
Granvilliers, Laurent 18
Grégoire, Éric 317
Grimes, Diarmuid 666, 831

Hadzic, T. 118
Halim, Steven 332
Hamadi, Youssef 790
Hanhilammi, Sue 105
Hooker, J.N. 118
Hoos, Holger H. 696, 712
Hou, John 64
Huang, Jinbo 839
Hutter, Frank 712

Järvisalo, Matti 348
Jeavons, Peter G. 798
Jégou, Philippe 364
Jin, Yue 105
Junttila, Tommi 348

Kalagnanam, Jayant 64
Kambhampati, Subbarao 651
Katsirelos, George 379
Kelsey, T. 823
Khemmoudj, Mohand Ou Idir 394
Kiziltan, Zeynep 847
Knoblock, Craig A. 164

Lagerkvist, Mikael Z. 409
Lau, Hoong Chuin 332
Law, Y.C. 423
Lecoutre, Christophe 438, 453
Lee, Jimmy H.M. 33, 423
Leyton-Brown, Kevin 696, 712
Li, Chu-Min 225
Ligozat, Gérard 806
Linton, S.A. 823
Little, James 105
Lodi, Andrea 847

890 Author Index

Lombardi, Michele 468
Lynce, Inês 483

Marinescu, Radu 498
Marques-Silva, Joao 483
Mateescu, Robert 498
Mazure, Bertrand 317
Meisels, Amnon 758
Mich, Ornella 90
Michalowski, Martin 164
Michel, Laurent 271, 514
Milano, Michela 468, 847

Narodytska, Nina 210
Ndiaye, Samba Ndojh 364
Nethercote, Nicholas 529

O’Sullivan, Barry 872
Ohrimenko, Olga 544

Parisini, Fabio 847
Pearson, J. 823
Peintner, Bart 856
Peretti, Pamela 773
Pesant, Gilles 743
Petit, Matthieu 559
Piette, Cédric 317
Pini, Maria Silvia 286, 782
Poder, E. 180
Pulina, Luca 574
Pulliam, Kenneth 105

Quimper, Claude-Guy 210, 590

Ramı́rez, Miquel 605
Reddy, Chandra 64
Refalo, Philippe 77
Roney-Dougal, C.M. 823
Rossi, Francesca 286, 782
Rueher, Michel 49
Ruiz de Angulo, Vicente 864

Saade, Mahmoud 806
Sabharwal, Ashish 256
Sadek, R. 180
Saetti, Alessandro 301
Säıdi, Mohamed Réda 195
Sais, Lakhdar 453

Schaus, Pierre 620
Schulte, Christian 409
Sébastian, Patrick 18
See, Andrew 514
Siegel, Stuart 64
Smith, Barbara M. 872
Solnon, Christine 728
Sorlin, Sébastien 728
Stergiou, Kostas 148
Stuckey, Peter J. 210, 529, 544

Tabary, Sébastien 453
Tacchella, Armando 574
Tack, Guido 529
Terrioux, Cyril 364
Tiedemann, P. 118
Torras, Carme 864
Trombettoni, Gilles 635
Trubitsyna, Irina 773
Truchet, C. 180

van Beek, Peter 681
van den Briel, Menkes 651
van der Krogt, Roman 105
Van Hentenryck, Pascal 271, 514
Vardi, Moshe Y. 790
Venable, Kristen Brent 286, 782, 856
Verfaillie, Gérard 3
Vidal, Vincent 453
Vion, Julien 438
Vossen, Thomas 651

Wallace, Richard J. 831
Walsh, Toby 210, 379, 423, 590, 880
Wilson, Nic 666
Wu, Huayue 681

Xu, Lin 696, 712

Yap, Roland H.C. 332
Yip, J.Y.K. 423
Yorke-Smith, Neil 856

Zampelli, Stéphane 728
Zanarini, Alessandro 743
Zazone, Moshe 758
Zivan, Roie 758
Živný, Stanislav 798

	Title Page
	Preface
	Organization
	Table of Contents
	Caching in Backtracking Search
	Of Mousetraps and Men: A Cautionary Tale
	Estimation of the Minimal Duration of an Attitude Change for an Autonomous Agile Earth-Observing Satellite
	The Problem
	Applicative Context
	Planning Problem
	Attitude Change Subproblem

	Why Constraint Programming ?
	Existing Methods
	Why Considering Constraint Programming ?

	How Constraint Programming ?
	Kinematic Models
	Attitude Change with a Fixed Goal Attitude
	Attitude Change with a Variable Goal Attitude
	CSP Model
	Resolution with RealPaver

	Added Value of Constraint Programming

	Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
	An Air Conditioning System Problem
	Context
	Model Description
	Embodiment Design Solutions

	Why CP?
	How CP?
	Model Formulation
	Solving Algorithms
	Precision Management
	Model Implementation
	ACS Solutions

	Added Value of CP?
	Development Cost
	Industrial Use
	Feedback and User Experience

	Conclusion

	Solving the Salinity Control Problem in a Potable Water System
	Introduction
	Current Practice Versus Constraint Programming
	Application Domain Description
	The Raw Water System
	Physical and Human Constraints
	Problem Statement

	Problem Modeling
	Domains Discretization
	Constraints and Objective Function

	Improving Search
	Variable and Value Ordering Heuristics
	Greedy Search Strategy
	Adding Implied Constraints

	Experiments
	Discussions
	Added Values of CP
	Reasons for Choosing Finite Domain
	Other Optimization Methodologies

	Conclusion

	Exploring Different Constraint-Based Modelings for Program Verification
	Introduction
	Translation of a Program and its Specification into Constraints
	Translation Process
	Characteristics of a CSP for Software Validation

	Modeling Issues
	INT_CSP: A Model Without Boolean Abstraction
	$HYBRID_CSP_1$: Using Boolean Abstraction for the Program Guards
	$HYBRID_CSP_2$: Using Boolean Abstraction for Expressions Appearing in Several Guards
	$HYBRID_CSP_3$: Adding Boolean Abstraction for Expressions Involving the Variable result
	$BOOL_CSP$: Boolean Model

	Solving the CSP
	Solving an Integer CSP
	Solving a Hybrid CSP Using a CSP Solver

	Experimental Results
	Experimental Results
	INT_CSP Model
	Hybrid CSP Models

	Discussion

	An Application of Constraint Programming to Generating Detailed Operations Schedules for Steel Manufacturing
	Introduction
	The Problem
	Detailed Scheduling Problem Model
	Cast Scheduling Problem Model

	Why CP?
	How CP?
	Constraint-Programming Detailed Scheduling Solver
	Integration Issues

	Added Value of CP?
	Related Work
	Conclusions

	An Efficient Model and Strategy for the Steel Mill Slab Design Problem
	Introduction
	Problem Description
	A Basic Model
	A Stronger Constraint Programming Model
	A Search Strategy
	Test Instances
	Symmetry Breaking
	Large Neighborhood Search

	Conclusion

	Constraint-Based Temporal Reasoning for E-Learning with LODE
	Introduction
	The Problem
	Our Proposal

	Background on Temporal Reasoning with Constraints
	Time Representation à la Allen
	Constraint Programming for Automated Temporal Reasoning

	LODE: Educational Exercises
	Dictionary of Difficult Words
	Global Reasoning Exercises
	Final Remarks

	LODE: The Architecture and the Constraint-based Module
	The Modular Architecture
	The Constraint-Based Automated Reasoner

	Related Work
	Italian Tools
	English Tools
	Final Remarks

	Future Work
	Conclusions

	Scheduling for Cellular Manufacturing
	Introduction
	Introducing CP
	Related Work

	The Program
	The Model
	Search
	The GUI

	Evaluation
	From Prototype to Production
	Lessons Learned
	Final Remarks

	A Constraint Store Based on Multivalued Decision Diagrams
	Introduction
	Related Work
	MDDs and Solution Spaces
	MDD-Based Constraint Solving
	Propagation
	Refining
	Computational Results
	Conclusions and Future Work

	GAC Via Unit Propagation
	Introduction
	Background
	Achieving Generic GAC with UP

	UP for Generic GAC Revisited
	Using a UP Engine in a CSP Solver
	Constraint Specific UP Encodings
	Regular
	Among
	Generalized Sequence Constraint

	Conclusions

	Solution Directed Backjumping for QCSP
	Introduction
	Background
	Propagation
	Detecting Inconsistent Values
	Strong Levels of Consistency on Universals
	Detecting Valid Values

	Intelligent Backtracking
	Solution Directed Backjumping (SBJ)

	Empirical Study
	SBJ and Strong Consistency on Universals
	Validity Pruning and Dynamic Variable Ordering

	Conclusions

	Reformulating CSPs for Scalability with Application to Geospatial Reasoning
	Introduction
	Background
	Modeling and Solving the BID Problem as a CSP
	A New Constraint Model
	A Custom Backtrack-Search Solver

	Query Reformulation
	Per-Variable Solutions
	Application to Relational (i,m)-consistency

	Domain Reformulation Using Symbolic Values
	Symbolic Values in the BID Problem
	The $ALLDIFF-ATMOST$ Global Constraint
	$ALLDIFF-ATMOST$ Reformulation
	Symbolic Intervals

	Problem Relaxation by Constraint Removal
	A Tractable Necessary Approximation of the BID Problem
	Relaxing Resource Allocation Problems
	Using the Relaxation in Problem Solving

	Generating Solutions by Symmetry
	Experiments
	Related Work and Conclusions

	A Generic Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional Objects
	Introduction and Presentation of the Kernel
	Modelling Problems with $geost$
	Standard Representation of Geometrical Constraints
	The Geometrical Kernel: A Generic k-Dimensional Lexicographic Sweep Algorithm
	Performance Evaluation
	Related Work and Future Directions
	Conclusion

	Local Symmetry Breaking During Search in CSPs
	Introduction
	Background
	Semantic Symmetry
	Syntactic Symmetry
	The Weakened Syntactic Symmetry Conditions

	Local Symmetry Detection and Exploitation
	Symmetry Detection and Breaking
	Symmetry Advantage in Tree Search Algorithms

	Experiments
	Random Graph Coloring Problems
	Dimacs Graph Coloring Benchmarks
	The n-Queens Problems

	Discussion and Conclusions

	Encodings of the $SEQUENCE$ Constraint
	Introduction
	Background
	The $SEQUENCE$ Constraint
	Domain Consistency Filtering Algorithms Based on Regular (LO)
	Domain Consistency Filtering Algorithm Based on Cumulative Sums (CS)
	Domain Consistency Filtering Algorithm Based on Difference Constraints (CD)
	Domain Consistency Filtering Algorithm Based on Partial Sums (PS)
	A Log Based Encoding of Sequence (LG)

	Theoretical Comparison
	The Multiple $SEQUENCE$ Constraint (MR)
	Experimental Results
	Random Instance
	 Nurse Rostering Problems
	 Car Sequencing Problems
	Multiple $SEQUENCE$ Constraints

	Conclusion

	On Inconsistent Clause-Subsets for Max-SAT Solving
	Introduction
	Preliminaries
	Improving UP*_{FL}
	Clause Sets Storage
	Experimental Results
	Size of the Inconsistent Clause-Subsets
	Comparative Results

	Conclusion

	An Abstract Interpretation Based Combinator for Modelling While Loops in Constraint Programming
	Introduction
	Presentation of the w Constraint Combinator
	Syntax
	Semantics
	First Example: Sum
	Second Example: Greatest Common Divisor (gcd)

	The Filtering Algorithm
	Background
	Abstract Interpretation
	Polyhedra Abstract Domain
	Linear Relaxation of Constraints

	Using Abstraction in the Filtering Algorithm of w
	Solutions of w as the Result of a Fixed Point Computation
	Abstracting the Fixed Point Equations
	w^infty: Implementing the Approximation

	Discussion
	Conclusion

	Tradeoffs in the Complexity of Backdoor Detection
	Introduction
	Preliminaries and Related Work
	Theoretical Results
	Computing the Smallest Backdoors
	Experimental Evaluation
	Conclusions

	Model-Driven Visualizations of Constraint-Based Local Search
	Introduction
	The CBLS Visualizer at Work
	The Visualizer Architecture and Its Implementation
	The Visual Interpreter
	The Declarative Graphics Layer

	Conclusion

	Dealing with Incomplete Preferences in Soft Constraint Problems
	Introduction
	Soft Constraints
	Incomplete Soft Constraint Problems (ISCSPs)
	Characterizing POS(P) and NOS(P)
	A Solver for ISCSPs
	Experimental Setting and Results
	Ongoing and Future Work

	Efficient Computation of Minimal Point Algebra Constraints by Metagraph Closure
	Introduction
	Background: TL-Graphs, Timegraphs and Metagraphs
	Chain Closure for Timegraphs
	Chain Closure Algorithm
	Constant Time Queries and Minimal Constraints

	Experimental Analysis
	Experimental Settings and Test Domains
	Experimental Results

	Conclusions

	MUST: Provide a Finer-Grained Explanation of Unsatisfiability
	Introduction
	Background: CSPs and MUCs
	MUSTs
	MUSTs Within MUCs
	Using $OMUS$ to Compute MUSTs and Shared Tuples
	Experimental Studies
	Related Works
	Conclusions and Perspectives

	An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local Search
	Introduction
	The Basic Ideas
	White-Box: Fitness Landscape and Search Trajectory Analysis
	Black-Box Tuning: Factorial Design

	An Integrated White+Black Approach
	An Extended Case Study with Ro-TS for QAP
	Experiment Set-Up: QAP Instances and Baseline Algorithm
	Preliminary Analysis
	Tweaking Ro-TS-I to Ro-TS-A for QAP (type A) Instances
	Tweaking Ro-TS-I to Ro-TS-B for QAP (type B) Instances
	Benchmarking on the Test Instances

	Comparison with a Pure Black-Box Approach
	Conclusion

	Limitations of Restricted Branching in Clause Learning
	Introduction
	Boolean Circuits and Propositional Satisfiability
	From Circuits to CNF, and CNF Formulas as Circuits

	Resolution, DPLL, and CL with Variants
	Resolution
	DPLL
	Clause Learning
	Input-Restricted Branching DPLL and CL

	Separating Input-Restricted and Unrestricted CL
	Experiments
	Results

	Conclusions

	Dynamic Management of Heuristics for Solving Structured CSPs
	Introduction
	Decompositions Methods for Solving CSPs Efficiently
	Coverings by Classes of Acyclic Hypergraphs
	Algorithmic Exploiting of the CAHs
	Experimental Study
	Conclusion

	A Compression Algorithm for Large Arity Extensional Constraints
	Introduction
	Background
	The Compression Algorithm
	Modifying $GAC-SCHEMA$
	$GAC-SCHEMA$ with Forbidden Tuples
	Empirical Results
	Related Work
	Conclusions

	Valid Inequality Based Lower Bounds for WCSP
	Introduction
	 Preliminaries
	WCSP Formalism
	Graphic Representation of a WCSP
	Mathematical Formulation of a WCSP

	The Main Objective
	Linear Models Based on Valid Inequalities
	Using Valid Inequalities for Preprocessing WCSP
	Equivalence Preserving Transformation
	Optimal System of Valid Inequalities
	Heuristic Approach to Build Valid Inequality Systems
	Recapitulation

	Experiments
	Lower Bounds
	Preprocessing

	Conclusion

	Advisors for Incremental Propagation
	Introduction
	Simple Propagation
	Advised Propagation
	Implementation
	Using Advisors
	Conclusions

	Breaking Symmetry of Interchangeable Variables and Values
	Introduction
	Background
	Variable and Value Interchangeability
	A New Decomposition
	Some Special Cases
	Variable Partition Ordering
	Implementation Notes
	Experiments
	Graph Colouring
	Concert Hall Scheduling

	Related Work
	Conclusions

	Path Consistency by Dual Consistency
	Introduction
	Constraint Networks and Consistencies
	New Algorithms to Enforce Strong Path Consistency
	AC and FC
	Algorithm sDC1
	Algorithm sDC2
	Algorithm sDC3
	Complexity Issues

	Experiments
	Conclusion

	Exploiting Past and Future: Pruning by Inconsistent Partial State Dominance
	Introduction
	Technical Background
	Inconsistent Partial States
	Universality-Based Extraction
	Proof-Based Extraction
	Explanation-Based Extraction
	Dominance State Detection
	Experiments
	Conclusion

	Scheduling Conditional Task Graphs
	Introduction
	Problem Description and Model
	Expected Makespan Constraint
	Branch/Fork Graph
	Control Flow Uniqueness
	BFG and Scenarios
	Querying the BFG
	Computing Subgraph Probabilities
	Filtering Algorithm

	Experimental Results
	Conclusion

	Towards Robust CNF Encodings of Cardinality Constraints
	Introduction
	Related Work
	CDCL SAT Solvers
	Filtering Auxiliary Variables
	Analysis of the $\le 1\ (x_1,\ldots,x_n)$ Encoding
	Modifications to a CDCL SAT Solver

	Experimental Results
	Problem Instances
	Results for the N-Queens Problem
	Results for Other Problems

	Conclusions

	AND/OR Multi-valued Decision Diagrams for Constraint Optimization
	Introduction
	Background
	Constraint Optimization Problems
	Binary Decision Diagrams
	AND/OR Search Spaces for COP

	Weighted AND/OR Multi-valued Decision Diagrams
	Compiling COPs into AOMDDs
	AND/OR Branch-and-Bound Search
	The Compilation Algorithm

	Experiments
	Weighted CSPs
	0/1 Integer Linear Programs

	Conclusion and Discussion

	Parallelizing Constraint Programs Transparently
	Introduction
	Nondeterministic Programs and Search Controllers
	Transparent Parallelization of Constraint Programs
	High-Level Description of The Parallel Architecture
	Implementation
	Experimental Results
	Related Work
	Conclusion

	MiniZinc: Towards a Standard CP Modelling Language
	Introduction
	MiniZinc
	Specifying a Problem
	A MiniZinc Example
	Types and Insts
	Expressions
	Built-in Operations
	Predicates
	Global Constraints
	Modelling Techniques
	Adding Non-declarative and Solver-Specific Information

	FlatZinc
	Translating MiniZinc to FlatZinc
	Flattening
	Post-flattening
	Annotations
	Summary

	Tool Set and Experiments
	Related Work
	Conclusion and Future Work

	Propagation = Lazy Clause Generation
	Introduction
	Propagation-Based Constraint Solving
	SAT and Unit Propagation
	Atomic Constraints and Propagation Rules
	Clausal Representations of Propagators
	Atomic Constraints and Boolean Variables
	Consistency of Domains
	Propagation Rules to Clauses

	Lazy Clause Generation
	Building a Lazy Clause Generator System
	Experiments
	Related Work and Conclusion

	Boosting Probabilistic Choice Operators
	Introduction
	Background on Probabilistic Choice Operators
	Probabilistic Concurrent Constraint Programming
	Probabilistic Choice Operator over Finite Domains

	Principle of the Filtering on $choose$
	Simulation of a Stochastic Variable over Finite Domains
	Stochastic Consistencies on the $choose$ Combinator
	Filtering $on dom$(X)

	Implementation
	Experimental Validation
	Biased Games Model
	Books Production Planning

	Conclusions

	A Multi-engine Solver for Quantified Boolean Formulas
	Introduction
	Preliminaries
	Designing a Multi-engine Solver for QBFs
	Experimental Evaluation
	Validating the Multi-engine Approach
	Assessing (in)Dependence from the QBFEVAL'06 Dataset
	Assessing the Relevant Features

	Conclusions

	Decomposing Global Grammar Constraints
	Introduction
	Background
	Decomposition of the $GRAMMAR$ Constraint
	Theoretical Properties
	Regular Languages
	Conditional Productions
	Experimental Results
	Related Work
	Conclusion

	Structural Relaxations by Variable Renaming and Their Compilation for Solving MinCostSAT
	Introduction
	MinCostSAT
	Relaxing Graphical Models by Renaming Variables
	Compiling the Relaxation into d-DNNF
	The Cost of Renamed Variables
	The Search
	Learning from Bound Conflicts
	Empirical Evaluation
	Discussion

	Bound-Consistent Deviation Constraint
	Introduction
	Weakness of Existing Propagators
	A Bound-Consistent Lower Bound for the Deviation
	Bound-Consistent Lower and Upper Bounds for X_i
	Function of the Minimum Deviation on I^{\Z}_i
	Computation of the Evolution of the Minimum Deviation for Every Variable

	Experimental Results
	Conclusion

	Constructive Interval Disjunction
	Introduction
	Definitions
	CID-consistency
	A CID-Based Solving Strategy
	$3B$, CID and a $3BCID$ Hybrid Version
	A New CID-Based Splitting Strategy
	Experiments
	Benchmarks and Interval-Based Solver
	Results Obtained by CID
	Comparing CID, $3B$ and $3BCID$
	Comparing Splitting Strategies

	Conclusion

	An LP-Based Heuristic for Optimal Planning
	Introduction
	Action Selection Formulation
	Notation
	Formulation
	Adding Constraints by Exploiting Domain Structure

	Experimental Results
	Related Work
	Conclusions

	A Cost-Based Model and Algorithms for Interleaving Solving and Elicitation of CSPs
	Introduction
	A Formal Model for Interleaving Solving and Elicitation
	Evaluating a Complete Assignment
	Iterative Expected Cost-Bound Algorithm
	Experimental Testing
	Extensions and Summary

	On Universal Restart Strategies for Backtracking Search
	Introduction
	Related Work
	Theoretical Results
	Bounds on Expected Runtime
	Bounds on Tail Probability

	Analytical Study
	Empirical Study
	Experimental Setup
	Experiment 1
	Experiment 2
	Discussion

	Conclusions

	Hierarchical Hardness Models for SAT
	Introduction
	Background
	Empirical Hardness Models
	Experimental Setup

	Conditional and Oracular Empirical Hardness Models
	Predicting the Satisfiability of SAT Instances
	Hierarchical Hardness Models
	Experimental Results

	Conclusions and Future Work

	$SATzilla-07$: The Design and Analysis ofan Algorithm Portfolio for SAT
	Introduction
	Building Portfolios with Empirical Hardness Models
	Constructing Empirical Hardness Models
	Evaluating $SATzilla-07$ on the QCP Data Set
	$SATzilla-07$ for the 2007 SAT Competition
	Conclusions

	Filtering for Subgraph Isomorphism
	Introduction
	Subgraph Isomorphism
	Definitions
	CP Models for Subgraph Isomorphism

	Theoretical Framework
	Subgraph Isomorphism Consistent Labelings
	Strengthening a Labeling
	Iterative Labeling Strengthening

	Practical Framework
	Exact Computation of the Partial Order
	Computation of an Approximated Order
	Filtering Within a Branch and Propagate Framework

	Experimental Results
	Conclusion

	Solution Counting Algorithms for Constraint-Centered Search Heuristics
	Introduction
	Generic Constraint-Centered Heuristic Search Framework
	Counting for Regular Constraints
	Counting Paths in the Associated Graph
	An Incremental Version
	A Lazy Evaluation Version

	Counting for Alldifferent Constraints
	Computing the Permanent
	Rasmussen's Estimator and Its Extensions

	Experimental Results
	Conclusion and Open Issues

	Min-Domain Ordering for Asynchronous Backtracking
	Introduction
	Distributed Constraint Satisfaction
	ABT with Dynamic Ordering
	Investigation of Asynchronous Heuristics
	Retroactive Ordering Heuristics for ABT
	Correctness of Retroactive ABT_DO
	Experimental Evaluation
	Discussion
	Conclusion

	Answer Set Optimization for and/or Composition of CP-Nets: A Security Scenario
	Introduction
	Defence Tree
	Answer Set Optimization Programs
	CP-Defence Trees
	and/or Composition of Attacks

	Conclusion

	Uncertainty in Bipolar Preference Problems
	Introduction
	Background: Bipolar Preference Problems
	Uncertain Bipolar Problems
	Preference, Robustness, and Desirable Properties
	Removing Uncertainty: Preference, Robustness and Semantics
	Conclusions

	An Analysis of Slow Convergence in Interval Propagation
	Motivation and Results of the Paper
	Interval Propagation and Fixpoint Computations
	Intractability of Interval Propagation

	The Expressive Power of Valued Constraints: Hierarchies and Collapses
	Introduction
	Valued Constraints and Expressibility
	Expressive Power and Algebraic Properties
	Results
	Conclusions and Open Problems

	Eligible and Frozen Constraints for Solving Temporal Qualitative Constraint Networks
	Introduction
	Background on Spatial and Temporal Qualitative Formalisms
	The Search Algorithm with Eligibility
	Experimental Results About Eligibility
	Frozen Constraints
	Conclusion

	The Log-Support Encoding of CSP into SAT
	Introduction
	Preliminaries and Notation
	A Survey on Encodings
	The Log-Support Encoding
	Gray Code

	Experimental Results
	Randomly Generated Problems
	Job-Shop Scheduling Problems

	Conclusions and Future Work

	Groupoids and Conditional Symmetry
	Introduction
	Groupoids and Conditional Symmetries
	Symmetry Breaking with Groupoids
	Conclusions and Further Work

	Sampling Strategies and Variable Selection in Weighted Degree Heuristics
	Introduction
	Characterising Algorithms Based on Constraint Weighting
	Description of Heuristics Based on Constraint Weights
	Characterisation of Constraint Weighting Procedures

	Experimental Methods and Reference Results
	Search Efficiency with Weighted Degree Strategies
	Empirical Analyses of Sampling and Variable Selection
	Sampling Based on Different Specific Events Related to Failure
	Sampling Based on Different Search Procedures
	Analysis of Variable Selection

	Conclusions

	A Case for Simple SAT Solvers
	Introduction
	A Unifying View of Clause Learning
	A Simple SAT Solver
	Final Experiments
	Conclusion and Future Work

	CP-Based Local Branching
	Local Branching Search Strategy
	Additive Bounding for Local Branching
	Cost-Based Filtering
	Incremental Computation of the Bound

	Experimental Results

	Strong Controllability of Disjunctive Temporal Problems with Uncertainty
	Introduction
	Background
	Extending the DTP with Contingent Events
	Strong Controllability of a DTPU
	Related and Future Work

	Exploiting Single-Cycle Symmetries in Branch-and-Prune algorithms
	Symmetry in Continuous Constraints Problems
	Box Symmetry
	Algorithm to Exploit Box Symmetry Classes
	An Illustrative Example
	Counting and Generating Box Symmetry Classes
	Conclusions

	Constraint Symmetry for the Soft CSP
	Introduction
	Constraint Symmetry
	The Symmetries of the Soft n-Queens Problem
	Conditional Symmetries
	Experimental Evaluation
	Discussion and Conclusions

	Breaking Value Symmetry
	Introduction
	Background
	Static Methods
	Dynamic Methods
	Generator Symmetries
	Puget's Decomposition
	Value Precedence
	Related Work
	Conclusion

	Author Index

