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Abstract. Pairwise classification is a class binarization procedure that converts a
multi-class problem into a series of two-class problems, one problem for each pair
of classes. While it can be shown that for training, this procedure is more efficient
than the more commonly used one-against-all approach, it still has to evaluate a
quadratic number of classifiers when computing the predicted class for a given
example. In this paper, we propose a method that allows a faster computation of
the predicted class when weighted or unweighted voting are used for combining
the predictions of the individual classifiers. While its worst-case complexity is
still quadratic in the number of classes, we show that even in the case of com-
pletely random base classifiers, our method still outperforms the conventional
pairwise classifier. For the more practical case of well-trained base classifiers, its
asymptotic computational complexity seems to be almost linear.

1 Introduction

Many learning algorithms can only deal with two-class problems. For multi-class prob-
lems, they have to rely on class binarization procedures that transform the original
learning problem into a series of binary learning problems. A standard solution for this
problem is the one-against-all approach, which constructs one binary classifier for each
class, where the positive training examples are those belonging to this class and the
negative training examples are formed by the union of all other classes. An alternative
approach, known as pairwise classification or round robin classification has recently
gained attention [3,12]. Its basic idea is to transform a c-class problem into c(c − 1)/2
binary problems, one for each pair of classes. This approach has been shown to produce
more accurate results than the one-against-all approach for a wide variety of learning al-
gorithms such as support vector machines [7] or rule learning algorithms [3]. Moreover,
Fürnkranz [3] has also proved that despite the fact that its complexity is quadratic in the
number of classes, the algorithm can in fact be trained faster than the conventional one-
against-all technique.1 However, in order to obtain a final prediction, we still have to
combine the predictions of all c(c − 1)/2 classifiers, which can be very inefficient for
large values of c.

1 It is easy to see this, if one considers that in the one-against-all case each training example
is used c times (namely in each of the c binary problems), while in the round robin approach
each example is only used c − 1 times, namely only in those binary problems, when its own
class is paired against one of the other c − 1 classes.
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The main contribution of this paper is a novel solution for this problem. Unlike pre-
vious proposals (such as [10]; cf. Section 3.2) our approach is not heuristic but is guar-
anteed to produce exactly the same prediction as the full pairwise classifier, which in
turn has been shown to optimize the Spearman rank correlation with the target labels
[8]. In essence, the algorithm selects and evaluates iterative pairwise classifiers using a
simple heuristic to minimize the number of used pairwise classifiers that are needed to
determine the correct top rank class of the complete (weighted) voting. We will describe
and evaluate this algorithm in Section 3.

2 Pairwise Classification

In the following, we assume that a multi-class problem has c classes, which we denote
with c1, . . . , cc. A pairwise or round robin classifier trains a set of c(c − 1)/2 binary
classifiers Ci,j , one for each pair of classes (ci, cj), i < j. We will refer to the learning
algorithm that is used to train the classifiers Ci,j as the base classifier. Each binary
classifier is only trained on the subset of training examples that belong to the classes
ci and cj , all other examples are ignored for the training of Ci,j . Typically, the binary
classifiers are class-symmetric, i.e., the classifiers Ci,j and Cj,i are identical. However,
for some types of classifiers this does not hold. For example, rule learning algorithms
will always learn rules for the positive class, and classify all uncovered examples as
negative. Thus, the predictions may depend on whether class ci or class cj has been
used as the positive class. As has been noted in [3], a simple method for solving this
problem is to average the predictions of Ci,j and Cj,i, which basically amounts to the
use of a so-called double round robin procedure, where we have two classifiers for each
pair of classes. We will use this procedure for our results with Ripper. At classification
time, each binary classifier Ci,j is queried and issues a vote (a prediction for either ci or
cj) for the given example. This can be compared with sports and games tournaments,
in which all players play each other once. In each game, the winner receives a point,
and the player with the maximum number of points is the winner of the tournament.
In our case, the class with the maximum number of votes is predicted (ties are broken
arbitrarily for the larger class). In this paper, we will assume binary classifiers that return
class probabilities p(ci|ci∨cj) and p(cj |ci∨cj). These can be used for weighted voting,
i.e., we predict the class that receives the maximum number of votes:

c′ = arg max
i=1...c

c∑

j=1

p(ci|ci ∨ cj)

This procedure optimizes the Spearman rank correlation with the target ranking [8].
Other algorithms for combining votes exist (cf. pairwise coupling [5,12]), but are not
subject of this paper.

Note that weighted or unweighted voting produce a ranking of all classes. For pre-
diction problems, one is typically only interested in the top ranked class, but in some
applications one might also be interested in the complete ranking of classes. Due to
space restrictions we will focus here only on classification. However, the extended ver-
sion of this paper [9] deals also with the problem of efficiently predicting a full class
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ranking. We propose for this case the so-called Swiss-System, a common scheme for
conducting multi-round chess tournaments. Our results show that this algorithm offers
a good trade-off between the number of evaluated classifiers and the quality of the ap-
proximation of the complete ranking.

3 Efficient Pairwise Classification

3.1 The Quick Weighted Voting (QWEIGHTED) Algorithm

Weighted or unweighted voting predicts the top rank class by returning the class with
the highest accumulated voting mass after evaluation of all pairwise classifiers. During
such a procedure there exist many situations where particular classes can be excluded
from the set of possible top rank classes, even if they reach the maximal voting mass
in the remaining evaluations. Consider following simple example: Given c classes with
c > j, if class a has received more than c − j votes and class b lost j votings, it is
impossible for b to achieve a higher total voting mass than a. Thus further evaluations
with b can be safely ignored. To increase the reduction of evaluations we are interested
in obtaining such exploitable situations frequently. Pairwise classifiers will be selected
depending on a loss value, which is the amount of potential voting mass that a class
has not received. More specifically, the loss li of a class i is defined as li := pi − vi,
where pi is the number of evaluated incident classifiers of i and vi is the current vote
amount of i. Obviously, the loss will begin with a value of zero and is monotonically
increasing.2 The class with the current minimal loss is one of the top candidates for the
top rank class. First the pairwise classifier Ca,b will be selected for which the losses la

Algorithm 1. QWEIGHTED

while ctop not determined do
ca ← class ci ∈ K with minimal li;
cb ← class cj ∈ K\{ca} with minimal lj & classifier Ca,b not yet evaluated;
if no cb exists then

ctop ← ca;

else
vab ← Evaluate(Ca,b);
la ← la + (1 − vab);
lb ← lb + vab;

and lb of the relevant classes ca and cb are minimal, provided that the classifier Ca,b has
not yet been evaluated. In the case of multiple classes that have the same minimal loss,
there exists no further distinction, and we select a class randomly from this set. Then,
the losses la and lb will be updated based on the evaluation returned by Ca,b (recall
that vab is interpreted as the amount of the voting mass of the classifier Ca,b that goes

2 This loss is essentially identical to the voting-against principle introduced by [1,2], which we
will discuss later on in Section 3.2.
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to class ca and 1 − vab is the amount that goes to class cb). These two steps will be
repeated until all classifiers for the class cm with the minimal loss has been evaluated.
Thus the current loss lm is the correct loss for this class. As all other classes already
have a greater loss, cm is the correct top rank class. Theoretically, a minimal number
of comparisons of c − 1 is possible (best case). Assuming that the incident classifiers
of the correct top rank ctop always returns the maximum voting amount (ltop = 0), ctop

is always in the set {cj ∈ K|lj = minci∈K li}. In addition, ctop should be selected as
the first class in step 1 of the algorithm among the classes with the minimal loss value.
It follows that exactly c − 1 comparisons will be evaluated, more precisely all incident
classifiers of ctop. The algorithm terminates and returns ctop as the correct top rank. The
worst case, on the other hand, is still c(c − 1)/2 comparisons, which can, e.g., occur
if all pairwise classifiers classify randomly with a probability of 0.5. In practice, the
number of comparisons will be somewhere between these two extremes, depending on
the nature of the problem. The next section will evaluate this trade-off.

3.2 Related Work

Cutzu [1,2] recognized the importance of the voting-against principle and observed that
it allows to reliably conclude a class when not all of the pairwise classifiers are present.
For example, Cutzu claims that using the voting-against rule one could correctly pre-
dict class i even if none of the pairwise classifiers Cik (k = 1 . . . c, k �= i) are used.
However, this argument is based on the assumption that all base classifiers classify cor-
rectly. Moreover, if there is a second class j that should ideally receive c − 2 votes,
voting-against could only conclude a tie between classes i and j, as long as the vote of
classifier Cij is not known. The main contribution of his work, however, is a method
for computing posterior class probabilities in the voting-against scenario. Our approach
builds upon the same ideas as Cutzu’s, but our contribution is the algorithm that exploits
the voting-against principle to effectively increase the prediction efficiency of pairwise
classifiers without changing the predicted results. The voting-against principle was al-
ready used earlier in the form of DDAGs [10], which organize the binary base classifiers
in a decision graph. Each node represents a binary decision that rules out the class that
is not predicted by the corresponding binary classifier. At classification time, only the
classifiers on the path from the root to a leaf of the tree (at most c − 1 classifiers) are
consulted. While the authors empirically show that the method does not lose accuracy
on three benchmark problems, it does not have the guarantee of our method, which will
always predict the same class as the full pairwise classifier. Intuitively, one would also
presume that a fixed evaluation routine that uses only c − 1 of the c(c − 1)/2 base clas-
sifiers will sacrifice one of the main strengths of the pairwise approach, namely that the
influence of a single incorrectly trained binary classifier is diminished in large ensemble
of classifiers [4].

3.3 Evaluation

We compare the QWEIGHTED algorithm with the full pairwise classifier and with
DDAGs [10] on seven arbitrarily selected multi-class datasets from the UCI database
of machine learning databases [6]. We used four commonly used learning algorithms
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Fig. 1. Efficiency of QWEIGHTED in comparison to a full pairwise classifier

as base learners (the rule learner RIPPER, a Naive Bayes algorithm, the C4.5 deci-
sion tree learner, and a support vector machine) all in their implementations in the
WEKA machine learning library [11]. Each algorithm was used as a base classifier for
QWEIGHTED, and the combination was run on each of the datasets. As QWEIGHTED

is guaranteed to return the same predictions as the full pairwise classifier, we are only
interested in the number of comparisons needed for determining the winning class.3

These are measured for all examples of each dataset via a 10-fold cross-validation ex-
cept for letter, where the supplied testset was used. Table 1 shows the results. With
respect to accuracy, there is only one case in a total of 28 experiments (4 base classifiers
× 7 datasets) where DDAGs outperformed the QWEIGHTED, which, as we have noted
above, optimizes the Spearman rank correlation. This and the fact that, to the best of
our knowledge, it is not known what loss function is optimized by DDAGs, confirm our
intuition that QWEIGHTED is a more principled approach than DDAGs. It can also be
seen that the average number of comparisons needed by QWEIGHTED is much closer
to the best case than to the worst case. Next to the absolute numbers, we show the trade-
off between best and worst case (in brackets). A value of 0 indicates that the average
number of comparisons is c − 1, a value of 1 indicates that the value is c(c − 1)/2 (the
value in the last column). As we have ordered the datasets by their respective number
of classes, we can observe that this value has a clear tendency to decrease with the
number of the classes. For example, for the 19-class soybean and the 26-class letter
datasets, only about 6 − 7% of the possible number of additional pairwise classifiers
are used, i.e., the total number of comparisons seems to grow only linearly with the
number of classes. This can also be seen from Fig. 1, which plots the datasets with their
respective number of classes together with a curve that indicates the performance of the
full pairwise classifier. Finally, we note that the results are qualitatively the same for all
base classifiers. QWEIGHTED does not seem to depend on a choice of base classifiers.

3 As mentioned above, we used a double round robin for Ripper for both, the full pairwise
classifier and for QWEIGHTED. In order to be comparable to the other results, we, in this case,
divide the observed number of comparisons by two.
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Table 1. Comparison of QWEIGHTED and DDAGs with different base learners on seven multi-
class datasets. Next to the average numbers of comparisons for QWEIGHTED we show their
trade-off n−(c−1)

max −(c−1) between best and worst case (in brackets).

Accuracy ∅ Comparisons
dataset c learner QWeighted DDAG QWeighted DDAG full

vehicle 4 NB 45.39 44.92 4.27 (0.423) 3 6
SMO 75.06 75.06 3.64 (0.213)
J48 71.99 70.92 3.96 (0.320)
JRip 73.88 72.46 3.98 (0.327)

glass 7 NB 49.07 49.07 9.58 (0.238) 6 21
SMO 57.01 57.94 9.92 (0.261)
J48 71.50 69.16 9.69 (0.246)
JRip 74.77 74.30 9.75 (0.250)

image 7 NB 80.09 80.09 9.03 (0.202) 6 21
SMO 93.51 93.51 8.29 (0.153)
J48 96.93 96.75 8.55 (0.170)
JRip 96.62 96.41 8.75 (0.183)

yeast 10 NB 57.55 57.21 15.86 (0.191) 9 45
SMO 57.68 57.41 15.52 (0.181)
J48 58.56 57.75 15.48 (0.180)
JRip 58.96 58.09 15.87 (0.191)

vowel 11 NB 63.84 63.64 17.09 (0.158) 10 55
SMO 81.92 81.52 15.28 (0.117)
J48 82.93 78.28 17.13 (0.158)
JRip 82.42 76.67 17.42 (0.165)

soybean 19 NB 92.97 92.97 27.70 (0.063) 18 171
SMO 94.14 93.41 28.36 (0.068)
J48 93.56 91.80 29.45 (0.075)
JRip 94.00 93.56 27.65 (0.063)

letter 26 NB 63.08 63.00 44.40 (0.065) 25 325
SMO 83.80 82.58 42.26 (0.058)
J48 91.50 86.15 47.77 (0.076)
JRip 92.33 88.33 45.01 (0.068)

For a more systematic investigation of the complexity of the algorithm, we performed
a simulation experiment. We assume classes in the form of numbers from 1 . . . c, and,
without loss of generality, 1 is always the correct class. We further assume pairwise base
pseudo-classifiers i ≺ε j, which, for two numbers i < j, return true with a probability
1 − ε and false with a probability ε. For each example, the QWEIGHTED algorithm is
applied to compute a prediction based on these pseudo-classifiers. The setting ε = 0 (or
ε = 1) corresponds to a pairwise classifier where all predictions are consistent with a
total order of the possible class labels, and ε = 0.5 corresponds to the case where the
predictions of the base classifiers are entirely random.

Table 2 shows the results for various numbers of classes (c = 5, 10, 25, 50, 100)
and settings of the error parameter (ε = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5). Each data point is
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Table 2. Average number n of pairwise comparisons for various number of classes and different
error probabilities ε of the pairwise classifiers, and the full pairwise classifier. Below, we show
their trade-off n−(c−1)

max −(c−1) between the best and worst case, and an estimate of the growth ratio
log(n2/n1)
log(c2/c1) of successive values of n.

c ε = 0.0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.5 full

5 5.43 5.72 6.07 6.45 6.90 7.12 10
0.238 — 0.287 — 0.345 — 0.408 — 0.483 — 0.520 —

10 14.11 16.19 18.34 21.90 25.39 28.74 45
0.142 1.378 0.200 1.501 0.259 1.595 0.358 1.764 0.455 1.880 0.548 2.013

25 42.45 60.01 76.82 113.75 151.19 198.51 300
0.067 1.202 0.130 1.430 0.191 1.563 0.325 1.798 0.461 1.974 0.632 2.109

50 91.04 171.53 251.18 422.58 606.74 868.25 1225
0.036 1.101 0.104 1.515 0.172 1.709 0.318 1.893 0.474 2.005 0.697 2.129

100 189.51 530.17 900.29 1684.21 2504.54 3772.45 4950
0.019 1.058 0.089 1.628 0.165 1.842 0.327 1.995 0.496 2.045 0.757 2.119

the average outcome of 1000 trials with the corresponding parameter settings. We can
see that even for entirely random data, our algorithm can still save about 1/4 of the
pairwise comparisons that would be needed for the entire ensemble. For cases with a
total order and error-free base classifiers, the number of needed comparisons approaches
the number of classes, i.e., the growth appears to be linear. To shed more light on this,
we provide two more measures below each average: the lower left number (in italics)
shows the trade-off between best and worst case, as defined above. The result confirms
that for a reasonable performance of the base classifiers (up to about ε = 0.2), the
fraction of additional work reduces with the number of classes. Above that, we observe
a growth. The reason for this is that with a low number of classes, there is still a good
chance that the random base classifiers produce a reasonably ordered class structure,
while this chance is decreasing with increasing numbers of classes. On the other hand,
the influence of each individual false prediction of a base classifier decreases with an
increasing number of classes, so that the true class ordering is still clearly visible and
can be better exploited by QWEIGHTED. We tried to directly estimate the exponent
of the growth function of the number of comparisons of QWEIGHTED, based on the
number of classes c. The resulting exponents, based on two successive measure points,
are shown in bold font below the absolute numbers. For example, the exponent of the
growth function between c = 5 and c = 10 is estimated (for ε = 0) as log(14.11/5.43)

log(10/5) ≈
1.378. We can see that the growth rate starts almost linearly (for a high number of
classes and no errors in the base classifiers) and approaches a quadratic growth when
the error rate increases.

In summary, our results indicate that QWEIGHTED always increases the efficiency
of the pairwise classifier: for high error rates in the base classifiers, we can only expect
improvements by a constant factor, whereas for the practical case of low error rates we
can also expect a significant reduction in the asymptotic algorithmic complexity.
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4 Conclusions

In this paper, we have proposed a novel algorithm that allows to speed up the prediction
phase for pairwise classifiers. QWEIGHTED will always predict the same class as the
full pairwise classifier, but the algorithm is close to linear in the number of classes,
in particular for large numbers of classes, where the problem is most stringent. For
very hard problems, where the performance of the binary classifiers reduces to random
guessing, its worst-case performance is still quadratic in the number of classes, but even
there practical gains can be expected. A restriction of our approach is that it is only
applicable to combining predictions via voting or weighted voting. There are various
other proposals for combining the class probability estimates of the base classifiers
into an overall class probability distribution (this is also known as pairwise coupling
[5,12]). Nevertheless, efficient alternatives for other pairwise coupling techniques are
an interesting topic for further research.
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