

Lecture Notes in Artificial Intelligence 4701
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Joost N. Kok Jacek Koronacki
Ramon Lopez de Mantaras Stan Matwin
Dunja Mladenič Andrzej Skowron (Eds.)

Machine Learning:
ECML 2007

18th European Conference on Machine Learning
Warsaw, Poland, September 17-21, 2007
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Joost N. Kok
Leiden University, The Netherlands
E-mail: joost@liacs.nl

Jacek Koronacki
Polish Academy of Sciences, Warsaw, Poland
E-mail: korona@ipipan.waw.pl

Ramon Lopez de Mantaras
Spanish National Research Council (CSIC), Bellaterra, Spain
E-mail: mantaras@iiia.csic.es

Stan Matwin
University of Ottawa, Canada
E-mail: stan@site.uottawa.ca

Dunja Mladenič
Jožef Stefan Institute, Ljubljana, Slovenia
E-mail: Dunja.Mladenic@ihjs.si

Andrzej Skowron
Warsaw University, Poland
E-mail: skowron@mimuw.edu.pl

Library of Congress Control Number: 2007934766

CR Subject Classification (1998): I.2, F.2.2, F.4.1, H.2.8

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-74957-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74957-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12124169 06/3180 5 4 3 2 1 0

Preface

The two premier annual European conferences in the areas of machine learning
and data mining have been collocated ever since the first joint conference in
Freiburg, 2001. The European Conference on Machine Learning (ECML) traces
its origins to 1986, when the first European Working Session on Learning was
held in Orsay, France. The European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD) was first held in 1997 in Trondheim,
Norway. Over the years, the ECML/PKDD series has evolved into one of the
largest and most selective international conferences in machine learning and
data mining. In 2007, the seventh collocated ECML/PKDD took place during
September 17–21 on the central campus of Warsaw University and in the nearby
Staszic Palace of the Polish Academy of Sciences.

The conference for the third time used a hierarchical reviewing process. We
nominated 30 Area Chairs, each of them responsible for one sub-field or several
closely related research topics. Suitable areas were selected on the basis of the
submission statistics for ECML/PKDD 2006 and for last year’s International
Conference on Machine Learning (ICML 2006) to ensure a proper load balance
among the Area Chairs. A joint Program Committee (PC) was nominated for the
two conferences, consisting of some 300 renowned researchers, mostly proposed
by the Area Chairs. This joint PC, the largest of the series to date, allowed us
to exploit synergies and deal competently with topic overlaps between ECML
and PKDD.

ECML/PKDD 2007 received 592 abstract submissions. As in previous years,
to assist the reviewers and the Area Chairs in their final recommendation authors
had the opportunity to communicate their feedback after the reviewing phase.
For a small number of conditionally accepted papers, authors were asked to
carry out minor revisions subject to the final acceptance by the Area Chair
responsible for their submission. With very few exceptions, every full submission
was reviewed by three PC members. Based on these reviews, on feedback from
the authors, and on discussions among the reviewers, the Area Chairs provided
a recommendation for each paper. The four Program Chairs made the final
program decisions following a 2-day meeting in Warsaw in June 2007. Continuing
the tradition of previous events in the series, we accepted full papers with an
oral presentation and short papers with a poster presentation. We selected 41 full
papers and 37 short papers for ECML, and 28 full papers and 35 short papers for
PKDD. The acceptance rate for full papers is 11.6% and the overall acceptance
rate is 23.8%, in accordance with the high-quality standards of the conference
series. Besides the paper and poster sessions, ECML/PKDD 2007 also featured
12 workshops, seven tutorials, the ECML/PKDD Discovery Challenge, and the
Industrial Track.

VI Preface

An excellent slate of Invited Speakers is another strong point of the conference
program. We are grateful to Ricardo Bazea-Yates (Yahoo! Research Barcelona),
Peter Flach (University of Bristol), Tom Mitchell (Carnegie Mellon Universi-
ty), and Barry Smyth (University College Dublin) for their participation in
ECML/PKDD 2007. The abstracts of their presentations are included in this
volume.

We distinguished four outstanding contributions; the awards were generously
sponsored by the Machine Learning Journal and the KD-Ubiq network.

ECML Best Paper: Angela Kimming, Luc De Raedt and Hannu Toivonen:
“Probabilistic Explanation-Based Learning”

PKDD Best Paper: Toon Calders and Szymon Jaroszewicz: “Efficient AUC-
Optimization for Classification”

ECML Best Student Paper: Daria Sorokina, Rich Caruana, and Mirek Rie-
dewald: “Additive Groves of Regression Trees”

PKDD Best Student Paper: Dikan Xing, Wenyuan Dai, Gui-Rong Xue, and
Yong Yu: “Bridged Refinement for Transfer Learning”

This year we introduced the Industrial Track chaired by Florence d’Alché-Buc
(Université d’Evry-Val d’Essonne) and Marko Grobelnik (Jožef Stefan Institute,
Slovenia) consisting of selected talks with a strong industrial component presen-
ting research from the area covered by the ECML/PKDD conference.

For the first time in the history of ECML/PKDD, the conference procee-
dings were available on-line to conference participants during the conference.
We are grateful to Springer for accommodating this new access channel for the
proceedings. Inspired by some related conferences (ICML, KDD, ISWC) we in-
troduced videorecording, as we would like to save at least the invited talks and
presentations of award papers for the community and make them accessible at
http://videolectures.net/.

This year’s Discovery Challenge was devoted to three problems: user beha-
vior prediction from Web traffic logs, HTTP traffic classification, and Sumerian
literature understanding. The Challenge was co-organized by Piotr Ejdys (Gemi-
us SA), Hung Son Nguyen (Warsaw University), Pascal Poncelet (EMA-LGI2P)
and Jerzy Tyszkiewicz (Warsaw University); 122 teams participated. For the
first task, the three finalists were:

Malik Tahir Hassan, Khurum Nazir Junejo and Asim Karim from Lahore Uni-
versity, Pakistan

Krzysztof Dembczyński and Wojciech Kot�lowski from Poznań University of
Technology, Poland and Marcin Sydow from Polish-Japanese Institute of
Information Technology, Poland

Tung-Ying Lee from National Tsing Hua University, Taiwan

Results for the other Discovery Challenge tasks were not available at the time
the proceedings were finalized, but were announced at the conference.

We are all indebted to the Area Chairs, Program Committee members and
external reviewers for their commitment and hard work that resulted in a rich

Preface VII

but selective scientific program for ECML/PKDD. We are particularly grateful
to those reviewers who helped with additional reviews at very short notice to
assist us in a small number of difficult decisions. We further thank our Workshop
and Tutorial Chairs Marzena Kryszkiewicz (Warsaw Technical University) and
Jan Rauch (University of Economics, Prague) for selecting and coordinating the
12 workshops and seven tutorial events that accompanied the conference; the
workshop organizers, tutorial presenters, and the organizers of the Discovery
Challenge and the Industrial track; Richard van de Stadt and CyberChairPRO
for competent and flexible support; Warsaw University and the Polish Academy
of Sciences (Institute of Computer Science) for their local and organizational
support. Special thanks are due to the Local Chair, Marcin Szczuka, Warsaw
University (assisted by Michal Ciesio�lka from the Polish Academy of Sciences)
for the many hours spent making sure that all the details came together to ensure
the success of the conference. Finally, we are grateful to the Steering Committee
and the ECML/PKDD community that entrusted us with the organization of
the ECML/PKDD 2007.

Most of all, however, we would like to thank all the authors who trusted us
with their submissions, thereby contributing to the one of the main yearly events
in the life of our vibrant research community.

September 2007 Joost Kok (PKDD Program co-Chair)
Jacek Koronacki (General Chair)

Ramon Lopez de Mantaras (General Chair)
Stan Matwin (ECML Program co-Chair)

Dunja Mladenič (ECML Program co-Chair)
Andrzej Skowron (PKDD Program co-Chair)

Organization

General Chairs

Ramon Lopez de Mantaras (Spanish Council for Scientific Research)
Jacek Koronacki (Polish Academy of Sciences)

Program Chairs

Joost N. Kok (Leiden University)
Stan Matwin (University of Ottawa and Polish Academy of Sciences)
Dunja Mladenič (Jožef Stefan Institute)
Andrzej Skowron (Warsaw University)

Local Chairs

Micha�l Ciesio�lka (Polish Academy of Sciences)
Marcin Szczuka (Warsaw University)

Tutorial Chair

Jan Rauch (University of Economics, Prague)

Workshop Chair

Marzena Kryszkiewicz (Warsaw University of Technology)

Discovery Challenge Chair

Hung Son Nguyen (Warsaw University)

Industrial Track Chairs

Florence d’Alché-Buc (Université d’Evry-Val d’Essonne)
Marko Grobelnik (Jozef Stefan Institute)

X Organization

Steering Committee

Jean-François Boulicaut Pavel Brazdil
Rui Camacho Floriana Esposito
Johannes Fürnkranz João Gama
Fosca Gianotti Aĺıpio Jorge
Dino Pedreschi Tobias Scheffer
Myra Spiliopoulou Lúıs Torgo

Area Chairs

Michael R. Berthold Hendrik Blockeel
Olivier Chapelle James Cussens
Kurt Driessens Peter Flach
Eibe Frank Johannes Fürnkranz
Thomas Gärtner João Gama
Rayid Ghani Jerzy Grzymala-Busse
Eamonn Keogh Kristian Kersting
Mieczys�law A. K�lopotek Stefan Kramer
Pedro Larranaga Claire Nedellec
Andreas Nürnberger George Paliouras
Bernhard Pfahringer Enric Plaza
Luc De Raedt Tobias Scheffer
Giovanni Semeraro W�ladys�law Skarbek
Myra Spiliopoulou Hannu Toivonen
Lúıs Torgo Paul Utgoff

Program Committee

Charu C. Aggarwal
Jesús Aguilar-Ruiz
David W. Aha
Nahla Ben Amor
Sarabjot Singh Anand
Annalisa Appice
Josep-Lluis Arcos
Walid G. Aref
Eva Armengol
Anthony J. Bagnall
Antonio Bahamonde
Sugato Basu
Bettina Berendt
Francesco Bergadano
Ralph Bergmann
Steffen Bickel

Concha Bielza
Mikhail Bilenko
Francesco Bonchi
Gianluca Bontempi
Christian Borgelt
Karsten M. Borgwardt
Daniel Borrajo
Antal van den Bosch
Henrik Boström
Marco Botta
Jean-François Boulicaut
Janez Brank
Thorsten Brants
Ulf Brefeld
Carla E. Brodley
Paul Buitelaar

Organization XI

Toon Calders
Luis M. de Campos
Nicola Cancedda
Claudio Carpineto
Jesús Cerquides
Kaushik Chakrabarti
Chien-Chung Chan
Amanda Clare
Ira Cohen
Fabrizio Costa
Susan Craw
Bruno Crémilleux
Tom Croonenborghs
Juan Carlos Cubero
Pádraig Cunningham
Andrzej Czyżewski
Walter Daelemans
Ian Davidson
Marco Degemmis
Olivier Delalleau
Jitender S. Deogun
Marcin Detyniecki
Belén Diaz-Agudo
Chris H.Q. Ding
Carlotta Domeniconi
Marek J. Druzdzel
Sašo Džeroski
Tina Eliassi-Rad
Tapio Elomaa
Abolfazl Fazel Famili
Wei Fan
Ad Feelders
Alan Fern
George Forman
Linda C. van der Gaag
Patrick Gallinari
José A. Gámez
Alex Gammerman
Minos N. Garofalakis
Gemma C. Garriga
Eric Gaussier
Pierre Geurts
Fosca Gianotti
Attilio Giordana
Robert L. Givan

Bart Goethals
Elisabet Golobardes
Pedro A. González-Calero
Marko Grobelnik
Dimitrios Gunopulos
Maria Halkidi
Mark Hall
Matthias Hein
Jose Hernandez-Orallo
Colin de la Higuera
Melanie Hilario
Shoji Hirano
Tu-Bao Ho
Jaakko Hollmen
Geoffrey Holmes
Frank Höppner
Tamás Horváth
Andreas Hotho
Jiayuan Huang
Eyke Hüllemeier
Masahiro Inuiguchi
Inaki Inza
Manfred Jaeger
Szymon Jaroszewicz
Rosie Jones
Edwin D. de Jong
Aĺıpio Mário Jorge
Tamer Kahveci
Alexandros Kalousis
Hillol Kargupta
Andreas Karwath
George Karypis
Samuel Kaski
Dimitar Kazakov
Ross D. King
Frank Klawonn
Ralf Klinkenberg
George Kollios
Igor Kononenko
Bożena Kostek
Walter A. Kosters
Miroslav Kubat
Halina Kwasnicka
James T. Kwok
Nicolas Lachiche

XII Organization

Michail G. Lagoudakis
Niels Landwehr
Pedro Larranaga
Pavel Laskov
Mark Last
Dominique Laurent
Nada Lavrac
Quoc V. Le
Guy Lebanon
Ulf Leser
Jure Leskovec
Jessica Lin
Francesca A. Lisi
Pasquale Lops
Jose A. Lozano
Peter Lucas
Richard Maclin
Donato Malerba
Nikos Mamoulis
Suresh Manandhar
Stéphane Marchand-Maillet
Elena Marchiori
Lluis Marquez
Yuji Matsumoto
Michael May
Mike Mayo
Thorsten Meinl
Prem Melville
Rosa Meo
Taneli Mielikäinen
Bamshad Mobasher
Seraf́ın Moral
Katharina Morik
Hiroshi Motoda
Toshinori Munakata
Ion Muslea
Olfa Nasraoui
Jennifer Neville
Siegfried Nijssen
Joakim Nivre
Ann Nowe
Arlindo L. Oliveira
Santi Ontañón
Miles Osborne
Martijn van Otterlo

David Page
Spiros Papadimitriou
Srinivasan Parthasarathy
Andrea Passerini
Jose M. Peña
Lourdes Peña Castillo
José M. Peña Sánchez
James F. Peters
Johann Petrak
Lech Polkowski
Han La Poutre
Philippe Preux
Katharina Probst
Tapani Raiko
Ashwin Ram
Sheela Ramanna
Jan Ramon
Zbigniew W. Ras
Chotirat Ann Ratanamahatana
Francesco Ricci
John Riedl
Christophe Rigotti
Celine Robardet
Victor Robles
Marko Robnik-Sikonja
Juho Rousu
Céline Rouveirol
Ulrich Rückert (TU München)
Ulrich Rückert (Univ. Paderborn)
Stefan Rüping
Henryk Rybiński
Lorenza Saitta
Hiroshi Sakai
Roberto Santana
Martin Scholz
Matthias Schubert
Michele Sebag
Sandip Sen
Jouni K. Seppänen
Galit Shmueli
Arno Siebes
Alejandro Sierra
Vikas Sindhwani
Arul Siromoney
Dominik Ślȩzak

Organization XIII

Carlos Soares
Maarten van Someren
Alvaro Soto
Alessandro Sperduti
Jaideep Srivastava
Jerzy Stefanowski
David J. Stracuzzi
Jan Struyf
Gerd Stumme
Zbigniew Suraj
Einoshin Suzuki
Roman Swiniarski
Marcin Sydow
Piotr Synak
Marcin Szczuka
Luis Talavera
Matthew E. Taylor
Yannis Theodoridis
Kai Ming Ting
Ljupco Todorovski
Volker Tresp
Shusaku Tsumoto
Karl Tuyls
Michalis Vazirgiannis
Katja Verbeeck
Jean-Philippe Vert

Michail Vlachos
Haixun Wang
Jason Tsong-Li Wang
Takashi Washio
Gary M. Weiss
Sholom M. Weiss
Shimon Whiteson
Marco Wiering
Slawomir T. Wierzchoń
Graham J. Williams
Stefan Wrobel
Ying Yang
JingTao Yao
Yiyu Yao
François Yvon
Bianca Zadrozny
Mohammed J. Zaki
Gerson Zaverucha
Filip Zelezny
ChengXiang Zhai
Yi Zhang
Zhi-Hua Zhou
Jerry Zhu
Wojciech Ziarko
Albrecht Zimmermann

Additional Reviewers

Rezwan Ahmed
Fabio Aiolli
Dima Alberg
Vassilis Athitsos
Maurizio Atzori
Anne Auger
Paulo Azevedo
Pierpaolo Basile
Margherita Berardi
Andre Bergholz
Michele Berlingerio
Kanishka Bhaduri
Konstantin Biatov
Jerzy B�laszczyński
Gianluca Bontempi
Yann-ael Le Borgne

Zoran Bosnic
Remco Bouckaert
Agnès Braud
Bjoern Bringmann
Emma Byrne
Olivier Caelen
Rossella Cancelliere
Giovanna Castellano
Michelangelo Ceci
Hyuk Cho
Kamalika Das
Souptik Datta
Uwe Dick
Laura Dietz
Marcos Domingues
Haimonti Dutta

XIV Organization

Marc Dymetman
Stefan Eickeler
Timm Euler
Tanja Falkowski
Fernando Fernandez
Francisco J. Ferrer-Troyano
Cèsar Ferri
Daan Fierens
Blaz Fortuna
Alexandre Francisco
Mingyan Gao
Fabián Güiza
Anna Lisa Gentile
Amol N. Ghoting
Arnaud Giacometti
Valentin Gjorgjioski
Robby Goetschalckx
Derek Greene
Perry Groot
Philip Groth
Daniele Gunetti
Bernd Gutmann
Sattar Hashemi
Yann-Michael De Hauwere
Vera Hollink
Yi Huang
Leo Iaquinta
Alexander Ilin
Tasadduq Imam
Tao-Yuan Jen
Felix Jungermann
Andrzej Kaczmarek
Benjamin Haibe Kains
Juha Karkkainen
Rohit Kate
Chris Kauffman
Arto Klami
Jiri Klema
Dragi Kocev
Christine Koerner
Kevin Kontos
Petra Kralj
Anita Krishnakumar
Matjaž Kukar
Brian Kulis

Arnd Christian König
Christine Körner
Fei Tony Liu
Antonio LaTorre
Anne Laurent
Baoli Li
Zi Lin
Bin Liu
Yan Liu
Corrado Loglisci
Rachel Lomasky
Carina Lopes
Chuan Lu
Pierre Mahé
Markus Maier
Giuseppe Manco
Irina Matveeva
Nicola Di Mauro
Dimitrios Mavroeidis
Stijn Meganck
Ingo Mierswa
Mirjam Minor
Abhilash Alexander Miranda
João Moreira
Sourav Mukherjee
Canh Hao Nguyen
Duc Dung Nguyen
Tuan Trung Nguyen
Janne Nikkilä
Xia Ning
Blaž Novak
Irene Ntoutsi
Riccardo Ortale
Stanis�law Osiński
Kivanc Ozonat
Aline Paes
Pance Panov
Thomas Brochmann Pedersen
Maarten Peeters
Ruggero Pensa
Xuan-Hieu Phan
Benjarath Phoophakdee
Aloisio Carlos de Pina
Christian Plagemann
Jose M. Puerta

Organization XV

Aritz Pérez
Chedy Raissi
M. Jose Ramirez-Quintana
Umaa Rebbapragada
Stefan Reckow
Chiara Renso
Matthias Renz
Francois Rioult
Domingo Rodriguez-Baena
Sten Sagaert
Luka Šajn
Esin Saka
Saeed Salem
Antonio Salmeron
Eerika Savia
Anton Schaefer
Leander Schietgat
Gaetano Scioscia
Howard Scordio
Sven Van Segbroeck
Ivica Slavkov
Larisa Soldatova
Arnaud Soulet
Eduardo Spynosa
Volkmar Sterzing
Christof Stoermann
Jiang Su
Piotr Szczuko

Alexander Tartakovski
Olivier Teytaud
Marisa Thoma
Eufemia Tinelli
Ivan Titov
Roberto Trasarti
George Tsatsaronis
Katharina Tschumitschew
Duygu Ucar
Antonio Varlaro
Shankar Vembu
Celine Vens
Marcos Vieira
Peter Vrancx
Nikil Wale
Chao Wang
Dongrong Wen
Arkadiusz Wojna
Yuk Wah Wong
Adam Woźnica
Michael Wurst
Wei Xu
Xintian Yang
Monika Zakova
Luke Zettlemoyer
Xueyuan Zhou
Albrecht Zimmermann

Sponsors

We wish to express our gratitude to the sponsors of ECML/PKDD 2007 for
their essential contribution to the conference. We wish to thank Warsaw Uni-
versity, Faculty of Mathematics, Informatics and Mechanics, and Institute of
Computer Science, Polish Academy of Sciences for providing financial and orga-
nizational means for the conference; the European Office of Aerospace Research
and Developement, Air Force Office of Scientific Research, United States Air
Force Research Laboratory, for their generous financial support.1 KDUbiq Eu-
ropean Coordination Action for supporting Poster Reception, Student Travel
Awards, and the Best Paper Awards; Pascal European Network of Excellence
for sponsoring the Invited Speaker Program, the Industrial Track and the video-
recording of the invited talks and presentations of the four Award Papers; Jožef
Stefan Institute, Slovenia, SEKT European Integrated project and Unilever R
& D for their financial support; the Machine Learning Journal for supporting
the Student Best Paper Awards; Gemius S.A. for sponsoring and supporting
the Discovery Challenge. We also wish to express our gratitude to the following
companies and institutions that provided us with data and expertise which were
essential components of the Discovery Challenge: Bee Ware, l’École des Mines
d’Alès, LIRMM - The Montpellier Laboratory of Computer Science, Robotics,
and Microelectronics, and Warsaw University, Faculty of Mathematics, Informa-
tics and Mechanics. We also acknowledge the support of LOT Polish Airlines.

1 AFOSR/EOARD support is not intended to express or imply endorsement by the
U.S. Federal Government.

Table of Contents

Invited Talks

Learning, Information Extraction and the Web . 1
Tom M. Mitchell

Putting Things in Order: On the Fundamental Role of Ranking in
Classification and Probability Estimation . 2

Peter A. Flach

Mining Queries . 4
Ricardo Baeza-Yates

Adventures in Personalized Information Access . 5
Barry Smyth

Long Papers

Statistical Debugging Using Latent Topic Models . 6
David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu

Learning Balls of Strings with Correction Queries . 18
Leonor Becerra Bonache, Colin de la Higuera,
Jean-Christophe Janodet, and Frédéric Tantini

Neighborhood-Based Local Sensitivity . 30
Paul N. Bennett

Approximating Gaussian Processes with H2-Matrices 42
Steffen Börm and Jochen Garcke

Learning Metrics Between Tree Structured Data: Application to Image
Recognition . 54

Laurent Boyer, Amaury Habrard, and Marc Sebban

Shrinkage Estimator for Bayesian Network Parameters 67
John Burge, Terran Lane

Level Learning Set: A Novel Classifier Based on Active Contour
Models . 79

Xiongcai Cai and Arcot Sowmya

Learning Partially Observable Markov Models from First Passage
Times . 91

Jérôme Callut and Pierre Dupont

XX Table of Contents

Context Sensitive Paraphrasing with a Global Unsupervised
Classifier . 104

Michael Connor and Dan Roth

Dual Strategy Active Learning . 116
Pinar Donmez, Jaime G. Carbonell, and Paul N. Bennett

Decision Tree Instability and Active Learning . 128
Kenneth Dwyer and Robert Holte

Constraint Selection by Committee: An Ensemble Approach to
Identifying Informative Constraints for Semi-supervised Clustering 140

Derek Greene and Pádraig Cunningham

The Cost of Learning Directed Cuts . 152
Thomas Gärtner and Gemma C. Garriga

Spectral Clustering and Embedding with Hidden Markov Models 164
Tony Jebara, Yingbo Song, and Kapil Thadani

Probabilistic Explanation Based Learning . 176
Angelika Kimmig, Luc De Raedt, and Hannu Toivonen

Graph-Based Domain Mapping for Transfer Learning in General
Games . 188

Gregory Kuhlmann and Peter Stone

Learning to Classify Documents with Only a Small Positive Training
Set . 201

Xiao-Li Li, Bing Liu, and See-Kiong Ng

Structure Learning of Probabilistic Relational Models from Incomplete
Relational Data . 214

Xiao-Lin Li and Zhi-Hua Zhou

Stability Based Sparse LSI/PCA: Incorporating Feature Selection in
LSI and PCA . 226

Dimitrios Mavroeidis and Michalis Vazirgiannis

Bayesian Substructure Learning - Approximate Learning of Very Large
Network Structures . 238

Andreas Nägele, Mathäus Dejori, and Martin Stetter

Efficient Continuous-Time Reinforcement Learning with Adaptive
State Graphs . 250

Gerhard Neumann, Michael Pfeiffer, and Wolfgang Maass

Source Separation with Gaussian Process Models . 262
Sunho Park and Seungjin Choi

Table of Contents XXI

Discriminative Sequence Labeling by Z-Score Optimization 274
Elisa Ricci, Tijl de Bie, and Nello Cristianini

Fast Optimization Methods for L1 Regularization: A Comparative
Study and Two New Approaches . 286

Mark Schmidt, Glenn Fung, and Rómer Rosales

Bayesian Inference for Sparse Generalized Linear Models 298
Matthias Seeger, Sebastian Gerwinn, and Matthias Bethge

Classifier Loss Under Metric Uncertainty . 310
David B. Skalak, Alexandru Niculescu-Mizil, and Rich Caruana

Additive Groves of Regression Trees . 323
Daria Sorokina, Rich Caruana, and Mirek Riedewald

Efficient Computation of Recursive Principal Component Analysis for
Structured Input . 335

Alessandro Sperduti

Hinge Rank Loss and the Area Under the ROC Curve 347
Harald Steck

Clustering Trees with Instance Level Constraints . 359
Jan Struyf and Sašo Džeroski

On Pairwise Naive Bayes Classifiers . 371
Jan-Nikolas Sulzmann, Johannes Fürnkranz, and Eyke Hüllermeier

Separating Precision and Mean in Dirichlet-Enhanced High-Order
Markov Models . 382

Rikiya Takahashi

Safe Q-Learning on Complete History Spaces . 394
Stephan Timmer and Martin Riedmiller

Random k-Labelsets: An Ensemble Method for Multilabel
Classification . 406

Grigorios Tsoumakas and Ioannis Vlahavas

Seeing the Forest Through the Trees: Learning a Comprehensible
Model from an Ensemble . 418

Anneleen Van Assche and Hendrik Blockeel

Avoiding Boosting Overfitting by Removing Confusing Samples 430
Alexander Vezhnevets and Olga Barinova

Planning and Learning in Environments with Delayed Feedback 442
Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman

XXII Table of Contents

Analyzing Co-training Style Algorithms . 454
Wei Wang and Zhi-Hua Zhou

Policy Gradient Critics . 466
Daan Wierstra and Jürgen Schmidhuber

An Improved Model Selection Heuristic for AUC . 478
Shaomin Wu, Peter Flach, and Cèsar Ferri

Finding the Right Family: Parent and Child Selection for Averaged
One-Dependence Estimators . 490

Fei Zheng and Geoffrey I. Webb

Short Papers

Stepwise Induction of Multi-target Model Trees . 502
Annalisa Appice and Saso Džeroski

Comparing Rule Measures for Predictive Association Rules 510
Paulo J. Azevedo and Aĺıpio M. Jorge

User Oriented Hierarchical Information Organization and Retrieval 518
Korinna Bade, Marcel Hermkes, and Andreas Nürnberger

Learning a Classifier with Very Few Examples: Analogy Based
and Knowledge Based Generation of New Examples for Character
Recognition . 527

S. Bayoudh, H. Mouchère, L. Miclet, and E. Anquetil

Weighted Kernel Regression for Predicting Changing Dependencies 535
Steven Busuttil and Yuri Kalnishkan

Counter-Example Generation-Based One-Class Classification 543
András Bánhalmi, András Kocsor, and Róbert Busa-Fekete

Test-Cost Sensitive Classification Based on Conditioned Loss
Functions . 551

Mumin Cebe and Cigdem Gunduz-Demir

Probabilistic Models for Action-Based Chinese Dependency Parsing 559
Xiangyu Duan, Jun Zhao, and Bo Xu

Learning Directed Probabilistic Logical Models: Ordering-Search
Versus Structure-Search . 567

Daan Fierens, Jan Ramon, Maurice Bruynooghe, and
Hendrik Blockeel

A Simple Lexicographic Ranker and Probability Estimator 575
Peter Flach and Edson Takashi Matsubara

Table of Contents XXIII

On Minimizing the Position Error in Label Ranking 583
Eyke Hüllermeier and Johannes Fürnkranz

On Phase Transitions in Learning Sparse Networks 591
Goele Hollanders, Geert Jan Bex, Marc Gyssens,
Ronald L. Westra, and Karl Tuyls

Semi-supervised Collaborative Text Classification . 600
Rong Jin, Ming Wu, and Rahul Sukthankar

Learning from Relevant Tasks Only . 608
Samuel Kaski and Jaakko Peltonen

An Unsupervised Learning Algorithm for Rank Aggregation 616
Alexandre Klementiev, Dan Roth, and Kevin Small

Ensembles of Multi-Objective Decision Trees . 624
Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski

Kernel-Based Grouping of Histogram Data . 632
Tilman Lange and Joachim M. Buhmann

Active Class Selection . 640
R. Lomasky, C.E. Brodley, M. Aernecke, D. Walt, and M. Friedl

Sequence Labeling with Reinforcement Learning and Ranking
Algorithms . 648

Francis Maes, Ludovic Denoyer, and Patrick Gallinari

Efficient Pairwise Classification . 658
Sang-Hyeun Park and Johannes Fürnkranz

Scale-Space Based Weak Regressors for Boosting . 666
Jin-Hyeong Park and Chandan K. Reddy

K-Means with Large and Noisy Constraint Sets . 674
Dan Pelleg and Dorit Baras

Towards ‘Interactive’ Active Learning in Multi-view Feature Sets for
Information Extraction . 683

Katharina Probst and Rayid Ghani

Principal Component Analysis for Large Scale Problems with Lots of
Missing Values . 691

Tapani Raiko, Alexander Ilin, and Juha Karhunen

Transfer Learning in Reinforcement Learning Problems Through
Partial Policy Recycling . 699

Jan Ramon, Kurt Driessens, and Tom Croonenborghs

XXIV Table of Contents

Class Noise Mitigation Through Instance Weighting 708
Umaa Rebbapragada and Carla E. Brodley

Optimizing Feature Sets for Structured Data . 716
Ulrich Rückert and Stefan Kramer

Roulette Sampling for Cost-Sensitive Learning . 724
Victor S. Sheng and Charles X. Ling

Modeling Highway Traffic Volumes . 732
Tomáš Šingliar and Miloš Hauskrecht

Undercomplete Blind Subspace Deconvolution Via Linear Prediction . . . 740
Zoltán Szabó, Barnabás Póczos, and András Lörincz

Learning an Outlier-Robust Kalman Filter . 748
Jo-Anne Ting, Evangelos Theodorou, and Stefan Schaal

Imitation Learning Using Graphical Models . 757
Deepak Verma and Rajesh P.N. Rao

Nondeterministic Discretization of Weights Improves Accuracy of
Neural Networks . 765

Marcin Wojnarski

Semi-definite Manifold Alignment . 773
Liang Xiong, Fei Wang, and Changshui Zhang

General Solution for Supervised Graph Embedding 782
Qubo You, Nanning Zheng, Shaoyi Du, and Yang Wu

Multi-objective Genetic Programming for Multiple Instance Learning . . . 790
Amelia Zafra and Sebastián Ventura

Exploiting Term, Predicate, and Feature Taxonomies in
Propositionalization and Propositional Rule Learning 798

Monika Žáková and Filip Železný

Author Index . 807

Learning, Information Extraction and the Web�

Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University, USA
tom.mitchell@cs.cmu.edu

Abstract. Significant progress has been made recently in semi-supervised learn-
ing algorithms that require less labeled training data by utilizing unlabeled data.
Much of this progress has been made in the context of natural language analysis
(e.g., semi-supervised learning for named entity recognition and for relation ex-
traction). This talk will overview progress in this area, present some of our own
recent research, and explore the possibility that now is the right time to mount
a community-wide effort to develop a never-ending natural language learning
system.

� Invited speakers at ECML/PKDD are supported by the PASCAL European network of
excellence.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Putting Things in Order: On the Fundamental Role of
Ranking in Classification and Probability Estimation�

Peter A. Flach

Department of Computer Science, University of Bristol, United Kingdom
Peter.Flach@bristol.ac.uk

Abstract. While a binary classifier aims to distinguish positives from negatives,
a ranker orders instances from high to low expectation that the instance is positive.
Most classification models in machine learning output some score of ‘positive-
ness’, and hence can be used as rankers. Conversely, any ranker can be turned into
a classifier if we have some instance-independent means of splitting the ranking
into positive and negative segments. This could be a fixed score threshold; a point
obtained from fixing the slope on the ROC curve; the break-even point between
true positive and true negative rates; to mention just a few possibilities.

These connections between ranking and classification notwithstanding, there
are considerable differences as well. Classification performance on n examples
is measured by accuracy, an O(n) operation; ranking performance, on the other
hand, is measured by the area under the ROC curve (AUC), an O(n logn) oper-
ation. The model with the highest AUC does not necessarily dominate all other
models, and thus it is possible that another model would achieve a higher accu-
racy for certain operating conditions, even if its AUC is lower.

However, within certain model classes good ranking performance and good
classification performance are more closely related than suggested by the pre-
vious remarks. For instance, there is evidence that certain classification models,
while designed to optimise accuracy, in effect optimise an AUC-based loss func-
tion [1]. It has also been known for some time that decision tree yield convex
training set ROC curves by construction [2], and thus optimising training set ac-
curacy is likely to lead to good training set AUC. In this talk I will investigate the
relation between ranking and classification more closely.

I will also consider the connection between ranking and probability estima-
tion. The quality of probability estimates can be measured by, e.g., mean squared
error in the probability estimates (the Brier score). However, like accuracy, this
is an O(n) operation that doesn’t fully take ranking performance into account. I
will show how a novel decomposition of the Brier score into calibration loss and
refinement loss [3] sheds light on both ranking and probability estimation perfor-
mance. While previous decompositions are approximate [4], our decomposition
is an exact one based on the ROC convex hull. (The connection between the ROC
convex hull and calibration was independently noted by [5]). In the case of deci-
sion trees, the analysis explains the empirical evidence that probability estimation
trees produce well-calibrated probabilities [6].

� Invited speakers at ECML/PKDD are supported by the PASCAL European network of
excellence.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 2–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Putting Things in Order: On the Fundamental Role of Ranking 3

References

1. Rudin, C., Cortes, C., Mohri, M., Schapire, R.E.: Margin-based ranking meets boosting in
the middle. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 63–78.
Springer, Heidelberg (2005)

2. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees using the area under the
ROC curve. In: Proceedings of the Nineteenth International Conference on Machine Learning
(ICML 2002), pp. 139–146. Morgan Kaufmann, San Francisco (2002)

3. Flach, P.A., Matsubara, E.T.: A simple lexicographic ranker and probability estimator. In:
Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A.
(eds.) ECML 2007. LNCS, vol. 4701, Springer, Heidelberg (2007)

4. Cohen, I., Goldszmidt, M.: Properties and benefits of calibrated classifiers. In: Boulicaut, J.-
F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp.
125–136. Springer, Heidelberg (2004)

5. Fawcett, T., Niculescu-Mizil, A.: PAV and the ROC convex hull. Machine Learning 68(1),
97–106 (2007)

6. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In:
Proceedings of the Twenty-Second International Conference on Machine Learning (ICML
2005), pp. 625–632. ACM, New York (2005)

Mining Queries�

Ricardo Baeza-Yates

Yahoo! Research, Barcelona, Spain
and Yahoo! Research Latin America, Santiago, Chile

ricardo.baeza@upf.edu

Abstract. User queries in search engines and Websites give valuable information
on the interests of people. In addition, clicks after queries relate those interests to
actual content. Even queries without clicks or answers imply important missing
synonyms or content. In this talk we show several examples on how to use this
information to improve the performance of search engines, to recommend better
queries, to improve the information scent of the content of a Website and ulti-
mately to capture knowledge, as Web queries are the largest wisdom of crowds
in Internet.

� Invited speakers at ECML/PKDD are supported by the PASCAL European network of
excellence.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, p. 4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Adventures in Personalized Information Access�

Barry Smyth

Adaptive Information Cluster, School of Computer Science and Informatics,
University College Dublin, Ireland

barry.smyth@ucd.ie

Abstract. Access to information plays an increasingly important role in our ev-
eryday lives and we have come to rely more and more on a variety of information
access services to bring us the right information at the right time. Recently the
traditional one-size-fits-all approach, which has informed the development of the
majority of today’s information access services, from search engines to portals,
has been brought in to question as researchers consider the advantages of more
personalized services. Such services can respond to the learned needs and pref-
erences of individuals and groups of like-minded users. They provide for a more
proactive model of information supply in place of today’s reactive models of in-
formation search. In this talk we will consider the key challenges that motivate
the need for a new generation of personalized information services, as well as the
pitfalls that lie in wait. We will focus on a number of different information access
scenarios, from e-commerce recommender systems and personalized mobile por-
tals to community-based web search. In each case we will describe how different
machine learning and data mining ideas have been harnessed to take advantage
of key domain constraints in order to deliver information access interfaces that
are capable of adapting to the changing needs and preferences of their users. In
addition, we will describe the results of a number of user studies that highlight
the potential for such technologies to significantly enhance the user experience
and the ability of users to locate relevant information quickly and reliably.

� Invited speakers at ECML/PKDD are supported by the PASCAL European network of
excellence.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, p. 5, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Statistical Debugging Using Latent Topic Models�

David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu

Computer Sciences Department, University of Wisconsin, Madison WI 53706, USA

Abstract. Statistical debugging uses machine learning to model program fail-
ures and help identify root causes of bugs. We approach this task using a novel
Delta-Latent-Dirichlet-Allocation model. We model execution traces attributed
to failed runs of a program as being generated by two types of latent topics: nor-
mal usage topics and bug topics. Execution traces attributed to successful runs of
the same program, however, are modeled by usage topics only. Joint modeling of
both kinds of traces allows us to identify weak bug topics that would otherwise
remain undetected. We perform model inference with collapsed Gibbs sampling.
In quantitative evaluations on four real programs, our model produces bug topics
highly correlated to the true bugs, as measured by the Rand index. Qualitative
evaluation by domain experts suggests that our model outperforms existing sta-
tistical methods for bug cause identification, and may help support other software
tasks not addressed by earlier models.

1 Introduction

We all depend on buggy software. Computers and computer failures are inescapable
features of modern life. As software grows ever more complex and more dynamic, per-
fectly predicting the (mis)behavior of a software application becomes impossible both
in theory and in practice. Therefore, we see increasing interest in statistical debugging:
the use of statistical machine learning to support debugging. Statistical methods can
cope with uncertain and incomplete information while still providing best-e�ort clues
about the causes of software failure. In particular, one can collect examples of suc-
cessful and failed (e.g., crashed) program runs, then use machine learning techniques
to identify those software actions which are strongly associated with program failure.
Our goal is not to predict whether a run succeeded or failed, but to identify potentially
multiple types of bugs in the program.

In contrast with earlier work [1,2,3,4,5,6,7,8] we approach this task using latent topic
models. These models, such as probabilistic Latent Semantic Analysis [9] and Latent
Dirichlet Allocation (LDA [10]), have been successfully applied to model natural lan-
guage documents [11], images [12] and so on. The contribution of the present work is
two-fold:

1. To the best of our knowledge, our work is the first to apply latent topic models
to debugging. We employ a novel variant of the LDA model. Each run of a program
yields a record of its execution behavior. This record is our document; the words in the

� This research was supported in part by AFOSR Grant FA9550-07-1-0210, NSF Grant CCF-
0621487, and NLM Training Grant 5T15LM07359.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 6–17, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

Statistical Debugging Using Latent Topic Models 7

document are the events that have been recorded. We describe these records in greater
detail in section 2. We assume that there are multiple hidden bug topics, each with its
own multinomial word distribution. The record for each failed run consists partly of
words generated from a mixture of the bug topics. The task is to automatically infer the
bug topics and mixing weights from multiple runs of the program. We would prefer that
bug topics and bug causes had a one-to-one correspondence. This is not a property that
our analysis guarantees, but we have found that in practice it is likely.

2. Our latent topic model, Delta Latent Dirichlet Allocation (�LDA), can identify
weak bug topics from strong interference, while existing latent topic models cannot. In
statistical debugging, our primary interest is in the bug topics. For example, a particular
bug might trigger a specific segment of code, and produce the corresponding words.
However, in a typical run such bug word patterns are overwhelmed by much stronger
usage word patterns (e.g., code to open a file or to print a page), which are executed
more frequently and produce more words. As shown in the literature [8] as well as
in our experiments, many standard models are confused by usage patterns and cannot
identify bug topics satisfactorily. We explicitly model both bug topics and usage topics
on a collection of reports from both failed and successful runs.�LDA models successful
runs using only usage topics, and failed runs with both usage and bug topics. Thus, the
bug topics are forced to explain the di�erences between successful runs and failed runs,
hence the name �LDA.

We review concepts of statistical debugging in section 2, present the �LDA model
and its collapsed Gibbs sampling inference procedure in section 3, and demonstrate its
e�ectiveness for debugging with both a synthetic example and four real programs, i.e.,
����, ����, ����, and 	
��, in section 4. For the task of helping humans identify root
causes of bugs, our �LDA model performs as well or better than the best previously-
proposed statistical methods. Furthermore, it supports related debugging tasks not con-
templated by prior work. These benefits are all built upon a single integrated model with
a coherent interpretation in both machine-learning and software-engineering terms.

2 Cooperative Bug Isolation

The Cooperative Bug Isolation Project (CBI) is an ongoing e�ort to enlist large user
communities to isolate and ultimately repair the causes of software bugs [13]. Statistical
debugging is a critical component of CBI as it allows us to cope with unreliable and
incomplete information about failures in deployed software systems. In this section
we briefly review the CBI approach and infrastructure to show how it maps software
behavior into a document-and-word model suitable for latent topic analysis.

The data for CBI analysis consists of reports generated by instrumented versions of
software applications. The code inserted by the CBI instrumentor passively logs many
program-internal events of potential interest to bug-hunting software engineers while
the software application is being executed. Interesting events may include the direction
taken when a branch (�� statement) is executed, whether a function call returns a nega-
tive, zero, or positive result, the presence of unusual floating-point values, and so forth.
Via the instrumentation, each run of a program generates a sequence of recorded events.
This sequence is the “document”; the recorded events are the “word tokens”. The set of

8 D. Andrzejewski et al.

all possible events that can be recorded by the instrumentation code corresponds to the
set of “word types”.

Instrumentation code is distributed throughout the source code of a program. Even
a medium-sized program can have hundreds of thousands of instrumentation points
(word types); a single event (word token) may occur millions of times during a single
run. For reasons of performance, scalability, and user privacy, we cannot record every
event. Instead, events are sparsely sampled during each run. A typical sampling rate is
1�100, meaning each event has only a 1�100 chance of being observed and recorded each
time it occurs. More sophisticated instrumentation can adapt the sampling rate to the
expected number of occurrences of a given event, sampling rare events at a higher rate
and common events at a lower rate, and thereby increasing the probability that a rare
event will be recorded if it occurs. A second practical measure is to discard all event
ordering information, and instead report the number of times an event was recorded. A
single run, then, results in a single fixed-length vector of event counts, called a feedback
report. The data in any single feedback report is an incomplete but unbiased random
sample of the behavior during that run. In machine-learning terms, a feedback report is
a “bag of words” representation of the document generated by a run.

Feedback reports are collected centrally for aggregation and analysis. Reports may
come from real users participating in the ongoing CBI public deployment [14] or may
be produced in-house with fixed or randomly-generated test suites. Each feedback re-
port carries one additional piece of information: an outcome flag recording whether this
run succeeded or failed. In the simplest case, all fatal software crashes might be consid-
ered “failures” and all non-crashing runs considered “successes.” More sophisticated
flagging strategies such as comparing program output against that of a known-good
reference implementation may also be used.

For any program of non-trivial complexity, we must further assume that there are an
unknown number of latent bugs. Because instrumentation is so broad, we must assume
that the vast majority of program events are not directly connected to any given bug.
Thus, the bug “signal” is both noisy due to sparse sampling and weak relative to the
majority non-buggy behavior of the program.

The statistical debugging challenge, then, is as follows. Given a large collection of
feedback reports of a program, where each report is flagged according to whether the
run succeeded or failed, and where there may be a number of bugs, i.e., causes for
failure, distinguish among these causes of failure, identify events that contributed to
a failure and are connected with its underlying cause, and use this information to help
support the debugging process in particular and software understanding more broadly.

3 The �LDA Model

Standard LDA [10] models a single document collection. For example, when applied
to a collection of failed runs only, standard LDA is likely to recover stronger usage
patterns rather than generally weaker bug patterns. In contrast, �LDA models a mixed
collection of successful and failed runs. We reserve extra bug topics for failed runs in
order to capture the weaker bug patterns. By explicitly modeling successful vs. failed

Statistical Debugging Using Latent Topic Models 9

β
u

φ
u

Nu

β b φb
Nb

θ

α f

α s
zw

D
o

dN

Fig. 1. The �LDA model

runs, and usage vs. bug topics, �LDA is able to recover the weak bug topics more
clearly. The �LDA model (Figure 1) has the following major components:

(i) There are Nu usage topics �u, and Nb bug topics �b. These are sampled from two
Dirichlet distributions: �u � Dir(�u), �b � Dir(�b). We distinguish �u and �b (instead
of a single �) to facilitate the incorporation of certain types of domain knowledge. For
example, if we believe that some parts of the software are more error-prone (e.g., less
tested) than others, then the bug topics may focus more on the corresponding words.

(ii) There are a total of D documents. Each document has an observed outcome flag
o � �s� f � for successful and failed run, respectively. These D documents constitute the
mixed collection of successful and failed runs.

(iii) Each document is generated as a “bag of words” by a mixture of the Nu � Nb

topics. The mixing weight � is sampled from one of two Dirichlet distributions �s or
� f , depending on the outcome flag o: � � Dir(�o). In the simplest case, the elements in
�s that correspond to bug topics are set to zero, ensuring that any successful run will not
use any bug topic1. By contrast, all the elements of � f are greater than zero, allowing
failed runs to use both usage and bug topics.

(iv) The rest of the model is identical to LDA: for each of the Nd word positions
in the document, one samples a topic index z � Multi(�), z � �1� � � � � Nu � Nb�, and
produces a word w � Multi(�z).

The �LDA model thus specifies the conditional probability p(w�o� �u� �b� �s� � f),
where we use bold face to denote sequences of variables. Omitting hyperparameters
for notational simplicity, this can be computed as p(w�o) �

�
z p(w�z)p(z�o), where

p(w�z) �
Nu�Nb�

i

�
p(�i��

u� �b)
W�
j

�i j
ni

j d�i (1)

p(z�o) �
D�
d

�
p(�d �od� �

s� � f)
Nu�Nb�

i

�di
nd

i d�d � (2)

Here W is the vocabulary size, ni
j is the number of times word-type j is assigned to

topic i, and nd
i is the number of times topic i occurs in document d. Also, �i j is the

probability of word j being generated by topic i and �di is the probability of using topic
i in document d.

1 It is straightforward to allow small but non-zero bug topic weights for successful runs. This is
useful if we believe some runs were a�ected by bugs but did not fail.

10 D. Andrzejewski et al.

3.1 Inference

We are interested in the hidden variables z� �� �. We can draw z samples from the pos-
terior p(z�w� o) using Markov Chain Monte Carlo (MCMC). In particular, we use col-
lapsed Gibbs sampling [11], drawing from p(zk � i�z�k�w� o) for each site k in sequence.
This inference procedure is linear in the number of samples taken, the total number of
topics used, and the size of the corpus. Since

p(zk � i�z�k�w� o) �
p(zk � i� z�k�w�o)�
i� p(zk � i�� z�k�w�o)

� (3)

the site conditionals can be computed from the joint p(z�w�o) � p(z�o)p(w�z), as given
in (1) and (2). The Dirichlet priors can then be integrated out (“collapsed”) in (1) and
(2), resulting in the following multivariate Pólya distributions:

p(w�z) �
Nu�Nb�

i

��������
�(

�W
j� �

i
j�)

�(
�W

j� �
i
j� � ni

�)

W�
j

�(ni
j � �i

j)

�(�i
j)

�������	 (4)

p(z�o) �
D�
d

��������
�(

�Nu�Nb
i� �

od
i�)

�(
�Nu�Nb

i� �
od
i� � nd

�)

Nu�Nb�
i

�(nd
i � �

od
i)

�(�od
i)

�������	 � (5)

Here ni
� is the count of all words assigned to topic i, and nd

� is the count of all words
contained in document d. �i

j is the hyperparameter associated with word j in topic i,

where �i is �u if i is a usage topic and �b if it is a bug topic. �od
i is the hyperparameter

associated with topic i for outcome flag value od. Rearranging (4) and (5) yields

p(zk � i�z�k�w� o) �

�������
ni
�k� jk

� �i
jk

ni
�k��

�
�W

j� �
i
j�

�������

�������

ndk

�k�i � �
ok
i

ndk

�k��
�
�Nu�Nb

i� �
ok
i�

������� � (6)

In this equation, all “n�k” are counts excluding the word or topic assignment at position
k. Also, jk is the word at position k, dk is the document containing position k, and ok

is the outcome flag associated with dk. This equation allows us to perform collapsed
Gibbs sampling eÆciently using easily obtainable count values. Note that for topics i
such that �ok

i � 0, the count nd
�k�i is also 0, meaning that topic i will never be assigned

to this word.
After the MCMC chain mixes, we can use a single sample from the posterior p(z�w� o)

to estimate �i, the multinomial over words for topic i, and �d, the topic mixture weights
for document d:

�̂i j �
ni

j � �i
j

ni
� �

�W
j� �

i
j�

(7) �̂di �
nd

i � �
od
i

nd
� �

�Nu�Nb
i� �

od
i�

� (8)

We use domain expert knowledge to set the hyperparameters �s, � f , �u, �b, as well
as the number of usage and bug topics Nu, Nb. Hyperparameter values used are not spe-
cially fitted to our data and should perform well in a variety of situations. Alternatively,
these values could be estimated from the data using Bayesian model evidence maxi-
mization. This involves finding the values which maximizes the evidence, p(w�o). In

Statistical Debugging Using Latent Topic Models 11

(a) (c)

(b) (d)

Fig. 2. A toy example showing �LDA’s ability to recover weak bug topics. (a) Truth: 8 usage
topics and 3 bug topics; (b) Example success (left) and failure (right) documents; (c) �LDA
successfully recovers the usage and bug topics; (d) Standard LDA cannot recover or identify bug
topics.

particular, the Gibbs sampling technique employed by our model allows the convenient
estimation of the evidence by importance sampling, using z samples drawn from our
MCMC chain [15].

4 Experiments

4.1 A Toy Example

We first use a toy dataset to demonstrate �LDA’s ability to identify bug topics. The
vocabulary consists of 25 pixels in a 5-by-5 grid. We use 8 usage topics and 3 bug
topics as in Figure 2(a). Each of the 8 usage topics corresponds to a uniform distri-
bution over a 2-pixel wide horizontal or vertical bar. Each of the 3 bug topics corre-
sponds to a uniform distribution over the pixels in a small “x”. In all diagrams, each
image also has a 1-pixel black frame for visibility, which does not correspond to any
vocabulary word. We generate 2000 documents of length 100 with these topics ac-
cording to the procedure described in Section 3. Half of the documents are “successful
runs” and the other half “failed runs.” For the topic mixture hyperparameters, we use
�s � [1� 1� 1� 1� 1� 1� 1� 1� 0� 0� 0] and � f � [1� 1� 1� 1� 1� 1� 1� 1� 0�1� 0�1� 0�1]. This means
that the bug topics are never present in the od � s (successful) documents, and tend to
be only weakly present in the od � f (failed) documents. Some example documents
from this generated corpus are shown in Figure 2(b).

We then run �LDA and standard LDA [11, using code at �������������������
���������������
���	������

��
���] on the toy dataset. In order to give
standard LDA the best chance of identifying the bug topics, it is run on od � f docu-
ments only2, using 11 topics. �LDA is run on all documents, using 8 usage topics and
3 bug topics. �LDA is supplied with the true � vectors used to generate the data, but
the standard LDA implementation used in this experiment only allows a symmetric �

hyperparameter (where all values in the � vector have the same value). Therefore we
supply the standard LDA model with the symmetric hyperparameter � � 1. Further
experiments (not shown here) using a di�erent implementation of standard LDA and
the true � f vector achieve similar results. Both models use the same symmetric hyper-
parameter � � 1 (which is not actually used to generate the data because the topics
are fixed). Both MCMC chains are run for 2000 full samples, after which � and � are
estimated from the final sample as described above.

2 Additional experiments (not shown here) validate the intuition that the inclusion of od � s
documents does not improve the recovery of bug topics with standard LDA.

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

12 D. Andrzejewski et al.

Table 1. General information about test programs

Runs Topics

Program Lines of Code Bugs Successful Failing Word Types Usage Bug

���� [16] 10,611 2 352 30 20 7 2
���� [17,18] 15,721 2 609 200 2,071 5 2
���� [17,18] 8,960 2 29 186 3,929 5 2
	
�� [19] 35,223 8 1,727 1,228 1,982 14 8

The estimated topics for �LDA are shown in Figure 2(c), and the estimated topics
for standard LDA are shown in Figure 2(d). �LDA is able to recover the true underlying
usage and bug topics quite cleanly. On the other hand, standard LDA is unable to sepa-
rate and identify bug topics, either mixing them with usage topics or simply duplicating
usage topics. The toy example clearly shows the superiority of �LDA over standard
LDA in this setting.

4.2 Real Programs

While �LDA performs well on our toy example, real programs are orders of magni-
tude more complex. We have applied �LDA to CBI feedback reports from four buggy
C programs, details of which appear in Table 1. Bugs are naturally-occurring (����),
hand-seeded (����, ����), or both (
��). All four programs are in use by real users or
are directly derived from real-world code. Test inputs are randomly-generated among
reasonable inputs for each program, and “failure” is defined as crashing or producing
output di�erent from a known-correct reference implementation. Hand-coded “bug or-
acles” provide ground truth as to which bugs were actually triggered in any given run.
For our experiments on ���� and ���� we used test suites supplied by the SIR reposi-
tory developers [18]. For ���� and 	
�� tests were generated using randomly selected
command line flags and inputs. Feedback data is non-uniformly sampled during pro-
gram execution as in prior work [5].

For these experiments, all hyperparameters used are symmetric, and the same hyper-
parameter settings are used for all programs. We set �u � �b � 0�1, and nonzero entries
of �s � � f � 0�5 to encourage sparsity. The number of topics for each program are cho-
sen according to domain expert advice. The number of bug topics Nb for each program
is set equal to the number of distinct bugs known to be manifested in our dataset, with
the goal of characterizing each bug with a single topic. The number of usage topics Nu

for each program is chosen to approximately correspond to the number of di�erent pro-
gram use cases. For example, ���� uses seven di�erent mutually-exclusive command
line flags, each of which corresponds to a di�erent program operation. Therefore, it is
natural to model the program usage patterns with seven di�erent usage topics. Table 1
gives the number of usage and bug topics used for each program. For all programs, the
Gibbs chain is run for 2000 iterations before estimating � and �. For the largest dataset,
	
��, the inference step took less than one hour to run on a desktop workstation.

Statistical Debugging Using Latent Topic Models 13

Where possible, we compare �LDA results with corresponding measures from two
earlier statistical debugging techniques. PLDI05 refers to earlier work by Liblit et al.
[5] that uses an iterative process of selecting and eliminating top-ranked predicates un-
til all failures are explained. The approach bears some resemblance to likelihood ratio
testing and biased minimum-set cover problems, but is somewhat ad hoc and highly
specialized for debugging. ICML06 refers to earlier work by Zheng et al. [8] that takes
inspiration from bi-clustering algorithms. This approach uses graphical models to esti-
mate complete (non-sampled) counts, then applies an iterative collective voting scheme
followed by a simple clustering pass to identify and report likely bug causes.

Bug Topic Analysis on �. We show that �LDA is capable of recovering bug topics
that correlates well with the underlying software bugs. Note that each failed run’s Nb

bug topic elements in �, which we call �b, can be viewed as a low-dimensional bug
representation of failed runs. We plot the failed runs in this �b space for the programs in
Figure 3(a-d), where we use di�erent symbols to mark the failed runs by their ground
truth bug types. In the case of moss, we project the 8-dimensional �b space down to 3
dimensions for visualization using Principal Component Analysis. The plots show that
actual bug types tend to cluster along the axes of �b, which means that often a �LDA bug
topic maps to a unique actual bug type. Multi-bug runs exhibit multiple high-weight �b

components, which is consistent with this mapping between bug topics and actual bugs.
This observation could be used to focus debugging e�orts on single-bug runs.

Figure 3(e) compares the quality of clusterings given by �LDA to those of the other
analyses. For each analysis we compute the Rand index [20] of a clustering based on
that analysis with respect to the ground truth (determined by our oracle). A Rand index
of 1 indicates that the clustering is identical to the ground truth; lower indices indicate
worse agreement. For �LDA, we assign a failed run to cluster i if its bug topic i has the
largest �i among all bug topics. Other clustering methods are possible and may produce
better clusters. No method dominates, but �LDA consistently performs well.

Bug Topic Analysis on �. We now discuss how to extract ranked lists of suspect words
(potentially buggy program behaviors) for each bug topic. We qualitatively evaluate
the usefulness of these lists in finding root causes of bugs, both for �LDA and for
PLDI05 and ICML06. Overall, we find that �LDA and PLDI05 perform equally well,
with �LDA resting on a stronger mathematical foundation and potentially supporting a
wider variety of other important tasks.

The parameter � itself specifies p(w�z). But a word w may have a large p(w�z) simply
because it is a frequent word in all topics. We instead examine p(z�w) which is easily
obtained from � using Bayes rule. Furthermore, we define a confidence score S i j �

mink�i p(z � i�w � j) � p(z � k�w � j). For each topic, z � i, we present words ranked
by their score, S i j. If S i j is less than zero, indicating that word j is more predictive of
some other topic, we do not present the word at all. On the other hand, if S i j is high,
then we consider that word j is a suspect word and a likely cause of the bug explained
by topic i.

In lieu of formal human-subject studies, which are outside the scope of this paper, we
informally assess the expected usefulness of these suspect-word lists to a bug-hunting
programmer. We compare �LDA results with analogous lists built using the PLDI05
and ICML06 algorithms mentioned earlier.

14 D. Andrzejewski et al.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

topic 8

to
pi

c
9

15 bug1 runs
15 bug2 runs

(a) ���� bug topics

0 0.5 1
0

0.2

0.4

0.6

0.8

1

topic 6

to
pi

c
7

56 bug1 runs
144 bug2 runs

(b) ���� bug topics

0 0.5 1
0

0.2

0.4

0.6

0.8

1

topic 6

to
pi

c
7

12 bug1 runs
174 bug2 runs

(c) ���� bug topics

−1

0

1

−0.6−0.4−0.200.20.40.60.8

−1

−0.5

0

0.5

P
C

A
3

PCA2PCA1

254 bug1 runs
106 bug3 runs
147 bug4 runs
329 bug5 runs
206 bug8 runs
186 other runs

(d) 	
�� bug topics (with PCA)

�LDA ICML06 PLDI05

���� 1.00 0.88 1.00
���� 0.97 0.71 0.77
���� 0.89 1.00 1.00
	
�� 0.93 0.93 0.96

(e) Rand index

Fig. 3. �LDA recovers bug topics that highly correlate with actual software bugs

For ����, the two �LDA bug topics cleanly separate the two bugs. Each topic’s
list of suspect words is short (4 and 6 items) but relevant. For one of the bugs, this
list includes a clear “smoking gun” that immediately reveals the root cause; the other
bug topic includes less direct secondary e�ects of the root problem. PLDI05 performs
well for both ���� bugs. However, while �LDA’s word list is naturally restricted to
words for which S i j 	 0, PLDI05 has no intuitive cut-o� point. Thus, PLDI05’s lists
include all words under analysis (19 for ����) and risk overwhelming programmers
with irrelevant information. In our subjective experience, if the first five or ten items in a
“suspect program behaviors” list are not immediately understandable, the programmer
is unlikely to search further. ICML06 struggles with this as well. If clustering is not
used, ICML06 reports all 19 words without good separation into bug-specific groups. If
clustering is used, ICML06 o�ers a short 3-item list that describes one bug three times
and omits the other bug entirely.

	
�� results vary in quality from bug to bug. Overall, we find that most �LDA bug
topics correspond directly to individual 	
�� bugs, and that highly-suspect words for
each of these topics often identify either primary “smoking gun” causes for failure or
else closely related secondary e�ects of the initial misbehavior. PLDI05 performs better
than �LDA for some bugs and worse for others, with each analysis identifying at least
one smoking gun that the other misses. ICML06 with clustering produces identifies the

Statistical Debugging Using Latent Topic Models 15

smoking gun for one bug that both �LDA and PLDI05 miss. However, ICML06 reports
thirty clusters while there are only eight actual 	
�� bugs: several bugs are split among
multiple clusters and therefore presented redundantly.

���� and ���� results are equivocal. ICML06 identifies an informative precondition
for one ���� bug, though not the smoking gun. Otherwise, all three algorithms identify
words that are strongly associated with bugs but which do not immediately reveal any
bugs’ root causes. These algorithms do not truly model causality, and therefore it is
not surprising that root causes may be diÆcult to recover. Furthermore, in some cases,
no smoking guns were actually among the words instrumented and considered by the
models. We feel that all three models perform as well as can be reasonably expected
given the less-than-ideal raw data.

Overall, we find that the PLDI05 and �LDA approaches perform roughly equally
well in guiding humans to the root causes of bugs. However, PLDI05 is highly spe-
cialized and somewhat diÆcult to reason about formally. For example, whereas �LDA
ranks words using conditional probabilities, PLDI05 computes multi-factor harmonic
mean scores that, while about as e�ective, have no simple interpretation either in ma-
chine learning terms or as quantitative measures of expected program behavior. �LDA
has, we assert, a stronger mathematical foundation and potentially broader applicability
to problems in other domains (see section 5).

Furthermore, even within the domain of statistical debugging, components of an
�LDA model can be used to support other important software engineering tasks not
contemplated by earlier approaches. Suppose, for example, that one’s task is to fix the
bug associated with a particular bug topic, and that a repeatable test suite is available.
In that case, one would prefer to investigate runs where the weight for that bug topic is
very high compared to the weight for all other bug topics, as those runs would be likely
to be the most pure embodiments of the bug. For another example, prior work has shown
how to automatically construct extended paths through multiple suspect program points
[21]; �LDA o�ers a model whereby the aggregate scores along such paths can be given
a sensible probabilistic interpretation. While we have not yet explored these alternate
uses in detail, they hint at the power of a statistical debugging approach that is both
well-founded in theory and highly e�ective in practice.

Usage Topic Analysis. Information gleaned from usage topics might support a variety
of software engineering tasks. To characterize a usage topic, we examine the words that
have the highest probability conditioned on that topic. Each word is associated with the
source code immediately adjacent to its instrumentation point. We find that in many
cases usage topics correspond to distinct usage modes of the program.

We describe ���� in detail, since the DEFLATE algorithm which it implements is in
the public domain and likely to be familiar to many in the machine learning community.
Recall that the DEFLATE algorithm consists of two steps, duplicate string elimination
and bit reduction using Hu�man coding.

For each usage topic there is a small number of highly probable words and a much
larger number that are significantly less probable. The most probable word by far in
topic 1 is associated with an inner loop in �
�����	�����, the underlying proce-
dure in the duplicate string elimination step of the algorithm. We infer that topic 1
is highly associated with this step. We expect runs with a high p(z � 1�d) value to

16 D. Andrzejewski et al.

use the algorithm which finds the most redundant strings and does the best compres-
sion at the expense of running more slowly; this is the case. There are about twenty
highly probable words in topic 2; all are associated with command line handling or exit
clean-up code. In runs where p(z � 2�d) is relatively high no compression occurred;
instead, for example, a help message or version message was requested. Of the twenty
most probable words in topic 3, several are associated with �
�����	�����, several
with �
	��������
����, and several with ������������. We infer that this usage
topic is associated with the fast deflation algorithm which does only very simple dupli-
cate string elimination. In the runs where p(z � 3�d) is highest, ���� was invoked with
a flag explicitly calling for the fast algorithm. The modes associated with topics 4 and
5 are less pronounced. Topic 4 seems to capture output activity, as it includes a highly
probable word in in ���������� as well as a few highly probable words associated
with the duplicate string elimination algorithm. Topic 5 seems to capture the bit reduc-
tion mode, as words in ��������, a utility function used for shifting bits, are by far the
most probable.

5 Conclusions and Discussion

Software continues to be released with bugs, and end users su�er the consequences.
However, statistical models applied to instrumented feedback data can help program-
mers repair problems. �LDA shows promise as a statistical model with both strong
empirical results and a sound mathematical foundation. Some future directions have
been suggested earlier, such as incorporating domain knowledge into the Dirichlet hy-
perparameters or automatically identifying the number of bugs. Another direction is
to endow �LDA with more complex topic structure similar to Hierarchical LDA [22],
which arranges topics in a tree. However, Hierarchical LDA provides no mechanism
for document-level control (the outcome flag) on topic availability. Other modifications
to the model could exploit some of the interesting structure inherent in this problem
domain, such as the static program graph.

Note that �LDA need not be restricted to statistical debugging. For example, �LDA
may be applied to text sentiment analysis [23] to distinguish “subjective sentiment
topics” (e.g., positive or negative opinions, the equivalent of bug topics) from much
stronger “objective content topics” (in the movie domain these are movie plots, actor
biographies etc., the equivalent of usage topics). For the movie domain, the mixed doc-
ument collection may consist of user-posted movie reviews (which contain both senti-
ment and content topics), and formal movie summaries (which contain mostly objective
contents).

References

1. Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B.: Statistical debugging using compound
boolean predicates. In: Elbaum, S. (ed.) International Symposium on Software Testing and
Analysis, July 9–12, 2007, London, United Kingdom (2007)

2. Dickinson, W., Leon, D., Podgurski, A.: Finding failures by cluster analysis of execution pro-
files. In: Proceedings of the 23rd International Conference on Software Engeneering (ICSE-
01), pp. 339–348. IEEE Computer Society, Los Alamitos (2001)

Statistical Debugging Using Latent Topic Models 17

3. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly detection. In:
ICSE ’02: Proceedings of the 24th International Conference on Software Engineering, pp.
291–301. ACM Press, New York (2002)

4. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization
technique. In: ASE ’05: Proceedings of the 20th IEEE�ACM international Conference on
Automated software engineering, pp. 273–282. ACM Press, New York (2005)

5. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, June 12–15 2005, Chicago, Illinois (2005)

6. Liu, C., Yan, X., Fei, L., Han, J., Midki�, S.P.: SOBER: statistical model-based bug localiza-
tion. In: Wermelinger, M., Gall, H. (eds.) ESEC�SIGSOFT FSE, pp. 286–295. ACM, New
York (2005)

7. Zheng, A.X., Jordan, M.I., Liblit, B., Aiken, A.: Statistical debugging of sampled programs.
In: Thrun, S., Saul, L., Schölkopf, B. (eds.) NIPS 16, MIT Press, Cambridge, MA (2004)

8. Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging: Simultane-
ous identification of multiple bugs. In: ICML (2006)

9. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in Artificial
Intelligence, UAI’99, Stockholm (1999)

10. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning
Research 3, 993–1022 (2003)

11. GriÆths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of
Sciences 101(suppl. 1), 5228–5235 (2004)

12. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Press, Los Alamitos (2005)

13. Liblit, B.: Cooperative Bug Isolation: Winning Thesis of the 2005 ACM Doctoral Disserta-
tion Competition. LNCS, vol. 4440. Springer, Heidelberg (2007)

14. Liblit, B.: The Cooperative Bug Isolation Project, �������������������������
15. Kass, R., Raftery, A.: Bayes factors. Journal of the American Statistical Association 90, 773–

795 (1995)
16. EXIF Tag Parsing Library, �������������������
17. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing tech-

niques: An infrastructure and its potential impact. Empirical Software Engineering: An In-
ternational Journal 10(4), 405–435 (2005)

18. Rothermel, G., Elbaum, S., Kinneer, A., Do, H.: Software-artifact intrastructure repository
(September 2006), ������������������
����

19. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for document fin-
gerprinting. In: Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data 2003, San Diego, California, June 09–12, 2003, pp. 76–85. ACM Press,
New York (2003)

20. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the Amer-
ican Statistical Association 66, 846–850 (1971)

21. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path optimization in programs and its applica-
tion to debugging. In: Sestoft, P. (ed.) 15th European Symposium on Programming, Vienna,
Austria, pp. 246–263. Springer, Heidelberg (2006)

22. Blei, D.M., GriÆths, T.L., Jordan, M.I., Tenenbaum, J.B.: Hierarchical topic models and the
nested Chinese restaurant process. In: NIPS 16 (2003)

23. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In: Proceedings of the Association for Computational Lin-
guistics, pp. 271–278 (2004)

http://www.cs.wisc.edu/cbi/
http://libexif.sf.net/
http://sir.unl.edu/portal/

Learning Balls of Strings with Correction
Queries�

Leonor Becerra Bonache1, Colin de la Higuera2, Jean-Christophe Janodet2,
and Frédéric Tantini2

1 Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tárraco 1, 43005 Tarragona, Spain

leonor.becerra@urv.cat
2 Laboratoire Hubert Curien, Université Jean Monnet

18 rue du Professeur Benoît Lauras, 42000 Saint-Étienne, France
{cdlh,janodet,frederic.tantini}@univ-st-etienne.fr

Abstract. During the 80’s, Angluin introduced an active learning para-
digm, using an Oracle, capable of answering both membership and equiva-
lence queries. However, practical evidence tends to show that if the former
are often available, this is usually not the case of the latter. We propose
new queries, called correction queries, which we study in the framework of
Grammatical Inference. When a string is submitted to the Oracle, either
she validates it if it belongs to the target language, or she proposes a cor-
rection, i.e., a string of the language close to the query with respect to the
edit distance. We also introduce a non-standard class of languages: The
topological balls of strings. We show that this class is not learnable in An-
gluin’s Mat model, but is with a linear number of correction queries. We
conduct several experiments with an Oracle simulating a human Expert,
and show that our algorithm is resistant to approximate answers.

Keywords: Grammatical Inference, Oracle Learning, Correction Que-
ries, Edit Distance, Balls of Strings.

1 Introduction

Do you know how many Nabcodonosaur were kings of Babylon? And do you
know when Arnold Shwartzeneger was born? A few years ago, just 2 decades
ago, you would have had to consult encyclopedias and Who’s Who dictionaries
in order to get answers to such questions. At that time, you may have needed
this information in order to participate to quizzes and competitions organised
by famous magazines during the summers, but because of these questions, you
might possibly have missed the very first prize. Why?. . . Nowadays, everything
has changed: You naturally use the Web, launch your favourite search engine,

� This work was supported in part by the IST Programme of the European Commu-
nity, under the Pascal Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 18–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning Balls of Strings with Correction Queries 19

type 2 keywords, follow 3 links and note down the answers. In this partic-
ular case, you discover. . . that no king of Babylon was called Nabcodonosaur
but 2 Nabuchodonosor ’s reigned there many centuries ago. Again, the day
Arnold Shwartzeneger was born is not clear, but it is easy to check that Arnold
Schwarzenegger was born in 1947, July 30th.

So you would probably win today the great competitions of the past. Indeed,
the actual search engines are able to propose corrections when a keyword is not fre-
quent. Those corrections are most often reliable because the reference dictionary
is built from the billions of web pages indexed all over the world. Hence, a search
engine is playing the role of an imperfect but powerful oracle, able to validate a
relevant query by returning relevant documents, but also to correct any suspect
query. Such an oracle is able to answer to what we shall call correction queries.

The first goal of this paper is to show, from a theoretical standpoint, that
correction queries allow to get new challenging results in the field of Active
Learning. In this framework developed by Angluin in the 80’s [1], a Learner
(He) has access to an Oracle (She) that knows a concept he must discover; To
this purpose, he submits different kinds of queries (e.g., Correction Queries) and
she has to answer without lying. The game ends when he guesses the concept.
Query-based learners are often interesting from a practical viewpoint. For in-
stance, instead of requiring a human expert to label huge quantities of data,
this expert could be asked by the Learner, in an interactive situation, to pro-
vide a small amount of targeted information. The second goal of this paper is
to provide evidence that correction queries are suitable for this kind of real-life
applications. Assuming that the Oracle is a human expert, however, introduces
new constraints. On the one hand, it is inconceivable to ask a polynomial number
of queries: This may still be too much for a human. So the learning algorithm
should aim at minimising the number of queries even if we must pay for it with
a worse time complexity. On the other hand, a human being (or even the Web)
is fallible. Therefore the learning algorithm should also aim at learning functions
or languages from approximate corrections.

In the above Web example, the distance used by the search engine to find
a closest string is a variant of the edit distance which measures the minimum
number of deletion, insertion or substitution operations needed to transform
one string into another [2,3]. This distance and variants where each elementary
operation may have a different weight have been used in many fields including
Computational Biology [4], Language Modelling [5] and Pattern Recognition [6].
Edit distance appears in specific Grammatical Inference problems, in particular
when one wants to learn languages from noisy data [7]. The classes of languages
studied there are not defined following the Chomsky Hierarchy. Indeed, even the
easiest level of this hierarchy, the class of regular languages, is not at all robust to
noise, since the parity functions (which can be defined as regular languages) are
not learnable in the presence of noise [8]. In this paper also, in order to avoid this
difficulty, we shall consider only special finite languages, that seem elementary
to formal language theoreticians, but are relevant for topologists and complex
for combinatorialists: the balls of strings.

20 L. Becerra Bonache et al.

Hence, we study the problem of identifying balls of strings from correction
queries. After some preliminaries in Section 2, we prove that balls are not learn-
able with Angluin’s membership and equivalence queries (Section 3). Then, we
show in Section 4 that balls are learnable with a linear number of correction
queries. In Section 5, we study the effectiveness of our algorithm from an ex-
perimental standpoint, showing that it is robust when the answers of the Oracle
are approximate. We conclude in Section 6. Due to the lack of space, we have
skipped most formal proofs. The interested reader may find them at http://
labh-curien.univ-st-etienne.fr/˜tantini/pub/bhjt07Long.pdf.

2 On Balls of Strings as Languages

An alphabet Σ is a finite nonempty set of symbols called letters. A string w =
a1 . . . an is any finite sequence of letters. We write Σ∗ for the set of all strings
over Σ, and λ for the empty string. Let |w| be the length of w and |w|a the
number of occurrences of a in w.

The edit distance d(w,w′) is the minimum number of edit operations needed to
transform w into w′ [2]. The edit operations are either (1) deletion: w = uav and
w′ = uv , or (2) insertion: w = uv and w′ = uav, or (3) substitution: w = uav
and w′ = ubv, where u, v ∈ Σ∗, a, b ∈ Σ and a �= b. E.g., d(abaa, aab) = 2 since
abaa −→ aaa −→ aab and the rewriting of abaa into aab cannot be achieved with
less than 2 steps. Notice that d(w,w′) can be computed in O (|w| · |w′|) time by
dynamic programming [3].

It is well-known that the edit distance is a metric [9], so it conveys to Σ∗

the structure of a metric space. The ball of centre o ∈ Σ∗ and radius r ∈
IN, denoted Br(o), is the set of all strings whose distance is at most r from
o: Br(o) = {w ∈ Σ∗ : d(o, w) ≤ r}. E.g., if Σ = {a, b}, then B1(ba) =
{a, b, aa, ba, bb, aba, baa, bab, bba} and Br(λ) = Σ≤r for all r ∈ IN.

The latter example illustrates the fact that the number of strings in a ball
grows exponentially with the radius. This remark raises the problem of the rep-
resentation scheme that we should use to learn the balls. Basically, we need
representations whose size is reasonable, which is not the case of an exhaustive
enumeration, nor of the deterministic finite automata (Dfa) since experiments
show that the corresponding minimum Dfa is often exponential with r (but lin-
ear with |o|) [10], even if a formal proof of this property remains a challenging
combinatorial problem.

On the other hand, why not represent the ball Br(o) by the pair (o, r) itself?
Indeed, its size is |o| + log r. Moreover, deciding whether w ∈ Br(o) or not is im-
mediate: One only has to (1) compute d(o, w) and (2) check whether this distance
is ≤ r, which is achievable in time O (|o| · |w| + log r). Finally, when the alphabet
has at least 2 letters, (o, r) is a unique thus canonical representation of Br(o):

Theorem 1. If |Σ| ≥ 2 and Br1(o1) = Br2(o2), then o1 = o2 and r1 = r2.

Notice that if Σ = {a}, then B2(a) = B3(λ) = {λ, a, aa, aaa} for instance.

http://labh-curien.univ-st-etienne.fr/~tantini/pub/bhjt07Long.pdf
http://labh-curien.univ-st-etienne.fr/~tantini/pub/bhjt07Long.pdf

Learning Balls of Strings with Correction Queries 21

Hence, representing the ball Br(o) by the pair (o, r) is reasonable. However,
it is worth noticing that huge balls, whose radius is not polynomially related to
the length of the centre (e.g., r > 2|o|), will pose tricky problems of complexity.
For instance, to learn the ball Br(λ) = Σ≤r, one needs to manipulate at least
one string of length r + 1. Therefore, in the following, we will always consider
good balls only:

Definition 1. Given any fixed polynomial q(), we say that a ball Br(o) is q-good
if r ≤ q(|o|).

3 Learning Balls from Queries

Query learning is a paradigm introduced by Angluin [1]. Her model brings a
Learner (he) and an Oracle (she) into play. The goal of the Learner is to identify
the representation of an unknown language, by submitting queries to the Oracle.
The latter knows the target language and answers properly to the queries (i.e.,
she does not lie). Moreover, the Learner is bound by efficiency constraints: (1)
He can only submit a polynomial number of queries (in the size of the target
representation) and (2) the available overall time must be polynomial in the size
of the target representation1.

Between the different combinations of queries, one, called Mat (Minimally
Adequate Teacher), is sufficient to learn Dfa [11]. Two kinds of queries are used:

Definition 2. Let Λ be a class of languages on Σ∗ and L ∈ Λ a target lan-
guage known by the Oracle, that the Learner aims at guessing. In the case of
membership queries, the Learner submits a string w ∈ Σ∗ to the Oracle; Her
answer, denoted Mq(w), is either Yes if w ∈ L, or No if w /∈ L. In the case
of equivalence queries, the Learner submits (the representation of) a language
K ∈ Λ to the Oracle; Her answer, denoted Eq(K), is either Yes if K = L, or
a string belonging to the symmetric difference

(
(K \ L) ∪ (L \K)

)
if K �= L.

Although Mq and Eq have established themselves as a standard combination,
there are real grounds to believe that Eq are too powerful to exist or even be
simulated. As suggested in [11] we may be able to substitute them with a random
draw of strings that are then submitted as Mq (sampling), but there are many
cases where sampling is not possible as the relevant distribution is unknown
and/or inaccessible [12]. Besides, we will not consider Mq and Eq because they
do not help to learn balls:

Theorem 2. Assume |Σ| ≥ 2. Let m,n ∈ IN and B≤m,n = {Br(o) : r ≤ m, o ∈
Σ∗, |o| ≤ n}. Any algorithm that identifies every ball of B≤m,n with Eq and Mq
necessarily uses Ω(|Σ|n) queries in the worst case.

1 The time complexity usually concerns the time spent after receiving each new ex-
ample, and takes the length of the information returned by the Oracle into account;
Thus, our constraint is stronger but not restrictive, if we focus on good balls only.

22 L. Becerra Bonache et al.

Proof. Following [13], we describe an Adversary who maintains a set S of all
possible balls. At the beginning, S = B≤m,n. Her answer to the equivalence
query L = Br(o) is the counterexample o. Her answer to the membership query
o is No. At each step, the Adversary eliminates many balls of S but only one
of centre o and radius 0. As there are Ω(|Σ|n) such balls in B≤m,n, identifying
them requires Ω(|Σ|n) queries. �	

It should be noted that if the Learner is given one string from the ball, he can
learn using a polynomial number of Mq. We shall see that correction queries
(Cq), introduced below, allow to get round these problems:

Definition 3. Let L be a fixed language and w a string submitted by the Learner
to the Oracle. Her answer, denoted Cq(w), is either Yes if w ∈ L, or a correc-
tion of w w.r.t. L if w /∈ L, that is a string w′ ∈ L at minimum edit distance
from w: Cq(w) = one string of {w′ ∈ L : d(w,w′) is minimum}.

Notice that the Cq can easily be simulated knowing the target language. More-
over, we have seen in the introduction that they naturally exist in real-world
applications such as the search engines of the Web. Also, Cq are relevant from
a cognitive point of view: There is growing evidence that corrective input for
grammatical errors is widely available to children [14].

4 Identifying Balls Using Corrections

In this section, we propose an algorithm that learns balls using a linear number of
Cq. First, when one submits a string outside of a ball to the Oracle, she answers
with a string that belongs to the ‘circle’ delimiting the ball. However, a string
often has a lot of different possible corrections, contrarily to what happens in
the plane. E.g., the possible corrections for the string aaaa w.r.t. the ball B2(bb)
are {aa, aab, aba, baa, aabb, abab, abba, baab, baba, bbaa}. By definition of the Cq,
the Oracle will choose one of them arbitrarily, potentially the worst one w.r.t.
the Learner’s point of view. Nevertheless, the Oracle’s potential malevolence
is limited by the following result, that characterises the set of all the possible
corrections for a string:

Theorem 3. Let Br(o) be a ball and m �∈ Br(o). Then the set of possible cor-
rections of m is exactly {z ∈ Σ∗ : d(o, z) = r and d(z,m) = d(o,m)− r}.

Here is a geometric interpretation of the result above. Let us define the segment
[o,m] = {w ∈ Σ∗ : d(o, w) + d(w,m) = d(o,m)} and the circle Cr(o) = {w ∈
Σ∗ : d(o, w) = r}. Theorem 3 states that a string z is a possible correction of
m iff z ∈ [o,m] ∩Cr(o). The fact that m has several possible corrections shows
that the geometry of Σ∗ is very different from that of IR2.

Now, building the centre of a ball from strings on its periphery is difficult for
at least 2 reasons. On the one hand, (Σ∗, d) is a metric space with no vector space
as an underlying structure. This is the same story as if we were trying to learn
the disks of the plane with just a compass but no ruler. . . On the other hand, the

Learning Balls of Strings with Correction Queries 23

Fig. 1. Algorithm Extract_Centre

problem is formally hard : Given a finite set of strings W = {w1, . . . , wn} and a
constant K, deciding whether a string z ∈ Σ∗ exists such that

∑
w∈W d(z, w) <

K (resp. maxw∈W d(z, w) < K) is NP-hard [15].
Therefore, we must study the balls in more detail and make the best pos-

sible use of the Cq so as not to build the centres from scratch. We begin by
distinguishing the longest strings of any ball:

Definition 4. The upper border of a ball Br(o), denoted Bmax
r (o), is the set of

all the strings that belong to Br(o) and are of maximum length: Bmax
r (o) = {z ∈

Br(o) : ∀w ∈ Br(o), |w| ≤ |z|}.

E.g., let Σ = {a, b}, then Bmax
1 (ba) = {aba, baa, bab, bba}. The strings of

Bmax
r (o) are remarkable because they are all built from the centre o by doing r

insertions. So from a string w ∈ Bmax
r (o), one ‘simply’ has to guess the inserted

letters and delete them to find o again. Some strings of Bmax
r (o) are even more

informative. Indeed, let a ∈ Σ be an arbitrary letter. Then aro ∈ Bmax
r (o). So,

if we know r, we can easily deduce o. We claim that Cq allow us to get hold of
aro from any string w ∈ Bmax

r (o) by swapping the letters (see Algorithm Ex-
tract_Centre in Figure 1).

Consider Bmax
2 (bb) = {aabb, abab, abba, abbb, baab, baba, babb, bbaa, bbab, bbba,

bbbb}. Running Extract_Centre on the string w = baab and radius r = 2
transforms, at each loop, the ith letter of w to an a that is put at the beginning
and then submits it to the Oracle. c counts the number of times this transfor-
mation is accepted. We get:

i w w′ Cq(w′) w changes c
1 baab aaab baab no 0
2 baab abab Yes yes 1
3 abab aabb Yes yes 2

When c = 2 = r, Extract_Centre stops with w = aabb and returns o = bb.

Lemma 1. Given w ∈ Bmax
r (o) and r, Algorithm Extract_Centre returns

o using O (|o|+ r) Cq and a polynomial amount of time.

24 L. Becerra Bonache et al.

Hence, we are now able to deduce the centre of a ball as soon as we know its
radius and a string from its upper border. The following technical lemma is a
step towards finding this string (although we have no information about r and
|o| yet):

Lemma 2. Suppose Σ = {a1, . . . , an}. Then every correction w of the string
m = (a1 . . . an)k where k ≥ |o|+ r belongs to Bmax

r (o).

Submitting (a1 . . . an)k with a sufficiently large k is sure to be corrected by a
string from Bmax

r (o). So all that remains is to find such an interesting k. The
following lemma states that if one asks the Oracle to correct a string made of a
lot of a’s, then the correction contains precious informations on the radius and
the number of occurrences of a’s in the centre:

Lemma 3. Consider the ball Br(o) and let a ∈ Σ and an integer j ∈ IN such
that aj �∈ Br(o). Let w = Cq(aj). If |w| < j, then |w|a = |o|a + r.

Now, let us assume that the alphabet is Σ = {a1, . . . , an} and let j1, . . . , jn ∈ IN
be large integers. Define k =

∑n
i=1 |Cq(aji

i)|ai . Then, Lemma 3 brings k =∑n
i=1(|o|ai + r) = |o| + |Σ| · r ≥ |o| + r. Thus we can plug k into Lemma 2 to

get a string w = Cq
(
(a1 . . . an)k

)
∈ Bmax

r (o). Moreover, we have |w| = |o| + r
and k = |o|+ |Σ| · r. So, we deduce that the radius is r = (k − |w|)/(|Σ| − 1).

Let us summarise, by assuming that Σ = {a1, . . . , an} and that the target is
the ball Br(o). (1) For each letter ai, the Learner asks for the correction of aj

i

where j is sufficiently large to get a correction whose length is smaller than j;
(2) We define k =

∑n
i=1 |Cq(aji

i)|ai and suppose the Learner gets the correction
w for the string m = (a1 . . . an)k; (3) From k and |w|, we deduce r; (4) The
Learner uses Extract_Centre on w and r in order to find o. In other words,
we are able to learn the balls with Cq (see Algorithm Idf_Ball in Figure 2).

Fig. 2. Algorithm Idf_Ball

For instance, consider the ball B2(bb) defined over Σ = {a, b}. Idf_Ball
begins by looking for the corrections of aj and bj with a sufficiently large j. We
might observe: Cq(a) = Yes, Cq(a2) = Yes, Cq(a4) = aabb, Cq(a8) = abba,

Learning Balls of Strings with Correction Queries 25

Cq(b8) = bbbb. So k = |abba|a + |bbbb|b = 2 + 4 = 6. Then Cq
(
(ab)6

)
=

Cq(abababababab) = baab, for instance, so r = (6 − 4)/(2 − 1) = 2. Finally,
Extract_Centre(baab, 2) returns bb. So the algorithm returns (bb, 2).

Theorem 4. Given any fixed polynomial q(), the set of all q-good balls Br(o)
is identifiable with an algorithm using O (|Σ|+ |o|+ r) Cq and a polynomial
amount of time.

Proof. The identifiability is clear. Concerning the complexity, the corrections of
the strings aj

i requires O (|Σ|+ log(|o|+ r)) Cq (lines 2-5). Extract_Centre
needs O (|o|+ r) Cq (line 8). �	
Notice that the set of all the balls, that contains good balls but also huge ones
such that r > 2|o| for instance, is not polynomially identifiable with Idf_Ball
since O (|Σ|+ |o|+ r) > O(2|o|) for some of them.

5 Experiments with a Human-Like Oracle

In this section, we would like to show the advantages of our approach. There-
fore, we have made several experiments that aim at studying the responses of
Idf_Ball faced with an Oracle that could be human. As we said in introduc-
tion, our algorithm should not believe unwisely the answers he gets since they
can be approximate. We would like to show here that Idf_Ball withstands
such approximate (i.e., inaccurate, noisy) answers.

Designing the Approximate Oracle
We begin by modelling a human expert by an Approximate Oracle. Firstly, we
assume that an expert can easily determine whether an example fulfils a concept
or not, thus here, whether w belongs to Br(o) or not. Secondly, what is really
hard for the expert is to compute the correction of w when w �∈ Br(o), and more
precisely, a string of the ball that is as close to w as possible.

Let X = d
(
w,Cqh(w)

)
− d
(
w,Cq(w)

)
measure how far an approximate cor-

rection is from a perfect one. Intuitively, an Approximate Oracle will often pro-
vide corrections such that X = 0, sometimes X = 1 and rarely X ≥ 2. . . To
formalise this idea, we introduce a confidence parameter 0 < p ≤ 1, called the
accuracy level of the Oracle, that translates the quality of her answers, and use
a geometric distribution: We assume that Pr(X = k) = (1− p)kp, for all k ∈ IN.
Therefore, with probability (1−p)kp, the correction Cqh(w) of a string w will be
in the target ball, at distance k of Cq(w). Basically, we get E(X) = (1/p)− 1.
So when the Oracle is very accurate, say p = 0.8, then the average distance
between an approximate and a perfect correction is low (0.25). Conversely, an
expert with limited computation capacities, say p = 0.4, will often provide inac-
curate corrections, at distance � 1.5.

Our model of Approximate Oracle is simple. For instance, we do not suppose
that she has any memory, thus by submitting twice every string w, we would
probably get 2 different corrections, that could be used to correct the corrections!
However, we want here to study the resistance of Idf_Ball to approximate
answers, not to design the best possible algorithm, so our model is sufficient.

26 L. Becerra Bonache et al.

Behaviour of the Algorithm faced with an Approximate Oracle
Following Theorem 4, Idf_Ball systematically guesses the target ball with the
help of a Perfect Oracle. But of course, he is sometimes going to fail in front of
an Approximate Oracle. So, in order to assess the resistance of Idf_Ball to
approximate corrections, we conduct the following experiment. For every accu-
racy level 0.5 ≤ p ≤ 1, we randomly choose a set of 100 balls Br(o) such that
|o|+ r = 200. More precisely, the radius r varies between 20 and 180 by step of
20, and we randomly choose 10 centres o of length 200− r for each radius. Then
we ask Idf_Ball to learn them and compute the percentage of balls he is able
to retrieve, which we call the precision of the algorithm. We show the result in
Figure 3. We notice that Idf_Ball is able to identify about 75% of the balls
faced with an accuracy level of p = 0.9. Of course, as one can expect, with lower
levels of accuracy, his performances quickly drop (15% for p = 0.5). We also
show, in Figure 4, the average distances between the centres of the target balls
and the centres of the learnt balls when he fails to retrieve them. We observe that
these distances are not that important: Even with an accuracy level of p = 0.5,
this distance is less than 4.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

Fig. 3. Precision of Idf_Ball faced with
an Approximate Oracle in function of the
accuracy level p. Each point is assessed on
100 balls.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 b
et

w
ee

n
th

e
ce

nt
re

s

accuracy

Fig. 4. Average distances (and standard
deviation) between the centres of the tar-
get balls and the centres of the learnt balls,
when Idf_Ball fails in retrieving them

Improving the Precision with a posteriori Heuristics
We have seen that Idf_Ball was able to assimilate the approximations of the
Oracle up to a certain level of accuracy. Moreover, the centre returned by the
algorithm is generally not far from the target one. Thus, it is reasonable to
think that we could improve the precision by mining the neighbourhood of the
learnt centre, using local edit modifications. This kind of approaches has been
pioneered by Kohonen in [16] and is surveyed in [17].

Suppose that the learnt ball is Bk(u). We test each neighbour (at distance 1)
of u and examine if it is better (i.e. if k can be reduced) in such a way as to
contain all the corrections given up to now. This heuristics will be very good each
time u is at distance 1 from the target centre. But as soon as this distance grows,

Learning Balls of Strings with Correction Queries 27

Idf_Ball will fail again. In order to enhance the one-step heuristics, we can
iterate the process and design a second until-convergence heuristics by repeating
the local search until the size of the ball cannot be diminished anymore.

In order to show that the balls learnt by Idf_Ball can be corrected a pos-
teriori, we compare, in a series of experiments, the precision of the algorithm
without any post-treatment, with the one-step heuristics and with the until-
convergence heuristics. We fix |o| + r = 200. The accuracy level varies from 0.5
to 1 and the radius, from 20 to 180. For each pair (accuracy, radius), we ran-
domly draw 50 centres of length 200− r, and ask Idf_Ball to retrieve them.
We plot the resulting precisions in Figure 5.

 0.5 0.6 0.7 0.8 0.9 1

accuracy

 20
 40

 60
 80

 100
 120

 140
 160

 180

radius 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

precision
until-convergence

one-step
without

Fig. 5. Precision of Idf_Ball with and without heuristics in function of accuracy and
radius when |o| + r = 200. For each pair (accuracy, radius), we compute the precision
over 50 balls.

Firstly, we must explain the bumpiness of the graph. Actually, each point
assesses the precision of Idf_Ball using a sample of 50 balls. However, the
number of balls of radius 100, for instance, is greater that 1030! So, whatever the
sample, we will definitively not get any relevant estimate of the true precision,
that explains the variance. On the other hand, this is not limiting since our
experiments still allow to compare the heuristics themselves: We can remark
that whatever the accuracy level, using the until-convergence heuristics is never
worse than the one-step heuristics, which is never worse than no post-treatment
at all. But it is also clear that our heuristics do not always improve the precision
of the algorithm: This depends on the ratio between the radius of the target
ball and the length of its centre. In order to detail this, we have extracted 2
transverse sections, shown in Figure 6, where we fix the radius.

The left curves of Figure 6 describe the precision of Idf_Ball for target balls
such that r = 120 and |o| = 80. In this case, we gain little using the heuristics.
Notice that these balls are not good for the identity polynomial. On the other
hand, the right curves of Figure 6 describe the precision for target balls such

28 L. Becerra Bonache et al.

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

until-convergence
one-step

without

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

until-convergence
one-step

without

Fig. 6. Precision of Idf_Ball when |o|+r = 200 for r = 120 (left) and r = 20 (right).
For each accuracy, we compute the average over 50 balls.

that r = 20 and |o| = 180. Basically, our heuristics outperform the precision
w.r.t. the algorithm without any post-treatment, whatever the accuracy level of
the Oracle. Moreover, the benefit is all the more important as the accuracy level
is bad. For instance, when p = 0.6, the until-convergence heuristics is able to
dramatically boost the precision from 26% to 90%. So in this setting, with no
further enhancement, Idf_Ball produces balls that are so close to the targets
that they can easily be improved using only basic local modifications.

6 Discussion and Conclusion

In this work, we have used correction queries to learn languages from an Oracle.
The intended setting is that of an inexact Oracle, and experiments show that
the algorithm we propose can learn a language sufficiently close to the target for
simple local modifications (with no extra queries) to be possible. In order to do
this, the languages we consider are balls of strings defined with the edit distance.
Studying them allowed us to catch a glimpse of the geometry of sets of strings,
which is very different from the Euclidean geometry. A number of questions and
research directions are left open by this work.

A first question concerns the distance we use. We have chosen to work with
the unitary edit distance, but in many applications, the edit operations can have
different weights. Preliminary work has allowed us to notice that the geometry
of sets of strings, thus the algorithmics, could change considerably depending
on the sorts of weights we used. For instance, with the substitutions costing less
than the insertions and the deletions, a much faster algorithm exists, requiring
only a number of queries in O (log(|o|+ r)) [18].

A second question concerns the inaccuracy model we are using: As noticed
in Section 5, with the current model it would be possible to repeat the same
Cq various times, getting different corrections, but possibly being able, through
some majority vote scheme, to get the adequate correction with very little extra
cost. Just asking for persistent corrections is not enough to solve this problem:
A good model should require that if one queries from a close enough string (a999

Learning Balls of Strings with Correction Queries 29

instead of a1000) then the corrections should also remain close. Topologically, we
would expect the Oracle to be k-Lipschitz continuous (with 0 < k < 1).

Acknowledgement. The authors wish to thank the anonymous reviewers as well
as Dana Angluin, Jose Oncina and Rémi Eyraud for their helpful comments.

References

1. Angluin, D.: Queries and concept learning. Machine Learning Journal 2, 319–342
(1987)

2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

3. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the
ACM 21, 168–178 (1974)

4. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cam-
bridge University Press, Cambridge (1998)

5. Amengual, J.C., Sanchis, A., Vidal, E., Benedí, J.M.: Language simplification
through error-correcting and grammatical inference techniques. Machine Learning
Journal 44(1), 143–159 (2001)

6. Oncina, J., Sebban, M.: Learning stochastic edit distance: Application in hand-
written character recognition. Pattern Recognition 39(9), 1575–1587 (2006)

7. Tantini, F., de la Higuera, C., Janodet, J.C.: Identification in the limit of
systematic-noisy languages. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino,
T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 19–31. Springer,
Heidelberg (2006)

8. Kearns, M.J., Li, M.: Learning in the presence of malicious errors. SIAM Journal
of Computing 22(4), 807–837 (1993)

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithmique du texte, Vuibert (2001)
10. Schulz, K.U., Mihov, S.: Fast string correction with levenshtein automata. Int. Jour-

nal on Document Analysis and Recognition 5(1), 67–85 (2002)
11. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75, 87–106 (1987)
12. de la Higuera, C.: Data complexity issues in grammatical inference. In: Data Com-

plexity in Pattern Recognition, pp. 153–172. Springer, Heidelberg (2006)
13. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
14. Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: Towards

understanding children’s language learning. In: Paliouras, G., Sakakibara, Y. (eds.)
ICGI 2004. LNCS (LNAI), vol. 3264, pp. 53–64. Springer, Heidelberg (2004)

15. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-
complete. Theoretical Computer Science 230, 39–48 (2000)

16. Kohonen, T.: Median strings. Information Processing Letters 3, 309–313 (1985)
17. Martínez-Hinarejos, C.D., Juan, A., Casacuberta, F.: Use of median string for clas-

sification. In: Proc. of the 15th International Conference on Pattern Recognition,
vol. 2, pp. 2903–2906 (2000)

18. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Apprentissage
des boules de mots avec des requêtes de correction (in french). In: Proc. of 9th
Conférence en Apprentissage, Presses Universitaires de Grenoble (2007)

Neighborhood-Based Local Sensitivity

Paul N. Bennett

Microsoft Research, One Microsoft Way, Redmond WA 98052, USA
paul.n.bennett@microsoft.com

Abstract. We introduce a nonparametric model for sensitivity estima-
tion which relies on generating points similar to the prediction point
using its k nearest neighbors. Unlike most previous work, the sampled
points differ simultaneously in multiple dimensions from the prediction
point in a manner dependent on the local density. Our approach is based
on an intuitive idea of locality which uses the Voronoi cell around the
prediction point, i.e. all points whose nearest neighbor is the prediction
point. We demonstrate how an implicit density over this neighborhood
can be used in order to compute relative estimates of the local sensi-
tivity. The resulting estimates demonstrate improved performance when
used in classifier combination and classifier recalibration as well as being
potentially useful in active learning and a variety of other problems.

1 Introduction

Consider the following tasks often faced during peer review: (1) Make a recom-
mendation accept/reject; (2) Rate from 0 to 5, where 0 is definitely reject and 5 is
definitely accept; (3) State your confidence on a 0 to 5 scale in your review. When
a reviewer answers the first question, he is classifying the paper. The answer to
the second question is an implicit measure of the posterior probability regarding
“Accept/Reject”. As with a posterior and a classification decision, a consistent
reviewer can use the rating to provide information that both summarizes and
subsumes the classification decision.

Next, the reviewer states his confidence — which intuitively is a self-assessment
of his expertise (previous familiarity with topic, perceived completeness of study,
etc.) and mathematically is a statement about how strongly he believes the poste-
rior he gave is correct. In other words it is a second-order summary of the uncer-
tainty the reviewer has about his classification.

Given only the feedback and rating from a single reviewer, we cannot use
this secondary confidence information if immediately forced to make a decision.
However, if one of our choices is to consult another expert, then suddenly we are
faced with a value of information problem, and presumably, we will consult an
additional expert when the confidence of the first expert is low. Likewise when
combining the opinions of several reviewers, instead of directly averaging the
acceptance ratings we could weight them by confidence or treat low confidence
reviews as abstentions regardless of the rating.

Furthermore, given access to a past history of the reviewer’s ratings and the
final decisions regarding the papers, we might conclude this reviewer is either too

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 30–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Neighborhood-Based Local Sensitivity 31

harsh or too lenient and opt to post-calibrate the reviewer’s ratings. Additionally,
the calibration function may vary depending on confidence; for example, the
reviewer may be perfectly calibrated when his confidence is high but increasingly
uncalibrated as his confidence decreases.

Finally, when attempting to improve his own ratings, the reviewer may opt
to perform active learning by requesting what the decisions should be from an
oracle. However, rather than simply requesting decisions on papers that have
borderline ratings (some papers simply are borderline!) he could request deci-
sions where his confidence is low to identify areas where his expertise could be
improved.

Similarly, confidence information can be used in similar ways for value of
information estimation, classifier combination, post-learning recalibration, and
active learning when provided by automated systems. However, most previous
work has targeted estimating only the posterior at a particular point rather than
estimating both the posterior and confidence. This paper partially addresses that
limitation by demonstrating the link between sensitivity estimates of the stabil-
ity or rate of change of the learned posterior function and the confidence in the
posterior. Rather than obtaining sensitivity estimates by tweaking a point in a
single dimension or independently in several dimensions, we use the neighbor-
hood around the prediction point and sample from this neighborhood in a way
that exploits the local covariance of the input and is not constrained to relying
on global estimates of the covariance. The resulting estimates are demonstrated
to be of use in both post-learning recalibration over synthetic datasets and in
combining classifiers over text classification corpora.

Before explaining our approach for sensitivity estimation, we first further dis-
tinguish the concepts of posterior and confidence in the posterior and demon-
strate the latter’s relationship to sensitivity. Next, we motivate and explain the
use of neighbors to estimate the sensitivity and related terms of a learned model.
Using several synthetic datasets, we demonstrate how these quantities can be
used to improve post-learning recalibration of the estimates provided by the kNN
classifier. We then summarize several ensemble learning experiments over text
classification corpora where these quantities play a key role. Finally, we conclude
with a discussion of related work and a summary of our contributions.

2 Variance and Sensitivity

Returning to our motivating example, consider if instead of making the re-
viewer specify his uncertainty, we allowed him to specify an entire distribu-
tion expressing his belief, p(P(c | x) = z | x), where x is the item being
classified, c is a particular class, and z is a specific value of the random vari-
able P(c | x). Then when he is asked to summarize his uncertainty via a rat-
ing, the typical approach is to predict the expected value of the distribution:
P̂(c | x) =

∫
z p(P(c | x) = z | x) dz.

However, the mean of a distribution does not fully summarize the distribu-
tion. Presumably, as the reviewer receives more information or perceives he has

32 P.N. Bennett

all necessary information because of his expertise, his confidence that the ex-
pected value fully summarizes his uncertainty will become quite high. Therefore
a reasonable measure for confidence is to treat it as an (inverse) measure of the
variance of p(P(c | x) = z | x). Since “confidence” is often used in the literature
to refer to the posterior distribution estimate, P̂(c | x), we will avoid this confu-
sion for the remainder of the paper by referring to the “posterior distribution”,
P(c | x), and the “confidence distribution”, p(P(c | x) = z | x).

Rather than estimating the variance of the true posterior according to the
confidence distribution, p(P(c | x) = z | x), we will instead consider the variance
of the output of the classifier under the distribution p(P̂(c | x) = z | x). The
variance of this second distribution is the local sensitivity of the classifier, and
we will demonstrate how it can be useful in several of the scenarios where we
previously motivated the importance of the confidence distribution.

Consider again observing a past history of the reviewer’s ratings and the final
decisions on a set of papers in order to learn a recalibration function for the
reviewer’s ratings. For the remainder of the paper, it will be convenient to work
with log-odds estimates, log P̂(c|x)

1−P̂(c|x)
. However, the derivation below holds for

any function λ̂(x) such that VARΔ

[
λ̂
]
�= 0 and thus can be used for computing

the sensitivity of a variety of functions. Now, given our reviewer’s uncalibrated
estimate of the acceptance rating λ̂, we will attempt to recalibrate it with a
locally weighted recalibration function:

λ̂∗(x) = W0(x) + W1(x)λ̂(x). (1)

We can determine the optimal weights in a simplified case by assuming we
are given “true” log-odds values, λ, and a family of distributions Δx such that
Δx = p(s | x) encodes what is local to x by giving the probability of drawing
a point s near to x. We use Δ instead of Δx for notational simplicity. Since Δ
encodes the example-dependent nature of the weights, we can drop x from the
weight functions. To find weights that minimize the squared difference between
the true log-odds and the estimated log-odds in the Δ vicinity of x, we can solve

a standard regression problem, argminw0,w1
EΔ

[(
w1 λ̂ + w0 − λ

)2
]
. Under the

assumption VARΔ

[
λ̂
]
�= 0, this yields:

w0 = EΔ[λ]− w1EΔ

[
λ̂
]

w1 =
COVΔ[λ̂,λ]
VARΔ[λ̂] = σλ

σλ̂
ρλ,λ̂ (2)

where σ and ρ are the standard deviation and correlation coefficient under Δ,
respectively. The first parameter w0 is a measure of calibration that addresses
the question, “How far off on average is the estimated log-odds from the true log-
odds in the local context?” The second parameter w1 is a measure of correlation,
“How closely does the estimated log-odds vary with the true log-odds?” Note
that the second parameter depends on the local sensitivity of the base classifier,
VAR1/2

Δ

[
λ̂
]

= σλ̂. Although we do not have true log-odds, we can introduce local
density models to estimate the local sensitivity of the model.

Neighborhood-Based Local Sensitivity 33

3 Neighborhood-Based Locality

To compute the local sensitivity, we define a simple nonparametric method based
on the k nearest neighbors. Since we are concerned with how the decision function
changes locally around the current prediction or query point, it is natural to use
a neighborhood-based definition. In particular, consider all points in the input
space whose nearest neighbor is the query (i.e. the Voronoi cell of the query).

Next, we can either explicitly define a density over the Voronoi cell of the query
or implicitly do so by defining a procedure that allows us to draw S samples from
the cell. We do the latter by finding k neighbors of the query x in the training
set and then draw S = k samples by using the difference vector between the
query and its neighbor to interpolate a sample point where the vector intersects
the boundary of the cell. This is illustrated in Figure 1.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

1

2 3

4

5

6

x

Fig. 1. Given the numbered points as the neighbors of the query point x, the figure
illustrates the points that would be sampled within the Voronoi cell of x

There are multiple advantages to defining the points to sample within the
Voronoi cell in terms of the neighbors of the query point. First, we need not
explicitly compute the Voronoi cell of the query point. Instead after determining
the k neighbors, we can directly compute the sample points. Second, by using
the k neighbors to guide sampling, we sample in locally dense directions. For
example in Figure 1 we do not sample by shifting the query point directly to the
right because no data supports variance in this direction.

More formally, we can consider this as shifting x toward each one of k neigh-
bors with equal probability. Let xi denote the query after it has been shifted
by a factor βi toward its ith neighbor, ni. That is, xi = x + βi(ni − x). To
determine βi we choose the largest βi such that the closest neighbor to the new
point is the original example. Thus, the new point cannot be more than halfway
to the neighbor, and βi will not exceed 0.5. Furthermore, we can find it within
a small ε efficiently using a simple bisection algorithm.

34 P.N. Bennett

In terms of computational cost, since every bisection step halves the remaining
range of βi, this will terminate in at most log2

0.5
ε � iterations. Thus to find βi

within ε = 0.001 for a given neighbor would require at most 9 iterations. Further-
more, for the standard Euclidean space, only neighbors closer than the neighbor
we are currently interpolating between can have an insulating effect that reduces
βi. Thus, we need only check our candidate interpolation point against the closer
neighbors to see if we must move the interpolated point. Therefore, after finding
the k neighbors, the sample points can be computed relatively efficiently.

Returning to our quantities of interest, let Δ be a uniform point-mass distribu-
tion over the shifted points. Given this definition of Δ and an output function or
classifier λ̂, it is straightforward to compute VARΔ

[
λ̂
]

and EΔ

[
λ̂
]
. Rather than

computing exactly these quantities, for comparison to previous work we compute
the closely related quantities VARΔ

[
λ̂(s)− λ̂(x)

]
and EΔ

[
λ̂(s)− λ̂(x)

]
. Note,

since λ̂(x) is constant with respect to Δ, VARΔ

[
λ̂
]

= VARΔ

[
λ̂(s)− λ̂(x)

]
and

EΔ

[
λ̂(s)− λ̂(x)

]
= EΔ

[
λ̂(s)

]
− λ̂(x).

Although based on the k nearest neighbors, the neighborhood-based sensitiv-
ity estimates can be used to estimate the sensitivity of any function. All that is
required is an input space where interpolation is meaningful and a function λ̂
that can be applied to any point in the input space. For example, the input space
could be the bag-of-words representation of documents in a text corpus and λ̂
could be the margin score using a linear model learned by an SVM algorithm.

4 Empirical Analysis

To understand the impact sensitivity estimates can have in practice, we studied
the use of the estimates in two settings: post-learning recalibration of the output
of the kNN classifier and combining classifiers for text classification. The bulk
of our analysis focuses on the recalibration task to isolate the behavior of the
neighborhood-based estimates. We then summarize the ensemble learning work
which uses neighborhood-based estimates as well as other similar quantities to
improve text classification — full details of the ensemble study are in [1].

4.1 Post-learning Recalibration

The post-learning recalibration problem attempts to take either poor probability
estimates from a classifier or a more general rating and learn a function that
will output good probability estimates or an improved thresholding [2,3,4,5].
In Platt recalibration [2], we perform nested cross-validation over the training
set to collect a set of data for which we know both the class labels and model
predictions. These collected pairs

〈
λ̂(x), c(x)

〉
, where c(·) denotes the actual

class of the example, are then used as a training set by logistic regression to
learn a and b such that our final recalibrated estimate is:

λ̂∗(x) = aλ̂ + b (3)

Neighborhood-Based Local Sensitivity 35

As noted above, we can compute neighborhood-based sensitivity estimates for
a variety of classifiers, but for this study we will focus on the case where the
classifier to be recalibrated is the kNN classifier. Our expectation is that a kNN
classifier that is input to a local recalibration function should perform well in
many sets where adaptive kNN methods work well.

Given the similarity between Equation 3 and Equation 1, an obvious experi-
ment is one in which we compare the performance of three systems:

1. kNN — use the estimates from kNN directly;
2. Recalibrated kNN — Use the log-odds estimates from kNN obtained by

nested cross-validation as inputs to logistic regression to produce improved
estimates that depend only on the original kNN estimations;

3. Sensitivity Recalibrated — Use both the log-odds estimates from kNN and
sensitivity-related estimates obtained by nested cross-validation as inputs to
logistic regression to produce improved estimates that use both the original
estimates and the sensitivity estimates.

Synthetic Datasets. Friedman [6] introduced a series of synthetic datasets
to highlight the differences between various flexible kNN approaches and other
adaptive methods. These datasets form an interesting case study since we expect
a locally recalibrated kNN classifier to demonstrate many of the strengths of
adaptive kNN methods. We note that Friedman’s work and this work could
complement each other by extending the work here to more general metric spaces
and learning a metric before estimating the sensitivity using that metric.

We present results here for the first five synthetic problems in [6]. Each prob-
lem is binary classification and varies as to whether each dimension is equally
informative. Because these are binary classification tasks, we refer to the positive
and the negative class. We use the same number of training/testing points per
problem as used in Friedman’s original study. Ten train/test sets are drawn for
each problem and the error averaged across the ten runs is computed. Since we
expect the base kNN to produce poor log-odds estimates, we do not compare
probability quality and instead compare improvement in error.

Problem 1. The number of input dimensions equals ten, d = 10. A class label
is drawn with P (c = +) = P (c = −) = 0.5. For the negative class, the exam-
ples are drawn from a standard normal x ∼ N(0,1). For the positive class the
examples are drawn from a normal x ∼ N(μ,Σ) where μi =

√
i

2 , Σii = 1√
i
, and

Σij = 0 for i �= j and i, j = 1, . . . , d. Thus the higher number dimensions have
both means that are further separated and variances that are smaller and are
generally more informative than the lower dimensions. For each run, 200 training
and 2000 testing points are generated.

Problem 2. The number of input dimensions equals ten, d = 10. A class
label is drawn with P (c = +) = P (c = −) = 0.5. For the negative class, the ex-
amples are drawn from a standard normal x ∼ N(0,1). For the positive class the
examples are drawn from a normal x ∼ N(μ,Σ) where μi =

√
d−i+1

2 , Σii = 1√
i
,

36 P.N. Bennett

and Σij = 0 for i �= j and i, j = 1, . . . , d. Thus the higher number dimensions
have means that are closer together, but the variance binds the values more
closely to the means. Whereas, the lower dimensions have means that are well
separated but also have higher variances. Thus all dimensions are informative.
For each run, 200 training and 2000 testing points are generated.

Problem 3. The number of input dimensions equals ten, d = 10. All examples
are drawn from a standard normal x ∼ N(0,1) and are labeled with a class by
the rule: if

∑d
i=1

x2
i

i ≤ 2.5 then negative else positive. The resulting class dis-
tribution marginalizes to approximately P (c = +) = 0.51. Unlike the previous
two problems, the optimal error here is zero. Again, the dimensions contribute
unequally to the final determination of the class label although the values of the
features vary uniformly in the space. The decision surface is quadratic. For each
run, 200 training and 2000 testing points are generated.

Problem 4. The number of input dimensions equals ten, d = 10. All ex-
amples are drawn from a standard normal x ∼ N(0,1) and are labeled by the
rule: if

∑d
i=1 x2

i ≤ 9.8 then negative else positive. The resulting class distribution
marginalizes to approximately P (c = +) = 0.46. Again the optimal error here
is zero, but now the dimensions contribute equally to the final determination
of the class label. For each run, 500 training (instead of 200) and 2000 testing
points are generated.

Problem 5. The number of input dimensions equals ten, d = 10. All ex-
amples are drawn from a standard normal x ∼ N(0,1) and are labeled with a
class by the rule: if

∑d
i=1 xi ≤ 0 then negative else positive. The resulting class

distribution is P (c = +) = P (c = −) = 0.5. Again the optimal error here is
zero, and the dimensions contribute equally to the final determination of the
class label. The decision surface is linear. For each run, 200 training and 2000
testing points are generated.

kNN Classifier. We use a standard way of performing a distance-weighted
vote of the neighbors to compute the output for the kNN classifier [7]. k is set
to be 2log2 N�+ 1 where N is the number of training points.1 The score used
as the uncalibrated log-odds for being in a class y is:

λ̂kNN(x) =
∑

n∈kNN(x)|c(n)=y

K(x,n) −
∑

n∈kNN(x)|c(n) �=y

K(x,n). (4)

where K is a kernel (similarity) function. For text classification, this is typically
cosine similarity. For the synthetic datasets, we use a Gaussian RBF kernel with
σ = 1 since the problems imply a translation invariant kernel is desirable. It is
reasonable to expect this score to behave like an uncalibrated log-odds estimate

1 This rule is motivated by theoretical results which show such a rule converges to the
Bayes optimal classifier as the number of training points increases [8].

Neighborhood-Based Local Sensitivity 37

since it is similar to SVM’s margin score,
∑

αiyi K(si,x), which has been shown
to empirically behave like an uncalibrated log-odds estimate [2,4].

Efficient Approximation. Because identifying the k neighbors of a point in
kNN is computationally expensive, we desire a more efficient approach than
separate neighbor retrievals for the k+1 classifications. In this case, we perform
a single retrieval around the query point to obtain a cache of size K ≥ k such
that the k neighbors of a sample point are approximated by taking the k closest
of the K. We use K = 2k as a heuristic derived from the fact that retrieving
K neighbors by finding all points within twice the radius, r, of the original
example (the farthest neighbor of the k from the query) would guarantee that
the k closest neighbors of a sample point are contained within the K. This is
because the sample point is within 0.5r of the original example, and therefore
the original query’s k neighbors are within 1.5r of the sample. Thus, the sample
has radius ≤ 1.5r and therefore 2r from the original will contain all its neighbors.

For benchmarking, we ran over a text classification corpus using a kNN algo-
rithm with an inverted index, the same algorithm but retrieving 2k neighbors,
and the version that computes both predictions and sensitivity estimates. The
experiments were run on a machine with an Intel Pentium R© 4 CPU, 3GHz clock
speed, and 1 GB of RAM. As can be seen in Table 1, a slowdown of three times
the baseline is experienced instead of the näıve slowdown of k + 1 = 30 times
the baseline. For the synthetic experiments below, we do not use this caching
approximation, but for the experiments over the text corpora we do.

Table 1. Effect on running time of computing the kNN sensitivity estimates for the
Reuters 21578 corpus (9603 training examples, 3299 testing examples, 900 features)

Method Total Run Time (s) Ratio to Baseline

Sparse (k) 69.1 1

Sparse (2k) 80.07 1.16

Sparse w/Sensitivity (2k) 196.37 2.84

Recalibration Results and Discussion. Table 2 summarizes results over the
synthetic datasets giving the average error for each method over the ten runs as
well as the standard deviation across runs. Table 3 presents a summary of the
two recalibration methods in terms of the relative reduction in error they yield
over the baseline kNN method. When the best result is statistically significant
according to a two-tailed paired t-test with p=0.01, it is underlined.

To ensure that our baseline error is not artificially poor, we list the average
error reported by Friedman for his baseline kNN method. Our baseline performs
either approximately the same or far better (Problems 1 and 2); the latter proba-
bly results from our use of a distance-weighted kNN vote rather than Friedman’s
unweighted vote.

Examining the performance of Recalibrated kNN, we see that simple recalibra-
tion gains large reduction in errors in all problems but one — Problem 5 where

38 P.N. Bennett

it loses slightly relative to the baseline. Examining the Sensitivity Recalibrated
results, we see that not only does this method always achieve large wins over the
baseline method, but it also yields large improvements over Recalibrated kNN
in all but one case — Problem 4 where it improves over Recalibrated kNN by
only a slight amount.

In the fifty different runs (10 runs * 5 problems), the Sensitivity Recalibrated
method only has a worse error on 3/50 runs vs. Recalibrated kNN and on 4/50
runs vs. kNN; furthermore, no more than one of these runs occurs on the same
Problem (explaining the paired t-test significance). Relative to the baseline, the
Sensitivity Recalibrated method reduces the error anywhere from 13% to 65%.
Altogether, the evidence argues that not only are the sensitivity estimates use-
ful in recalibrating kNN, but they provide information beyond that which is
captured in the original log-odds estimates.

Table 2. The average error of each method in the synthetic datasets as well as one
standard deviation. The best result in each problem is in bold.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Error Stdev Error Stdev Error Stdev Error Stdev Error Stdev

Friedman kNN [6] 13.2 — 10.3 — 35.9 — 34.0 — 17.4 —

kNN 2.57 0.2973 2.81 0.5868 36.22 1.7335 38.16 0.6919 17.07 1.5592

Recalibrated kNN 2.23 0.6601 2.40 0.3752 21.81 0.9459 21.52 1.4870 18.00 1.9490

Sensitivity Recal. 1.33 0.2679 1.81 0.3354 20.97 1.0061 13.19 0.9562 14.85 1.6264

Table 3. Relative Reduction in Error, 1 - Error(Method) / Error(kNN)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Recalibrated kNN 0.13 0.15 0.40 0.44 -0.05

Sensitivity Recal. 0.48 0.36 0.42 0.65 0.13

4.2 Local Classifier Combination

We have seen that sensitivity estimates can boost the performance of recali-
bration techniques. However, it seems likely that they should also be useful in
classifier combination. Returning to our peer review problem, when faced with
opinions from three reviewers, we might want the weight on a reviewer’s accep-
tance rating to depend on the reviewer’s confidence.

The STRIVE metaclassification approach [9] extended Wolpert’s stacking
framework [10] to use reliability indicators. In this framework a metaclassifier has
access to both the outputs of base classifiers as well as some auxiliary reliability
indicators. If each of the base classifiers outputs a log-odds like estimate, then
a linear metaclassifier has a natural interpretation as both recalibrating and
weighting each classifier according to its class-conditional information content
[11,1]. Note that this is the direct extension of the recalibration paradigm in the
previous section to multiple classifiers. A metaclassifier that recalibrates a single

Neighborhood-Based Local Sensitivity 39

base classifier is now replaced by a stacking approach which applies a metaclass-
ifier to the outputs of multiple base classifiers. Likewise recalibrating with the
additional sensitivity information is now replaced by a striving approach which
applies a metaclassifier to the outputs of multiple base classifiers and additional
sensitivity information.

Our goal in this section is to illustrate that computing the neighborhood-
based sensitivity estimates is both practical in “real-world” datasets and yields
increased performance. To demonstrate this, we compare the performance of the
base classifiers to both a stacked model of the base classifier outputs and to
striving with the base classifier outputs and sensitivity information.

For the base classifier outputs, we obtain log-odds like estimates from five
standard classifiers (kNN, linear SVM, decision trees, multivariate näıve Bayes,
and multinomial näıve Bayes), and use a linear SVM as a metaclassifier to learn
a stacked model. For the striving model, we apply a linear SVM metaclassifier
to the base classifier outputs and the sensitivity estimates described above for
kNN as well as a variety of other variables tied to sensitivity as motivated in [1].
Since an SVM is used as a metaclassifier in both cases, we refer to the stacking
model as Stack-S and the striving model as STRIVE-S. Space prevents us from
providing a full description of these experiments, but see [1].

We examined performance over several topic-classification corpora including:
the MSN Web Directory; two corpora drawn from the Reuters newswire; and
the TREC-AP corpus. We selected these corpora because they offer an array
of topic classification problems from very broad topics over web pages to very
narrow topics over financial news stories. In terms of scale, the number of training
documents across these corpora varies from 9603 to 142791 while the number of
testing documents varies from 3299 to 781265.

4.3 Results and Discussion

For space, only the base SVM — which typically performs best among the base
classifiers — is explicitly listed. We note that our implementation of the base
SVM is on par with the best results in previously reported literature [12,9].
In Figure 2, we display the changes in the three components that determine
error and F1: false positives, false negatives, and correct positives. Not only
does STRIVE-S achieve considerable reductions in error of 4-18% (left) and 3-
16% (right), but it also nearly always improves beyond those gains achieved by
Stack-S. Furthermore, STRIVE-S never hurts performance relative to the SVM
on these performance measures as Stack-S does over RCV1-v2 on the far left.
Examining a micro-sign, macro-sign, and macro t-test, STRIVE-S significantly
improves (p < 0.05) over the base SVM classifier (except for one collection and
one performance measure, F1 for RCV1-v2), and over Stack-S for the majority
of collections and performance measures (see [1] for more detail).

Finally, the STRIVE model augmented with sensitivity information not only
demonstrates improved and robust performance across a variety of corpora, but
in post-analysis, backward selection reveals that the primary variables of interest
are the neighborhood-based sensitivity related estimates [1].

40 P.N. Bennett

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)

RCV1-v2 MSN Web Reuters TREC-AP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

 S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

RCV1-v2 MSN Web Reuters TREC-AP FalsePos
FalseNeg

CorrectPos

Fig. 2. For Stack-S and STRIVE-S change relative to the best base classifier — the
SVM classifier — over all the topic classification corpora. On the left, we show the
relative change using thresholds learned for F1, and on the right, we show the relative
change using thresholds learned for error.

5 Related Work, Future Work, and Summary

In addition to the related work mentioned throughout the paper, several ap-
proaches merit mention. The STRIVE metaclassification approach [9] extended
Wolpert’s stacking framework [10] to use reliability indicators. In recent work,
Lee et al. [13] derive variance estimates for näıve Bayes and tree-augmented näıve
Bayes and use them in a combination model. Our work complements theirs by
laying groundwork for how to compute variance estimates for models such as
kNN that have no obvious probabilistic component in addition to being able to
use the same framework to compute estimates for any classification models.

A variety of other work has examined stability and robustness related to
sensitivity. Several researchers have attempted to obtain more robust classifiers
by altering feature values [14] or training multiple classifiers over feature subsets
[15]. Similarly, [16] compresses a more complex model into a simpler model by
using the former to label instances generated by combining attributes of a point
with its nearest neighbor. Finally, [17] contains a variety of related work that
focuses on sensitivity analysis to determine the significance of input dimensions
while [18] examines the stability of the algorithm with respect to small changes in
the training set. Where much of the previous work focuses on change in a single
dimension, we focus on characterizing the change around the current prediction
point according to the local density across all dimensions.

There are a variety of interesting directions for future work. One of the most
interesting directions is extending the neighborhood-based estimates for learned
metrics. Additionally, exploring other methods of sampling from the Voronoi cell
and characterizing how these methods differ in the quality of estimates they yield
could be quite useful. Such a study could also analyze how critical staying within
the Voronoi cell is. In our experiments, we found performance over the synthetic
datasets was less sensitive to staying within the Voronoi cell while it was more

Neighborhood-Based Local Sensitivity 41

important over the text datasets. Formally characterizing this dimension will be
important in advancing the understanding of sensitivity estimators.

In conclusion, we motivated the use of sensitivity information in a variety of
different scenarios including active learning, recalibration, and classifier combi-
nation. We then demonstrated how a neighborhood-based sensitivity estimator
can sample efficiently from the points in the input space near the prediction
point to estimate sensitivity. Finally, the resulting estimates were demonstrated
to be useful in improving performance in both recalibration over synthetic data
and classifier combination over standard text classification corpora.

References

1. Bennett, P.N.: Building Reliable Metaclassifiers for Text Learning. PhD thesis,
CMU, CMU-CS-06-121 (2006)

2. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: Smola, A.J., Bartlett, P., Scholkopf, B., Schuur-
mans, D. (eds.) Advances in Large Margin Classifiers, MIT Press, Cambridge (1999)

3. Zadrozny, B., Elkan, C.: Reducing multiclass to binary by coupling probability
estimates. In: KDD ’02 (2002)

4. Bennett, P.N.: Using asymmetric distributions to improve text classifier probability
estimates. In: SIGIR ’03 (2003)

5. Zhang, J., Yang, Y.: Probabilistic score estimation with piecewise logistic regres-
sion. In: ICML ’04 (2004)

6. Friedman, J.H.: Flexible metric nearest neighbor classification. Technical report,
Department of Statistics, Stanford University (1994)

7. Yang, Y.: An evaluation of statistical approaches to text categorization. Informa-
tion Retrieval 1, 67–88 (1999)

8. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer, New York (1996)

9. Bennett, P.N., Dumais, S.T., Horvitz, E.: The combination of text classifiers using
reliability indicators. Information Retrieval 8, 67–100 (2005)

10. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)
11. Kahn, J.M.: Bayesian Aggregation of Probability Forecasts on Categorical Events.

PhD thesis, Stanford University (2004)
12. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for

text categorization research. Journal of Machine Learning Research 5, 361–397
(2004), http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf

13. Lee, C.H., Greiner, R., Wang, S.: Using query-specific variance estimates to com-
bine bayesian classifiers. In: ICML ’06 (2006)

14. O’Sullivan, J., Langford, J., Caruana, R., Blum, A.: Featureboost: A meta-learning
algorithm that improves model robustness. In: ICML ’00 (2000)

15. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets.
In: ICML ’98 (1998)

16. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: KDD ’06
(2006)

17. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Prac-
tice: A Guide to Assessing Scientific Models. John Wiley & Sons Ltd., Chichester
(2004)

18. Bousquet, O., Elisseeff, A.: Stabilitiy and generalization. JMLR 2, 499–526 (2002)

http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf

Approximating Gaussian Processes

with H2-Matrices

Steffen Börm1 and Jochen Garcke2

1 Max Planck Institute for Mathematics in the Sciences
Inselstraße 22–26, 04103 Leipzig, Germany

sbo@mis.mpg.de
2 Technische Universität Berlin, Institut für Mathematik, MA 3-3

Straße des 17. Juni 136, 10623 Berlin
garcke@math.tu-berlin.de

Abstract. To compute the exact solution of Gaussian process regression
one needs O(N3) computations for direct and O(N2) for iterative meth-
ods since it involves a densely populated kernel matrix of size N×N , here
N denotes the number of data. This makes large scale learning problems
intractable by standard techniques.

We propose to use an alternative approach: the kernel matrix is re-
placed by a data-sparse approximation, called an H2-matrix. This matrix
can be represented by only O(Nm) units of storage, where m is a parame-
ter controlling the accuracy of the approximation, while the computation
of the H2-matrix scales with O(Nm log N).

Practical experiments demonstrate that our scheme leads to signifi-
cant reductions in storage requirements and computing times for large
data sets in lower dimensional spaces.

1 Introduction

In this paper we consider the regression problem arising in machine learning.
A set of data points xi in a d-dimensional feature space is given, together with
an associated value yi. We assume that a function f∗ describes the relation
between the predictor variables x and the (noisy) response variable y and want
to (approximately) reconstruct the function f∗ from the given data. This allows
us to predict the function value for any newly given data point.

We apply Gaussian Process regression (GP) [1] for this task. In the direct
application this method gives rise to a computational complexity of O(N3);
for iterative methods one has O(N2) in each iteration. This makes large scale
learning problems intractable for exact approaches.

One approximation approach for large problems is to use only a subset of the
data for the iterative solver, i.e., to compute the inverse of a smaller matrix and
extend that result in a suitable way to the whole data set, see [1] for an overview
and further references. In [2] probabilistic sparse approximations are presented
under a unified concept as “exact interference with an approximated prior”.

One can interpret the above approaches also as “approximated interference
with the exact prior”, this view especially holds for recent approaches using

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 42–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximating Gaussian Processes with H2-Matrices 43

Krylov subspace iteration methods with an approximation of the matrix-vector
product in the case of Gaussian kernels. In [3] this product is approximated
using tree-type multiresolution data structures like kd-trees. [4,5] compare sev-
eral multipole approaches, these can show speedups of an order of magnitude or
more, but the results heavily depend on the parameters of the problem.

In this paper we use hierarchical matrices (H-matrices) [6] to derive a data-
sparse approximation of the full kernel matrix. H-matrices are closely related to
panel-clustering and multipole techniques for the treatment of integral operators
in two or three spatial dimensions. They reduce the storage requirements for N -
by-N matrices to O(Nm logN) by applying local rank-m-approximations and
allow us to evaluate matrix-vector products in O(Nm logN) operations. Other
operations like multiplication or inversion can also be accomplished in almost
linear complexity [6,7].

For very large N it is a good idea to look for even more efficient techniques:
H2-matrices [8] reduce the storage requirements to O(Nm), and using the re-
compression algorithm described in [9], the conversion of the original H-matrix
representation into the more efficient H2-matrix format can be accomplished
with only a minor increase in run-time.

2 Gaussian Process Regression

Let us consider a given set of data (the training set) S = {(xi, yi) ∈ �d×�}Ni=1,
with xi representing data points in the feature space and yi their associated
response variable. Assume for now that these data have been obtained by sam-
pling an unknown function f with additional independent Gaussian noise ei of
variance σ2, i.e., yi = f(xi) + ei. The aim is now to recover the function f from
the given data as well as possible. Following the Bayesian paradigm, we place
a prior distribution on the function f(·) and use the posterior distribution to
predict on new data points x. In particular we assume a Gaussian process prior
on the function f(x), meaning that values f(x) on points {xi}Ni=1 are jointly
Gaussian distributed with zero mean and covariance matrix K. The kernel (or
covariance) function k(·, ·) defines K via Ki,j = k(xi, xj).

It turns out that the solution f(x) takes on the form of a weighted combination
of kernel functions on training points xi [1]

f(x) =
N∑

i=1

αik(xi, x), (1)

where the coefficient vector α is the solution of the linear equation system

(K + σ2I)α = y, (2)

here I denotes the unit matrix. The variance σ2 is in practice estimated via the
marginal likelihood criterion, cross-validation, or similar techniques [1].

Directly solving this equation by inverting K+σ2I involves in general O(N3)
operations. Furthermore, the storage requirement of the covariance matrix K

44 S. Börm and J. Garcke

exceeds the memory of current workstations even for the moderate dimension
N ≥ 15000. A common approach is to use a smaller subset of the data and the
associated kernel functions to represent the solution f [1,2]. That way one can
in principle achieve methods of order O(M2 · N + M3) instead of O(N3), but
one loses the exact theoretical properties of the approach. Furthermore, these
approximate methods are known to fail for some data sets or have costly subset
selection strategies for competitive results, see [10] for results in the related case
of regularised least squares classification. Note that these methods still scale with
the square of M and therefore show a quadratic complexity in N if M ≥

√
N .

2.1 Iterative Solution with Krylov Subspace Methods

The use of conjugate gradients (CG) for the solution of the linear equation
system (2) is for example described in [1]. In Krylov subspace iteration methods
the k-th approximate solution xk of Ax = b is searched in the Krylov space
span{b, Ab, . . . , Ak−1b}, i.e., the history of the already computed approximation
is used, see, e.g., [11]. For symmetric positive definite matrices, the CG algorithm
ensures that xk minimises the A-norm of the error, i.e., 〈Aek, ek〉1/2 with ek :=
x − xk. In the case of general matrices, the GMRES algorithm minimises the
Euclidean norm of the residual, i.e., ‖b−Axk‖. Note that in both cases only the
action of the matrix A on a vector is needed in the actual computation. As long
as the number of iterations is bounded by a constant independent of the matrix
size and the problem parameters under consideration, these iterative approaches
result in a computational complexity that is proportional to the complexity of
one matrix-vector multiplication, i.e., O(N2) operations are required for the
solution of (2) in the standard case.

Since O(N2) is still too costly for large problems, approaches using Krylov
subspace iteration methods with a more efficient approximation of the matrix-
vector product in the case of Gaussian kernels have been studied recently. In [3]
the matrix-vector product is approximated using tree-type multiresolution data
structures like kd-trees. [4,5] compare the fast Gauss transform, the improved
fast Gauss transform (IFGT) and dual-tree approaches for fast Gauss transforms,
see [3,4,5] for references with regard to the algorithms. In these articles empirical
speedups of an order of magnitude or slightly more, in comparison with on-the-
fly computation of the kernel matrix, are shown. The results heavily depend
on the parameters, e.g., the number of dimensions, the width of the Gaussian
kernel, the regularisation parameter, and the data distribution, see [5]. This is
not always taken into proper account in experimental studies.

2.2 H- and H2-Matrices

We propose to use a Krylov-based approach and rely on H- (cf. [6,7]) and H2-
matrices (cf. [8,9]) to speed up the computation of the matrix-vector multiplica-
tion by the full matrix K. In order to reach this goal, we replace the matrix by
a data-sparse approximation K̃ that allows us to perform matrix-vector multi-
plications (and other arithmetic operations) very efficiently.

Approximating Gaussian Processes with H2-Matrices 45

H- and H2-matrices have originally been developed for the approximation
of matrices arising when treating elliptic partial differential equations. They
require only O(Nm logN) and O(Nm) units of storage, respectively, where m
determines the accuracy. The matrix-vector multiplication is of the same order,
since it requires not more than two operations per unit of storage.

In the following we will present the core ideas behind these matrix approxi-
mations and their computation. For more details we refer to the references, in
particular the lecture notes [6].

The basic idea of H- and H2-matrix techniques is to exploit the smoothness
of the kernel function k: if k is sufficiently smooth in the first variable, it can be
replaced by an interpolant

k̃(x, z) :=
m∑

ν=1

Lν(x)k(ξ
ν
, z),

where (ξ
ν
)m
ν=1 are interpolation points and (Lν)m

ν=1 are corresponding Lagrange
polynomials. Replacing k by k̃ in the matrix K yields an approximation

K̃ij := k̃(xi, xj) =
m∑

ν=1

Lν(xi)k(ξ
ν
, xj) = (AB)ij (3)

with matrices A,B ∈ RN×m defined by Aiν := Lν(xi) and Bjν := k(ξ
ν
, xj).

While the standard representation of K requires N2 units of storage, only 2Nm
units are sufficient for the factorised representation (3). If k is sufficiently smooth,
m can be quite small, and the new representation will be far more efficient than
the standard one.

Computing the factorised representation K̃ = AB	 by interpolation will
be relatively inefficient if the function k has special properties: if, e.g., k is a
quadratic polynomial, interpolating it by seventh-order polynomials will lead to
an unnecessary increase in computational complexity. In order to avoid this ef-
fect, we replace the interpolation by the heuristic adaptive cross approximation
(ACA) algorithm [12]:

1: set K̂ := K and K̃ := 0
2: estimate ε0 := ‖K̂‖
3: set m := 0
4: while εm > ε0εACA do
5: set m := m + 1
6: pick pivot indices im, jm ∈ {1, . . . , N}
7: compute am

i := K̂ijm for i = 1, . . . , N
8: compute bm

j := K̂imj/a
m
im for j = 1, . . . , N

9: set K̃ := K̃ + am(bm)	 and K̂ := K̂ − am(bm)	

10: estimate εm := ‖K̂‖
11: end while

There are different strategies for picking the pivot indices in step 6 of the algo-
rithm. A simple approach is to assume that jm is given, compute am, pick im

46 S. Börm and J. Garcke

such that |am
im | is maximised, compute bm, pick jm+1 such that |bm

jm | is max-
imised, and repeat the procedure for m+1. In our experiments, we use the more
refined strategies of the HLib package [13].

Since am(bm)	 is a rough approximation of K̂, a reasonable strategy for esti-
mating the remaining error in steps 2 and 10 of the algorithm is to use ‖K̂‖2 ≈
‖am(bm)	‖2 = ‖am‖2‖bm‖2. Of course, problem-dependent norms can be used
instead of the spectral norm, provided that they can be estimated efficiently.

The entries K̂ijm and K̂imj used in steps 7 and 8 should not be computed ex-
plicitly, since this would require computing the entire matrix K. A more elegant
approach is to use the definition of K̂: due to

K̂ij = (K − K̃)ij = Kij −
(

m−1∑

�=1

a�(b�)	
)

ij

= Kij −
m−1∑

�=1

a�
ib

�
j ,

we can avoid storing K̂ explicitly and reconstruct its entries as necessary.
At the end of each iteration of the inner loop, we have K̂ + K̃ = K, i.e.,

‖K − K̃‖ = ‖K̂‖, so the stopping criterion allows us to control the relative
approximation error if the estimates for the norms of K̂ are sufficiently accurate.
The vectors (aν)m

ν=1 and (bν)m
ν=1 yield the desired representation K̃ = AB	.

In many applications, e.g., if the function k is not globally smooth, the repre-
sentation (3) will not be efficient for the global matrix K. Typical functions k are
locally smooth or decay rapidly, and the factorised representation can be applied
for submatrices K|t×s = (Kij)i∈t,j∈s with suitable subsets t, s ⊆ {1, . . . , N}.

The analysis in [14] shows that the approximation error will even decrease
exponentially depending on m if k is locally analytic and if

diam(Bt) ≤ η dist(Bt, Bs) (4)

holds for a parameter η ∈ R>0 and two axis-parallel boxes Bt and Bs satisfying
xi ∈ Bt for all i ∈ t and xj ∈ Bs for all j ∈ s. Here the Euclidean diameter and
distance are used, which can be computed easily for axis-parallel boxes.

We are faced with the task of splitting K (up to a sparse remainder) into a
collection of submatrices which satisfy a condition of the type (4), i.e., can be
approximated in the form (3). Since the data points (xi)

N
i=1 are embedded in

Rd, a hierarchy of clusters of indices assigned to boxes Bt can be constructed by
binary space partitioning. If a cluster t is “too large”, its box Bt is split in two
equal parts along its longest edge, and this induces a splitting of the cluster t.
Starting with t = {1, . . . , N} in the whole domain and applying the procedure
recursively yields a cluster tree.

The corresponding hierarchical matrix structure is also constructed by recur-
sion: if a block t × s is admissible, it is represented by a low-rank matrix. If t
or s are leaves, the block is considered “small” and stored in the standard for-
mat. Otherwise, the sons of t and s are tested until no untested blocks remain.
This procedure requires O(N logN) operations [7], but the complexity will grow
exponentially in d: each cluster t can be expected to “touch” at least 3d − 1
other blocks s, these blocks will not satisfy the admissibility condition (4) and

Approximating Gaussian Processes with H2-Matrices 47

have to be examined by recursion. Therefore the current implementation of the
H-matrix approach is attractive for up to four spatial dimensions, but will suffer
from the “curse of dimensionality” if d becomes larger due to the use of binary
space partitioning.

The H-matrix approximation based on ACA or interpolation will have an
algorithmic complexity of O(Nm logN) [6]. If N is very large, the logarithmic
factor can have a significant impact regarding the total storage requirements, and
some problems may even become intractable given a fixed amount of storage.

The situation is different for the H2-matrix representation [8,9], which relies
on the same basic ideas as the H-matrix approach: the matrix is split into blocks,
and each block is approximated by a low-rank matrix. The main difference be-
tween the two methods is the choice of this low-rank matrix: for the H-matrix,
it is motivated by the interpolation in the x variable, for the H2-matrix, we
interpolate in both variables and get

k̃(x, z) :=
m∑

ν=1

m∑

μ=1

Lν(x)k(ξ
ν
, ζ

μ
)Lμ(z),

which leads to the factorisation K|t×s ≈ V SW	 for a small coupling matrix
S ∈ IRm×m and cluster bases V,W ∈ IRN×m. If this approximation scheme is
applied to submatrices of K, the special structure of V and W , i.e., the fact that
they are discretised Lagrange polynomials, can be used in order to reach a total
complexity of O(Nm).

Using the quasi-optimal algorithm presented in [9], an H-matrix can be con-
verted into a more compact H2-matrix with only a minor run-time overhead
while keeping the approximation error under close control.

2.3 Coarsening

The H- and H2-matrix structures created by this procedure will suffer from the
“curse of dimensionality”, i.e., their complexity will grow exponentially in the
spatial dimension d. In order to reduce this effect, the coarsening techniques de-
scribed in [15] are employed to construct a far more efficient H-matrix structure:
even if t and s do not satisfy the admissibility condition, the block K|t×s may
have an efficient low-rank approximation. Using the singular value decomposi-
tion of K̃|t×s, we can determine the optimal low-rank approximation for a given
precision εHC and use it instead of the original one if it is more efficient.

1: repeat
2: pick t and s in such a way that K̃t′×s′ is represented by a low-rank matrix

for all subblocks t′ × s′ of t× s.
3: compute a low-rank approximation of K̃t×s up to an error of εHC

4: if the new approximation is more efficient than the original ones then
5: replace the original low-rank representations by the new one
6: end if
7: until all pairs t and s have been checked

48 S. Börm and J. Garcke

In most practical situations, the algorithm is relatively inexpensive compared to
the initial approximation and yields a very significant compression.

See Figure 1 for an example of the resulting structure and the local ranks of
an H2-matrix for a typical data set (using a suitable permutation of the data).

The full algorithm to compute the H2-matrix approximation consists of the
following steps:

1: build hierarchy of clusters t by binary space partitioning
2: build blocks t× s using the admissibility criterion (4)
3: for all admissible blocks t× s do
4: use ACA to compute a low-rank approximation K̃|t×s = AB	

5: end for
6: for all remaining blocks t× s do
7: compute standard representation K̃|t×s = K|t×s

8: end for
9: coarsen the block structure adaptively

10: convert the H-matrix into an H2-matrix

Note that the blockwise errors introduced by ACA can be estimated by a
simple heuristic approach. A rigorous error estimate can be provided if the ap-
proximation is based on interpolation and the growth rate of the derivatives of
the kernel function can be bounded [14]. The blockwise errors introduced by
the coarsening algorithm can be computed and controlled directly based on the
singular value decomposition [15]. Given a bound for the condition number of
K, error estimates for the solution vector are possible [16, Theorem 2.7.2].

3 Experimental Results

We employ the Gaussian RBF kernel e−‖x−y‖2/w in the following experiments.
The hyperparameters w and σ were found using a 2:1 split of the training data for
each data set size. Note that many GP users prefer to use marginal likelihood as
a criterion. Since we concentrate for now on the approximation properties of our
approach we have not investigated in much detail how to (more) efficiently find
good hyperparameters. Since one H2-matrix approximation can be used during
the computation for several σ, this property, which allows the cheap solution for
several σ, should be exploited, which we can by using the 2:1 split.

For the following experiments, we set both the tolerance for the cross ap-
proximation εACA and the tolerance for the coarsening to εHC to 10−7. The
admissibility parameter in (4) is chosen as η = 0.1. In general these parameters
should depend on the type of kernel function and its parameters. We choose
these fixed values in this study to have a good approximation of the kernel ma-
trix in all cases, they could be larger if chosen depending on the actual kernel
and therefore result in less computation time. We aim to have a difference of
less than 1% for the error on the test data from the 2:1 split of the training data
due to the employed approximation.

Approximating Gaussian Processes with H2-Matrices 49

58 19

20 71 20

19
80 22

20 50
23

23

122 21

21

54 19

19

69 19

20 83
18

19
52 16

16 1272

2 2

23

23

90 27

27

105 28

29 107 22

20 119 32

32

72 29

30

86 25

25 76 21

19 94 24

23

29 20

19

64 20

20 92 19

18 67

29

30

7 7

7

89 21

22

72 19

19 79 18

18 75 21

21 105
11

11 11

23

20 20

26
25 25
20 20

23

34 33

46 46

23 46
19 23

19
24 22

24 22
31

23 31
46

17 15

14

63 20

20

110 22

22 55
8

8 8

30

28

40 22

21 106 23

22

82 20

21

60 25

25 77
30

29 54
28

28
88 22

21

58 26

26 10223

23 32

51

47

58 38

38

108 30

28 76 23

24 30
31

30
45 26

26 97 40

38 76

56

58
92 34

34

12420

20 23
32

32 74
33

32 75

23 23

34

25 25

21 21 28

19 19
2 2

19
23

46

29 29

27

22 22

33 34
33

36 36

30 30
46

23 23

46 39

42
50

30 30

42 36 29

50 29

50 39
23 31

23

26 21

26 21

18 2

18 2

26 18

42 29

28 27

28
20 32

20 34 32
32 32 29

23 46
42

23 46

23 37

49 49

28 43

28 36 50
28 28

37

92 50

48

105 39

38
57 32

33 72 48

47 91
64

62 118
46

46
126 39

37

97 36

36

55 33

32 92 29

28 58

Fig. 1. Structure and rank of the H2-matrix approximation for the mote22 data set
using 5000 data. On the right hand side error of the approximation, the darker the larger
the error. The difference between the full matrix and the H2-matrix approximation is
3.79 · 10−8 in the spectral norm for this example.

The computations are carried out with the HLib package [13] on an AMD
Opteron 275 with about 4 GB of available memory. To solve the linear system
(2) for the H-matrix we use GMRES, since the use of the adaptive cross ap-
proximation algorithm disturbs the symmetry of the matrix K̃ slightly and gives
somewhat unstable results with conjugate gradients. Note that we currently can
not exploit the symmetry of the kernel matrix by only using the upper or lower
half of the matrix due to limitations in the HLib, but the extension for this
situation is in development. We also limit the number of iterations by 3000.

Two regression data sets are used, in the first one the data originates from
a network of simple sensor motes1 and the task is to predict the temperature
at a mote from the measurements of neighbouring ones [17]. Mote22 consists of
30000 training / 2500 test data from two other motes and mote47 has 27000
training / 2000 test data from three nearby motes. The second data is from a
helicopter flight project [18] and the task is to use the current state to predict
subdynamics of the helicopter for one timestep later, in particular its yaw rate,
forward velocity, and lateral velocity. We have 40000 training / 4000 test data
in three dimensions in the case of the yaw rate, both velocities depend on two
other measurements. For all these data sets we linearly transform the domain of
the predictor variable x to [0, 1]d, d = 2, 3.

In Table 1 we present results of our experiments on these data sets, we use the
mean absolute error (MAE) on the test set as the quality criterion. We give in
each case results for 20000 data, here the matrix (K+σ2I) can still be stored in
the available memory of 4 GB, and for the full data set. The times (in seconds)
presented here and in the following are for the computation using the given
hyperparameters, i.e., solution of the equation system (2) and the evaluation
on the data. In the case of the H2-matrix this includes the computation of the

1 Intel Lab Data http://berkeley.intel-research.net/labdata/

http://berkeley.intel-research.net/labdata/

50 S. Börm and J. Garcke

Table 1. MAE and runtime (in seconds) for different data sets using the matrix in
memory (stored), computing the matrix action in every iteration (on-the-fly) and using
the H2-matrix approximation. Also given are the w and σ used.

stored on-the-fly (for both) H2-matrix
data set #data w/σ time time error time error KB/N

mote 22 20000 2−9/2−5 2183 21050 0.278530 230 0.278655 2.0
mote 22 30000 2−11/2−5 n/a 88033 0.257725 494 0.257682 3.7
mote 47 20000 2−9/2−5 3800 36674 0.132593 1022 0.132553 16.4
mote 47 27000 2−9/2−6 n/a 73000 0.128862 1625 0.128913 17.2
heliX 20000 2−8/2−6 4084 37439 0.015860 603 0.015860 2.9
heliX 40000 2−10/2−10 n/a > 50h n/a 1975 0.014748 9.5
heliY 20000 2−7/2−10 4053 37546 0.020373 724 0.020372 3.2
heliY 40000 2−10/2−10 n/a > 50h n/a 2303 0.018542 15.1
heliYaw 20000 2−5/2−6 1091 10781 0.009147 676 0.009154 2.3
heliYaw 40000 2−7/2−6 n/a 162789 0.008261 3454 0.008263 6.6

Table 2. Runtimes in seconds and MAE results for the mote22 data set for different
data set sizes using ‘optimal’ parameters w / σ

N=#data w / σ stored on-the-fly error H2-matrix error size KB/N

1000 2−3/2−6 0.3 1.1 0.34979 1.56 0.34987 0.8
5000 2−7/2−7 30 296 0.31834 22.8 0.31938 1.1

10000 2−7/2−8 811 8502 0.30380 76.2 0.30743 1.1
20000 2−9/2−5 2183 19525 0.27853 230.1 0.27865 2.0
30000 2−11/2−5 n/a 88033 0.25772 494.8 0.25768 3.7

approximation matrix, the largest part of the total time for this approach. We
observe a speedup between 1.6 and 9.5 against the stored matrix and between 16
and 91 measured against on-the-fly computation of the matrix-vector-product.

On the full version of the data set the matrix cannot be stored anymore and
we can only compare against the on-the-fly computation, the speedup here is
between 44 and 178, going from hours to minutes. Note that the additional data
always results in an improvement on the test data, the mean absolute error is
reduced by 3% to 11%. One also observes that the bigger data sets use different
parameters w and σ, using the ones obtained on a smaller version of the data set
often results in no improvement at all. The amount of memory needed, measured
in KB per data points, can be reduced for the large helicopter data set from
156.25 down to 6.6, or in total from about 6 GB to about 250 MB. Note that [3]
observe for these data sets speedups of 3.3 to 88.2 against on-the-fly computation
of the matrix-vector-product using an approach based on kd-trees, although no
mention of the employed parameters w and σ is made, which heavily influences
the runtime as we will see in the following.

In Table 2 we show the results for the mote22 data set using different training
set sizes, but the same test data. One can observe the different ‘optimal’ w /
σ found for each data set size, which shows the need for parameter tuning on

Approximating Gaussian Processes with H2-Matrices 51

Table 3. Runtimes in seconds, number of iterations and time per iteration for the
mote22 data set using w = 2−9 and σ = 2−5 for different data set sizes

1000 5000 10000 20000 30000

H2-matrix time (sec.) 1.43 22.64 75.0 230.0 427.5
its 284 688 1111 1599 2025
time/its 0.00504 0.0329 0.0675 0.144 0.211

stored matrix time (sec.) 1.18 51.15 324.1 2183
its 284 689 1103 1596 n/a
time/its 0.00415 0.0742 0.29383 1.368

on-the-fly time (sec.) 9.13 565.2 3620.2 21050 60990
its 284 689 1103 1596 2005
time/its 0.032 0.82 3.282 13.189 30.42

Table 4. Using the 30000 data of mote22, the shown test results are from the 2:1 split
using w = 2−8 and different σ. Observe how the number of iterations needed by the
GMRES solver depends on σ.

σ 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

MAE 2:1 test 0.26447 0.26311 0.26349 0.26472 0.26818 0.27506 0.28929 0.32003
its 3000 2375 597 179 91 70 55 41

the full data instead of employing parameters found on a subset. Note that the
runtime of the H2-matrix starts to make an improvement against the stored
matrix already for 5000 data points.

To study the scaling behaviour with regard to N , the number of data, we
present in Table 3 runtime results for one set of parameters. Since the number of
iterations grows with the data set size we compare the runtime per iteration for
the different values of N . For the on-the-fly computation one observes the ex-
pectedO(N2) scaling behaviour. For the full matrix it actually is even worse than
O(N2) from 10000 to 20000 data, this may be due to changes in the efficiency of
the memory access in the dual core system after certain memory requirements.
In the case of the H2-matrix the scaling is nearly like O(Nm log(N)).

We study in Table 4 how the number of iterations depends on the σ employed,
it grows with smaller σ. This is due to the fact that the smaller σ is, the larger
the condition of the matrix (K+ σ2I) becomes. But the smallest mean absolute
errors are often achieved for small σ and one therefore typically needs quite a
large number of iterations. Note also that with smaller w the number of iterations
usually grows as well.

In Table 1 we also observe that typically with more data the best results are
achieved with both decreasing w and σ, both cases result in more iterations of
the Krylov solver. Therefore efficient computation of the matrix-vector-product
gets even more important for large data sets, not just due to the number of data,
but also because of the growing number of iterations in the solution stage.

Finally we use the H2-matrix with a different kernel, we tried the Matérn
family [1] of kernels which is given by φν(r) = 21−ν

Γ (ν) (cr)
νKν(cr), where Kν is a

52 S. Börm and J. Garcke

modified Bessel function of the second kind of order ν > 0 and c > 0. For ν = 1/2
one obtains the ‘random walk’ Ornstein-Uhlenbeck kernel. We did experiments
with the mote22 dataset for ν = 1/2, 1, 3/2 and 5/2 and achieved the best results
with ν = 1/2. Using all 30000 data the best parameters turn out to be c = 8.0
and σ = 2−4. Computing the matrix-vector-product on-the-fly we need 5265
seconds, the approach with the H2-matrix is finished after 431 seconds using 3.3
KB/N. The result on the test data is 0.2004, a significant improvement over the
use of the Gaussian kernel.

4 Conclusions and Outlook

We introduce the concept of hierarchical matrices for Gaussian Processes. Our
approach scales with O(Nm log(N)), i.e., far less than quadratic in the number
of data, which allows the efficient treatment of large data sets. On large data
sets, where the kernel matrix cannot be stored, we observe speedups of up to
two orders of magnitude compared to the on-the-fly computation of the matrix-
vector-product during the iterative Krylov solution of the linear equation system.

Among the competing methods, in particular the probabilistic sparse approx-
imations [2] are promising. These techniques have a complexity of O(NM2),
where the hyperparameter M , the number of data chosen for computational core,
controls the accuracy of the approximation. Comparing this estimate to the esti-
mate for our approach suggests that the latter will be preferable if m logN ≤M2.
To our knowledge, the proper choice of M has not been investigated in detail up
to now. Results in [1] suggest that even a choice of M = 2000 is not sufficient
for a data set of size N = 45000 to achieve good accuracy.

The current implementation of the HLib is optimised for two and three spatial
dimensions, the extension to higher dimensions is a topic of ongoing research. The
basic structure of local rank-m- or more general tensor approximations should
be usable in this case as well. In our case ideas like hierarchical clustering are
most promising. It is also worthwhile to investigate if the ideas from probabilistic
sparse approximations can be combined with the hierarchical matrix approach
presented here.

In our experiments we use a simple 2:1 splitting of the training data for
the hyperparameter fitting. For large data sets one advantage of the marginal
likelihood criterion, that all data is employed in learning and fitting, is not as
significant as for small data sets. Nevertheless we intend to adopt this criterion
for hyperparameter fitting in the future. The goal is to use one approximation
of the kernel matrix for several values of σ.

Till now we have not considered preconditioning at all. We could use a larger
error tolerance εHC to compute a second but much coarser and therefore smaller
H2-matrix. We then can cheaply compute its LU or Cholesky decomposition
and use it as a preconditioner for GMRES [6]. In other application areas the
number of iterations typically goes from hundreds or thousands down to ten or
twenty, depending on how coarse the second H2-matrix is.

Approximating Gaussian Processes with H2-Matrices 53

This is especially worthwhile for the computation of the predictive variance
on the test data. In our case it seems that this would necessitate the solution
of a linear equation system for each test data point [1]. Since the kernel matrix
would be the same in every case, additional computation to obtain a good and
cheap preconditioner is easily compensated, since the solution would then need
only a few matrix-vector-multiplications.

References

1. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

2. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
gaussian process regression. J. of Machine Learning Research 6, 1935–1959 (2005)

3. Shen, Y., Ng, A., Seeger, M.: Fast gaussian process regression using kd-trees. In:
Weiss, Y., Schölkopf, B., Platt, J. (eds.) NIPS 18, MIT Press, Cambridge (2006)

4. Freitas, N.D., Wang, Y., Mahdaviani, M., Lang, D.: Fast krylov methods for n-
body learning. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural
Information Processing Systems 18, MIT Press, Cambridge, MA (2006)

5. Lang, D., Klaas, M., de Freitas, N.: Empirical testing of fast kernel density estima-
tion algorithms. Technical Report TR-2005-03, Department of Computer Science,
University of British Columbia (2005)

6. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical Matrices. Lecture Note 21
of the Max Planck Institute for Mathematics in the Sciences (2003)

7. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Com-
puting 70(4), 295–334 (2003)

8. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On H2-matrices. In: Bungartz, H.,
Hoppe, R., Zenger, C. (eds.) Lect. on Applied Mathematics, pp. 9–29. Springer,
Heidelberg (2000)

9. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive H2-matrices.
Computing 69, 1–35 (2002)

10. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. In: Suykens,
J., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J. (eds.) Advances in Learning
Theory: Methods, Models and Applications, pp. 131–153. IOS Press, Amsterdam
(2003)

11. Greenbaum, A.: Iterative methods for solving linear systems, Philadelphia, PA,
USA (1997)

12. Bebendorf, M.: Effiziente numerische Lösung von Randintegralgleichungen unter
Verwendung von Niedrigrang-Matrizen. PhD thesis, Uni. Saarbrücken (2000)

13. Börm, S., Grasedyck, L.: HLib – a library for H- and H2-matrices (1999), Available
at http://www.hlib.org/

14. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by inter-
polation. Computing 72, 325–332 (2004)

15. Grasedyck, L.: Adaptive recompression of H-matrices for BEM. Computing 74(3),
205–223 (2004)

16. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins U. P. (1996)
17. Buonadonna, P., Hellerstein, J., Hong, W., Gay, D., Madden, S.: Task: Sensor

network in a box. In: Proc. of European Workshop on Sensor Networks (2005)
18. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,

Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In:
International Symposium on Experimental Robotics (2004)

http://www.hlib.org/

Learning Metrics Between Tree Structured

Data: Application to Image Recognition�

Laurent Boyer2, Amaury Habrard1, and Marc Sebban2

1 Université de Provence, LIF, France
2 Université de Saint-Etienne, Laboratoire Hubert Curien, France

{laurent.boyer,marc.sebban}@univ-st-etienne.fr,
amaury.habrard@lif.univ-mrs.fr

Abstract. The problem of learning metrics between structured data
(strings, trees or graphs) has been the subject of various recent papers.
With regard to the specific case of trees, some approaches focused on
the learning of edit probabilities required to compute a so-called stochas-
tic tree edit distance. However, to reduce the algorithmic and learning
constraints, the deletion and insertion operations are achieved on entire
subtrees rather than on single nodes. We aim in this article at filling
the gap with the learning of a more general stochastic tree edit distance
where node deletions and insertions are allowed. Our approach is based
on an adaptation of the EM optimization algorithm to learn parameters
of a tree model. We propose an original experimental approach aiming at
representing images by a tree-structured representation and then at us-
ing our learned metric in an image recognition task. Comparisons with a
non learned tree edit distance confirm the effectiveness of our approach.

1 Introduction

In many machine learning or pattern recognition tasks, the choice of metrics
plays an essential role for computing similarity between objects. Some classifica-
tion, clustering or learning techniques are even intrinsically based on a metric,
that is the case for the nearest-neighbors-based algorithms or some kernel-based
methods. So, the choice or the parametrization of a similarity measure can dras-
tically influence the result of an algorithm. One way to improve the influence of
a metric is to integrate domain knowledge about the objects. While calling on
an expert seems to be reasonable for small amount of data in domains where the
background knowledge does exist, it becomes clearly intractable with huge data
sets, where the expertise is low. In this context, a solution is to automatically
infer the metric while capturing domain knowledge from a learning sample.

The general problem of learning metrics received an increasing interest since
the beginning of 2000. With regards to numerical data, Bilenko et al [1] proposed
an EM-based algorithm that integrates constraints and metric learning in the
domain of semi-supervised clustering. Schultz et al [2] use some SVM techniques

� This work is funded by the Marmota project and the Pascal Network of Excellence.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 54–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning Metrics Between Tree Structured Data 55

to learn a measure given a set of relative comparisons of the form “x is closer
to y than to z”. Kummamuru et al in [3] improved these techniques providing
the concept of Context-sensitive Learnable Asymmetric Dissimilarity (CLAD)
measures. Bayoudh et al [4] proposed an approach for learning a measure by
analogy in the form “x is to y as z is to t”. Concerning structured data, recent
works have tried to tackle this learning problem with data represented by strings
or trees. In the majority of the cases, they dealt with the edit distance (ED) [5]
that handles three primitive edit operations (deletion, insertion, substitution)
for changing an input instance into an output one. The resulting learned met-
rics lead to significant improvements on real world applications. For instance,
Oncina et al. [6] introduced a string ED learning algorithm via the inference of a
discriminative stochastic transducer. They showed a dramatic improvement on a
handwritten digit recognition task, using Freeman codes for converting scanned
digits to strings. In [7], Ristad and Yianilos provided a generative model of string
ED, and illustrated its high utility on the difficult problem of learning the pro-
nunciation of words in conversational speech. Recently, the Pascal network of
excellence funded a pump priming project on the learning of a stochastic tree
ED for musical recognition. A first learning algorithm, where deletions and in-
sertions only concern entire subtrees, has been proposed in [8]. Although this
type of tree ED is costless from an algorithmic standpoint (quadratic complexity
[9] rather than a polynomial complexity of order 4 for a more general case [10]),
it is not the most used in the literature because of a clear loss of generality. In
this paper, we propose to overcome this restriction by allowing insertions and
deletions of single nodes. However, this requires to define a new probabilistic
learning framework. This is the main aim of this paper. Then, we propose to
apply our learned metric on an image recognition task, whose novelty comes
from the use of a structured representation of images. If much work has been
done on images having high levels of definition, the question of recognizing small
images for which the definition is too low to allow the application of numerical
techniques (such as segmentation into regions) is still an open problem. More-
over, numerical vectors are, in general, not suited for expressing notions such as
sequentiality or relationships between features. In this context, we think that a
symbolic structural representation can provide a richer modeling of the object.
Among the first approaches using a symbolic representation for image recog-
nition, Jolion et al. [11] have proposed a method for encoding some relevant
information of images in strings. The idea consists in extracting some character-
istic points with a high level of contrast and to sort them in the form of a string.
Despite of its interest, this representation does not include spatial knowledge,
that implies a strong loss of information. In order to add this spatial informa-
tion, one needs a two dimensional representation. In this paper, we propose an
original representation of images in the form of trees, and we use our learned
tree ED in an image recognition task.

The paper is organized as follows. We introduce in Section 2 some definitions
and notations. Then, we recall the classic tree ED in Section 3. Section 4 deals

56 L. Boyer, A. Habrard and M. Sebban

(b) (c)(a)

s1s1s1 s2

Fig. 1. (a) Substitution of s1 ∈ L into s2 (b) Deletion of s1 (c) Insertion of s1

with our stochastic model for learning tree edit probabilities. We finally present
our application in image recognition in Section 5.

2 Definitions and Notations

We assume we handle ordered labeled trees of arbitrary arity. There is a left-to-
right order among siblings of a tree and trees are labeled with elements of a set
L of labels. We denote T (L) the set of all labeled trees buildable from L.

Definition 1. Let V be a set of nodes. We inductively define trees as follows:
a node is a tree, and given T trees a1, .., aT and a node r ∈ V, r(a1, .., aT) is a
tree. r is the root of r(a1, .., aT), and a1, .., aT are subtrees.

Definition 2. Let L be a set of labels, and let λ �∈ L be the empty label. Let
l : V → L be a labeling function. r(a1, .., aT) is a labeled tree if its nodes are
labeled according to l.

We assume that trees can be concerned by three edit operations (see Fig.1): The
substitution operation which consists in changing the label l(r) of a node r by
another label of L; the deletion operation which removes a node r of parent r′,
the children of r becoming a subsequence of those of r′ according to a left-to-
right order; the insertion operation adds a node r as a child of r′ making r the
parent of a subsequence of children of r′ according to a left-to-right order.

Definition 3. Assuming that a cost function assigns a cost to each edit opera-
tion, an edit script between two trees r(a1, .., aT) and r′(b1, .., bV) is a set of edit
operations changing r(a1, .., aT) into r′(b1, .., bV). The cost of an edit script is
the sum of the costs of its edit operations.

Definition 4. The edit distance (ED) between two trees r(a1, .., aT) and
r′(b1, .., bV) is the cost of the minimum cost edit script.

We are interested in the learning of a probabilistic tree ED. Roughly speaking,
we aim at learning the probability of each edit operation used during a trans-
formation process of an input tree into an output one. These probabilities are
the parameters of a generative model describing a joint distribution over (in-
put,output) pairs of trees. In [8], we proposed a first solution to this problem,
in a restrictive case of tree edit distance, when a deletion (resp. an insertion)
implies the removal (resp. the add) of an entire subtree. The objective of this
paper is to fill the gap with a more general approach of the tree ED allowing

Learning Metrics Between Tree Structured Data 57

the insertion/deletion of nodes. This case is more general because the deletion
(or insertion) of an entire subtree can also be achieved by iteratively using the
deletion (or insertion) operation on a single node. However, it implies to set a
new probabilistic framework, intrinsically more difficult due to a larger size of
the search space. To do that, we recall the principle of the algorithms computing
such a tree ED. The interested reader can find more details in [10,12,13].

3 Tree ED Algorithm

To allow a larger spectrum of applications, the majority of the tree ED algorithms
usually handled forests, a tree being a particular case of a forest.

Definition 5. A forest F = {a1, .., aT } is a set of trees. F is an ordered forest if
there is a left-to-right order among the trees a1, .., aT and if each tree is ordered.

Definition 6. Let F be a forest, and ρ(a) be the root node of a tree a ∈ F .
F − ρ(a) is the forest obtained from F by the deletion of ρ(a). Children of ρ(a)
becomes a sequence of trees of the forest F −ρ(a). f(ρ(a)) is the forest composed
of the children of ρ(a). F − a is the forest obtained by removing the tree a of F .

Let F1 and F2 be two forests and a and b the rightmost trees of F1 and F2

respectively. Let δ be a cost function on pairs of labels, representing the edit
operations. The ED d(F1, F2) for the general case of forests is given by:

d(λ,λ) = 0
d(F1, λ) = d(F1 − ρ(a), λ) + δ(l(ρ(a)), λ)
d(λ,F2) = d(λ,F2 − ρ(b)) + δ(λ, l(ρ(b)))

d(F1, F2) = min

⎧
⎪⎪⎨

⎪⎪⎩

d(F1 − ρ(a), F2) + δ(l(ρ(a)), λ) \ ∗ deletion
d(F1, F2 − ρ(b)) + δ(λ, l(ρ(b))) \ ∗ insertion
d(F1 − a, F2 − b) + d(f(ρ(a)), f(ρ(b)))
+δ(l(ρ(a)), l(ρ(b))) \ ∗ substitution

where l(ρ(x)) is the label of the root of tree x.
This pseudo-code suggests a dynamic programming approach to compute the

tree ED. In fact, we can note that d(F1, F2) depends on a constant number
of relevant subproblems of smaller size. Zhang and Shasha [10] defined these
subproblems from the notion of keyroots of a given tree a:

keyroots(a) = {ρ(a)} ∪ {r ∈ V(a)|r has a left sibling}.
From this set of keyroots (see Fig 2.a), one can deduce the set of special sub-
forests of a (see Fig 2.b), defined by the forests f(u), where u ∈ keyroots(a).
Zhang and Shasha also defined the set of relevant subproblems that allows us to
design a dynamic programming algorithm to compute the tree ED. These rele-
vant subproblems are all the forests corresponding to the prefixes of the special
subforests (see Fig 2.(b+c)). Then, to compute the tree ED d(F1, F2), one can
show that is it sufficient to compute d(S1, S2) for all relevant subproblems S1

and S2 (for more details see [10]). So far, we assumed that we had a function δ

58 L. Boyer, A. Habrard and M. Sebban

2 3

6

1 54

(a)

1 . 1 . 2 . 1 . 3 .2 . .3 4

2 3

5 . 2 . 3 .2 .1

2 3

4 . 5 .1

2 3

4 .

(b) (c)

Fig. 2. (a) Example of keyroots represented by nodes with a circle, (a)+(b) the special
subforests, and (a)+(b)+(c) the relevant subproblems

which returns the cost induced by an edit operation. In real world applications,
these costs are often tuned by hand. We claim that machine learning techniques
can efficiently be used to improve this task which can become tricky when the
size of the alphabet is large. In the next section, we show how to automatically
learn edit probabilities (rather than edit costs) from a learning set of tree pairs.

4 Learning Tree Edit Probabilities

4.1 Stochastic Tree ED

A stochastic tree ED supposes that edit operations occur according to a random
process. We aim at learning the underlying distribution δ(s, s′), (s, s′) ∈ ({L ∪
{λ})2, in order to infer a generative model of all possible edit scripts. We will use
a special symbol # to denote the end of an edit script. For sake of convenience,
we will also denote the termination cost of a script δ(#) by δ(λ, λ). To be a
statistical distribution, the function δ must fulfill the following conditions:

∑

(s,s′)∈(L∪{λ})2
δ(s, s′) = 1 and δ(s, s′) ≥ 0 (1)

Let e = e1 · · · en be an edit script with n edit operations (ei = (s, s′) �= (λ, λ)),
the probability of e is evaluated by: p(e) =

∏n
i=1 δ(ei) × δ(#). To model the

distance between two trees, we propose to compute the probability of all ways
to change a tree a into another one b (as described in [7] for the case of strings).

Definition 7. Let two trees a and b, we denote by E(a, b) the set of all possible
edit scripts for transforming a in b. The stochastic tree ED between a and b is
defined by: ds(a, b) = − log

∑
e∈E(a,b) p(e).

To learn the matrix δ, we propose to adapt the Expectation-Maximization (EM)
algorithm [14] to this specific context of tree ED. Let us remind that EM esti-
mates the hidden parameters of a probabilistic model by maximizing the like-
lihood of a learning sample. In our case, the parameters will correspond to the
matrix δ of edit probabilities, and the learning sample will be composed of (in-
put,output) tree pairs. In a pattern recognition task, these pairs can be either
randomly generated from instances of the same class, or built by hand by an

Learning Metrics Between Tree Structured Data 59

Algorithm 1. α({a1, .., aT }, {b1, .., bV })
Input : Two forests {a1, .., aT }, {b1, .., bV }
Let α be a matrix of dimension (T + 1) × (V + 1); α[{}, {}] ← 1
for t de 0 à T do

for v de 0 à V do
if (t > 0) or (v > 0) then

α[{a1, .., at}, {b1, .., bv}] = 0

if t > 0 then
α[{a1, .., at}, {b1, .., bv}]+ = δ(l(ρ(at)), λ).α[{a1, .., f(ρ(at))}, {b1, .., bv}]

if v > 0 then
α[{a1, .., at}, {b1, .., bv}]+ = δ(λ, l(ρ(bv))).α[{a1, .., at}, {b1, .., f(ρ(bv))}]

if (t > 0) and (v > 0) then
α[{a1, .., at}, {b1, .., bv}]+ = α(f(ρ(at)), f(ρ(bv))).δ(l(ρ(at)), l(ρ(bv)))

.α[{a1, .., at−1}, {b1, .., bv−1}]

return α[{a1, .., aT }, {b1, .., bV }]

expert who judged them as being similar. EM achieves an expectation step fol-
lowed by a maximization stage. During the first step, EM accumulates, from the
training corpus, the expectation of each hidden event (edit operation) for trans-
forming an input tree into an output one. In the maximization step, EM sets
the parameter values (edit probabilities) in order to maximize the likelihood.

4.2 Forward and Backward Functions

To learn the matrix δ, EM uses two auxiliary functions, so-called forward (α)
and backward (β), that are respectively described in Algorithms 1 and 2. The
bold font is used for a recursive call of these algorithms (α and β), while the
normal font (α and β) describes intermediate values stored in a local matrix.
We can note that both functions α and β return the quantity

∑
e∈E(a,b) p(e),

i.e the sum of probabilities of all paths (described by a script e) changing an
input forest into an output one. Beyond the fact that they allow to compute
the tree ED (cf Def. 7), they are overall combined to achieve the expectation
step in order to estimate the expectation of each edit operation (see Fig. 3 and
details in the next section). What is important to note is that functions α and β
are nothing else but an extension to the stochastic case of the original tree ED
algorithm. Actually, they contain the three main instructions corresponding to
the three edit operations. For instance, considering the substitution operation,
α(f(ρ(at)), f(ρ(bv))) and α[{a1, .., at−1}, {b1, .., bv−1}] are the stochastic version
of d(f(ρ(a)), f(ρ(b))) and d(F1 − a, F2 − b) respectively. The main difference is
that in our probabilistic framework, we use all the paths transforming a forest
into another one, while the classic ED only keeps the costless path.

4.3 Expectation

During the expectation step, we estimate the expectation of the hidden events,
i.e the edit operations used to transform an input tree into an output one. These
expectations are stored in an auxiliary matrix γ (|L|+1)×(|L|+1). This process

60 L. Boyer, A. Habrard and M. Sebban

Algorithm 2. β({a1, .., aT }, {b1, .., bV })
Input : Two forests{a1, .., aT }, {b1, .., bV }
Let β be a matrix of dimension (T + 1) × (V + 1); β[{}, {}] ← 1
for t de T à 0 do

for v de V à 0 do
if (t < T) or (v < V) then

β[{at, .., aT }, {bv , .., bV }] = 0

if t < T then
β[{at, .., aT }, {bv , .., bV }]+ = δ(l(ρ(aT)), λ).β[{at, .., f(ρ(aT))}, {bv , .., bV }]

if v < V then
β[{at, .., aT }, {bv , .., bV }]+ = δ(λ, l(ρ(bV))).β[{at, .., aT }, {bv , .., f(ρ(bV))}]

if (t < T) and (v < V) then
β[{at, .., aT }, {bv , .., bV }]+ = δ(l(ρ(aT)), l(ρ(bV))).β(f(ρ(aT)), f(ρ(bV)))

.β({at, .., aT −1}, {bv , .., bV −1})

return β[{a1, .., aT }, {b1, .., bV }]

takes a training tree pair (x, y) in input. Then, for all the subtree pairs (at, bv),
where at is a subtree of x and bv a subtree of y, it accumulates the expectations
of the three edit operations consisting either in deleting ρ(at), or inserting ρ(bv)
or substituting l(ρ(at)) by l(ρ(bv)). The pseudo-code of the expectation step is
described in Algorithm 3, which requires the following definitions.

Definition 8. A postorder traversal of a labeled tree x = r(a1, .., aT) is obtained
by first recursively visiting the subtrees at, t = 1..T and then the root r. The
postorder numbering assigns a number to each node of x according to a postorder
traversal. Let φα : V(x)→ T (L)∗ be the function that takes a node r′ and returns
the ordered forest composed of the subtrees with root a node having a number
strictly smaller than that of r′ according to a postorder numbering.

Definition 9. Let x = r(a1, .., aT) be an ordered tree. Let φβ : V(x) → T (L)∗

be the function that takes a node r′ and returns the ordered tree with root r and
with the children of r having a number strictly smaller than that of r′ according
to a reverse postorder numbering.

Fig. 3 shows an example of postorder (in arabic font) and reverse postorder
numbering (in roman font). Considering the node labeled by 4|III of the left
tree, φα returns the forest composed of 3 subtrees with root the nodes labeled
respectively by 1|VI, 2|V and 3|IV, φβ returning the subtree with root the
node labeled by 6|I and with the child 5|II. Let us recall that this algo-
rithm calculates the expectation of the number of times each edit operation
is used for changing a tree x into another one y. To do this, for each edit op-
eration (whose probability is given by δ), we consider not only all the ways
leading to this operation (given by α) but also those allowing us to finish the
transformation (given by β) after the edit operation. While the deletion and
insertion operations are quite understandable, the substitution one deserves
some explanations. Fig. 3 graphically describes the substitution of the input
node 4|III into the output one 4|IV. This requires to calculate the forward
function α(φα(ρ(at)) − f(ρ(at)), φα(ρ(bv)) − f(ρ(bv))), i.e. the probability of

Learning Metrics Between Tree Structured Data 61

1 | VI 4 | III

3 | IV2 | V

6 | I 7 | I

4 | IV 6 | II

3 | V

2 | VI

1 | VII 5 | III

5 | II

α(φα(ρ(at)) − f(ρ(at)), φα(ρ(bv)) − f(ρ(bv))) α(f(ρ(at)), f(ρ(bv)))

β(φβ(ρ(at)), φβ(ρ(bv)))

Fig. 3. Illustration of the Expectation step for a substitution operation

Algorithm 3. expectation(x, y)
Input : Two trees x and y

Let E be the empty tree;
foreach at s.t. ρ(at) ∈ V(x) ∪ E, bv s.t. ρ(bv) ∈ V(y) ∪ E do

if at �= E then

γ(l(ρ(at)), λ)+ =
α(φα(ρ(at)),φα(ρ(bv))∪{bv}).δ(l(ρ(at)),λ).β(φβ (ρ(at)),φβ (ρ(bv)))

α(x,y)

if bv �= E then

γ(λ, l(ρ(bv)))+ =
α(φα(ρ(at))∪{at},φα(ρ(bv))).δ(λ,l(ρ(bv))).β(φβ (ρ(at)),φβ (ρ(bv)))

α(x,y)

if (at �= E) and (bv �= E) then
γ(l(ρ(at)), l(ρ(bv)))+ =

α(φα(ρ(at))−f(ρ(at)),φα(ρ(bv))−f(ρ(bv))).α(f(ρ(at)),f(ρ(bv))).δ(l(ρ(at)),l(ρ(bv))).β(φβ (ρ(at)),φβ (ρ(bv)))
α(x,y)

the forest pair [{1|VI}, {2|VI(1|VII)}]. This forest pair is constituted of sub-
trees with root node having a numbering smaller than 4 according to a pos-
torder numbering (given by function φα), minus subtrees that are the children
of 4|III and 4|IV (given by function f). We estimate, as well, the backward
function (β(φβ(ρ(at)), φβ(ρ(bv)))) on the pair [{6|I(5|II)}, {7|I(6|II(5|III))}],
with nodes smaller than III for the input forest and IV for the output one, ac-
cording to a reverse postorder numbering. We need also to compute the forward
function (α(f(ρ(at)), f(ρ(bv)))) on the pair [{2|V, 3|IV}, {3|V}] corresponding to
the children of the nodes involved in the substitution operation.

4.4 Maximization

The final step of the EM algorithm is achieved by the maximization procedure
presented in Algorithm 4. This step is crucial since it ensures a convergence of the
process under constraints thanks to the normalization of the expectations. For
learning a stochastic tree ED in the form of a generative model, we must fulfill
constraints of Eq.1. This implies a simple normalization consisting in dividing
each expectation γ(s, s′) by the total accumulator TA =

∑
(s,s′)∈(L∪{λ})2 γ(s, s′).

With Algorithms 1,2,3 and 4, we can now present in Algorithm 5 the global
procedure for learning a stochastic tree ED.

62 L. Boyer, A. Habrard and M. Sebban

Algorithm 4. maximization
Input: A matrix of accumulators γ

Output: A matrix of probabilistic edit costs δ

TA ← 0
foreach (s, s′) ∈ (L ∪ {λ})2 do TA ← TA + γ(s, s′)

foreach (s, s′) ∈ (L ∪ {λ})2 do δ(s, s′) ← γ(s,s′)
T A

Algorithm 5. tree edit distance − EM
Input: LS a learning set of tree pairs

repeat
foreach (s, s′) ∈ (L ∪ {λ})2 do γ(s, s′) ← 0
foreach (x, y) ∈ LS do expectation(x,y)
maximization(γ)

until convergence

4.5 Example of Learning

We present here the running of our algorithm on a simple example, with an
input alphabet L1 = {a, b, c}, an output alphabet L2 = {a, b} and a training set
composed of only one tree pair [a(b, c(a, b)); b(c, a(b), a, b)] (see Fig. 4(a)). The
algorithm converges towards an optimum after only 4 iterations. The learned
matrix δ (initialized with random values) is described in Fig. 4(b). We can note
that our algorithm has correctly learned the target. Actually, on this example,
one optimal solution consists in: (i) inserting the symbol a that becomes the
father of the symbol b, (ii) keeping unchanged the symbol b, (iii) deleting the
symbol c and (iv) changing one out of twice the symbol a by b or by itself.

a a b

Output

b

b

a

b c

ba

Input
(a) Learning tree pair

δ λ a b
λ − 0.167 0
a 0 0.167 0.167
b 0 0 0.332
c 0.167 0 0

(b) Matrix δ after 4 EM iterations.

Fig. 4. Example of learning from a tree pair

5 Experiments in Image Recognition

5.1 From a Numerical to a Symbolic Representation of Images

In this section, we aim at verifying the interest of our learning algorithm on
an image classification task. So far, the main trend in image recognition has
mainly concerned numerical approaches based on color and texture [15,16,17].
However, many objects are poorly modeled with numerical values that can not
express the relationships between attributes. Strings and trees are structured
representations that allow us to take into account either the sequentiality or the

Learning Metrics Between Tree Structured Data 63

(a) Original image (b) Charact. points (c) Binary image

Fig. 5. Example of image represented by characteristic points

hierachization between attributes. A pioneer work has been recently achieved by
Jolion et al. [11] with a string representation showing very interesting results on
clustering and recognition tasks. The principle of this approach is first based on
the extraction of characteristic points (see Fig. 5(b)) according to their contrast
level in the original image (Fig. 5(a)). Then, to each of these points is assigned
the symbol of the alphabet constituted of all the 512 binary masks 3 × 3, and
that is applicable on that point in the binary version of the image (see Fig. 5(c)).
Finally, these characteristic points are sorted according to their decreasing level
of contrast, providing a sequence of masks labeled by a symbol ∈ [0, 512].

5.2 Tree Representation of Images

This string representation outperformed numerical features in various classifica-
tion and clustering tasks [11]. However, we can note that no spatial information
is considered. One way to tackle this drawback is to consider a tree representa-
tion linking the depth of a tree with that information. To illustrate our approach,
consider the example of Fig. 6(a). First, we propose to divide the image in four
equal parts and we extract, for each of them, the characteristic point with the
highest level of contrast. These four points constitute the first level of our tree.
They are ordered from left-to-right according to their respective level of con-
trast. In a second step, we sub-divide each of the four original parts into four
new sub-parts, and we extract again the characteristic points with the highest
level of contrast in each sub-part. These points become the children of the node
extracting during the first step. We recursively repeat this process until no more
division can separate two points. To obtain a labeled tree, we assign to each node
its corresponding mask applicable in the binary image. The main properties of
this tree representation are the following: (i) We do not challenge the alphabet
distribution observed in the sequence built with Jolion’s approach; (ii) we keep
the sequentiality between the characteristic points for each granularity level; and
(iii) deep leaves represent a large local density of characteristic points.

5.3 Experimental Setup and Results

In order to assess the relevance of our model in a pattern recognition task, we
applied it in handwritten digit classification. We used the NIST Special Database

64 L. Boyer, A. Habrard and M. Sebban

 . O

 . .

 .

P C

 . . E D

 . H

 . .
G

K

N

I L

A

 . B J

F
 . .

M

E

H . . .

G

K

N

I L

J

F

 .

 . . .

 .
 . . M

 . C

 . .
DA

B . .

 . O

B

H

CA D

Root

P

FE G JI L

O

1st level 2nd level 3rd level

K

characteristic16
points

P

M

N

(a) Tree-representation of an image.

SWL-SNL TNL-SNL TWL-SNL

+6 +11 +32

(b) The 1st column shows the in-
terest of learning a string ED, the
2nd the contribution of our tree
representation and the 3th the
relevance of learning a tree ED.

Fig. 6. (a) Tree representation and (b) experimental results

3 of the National Institute of Standards and Technology, already used in several
articles such as [18,6]. A part of this database consists in 128 × 128 bitmap
images of handwritten digits written by 100 different writers. Each class of digit
(from 0 to 9) has about 1,000 instances. We divided these data in a learning
set LS (6,000 digits) and a test set TS (4,000 digits). Since our model handles
trees, we coded each digit as previously explained but we reduced the alphabet
from 29 to 15 by removing small frequent masks. Then, to construct a learning
set of tree pairs, we used an uniform matrix δ of tree edit probabilities and we
associated to each input tree x ∈ LS the output tree y ∈ LS, y �= x s.t. p(x, y)
is maximal and s.t. x and y belong to the same class. We then learned matrix
δ with our EM algorithm. We classified each digit t ∈ TS by the class i of the
tree x ∈ LS maximizing p(t, x) (result TWL).

We compared our learning approach with a standard tree ED with a priori fixed
edit costs (result TNL). Moreover, to assess the relevance of our tree-based image
representation, we used the same protocol with images coded in strings (see Sec-
tion 5.1) using non learned and learned stochastic string EDs as presented in [6]
(results SNL and SWL). To compare all the results, we present in Table 6(b) the rela-
tive accuracy gain on TS of each approach (SWL, TNL, TWL) in comparison with the
standard string ED SNL. We can make the following interesting remarks: First, the
results confirm the relevance of our tree-based image representation in comparison
with strings (+11 percentage points); second, they definitely prove the interest of
our approach for learning a tree similarity measure. Actually, not only a learned
tree distance outperforms a standard string ED (+32 percentage points) but also
it outperforms a non learned tree ED (+21 percentage points).

6 Conclusion

In this paper, we extended the tree ED, in its more general form, to a stochastic
context. From this new point of view, the probabilities of the primitive edit
operations are seen as hidden parameters that an adapted EM-based algorithm
is able to learn from a set of tree pairs. We think that this work opens the door to
significant improvements in classification and clustering, that is confirmed by our

Learning Metrics Between Tree Structured Data 65

first experimental results in digit recognition. However, some problems deserve
further investigations. First, we think that the constitution of the learning tree
pairs can be highly improved and still constitutes an open problem; second, the
tree representation issued from characteristic points must be further studied to
tackle a larger spectrum of image recognition tasks; moreover, our algorithm has
to be adapted in a form of a discriminative model (rather than the presented
generative one) to handle small datasets; finally, in front of the emergence of huge
datasets of XML documents, we plan to use our model on web applications.

References

1. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: 21th Int. Conf (ICML 2004), ACM Press, New
York (2004)

2. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
In: Advances in Neural Information Processing Systems 16 [Neural Information
Processing Systems], NIPS 2003, MIT Press, Cambridge (2003)

3. Kummamuru, K., Krishnapuram, R., Agrawal, R.: On learning asymmetric dis-
similarity measures. In: Proc. of the 5th IEEE Int. Conf. on Data Mining (ICDM
2005), pp. 697–700. IEEE Computer Society Press, Los Alamitos (2005)

4. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for
binary and nominal data. In: IJCAI, pp. 678–683 (2007)

5. Wagner, R., Fisher, M.: The string to string correction problem. Journal of the
ACM (1974)

6. Oncina, J., Sebban, M.: Learning stochastic edit distance: application in handwrit-
ten character recognition. Journal of Pattern Recognition (2006)

7. Ristad, S., Yianilos, P.: Learning string-edit distance. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 20(5), 522–532 (1998)

8. Bernard, M., Habrard, A., Sebban, M.: Learning stochastic tree edit distance. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 42–53. Springer, Heidelberg (2006)

9. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6),
184–186 (1977)

10. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 1245–1262 (1989)

11. Jolion, J.: Some experiments on clustering a set of strings. In: Hancock, E.R., Vento,
M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 214–224. Springer, Heidelberg (2003)

12. Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Proc.
of the 6th European Symposium on Algorithms (ESA), pp. 91–102. Springer, Hei-
delberg (1998)

13. Bille, P.: A survey on tree edit distance and related problem. Theoretical Computer
Science 337(1-3), 217–239 (2005)

14. Dempster, A., Laird, M., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. R. Stat. Soc B(39), 1–38 (1977)

15. Pentland, A., Picard, R., Sclaroff, S.: Photobook: Tools for content-based manip-
ulation of image databases. In: SPIE Storage and Retrieval of Image and Video
Databases, vol. 2, pp. 18–32 (1995)

16. Wang, J., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated match-
ing for picture libraries. IEEE Trans. on Pat. Ana. Mach. Int. 23(9), 947–963 (2001)

66 L. Boyer, A. Habrard and M. Sebban

17. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmenta-
tion using expectation-maximization and its application to image querying. IEEE
Trans. on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

18. Gómez, E., Micó, L., Oncina, J.: Testing the linear approximating eliminating
search algorithm in handwritten character recognition tasks. In: VI Symposium
Nacional de reconocimiento de Formas y Análisis de Imágenes, pp. 212–217 (1995)

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 67–78, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Shrinkage Estimator for Bayesian Network Parameters

John Burge and Terran Lane

University of New Mexico, New Mexico, USA
{lawnguy,terran}@cs.unm.edu

Abstract. Maximum likelihood estimates (MLEs) are commonly used to
parameterize Bayesian networks. Unfortunately, these estimates frequently have
unacceptably high variance and often overfit the training data. Laplacian
correction can be used to smooth the MLEs towards a uniform distribution.
However, the uniform distribution may represent an unrealistic relationships in
the domain being modeled and can add an unreasonable bias. We present a
shrinkage estimator for domains with hierarchically related random variables
that smoothes MLEs towards other distributions found in the training data. Our
methods are quick enough to be performed during Bayesian network structure
searches. On both a simulated and a real-world neuroimaging domain, we
empirically demonstrate that our estimator yields superior parameters in the
presence of noise and greater likelihoods on left-out data.

Keywords: Bayesian networks, shrinkage, hierarchy, parameter estimation.

1 Introduction

Our primary contribution is a shrinkage parameter estimator that allows learned
Bayesian networks (BNs) to be less affected by noisy data and to generalize more
effectively to unseen data than maximum likelihood estimates (MLEs) with Laplace
smoothing. We also demonstrate that the estimator operates quickly enough to be
performed during Bayesian network structure searches.

The amount of data available to train a BN’s parameters is often inadequate to train
MLEs, resulting in high variance estimates that overfit the data and generalize poorly
to left-out data. These effects can be lessened by smoothing the MLE towards
distributions with lower variance. One widely employed method is Laplace smoothing
[7] which smoothes MLEs towards a uniform distribution. While this has been shown
to improve BN classification [7], the uniform distribution is an arbitrary choice that
may represent an unrealistic bias in complex real-world domains.

We propose smoothing MLEs towards other distributions found in the data. To
illustrate our method, we will start with an example in a neuroscience domain.
Assume that the correlation between the visual cortex and the motor cortex is being
modeled for some population of mentally-ill patients. For discrete BNs, this
relationship can be parameterized with a series of multinomials. The MLEs for these
multinomials will have a certain degree of variance and may overfit the data.
Laplacian smoothing helps, but introduces a bias that is not observed in the data.
Uniform distributions poorly model relationships between brain regions.

68 J. Burge and T. Lane

Instead, we can smooth towards other distributions in the data. In particular, we
can take advantage of the anatomical placement of the cortices within larger regions
of the brain. The visual cortex is encased in the occipital lobe and the motor cortex is
encased in the frontal lobe. Since the lobes contain the cortices, the relationship
between the lobes may be similar to the relationship between the cortices. Thus, we
propose smoothing MLEs for the cortices towards MLEs for the lobes. There is more
training data available for the lobes than for the cortices (they are larger structures)
and thus, their MLEs will be lower in variance. This smoothing still introduces some
bias, but it is more realistic than the bias added by Laplacian smoothing.

Smoothing MLEs towards other “similar” MLEs with lower variance is often
referred to as shrinkage and has been successfully employed in Machine Learning
applications (Section 1.2). What makes two MLEs “similar” depends on the domain.
In the neuroscience domain, two MLEs are said to be “similar” if they are associated
with correlations between brain regions that contain or are contained by each other.
In previous applications [14], MLEs were “similar” if they were associated with the
number of times a particular word appeared in different classes of text documents.
We formalize the notion of “similarity” as a hierarchical arrangement of the random
variables (RVs) in a domain. This hierarchy is then used to select distributions that
are shrunk towards when computing MLEs.

We compare the performance of BNs trained with our shrinkage estimators versus
BNs trained with MLEs plus Laplace smoothing (MLE+L) on two sets of data: a
simulated data domain, where ground truth is known and controllable and a set of ten
real-world neuroimaging datasets. On both the simulated and neuroimaging datasets,
we find that shrinkage estimates are more robust to noisy data. On the neuroimaging
datasets, we show that shrinkage estimates increase the likelihood of BNs on data left
out of the training process. While classification is not the main focus of this work, we
also demonstrate that shrinkage estimators do not degrade the classification
performance of BN-based classifiers.

2 Background

2.1 Bayesian Networks

BNs [15] are graphical models that explicitly represent dependencies among RVs. A
BN’s topological structure, represented as a directed acyclic graph (DAG), contains
nodes for RVs and directed links between correlated parent and child nodes. A family
is composed of a single child and its parents. We assume fully observable discrete
RVs so that a family’s conditional probability, P(child | parents), can be represented
with a conditional probability table (CPT).

Searching for a BN’s topology is accomplished by proposing many hypothesis
structures guided by a search heuristic (often an iterative hill-climbing heuristic),
while measuring how well each structure corresponds to correlations in the data via a
structure scoring function. Common scores include MDL [13], BDe [10], conditional
likelihood (CL) [8], etc. Some scores require a BN’s parameters to be trained (e.g.,
MDL and CL), but others marginalize out the parameters (e.g., BDe).

 Shrinkage Estimator for Bayesian Network Parameters 69

We will use the following notation. Let X be a set of n RVs, {X1, X2, … , Xn}, with
arities r1, r2, …, rn. A data point is a fully observable assignment of values to X. A
BN, B, over X is described by the pair ,SB BΘ . BS is the DAG representing the BN’s
structural topology.

 , ,{ :1 ,1 ,1 }
iX j k i iB i n j q k rθ θ= ≤ ≤ ≤ ≤ ≤ ≤ is the set of parameters

where (), , | ()
iX j k i iP X k Pa X jθ = = = . Xi’s parent set is denoted ().iPa X

qi is the

number of configurations for the RVs in ()iPa X . Depending on context, “Xi” will
also refer to the family with child RV Xi.

2.2 Shrinkage

For any system of at least three parameters, Stein [16] demonstrated there exists an
estimator with lower quadratic risk than the MLE, where risk is measured as the
expected difference between the true parameters and the estimated parameters. This
holds even when the parameters are independently distributed. James and Stein [11]
introduced such an estimator, the acclaimed James Stein Estimator (JSE), for
normally distributed RVs with identity covariance matrices. The JSE shrinks the
MLE towards a value computed from all the parameters being estimated. The
inclusion of this bias reduces the estimator’s risk. Similar results have been extended
to the multinomial distributions that are used in discrete BNs [9]. The JSE also
played a central role in empirical Bayesian methods in general [5].

McCallum et al. [14] demonstrated that shrinkage could also be applied to text
document classification given hierarchically related document classes. Instead of
shrinking the MLE estimate toward a single value (as done by Stein), the parameter
estimate is shrunk towards a combination of estimates across multiple classes of data,

0 0 1 1ˆ ˆ ˆ... n nθ λ θ λ θ λ θ= + + + (1)

where θ is the shrinkage estimate, ˆiθ is the estimate for the ith class’s MLE and iλ is a
linear mixing weight for the ith class. The weights were set via an expectation
maximization (EM) algorithm. McCallum et al. demonstrated increased classification
performance when using shrinkage estimates relative to MLEs. Anderson, Domingos
and Weld demonstrated how this form of shrinkage could also be applied in
Relational Markov models [1]. They used a different method to learn mixture
weights, but still found significant increases in model performance.

Building on the previous success of this form of shrinkage, we demonstrate how
shrinkage can be applied among RVs within the same class of data. This allows
shrinkage to be applied even when there are not hierarchically related classes of data,
but instead hierarchically related RVs within the same class.

2.3 Random Variable Aggregation Hierarchies

There are many domains that have a natural hierarchical decomposition of RVs. For
example, image analyses, where pixel neighborhoods of varying size can be
aggregated together; genetic regulatory network reconstruction, where genes can be
decomposed into families and super-families; word types in grammar trees; medical
diagnoses, where diseases and symptoms are grouped into sub-categories; Fourier and
wavelet analyses, where coefficients are spatially and temporally related; etc.

70 J. Burge and T. Lane

X1 X3

X4 X5 X6

a) b) c)

X2

or

multiple
progenitors

X1

progenitor

X0
X3

X4 X6

X1 X2

X1 X3

X4 X5

Fig. 1. a) Hypothetical trellis hierarchy. (this
is not a BN). b) 4 6X X→ family and its

progenitor. c) 4 5X X→ family and its

multiple valid progenitors.

Fig. 2. Coefficient learning algorithm

In the neuroimaging domain we demonstrate our methods on, there is a

hierarchical relationship among neuroanatomical brain regions. Each brain region
decomposes into a set of smaller brain regions and the activation associated with each
brain region is calculated as the average weighted activation of the brain regions it
comprises. From these hierarchical relationships, we build a hierarchy such that each
node in the hierarchy corresponds to a brain region. The parents of a node in the
hierarchy (referred to as an h-parent since parent describes relationships in BNs)
correspond to brain regions the node is part of and children of a node in the hierarchy
(h-children) are the regions the node is composed of.

A RV hierarchy is composed of composite and atomic RVs. The atomic RVs exist
at the bottom level of the hierarchy and have no h-children. They correspond to the
non-decomposable elements in the domain. In the neuroimaging domain, the smallest
regions of the brain are represented as atomic RVs. Composite RVs have h-children
and their values can be computed from their h-children via an aggregation function.

Let X contain both the atomic and composite RVs. Let X̂ be a subset of τ RVs in
X, {X1, …, Xτ}. An aggregation function Y = ξ(X̂), is a scalar function of X̂ where
Y is a composite RV whose distribution reflects an aspect of the joint distribution of
the RVs in X̂ . We use the weighed mean aggregation function in our experiments.
Thus, a composite RV’s value is the weighted mean of its h-children’s values (this is
a slight simplification as the weighted mean must be discretized).

A hierarchy over the RVs in X, denoted as Λ , can be graphically represented as a
trellis (Figure 1a). A trellis is a relaxation of a forest such that each node may have
multiple parents. Let

iXΛ denote the h-children of Xi, iXΛ

denote the h-parents of Xi

and ()ilevel XΛ denote the integer-valued level Xi is located in.
iXΛ = ∅ for leaves

and iXΛ = ∅ for the root(s). If Xi is not a leaf node then Xi = ()
iXξ Λ . An h-level

corresponds to all RVs at one level in the hierarchy.

 Shrinkage Estimator for Bayesian Network Parameters 71

2.4 Calculating BN Parameters with Shrinkage

To demonstrate how to calculate a BN’s parameters with shrinkage, assume we are
computing the parameters for a BN family containing a RV X4 as a parent and RV X6
as a child and we need a distribution to smooth this family’s MLE towards. To find
this distribution, we can look to the hierarchy the RVs are in. Assume this is the
hierarchy given in Figure 1a. X4’s and X6’s h-parents are X1 and X3, respectively.

Since X1’s value is partially determined by X4’s value, the probability distribution
for X1 is likely to be similar to the distribution for X4. Likewise, X3’s distribution is
likely to be similar to X6’s. Further, the CPT detailing the correlation between X1 and
X3 may also be similar to the CPT detailing the correlation between X4 and X6. Thus,
we propose using the CPT in the 1 3X X→ family as a distribution to smooth the MLE
for the 4 6X X→ family’s CPT towards. We refer to the 1 3X X→ family as a
progenitor for the 4 6X X→ family, Figure 1b. Specifically, the progenitor for a
family with P parents

1
{ ,..., }

Pi iX X and child jX is a family with parents
1̂

ˆ{ ,..., }
Pi i

X X

and child
ĵ

X such that, 1 p P≤ ≤ , is the h-parent of piX and
ĵ

X is the h-parent of Xj
The 4 6X X→ family is referred to as the 1 3X X→ family’s progeny.

The progenitor and progeny for a family Xi are denoted XiΛ and
Xi

Λ , respectively.
As family Xi’s progenitor is also a family, it will also have a progenitor. This family
is Xi’s progenitor’s progenitor, or more simply, Xi’s second-order progenitor. We
denote family Xi’s pth-order progenitor as ,p XiΛ and the pth order progeny as

,p Xi
Λ . A

family’s 0th-order progenitor, 0,XiΛ refers to the family itself.
For the moment, we assume the topology of the hierarchy is a forest and all of the

nodes within a single BN family are in the same h-level (we return to the more
complex case in the next subsection). In this case, determining a family’s progenitor
is straight-forward. The child in XiΛ is XiΛ and the parents in XiΛ are ()Pa XiΛ . Once
a family’s progenitor and higher-order progenitors have been determined, the MLE
for the family can be smoothed towards their MLEs.

The MLE for a BN’s parameters is , , , , ,
ˆ /

iX j k i j k i jN Nθ = , where Ni,j,k is the number
of times in the data that Xi = k when Pa(Xi) = j and Ni,j is the number of times Pa(Xi)
= j. The shrinkage estimate for family Xi’s CPT is calculated as the linear
combination of MLEs of the multiple orders of progenitors of Xi. This is done on a
multinomial-by-multinomial basis resulting in the following estimate,

,, , , ,(),0
ˆ ,i

p Xii i i i

V p
X j X j X j X jjp

θ λ θ λ θ
Λ=

= +∑ (2)

where ()i iV level XΛ= (i.e., the number of h-levels above Xi that exist in the
hierarchy), ,iX jθ is the uniform multinomial s.t. , , 1/

iX j k irθ = . ,iX jλ is the uniform
estimate’s mixture weight, and , ,1

1i

i i

V p
X j X jp

λ λ
=

+ =∑ . Inclusion of the uniform
estimate prevents the need for any Laplace smoothing when calculating the MLE
estimates. If the arity of hierarchically related RVs differs, a mapping function must
be provided that maps elements in the domain for one RV into elements in the domain
for the other RV (in essence, allowing the CPTs for RVs with different arities to have
the same number of elements).

72 J. Burge and T. Lane

2.5 Progenitor Complications

In a BN family, one node can only be the family’s child xor one of the family’s
parents. Progenitors do not necessarily conform to these constraints. For instance,
take the hierarchy in Figure 1a. If the progenitor of family 4 5X X→ was needed
(Figure 1c) three possible progenitors exist,

 1 3X X→ , 1 2X X→ and 1 1X X→ . This
is because X5 has three h-parents, X1, X2 and X3.

The 1 1X X→ family is invalid as it is a cyclic relationship. However, we are not
proposing to add progenitors into a BN’s topology. Progenitors are only used to
generate distributions to be shrunk towards. The CPT for this (invalid) family would
be the 1 1(|)P X X distribution, which is a valid, though uninteresting, identity matrix.
We leave this distribution in the shrinkage process, though it could likely be omitted.

A similar event occurs when a family’s progenitor contains two parents that are not
unique. E.g., consider the family composed of the links 1 2X X→ and 1 2X X→ (two
identical links). This does not represent a legal BN topology as only a single link is
allowed to connect two unique nodes. The CPT for this (invalid) family is

2 1 1(| ,)P X X X , which contains two sets of multinomials: the 2 1 1(| ,)P X X Xα α= =
multinomials, which are valid and equal 2 1(|)P X X α= ; and the

2 1 1(| ,)P X X Xα β= = , α β≠ , multinomials, which contain untrainable parameters
(as no data point could have 1X α= and 1X β= simultaneously). Recall that we employ
shrinkage at the multinomial level. Thus, the valid multinomials may be incorporated
into the shrinkage process normally and the invalid multinomials are discarded.

When a node in the hierarchy has more than a single h-parent, i.e., when the
topology is a trellis and not a forest, any BN family the node participates in will have
multiple progenitors, Figure 1c. Each of those progenitors may in turn have multiple
progenitors, resulting in a possibly exponential increase in the number of higher-order
progenitors for a family. In our experiments, it was not uncommon to see thousands
of progenitors for a single family.

Theoretically, the MLEs for each of these progenitors could be computed and used
in a shrinkage process. This is not computationally tractable, particularly for dense
trellis hierarchies. Thus, when a family has more than one pth-order progenitor, we
create a new meta-progenitor that represents a merging of all the pth-order
progenitors. The meta-progenitor’s child is a new RV representing the union of all
the pth-order progenitors’ children. Each of the meta-progenitor’s parents are new
RVs representing the union of the pth-order progenitors’ corresponding parents.

The value for the new RVs given a data point is determined by a weighted voting
procedure. E.g., if the RVs X1, X2 and X3 are being merged into a new RV X , if X1 =
1 , X2 = 1 and X3 = 2 in a given data point, then 1X = for that data point since that
was the most common value seen by the RVs merged into X . Ties were broken
arbitrarily, but occurred rarely due to weighted votes. The MLE for the multinomials
in the meta-family’s CPT can be computed and incorporated into the shrinkage
estimate as a ,(),

ˆ
p Xi j

θ
Λ

 term in Equation 2. In many domains, the hierarchy relating the
RVs will be a forest (or even a tree) and this merging process will not be required.

Another slight complication occurs when a family contains nodes from different h-
levels. E.g., assume the progenitor of family 1 6X X→ is needed. This family contains

 Shrinkage Estimator for Bayesian Network Parameters 73

a node, X0, at the highest level of the hierarchy given in Figure 1a, but also a node, X3,
at the second highest level. When constructing the progenitor of this family, the h-
parent of any node at the highest level is set to be the node itself. Thus, the progenitor
of family 0 3X X→ is 0 0X X→ . This family does not have any progenitors as all

nodes are at the highest level of the hierarchy.

2.6 Estimating Shrinkage Coefficients

Given the MLEs, 0, 1, , ,(), (), (),
ˆ ˆ ˆ ˆ{ , ,..., , }X X V Xi i i i iX jj j j

θ θ θ θ
Λ Λ Λ

=θ , the mixture weights,
0 1

, , , ,{ , ,..., , }i

i i i i

V
X j X j X j X jλ λ λ λ=λ , are set to maximize the empirical likelihood of the

learned BN. I.e., the estimates are set to those that result in the highest likelihood
possible given a set of left out data, D (the need for left-out data will be addressed
shortly). When estimating the multinomial ,iX jθ , only the subset of data points in D
where ()iPa X j= is needed. We refer to this subset as D′ .

Maximizing the likelihood of the learned BN given D can be done by selecting the
parameters that match the MLE of the BN given D as closely as possible. Thus, the
shrinkage mixing coefficients are chosen by minimizing the following function:

arg min ((,))CPTLoss θ θ= λ'λ , where θ is the shrinkage estimate computed via
Equation 2, θ is the MLE given the left-out data and (,)CPTLoss θ θ =

, , , ,1 1
| |i i

i i

q r

X j k X j kj k
θ θ

= =
−∑ ∑ .

As the data likelihood of a mixture of multinomials is a convex function [14], a
simple version of the EM algorithm can be used to find the optimum value for
mixture coefficients. The algorithm is given in Figure 2.

This algorithm assumes that each data point, d D′∈ , is drawn from a mixture of
multinomials. I.e., a die roll determines which multinomial to use, and another roll
determines what value Xi takes on given the multinomial. This algorithm selects
mixture coefficients such that the linear combination of MLE estimates on the
training data is as close to the MLE estimate for the left out data as is possible.

Two issues arise. First, requiring the algorithm to use left-out data inefficiently
uses the available data and second, the set of left-out data may be biased (as it
represents a relatively small amount of data). To address these issues, a form of cross
validation is employed. During each stage of the cross validation, a different section
of the training data is set aside as the left-out data. Mixing coefficients are learned
that simultaneously maximize the fit of the shrinkage estimates to the left-out
estimates across all folds. I.e.,

#

1
arg min ((,)))

folds

v vv
CPTLoss θ θ

=
= ∑λ'λ , where vθ and

vθ are the shrinkage estimates and left-out MLE for the vth fold, respectively. Thus,
all the data is used both to draw MLE from and to train the coefficients.

The EM algorithm usually converged in hundreds of iterations. The convergence
rate can be dramatically increased (usually to 10 or fewer iterations) by making
significantly larger steps at each iteration than proposed by EM. See [4] for details.

3 Results

Experiments are performed on two domains. The first is a simulated domain where
ground truth is known and controllable. Data with varying degrees of noise was

74 J. Burge and T. Lane

b) Generative Noise parameter, ρ

10

15

20

25

30

35

0.05 0.25 0.45 0.65 0.85

CP
T
Lo
ss

MLE+L

Shrinkage

0
10
20
30
40
50
60
70

1 10 100 1,000 10,000 100,000

CP
T
lo
ss

MLE+L

Shrinkage

a) Laplace Smoothing Const,α

Fig. 3. Simulated data results

generated and the two estimators, MLE+L versus shrinkage, were tested to see how
closely they could estimate the underlying generative parameters (comparisons to
MLE without any smoothing are not possible as multinomials containing zero–valued
probabilities will likely exist and yield invalid data log-likelihoods).

The second domain is a challenging real-world neuroimaging domain consisting of
functional magnetic resonance imaging data (fMRI) datasets. Ten datasets were
collected on patients that were either healthy, demented or suffered from
schizophrenia [2, 6, 12]. For each group of patients, a BN was learned that modeled
the correlations among approximately 150 regions in the brain. fMRI data is temporal
and time was explicitly represented in the BN structures. Such BNs are referred to as
dynamic Bayesian networks. See [4] for further modeling details.

3.1 Simulated Data

In all simulated experiments, a single hierarchy, Λ , over RVs X = {X1, …, X57}, is
created with three h-levels containing 3, 9 and 45 nodes. A data-generating dynamic
Bayesian network (DBN), G, is constructed with nodes 1 1

1 1 57 57{ , ,..., , }t t t tX X X X+ + .
Each 1t

iX + node is given one, two or four random parents (depending on the
experiment) from the Xt RVs. Each of these links correspond to a temporal correlation
and the data points constructed are actually time series. The correlational strength for
each random link can be quantified with a normalized mutual information score
(NMIS) and CPTs consistent with NMIS are randomly generated. The method used to
generate such CPTs is outside the scope of this paper, see [4] for more details. We
refer to the distribution of generated CPTs as (|)iP θ M where M is the set containing
one NMIS for every parent in the Xi family. If Xi contains no parents, M is a value
indicating the amount of information in P(Xi).

The CPTs for families with no progenitors (X1, X2 and X3) are generated from the
(| { })B

iP cθ distribution, yielding families that have increasingly strong correlations as

c increases. The CPTs for families with progenitors are initially set as copies of their
progenitor’s CPTs. Then h random locations in the progeny’s CPTs are chosen (with
replacement) and a random amount of probability mass between 0 and 0.1 is moved
into or out of the random location. The larger h is, the less similar the CPTs between
hierarchically related families are, and the less helpful shrinkage should be.

 Shrinkage Estimator for Bayesian Network Parameters 75

Each simulated data point is not drawn directly from G. Instead, the th data point
is drawn from a new BN, G , whose structure is identical to G but whose CPTs are
noisy versions of G’s CPTs. The CPTs in G are initially set as copies of the CPTs in
G. For each CPT, G

iθ , a random tuple, ,j k , is chosen. The probability mass
assigned to , ,

G
i j kθ is increased by a value chosen between 0 and ρ , 0 1ρ< < , and the

multinomial is renormalized. As ρ increases, the amount of noise introduced into G
increases and the more distinct each generated dataset is from G. The task is: given a
set of L data points, 1 2{ , ,..., }Ld d d , learn parameters that minimize the CPT loss
between learned CPTs and the original CPTs in G (results were qualitatively similar
across multiple noise models) .

3.1.1 Learning the Generative BN’s Parameters
Laplace smoothing adds an additional hyper-parameter, α , into the learning process
that controls how much the MLE+L is smoothed towards a uniform distribution. The
first experiment compares MLE+L with varying Laplace smoothing constants to
shrinkage estimates. Four simulated data points, each with 1000 time points, are
generated from four generating BNs, 1 2 3 4{ , , , }G G G G . Each family in the generative
BNs contains a single random parent; c equals 0.05; ρ equals 0.1 and h equals 2. At
these settings, families in the generating BNs have CPTs that are moderately
correlated with their progenitors’ CPTs, the parents and children in families are
loosely correlated and the noise added to each dataset is significant, but not
overwhelming. These settings are arbitrary and the qualitative features of the results
are maintained with a wide ranges of values for c, ρ and h.

Figure 3a gives the results comparing the estimators’ ability to reconstruct G’s
CPTs across varying smoothing constants. The tests were repeated 20 times and
confidence intervals representing one standard deviation above and below the mean
are plotted. Shrinkage does not require a Laplace smoothing constant and is provided
as a reference line. Even when the optimal Laplace smoothing constant is derived
empirically, shrinkage results in CPTs with lower loss. I.e., shrinkage estimates result
in parameters more similar to the generative BN’s parameters before noise was added.

Figure 3b lists the results for varying degrees of noise. As the amount of
probability mass randomly perturbed in G1 through G4’s CPTs increases, MLE+Ls
become more and more skewed. This is because they simply average the noisy
observations into their estimates. Shrinkage estimates are less affected by the
increasing noise and are capable of learning estimates with lower CPT loss.

The shrinkage estimates take advantage of the correlation between a family’s CPT
and the family’s progenitor’s CPT. The strength of this correlation will vary in
real-world domains and may even be negligible. We’ve performed experiments with
decreasing levels of correlation between progenitors’ CPTs. As the correlation
decreases (i.e., as h increases), the improvement gained by using shrinkage also
decreases, but even when the progenitors’ CPTs are drawn independently of their
progenies’ CPTs, shrinkage performs significantly (p < 0.05) better than MLE+L.
This agrees with Stein’s observations on shrinkage estimators [16].

3.2 Neuroimaging Data

We also estimated CPTs from the neuroimaging datasets with artificially introduced
noise. Noise was added as random changes to the values of RVs in the training data.

76 J. Burge and T. Lane

b) Four parents (1024 parameters) per familya) Two parents (64 parameters) per family

Fig. 4. Negative log likelihood of left-out data. The results from the ten fMRI datasets are
plotted on each graph. The likelihood values have been normalized to range from zero to 1.
Smaller values indicate higher data-likelihood, thus points under the line indicate left-out
likelihood was higher for shrinkage estimates.

As in the simulated domain, shrinkage estimates were capable of estimating CPTs that
were less affected by the noise and closer to the CPTs for the noiseless datasets
(results were omitted due to space constraints, see [4] for additional details).

As shrinkage estimates result in lower risk than MLE+L estimates, the data
likelihood of BNs given left-out data (of the same class) should also be higher with
shrinkage estimates on average than with MLE estimates. We demonstrate that this is
the case for the ten fMRI datasets via cross validation experiments.

For each cross-validation fold, the fMRI datasets are split into two portions.
Approximately 80% of a data set is used for training and 20% is used as left-out data.
BNs are then learned on the training data using either MLE+L or shrinkage estimates.
The data-likelihood of the trained BNs given the left out data is then calculated.

Figure 4 lists the results for the ten datasets. The graphs plot the negative log
likelihood (normalized across datasets) of BNs given the left-out datasets. Points
under the line indicate that shrinkage resulted in higher log-likelihoods (lower
negative log-likelihood) than MLE+L. As the number of parameters grow, the benefit
of using shrinkage increases. When the average number of parents per node is two,
shrinkage estimates result in higher left-out data likelihoods 92% of the time. That
number jumps to 100% when the average number of parents per node is four.
Further, the margin by which shrinkage beats MLE+L on individual left-out datasets
also increases with the number of parameters.

Even though left-out generalization clearly improves with shrinkage estimates, it is
not necessarily the case that classification accuracy will change. While classification
is not a primary goal of this work, we have performed an array of classification
experiments using the generative BDe score [10] (which does not require
parameterization during the structure search) and the class-discriminative ACL-ML
score [3] (which does require parameterization during the structure search).

Differences in classification accuracies due to shrinkage were not significantly
changed from MLE+L. Of 590 classification experiments performed (with varying
complexities of learned BNs), BNs trained with MLE+L correctly classified 382
datasets (64.7%) and BNs trained with shrinkage estimates correctly classified 372
datasets (63.1%); a statistically insignificant difference.

 Shrinkage Estimator for Bayesian Network Parameters 77

4 Conclusions

One component of learning Bayesian networks is the estimation of parameters. A
widely employed estimator is the MLE with Laplace smoothing (MLE+L). Stein
demonstrated that the MLE was inadmissible in certain cases [16]. Several machine
learning modeling techniques were shown to benefit from shrinkage estimates [1, 14]
by constructing a hierarchy of classes and shrinking a RV’s MLE towards the MLE of
RVs in the other classes.

We have proposed a similar means of shrinking a RV’s MLE towards the MLEs of
other hierarchically related RVs in the same class. Shrinkage estimates are calculated
as weighted linear combinations of MLEs where the mixture coefficients are learned
via an EM algorithm. To our knowledge, we are also the first to propose using a
shrinkage estimator during BN structure search.

We performed experiments on a simulated domain where ground truth was known
and controllable as well as on a challenging real-world neuroimaging domain. On the
simulated data, we demonstrated that even when the ideal Laplace smoothing constant
is known, shrinkage estimates allow for better parameter estimates in the presence of
noisy data. As the amount of noise increased, shrinkage’s benefit increased. This
was true (though diminished) even if the RVs in the hierarchy were independent,
which agrees with Stein’s [16] original work with shrinkage.

On the fMRI data, we also found that shrinkage was capable of estimating fMRI
parameters more effectively than MLE+L given noisy versions of the fMRI data. As
the level of noise increased, the performance of shrinkage estimates also increased.
We further showed that using shrinkage estimates increases the generalization of the
learned BNs by increasing the likelihood of data points (of the same class) left out of
training process. This increase was found not to be caused solely by shrinking
towards a uniform distribution (a type of empirical Laplace smoothing), but that
shrinkage towards other distributions found in the data was advantageous. This is in
agreement with [1, 14]. Finally, we found that the application of shrinkage estimates
did not diminish the classification performance of learned BNs.

Future work involves applying these shrinkage techniques to domains that do not
have a preexisting hierarchy among their RVs. For such domains, a synthetic
hierarchy could be constructed by aggregating sets of RVs together into new RVs.
This raises yet unanswered questions such as which RVs should be aggregated
together, how many levels the synthetic hierarchy should have, what aggregation
should be used, etc. Given the results on the fMRI data—a domain in which
hierarchically related brain regions often have significantly different functional
behaviors—we believe our shrinkage estimates will perform well in general. Indeed,
in preliminary experiments where the hierarchy used to guide shrinkage was
randomized, shrinkage estimates still yielded better estimates than MLE+L.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable feedback and Dr.
Randy Buckner, Dr. Kent Kiehl, Dr. Vincent P. Clark and The MIND Institute for
providing access to their neuroimaging datasets. This work was funded by grants
DA012852, NIDA, NIH; 1R01MH076282-01, NIMH; DE-FG02-99ER62764, DOE.

78 J. Burge and T. Lane

References

1. Anderson, C., Domingos, P., Weld, D.: Relational Markov models and their application to
adaptive web navigation. In: International Conference on Knowledge Discovery and Data
Mining, pp. 143–152 (2002)

2. Buckner, R.L., Snyder, A., Sanders, A., Marcus, R., Morris, J.: Functional Brain Imaging
of Young, Nondemented, and Demented Older Adults. Journal of Cognitive
Neuroscience 12, 24–34 (2000)

3. Burge, J., Lane, T.: Class-Discriminative Dynamic Bayesian Networks. In: ICML, Bonn,
Germany (2005)

4. Burge, J.: Learning Bayesian Networks from Hierarchically Related Data with a
Neuroimaging Application. Ph.D. Dissertation. Computer Science. University of New
Mexico, New Mexico (2007)

5. Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis.
Chapman & Hall, London (1996)

6. Clark, V.P., Friedman, L., Manoach, D., Ho, B.C., Lim, K., Andreasen, N.: A
collaborative fMRI study of the novelty oddball task in schizophrenia: Effects of illness
duration. Society for Neuroscience Abstracts 474.474 (2005)

7. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Mach.
Learn. 29, 131–163 (1997)

8. Grossman, D., Domingos, P.: Learning Bayesian Network Classifiers by Maximizing
Conditional Likelihood. In: International Conference on Machine Learning, pp. 361–368
(2004)

9. Gupta, A.K., Ehsanese Saleh, A.K.M.: Estimation of Multinomial Probabilities under a
Model Constraint. Journal of Multinomial Estimation 58, 151–161 (1996)

10. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

11. James, W., Stein, C.: Estimation with quadratic loss. In: Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, pp. 361–379. University of California
Press (1960)

12. Kiehl, K.: An event-related functional magnetic resonance imaging study of an auditory
oddball task in schizophrenia. Schizophrenia Research 48, 159–171 (2001)

13. Lam, W., Bacchus, F.: Learning Bayesian Belief Networks. An Approach Based on the
MDL Principle. Computational Intelligence 10, 269–293 (1992)

14. McCallum, A., Rosenfeld, R., Mitchell, T., Ng, A.Y.: Improving Text Classification by
Shrinkage in a Hierarchy of Classes. In: International Conference on Machine Learning,
pp. 359–367 (1998)

15. Pearl, J.: Fusion, Propagation, and Structuring in Belief Networks. AI 29, 241–288 (1986)
16. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution. In: Third Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1, pp. 197–206. University of California Press (1955)

Level Learning Set: A Novel Classifier Based on

Active Contour Models

Xiongcai Cai1,3 and Arcot Sowmya1,2

1 School of Computer Science and Engineering,
The University of New South Wales, Sydney, NSW 2052, Australia

2 Division of Engineering, Science and Technology, UNSW Asia, Singapore
3 National ICT Australia, Locked Bag 6016, NSW 1466, Australia

{xcai,sowmya}@cse.unsw.edu.au

Abstract. This paper presents a novel machine learning algorithm for
pattern classification based on image segmentation and optimisation
techniques employed in active contour models and level set methods.
The proposed classifier, named level learning set (LLS), has the abil-
ity to classify general datasets including sparse and non sparse data. It
moves developments in vision segmentation into general machine learn-
ing by utilising and extending level set-based active contour models from
the field of computer vision to construct decision boundaries in any fea-
ture space. This model has advantages over traditional classifiers in its
ability to directly construct complex decision boundaries, and in better
knowledge representation. Various experimental results including com-
parisons to existing machine learning algorithms are presented, and the
advantages of the proposed approach are discussed.

1 Introduction

Pattern recognition has been crucial for human survival, and development of
reliable and accurate pattern recognition by machines is an important research
area. Pattern classifier construction is central to pattern recognition. Although
there are many techniques for pattern classification, it is well known in the field
that each algorithm has its inherent drawbacks. The investigation and design of
new efficient and accurate approaches are therefore vital for solving particular
kinds of pattern recognition problems.

The research in learning object extraction indicates that machine learning
techniques have great potential for automation and optimisation of object recog-
nition from images. Based on existing research, there also remains the potential
for generalising, testing and improving machine learning and computer vision
techniques for general datasets.

In this paper, we propose a novel classification method that determines a
decision boundary directly from any dataset based on active contour models
and level set methods. We formulate the classifier learning problem as that of
segmenting the feature space, and then apply an active contour (with a level
set formulation) to perform the segmentation. The principal idea is that the

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 79–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

80 X. Cai and A. Sowmya

regularisation term included in the objective function that is minimised by the
active contour provides some protection against over-fitting, because it penalises
long boundaries. The approach is to utilise and extend level set based active
contour models from the field of computer vision to create novel machine learning
techniques, namely level learning set, for any general dataset. The optimisation
mechanism of active contours is adapted to work in sparse feature spaces rather
than in image space. In parallel, a decision boundary creation technique based
on level set functions for classifier construction is proposed.

The approach explores a novel direction in pattern classifier construction and
seeks to provide new insights into the application of active contours and the level
set method. It moves developments in vision segmentation, based on optimisa-
tion, into general machine learning. In addition, it enables the level set method
to handle sparse, non-spatial datasets rather than only spatial data. The paper
shows how to embed a level set based active contour model in the framework of
machine learning to achieve a very general pattern classifier. In experiments, our
method is compared with standard machine learning and classification methods
on the UCI repository dataset.

The rest of the paper is organised as follows. In Section 2 we review related
work in classifier construction approaches and active contour models used in
Level Learning Set Classifier. In Section 3, the proposed classifier is presented,
where the algorithm is described in detail. In Section 4, the experimental results
are shown where LLS is evaluated and compared to standard classifiers, and
Section 5 concludes the paper.

2 Related Work

2.1 Pattern Classification

There are two general strategies for creating classifiers: namely generative learn-
ing and discriminative learning.

Generative learning [1,2] utilises an example data set to build a probability
model by finding the best estimate of parameters for some known parametric
form of distribution. One problem with these methods is that the best estimate
of a parameter may not give the best classifier because the parametric model
itself may not be correct. Another problem is that even a well trained classifier
obtained using a parametric density model may not be an accurate description
of the data due to limited number of parameters in the model.

Discriminative learning ignores probability and attempts to construct a good
decision boundary directly, which is often extremely successful, especially when
no reasonable prospect of modeling the data exists. It assumes that the decision
boundary comes from one or another class of solutions and constructs a solution
to choose the best element of that class. Techniques following the discriminative
approach include nearest-neighbour methods [3], linear discriminative analysis
[4], neural networks [5], support vector machines [6] and decision trees [7,8]. Re-
cently, Yip et al. [9] proposed a data clustering method using level set methods

LLS: A Novel Classifier Based on Active Contour Models 81

to identify density peaks and valleys in the density landscape, which advances
contours to form cluster cores.

2.2 Active Contours in Computer Vision

Machine vision provides interesting and challenging problems and rich techniques
in advancing machine learning. Active contours are techniques in vision used to
detect objects in a given image u0 using methods of curve evolution. The basic
idea is to deform a curve to the boundary of the object starting with an initial
curve C, under some constraints from the image u0. To address curve evolution,
deformable contour models or snakes were first presented [10] for detection and
localisation of boundaries. Cohen [11] uses the balloon model to reduce the ini-
tialisation requirement of the snake model. This has been improved [12] using
a geodesic formulation in a Riemannian space for active contours derived from
the image content. Cohen and Kimmel [13] describe a shape modeling method
by interpretation of the snake as a path of minimal cost which is solved using
numerical methods. The Level set method has been utilised for shape modeling
[14] as it allows for detection of automatic topology changes, cusps and corners.
Geman and Jedynak [15] present an active testing model to reduce uncertainty in
tracking roads in satellite images using entropy and statistical inference. These
approaches only work for low level segmentation and are not suitable for higher
level object extraction or recognition due to their inability to learn and utilise
prior object knowledge. Chan and Vese [16] extended the scalar Chan-Vese al-
gorithm for active contours to the vector valued case. The model minimises a
Mumford-Shah function over the length of the contour, as well as the sum of the
fitting error over each component of the vector-valued image. We have recently
developed a method [17] to introduce control parameters into the speed function
of level set methods. It utilises a genetic algorithm to tune those parameters to
adjust for the effects of intensity and gradient features and force the marching
of the active contours to stop at the object boundaries. We have also presented
a novel active contour model using information fusion techniques [18].

We now present a new classification algorithm for constructing a decision
boundary in any feature space, based on level set methods.

3 Level Learning Set (LLS) Classifier

Given a set of observations and their labels, we define the decision boundary
construction problem as an optimisation problem involving data set partition
and using a geometric formulation, with respect to some constraints. In this pa-
per, we first split the general classifier construction problem into many one-class
classifier construction problems using the divide and conquer strategy. One-class
classification [19] is a new branch in pattern recognition that tries to describe
one class of objects, and distinguish it from all other possible outlier objects, in
contrast to normal classification where one tries to distinguish between two or
more classes of objects. For each class, we make the assumption that the space of

82 X. Cai and A. Sowmya

measurements X is divided into two subsets: A belonging to the target class, and
its complement outlier class Ac = X \ A. The classifier construction problem is
then to seek a decision area in the feature space that maintains the characteristics
of that class and represents the knowledge learned from the training data, which
can be used to classify new data. The individual one-class classifiers may then
be fused to construct the decision boundary for multi-class classification.

3.1 LLS in One-Class Classification

In one-class classification, often just the probability density of the training set
is estimated. When new objects fall under some density threshold, they are con-
sidered to be outliers and are rejected. This approach has some shortcomings
as discussed in 2.1. We propose a one-class LLS method which does not rely on
density estimation. The method is inspired by the level set-based active contour
model [12,14,16], which is an image segmentation method based on the minimi-
sation of an energy function that models curve inflation, curve smoothness, and
curve advection to image edges. It is designed to be geometric and robust and
produces a one-class decision boundary that maximises a measure of within-class
similarity, and minimises the length of the boundary and the area of the region
inside the boundary, around a training set of objects.

Let Ω be a bounded open subset of �n, with ∂Ω its boundary. Let f(x) be a
given function such that f(x) : Ω → �, where Ω is an order type of set Ω. Let
C(s) : [0, 1]→ �n be a parameterised curve. The classifier decision boundary is
defined as the zero level set of an implicit function z = φ(x, t) defined on the
entire feature domain. The contour at time t must satisfy the function φ(x, t) = 0.
The area inside the boundary C then represents an open subset of Ω, in which
data points have a strong likelihood of belonging to the class. An energy function
modeling the constraint for constructing the decision boundary is defined by

F (c1, c2, C) = μ.Length(C) + ν.Area(inside(C)) +

λ1

∫

inside(C)

|f(x)− c1|2dx + λ2

∫

outside(C)

|f(x)− c2|2dx (1)

where Length(C) is the length of the curve C and Area(inside(C)) is the area
of the region inside C. x is an n-dimensional vector representing a location in
the feature space, c1 = average(f) inside C and c2 = average(f) outside C. μ,
ν, λ1 and λ2 are weighting parameters. f(x), namely feature pixel intensity, is a
function over the whole feature space defined by

f(x) = count(instancei
x). (2)

f(x) is the number of instances of the class i having a feature vector value of x.
The transformation from non sparse image data to general sparse data is

not straightforward. Traditionally, level sets perform two-class segmentation on
images, where training instances cover the whole working space. For general
datasets, multiple instances may map to a single point in feature space, and

LLS: A Novel Classifier Based on Active Contour Models 83

other areas in feature space may be left empty, which requires careful handling.
We use definition (2) and divide the multi-class classification problem into several
one-class ones to address this.

According to this configuration, the higher the feature pixel intensity that
a data point in feature space has, the stronger the probability that it belongs
to the class and resides inside the decision boundary C. We specifically use
instances belonging to the target class to create the feature pixel intensity in
(2), and ignore all other instances, as depicted in Figure 1. Information outside
the boundary in definition (1) does not include instances from other classes.

Thus, the minimisation problem is defined as follows:

inf
c1,c2,C

F (c1, c2, C). (3)

By calculus of variations [20], the Gateaux derivative of F in (1) is defined as

∂ε

∂φ
= −δε(φ)[μ.div(

�φ

| � φ|)− ν − λ1(f − c1)2 + λ2(f − c2)2] (4)

The function φ that minimises this functional also satisfies the Euler-Lagrange
equation ∂ε

∂φ = 0, which is parameterised by an artificial time variable t as:

∂φ

∂t
= −δε(φ)[μ.div(

�φ

| � φ|)− ν − λ1(f − c1)2 + λ2(f − c2)2] (5)

We solve the level set problems by discretisation of the divergence operator as in
[21] and iterative computing of the level set function value as in [22] using Equation
(5). By iteratively computing the level set function value, we obtain a description
in which the learned knowledge is represented by the level set function φ, inside
average feature intensity c1 and outside average feature intensity c2.

Therefore, the one-class LLS classifier is built around construction of an indi-
cator function that ties the location of the data to its class:

IA(x) =
{

1 if x ∈ A
0 if x ∈ Ac.

(6)

To represent this indicator function, the implicit function φ(x) is used, which is
in Rn. The implicit representation can be discretised, resolving an n-dimensional
set D. This can even be avoided, in part, by placing all the points x very close to
the boundary, leaving the rest of D unsolved. Since only the φ(x) = 0 isocontour
in dimension n-1 is important, only the points x near it are actually needed to
accurately represent the boundary [23].

Instead of storing the complete training set, this knowledge representation is
relatively simple. Moreover, due to the evolution of active contours, the learned
contour can be directly used as the initial contour for learning from new training
data, which makes it very suitable for incremental learning. Examples of decision
boundaries created by one-class LLS classifiers are shown in Figure 1, where the
two images in each row show the decision boundaries constructed for two different
classes in each dataset separately, after 200 iterations, with bin size 30.

84 X. Cai and A. Sowmya

200 iterations

10 20 30

5

10

15

20

25

30

200 iterations

10 20 30

5

10

15

20

25

30

200 iterations

10 20 30

5

10

15

20

25

30

200 iterations

10 20 30

5

10

15

20

25

30

Fig. 1. Decision boundaries constructed by
base one-class LLSs for dataset Wis-BC-
Diag (top) and Ionosphere (bottom) from
UCI dataset, are shown as closed curves

Fig. 2. The areas with question marks
show areas where there is inconsistent
output from one-class classifiers

F1

Classified Instances

F2 Fn

Test Data

Fig. 3. LLS with cascade of classifiers
where acceptance can occur at any
stage

3.2 Extension to Multi-class Classification

When we have the one-class decision boundary in feature space for each class, the
generalisation to multi-class classification is not straightforward for discriminants
that are not based on density estimation. Simple combining methods use voting,
but this has the drawback of inconsequent labellings and ties. Before proposing
a method to construct the multi-class classifier from one-class classifiers, we first
define the following decision areas in feature space:

Rejected Areai,j =∼ Area(Ci)∩ ∼ Area(Cj) (7)
Competitive Areai,j = Area(Ci) ∩Area(Cj) (8)

Accepted Areai = Area(Ci) \nj=1,j �=i Competitive Areai,j . (9)

where Area(Ci) is a subspace of the feature space that remains within the deci-
sion boundary curve of class i.

According to the above definition, as shown in Figure 2, a one-class classi-
fier is strongly confident in its decision when the test data point resides in its
Accepted Area in feature space, since its decision does not conflict with that
of other classifiers. However, dilemmas arise when decisions conflict with each
other. Therefore, the decision function for multi-class classification is defined by

Ii(x) =

⎧
⎨

⎩

1 if x ∈ Accepted Areai

unknown if x ∈ Competitive Areai,j

unknown if x ∈ Rejected Areai,j .
(10)

LLS: A Novel Classifier Based on Active Contour Models 85

Algorithm 1. Learning(D) - left, Testing(k, T) - right.
Ensure: k←learned model

Y ←set of instances in training set D
R←set of reference class labels
B←subsets of downward projections on Y
for all b in B do

for all class i in R do
kb,i←add one-class LLS function

end for
end for

Ensure: d←class labels
for all instance y in test set T do
B←create downward projections on y
for all b in B do

for all class i in k do
xb←subset b in B
Di(xb)←decision area of kb,i(xb)
if Di(xb) is Accepted Area then

d(x)←class i
else

pi(xb)←add class probability
end if

end for
end for
if dy is not assigned then

dy←arg maxi

∑
b∈B pi(xb)

end if
end for

To minimise the classification error, the algorithm assigns a class label i to a test
instance x only when the location of the instance x remains in the class Accepted
Areai in the feature space, that is the region is inside one decision boundary and
not overlapped by others. Otherwise, it refuses to make any decision and defers
it to the next step.

3.3 The Final Proposed LLS

As shown in the previous section, all classifiers might conclude that a certain sub
feature space does not have their class characteristics and thus consider instances
located in this sub space as not being in their class. In this case, the instance is
rejected by all classifiers. In contrast, several classifiers might claim an instance
and cause a conflict, and the instance has to be rejected in this case too. When
rejection is not an option, these rejected instances should still be classified. To
solve this problem, we build a classifier out of multiple multi-class LLS classifiers
using a cascade fusion strategy based on a degenerate decision tree [24,25], as
shown in Figure 3.

At each step, we train one multi-class LLS classifier for multiple classes using
different subsets of the feature set of all instances in the training dataset using
the following:

B = {Bs|s = 1 . . . n}, Bs = {bs},
where bs = {sth downward projection of Y in a fixed order} (11)

where Y is the set of all instances in the training set D and s is the size of the
feature subsets. This results in creating a sequence of multi-class LLS models.

86 X. Cai and A. Sowmya

Table 1. Datasets Used

Data set �Features �Classes �Cases

Pima 9 2 768

Ecoli 8 7 336

Glass 19 6 214

Icono’ 35 2 351

Iris 4 3 150

Liver 7 2 345

Segment’ 20 7 1500

Wine 14 3 178

Wis-BC-D 31 2 569

Wis-BC-P 34 2 198

Yeast 9 10 1484

Table 2. Classifiers for Comparison

Classifier Description

Naive Bayes

Bayes Net

kNN Inverse Distance

Weighted

C4.5 Decision Tree

C4.4 C4.5 no pruning,

Laplace smoothing

NBTree

SVM polynomial kernel

RBF Net Radial basis

function network

We treat the base classifiers as experts having subject-specific knowledge,
whose contributions to the final decision are equally weighted. We employ the
unanimity rule of decision making, except in the final step of cascade, where
voting and ranking are used. Since different experts for the same target are
trained by different feature subsets, the unanimity rule makes confident decisions
at the beginning of the cascade, and defers more difficult decisions to later stages,
when more training information is available.

The model in each step chooses its confident decision area to make a decision
against classification and leaves instances in its dilemma area to be resolved
by the models in subsequent steps. That is, bss are subsequently applied to
each test instance until it gets accepted by one of them or until it misses them
all. This is because each feature might strongly predict instances with certain
characteristics and be weak for others. By creating a variety of models trained
by different feature sets, each model works as an expert which only makes a
decision in the area where it is confident. In the case of an instance missing all
models, ranking and voting is employed to assign them a class, which is done by
summing the class probabilities in each model and picking the class with highest
total probability. The proposed algorithm is depicted in Algorithm 1.

In this way, most of the instances can be accepted at the beginning stages and
therefore most of the classification time is spent on instances that are hard to
classify. This means that the system is focusing on the hard-to-classify instances,
which agrees with human decision making behaviours and can help to improve
the overall performance of the classifier. Another advantage is that each of the
stages need not be perfect; in fact, the stages are usually biased towards small
false-alarm rate rather than towards high hit-rates.

4 Experiments

To test the performance of the proposed system on real world data, we imple-
mented LLS in Matlab and tested it using datasets from the UCI Repository
[26]. We utilised the Weka framework [27] for evaluation of the algorithms.

LLS: A Novel Classifier Based on Active Contour Models 87

4.1 Setup

We chose 11 datasets with numerical attributes alone, shown in Table 1 from
the UCI repository, since LLS currently handles only numerical attributes. We
compared LLS with 8 standard classifiers, that covers most categories of state-
of-the-art machine learning algorithms and listed in Table 2.

Due to the cascade strategy, LLS prefers to use the most discriminating fea-
tures at the beginning of the cascade procedure. Therefore, we employ Principal
Component Analysis (PCA) to preprocess the datasets and choose the princi-
pal component with large variance first. For visualisation purposes, the feature
values are re-scaled to be in the range between 0 and 255 after PCA processing
and we only use two features in each base LLS in the experiments by making
an assumption that a class can be described well by a feature subset of size 2.
We utilise binning to reduce noise and improve computational efficiency by em-
pirically assigning 30 bins to each dimension of the feature space.

4.2 Results and Discussion

We evaluated the classifiers on the datasets by conducting 10-fold cross-validation,
and the resulting prediction accuracy is depicted in Table 3, where the outputs of
the paired t-test at 95% confidence level with LLS as the base classifier are also
shown. The standard deviations are shown in brackets. Under LLS column, accu-
racies better than 80% appear in bold.

To compare the performance of algorithms under a variety of configurations,
we calculated the values of AUC, the area under the ROC (Receiver Operat-
ing Characteristics) curve, shown in Table 4. We also show the Mean Square
Error (MSE) which is another commonly used evaluation metric in Table 5.
The classifiers are ordered left to right in decreasing order, based on their av-
erage measures. The bold entries in Tables 4 and 5 are LLS values better than
average.

LLS are competitive with most of state-of-the-art machine learning algorithms
besides exploiting a novel direction of classifier construction that is not based
on any existing machine learning algorithm. From the AUC and MSE scores in
Table 4 and 5, it is clear that LLS outperforms at least half of the other clas-
sifiers and is very competitive with the rest. The prediction accuracy measures
in Table 3 shows that LLS outperforms all other classifiers on dataset Iris. It
also outperforms about half of other classifiers on Liver, Wis-BC-D and Ecoli.
Although it appears that some other classifiers produce a better prediction ac-
curacy than LLS, the paired t-test shows that LLS is statistically competitive
with most classifiers on most datasets except Segmentation and Yeast, where
instances from different classes are mixed together, with very confusing bound-
aries. For these datasets, the use of binning with fixed size may have caused
instances from different classes to be collected into the same bins and confused
the boundary construction.

88 X. Cai and A. Sowmya

Table 3. Prediction Accuracy (’v’ - better, ’*’ - worse than LLS)

Data NB RBF C4.5 C4.4 SVM Bayes kNN Naive LLS LLS

Set Tree Net Net Bayes Rank

iris 94.00 95.33 96.00 96.00 96.00 92.67 95.33 96.00 96.67 1
(4.92) (4.50) (5.62) (5.62) (4.66) (6.63) (5.49) (4.66) (4.71)

liver 66.13 64.35 68.71 68.99 58.28 56.25 58.25 55.39 62.61 5
(8.31) (6.86) (8.74) (6.80) (1.48) (3.65) (6.39) (8.86) (9.60)

wis-d’ 92.79 94.21 93.15 92.80 97.72 95.08 96.32 92.98 93.50 5
(2.40) (3.61) (3.64) (3.91) (1.66)v (2.58) (2.92) (4.30) (3.10)

ecoli 80.94 83.63 81.55 80.07 84.82 79.14 84.80 85.40 81.24 6
(5.12) (4.88) (7.61) (8.36) (5.52)v (6.17) (4.4)v (5.87) (3.22)

glass 75.22 65.50 65.87 66.32 57.51 74.76 70.11 49.48 61.23 7

(9.63)v (9.33) (8.91) (8.37) (8.22) (6.26)v (9.72)v (9.02) (7.88)

iono’ 89.73 92.62 91.46 91.46 88.60 89.46 82.62 82.62 86.89 7

(3.64) (5.66) (3.27) (3.27) (4.26) (4.47) (3.43) (5.47)* (2.86)

wine 96.63 98.30 93.86 93.86 98.33 98.89 95.00 96.63 94.97 7

(2.90) (2.74) (5.52) (5.52) (2.68)v (2.34)v (4.86) (5.38) (4.11)

wis-p’ 73.24 77.79 75.74 74.74 76.29 74.79 77.34 67.16 73.76 8

(4.68) (6.45) (8.84) (7.51) (3.25) (4.48) (6.58) (11.39) (7.36)

segm’ 94.33 86.93 95.73 95.73 91.93 90.40 94.80 81.07 85.60 8

(2.31)v (3.03) (0.72)v (0.90)v (2.40)v (2.18)v (1.66)v (2.33)* (2.74)

pima 74.36 75.40 73.83 72.67 77.34 74.36 72.14 76.31 70.06 9

(6.68) (4.36) (5.66) (6.64) (4.07)v (4.71) (4.36) (5.52)v (4.07)

yeast 56.80 59.16 55.99 54.78 57.08 56.74 55.19 57.61 50.95 9

(3.55)v (4.71)v (4.77)v (4.85) (4.10)v (3.79)v (2.53)v (3.01)v (3.32)

Table 4. Area under ROC curve (’v’ - better, ’*’ - worse than LLS)

Dataset Naive Bayes RBF LLS kNN C4.4 NB C4.5 SVM

Bayes Net Network Tree

ecoli 0.99 0.99 0.98 0.95 0.98 0.97 0.97 0.95 0.97

glass 0.73* 0.91 0.82 0.82 0.88 0.82 0.89 0.79 0.77

iris 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

ionosphere 0.94 0.95 0.96 0.97 0.90* 0.92* 0.91 0.89* 0.85*

liver 0.65 0.52* 0.67 0.62 0.65 0.69 0.66 0.67 0.5*

pima 0.82v 0.81v 0.79 0.72 0.75 0.77v 0.79 0.75 0.72

wis-bc-d 0.98 0.99v 0.97 0.96 0.99v 0.97 0.95 0.93 0.97

wis-bc-p 0.66 0.68 0.61 0.66 0.57 0.66 0.54 0.61 0.52

wine 1.00 1.00 0.99 0.99 1.00 0.97 1.00 0.98 1.00

yeast 0.75 0.76 0.78 0.73 0.72 0.74 0.76 0.70 0.72

segment 0.99 1.00 1.00 0.99 1.00 1.00 0.98 0.98 1.00

Average 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.84 0.82

All the above performances are achieved with a generic speed function. On
a specific application, a more sophisticated speed function specially constructed
with embedded domain knowledge may lead to even better performance.

LLS: A Novel Classifier Based on Active Contour Models 89

Table 5. Mean Square Error (’v’ - better, ’*’ - worse than LLS)

Dataset Bayes RBF kNN NB LLS C4.4 C4.5 Naive SVM

Net Network Tree Bayes

ecoli 0.19 0.20 0.18v 0.20 0.21 0.21 0.21 0.17v 0.31*

glass 0.24v 0.27 0.24v 0.23v 0.29 0.28 0.29 0.33 0.32

iris 0.15 0.13 0.13 0.14 0.06 0.13 0.11 0.13 0.29*

ionosphere 0.31 0.25 0.34* 0.30 0.26 0.27 0.28 0.39* 0.33*

liver 0.5 0.48 0.49 0.48 0.49 0.48 0.50 0.51 0.65*

pima 0.42 0.42 0.44 0.43 0.45 0.44 0.44 0.41 0.47

wis-bc-d 0.21 0.21 0.16v 0.25 0.24 0.23 0.25 0.24 0.13v

wis-bc-p 0.41 0.42 0.45 0.45 0.46 0.44 0.46 0.52 0.49

wine 0.06v 0.06 0.14 0.11 0.15 0.18 0.17 0.09 0.28*

yeast 0.24v 0.24v 0.25 0.24v 0.26 0.27* 0.27 0.24v 0.28*

segment 0.15v 0.16v 0.10v 0.12v 0.20 0.11v 0.11v 0.23* 0.30*

Average 0.26 0.26 0.27 0.27 0.28 0.28 0.28 0.30 0.35

5 Concluding Remarks

LLS has certain advantages over other classifiers. Firstly, it has an efficient knowl-
edge representation where the knowledge learned is represented as the level learn-
ing set isocontours in the feature space. This makes the testing very efficient by
requiring only a lookup of the class indicator value in the learned indicator func-
tion for each feature vector. Secondly, the proposed classifier constructs decision
boundaries directly, thereby avoiding the difficulty of determining a correct para-
metric density model and its parameter values. In addition, the learned level set
function can be directly used as the initialisation of an LLS training procedure
for new instances, which makes it suitable for incremental learning.

Acknowledgement

National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.
The authors also thank Dr Mike Bain, School of Computer Science and Engi-
neering, UNSW for asking the ‘what if’ question.

References

1. Braverman, D.: Learning filers for optimum pattern recognition. IRE Transactions
on Information Theory IT-8, 280–285 (1962)

2. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state markov chains. Annals of Mathematical Statistics 37, 1554–1563 (1966)

3. Fix, E., Hodges, J.L.: Discriminatory analysis - nonparametric discrimination: Con-
sistency properties. USAF School of Aviation medicine 4, 261–279 (1951)

4. Highleyman, W.H.: Linear decision functions with application ot pattern recogni-
tion. Processings of the IRE 50, 1501–1514 (1962)

90 X. Cai and A. Sowmya

5. McCulloch, W.S., Pitts, W.: A logical calculus of ideas imminent in nervous activ-
ity. Nulletin of Mathematical Biophysics 5(115-133) (1943)

6. Boser, B.E., Guyon, I., Vapnik, B.: A training algorithm for optimal margin clas-
sifers. In: Haussler, D. (ed.) Processings of the 4th Workshop on Computational
Learning Theory, San Mateo, CA, pp. 144–152. ACM Press, New York (1992)

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Chapman and Hall, New York (1993)

8. Quinlan, J.R.: C4.5 Programs for machine Learning. Morgan Kaufmann, San Fran-
cisco, CA (1993)

9. Yip, A.M., Ding, C., Chan, T.F.: Dynamic cluster formation using level set meth-
ods. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6),
877–889 (2006)

10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision, 321–331 (1988)

11. Cohen, L.: On active contour models and balloons. CVGIP Image Understanding 53
(1991)

12. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: ICCV’95, Cam-
bridge, USA, pp. 694–699 (1995)

13. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal
path approach. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pp. 666–673. IEEE Computer Society Press, Los Alamitos (1996)

14. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation:
a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 17(2) (1995)

15. Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite
images. IEEE Trans. Pattern Anal. Machine Intell. 18(1) (1996)

16. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on
Image Processing 10(2), 266–277 (2001)

17. Cai, X., Sowmya, A., Trinder, J.: Learning parameter tuning for object extraction.
In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851,
pp. 868–877. Springer, Heidelberg (2006)

18. Cai, X., Sowmya, A.: Active contour with neural networks-based information fusion
kernel. In: King, I., Wang, J., Chan, L., Wang, D. (eds.) ICONIP 2006. LNCS,
vol. 4233, pp. 324–333. Springer, Heidelberg (2006)

19. Tax, D.: One-class classification. PhD thesis, Delft University of Technology (2001)
20. Evans, L.: Partial Differential Equations. American Mathematical Society (2002)
21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal

algorithms. Physica D 60, 259–268 (1992)
22. Aubert, G., Vese, L.: A variational method in image recovery. SIAM Journal on

Numerical Analysis 34(5), 1948–1979 (1997)
23. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces.

Springer, Heidelberg (2003)
24. Amit, Y., Geman, D., Wilder, K.: Joint induction of shape features and tree clas-

sifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11),
1300–1305 (1997)

25. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple fea-
tures. In: IEEE CVPR, pp. 511–518. IEEE Computer Society Press, Los Alamitos
(2001)

26. Newman, D., Hettich, S., Blake, C., Merz, C.: Uci repository of machine learning
databases (1998) http://www.ics.uci.edu/∼mlearn/mlrepository.html

27. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

http://www.ics.uci.edu/~mlearn/mlrepository.html

Learning Partially Observable Markov Models

from First Passage Times

Jérôme Callut1,2 and Pierre Dupont1,2

1 Department of Computing Science and Engineering, INGI
Université catholique de Louvain,

Place Sainte-Barbe 2,
B-1348 Louvain-la-Neuve, Belgium

{Jerome.Callut,Pierre.Dupont}@uclouvain.be
2 UCL Machine Learning Group
http://www.ucl.ac.be/mlg/

Abstract. We propose a novel approach to learn the structure of Par-
tially Observable Markov Models (POMMs) and to estimate jointly their
parameters. POMMs are graphical models equivalent to Hidden Markov
Models (HMMs). The model structure is built to support the First Pas-
sage Times (FPT) dynamics observed in the training sample. We argue
that the FPT in POMMs are closely related to the model structure.
Starting from a standard Markov chain, states are iteratively added to
the model. A novel algorithm POMMPHit is proposed to estimate the
POMM transition probabilities to fit the sample FPT dynamics. The
transitions with the lowest expected passage times are trimmed off from
the model. Practical evaluations on artificially generated data and on
DNA sequence modeling show the benefits over Bayesian model induc-
tion or EM estimation of ergodic models with transition trimming.

1 Introduction

This paper is concerned with the induction of Hidden Markov Models (HMMs).
These models are widely used in many pattern recognition areas, including
speech recognition [9], biological sequence modeling [2], and information ex-
traction [3], to name a few. The estimation of such models is twofolds: (i) the
model structure, i.e. the number of states and the presence of transitions be-
tween these states, has to be defined and (ii) the probabilistic parameters of
the model have to be estimated. The structural design is a discrete optimization
problem while the parameter estimation is continuous by nature. In most cases,
the model structure, also referred to as topology, is defined according to some
prior knowledge of the application domain. However, automated techniques for
designing the HMM topology are interesting as the structures are sometimes
hard to define a priori or need to be tuned after some task adaptation. The
work described here presents a new approach towards this objective.

Classical approaches to structural induction includes the Bayesian merging
technique due to Stolcke [10] and the maximum likelihood state-splitting method
of Ostendorf and Singer [8]. The former approach however has not been shown

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 91–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 J. Callut and P. Dupont

to clearly outperform alternative approaches while the latter is specific to the
subclass of left-to-right HMMs modeling speech signals. A more recent work [6]
proposes a maximum a priori (MAP) technique using entropic model priors. This
technique mainly focus on learning the correct number of states of the model but
not its underlying transition graph. Another approach [11] attempts to design
the model structure in order to fit the length distribution of the sequences. This
problem can be considered as a particular case of the problem considered here
since length distributions are the First Passage Times (FPT) between start and
end sequence markers. Furthermore, in [11], sequence lengths are modeled with
a mixture of negative binomial distributions which form a particular subclass of
the general phase-type (PH) distributions considered here.

This paper presents a novel approach to the structural induction of Partially
Observable Markov Models (POMMs). These models are equivalent to HMMs in
the sense that they can generate the same class of distributions [1]. The model
structure is built to support the First Passage Times (FPT) dynamics observed
in the training sample. The FPT relative to a pair of symbols (a, b) is the num-
ber of steps taken to observe the next occurrence of b after having observed a.
The distribution of the FPT in POMMs are shown to be of phase type (PH).
POMMStruct aims at fitting these PH distributions from the FPT observed
in the sample. We motivate the use of the FPT in POMMStruct by showing
that they are informative about the model structure to be learned. Starting from
a standard Markov chain (MC), POMMStruct iteratively adds states to the
model. The probabilistic parameters are estimated using a novel method based
on the EM algorithm, called POMMPHit. The latter computes the POMM
parameters that maximize the likelihood of the observed FPT. POMMPHit

differs from the standard Baum-Welch procedure since the likelihood function
to be maximized is concerned with times between events (i.e. emission of sym-
bols) rather than with the complete generative process. Additionally, a procedure
based on the FPT is proposed to trim unnecessary transitions in the model. In
contrast with a previous work [1], POMMStruct does not only focus on the
mean of the FPT but on the complete distribution of these dynamical features.
Consequently, a new parameter estimation technique is proposed here. In addi-
tion, a transition trimming procedure as well as a feature selection method to
select the most relevant pairs (a, b) are also proposed.

Section 2 reviews the FPT in sequences, POMMs, PH distributions and the
Jensen-Shannon divergence used for feature selection. Section 3 focus on the
FPT dynamics in POMMs. Section 4 presents the induction algorithm POMM-

Struct. Finally, section 5 shows experimental results obtained with the pro-
posed technique applied on artificial data and DNA sequences.

2 Background

The induction algorithm POMMStruct presented in section 4 relies on the
First Passage Times (FPT) between symbols in sequences. These features are
reviewed in section 2.1. Section 2.2 presents Partially Observable Markov Models

Learning Partially Observable Markov Models from FPT 93

(POMMs) which are the models considered in POMMStruct. The use of
POMMs is convenient in this work as the definition of the FPT distributions in
these models readily matches the standard parametrization of phase-type (PH)
distributions (see section 3). Discrete PH distributions are reviewed in section
2.3. Finally, the Jensen-Shannon (JS) divergence used to select the most relevant
pairs of symbols is reviewed in subsection 2.4.

2.1 First Passage Times in Sequences

Definition 1. Given a sequence s defined on an alphabet Σ and two symbols
a, b ∈ Σ. For each occurrence of a in s, the first passage time to b is the finite
number of steps taken before observing the next occurrence of b. FPTs(a, b)
denotes the first passage times to b for all occurrences of a in s. It is represented
by a set of pairs {(z1, w1), . . . , (zl, wl)} where zi denotes a passage time and wi

is the frequency of zi in s.

For instance, let us consider the sequence s = aababba defined over the alphabet
Σ = {a, b}. The FPT from a to b in s are FPTs(a, b) = {(2, 1), (1, 2)}. The
empirical FPT distribution relative to a pair (a, b) is obtained by computing the
relative frequency of each distinct passage time from a to b. In contrast with
N -gram features (i.e. contiguous substring of length N), the FPT does not only
focus on the local dynamics in sequences as there is no a priori fixed maximum
time (i.e. number of steps) between two events. For this reason, such features are
well-suited to model long-term dependencies [1]. In section 3, we motivate the
use of the FPT in the induction algorithm by showing that they are informative
about the model topology to be learned.

2.2 Partially Observable Markov Models (POMMs)

Definition 2 (POMM). A Partially Observable Markov Model (POMM) is
a HMM H = 〈Σ,Q,A,B, ι〉 where Σ is an alphabet, Q is a set of states, A :
Q×Q→ [0, 1] is a mapping defining the probability of each transition, B : Q×
Σ → [0, 1] is a mapping defining the emission probability of each symbol on each
state, and ι : Q→ [0, 1] is a mapping defining the initial probability of each state.
Moreover, the emission probabilities satisfy: ∀q ∈ Q,∃a ∈ Σ such that B(q, a) = 1.

In other words, each state of a POMM only emits a single symbol. This model is
called partially observable since, in general, several distinct states can emit the
same symbol. As for a HMM, the observation of a sequence emitted by a POMM
does not identify uniquely the states from which each symbol was emitted. How-
ever, the observations define state subsets or blocks from which each symbol may
have been emitted. Consequently one can define a partition κ = {κa, κb, . . . , κz}
of the state set Q such that κa = {q ∈ Q |B(q, a) = 1}. Each block of the partition
κ gathers the states emitting the same symbol. Whenever each block contains only
a single state, the POMM is fully observable and equivalent to an order 1 MC. A
POMM is depicted in the left part of Figure 1. The state label 1a indicates that it

94 J. Callut and P. Dupont

is the first state of the block κa and the emission distributions are defined accord-
ing to state labels. There is a probability one to start in state 1d. Any probability
distribution over Σ∗ generated by a HMM with |Q| states over an alphabet Σ can
be represented by a POMM with O(|Q|.|Σ|) states [1].

2.3 Phase-Type Distributions

A discrete finite Markov chain (MC) is a stochastic process {Xt | t ∈ N} where
the random variable X takes its value at any discrete time t in a finite set Q and
such that: P [Xt = q | Xt−1, Xt−2, . . . , X0] = P [Xt = q | Xt−1, . . . , Xt−p]. This
condition states that the probability of the next outcome only depends on the
last p values of the process (Markov property). A MC can be represented by a
3-tuple T = 〈Q,A, ι〉 where Q is a finite set of states, A is a |Q| × |Q| transition
probability matrix and ι is a |Q|−dimensional vector representing the initial
probability distribution. A MC is absorbing if the process has a probability one
to get trapped into a state q. Such a state is called absorbing. The state set
can be partitioned into the absorbing set QA = {q ∈ Q | Aqq = 1} and its
complementary set, the transient set QT . The time to absorption is the number
of steps the process takes to reach an absorbing state.

Definition 3 (Discrete Phase-type (PH) Distribution). A probability dis-
tribution ϕ(.) on N0 is a distribution of phase-type (PH) if and only if it is the
distribution of the time to absorption in an absorbing MC.

The probability distribution of ϕ(.) is classically computed using matrix opera-
tions [5]. However, this computation is performed here via forward and backward
variables, similar to those used in the Baum-Welch algorithm [9], which are use-
ful in the POMMPhit algorithm (see section 4.2). Strictly speaking, computing
ϕ(.) only requires one of these two kinds of variables but both of them are needed
in POMMPhit. Given a set S ⊆ QT of starting states, a state q ∈ Q and a
time t ∈ N, the forward variable αS(q, t) computes the probability that the pro-
cess started in S reaches state q after having moved over transient states during
t steps: αS(q, t) = P [Xt = q, {Xk}t−1

k=1 ∈ QT | X0 ∈ S]. Given a set E ⊆ QA of
absorbing states, a state q ∈ Q and a time t ∈ N, the backward variable βE(q, t)
computes the probability that state q is reached by the process t steps before get-
ting absorbed in E : βE(q, t) = P [X0 = q, {Xk}t−1

k=1 ∈ QT | Xt ∈ E]. The forward
variables can be computed using the following recurrence for q ∈ Q and t ∈ N:

αS(q, 0) =

{
ιS
q if q ∈ S

0 otherwise
αS(q, t) =

∑

q′∈QT

αS(q′, t − 1)Aq′q (1)

where ιS denotes an initial distribution over S. The following recurrence com-
putes the backward variables for q ∈ Q and t ∈ N:

βE(q, 0) =

{
1 if q ∈ E
0 otherwise

βE(q, t) =

{
0 if q ∈ E∑

q′∈Q βE(q′, t − 1)Aqq′ otherwise

(2)

Learning Partially Observable Markov Models from FPT 95

Using these variables, the probability distribution of ϕ is computed as follows
for all t ∈ N0:

ϕ(t) =
∑

q∈QA

αQT (q, t) =
∑

q∈QT

ιQT
q βQA (q, t) (3)

where ιQT is the initial distribution of the MC for transient states. Each transient
state of the absorbing MC is called a phase. This technique is powerful since
it decomposes complex distributions such as the hyper-geometric or the Coxian
distribution as a combination of phases. These distributions can be defined using
specific absorbing MC structures. A distribution with an initial vector and a
transition matrix with no structural constraints is called here a general PH
distribution.

2.4 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a function which measures the distance be-
tween two distributions [7]. Let P denote the space of all probability distri-
butions defined over a discrete set of events Ω. The JS divergence is a function
P×P → R defined by DJS(P1, P2) = H(M)− 1

2H(P1)− 1
2H(P2) where P1, P2 ∈

P are two distributions, M = 1
2 (P1+P2) and H(P) = −

∑
e∈Ω P [e] logP [e] is the

Shannon entropy. The JS divergence is non-negative and is bounded by 1 [7]. It
can be thought of as a symmetrized and smoothed variant of the KL divergence
as it is relative to the mean of the distributions.

3 First Passage Times in POMMs

In this section, the distributions of the FPT in POMMs are studied. We show
that the FPT distributions between blocks are of phase-type by constructing
their representing absorbing MC. POMMStruct aims at fitting these PH dis-
tributions from the FPT observed in a training sample. We motivate the use
of these distributions by showing that they are informative about the model
structure to be learned.

First, let us formally define the FPT for a pair of symbols (a, b) in a POMM.

Definition 4 (First Passage Times in POMMs). Given a POMM H =
〈Σ,Q,A,B, ι〉, the first passage time (FPT) is a function fpt : Σ×Σ → N0 such
that fpt(a, b) is the number of steps before reaching the block κb for the first time,
leaving initially from the block κa: fpt(a, b) = inft{t ∈ N0 |Xt ∈ κb and X0 ∈ κa}.

The FPT from block κa to block κb are drawn from a phase-type distribution
obtained by (i) defining an initial distribution1 ικa over κa such that ικa

q is the
expected2 proportion of time the process reaches state q relatively to the states in
κa and (ii) transforming the states in κb to be absorbing. It is assumed here that
1 ικa is not the initial distribution of the POMM but it is the initial distribution for

the FPT starting in κa.
2 This expectation can be computed using standard MC techniques (see [4]).

96 J. Callut and P. Dupont

1d

1a

2c

1c

1b

2a

0.6

0.4

1.0

0.2

0.8
2b

1.0

1.0

0.1

0.1

0.81.0

1.0

0 2 4
0

0.25

0.45

Time to absorption

P
ro

ba
bi

lit
y

0 2 4
0

0.25

0.45

Time to absorption

P
ro

ba
bi

lit
y

FPT(a,b) FPT(a,b)

POMM Order 1 MC

Fig. 1. Left: an irreducible POMM H . Center: the distribution of the FPT from block
κa to block κb in H . Right: the FPT distribution from a to b in an order 1 MC estimated
from 1000 sequences of length 100 generated from H .

a �= b. Otherwise, a similar absorbing MC can be constructed but the states
in κa have to be duplicated such that the original states are used as starting
states and the duplicated ones are transformed to be absorbing. The probability
distribution of fpt(a, b) is computed as follows for all t ∈ N0:

P [fpt(a, b) = t] ∝
∑

q∈κb

ακa(q, t) =
∑

q∈κa

ικa
q βκb(q, t) (4)

An irreducible POMM H and its associated PH distribution from block κa to
block κb are depicted respectively in the left and center parts of Figure 1. The
obtained PH distribution has several modes (i.e. maxima), the most noticeable
being at times 2 and 4. These modes reveal the presence of paths of length3 2
and 4 from κa to κb having a large probability. For instance, the paths 1a,1c,1b
and 2a,1d,1a,1c,1b have a respective probability equal to 0.45 and 0.21 (other
paths of length 4 yield a total probability equal to 0.25 for this length). Other
informations related to the model structure such as long-term dependencies can
also be deduced from the FPT distributions [1]. These structural informations,
available in the learning sequences, are exploited in the induction algorithm
POMMStruct presented in section 4. It starts by estimating a standard MC
from the training sequences. The right part of Figure 1 shows the FPT distribu-
tion from a to b in an order 1 MC estimated from sequences drawn from H . The
FPT dynamics from a to b in the MC poorly approximates the FPT dynamics
from κa to κb in H as there is only a single mode. POMMStruct iteratively
adds states to the estimated model and reestimate its probabilistic parameters
in order to best match the observed FPT dynamics.

4 The Induction Algorithm: POMMStruct

This section presents the POMMStruct algorithm which learns the structure
and the parameters of a POMM from a set of training sequences Strain. The
objective is to induce a model that best reproduces the FPT dynamics extracted

3 The length of a path is defined here in terms of number of steps.

Learning Partially Observable Markov Models from FPT 97

from Strain. Section 4.1 presents the general structure of the induction algorithm.
Reestimation formulas for fitting FPT distributions are detailed in section 4.2.

4.1 POMM Induction

The pseudo-code of POMMStruct is presented in Algorithm 1.

Algorithm POMMStruct

Input: • A training sample Strain

• The order r of the initial model
• The number p of pairs
• A precision parameter ε

Output: A collection of POMMs

EP0 ← initialize(Strain, r);
FPTtrain ← extractFPT(Strain);
F ← selectDivPairs(EP0, FPTtrain, p);
EP0 ← POMMPHit(EP0, FPTtrain, F);
Liktrain ← FPTLikelihood(EP0, FPTtrain);
i ← 0
repeat

Liklast ← Liktrain;
κj ← probeBlocks(EPi, FPTtrain);
EPi+1 ← addStateInBlock(EPi, κj);
EPi+1 ← POMMPHit(EPi+1, FPTtrain, F);
Liktrain ← FPTLikelihood(EPi+1, FPTtrain);
i ← i + 1

until |Liktrain−Liklast|
|Liklast| < ε;

return {EP0, . . . , EPi}

Algorithm 1. POMM Induction by fitting FPT
dynamics

κjκj κj

κj κjκj

Fig. 2. Adding a new state q in
the block κj

An initial order r MC is estimated first from Strain by the function initialize.
Next, the function extractFPT extracts the FPT in the sample for each pair of
symbols according to definition 1. Using the Jensen-Shannon (JS) divergence,
selectDivPairs compares the FPT distributions of the initial MC with the em-
pirical FPT distributions of the sample. The p most diverging pairs F are selected
to be fit during induction process, where p is an input parameter. In addition, the
selected pairs can be weighted according to their JS divergence in order to give
more importance to the poorly fitted pairs. This is achieved by multiplying the
parameters wi in FPT (a, b) (see definition 1) by the JS divergence obtained for
this pair. The JS divergence is particularly well-suited for this feature weighting
as it is positive and upper bounded by one. The parameters of the initial model
are reestimated using the POMMPHit algorithm presented in section 4.2. This
EM-based method computes the model parameters that maximize the likelihood
of the selected FPT pairs.

98 J. Callut and P. Dupont

States are iteratively added to the model in order to improve the fit to the ob-
served dynamics. At the beginning of each iteration, the procedure probeBlocks
determines the block κj of the model in which a new state is added. This block
is selected as the one leading to the larger FPT likelihood improvement. To
do so, probeBlocks tries successively to add a state in each block using the
addStateInBlock procedure detailed hereafter. For each candidate block, a few
iterations of POMMPHit is applied to reestimate the model parameters. The
block κj offering the largest improvement is returned. The addStateInBlock
function (illustrated in Figure 2) inserts a new state q in κj such that q is con-
nected to all the predecessors (i.e. states having at least one outgoing transition
to a state in κj) and successors (i.e. states having at least one incoming transi-
tion from a state in κj) of κj. These two sets need not to be disjoint and may
include states in κj (if they are connected to some state(s) in κj).

The probabilistic parameters of the augmented model are estimated using
POMMPHit until convergence. An interesting byproduct of POMMPHit are
the expected transition passage times (see section 4.2). It provides the average
number of times the transitions are triggered when observing the FPT in the
sample. According to this criterion, the less frequently used transitions are suc-
cessively trimmed off from the model. Whenever a transition is removed, the
parameters of the model are reestimated using POMMPHit. In general, the
convergence is attained after a few iterations as the parameters not affected
by the trimming are already well estimated. Transitions are trimmed until the
likelihood function no longer increases. This procedure has several benefits: (i)
it can move POMMPHit away from a local minimum of the FPT likelihood
function (ii) it makes the model sparser and therefore reduces the computa-
tional resources needed in the forward-backward computations (see section 4.2)
and (iii) the obtained model is more interpretable. POMMStruct is iterated
until convergence of the FPT likelihood up to a precision parameter ε. A vali-
dation procedure is used to select the best model from the collection of models
{EP0, . . . , EPi} returned by POMMStruct. Each model is evaluated on an
independent validation set of sequences and the model offering the highest FPT
likelihood is chosen. At each iteration, the computational complexity is domi-
nated by the complexity of POMMPHit (see section 4.2).

POMMStruct does not maximize the likelihood of the training sequences
in the model but the likelihood of the FPT extracted from these sequences. We
argued in section 3 that maximizing this criterion is relevant to learn an adequate
model topology. If one wants to perform sequence prediction, i.e. predicting
the next outcomes of a process given its past history, the parameters of the
model may be adjusted towards this objective. This can be achieved by applying
the standard Baum-Welch procedure initialized with the model resulting from
POMMStruct.

4.2 Fitting the FPT: POMMPHit

In this section, we introduce the POMMPHit algorithm for fitting the FPT dis-
tributions between blocks in POMMs from the FPT observed in the sequences.

Learning Partially Observable Markov Models from FPT 99

POMMPHit is based on the Expectation-Maximization (EM) algorithm and ex-
tends the PHit algorithm presented in [1] for fitting a single PH distribution.
For each pair of symbol (a, b), the observations consist of the FPT {(z1, w1), . . . ,
(zl, wl)} extracted from the sequences according to definition 1. The observations
for a given pair (a, b) are assumed to be independent from the observations for the
other pairs. While this assumption is generally not satisfied, it drastically sim-
plifies the reestimation formula and consequently offers an important computa-
tional speed-up. Moreover, good results are obtained in practice. A passage time
zi is considered here as an incomplete observation of the pair (zi, hi) where hi is
the sequence of states reached by the process to go from block κa to block κb in zi

steps. In the sequel,Ha,b denotes the set of hidden paths from block κa to block κb.
Before presenting the expectation and maximization steps in POMMPHit, let us
introduce auxiliary hidden variables which provide sufficient statistics to compute
the complete FPT likelihood function P [Z,H | λ] conditioned to the model
parameters λ:

– Sa,b(q): the number of observations in Ha,b starting in state q ∈ κa,
– N a,b(q, q′): the number of times state q′ immediately follows state q in Ha,b.

The complete FPT likelihood function is defined as follows:

P [Z, H | λ] =
∏

a,b∈F

∏

q∈κa

(ικa
q)Sa,b(q)

∏

q,q′∈Q

A
Na,b(q,q′)
qq′ (5)

where ικa is the initial distribution over κa for the FPT starting in κa.

Expectation step
The expectation of the variables Sa,b(q) and N a,b(q, q′) are conveniently com-
puted using the forward and backward variables respectively introduced in equa-
tions (1) and (2). These reccurences are efficiently computed using a |Q| × La,b

lattice structure where La,b is the longest observed FPT from a to b. The con-
ditional expectation of the auxiliary variables given the observations Sa,b(q) =
E[Sa,b(q) | FPT (a, b)] and N a,b(q, q′) = E[N a,b(q, q′) | FPT (a, b)] are:

Sa,b(q) =
∑

(z,w)∈FPT (a,b)

w
ικa
q βκb(q, z)

∑
q∈κa

ικa
q βκb(q, z)

(6)

Na,b(q, q′) =
∑

(z,w)∈FPT (a,b)

w

z−1∑

t=0

ακa(q, t)Aqq′βκb(q′, z − t − 1)
∑

q∈κa
ικa
q βκb(q, z)

(7)

The previous computations assume that a �= b. In the other case, the states in κa

have to be preliminary duplicated as described in section 3. The obtained condi-
tional expectations are used in the maximization step of POMMPHit but also
in the trimming procedure of POMMStruct. In particular,

∑
(a,b)∈F N a,b(q, q′)

provides the average number of times the transition q → q′ is triggered while
observing the sample FPT.

100 J. Callut and P. Dupont

Maximization step
Given the conditional expectations, Sa,b(q) and N a,b(q, q′), the maximum likeli-
hood estimates of the POMM parameters are the following for all q, q′ ∈ Q:

ικa
q =

∑
b∈{b|(a,b)∈F} Sa,b(q)

∑
q∈κa

∑
b∈{b|(a,b)∈F} Sa,b(q)

where q ∈ κa, Aqq′ =

∑
a,b∈F Na,b(q, q′)

∑
q′∈Q

∑
a,b∈F Na,b(q, q′)

(8)

The computational complexity per iteration is Θ(pL2m) where p is the number of
selected pairs, L is the longest observed FPT and m is the number of transitions
in the current model. An equivalent bound for this computation is O(pL2|Q|2),
but this upper bound is tight only if the transition matrix A is dense.

5 Experiments

This section presents experiments conducted with POMMStruct on artifi-
cially generated data and on DNA sequences. In order to report comparative
results, experiments were also performed with the Baum-Welch algorithm and
the Bayesian state merging algorithm due to Stolcke [10]. The Baum-Welch al-
gorithm is applied on fully connected graphs of increasing sizes. For each consid-
ered model size, three different random seeds are used and the model having the
largest likelihood is kept. Additionally, a transition trimming procedure, based
on the transition probabilities, has been used. The optimal model size is se-
lected on a validation set obtained by holding out 25% of the training data. The
Bayesian state merging technique of Stolcke has been reimplemented according
to the setting described in the section 3.6.1.6 of [10]. The effective sample size
parameter, defining the weight of the prior versus the likelihood, has been tuned4

in the set {1, 2, 5, 10, 20}. The POMMStruct algorithm is initialized with an
order r ∈ {1, 2} MC. All observed FPT pairs are considered (i.e. p = |Σ|2)
without feature weighting. Whenever applied, the POMMPHit algorithm is
initialized with three different random seeds and the parameters leading to the
largest FPT likelihood are kept. The optimal model size is selected similarly as
for the Baum-Welch algorithm.

Artificially generated sequences were drawn from target POMMs having a
complex FPT dynamics and with a tendency to include long-term dependen-
cies [1]. From each target model, 500 training sequences and 250 test sequences
of length 100 were generated. The evaluation criterion considered here is the
Jensen-Shannon (JS) divergence between the FPT distributions of the model
and the empirical FPT distributions extracted from the test sequences. This is a
good measure to assess whether the model structure represents well the dynam-
ics in the test sample. The JS divergence is averaged over all pairs of symbols.
The left part of Figure 3 shows learning curves for the 3 considered techniques
on test sequences drawn from an artificial target model with 32 states and an
4 The fixed value of 50 recommended in [10] performed poorly in our experiments.

Learning Partially Observable Markov Models from FPT 101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

F
P

T
 D

iv
er

g
en

ce

Training data ratio

GenDep : 32 states, | | = 24

POMMStruct
Baum-Welch

Stolcke

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 0.2 0.4 0.6 0.8 1

F
P

T
 D

iv
er

g
en

ce

Training data ratio

Splice : Exon -> Intron

POMMStruct
Baum-Welch

Stolcke

Fig. 3. Left: Results obtained on test sequences generated by an artificial target model
with 32 states. Right: Results obtained on the Splice test sequences.

alphabet size equal to 24. For each training size, results are averaged over 10 sam-
ples of sequences5. POMMStruct outperforms its competitors for all training
set sizes. Knowledge of the target machine size is not provided to our induc-
tion algorithm. However, if one would stop the iterative state adding using this
target state number, the resulting number of transitions very often matches the
target. The algorithm of Stolcke performed well for small amounts of data but
the performance does not improve much when more training data are available.
The Baum-Welch technique poorly fits the FPT dynamics when a small amount
data is used. However, when more data are available (≥ 70%), it provides slightly
better results than the Stolcke’s approach. Performances in sequence prediction
(which is not the main objective of the proposed approach) can be assessed with
test perplexity. The relative perplexity increases with respect to the target model,
used to generate the sequences, for POMMStruct

6, the approach of Stolcke
and the Baum-Welch algorithm are respectively 2%, 18% and 21%. When all
the training data are used, the computational run-times are the following: about
3.45 hours for POMMStruct, 2 hours for Baum-Welch and 35 minutes for Stol-
cke’s approach . Experiments were also conducted on DNA sequences containing
exon-intron boundaries from the Splice7 dataset. The training and the test sets
contain respectively 500 and 235 sequences of length 60. The FPT dynamics
in these sequences is less complex than in the generated sequences, leading to
smaller absolute JS divergences for all techniques. The right part of Figure 3
shows learning curves for the 3 induction techniques. Again, POMMStruct,
initialized here with an order 2 MC, exhibits the best overall performance. When
more than 50% of the training data are used, the Baum-Welch algorithm per-
forms slightly better than the technique of Stolcke. The perplexity obtained
with POMMStruct and Baum-Welch are comparable while the approach of

5 The errorbars in the plot represent standard deviations.
6 Emissions and transitions probabilities of the model learned by POMMStruct have

been reestimated here with the Baum-Welch algorithm without adapting the model
structure.

7 Splice is available from the UCI repository.

102 J. Callut and P. Dupont

Stolcke performs slightly worse (4% of relative perplexity increase). When all
the training data are used, the computational run-times are the following: 25
minutes for Baum-Welch and 17 minutes for Stolcke’s approach and 6 minutes
for POMMStruct.

6 Conclusion

We propose in this paper a novel approach to the induction of the structure
of Partially Observable Markov models (POMMs) which are graphical models
equivalent to Hidden Markov Models. A POMM is constructed to best fit the
First Passage Times (FPT) dynamics between symbols observed in the learning
sample. Unlike N -grams, these features are not local as there is no fixed max-
imum time (i.e. number of steps) between two events. Furthermore, the FPT
distributions contain relevant informations, such as the presence of dominant
path lengths or long-term dependencies, about the structure of the model to be
learned. The proposed algorithm, POMMStruct, induces the structure and
the parameters of a POMM that best fit the FPT observed in the training sam-
ple. Additionally, the less frequently used transitions in the FPT are trimmed
off from the model. POMMStruct is iterated until the convergence of the FPT
likelihood function. Experimental results illustrate that the proposed technique
is better suited to fit a process with a complex FPT dynamics than the Baum-
Welch algorithm applied with a fully connected graph with transition trimming
or the Bayesian state merging approach of Stolcke.

Our future work includes extension of the proposed approach to model FPT
between substrings rather than between individual symbols. An efficient way to
take into account the dependencies between the FPT in the reestimation pro-
cedure of POMMPHit will also be investigated. Applications of the proposed
approach to other datasets will also be considered, typically in the context of
novelty detection where the FPT might be very relevant features.

References

1. Callut, J., Dupont, P.: Inducing hidden markov models to model long-term depen-
dencies. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.)
ECML 2005. LNCS (LNAI), vol. 3720, pp. 513–521. Springer, Heidelberg (2005)

2. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cam-
bridge University Press, Cambridge (1998)

3. Freitag, D., McCallum, A.: Information extraction with HMM structures learned
by stochastic optimization. In: Proc. of the Seventeenth National Conference on
Artificial Intelligence, AAAI, pp. 584–589 (2000)

4. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1983)
5. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in

Stochastic Modeling. Society for Industrial & Applied Mathematics, U.S. (1999)
6. Li, J., Wang, J., Zhao, Y., Yang, Z.: Self-adaptive design of hidden markov models.

Pattern Recogn. Lett. 25(2), 197–210 (2004)

Learning Partially Observable Markov Models from FPT 103

7. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Informa-
tion Theory 37, 145–151 (1991)

8. Ostendorf, M., Singer, H.: HMM topology design using maximum likelihood suc-
cessive state splitting. Computer Speech and Language 11, 17–41 (1997)

9. Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition. Prentice-Hall,
Englewood Cliffs (1993)

10. Stolcke, A.: Bayesian Learning of Probabilistic Language Models. Ph. D. disserta-
tion, University of California (1994)

11. Zhu, H., Wang, J., Yang, Z., Song, Y.: A method to design standard hmms with
desired length distribution for biological sequence analysis. In: Bücher, P., Moret,
B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 24–31. Springer, Heidel-
berg (2006)

Context Sensitive Paraphrasing with a Global

Unsupervised Classifier

Michael Connor and Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign
connor2@uiuc.edu, danr@cs.uiuc.edu

Abstract. Lexical paraphrasing is an inherently context sensitive prob-
lem because a word’s meaning depends on context. Most paraphrasing
work finds patterns and templates that can replace other patterns or
templates in some context, but we are attempting to make decisions
for a specific context. In this paper we develop a global classifier that
takes a word v and its context, along with a candidate word u, and de-
termines whether u can replace v in the given context while maintaining
the original meaning.

We develop an unsupervised, bootstrapped, learning approach to this
problem. Key to our approach is the use of a very large amount of unla-
beled data to derive a reliable supervision signal that is then used to train
a supervised learning algorithm. We demonstrate that our approach per-
forms significantly better than state-of-the-art paraphrasing approaches,
and generalizes well to unseen pairs of words.

1 Introduction

The problem of determining whether a text snippet can be written somewhat
differently while maintaining its meaning has attracted a lot of attention from
NLP researchers in recent years. It has clear applications in generation and sum-
marization [1], automatic evaluation of machine translation and other machine
generated text [2], and has been brought to focus recently by the body of work
on Textual Entailment [3,4]. Consider, for example sentence 1(a) in Tab. 1. Does
it have the meaning of sentence 1(b)?

Table 1. Context Sensitive Paraphrasing

1(a) The general commanded his troops (b) The general spoke to his troops Y
2(a) The soloist commanded attention (b) The soloist spoke to attention N

There has been some work on generating rules or templates such as: ‘X com-
manded Y’ can be rewritten as ‘X spoke to Y.’ These rules do not specify when
they should be applied or in what direction; they lack context sensitivity.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 104–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 105

Consider sentence 2(a) in Tab.1. Is it still true that ‘commanded’ can be
replaced with ‘spoke to’? Alternatively one can ask: When can ‘speak to’ replace
‘command’ in the original sentence and not change the meaning of the sentence?
This can be viewed as both a form of textual entailment and a weaker version
of the common word sense disambiguation task [5]. If we knew the meaning of
‘command’ in the sentence and could compare it to the meaning of ‘speak to,’
we could decide if they are paraphrases here.

In this paper we develop a machine learning approach that learns Context
Sensitive Paraphrasing: when one word can replace another in a given sentence
without modifying its meaning. We address this task directly, without relying on
any intermediate and possibly more difficult word sense assignment, and without
attempting to compile a list of rules per word that say if and when another word
or phrase can replace it. We will focus on verb paraphrasing; determining when
one verb can replace another in a specific context. This limits our notion of
context, but still provides a useful challenge because of the highly polysemous
nature of verbs and their importance in encoding relations.

Our machine learning approach gives us a global classifier that is able to
tackle this important and difficult task of context sensitive paraphrasing. The
key difficulty from the machine learning perspective is how to derive a reliable
supervision signal. By using domain knowledge and a large amount of data we
are able to collect statistics over individual words to induce a reliable surrogate
supervisory signal.

1.1 Related Work

One related line of inquiry is on paraphrase generation, namely given a sentence
or phrase, generate paraphrases of that phrase that have the same or entailed
meaning in some context. Often this would be represented as a fixed set of
rules. Building these systems could require parallel or comparable corpora [6,7]
which ties the systems to very specific topics. Other systems extract rules from
dependency trees built over a large single corpora or the web [8,9,10]. These
create more general rules, but they only say that a context exists where one
phrase can replace another. They do not indicate when a rule can be applied, as
we do.

A second line of work has approached the single word paraphrasing task as a
sense disambiguation task. Kauchak and Barzilay [2] determine when one word
can fit in a given context as part of a machine translation evaluation system
by generating a separate simple classifier for every word. Dagan et al. [11] puts
forward an implicit sense disambiguation task where two words are considered
paraphrases if they share the specific sense for a given context. These approaches
rely on a more standard word-sense word-expert approach with one classifier per
word in the first case, or even one classifier per pair of words in the second. These
approaches cannot classify unseen words; if they do encounter a new word they
need to generate new training data and classifiers on the fly leading to scaling
issues as the vocabulary increases.

106 M. Connor and D. Roth

Previous work employs either a single supervised rule (either through hand
tuning or supervised signal present in parallel corpora) or a set of simple per-
word classifiers. Our approach combines aspects of both so that we can train a
supervised global classifier using a supervision signal induced from unsupervised
per-word classifiers. We do not have to hand tune global classifier parameters,
but are also able to apply our function to words outside of its original training
set.

In Sec. 2 we present our learning problem and overall plan for context depen-
dence. In Sec. 3 we define how we use context overlap to form rules for paraphrase
decisions. A single global classifier encodes these rules for all words in Sec. 4,
which is trained with bootstrapped examples from unsupervised local classifiers
(sec. 4.2). Experimental results for both untrained context dependent rules and
the single global classifier are presented in Sec. 5.

2 Formal Model

Formally, we are learning in an unsupervised way a binary function f(S, v, u). f
is given a sentence S, a word or phrase v in S, and a second word or phrase u.
f returns 1 iff replacing v in S with u keeps the same or entailed meaning.

Looking at Tab. 1, if we set S to 1(a), v to ‘command’ and u to ‘speak to’,
then f(S, v, u) should return 1 indicating that the sentence in 1(b) is a correct
paraphrase. However if u and v are kept the same but S changed to 2(a) then
f(S, v, u) should return a 0. 2(b) is not a correct paraphrase; ‘command’ does
not replace ‘speak to’ in this context S.

2.1 Definition of Context

Much of our technique relies heavily on our notion of context. Context around
a word can be defined as bag of words or collocations, or can be derived from
parsing information. We view each of these as different aspects of the same con-
text, with each aspect providing different amounts of information and different
drawbacks (sparsity, distribution, etc) for the final decision. For most of this
work we use dependency links from Minipar [12] dependency parser to define
the local context of a word in a sentence, similar to what is used by DIRT and
TEASE [10,9]. Throughout this paper each algorithm will make use of a specific
aspect of context we’ll call c which can be either subject and object of the verb,
named entities that appear as subject or object, all dependency links connected
to the target, all noun phrases in sentences containing the target, or all of the
above. One of the goals of our system is to intelligently combine these sources
of information about context in a single classifier framework.

2.2 Modeling Context Sensitive Paraphrasing

We consider the question of whether u can replace v in S as composed of two
simpler questions: (1) can u replace v in some context and (2) can u fit in the

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 107

context of S. In the first case, u must share some meaning with v. If the second
condition also holds then we can theorize that u will get this meaning of v in S.
We give the question ‘can u replace v’ context dependence by determining if u
can belong in v’s context in S.

We approach the first question using the same distributional similarity as-
sumptions that others use, namely that we can determine whether u can replace
v in some context by seeing what contexts they both appear in in a large corpus.
To use this idea to answer the second question we restrict the context compar-
ison to those similar to the given context S. If two words are seen in the same
contexts then they may be paraphrases, but if they are seen in many of the same
contexts that are also similar to the given context then they may be paraphrases
in the local context.

3 Statistical Paraphrase Decisions

Most word paraphrasing systems work on similar principles: they find contexts
that both words, u and v, appear in. Given enough such contexts then u and v
are accepted as replacements. In the next two sections we define how we encode
such rules and then add context sensitivity.

3.1 Context Insensitive Decisions

Given u and v the first goal is to find the sets of contexts that u and v have
been seen with in a large corpora. Sc

v is the set of type c contextual features of
contexts that v appears in and likewise for Sc

u. By looking at the overlap of these
two sets we can see what sort of contexts both u and v appear in. Looking at
the example in Tab. 2, and more specifically the Sv ∩ Su row, we can see some
features of contexts that ‘suggest’ and ‘propose’ appear in compared to those
that ‘suggest’ and ‘indicate’ both appear in. With u = ‘propose’, the shared
contexts are often related to political activity, with some politician suggesting
or proposing an action or plan. On the other hand, in the contexts with u =
‘indicate’, the sense of both words is that the subject is a signal for the object.

To make a decision based on the amount of contextual overlap we set a thresh-
old for the overlap coefficient score:

Scorec(u, v) = |Sc
v ∩ Sc

u|/min(|Sc
v|, |Sc

u|)

This score represents what proportion of contexts the more specific (seen in fewer
contexts) word shares with the other. The specific threshold that we select differs
between notions of context, but is constant across words. Given this threshold
value we now have a simple classifier that can determine if any u can replace any
v in some context. To be able to apply this classifier to a u, v pair we only need
to find their Sc

u and Sc
v sets by looking in a large body of text for occurrences

of u and v.

108 M. Connor and D. Roth

Table 2. Similar Context Overlap Example. Given the above sentence the goal is
to determine whether ‘propose’ and/or ‘indicate’ can replace ‘suggest’ and retain the
original meaning. The aspect of context used is the subject and object of target verb
and c notation has been left out. Note that each set only shows a subset of its members,
unless otherwise noted.

Sentence Marshall Formby of Plainview suggested a plan to fill by
appointment future vacancies in the Legislature and
Congress, eliminating the need for special elections.

Query v = suggest; u = propose v = suggest; u = indicate

CIP
Sv ∩ Su obj:alternative, subj:Clinton, subj:presence, subj:history,

obj:compromise, obj:solution obj:possibility, obj:need

CSP

Local Context obj:plan, subj:NE:PER

VS foil, lay out, debate, consider, endorse, propose, discuss,
change, disrupt, unveil, detail, disclose

SS obj:bid, obj:legislation, obj:approach, obj:initiative,
subj:pronoun+obj:program, subj:George W. Bush, obj:project

SS,v ∩ SS,u subj:George W. Bush, obj:way, subj:George W. Bush
obj:policy, obj:legislation, (only one)
obj:program, obj:idea

3.2 Adding Context Sensitive Decisions

The goal of this step of the algorithm is to restrict the set of contexts used to
find overlap of u and v so that the overlap has some relation to the local context
S. This process is described in more detail in Fig. 1(b). The system identifies
contexts similar to S and sees if u and v overlap in these. By restricting the set
of contexts that we use to find overlap of u and v as in Sec. 3.1 we are attempting
to see if the usage of u and v overlap in a specific sense which relates to S.

We consider a context similar to the current one if they both appear with
similar verbs. If two contexts can appear with the same set of verbs then the
contexts convey the same set of possible meanings. We start by finding a set of
verbs typical to the given context. Currently we use a very simple definition of the
local context of v in S: the subject and object of v, if those exist. In many cases
the subject and object restrict what verbs can be used and indicate a specific
meaning for those verbs. For our example sentence in Tab. 2, the subject is a
named entity which we indicate as NE:PER and the object is ‘plan’. The VS of
this context are verbs that indicate actions someone does with a plan, including
synonyms for creating, breaking or presenting. Verb x ∈ VS if x has been seen
before with the subject and object of v, not necessarily all in the same sentence.

We now look for context features that these verbs appear in and are specific to
the meaning of this set of verbs and context. Sc

S are those context features of type
c that some percentage of the typical verbs are seen with (in experiments this
percentage is empirically set to 25%). In Tab. 2 SS shows a set of contextual
features (subjects and objects) that are similar to the given: objects that are

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 109

treated like plans and subjects that are people that do stuff with plans, which
appears to be mostly politicians in our dataset.

So given a set of contextual features, Sc
S , from contexts similar to S, and

contexts Sc
u for which u appear and Sc

v for which v appear, we want to restrict
our attention to the set of contexts that both u and v appear in and that are
similar to S: Sc

S∩Sc
v∩Sc

u. If we focus on the sets Sc
S,v = Sc

S∩Sc
v and Sc

S,u = Sc
S∩Sc

u

then the intersection of these two sets is the same as the intersection of all three,
and we can use the overlap score as we used above:

Scorec(S, v, u) = |Sc
S,v ∩ Sc

S,u|/min(|Sc
S,v|, |Sc

S,u|)

This time we know the contexts of v and u are related to the given context,
giving this overlap measure context sensitivity.

If we return to our example in Tab. 2 and look at the SS,v∩SS,u row we can see
that ‘propose’ and ‘indicate’ have separated themselves for this specific context.
The similar contexts of ‘indicate’ and ‘suggest’ have a very low intersection with
the contexts similar to the given local context since they are used with a different
sense of ‘suggest’. On the other hand ‘propose’ can be used in the same sense as
‘suggest’ in this sentence, so it has a higher overlap with similar contexts. This
higher overlap indicates that for this context, ‘propose’ can replace ‘suggest’,
but ‘indicate’ cannot.

Algorithm UV-CIP

Input: (S, v, u)
Output: f(S, v, u) ∈ {0, 1}

Generate Sc
u and Sc

v :
Depends on notion of context

Compute Scorec(u, v)
Based on Sc

u ∩ Sc
v

Return Scorec(u, v)>Thresholdc

(a) Context Insensitive Paraphrase
Rule

Algorithm SVU-CSP

Input: (S, v, u)
Output: f(S, v, u) ∈ {0, 1}

Generate Sc
u and Sc

v
Find contexts similar to S: Sc

S
Find local context of v in S
Determine VS

Determine Sc
S

Find Sc
S,u = Sc

S ∩ Sc
u

Find Sc
S,v = Sc

S ∩ Sc
v

Determine Scorec(S, v, u)
Based on Sc

S,u ∩ Sc
S,v

Return Scorec(S, v, u)>Thresholdc

(b) Context Sensitive Paraphrase Rule

Fig. 1. Statistics Based Context Sensitive Paraphrasing. Contextual overlap depends
on a specific aspect of context c, be it the subject and object, bag of words, named
entities, or all available.

4 Global Context Sensitive Paraphrase Classifier

Each paraphrasing rule above (context sensitive and insensitive for each contex-
tual aspect) forms a simple classifier that can be applied to any pair of words and
only has one parameter to tune, the threshold. We form our single global clas-
sifier as a linear combination of these different paraphrasing rules. We can use
the overlap scores for each contextual aspect that the separate rules produce as

110 M. Connor and D. Roth

features for the global classifier, and thus leverage the powers of multiple notions
of context and both context sensitive and insensitive information at the same
time. To create training data for this single global classifier we use large amounts
of untagged text to train local per-word classifiers that are able to identify new
contexts where a specific word can act as a paraphrase. These local classifiers
are used to tag new data to be used to train the single global classifier.

4.1 Shared Context Features

The flexibility of a classifier architecture allows us to incorporate additional
features other than just the raw Scorec(u, v) and Scorec(S, v, u). For each context
type c we still compile the sets of similar contexts Sc

u, Sc
v, Sc

S,u, and Sc
S,v but

now we use the size of the overlaps as features. Fig. 2(a) describes this process
further. We create three features for context insensitive overlap (UV features:
only depend on u and v), and three for context sensitive (SUV features: depend
on S, u and v). By including context insensitive features the classifier can still
rely on a context independent decision when encountering a rare or malformed
local context. For both UV and SUV feature types we create three features
which show the direction of overlap: score, uIntersect, and vIntersect. The score
feature is the same as the Scorec(u, v) for UV and Scorec(S, u, v) for SUV used
in the statistics based rules above. The uIntersect and vIntersect actually give
directionality to the feature representation. If uIntersect is close to 1 then we
know that u primarily appears in contexts that v appears in, and thus u may be a
specialization of v, and if this is an SUV feature then we know the directionality
holds in contexts similar to S. The classifier can now learn that its possibly more
important for v to specialize u, and can say yes for replacing A by B in a given
context, but not B by A.

For any new word w, all we need to know about w to generate features are
Sc

w for every c; contextual features of contexts that w is seen with. If we can find
contexts that w appears in in our large corpora then we can create the Sc

w sets
and use these to compute overlap with other words, the only features that our
classifier relies on. A separate classifier does not need to be trained on contexts
that w appears in, we can rely on our global classifier even if it never saw an
example of w during training.

4.2 Unsupervised Training: Bootstrapping Local Classifiers

The single global classifier requires training to be able to determine the im-
portance of each context type in the global paraphrasing decision. To gener-
ate tagged S, v, u examples for the single global classifier we employ a set of
bootstrapping local classifiers similar to Kauchak and Barzilay[2] or Context-
Sensitive Spelling Correction[13]. Each classifier learns what contexts one spe-
cific word can appear in. Once we have these classifiers we generate candidate
examples to train the global classifier and use the local classifiers to filter and
label confident examples. These examples are then tagged with global features
and used to train our global binary classifier. This process is detailed in Fig. 2(b).

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 111

Algorithm Global Feature Tagging

Input: (S, v, u)
Output: Feature vector

For each context type c:
Find Sc

u, Sc
v

Generate Sc
u,v = Sc

u ∩ Sc
v

Generate u, v features
uIntersect.UV.c: |Sc

u,v|/|Sc
u|

vIntersect.UV.c: |Sc
u,v|/|Sc

v|
score.UV.c:

|Sc
u,v|/min(|Sc

u|, |S
c
v|)

Find VS , Sc
S

Generate Sc
S,u = Sc

S ∩ Sc
u

Generate Sc
S,v = Sc

S ∩ Sc
v

Generate Sc
S,v,u = Sc

S,u ∩ Sc
S,v

Generate S, v, u features
uIntersect.SVU.c: |Sc

S,v,u|/|S
c
S,u|

vIntersect.SVU.c: |Sc
S,v,u|/|S

c
S,v|

score.SVU.c:
|Sc

S,v,u|/min(|Sc
S,u|, |Sc

S,v|)
Place feature values into buckets
Return feature vector

contains all features
of all context types

(a) Global Feature Tagging

Algorithm Training Generation

Input: Set of words U
Output: Training data (S, v, u, {0, 1})

For each u ∈ U :
Generate fu(S, v) classifier:

Collect S, u → positive examples
u can replace itself.

Collect S, v → negative examples
Random v, unrelated to u

Train fu using local features
Label new examples:

Collect S, v examples
v similar to u

Apply fu to every similar example
If confidence above threshold:

Add S, v, u and predicted
label to global training data.

Return global training data
from all U words

(b) Unsupervised Training Data Genera-
tion

Fig. 2. Procedures for training data generation and tagging. Although our final global
classifier is a supervised learner, we use multiple unsupervised local classifiers to gen-
erate the set of training examples. The local classifiers work on local features while the
global classifier looks at features related to the contextual overlap of its input.

The key fact that allows us to build classifiers this way and train a single global
classifier is that we can extract large amounts of training examples for such local
classifiers from free, untagged text.

To learn what contexts a specific word u can belong in, we use trivial positive
and negative examples that can be collected from flat text. Trivial positive ex-
amples are of u replacing itself, and trivial negatives are of u replacing a random
x that is unrelated to u (not connected in WordNet). The positive examples
identify contexts that u is known to fit in, and the negative examples represent
contexts that u likely does not, so we can eliminate irrelevant contextual fea-
tures. We encode this knowledge of what contexts u does and does not belong
in in local fu binary classifiers.

For each word u in our training set of words, we create an fu(S, v) classifier:
the input is the context of v in S and the output is 1 or 0, depending if u can
replace v in S or not. Notice this is a local form of the global f(S, v, u) function,
if it were possible to train local classifiers for every possible u. The local fu use
their implicit knowledge about the given u to tag interesting examples such that
the global classifier can extract patterns that hold for all words.

Our feature representation for the context of v in S that fu uses includes
bag of words, collocations, nearest noun and verb to the left and right of target,

112 M. Connor and D. Roth

and named dependency links of length 1 and 2 from target from Minipar. These
features are richer than the simple surrounding word and collocation features
employed in [2], which allow us to get the same accuracy for local fu classifiers
using many fewer examples (their local classifiers used on average 200k training
examples, ours at most 30k).

Once we have trained local bootstrapping classifiers we use them to tag ex-
amples of S, v, where v is similar to u (from Lin’s similarity list [14]). If the local
classifiers confidently label an example, that example is added with its label to
the global training set. The confidence is tuned to less than 5% error on a devel-
opment set for each fu. We generated 230 local classifiers, where the seed U set
was selected so that about half the words were seen in our test data, and half
random verbs with at least 1000 occurrences in our text corpora. These local
classifiers confidently tagged over 400k examples for our global classifier.

5 Experimental Results

5.1 Methodology

As a large source of text we used the 2000 New York Times section of the
AQUAINT corpus. Each sentence was tagged with part of speech and named
entities then parsed with Minipar. To implement both the fu and the single
global classifier we used the SNoW learning architecture[15] with perceptron
update rule.

Our test set goal was to select one example sentence representing each sense
(and thus a different word to replace) for each of a set of verbs so that we
can highlight the context sensitivity of paraphrasing. We started with an initial
random selection of polysemous verbs that occur in WordNet 2.1 sense tagged
data (Semcor)[16]. For each verb we selected a possible synonym for each of a
coarse sense mapping (Navigli’s mappings of WordNet 2.1 to coincide with ODE
entries [17]) since the coarse word senses provide clearer distinctions between
meanings of words than regular WordNet. We then selected one representative
sentence where each coarse synonym could replace the target verb. For every
S, v sentence the possible u were exactly the coarse synonyms for v, the intent
being that exactly one of them would be replaceable for each sense of v, although
this was not always the case. Two humans (native English speaking graduate
students) annotated each S, v, u example for whether u could replace v or not
in S. The interannotator agreement was over 83% of instances, with a kappa of
0.62, corresponding to substantial agreement[18]. This kappa is comparable to
our previous tagging efforts and others reported in similar efforts [19]. Overall
our test set has 721 S, v, u examples with 57 unique v verbs and 162 unique u.

5.2 Results

The results of the global classifier on the test set is shown in Fig. 3. The varying
precision/recall points were achieved by setting the SNoW confidence threshold
for the global classifier and setting the score threshold for the statistical rules. As

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 113

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
os

iti
ve

 P
re

ci
si

on

Positive Recall

CSP Global Classifier
Statistical CSP
Statistical CIP

Positive Guess
DIRT

Fig. 3. Positive precision/recall curve for our global CSP classifier compared to statis-
tical context sensitive and insensitive paraphrasing rules using all contextual features.
Also shown is the single point of precision/recall given by current top of the line para-
phrasing system DIRT on our test set. The positive guess line illustrates the precision
of always guessing yes for every example: 32% of test cases are positive.

we can see the single global classifier is able to exploit both the u, v and S, v, u
rules and different definitions of context to improve both recall and precision. As
an additional comparison we include the results if we used slightly modified DIRT
rules to make paraphrase judgments. Each DIRT rule specifies a dependency
pattern that can be rewritten as another dependency pattern. For our verb
paraphrase task we restricted the rules to those that could be interpreted as
single verb rewrite rule where each pattern is a verb with two dependency links
coming off of it. In a similar setup, recent experiments have shown that DIRT
is the top of the line for verb paraphrasing [19].

Both classifier and statistical based rules performed better on this test set
than DIRT probably because we do not rely on a fixed set of patterns (that
are generated on a separate corpus). Instead we use classifiers that can be in-
stantiated with any word encountered in the test set. During training our global
classifier only saw examples generated for a subset of the words that appear in
testing. The classifier can still apply to any S, v, u example as long as we can
collect contexts that v and u have been seen in. Any per-word classifier approach
such as Kauchak and Barzilay could not have handled unseen examples such as
these, they would need to collect examples of u and generate a new classifier.

To test the ability of our classifier to learn a global hypothesis that applies
across words we tested the performance of the classifier when it was trained with
unsupervised data generated for a varying number of words while keeping the
final number of training examples fixed. If the classifier can learn a hypothesis
just as well by looking at statistics for 50 words vs. 250 then its hypothesis is
not dependent on the specific words used in training, but on global statistics
that exist for paraphrasing. Fig. 4(a) shows that the number of words used to

114 M. Connor and D. Roth

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 50 100 150 200 250

P
os

iti
ve

 F
1

Training Words

(a) Number of Words

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

101 102 103 104 105

P
os

iti
ve

 F
1

Training Examples

(b) Number of Examples

Fig. 4. Generalization to unseen words: Plot (a) shows that performance on the
test data does not depend on the number of words seen in training (recall: training set
is created w/o supervision). What does affect performance is the number of training
examples generated (plot (b)). Each point represents the mean positive F1 over 20
different random resamplings of the training set. This plot represents one point selected
from the precision/recall curve above.

generate training data has little effect on the positive F1 of the classifier, the
same rules learned on 50 words is learned on 200 and beyond. On the other
hand, if we look at the number of examples used to train the classifier we do
see improvement. Fig 4(b) shows the results of varying the number of examples
used to train the classifier, but keeping the number of words these examples are
drawn from fixed. If we are only able to create accurate bootstrapping classifiers
for a small set of words, this should still prove adequate to generate data to train
the global classifier, as long as we can generate a lot of it.

6 Conclusion and Future Work

In this project we presented an approach to adding context sensitivity to a
word paraphrasing system. By only looking for distributional similarity over
contexts similar to the given sentence we are able to decide if one verb can
replace another in the given context. Further we incorporate this approach into
a classifier architecture that is able to successfully combine multiple definitions
of context and context sensitive and insensitive information into a unified whole.
Our machine learning approach allowed us to leverage a large amount of data
regarding the local statistics of word occurrences to generate training data for a
traditionally supervised global classifier in an unsupervised manner.

Our experiments indicate that it is important to have as much data per word
as possible, both in terms of representation and training, so we plan to expand
our knowledge sources. The eventual goal for the system is to incorporate it into
a full textual entailment system and see if this context sensitive paraphrasing
can benefit a larger NLP task.

Context Sensitive Paraphrasing with a Global Unsupervised Classifier 115

Acknowledgments

We would like to thank those who have given us comments throughout this
project, especially Idan Szpektor, Kevin Small, and anonymous reviewers. This
research is supported by NSF grants BCS-0620257 and ITR-IIS-0428472.

References

1. Barzilay, R., Lee, L.: Catching the drift: Probabilistic content models, with appli-
cations to generation and summarization. In: Proceedings HLT-NAACL (2004)

2. Kauchak, D., Barzilay, R.: Paraphrasing for automatic evaluation. In: Proceedings
of HLT-NAACL 2006 (2006)

3. Dagan, I., Glickman, O., Magnini, B.: The pascal recognizing textual entailment
challenge. In: Proceedings of the PASCAL Challenges Workshop on Recognizing
Textual Entailment (2005)

4. de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., Sammons, M.: An inference
model for semantic entailment in natural language. In: Proceedings of the National
Conference on Artificial Intelligence (AAAI), pp. 1678–1679 (2005)

5. Ide, N., Veronis, J.: Word sense disambiguation: The state of the art. Computa-
tional Linguistics (1998)

6. Barzilay, R., Lee, L.: Learning to paraphrase: An unsupervised approach using
multiple-sequence alignment. In: Proceedings HLT-NAACL, pp. 16–23 (2003)

7. Barzilay, R., McKeown, K.: Extracing paraphrases from a parallel corpus. In: Pro-
ceedings ACL-01 (2004)

8. Glickman, O., Dagan, I.: Identifying lexical paraphrases from a single corpus:
A case study for verbs. In: Recent Advantages in Natural Language Processing
(RANLP-03) (2003)

9. Szpektor, I., Tanev, H., Dagan, I., Coppola, B.: Scaling web-based acquisition of
entailment relations. In: Proceedings of EMNLP 2004 (2004)

10. Lin, D., Pantel, P.: Discovery of inference rules for question answering. Natural
Language Engineering 7(4), 343–360 (2001)

11. Dagan, I., Glickman, O., Gliozzo, A., Marmorshtein, E., Strapparava, C.: Direct
word sense matching for lexical substitution. In: Proceedings ACL-06, pp. 449–456
(2007)

12. Lin, D.: Principal-based parsing without overgeneration. In: Proceedings of ACL-
93, pp. 112–120 (1993)

13. Golding, A.R., Roth, D.: A Winnow based approach to context-sensitive spelling
correction. Machine Learning 34(1-3), 107–130 (1999)

14. Lin, D.: Automatic retrieval and clustering of similar words. In: COLING-ACL-98
(1998)

15. Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture.
Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Department
(May 1999)

16. Fellbaum, C.: Wordnet: An Electronic Lexical Database. Bradford Books (1998)
17. Navigli, R.: Meaningful clustering of senses helps boost word sense disambiguation

performance. In: Proceedings of COLING-ACL 2006 (2006)
18. Landis, J., Koch, G.: The measurement of observer agreement for categorical data.

In: Biometrics (1977)
19. Szpektor, I., Shnarch, E., Dagan, I.: Instance-based evaluation of entailment rule

acquisition. In: Proceedings of ACL 2007 (2007)

Dual Strategy Active Learning

Pinar Donmez1, Jaime G. Carbonell1, and Paul N. Bennett2

1 School of Computer Science, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh PA, 15213 USA

{pinard,jgc}@cs.cmu.edu
2 Microsoft Research, 1 Microsoft Way, Redmond, WA 98052 USA

Paul.N.Bennett@microsoft.com

Abstract. Active Learning methods rely on static strategies for sampling
unlabeled point(s). These strategies range from uncertainty sampling and
density estimation to multi-factor methods with learn-once-use-always
modelparameters.Thispaperproposes adynamicapproach, calledDUAL,
where the strategy selection parameters are adaptively updated based on
estimated future residual error reduction after each actively sampled point.
The objective of dual is to outperform static strategies over a large operat-
ing range: fromvery few toverymany labeled points. Empirical results over
six datasets demonstrate that DUAL outperforms several state-of-the-art
methods on most datasets.

1 Introduction

Active learning has received significant attention in recent years, but most work
focuses on presenting a new algorithm and showing how for some datasets and
under some operating range it outperforms earlier methods [17,16,6]. Some ac-
tive learning methods perform best when very few instances have been sampled,
whereas others perform best only after substantial sampling. For instance, den-
sity estimation methods perform well with minimal labeled data since they sam-
ple from maximal-density unlabeled regions, and thus help establish the initial
decision boundary where it affects the most remaining unlabeled data [8]. On
the other hand, uncertainty sampling methods “fine tune” a decision bound-
ary by sampling the regions where the classifier is least certain, regardless of
the density of the unlabeled data [2,4]. Such methods work best when a larger
number of unlabeled points may be sampled, as we show later in this paper.
This paper takes a step towards a principled ensemble-based sampling approach
for active learning that dominates either method individually, largely by select-
ing sampling methods based on estimated residual classification error reduction.
Different active learning methods use different selection criteria. For example,
Query-by-Committee [1,2] selects examples that cause maximum disagreement
amongst an ensemble of hypotheses. Hence, it reduces the version space [5] and
is similar to Tong and Koller’s approach [4] which halves the version space in an
SVM setting. Uncertainty sampling [3] selects the example on which the learner
has lowest classification certainty. Version-space reduction methods eliminate

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 116–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dual Strategy Active Learning 117

areas of the parameter space that have no direct effect on the error rate, but
may have indirect effects. Uncertainty sampling is not immune to selecting out-
liers since they have high uncertainty [6], but the underlying data distribution
is ignored. Several active learning strategies including [9,8,6] propose ways to
trade-off uncertainty vs. data density. Xu et al. [8] propose a representative
sampling method which uses the k-means algorithm to cluster the data within
the margin of an SVM classifier and selects the cluster centroids for labeling.
McCallum and Nigam [6] also suggest a clustering based approach using the
EM algorithm. All these methods aim to balance the uncertainty of the sample
with its representativeness, but do so in a fixed manner, rather than by dynam-
ically selecting or reweighing, based on residual error estimation. In this paper,
we introduce a Dual strategy for Active Learning, DUAL, which is a context-
sensitive sampling method. DUAL significantly improves upon the work of [9]
by incorporating a robust combination of density weighted uncertainty sampling
and standard (uniform) uncertainty sampling. The primary focus of DUAL is to
improve active learning for the later portion of the process, rather than tradi-
tional methods that concentrate primarily on the initial dataset labeling. Baram
et al. [10] present an ensemble active learning method that is complementary to
ours, but does not subsume our mid-course strategy-switching method. Baram
et al. develop an online algorithm that selects among three alternative active
sampling strategies using a variant of the multi-armed bandit algorithm [11] to
decide the strategy to be used at each iteration. They focus primarily on select-
ing which sampling method is optimal for a given dataset; in contrast, we focus
on selecting the operating range among the sampling methods. Empirical results
demonstrate that DUAL generally leads to better performance. Furthermore, it
is also empirically shown that 1) DUAL is reliably better than the best of the
single strategies, and 2) it is better across various domains and for both minimal
and copious labeled data volumes.

The paper is organized as follows: Section 2 presents further motivation. Sec-
tion 3 summarizes the method of [9]. Section 4 describes our new DUAL algo-
rithm and presents the results of our empirical studies. In Section 5, we offer our
observations and concluding remarks as well as suggestions for potential future
directions.

2 Motivation for DUAL

Nguyen and Smeulders [9] suggest a probabilistic framework where clustering
information is incorporated into the active sampling scheme. They argue that
data points lying on the classification boundary are informative, but using infor-
mation about the underlying data distribution helps to select better examples.
They assume higher density samples lying close to the decision boundary are
more informative. We call their method density weighted uncertainty sampling,
or DWUS for short. DWUS uses the following active selection criterion:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi]p(xi) (1)

118 P. Donmez, J.G. Carbonell, and P.N. Bennett

0 20 40 60 80 100
Samples added to Labeled Set

0.24

0.28

0.32

0.36

0.4

Cl
as

sif
ic

at
io

n
Er

ro
r

DWUS
Uncertainty Sampling

Diabetes

0 20 40 60 80 100
Samples added to Labeled Set

0

0.05

0.1

0.15

0.2

DWUS
Uncertainty Sampling

O-vs-D Letter

Fig. 1. Comparison of Density Weighted versus (standard) uniformly weighted Uncer-
tainty Sampling on two UCI benchmark datasets

where E[(ŷi − yi)2 | xi] and p(xi) are the expected error and density of a given
data point xi, respectively. Iu is the index for the unlabeled data. This criterion
favors points that have the largest contribution to the current classification error.
In contrast, one can use an uncertainty-based selection criterion within the same
probabilistic framework as illustrated by the following formula:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi] (2)

We refer to the above principle as Uncertainty Sampling for the rest of this pa-
per. Consider Fig. 1, which displays the performance of DWUS and Uncertainty
Sampling on two of the datasets that we explore in more detail later. Combining
uncertainty with the density of the underlying data is a good strategy to reduce
the error quickly. However, after rapid initial gains, DWUS exhibits very slow
additional learning while uncertainty sampling continues to exhibit more rapid
improvement.1 A similar behavior is also evident in [8] where their representa-
tive sampling method increases accuracy in the initial phase while uncertainty
sampling has a slower learning rate, but gradually outperforms their method.

We investigated the Spearman’s ranking correlation over candidates to be
labeled by density and uncertainty in our scenario, and found that they seldom
reinforce each other, but instead they tend to disagree on sample point selection.
At early iterations, many points are highly uncertain. Thus, DWUS can pick high
density points which are lower down in the uncertainty ranking but have a high
absolute uncertainty score. Later, points with high absolute uncertainty are no
longer in dense regions. As a result, DWUS picks points that have moderate
density but low uncertainty because such points are scored highly according
to the criterion in Equation 1. Hence, it wastes effort picking instances whose
selection does not have a large effect on error rate reduction.

Fortunately, we can do better across the full spectrum of labeled instances by
our algorithm DUAL which adopts a dynamically reweighed mixture of density
and uncertainty components and achieves performance superior to its competi-
tors over a variety of datasets. In the following section, we review essential parts
of DWUS and then describe DUAL.
1 Although a quick drop in classification error for DWUS is also observed in [9], they

did not compare with uncertainty sampling.

Dual Strategy Active Learning 119

3 Density Weighted Uncertainty Sampling (DWUS)

Nguyen and Smeulders [9] assume a clustering structure of the underlying data.
x is the data and y ∈ {+1, 0} is the class label. The cluster label k ∈ {1, 2, ..,K}
indicates the hidden cluster information for every single data point where K is
the number of total clusters. In order to calculate the posterior P (y | x), they
use the following marginalization:

P (y | x)=
K∑

k=1

P (y, k | x) =
K∑

k=1

P (y | k, x)P (k | x) (3)

where P (y | k, x) is the probability of the class label y given the cluster k and
the data point x, and P (k | x) is the probability of the cluster given the data
point. But once k is known, y and x are independent since points in one cluster
are assumed to share the same label as the cluster; hence knowing the cluster
label k is enough to model the class label y. Thus:

P (y | x) =
K∑

k=1

P (y, k | x) =
K∑

k=1

P (y | k)P (k | x) (4)

P (k | x) is calculated only once unless the data is re-clustered, whereas P (y | k)
is updated each time a new data point is added to the training set. Before
explaining how to estimate these two distributions, we illustrate below how the
algorithm works:

1. Cluster the data.
2. Estimate P (y | k).
3. Calculate P (y | x) (Equation 4).
4. Choose an unlabeled sample based on (Equation 1) and label.
5. Re-cluster if necessary.
6. Repeat steps 2-5 until stop.

We first explain how to induce P (k | x) according to [9]. A Gaussian mix-
ture model is used to estimate the data density using the clustering struc-
ture such that p(x) is a mixture of K Gaussians with weights P (k). Hence,
p(x) =

∑K
k=1 p(x | k)P (k). where p(x | k) is a multivariate Gaussian sharing the

same variance σ2 for all clusters k:

p(x | k) = (2π)−d/2σ−d exp{− ||x− ck||2

2σ2
} (5)

where ck is the centroid of the k-th cluster which is determined via the K-
medoid algorithm [12]. It is similar to the K-means algorithm since they both
try to minimize the squared error between the points assigned to a cluster and
the cluster centroid. In K-means, the centroid is the average of all points in the
cluster, whereas in K-medoid the most centrally located point in the cluster is
the centroid. Moreover, K-medoid is more robust to noise or outliers.

120 P. Donmez, J.G. Carbonell, and P.N. Bennett

Once the cluster representatives are identified, an EM procedure is applied to
estimate the cluster prior P (k) using the following two steps:

E-step: M-step:

P (k | xi) =
P (k) exp{−||xi−ck||2

2σ2 }
∑K

ḱ=1 P (ḱ) exp{−||xi−cḱ||2
2σ2 }

P (k) =
1
n

n∑

i=1

P (k | xi) (6)

The cluster label distribution P (y | k) is calculated using the following logistic
regression model: P (y | k) = 1

1+exp(−y(ck.a+b)) , a ∈ Rd and b ∈ R are logistic
regression parameters. ck is the k-th cluster centroid, so P (y | k) models the class
distribution for a representative subset of the entire dataset. Points are assigned
to a cluster with the probability P (k | x) so that their labels will be affected by
their cluster membership probabilities (See Equation 4). Hence, a distribution
is learned at each cluster and no cluster purity requirement is forced.

The parameters of the logistic regression model are estimated via the following
likelihood maximization:

L =
∑

i∈Il∪Iu

ln p(xi; c1, ..., cK , P (1), ..., P (K)) +
∑

i∈Il

lnP (yi | xi;a, b) (7)

where Il and Iu are the indices for labeled and unlabeled data, respectively. The
parameters of the first summand have already been determined by the K-medoid
algorithm and the EM routine in Equation 6. The second summand is used to
estimate the parameters a and b via Equation 4, as follows:

L(a, b) =
λ

2
||a||2 −

∑

i∈Il

ln

{
K∑

k=1

P (k | xi)P (yi | k; a, b)

}

(8)

The regularization parameter λ is given initially independently of the data. Since
the problem is convex, it has a unique solution which can be solved via Newton’s
algorithm. Then we can calculate the probability P (yi | k; â, b̂) using the logistic
regression model and obtain the class posterior probability P (yi | xi; â, b̂) using
Equation 4. The label ŷi is predicted for each unlabeled point xi according
to Bayes rule. Finally, active point selection is done by Equation 1. The error
expectation for a given unlabeled point E[(ŷi − yi)2 | xi] in that equation is:

E[(ŷi − yi)2 | xi] = (ŷi − 1)2P (yi = 1 | xi) + (ŷi)2P (yi = 0 | xi) (9)

Since the probability P (yi | xi) is unknown, its current approximation P (yi |
xi; â, b̂) is used instead. Additionally, data points are re-clustered into smaller
clusters as the expected error reduces. The reason is that it is important to make
significant changes in the decision boundary during the early iterations of active
sampling. Later the classification boundary becomes more stable and thus needs
to be finely tuned. Additional details can be found in [9].

Dual Strategy Active Learning 121

4 DUAL Algorithm and Experimental Results

4.1 Description of the DUAL Algorithm

DUAL works as follows: It starts executing DWUS up until it estimates a cross-
over point with uncertainty sampling by predicting a low derivative of the ex-
pected error, e.g. ∂ε(DWUS)

∂xt
≤ δ. The derivative estimation need not be exact,

requiring only the detection of diminishing returns which we explain soon. Then,
it switches to execute a combined strategy of density-based and uncertainty-
based sampling. In practice, we do not know the future classification error of
DWUS, but we can approximate it by calculating the average expected error of
DWUS on the unlabeled data. It will not give us the exact cross-over point, but
it will provide a rough estimate of when we should consider switching between
methods. The expected error of DWUS on the unlabeled data can be evaluated
as follows:

ε̂t(DWUS) =
1
nt

∑

i∈Iu

E[(ŷi − yi)2 | xi] (10)

where E[(ŷi−yi)2 | xi] is calculated as in Equation 9. Moreover, it is re-calculated
at each iteration of active sampling. t is the iteration number, and nt is the
number of unlabeled instances at the t-th iteration and Iu is the set of indices
of the unlabeled points at time t. By monitoring the average expected error
at every single iteration, we can estimate when DWUS’ performance starts to
saturate, i.e., ∂ε̂(DWUS)

∂xt
≤ δ. δ is assigned a fixed small value in our evaluations

[See Section 4.2 for how it was estimated]. When it is near zero, this is equivalent
to detecting when a method is stuck in local minima/plateau in gradient descent
methods. In fact, this principle is flexible enough to work with any two active
learning methods where one is superior for labeling the initial data and the
other is favorable later in the process. It generalizes to N sampling methods by
introducing additional estimated switchover points based on estimated derivative
of expected error for each additional sampling strategy.

We know that the strength of DWUS comes from the fact that it incorporates
the density information into the selection mechanism. However, as the num-
ber of iterations increases uncertainty sampling outperforms DWUS and DWUS
exhibits diminishing returns. We propose to use a mixture model for active sam-
pling after we estimate the cross-over:

x∗
s = arg max

i∈Iu

π1 ∗E[(ŷi − yi)2 | xi] + (1 − π1) ∗ p(xi) (11)

It is desirable for the above model to minimize the expected future error. If we
were to select based on only the uncertainty, then the chosen point would be
x∗

US = arg max
i∈Iu

E[(ŷi − yi)2 | xi]. After labeling x∗
US , the expected loss is:

fUS =
1
n

∑

j

EL+{x∗
US,y}[(ŷj − yj)2 | xj] (12)

122 P. Donmez, J.G. Carbonell, and P.N. Bennett

The subscript L+{x∗
US , y} indicates that the expectation is calculated from the

model trained on the data L + {x∗
US , y}. Assume fUS=0, then we can achieve

the minimum expected loss by forcing π1 = 1; hence x∗
s = x∗

US . The appropriate
weight in this scenario is inversely related with the expected error of uncertainty
sampling. Thus, we can replace the weights by π1 = 1− fUS , and 1− π1 = fUS ,
and obtain the following model:

x∗
s = arg max

i∈Iu

(1− fUS) ∗ E[(ŷi − yi)2 | xi] + fUS ∗ p(xi) (13)

Achieving the minimum expected loss is guaranteed only for the extreme case
where the expected error, fUS , of uncertainty sampling is equal to 0. However,
correlating the weight of uncertainty sampling with its generalization perfor-
mance increases the odds of selecting a better candidate after the cross-over.

In the real world, we do not know the true value of fUS . So we need to ap-
proximate it. After estimating the cross-over, we are interested in giving higher
priority to uncertainty, reflecting how well uncertainty sampling would perform
on the unlabeled set. Therefore, we approximate fUS as ε̂(US), the average ex-
pected error of uncertainty sampling on the unlabeled portion of the data. This
leads us to the following selection criterion for DUAL:

x∗
s = arg max

i∈Iu

(1 − ε̂(US)) ∗ E[(ŷi − yi)2 | xi] + ε̂(US) ∗ p(xi) (14)

ε̂(US) is updated at every iteration t after the cross-over. Its calculation is ex-
actly the same as in Equation 10. However, the data to sample from is restricted
to the already labeled examples by active selection. We construct a set with
the actively sampled examples by DWUS until the cross-over, and call it set A.
Uncertainty sampling is allowed to choose the most uncertain data point from
only among elements in set A by estimating the posterior P (yi | xi; â, b̂) over
the initially labeled data. The chosen point is added to to the initial labeled set
for uncertainty sampling and removed from set A. The average expected error
of uncertainty sampling is calculated on the remaining unlabeled data. Then,
DUAL selects the next data point to label via the criterion in Equation 14. This
labeled point is also added to set A. Hence, set A is dynamically updated at
each iteration with the actively sampled points. Consequently, in order to calcu-
late the expected error of uncertainty sampling the algorithm never requests the
label of a point that has not already been sampled during the active learning
process. Such a restriction will prevent an exact estimate of the expected error.
But, it is a reasonable alternative, and introduces no additional cost of labeling.
The pseudo-code for the DUAL algorithm is given as The Dual Algorithm.

The DUAL Algorithm
program DUAL(Labeled data L, Unlabeled data U, max number of
iterations T, and δ.)
begin

Set the iteration counter t to 0.
while(not switching point) do

Dual Strategy Active Learning 123

Run DWUS algorithm and compute ∂ε̂(DWUS)
∂xt

.

if(∂ε̂(DWUS)
∂xt

> δ)
Choose the point to label:
x∗

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi]p(xi)

t=t+1 (Increment counter t)
else Hit the switching point.

while(t < T)
Compute E[(ŷ − y)2|x], p(x) via DWUS, and ε̂t(US) via
uncertainty sampling.
Choose the point according to:
x∗

s = arg max
i∈Iu

(1− ε̂t(US)) ∗E[(ŷi − yi)2 | xi] + ε̂t(US) ∗ p(xi)

t=t+1
end.

4.2 Experimental Setup

To evaluate the performance of DUAL, we ran experiments on UCI benchmarks:
diabetes, splice, image segment, and letter recognition [18]. Some of these prob-
lems are not binary tasks so we used the random partitioning into two classes
as described by [13]. For the letter recognition problem, we picked three pairs of
letters (M-vs-N, O-vs-D, V-vs-Y) that are most likely to be confused with each
other. Thus, we examine six binary discrimination tasks. For each dataset, the
initial labeled set is 0.4% of the entire data and contains an equal number of
positive and negative instances. For clustering, we followed the same procedure
used by [9] where the initial number of clusters is 20 and clusters are split until
they reach a desired volume. The values of the parameters are given in Table 1
along with the basic characteristics of the datasets. These parameters and the δ
parameter used for switching criteria were estimated on other data sets and held
constant throughout our experiments, in order to avoid over-tuning. We com-
pared the performance of DUAL with that of DWUS, uncertainty sampling, rep-
resentative sampling2 [8], density-based sampling and the COMB method of [10].
Density-based sampling adopts the same probabilistic framework as DWUS but
uses only the density information for active data selection: x∗

s = arg max
i∈Iu

p(xi).

COMB uses an ensemble of uncertainty sampling, sampling method of [16], and
a distance-based strategy choosing the unlabeled instance that is farthest from
the current labeled set. COMB uses SVM with Gaussian kernel for all three
strategies. For further implementation details on COMB, see [10].

The performance of each algorithm was averaged over 4 runs. At each run, a
different initial training set was chosen randomly. At each iteration of each algo-
rithm, the active learner selected a sample from the unlabeled pool to be labeled.
After it has been added to the training set, the classifier is re-trained and tested
on the remaining unlabeled data and the classification error is reported. We also
2 We used k=10 for k-means clustering as it produced better performance in [8], and

selected the centroid of the largest cluster in the linear SVM margin.

124 P. Donmez, J.G. Carbonell, and P.N. Bennett

Table 1. Characteristics of the Datasets, Values of the Parameters and p-value for
significance tests after 40 iterations

Dataset Total Size +/- Ratio dims(d) sigma(σ) lambda(λ) DUAL>DWUS

Diabetes 768 0.536 8 0.5 0.1 p < 0.0001
Splice 3175 0.926 60 3 5 p < 0.0001
Image 2310 1.33 18 0.5 0.1 p < 0.0001
M-vs-N 1575 1.011 16 0.1 0.1 p < 0.0001
O-vs-D 1558 0.935 16 0.1 0.1 p < 0.0001
V-vs-Y 1550 0.972 16 0.1 0.1 p < 0.0001

conducted significance tests between DUAL and DWUS to report whether they
perform significantly different. In order to determine whether two active learning
systems differ statistically significantly, it is common to compare the difference in
their errors averaged over a range of iterations [14,20]. Comparing performance
over all 100 iterations would suppress detection of statistical differences since
DUAL executes DWUS until cross-over. We conducted the comparison when
they start to differ, which is on average after 40 iterations; we compute the two-
sided paired t-tests by averaging from the 40th to 100th iteration. Table 1 shows
that DUAL statistically outperforms DWUS in that range. For the remaining
comparisons, we compute 2-sided paired t-tests over the full operating range
since we want to know if DUAL is superior to the other methods more generally
and DUAL does not execute these other methods at any iteration.

5 Observations and Conclusion

Figure 2 presents the improvement in error reduction using DUAL over the other
methods. We only display results on 4 datasets due to space limitations. For the
results on all datasets see www.cs.cmu.edu/∼pinard/DualResults. DUAL out-
performs DWUS and representative sampling both with p < 0.0001 significance.
DUAL outperforms COMB with p < 0.0001 significance on 4 out of 6 datasets,
and with p < 0.05 on Image and M-vs-N data sets. We also calculate the error
reduction of DUAL compared to the strong baseline DWUS. For instance, at the
point in each graph after 3/4 of the sampling iterations after cross-over occurs,
we observe 40% relative error reduction on O-vs-D data, 30% on Image, 50%
on M-vs-N, 27% on V-vs-Y, 10% on Splice, and 6% on Diabetes dataset. These
results are significant both statistically and also with respect to the magnitude
reduction in relative residual error. DUAL is superior to Uncertainty sampling
(p < 0.001) on 5 out of 6 datasets. We see on the V-vs-Y data that the cross-over
between DWUS and uncertainty sampling occurs at a very early stage, but the
current estimate of the expected error of DWUS to switch selection criteria is
not accurate at the very early points in that dataset. Clearly, DUAL might have
benefited from changing its selection criterion at an earlier iteration.

As part of a failure analysis and in order to test this hypothesis, we conducted
another set of experiments where we simulated a better relative error estimator

http://www.cs.cmu.edu/~pinard/DualResults

Dual Strategy Active Learning 125

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

C
la

ss
if

ic
at

io
n

 E
rr

o
r

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

M-vs-N Letter

0 20 40 60 80 100
of Samples added to Labeled Set

0

0.1

0.2

0.3

C
la

ss
if

ic
at

io
n

 E
rr

o
r

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

Image Segment

0 20 40 60 80 100
of Samples added to Labeled Set

0.3

0.35

0.4

0.45
DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

Splice

0 20 40 60 80 100
0

0.1

0.2

0.3

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

V-vs-Y Letter

Fig. 2. Results on 4 different UCI benchmark datasets

0 20 40 60 80 100
of Samples added to Labeled Set

0

0.1

0.2

0.3

C
la

ss
if

ic
at

io
n

E
rr

or

Adjusted DUAL

DUAL

DWUS

Uncertainty Sampling

COMB

V-vs-Y Letter

Fig. 3. Results after adjusting the switch-
ing point for DUAL on the V-vs-Y Letter
data

0 20 40 60 80 100
of Samples added to Labeled Set

0.3

0.35

0.4

0.45

C
la

ss
if

ic
at

io
n

E
rr

or

Adjusted DUAL

DUAL

DWUS

Density-based Sampling

COMB

Splice

Fig. 4. Results when DUAL is adjusted
using Equation 15 on the splice data

126 P. Donmez, J.G. Carbonell, and P.N. Bennett

for strategy switching. Fig. 3 demonstrates that DUAL outperforms all other
methods when the true cross-over point is identified, indicating that better error
estimation is a profitable area of research. In fact, one hypothesized solution is
to switch when P (error(M2) | X) < P (error(M1) | X) + ε, which considers the
probability that over future selected instances method 2, M2, will have less error
than method 1, M1. We plan to study more robust switching criteria.

DUAL outperforms Density-based sampling (p < 0.0001) on all but splice
data. Density-based sampling performs worst for almost 40 iterations but then
beats all of the others thereafter, totally breaking the pattern observed in the
other datasets. Currently, DUAL only estimates how likely the uncertainty score
is to lead to improvement, but the density-based method may also be likely to
improve. One strategy is to calculate the expected error ε̂(DS) of density-based
sampling and modify Equation 14 to obtain the following:

x∗
s = arg max

i∈Iu

{ε̂(DS) ∗ E[(ŷi − yi)2 | xi] + (1− ε̂(DS)) ∗ p(xi)} (15)

Fig. 4 presents the result after the modification in Equation 15. The adjustment
helps DUAL make a significant improvement on the error reduction. Moreover,
it consistently decreases the error as more data is labeled, hence its error reduc-
tion curve is smooth as opposed to the higher variance of density-based sampling.
This suggests that pure density-based sampling is inconsistent in reducing error
since it only considers the underlying data distribution regardless of the current
model. Thus, we argue that DUAL may be more reliable than individual scor-
ing based on density due to its combination formula that adaptively establishes
balance between two selection criteria. Even though a strategy such as uncer-
tainty or density based sampling performs well individually, Figures 2, 3 and 4
illustrate that it is more advantageous to use their combination.

To conclude, we presented DUAL which robustly combines uncertainty and
density information. Empirical evaluation shows that, in general, this approach
leads to more effective sampling than the other strategies. Xu et al. [8] also
propose a hybrid approach to combine representative sampling and uncertainty
sampling. Their method, however, only applies to SVMs and only tracks the
better performing strategy rather than outperforming both individual strate-
gies. Baram et al. also reports comparable performance for COMB to the best
individual sampling strategy, but it is sometimes marginally better, and some-
times marginally worse and hence is not consistently the best performer. Our
performance, on the contrary, exceeds that of the individually best sampling
strategy in most cases by statistically significant margins. Hence, DUAL clearly
goes beyond COMB in terms of lower classification error and faster convergence.
Furthermore, our framework is general enough to fuse active learning methods
that exhibit differentiable performance on the whole operating range. It can also
be easily generalized to multi-class problems: one can estimate the error reduc-
tion globally or per-class using class-weighted or instance-weighted average, and
then use the same cross-over criterion. While we use logistic regression, any prob-
abilistic classifier can be adapted for use in DUAL. Our main contributions are
in estimating the error of one method using the labeled data selected by another,

Dual Strategy Active Learning 127

and robustly integrating their outputs when one method is dominant (Equation
14 vs. Equation 15). Our future plan is to generalize DUAL to using a relative
success weight, and to extend this work to ensemble methods that involve more
than two strategies, maximizing ensemble diversity [15,14,10]. Moreover, we plan
to investigate better methods for estimating the cross-over, such as estimating
a smoothed version of ∂ε̂

∂xt
rather than a local-only version.

References

1. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of
the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 287–294.
ACM Press, New York (1992)

2. Freund, Y., Seung, H., Shamir, E., Tishby, N.: Selective sampling using the Query
By Committee algorithm. Machine Learning Journal 28, 133–168 (1997)

3. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: SIGIR
’94, pp. 3–12 (1994)

4. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. In: ICML ’00, pp. 999–1006 (2000)

5. Mitchell, T.M.: Generalization as search. Artificial Intelligence Journal 18 (1982)
6. McCallum, A., Nigam, K.: Employing EM and pool-based active learning for text

classification. In: ICML ’98, pp. 359–367 (1998)
7. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.

Journal of Artificial Intelligence Research 4, 129–145 (1996)
8. Xu, Z., Yu, K., Tresp, V., Xu, X., Wang, J.: Representative sampling for text

classification using support vector machines. In: Sebastiani, F. (ed.) ECIR 2003.
LNCS, vol. 2633, Springer, Heidelberg (2003)

9. Nguyen, H.T., Smeulders, A.: Active learning with pre-clustering. In: ICML ’04,
pp. 623–630 (2004)

10. Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms. In:
ICML ’03, pp. 19–26 (2003)

11. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2002)

12. Struyf, A., Hubert, M., Rousseeuw, P.: Integrating robust clustering techniques in
s-plus. Computational Statistics and Data Analysis 26, 17–37 (1997)

13. Rätsch, G., Onoda, T., Muller, K.R.: Soft margins for AdaBoost. Machine Learning
Journal 42(3), 287–320 (2001)

14. Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: ICML ’04, pp.
584–591 (2004)

15. Melville, P., Mooney, R.J.: Constructing diverse classifier ensembles using artificial
training examples. In: IJCAI ’03, pp. 505–510 (2003)

16. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: ICML ’01, pp. 441–448 (2001)

17. Schohn, G., Cohn, D.: Less is more: Active Learning with support vector machines.
In: ICML ’00, pp. 839–846 (2000)

18. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine
learning databases (1998)

19. Saar-Tsechansky, M., Provost, F.: Active learning for class probability estimation
and ranking. In: IJCAI ’01, pp. 911–920 (2001)

20. Guo, Y., Greiner, R.: Optimistic Active Learning using Mutual Information. In:
IJCAI ’07, pp. 823–829 (2007)

Decision Tree Instability and Active Learning

Kenneth Dwyer and Robert Holte

Department of Computing Science, University of Alberta,
Edmonton AB, Canada

{dwyer,holte}@cs.ualberta.ca

Abstract. Decision tree learning algorithms produce accurate models
that can be interpreted by domain experts. However, these algorithms are
known to be unstable – they can produce drastically different hypothe-
ses from training sets that differ just slightly. This instability undermines
the objective of extracting knowledge from the trees. In this paper, we
study the instability of the C4.5 decision tree learner in the context of ac-
tive learning. We introduce a new measure of decision tree stability, and
define three aspects of active learning stability. Several existing active
learning methods that use C4.5 as a component are compared empiri-
cally; it is determined that query-by-bagging yields trees that are more
stable and accurate than those produced by competing methods. Also,
an alternative splitting criterion, DKM, is found to improve the stability
and accuracy of C4.5 in the active learning setting.

Keywords: Decision tree learning, evaluation of learning methods, ac-
tive learning, ensemble methods.

1 Introduction

Decision tree learners constitute one of the most well studied classes of ma-
chine learning algorithms. The relative ease with which a decision tree classifier
can be interpreted is one of its most attractive qualities. However, decision tree
learners are known to be highly unstable procedures – they can produce dra-
matically different classifiers from training sets that differ just slightly [1,2]. This
instability undermines the objective of extracting knowledge from decision trees.
Turney [2] describes a situation in which decision trees were used by engineers
to help them understand the sources of low yield in a manufacturing process:
“The engineers frequently have good reasons for believing that the causes of low
yield are relatively constant over time. Therefore the engineers are disturbed
when different batches of data from the same process result in radically different
decision trees. The engineers lose confidence in the decision trees, even when we
can demonstrate that the trees have high predictive accuracy.”

We have studied the instability of the C4.5 decision tree learner [3] in the
context of both passive and active learning [4]. In this paper, we present the
results of the active learning study. Instability is a concern in active learning
because the decision tree may change substantially whenever new examples are
labelled and added to the training set.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 128–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Decision Tree Instability and Active Learning 129

This paper asks an important new question: How stable are the decision trees
produced by some well-known active learning methods? Experiments are con-
ducted that compare the performance of several active learning methods, which
use C4.5 as a component learner, on a collection of benchmark datasets. It is
determined that the query-by-bagging method [5] is more stable and more accu-
rate than its competitors. This is an interesting result because no previous active
learning study has trained a single decision tree on examples selected by a com-
mittee of trees. Query-by-bagging tends to yield larger trees than do the other
methods; yet, we provide evidence that these increases in size do not usually en-
tail a loss of interpretability. Our second contribution is a set of new definitions
of “stability,” which fill an important gap between the extremities represented by
existing measures. Finally, the DKM splitting criterion [6,7] is shown to improve
the stability and accuracy of C4.5 in the active learning setting.

2 Decision Tree Instability

A learning algorithm is said to be unstable if it is sensitive to small changes in
the training data. When presented with training sets that differ by some small
amount, an unstable learner may produce substantially different classifiers. On
the other hand, stable learning algorithms, such as nearest neighbour, are less
sensitive in this regard [8]. As a concrete example of instability, consider the
decision trees shown in Fig. 1. These two trees were grown and pruned by C4.5
using data from the lymphography dataset, which was obtained from the UCI
repository [9]. For clarity, each attribute is denoted by a single letter,1 and the
class labels are ‘malign lymph’ (+) and ‘metastases’ (−). The data was converted
to a two-class problem by deleting the examples belonging to the ‘normal find’
and ‘fibrosis’ classes, which account for 6 of the 148 instances. Figure 1(a) dis-
plays a tree, T106, that was induced from a random sample consisting of 106
(roughly 75%) of the available examples. A single instance, randomly chosen
from the unused examples, was appended to this training set, from which C4.5
produced the tree T107 that is shown in Fig. 1(b). The two trees differ con-
siderably in size, as T107 contains nearly double the number of decision nodes
appearing in T106. Moreover, there is just one path from the root to a leaf node
along which both trees perform the same set of tests when classifying an example;
this is the path that consists of the tests {A≤3=T, B=B2, D=D4} and predicts
the negative class. In all other cases, the trees apply different reasoning when
making predictions. The fact that these changes were caused by the addition of
one training example illustrates the instability of the C4.5 algorithm.

3 Quantifying Stability

In this paper, two types of stability are examined: semantic and structural sta-
bility. A learner that is semantically stable will, when presented with similar
1 The values of each discrete attribute are enumerated, whereas the possible outcomes

for a test on a continuous attribute are T (true) and F (false).

130 K. Dwyer and R. Holte

A <= 3

B

T

+

 F

C

B1

D

 B2

A <= 1

C1

+

 C2

+

 D1

+

 D2

-

 D3

-

 D4

-

T

+

 F

(a) Tree grown from 106 examples

D

+

 D1

+

D2

E

 D3

B

 D4

-

E1

A <= 1

 E2

F

B1

A <= 3

 B2

-

T

+

 F

C

F1

+

 F2

-

T

G

 F

+

G1

-

 G2

H

C2

-

 C1

+

 H1

+

 H2

-

 H3

(b) Tree grown from 107 examples

Fig. 1. Decision trees grown from two subsets of the lymphography dataset that differ
in a single training example. The shaded leaf in each tree highlights the only case in
which both trees perform the same set of tests when predicting the class label.

data samples, tend to produce hypotheses that make similar predictions. For a
learner to be structurally stable, a stronger condition must be satisfied, namely,
the hypotheses that it creates from closely related data sets must be syntac-
tically similar. Thus, structural stability is a sufficient condition for semantic
stability, but the converse is not true. It is also possible to formulate a measure
of stability that is not purely semantic or purely structural, but which considers
some characteristics of a classifier’s structure.

To measure semantic stability, we adopt a learner-independent measure called
agreement [2]. Given two training sets, the learner induces a pair of hypotheses;
the agreement is defined as the probability that a randomly chosen unlabelled
example is assigned to the same class by both models. In practice, agreement is
estimated by having the models classify a randomly selected set of examples.

There is no consensus on how to quantify the structural stability of decision
trees. Two existing measures, called Discrepant [10] and Common [11], report
minimal stability when two trees differ at the root node. However, it is possible
for trees to differ at the root, and yet be quite similar or even identical elsewhere;
neither of these metrics are sensitive to such an occurrence. We propose a novel
measure, called region stability, that we argue is more appropriate for comparing
the structure of decision trees.

Each leaf in a decision tree is a decision region whose boundaries are defined
by the unordered set of nodes and branches that make up the path from the
root to the leaf. The region stability measure compares the decision regions in

Decision Tree Instability and Active Learning 131

one tree with those of another. Specifically, it estimates the probability that two
trees classify a randomly selected example in “equivalent” decision regions. Two
decision regions are considered to be equivalent if they perform the same set of
tests and predict the same class label.

Region stability is estimated by having the two trees classify a randomly
chosen set of unlabelled examples. As an illustration, suppose that the region
stability score for the trees in Fig. 1 is computed using 100 examples, 5 of which
are classified in the shaded leaf in each tree. Since this is the only decision region
that the trees have in common (all other pairs of regions differ in at least one
test), the region stability score is 0.05. The effect of using unlabelled examples in
the calculation is that more weight is assigned to a region that classifies a larger
portion of these examples in the event that their distribution is non-uniform.

When comparing two decision regions that test a particular continuous at-
tribute, the thresholds (or cut-points) are checked for equality. However, C4.5
only places a threshold at a value that exists in the training data, and so it can
be impossible for identical thresholds to appear in two trees that are induced
from slightly different samples. In some learning tasks, small discrepancies of this
sort may be considered superficial. For this reason, the region stability measure
accepts a parameter ε ∈ [0, 100]% that specifies a permitted margin of error be-
tween thresholds defined on a continuous attribute a. Let min(a) and max(a) be
the minimum and maximum values for a in the entire dataset. Two thresholds
defined on a are considered equal if they are within ε · [max(a) − min(a)]/100
units of one another. Note that the path from the root to a leaf may contain
multiple tests on the same continuous attribute that specify distinct thresholds.
The leftmost path in Fig. 1(a), for example, contains the tests A≤3 and A≤1.
Since the first of these tests is redundant given the second, only the test A≤1 is
considered when comparing this decision region to another.

4 Instability in Active Learning

In active learning, the learner has the ability to choose points from the in-
stance space on which to train a classifier. Although the ability of active learn-
ing methods to make more efficient use of unlabelled data has been well docu-
mented [5,12,13,14], little attention has been given to the stability of these tech-
niques. This study focuses on pool-based active learning, or selective sampling,
in which the learner draws a batch of m examples from a pool of unlabelled ex-
amples U on each iteration. The selective sampling methods tested in this study
all make use of a base learning algorithm, which in this case is C4.5.

The stability of a sampling method is measured with respect to the deci-
sion trees that are induced by C4.5 from the training examples chosen by that
method. We propose three different aspects of stability in active learning, which
are named PrevStab, FinalStab, and RunStab. Each of these is quantified by ap-
plying a distance measure Φ (e.g. region stability or agreement) to specific pairs
of trees. Let Ti denote the tree induced from the labelled data at iteration i of
selective sampling. PrevStab quantifies the similarity of trees that are induced

132 K. Dwyer and R. Holte

on consecutive iterations. For i > 1, trees from iterations i and i − 1 are com-
pared; that is, the score Φ (Ti, Ti−1) is computed. Calculating this score for all
consecutive pairs of trees induced during active learning reveals the amount of
change that occurs as a result of adding each new batch of examples to the
training set. FinalStab compares the tree induced at each iteration to the tree
that is induced on the final iteration of selective sampling. At iteration i of n,
for i < n, FinalStab computes Φ (Ti, Tn); thus, it evaluates the manner in which
the sequence of trees progresses toward the final tree that is produced. Finally,
RunStab quantifies stability across different selective sampling “runs,” in which
distinct initial training sets are used. This score may be interpreted as the de-
gree to which an active learning method yields similar trees from different initial
training data. Given r runs of selective sampling, the RunStab score at iteration
i is obtained by computing Φ(T j

i , T
k
i) for each pair of runs {j, k} ≤ r, j �= k, and

then taking the average of these values. Here, T p
i is the set of labelled examples

at iteration i when using the pth initial training set.
When assessing the stability of a selective sampling procedure, some prop-

erties of the stability scores are desirable. For example, the FinalStab scores
should increase as more examples are labelled and added to the training set,
reaching reasonably high levels in the later stages of active learning. An increas-
ing sequence of FinalStab scores implies that the learner produces decision trees
that have progressively more structure in common with the final tree. PrevStab
scores are expected to be low during the initial iterations, as the selective sam-
pling method explores the instance space. Later, when the sampling method
presumably begins refining the hypothesis, the PrevStab scores should increase
and maintain a fairly high level. Last of all, high RunStab scores are desirable,
especially in the late stages of selective sampling. If this is not the case, then
the sampling method is sensitive to the particular examples that form the initial
training set, and the trees it produces during different runs are dissimilar.

5 Experiments

5.1 Experimental Procedure

Experiments were carried out using four selective sampling methods: uncer-
tainty sampling [13], query-by-bagging and query-by-boosting [5], and bootstrap-
LV [14]. These are all uncertainty-based approaches, which heuristically select
examples based on how confidently their true labels can be predicted. The latter
three methods each form a committee of decision trees (a committee size of 10
was used here), and request the labels of the examples for which the committee
“vote” is most evenly split. It is worth noting, however, that active learners exist
which optimize other criteria, such as the expected future error [15]. Random
sampling was also included in these experiments as a basis for comparison.

The sampling methods used C4.5 Release 8 [3] as a base learner. Experiments
were duplicated using C4.5’s default gain ratio splitting criterion (hereafter called
entropy) and the DKM criterion [6,7] to grow trees. Each of these splitting
criteria are defined by an impurity function f(a, b), which is a log2(a)+ b log2(b)

Decision Tree Instability and Active Learning 133

for entropy and
√

2ab for DKM. Here, a and b represent the probabilities of
each class within a given subset of examples formed by the split. Additionally,
C4.5 Release 8 applies a penalty term to splits on continuous attributes that is
specifically designed for entropy; our modification for DKM is described in [4].

Sixteen datasets were obtained from the UCI repository that each contained at
least 500 training examples; this ensured that the unlabelled pool was reasonably
large. Since DKM only handles two-class problems, multi-class datasets were
converted to two-class ones by designating a single class as the target concept,
and aggregating the remaining classes into the class “other.” The target class used
for each dataset is shown in Table 1. Furthermore, the region stability measure
requires that each example be classified by exactly one leaf. Thus, attributes with
an unknown value rate greater than 10 percent were removed, and any remaining
instances that still contained missing values were deleted. The modified datasets
are available online at http://www.cs.ualberta.ca/~dwyer/ecml2007/.

For each dataset, one third of the data from each class was randomly set aside
for evaluation; these examples were used to measure the stability and error rate
of the induced classifiers. Of the remaining instances, 15 percent were randomly
chosen to form the initial training set, while the others constituted the pool of
unlabelled examples. The batch size m was set to be 2 percent of the number
of examples in a given dataset, to a minimum of 10 and a maximum of 50, and
active learning ceased once two-thirds of the pool examples had been labelled.
For a given dataset, 25 runs were performed, using different initial training sets.
The same evaluation set was used during each run, in order to remove a source
of variation when comparing stability and error rate across runs. Finally, the
region stability scores were computed using ε values of 0, 5, and 10 percent.

5.2 Evaluation

In order to determine whether one selective sampling method was superior to
another on a given dataset, a summary statistic was devised to convert each
sequence of scores into a single value. Our summary statistic is a weighted aver-
age that assigns greater weight to later iterations. It was argued in Sect. 4 that
structural stability is most desirable in the later stages of active learning; ide-
ally, the learner will have a reasonable grasp of the target concept at this point,
and new examples will serve mainly to refine the model, rather than to alter it
significantly. A high level of stability during early iterations of active learning is
of little value if stability deteriorates in later rounds.

After completing 25 runs of n iterations on a given dataset, the mean score for
a statistic was calculated on each iteration. A weighted average was then com-
puted as 1

n

∑n
i=1 wi · si, where si is the mean score on iteration i; the weights

wi increased linearly as a function of i, according to the equation wi = 2i
n(n+1) .

Semantic and structural stability were measured by calculating FinalStab, Prev-
Stab, and RunStab using Turney’s agreement and the region stability measure.
The learning curve for error rate was summarized using the same weighted av-
eraging scheme as for stability, under the assumption that a lower error rate is
also most desirable in the later stages of active learning.

http://www.cs.ualberta.ca/~dwyer/ecml2007/

134 K. Dwyer and R. Holte

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of pool examples labelled

M
ea

n
st

ru
ct

ur
al

 F
in

al
S

ta
b

sc
or

e

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Random
QBag
BootLV
Uncert.

(a) Structural FinalStab (ε = 0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of pool examples labelled

M
ea

n
er

ro
r

ra
te

.010

.015

.020

.025

.030

.035 Random
QBag
BootLV
Uncert.

(b) Error rate

Fig. 2. Plots of two statistics for the kr-vs-kp dataset when using DKM. QBag is the
most stable and the most accurate sampling method in this case. In all experiments,
learning ceased when 2/3 of the instances in the pool had been labelled.

To exemplify how the weighted averaging scheme characterizes the scores that
are produced by the selective sampling procedures, consider Fig. 2(a). Here, the
structural FinalStab scores for 4 of the 5 sampling methods on the kr-vs-kp data-
set are plotted as a function of the training set size. Query-by-bagging (QBag)
was clearly the most stable method on this dataset, with a weighted score of
.953, while random sampling (Random) placed second, at .858. Bootstrap-LV
(BootLV) and uncertainty sampling (Uncert), were more closely matched. Al-
though Uncert was marginally more stable than BootLV during the final itera-
tions, the former’s instability between x = .13 and x = .27 dropped its weighted
score (.638) below that of BootLV (.644).

In order to assess the statistical significance of the experimental results, the
following methodology was applied [16]. The null hypothesis is that all the sam-
pling methods are equivalent. For each dataset, ranks were assigned to the meth-
ods based on their weighted scores. Next, the Friedman test2 was applied to each
method’s average rank, and the critical value was computed using the FF statis-
tic. If the null hypothesis could be rejected based on this value at a chosen
significance level α, the Nemenyi test was used to determine whether significant
differences existed between any given pair of sampling methods.

To illustrate this process, consider the weighted error rates displayed in Ta-
ble 1. For each dataset, ranks (shown in parentheses) are assigned in order of
increasing error rate, with averages used in the event of a tie. With an average
rank of 4.375 over all datasets, Random is the worst-ranking method, while QBag
ranks the best, on average (1.625). At α = .05, the null hypothesis is rejected
based on the Friedman test. The critical difference is 1.527, and so differences
between average ranks of at least this amount are statistically significant. Thus,
QBag, QBoost, and BootLV are each significantly more accurate than Random;
2 The tests of statistical significance that were applied are described in [16].

Decision Tree Instability and Active Learning 135

Table 1. Weighted average error rates when using the DKM splitting criterion, (ranks
in parentheses). For each dataset, the lowest observed error rate is bolded.

Dataset Random QBag QBoost BootLV Uncert
(target class) (R) (G) (T) (L) (U)
anneal (not-3) .144 (4) .121 (1) .135 (3) .125 (2) .150 (5)
australian (+) .129 (1.5) .129 (1.5) .131 (5) .130 (3.5) .130 (3.5)
car (acceptable) .090 (5) .077 (1) .082 (4) .078 (2) .081 (3)
german (bad) .293 (5) .274 (1) .285 (2) .290 (4) .289 (3)
hypothyroid (+) .006 (5) .002 (2) .002 (2) .002 (2) .004 (4)
kr-vs-kp (no-win) .014 (5) .007 (1.5) .008 (3) .007 (1.5) .010 (4)
letter (k) .015 (5) .011 (2) .011 (2) .011 (2) .013 (4)
nursery (priority) .056 (5) .038 (1.5) .039 (3) .038 (1.5) .044 (4)
pendigits (9) .016 (5) .010 (1.5) .010 (1.5) .012 (4) .011 (3)
pima-indians (+) .286 (5) .283 (2) .280 (1) .284 (3) .285 (4)
segment (cement) .020 (5) .011 (1) .012 (2.5) .012 (2.5) .019 (4)
tic-tac-toe (−) .217 (5) .197 (1) .201 (2) .207 (3) .211 (4)
vehicle (opel) .227 (1) .231 (5) .229 (3.5) .228 (2) .229 (3.5)
vowel (hud) .056 (5) .033 (1) .036 (2) .037 (3) .049 (4)
wdbc (malignant) .073 (4) .068 (2) .067 (1) .069 (3) .076 (5)
yeast (nuclear) .256 (4.5) .250 (1) .253 (2.5) .256 (4.5) .253 (2.5)
Avg. rank (4.375) (1.625) R,U (2.500) R (2.719) R (3.781)

also, QBag is superior to Uncert. A letter beside the average rank of a sampling
method S indicates that S is significantly better than the method corresponding
to that letter. For example, the R and U in the QBag column of Table 1 imply
that QBag is significantly more accurate than Random and Uncert, respectively.

5.3 Experimental Results

Due to space limitations, only the average ranks are presented for each statis-
tic; these are displayed in Table 2. Although the average ranks are sufficient for
demonstrating our findings, detailed results may be viewed at http://
www.cs.ualberta.ca/˜dwyer/ecml2007/. In Table 2, the level of significance
that was tested for each statistic is shown in the “α” column.

Error Rate. The committee-based methods achieved significantly lower error
rates than did Random, independent of the splitting criterion employed. Uncert
was also significantly less accurate than QBag.

Overall, the results support the findings of previous active learning studies
that involved these sampling methods, in that Random was certainly the inferior
approach, and committee-based methods usually produced lower error rates than
Uncert [5,14]. However, there is a subtle, yet important factor distinguishing
our experiments from existing research involving active learning with decision
trees. The committee-based results reported in our experiments represent the
performance of a single C4.5 decision tree that is trained on examples selected
by a committee of trees. By contrast, in the original experiments involving QBag,

http://www.cs.ualberta.ca/~dwyer/ecml2007/
http://www.cs.ualberta.ca/~dwyer/ecml2007/

136 K. Dwyer and R. Holte

Table 2. Average ranks for the sampling methods on each statistic. The top half of
the table diplays the results for the entropy criterion; bottom half: DKM criterion.

Statistic ε α Random QBag QBoost BootLV Uncert
(R) (G) (T) (L) (U)

E
nt

ro
py

cr
it
er

io
n

Error Rate – .05 4.406 2.000 R,U 2.188 R 2.719 R 3.688
Tree Size – .01 1.062 G,T,U 4.062 3.938 2.500 3.250
Seman. FinalStab – .05 4.281 1.969 R 3.000 3.094 2.656 R
Seman. PrevStab – .05 4.000 2.062 R 3.531 3.094 2.312 R
Seman. RunStab – .01 4.625 1.344 R,U 2.625 R 2.656 R 3.750
Struct. FinalStab 0

.10
3.562 2.875 2.875 3.000 2.688

Struct. FinalStab 5 3.375 3.031 2.875 2.812 2.906
Struct. FinalStab 10 3.344 3.000 2.938 2.750 2.969
Struct. PrevStab 0

.10
3.312 2.719 3.406 3.062 2.500

Struct. PrevStab 5 3.188 2.812 3.469 2.969 2.562
Struct. PrevStab 10 3.062 2.812 3.594 2.969 2.562
Struct. RunStab 0

.01
4.469 1.750 R,U 2.000 R,U 2.656 4.125

Struct. RunStab 5 4.188 1.656 R,U 2.188 R,U 2.594 4.375
Struct. RunStab 10 4.156 1.656 R,U 2.250 R,U 2.562 4.375

D
K

M
cr

it
er

io
n

Error Rate – .05 4.375 1.625 R,U 2.500 R 2.719 R 3.781
Tree Size – .01 1.125 G,T,U 4.125 3.938 2.625 3.125
Seman. FinalStab – .05 4.000 2.188 R 3.250 2.750 2.812
Seman. PrevStab – .05 3.594 2.312 T 3.844 2.812 2.438
Seman. RunStab – .01 4.531 1.562 R,U 2.750 R 2.469 R 3.688
Struct. FinalStab 0

.10
3.281 2.562 3.188 3.094 2.875

Struct. FinalStab 5 3.156 2.594 3.125 3.031 3.094
Struct. FinalStab 10 3.281 2.562 3.125 3.125 2.906
Struct. PrevStab 0

.10
2.875 2.812 3.844 2.906 2.562

Struct. PrevStab 5 2.844 2.875 3.688 2.938 2.656
Struct. PrevStab 10 2.812 2.938 3.688 2.844 2.719
Struct. RunStab 0

.01
4.031 1.875 R,U 2.125 R,U 2.625 4.344

Struct. RunStab 5 3.719 2.031 U 2.188 U 2.750 4.312
Struct. RunStab 10 3.875 1.938 R,U 2.344 U 2.562 4.281

for instance, a committee of C4.5 trees selected unlabelled examples that were
subsequently used to train a bagged committee of trees [5]. Note that although a
single decision tree trained from labelled data L is likely to be less accurate than
a bagged committee trained from L, the committee is no longer intelligible [1].

Other methods have been proposed for training one type of classifier on ex-
amples selected by another type. Lewis and Catlett [13] employed a probabilistic
classifier to select training examples for C4.5, and Domingos [17] used a commit-
tee to generate labelled data, from which a single classifier was trained. However,
we are not aware of any previous study in which a committee of decision trees
was used to train a single tree within the active learning framework.

Tree Size. In terms of the number of leaf nodes, the selective sampling methods
consistently yielded larger trees than did Random (see “Tree Size” in Table 2).
The trees grown by QBag tended to be the largest, containing 38 percent more

Decision Tree Instability and Active Learning 137

leaves, on average, than those of Random. Does this imply that trees grown
using QBag, for example, are more difficult to interpret than trees produced
by Random? While no agreed-upon criterion exists for distinguishing between
a tree that is interpretable and a tree that is not, one simple criterion is that
there might exist a threshold t, such that any tree containing more than t leaves
is uninterpretable. The datasets on which the weighted average leaf count for
Random is at most t and the count for QBag is greater than t would then
represent cases where QBag sacrifices intelligibility. Testing all integer values of
t ranging from 1 to 25, we find that this occurs on at most 5 datasets (t = 13)
when using DKM, and at most 3 datasets (t = 11, 12) with entropy. Thus,
QBag’s gains in accuracy are not typically made at the expense of intelligibility.

Stability. With regard to semantic stability, QBag achieved the best average
rank on FinalStab, PrevStab, and RunStab, for both splitting criteria. Random
was the least stable method in all but one case (PrevStab with DKM). Although
Uncert also performed well on FinalStab and PrevStab, it was significantly less
stable than QBag on the RunStab measure, as was Random. No strong conclu-
sions could be drawn regarding the semantic stability of QBoost or BootLV.

As for structural stability, the RunStab results were highly significant. QBag
and QBoost were the two best-ranked methods for all three values of ε that were
used, while Random and Uncert were the worst. By definition, QBag and QBoost
always choose the m highest scoring examples from the pool – the ones for which
the committee vote is most divided. Therefore, a given example will be added to
the training set if it receives a sufficiently high score at some iteration. BootLV,
on the other hand, does not necessarily choose the highest scoring examples;
it samples m times from a probability distribution in which the weight of an
example is proportional to its score. Random is completely stochastic, which
accounts for its instability across runs. As for Uncert, its low RunStab scores are
a consequence of assigning scores to unlabelled examples based on the hypothesis
of a single decision tree. Since this tree is generally unstable, the score assigned
to a given example is likely to change considerably when the tree is induced
from different training data. This problem is mitigated by the committee-based
methods, as a committee of trees tends to be more stable than a single tree [1].

The results for structural FinalStab and PrevStab did not reveal any statis-
tically significant differences between the sampling methods, even at α = .10.

Table 3. Pairwise comparisons involving the QBag sampling method. The significance
level α is indicated in parentheses where applicable.

(a) Structural FinalStab win-loss
counts for QBag vs. Random
ε Entropy DKM
0 10-6 (.05) 11-4 (.05)
5 9-7 (.10) 10-6
10 9-6 (.10) 10-6

(b) Structural stability win-loss counts
for DKM vs. entropy when using QBag
ε FinalStab PrevStab RunStab
0 10-6 (.10) 11-5 (.05) 9-7
5 11-5 (.05) 12-4 (.05) 11-5 (.05)
10 12-4 (.05) 12-4 (.05) 10-6 (.10)

138 K. Dwyer and R. Holte

The ranges of the average ranks were smaller for these statistics; yet, Random
had the worst average rank on FinalStab, for example, for all values of ε that
were tested. A direct comparison between Random and QBag – the best method
on most of the statistics – does in fact reveal significant differences. Table 3(a)
compares QBag and Random on the structural FinalStab measure. Here, a win
is recorded for the sampling method that achieves the higher weighted score on
a given dataset. QBag obtains the most wins under all 6 conditions, and the
Wilcoxon signed-ranks test, which is recommended when comparing two meth-
ods [16], finds that the QBag scores are significantly better in 4 of these cases.
With regard to the PrevStab scores, there were no significant differences detected
between QBag and Random by this test.

Comparison of Splitting Criteria. The weighted scores obtained when using
the entropy splitting criterion were compared to those obtained with DKM, and
the Wilcoxon signed-ranks tests was used to assess statistical significance. With
respect to error rates, DKM was significantly more accurate than entropy when
QBag or BootLV were used (α = .10), and DKM never recorded less than 9
wins with any of the other methods. DKM frequently grew smaller trees, but
the difference was significant only with BootLV (α = .10). Remarkably, DKM
yielded higher scores on the majority of datasets for every sampling method
and every measure of structural stability, at all values of ε. We highlight the
comparison between DKM and entropy when using QBag, as it has been shown in
previous sections to be the superior sampling method. As the data in Table 3(b)
reveals, the FinalStab and PrevStab scores for QBag improved significantly when
DKM was used to grow trees. Similarly, QBag’s RunStab scores improved for all
values of ε when using DKM instead of entropy. Here, permitting a small margin
of error between continuous thresholds revealed that DKM produced decision
regions that were more similar than those formed with entropy. Finally, the
semantic stability of C4.5 was less influenced by the choice of splitting criterion,
as significant differences were detected only for PrevStab when using BootLV
(α = .05) or Random (α = .10). In both instances, DKM was superior.

6 Conclusions

We have presented a methodology for evaluating the stability of decision tree
learners in the context of active learning, which includes a novel measure of deci-
sion tree stability. The main conclusions drawn from our experiments are, first of
all, that query-by-bagging (QBag) is the method of choice for training a single,
interpretable decision tree, when using the C4.5 algorithm. QBag was found to
be superior based on many of the stability measures, and was never significantly
less stable than any other sampling method. Moreover, QBag produced the most
accurate decision trees, and so the increased stability did not correspond with
higher error rates. Although QBag yielded trees that were larger, on average,
than those of the competing methods, we provided evidence that this would not
usually be detrimental to intelligibility. The second important finding is that the

Decision Tree Instability and Active Learning 139

DKM splitting criterion improves the stability and accuracy of C4.5 in the ac-
tive learning setting. In particular, since QBag performed better with DKM, this
combination is recommended for training a single tree. It is important to empha-
size that these conclusions are based on average performance across datasets, as
no sampling method was superior on all the datasets that were tested.

Acknowledgments. This research was funded by NSERC, the Informatics Cir-
cle of Research Excellence (iCORE), and the Alberta Ingenuity Fund.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Turney, P.D.: Bias and the quantification of stability. Machine Learning 20(1-2),

23–33 (1995)
3. Quinlan, J.R.: Improved use of continuous attributes in C4.5. JAIR 4, 77–90 (1996)
4. Dwyer, K.D.: Decision tree instability and active learning. Master’s thesis, Univer-

sity of Alberta (2007)
5. Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In:

Proc. ICML ’98, pp. 1–9 (1998)
6. Dietterich, T.G., Kearns, M., Mansour, Y.: Applying the weak learning framework

to understand and improve C4.5. In: Proc. ICML ’96, pp. 96–104 (1996)
7. Drummond, C., Holte, R.C.: Exploiting the cost (in)sensitivity of decision tree

splitting criteria. In: Proc. ICML ’00, pp. 239–246 (2000)
8. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)
9. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI ML Repository (1998)

10. Shannon, W.D., Banks, D.L.: Combining classification trees using MLE. Statistics
in Medicine 18(6), 727–740 (1999)

11. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Consolidated
trees: Classifiers with stable explanation. In: Singh, S., Singh, M., Apte, C., Perner,
P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 99–107. Springer, Heidelberg (2005)

12. Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learn-
ing. Machine Learning 15(2), 201–221 (1992)

13. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-
ing. In: Proc. ICML ’94, pp. 148–156 (1994)

14. Saar-Tsechansky, M., Provost, F.: Active sampling for class probability estimation
and ranking. Machine Learning 54(2), 153–178 (2004)

15. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: Proc. ICML ’01, pp. 441–448 (2001)

16. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7,
1–30 (2006)

17. Domingos, P.M.: Knowledge acquisition from examples via multiple models. In:
Proc. ICML ’97, pp. 98–106 (1997)

Constraint Selection by Committee: An

Ensemble Approach to Identifying Informative
Constraints for Semi-supervised Clustering

Derek Greene and Pádraig Cunningham

University College Dublin, Ireland
{derek.greene,padraig.cunningham}@ucd.ie

Abstract. A number of clustering algorithms have been proposed for
use in tasks where a limited degree of supervision is available. This prior
knowledge is frequently provided in the form of pairwise must-link and
cannot-link constraints. While the incorporation of pairwise supervision
has the potential to improve clustering accuracy, the composition and
cardinality of the constraint sets can significantly impact upon the level
of improvement. We demonstrate that it is often possible to correctly
“guess” a large number of constraints without supervision from the co-
associations between pairs of objects in an ensemble of clusterings. Along
the same lines, we establish that constraints based on pairs with uncer-
tain co-associations are particularly informative, if known. An evaluation
on text data shows that this provides an effective criterion for identifying
constraints, leading to a reduction in the level of supervision required to
direct a clustering algorithm to an accurate solution.

1 Introduction

Recently, a considerable amount of attention has been paid to the application
of machine learning algorithms in problems that do not perfectly correspond to
the standard distinction between supervised and unsupervised learning [1]. In
many domains, a limited degree of background knowledge will be available when
performing exploratory data analysis. While this may take the form of labelled
training data, in other situations a simpler type of supervision will be available
that describes the relations between pairs of data objects. The latter is commonly
represented as a set of pairwise constraints, where each constraint indicates that
two objects should either always be assigned to the same cluster (must-link)
or never be assigned together (cannot-link). A number of popular clustering
algorithms, such as standard k-means, have been adapted to incorporate this
type of information. While the addition of pairwise supervision has the potential
to improve clustering accuracy, the choice of constraints will often dictate the
level of improvement attained [2]. Many semi-supervised clustering tasks will be
active in nature, where the constraint oracle takes the form of a human expert.
In such applications, the number of queries for constraints that can be made will
be strictly limited.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 140–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constraint Selection by Committee 141

In this paper, we tackle the problem of identifying constraints that are “infor-
mative” in the context of semi-supervised clustering. That is, we seek constraints
that will be most effective in guiding a clustering algorithm to produce more ac-
curate solutions. We differentiate these from constraints whose presence does
not lead to any noticeable improvement in clustering accuracy. To make this
distinction, we firstly establish a connection between hard pairwise constraints
and the frequency of co-assignment, or co-association, between pairs of objects in
an ensemble of clusterings. Specifically, Section 3.1 describes a process by which
it is often possible to “guess” or impute a large number of constraints with-
out supervision by examining these co-association values. Following from this,
in Section 3.2 we propose a new approach for selecting informative constraints
by identifying objects whose cluster assignments are ambiguous. In Section 4
we evaluate this approach on text data, where it is shown to lead to a reduc-
tion in the number of actual oracle queries required to produce a significant
improvement in clustering accuracy.

2 Related Work

2.1 Semi-supervised Clustering

Given a set of n data objects X = {x1, . . . , xn}, a common representation for
background information pertaining to X is in the form of pairwise constraint sets:
must-link constraintsM and cannot-link constraints C. This information can be
incorporated into traditional partitional clustering algorithms by adapting the
objective function to include penalties for violated constraints. For instance, the
Pairwise Constrained k-means (PCKM) algorithm [2] modifies the standard sum
of squared errors function to take into account both object-centroid distortions
in a clustering P = {π1, . . . , πk} and any associated constraint violations

Jpckm(P) =
k∑

c=1

∑

xi∈πc

||xi − μc||2 +
∑

(xi,xj)∈M,li�=lj

wij +
∑

(xi,xj)∈C,li=lj

w̄ij (1)

where μc is the centroid of the cluster πc, and li denotes the cluster label of the
object xi in P . The weight wij signifies the size of the penalty incurred when a
must-link constraint between a pair (xi, xj) is violated, while w̄ij is the penalty
for violating a cannot-link constraint between the pair. These weights control
the influence given to external information during the assignment phase of the
algorithm. The objective (1) has been shown to have a probabilistic basis related
to the assignment of labels in Hidden Markov Random Fields (HMRFs).

As with standard partitional algorithms, the choice of initialisation strategy
for semi-supervised methods such as PCKM can greatly affect clustering ac-
curacy. An effective strategy in this context involves computing the transitive
closure of the graph formed by the constraints in M, and using the centroids
of the resulting λ neighbourhoods. If λ > k, where k is the desired number of
clusters, then a weighted variant of farthest-first initialisation may be employed
to select a subset of k well-separated centroids [3].

142 D. Greene and P. Cunningham

While research in the area of semi-supervised clustering has largely focused on
the development of new clustering algorithms, relatively little emphasis has been
placed on the important issue of selecting useful constraints. An initial foray into
this area was made with the two-stage Explore and Consolidate (E&C) approach
proposed by Basu et al. [2]. In the exploration stage, a set of k initial well-
separated neighbourhoods is identified, each of which belongs to be a different
natural class. Once the neighbourhoods have been formed, the consolidation
stage proceeds by randomly selecting unlabelled objects and assigning them to
correct neighbourhoods in a manner that requires as few constraints as possible.
The resulting centroids and constraint sets were used to provide supervision for
the PCKM algorithm.

2.2 Ensemble Clustering

It has been shown that combining the strengths of a diverse set of clusterings
can often yield more accurate and robust solutions [4]. Unsupervised ensemble
approaches typically involves two phases: a generation phase where a collection
of base clusterings is produced, and an integration phase where an aggregation
function is applied to the ensemble members to produce a consensus solution.
The most frequently employed integration strategy has been to use the infor-
mation provided by an ensemble to determine the level of association between
pairs of objects in a dataset [4,5]. The fundamental assumption underlying this
strategy is that pairs belonging to the same natural class will frequently be co-
assigned during repeated executions of a clustering algorithm. In practice, these
pairwise co-associations are represented using a symmetric co-association ma-
trix. A consensus solution is recovered by applying a similarity-based algorithm
to the matrix, such as single-linkage agglomerative clustering.

Pairwise co-association values have also been used to gather information from
unlabelled data in order to improve the performance of kernel-based classification
algorithms. The bagged cluster kernel technique proposed by Weston et al. [6]
involves modifying a base kernel to include co-association information aggregated
from multiple k-means clusterings, which are generated on bootstrap samples.

2.3 Uncertainty Sampling

For many learning problems, large numbers of training examples will not be
available due to the expense of providing class labels. In these cases, active
learning techniques can be employed to identify and label informative data ob-
jects that will serve to maximise classification accuracy. One approach to active
learning that has widely been used is uncertainty sampling [7], where unlabelled
objects are prioritised based upon the level of uncertainty regarding their class
membership. An intuitive basis for measuring uncertainty is to consider the dis-
agreement between the predictions made by a committee of classifiers [8]. For
instance, Melville & Mooney [9] suggested measuring the uncertainty for an un-
labelled object based on the margin between its maximum class probability and
the probability of the next best competing class.

Constraint Selection by Committee 143

3 Constraint Identification

The composition and cardinality of the sets M and C can significantly impact
upon the improvements achieved by semi-supervised algorithms. In addition, as
the number of data objects n increases, the number of possible constraints also
significantly increases. If constraints are selected at random, many oracle queries
may be required before any noticeable improvement in clustering accuracy is
achieved. To illustrate this, Figure 1 shows the effect of adding constraints for
randomly chosen pairs on the normalised mutual information (NMI) [4] scores
produced when the PCKM algorithm is applied to the 3-news-similar dataset.
Even after the addition of 1000 constraints, little significant increase in accuracy
is evident. For many semi-supervised tasks, it will be the case that the oracle is
a human expert. Since it is unrealistic to expect a human to respond to so many
queries, an intelligent strategy for choosing constraints is desirable.

3.1 Imputing Constraints from Pairwise Co-associations

When seeking to choose a small set of highly informative constraints, it may
be helpful to eliminate those “easy” constraints that can be found without the
aid of a supervisor. In this section, we show that it is possible to identify such
constraints by examining the relationship between pairs of objects over a large
collection of base clusterings, denoted P = {P1, . . . ,Pτ}.

Like their supervised counterparts, it has been demonstrated that unsuper-
vised ensembles are most effective when constructed from solutions that are both
accurate and diverse [4]. To encourage diversity, a commonly employed strategy
has been to apply a partitional clustering algorithm, such as standard k-means,
to different subsamples of the same dataset. In practice, typically 60-80% of the
data is included when generating each base clustering. After each sample is clus-
tered, membership assignments for the out-of-sample objects are determined by
applying a suitable classification scheme, such as a nearest centroid classifier.

Once an ensemble P has been generated, it is customary to represent the co-
assignments between objects across all clusterings in the form of a symmetric

0 200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Random Selection

Fig. 1. Effect of randomly selected
constraints on 3-news-similar dataset

0 200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Random Imputed
Random Non−Imputed

Fig. 2. Effect of randomly selected imputed
constraints on 3-news-related dataset

144 D. Greene and P. Cunningham

1. Initialise A as the n × n empty co-association matrix for the dataset X.
2. For t = 1 to τ :

1. Draw a sample of objects Xt by random sampling without replacement.
2. Generate a base clustering Pt by clustering the sample Xt.
3. Classify each out-of-sample object based on the clusters in Pt.
4. For each pair (xi, xj) assigned to the same cluster in Pt, update A:

Aij = Aij + 1/τ

3. Construct imputed constraint sets (M′, C′) based on the co-association of each
unique pair (xi, xj), according to the rule given in Eqn. 2.

Fig. 3. Pairwise constraint imputation procedure

n × n co-association matrix A. In this matrix, an entry Aij ∈ [0, 1] denotes
the fraction of clusterings in P in which the objects xi and xj were assigned
to the same cluster. Both the ensemble and cluster kernel techniques discussed
in Section 2.2 are motivated by the assumption that the matrix A encodes
information describing the probability or confidence with which a pair of objects
will be grouped together in the natural classes of the data. For a sufficient number
of base clusterings, a value Aij ≈ 1 is a strong indicator that the pair (xi, xj)
belong to the same class, while Aij ≈ 0 indicates that they belong to different
classes. On the other hand, a value Aij ≈ 0.5 implies that we are highly unsure
about whether the objects are actually conceptually related to one another.

When performing ensemble clustering, we are typically interested in producing
a complete disjoint partition of the data. This can result in “uncertain” pairs
being grouped together in the consensus clustering. For instance, the integration
approach described in [5] only requires a value Aij > 0.5 for a pair to be placed
in the same consensus cluster. However, given the goal of accurately deducing
constraints, we focus on pairs with unambiguous associations. By thresholding
the values in A, we can eliminate uncertain pairs from consideration. Specifically,
we choose a threshold value κm for must-link constraints, which represents the
minimum level of confidence required for the co-assignment of two objects, and a
threshold κc for cannot-link constraints, which represents the maximum level of
uncertainty allowed when concluding that two objects are unrelated. Both values
lie in the range [0, 1], with the natural requirement that κm >> κc. Formally,
we construct imputed constraint sets (M′, C′) by using the rule:

Aij ≥ κm add (xi, xj) to M′

Aij ≤ κc add (xi, xj) to C′
κc < Aij < κm ignore.

(2)

The application of the method outlined in Figure 3 frequently produces con-
strained pairs that correspond to those generated from natural class labels.

Constraint Selection by Committee 145

While ensemble clustering can often provide a more comprehensive picture of
the natural structures present in a dataset, it is interesting to note that con-
straints imputed in this way, even if correct, will rarely prove directly useful
in semi-supervised clustering. Surprisingly, in some situations these constraints
can actually prove harmful. We suggest that this phenomenon is due to the fact
that these easily imputed constraints leave regions in certain underlying classes
under-represented, so that initial clusters resulting from the imputed must-link
constraints are skewed. As an example, Figure 2 shows the effect of randomly
adding constraints from the set of pairs that were correctly imputed on the 3-
news-related dataset. Here, the addition of a large number of imputed constraints
actually results in less accurate solutions. In contrast, when randomly choosing
from among non-imputed pairs, the quality of the resulting clusterings increases.

3.2 Selecting Informative Constraints

Motivated by the observations made in the previous section, we now describe a
new ensemble-based selection procedure thatmakes use of pairwise co-associations
to focus on informative constraints. This procedure consists of two phases: firstly
we use the imputed setM′ to identify a set of representative objects {r1, . . . , rk}
which correspond to distinct classes in the data; subsequently we construct clus-
ters around these representatives by adding constraints relating to objects whose
cluster assignments are difficult to determine.

While imputed constraints may not be directly useful for semi-supervised clus-
tering, they do provide a starting point for finding representative objects. This
can be achieved by examining the set of neighbourhoods produced by comput-
ing transitive closure of the imputed must-link constraints inM′. We frequently
observe that the largest neighbourhoods produced in this way will correspond to
distinct natural classes in the data. This provides a basis for selecting represen-
tatives for k different classes using only a small number of oracle queries. Firstly,
the neighbourhoods are arranged in descending order by size, and the median
object of each neighbourhood is identified (i.e. the object nearest the neighbour-
hood centroid). The median of the largest neighbourhood is elected to be the first

1. Identify imputed constraint sets (M′, C′) from a co-association matrix A.
2. Compute the transitive closure of M′, and identify the median objects of each

neighbourhood based on the values in A.
3. Choose the first representative r1 to be the median of the largest neighbourhood.
4. For c = 2 to k:

– Select rc as the median of the next largest neighbourhood, such that a
cannot-link constraint exists between rc and each of {r1, . . . , rc−1}.

5. Output a clustering P = {π1, . . . , πk}, where rc ∈ πc, together with any other
object with a must-link constraint to rc.

Fig. 4. Constraint set initialisation phase

146 D. Greene and P. Cunningham

representative r1. Each of the (k − 1) other representatives is chosen to be the
median object of the largest remaining neighbourhood, such that a cannot-link
constraint exists between that median and all previously selected representatives
(i.e. it belongs to a new class). The application of this initialisation scheme leads
to an initial clustering P = {π1, . . . , πk}, where rc ∈ πc. Any objects involved
in must-link constraints are also assigned to the appropriate cluster in P . The
complete initialisation procedure is outlined in Figure 4. A particular advantage
of this approach is that, even if constraints are only available for a subset of
objects, good representatives can be identified using imputed neighbourhoods
derived from clusterings of the entire dataset.

In the second phase of the proposed constraint selection procedure, we expand
the clustering P by incrementally assigning objects using pairwise supervision.
Objects are processed using an ordering based upon the level of uncertainty
regarding their association to the existing clusters, thereby prioritising those ob-
jects for which queries to an external oracle are particularly necessary. Formally,
let S ∈ IRn×k denote the object-cluster association matrix, such that Sic is the
mean co-association between the object xi and the members of the cluster πc:

Sic =
1
|πc|

∑

xj∈πc

Aij (3)

To evaluate the degree of uncertainty in assigning an object to a cluster in
P , we use a criterion based on the well-known silhouette index [10], which is
often employed in internal cluster validation. Rather than using distance values
computed on the raw data, we consider the margin between competing clusters
based on object-cluster associations. Specifically, for a candidate query object xi,
let πa denote the cluster with which it has the highest level of association, and
let πb denote the next best alternative cluster. The certainty of the assignment
of xi can be measured using the expression:

u(xi) =
2 · Sia

Sia + Sib
− 1 (4)

Since it is always the case that Sia ≥ Sib, Eqn. 4 produces an evaluation in the
range [0, 1], where a smaller value is indicative of a greater degree of uncertainty.

Unfortunately, if objects are chosen based on an ordering of the uncertainty
scores u(xi), this can potentially result in the generation of a large succession of
constraints for a single natural class. The use of such unbalanced constraint sets
can reduce the performance gain achieved by semi-supervised algorithms when
using small constraint sets. To address this problem, we introduce a bias in
favour of under-represented classes. This is accomplished by weighting object-
cluster association values with respect to cluster size, leading to an adjusted
certainty criterion

w(xi) =
2 · Tia

Tia + Tib
− 1 such that Tic =

|πc|∑
j |πj |

· Sic (5)

where Tia denotes the maximum weighted object-cluster association value, and
Tib is the next highest value. This weighting has the effect of producing higher

Constraint Selection by Committee 147

1. Update the object-cluster association matrix S.
2. Select the next most uncertain object xi with the minimum value for w(xi), as

calculated using Eqn. 5.
3. Arrange the clusters in descending order using the values in the i-th row of S.
4. For each cluster πc:

– Query the oracle for the pair (xi, rc) until a must-link constraint is found.
5. Assign xi to the cluster containing the correct representative.
6. Repeat from Step 1 until no further oracle queries are possible.

Fig. 5. Constraint set expansion phase

scores for objects that have strong associations with large clusters. Since objects
with lower scores are prioritised, this encourages the selection of constraints for
objects that are likely to be assigned to smaller clusters.

Once an unassigned object xi has been selected based on the minimal value
for Eqn. 5, its correct cluster in P is found by querying the oracle for constraints
between xi and each of the k representatives. Following the observations made
in [2], it is apparent that the correct cluster can be located using at most (k−1)
queries. We can potentially further reduce the number of queries required by
sorting the values in the i-th row of S in descending order. Candidate clusters
are processed in this order until a must-link pair (xi, rc) is generated. If such a
constraint is not found after (k − 1) queries, it can be assumed that the object
belongs to the final cluster without the requirement for an additional query. After
assigning xi to the correct cluster, uncertainty scores for the remaining objects
are recalculated. An outline of the expansion phase is provided in Figure 5.

4 Evaluation

In this section, we describe the results of two sets of experimental evaluations
conducted on text data. Firstly, we assess the veracity of constraints imputed
using the approach discussed in Section 3.1. In the second set of experiments,
we evaluate the performance of semi-supervised clustering when constraints are
selected using the ensemble-based procedure proposed in Section 3.2.

Both sets of experiments were performed on six text corpora, which present
different degrees of difficulty when performing document clustering. The bbc cor-
pus contains news articles pertaining to five topical areas: business, entertain-
ment, politics, sport and technology. The bbcsport corpus consists of a smaller
set of sports news articles from the same source1. The cstr dataset2 represents a
small collection of technical abstracts. The 3-news-related dataset (also referred
to as ng17-19) is a commonly used subset of the 20-newsgroups collection3,

1 Both available from http://mlg.ucd.ie/datasets/
2 Original abstracts available from http://www.cs.rochester.edu/trs
3 Available from http://people.csail.mit.edu/jrennie/20Newsgroups/

http://mlg.ucd.ie/datasets/
http://www.cs.rochester.edu/trs
http://people.csail.mit.edu/jrennie/20Newsgroups/

148 D. Greene and P. Cunningham

consisting of three groups pertaining to politics that exhibit some overlap. Another
benchmark subset, the 3-news-similar dataset, consists of three IT-related news-
groups that overlap significantly. The reuters5 dataset is a subset of the widely-
used Reuters-21578 corpus of news articles, containing documents from the five
largest categories. To pre-process the datasets, we applied standard stop-word re-
moval and stemming techniques. We subsequently removed terms occurring in less
than three documents and applied log-based tf-idf normalisation.

4.1 Validation of Imputed Constraints

To investigate the effectiveness of the constraint imputation technique, we gener-
ated an ensemble consisting of 2000 members for each dataset. These clusterings
were formed by applying standard k-means with cosine similarity and random
initialisation to samples of documents, using a subsampling rate of 80%. We
subsequently constructed a co-association matrix and a corresponding set of im-
puted constraints for each corpus by following the procedure outlined in Figure 3.
In practice, we found that conservative thresholds of κm = 0.98 and κc = 0 were
suitable for use with a variety of text datasets.

Table 1 presents details of the imputed must-link and cannot-link constraint
sets generated for each dataset. Note that the numbers reported do not take
into account any additional cannot-link constraints that can be inferred from
the imputed must-link constraints. We compare the imputed sets to the cor-
rect pairwise relations defined by the natural classification of the datasets, using
measures of pairwise precision (PP) and pairwise recall (PR). Given an imputed
set Y ′, the former refers to the fraction of imputed pairs that are correctly con-
strained, while the latter represents the fraction of the complete set Y recovered:

PP (Y ′,Y) =
|Y ′ ∩ Y|
|Y ′| PR(Y ′,Y) =

|Y ′ ∩ Y|
|Y| (6)

On each of the datasets considered, a large number of must-link and cannot-link
constraints are correctly imputed. In all but one case, pairwise precision scores
of 0.9 or higher were achieved for both constraint types. Table 1 also lists the
mean NMI scores of the base clusterings in each ensemble. It is interesting to
observe that, even when the quality of the base clusterings used to construct

Table 1. Details of imputed constraint sets for text datasets

Dataset n Base Must-Link Cannot-Link
NMI Selected PP PR Selected PP PR

bbc 2225 0.80 191619 0.98 0.38 1021257 1.00 0.52
bbcsport 737 0.71 4842 1.00 0.08 19516 1.00 0.09
cstr 505 0.64 4389 0.99 0.12 40874 0.99 0.44
reuters5 2317 0.46 145336 0.94 0.15 1202021 0.91 0.61
3-news-related 2625 0.41 245886 0.90 0.19 12620 1.00 0.01
3-news-similar 2938 0.22 17761 0.67 0.01 3025 0.95 0.01

Constraint Selection by Committee 149

a co-association matrix is poor, it is still possible to produce an accurate set
of imputed constraints. Due to the use of conservative threshold values in the
imputation process, the level of recall is significantly lower than the level of preci-
sion. However, for all the datasets under consideration, the number of correctly
imputed pairs is significantly higher than the number of constraints we could
expect to be provided by a human resource.

4.2 Constraint Selection Evaluation

We now compare the performance of the constraint selection approach proposed
in Section 3.2 with that of two alternative strategies. The first is the Explore
and Consolidate (E&C) approach described in [2]. As a baseline, we also con-
sider the random selection of constraints from all the available pairs in the data.
As our choice of semi-supervised clustering algorithm, we employ PCKM with
cosine similarity, and set the value of k to correspond to the number of natural
classes in the data. When evaluating the case where no constraints are present,
initial centroids are selected for the clustering algorithm using farthest-first ini-
tialisation. The constraint selection approaches were evaluated over 50 two-fold
cross validation trials. As an oracle, we use the natural classification supplied
for each dataset. Each oracle query results in either a must-link or a cannot-link
constraint. In each trial, constraints are available for 90% of the data, while the
remaining 10% of the data constitutes the test set. In the assignment phase of
PCKM, all constraints are given an equal weighting of 0.001.

Figure 6 shows a comparison of the mean NMI scores achieved by the three
constraint selection strategies when applied to the six datasets under considera-
tion. Note that the reported scores are calculated solely based on the assignment
of objects in the test set. We focus on the performance of the three selection
strategies for the first 150 queries, since the selection of a larger number of con-
straints by a human oracle in this context is unrealistic. For all three methods,
the points on the validation plots indicate the mean NMI score achieved using
the first p selected constraints. This ensures that each method has the same level
of supervision.

Firstly, it is clear that both the E&C and ensemble strategies represent sig-
nificantly better options than simply choosing constrained pairs at random. For
data with poorly separated clusters, such as the 3-news-related and 3-news-
similar datasets, little improvement in clustering accuracy is evident after 150
random queries. In contrast, the ensemble strategy leads to a significant increase
in accuracy, even after the addition of only 10 constraints. In general, we ob-
served that ensemble-based selection led to greater increases in accuracy after
the first 10–30 constraints than afforded by the E&C technique. This may be
attributed to the selection of good representatives based on imputed must-link
constraints, and, in particular, the use of the weighted uncertainty criterion (5)
to encourage the selection of constraints from under-represented classes. For the
bbc and bbcsport datasets, both intelligent selection methods did result in an ini-
tial drop in accuracy when using a very small number of constraints. However,
the subsequent increases in accuracy were substantial. It is interesting to note

150 D. Greene and P. Cunningham

0 50 100 150
0.7

0.75

0.8

0.85

0.9

0.95

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(a) bbc

0 50 100 150
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(b) bbcsport

0 50 100 150
0.7

0.75

0.8

0.85

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(c) cstr

0 50 100 150
0.5

0.55

0.6

0.65

0.7

0.75

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(d) reuters5

0 50 100 150

0.3

0.4

0.5

0.6

0.7

0.8

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(e) 3-news-related

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of constraints

A
cc

ur
ac

y
(N

M
I)

Ensemble
E&C
Random

(f) 3-news-similar

Fig. 6. Comparison of mean accuracy (NMI) scores for constraint selection strategies
when applied to text datasets

that the recall of the imputed constraints did not have a direct impact on the
choice of suitable representatives for the first phase of ensemble-based selection.
Also, in the case of the 3-news-similar dataset, which achieved a relatively low

Constraint Selection by Committee 151

level of pairwise precision as shown in Table 1, both the imputed constraints
and the related co-association values still proved useful when selecting real con-
straints. While initialising the proposed ensemble approach does require more
time than the E&C strategy, the running times were not prohibitive in practice.
We suggest that, for many applications, the cost of additional machine cycles
will be less than the expense of making additional queries to a human oracle.

5 Conclusion

In this paper, we demonstrated that it is often possible to correctly impute sets
of pairwise constraints for data by examining the co-associations in an ensemble
of clusterings. Furthermore, we proposed a new approach for selecting infor-
mative constraints for use in semi-supervised clustering tasks, based upon the
uncertainty of object-cluster associations. Evaluations on text data have shown
this approach to be effective in improving clustering accuracy, particularly when
working with a small number of constraints. We suggest that the notion of im-
puted constraints may also be relevant in other contexts, such as when inte-
grating information from different feature spaces, or where prior knowledge is
available in the form of one or more existing clusterings of the data.

References

1. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

2. Basu, S., Banerjee, A., Mooney, R.: Active semi-supervision for pairwise con-
strained clustering. In: Proc. 4th SIAM Int. Conf. Data Mining, pp. 333–344 (2004)

3. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In: Proc. 10th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, pp. 59–68. ACM Press, New York (2004)

4. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. J. Machine Learning Research 3, 583–617 (2002)

5. Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F.
(eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)

6. Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., Noble, W.: Semi-supervised
protein classification using cluster kernels. Bioinformatics 21(15), 3241–3247 (2005)

7. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-
ing. In: Proc. 11th Int. Conf. Machine Learning, pp. 148–156 (1994)

8. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proc. 5th Work-
shop on Computational Learning Theory, pp. 287–294. Morgan Kaufmann, San
Francisco (1992)

9. Melville, P., Mooney, R.: Diverse ensembles for active learning. In: Proc. 21st Int.
Conf. Machine Learning, pp. 584–591 (2004)

10. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Computational and Applied Mathematics 20(1), 53–65 (1987)

The Cost of Learning Directed Cuts

Thomas Gärtner1 and Gemma C. Garriga2

1 Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany
2 HIIT Basic Research Unit, Helsinki University of Technology, Finland

thomas.gaertner@iais.fraunhofer.de, gemma.garriga@hut.fi

Abstract. In this paper we investigate the problem of classifying ver-
tices of a directed graph according to an unknown directed cut. We first
consider the usual setting in which the directed cut is fixed. However,
even in this setting learning is not possible without in the worst case
needing the labels for the whole vertex set. By considering the size of
the minimum path cover as a fixed parameter, we derive positive learn-
ability results with tight performance guarantees for active, online, as
well as PAC learning. The advantage of this parameter over possible al-
ternatives is that it allows for an a priori estimation of the total cost
of labelling all vertices. The main result of this paper is the analysis of
learning directed cuts that depend on a hidden and changing context.

1 Introduction

Classifying vertices in directed graphs is an important machine learning setting
with many applications. In this paper we consider learning problems on directed
graphs with three characteristic properties: (i) The target concept defines a
directed cut; (ii) the total cost of finding the cut has to be bounded before any
labels are observed to asses whether it will exceed some given budget; and (iii)
the target concept may change due to a hidden context.

For one example consider the problem of finding the source of contamination
in waste water systems where the pipes are the edges of the digraph and the
direction is given by the direction of the water flow. Often uncontaminated
waste water can be used to fertilise fields and it is important to find the cause
of contamination as quickly as possible. As each test costs time and money, we
aim at a strategy that needs the least number of tests. The pipes connecting
uncontaminated water with contaminated water form a directed cut.

For another example consider classifying intermediate products in some pro-
cess, e.g., for manufacturing cars, as faulty or correct. The process can be rep-
resented by a directed graph and the concept defines a directed cut as typically
faults that appear in an intermediate product will also be present in later stages
of the product. The directed cut we are interested in consists of all edges con-
necting correct to faulty intermediate products. Furthermore, the concept may
depend on a hidden variable as some pre-assembled parts may vary and the fault
may occur only for some charges and not for others. In order to be able to trade
off between the cost of having a faulty product and the costs for finding the
cause of the fault, tight performance guarantees are needed.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 152–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Cost of Learning Directed Cuts 153

Performance guarantees proposed in machine learning literature can be dis-
tinguished into concept-dependent and concept-independent. Concept-dependent
guarantees state that the performance of the learning algorithm depends on
the unknown target concept’s complexity. Concept-independent guarantees state
that the performance of the learning algorithm depends on the instance space’s
complexity, or in a transductive setting on the given training and test sets. For
real-world applications, one often faces the question whether the costs of labelling
a whole dataset exceeds a given budget or not. In this case, concept-independent,
transductive, bounds are to be preferred over concept-dependent guarantees.

Our first result is that for learning directed cuts we can achieve tight, concept-
independent guarantees. Based on a fixed size of the minimum path cover, we
establish logarithmic performance guarantees for online learning, active learning,
and PAC learning. We furthermore show which algorithms and results carry over
to learning intersections of monotone with anti-monotone concepts.

We then turn to the more complex setting of learning with a hidden context,
i.e., the unknown concept depends on an unobservable variable that can change
any time. In order to enable query learning algorithms to identify one of the
true concepts, the usual query model is not sufficient. We hence propose a novel
type of queries and give learning algorithms able to cope with concept drift due
to hidden changes in the context. In particular, it is necessary (and sufficient)
that the learning algorithm can query three different vertices at a time where it
is ensured that the answers will be provided on the basis of the same concept.
Worst case guarantees in this setting are related to adverserial learning.

The main purpose of this paper is to summarise our findings on the application
of the size of the minimum pathcover as a concept-independent, transductive
learning parameter for learning directed cuts with and without changing context.
Due to space limitations we only sketch proofs.

2 Preliminaries

2.1 Directed Graphs

For any k ∈ N we denote {1, . . . , k} by [[k]] and the Boolean values ‘true′, ‘false′

by �,⊥, respectively with Ω = {�,⊥}.
A directed graph (digraph) is a pair (V,E) where V is the set of vertices and

E ⊆ V 2 is the set of edges. For a digraph G we will sometimes denote its vertices
by V (G) and its edges by E(G). The induced subgraph of G = (V,E) by a subset
of vertices U ⊆ V is the digraph G[U] = (U,E[U]) where E[U] = E ∩ U2. A
subgraph of G is any digraph G′ = (V ′, E′) with V ′ ⊆ V (G) and E′ ⊆ E[V ′].

For a digraph (V,E) and two sets U,U ′ ⊆ V we define E(U,U ′) = {(u, u′) ∈
E | u ∈ U \ U ′ ∧ u′ ∈ U ′ \ U}. The children of U in a digraph (V,E) are
then expressed as δ+(U) = {v ∈ V | (u, v) ∈ E(U, V \ U)} and its parents as
δ−(U) = {v ∈ V | (v, u) ∈ E(V \ U,U). The contraction of a set of vertices
U ⊆ V on a digraph G = (V,E) is the digraph ({u} ∪ V \ U,E[V \ U] ∪ ({u} ×
E(U, V \ U)) ∪ (E(V \ U,U)× {u})), i.e., a new digraph which has U replaced
by a single vertex u �∈ V .

154 T. Gärtner and G.C. Garriga

A walk in a directed graph G is a sequence p1 . . . pi . . . pn of vertices of G such
that ∀i ∈ [[n − 1]] : (pi, pi+1) ∈ E and |p| = n is the length of the walk p. We
denote the (possibly infinite) set of walks in G by P(G) and define the binary
relations ≤G,≥G such that u ≥G v⇔ v ≤G u⇔∃p ∈ P(G) : p1 = u ∧ p|p| = v.
Whenever G is clear from the context it will be omitted. For any directed graph,
these relations form a preorder on the vertex set. For any preorder ≤ and vertex
set U ⊆ V (G) we will use minU = {u ∈ U | �v ∈ U \ {u} : v ≤ u} and similarly
maxU = {u ∈ U | �v ∈ U \ {u} : u ≤ v}. A digraph G is strongly connected
iff ∀u, v ∈ V (G) : u ≥ v ∧ v ≥ u. A strongly connected component of a graph is
a maximal strongly connected induced subgraph. A directed graph G is acyclic
or a DAG iff it does not have a strongly connected component. On a directed
acyclic graph the relations ≤G,≥G form a partial order on the vertex set. A
walk on a directed acyclic graph is called a path or a chain. A set of vertices
U ⊆ V (G) is an antichain if ∀u, v ∈ U : u ≥ v ∨ v ≥ u⇒ u = v.

2.2 Learning Directed Cuts

Classification on graphs involves identifying a subset of the vertices, say C ⊆ V .
We investigate identifying directed cuts. Formally, a set C defines a directed cut
E(C, V \ C) in a digraph if and only if E(V \ C,C) = ∅ (see, e.g., [1]). Due
to the bijection between sets C defining directed cuts and the set of cut edges
E(C, V \C) we will us the term directed cut to refer to C as well as to E(C, V \C).
In the partially contaminated water system example, the uncontaminated water
defines a directed cut corresponding to the set of pipes connecting contaminated
to uncontaminated water.

In terms of the partial order ≥ induced by the digraph (V,E), a directed cut
can then be seen as a set of vertices U ⊂ V such that �u ∈ U, v ∈ V \ U : v ≥
u. Furthermore, identifying a directed cut can be seen as learning a labelling
function y : V → Ω where ∀(u, v) ∈ E : y(v)⇒ y(u). We call such a labelling
a monotone concept on a digraph or consistent with the directed graph in the
sense that the preorder of the vertices is respected by the labelling. A monotone
concept y corresponds to the directed cut Cy = {v ∈ V | y(v)} which we will
sometimes call the extension of y and E∩(Cy×V \Cy) will be called the concept
cut. The elements of the concept cut will be referred to as cut edges.

Without loss of generality it is sufficient to consider learning on DAGs. Any
result for DAGs (defining a partial order) directly carries over to general digraphs
(defining a preorder). This holds as directed cuts can never “cut” a strongly con-
nected component. Learning on a general digraph is hence equivalent to learning
on a digraph that has all strongly connected components contracted. Also, with-
out loss of generality we can always add a ‘super-source’ and a ‘super-sink’ such
that the new graph has a unique minimum and maximum.

2.3 The Cost of Learning

We consider the following question: Given an oracle that can provide us with
hints about the fixed but unknown concept to be learned and some cost for each

The Cost of Learning Directed Cuts 155

hint, what is the worst case total cost needed to induce a satisfactory hypothesis?
This question is important, for instance, when only a given budget is available for
the task of finding a satisfactory hypothesis. Different concrete learning settings
considered in literature are distinguished by the type of the hints given by the
oracle, the cost function, and the definition of satisfactory hypotheses.

For active learning the oracle supplies the learning algorithm with the true
label of any instance selected by the learning algorithm. Each hint, i.e., answer
to a query, has a fixed cost and the hypothesis is satisfactory iff it is equal to the
concept. Calls to the labelling oracle are called membership queries. For online
learning the oracle selects an instance, makes the learning algorithm guess its
label and then supplies the learning algorithm with the true label. Each wrong
guess has a fixed cost and the hypothesis is satisfactory iff it is equal to the
concept. The maximum total cost is the worst case missclassification bound.
For PAC learning the oracle supplies the learning algorithm with a labelled
instance drawn according to a fixed but unknown distribution. Each example
has a fixed cost and a hypothesis is satisfactory iff it can be guaranteed that its
error for examples drawn from the same distribution is smaller than some ε with
probability larger than 1− δ for some δ. The total cost is the sample complexity.

As we are considering a transductive setting, i.e., the whole vertex set (without
any labels) is input to the learning algorithm, we are interested in achieving costs
logarithmic in the size of the graph. Hence, we consider a concept not learnable
on a digraph in one of the above settings if we can not achieve polylogarithmic
cost bounds. It can be seen that the general problem of identifying a directed cut
is not learnable in any of the above settings. Consider the DAG ([[n + 2]], ({n +
1} × [[n]]) ∪ ([[n]] × {n + 2})). Given y(n + 1) ∧ ¬y(n + 2), and any information
about the vertices [[n]]\{u} for some u ∈ [[n]], we can not infer the label of u. This
implies that—in the worst case—it is impossible to identify the correct directed
cut without costs in the order of the size of the graph.

2.4 Fixed Parameter Learnability

As directed cuts are in general not learnable, it is important to identify tractable
subclasses. Performance parameters proposed in machine learning literature can
be distinguished into concept-dependent and concept-independent parameters.
Concept-dependent parameters define subclasses of the concept class. Concept-
independent parameters define subclasses of the instance space. An example
of the first case is the VC dimension of k-term monotone DNF formulae; an
example of the latter case is the VC dimension of monotone Boolean formulae
over n variables. Concept-independent parameters may be further distinguished
into transductive ones and inductive ones.

The related setting of identifying a cut in an undirected graph (see e.g. [2]
for a derivation of the VC dimension of small cuts) has been found to be fixed
parameter learnable where the parameter is the size of the concept cut, i.e., the
number of edges between differently labelled vertices. Although we can show
that directed cuts are also fixed parameter learnable if the size of the directed
concept cut is considered as the parameter, the dependency of the total cost on

156 T. Gärtner and G.C. Garriga

Table 1. Total cost of learning monotone concepts as well as intersections of monotone
and anti-monotone concepts in a DAG (V, E) for various cost models and fixed size of
the minimum path cover Q∗. A ‘=’ indicates an exact result for all directed graphs,
‘≤’ (‘≥’) indicate tight upper (lower) bounds.

Monotone Concepts Intersections

Active query bound ≤ |Q∗| log |V | = |V |
Online mistake bound ≤ |Q∗| log |V | ≤ |Q∗| + 2|Q∗| log |V |
VC dimension = |Q∗| ≤ 2|Q∗|; ≥ |Q∗|

PAC sample complexity ≤
⌈

|Q∗|
ε

ln |Q∗|
δ

⌉
≤
⌈

2|Q∗|
ε

ln 2|Q∗|
δ

⌉

a parameter of the concept is often not desireable. In particular in cases where
we want or need to estimate the total cost of learning the cut a priori, concept-
dependent parameters such as the size of the concept cut are not sufficient.

In this paper we concentrate on learning monotone concepts on DAGs for
which the size of the minimum path cover of the vertices is bounded. This pa-
rameter is concept-independent and transductive. Hence, opposed to the size of
the concept cut, it can be used to a priori estimate the total cost of classification.

3 Learning with Fixed Minimum Path Cover Size

Table 1 summarises the results that can be obtained when the size of the mini-
mum path cover Q∗ of the DAG is fixed. In all but one of the considered learning
settings, monotone concepts (directed cuts) as well as the intersection of mono-
tone and anti-monotone concepts are fixed-parameter learnable, i.e., the total
cost of learning is O(|Q∗| log |V |). The remainder of this section first introduces
path covers and then describes the performance guarantees in more details.

3.1 Path Covers of DAGs

A path cover of U ⊆ V in a DAG G = (V,E) is a set Q ⊆ P(G) of paths such
that U =

⋃
p∈Q V (p). The algorithms we present later and/or their analysis rely

on a minimum path cover of V (G). We refer to an arbitrary minimum path cover
as Q∗ and assume wlog that Q∗ contains only maximal paths and hence that
each path starts at the source (labelled �) and ends at the sink (labelled ⊥).

The size of the minimum path cover is upper bounded by the maximum dicut
which is hard to find. In contrast to the concept cut it is not lower bounded by
the minimum dicut and can be computed in polynomial time (see, e.g., [3] for
algorithms) from the graph without knowing the concept. It can indeed be much
smaller than the concept cut.In fact, while the concept cut size is lower bounded
by the minimum dicut, the minimum path cover can even be smaller than the

The Cost of Learning Directed Cuts 157

minimum dicut. Last but not least, the minimum path cover has the intuitive
property that learning gets the easier the more edges we observe. Note that this
is not the case when using the size of the concept cut.

3.2 Learning Monotone Concepts

To see that the results of Table 1 are tight when learning directed cuts (i.e.
monotone concepts), consider the digraph ([[n+2]], ({n+1}×[[n]])∪([[n]]×{n+2})).
Given y(n+ 1)∧¬y(n+ 2), and any information about the labels of the vertices
[[n]] \ {u} for some u ∈ [[n]], we can not infer the label of u.

The algorithms for active and online learning perform binary search on each
path in the path cover independently. For active learning this means always
querying the vertex furthest from the nearest vertex with known or inferred label
in the path, i.e., the vertex half way between the smallest known positive and
the largest known negative of the path. With each query we can then learn the
label of at least half of the remaining vertices. For online learning binary search
means always predicting according to the closest vertex in the path. With each
mistake we can deduce the label of at least half of the remaining vertices.

That the VC dimension is smaller than the size of the minimum path cover
follows by induction over the path cover size and two observations: Firstly, on
each path, monotone concepts can only shatter one vertex. Secondly, introducing
more edges can not allow us to shatter more vertices. That the VC dimension is
equal to the size of the minimum path cover follows then by Dilworth’s theorem
[4]. This theorem relates the size of the minimum path cover to the size of the
largest antichain. Observing that each antichain can be shattered by monotone
concepts gives the desired result. As efficiently finding a consistent hypothesis
is trivial, directed cuts can be efficiently PAC learned. A direct proof of the
sample complexity is very similar to the proof for axis-aligned rectangles and
will be included in an extended version of the paper.

Notice that learning directed cuts generalises learning of monotone Boolean
formulae by considering each Boolean instance as a vertex of a directed hyper-
cube, i.e., the digraph (2[[n]], {(U,U ∪ {v}) | U ⊆ [[n]] ∧ v �∈ U}). An antichain
of size

(
n

�n/2�
)

in this graph is found as {U ⊆ V | |U | = n/2�} and that this
is indeed the largest anti-chain follows from Sperner’s theorem [5]. This VC di-
mension is exactly the one obtained (without path covers) in [6]. However, for
data that is only a subset of the hypercube, our transductive guarantee can be
(much) better. For instance, it can be seen that the size of the minimum path
cover of a set of Boolean instances does not change when redundant attributes
are introduced. Most other results on learning of monotone Boolean formulae
consider particular sets of functions with restricted complexity, e.g. the size of
the smallest decision tree representing the concept [7]. As complexity is a concept
dependent parameter, we can not use it to estimate classification costs a priori.
Our results are complementary to these bounds, as depending on the concept
class and the training and test instances, one or the other bound is tighter.

158 T. Gärtner and G.C. Garriga

3.3 Learning Intersections of (Anti-) Monotone Concepts

Given some functions yi : V → Ω monotone on a digraph (V,E) and constants
bi ∈ Ω we call the concept y∩(v) =

∧
i bi xor yi(v) an intersection of monotone

and anti-monotone concepts on G. The total cost of learning such concepts is
summarised in the second column of Table 1.

To see that active learning is not possible in this setting, consider any ordering
i1, . . . i|V | in which an algorithms queries the vertices of any digraph. As the
intersection concept class contains the empty set as well as any singleton vertex,
given y(i1), . . . y(i|V |−1) = ⊥ we can not conclude the label of i|V |.

For online learning, on the other hand, a small modification of the above
described algorithm for learning directed cuts suffices to obtain a mistake bound
logarithmic in the number of vertices: As long as we have not observed any label
on a path, we predict ⊥. As soon as we make the first mistake on a path, we
split the problem in two subproblems, each equivalent to learning a directed cut.

The proof of the VC dimension being upper bounded by twice the size of
the minimum path cover follows along the lines of the proof of the monotone
case. However, we now only have a bound, not an exact result. To see that there
are graphs for which the VC dimension of intersections of monotone and anti-
monotone concepts is smaller than twice the size of the minimum path cover,
consider the graph ([4], {(1, 2), (2, 4), (1, 3), (3, 4)}). This graph has an antichain
of size two and hence no smaller path cover. However, we can not shatter all
four vertices as we can never achieve that y(1) = y(4) = � = ¬y(2) = ¬y(3).
The precise VC dimension depends in this case on the maximum U ⊆ [V]2 with
∀U,U ′ ∈ U , u ∈ U, u′ ∈ U ′ : u ≤ u′ ∨ u′ ≤ u⇒ U = U ′.

4 Learning Despite Changing Concepts

In many real world learning problems the target concept may change depend-
ing on a hidden context such as unobservable variations in the environment.
For instance, consider again the directed graph representing the assembly of a
product from subparts. Learning a directed cut corresponds in this example to
finding those stages of the process that introduced faults. Indeed, whether a fault
is introduced at some stage or not, may depend on an unknown property, like
variations in basic parts. Hence, the fault may occur only sometimes, depending
on this hidden context. In order to be able to trade off between the cost of hav-
ing a faulty product and the costs needed to find the cause of the fault, tight
performance guarantees for learning with hidden contexts are needed.

For that, we consider a variant of active learning where the target concept
yb : V → Ω also depends on a hidden context b that may change at any time.
We can view this as having different monotone concepts Cb for each value of b
and the oracle chooses a b for each query. For simplicity we restrict ourselves to
Boolean contexts b ∈ Ω. The aim of the learning algorithm is to discover either
of the true concepts, C	 or C⊥, despite the changing concepts.

To obtain worst case bounds for this setting, we consider the oracle as an
adversarial ‘evil’ oracle that chooses the hidden context to maximise the cost of

The Cost of Learning Directed Cuts 159

learning either of the directed cuts. Although the context does not need to be
(and often will not be) a function of the query, to prove negative results it will be
useful to sometimes view it in this way. Key roles in the analysis of the learning
algorithms will be played by the edges connecting vertices with different labels
in one of the concepts, the cut edges, as well as by the elements of the symmetric
difference of the two true concepts, the distinction points C	#C⊥ (the elements
in either of the concepts but not in both).

Similar to the settings without a hidden context, a setting will be called
learnable if there is a learning algorithm that can be guaranteed to identify one
of the true concepts while asking only a number of queries (poly-) logarithmic
in the number of vertices. However, we will now also encounter settings in which
we can not find a true concept even by querying all vertices.

In the remainder we will show that traditional membership queries are not
sufficient to learn directed cuts when a hidden context is present. One way to
enable learning is to allow the algorithm to ask for the label of multiple vertices
at the same time, which the oracle is then forced to answer according to the
same concept. We will call these “m-ary” queries, where m ∈ N is the number
of vertices that can be queried at once and will be answered from the same
concept, i.e., during one m-ary query the context does not to change. We use
the notation 〈·〉m : V m → Ωm for m-ary queries. We will show that 2-ary queries
are only slightly more powerful than 1-ary queries and that in general directed
cuts with a hidden context are not learnable with 2-ary queries. However, we
will also describe an algorithm that is able to correctly identify one of the true
concepts with logarithmically (in the size of the graph) many 3-ary queries.

4.1 1-Ary Membership Queries

With traditional membership queries, directed cuts with hidden context are not
learnable even if the size of the minimum path cover is fixed. We distinguish two
cases depending on the size of the symmetric difference C⊥#C	 of the concepts.

Consider first the case |C⊥#C	| ≥ 2. Here, we can find an adversarial context
such that any learning algorithm can discover neither of the two true concepts.
Let v ∈ maxC⊥#C	 where the maximum is taken with respect to the partial
order induced by the DAG and assume without loss of generality that v ∈ C	.
Then, any vertex before v in the partial order (an ancestor) belongs to both C	
and C⊥. Hence, the set S = C⊥ ∪ {v} is monotone. The oracle can pretend to
answer from S by choosing C⊥ for all queries u with u �= v and choosing C	
only if u = v. Observing these answers from the oracle, the learning algorithm
can not guess either of the true concepts.

In fact, even in the extreme case with the symmetric difference |C⊥#C	| ≤ 1,
directed cuts are not learnable: The answers of the oracle can not be distin-
guished from the above case without knowing |C⊥#C	| ≤ 1.

For an illustrative example consider the path ([[4]], {(1, 2), (2, 3), (3, 4)}) with
the concepts C⊥ = [[1]] and C	 = [[3]]. If the query u ∈ [[2]], the oracle answers
according to C	, otherwise according to C⊥. Then, no matter the queries, the
learning algorithm will only observe the ‘fake’ concept [[2]]. Now, consider the

160 T. Gärtner and G.C. Garriga

concepts C⊥ = [[1]] and C	 = [[2]]. Even if the oracle answers consistently ac-
cording to C	, the learning algorithm has no means of distinguishing this case
from the previous one. Even more surprisingly, also in the seemingly trivial case
C	 = C⊥ = [[2]], we have no means to distinguish the answers of the oracle from
the answers in the previous case.

4.2 2-Ary Membership Queries

We consider now 2-ary membership queries, i.e., the learning algorithm can ask
for the label of two vertices simultaneously and the answers will be given from
the same concept. After each 2-ary query, the context may change. We denote
2-ary queries of vertices v and v′ by 〈v, v′〉2.

As one would expect, 2-ary queries are more powerful than traditional (1-ary)
queries. For an example where this holds, consider a single path ([[n]], {(i, i+1) |
i ∈ [[n − 1]]}) and coinciding concepts C	 = C⊥ = [[c]] for some 1 < c < n. In
this case we can find out whether [[i]] is a true concept or not by simply querying
the vertices 〈i, i + 1〉2 in one 2-ary query. If the answer is 〈i, i + 1〉2 = (�,⊥) we
have found a true concept (i = c) otherwise not. As we assumed C	 = C⊥ we
can find this cut edge with logarithmically many queries.

However, already the simple setting of a single path with symmetric difference
|C	#C⊥| ≥ 1 is not learnable with 2-ary queries. In this case, no matter which
queries the learning algorithm asks, the oracle can always answer such that it
only reveals a distinction point (an element of the symmetric difference) and
‘hides’ the concept cut. In fact, a naive learning algorithm that queries all pairs
of vertices connected by an edge suffices to find at least one distinction point. If
the oracle would try not to reveal a distinction point, it would need to answer
one 2-ary query of adjacent vertices by �,⊥ and it would hence reveal us one
true concept, which it will—of course—avoid.

If we find a distinction point we can query the pair of vertices adjacent to the
distinction point, say u, v. Through the answer we can either identify another
distinction point or we can be sure that one of the two concepts has a cut
bettween u and v. We can repeat this procedure, now querying the vertices
adjacent to the distinction area, until we find no further distinction point. Then,
we can be sure that the distinction area is adjacent to a cut edge, however, we
cannot be sure which side of the distinction area is adjacent to the cut.

Consider the illustrative example ([[3]], {(1, 2), (2, 3)}). We will show that even
when asking the full set of possible query combinations, the corresponding an-
swers can be such that deducing one of the true concepts is not possible. Suppose
now, all possible 2-ary queries are answered as follows: 〈1, 2〉2 = (�,�); 〈2, 3〉2 =
(⊥,⊥); 〈1, 3〉2 = (�,⊥). The learning algorithm knows from these answers that:
First, vertex 2 belongs to the symmetric difference of the two true concepts, i.e.
2 ∈ C	#C⊥; second, there is one of the true concepts that contains vertices 1, 2;
and third, there is one of the true concepts that does not contain vertices 2, 3.
Yet this information does not allow the learning algorithm to certainly identify a
true concept. It might be that: (i) C	 = [[1]], C⊥ = [[2]]; (ii) C	 = [[1]], C⊥ = [[3]];
and (iii) C	 = ∅, C⊥ = [[2]]. For each possibility, there is a context such that the

The Cost of Learning Directed Cuts 161

oracle will produce the above mentioned set of answers. Hence, the learning al-
gorithm has no means to distinguish these possibilities. Notice that in this case
knowing |C	#C⊥| = 1 would help us identify both true concepts while even
knowing |C	#C⊥| = 2 would not be sufficient to surely identify one concept.

4.3 3-Ary Membership Queries

In this section, we consider 3-ary membership queries. We give an algorithm
that is guaranteed to find one of the true concepts for any DAG and any pair
of concepts with at most |Q∗|2 + 2|Q∗| log |V | many 3-ary membership queries.
The learning algorithm can be summarised in three steps:

1. Find an edge that corresponds to a cut edge in one of the true concepts on
each path in the path cover or find a distinction point (≤ |Q∗| log |V |).

2. Check that the cut edges (from step 1) on each path belong to the same true
concept or find a distinction point (≤ |Q∗|2).

3. Given a distinction point, find any of the two concepts (≤ 2|Q∗| log |V |).

Note that the main difference between 3-ary queries and 2-ary ones is that as
soon as we have a distinction point, we can use it to perform a coordinated
binary search in both true concepts at the same time.

Step one (finding a cut edge or a distinction point) could in principle proceed
as described above for 2-ary membership queries, however, with 3-ary queries we
can find the cut or a distinction point on each path p in log |V | many queries:
We repeatedly perform binary search by querying the smallest known positive
on p, the largest known negative on p as well as the vertex half way between
them. As long as we do not get a distinction point on a path, we assume all
answers of the oracle correspond to the same concept. Notice that even if the
oracle changed the concept but the answers stay consistent with those received
so far, the strategy of the learning algorithm needs no change. Unless we get a
distinction point, we can reduce the number of vertices on this path for which we
do not know any label by half. Hence, after log |V | many queries we will either
get a distinction point or a cut edge. If we do not have a distinction point yet,
we proceed with the same procedure on the next path.

Step two (finding a distinction point) needs to check wether the individual
cut edges that we found in step one for each path, correspond all to the same
concept. If this is the case then we are done, otherwise we find a distinction
point. This can be achieved with |Q∗|2 many queries as follows: For a pair of
paths p, q ∈ Q∗ denote the corresponding cut edges found in step one by (up, vp)
and (uq, vq), respectively. The learning algorithm can find out if there is one
true concept which both edges correspond to, by asking only two 3-ary queries
〈up, vp, uq〉3 and 〈up, vp, vq〉3. If the oracle answers consistently with its previous
answers then such a true concept exists. If the oracle deviates from its previous
answers, we have found a distinction point. We proceed with the next pair of
paths until we get a distinction point or have checked that there is a concept in
which all edges found in step one are correct cut edges.

162 T. Gärtner and G.C. Garriga

Step three (finding a concept given a distinction point) is the simplest of the
three steps and will be performed after in step one or two the learning algorithm
found a distinction point. It proceeds simply by performing a binary search on
each path in the path cover for both concepts at the same time. The 3-ary
query will always include the distinction point as one of the queries, and the two
remaining ones will be used for the binary search. After at most 2|Q∗| log |V |
many queries (in fact we may subtract the number of queries made in step one)
we can be sure to have found one of the two concepts.

5 Related Work

Recently, the use of cuts in learning on graphs is becoming more and more
popular. Usually motivated by the ‘cluster assumption’ [8] one tries to find a
small cut separating positive labeled vertices from negative labeled ones. for
instance, work in [9] extends an earlier approach based on finding the minimum
cuts in a graph by adding randomness to the graph structure. In [2] it is shown
that the VC dimension of small cuts is bounded by the size of the cut. The
disadvantage of these approaches is that the performance depends on a property
of the concept and not on an efficiently computable property of the graph like
the minimum path cover. Furthermore, in the kind of applications we mentioned
in the introduction, it is questionable whether the concept cut is indeed small.

It is also possible to derive concept-dependent results for learning directed
cuts. We show this here for active learning: As long as there is a walk from
source to sink, choose the shortest such walk and perform binary search on this
path. As soon as a concept cut edge is found, remove it and iterate. At least every
log |V | iterations a concept cut edge is removed and the algorithm terminates
with the corret cut after as many iterations as there are edges in the cut.

Learning directed cuts is also closely related to learning monotone Boolean for-
mulae as these can be modelled by directed cuts on the directed hypercube. Most
performance guarantees for learning monotone Boolean formulae are concept-
dependent. We showed that our results imply concept-independent and trans-
ductive performance guarantees for learning monotone Boolean formulae.

Learning with concept drift due to hidden context has for instance been in-
vestigated in [10,11]. The setting is different from ours in that once a concept
is learned, it can become invalid only after a certain interval of time. To the
best of our knowledge, learning monotone concepts with hidden context that
can change at arbitrary points in time has not been investigated.

6 Conclusions

The question whether a learning task is feasible with a given budget is an im-
portant problem in real world machine learning applications. Recent learning
theoretical work has concentrated on performance guarantees that depend on
the complexity of the target function or at least on strong assumptions about
the target function. In this paper we proposed performance guarantees that only

The Cost of Learning Directed Cuts 163

make natural assumptions about the target concept and that otherwise depend
just on properties of the unlabelled training and test data. This is in contrast to
related work on learning small cuts in undirected graphs where usually the size
of the concept cut is taken as a (concept-dependent) learning parameter.

Concepts on digraphs, which are a natural model, e.g., for technical processes,
are typically monotonic. In this paper we proposed the size of the minimum path
cover as a performance parameter for learning directed cuts (i.e., monotone con-
cepts on digraphs). On the one hand, this parameter can efficiently be computed
from unlabelled training and test data only; and is, on the other hand, sufficiently
powerful to make directed cuts fixed parameter learnable in the active, online,
as well as PAC learning frameworks.

In many real world learning problems, an additional challenge is often that the
concept that a learning algorithm tries to identify changes depending on some
hidden context. We hence extended the usual query learning model to include a
hidden context that can change at any time and explored learnability with a more
powerful query model. In particular, we show that to enable learnability despite
a changing concept, it is necessary (and sufficient) that the learning algorithm
can query three different vertices at a time where it is ensured that the answers
will be provided on the basis of the same concept. While, in this paper, we
concentrated on learning on directed graphs, we believe that this setting can
also have significant impact in other domains where some relevant variables are
unobservable. We will study such domains as part of our future work.

References

1. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Heidelberg (2002)

2. Kleinberg, J.: Detecting a network failure. In: FOCS, IEEE, Los Alamitos (2000)
3. Ntafos, S., Hakimi, S.: On path cover problems in digraphs and applications to

program testing. IEEE Transactions on Software Engineering (1979)
4. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Math-

ematics (1948)
5. Sperner, E.: Ein satz über untermengen einer endlichen menge. Mathematische

Zeitschrift (1928)
6. Procaccia, A.D., Rosenschein, J.S.: Exact vc-dimension of monotone formulas. Neu-

ral Information Processing — Letters and Reviews (2006)
7. O’Donnell, R., Servedio, R.A.: Learning monotone decision trees in polynomial

time. In: IEEE Conference on Computational Complexity, IEEE, Los Alamitos
(2006)

8. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In:
AISTATS (2005)

9. Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning
using randomized mincuts. In: ICML’04, vol. 13 (2004)

10. Harries, M.B., Sammut, C., Horn, K.: Extracting hidden context. Machine Learn-
ing 32(2), 101–126 (1998)

11. Widmer, G., Kubat, M.: Effective learning in dynamic environments by explicit
context tracking. In: ECML ’93, pp. 227–243 (1993)

Spectral Clustering and Embedding with Hidden

Markov Models

Tony Jebara, Yingbo Song, and Kapil Thadani

Department of Computer Science, Columbia University, New York NY 10027, USA
{jebara,yingbo,kapil}@cs.columbia.edu

Abstract. Clustering has recently enjoyed progress via spectral meth-
ods which group data using only pairwise affinities and avoid parametric
assumptions. While spectral clustering of vector inputs is straightfor-
ward, extensions to structured data or time-series data remain less ex-
plored. This paper proposes a clustering method for time-series data
that couples non-parametric spectral clustering with parametric hidden
Markov models (HMMs). HMMs add some beneficial structural and
parametric assumptions such as Markov properties and hidden state
variables which are useful for clustering. This article shows that us-
ing probabilistic pairwise kernel estimates between parametric models
provides improved experimental results for unsupervised clustering and
visualization of real and synthetic datasets. Results are compared with a
fully parametric baseline method (a mixture of hidden Markov models)
and a non-parametric baseline method (spectral clustering with non-
parametric time-series kernels).

1 Introduction

This paper explores unsupervised learning in the time-series domain using a com-
bination of parametric and non-parametric methods. Some parametric assump-
tions, such as Markov assumptions and hidden state assumptions, are quite useful
for time-series data. However, it is also advantageous to remain non-parametric
and agnostic about the overall shape that a collection of time-series data forms.
This paper provides surprising empirical evidence that a semi-parametric [1,2]
method can outperform both fully parametric methods of describing multiple
time-series observations and fully non-parametric methods. These improvements
include better clustering performance as well as better embedding and visual-
ization over existing state-of-the-art time-series techniques.

There are a variety of parametric and non-parametric algorithms for discov-
ering clusters within a dataset; however, the application of these techniques for
clustering sequential data such as time-series data poses a number of additional
challenges. Time-series data has inherent structure which may be disregarded
by a fully non-parametric method. Additionally, a clustering approach for time-
series data must be capable of detecting similar hidden properties or behavior
between sequences of different lengths with no obvious alignment principle across
temporal observations.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 164–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Spectral Clustering and Embedding with Hidden Markov Models 165

Alternatively, standard parametric clustering methods are popular but can
make excessively strict assumptions about the overall distribution of a dataset
of time-series samples. Expectation Maximization (EM), for example, estimates
a fully parametric mixture model by iteratively adjusting the parameters to max-
imize likelihood [3,4,5]. In the time-series domain, a mixture of hidden Markov
models (HMMs) can be used for clustering [5]. This is sensible since the un-
derlying Markov process assumption is useful for a time series. However, the
parametric mixture of HMMs may make invalid assumptions about the shape of
the overall distribution of the collection of time-series exemplars. Just as a mix-
ture of Gaussians assumes a radial shape for each cluster, many fully parametric
time series models make assumptions about the shape of the variation across
the many time series in a dataset. This is only sensible if data is organized into
radial or symmetric clusters. In practice, though, clusters (of points or of time
series) might actually be smoothly varying in a non-radially distributed manner.

Recent graph-theoretic approaches to clustering [6,7,8], on the other hand,
do not make assumptions about the underlying distribution of the data. Data
samples are treated as nodes in a weighted graph, where the edge weight be-
tween any two nodes is given by a similarity metric or kernel function. A k-way
clustering is represented as a series of cuts which remove edges from the graph,
dividing the graph into a set of k disjoint subgraphs. This approach clusters
data even when the underlying parametric form is unknown (as long as there
are enough samples) and far from radial or spherical. Unfortunately, recovering
the optimal cuts is an NP-complete problem as was shown by Shi and Malik
[8] who proposed the Normalized Cut (NCut) criterion. Spectral clustering is a
relaxation of NCut into an linear system which uses eigenvectors of the graph
Laplacian to cluster the data [7].

This article takes a semi-parametric approach to combine the complementary
advantages of both methods. It applies recent work in spectral clustering [7] to
the task of clustering time-series data. However, each time series is individually
modeled using HMMs. This assumes HMM structure for each time-series datum
on its own yet assumes no underlying structure in the overall distribution of the
time-series data. The sequences are clustered only according to their individual
pairwise proximity in HMM parameter space. It should be noted that though
HMMs are used in this paper, the approach is applicable to clustering other time-
series datasets under different parametric assumptions such as linear dynamical
systems.

2 HMMs and Kernels

2.1 Hidden Markov Models

Assume a dataset of n = 1 . . .N time-series sequences where each datum xn is
an ordered sequence of t = 1, . . . , Tn vectors xn,t in some Euclidean space. A
natural parametric model for representing a single time series or sequence xn is
the hidden Markov model (HMM), whose likelihood is denoted p(xn|θn). Note
that the model θn is different for each sequence. This replaces the common iid

166 T. Jebara, Y. Song, and K. Thadani

(independent identically distributed) assumption on the dataset with a weaker id
(independently distributed) assumption. More specifically, for p(xn|θn), consider
a first-order stationary HMM with Gaussian emissions. The probability model
of a sequence is p(x|θ) where x = {x1, . . . , xT } is a sequence of length T where
each observation vector is xt ∈ �d. In addition, an HMM has a hidden state
at each time point q = {q1, . . . , qT } where each state takes on a discrete value
qt = {1, . . . ,M}. The likelihood of the HMM factorizes as follows:

p(x|θ) =
∑

q0,...,qT

p(x0|q0)p(q0)
T∏

t=1

p(xt|qt)p(qt|qt−1) (1)

The HMM is specified by the parameters: θ = (π, α, μ,Σ)

1. The initial state probability distribution πi = p(q0 = i), i = 1 . . .M .
2. The state transition probability distribution given by a matrix α ∈ �M×M

where αij = p(qt = j|qt−1 = i).
3. The emission density p(xt|qt = i) = N (xt|μi, Σi), for i = 1 . . .M , where

μi ∈ �d and Σi ∈ �d×d are the mean and covariance of the Gaussian in
state i. Take μ = {μ1, . . . , μM} and Σ = {Σ1, . . . , ΣM} for short.

Estimating the parameters of an HMM for a single sequence is typically done
via EM. The E-step uses a forward-backward pass or junction tree algorithm
(JTA) to obtain posterior marginals over the hidden states given the observa-
tions: γt(i) = p(qt = Si|xn, θ̂n) and ξt(i, j) = p(qt = Si, qt+1 = Sj |xn, θ̂n).
The M-step updates the parameters θ using these E-step marginals as follows:
π̂i = γ1(i)

α̂ij =
∑T−1

t=1 ξt(i, j)
∑T−1

t=1

∑M
j=1 ξt(i, j)

μ̂i =
∑T

t=1 γt(i)xt
∑T

t=1 γt(i)
Σ̂i =

∑T
t=1 γt(i)(xt − μi)(xt − μi)T

∑T
t=1 γt(i)

.

2.2 Probability Product Kernels

A natural choice of kernel between HMMs is the probability product kernel
(PPK) described in [9] since it computes an affinity between distributions. The
generalized inner product is found by integrating a product of the distributions
of pairs of data sequences over the space of all potential observable sequences
X : K(p(x|θ), p(x|θ′)) =

∫
pβ(x|θ)pβ(x|θ′)dx. When β = 1/2, the PPK becomes

the classic Bhattacharyya affinity metric between two probability distributions.
The Bhattacharyya affinity is favored over other probabilistic divergences and
affinities such as Kullback-Leibler (KL) divergence because it is symmetric and
positive semi-definite (it is a Mercer kernel). In addition, it is computable in
closed form for a variety of distributions including HMMs while the KL between
two HMMs cannot be exactly recovered efficiently.

This section discusses the computation of the PPK between two HMMs p(x|θ)
and p(x|θ′). For brevity, we denote p(x|θ) as p and p′(x|θ′) as p′ where x repre-
sents a sequence of emissions xt for t = 1...T . While the brute force evaluation

Spectral Clustering and Embedding with Hidden Markov Models 167

Table 1. The probability product kernel

Probability product kernel K(θ, θ′):
K(θ, θ′) =

∑
qT

∑
q′

T
Ψ(qT , q′

T)
∏T

t=1

∑
qt−1

∑
q′

t−1
p(qt|qt−1)

βp′(q′
t|q′

t−1)
βΨ(qt−1, q

′
t−1)p(q0)

βp′(q′
0)

β

Elementary kernel Ψ(·):
Ψ(qt = i, q′

t = j) =
∫

xt
p(xt|qt = i)βp′(xt|q′

t = j)βdxt

An efficient iterative method to calculate the PPK K̃(θ, θ′):
Φ(q0, q

′
0) = p(q0)

βp′(q′
0)

β

for t = 1 . . . T

Φ(qt, q
′
t) =

∑
qt−1

∑
q′

t−1
p(qt|qt−1)

βp(q′
t|q′

t−1)
βΨ(qt−1, q

′
t−1)Φ(qt−1, q

′
t−1)

end
K̃(θ, θ′) =

∑
qT

∑
q′

T
Φ(qT , q′

T)Ψ(qT , q′
T)

of the integral over x is expensive, an exact efficient formula is possible. Effec-
tively, the kernel takes advantage of the factorization of the HMMs to set up an
efficient iterative formula.

Initially, an elementary kernel Ψ(θ, θ′) =
∫

xt
pβ(xt|θ)pβ(xt|θ′)dxt is computed;

this is the Bhattacharyya affinity between the emissions models for p and p′ inte-
grated over the space of all emissions. For the exponential family of distributions
this integral can be calculated in closed form. For HMMs with Gaussian emis-
sions, this integral is proportional to:

Ψ(i, j) =
|Σ†|1/2

|Σi|β/2|Σj |β/2 exp(−β
2 (μT

i Σ−1
i μi + μj

TΣj
−1μj − μ†T

Σ†μ†)

where Σ† = (Σ−1
i + Σj

−1)−1 and μ† = Σ−1
i μi + Σj

−1μj . Given the elementary
kernel, the kernel between two HMMs is solved in O(TM2) operations using
the formula in Table 1 (further details can be found in [9]). Given a kernel
affinity between two HMMs, a non-parametric relationship between time series
sequences emerges. It is now straightforward to apply non-parametric clustering
and embedding methods which will be described in section 4. The next section,
however, first describes a more typical fully parametric clustering setup using a
mixture of HMM models to couple the sequences and parameters θn. This has
the undesirable effect of coupling pairs of sequences by making global parametric
assumptions on the whole dataset instead of only on pairs of sequences.

3 Clustering as a Mixture of HMMs

Parametric approaches to clustering of time-series data using HMMs assume that
each observation sequence xn is generated from a mixture of K components and

168 T. Jebara, Y. Song, and K. Thadani

use different clustering formulations in order to estimate this mixture. Two such
techniques for estimating a mixture of K HMMs are the hard-clustering k-means
approach and the soft-clustering EM approach.

A k-means approach is used in [3,4] to assign sequences to clusters in each
iteration and use only the sequences assigned to a cluster for re-estimation of
its HMM parameters. Each sequence can only be assigned to one cluster per
iteration and it can run into problems when there is no good separation be-
tween the processes that generated the data approximated by the HMM param-
eters. A soft-clustering approach that overcomes these problems is described
in [5]; here each sequence has a prior probability p(z = k) of being gener-
ated by the k’th HMM. This reduces to a search for the set of parameters
{θ1, . . . , θK , p(z)} where z ∈ {1, . . .K} that maximize the likelihood function∏N

n=1

∑K
k=1 p(z = k)p(xn|θk). The E-step is similar to the E-step in the HMM-

training algorithm run separately for each of the K HMMs. The posterior like-
lihood τk

n = p(z=k)p(xn|θk)∑K
k=1 p(z=k)p(xn|θk)

is estimated as the probability that sequence xn

was generated by HMM k. The M-step incorporates the posterior τk
n of each

sequence n into its contribution to the updated parameters for the kth HMM.

α̂ij =
∑N

n=1 τk
n

∑Tn−1
t=1 ξk

n,t(i, j)
∑N

n=1 τk
n

∑Tn−1
t=1

∑M
j=1 ξk

n,t(i, j)
μ̂i =

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)xn,t

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)

π̂i =

∑N
n=1 τk

nγk
n,1(i)

N
Σ̂i =

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)(xn,t − μi)(xn,t − μi)T

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)

.

The responsibility terms τk
n also provide the priors p(z = k) for the next iteration

and determine the final clustering assignment at convergence.
In summary, this method makes strict parametric assumptions about the un-

derlying distribution of all the sequences in the dataset and attempts to find a
parameter setting that maximizes the posterior probabilities given such models
for the underlying distributions. However, these parametric assumptions aren’t
always intuitive and, as our experiments show, often negatively affect clustering
performance as opposed to the non-parametric methods that are being investi-
gated in this article.

4 Spectral Clustering of HMMs

The spectral approach to HMM clustering involves estimating an HMM model
for each sequence using the approach outlined in section 2.1. The PPK is then
computed between all pairs of HMMs to generate a Gram matrix which is used for
spectral clustering. This approach leverages both parametric and non-parametric
techniques in the clustering process; parametric HMMs make some assumptions
about the structure of the individual sequences (such as Markov assumptions)
but the spectral clustering approach makes no assumptions about the overall dis-
tribution of the sequences (for instance, i.i.d assumptions). Empirically, this ap-
proach (Spectral Clustering of Probability Product Kernels or SC-PPK) achieves

Spectral Clustering and Embedding with Hidden Markov Models 169

a noticeable improvement in clustering accuracy over fully parametric models
such as mixtures of HMMs or naive pairwise likelihood comparisons.

Listed below are the steps of our proposed algorithm. It is a time-series ana-
logue of the Ng-Weiss algorithm presented in [7].

The SC-PPK algorithm

1. Fit an HMM to each of the n = 1 . . .N time-series sequences to retrieve
models θ1...θN .

2. Calculate the Gram matrix A ∈ RN×N where Am,n = K(θm, θn) for all pairs
of models using the probability product kernel (default setting: β = 1/2,
T=10).

3. Define D ∈ RN×N to be the diagonal matrix where Dm,m =
∑

n Am,n and
construct the Laplacian matrix: L = D−1/2AD−1/2.

4. Find the K largest eigenvectors of L and form matrix X ∈ RN×K by stacking
the eigenvectors in columns. Renormalize the rows of matrix X to have unit
length.

5. Cluster the N rows of X into K clusters via k-means or any other algorithm
that attempts to minimize distortion.

6. The cluster labels for the N rows are used to label the corresponding N
HMM models.

Another well-known approach to clustering time-series data is Dynamic-Time-
Warping, introduced in [3]. This method was surpassed in performance by the
spectral clustering method proposed by Yin and Yang [10] which uses a direct
comparison of HMM likelihoods as the kernel affinity. The SC-PPK method out-
performs Yin and Yang’s method due to the fact that it doesn’t calculate the
affinities based on a pair of time-series samples but integrates over the entire
space of all possible samples given the HMM models. Thus, the SC-PPK ap-
proach recovers a stronger and more representative affinity score between HMM
models. Furthermore, since the PPK computes the integration by solving a closed
form kernel using an efficient iterative method, it achieves a significant gain in
speed over the kernel used in [10].

5 Experiments

This section details the experiments that were conducted to compare semi-
parametric spectral approaches and fully parametric approaches to clustering of
time-series data. k-Means and EM versions of a mixture of HMMs approach were
used to represent the parametric setting. The two spectral clustering algorithms
investigated were Yin and Yang’s algorithm[10], which computes a likelihood-
based kernel between pairs of sequences, and the SC-PPK algorithm which com-
putes a kernel over the HMM model parameters. Note that there are parameters
which can be adjusted for both of the spectral clustering methods: the σ fall-off ra-
tio for the Yin-Yang kernel and the mixing proportion T for the SC-PPK method.
In the following experiments, the default settings were used for both methods, i.e.
σ = 1 and T = 10. Stability results for these kernels are shown in Fig 1.

170 T. Jebara, Y. Song, and K. Thadani

5.1 Datasets

The evaluations were run over a variety of real-world and synthesized datasets
which are described below.

MOCAP: The Motion Capture dataset (available from Carnegie Mellon Uni-
versity1) consists of time-series data representing human locomotion and actions.
The sequences consist of 123-dimensional vectors representing 41 body markers
tracked spatially through time for various physical activities. For these exper-
iments, simple activities that were likely to be hard to cluster were considere;
tests compared either similar activities or the same activity for different subjects.
Table 2 contains the results of the evaluation over these real-world datasets.
Rotated MOCAP: A synthesized dataset was generated by rotating two MO-
CAP sequences 5◦ at a time through 360 degrees. The seed sequences used were
a walking sequence from walk(#7) and a running sequence from run(#9).
This dataset, which provides us with clusters of sequences that lie on a regular
manifold, is used for comparing clustering in Table 3, comparing running times
in Table 6 and embedding in Fig 2. An additional dataset swerving was gen-
erated by rotating the walking and running sequence left and right periodically
to make their movements seem zig-zagged.
Arabic handwriting: This dataset consists of 2-dimensional time-series se-
quences which represent written word-parts of Arabic characters extracted from
the dataset used in [11]. Table 4 shows the results of clustering pairs of similar
word-parts (identified by their Unicode characters) and Fig 3(a) shows an MDS
embedding of three symbols.
Australian sign language: This dataset (from the University of California-
Irvine2) consists of multiple sign-language gestures, each represented by 27 in-
stances of 22-dimensional time-series sequences. Semantically-related expressions
such as write and draw or antonyms such as give and take were assumed to have
similar real-world symbols and formed the basis of all experiments with this
dataset. Table 5 shows the average accuracy over the clustering of 18 such pairs
of sequences while varying the number of HMM states used and Fig 3(b) shows
an embedding of three gestures.

5.2 Results

The tables in this section show the results of experiments over these various
datasets. Experiments were restricted to pairwise clustering over datasets of
similar size. The standard accuracy metric is used for comparison of results. The
results reported were averaged over multiple folds - five folds for the spectral
clustering algorithms and ten folds for the fully parametric techniques since these
algorithms converge to local maxima and have highly variable performance).

In general, the kernel-based methods outperformed the parametric meth-
ods and the PPK performed favorably compared to Yin and Yang’s kernel.
1 http://mocap.cs.cmu.edu/
2 http://www.cse.unsw.edu.au/w̃aleed/tml/data

Spectral Clustering and Embedding with Hidden Markov Models 171

Table 2. Clustering accuracy with 2-state HMMs on MOCAP data. The numbers in
the parentheses identify the index of the subject performing that particular specified
action.

Dataset k-Means EM Yin-Yang SC-PPK

simple walk vs run set 100% 100% 100% 100%
run(#9) vs run/jog(#35) 57% 52% 76% 100%
walk(#7) vs walk(#8) 59% 60% 68% 68%
walk(#7) vs run/jog(#35) 71% 69% 71% 95%
jump(#13) vs jump forward(#13) 50% 50% 75% 87%
jump(#13,#16) vs jump forward(#13,#16) 50% 50% 60% 66%

Table 3. Clustering accuracy with 2-state HMMs on synthesized MOCAP dataset. A
single pair of walking and running time-series samples were used, subsequent samples
were generated by rotating the seed pair 5◦ at a time to generate 72 unique pairs.

rotation limit step size k-Means EM Yin-Yang SC-PPK

30◦ 5◦ 100% 100% 92% 100%
60◦ 5◦

54% 71% 63% 100%
90◦ 5◦

50% 50% 75% 100%
180◦ 5◦

51% 51% 71% 100%
360◦ 5◦

50% 50% 60% 100%
360◦ 10◦

50% 50% 50% 100%
360◦ 15◦

50% 50% 50% 100%
360◦ 30◦

54% 50% 50% 100%
Swerving – 50% 50% 85% 100%

Table 4. Clustering accuracy with 2-state HMMs on Arabic handwriting dataset

Dataset k-Means EM YY SC-PPK

U0641 vs U0643 68% 64% 86% 97%
U0645 vs U0647 70% 66% 86% 100%
U062D vs U062F 78% 80% 93% 95%
U0621 vs U062D 66% 65% 86% 93%
U0628 vs U0631 71% 70% 94% 100%
U0635 vs U0644 74% 76% 95% 100%
U0621 vs U0647 71% 66% 96% 98%

Improvements in accuracy well as better runtime performance were seen in both
quantitative clustering accuracy and qualitative embedding performance. In ad-
dition, experiments were conducted to investigate the stability of the SC-PPK
method over the T parameter. Fig 1 shows stability comparisons for both spectral
clustering kernels over the respective parameters. The accuracies were averaged
over five-fold testing. It was noted that a useful setting for T usually lay within
the interval of 5 to 25. In practice, cross validation would be useful for recovering
the optimal setting.

172 T. Jebara, Y. Song, and K. Thadani

Table 5. Clustering accuracy on Australian sign language dataset; 18 semantically
related pairs of signs compared. Top: 5 representative pairs are shown for a range of
SC-PPK clustering accuracies. Bottom: averages for the 18 pairs over different number
of states.

Sample pairs (2-state) k-Means EM Yin-Yang SC-PPK

’hot’ vs ’cold’ 64% 98% 96% 100%
’eat’ vs ’drink’ 52% 50% 52% 93%
’happy’ vs ’sad’ 73% 54% 50% 87%
’spend’ vs ’cost’ 58% 53% 52% 80%

’yes’ vs ’no’ 51% 51% 52% 59%
of hidden states k-Means EM Yin-Yang SC-PPK

2 64.5% 72.1% 69.3% 76.1%
3 64.4% 73.3% 75.5% 75.5%
4 65.4% 74.9% 74.7% 74.3%

Table 6. Average runtimes in seconds on a 3-Ghz machine with emissions xt ∈ R123×1,
includes HMM training time

of time-series samples k-Means EM Yin-Yang SC-PPK

5 20.6s 23.5s 4.1s 3.6s
10 47.1s 59.7s 11.1s 6.1s
25 68.29s 185.0s 49.9s 15.4s
50 111.6s 212.9s 171.8s 30.1s
75 178.3s 455.6s 382.8s 48.6s
100 295.9s 723.1s 650.2s 64.5s

5.3 Runtime Advantages

Unlike EM-HMM, which needs to calculate posteriors over N×k HMM-sequence
pairs and maximize over k HMMs at every iteration until convergence, SC-PPK
requires a single HMM to be trained once for each sequence in the dataset. The
SC-PPK method calculates the integration between two HMM parameters in
closed form directly without needing to evaluate the likelihood of the individual
time-series samples, resulting in a dramatic reduction of in total runtime. In
practice, we noticed around two orders of magnitude improvement in clustering
speed over EM, as shown in Table 6. These runtimes include HMM training
times as well as clustering times.

6 Visualization of HMM Parameters

Visualization and manifold learning is another important component of unsu-
pervised learning. Starting from a set of high dimensional data points X with
xi ∈ RN , embedding and visualization methods recover a set of corresponding
low dimensional datapoints Y (typically with typically yi ∈ R2) such that the

Spectral Clustering and Embedding with Hidden Markov Models 173

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

A
cc

ur
ac

y

Accuracy over T − 5 fold testing

mocap: run9 vs walk7
arabic: u641 vs 643
Auslang: read vs write

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

A
cc

ur
ac

y

Accuracy over σ − 5 fold testing

mocap: run9 vs walk7
arabic: u641 vs 643
Auslang: read vs write

(a) (b)

Fig. 1. Kernel stability over their respectiveparameters (a)SC-PPK-T(b)YYkernel -σ.
Accuracies averaged over five runs.

distance between yi and yj is similar to the distance between xi and xj for all
i, j = 1...N . These techniques permit visualization of high dimensional datasets
and can help confirm clustering patterns. Classic visualization and embedding
techniques include multi-dimensional scaling (MDS) [12] as well as recent con-
tenders such as semi-definite embedding (SDE) [13].

To further analyze the usefulness of the PPK at capturing an accurate rep-
resentation of the kernel affinity between two sequences, embedding using MDS
was applied to the datasets. This corresponds to training an HMM over each of
the time-series sequences and recovering the RN×N Gram matrix where Am,n =
K(θm, θn) – identical to steps 1 and 2 of the SC-PPK algorithm. From the Gram
matrix, the dissimilarity matrix D ∈ RN×N is given by Di,j = 1/Ai,j . This ma-
trix is then used as the input for the standard MDS algorithm as in [12]. MDS
is chosen because of its simplicity although more sophisticated methods such as
SDE are equally viable. Fig 2 shows the embedding for the rotated data using
a rotation step size of 10◦ under the Yin and Yang kernel (a) and the PPK
(b). From the figure, we can see that the Yin and Yang kernel captures some
of the periodic structure of the dataset in the embedding but it is only locally
useful and does not adequately capture the expected global circular structure
in the rotation. Conversely, the result from the PPK method is much clearer.
The PPK integrates over the sample space providing a less brittle description
of each time series. Thus the kernel affinity captures an accurate representation
of the the distance between HMM parameters with respect to all of the data
samples, forming a perfectly circular global embedding of the 360◦ rotated MO-
CAP dataset. Fig 3(a) shows PPK-based embeddings for three classes from the
Arabic handwriting dataset. The method recovered an accurated embedding as
the three classes are separated from one-another. Similarly, Fig 3(b) shows the
embeddings for three classes from the Australian sign language dataset.

174 T. Jebara, Y. Song, and K. Thadani

0 10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2
x 10

15

Walking
Running

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

walking
running

(a) (b)

Fig. 2. MDS embedding of HMM parameters using the synthesized 360◦ rotated MO-
CAP dataset with (a) the Yin-Yang kernel and (b) the probability product kernel

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

u62d
u647
u621

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

"Alive"
"Building"
"Computer"

(a) (b)

Fig. 3. MDS embedding of HMM parameters (a) Arabic handwriting dataset and (b)
Australian sign Language dataset

7 Conclusions

This paper presented a semi-parametric approach for clustering time-series data
that exploits some parametric knowledge about the data including its Markov
properties and the presence of latent states, and at the same time utilizes non-
parametric principles and remains agnostic about the shape of the clusters a
multitude of time series can form. This works surprisingly well for time-series
data in experiments on real-world data. By avoiding parametric assumptions
about the underlying distributions or the variations across the time series, im-
proved clustering accuracy is possible.

The method combines both a non-parametric spectral clustering approach us-
ing the probability product kernel with a fully parametric maximum likelihood
estimation approach for each singleton time series. We showed that spectral

Spectral Clustering and Embedding with Hidden Markov Models 175

clustering with a probability product kernel method provides improvements in
clustering accuracy over fully parametric mixture modeling as well as spectral
clustering with non-probabilistic and non-parametric affinity measures. Further-
more, embedding and visualization of time series data is also improved. Finally,
the proposed method has computational efficiency benefits over prior approaches.

For future work, we are investigating spectral clustering with the proba-
bility product kernel for other generalized graphical models and parametric
distributions. In addition, we are investigating a general formalism and gener-
alized cost functions for semi-parametric estimation that unify both parametric
and non-parametric criteria and leverage the complementary advantages of both
approaches.

References

1. Dey, D.: Practical Nonparametric & Semiparametric Bayesian Statistics, vol. 133.
Springer, Heidelberg (1998)

2. Hoti, F., Holstrom, L.: A semiparametric density estimation approach to pattern
classification. Pattern Recognition (2004)

3. Tim Oates, L.F., Cohen, P.R.: Clustering time series with hidden Markov mod-
els and dynamic time warping. In: IJCAI-99 Workshop on Neural, Symbolic and
Reinforcement Learning Methods for Sequence Learning (1998)

4. Smyth, P.: Clustering sequences with hidden Markov models. In: Advances in Neu-
ral Information Processing Systems, pp. 648–654 (1997)

5. Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Discovering clusters in motion time-
series data. IEEE Computer Vision and Pattern Recognition (2003)

6. Shental, N., Zomet, A., Hertz, T., Weiss, Y.: Pairwise clustering and graphical
models. In: Advances in Neural Information Processing Systems (2003)

7. Ng, A., Jordan, M., Weiss, Y.: On Spectral Clustering: Analysis and an algorithm.
In: Advances in Neural Information Processing Systems (2001)

8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

9. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. Journal of Ma-
chine Learning Research 5, 819–844 (2004)

10. Yin, J., Yang, Q.: Integrating hidden Markov models and spectral analysis for sen-
sory timeseries clustering. In: Proceedings of the Fifth IEEE International Con-
ference on Data Mining (ICDM’05), IEEE Computer Society Press, Los Alamitos
(2005)

11. Biadsy, F., El-Sana, J., Habash, N.: Online arabic handwriting recognition using
hidden Markov models. In: The 10th International Workshop on Frontiers of Hand-
writing Recognition (2006)

12. Kruskal, J.B., Wish, M.: Multidimensional Scaling. In: Quantitative Application
in the Social Sciences, Sage University Paper (1978)

13. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by
semidefinite programming. International Journal of Computer Vision 70(1), 77–
90 (2006)

Probabilistic Explanation Based Learning

Angelika Kimmig1, Luc De Raedt1, and Hannu Toivonen2

1 Department of Computer Science, Katholieke Universiteit Leuven
2 Department of Computer Science, University of Helsinki

Abstract. Explanation based learning produces generalized explana-
tions from examples. These explanations are typically built in a deduc-
tive manner and they aim to capture the essential characteristics of the
examples.

Probabilistic explanation based learning extends this idea to proba-
bilistic logic representations, which have recently become popular within
the field of statistical relational learning. The task is now to find the most
likely explanation why one (or more) example(s) satisfy a given concept.
These probabilistic and generalized explanations can then be used to dis-
cover similar examples and to reason by analogy. So, whereas traditional
explanation based learning is typically used for speed-up learning, proba-
bilistic explanation based learning is used for discovering new knowledge.

Probabilistic explanation based learning has been implemented in a
recently proposed probabilistic logic called ProbLog, and it has been ap-
plied to a challenging application in discovering relationships of interest
in large biological networks.

1 Introduction

During the 80s, explanation based learning (EBL) was a popular research theme
within the field of machine learning. It aimed at finding plausible and general-
ized explanations for particular examples using a logical domain theory, cf. [2]
for an overview and introduction. These generalized explanations were then typ-
ically turned into rules that would be added to the theory, often with the aim
of speeding up further inference or extending an imperfect domain theory. Tra-
ditional explanation based learning was largely studied within first order logic
representations and explanations were built using deduction [8,16], though there
was sometimes also an abductive component [1]. In the past few years, the ma-
chine learning and artificial intelligence communities have become interested in
statistical relational learning [7] and probabilistic logic learning [4]; these are
techniques that lie at the intersection of machine learning, logical representa-
tions and probabilistic modelling. These fields have contributed many different
probabilistic logics, and have used them for various applications.

A natural question that arises in this context is whether explanation based
learning can be applied to these probabilistic logics. A first step in this direction
is done in [3], where logical and empirical evidence are combined in explana-
tion based learning to get explanations with a certain confidence. The question
is investigated and positively answered within this paper. More specifically, we
introduce probabilistic explanation based learning within a recently introduced

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 176–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Explanation Based Learning 177

simple extension of Prolog, called ProbLog [5], and demonstrate its use on a
challenging application within biological link mining. Probabilistic explanation
based learning computes the most likely generalized explanation from one or
more positive examples and then uses these generalized explanations to identify
other examples that possess this explanation (with high probability). In this way,
probabilistic explanation based learning realizes a kind of probabilistic similar-
ity or analogical reasoning. This type of reasoning is required within scientific
link mining tasks in large biological networks. These are networks that consist
of a large set of entities (such as proteins, tissues, diseases, genes, ...) as well
as the relationships that hold amongst them. The task faced by the biologist
is to investigate these networks in order to understand particular phenomenae
and to discover new knowledge and relationships, cf. [15,11]. Using probabilistic
explanation based learning with ProbLog allows the life scientist, for instance,
to discover probable explanations for specific phenomenae (such as a gene being
related to a particular disease – say Alzheimer disease), and then to apply the
discovered generalized explanation to identify other genes that are related to this
disease with a similar explanation. Furthermore, it allows to rank these genes
according to the likelihood of the explanation.

Probabilistic explanation based learning as introduced here is also related to
probabilistic abduction, as studied by Poole [12], and to abductive explanation
based learning. The difference with Poole’s work however is that we compute gen-
eralized explanations and also apply them for analogical reasoning. In contrast to
abductive explanation based learning, probabilistic reasoning is employed here.

This paper is organized as follows: we briefly review ProbLog in Section 2
and explanation based learning in Section 3. Section 4 introduces probabilistic
EBL, which is evaluated using experiments in biological link mining in Section 5.
Finally, Section 6 concludes and touches upon related work.

2 ProbLog: Probabilistic Prolog

ProbLog is a simple probabilistic extension of Prolog introduced in [5]. A ProbLog
program consists – as Prolog – of a set of definite clauses. However, in ProbLog ev-
ery clause ci is labeled with the probability pi that it is true, and those probabilities
are assumed to be mutually independent.

Example 1. Within bibliographic data analysis, the similarity structure among
items can improve information retrieval results. Consider a collection of papers
{a,b, c,d} and some pairwise similarities similar(a, c), e.g., based on key word
analysis. Two items X and Y are related(X, Y) if they are similar (such as a
and c) or if X is similar to some item Z which is related to Y. Uncertainty can
elegantly be represented by the attached probabilities:

1.0 : related(X, Y) : − similar(X, Y).
0.8 : related(X, Y) : − similar(X, Z), related(Z, Y).
0.8 : similar(a, c). 0.7 : similar(c, b).
0.6 : similar(d, c). 0.9 : similar(d, b).
0.7 : similar(e, c). 0.5 : similar(f, a).

178 A. Kimmig, L. De Raedt, and H. Toivonen

?- r(d,b).

:- s(d,b).

�
s4

r1
:- s(d,A),r(A,b).

:- r(c,b)

:- s(c,b).

�
s2

r1
:- s(c,B),r(B,b).

:- r(b,b)

:- s(b,b).
r1

:- s(b,C),r(C,b).
r2

s2

r2

s3
:- r(b,b)

:- s(b,b).
r1

:- s(b,D),r(D,b).
r2

s4

r2

Fig. 1. SLD tree for related(d,b)

A ProbLog program T = {p1 : c1, · · · , pn : cn} defines a probability distribution
over logic programs L ⊆ LT = {c1, · · · , cn} in the following way:

P (L|T) =
∏

ci∈L
pi

∏

ci∈LT \L
(1 − pi). (1)

Unlike in Prolog, where one is typically interested in determining whether a
query succeeds or fails, ProbLog specifies the probability that a query succeeds.
The success probability P (q|T) of a query q in a ProbLog program T is defined by

P (q|T) =
∑

L⊆LT

P (q, L|T) =
∑

L⊆LT

P (q|L) · P (L|T), (2)

where P (q|L) = 1 if there exists a θ such that L |= qθ, and P (q|L) = 0 otherwise.
In other words, the success probability of query q corresponds to the probability
that the query q has a proof in a logic program randomly sampled from T .

The evaluation of the success probability of ProbLog queries is computa-
tionally hard. In [5], this problem is tackled by employing a reduction to the
computation of the probability of a monotone DNF formula, an NP-complete
problem.

Example 2. Figure 1 shows the SLD-tree for proving related(d,b) in our ex-
ample program (see Section 3 for details). This tree contains two successful
proofs, and therefore the success probability of related(d,b) corresponds to
P ((r1 ∧ s4) ∨ (r2 ∧ s3 ∧ r1 ∧ s2)). This probability cannot be computed as
P ((r1∧s4))+P ((r2∧s3∧r1∧s2)) because the two expressions are not mutually
disjoint.

The key contribution of our previous work on ProbLog was the implementation
of an efficient approximative inference procedure for computing the success prob-
abilities in large ProbLog programs for the biological network mining domain
(cf. also Section 5). The inference procedure employs Binary Decision Diagrams
in combination with an approximation algorithm based on iterative deepening,
cf. [5] for more details.

However, in probabilistic explanation based learning as introduced here, cf.
Section 4, the probability of interest will not be the total probability of a query

Probabilistic Explanation Based Learning 179

but rather the probability of a single derivation d for a given example. This
probability corresponds to

P (d|T) =
∏

ci∈d
pi (3)

and can thus be computed exactly in an efficient way. Intuitively, it corresponds
to the probability that a randomly sampled subprogram of T contains all clauses
employed in the derivation d.

Example 3. There are two proofs for related(d,b). The first one uses the base
case of related/2 and the fact similar(d,b) and thus has a probability of
1.0 · 0.9 = 0.9, the second one uses the recursive case and two facts, thus getting
a probability of 0.8 · 0.6 · 1.0 · 0.7 = 0.336.

3 Explanation Based Learning

The central idea of explanation-based learning (EBL) as conveniently formalized
for Prolog [8,16] is to compute a generalized explanation from a concrete proof
of an example. Explanations use only so-called operational predicates, i.e. pred-
icates that capture essential characteristics of the domain of interest and should
be easy to prove. Operational predicates are to be declared by the user as such.

Following the work by [8,16], explanation based learning starts from a definite
clause theory T , that is a pure Prolog program, and an example in the form of
a ground atom p(t1, ..., tn). It then constructs a refutation proof of the example
using SLD-resolution. SLD-resolution takes a goal of the form ?− g, g1, ..., gn, a
clause h← b1, ..., bm such that g and h unify with most general unifier θ, and then
produces the resolvent ?− b1θ, ..., bmθ, g1θ,, gnθ. This process then continues
until the empty goal is reached. SLD-resolution is illustrated in Figure 1, where
each path from the root of the tree to the empty clause � corresponds to a
refutation proof of related(d,b). Given the resolution proof for the example
p(t1, ..., tn), explanation based learning will generalize the proof and produce a
generalized explanation. To realize this, it starts from the variabelized goal, i.e.
p(X1, ..., Xn) where the Xi are different variables, and then performs the same
SLD-resolution steps as in the proof for the example. The only difference is that
in the general proof constructed in explanation based learning atoms q(s1, ..., sr)
for operational predicates q in a goal ?−g1, ..., gi, q(s1, ..., sr), gi+1, ..., gn are not
resolved away. Also, the proof procedure stops when the goal contains only atoms
for operational predicates. The resulting goal provides a generalized explanation
for the example. In terms of the SLD-resolution proof tree, explanation based
learning cuts off branches below operational predicates. It is easy to implement
the explanation based proof procedure as a meta-interpreter for Prolog [16,8].

Example 4. Reconsider the logic program of Example 1, ignoring the probabil-
ity labels for now. We define similar/2 to be the only operational predicate,
and use related(a,b) as training example. EBL proves this goal using two in-
stances of the operational predicate, namely similar(a,c) and similar(c,b),

180 A. Kimmig, L. De Raedt, and H. Toivonen

?- r(a,b).

?- s(a,A),r(A,b).

?- r(c,b).

?- s(c,b).

�

(a)

?- r(X,Y).

?- | s(X,Z),r(Z,Y).

?- s(X,Z) | r(Z,Y).

?- s(X,Z) | s(Z,Y).

s(X,Z),s(Z,Y)

(b)

?- r(a,b).
?- r(d,b).
?- | r(X,Y).

?- s(a,b).
?- s(d,b).
?- | s(X,Y).

fail

?- s(a,A),r(A,b).
?- s(d,B),r(B,b).
?- | s(X,Z),r(Z,Y).

?- r(c,b).
?- r(c,b).
?- s(X,Z) | r(Z,Y).

?- s(c,b).
?- s(c,b).
?- s(X,Z) | s(Z,Y).

�

�

s(X,Z),s(Z,Y)

(c)

Fig. 2. (a) The successful branch of the SLD tree for related(a,b). (b) The corre-
sponding branch for general goal related(X,Y), where bold atoms are part of the
explanation and the bar marks the position to continue the proof. (c) A partial SLD
tree for Example 6, where each node contains the current status for the two training
examples as well as the general version.

and then produces the explanation similar(X,Z), similar(Z,Y) for the gen-
eralized example related(X,Y). The result can be represented as the clause
exp related(X,Y)← similar(X,Z), similar(Z,Y). We will call such clauses
explanation clauses. To be able to identify the examples covered by this clause, we
rename the predicate in the head of explanation clauses. The successful branches
of the SLD trees for related(a,b) and the generalized example related(X,Y)
are depicted in Figure 2.

4 Probabilistic Explanation Based Learning

Probabilistic explanation based learning (PEBL) extends EBL to probabilistic
logic representations. In this paper, we use ProbLog as the underlying language
for PEBL, but the general idea can easily be transferred to other probabilistic
logics, such as Poole’s ICL [12] or Sato’s PRISM [14].

Within ProbLog, as already discussed in Section 2, a probability is associated
to each proof of a query. Therefore, the adaptation of explanation based learning
to ProbLog is direct. The key difference now is that for each example, we compute
the most likely proof and then compute the generalized explanation as sketched
in the previous section.

Probabilistic Explanation Based Learning 181

The probability of a given single proof is calculated simply as the product∏
i pi of probability labels of all clauses ci used (at least once) in that proof,

as defined in Equation 3 and illustrated in Example 3. This corresponds to the
probability of randomly sampling a subprogram of the ProbLog program that
contains all clauses used in the proof and thus admits the proof. The set of
clauses C used in the proof of the example that is to be generalized can be
partitioned into two sets. Indeed, define G = {c|c ∈ C such that c is used in the
generalized proof}, and E = C −G, i.e. E contains the example-specific clauses
used to prove operational predicates. We then have that

∏

ci∈C

pi =
∏

cj∈G

pj

∏

ck∈E

pk.

Thus, the probability of the orginal proof is equal to the product of the proba-
bility of the generalized proof and the probability of the operational predicates
for the example.

Example 5. In Example 4, C = {r2, s1, r1, s2}, G = {r1, r2} and E = {s1, s2}.
The probability

∏
cj∈G pj = 0.8·1.0 also denotes the probability that the explana-

tion clause related(X,Y)← similar(X,Z), similar(Z,Y) is logically entailed
by the original ProbLog program.

Computing the most likely proof for a given goal in ProbLog is straightforward:
instead of traversing the SLD-tree in a left-to-right depth-first manner as in Pro-
log, nodes are expanded in order of the probability of the derivation leading to
that node. This realizes a best-first search with the probability of the current
proof as an evaluation function. In the application sketched in Section 5, we need
to deal however with goals having very many candidate proofs (each correspond-
ing to a particular path in a large biological network). Implementing best-first
search in a naive manner rapidly results in memory problems. We therefore em-
ploy the traditional solution of iterative deepening [13] to avoid these problems in
our implementation. Using iterative deepening depth first search, we cut off the
search at proofs with probability below a threshold. We start with a minimum
probability of 0.5. If at least one explanation was found in the last completed
iteration, the algorithm outputs the most probable one and stops, otherwise the
next iteration uses half the probability threshold of the last one. The algorithm
can also be used to return the k most probable structurally distinct explanations.

Probabilistic explanation based learning as incorporated in ProbLog offers
natural solutions to two issues traditionally discussed in the context of expla-
nation based learning [10,9]. The first one is the multiple explanation problem,
which is concerned with choosing the explanation to be generalized for examples
having multiple proofs. This problem arises in many applications such as the
one sketched in Section 5 on mining biological networks, where there are various
possible explanations as to why a particular query succeeds, for instance, a gene
being linked to a particular disease. The use of a sound probabilistic framework
naturally deals with this issue by selecting the most likely proof. The second prob-
lem is that of generalizing from multiple examples, another issue that received

182 A. Kimmig, L. De Raedt, and H. Toivonen

quite some attention in traditional explanation based learning. To realize this in
our setting, we modify the best-first search algorithm so that it searches for the
most likely generalized explanation shared by the n examples e1, ..., en. Starting
from the variabelized atom e, we compute n + 1 SLD-resolution derivations in
parallel. A resolution step resolving an atom for a non-operational predicate in
the generalized proof for e is allowed only when the same resolution step can
also be applied to each of the n parallel derivations. Atoms corresponding to
operational predicates are – as sketched above – not resolved in the generalized
proof, but it is nevertheless required that for each occurrence of these atoms in
the n parallel derivations, there exists a resolution derivation.

Example 6. Consider again our running example, and assume that we now want
to construct a common explanation for related(a,b) and related(d,b). We
thus have to simultaneously prove both examples and the variabelized goal
related(X,Y). This is illustrated in Figure 2(c). After resolving all three goals
with the first clause for related/2, we reach the first instance of the oper-
ational predicate similar/2 and thus have to prove both similar(a,b) and
similar(d,b). As proving similar(a,b) fails, the last resolution step is re-
jected and the second clause for related/2 used instead. As both similar(a,A)
and similar(d,B) can be proven, similar(X,Z) is added to the explanation,
and the procedure continues with the goals related(c,b), related(c,b) and
related(Z,Y). This succeeds using the base case and adds similar(Z,Y) to the
explanation, which thus is similar(X,Z),similar(Z,Y).

Because PEBL generates a generalized explanation, which can be turned into an
explanation clause, the technique can be employed to identify similar instances
and to reason by analogy. Indeed, by asserting such an explanation clause and
posing queries to the resulting predicate one obtains similar examples. Further-
more, the success probabilities of the examples can be used to rank them ac-
cording to likelihood, and hence, similarity.

Example 7. Using the explanation clause exp related(X,Y)← similar(X,Z),
similar(Z,Y) to query for covered instances would return the following an-
swer: exp related(a,b) (0.8 · 0.7 = 0.56), exp related(e,b) (0.7 · 0.7 = 0.49),
exp related(d,b) (0.6 · 0.7 = 0.42), exp related(f,c) (0.5 · 0.8 = 0.40).

5 Experiments

Research on ProbLog and PEBL is meant to support the life scientist analysing
large biological networks that can be automatically constructed from the enor-
mous amounts of molecular biological data that are available from public sources,
such as Ensembl1, NCBI Entrez2, OMIM3, and many others. They contain
knowledge about various types of objects, such as genes, proteins, tissues, or-
ganisms, biological processes, and molecular functions. Information about their
1 www.ensembl.org
2 www.ncbi.nlm.nih.gov/Entrez/
3 www.ncbi.nlm.nih.gov/Omim

www.ensembl.org
www.ncbi.nlm.nih.gov/Entrez/

Probabilistic Explanation Based Learning 183

e path(A,B) ← node(A,gene), edge(A,C,belongs to), node(C,homologgroup),
edge(B,C,refers to), node(B,phenotype), nodes distinct([B,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,codes for), node(C,protein),
edge(D,C,subsumes), node(D,protein), edge(D,E,interacts with),
node(E,protein), edge(B,E,refers to), node(B,phenotype),
nodes distinct([B,E,D,C,A])

e path(A,B) ← node(A,gene), edge(A,C,participates in), node(C,pathway),
edge(D,C,participates in), node(D,gene), edge(D,E,codes for),
node(E,protein), edge(B,E,refers to), node(B,phenotype),
nodes distinct([B,E,D,C,A])

e path(A,B) ← node(A,gene), edge(A,C,is found in),
node(C,cellularcomponent), edge(D,C,is found in), node(D,protein),
edge(B,D,refers to), node(B,phenotype), nodes distinct([B,D,C,A])

Fig. 3. Some explanation clauses for path(A,B), connecting gene A to phenotype B

known or predicted relationships is also available, e.g., that gene A of organism
B codes for protein C, which is expressed in tissue D, or that genes E and F
are likely to be related since they co-occur often in scientific articles. Analysing
such networks and data has been identified as an important and challenging task
(see, e.g., [11]) and only few tools exist that support life scientists in this task.

Such a collection of interlinked heterogeneous biological data can be seen as
a weighted network, where nodes are entities and the weight of an edge corre-
sponds to the probability that the corresponding nodes are related [15]. It can
thus be represented as a ProbLog database, which in the most simple case con-
sists of probabilistic edge/2 facts. Probabilities of the edges can be obtained
from methods that predict their existence based on, e.g., co-occurrence frequen-
cies or sequence similarities [15]. Within ProbLog, it is straightforward to add
more information such as the type of relation encoded by an edge or explicit
information on nodes, see Figure 3 for some examples.

Using ProbLog, one can pose queries that ask for the probability that a par-
ticular relationship holds. Typically, this will involve background knowledge of
biological concepts as well as types of relations that form strong chains between
two given nodes. In ProbLog this can be modeled by using a path predicate that
computes the probability of a path as the product of the probabilities of the
used edges, thus assuming that they are mutually independent [15,5].

We implemented PEBL in Yap-5.1.2 and performed experiments in the con-
text of the weighted biological database of [15]. As an example problem to be
studied, we looked at connections between disease genes and the correspond-
ing phenotype for Alzheimer disease (resp. asthma). Since the key motivation
for employing probabilistic explanation based learning is to be able to reason
by analogy or to find similar examples, we set up experiments to answer the
following questions:

Q1 Does PEBL produce meaningful examples when reasoning by analogy?
Q2 Can we find common explanations?

184 A. Kimmig, L. De Raedt, and H. Toivonen

Q3 Can PEBL’s explanations induced on one domain (say Alzheimer disease)
be transferred to another one (say Asthma)?

To answer those questions, we extracted graphs around both diseases from the
database. The genes were obtained by searching Entrez for human genes with
the relevant annotation (AD or asthma); phenotypes are from OMIM. Most of
the other information comes from EntrezGene, String, UniProt, HomoloGene,
Gene Ontology, and OMIM databases. We did not include articles since they
would dominate the graphs otherwise. Weights were assigned to edges as de-
scribed in [15]. In the experiments below, we used a fixed number of randomly
chosen (Alzheimer disease or asthma) genes for graph extraction. Subgraphs
were extracted by taking all acyclic paths of length at most 4 or 5, and of prob-
ability at least 0.01, between any given gene and the corresponding phenotype.
Some of the genes did not have any such paths to the phenotype and are thus
disconnected from the rest of the graph. Table 1 gives a summary of the prop-
erties of the resulting graphs, obtained using two diseases, a varying number of
annotated example genes, and a search depth of 4 or 5. (Remaining columns
are explained below). Graphs Alz1 and Alz2 were obtained using the same 17
Alzheimer disease genes, but three of them were not connected to the Alzheimer
disease phenotype with a path of length at most 4 (Alz1). Alz3 and Alz4 were
extracted starting with all 142 annotated Alzheimer disease genes, and Ast1 and
Ast2 with 17 asthma genes. As a basic representation, a modified path-predicate
was employed that takes into account the node and edge types. We defined pred-
icates related to node and edge types as operational. To answer question Q1,
we start by studying example explanations for path(A,B) obtained from the
graphs, where A is a gene and B a phenotype (Figure 3). These explanations are
all semantically meaningful. For instance, the first one indicates that gene A is
related to phenotype B if A belongs to a group of homologous (i.e., evolutionarily
related) genes that relate to B. The three other explanations are based on inter-
action of proteins: either an explicit one, by participation in the same pathway,
or by being found in the same cellular component. This last discovery suggests
that a clause to describe different kinds of possible interactions would be a useful
feature in the logical theory. It thus seems that PEBL can produce useful expla-
nations and can help the user discover and synthesize new information, which
answers Q1 positively.

To further study the questions more objectively, we consider a slightly ar-
tifical setting. We define a target predicate connect/3 as connect(X,Y,Z) :-
path(X,Z),path(Y,Z),path(X,Y). This predicate succeeds if three nodes are
connected to each other. We use examples where genes X and Y and phenotype
Z are connected, and construct explanations on graphs Alz1 and Ast1.

We consider ordered triplets (G1,G2,P) of nodes, where G1 and G2 are different
genes and P is a phenotype. We call such a triplet positive with respect to the
given network if both genes are annotated with the graph’s disease and P is
the corresponding phenotype, and negative otherwise. Thus for Alz1, there are
14 · 13 · 1 = 182 positive and 29 · 28 · 3 − 182 = 2254 negative triplets. Those
numbers are also given in Table 1.

Probabilistic Explanation Based Learning 185

Table 1. Graph characteristics: search depth used during graph extraction, numbers of
nodes and edges, number of genes annotated resp. not annotated with the correspond-
ing disease and number of phenotypes, number of positive and negative examples for
connecting two genes and a phenotype.

depth nodes edges ag ng pt pos neg

Alz1 4 122 259 14 15 3 182 2254
Alz2 5 658 3544 17 20 4 272 5056
Alz3 4 351 774 72 33 3 5112 27648
Alz4 5 3364 17666 130 55 6 16770 187470

Ast1 4 127 241 7 12 2 42 642
Ast2 5 381 787 11 12 2 110 902

Table 2. Averaged results over all examples learned on Alz1 (left column) resp. Ast1
(right column) and evaluated on 6 different graphs (lines Alz1–4, Ast1–2): number
of positives among the first k answers (pos(k)), number of positives returned before
the first negative (pos n), absolute number of positives among examples with non-zero
probability (pos a), and precision w.r.t. all examples with non-zero probability (prec).

Alz1 Ast1
pos(1) pos(3) pos(5) pos n pos a prec pos(1) pos(3) pos(5) pos n pos a prec

Alz1 0.95 2.53 3.95 6.91 16.82 0.46 1.00 3.00 4.86 6.86 10.57 0.23
Alz2 0.84 2.24 3.60 7.37 18.65 0.42 0.86 2.86 4.71 6.86 14.56 0.22
Alz3 0.99 2.64 4.09 23.20 126.09 0.48 1.00 2.71 4.14 6.86 28.00 0.24
Alz4 0.84 2.23 3.58 7.37 18.80 0.42 0.86 2.29 3.43 5.14 28.00 0.15

Ast1 0.09 0.26 0.44 2.07 2.07 0.02 1.00 3.00 4.86 17.14 17.14 0.34
Ast2 0.08 0.23 0.38 2.00 2.00 0.01 0.86 2.57 4.29 16.57 16.57 0.20

We use connect(G1,G2,P) for positive triplets as training examples. As
connect is symmetric in the first two arguments, we only consider one ordering
per pair of genes, which yields in total 14 · 13/2 = 91 training examples for Alz1
(resp. 21 for Ast1). The aim is to construct explanations for connections be-
tween the nodes of positive triplets, and use those to obtain for each test graph
a ranked list of triplets covered by the explanation. To do so, we first compute
the most likely explanation for each individual training example e, and then
rank all instances covered by the resulting explanation clause according to their
maximal probability. Table 2 summarizes classification accuracies obtained us-
ing those rankings and the classification criterion on triplets as described above.
Values are averaged over all training examples. On graphs describing the same
disease as the training graph, the top k instances for k = 1, 3, 5 are mostly
positive, which again gives a positive answer to Q1. We obtained 26 different
explanations from Alz1 and 3 different explanations from Ast1. Most explana-
tions have been learned on at least two examples, and the biggest set of examples
which shared most likely explanation contains 12 examples. Figure 4 shows an
example explanation found both on Alz1 and on Ast1. This indicates a positive
answer to question Q2, discovery of common explanations. The answer to Q3,

186 A. Kimmig, L. De Raedt, and H. Toivonen

g hg
belongs

ghg
belongs

pt
refers refers

Fig. 4. One explanation for connect(G1,G2,P), where double circles mark answer vari-
ables, and node types used are gene (g), phenotype (pt) and homologgroup (hg)

if explanations can be transferred, is less conclusive: while transfer from Asthma
to Alzheimer disease achieves good results, the other direction is a lot worse.
However, one has to take into account that 23 of the 26 explanations learned on
Alzheimer disease do not return any example at all on Asthma graphs, one only
returns negative instances and the remaining 2 carry over very well, returning
30 resp 16 positive instances before returning negative ones. At the same time,
two of the three explanations learned on Asthma were also learned on Alzheimer
disease, which might explain their good performance there.

6 Conclusions and Related Work

We have introduced probabilistic explanation based learning, which applies prin-
ciples of explanation based learning to probabilistic logic representations. Within
this paper this was realized using a simple probablistic extension of Prolog, called
ProbLog [5], even though the technique can easily be adapted towards other log-
ics such as ICL [12] or PRISM [14]. Whereas the original version of ProbLog was
intended as an inference engine for answering queries to a kind of probabilistic
database efficiently, the present work is meant to support reasoning by analogy,
similarity, or cases. The idea is that the most likely explanation for a particu-
lar example is employed to compute similar instances. Experiments on mining
biological networks have shown promising results.

Probabilistic explanation based learning builds upon the existing work in both
explanation based learning and probabilistic logics. From an explanation based
learning point of view it is a simple extension of the formalisations within Pro-
log due to [8,16] with probabilistic inference. From a probabilistic logic point of
view, it extends the work of Poole [12] in that it finds generalized explanations.
We have argued that using probabilities in the explanations provides a natural
solution to the multiple explanation problem whereas the use of a resolution
based proof procedure allows one to naturally deal with multiple examples and
identify common explanations. Finally, the work is related to that on analogi-
cal, similarity and case based reasoning. In this regard, it provides a notion of
similarity that is based on background knowledge (as in the definition of the
connect predicate) as well as likelihood.

ProbLog and PEBL have been motivated by and applied to challenging and
realistic biological network mining tasks [15]. Within the framework of ProbLog
we have also studied the problem of compressing a large network from positive
as well as negative examples [6]. Our future work will be aimed at making this
set of tools available to the life scientist and to evaluate their utility there.

Probabilistic Explanation Based Learning 187

Acknowledgements. This research has been partially supported by IQ (European
Union Project IST-FET FP6-516169), Research Foundation-Flanders (FWO-
Vlaanderen), Tekes and Humboldt foundation.

References

1. Cohen., W.: Abductive Explanation-Based Learning: A Solution to the Multiple
Inconsistent Explanation Problem. Machine Learning 8(2) (1992)

2. DeJong, G.: Explanation-based learning. In: Tucker, A. (ed.) Computer Science
Handbook, 2nd edn., CRC (2004)

3. DeJong, G.: Toward Robust Real-World Inference: A New Perspective on
Explanation-Based Learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M.
(eds.) ECML 2006. LNCS (LNAI), vol. 4212, Springer, Heidelberg (2006)

4. De Raedt, L., Kersting, K.: Probabilistic Logic Learning. SIGKDD Explo-
rations 5(2) (2003)

5. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: Proceedings of 20th International Joint Conference
on Artificial Intelligence, pp. 2468–2473 (2007)

6. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing
Probabilistic Prolog Programs. Machine Learning Journal (to appear, 2007)

7. Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. MIT Press, Cam-
bridge (to appear, 2007)

8. Hirsh, H.: Explanation-based Generalization in a Logic-Programming Environ-
ment. In: Proceedings of 15th International Joint Conference on Artificial Intel-
ligence, pp. 221–227 (1987)

9. Langley, P.: Unifying themes in empirical and explanation-based learning. In: Pro-
ceedings of the sixth international workshop on Machine learning, pp. 2–4 (1989)

10. Mitchell, T.M., Keller, R.M., Kedar-Cabelli, S.T.: Explanation-based generaliza-
tion: A unifying view. Machine Learning 1(1), 47–80 (1986)

11. Perez-Iratxeta, C., Bork, P., Andrade, M.A.: Association of genes to genetically
inherited diseases using data mining. Nature Genetics 31, 316–319 (2002)

12. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64(1) (2003)

13. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

14. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of AI Research 15, 391–454 (2001)

15. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: Leser, U., Naumann, F., Eckman, B.
(eds.) DILS 2006. LNCS (LNBI), vol. 4075, Springer, Heidelberg (2006)

16. Van Harmelen, F., Bundy, A.: Explanation-Based Generalisation = Partial Evalu-
ation. Artificial Intelligence 36(3), 401–412 (1988)

Graph-Based Domain Mapping for Transfer

Learning in General Games

Gregory Kuhlmann and Peter Stone

Department of Computer Sciences, The University of Texas at Austin
1 University Station C0500, Austin, Texas 78712-1188

{kuhlmann,pstone}@cs.utexas.edu

Abstract. A general game player is an agent capable of taking as input
a description of a game’s rules in a formal language and proceeding to
play without any subsequent human input. To do well, an agent should
learn from experience with past games and transfer the learned knowl-
edge to new problems. We introduce a graph-based method for identi-
fying previously encountered games and prove its robustness formally.
We then describe how the same basic approach can be used to identify
similar but non-identical games. We apply this technique to automate
domain mapping for value function transfer and speed up reinforcement
learning on variants of previously played games. Our approach is fully
implemented with empirical results in the general game playing system.

1 Introduction

We consider the problem of General Game Playing (or Meta-Game Playing as
it was introduced by [10]). In this paradigm, the challenge is to design an agent
that can receive descriptions of previously unseen games and play them without
subsequent human input. In its lifetime, a GGP agent will encounter a variety of
different games. To leverage this experience, the agent must transfer knowledge
from past games in a way that is beneficial to a new task that it is given.

In the transfer learning paradigm, an agent trains on a source task and lever-
ages that experience to speed up learning on a target task. In particular, we
are interested in transferring a value function found through temporal difference
learning. The intention is to provide a reasonable starting place for learning,
while allowing refinement for the specifics of the target task.

Because the source task and target task may have different state and action
spaces, and different goals, a prerequisite for value function transfer is a domain
mapping between the two. We present a set of general mapping functions to
automatically translate a value function between certain classes of game variants,
a process that is typically carried out manually. Also, unlike typical transfer
scenarios, an agent in our paradigm is responsible for selecting the appropriate
source task from its database, rather than being given a specific source task
to use. We contribute a graph-based method for recognizing similar games and
prove that it is robust even when game descriptions are intentionally obfuscated.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 188–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Graph-Based Domain Mapping for Transfer Learning in General Games 189

1. (role white) (role black)
2. (init (cell a 1 b)) (init (cell a 2 b)) (init (cell a 3 b))
3. (init (cell a 4 bk)) ... (init (cell d 1 wr)) ... (init (cell d 4 b))
4. (init (control white)) (init (step 1))
5. (<= (legal white (move wk ?u ?v ?x ?y))
6. (true (control white)) (true (cell ?u ?v wk)) (kingmove ?u ?v ?x ?y)
7. (true (cell ?x ?y b)) (not (restricted ?x ?y)))
8. (<= (legal white noop) (true (control black)))
9. (<= (next (cell ?x ?y ?p)) (does ?player (move ?p ?u ?v ?x ?y)))
10. (<= (next (step ?y)) (true (step ?x)) (succ ?x ?y))
11. (succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5) ... (succ 7 8) (succ 8 9) (succ 9 10)
12. (nextcol a b) (nextcol b c) (nextcol c d)
13. (<= (goal white 100) checkmate)
14. (<= (goal black 100) (not checkmate))
15. (<= terminal (true (step 10)))
16. (<= terminal stuck)

Fig. 1. Partial game description for “Minichess”. GDL keywords shown in bold.

The following section provides background on GGP and discusses the key ele-
ments of the game description language as well as our method for analyzing such
descriptions. Section 3 introduces our graph-based game recognition algorithm,
sketches a proof of its robustness, and outlines the recognized game variant
classes. In Section 4, we discuss how to map learned value functions between
game variants. Our complete approach is evaluated in the GGP framework in
Section 5. Section 6 surveys related work and Section 7 concludes.

2 General Game Playing

The general game playing scenario adopted for this work is taken from the AAAI
General Game Playing competition [8]. In the competition setup, the Game
Manager connects to each player process and sends the game description along
with time limits called the start clock and play clock. Players have the duration
of the start clock to analyze the game description before the game begins and the
duration of the play clock to choose their moves each turn. The game continues
until a terminal state is reached. No human intervention is permitted at any
point: the general game player must be a complete and fully autonomous agent.

2.1 Game Description Language

For an agent to interpret a game, it must be described in a well-defined language.
In the Game Description Language (GDL), used in the competition, games are
modeled as state machines. An agent can derive its legal moves, the next state
given the moves of all players, and whether or not it has won by applying reso-
lution theorem proving. Part of the description for a game called “Minichess” is
shown in Figure 1. A GGP agent must be able to play any game, given such a
description. We illustrate the features of GDL through this example.

First, GDL declares the game’s roles (line 1). “Minichess” has two roles, white
and black. Next, the initial state of the game is defined (2–4). Each functional

190 G. Kuhlmann and P. Stone

term inside an init relation is true in the initial state. Besides init, none of
the tokens in these lines are GDL keywords. The predicates cell, control and
step are all game-specific. With the exception of goal values, even the numbers
do not have any external meaning. If any of these tokens were to be replaced by
a different token throughout, the meaning would not change.

GDL also defines the set of legal moves available to each role through legal
rules (5–8). The <= symbol is the reverse implication operator. Tokens begin-
ning with a question mark are variables. The true relation is affirmative if its
argument can be satisfied in the current state. The state transition function is
defined using the next keyword (9–10). The does predicate is true if the given
player selected the given action in the current state. Finally, GDL defines rules
to determine when the game state is terminal (15–16). When the game ends,
each player receives the reward defined by the game’s goal rules.

A game description may define additional relations to simplify the conditions
of other rules and support numerical relationships. For instance, the succ rela-
tion (11) defines how the game’s step counter is incremented, and the nextcol
relation (12) orders the columns of the chess board. Identifying such relationships
is valuable because they bridge logical and numerical representations.

2.2 Automated Domain Analysis

An approach common to most computer game playing systems is heuristic
search, in which game states are evaluated based on the contribution of vari-
ous features. Although these features are typically supplied by the system de-
signer [3,11], the general game playing setting prohibits such human involvement,
motivating the development of automated methods.

In prior work on automated domain analysis [9], we developed techniques for
generating features automatically from GDL game descriptions. The structures
identified during domain analysis are also valuable in domain mapping. One of
the most basic structures to look for is a successor relation. This type of relation
induces an ordering over a set of objects. We have already seen two examples
in lines 11–12 of Figure 1. A major challenge for automated domain analysis
in GGP is that, during the competition, the description’s non-keyword tokens
are scrambled to prevent the use of lexical clues. In a competition setting, the
same successor relations may look something like: (tcsh pico cpio) (tcsh
cpio grep) ... (tcsh echo ping).

Our system can still identify these relations as successors because order is
a structural, rather than lexical, property. Based on these relations, the agent
identifies additional structures such as a step counter, which is a functional term
in the game’s state that increments each time step. Our system identifies it by
looking for a rule such as the one on line 10 of Figure 1.

Another example of a structure that our agent attempts to identify is a board.
A board is a two dimensional grid of cells that change state, such as a chess or
checkers board. Once a board is identified, the system looks for markers, which
are objects that occupy the cells of the board and pieces, special markers that

Graph-Based Domain Mapping for Transfer Learning in General Games 191

next

true

<=

next

true

<=

succ

step step?x

?y ?y ?x

next

true

<=

succ

step step?x

?y ?y ?x

Order Edges Added Final Graph w/ Label NodesArgument Edges Only

Fig. 2. Rule graph construction for step counter rule on line 10 of Figure 1

occupy only one cell at a time. In “Minichess”, the white rook, wr, and the black
king bk are examples of pieces. Games like Othello have only markers.

3 Graph-Based Domain Mapping

An important step in transferring knowledge from a known game to a new,
unknown game is recognizing the extent to which the games are similar. Because
their rules are reordered and tokens scrambled during a competition, it is not
clear from the GDL descriptions even if two games are identical. To address
this problem, we introduce the concept of rule graphs, canonical form graph
structures that capture the important aspects of the game description while
ignoring inconsequential elements such as token names and rule order.

3.1 Rule Graphs

Rule graphs are colored, directed graph representations of game rules. To de-
scribe rule graph construction, we use the example of the step counter rule in
line 10 of Figure 1. Conceptually, a rule graph is constructed in three stages.
These stages for the step counter graph are show from left to right in Figure 2.

First, the graph contains a node for each logical sentence, relational sentence,
constant and variable in the rule. For each of these terms, an argument edge
is added from the term’s node to all of the term’s arguments. Variable nodes
are shown as diamonds. Logical sentence nodes are labeled by the sentence’s
operator. Relational sentences and constants are labeled with their functor’s
name and shown as circles, if they are keywords, and shown as squares, otherwise.
The resulting graph is shown on the far left in Figure 2. For the purpose of
matching, each circular node with a different label is considered a different color.

As shown in the center graph in the figure, we add additional edges to force or-
dering constraints on arguments. For each relational sentence with arity greater
than one, we add an order edge from each argument to the argument that follows
it. The edge between the two arguments of the succ relation in the figure is an
example of such an edge. Also, we constrain the consequent of an implication

192 G. Kuhlmann and P. Stone

to precede the antecedents without enforcing an order on the antecedents them-
selves. We achieve this constraint by adding edges from the consequent to each
of the antecedents, as in the edge from next to succ and from next to true.

Finally, we must identify which variables and constants are the same without
keeping the specific labels. For each unique variable in a rule and for each unique
non-keyword constant in the game description, we create a new label node and
add edges to each of their instances. Variable label nodes are shown as dashed
diamonds and non-keyword constant label nodes as dashed squares. The final
graph for the step counter rule is shown on the far right in Figure 2.

To determine if two rules graphs are isomorphic, one must simply use any
off-the-shelf graph isomorphism algorithm. Through informal experimentation
we found VF [4] to be relatively efficient for the structure of rule graphs.

3.2 Correctness Proof

In this section, we sketch a proof for the correctness of rule graph isomorphism
as a means to determine if two games are the same, modulo scrambling. We
begin with a few definitions, followed by the formal statement of the theorem.

In GDL, an atomic sentence is a relation constant of arity k applied to k
terms: p(x1, . . . , xk) or equivalently p(xk

1). An example of an atomic sentence is
father(bob, X). If k is 0 then the sentence is called an object constant. A term is
either a variable (e.g. X) or an atomic sentence. A more complex example of an
atomic sentence is the following: f(X, g(Y, h(p)), q). The constants may be user-
defined, such as cell, or GDL keywords such as not, terminal, or distinct.

A rule is an implication of the form: h⇐ b1∧· · · ∧ bn, where h, the head, and
each bi in the body are atomic sentences. Although GDL supports disjunction in
the body, it is always possible to remove this disjunction and write rules in this
form. Because conjunction is associative and commutative, we can represent the
body of a rule as a set, B. Therefore, we represent such a rule as a pair h⇐ B
where B = {b1, b2, . . . , bn}. If the set B is empty, then the head of the rule is an
unconditionally true fact.

A game description is a set of rules. A variable scrambling is a one-to-one
function over the variable labels present in a rule. A constant scrambling is a
one-to-one function over the constant labels present in a game description. A
game scrambling of a game description γ is a constant scrambling of γ and a set
of variable scramblings, one for each rule in γ. Two game descriptions γ and γ′

are scramble-equivalent if there exists a scrambling η such that γ′ = η(γ).

Theorem 1. Two game descriptions γ and γ′ are scramble-equivalent if and
only if the rule graph G created from γ and rule graph G′ created from γ′ are
isomorphic.

Proof Sketch
The forward implication of the theorem is fairly straightforward to prove. If two
game descriptions are scramble-equivalent, then their corresponding rule graphs
will be isomorphic. A simple argument for this statement is that the graph

Graph-Based Domain Mapping for Transfer Learning in General Games 193

construction algorithm is deterministic and does not depend on the exact names
of the non-keyword tokens.

The reverse direction is a bit more subtle. We will prove that isomorphic rule
graphs imply scramble-equivalent game descriptions by induction on the size of
the game description. Beginning with the base case of γ =Ø, we can construct
any game description by composing the following operations:

1. Add new rule with object constant head and empty body:
γ −→ γ ∪ {c ⇐Ø}

2. Add object constant as antecedent of existing rule:
γ ∪ {h ⇐ B} −→ γ ∪ {h ⇐ B ∪ {c}}

3. Append object constant to some atomic sentence in head of existing rule:
γ ∪ {p(. . . r(xk

1) . . .) ⇐ B} −→ γ ∪ {p(. . . r(xk
1 , c) . . .) ⇐ B}

4. Append variable to some atomic sentence in head of existing rule:
γ ∪ {p(. . . r(xk

1) . . .) ⇐ B} −→ γ ∪ {p(. . . r(xk
1 , X) . . .) ⇐ B}

5. Append object constant to some atomic sentence in body of existing rule:
γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1) . . .)}} −→ γ ∪ {h ⇐ B ∪ {p(. . . r(xk
1 , c) . . .)}}

6. Append variable to some atomic sentence in body of existing rule:
γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1) . . .)}} −→ γ ∪ {h ⇐ B ∪ {p(. . . r(xk
1 , X) . . .)}}

For each of the above operations, we construct a corresponding abstract rule
graph, G. This graph can be divided into two partitions: the nodes and edges
present prior to applying the operation, and those added by the operation. By the
definition of isomorphism, the isomorphic rule graph, G′, can then be partitioned
in the same way. By applying the graph building algorithm in reverse, we get
a partitioned game description γ′. By the induction hypothesis, the original
subgraph isomorphism implies scramble-equivalent subgames. What remains is
to show that there exists a scrambling compatible with the subgame scrambling
that makes the induction step rule equivalent to its partner in the isomorphic
game. The same procedure proves the induction step for each operation.

3.3 Identifying Similar Games

While it is undoubtedly useful to recognize identical games, the applicability of
our algorithm is much greater if we extend it to similar, but non-identical games.
Our approach is to continue using identical rule graph isomorphism, but to test
against generated variants of previously played games. We begin by identifying
the classes of variants that we have determined to produce small, local changes
to rule graph structure. Each variant defines a transformation procedure, which
modifies the original rule graph by adding and/or deleting nodes and edges.

The first class of variants are those that change only the initial state of the
game. By comparing all of the rules other than the initial state declarations,
the standard graph isomorphism algorithm can identify these variants: Num
Markers, in which the number of markers on the board differs and Piece Con-
figuration, in which the location of pieces is different.

A more challenging class of variants to identify are those that change one or
more of the game’s successor relations. For example, the nextcol relation defined
on line (12) of Figure 1 could be made longer by adding another rule: (nextcol
d e) or shorter by removing the rule (nextcol c d). Alternatively, we could
make the sequence cyclic by adding the rule: (nextcol d a). Each of these game
description changes correspond to rule graph transformations. By applying these

194 G. Kuhlmann and P. Stone

candidate transformations prior to matching, we can identify the Board Size
variant, in which the length successor relation ordering the coordinates of one
or more of the board dimensions has been changed. The Cylindrical/Toroidal
Board variant makes cyclic the successor relation that orders one or more of the
coordinates of the board. Finally, Step Limit alters the maximum number of
steps before forced termination by changing the step number in the termination
condition and expanding the counter’s successor relation as necessary.

Step Limit is a composite variant in that it modifies both a successor rela-
tion and a goal condition. Another goal variant is Inverted Goal, in which the
constants “100” and “0” are swapped in the second argument of all instances of
goal. In Switched Role, the rule graph is unchanged but the player’s assigned
role is different (e.g. playing as O instead of X in tictactoe). Lastly, in the Miss-
ing Feature variants, a state feature present in the source task state is absent
in the target task state. The transformation procedure removes all instances of
the feature and the rules that include it, (e.g. removal of a step counter).

Offline, the agent generates a rule graph for each applicable transformation of
each previously played game. When faced with a new game, the agent generates
its rule graph and attempts to match it against every graph in the database. Non-
matching graphs are typically rejected very quickly; only correct matches require
any significant amount of computation. With a database of roughly 100 games,
the entire process never requires more than 27 secs on a 2.80GHz machine.

Although this approach can detect quite complicated transformations of games,
there are limits to its power. Game variants that affect many rules at once are
particularly difficult to handle. For example, the board topologies in 3 and 4 player
Chinese checkers games differ by too many rules to describe their difference as a
concise, generally-applicable transformation procedure.

To this point, we have described our procedure for identifying game variants.
In the next section, we describe our approach to transferring knowledge between
these games for the purpose of speeding up learning.

4 Value Function Transfer

The approach detailed in this work transfers a learned value function from a
source task to initialize the value function of a target task, identified to be
similar through the graph-based method described in the previous section. Before
introducing our approach to value function transfer, we provide some background
on the reinforcement learning paradigm and detail the assumptions and design
choices of our learning algorithm.

4.1 Reinforcement Learning in Games

In a Reinforcement Learning (RL) problem [13], an environment is modeled as
a Markov Decision Process (MDP), defined by a transition function, T , and
a reward function, R. Many common algorithms for solving RL problems are
based on learning a value function, Q, which approximates the expected long-
term reward for executing action a in state s.

Graph-Based Domain Mapping for Transfer Learning in General Games 195

Mapping Initial VT [s] Applicable Variants

Direct VS[s]
Step Limit

Num Markers
Piece Configuration

Inverse 100 − VS[s]
Inverted Goal
Switched Role

Average 1 |
B

(s)|
∑

s′∈B(s) VS [s′]
Board Size

Missing Feature

Fig. 3. Value function initialization formulas for three mappings, along with applicable
game variants. VS and VT are the value functions for the source and target tasks,
respectively. B(s) is the set of source task afterstates mapped to target afterstate s.

In GGP, R is known, but for multiplayer games, T is only partially known,
because the transition function depends on the opponent’s unknown policy. If we
consider only turn-taking games, in which the next state is uniquely determined
by the agent’s action on its turn, then we need only learn a function V over
what are commonly called afterstates. Although it is still possible to learn Q, V
has fewer values, increasing generalization. Also, this representation simplifies
transfer mapping by requiring only a mapping between the states of the two
tasks and not the actions.

A popular algorithm for learning value functions is an incarnation of tem-
poral difference learning called Sarsa [13]. Taking into account the assumptions
discussed thus far and that R is defined only for terminal states, our learning
algorithm can be described by the following update rule:

V [st−1]← V [st−1] + α ·
{

(R(st)− V [st−1]) if st is terminal,
(V [T (st, at)]− V [st−1]) otherwise.

where α is the learning rate (0.3 in our experiments), st is the current state,
at is the agent’s chosen action, and st−1 is the afterstate following the agent’s
previous action. This algorithm and the rest of the transfer learning approach
described in this work make no assumptions about the representation of V . In
our experiments, each V [s] is stored as a single real value in a table. However,
there is nothing in principle that would prevent our method from working with
a function approximator, such as a neural network.

4.2 Value Function Mapping

To translate afterstate values in the source into afterstate values in the target we
must construct a mapping between their state spaces. The appropriate mapping
depends on the identified relationship of the tasks. In Figure 3 we propose three
possible mapping functions and, for each, identify applicable game variants.

The direct mapping simply copies the value of an afterstate in the source
task directly to afterstate value in the target task. This mapping assumes that
the two tasks have the same state space and roughly the same goal condition.

196 G. Kuhlmann and P. Stone

Because the Step Limit variant effects only the duration of the game and Num
Markers and Piece Configuration effect only the game initial state, the direct
mapping seems to be appropriate.

The inverse mapping also assumes that the state space is the same between
tasks, but that the goal has changed. In particular, it assumes that the goal of
the target task is the exact opposite of the source task. This mapping is clearly
applicable in the case of Inverted Goal. Assuming that the game is zero sum,
then the mapping is also appropriate for Switched Role.

The final mapping, average, assumes only that there is a function, B, that for
a given target afterstate, returns the set of relevant source afterstates. In the case
of Missing Feature, B(s) would return all source task afterstates with feature
values matching those of s for the features remaining in the target afterstate.
The Board Size variant uses a particular B, detailed in the next section.

4.3 Case Studies

In this section, we discuss the application of the complete mapping procedure
to three concrete examples, one from each mapping category. Our first transfer
scenario involves a miniature checkers game played on a 5× 5 board. The rules
are identical to normal checkers, except that an available jump must be taken.

This source-target pair is an example of the Num Markers variant. In the
target task, each player begins with only 4 pieces instead of 5. The goal in both
tasks is the same: to capture your opponent’s markers before they capture yours.
It is reasonable to assume that there will be some overlap in the states visited
in the source task and those in the target task, so the Direct mapping appears
to be the logical choice. At the same time, the degree to which the transfer may
help (or hurt) must be answered empirically.

In the class of games appropriate for the Inverse mapping, we looked at the
game of tictactoe and a variant in which the goal is inverted. Because the goal of
the game is the opposite of the original goal, highly valued states of the source
task should have low values in the target task and vice-versa.

Fig. 4. Full 4 × 4 “Minichess” state and
all four candidate subboards

Finally, “Minichess”, the chess vari-
ant introduced in Section 2.1 is used as
an example of a Board Size variant. For
a target task with board size N × N ,
we assume that the source task has a
board size of N − 1×N − 1. In particu-
lar, we use the 3× 3 game as the source
task and the 4 × 4 game as the target
task. The afterstate mapping function
B, is constructed as follows. An after-
state represented by the 4 × 4 board in
the target task is mapped to four candi-
date afterstates in the source task, each
represented by a 3× 3 board, which we call a subboard. The first subboard con-
sists of the top-left 3 × 3 cells of the board. The next subboard consists of the

Graph-Based Domain Mapping for Transfer Learning in General Games 197

top-right cells, continuing clockwise. Figure 4 shows a source task afterstate and
its four candidate subboards. Each of these candidates is not necessarily a valid
afterstate in the source task. If no subboards are valid, the afterstate value is
initialized to the default value.

5 Experiments

We conducted experiments to determine the impact of value function transfer
in each of the described scenarios, using different amounts of training on the
source task. Each learning trial consists of an independent source task learning
phase followed by a target task learning phase. The target task agent’s value
function is initialized by the source task value function, according to the domain’s
generated mapping function. Each trial was repeated 30 times, with a sliding
window average of 100 matches used to generate learning curves. To determine
statistical significance, we evaluated the curves at several points using a one-
tailed T-test with 95% confidence. All figures show averaged learning curves.

The results of our “Checkers” experiments are shown on the left in Figure 5.
Value function transfer produces an initial performance improvement that per-
sists until convergence. The other two curves eventually catch up, beyond the
scale of the graph. The visible differences are statistically significant for all data
points shown. The average number of state values transferred for the most ex-
perience player was 1,113, which is roughly a third of all unique afterstates en-
countered during target task learning. To make learning more valuable in these
experiments, we used an opponent agent trained for an extensive period of time
with temporal different learning rather than a random player.

The “TicTacToe” results, shown on the right in Figure 5, again demonstrate
the positive impact of transfer. In this case, the average hit rate was 68% for the
learner with 10,000 matches of source task experience. This substantial reuse
of source task values helps to explain the significance of the transfer benefit.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 R
ew

ar
d

Target Learning (Matches)

10,000 matches
1,000 matches

No source task training

 65

 70

 75

 80

 85

 90

 95

 0 200 400 600 800 1000

A
ve

ra
ge

 R
ew

ar
d

Target Learning (Matches)

10,000 matches
1,000 matches

No source task training

Fig. 5. Transfer learning results with varying source experience. Left: “Checkers” game
with Num Markers variant. Right: “TicTacToe” game with Inverted Goal variant.

198 G. Kuhlmann and P. Stone

The performance improvement of the player with 10,000 matches of source task
experience is significantly better than the from-scratch learner until 700 matches.

To make the problem more interesting for learning, at the start of each match,
for both source and target learning, the state is initialized to a random configu-
ration of the pieces. In only about half of the initial states can the white player
force a win. However, in our experiments, the black player is controlled by a
one-move lookahead player, and thus, by exploiting the suboptimality of the
opponent, a learner is able to earn an average score above 50.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 R
ew

ar
d

Target Learning (Matches)

1,000 matches
100 matches

No source task training

Fig. 6. Transfer from 3 × 3 board to 4 × 4
board in “Minichess”

The transfer results for “Mini-
chess” are shown in Figure 6. Trans-
fer clearly improves the learner’s
initial performance. The experi-
enced learners do significantly
better than the agent learning
from scratch up until 1,200 tar-
get matches. The agent learning
from scratch then performs better
than the experienced players be-
tween 2,500 and 4,000 matches. The
fact that the slowdown is more pro-
nounced for the 1,000 match learner
than for the 100 match learner
indicates that the agent may be
overfitting to the source task. The negative effect is short-lived, however, and
by 4,000 target task matches, all three learners converge.

6 Related Work

Graph theoretic structures have long been recognized for their value to logic
programming. Scheffer et al. [12] define an occurrence graph and demonstrate
its utility in efficiently solving the θ-subsumption problem for ILP. This graph
relates the shared variables between a pair of clauses, but does not relate symbol
names across clauses like our rule graphs.

In other work [6,5], dependency graphs, used to check for consistency in logic
programs with negation, have been extended to apply under the stable model
semantics. Dependency graphs are defined over the predicate symbols of a knowl-
edge base and capture a different abstraction than that in our work.

The most similar graph structure to our own is that defined by Xu and
Tao [15]. With this structure, they demonstrate that the isomorphism prob-
lem for definite logic programs (those with only Horn clauses) is equivalent to
the graph isomorphism problem. Our proof in Section 3.2 extends this result to
general Datalog programs with negation.

In their recent work, Taylor et al. [14] demonstrate that value function transfer
is able to speed up learning between tasks when the domain mapping is given.
Their work also makes progress towards automating mapping by employing a

Graph-Based Domain Mapping for Transfer Learning in General Games 199

classification algorithm to map actions between tasks. This method requires that
the states are defined in terms of objects and each state feature is associated
with one of those objects.

Other work on Relational Reinforcement Learning (RRL) has shown that
by maintaining the relational structure of the domain in the representation of
the value function, it is possible to learn to solve differently parametrized tasks
simultaneously [7]. As our work makes no assumptions about value function rep-
resentation, future work may reveal RRL to be complementary to our approach.
RRL has even been applied in GGP. Asgharbeygi et al. [1] learn the values of
handcrafted relational predicates to speed up learning considerably.

Another successful example of transfer learning in GGP is the work of Baner-
jee and Stone [2], in which features of the game tree alone are leveraged for
transfer. Although the features are somewhat expensive to compute because
they require search, the learner is able to transfer learned knowledge across
games with significantly different state and action spaces.

7 Conclusion

This work makes progress toward the complete automation of domain mapping
for value function-based transfer learning. The first main contribution is the
introduction of the rule graph structure, which is useful for representing games
in canonical form. Beyond its use in this paper, the rule graph is likely to be of
general interest within the GGP community, as a way to leverage past experience.
The second main contribution of this paper is that rule graphs, along with a set
of identified variant classes, can be be used as part of a practical method for
recognizing variants of previously played games and speeding up learning in the
General Game Playing framework.

References

1. Asgharbeygi, N., Stracuzzi, D., Langley, P.: Relational temporal difference learning.
In: ICML (2006)

2. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: The
20th International Joint Conference on Artificial Intelligence, January 2007, pp.
672–677 (2007)

3. Campbell, M., Hoane Jr., A.J., Hsu, F.H.: Deep blue. Artificial Intelligence 134(1–
2), 57–83 (2002)

4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for
matching large graphs. In: Proc. of the 3rd IAPR-TC-15 Internation Workshop on
Graph-based Representations, Italy, pp. 149–159 (2001)

5. Costantini, S.: Comparing different graph representations of logic programs under
the answer set semantics. In: Proceedings of the AAAI Spring Symposium on
Answer Set Programming (2001)

6. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science 170(1), 209–244 (1996)

7. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43, 7–52 (2001)

200 G. Kuhlmann and P. Stone

8. Genesereth, M., Love, N.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2) (2005)

9. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic contruction in a com-
plete general game player. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence (July 2006)

10. Pell, B.: Strategy generation and evaluation for meta-game playing. PhD thesis,
University of Cambridge (1993)

11. Schaeffer, J., Culberson, J.C., Treloar, N., Knight, B., Lu, P., Szafron, D.: A world
championship caliber checkers program. Artificial Intelligence 53(2-3), 273–289
(1992)

12. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient theta-subsumption based on
graph algorithms. In: Inductive Logic Programming Workshop (1996)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

14. Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy
search reinforcement learning. In: The Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (May 2007)

15. Xu, D.-Y., Tao, Z.-H.: Complexities of homomorphism and isomorphism for definite
logic programs. Journal of Computer Science and Technology 20(6), 758–762 (2005)

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 201–213, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning to Classify Documents with Only a Small
Positive Training Set

Xiao-Li Li1, Bing Liu2, and See-Kiong Ng1

1 Institute for Infocomm Research, Heng Mui Keng Terrace, 119613, Singapore
2 Department of Computer Science, University of Illinois at Chicago, IL 60607-7053

xlli@i2r.a-star.edu.sg, liub@cs.uic.edu, skng@i2r.a-star.edu.sg

Abstract. Many real-world classification applications fall into the class of
positive and unlabeled (PU) learning problems. In many such applications, not
only could the negative training examples be missing, the number of positive
examples available for learning may also be fairly limited due to the
impracticality of hand-labeling a large number of training examples. Current
PU learning techniques have focused mostly on identifying reliable negative
instances from the unlabeled set U. In this paper, we address the oft-overlooked
PU learning problem when the number of training examples in the positive set
P is small. We propose a novel technique LPLP (Learning from
Probabilistically Labeled Positive examples) and apply the approach to classify
product pages from commercial websites. The experimental results demonstrate
that our approach outperforms existing methods significantly, even in the
challenging cases where the positive examples in P and the hidden positive
examples in U were not drawn from the same distribution.

1 Introduction

Traditional supervised learning techniques typically require a large number of labeled
examples to learn an accurate classifier. However, in practice, it can be an expensive
and tedious process to obtain the class labels for large sets of training examples. One
way to reduce the amount of labeled training data needed is to develop classification
algorithms that can learn from a set of labeled positive examples augmented with a set
of unlabeled examples. That is, given a set P of positive examples of a particular class
and a set U of unlabeled examples (which contains both hidden positive and hidden
negative examples), we build a classifier using P and U to classify the data in U as
well as future test data. We call this the PU learning problem.

Several innovative techniques (e.g. [1], [2], [3]) have been proposed to solve the
PU learning problem recently. All of these techniques have focused on addressing the
lack of labeled negative examples in the training data. It was assumed that there was a
sufficiently large set of positive training examples, and also that the positive examples
in P and the hidden positive examples in U were drawn from the same distribution.
However, in practice, obtaining a large number of positive examples can be rather
difficult in many real applications. Oftentimes, we have to do with a fairly small set of
positive training data. In fact, the small positive set may not even adequately represent

202 X.-L. Li, B. Liu, and S.-K. Ng

the whole positive class, as it is highly likely that there could be hidden positives in U
that may not be similar to those few examples in the small positive set P. Moreover,
the examples in the positive set P and the hidden positive examples in the unlabeled
set U may not even be generated or drawn from the same distribution. A classifier
trained merely on the few available examples in P would thus be incompetent in
recognizing all the hidden positives in U as well as those in the test sets.

In this work, we consider the problem of learning to classify documents with only
a small positive training set. Our work was motivated by a real-life business
intelligence application of classifying web pages of product information. The richness
of information easily available on the World Wide Web has made it routine for
companies to conduct business intelligence by searching the Internet for information
on related products. For example, a company that sells computer printers may want to
do a product comparison among the various printers currently available in the market.
One can first collect sample printer pages by crawling through all product pages from
a consolidated e-commerce web site (e.g., amazon.com) and then hand-label those
pages containing printer product information to construct the set P of positive
examples. Next, to get more product information, one can then crawl through all the
product pages from other web sites (e.g., cnet.com) as U. Ideally, PU learning
techniques can then be applied to classify all pages in U into printer pages and non-
printer pages. However, we found that while the printer product pages from two
websites (say, amazon.com and cnet.com) do indeed share many similarities, they can
also be quite distinct as the different web sites invariably present their products (even
similar ones) in different styles and have different focuses. As such, directly applying
existing methods would give very poor results because 1) the small positive set P
obtained from one site contained only tens of web pages (usually less than 30) and
therefore do not adequately represent the whole positive class, and 2) the features
from the positive examples in P and the hidden positive examples in U are not
generated from the same distribution because they were from different web sites.

In this paper, we tackle the challenge of constructing a reliable document (web
page) classifier based on only a few labeled positive pages from a single web site and
then use it to automatically extract the hidden positive pages from different web sites
(i.e. the unlabeled sets). We propose an effective technique called LPLP (Learning
from Probabilistically Labeling Positive examples) to perform this task. Our proposed
technique LPLP is based on probabilistically labeling training examples from U and
the EM algorithm [4]. The experimental results showed that LPLP significantly
outperformed existing PU learning methods.

2 Related Works

A theoretical study of PAC learning from positive and unlabeled examples under the
statistical query model was first reported in [5]. Muggleton [6] followed by studying
the problem in a Bayesian framework where the distribution of functions and
examples are assumed known. [1] reported sample complexity results and provided
theoretical elaborations on how the problem could be solved. Subsequently, a number
of practical PU learning algorithms were proposed [1], [3] and [2]. These PU learning
algorithms all conformed to the theoretical results presented in [1] by following a

 Learning to Classify Documents with Only a Small Positive Training Set 203

common two-step strategy, namely: (1) identifying a set of reliable negative
documents from the unlabeled set; and then (2) building a classifier using EM or
SVM iteratively. The specific differences between the various algorithms in these two
steps are as follows. The S-EM method proposed in [1] was based on naïve Bayesian
classification and the EM algorithm [4]. The main idea was to first use a spying
technique to identify some reliable negative documents from the unlabeled set, and
then to run EM to build the final classifier. The PEBL method [3] uses a different
method (1-DNF) for identifying reliable negative examples and then runs SVM
iteratively for classifier building. More recently, [2] reported a technique called Roc-
SVM. In this technique, reliable negative documents were extracted by using the
information retrieval technique Rocchio [7]. Again, SVM is used in the second step.
A classifier selection criterion is also proposed to catch a good classifier from
iterations of SVM. Despite the differences in algorithmic details, the above methods
all focused on extracting reliable negative instances from the unlabeled set.

More related to our current work was the recent work by Yu [8], which proposed to
estimate the boundary for the positive class. However, the amount of positive
examples they required was around 30% of the whole data, which was still too large
for many practical applications. In [9], a method called PN-SVM was proposed to
deal with the case when the positive set is small. However, it (like all the other
existing algorithms of PU learning) relied on the assumption that the positive
examples in P and the hidden positives in U were all generated from the same
distribution. For the first time, our LPLP method proposed in this paper will address
such common weaknesses of current PU learning methods, including handling
challenging cases where the positive examples in P and the hidden positive examples
in U were not drawn from the same distribution.

Note that the problem could potentially be modeled as a one-class classification
problem. For example, in [10], a one-class SVM that uses only positive data to build a
SVM classifier was proposed. Such approaches are different from our method in that
they do not use unlabeled data for training. However, as previous results reported in
[2] have already showed that they were inferior for text classification, we do not
consider them in this work.

3 The Proposed Technique

Figure 1 depicts the general scenario of PU learning with a small positive training set
P. Let us denote a space ψ that represents the whole positive class, which is located
above the hyperplane H2. The small positive set P only occupies a relatively small
subspace SP in ψ (SP⊆ ψ), shown as the oval region in the figure. The examples in
the unlabelled set U consists of both hidden positive examples (represented by circled
“+”) and hidden negative examples (represented by “-”). Since P is small, and ψ
contains positive examples from different web sites that present similar products in
different styles and focuses, we may not expect the distributions of the positive
examples in P and those of the hidden positive examples in U to be the same. In other
words, the set of hidden positive examples that we are trying to detect may have a
very small intersection or is even disjoint with SP. If we naively use the small set P as
the positive training set and the entire unlabelled set U as the negative set, the

204 X.-L. Li, B. Liu, and S.-K. Ng

resulting classifier (corresponds to hyperplane H1) will obviously perform badly in
identifying the hidden positive examples in U.

On the other hand, we can attempt to use the more sophisticated PU learning
methods to address this problem. Instead of merely using the entire unlabelled set U
as the negative training data, the first step of PU learning extracts some reliable
negatives from U. However, this step is actually rather difficult in our application
scenario as depicted in Figure 1. Since the hidden positive examples in U are likely to
have different distributions from those captured in the small positive set P, not all the
training examples in U that are dissimilar to examples in P are negative examples. As
a result, the so-called reliable negative set that the first step of PU learning extracts
based on dissimilarity from P would be a very noisy negative set, and therefore not
very useful for building a reliable classifier.

Fig. 1. PU learning with a small positive training set

Let us consider the possibility of extracting a set of likely positive examples (LP)
from the unlabeled set U to address the problem of P’s being not sufficiently
representative of the hidden positive documents in U. Unlike P, the distribution of LP
will be similar with the other hidden positive examples in U. As such, we could
expect that a more accurate classifier can be built with the help of set LP (together
with P). Pictorially, the resulting classifier would correspond to the optimal
hyperplane H2 shown in Figure 1. Instead of trying to identify a set of noisy negative
documents from the unlabeled set U as existing PU learning techniques do, our
proposed technique LPLP therefore focuses on extracting a set of likely positive
documents from U.

While the positive documents in P and the hidden positive documents in U were
not drawn from the same distribution, they should still be similar in some underlying
feature dimensions (or subspaces) as they belong to the same class. For example, the
printer pages from two different sites, say amazon.com and cnet.com, would share the
representative word features such as “printer”, “inkjet”, “laser”, “ppm” etc, though
their respective distributions may be quite different. Particularly, the pages from
cnet.com whose target readers are more technically-savvy may contain more frequent
mentioning of keyword terms that correspond to the technical specifications of
printers than those pages from amazon.com whose primary focus is to reach out to the
less technically-inclined customers. However, we can safely expect that the basic
keywords (representative word features) that describe computer printers should be

H2

H1

 Learning to Classify Documents with Only a Small Positive Training Set 205

presented in both cases. In this work, we therefore assume that the representative
word features for the documents in P should be similar to those for the hidden
positive documents in U. If we can find such a set of representative word features
(RW) from the positive set P, then we can use them to extract other hidden positive
documents from U.

We are now ready to present the details of our proposed technique LPLP. In
Section 3.1, we first introduce a method to select the set of representative word
features RW from the given positive set P. Then, in Section 3.2, we extract the likely
positive documents from U and probabilistically label them based on the set RW.
With the help of the resulting set LP, we employ the EM algorithm with a good
initialization to build an accurate classifier to identify the hidden positive examples
from U in Section 3.3.

3.1 Selecting a Set of Representative Word Features from P

As mentioned above, we expect the positive examples in P and the hidden positive
examples in U share the same representative word features as they belong to the same
class. We extract a set RW of representative word features from the positive set P
containing the top k words with the highest s(wi) scores. The scoring function s() is

based on TFIDF method [11] which
gives high scores to those words that
occur frequently in the positive set P
and not in the whole corpus UP∪ since
U contains many other unrelated
documents. Figure 2 shows the
detailed algorithm to select the
keyword set RW.

In step 1, we initialize the
representative word set RW and
unique feature set F as empty sets.
After removing the stop words (step 3)
and performing stemming (step 4)
[11], all the word features are stored
into the feature set F. For each word
feature wi in the positive set P, steps 6
to 8 compute the accumulated word
frequency (in each document dj, the
word wi’s frequency N(wi,dj) is
normalized by the maximal word
frequency of dj in step 7). Steps 9 to
10 then compute the scores of each
word feature, which consider both wi’s
probabilities of belonging to a positive
class and its inverted document

frequency, where df(wi, P) and df(wi, U) are wi’s document frequencies in P and U
respectively. After ranking the scores into the rank list L in step 11, we store into RW
those word features from P with top k scores in L.

1. RW = , F = ;
2. For each word feature iw P
3. If (stopwords (iw)!=true)
4. F = F {stemming(iw)};
5. total=0;
6. For each word feature Fwi
7.

;
)),((max

),(
),(||

1

P

j
ji

w

ji
i dwN

dwN
PwN

i

8. total +=),(PwN i
;

9. For each word feature Fwi

10. ;
),(),(

||||log*),()(
UwdfPwdf

UP

total

PwN
ws

ii

i
i

11. Rank the word feature’s)(iws from big to
small into a list L;

12. PrTOP= the k-th)(iws in the list L, Fwi ;
13. For Fwi

14. If ()(iws >=PrTOP)
15. RW = RW { iw };

Fig. 2. Selecting a set of representative word
features from P

206 X.-L. Li, B. Liu, and S.-K. Ng

3.2 Identifying LP from U and Probabilistically Labeling the Documents in LP

Once the set RW of representative keywords is determined, we can regard them
together as a representative document (rd) of the positive class. We then compare the
similarity of each document di in U with rd using the cosine similarity metric [11],

which automatically produces a set LP of
probabilistically labeled documents with
Pr(di|+) > 0. The algorithm for this step
is given in Figure 3. In step 1, the likely
positive set LP and the remaining
unlabelled set RU are both initialized as
empty sets. In steps 2 to 3, each
unlabeled document di in U is compared
with rd using the cosine similarity. Step
4 stores the largest similarity value as m.
For each document di in U, if its cosine
similarity sim(rd, di)>0, we assign a
probability Pr(+|di) that is based on the
ratio of its similarity and m (step 7) and
we store it into the set LP in step 8.
Otherwise, di is included in RU
instead (step 10). The documents in
RU have zero similarity with rd and can
be considered as a purer negative set
than U.

Note that in step 7, the hidden positive examples in LP will be assigned high
probabilities while the negative examples in LP will be assigned very low
probabilities. This is because the representative features in RW were chosen based on
those words that occurred frequently in P but not in the whole corpus UP∪ . As such,
the hidden positive examples in LP should also contain many of the features in RW
while the negative examples in LP would contain few (if any) of the features in RW.

3.3 The Classification Algorithm

Next, we employ the naïve Bayesian framework to identify the hidden positives in U.
Given a set of training documents D, each document is considered an list of words
and each word in a document is from the vocabulary V = < w1, w2, … , w|v| > . We
also have a set of predefined classes, C={c1, c2, … , c| C |} For simplicity, we will
consider two class classification in this discussion, i.e. C={c1, c2}, c1=“+” and c2=“-”.
To perform classification for a document di, we need to compute the posterior
probability, Pr(cj|di), cj∈{+,-}. Based on the Bayesian probability and the multinomial
model [12], we have

||

)|(
)(

||

1

D

dc
c

D

i ij

j

∑ ==
Pr

Ρr . (1)

and with Laplacian smoothing,

1. LP = ; RU = ;
2. For each di U

3.
;

*
),(

2
,

2
,

,,

j
jd

j
jrd

j
jdjrd

i

i

i

ww

ww

drdsim

4. Let m =)),((max i
d

drdsim
i

, di U;

5. For each di U
6. If (),(idrdsim > 0)
7. Pr(+|di) = mdrdsim i /),(;

8. LP = LP {di};
9. Else
10. RU = RU {di};

Fig. 3. Probabilistically labeling a set of
documents

 Learning to Classify Documents with Only a Small Positive Training Set 207

∑ ∑
∑

= =

=

+

+
=

||

1

||

1

||

1

)|(Ρr),(||

)|(Ρr),(1
)|(Ρr

V

s

D

i ijis

D

i ijit

jt
dcdwNV

dcdwN
cw . (2)

Here, Pr(cj|di)∈{0,1} depending on the class label of the document.
Assuming that the probabilities of words are independent given the class, we

obtain the naïve Bayesian classifier:

∑ ∏
∏

= =

==
||

1

||

1 ,

||

1 ,

)|Pr()Pr(

)|Pr()Pr(
)|Pr(

C

r

d

k rkdr

d

k jkdj

ij i

i

i

i

cwc

cwc
dc . (3)

In the naive Bayesian classifier, the class with the highest Pr(cj|di) is assigned as
the class of the document. The NB method is known to be an effective technique for
text classification even with the violation of some of its basic assumptions (e.g class
conditional independence) [13] [14] [1].

The Expectation-Maximization (EM) algorithm is a popular class of iterative
algorithms for problems with incomplete data. It iterates over two basic steps, the
Expectation step, and the Maximization step. The Expectation step basically fills in
the missing data, while the Maximization step then estimates the parameters. When
applying EM, equations (1) and (2) above comprise the Expectation step, while
equation (3) is used for the Maximization step. Note that the probability of the class
given the document now takes the value in [0, 1] instead of {0, 1}.

The ability of EM to work with
missing data is exactly what we need
here. Let us regard all the positive
documents to have the positive class
value “+”. We want to know the class
value of each document in the unlabeled
set U. EM can help to properly assign a
probabilistic class label to each
document di in the unlabeled set, i.e.,
Pr(+|di) or Pr(-|di). Theoretically, in EM
algorithm, the probabilities of
documents in U will converge after a
number of iterations [4]. However, a
good initialization is important in order
to find a good maximum of the
likelihood function. For example, if we
directly use P as positive class and U as
negative class (initially), then EM
algorithm will not build an accurate
classifier as the negative class would be
too noisy (as explained previously).
Thus, in our algorithm, after extracting
likely positive set LP, we re-initialize
the EM algorithm by treating the
probabilistically labeled LP
(with/without P) as positive documents.
The resulting classifier is more accurate

1. For each di RU,
2. Pr(+ | di) = 0;
3. Pr(- | di) = 1;
4. PS = LP P (or LP);
5. For each dj PS
6. If dj P
7. Pr(+ | dj) = 1;
8. Pr(- | dj) = 0;
9. Else
10. Pr(+ | dj) = mdrdsim j /),(;
11. Pr(- | dj) = 0;
12. Build an NB-C classifier C using PS

and RU based on equations (1), (2);
13. While classifier parameters change
14. For each di PS RU
15. Compute Pr(+|di) and Pr(-|di)

using NB-C, i.e., equation (3);
16. Update Pr(cj) and Pr(wt|cj) by

replacing equations (1) and (2)
with the new probabilities
produced in step 15 (a new NB-
C is being built in the process)

Fig. 4. The detailed LPLP algorithm

208 X.-L. Li, B. Liu, and S.-K. Ng

because 1) LP has the similar distributions with other hidden positive documents in U,
and 2) the remaining unlabeled set RU is also much purer than U as a negative set.

The detailed LPLP algorithm is given in Figure 4. The inputs to the algorithm are
LP, RU and P. Steps 1 to 3 initialize the probabilities for each document di in RU,
which are all treated as negative documents initially. Step 4 sets the positive set PS;
there are two possible ways to achieve this: we either (1) combine LP and P as PS, or
(2) use only LP as PS. We will evaluate the effect of the inclusion of P in PS in the
next section. Steps 5 to 11 will assign the initial probabilities to the documents in P (if
P is used) and LP. Each document in P is assigned to the positive class while each
document in LP is probabilistically labeled using the algorithm in Figure 3. Using PS
and RU, a NB classifier can be built (step 12). This classifier is then applied to the
documents in (LP ∪ RU) to obtain the posterior probabilities (Pr(+|di) and Pr(-|di))
for each document (step 15). We can then iteratively employ the revised posterior
probabilities to build a new (and better) NB classifier (step 16). The EM process
continues until the parameters of the NB classifier converge.

4 Evaluation Experiments

In this section, we evaluate the proposed LPLP technique under different settings and
compare it with existing methods, namely, Roc-SVM [2] and PEBL [3]. Roc-SVM is
available on the Web as a part of the LPU system1. We implemented PEBL ourselves
as it is not publicly available. The results of S-EM [1] were not included here because
the performance was generally very poor due to its reliance on similarity of positive
documents in P and in U, as expected.

4.1 Datasets

Our evaluation experiments were done using product Web pages from 5 commercial
Web sites: Amazon, CNet, PCMag, J&R and ZDnet. These sites contained many
introduction/description pages of different types of products. The pages were cleaned
using the web page cleaning technique in [15], i.e., navigation links and
advertisements have been detected and eliminated. The data contained web pages of
the following product categories: Notebook, Digital Camera, Mobile Phone, Printer
and TV. Table 1 lists the number of pages from each site, and the corresponding
product categories (or classes). In this work, we treat each page as a text document
and we do not use hyperlinks and images for classification.

Table 1. Number of Web pages and their classes.

 Amazon CNet J&R PCMag ZDnet
Notebook 434 480 51 144 143
Camera 402 219 80 137 151
Mobile 45 109 9 43 97
Printer 767 500 104 107 80
TV 719 449 199 0 0

1 http://www.cs.uic.edu/~liub/LPU/LPU-download.html

 Learning to Classify Documents with Only a Small Positive Training Set 209

Note that we did not use standard text collections such as Reuters 2 and 20
Newsgroup data3 in our experiments as we want to highlight the performance of our
approach on data sets that have different positive distributions in P and in U.

4.2 Experiment Settings

As mentioned, the number of available positively labeled documents in practice can
be quite small either because there were few documents to start with, or it was tedious
and expensive to hand-label the training examples on a large scale. To reflect this
constraint, we experimented with different number of (randomly selected) positive
documents in P, i.e. |P| = 5, 15, or 25 and allpos. Here “allpos” means that all
documents of a particular product from a Web site were used. The purpose of these
experiments is to investigate the relative effectiveness of our proposed method for
both small and large positive sets.

We conducted a comprehensive set of experiments using all the possible P and U
combinations. That is, we selected every entry (one type of product from each Web
site) in Table 1 as the positive set P and use each of the other 4 Web sites as the
unlabeled set U. Three products were omitted in our experiments because their |P|<10,
namely, Mobile phone in J&R (9 pages), TV in PCMag (no page), and TV in ZDnet
(no page). A grand total of 88 experiments were conducted using all the possible P
and U combinations of the 5 sites. Due to the large number of combinations, the
results reported below are the average values for the results from all the combinations.

To study the sensitivity of the number of representative word features used in
identifying likely positive examples, we also performed a series of experiments using
different numbers of representative features, i.e. k = 5, 10, 15 and 20 in our algorithm.

4.3 Experimental Results

Since our task is to identify or retrieve positive documents from the unlabeled set U, it
is appropriate to use F value to evaluate the performance of the final classifier. F
value is the harmonic mean of precision (p) and recall (r), i.e. F=2*p*r/(p+r). When
either of p or r is small, the F value will be small. Only when both of them are large,
F value will be large. This is suitable for our purpose as we do not want to identify
positive documents with either too small a precision or too small a recall. Note that in
our experiment results, the reported F values give the classification (retrieval) results
of the positive documents in U as U is also the test set.

Let us first show the results of our proposed technique LPLP under different
experimental settings. We will then compare it with two existing techniques.

The bar chart in Figure 5 shows the F values (Y-axis) of LPLP using different
numbers of positive documents (X-axis) and different numbers of representative
words (4 data series). Recall that we had presented two options to construct the
positive set PS in step 4 of the LPLP algorithm (Figure 4). The first option is to add
the extracted likely positive documents (LP) to the original set of positive documents
P, represented in Figure 5 by “with P”. The second option is to use only the extracted
likely positive documents as the positive data in learning, i.e., dropping the original

2 http://www.research.att.com/~lewis/reuters21578.html
3 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes/20_newsgroups.tar.gz

210 X.-L. Li, B. Liu, and S.-K. Ng

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 (with P) 5 (without P) 15 (with P) 15 (without P) 25 (with P) 25 (without P) allpos (with P) allpos (without P)

F
 v

al
ue

5 words 10 words 15 words 20 words

Fig. 5. F values of LPLP with different numbers of positive documents

positive set P (since it is not representative of the hidden positive documents in U).
This option is denoted by “without P” in Figure 5.

Inclusion of P for constructing PS: If there were only a small number of positive
documents (|P| = 5, 15 and 25) available, we found that using option 1 (with P) to
construct the positive set for the classifier is better than using option 2 (without P), as
expected. However, interestingly, if there is a large number of positive documents
(allpos in Figure 5), then option 1 is actually inferior to option 2. The reason is that
the use of a big positive set P, which is not representative of the positive documents in
U, would have introduced too much negative influence on the final classifier (many
hidden positive examples in U will be classified as negative class). However, when
the given positive set P is small, its potential negative influence is much less, and it
will therefore help to strengthen the likely positive documents by providing more
positive data. This is a subtle and rather unexpected trade-off here.

Number of positive documents in P: From Figure 5, we also observe that the
number of the given positive documents in P does not influence the final results a
great deal. The reason for this is that the computed likely positive documents from U
are actually more effective positive documents for learning than the original positive
documents in P. This is a very compelling advantage of our proposed technique as
this means that the user does not need to label or to find a large number of positive
examples for effective learning. In fact, as discussed above, we also notice that even
without using any original positive document in P, the results were very good as well.

Number of representative word features: The results in Figure 5 also showed that
there is no need to use many representative words for detecting positive documents.
In general, 5-15 representative words would suffice. Including the less representative
word features beyond the top k most representative ones would introduce unnecessary
noise in identifying the likely positive documents in U.

Next, we compare the results of our LPLP technique with those of the two best
existing techniques mentioned earlier, namely, Roc-SVM [2] and PEBL [3]. Figure 6
shows two series of results. The first series, marked “P”, showed the classification
results of all three methods using all positive documents (“allpos”), without the use of
the likely positive documents LP as suggested in this paper. In other words, learning

 Learning to Classify Documents with Only a Small Positive Training Set 211

was done using only P and U. Note that for the strictest comparison what we have
shown here are the best possible results for Roc-SVM and PEBL, which may not be
obtainable in practice because it is hardly possible to determine which SVM iteration
would give the best results in these algorithms (both Roc-SVM and PEBL algorithms
run SVM many times). In fact, their results at convergence were actually much worse.

We can see that PEBL performed better than both LPLP and Roc-SVM. However,
the absolute F value of PEBL is still very low (0.54). Note also that because of the use
of “allpos” for training, the LPLP’s result for this was obtained without using the
likely positive set LP (it is now the EM standard algorithm), hence it was unable to
perform as well as it should have.

The second series in Figure 6 shows the comparative results of using the extracted
likely positive documents instead of P for learning. Here, our LPLP algorithm
performs dramatically better (F=0.94) even against the best possible results of PEBL
(F=0.84) and Roc-SVM (F=0.81). Note that here PEBL and Roc-SVM also use the
likely positive documents LP extracted from U by our method (we boosted the PEBL
and Roc-SVM for the purpose of comparison). The likely positives were identified
from U using 10 representative words selected from P. Unlike our LPLP algorithm,
both Roc-SVM and PEBL do not take probabilistically labels, but only binary labels.
As such, for these two algorithms, we chose the likely positive documents from U by
requiring each document (d) to contain at least 5 (out of 10) selected representative
words. All the likely positive documents identified were then treated as positive
documents, i.e., Pr(+|d) = 1. We also tried using other numbers of representative
words in RW and found that 5 words performed well for these two algorithms with
our datasets. We can see that with the use of the likely positives (set LP) identified by
our method (instead of P), the classification results of these two existing algorithms
have also improved dramatically as well. In fact, by using LP instead of P, the
previously weaker Roc-SVM has caught up so substantially that the best possible
result of PEBL is only slightly better than that of Roc-SVM now.

Finally, in Figure 7, we show the comparative results when the number of the
positive documents is small, which is more often than not the case in practice. Again,
we see that our new method LPLP performed much better than the best possible

Fig. 6. F values of LPLP, the best results of
Roc-SVM and PEBL using all positive
documents

Fig. 7. F values of LPLP, the best results of
Roc-SVM and PEBL using P together with
LP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LPLP Roc-SVM PEBL

F
 v

al
u

e

P LP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LPLP Roc-SV M PEBL

The docume nt numbe r of P

F
 v

al
u

e

5 15 25

212 X.-L. Li, B. Liu, and S.-K. Ng

results of the two existing methods Roc-SVM and PEBL (which may not be
obtainable in practice, as explained earlier) when there were only 5, 15, or 25 positive
documents in P. As explained earlier, including P together with LP (for all the three
techniques) gave better results when P is small.

In summary, the results in Figures 6 and 7 showed that the likely positive
documents LP extracted from U can be used to help boost the performance of
classification techniques for PU learning problems. In particular, LPLP algorithm
benefited the most and performed the best. This is probably because of its ability to
handle probabilistic labels and is thus better equipped to take advantage of the
probabilistic (and hence potentially noisy) LP set than the SVM-based approaches.

5 Conclusions

In many real-world classification applications, it is often the case that not only the
negative training examples are hard to come by, but the number of positive examples
available for learning can also be fairly limited as it is often tedious and expensive to
hand-label large amounts of training data. To address the lack of negative examples,
many PU learning methods have been proposed to learn from a pool of positive data
(P) without any negative data but with the help of unlabeled data (U). However, PU
learning methods still do not work well when the size of positive examples is small.

In this paper, we address this oft-overlooked issue for PU learning when the
number of positive examples is quite small. In addition, we consider the challenging
case where the positive examples in P and the hidden positive examples in U may not
even be drawn from the same distribution. Existing techniques have been found to
perform poorly in this setting. We proposed an effective technique LPLP that can
learn effectively from positive and unlabeled examples with a small positive set for
document classification. Instead of identifying a set of reliable negative documents
from the unlabeled set U as existing PU techniques do, our new method focuses on
extracting a set of likely positive documents from U. In this way, the learning can rely
less on the limitations associated with the original positive set P, such as its limited
size and potential distribution differences. Augmented by the extracted probabilistic
LP set, our LPLP algorithm can build a much more robust classifier. We reported
experimental results with product page classification that confirmed that our new
technique is indeed much more effective than existing methods in this challenging
classification problem. In our future work, we plan to generalize our current approach
to solve similar classification problems other than document classification.

References

1. Liu, B., Lee, W., Yu, P., Li, X.: Partially Supervised Classification of Text Documents. In:
ICML, pp. 387–394 (2002)

2. Li, X., Liu, B.: Learning to Classify Texts Using Positive and Unlabeled Data. In: IJCAI,
pp. 587–594 (2003)

3. Yu, H., Han, J., Chang, K.C.-C.: PEBL: Positive Example Based Learning for Web Page
Classification Using SVM. In: KDD, pp. 239–248 (2002)

 Learning to Classify Documents with Only a Small Positive Training Set 213

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society (1977)

5. Denis, F.: PAC Learning from Positive Statistical Queries. In: ALT, pp. 112–126 (1998)
6. Muggleton, S.: Learning from Positive Data. In: Proceedings of the sixth International

Workshop on Inductive Logic Programming, pp. 358–376. Springer, Heidelberg (1997)
7. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART

Retrieval System: Experiments in Automatic Document Processing (1971)
8. Yu, H.: General MC: Estimating boundary of positive class from small positive data. In:

ICDM, pp. 693–696 (2003)
9. Fung, G.P.C., et al.: Text Classification without Negative Examples Revisit. IEEE

Transactions on Knowledge and Data Engineering 18(1), 6–20 (2006)
10. Schölkopf, B., et al.: Estimating the Support of a High-Dimensional Distribution. Neural

Comput 13(7), 1443–1471 (2001)
11. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval (1986)
12. McCallum, A., Nigam, K.: A comparison of event models for naïve Bayes text

classification. In: AAAI Workshop on Learning for Text Categorization (1998)
13. Lewis, D.D.: A sequential algorithm for training text classifiers: corrigendum and

additional data. In: SIGIR Forum, 13–19 (1995)
14. Nigam, K., et al.: Text Classification from Labeled and Unlabeled Documents using EM.

Machine Learning 39(2-3), 103–134 (2000)
15. Yi, L., Liu, B., Li, X.: Eliminating noisy information in Web pages for data mining. In:

KDD, pp. 296–305 (2003)

Structure Learning of Probabilistic Relational

Models from Incomplete Relational Data

Xiao-Lin Li and Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210093, China

{lixl,zhouzh}@lamda.nju.edu.cn

Abstract. Existing relational learning approaches usually work on com-
plete relational data, but real-world data are often incomplete. This pa-
per proposes the MGDA approach to learn structures of probabilistic
relational model (PRM) from incomplete relational data. The missing
values are filled in randomly at first, and a maximum likelihood tree
(MLT) is generated from the complete data sample. Then, Gibbs sam-
pling is combined with MLT to modify the data and regulate MLT it-
eratively for obtaining a well-completed data set. Finally, probabilistic
structure is learned through dependency analysis from the completed
data set. Experiments show that the MGDA approach can learn good
structures from incomplete relational data.

1 Introduction

Most machine learning algorithms work with the attribute-value setting which
only allows the analysis of fairly simple objects described by a single table. To
deal with complex and structured objects, one choice is to employ a relational
structure which involves multiple tables. Thus, each complex object can be de-
scribed by multiple records in multiple tables. To be able to analyze relational
databases containing multiple relations properly, learning algorithms have to be
designed for coping with the structural information in relational databases [8].

Relational learning has a precursor going back over a decade in the field of
inductive logic programming (ILP) [18]. One of the most significant develop-
ments in recent years is the convergence of ILP and probabilistic reasoning and
learning). ILP endows the ability of handling multiple relations; probabilistic
methods endow the ability of handling uncertainty. Many approaches containing
those ingredients have been proposed [19,11,1,15,16,9,21,5].

It is noteworthy that most relational learning algorithms operate on complete
data, while real-world data are often incomplete, i.e., with missing attribute
values. Although learning with incomplete data has been studied in attribute-
value setting [6,12], few techniques can be directly applied to relational setting
since the case of incomplete relational data is substantially more complex. An
attribute-value learning algorithm can be seen as a relational learning algorithm
which only deals with a database containing a single table. It will be compu-
tationally more expensive and the result will be much worse if such algorithms

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 214–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Structure Learning of Probabilistic Relational Models 215

are applied to incomplete relational data directly since there exist more poor lo-
cal maxima. Actually, learning from incomplete relational data is a challenging
problem in relational learning.

This paper proposes the MGDA (Maximum likelihood tree and Gibbs sampling-
based Dependency Analysis) approach to learn structures of probabilistic rela-
tional models from incomplete relational data. Firstly, we fill in the incomplete
relational data randomly. Then, we generate a maximum likelihood tree (MLT)
[4] from the completed data sample. After that, Gibbs sampling is combined with
MLT to modify the data and regulate MLT iteratively for obtaining a well-
completed data set. Finally, probabilistic structure is learned through dependency
analysis from the completed data set.

The rest of this paper is organized as follows. Section 2 briefly introduces the
research background. Section 3 describes the proposed method. Section 4 reports
on the experiments. Finally, section 5 concludes.

2 Background

Probabilistic relational model (PRM) [11] is one of the fundamental models in
relational learning, which extends the standard attribute-value-based Bayesian
network representation to incorporate a richer relational structure. Briefly, given
a relational database of a specific schema (or a set of instances and relations
between them), a PRM defines a probability distribution which specifies proba-
bilistic dependencies between related objects (or the attributes of the instances).

Definition. [11] A PRM for a relational schema σ is defined as follows. For each
entity type X and each propositional attribute X.A,
– A set of parents Pa(X.A) = {Pa1, Pa2, · · · , Pan}, where each Pai has the

form X.B or γ(X.τ.B). τ is a chain of relations and γ(·) is an aggregation
function.

– A conditional probability model for P (X.A|Pa (X.A)).

The probability distribution over complete instantiation L of σ represented by
the PRM is given by:

P (L|σ,S, θS) =
∏

Xi

∏

A∈A(Xi)

∏

x∈Oσ(Xi)
P (Lxi.a|LPa(xi.a))

As indicated by [11], the task of learning a PRM from complete data has
two aspects, i.e., parameter estimation and structure learning. In parameter
estimation, the input consists of the schema and training database, as well as a
qualitative dependency structure. In structure learning, there is only the training
database as input, while the goal is to extract an entire PRM schema from the
training database automatically.

Obviously, structure learning is the key of learning a PRM. There are two
general approaches to graphical probabilistic model learning, i.e., the search &
scoring approaches and the dependency analysis approaches. The main difficulty
in the first kind of approaches is how to find out a good dependency structure

216 X.-L. Li and Z.-H. Zhou

from the many possible ones, which are potentially infinite. For Bayesian net-
works, the task of finding the highest scoring network is NP-hard [3]. PRM
learning is at least as hard as Bayesian network learning. The second kind of
approaches, i.e. dependency analysis approaches, try to discover the dependency
relationship from the data, and then use these dependencies to infer the struc-
ture. The approach proposed in this paper belongs to this category.

Many applications and extensions of PRM have been described. Getoor and
Sahami [13] applied PRM to collaborative filtering. Getoor et al. [14] applied
PRM to hypertext classification. Taskers et al. [23] proposed a general class
of models for classification and clustering based on PRM. They have considered
incomplete data for parameter estimation, but have not touched structure learn-
ing. Sanghai et al. [22] extended dynamic Bayesian networks where each time
slice is represented by a PRM. To the best of our knowledge, structure learning
of PRM from incomplete relational data has only been studied recently [17],
where an evolutionary algorithm is used and the PRM structure is learned by
filling in the missing data with the best evolved structure in each generation.

In traditional attribute-value setting, learning from incomplete data has been
studied by many researchers. In particular, approaches for learning Bayesian
networks from incomplete data require an approximation for incomplete data.
One kind of approaches is based on Monte-Carlo or sampling [12]. These ap-
proximations can be very accurate, but these approaches are often intractable
when the sample size is very large. Another kind of approaches is based on the
expectation-maximization (EM) algorithm [6]. EM algorithm can be powerful for
parameter estimation in relational learning with missing data, but for structure
learning, since the number of possible structures to be explored is too huge, in
the E step of EM it would be difficult to efficiently determine how to modify the
current structure. It has been noted [10] that such algorithms often get stuck in
local maxima when the search landscape is large and multi-modal.

3 The MGDA Approach

The MGDA approach is summarized in Table 1, which will be introduced step-
by-step in this section.

3.1 Initialization

Incomplete data make the dependency relationship between attributes more dis-
ordered and it is difficult to learn an creditable PRM structure directly. If the
incomplete data can be filled in accurately, then the fittest structure can be
learned. Standard Gibbs sampling conducts sampling from full conditional dis-
tribution. As the conditional set is with high dimensionality, the complexity is
exponential in the number of attributes. It will be computationally expensive
if standard Gibbs sampling is extended to relational learning directly. So, an
improved approach needs to be proposed.

Structure Learning of Probabilistic Relational Models 217

Table 1. The MGDA approach

1. Fill in the incomplete relational data randomly and generate an MLT from the
obtained complete data set (details in Section 3.1);

2. Repeat until the stop criterion is satisfied:
a) Modify the incomplete relational data (details in Section 3.2.1);
b) Modify the corresponding parameter according to the latest modified data set

(details in Section 3.2.2);
c) Regulate the MLT structure according to the completed relational data and

test the stop criterion (details in Section 3.2.3);
3. Regulate the PRM structure learned from the well-completed data set by using

the proposed dependency analysis approach (details in Section 3.3).

Here we combine Gibbs sampling with MLT to modify the incomplete data
and regulate MLT iteratively for obtaining a well-completed data set. The incom-
plete relational data are filled in randomly at first. Then, an MLT is generated
from the completed data set. MLT is the fittest tree-like structure of Bayesian
network, which has a simple structure. Chow and Liu [4] proposed a well-known
method for learning tree-like Bayesian networks, which reduces the problem of
constructing an MLT to the finding of a maximal weighted spanning tree. We
extend this procedure on relational conditions as follows:

1. Compute I(Xi.A;Xj .B) between each pair of attributes (A �= B), where

I(Xi.A;Xj .B)=
∑

Xi,
Xj

∑
A∈A(Xi),
B∈B(Xj)

∑
xi.a,
xj.b

P (xi.a, xj .b) log
P (xi.a, xj .b)

P (xi.a)P (xj .b)
;

2. Build a complete undirected graph where the weight of the edge connecting
Xi.A to Xj .B is I(Xi.A;Xj .B);

3. Choose a root attribute for the tree and set the direction of all edges to be
outward from it.

Then, we use the learned MLT structure to decompose the joint probability.
This process can convert the sampling from n-order full conditional probability
to second-order conditional probability since each attribute of an MLT has only
one parent at most. So, it can not only meet the requirement of full conditional
distribution in standard Gibbs sampling but also reduce the computational cost.
After modifying the incomplete data, a new MLT can be generated.

3.2 Modification and Regulation

There are three tasks in each iteration, i.e., modifying the incomplete relational
data, modifying the parameters, and regulating the MLT structure. The order
of sampling attributes with incomplete data is based on the order of nodes (at-
tributes) of the learned MLT structure and the order of records of the data
set. Assume that Xi.A has a missing entry in the mth record, which is denoted

218 X.-L. Li and Z.-H. Zhou

by xim.a and the modified value is denoted by x̂im.a. The possible values of
Xi.A are x1

i .a, · · · , xr
i .a. MGDA uses the latest modified data set to modify the

next missing attribute value.

Modifying the Incomplete Relational Data. If P (L|σ, S, θs) contains non-
zero probabilities, MGDA modifies the missing data by Gibbs sampling. For a
random λ, the value of Xi.A is:

x̂im.a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1
i .a, 0 < λ ≤ p̂

(
Lx1

i.a
|LPa(xim.a)

)

· · · · · ·
xh

i .a,
∑h−1

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)
< λ ≤

∑h

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)

· · · · · ·
xr

i .a, λ >
∑r−1

j=1
p̂
(
Lxj

i.a
|LPa(xim.a)

)

Modifying the Parameters. If P (L|σ, S, θs) contains zero probabilities, i.e.
p̂
(
Lxu

i.a
|LPa(xim.a)

)
= 0, MGDA modifies the probabilities by using Laplacian-

correction [7]:

p̂
(
Lxu

i.a
|LPa(xim.a)

)
=

1
N‖Pa(xim.a)‖+ ‖xu

i .a‖
where N is the number of records, ‖xu

i .a‖ is the number of the values of attribute
Xi.A, and ‖Pa(xim.a)‖ is the number of the parent combination of Pa(Xi.A).

If xim.a �= x̂im.a, the corresponding parameters are modified as follows:

p̂
(
Lx̂im.a|LPa(xim.a), D̂m

)
= p̂

(
Lx̂im.a|LPa(xim.a), Dm

)
+ 1/N

p̂
(
Lxim.a|LPa(xim.a), D̂m

)
= p̂

(
Lxim.a|LPa(xim.a), Dm

)
− 1/N

where Dm and D̂m are respectively the database before and after modifying
xim.a.

Regulating the MLT Structure. After modifying the incomplete relational
data, MGDA generates a new MLT structure from the completed data set.
The MGDA modifies the incomplete relational data and regulates MLT iter-
atively for obtaining a well-completed data set. The iteration will stop when
the stop criterion is satisfied. For the modification on the incomplete rela-
tional data and parameters, we test the coherence of two consecutive iterations.
xt

1, x
t
2, · · · , xt

k, . . . , x
t
n and xt+1

1 , xt+1
2 , · · · , xt+1

k , . . . , xt+1
n (k ∈ {1, · · · , n}) are two

sequences of the incomplete relational data in two consecutive iterations, respec-
tively, then

sig(xt
k, x

t+1
k) =

{
0, xt

k = xt+1
k

1, xt
k �= xt+1

k

For a given threshold η > 0, if 1
n

∑n
k=1 sig(xt

k, x
t+1
k) < η then stop the mod-

ification and generate an MLT structure from the latest modified data set.
Thus, when the above process terminates, a well-completed data set and a well-
regulated MLT are obtained.

Structure Learning of Probabilistic Relational Models 219

3.3 Structure Learning of PRM

MGDA uses class dependency graph [11] structures as the candidate PRMs.
The MLTs here are also class dependency graphs. In those graphs, an attribute
can depend on any attributes of all the classes except itself. If parents of the
attribute are attributes of other class, they relate with the attribute by chains
of relations. In this way, we can get the class dependency graph which contains
latent relations and also get PRM structure with relations.

There are three basic dependencies [20] between attributes, i.e., transitive de-
pendencies, non-transitive dependencies and induced dependencies, which can be
described by the Bayesian network framework of information channels and
pipelines [2]: (1) Transitive dependencies indicate that information flow can di-
rectly pass two nodes in Bayesian networks and not be blocked by any other nodes.
In other words, the twonodes are conditional dependent. (2)Non-transitive depen-
dencies indicate that information flow can not directly pass two nodes in Bayesian
networks, but can pass through the open path which connects the two nodes and
be blocked by the nodes in cut-set. Namely, the two nodes are conditional inde-
pendent given the nodes in cut-set. (3) Induced dependencies are induced by V-
structure. Information flow can not directly pass two nodes and be induced by
the collider in V-structure [20]. 1 Learning Bayesain network is to keep transitive
dependencies and get rid of other dependencies. As an extension of Bayesian net-
work, PRM can be learned through the new dependency analysis approach from
the well-completed data set.

To measure the conditional independence, we use mutual information and
conditional mutual information. Conditional mutual information is defined as:

I(Xi.A;Xj .B|C) =
∑

Xi,
Xj

∑
A,
B

∑
xi.a,
xj.b

P (xi.a, xj .b|c) log
P (xi.a, xj .b|c)

P (xi.a|c)P (xj .b|c)

where C is a set of nodes. When I(Xi.A,Xj .B|C) is smaller than a certain
small value ε, we say that Xi.A and Xj.B are conditionally independent given
C. Then, we use dependency analysis to regulate the PRM structure from the
well-completed data set.

Transitive Dependencies Regulation. We use the latest regulated MLT
as the initial PRM structure. For each pair of nodes (Xi.A,Xj .B) (Xi.A is in
front of Xj.B in node ordering) without edge connection, compute conditional
mutual information I(Xi.A,Xj .B|Pa), where Pa are the nodes in all the parents
of Xj .B that are on the path linking Xi.A and Xj .B. If I(Xi.A,Xj .B|Pa) > ε,
add an edge Xi.A→ Xj .B. This process requires at most (n−1)(n−2)

2 number of
conditional independence (CI) tests. The regulated structure is denoted by G1.

Non-transitive Dependencies Regulation. For G1, compute I(Xi.A,Xj.B|
Pa) for each pair of nodes (Xi.A,Xj .B) with edge connection, where Pa are the
1 For three nodes X, Y and Z, there are only three possible types of V-structures, i.e.

(1) X → Y → Z, (2) X ← Y → Z, and (3) X → Y ← Z. Among them only the third
type makes X and Z depend conditionally on {Y }.

220 X.-L. Li and Z.-H. Zhou

nodes in all the parents of Xj .B that are on the path linking Xi.A and Xj.B. If
I(Xi.A,Xj .B|Pa) < ε, delete the edge between them. This process requires at
most n(n− 1) number of CI tests. The regulated structure is denoted by G2.

Inductive DependenciesRegulationand EdgesOrienting. For each pair of
nodes, compute I(Xi.A,Xj .B) according to the node ordering. If I(Xi.A,Xj .B) <
ε, test the pairs of nodes by collider identification. Any nodes which can form a V-
structure with Xi.A and Xj .B are denoted as Xm1, · · · , Xmt (Xmh �= Xi.A,Xj.B,
h ∈ {1, · · · , t}). For a given threshold δ > 0, if I(Xi.A,Xj .B|Xmh)

I(Xi.A,Xj .B) > 1+δ, then Xi.A,
Xj .B and Xmh form a V-structure and orient edges Xi.A → Xmh and Xj .B →
Xmh. If there is an edge betweenXi.A andXj .B, then delete the edge. This process
requires at most n(n−1)(n−2)

2 number of CI tests.
Using collider identification, we can identify all the V-structures of the third

type in a probabilistic model and orient the edges in such structures using tests
on conditional independence. The number of edges which can be oriented by
collider identification is constrained by the network structure. In an extreme
case, when the network does not contain any V-structure of the third type, these
methods could not orient any edges at all. However, this method is popular in
Bayesian network learning owing to its efficiency and reliability.

For edges that could not be oriented by collider identification, we orient
them by computing the joint cross-entropy. For two discrete attributes Xi.A =
{xi1.a, xi2.a, · · · , xiM .a} and Xj .B = {xj1.b, xj2.b, · · · , xjN .b}, suppose the joint
probabilistic distribution of Xi.A and Xj .B is p1(xim.a, xjn.b) under assump-
tion H1; the joint probabilistic distribution of Xi.A and Xj .B is p2(xim.a, xjn.b)
under assumption H2, where m = 1, 2, · · · ,M , n = 1, 2, · · · , N . Then the joint
cross-entropy of Xi.A and Xj.B can be defined as:

I(p2, p1;Xi.A,Xj .B) =
∑M

m=1

∑N

n=1
p2(xim.a, xjn.b) · log

p2(xim.a, xjn.b)
p1(xim.a, xjn.b)

Let the assumptions H1 and H2 be Xi.A→ Xj .B and Xi.A← Xj .B, respec-
tively. Compute I(p1, p2;Xi.A,Xj .B) and I(p2, p1;Xi.A,Xj .B):

if I(p1, p2;Xi.A,Xj .B) > I(p2, p1;Xi.A,Xj .B),
then orient edges Xi.A→ Xj.B; otherwise, orient edges Xi.A← Xj .B.

4 Experiments

We begin by evaluating the proposed MGDA approach on a synthetic data set
generated by a school domain whose structure is shown in Fig. 2(a). The learn-
ing approach takes only the data set as input. We generate 4 data sets with
the same size 5,000. Here the size of a data set corresponds to the number of
students involved. These data sets are with 10%, 20%, 30%, and 40% missing
data, respectively. These missing data are generated by randomly removing 10%,
20%, 30%, and 40% attribute-values from the original data sets, respectively.

We compare MGDA with FR, FM and MLTEC. FR and FM are two straight-
forward approaches. FR fills in the incomplete relational data randomly and then

Structure Learning of Probabilistic Relational Models 221

(a) (b) (c)

Fig. 1. Results on the school domain. (a) Percentage of unstable missing data on
the database with 40% missing data when MGDA is used; (b) Comparison of the
destruction of dependency relations in structures learned from data sets; (c) Average
accuracy of the structures learned by MGDA.

learns the structures of PRMs from the obtained complete data. FM fills in the
incomplete relational data with the mean values of attributes and then learns
the structures of PRMs from the obtained complete data. To the best of our
knowledge, MLTEC [17] is the only approach for learning PRM structure from
incomplete relational data, where an evolutionary algorithm is used and the
PRM structure is learned by filling in the missing data with the best evolved
structure in each generation. We run MLTEC for ten times on each data set and
regard the median PRM structure of the ten runs as the result. This is because
that MLTEC is an approach based on evolutionary computation, whose result
could be very different in different runs. We wish that the median PRM structure
of the ten runs could reflect the median performance of MLTEC.

Fig. 1(a) shows the percentage of unstable missing data, i.e., the portion of
missing data being modified in each iteration of MGDA, on the data set with
40% missing data. It can be found that the missing data to be modified become
fewer and fewer as the iteration proceeds. Moreover, by comparing the filled
values and real values, we found that among the values filled in by MGDA, 93%
are correct; for MLTEC, 90% are correct; while for FR and FM the correctness
is only 61% and 66%, respectively.

Fig. 1(b) presents the comparison between FR, FM, MLTEC and MGDA
on the destruction of dependency relations in the learned structures. It can
be found that the performance of MGDA is apparently better than that of FR.
This is not difficult to understand. When the missing data are filled in randomly,
noises are introduced and thereby the dependency relations between attributes
are corrupted to a great extent. By taking advantage of the information in the
observed data, the noises will be smoothed through refining the missing data
iteratively. Thus the corrupted dependency relations are recovered. The perfor-
mance of MGDA is also apparently better than FM, especially when the level of
missing data is high. This is not difficult to understand either. When the level of
missing data is low, the mean values of attributes filled in the missing data can
represent the distribution of the real data to some degree. With the increasing
of the level of missing data, the mean values of attributes could not represent

222 X.-L. Li and Z.-H. Zhou

(a) (b) (c)

(d) (e)

Fig. 2. The PRM structures on the school domain. (a) True structure. Dotted lines in-
dicate relations between classes while solid arrows indicate probabilistic dependencies;
(b) Result of MGDA; (c) Result of MLTEC; (d) Result of FM; (e) Result of FR.

the distribution of the real data well any more. Therefore, the performance of
FM degenerates seriously. It can also be found that although the performance
of MLTEC is better than FR and FM, it is worse than MGDA.

Fig. 1(c) compares the accuracies of the structures learned by MGDA on
different data sets. Here we define accuracy in the following way. Suppose the
ground-truth structure has a edges, the learned structure added b redundant
edges but missed c edges, then the accuracy of the learned structure is 1− (b +
c)/a. It is obvious that the accuracy of a perfect model is 1, while the accuracy
of some very poor models could be negative. Since very poor models are useless,
it is not meaningful to distinguish them. Thus, we assign zero accuracy to them.

It can be found from Fig. 1(c) that as the iteration proceeds, the accuracy of
MGDA increases. The accuracies of FR, FM and MLTEC are respectively 57%,
80% and 86% on 10% missing data, 14%, 57% and 80% on 20% missing data, 0,
14% and 71% on 30% missing data, and 0, 0 and 57% on 40% missing data. It
is evident that the accuracy of MGDA is better than them. By inspecting the
structures, we find that MGDA did not produce many redundant edges even in a
high level of missing data. This might owe to the combination of Gibbs sampling
with MLT, which has simple structure to modify the incomplete data and thus
suffers less from overfitting.

The PRM structure learned by MGDA on the data set with 40% missing
data is shown in Fig. 2(b). Comparing it with Fig. 2(a) we can find that it
missed a dependency between the Intelligence of a student and the Grade of
the registration and added a dependency between the Intelligence of a student
and its Ranking. Fig. 2(c) shows the structure learned by MLTEC, which also
missed the dependency between the Intelligence of a student and the Grade of

Structure Learning of Probabilistic Relational Models 223

(a) (b)

(c) (d)

Fig. 3. The PRM structures learned on the financial domain. (a) By MGDA; (b) By
MLTEC; (c) By FM; (d) By FR.

the registration. Moreover, it reversed the dependency between the Grade of the
registration and the Ranking of a student, and added two redundant dependen-
cies. Figs. 2(d) and (e) show the structures learned by FM and FR, respectively.
Comparing them with Fig. 2(a) we can find that they have many redundant
dependencies and missed many dependencies. In short, the structure learned by
MGDA is more credible than those learned by the compared approaches.

We also evaluate the proposed MGDA approach on a real-world domain. This
domain is a financial database taken from the PKDD2000 Discovery Challenge.
The database contains data from a Czech bank, which describes the operation of
5,369 clients holding 4,500 accounts. The bank wants to improve their services
by finding interesting groups of clients. The eight tables in the database are:
account, client, disposition, permanent, order, transaction, loan, credit card, and
demographic data. We focus on the question of clients’ credit and choose a subset
from the database, which consists of 4 relations, i.e. account, client, loan and
credit. The extraction results in an incomplete data set. Since the data are from
real-world and the ground-truth model is not known, it is not feasible to compare
the proposed approach with other approaches quantitatively. Thus, we adopt the
experimental methodology used by previous research [11,22], i.e., qualitatively
comparing the learned structures.

The PRM structures learned by MGDA, MLTEC, FM and FR are shown
in Figs. 3(a) to (d), respectively. MGDA learned that the Payment of a loan
depends on its Date, Amount and Duration, the Balance of the account, and
the Credit cards owner or not of the client. It also learned a dependency which
can relate the tables: the Rank of Credit depends on the Payment of the loan.
By comparing the structure learned by MLTEC with that learned by MGDA,
we can find that MLTEC missed a dependency relation between the Date and

224 X.-L. Li and Z.-H. Zhou

the Payment of the loan and reversed the dependency between the Payment
of a loan and the Credit cards owner or not of the client. However, the missed
dependency seems not very important and the reversed dependency looks still
reasonable. From Figs. 3(c) and (d) we can find that FM and FR missed an
important dependency between the Balance of the account and the Payment of
the loan and both generated more redundant dependency relationships.

5 Conclusion

Relational learning algorithms are capable of dealing with multiple tables or
relations which could not be tackled by attribute-value-based methods. How-
ever, although real-world data are often incomplete, learning with incomplete
relational data is largely understudied. In this paper, we propose the MGDA
approach and experiments show that it can learn reasonable structures from
incomplete relational data.

We observed that MGDA did not produce many redundant edges even when
the missing rate was quite high. So, its performance may be improved by incor-
porating some mechanism for dealing with missing edges. This will be studied
in the future. When several values for an attribute are almost equally likely,
the current stopping criterion might encounter some problem. A possible solu-
tion may be to compute the Euclidean distance between the parameters for two
consecutive steps and stop when this distance goes below a threshold. This is
another future issue. Moreover, combining MGDA with collective classification
is also worth studying in the future.

Acknowledgments

We wish to thank the anonymous reviewers for their helpful comments and sug-
gestions. This work was supported by NSFC (60635030), the China Postdoctoral
Science Foundation (20060390921) and the Jiangsu Planned Projects for Post-
doctoral Research Funds (0601017B).

References

1. Anderson, C., Domingos, P., Weld, D.: Relational Markov models and their appli-
cation to adaptive web navigation. In: KDD’02, Edmonton, Canada, pp. 143–152
(2002)

2. Cheng, J., Greiner, R., Kelly, J.: Learning Bayesian networks from data: An efficient
algorithm based on information theory. Artificial Intelligence 137, 43–90 (2002)

3. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz,
H.J. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121–130.
Springer, Berlin (1996)

4. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. Information Theory 14, 462–467 (1968)

Structure Learning of Probabilistic Relational Models 225

5. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its
application in link discovery. In: IJCAI’07, Hyderabad, India, pp. 2462–2467 (2007)

6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society - B 39, 1–39 (1977)

7. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29, 103–130 (1997)

8. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Berlin (2001)
9. Flach, P., Lachiche, N.: Naive Bayesian classification of structured data. Machine

Learning 57, 233–269 (2004)
10. Friedman, N.: The Bayesian structural EM algorithm. In: UAI’98, Madison, WI

(1998)
11. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In: IJCAI’99, Stockholm, Sweden, pp. 1300–1307 (1999)
12. Geman, S., Geman, D.: Stochastic relaxation: Gibbs distributions and the Bayesian

restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6,
721–742 (1984)

13. Getoor, L., Sahami, M.: Using probabilistic relational models for collaborative
filtering. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD’99. LNCS (LNAI),
vol. 1836, Springer, Heidelberg (2000)

14. Getoor, L., Segal, E., Taskar, B., Koller, D.: Probabilistic models of text and link
structure for hypertext classification. In: IJCAI’01 Workshop on Text Learning,
Seattle, WA, pp. 24–29 (2001)

15. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of
link structure. Journal of Machine Learning Research 3, 679–707 (2002)

16. Kersting, K., De Raedt, L.: Basic principles of learning Bayesian logic programs.
Technical report, Institute for Computer Science, University of Freiburg, Freiburg,
Germany (2002)

17. Li, X.L., Zhou, Z.H.: An approach to learning of PRM from incomplete relational
data (in chinese). Chinese Journal of Software (2007) (in press)

18. Muggleton, S. (ed.): Inductive Logic Programming. Academic Press, London (1992)
19. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Induc-

tive Logic Programming, pp. 254–264. IOS, Amsterdam, The Netherland (1996)
20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA (1988)
21. Richardson, M., Domingos, P.: Markov logic networks. Technical report, Depart-

ment of Computer Science and Engineering, University of Washington, Seattle,
WA (2005)

22. Sanghai, S., Domingos, P., Weld, D.: Relational dynamic Bayesian networks. Jour-
nal of Artificial Intelligence Research 24, 1–39 (2005)

23. Taskar, B., Segal, E., Koller, D.: Probabilistic classification and clustering in rela-
tional data. In: IJCAI’01, Seattle, WA, pp. 870–876 (2001)

Stability Based Sparse LSI/PCA: Incorporating Feature
Selection in LSI and PCA�

Dimitrios Mavroeidis1 and Michalis Vazirgiannis1,2

1 Department of Informatics, Athens University of Economics and Business, Greece
2 GEMO Team, INRIA/FUTURS, France

Abstract. The stability of sample based algorithms is a concept commonly used
for parameter tuning and validity assessment. In this paper we focus on two well
studied algorithms, LSI and PCA, and propose a feature selection process that
provably guarantees the stability of their outputs. The feature selection process is
performed such that the level of (statistical) accuracy of the LSI/PCA input ma-
trices is adequate for computing meaningful (stable) eigenvectors. The feature se-
lection process “sparsifies” LSI/PCA, resulting in the projection of the instances
on the eigenvectors of a principal submatrix of the original input matrix, thus pro-
ducing sparse factor loadings that are linear combinations solely of the selected
features. We utilize bootstrapping confidence intervals for assessing the statisti-
cal accuracy of the input sample matrices, and matrix perturbation theory in order
to relate the statistical accuracy to the stability of eigenvectors. Experiments on
several UCI-datasets verify empirically our approach.

1 Introduction

The intuitiveness of requiring that small changes in the input do not significantly affect
the output of sample-based algorithms has made stability a very popular tool in machine
learning. Many researchers have proposed the use of stability for assessing the validity
(such as [14]) and for tuning the parameters of clustering algorithms (such as [17,13]).
In this context an issue that presents several interesting challenges, is the analysis of
the contribution that individual features have to the instability of the output and the
derivation of necessary conditions that would guarantee stability, when a subset of the
features is used. This analysis would allow for the introduction of feature selection
algorithms that guarantee the stability of the output.

In this paper we focus on the stability of two well studied data preprocessing algo-
rithms, Latent Semantic Indexing (LSI) [9], and Principal Components Analysis (PCA)
[11]. These algorithms have been extensively used/studied in several machine learn-
ing papers (such as in [6,15]). Although they are not learning algorithms themselves,
when they are used as a preprocessing step of a deterministic learning algorithm, their
stability guarantees the stability of the output of the learning algorithm. Apart from

� This research project was co-financed by E.U.-European Social Fund (75%) and the Greek
Ministry of Development-GSRT (25%). In particular, Dr. Vazirgiannis was supported by the
Marie Curie Intra-European Fellowship NGWeMiS: Next Generation Web Mining and Search-
ing (MEIF-CT-2005-011549).

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 226–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stability Based Sparse LSI/PCA 227

the stability requirement, a motivation for performing feature selection stems from the
fact that the factor loadings that are derived by LSI and PCA are linear combinations
of all the input features, thus incorporating noise and making results difficult to in-
terpret. The introduction of a feature selection process would resolve this issue, as it
would result in sparse factor loadings that are linear combinations only of the selected
features. Using analogous motivations, researchers have introduced “sparse” versions
for various factor analysis techniques (an account of the related work can be found in
section 3).

In general, the concept of stability is concerned with sample-based algorithms. In
this setting, it is assumed that there exists a fixed (unknown) probability distribution
that generates the data, and that the training set presents an i.i.d. sample drawn from
this distribution. In the case of PCA and LSI, the input i.i.d. training set is used to con-
struct the sample input matrices (the sample Covariance matrix in the case of PCA),
that are essentially statistical estimates of the “true” input matrices that would be de-
rived if we had complete knowledge of the data generating distribution. In this paper
we focus on the instability that is related to the sampling variability (statistical accu-
racy) of the LSI/PCA input matrices, that can be naturally quantified using confidence
intervals. In the context of our work, we assume that we do not have access to the
data distribution and we utilize bootstrapping confidence intervals [10], which present
a standard approach for measuring statistical accuracy (sampling variability) without
making distributional assumptions.

In standard LSI/PCA the eigenvectors rely on the correlations/covariances between
all the input features. However, some feature-correlations could be inaccurate in the sta-
tistical sense, thus degrading the quality of the resulting eigenvectors. In the proposed
Stability based Sparse LSI/PCA (SbS-LSI, SbS-PCA) approach, we select the subset of
features such that the level of accuracy of the term-term similarities/covariances is ade-
quate for computing meaningful (stable) eigenvectors. Naturally this raises the need for
determining the level of statistical accuracy that is needed for producing reliable (sta-
ble) eigenvectors. In order to address this issue we utilize matrix perturbation theory
[20], which relates the eigenvalues and eigenvectors of matrices A and A +E. In order
to employ matrix perturbation theory we consider A to be our input term-term similar-
ity/covariance matrix and E to express the statistical inaccuracy of the term-term sim-
ilarities/covariances, as quantified by the length of the respective bootstrap confidence
intervals. SbS-LSI and SbS-PCA select a subset of the original features such that the
eigenvectors of A′ (the term-similarity/covariance matrix that is defined by the selected
features, which is a principal submatrix of the original feature-similarity/covariance
matrix) are stable with respect to perturbation E′ (the respective principal submatrix
of E).

The main innovation of SbS-LSI and SbS-PCA and the main differentiation from the
related Sparse factor analysis approaches, is the fact that we utilize the stability crite-
rion for “sparsifying” LSI/PCA (as we require the eigenvectors to be stable with respect
to resampling variability). Concerning the practical impact of our work, experimental
results on several real world UCI-datasets verify that the SbS-LSI and SbS-PCA algo-
rithms can retrieve stable principal submatrices for various termination criteria.

228 D. Mavroeidis and M. Vazirgiannis

2 Preliminaries

2.1 Latent Semantic Indexing and Principal Component Analysis

The Vector Space Model, used traditionally for representing documents, assumes that
the terms are orthogonal, thus ignoring possible term-correlations. LSI aims at address-
ing this issue by projecting the documents to the k left singular vectors that corresponds
to the k largest singular values of the term-document (feature-instance) Singular Value
Decomposition (SVD). The SVD of a matrix A is defined as A = UΣV T where U
contains the left-singular vectors, V contains the right singular vectors and Σ contains
the singular values. The left-singular matrix U can be considered as the eigenvector ma-
trix of AAT (the term-term similarity matrix). LSI projects the data using the equation:
AT

k = VkΣk, or equivalently Ak = UT
k A, where Ak is the new term-document matrix,

containing only k dimensions (rows). There exist several variations of LSI, that have
small differences with the generic approach described above. In this paper we adopt
the variation where AAT , the term similarity matrix, is derived by the cosine similarity
measure rather than the inner-product.

Principal Components Analysis (PCA) is a dimensionality reduction technique that
aims in retaining the maximal amount of variance in the projected space. PCA works
by projecting the data in the first k eigenvectors (also called principal components) that
correspond to the largest eigenvalues of the feature Covariance matrix. Thus, it can be
observed that the low dimensionality transformations are derived by the same formula,
as in LSI Ak = UT

k A, with the difference being that the eigenvectors contained in Uk

are derived by the feature Covariance matrix, instead of the feature-feature similarity
(inner-product or cosine) matrix. This observation allows us to treat LSI and PCA in a
uniform manner and define a feature selection framework that applies to both.

2.2 Bootstrapping

Bootstrapping [10] is a statistical method that can be used for measuring the accuracy
of statistical estimates. In order to employ bootstrapping in estimating confidence in-
tervals for the feature-feature similarities/covariances, we consider that the features are
random variables with an unknown probability distribution. Thus, our input data can be
considered as a random i.i.d. sample, where the observed feature values are derived by
the unknown probability distribution. Taking the above into account, the cosine simi-
larity/covariance abides to the definition of a statistic and as such its accuracy can be
measured in the statistical sense.

Percentile Intervals present the most natural approach for constructing bootstrap con-
fidence intervals. The Bias Corrected and Accelerated (BCa) bootstrap intervals present
an improvement over the simple percentile intervals, in the sense that they account for
the bias and the acceleration of the estimated parameter. The BCa intervals have sev-
eral theoretical advantages over standard percentile intervals [10] that make them more
appropriate in the context of our work.

A natural question that arises when employing the bootstrapping approach, for es-
timating confidence intervals, concerns the number of bootstrap samples needed to
achieve accurate intervals. Based mainly on empirical evidence several researchers [10]

Stability Based Sparse LSI/PCA 229

have reported that 1000 bootstrap samples are enough for accurately estimating boot-
strap confidence intervals.

A more principled approach is presented in [1], where the authors introduce a three-
step method, that allows for computing the number of bootstrap samples needed, in
order to achieve a guaranteed accuracy with high probability. The level of approxima-
tion is user-defined and involves two parameters, the percentage deviation pdb, which
measures the deviation of the computed interval from the ideal interval (i.e. the interval
that is computed using infinite bootstrap samples) and the confidence τ . Using these
parameters, their method computes the number of bootstrap samples that are sufficient
for achieving the desired level of accuracy with probability 1− τ .

2.3 Matrix Perturbation Theory

Matrix perturbation theory and more precisely Stewart’s theorem on the perturbation of
Invariant Subspaces [20] provides the means for assessing whether there exists a space
that is spanned by k eigenvectors of the input term-term similarities/covariances that is
not severely affected by the resampling variability (that quantifies the level of statistical
inaccuracy) of the term-term similarities/covariances.

Although it would be more intuitive to consider the stability of the eigenvectors
and not the spaces spanned by the eigenvectors, this would result in a not well-defined
problem, since the eigenvectors that correspond to a tight cluster of eigenvalues are ill
conditioned [20]. The inappropriateness of using eigenvectors can be also observed if
we consider a matrix with two eigenvectors that have equal eigenvalues. In this case,
it can be easily verified that any two orthogonal vectors in the subspace spanned by
these two eigenvectors can be used to represent the eigenvectors of the original matrix.
Theorem 1 presents a slightly modified version of the original Stewart’s theorem, as
presented by Papadimitriou et al. in [18]:

Theorem 1 (Stewart’s theorem [20]). Let A and A+E be n× n symmetric matrices
and let V = [V1 V2] be an orthogonal matrix, with V1 ∈ Rd×n and V2 ∈ R(n−d)×n,
where range(V1) is an invariant subspace for A. Partition the matrices V T AV and
V TEV as follows:

V T AV =
[
Q1 0
0 Q2

]

V TEV =
[
E11 E12

E21 E22

]

if
δ = λmin − μmax − ||E11||2 − ||E22||2 > 0

where λmin is the smallest eigenvalue of Q1 and μmax is the largest eigenvalue of Q2

and ||E12||2 ≤ δ/2, then there exists a matrix P ∈ R(n−d)×d with ||P ||2 ≤ 2
δ ||E21||2,

such that the columns of V ′
1 = (V1 + V2P)(I + PTP)

1
2 form an orthonormal space

that is invariant for A + E. Moreover, then

dist(range(V1), range(V ′
1)) ≤ 2

δ
||E21||2

230 D. Mavroeidis and M. Vazirgiannis

Using some elementary linear algebra we can simplify the above theorem and state
that the space spanned by k eigenvectors that correspond to the largest k eigenvalues of
matrix A will have small distance with the space spanned by k eigenvectors of matrix
A + E, if the difference between the k-th and the (k + 1)-th eigenvalue of matrix A is
at least 4 times larger than the Euclidean norm of the perturbation E.

2.4 Cauchy’s Interlacing Theorem

Stewart’s theorem, presented in the previous section, derives the stability of a matrix’s
eigenvector spaces by examining its eigenvalues. Thus, the naive approach for examin-
ing the stability of the matrix’s principal submatrices, would be to compute all the re-
spective eigenvalue decompositions. In order to avoid the prohibitive cost of computing
all decompositions, we need to relate the eigenvalues of a matrix with the eigenvalues
of its principal submatrices.

A well known theorem in the field of Linear Algebra that relates the eigenvalues
of a matrix with the eigenvalues of its principal submatrices is Cauchy’s Interlacing
Theorem [20]. Cauchy’s interlacing theorem is stated formally as follows:

Theorem 2 (Cauchy’s Interlacing Theorem). Let A be a matrix of order n with
eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and let B be a principal submatrix of A of order
n − 1 with eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn−1. Then λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ ... ≥
μn−1 ≥ λn.

Cauchy’s Interlacing can be extended easily to rank n− k principal submatrices.

Corollary 1. Let A be a matrix of order n with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and let
B be a principal submatrix of order n−k of A with eigenvaluesμ1 ≥ μ2 ≥ ... ≥ μn−k.
Then λi ≥ μi ≥ λi+k , i = 1, 2, ..., n− k.

3 Related Work

In the context of supervised learning, the connection between the stability and the gen-
eralization performance has been studied (i.e in [4]). These studies derive generalization
bounds for the performance of learning algorithms, based on their stability. In unsuper-
vised learning the stability criterion has been used widely for choosing the parameters
of clustering algorithms (i.e. selecting the number of clusters [17,13]), and for assessing
the validity of clustering results [14].

Albeit the popularity of using stability for choosing the appropriate number of clus-
ters, recent theoretical results have suggested that the stability criterion may not be
appropriate for this task. More precisely, in [2] the authors prove for centroid based and
spectral clustering that stability is determined by the symmetries of the data, which are
not necessarily related to the parameters of the clustering algorithm. In [2] the authors
focus on the stability concerning the structure of the clustering space and do not study
the instability related to the sampling variability (which is related to the statistical accu-
racy). Our approach for “sparsifying” LSI/PCA is based on the analysis of the sampling
variability affect, thus the result in [2] do not affect our approach.

Stability Based Sparse LSI/PCA 231

The notion of stability has been studied within the contents of Principal Compo-
nents Analysis (PCA). [3,8] present some early attempts to study stability of PCA by
means of resampling (bootstrapping and jackknife). Potential applications of the stabil-
ity criterion for PCA are presented in [3] where the stability is used for determining the
appropriate dimension in PCA. Using different methodological approaches, the stability
of the PCA has been also studied in [19].

Researchers working on PCA, have also identified the possible drawbacks of pro-
ducing factor loadings that are a linear combination of all the input variables. This
observation has led to attempts for “sparsifying” PCA [16,5,7,21]. Most of these ap-
proaches define the PCA problem as a cardinality constrained optimization problem
and propose approximate algorithms for solving it. There are also a some research ef-
fort that use several heuristics for “sparsifying” LSI (such as [12]). Although we share
the same motivation with Sparse PCA/LSI approaches, we utilize the stability crite-
rion for “sparsifying” LSI/PCA. This differentiates significantly our approach from the
Sparse PCA/LSI approaches.

4 Stability Based Sparse LSI/PCA

After introducing all the necessary notions and having presented the related work, we
can move on to describe our proposed approach for “sparsifying” LSI/PCA. Recall
that the main intuition in the proposed approach for Sparse LSI/PCA, is to select a
feature subset such that the level of accuracy of the term-term similarities/covariances
is adequate for computing stable PCA/LSI solutions.

4.1 Measuring Resampling Variability of Term-Term Similarities/Covariances

For quantifying the resampling variability of the estimated term-term similarities/ co-
variance, we utilize a principled statistical approach, bootstrapping BCa confidence
intervals, that enable the non-parametric calculation of the statistical accuracy of the
sample term-term similarities/covariances. We illustrate the method adopted, with the
following example:

Example 1. Consider that we have the terms “graduation” and “unemployment” that
are contained in a sample of 5 documents. The sample can be represented as a set of
2-tuples, where each 2-tuple contains the frequency of occurrence of the two terms in
each document {d1, d2, d3, d4, d5} = {(0, 1), (2, 3), (4, 3), (3, 0), (1, 0)}. The cosine
similarity of the two terms is 0.75. Taking only the cosine into account one could derive
that the two terms are semantically similar, however if we take 5 bootstrap samples we
may have:

bootstrap sample cosine
{(0,1),(0,1),(4,3),(3,0),(1,0)} 0.70
{(0,1),(2,3),(3,0),(3,0),(1,0)} 0.40
{(0,1),(2,3),(4,3),(2,3),(1,0)} 0.96
{(0,1),(3,0),(1,0),(3,0),(1,0)} 0.0
{(2,3),(2,3),(4,3),(2,3),(4,3)} 1.0

232 D. Mavroeidis and M. Vazirgiannis

The percentile confidence interval at 0.6 coverage is [0.0,0.96], which quantifies the
variability of the values of the cosine similarity with respect to resampling of the input
data. This implies that more data are needed in order to conclude on the two terms
semantic similarity.

In the case we want to compute the confidence interval for the covariance, we can
work in an analogous manner, using the covariance instead of the cosine formula. From
the example it can be observed that the calculated interval may have variability itself
(different runs could result in different intervals). In order to address this issue, we
use 1000 bootstrap samples for calculating the confidence intervals. As it has been
mentioned in the preliminaries section, 1000 bootstrap samples are considered to be
adequate for computing accurate confidence intervals [10].

4.2 Relating Variability to Stable Sub-spaces

Since we aim at selecting stable sub-spaces with respect to the resampling variability
of the term-term similarities/covariances, we need the means for relating the variability
expressed by the BCa intervals (which quantify the statistical accuracy of the term-
similarities/covariances) to the stability of the eigenvectors of the term-term similar-
ity/covriance matrix. For this purpose we utilize Matrix Perturbation Theory and more
precisely Stewart’s Theorem that essentially relates the eigenvector spaces of matrices
A and A+E, with respect to the eigenvalues of A and the norm of E. In the context of
our work A contains the term-term similarities/covariances, while A + E contains the
perturbed version of A.

For determining the elements of matrix E we adopt the conservative approach of
computing the elements of matrix E as the maximum difference between the term-
term similarities/covariances and the endpoints of the corresponding confidence in-
tervals. The intuition behind selecting the matrix E to contain the largest differences
stems from a property of the Euclidean norm stating that ||E||2 lies in the interval
[1√

n
||E||1,

√
n||E||1] where n is the number of columns (or rows) of E and ||E||1 =

max1≤j≤n

∑n
i |aij | (aij are the elements of the matrix). Thus by defining the elements

of matrix E to include the maximum differences, we force the ||E||2 to lie within an
interval of larger values (worst case scenario). Moreover this property of the Euclidean
norm justifies the heuristic of removing the rows and columns with highest norm (later
introduced in Algorithm 1). Since ||E||1 is defined using the absolute values of the
matrix elements, it makes no difference (in the estimated interval) if we include neg-
ative values in the definition of E. In order to illustrate our approach, we provide the
following example (continuation of example in section 4.1):

Example 2. Consider the case where we have terms i: “graduation” and j: “unemploy-
ment”, then taking after the example in section 4.1 we will have the (i, j)th and (j, i)th

element of matrix A to be A(i, j) = 0.75. Since the confidence interval produced by
bootstrap samples is [0.0,0.96], the (i, j)th and (j, i)th element of matrix E will be
determined by E(i, j) = max{|0.75− 0.0|, |0.75− 0.96|} = 0.75.

Having determined the elements of matrix E we can apply Stewart’s theorem in a
straight forward manner. This will allow for assessing whether there exists some k for

Stability Based Sparse LSI/PCA 233

which the space spanned by the k eigenvectors is stable. If no such k exists, we should
investigate sparser representations, removing the terms that exhibit high variance in
their similarity estimations. The problem of searching for stable principal submatrices
presents several challenges which we investigate in the subsequent section.

4.3 Stable Principal Submatrices

As we have argued in the introductory section, the problem of identifying stable prin-
cipal submatrices is related to the problem of feature selection for LSI/PCA. In our
approach we formulate two requirements for selecting the feature subset.

1. The feature-feature similarity/covariance matrix induced by the subset of features
(which is a principal submatrix of the original similarity/covariance matrix), should
contain stable eigenvector spaces for some k.

2. The E matrix induced by the subset of features (which is a principal submatrix
of the original E matrix) should contain the most accurate similarity/covariance
estimations.

The main difficulty for identifying stable principal submatrices is that the stability
of the eigenvector spaces is assessed using the eigenvalues of the matrix. Thus, the
naive approach would require that the eigenvalue decomposition is performed on every
candidate matrix, making the cost of searching stable submatrices prohibitive.

In order to reduce the computational cost, we make use of Proposition 1, that is
derived from the Cauchy’s interlacing theorem. Proposition 1 allows for evaluating,
whether it is possible for stable eigenvector spaces to exist in a principal submatrix,
prior to computing its eigenvalue decomposition. Consequently the number of eigen-
decompositions that are performed can be significantly reduced. In Proposition 1, we
do not check directly the requirements of Stewart’s theorem but the requirements stated
in Lemma 1. The proofs for Lemma 1 and Proposition 1 can be found in the Appendix.

Lemma 1. Let A and A + E be n × n symmetric matrices and let the eigenvalues of
A and E be λ

(A)
1 ≥ ... ≥ λ

(A)
n and λ

(E)
1 ≥ ... ≥ λ

(E)
n respectively. If λ(E)

1 > 0 and

λ
(A)
i −λ

(A)
i+1 > 4 ·λ(E)

1 for some i, then the prerequisites of Stewart’s theorem will hold,
and the space spanned by the first i eigenvectors of A will be stable.

Proposition 1. Let A and E be matrices of order n with eigenvalues λ
(A)
1 ≥ λ

(A)
2 ≥

... ≥ λ
(A)
n and λ

(E)
1 ≥ λ

(E)
2 ≥ ... ≥ λ

(E)
n respectively. Moreover let A′ and E′ be

principal submatrices of A and E of order n− k. If λ(A)
i − λ

(A)
i+k+1 ≤ 4 · λ(E)

1+k, for all
i = 1, 2, ..., n − k − 1, then the prerequisites of lemma 1 do not hold for matrices A′

and A′ + E′.

In order to retrieve stable principal submatrices, we adopt the approach of incremen-
tally reducing the order of the input term-term similarity/covariance An matrix at each
step by 1. The choice of the principal submatrix of order n − 1 is done with respect
to retaining the most accurate term-term similarities/covariances. This is done by re-
moving the term that corresponds to the row (and column) of En that has the highest
norm. Subsequently, using Proposition 1 we check whether it is possible for An−1 to

234 D. Mavroeidis and M. Vazirgiannis

satisfy the prerequisites of Lemma 1 (and thus to contain stable eigenvector spaces).
Until this condition is satisfied, we continue to reduce the order of the similarity matrix
by 1. When proposition 1 cannot guarantee that the prerequisites of Lemma 1 will fail,
we compute the eigenvalue decomposition and verify analytically whether the prerequi-
sites of Lemma 1 hold. If we derive (using Lemma 1) that there exist stable eigenvector
spaces, then we can check the standard LSI/PCA termination criteria (i.e. in PCA we
can require that the stable eigenvector spaces retain a required amount of the initial
variance). If the standard termination criteria are met, then we terminate the algorithm
and output the stable principal submatrix. Otherwise we continue to iterate until such
such stable submatrix is found. Our algorithm for detecting stable principal submatrices
is illustrated as Algorithm 1.

Algorithm 1. SbS-LSI/PCA(S,A,E,TerminationCriteria)
1: Compute the eigenvalues of A
2: Compute the eigenvalues of E
3: if (The prerequisites of Lemma 1 are satisfied) AND (TerminationCriteria are met) then
4: return A and the k for which the TerminationCriteria are met.
5: else
6: repeat
7: Find row r (feature t) of E with the highest norm
8: S′ ←Remove from S feature t
9: A′ ←Remove from A row and column r

10: E′ ←Remove from E row and column r
11: until Proposition 1 cannot guarantee that the preconditions of Lemma 1 will not be satis-

fied
12: call SbS-LSI/PCA(S′,A′,E′,TerminationCriteria)
13: end if

In order to illustrate the use of the traditional termination criteria, consider that we
are provided with a dataset that contains m objects with n features. This input dataset
induces an initial n × n covariance matrix C. Moreover, consider that we aim in pro-
jecting the data in a stable sub-space such that a% of the variance of the original input
data is retained. Each time we find a principal submatrix of C that has stable eigen-
vectors, it will contain stable eigenspaces for a certain number k of eigenvectors (i.e.
k = k1,k = k2 and k = k3, recall that stability for a certain number of eigenvectors
k depends on the difference of eigenvalues λk and λk+1, thus it can be achieved for
various values of k). Then we should check whether retaining k (for all possible “sta-
ble values” of k) eigenvectors of the principal submatrix is adequate for satisfying the
termination criterion set (i.e. expressing a% of the original data variance).

5 Experiments

In the experimental section we empirically demonstrate the behavior of SbS-LSI in three
real world UCI-datasets. The datasets are the Ionosphere dataset that contains radar
data (with 351 objects, 35 dimensions and 2 class labels), the Segmentation dataset that

Stability Based Sparse LSI/PCA 235

contains outdoor image segmentations (with 2000 objects, 19 dimensions and 7 class
labels) and the Spambase dataset that contains emails classified as spam/non spam (with
4601 objects, 58 attributes and 2 class labels). In the experimental setup, we have set the
confidence level to 0.9 for the BCa intervals. Moreover, we consider that the termination
criteria for SbS-LSI is set to be a certain proportion of the Frobenius norm of the original
data (i.e. we require that the projected space expresses a% of the Frobenius norm of the
original space). Usually, in the context of LSI, the termination criterion is set to be a
number k that represents the number of eigenvectors used to project the data (and thus
the dimensionality of the reduced space), however this is not appropriate in SbS-LSI as
the k values have different semantics with respect to different principal submatrices (the
first k eigenvectors of a 500× 500 matrix are not comparable to the first k eigenvectors
of a 5000× 5000 matrix).

In the Ionosphere dataset, we can easily evaluate using Proposition 1 that the input
data (using all the features), do not contain stable eigenvectors. If we set the propor-
tion a ≥ 33%, then the algorithm removes 2 features that contribute maximally to the
instability of LSI and finds a principal submatrix that has stable eigenvector spaces for
k = 1. Using the values of the respective eigenvectors, the algorithm verifies that the
termination criteria (concerning the proportion a) is satisfied and the algorithm termi-
nates. A similar behavior is exhibited by the Spambase dataset, that does not contain
stable eigenvectors in the original space. If we set the proportion a ≥ 25%, then the al-
gorithm removes 43 features and finds a principal submatrix that has stable eigenvector
spaces for k = 13. Then the algorithm verifies that the termination criteria (concerning
the proportion a) is satisfied and thus the algorithm terminates.

A more interesting behavior is exhibited by the Segmentation datasets. If we set the
proportion a ≥ 45%, then the algorithm, verifies that the first eigenvector of the orig-
inal input matrix (using all the features) is stable and satisfies the termination criteria.
However, if we set a ≥ 55%, then the input matrix is not adequate and SbS-LSI has to
examine the stability of principal submatrices. For a ≥ 55% the algorithm removes 3
features and finds a principal submatrix that has stable eigenvector spaces for k = 1 and
k = 3. For k = 3 the termination criteria are met, and the algorithm terminates. If we
set a ≥ 65%, then the algorithm removes another two features and retrieves a principal
submatrix that has stable eigenvectors for k = 1, 2, 3, 4. For k = 4, the termination
criteria are met and the algorithm terminates.

The experiments demonstrate the practical applications of SbS-LSI and SbS-PCA.
If we take into account the intuitiveness of the stability criterion, then it is natural to
consider preferable to choose the stable sub-spaces that are derived by SbS-LSI and SbS-
PCA over the standard LSI and PCA results. For example in the Segmentation dataset if
we set as a termination criteria a ≥ 65%, standard LSI will return a certain number of
k eigenvectors from the original input data, that are not stable with respect to sampling
variability. On the contrary SbS-LSI performs feature selection, removes 5 features that
contribute maximally to the instability of LSI, and returns k = 4 eigenvector of the
resulting principal submatrix that are guaranteed to be stable. In the cases where the
termination criteria are not met (i.e. no stable principal submatrix is found) , then it
would be a sound practice to avoid using LSI or PCA as a preprocessing step to machine
learning algorithms.

236 D. Mavroeidis and M. Vazirgiannis

6 Conclusions and Further Work

Motivated by the intuitiveness of the stability criterion, we have introduced a feature
selection process for “sparsifying” LSI and PCA. The proposed SbS-LSI and SbS-PCA
algorithms select a feature subset such that the level of the statistical accuracy of the
term-term similarities/covariances is adequate for computing stable eigenvectors (and
thus stable sub-spaces). The main theoretical innovation of SbS-LSI and SbS-PCA is
the fact that they present the first approach that utilizes the concept of stability for
“sparsifying” LSI/PCA.

Concerning further work, we aim at investigate possible solutions for reducing the
computational cost of retrieving stable submatrices. We also intend to investigate the
theoretical properties of using the stability criterion for sparsifying LSI/PCA and its
potential applications in Spectral Clustering.

References

1. Andrews, D.W., Buchinsky, M.: On the number of bootstrap repetitions for BCa confidence
intervals. Econometric Theory (2002)

2. Ben-David, S., von Luxburg, U., Pal, D.: A sober look at clustering stability. In: Lugosi, G.,
Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, Springer, Heidelberg (2006)

3. Besse, P.: PCA stability and choice of dimensionality. Statistic & Probability Letters (1992)
4. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Re-

search (2002)
5. Cadima, J., Jolliffe, I.T.: Loadings and correlations in the interpretation of principal compo-

nents. Journal of Applied Statistics (1995)
6. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels. Journal of Intelligent

Information Systems (2002)
7. d’Aspremont, A., Ghaoui, L.E., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for

sparse PCA using semidefinite programming. In: NIPS (2004)
8. Daudin, J., Duby, C., Trecourt, P.: Stability of principal component analysis studied by the

bootstrap method. Statistics (1988)
9. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent se-

mantic analysis. Journal of the American Society For Information Science (1990)
10. Efron, B., Tibshirani, R.: An introduction to the bootstrap. Chapman Hall (1993)
11. Jolliffe, I.T.: Principal Components Analysis. Springer, Heidelberg (2002)
12. Kontostathis, A., Pottenger, W.M., Davison, B.D.: Identification of critical values in Latent

Semantic Indexing (LSI). In: Lin, T.Y., Ohsuga, S., Liau, C.J., Tsumoto, S. (eds.) Foundations
of Data Mining and Knowledge Discovery, Springer, Heidelberg (2005)

13. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering
solutions. Neural Computation (2004)

14. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster validity.
Neural Computation (2001)

15. Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G.: Kernel PCA and
De-Noising in Feature Spaces. In: NIPS 1998 (1998)

16. Moghaddam, B., Weiss, Y., Avidan, S.: Spectral bounds for sparse PCA: Exact and greedy
algorithms. In: NIPS 2005 (2005)

17. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based
method for class discovery and visualization of gene expression microarray data. Machine
Learning (2003)

Stability Based Sparse LSI/PCA 237

18. Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: A
probabilistic analysis. In: PODS 1998 (1998)

19. Shawe-Taylor, J., Williams, C.K.I.: The stability of kernel principal components analysis and
its relation to the process eigenspectrum. In: NIPS 2002 (2002)

20. Stewart, G., Sun, J.-G.: Matrix perturbation theory. Academic Press, London (1990)
21. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Journal of Compu-

tational and Graphical Statistics (2006)

Appendix

Proof (Lemma 1). We have:

λ
(A)
i − λ

(A)
i+1 > 4 · λ(E)

1 ⇒
λ

(A)
i − λ

(A)
i+1 > 4 · ||E||2 ⇒

λ
(A)
i − λ

(A)
i+1 − 2 · ||E||2 > 2 · ||E||2 ⇒

λ
(A)
i −λ

(A)
i+1− ||E11||2− ||E22||2 ≥ λ

(A)
i −λ

(A)
i+1− 2 · ||E||2 > 2 · ||E||2 ≥ 2 · ||E12||2

(eq. 1)

From equation 1 we can derive δ ≥ 2 · ||E12||2
Moreover we have:

λ
(E)
1 > 0⇒ ||E||2 > 0⇒(using equation 1) δ > 0

Thus the prerequisites set by Stewart’s theorem are met and the space spanned by the
first i eigenvectors of matrix A sill be stable under perturbation E.

Note that for deriving the result we have used the fact that ||E||2 ≥ ||Eij ||2 and the
definition for δ from Stewart’s theorem.

Proof (Proposition 1). Let the eigenvalues of A′ and E′ be μ
(A′)
1 ≥ ... ≥ μ

(A′)
n−k and

μ
(E′)
1 ≥ ... ≥ μ

(E′)
n−k respectively.

Concerning the eigenvalues of A and A′ we can derive from corollary 1 that:

μ
(A′)
i ≤ λ

(A)
i

μ
(A′)
i+1 ≥ λ

(A)
i+1+k

⇒ μ
(A′)
i − μ

(A′)
i+1 ≤ λ

(A)
i − λ

(A)
i+1+k

Concerning the eigenvalues of E and E′ we can derive from corollary 1 that λ(E)
1+k ≤

μ
(E′)
1

Thus if we have:

λ
(A)
i − λ

(A)
i+k+1 ≤ 4 · λ(E)

1+k for all i = 1, 2, ..., n− k − 1⇒
μ

(A′)
i − μ

(A′)
i+1 ≤ 4 · μ(E′)

1 for all i = 1, 2, ..., n− k − 1

Thus the prerequisites of Lemma 1 do not hold for matrices A′ and A′ + E′.

Bayesian Substructure Learning - Approximate

Learning of Very Large Network Structures

Andreas Nägele1,2, Mathäus Dejori1, and Martin Stetter1

1 Siemens AG, Corporate Technology, CT IC 4, D-81730 Munich, Germany
2 Dept. of Computer Science, Technical University of Munich, D-85747 Garching,

Germany

Abstract. In recent years, Bayesian networks became a popular frame-
work to estimate the dependency structure of a set of variables. However,
due to the NP-hardness of structure learning, this is a challenging task
and typical state-of-the art algorithms fail to learn in domains with sev-
eral thousands of variables. In this paper we introduce a novel algorithm,
called substructure learning, that reduces the complexity of learning large
networks by splitting this task into several small subtasks. Instead of
learning one complete network, we estimate the network structure iter-
atively by learning small subnetworks. Results from several benchmark
cases show that substructure learning efficiently reconstructs the network
structure in large domains with high accuracy.

Keywords: Graphical Models, Bayesian Networks, Structure Learning.

1 Introduction

Bayesian networks (BNs) are popular graphical models to describe the depen-
dencies between a set of random variables in a probabilistic as well as graph
theoretic way. They provide a consistent and intuitive graphical representation
of higher-order statistics between these variables. One important task for BNs
that became important in recent years is the learning of the qualitative depen-
dency structure from data. Due to the NP-completeness of structure learning
[6], many interesting domains for Bayesian network learning face the problem of
high dimensionality. The computational time of learning Bayesian networks can
be reduced by applying heuristic assumptions about possible network structures
combined with heuristic search strategies. For example, the “Sparse Candidate”
algorithm with polynomial computational complexity was introduced [11]. This
algorithm restricts the number of possible parents for each variable to a small
number and allows only edges between a variable and its “candidate” parents.
The basic idea behind this algorithm is following heuristic argument: If variables
X1 and X2 are almost independent in the data, they are unlikely to be connected
in a Bayesian network and, thus, the search space of possible network structures
can be restricted on those that have no edge between X1 and X2. Recently, a
very competitive algorithm was introduced [16]. This so called MMHC algorithm
uses a constraint based method to detect possible parent-child relationships and

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 238–249, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bayesian Substructure Learning - Approximate Learning 239

combines all these relationships to an undirected skeleton of the network struc-
ture. Afterwards, a score-based greedy search procedure is used to learn the edge
orientation based on the skeleton.

However, structure learning in domains with tens of thousands of variables
is intractable for current learning methods given the available computational
power except for very restricting cases with boolean variables paired with very
sparsely linked graphs [12]. Areas of applications for large networks are, besides
others, social networks, warehousing or biological processes. For learning in such
large domains, one typically restricts the feature dimensions on a feasible subset
of relevant variables that are of high interest, as it was done in [10] for the
estimation of biological processes.

Here we introduce the substructure learning algorithm which combines the ap-
proach of restricting possible network structures with dimensionality reduction.
This approach is shown to be efficient in terms of accuracy and scalability for
structure learning in large domains. In a first step, we learn the skeleton of the
network structure. In a second step, for each variable, we learn one small subnet-
work to estimate the local structure “around” this variable. Thereby, the possible
network structures are restricted, based on the undirected skeleton. By learning
one subnetwork for each variable in the complete network, we systematically
estimate the complete directed network structure step by step, without learning
one single Bayesian network for the whole domain. Based on all subnetworks, we
provide a graphical representation of the directed dependency structure using
the framework of a fPDAG (feature partial directed graph) to enable a unifying
representation of all small and local subnetworks.

2 Methods

2.1 Background

At first, we provide a brief summary of learning multinomial Bayesian networks
(BNs) and instead direct the interested reader to [14,16] for further information.
Bayesian networks can be used to describe the joint probability distribution of
n random variables X = {X1, X2, X3, ..., Xn}. A Bayesian network B = (G, Θ)
consists of two parts. The first part is the network structure which is a directed
acyclic graph (DAG) G with each variable Xi represented as a node. The edges
in the DAG represent statistical dependencies between the variables. The second
part is a set of parameters describing the probability density. With the indepen-
dence statements encoded in the DAG the joint probability function over X can
be decomposed into the product form

p(X1, X2, ..., Xn) =
n∏

i=1

p(Xi|Pai, Θ,G), (1)

where Pai are the parents of variable Xi in the DAG G.
Learning the structure and the parameters of a Bayesian network from a

data set D can be formulated as the following problem: Given a finite data

240 A. Nägele, M. Dejori, and M. Stetter

set D = (d1, ...,dN) with N different independent observations, where each
data point dl = (dl

1, ..., d
l
n) is an observation of all n variables, find the graph

structure G and the parameters Θ that best match data set D. In the Bayesian
approach this implies maximizing the function

p(G|D) =
p(D|G)p(G)

p(D)
, (2)

where p(G) is the prior for the structure, p(D) a normalization constant and
p(D|G) the marginal likelihood of D given the model graph G.

By using an uniform prior over all possible network structures, the learning
problem can be reduced by searching solely the structure with best marginal
likelihood

p(D|G) =
∫

p(D|G, Θ)p(Θ|G)dΘ, (3)

where p(D|Θ,G) is the likelihood of the data set D given the Bayesian network
(G, Θ) and p(Θ|G) denotes the prior for the local probability distributions Θ of
the Bayesian network with structure G.

The approach described so far is commonly referred to as “score-based” ap-
proach since the DAGs are rated by their score. Constraint-based methods form
the second class of structure learning algorithms. Instead of searching the opti-
mal scoring DAG, they reconstruct the network by applying conditional indepen-
dence tests on the data. Recently, a new and quite competitive algorithm that
combines both approaches was developed [16]. The so called MMHC (max-min
hill-climbing) algorithm performs Bayesian network learning in two steps: firstly,
an undirected network skeleton is estimated with MMPC (max-min parents and
children) that employs constraint-based techniques. Afterwards, a score-based
greedy search is performed to orient the edges in order to obtain a high-scoring
DAG.

Our substructure algorithm utilizes the same approach to estimate the skele-
ton, thus we shortly summarize the MMPC algorithm. For more details we direct
the interested reader to [16]. MMPC is a local discovery algorithm to assess the
set of parents and children PCi of a variable Xi. This is done in two phases. In
the first phase, conditionally dependent variables can enter the set of candidate
parents and children according to a heuristic function which is called Max-Min
heuristic: This variable enters next the candidate set that maximizes the mini-
mum association to Xi given the current candidate set. Thereby, the minimum
association is defined as the minimal conditional dependency of a variable and
Xi, tested for all possible subsets of the current candidate set. This means that
this variable enters the candidate set which is most unlikely to be condition-
ally independent from Xi. The growing phase stops after all dependent variables
have entered the candidate set. In the second phase, the false positive variables
are removed which possibly entered the candidate set in the first phase. False
positives are such variables that are independent of Xi given some subset of all
variables. Thus, all variables that are conditionally independent given a subset

Bayesian Substructure Learning - Approximate Learning 241

of the candidates are removed from the candidate set. The authors of MMPC
have shown that under the assumption of faithfulness this algorithm will return
no false negatives. It also returns no false positives if the PC relation is made
symmetric, i.e. for all Xj ∈ PCi it is tested whether Xi ∈ PCj ; if this condi-
tion is not fulfilled, Xj is removed from PCi. To construct the skeleton of the
Bayesian network, the MMPC algorithm is performed for all variables, and each
variable is connected to all members of its set of parents and children.

It has been shown that the MMHC algorithm has a good performance in terms
of quality as well as runtime and outperforms many state-of-the-art BN learning
algorithms such as the Sparse-Candidate algorithm [16,11]. However, MMHC
faces the problem of its computational complexity if applied in a domain with
more than several thousand variables. While the skeleton reconstruction phase
is quite efficient, the edge orientation phase is the limiting part in the MMHC
algorithm. The authors have reported from a benchmark with 5000 variables
where the first phase took 19 hours on a Pentium Xeon with 2.4GHz, while the
edge orientation took almost two weeks [16].

2.2 Substructure Learning

In this section we introduce substructure learning as an efficient and scalable
method for estimating the structural dependencies in large and sparse domains.
The general idea behind this algorithm is that subparts of very large networks
can be learned by omitting unimportant variables, as it is done e.g. for the
estimation of the genetic regulatory network where the large amount of about
30,000 genes (variables) is reduced to a small set of relevant genes [10]. How
the selection of important network nodes for one subnetwork can influence the
learned structure is exemplarily shown in Fig. 1, that is taken from [4]. The
removal of one important node (X7 in this example) can disrupt the structure of
the BN. The direct relationships that pass originally over X7 in left hand network
must be represented by indirect relationships between the remaining nodes in
the subnetwork on the right hand side, which leads to a massive appearance of
false positive and false negative edges, thus leading to an entirely wrong set of
relationships.

Based on the idea of dimensionality reduction and instead of learning the
whole network, we learn a set of small subnetworks that together resemble the
original global structure with high accuracy. The algorithm itself is a two-step
process (see Table 1): Firstly, the skeleton S of the complete network structure
is reconstructed. Secondly, small subnetworks are learned independently of each
other for an estimation of the complete network structure. The new approach of
substructure learning is to estimate the complete network structure by learning
several subnetworks, one for each variable in the complete network.

In the first step, our algorithm (lines 2 – 5) is identical to the first phase of
MMHC and determines the set of parents and children PCi of each variable Xi to
reconstruct the skeleton S of the complete network. In the second step (lines 6 –
12), we introduce a variable selection component by leaving, for each variable Xi,
a subnetwork that is centered “around” the variable. This estimation starts with

242 A. Nägele, M. Dejori, and M. Stetter

Table 1. Substructure learning algorithm

1: procedure SUBSTRUCTURE(D)
Input: data D
Output: set of Bayesian subnetworks B
// skeleton reconstruction

2: for each variable Xi ∈ X do
3: PCi := MMPC(Xi,D);
4: end for
5: create skeleton S by all PCi

// structure learning
6: for each variable Xi ∈ X do
7: Mi := NEIGHBOURHOOD(Xi,S);
8: DMi := restrict data D on variables in Mi

9: Bi := LEARN BN(Mi,DMi , S);
10: Bi := restrict Bi on the Markov blanket of Xi and Xi;
11: B := B ∪ Bi

12: end for
13: return B;
14: end procedure

the selection of variables Mi for learning one BN (line 7). For that purpose we
utilize the skeleton S to determine the set Mi of structurally important variables
which is calculated by NEIGHBOURHOOD(Xi,S). This procedure returns a set
of variables which includes Xi, the neighbours of Xi in S and their neighbours.
Thus, the central variable Xi of the local structure, the parents and children of
Xi and their parents and children are all put together for learning one single BN.
This variable selection is the first crucial step since a suboptimal selection with
missing variables which are structurally important can lead to false positives as
well as false negatives, as it was shown before examplarily.

The second crucial step is the learning of the local Bayesian subnetworks (line 9).
As done for MMHC, we restrict edges in the subnetwork to edges that also appear
(as undirected edges) in the skeleton, this means an edge between two variables
can only be added during structure search if the variables are also connected in the

Fig. 1. The left Bayesian network is an example for a complete Bayesian network, the
network on the right-hand side is the simplest Bayesian network that encodes the same
probability distribution, but without node X7. Note that the nodes X4, X5 and X6 are
no longer independent given their parents.

Bayesian Substructure Learning - Approximate Learning 243

skeleton. To increase the quality of the network estimation we afterwards restrict
the learned subnetwork to the Markov blanket of Xi by removing all variables and
edges that do not belong to the Markov blanket or Xi itself. The Markov blanket
of a variable is a subset of variables that render this variable independent from all
others. In a BN, the Markovblanket of a variable consists of its parents, its children
and the parents of its children. The result of the substructure algorithm is the set
B, containing all local Bayesian subnetworksBi, one for each variable. All the local
subnetworks allow a structural estimation of the complete DAG and, as well, build
a quantitative model for each single variable given its Markov blanket, encoded
as a BN.

2.3 Structure Representation

The set of partially overlapping subnetworks B lacks of a unifying representation
of the network structure. While the structure of a single subnetwork forms a
DAG, the edges of all subnetworks together need neither to be acyclic nor to
have all edges with conforming orientations in all subnetworks. For example,
it is likely that there exists an edge between two variables in one subnetwork
that has the opposite direction in another subnetwork, or it does not occur in
the other subnetwork at all. For a unifying representation of such structural
uncertainties we use the framework of feature partial directed graphs (fPDAG)
[8,9], which assigns confidences to edge features. The features of an edge between
two variables Xi and Xj can be described by a probability distribution with four
states, that is

pi↔j = {pi→j , pi−j , pi←j , pi⊥j} . (4)

pi→j denotes the probability of a directed edge from Xi to Xj, pi←j the prob-
ability of a directed edge from Xj to Xi, pi−j the probability of an undirected
edge and pi⊥j the probability that there is no edge between the two variables.
We estimate the confidence of a feature as the empirical mean of the confidences
in the subnetworks:

pi↔j(k) =
1
α

n∑

g=1

fi↔j(Bg)(k), (5)

where f(Bg) is the truth-value of the feature in network Bg: it is one if the
feature appears in the network, otherwise it is zero. The normalization constant
α denotes the number of networks that can make a statement about the feature.
In more detail, the normalization constant of an edge feature with Xi and Xj

as endpoints is the number of networks that contain both variables Xi and
Xj . If there is no network that contains both variables, the probability of the
edge is set to zero. As the direction of edges that do not belong to a collider
structure can be ambiguous [18], the features are not calculated directly from
the structure of a Bayesian network but from the PDAG (partial directed acyclic
graph) representation of its network structure [7].

The fPDAG of Bayesian networks is a graph which contains all variables that
are present in the Bayesian networks. Each edge between two variables Xi and

244 A. Nägele, M. Dejori, and M. Stetter

Xj is weighted with its feature pi↔j . Thus, unlike Bayesian networks or PDAGs,
the structure of a fPDAG is neither an acyclic directed nor a partially directed
acyclic graph. Instead, it is a weighted graph that has edges between related
variables, and these edges are labeled with pi↔j .

2.4 Time Complexity of Substructure Learning

In the first phase of the substructure algorithm, the skeleton of the underlying
dependency structure is reconstructed using MMPC. Each single call on MMPC
has a computational complexity of O(|X||PC|l+1) with l as the maximum size
of all conditioning subsets. Thus, the overall cost for reconstructing the whole
skeleton is O(|X|2|PC|l+1), where |PC| is the largest set of parents and children
over all variables in X (we refer to [16] for more details). So far, the substruc-
ture algorithm does not differ from MMHC. However, in the edge orientation
phase substructure learning splits the structure search problem into several small
problems.

We now estimate the influence of this splitting on the number of possible
network structures. Given a skeleton where each variable has at least two neigh-
bours (or parents in the case of the sparse candidate algorithm), finding the best
DAG is NP-hard in the number of variables [11,6]. Thus, learning one subnet-
work is NP-hard in |PC|2, since |PC|2 is an upper bound for the number of
variables in one subnetwork. This means, if |PC| is much smaller than the num-
ber of all variables, the substructure approach dramatically reduces the number
of possible network structures. This affects the performance of heuristic search
strategies like hill climbing, as well. For an estimation of the impact, we define
the cost of a search strategy, depending on the maximum number of parents
and children and the size of the domain, as F (|PC|, |X|). For one subnetwork,
the cost becomes f(|PC|, |PC|2). Thus, the overall cost for the second phase of
substructure learning is |X|f(|PC|, |PC|2). For large networks with small |PC|
we expect the substructure algorithm to perform faster than approaches that
learn the complete DAG. If we restrict |PC| on a fixed value, the second phase
performs even linearly in the number of variables.

3 Results

In this section, we empirically benchmark the substructure algorithm by a com-
parison to MMHC. We use only MMHC for comparison as it has been shown
in [16] to outperform many other structure learning algorithms in terms of ac-
curacy and time efficiency. For the benchmark, we sample training data from
known benchmark networks and request both algorithms to reconstruct the orig-
inal network structures. These reconstructed networks are then compared to the
original network to assess the quality of the learned structures. As benchmark
networks we have chosen the Alarm [3] and the Insurance network [4]. Both net-
works are relatively small and have only a few variables (Alarm: 37; Insurance:
27). However, we are particularly interested in the performance in large domains.

Bayesian Substructure Learning - Approximate Learning 245

Thus, we used the tiling method described in [17], which uses one network as tile
and puts several tiles together, to enlarge both networks in size. We generated
several large networks with the 10-fold, 20-fold and 30-fold size of the original
network using the Causal Explorer software package [2]. The resulting networks
are denoted as Alarm 10, Alarm 20, Alarm 30, Insurance 10, Insurance 20 and
Insurance 30 (or abbreviated: A. 10, ..., I. 30). From each of the benchmark
networks we sampled data sets of different sizes (100, 200, 500, 1000 and 5000
samples).

For the structure learning part of the substructure algorithm we use random
hill climbing as heuristic search method. This means we select randomly two
variables, calculate the scores for arc addition, arc removal and arc reversal and
apply the highest scoring local change until no action can improve the total
score. As scoring function that solves (3), we use the Bayesian Dirichlet equiv-
alent (BDeu) score [14] with an equivalent sample size of ten. For the MMHC
algorithm we used the implementation of the original authors from the Causal
Explorer software package [2]. For the DAG search, they implemented Greedy
Hill Climbing and used the BDeu score with an equivalent sample size of ten,
as well. The here presented approach is focused on optimally reconstructing the
original structure. Thus, we assess the accuracy by using evaluation measures
that are based on structural features only. Other quality measures that take
the density distribution into account are not considered here. As first evaluation
measure we use the structural hamming distance (SHD) which is defined as the
number of the following operations to make two PDAGs match [16]: (1) insert
or remove an undirected edge or (2) insert, reverse or remove a directed edge.
For feature graphs (fPDAGs), we extend the definition in such a way that each
operation counts not as one but as the confidence of the corresponding feature.
Additionally, we report the number of false positives (FP) and false negatives
(FN) defined as the number of operations to remove all false positive or false
negative edges. For runtime comparisons we use the real-time of both algorithms
in seconds on a computer with an Intel Pentium M processor, 2 GHz, and two
GB working memory.

Table 2. Performance results for different networks and sample sizes

500 1000 5000

Runtime SHD Runtime SHD Runtime SHD

A. 1.22 (5.43) 1.25 (26.2) 1.23 (7.31) 1.03 (16.4) 1.30 (26.4) 1.85 (18.5)
A. 10 0.64 (162.8) 1.01 (382.4) 0.73 (228.3) 0.99 (314.5) 0.85 (862.1) 1.10 (253.9)
A. 20 0.40 (582.9) 0.91 (742.8) 0.45 (802.4) 0.89 (620.9) – –
A. 30 0.24 (1265) 0.88 (1066) 0.33 (1741) 0.85 (867.0) – –
I. 1.18 (5.1) 1.00 (42.1) 1.09 (7.66) 0.90 (36.1) 1.11 (57.2) 0.92 (34.1)
I. 10 0.78 (129.3) 1.11 (405.0) 0.88 (199.6) 1.04 (327.1) 0.98 (1348) 1.08 (201.6)
I. 20 0.54 (398.5) 1.03 (757.0) 0.65 (598.0) 1.01 (592.3) – –
I. 30 0.39 (815.7) 1.02 (1137) 0.45 (1202) 0.97 (885.2) – –

246 A. Nägele, M. Dejori, and M. Stetter

Table 3. Average performance results

Network Size Edges Runtime SHD FP FN

Alarm 37 46 1.32 1.37 0.98 1.31
Alarm 10 370 570 0.74 1.21 0.81 1.06
Alarm 20* 740 1101 0.43 0.90 0.32 1.09
Alarm 30* 1110 1580 0.29 0.86 0.31 1.08
Insurance 27 52 1.31 1.00 1.04 1.09
Insurance 10 270 556 1.27 1.15 1.40 1.04
Insurance 20* 540 1074 0.59 1.02 0.86 1.03
Insurance 30* 810 1619 0.42 0.99 0.87 1.01

0 200 400 600 800 1000 1200
10

−1

10
0

Network Size

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Alarm

Insurance

Fig. 2. Speed-up of substructure learning increases with the size of the network

Table 2 shows the relative performance of substructure learning compared to
MMHC for different sample sizes (500, 1000 and 5000 samples) and networks by
means of runtime (in seconds) and SHD. The numbers denote the normalized
performance of substructure learning. This means that we divided each measure
for substructure learning by the corresponding measure for MMHC. Thus, a
value smaller than one denotes that substructure learning performs better than
MMHC. The number in brackets denote the original, unnormalized measures
for substructure learning. Additionally, in table 3 we report the network-wise
averaged values over all sample sizes (100, 200, 500, 1000 and 5000 samples).
Some of the networks (denoted by an asterisk in the table) are only learned
with 500 and 1000 samples due to the large amount of time needed for one
network reconstruction. As we can see, the substructure algorithm generally
shows a good performance in terms of runtime and network quality compared
to MMHC, especially for large networks. There is only one prominent outlier:
the relatively small Alarm network is reconstructed poorly for 5000 samples
with a normalized hamming distance of 1.85. For all other cases, however, the
structural hamming distances are comparable for both approaches, in some cases
substructure learning even outperforms MMHC. Besides, the number of false

Bayesian Substructure Learning - Approximate Learning 247

positives are even less in most substructure networks, while there are slightly
more false negatives (see table 3).

In Fig. 2, the normalized and averaged runtimes for 500 and 1000 samples are
plotted against the size of the network. As MMHC shows better runtime results
for small networks, the reduced complexity of substructure learning shows its ad-
vantage for larger networks: For the Insurance 30 benchmark case, substructure
learning needs only about 40% of MMHCs runtime, while for the largest Alarm
network only about 30% of the runtime is needed. We also tried to learn larger
networks, thus we created a tiled Alarm network with 1850 variables and 2853
egdes. However, MMHC failed to learn the complete network within one day
(we interrupted the algorithm because of time issues). In contrast, substructure
learning reconstructed the whole network within 255 minutes with a hamming
distance of 1378, 88 false positives, 661 false negatives and 1564 correctly iden-
tified edges. Thereby, the network learning phase of substructure learning took
only 10 minutes, while the skeleton reconstruction phase took the rest.

4 Discussion

Many other approaches for efficient network learning optimize the search proce-
dure to find a good DAG by utilizing the sparseness of the structure. Recently,
an algorithm that deals with domains up to hundreds of thousands of variables
was introduced [12]. However, it restricts on binary variables paired with very
sparsely linked graphs. Another approach that is closely related to MMHC was
introduced in [5]. While, in the worst case, the skeleton reconstruction phase
using MMPC can have an exponential cost, they developed an polynomial algo-
rithm (called PMMS) for learning the skeleton. Empirically results on benchmark
cases have shown that this algorithm significantly improves the runtime with a
comparable quality of the reconstructed skeleton. In future we plan to include
this algorithm in our substructure learning.

Since substructure learning detects the Markov blanket for each variable and
thus renders this variable independent from all other variables given the Markov
blanket, it can also be seen as a feature selection algorithm. In [15] a variation
of MMPC is developed that estimates the Markov blanket using conditional
independency tests. A comparison of different other approaches can be found
in [1]. However, these methods return only the set of variables that belong to
the Markov blanket, without discovering the probability distribution and its
underlying network structure.

Another approach that is somehow related to our work is the framework
of dependency networks [13]. There, the joint distribution is defined by a set
of conditional probabilities. Unlike BNs where the conditional probability of a
variable is defined given its parents, the conditional probability for each variable
is determined by the complete Markov blanket. Subnetworks, resulting from
substructure learning, can be easily transformed into a dependency network:
The conditional probability of variable Xi is given by the joint distribution
of subnetwork Bi, conditioned on the Markov blanket of Xi. For inference in

248 A. Nägele, M. Dejori, and M. Stetter

a dependency network, the original authors have introduced a Gibbs-sampling
method. Since subnetworks can be transformed into dependency networks, this
inference method can also be applied to subnetworks.

5 Conclusion

The problem of learning the best scoring Bayesian network from data is NP-hard.
In this paper, we have introduced the substructure algorithm that efficiently
estimates the features of the underlying network structure by independently
learning small subnetworks. Results from benchmark cases show that structural
features of large networks can be learned with high accuracy, comparable to
the results of MMHC. However, substructure learning scales much better for
large domains, if the network is only sparsely linked. We have also shown that
the framework of dependency networks can be utilized to perform inference on
subnetworks.

References

1. Aliferis, C.F., Tsamardinos, I., Statnikov, A.: HITON: a novel Markov Blanket al-
gorithm for optimal variable selection. In: AMIA: Annual Symposium proceedings,
American Medical Informatics Association (2003)

2. Aliferis, C.F., Tsamardinos, I., Statnikov, A., Brown, L.E.: Causal Explorer: A
Causal Probabilistic Network Learning Toolkit for Biomedical Discovery. In: Vala-
far, F., Valafar, H. (eds.) Proceedings of the International Conference on Mathe-
matics and Engineering Techniques in Medicine and Biological Scienes, METMBS
’03, June 2003, pp. 371–376. CSREA Press (2003)

3. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Moni-
toring System: A Case Study with Two Probabilistic Inference Techniques for Belief
Networks. In: Second European Conference on Artificial Intelligence in Medicine,
London, Great Britain, vol. 38, pp. 247–256. Springer, Berlin (1989)

4. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive Probabilistic Networks
with Hidden Variables. Machine Learning 29(2-3), 213–244 (1997)

5. Brown, L.E., Tsamardinos, I., Aliferis, C.F.: A Comparison of Novel and State-of-
the-Art Polynomial Bayesian Network Learning Algorithms. In: AAAI, pp. 739–745
(2005)

6. Chickering, D.M., Geiger, D., Heckerman, D.: Learning Bayesian Networks is NP-
Hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA, USA
(November 1994)

7. Chickering, D.M.: A Transformational Characterization of Equivalent Bayesian
Network Structures. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pp. 87–98 (1995)

8. Dejori, M.: Inference Modeling of Gene Regulatory Networks. PhD thesis, TU
München, Garching, Germany (2005)

9. Friedman, N., Goldszmidt, M., Wyner, A.J.: On the Application of The Bootstrap
for Computing Confidence Measures on Features of Induced Bayesian Networks. In:
Seventh International Workshop on Artificial Intelligence and Statistics (January
1999)

Bayesian Substructure Learning - Approximate Learning 249

10. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to an-
alyze expression data. In: RECOMB, pp. 127–135 (2000)

11. Friedman, N., Nachman, I., Pe’er, D.: Learning Bayesian Network Structure from
Massive Datasets: The ”Sparse Candidate” Algorithm. In: UAI 99, pp. 206–215
(1999)

12. Goldenberg, A., Moore, A.: Tractable Learning of Large Bayes Net Structures from
Sparse Data. In: ICML ’04: Proceedings of the twenty-first international conference
on Machine Learning, p. 44. ACM Press, New York (2004)

13. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Depen-
dency networks for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research 1, 49–75 (2001)

14. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data. Machine Learning 20(3), 197–243
(1995)

15. Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and Sample Efficient Discovery
of Markov Blankets and Direct Causal Relations. In: KDD ’03: Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 673–678. ACM Press, New York (2003)

16. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

17. Tsamardinos, I., Statnikov, A., Brown, L.E., Aliferis, C.F.: Generating Realistic
Large Bayesian Networks by Tiling. In: 19th International Florida Artificial Intel-
ligence Research Society (FLAIRS) Conference (May 2006)

18. Verma, T.S., Pearl, J.: Equivalence and synthesis of causal models. In: Bonissone,
P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intel-
ligence, pp. 255–268. North Holland, Elsevier Science Publishers B.V, Amsterdam
(1991)

Efficient Continuous-Time Reinforcement

Learning with Adaptive State Graphs

Gerhard Neumann, Michael Pfeiffer, and Wolfgang Maass

Institute for Theoretical Computer Science, Graz University of Technology
A-8010 Graz, Austria

{neumann,pfeiffer,maass}@igi.tugraz.at

Abstract. We present a new reinforcement learning approach for deter-
ministic continuous control problems in environments with unknown, ar-
bitrary reward functions. The difficulty of finding solution trajectories for
such problems can be reduced by incorporating limited prior knowledge
of the approximative local system dynamics. The presented algorithm
builds an adaptive state graph of sample points within the continuous
state space. The nodes of the graph are generated by an efficient princi-
pled exploration scheme that directs the agent towards promising regions,
while maintaining good online performance. Global solution trajectories
are formed as combinations of local controllers that connect nodes of
the graph, thereby naturally allowing continuous actions and continuous
time steps. We demonstrate our approach on various movement planning
tasks in continuous domains.

1 Introduction

Finding near-optimal solutions for continuous control problems is of great im-
portance for many research fields. In the weighted region path-planning problem,
for example, one needs to find the shortest path to a goal state through regions
of varying movement costs. In robotics specific reward functions can be used
to enforce obstacle avoidance or stable and energy-efficient movements. Most
existing approaches to these problems require either complete knowledge of the
underlying system, or are restricted to simple reward functions. In this paper we
address the problem of learning high quality continuous-time policies for tasks
with arbitrary reward functions and environments that are initially unknown,
except for minimal prior knowledge of the local system dynamics.

Reinforcement learning (RL) [1] is an attractive framework for the addressed
problems, because it can learn optimal policies through interaction with an un-
known environment. For continuous tasks, typical approaches that use paramet-
ric value-function approximation suffer from various problems concerning the
learning speed, quality, and robustness of the solutions [2]. Several authors have
therefore advocated non-parametric techniques [3,4], where the value function
for the continuous problem is only computed on a finite set of sample states. In
this case stronger theoretical convergence and performance guarantees apply [3].
Still, few RL algorithms can cope with continuous actions and time steps.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 250–261, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Continuous-Time Reinforcement Learning 251

Sampling-based planning methods [5,6], on the other hand, can efficiently
construct continuous policies as combinations of simple local controllers, which
navigate between sampled points. Local controllers for small regions of the state
space are often easily available, and can be seen as minimal prior information
about the task’s underlying system dynamics. Local controllers do not assume
complete knowledge of the environment (e.g. location of obstacles), and are there-
fore not sufficient to find globally optimal solutions. Instead, a graph is built,
consisting of random sample points that are connected by local controllers. A
global solution path to the goal is constructed by combining the paths of several
local controllers.

Planning techniques are very efficient, but their application is limited to com-
pletely known environments. Guestrin and Ormoneit [6], e.g., have used combi-
nations of local controllers for path planning tasks in stochastic environments.
Their graph is built from uniform samples over the whole state space, rejecting
those that result in collisions. They also assume that a detailed simulation of the
environment is available to obtain the costs and success probabilities of every
transition. In this paper we address problems in which the exact reward function
is unknown, and the agent has no knowledge of the position of obstacles.

We propose an algorithm for efficiently exploring such unknown continuous
environments in order to construct sample-based models. The algorithm builds
an adaptive state graph of sample points that are connected by given local con-
trollers. Feedback from the environment, like reward signals or unexpected tran-
sitions, is incorporated online. Efficiently creating adaptive state graphs can be
seen as an optimal exploration problem [7]. The objective is to quickly find good
paths from the start to the goal region, not necessarily optimizing the online per-
formance. Initial goal-directed exploration creates a sparse set of nodes, which
yields solution trajectories that are later improved by refining the sampling in
critical regions. Planning with adaptive models combines the advantages of rein-
forcement learning and planning. We regard our algorithm more as a RL method,
in the spirit of model-based RL [1,8], since the agent learns both its policy and
its world model from actual experience.

The adaptive state graph transforms the continuous control problem into a
discrete MDP, which can be exactly solved e.g. by dynamic programming [1].
This results in more accurate policies and reduced running time in comparison
to parametric function approximation. The obtained policy still uses continu-
ous actions and continuous time steps, leading to smoother and more natural
trajectories than in discretized state spaces. In this paper we address primarily
deterministic and episodic tasks with known goal regions, but with small modi-
fications these restrictions can be relaxed. Prior knowledge of the goal position,
for example, speeds up the learning process, otherwise the agent will uniformly
explore the state space. We demonstrate in comparisons of our algorithm to stan-
dard RL and planning techniques that fast convergence and accurate solution
trajectories can be achieved at the same time.

In the next section we introduce the basic setup of the problem. We show the
structure of the algorithm in Section 3 and present the details of the adaptive

252 G. Neumann, M. Pfeiffer, and W. Maass

state graph construction in Section 4. In Section 5 we evaluate our algorithm
on a continuous path finding task and a planar 3-link arm reaching task, before
concluding in Section 6.

2 Graph Based Reinforcement Learning

We consider episodic, deterministic control tasks in continuous space and time.
The agent’s goal is to move from an arbitrary starting state to a fixed goal region,
maximizing a reward function, which evaluates the goodness of every action. In
the beginning, the agent only knows the locations of the start state and the goal
region, and can use local controllers to navigate to a desired target state in its
neighborhood.

Let X define the state space of all possible inputs x ∈ X to a controller. We
require X to be a metric space with given metric d : X × X → IR+

0 . Control
outputs u ∈ U change the current state x according to the system dynamics
ẋ = f(x, u). In this paper we assume that only an approximative local model
f̂(x, u) is known, which does not capture possible nonlinearities due to obstacles.
The objective is to find a control policy μ : X → U for the actual system
dynamics f(x, u) that returns for every state x a control output u = μ(x) such
that the agent moves from a starting state xS ∈ X to a goal region XG ⊂ X
with maximum reward.

Our algorithm builds an adaptive state graph G = 〈V , E〉, where the nodes
in V = {x1, . . . , xN} ⊂ X form a finite subset of sample points from X . We
start with V0 =

{
xS
}
, E0 = ∅ and let the graph grow in subsequent exploration

phases. The edges in E ⊆ V × V correspond to connections between points in
V that can be achieved by a given local controller. The local controller a(e)
for an edge e = (xi, xj) tries to steer the system from xi to xj , assuming that
the system dynamics along the path corresponds to f̂(x, u). If an edge can be
traversed with a local controller, it is inserted into E, and r(e), the total reward
obtained on the edge is stored. The combination of multiple edges yields globally
valid trajectories.

For a given graph G the actual task is to find an optimal task policy π from the
starting state xS to the goal region XG. We therefore have to find the optimal
sequence of edges 〈ei〉 in the graph from xS to XG such that the sum of rewards
Rπ :=

∑n
i=0 r(ei) is maximized. The problem is solved by calculating the optimal

value function V π through dynamic programming. This method is guaranteed
to converge to an optimal policy [1], based on the knowledge contained in the
adaptive state graph.

The quality of the resulting policy depends on the available edges and nodes
of the graph, but also on the quality of the local controllers. We assume here
that local controllers can compute near-optimal solutions to connect two states
in the absence of unforeseen events. Feedback controllers can compensate small
stochastic effects, but the presented algorithm in general assumes deterministic
dynamics. We restrict ourselves here to rather simple system dynamics, for which
controllers are easily available, e.g. straight-line connections in Euclidean spaces.

Efficient Continuous-Time Reinforcement Learning 253

While the agent is constructing the graph it is following an exploration policy
πexp, which can be different from the task policy π. πexp does not always take
the best known path to the goal, but also traverses to nodes where the creation
of additional nodes and edges may lead to better solutions for the actual task.
Virtual exploration edges to unvisited regions with heuristic exploration rewards
are therefore inserted into the graph. This creates incentives for the algorithm to
explore new regions. Whenever such virtual edges are chosen by the exploration
policy, the graph is expanded to include new nodes and edges.

3 Structure of the Algorithm

The adaptive state graph G is grown from the start state towards the goal re-
gion. We use the approximative model f̂(x, u) to generate new potential succes-
sor states from existing nodes, and rank them by a heuristic exploration score.
An exploration queue Q stores the most promising candidates for exploration,
and the exploration policy, defined via the value function V exp directs the agent
towards one of these targets. Since our goal is finding a good policy from the
start, not necessarily maximizing the online performance, the selection of the
exploration target involves an exploration-exploitation trade-off inherent to all
RL methods. Our method uses the information in the graph to efficiently con-
centrate on relevant regions of the state space. Whenever a new state is visited,
it is added as a node into the graph. We also add all possible edges to and from
neighboring nodes that can be achieved by local controllers. Initial optimistic
estimates for the reward come from the local controller, but are updated when
actual experience becomes available.

Algorithm 1 shows a pseudo-code implementation of the basic algorithm. De-
tails of the subroutines are explained in Section 4. Roughly the algorithm can
be structured into 3 parts: the first part in lines 5-11 deals with the genera-
tion of new exploration nodes and is described in Sections 4.1-4.3. The second
part in lines 12-15 first updates the value functions, and then executes the local
controller to move to a different node (see Sections 4.4-4.5). In the remaining
part (lines 16-26) we incorporate the feedback received from the environment to
update the graph (see Section 4.6).

4 Building the Adaptive State Graph

A key for efficient exploration of the state space is the generation of sample states.
Previous approaches for sampling-based planning, e.g. [6,5], have used uniform
random sampling of nodes over the whole state space. This requires a large
number of nodes, of which many will lie in irrelevant or even unreachable regions
of the state space. On the other hand, a high density of nodes in critical regions is
needed for fine-tuning of trajectories. The presented algorithm iteratively builds
a graph by adding states that are visited during online exploration. It thereby
fulfills two objectives: Firstly, the exploration is directed to search towards a goal

254 G. Neumann, M. Pfeiffer, and W. Maass

Algorithm 1. Graph-based RL
Input: Start xS, goal region XG, local controller a

1: Initialize V = {xS}, E = ∅, G = 〈V, E〉, Q = ∅
2: repeat (for each episode):
3: Initialize x = xS

4: repeat (for each step of the episode):
5: for i = 1 to Nt do
6: x̃i = sample new node()
7: [σ(x̃i), varσ(x̃i)] = exploration score(x̃i, V)
8: if varσ(x̃i) > θexp

min then
9: insert exploration node(x̃i)

10: end if
11: end for

12: [V, V exp, Q] =replan(G)
13: Select next edge e = (x, x′) stochastically (e.g. ε-greedy) from V exp

14: Execute local controller a(x, x′)
15: Receive actual state x̂′ and reward r of transition

16: if d(x′, x̂′) > δ then {different state than predicted was reached }
17: Delete edge (x, x′) from G and insert edge (x, x̂′)
18: Set x′ = x̂′

19: end if
20: if x′ was previously unvisited then
21: insert new node(x′)
22: update edge(x, x′, r)
23: [V, V exp, Q] =replan(G)
24: else
25: update edge(x, x′, r)
26: end if
27: until x is terminal

Output: Task policy π, derived from G and V

state, and secondly, it optimizes the current policy in regions where the number
of nodes is insufficient.

4.1 Generating Samples: sample new node

Whenever a node x in the graph is visited the algorithm stochastically creates
a number of potential exploration nodes for that state. New exploration nodes
are created uniformly in the neighborhood of the current node. We therefore
first uniformly sample an execution time ti ∈ [tmin, tmax], and a constant control
action ui in U . Then we simulate the local dynamics f̂(x, u) from x with action
ui for time ti, and reach a new node x̃i. For efficiency reasons the number
of generated samples Nt should be reduced over time. Similarly the minimum
and maximum execution time is reduced over time to create finer sampling and
achieve fine-tuning of the policy.

Efficient Continuous-Time Reinforcement Learning 255

4.2 Evaluating Exploration Nodes: exploration score

Efficient exploration preferentially visits regions where an improvement of the
task policy is possible, but avoids creating unnecessary nodes in already densely
sampled regions. We estimate the utility of every potential exploration target x̃
by an exploration score σ(x̃), and direct the agent towards the most promising
such nodes. Informed search methods like A* [9] estimate the utility of x̃ as the
expected return of a path from the start xS to the goal region XG via x̃. This
can be decomposed into the path costs c(xS , x̃) from xS to x̃ plus the estimated
value V̂ (x̃), i.e. the estimated rewards-to-goal. Therefore σ(x̃) = c(xS , x̃)+ V̂ (x̃).

x̃1

x̃2

Exploration Node
Start
Goal
Graph Node
Graph Edge
Direct Path to Goal
Path to x̃i

−1 −0.5 0 0.5 1

−1.6

−1.4

−1.2

−1

−0.8

P
re

di
ct

ed
 V

al
ue

x

Mean Prediction

Training Points

Variance

Optimistic Value

(a) (b)

Fig. 1. (a) Illustration of the exploration process. Exploration node x̃1 is preferred
over x̃2, because the reward to reach x̃2 is strongly negative. (b) Illustration of value
prediction with Gaussian processes on an artificial 1-D dataset. The prediction ap-
proaches the optimistic value and has larger variance for points that are farther away
from training points.

For calculating the path costs c(xS , x̃) we use only visited edges of the state
graph. Otherwise the optimistic initialization of edge rewards will almost always
lead to an underestimation of the path costs, and therefore all exploration nodes
will appear similarly attractive. V̂ (x̃) must be an optimistic estimate of the value,
e.g. the estimated costs of the direct path to the goal in the absence of obstacles.
If the goal is not known, a constant value must be used. This prior estimate for
the value of a new node x̃ can be improved by considering also the task-policy
values V (x′) of nearby existing nodes x′. Gaussian process regression [10] is a
suitable method to update predictions of a prior function by taking information
from a finite set of training examples into account, thereby creating a more-
exact posterior. The contributions of individual training examples are weighted
by a kernel k(x, x′), which measures the similarity between a training point x′

and test point x. Typical kernels monotonically decrease with growing distance
to a training point. Therefore the prediction for a new node that is far away
from existing points approaches the optimistic prior estimation, whereas a point
close to existing nodes will receive a prediction similar to the weighted mean of
values from neighboring nodes. The range in which training points contribute to
predictions can be controlled by a bandwith parameter β of the kernel, which is

256 G. Neumann, M. Pfeiffer, and W. Maass

task dependent and needs to be chosen in advance. In our experiments we use a
standard squared exponential kernel k(x, x′) = exp

(
− d(x,x′)2

2β2

)
.

Since the prior estimate is an optimistic estimation of the true value, the
predictions for an exploration node will usually increase the further the new
node is away from existing nodes (see Figure 1(b)). Therefore this approach
enforces exploration into unvisited areas. Additionally to the value estimate V̂ (x̃)
the Gaussian process returns the variance varσ(x̃) of the prediction. Since the
variance increases with distance to training points, we can use varσ(x̃) as a
measure for the sampling density around x̃. To control the number of nodes
we reject exploration nodes with variance lower than θexp

min. This threshold may
be lowered over time, to ensure refinement of the adaptive state graph in later
episodes.

4.3 Integrating New Exploration Nodes: insert exploration node

Newly generated exploration nodes x̃i are placed on the exploration queue Q,
which is a priority queue ranked by the exploration scores σ(x̃i). The highest
scored exploration targets in Q are the most promising candidates for explo-
ration. If σmax is the best score of a node on the queue, we consider all explo-
ration nodes with a score not worse than σmax − θσ, with θσ ≥ 0 as targets for
the exploration policy πexp. Virtual and terminal exploration edges are added
to the graph for each such node x̃, originating from the node from which x̃ was
created. The rewards of these edges are the estimated rewards-to-goal, given by
V̂ . The exploration policy may then either choose an exploration edge, thereby
adding a new node to the adaptive state graph, or move to an already visited
node. The latter indicates that exploring from other nodes seems more promising
than continuing the exploration at the current node.

The threshold parameter θσ has an interesting interpretation in the context of
the exploration-exploitation dilemma. If θσ = 0 then the agent will always choose
the most promising exploration target, similar to A* search [9] on a partially
unknown graph. This will however yield a bad online performance, because the
agent may have to travel all the way through the state space if it discovers that
another node promises better solutions. θσ =∞ will lead to greedy search, and
ultimately to inefficient uniform sampling of the whole state space. By adjusting
θσ > 0 one can balance the trade-off between online performance and finding
near-optimal start-to-goal paths as soon as possible.

4.4 Re-planning Within the Graph: replan

The adaptive state graph yields a complete model of the reduced MDP, which
can be solved by dynamic programming methods. In practice we use efficient
re-planning techniques like Prioritized Sweeping [8] to minimize the number of
updates in every iteration. In most steps this requires only a very small number
of iterations on a small set of nodes. Only when important connections are found,
and the value of many states changes, we need to compute more iterations.

Efficient Continuous-Time Reinforcement Learning 257

Re-planning is run twice: once on the graph that includes only exploration
targets in Q with score larger than σmax− θσ as terminal states. This yields the
value function V exp for the exploration policy πexp. We also compute the value
function V for the task policy π, using all available targets from Q as terminal
nodes. This policy attempts to reach the goal optimally, without performing
exploratory actions. It is therefore used in the computation of exploration scores,
because there we are only interested in the optimistic rewards-to-goal.

4.5 Action Selection and Incorporation of Actual Experience

At the current node x the agent selects an outgoing edge e = (x, x′) through
its exploration policy πexp, which is derived stochastically (e.g. ε-greedy) from
V exp. The local controller a(x, x′) then moves towards x′. If the agent reaches
a small neighborhood around x′ the controller is deactivated, and the reward
of the traversed edge in G is updated. If the local controller does not reach the
vicinity of x′ within a given maximum time, the controller stops at a state x̂′. We
then delete the edge e = (x, x′) from the graph G, since it cannot be completed
by a local controller, and insert an edge from x to x̂′ instead.

4.6 Inserting New Nodes: insert new node

When a node x′ is visited for the first time, it is inserted as a new node into the
graph. Local controllers to and from all nodes in a certain neighborhood around
x′ are simulated to create incoming and outgoing edges. If a connection seems
possible we insert the edge into G and store an optimistic estimate of the reward,
e.g. the negative estimated transition time of the local controller in absence of
obstacles. Inserting a new node x′ also invalidates existing exploration nodes
in the neighborhood, if their exploration score variance would fall below the
threshold θexp

min (see Section 4.2).
If a newly inserted edge e = (x′, x′′) with estimated reward r̂(e) reduces the

path costs from xS to x′′, the edge becomes an attractive target for exploration.
We then insert e as an exploration edge into the queue Q. The exploration score
is σ(e) = c(xS , x′) + r̂(e) + V (x′′), which is the estimated return of a path from
xS to XG that uses e. For the exploration policy the agent may then equally
select exploration nodes or edges as its best exploration targets.

4.7 Practical Implementation Issues

Efficient data structures like kd-trees reduce the search time for neighbors during
the training phase. The CPU time is still higher than for model-based RL meth-
ods with fixed discretizations, e.g. Prioritized Sweeping [8]. The construction of
an adaptive state graph is an overhead, but on the other hand, it permits better
solutions and faster learning.

258 G. Neumann, M. Pfeiffer, and W. Maass

5 Experiments

In this section we show that our algorithm can solve several continuous control
problems that are challenging for standard reinforcement learning techniques. We
show that the algorithm requires less actual experience than existing methods
and finds more accurate trajectories.

5.1 Static Puddle World

The puddle world task is a well-known benchmark for reinforcement learning
algorithms in continuous domains. The objective is to navigate from a given
starting state to a goal state in a 2-dimensional environment which contains
puddles, representing regions of negative reward. Every transition inflicts a re-
ward equal to the negative required time, plus additional penalties for entering a
puddle area. The puddles are oval shapes, and the negative reward for entering
a puddle is proportional to the distance inside the puddle. The 2-dimensional
control action u = (vx, vy) corresponds to setting velocities in x and y directions,
leading to the simple linear system dynamics (ẋ, ẏ) = (vx, vy). We can safely as-
sume to know this dynamics, but planning a path to the goal state and avoiding
the unknown puddles remains a difficult task.

Figure 2 shows various stages of the exploration process in a maze-like puddle
worldwith multiple puddles. As optimistic value estimate V̂ (x̃) we use the negative
time needed for the direct path to the goal (ignoring any puddles). In Figure 2(a)
it can be observed that the agent directs its initial exploration towards the goal,
while avoiding paths through regions of negative reward. Less promising regions
like the upper left part are avoided. When the agent has reached the goal the first
time (Figure 2(b)) the agent knows a coarse path to the goal. With continuing
learning time, the agent refines the graph and adds more nodes in relevant regions,
which is illustrated in Figure 2(c). The path is almost optimal and avoids all pud-
dles on the way to the goal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 2. Static Puddle World: (a) and (b) shows the graph at the beginning of learning
and when the agent has found the goal for the first time. (c) results from further
optimization of the graph. The red line indicates the best known policy to the target.

Efficient Continuous-Time Reinforcement Learning 259

0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL

PS 20x20

PS 50x50

Uniform 500

Uniform 1000

0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL
Stochastic 10%
Unknown Target

(a) (b)

Fig. 3. Learning performance on static puddle world from Figure 2. (a) Comparison
of RL with adaptive state graphs to prioritized sweeping (PS), and greedy search on
uniformly sampled nodes (Uniform) with different discretization densities. (b) Influence
of stochasticity (10% movement noise) and unknown target states on performance of
graph-based RL. (Average over 10 trials).

Standard TD-learning [1] with CMAC or RBF function approximation needs
several thousands of episodes to converge on this task, because a rather fine
discretization is required. It is therefore not considered for comparison. Better
results were achieved by Prioritized Sweeping [8], a model-based RL algorithm
which discretizes the environment and learns the transition and reward model
from experience. In Figure 3 we compare the performance of RL with adaptive
state graphs to prioritized sweeping with different discretization densities. We
also compare the performance of a greedy search method on a graph with 500
and 1000 uniformly sampled nodes, which updates its reward estimates after
every step. We evaluate the performance of the agent by measuring the sum of
rewards obtained by its greedy policy at different training times. The training
time is the total amount of time spent by the agent for actually moving within the
state space during the training process. Figure 3(a) shows that the graph-based
RL algorithm achieves reasonable performance faster than prioritized sweeping
(even with coarse discretization), and the best found policy slightly outperforms
all other methods. Our refined graph in the end contains about 730 nodes, which
is approximately a fourth of the number of states used by prioritized sweeping on
the fine grid. Greedy search on estimated edges initially finds the goal faster, but
it either converges to a suboptimal policy, which is due to the uniform sampling,
or needs longer to optimize its policy.

In Figure 3(b) we added small Gaussian movement noise (variance is 10%
of movement velocity), and used local feedback-controllers. Our algorithm still
converges quickly, but due to the stochasticity it cannot reach the same per-
formance as in the deterministic case. We also investigated the (deterministic)
problem in which the goal state is unknown. Since the agent has to explore uni-
formly in the beginning, it needs longer to converge, but ultimately reaches the
same performance level.

260 G. Neumann, M. Pfeiffer, and W. Maass

COM
X

C
O

M
Y

−0.4 −0.2 0 0.2 0.4
−0.2

0

0.2

Fig. 4. Arm reaching task with stability constraints. Left: Solution trajectory found by
our algorithm. The agent must reach the goal region (red) from the starting position
(green), avoiding the obstacles. Right: Trajectory of the CoM of the robot (red) inside
the neutral zone (green).

0 1 2 3 4

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL
PS 20x40x40
PS 10x20x20

Fig. 5. Learning performance on the 3-link arm reaching task for RL with adaptive
state graphs and prioritized sweeping (PS) with different discretization densities. (Av-
erage over 10 trials).

5.2 3-Link Arm Reaching Task

The joints of a simulated planar 3-link robot arm are steered under static sta-
bility constraints in an environment with several obstacles (see Figure 4). The
objective is to reach a goal area with the tip. The robot consist of a body (point
mass with 1 kg), around which the arm - modeled as upper arm (length 0.5m /
weight 0.2 kg), fore arm (0.5m / 0.1 kg) and hand (0.2m / 0.05kg) - can rotate.
The center of mass (CoM) of the robot needs to be kept inside a finite support
polygon. If the CoM leaves a neutral zone of guaranteed stability ([−0.2, 0.2] in
x and [−0.1, 0.1] in y), the agent receives negative reward that grows quadrati-
cally as the CoM approaches the boundary of the support polygon. Under these
constraints the trivial solution of rotating the arm around the top left obstacle
achieves lower reward than the trajectory that maneuvers the arm through the
narrow passage between the obstacles.

The 3-dimensional state space consists of the three joint angles, and the con-
trol actions correspond to setting the angular velocities. The approximative
model f̂ is a simple linear model, but the true system dynamics f contains
nonlinearities due to obstacles, which are not captured by f̂ . The optimistic
value estimate V̂ (x) is the negative time needed by a local controller to reach
a target configuration, calculated by simple inverse kinematics. Figure 5 shows

Efficient Continuous-Time Reinforcement Learning 261

that graph-based RL converges much faster to more accurate trajectories than
prioritized sweeping with different levels of discretization.

6 Conclusion and Future Work

In this paper we introduced a new efficient combination of reinforcement learning
and sampling-based planning for continuous control problems in unknown envi-
ronments. We use minimal prior knowledge in the form of approximative models
and local controllers to increase the learning speed. Our algorithm builds an
adaptive state graph through goal-directed exploration. We demonstrated on
various movement planning tasks with difficult reward functions that RL with
adaptive state graphs requires less actual experience than existing methods to
obtain high quality solutions. The approach is particularly promising for com-
plicated tasks that can be projected to low dimensional representations, such as
balancing humanoid robots using motion primitives [11]. In the future we will
extend the approach to non-deterministic and non-episodic, discounted tasks.
Extending the approach to non-linear dynamics or even learning the local con-
trollers for more complex dynamical systems is also part of future work.

Acknowledgments. This work was supported in part by the Austrian Science
Fund FWF under project number P17229 and PASCAL Network of Excellence,
IST-2002-506778. This publication only reflects the authors’ views.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

2. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely ap-
proximating the value function. In: NIPS 7, pp. 369–376 (1995)

3. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learn-
ing 49(2-3), 161–178 (2002)

4. Jong, N., Stone, P.: Kernel-based models for reinforcement learning. In: ICML
Workshop on Kernel Machines and Reinforcement Learning (2006)

5. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE T-RA 12(4) (1996)

6. Guestrin, C.E., Ormoneit, D.: Robust combination of local controllers. In: Proc.
UAI, pp. 178–185 (2001)

7. Simsek, Ö., Barto, A.: An intrinsic reward mechanism for efficient exploration. In:
ICML, pp. 833–840 (2006)

8. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning 13, 103–130 (1993)

9. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. SSC 4, 100–107 (1968)

10. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press,
Cambridge (2006)

11. Hauser, H., Ijspeert, A., Maass, W.: Kinematic motion primitives to facilitate con-
trol in humanoid robots (2007) (submitted for publication)

Source Separation with Gaussian Process Models

Sunho Park and Seungjin Choi

Department of Computer Science
Pohang University of Science and Technology

San 31 Hyoja-dong, Nam-gu, Pohang 790-784, Korea
{titan,seungjin}@postech.ac.kr

Abstract. In this paper we address a method of source separation in
the case where sources have certain temporal structures. The key con-
tribution in this paper is to incorporate Gaussian process (GP) model
into source separation, representing the latent function which character-
izes the temporal structure of a source by a random process with Gaus-
sian prior. Marginalizing out the latent function leads to the Gaussian
marginal likelihood of source that is plugged in the mutual information-
based loss function for source separation. In addition, we also consider the
leave-one-out predictive distribution of source, instead of the marginal
likelihood, in the same framework. Gradient-based optimization is ap-
plied to estimate the demixing matrix through the mutual information
minimization, where the marginal distribution of source is replaced by
the marginal likelihood of the source or its leave-one-out predictive dis-
tribution. Numerical experiments confirm the useful behavior of our
method, compared to existing source separation methods.

1 Introduction

Source separation assumes that multivariate observation data xt =[x1,t · · · xn,t]
	

(xi,t represents the ith element of xt ∈ Rn) are generated by

xt = Ast, (1)

where A ∈ Rn×n is the mixing matrix and st = [s1,t, . . . , sn,t]
	 is the source

vector whose elements are assumed to statistically independent. Source separa-
tion is an unsupervised learning task, the goal of which is to restore unknown
independent sources st up to scaling and permutation ambiguities, without the
knowledge of the invertible mixing matrix A, given a set of data points, {xt}Nt=1.
In other words, source separation aims to estimate a demixing matrix W such
that WA = PΛ is a transparent transform, where P is the permutation matrix
and Λ is an arbitrary invertible diagonal matrix.

Various methods for source separation have been developed (for example,
see [1] and references therein). Two exemplary independent component analysis
(ICA) methods might be Infomax [2] and FastICA [3] where only spatial inde-
pendence is exploited, assuming that sources follow non-Gaussian distributions.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 262–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Source Separation with Gaussian Process Models 263

Infomax is indeed maximum likelihood source separation where sources are la-
tent variables that are treated as nuisance parameters [4]. In cases where individ-
ual source is temporally correlated, it is well known that second-order statistics
(e.g., time-delayed correlations) is sufficient to achieve separation. SOBI [5] is a
widely-used algebraic method where a set of several time-delayed correlation ma-
trices of whitened data is jointly diagonalized by a unitary transform in order to
estimate a demixing matrix. Alternatively, a linear latent function of parametric
form (e.g., auto-regressive (AR) model) was often used as a source generative
model in order to characterize the temporal structure of sources [6,7,8]. In such
cases, parameters involving AR source generative models should be estimated in
learning a mixing matrix or a demixing matrix.

Gaussian process (GP) model is a nonparametric method, which recently at-
tracts extensive interests in machine learning. For a recent tutorial, see [9,10]
with references therein. In this paper we use a GP model to characterize the
temporal structure of a source, representing the latent function (which relates
the current sample of source to past samples) by a random process with Gaus-
sian prior. The marginal likelihood of source is Gaussian, which is computed
by integrating out the latent function. We incorporate the GP source model
into source separation based on the mutual information minimization, model-
ing the probability distribution of source by the marginal likelihood of source
in the mutual information-based loss function. Alternatively, we also consider
the leave-one-out (LOO) predictive distribution, instead of the marginal likeli-
hood of source, in the same framework. We use a gradient-based optimization
to estimate the demixing matrix, through the mutual information minimization,
where the marginal likelihood of source or LOO predictive distribution of source
is used to model the marginal entropy of source.

2 GP Models for Sources

The latent function fi(·) relates the current sample of source si,t to past p sam-
ples, leading to

si,t = fi

(
s	

i,t−1:t−p

)
+ εi,t, (2)

where si,t−1:t−p = [si,t−1, si,t−2, . . . , si,t−p] is a collection of past p samples and
εi,t is the white Gaussian noise with zero mean and unit variance, i.e., εi,t ∼
G(εi,t; 0, 1). In the case of linear AR model, the latent function is parameterized
by

fi

(
s	

i,t−1:t−p

)
=

p∑

τ=1

hi,τsi,t−τ , (3)

where hi,τ are AR coefficients.
GP model represents the latent function fi(·) by a random process with Gaus-

sian prior, unlike AR model employs the parametric form (3). We place a GP
prior over the function fi(·), i.e.,

fi ∼ GP
(
0, k
(
s	

i,t:t−p+1, s
	
i,τ :τ−p+1

))
, (4)

264 S. Park and S. Choi

where k
(
s	

i,t:t−p+1, s
	
i,τ :τ−p+1

)
is a covariance function. We use the squared ex-

ponential covariance function, i.e.,

k
(
s	

i,t:t−p+1, s
	
i,τ :τ−p+1

)
= exp

{
−λi‖s	i,t:t−p+1 − s	

i,τ :τ−p+1‖2
}
, (5)

where λi is a length-scale hyperparameter.
We refer to the source generative model (2) with GP prior (4) as GP source

model. The GP source model follows the standard GP regression in which s	
i,1:N =

[si,1, . . . , si,N]	 is a collection of responses and Si =
{
s	

i,t−1:t−p

}N

t=1
is a set of

regressors.
We define the vector f i ∈ RN as

f i = [fi,0, fi,1, . . . , fi,N−1]
	

,

where fi,t = fi

(
s	

i,t:t−p+1

)
. Then the likelihood of source i is given by

p
(
s	

i,1:N |f i,Si

)
= G(s	

i,1:N ; f i, IN), (6)

where IN is the N ×N identity matrix. Then the marginal likelihood of source
i is obtained by integrating the likelihood times the prior

pi

(
s	

i,1:N |Si

)
=
∫

p
(
s	

i,1:N |f i,Si

)
p (f i|Si) df i, (7)

where the prior is given by (4),

p (f i|Si) = G(f i; 0,Ki),

where Ki is a N ×N matrix whose (u, v)-element is given by

[Ki]u,v = k(si,u−1:u−p, si,v−1:v−p).

The log of the marginal likelihood, denoted by log pML
i , is of the form

log pML
i

(
s	

i,1:N

)
= log p

(
s	

i,1:N |Si

)

= −1
2
si,1:NΣ−1

i s	
i,1:N −

1
2

log |Σi| −
N

2
log 2π, (8)

where Σi = Ki + IN .
We also consider the LOO predictive distribution which is Gaussian:

pLOO
i

(
s	

i,1:N

)
=

N∏

t=1

p
(
si,t|Si, s

−t
i,1:N

)
=

N∏

t=1

G(si,t;μi,t, σ
2
i,t), (9)

where s−t
i,1:N = [si,1, . . . , si,t−1, si,t+1, . . . , si,N] denotes all samples of source i

but si,t. The LOO predictive mean μi,t and variance σ2
i,t are given by

μi,t = si,t −
[
Σ−1

i s	
i,1:N

]
t
/
[
Σ−1

i

]
t,t

,

σ2
i,t = 1/

[
Σ−1

i

]
t,t

.

Source Separation with Gaussian Process Models 265

Thus the log of LOO predictive distribution is of the form

log pLOO
i (s	

i,1:N) = −1
2

N∑

t=1

⎧
⎪⎨

⎪⎩
− log

[
Σ−1

i

]
t,t

+

([
Σ−1

i s	
i,1:N

]
t

)2

[
Σ−1

i

]
t,t

+ log 2π

⎫
⎪⎬

⎪⎭
.(10)

The log LOO predictive distribution (10) is often referred to as log pseudo-
likelihood that is an approximation of the log marginal likelihood (8)[11]. The
marginal likelihood or LOO predictive distribution is used to learn hyperparam-
eters in GP regression. We use the marginal likelihood or the LOO predictive
distribution as an estimate of the source distribution which is required in the
source separation based on the mutual information minimization. It is known
that the LOO predictive distribution is more robust to model mis-specification,
compared to [12,10]. The model mis-specification occurs when the model as-
sumption is not suitable to describe the observation data. In the case of source
separation using GP models, the model mis-specification might arise when inap-
propriate model order p is chosen or the selected kernel function is not suitable.
The marginal likelihood represents the probability distribution of source given a
certain model assumption, so it might be affected by the model mis-specification.
Fortunately the aim in this paper is to estimate a demixing matrix for source
separation rather than to estimate hyperparameters for source model fitting.
Thus, the mis-specification problem is not critical in source separation. This
issue is investigated through experiments (see Sec. 5.3).

3 Source Separation with GP Models

In this section we present the main contribution of this paper, developing meth-
ods which incorporate the GP source model (illustrated in Sec 2) into source
separation based on the mutual information minimization.

Let us consider the demixing model:

yt = Wxt, (11)

where W ∈ Rn×n is the demixing matrix. The goal of source separation is to
learn the demixing matrix W such that yt = P Λst, i.e., WA is a transparent
transform.

Sources are assumed to be mutually independent, which satisfies

p
(
s	
1,1:N , ..., s	

n,1:N

)
=

n∏

i=1

pi

(
s	

i,1:N

)
. (12)

The factorial model (12) leads to the mutual information-based risk R(W) that
is of the form

R(W) = E{L(W)} =
1
N

E

⎧
⎨

⎩
log

p
(
y	

1,1:N , ...,y	
n,1:N

)

∏n
i=1 pi

(
y	

i,1:N

)

⎫
⎬

⎭
, (13)

266 S. Park and S. Choi

where L(W) is the loss function. The risk (13) is nothing but the normalized
Kullback-Leibler divergence between the joint distribution p

(
y	

1,1:N , ...,y	
n,1:N

)

and the product of marginal distributions
∏n

i=1 pi

(
y	

i,1:N

)
. Since yt is a linear

transform of xt, joint distributions satisfies

p
(
y	

1,1:N , ...,y	
n,1:N

)
=

p
(
x	

1,1:N , ...,x	
n,1:N

)

|detW |N . (14)

Taking this into account, the loss function L(W) is given by

L(W) = − log |detW | − 1
N

n∑

i=1

log pi

(
y	

i,1:N

)
, (15)

where 1
N log p

(
x	

1,1:N , ...,x	
n,1:N

)
is omitted since it does not depend on W .

Now we use the log of the marginal likelihood (8) or the log of LOO predictive
distribution (10) as an substitute to log pi

(
y	

i,1:N

)
in the loss function (15). In

the case of the marginal likelihood, the loss function becomes

LML(W) = − log |detW | − 1
N

n∑

i=1

log pML
i

(
y	

i,1:N

)

= − log |detW |+ 1
2N

n∑

i=1

{
yi,1:NΣ−1

i y	
i,1:N + log |Σi|

}
, (16)

where 1
2N log 2π (which does not depend on W) is left out. In (16), Σi = Ki+IN

is computed using yi,t which is the estimate of si,t, i.e.,

[Ki]u,v = k
(
y	

i,u−1:u−p,y
	
i,v−1:v−p

)
.

We use a gradient-based optimization to find a solution which minimizes (16).
In order to compute the gradient, we first define

αi = Σ−1
i y	

i,1:N , (17)

Zkl
i = Σ−1

i

∂Ki

∂wk,l
, (18)

where the derivative of the covariance matrix Ki w.r.t wk,l (which is the (k, l)-
element of the demixing matrix W) is computed as

[
∂Ki

∂wk,l

]

u,v

= −2λik
(
y	

i,u−1:u−p,y
	
i,v−1:v−p

) [
ΔΔ	w	

i,:

]

l
δi,k,

where δi,k is the Kronecker delta, wi,: represents the ith row vector of W , and

Δ = [(xu−1 − xv−1), . . . , (xu−p − xv−p)] .

Source Separation with Gaussian Process Models 267

With this definition, the gradient of (16) w.r.t wk,l is determined by

∂LML

∂wk,l
= −tr

{
W−1 ∂W

∂wk,l

}
+

1
2N

n∑

i=1

tr
{

yi,1:N

∂Σ−1
i

∂wk,l
y	

i,1:N

+ 2
∂yi,1:N

∂wk,l
Σ−1

i y	
i,1:N + Σ−1

i

∂Ki

∂wk,l

}

= −tr
{

W−1 ∂W

∂wk,l

}

− 1
2N

n∑

i=1

δi,ktr
{

αiα
	
i

∂Ki

∂wk,l
− 2xl,1:Nαi −Zkl

i

}
. (19)

The hyperparameters λi can also be learned through minimizing the loss function
and the gradient w.r.t them can be easily computed. However, here we fix them
as constant values and learn only demixing matrix. Empirical results show that
the performance does not much depend on the values of hyperparameters (see
Fig. 1 (a)).

In a similar manner, we also consider the log of LOO predictive distribution
(10), leading to the following loss function

LLOO(W)

= − log |detW | − 1
N

n∑

i=1

log pLOO
i

(
y	

i,1:N

)

= − log |detW |+ 1
2N

n∑

i=1

N∑

t=1

⎧
⎪⎨

⎪⎩
− log

[
Σ−1

i

]
t,t

+

([
Σ−1

i y	
i,1:N

]
t

)2

[
Σ−1

i

]
t,t

⎫
⎪⎬

⎪⎭
. (20)

The gradient of (20) w.r.t wk,l is calculated by

∂LLOO

∂wk,l
= −tr

{
W−1 ∂W

∂wk,l

}

+
1

2N

n∑

i=1

N∑

t=1

δi,k[
Σ−1

i

]
t,t

{

[αi]t
(
2
[
Σ−1

i x	
l,1:N −Zkl

i αi

]

t

)

+

(

1 +
[αi]

2
t[

Σ−1
i

]
t,t

)
[
Zkl

i Σ−1
i

]

t,t

}

. (21)

The derivative (21) is easily derived based on the derivative of the log of LOO pre-
dictive distribution for single regression problem (see Chap. 5 in [10]). Through-
out this paper, we refer to source separation methods based on the minimization
of (16) and (20) as GPSS-ML and GPSS-LOO, respectively.

4 Implementation Issues

Our loss function (16) or (20) involves the matrix inversion (Σ−1
i), which requires

high computational complexity and is often numerically unstable. As in kernel

268 S. Park and S. Choi

methods, we use Cholesky decomposition instead of the direct inversion of Σi.
For example, in (17), αi is calculated by solving the following linear systems

(
LiL

	
i

)
αi = y	

i,1:N ,

where Li be the lower-triangular matrix in the Cholesky decomposition of Σi.
Furthermore, the log of the determinant of Σi is easily calculated through

log |detΣi| = 2
N∑

t=1

log [Li]t,t .

A widely-used method to approximate the kernel matrixKi is the Nyström
method where we choose M < N landmark points and use only the information
in M×M submatrix KM,M and N×M submatrix KN,M to extrapolate elements
in KN−M,N−M . The Nyström approximation of Ki [13], denoted by K̃i, takes
the form

K̃i = KN,M
i (KM,M

i)−1KM,N
i . (22)

In addition, other approximation methods include subset of regressor (SoR)
[14], projected process (PP) [15,10], and sparse Gaussian process (SGP) using
pseudo-input [16]. A unifying view of such approximation methods is given in
[17]. In this paper we only consider the marginal likelihood of y	

i,1:N (the LOO
predictive distribution is not considered in approximation methods). In our case,
all those approximation methods (SoR, PP, SGP, Nyström) lead to the same
approximation of the marginal likelihood that is of the form

log p̃(yi,1:N |Yi) = −1
2

log |det(K̃i + Λi)|

−1
2
yi,1:N (K̃i + Λi)−1y	

i,1:N −
N

2
log 2π, (23)

where K̃i is the approximation of Ki, given in (22). Depending on approximation
methods, only Λi is different. In the case of SoR, PP and Nyström, we use
Λi = IN . For SGP, Λi = diag(Ki − K̃i) + IN for SGP. Plugging (23) into the
loss function (16) leads to two different approximations: (1) GPSS-ML-Nyström
(where SoR, PP, or Nyström is used for approximation); (2) GPSS-ML-SGP.

With a low-rank approximation where Ki ≈ K̃i = QQ	 (for instance, in
Nyström method, Q = KN,M

i (KM,M
i)−

1
2 where Q ∈ RN×M and M ' N), the

following relations are useful in saving computational load:

(K̃i + IN)−1 = IN −Q
(
IM + Q	Q

)−1

Q	, (24)

det
(
K̃i + IN

)
= det

(
IM + Q	Q

)
, (25)

where calculations are done with lower dimension M .

Source Separation with Gaussian Process Models 269

5 Numerical Experiments

We present three empirical results with comparison to FastICA, Infomax, and
SOBI, in cases where: (1) sources are nonlinear time series; (2) sources have simi-
lar spectra; (3) sources do not match the model assumptions. In all experiments,
we evaluate the performance of algorithms considered here using the following
performance index (PI)

PI =
1
n

n∑

i=1

{(
n∑

k=1

|gi,k|2
maxj |gi,j |2

− 1

)

+

(
n∑

k=1

|gk,i|2
maxj |gj,i|2

− 1

)}

, (26)

where gi,j is the (i, j)-element of the global transformation G = WA. When
perfect separation is achieved, PI=0. In practice, PI < 0.005 gives good per-
formance. We conduct 20 independent runs for each algorithm with different
initial conditions and report the statistical quantity of PI, i.e., box-plot of PI
of each method and the average of value of PI. For SOBI, we use 10 different
time-delayed correlation matrices to estimate the demixing matrix.

5.1 Experiment 1

We use two nonlinear time series as sources to generate xt. One source is Santa Fe
competition laser and the other source is Mackey-Glass MG30. In this case, our
method and SOBI successfully achieve separation, while FastICA and Infomax
have difficulty in separating out those two nonlinear time series (see Fig. 1).

fastICA Infomax SOBI (1) (2) (3) (4)

0

0.2

0.4

0.6

0.8

1

1.2

P
Is

Method

Ex. 1 : boxplot for all methods

0.7220

0.1963

9.500e−4

(1) (2) (3) (4)

0.5

1

1.5

2

2.5

x 10
−4

P
Is

Method

Ex. 1 : boxplot for our methods

5.6465e−5

1.136e−4

2.422e−4

1.669e−4

(a) (b)

Fig. 1. Box plots of PIs (over 20 independent runs) are shown in (a), for methods
which include FastICA, Infomax, SOBI, GPSS-ML (1), GPSS-LOO (2), GPSS-ML-
Nyström (3), and GPSS-ML-SPR (4). PIs of only our methods, (1)-(4), are shown in
(b), over a smaller dynamic range. In the case of GPSS-ML-Nyström and GPSS-ML-
SPR, M = N/10.

270 S. Park and S. Choi

2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

x 10
−4

kernel width λ0.5

P
I

The mean
value of PIs

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

model order p

 P
I

The mean
value of PIs

Fig. 2. The performance (in terms of PI) behavior of GPSS-ML in Experiment 1 is
shown, with respect to: (a) square root of the length scale hyperparameter λ (with
p = 5 fixed); (b) model order p (with λ = 50 fixed)

In principle, length-scale hyperparameters {λi} can also be learned. How-
ever, pre-specified values of hyperparameters provide satisfactory results as well.
Exemplary empirical result is shown in Fig. 2 (a) where PI of our method is
evaluated with respect to λ = λ1 = · · · = λn varying over[4, 100]. The model
order p determines how many past samples of source are used to calculate the
covariance function. Fig. 2 (b) shows the PI of our method with respect to dif-
ferent values of p, where p ≥ 5 gives quite a good performance. In the rest of
experiments, we use λ = 50 and p = 5.

5.2 Experiment 2

We use two independent colored Gaussian sources and one music signal whose
distribution is close to Gaussian to generate the observation data. Two colored
Gaussian sources are generated by AR models, the coefficients of which, hi �
{hi,τ}, are given by

h1 = {1.3117,−0.8664, 0.5166,−0.2534},
h2 = {0.7838, 0.3988,−0.4334,−0.1792}.

Certainly FastICA and Infomax do not work in this case, since sources are Gaus-
sian. With randomly generated Gaussian innovation sequences, we chose the case
where power spectra of two colored Gaussian sources are similar each other (see
Fig. 3). In such a case, the performance of SOBI degrades, while our method
still retains satisfactory performance (see Fig. 4-(a)). In this experiment we set
M = N/6.

Source Separation with Gaussian Process Models 271

0 0.5 1 1.5 2 2.5 3 3.5 4
−90

−80

−70

−60

−50

−40

−30

−20

Frequency (kHz)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Power Spectral Density

0 0.5 1 1.5 2 2.5 3 3.5 4
−80

−70

−60

−50

−40

−30

−20

Frequency (kHz)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Power Spectral Density

Fig. 3. Power spectrum of two synthetic colore Gaussian sources used in Experiment 2

fastICA Infomax SOBI (1) (2) (3) (4)

0

0.2

0.4

0.6

0.8

1

1.2

P
Is

Method

Ex. 2 : boxplot for all methods

0.7593

0.5550

0.4269

(1) (2) (3) (4)
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
−3

P
Is

Method

Ex. 2 : boxplot for our metods

0.0025

0.0034

0.0027

0.0032

(a) (b)

Fig. 4. The box-plots of PIs are shown in the case of Experiment 2, where (1) GPSS-
ML, (2) GPSS-LOO, (3) GPSS-ML-Nyström, (4) GPSS-ML-SPR

5.3 Experiment 3

Fig. 2 (b) shows that the performance of our methods (GPSS-ML and GPSS-
LOO) does not vary much in the case for overestimating p. In Experiment 3,
we consider the case where we underestimate the model order p which deter-
mines how many past samples are taken into account in calculating the covari-
ance matrix. We generate two synthetic colored Gaussian sources using linear
AR models of order 20 (see Fig. 5 (a)). The case for underestimating p can be
viewed as a model mis-specification. GPSS-ML and GPSS-LOO are compared
in this case where p = 5 is used in computing Ki. The marginal likelihood
represents the probability of a source given the assumption of the model. In con-
trast, the LOO value given an estimate for the predictive distribution whether
or not the assumptions of the model may be fulfilled. In this sense Wahba has

272 S. Park and S. Choi

0 100 200 300 400 500
−4

−2

0

2

4

0 100 200 300 400 500
−4

−2

0

2

4

Ex. 3 : two colored Gaussian sources

fastICA Infomax SOBI GPSS−ML GPSS−LOO

0

0.2

0.4

0.6

0.8

1

P
Is

Method

Ex. 3 : boxplot for methods

0.0103 0.0020 0.0013

0.1857

(a) (b)

Fig. 5. Two colored Gaussian sources generated by AR models of order 20, are shown
in (a). Performance comparison is shown in (b) in the case where we underestimate
the model order p in our GPSS-ML and GPSS-LOO (p = 5 is used). In (b), the result
of Infomax is omitted since its mean value of PIs is greater than 1.

argued that the LOO-based method should be more robust against the model
mis-specification [12]. In our experiment, GPSS-LOO gives slightly better per-
formance than GPSS-ML (see Fig. 5 (b)), although the performance difference
is negligible.

6 Conclusions

We have presented methods of source separation where we use GPs to model the
temporal structure of sources and learn the demixing matrix through the mutual
information minimization. The marginal likelihood of source or the LOO predic-
tive distribution was used to model the probability distribution of source, leading
to two different source separation algorithms (GPSS-ML and GPSS-LOO). Ap-
proximation methods (such as Nyström and SGP) were also used, leading to
GPSS-ML-Nyström and GPSS-ML-SGP. Compared to source separation meth-
ods where a parametric method (e.g., AR model) was used to model the temporal
structure of sources, our method is more flexible in the sense that: (1) sources
are allowed to be nonlinear time series; (2) it is not sensitive to the model order
mismatch. Compared to SOBI, our method successfully worked even in the case
where sources have similar power spectra. The computational scalability in our
current method is not as good as existing methods. Although we have applied
several approximation methods for marginal likelihood, our method is limited to
large scale data yet. This is the main drawback to be further studied, possibly
adopting sparse approximations [18] that have exploited for kernel machines.

Source Separation with Gaussian Process Models 273

Acknowledgments. This work was supported by Korea MCIE under Brain
Neuroinformatics Program and by KOSEF Basic Research Program (grant R01-
2006-000-11142-0).

References

1. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. John Wiley & Sons, Inc., Chichester (2002)

2. Bell, A., Sejnowski, T.: An information maximisation approach to blind separation
and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

3. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component
analysis. Neural Computation 9, 1483–1492 (1997)

4. Amari, S., Cardoso, J.F.: Blind source separation: Semiparametric statistical ap-
proach. IEEE Trans. Signal Processing 45, 2692–2700 (1997)

5. Belouchrani, A., Abed-Merain, K., Cardoso, J.F., Moulines, E.: A blind source sep-
aration technique using second order statistics. IEEE Trans. Signal Processing 45,
434–444 (1997)

6. Pearlmutter, B., Parra, L.: A context-sensitve generalization of ICA. In: Proceed-
ings of International Conference on Neural Information Processing, pp. 151–157
(1996)

7. Attias, H., Schreiner, C.E.: Blind source separation and deconvolution: The dy-
namic component analysis algorithms. Neural Computation 10, 1373–1424 (1998)

8. Cheung, Y.M.: Dual auto-regressive modelling approach to Gaussian process iden-
tification. In: Proceedings of IEEE International Conference on Multimedia and
Expo., pp. 1256–1259. IEEE Computer Society Press, Los Alamitos (2001)

9. Seeger, M.: Gaussian processes for machine learning. International Journal of Neu-
ral Systems 14, 69–106 (2004)

10. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

11. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24(3), 179–195
(1975)

12. Wahba, G.: Spline Models for Observational Data. SIAM [Society for Industrial
and Applied Mathematics] (1990)

13. Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel ma-
chines. In: Advances in Neural Information Processing Systems, vol. 13, MIT Press,
Cambridge (2001)

14. Silverman, B.W.: Some aspects of the spline smoothing approach to non-parametric
regression curve fitting. Journal of the Royal Statistical Society 47, 1–52 (1985)

15. Seeger, M., Williams, C.K.I., Lawrence, N.D.: Fast forward selection to speed up
sparse Gaussian process regression. In: Proceedings of International Workshop on
Artificial Intelligence and Statistics (2003)

16. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In:
Advances in Neural Information Processing Systems, vol. 18, MIT Press, Cam-
bridge (2006)

17. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research 6, 1939–1959
(2005)

18. Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Computation 14,
641–668 (2002)

Discriminative Sequence Labeling by Z-Score

Optimization

Elisa Ricci1, Tijl de Bie2, and Nello Cristianini2,3

1 Dept. of Electronic and Information Engineering, University of Perugia, 06125,
Perugia, Italy

elisa.ricci@diei.unipg.it
2 Dept. of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR, UK

tijl.debie@gmail.com
3 Dept. of Computer Science, University of Bristol, Bristol, BS8 1TR, UK

nello@support-vector.net

Abstract. We consider a new discriminative learning approach to se-
quence labeling based on the statistical concept of the Z -score. Given a
training set of pairs of hidden-observed sequences, the task is to deter-
mine some parameter values such that the hidden labels can be correctly
reconstructed from observations. Maximizing the Z -score appears to be
a very good criterion to solve this problem both theoretically and empir-
ically. We show that the Z -score is a convex function of the parameters
and it can be efficiently computed with dynamic programming methods.
In addition to that, the maximization step turns out to be solvable by
a simple linear system of equations. Experiments on artificial and real
data demonstrate that our approach is very competitive both in terms
of speed and accuracy with respect to previous algorithms.

1 Introduction

Sequence labeling is one of the most important tasks in many applications, such
as in part-of-speech tagging or named entity recognition (NER) in the Natural
Language Processing (NLP) field, and gene finding or protein homology detec-
tion in bioinformatics. This task represents a generalization of the standard clas-
sification problem since prediction is made not only to a single hidden variable,
but to a sequence of mutually dependent hidden variables (the labels). Tradi-
tionally, Hidden Markov Models (HMMs) have been used for sequence labeling.
The HMM conditional probabilities are trained using the maximum likelihood
criterium, after which the HMM can be used for prediction by means of the
Viterbi algorithm. However, the HMM approach is arguably suboptimal for this
task, as it is designed for modeling, rather than for discrimination.

In the last few years, a number of discriminative methods have been proposed
to improve the performance achieved by generative HMM based sequence label-
ing. Recently studied methods include Maximum Entropy Markov Models [6],
Conditional Random Fields (CRFs) [5], Hidden Markov Perceptron (HMP) [3],
boosting-based algorithms [1] and Maximal Margin (MM) methods [2,7].

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 274–285, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discriminative Sequence Labeling by Z-Score Optimization 275

In particular MM algorithms have been shown to provide accurate labeling
(see [2] for a comparison between different methods). These methods rely on
the definition of a linear score function for observed-hidden sequence pairs. Pa-
rameter estimation is performed by imposing that for each observed sequence
in the training set, the score of the pair with the correct given hidden sequence
should be bigger than the score of all other possible hidden sequences. These
conditions can be simply specified by a set of linear constraints. Subject to these
constraints, the squared norm of the parameters is minimized, which guarantees
that the minimal difference between the score of the correct pair and the closest
runner-up is maximal. Clearly, a direct implementation of this strategy would
be totally infeasible, as the number of possible hidden sequences associated to
an observed one (and hence the number of constraints) is exponential in the
length of the sequences. Altun et al. [2] have attacked this problem by adding
constraints incrementally. With this approach, for each constraint to be added
a Viterbi decoding needs to be performed, so it quickly becomes expensive for
long sequences and large training sets. In [8] the number of added constraints
is demonstrated to increase polynomially with the length of the sequences. An
exponential number of constraints is required also by the algorithm proposed
by Collins [4]. In [7] a different strategy is applied where the optimization prob-
lem is reparameterized in terms of marginal variables but a certain number of
constraints (scaling linearly with the length of the sequences) is still required.

Since in practical applications data are often nonseparable, in MM meth-
ods slack variables (one for each training pair) are introduced to allow some
constraints to be violated. With this approach the number of incorrectly recon-
structed sequences is minimized. However in these cases, choosing other opti-
mization criteria could be desirable. To this aim, in this paper, we approach the
problem from a different perspective. We consider the full distribution of the
scores for all possible observed-hidden sequence pairs and we compute the mean
and the variance of this distribution as a function of the parameters. Then, we
maximize the Z-score of the correct observed-hidden sequence pairs subject to
the parameters, where the Z-score is defined as the number of standard devia-
tions the score is away from its mean. In this way, the number of incorrect pairs
which scores higher than the optimal ones is minimized. Moreover the score
of the correct pair is optimally separated from the bulk of all possible scores
without considering each of these separately. A crucial observation enabling this
strategy is that the Z-score of any fixed pair can be computed exactly and ef-
ficiently as a function of the parameters. This is done by means of a dynamic
program analogous to the classical forward algorithm for HMMs. Additionally,
we show that the Z-score is a convex function of the scoring parameters, and
consequently it can be maximized exactly by simply solving a linear system.

2 Hidden Markov Models

We define a state alphabet set Σy = {Y1 . . . Yns} and an observation
alphabet set Σx = {X1 . . . Xno} and we consider an observed sequence

276 E. Ricci, T. de Bie, and N. Cristianini

x = (x1, x2, ..., xm), x ∈ X = Σx
m and the corresponding hidden sequence

y = (y1, y2, ..., ym), y ∈ Y = Σy
m. Formally an HMM is an object (E, T). The

emission matrix E stores the probability of observation i being produced from
the state j, i.e. it is an no × ns matrix with elements eij = logP (Xi|Yj), 1 ≤
i ≤ no, 1 ≤ j ≤ ns. The transition matrix T is the matrix with elements
tij = logP (Yi|Yj), 1 ≤ i, j ≤ ns. The probability of a given observed-hidden
sequence pair can be computed as:

s(x,y) =
m∑

k=1

(logP (yk|yk−1) + logP (xk|yk))

Defining ψij
kk−1 = logP (yk = Yi|yk−1 = Yj) and ψij

k = logP (xk = Xi|yk =
Yj), the scoring function can be rewritten as:

s(x,y) =
m∑

k=1

(
ns∑

i,j=1

ψij
kk−1I

ij
kk−1 +

no∑

i=1

ns∑

j=1

ψij
k Iij

k) =
ns∑

i,j=1

tijC
ij
t +

no∑

i=1

ns∑

j=1

eijC
ij
e

where Iij
kk−1 is equal to 1 if the k-th hidden label is Yi and the (k − 1)-th label

is Yj and analogously Iij
k = 1 means that the k-th observation is Xi and the

associated label is Yj . Therefore Cij
t = #(yk = Yi|yk−1 = Yj) and Cij

e = #(xk =
Xi|yk = Yj) count the number of each of the possible transitions and emissions.

For notational convenience, define the vector of parameters θ ∈ Rd, θ =
[e11 · · · enonst11 · · · tnsns]

T , with d = nsno + nsns. Correspondingly, for a
given pair of observed and hidden sequences (x,y) define a vector φ(x,y) =
[C11

e · · ·Cnons
e C11

t · · · Cnsns
t]T ∈ Rd containing the sufficient statistics associ-

ated to each parameter. Then we can express the scoring function s(x,y) as a
linear function of the parameters θ:

s(x,y) = θT φ(x,y)

We call s(x,y) the score associated to the observed-hidden sequence pair (x,y).
Once the parameters are fixed, the actual labeling task predicts the hidden

state sequence ȳ that is most likely in conjunction with the given observation
sequence x. Hence, labeling is done by solving h(x) = argmaxy s(x,y). A brute
force calculation of h(x) is intractable for realistic problems, as the number N
of possible assignments in Y is exponential in the length of the sequences m.
However such prediction can be done efficiently by the Viterbi algorithm. In the
following the score of the optimal pair will be denoted by s(x, ȳ).

3 The Z -Score

Given x, we can consider the mean values μ (x) of the scores of all possible N
hidden sequences yj and show that it is also a linear function:

μ (x) =
1
N

N∑

j=1

θT φ(x,yj) = θT μφ

Discriminative Sequence Labeling by Z-Score Optimization 277

where μφ = [μ1 . . . μd]T is the vector with components given by the average
values of the components of φ(x,yj). Similarly, for the variance σ2 (x) we have:

σ2 (x) =
1
N

N∑

j=1

(θT φ(x,yj)− μ (x))2 = θT Cθ

The matrix C is a covariance matrix with elements:

cpq =
1
N

N∑

j=1

φp(x,yj)φq(x,yj)− μpμq = vpq − μpμq (1)

where 1 ≤ p, q ≤ d. Based on this mean and variance, expressed in terms of the
parameters θ, we can now define the Z-score parameterized by θ:

Definition 1. Let μ (x) and σ2 (x) be the mean and the variance of the scores
for all possible hidden sequences generating x. We define the Z-score Z (x):

Z (x) =
s(x, ȳ)− μ (x)

σ (x)
=

θTb
√

θT Cθ
(2)

where the right expression is obtained with b = φ(x, ȳ)− μφ.

In general, we are interested in computing the Z -score for a set of pairs of
sequences S = {(x1, ȳ1)(x2, ȳ2) . . . (x�, ȳ�)}. In such cases, we can define the
global score as the sum of the scores for each sequence pair in the set. Its mean
is the sum of the means for all sequence pairs (xi,yi) separately, and can be
summarized by b∗ =

∑
i bi. Similarly, the covariance of the sum of (independent)

scores is the sum of the covariances: C∗ =
∑

i Ci. Hence, the Z -score can be
extended to the case where there is more than one given sequence pair by using
for b∗ and C∗ instead of b and C in Eqn. 2 above.

We will now proceed to show that C∗ and b∗ can be computed efficiently.
Then we will show that based on these the Z-score can be maximized efficiently,
and that it represents a theoretically and empirically interesting criterium for
discriminative sequence labeling.

4 Computing the Z -Score as a Function of the
Parameters

In this section we show how the elements of b and C can be computed exactly
and efficiently by dynamic programming (DP) routines. Therefore the Z -score
can be fully determined, as a function of the parameter vector θ.

Proposition 1. Each element of the vector b and of the matrix C can be com-
puted in a time O(mn2

s).

278 E. Ricci, T. de Bie, and N. Cristianini

Algorithm 1. Dynamic programming algorithm to compute μk, 1 ≤ k ≤ nsno

1: Input: x = (x1, x2, ..., xm), p, q.
2:
3: π(i, 1) := 1 ∀i
4: if q = x1 ∧ p = i, μe

pq(i, 1) := 1
5: for j = 2 to m
6: for i = 1 to ns

7: M := 0
8: π(i, j) :=

∑
i π(i, j − 1)

9: if q = xj ∧ p = i, M := 1

10: μe
pq(i, j) :=

∑
i(μ

e
pq(i,j−1)+M)π(i,j−1)

π(i,j)
11: end
12: end
13:
14: Output:

∑
i

μe
pq(i,m)∑

i π(i,m)

Outline of proof. We consider a pair of observed-hidden sequences (x, ȳ). The
vector b is given by b = φ(x, ȳ)−μφ. The first term can be calculated computing
the statistics associated to each parameter.

The elements of the vector μφ can be obtained with DP routines. We construct
the vector μφ such that its first nsno elements contain the mean values associated
with the emission probabilities. Each value can be determined by Algorithm 1.
Here a ns × m DP table μe

pq is considered and initialized to zero values. The
index p denotes the hidden state (1 ≤ p ≤ ns) and q refers to the observation
(1 ≤ q ≤ no). For example the first component of μφ corresponds to the DP
matrix μe

11. First a ns × m matrix π is progressively filled. Each cell π(i, j)
contains the number of all possible paths from the origin of the trellis to position
(i, j). Then a recursive relation is considered to compute each element of the
matrix μe

pq. Further details are shown in Algorithm 1.
A similar algorithm is adopted to compute the mean values for the transition

probabilities. A DP matrix μt
pz is filled, where 1 ≤ p, z ≤ ns. The only difference

is the recursive formula that can be found in Algorithm 2.
Analogously the elements of the covariance matrix C can be computed. We

have five sets of values: variances of emission probabilities (ce
pq, 1 ≤ p ≤ ns, 1 ≤

q ≤ no), variances of transition probabilities (ct
pz, 1 ≤ p, z ≤ ns), covariances

of emission probabilities (ce
pqp′q′ , 1 ≤ p, p′ ≤ ns, 1 ≤ q, q′ ≤ no), covariances

of transition probabilities (ct
pzp′z′ , 1 ≤ p, p′, z, z′ ≤ ns) and mixed covariances

(cet
pqp′z , 1 ≤ p, p′, z ≤ ns, 1 ≤ q ≤ no). To determine each of them we consider

Eqn. 1. It suffices to calculate the values vpq since the mean values are already
known. The computation of vpq is again performed following Algorithm 1 but
with recursive relations given in Algorithm 2.

Computational Cost Analysis. In general the calculation of the matrices b
and C requires running a DP algorithm like Algorithm 1 respectively d times
for mean values and d2 times for the covariance matrix. Hence the overall

Discriminative Sequence Labeling by Z-Score Optimization 279

Algorithm 2. Extra formulas for computing mean and variance values
9: if z = i, M := 1

10: μt
pz(i, j) :=

∑
i

μt
pz(i,j−1)π(i,j−1)+Mπ(p,j−1)

π(i,j)

4: if q = x1 ∧ p = i, ve
pq(i, 1) := 1

9: if q = xj ∧ p = i, M := 1

10: ve
pq(i, j) :=

∑
i
(ve

pq(i,j−1)+2Mμe
pq (i,j−1)+M)π(i,j−1)

π(i,j)

9: if q′ = xj ∧ p′ = i, M1 := 1
if q = xj ∧ p = i, M2 := 1

10: ve
pqp′q′(i, j) :=

∑
i
(ve

pqp′q′ (i,j−1)+M1μe
pq(i,j−1)+M2μe

p′q′ (i,j−1))π(i,j−1)

π(i,j)

4: if p = i, vt
pz(i, 2) = 1

9: if p = i, M := 1

10: vt
pz(i, j) :=

∑
i vt

pz(i,j−1)π(i,j−1)+(2Mμt
pz (p,j−1)+M)π(p,j−1)

π(i,j)

9: if p′ = j, M1 := 1
if p = j, M2 := 1

10: vt
pzp′z′(i, j) :=

∑
i

vt
pzp′z′ (i,j−1)π(i,j−1)+M1μt

pz(p′,j−1)π(p′,j−1)+M2μt
p′z′ (p,j−1)π(p,j−1)

π(i,j)

9: if z′ = i, M1 := 1
if q = xj ∧ p = i, M2 := 1

10: vet
pqp′z(i, j) :=

∑
i vet

pqp′z
(i,j−1)π(i,j−1)+M1μe

pq(p′,j−1)π(p′,j−1)+M2μt
p′z′(p,j)π(p,j)

π(i,j)

computational cost considerably increases for large d. However, most of the DP
routines are redundant since many cells of b and C have the same values. In
particular:

Proposition 2. The number of dynamic programming routines required to cal-
culate b and C increases linearly with the size no of the observation alphabet.

Outline of proof. In the mean vector μφ there are no +1 different values. All the
elements associated to transition probabilities assume the same values while for
emission probability μe

pq = μe
ef , ∀q = f .

The covariance matrix C is a symmetric block matrix made basically by three
components: the block associated to emission probabilities, that of transition
probabilities and that relative to mixed terms. To compute it 6no+5 DP routines
are required. In the emission part there are 2no possible different values since
ce
pq = ce

ef , ∀q = f , ce
pqp′q′ = 0, ∀q �= q′ and ce

pqp′q′ = ce
efe′f ′ ∀q = q′ = f = f ′.

In the transition block there are only 5 possible different values. In particular
for the variances, it is ct

pz = ct
eg, ∀p = z = e = g and ct

pz = ct
eg, ∀p = e,

z = g and p �= z. The other three values are associated to covariances since
ct
pzp′z′ = 0, ∀p �= p′, z �= z′, ct

pzp′z′ = ct
ege′g′ , ∀p = p′, z �= z′, e = e′, g �= g′ and

ct
pzp′z′ = ct

ege′g′ , ∀p �= p′, z = z′, e �= e′, g = g′. The block relative to mixed

280 E. Ricci, T. de Bie, and N. Cristianini

terms is made of 4no possible different value. In fact there are no values cet
pqp′z

with p = p′ = z′, no values cet
pqp′z, with p = p′, p′ �= z′, no values cet

pqp′z, with
p = z′, p′ �= z′ and no values cet

pqp′z, with p �= p′, z �= z′.

4.1 Dealing with Arbitrary Features

A nice property of our method is that it can be easily extended to the case
of arbitrary features. In general the vector φ(x,y) contains not only statistics
associated to transition and emission probabilities but also any feature that
reflects the properties of the objects represented by the nodes of the HMM.
For example in most of the NLP tasks, observations are words and the problem
is to assign opportune labels to them. In this case, feature vectors can contain
information about the occurrence of a certain word in a sentence as well as about
its spelling properties (e.g. if the word is capitalized, if it contains numerical
symbols). Sometimes also overlapping features [5] are needed, i.e. features that
indicate relations between observations and some previous and future labels.
It means that at instant k all the indicator functions Iij

s are considered, with
k−w ≤ s ≤ k +w where w is the size of a window around the k-th observation.
In this way it is possible to deal with high order dependencies between labels.

To compute the Z -score in these situations the derivation of appropriate for-
mulas similar to those of μe

pq, ce
pq and cet

pqp′z is straightforward. It suffices to set
the values M , M1 and M2 equal to 1 when the considered features are active.
For example, if x represents a sequence of words and we want to compute the
mean for the feature “The word is capitalized”, we use Algorithm 1 with the
parameter M equal to 1 in correspondence to observation xi if the first letter of
xi is an upper case latter. Unfortunately the computational cost increases with
the number of features since the number of different parameters in the matrix
C∗ scales quadratically with the observations alphabet size no. However we show
that in this case approximate algorithms can be used to obtain close estimates
of the mean and the variance values with a significantly reduced computational
cost. The experiments reported in the last section support this claim.

5 Z-Score Optimization

Suppose we have a training set of pairs of observed and hidden sequences S =
{(x1, ȳ1)(x2, ȳ2) . . . (x�, ȳ�)}. One often considers the task to find the parameter
values θ such that the optimal sequence of hidden states ȳi can be reconstructed
from xi, ∀ 1 ≤ i ≤ . In formulas this condition can be expressed as:

θT φ(xi, ȳi) ≥ θT φ(xi,yi) ∀yi �= ȳi, ∀ 1 ≤ i ≤ (3)

This set of constraints defines a convex set in the parameter space and its number
is exponential in the length of the sequences. To obtain an optimal vector θ that
successfully fulfills (3) an optimization problem can be considered, i.e. a suitable
objective function must be chosen. Several choices are possible. For example in

Discriminative Sequence Labeling by Z-Score Optimization 281

[1,7] a maximal margin solution is considered: between all possible values of θ
such that (3) is verified, they pick the values such that the highest scoring se-
quence is maximally separated from the others. Interestingly, with this approach,
an upper bound on the zero-one error (i.e. on the number of incorrectly recon-
structed sequences) is minimized. Similarly CRFs [5] use a conditional likelihood
criterion to minimize a different upper bound on this loss.

Here a different philosophy is investigated, which we believe to be more appro-
priate in the cases where there exists no parameter setting for which the given
pairs are optimal. Our purpose is to minimize the number of incorrect pairs that
are ranked higher than the correct one. To this aim we choose as objective func-
tion the Z -score since we are motivated by statistical reasoning. The Z -score
can be regarded as a measure of ranking quality. To give an intuition, a pair of
sequences (x,y) corresponds to a high Z -score if few other pairs have probabil-
ity of having a higher score. On the other hand, a small Z -score means a low
position of the given (x,y) in the ranking associated with that scoring model.
Interestingly, under normality assumptions, this Z-score is directly equivalent to
a p-value. Hence, maximizing the Z-score can be interpreted as maximizing the
significance of the correct pair score: the larger the Z-score, the more significant
it is, or the more different it is from the majority of others pairs. Intriguingly, we
can interpret the Z -score maximization as a special case of Fisher’s discriminant
analysis (FDA), where one class reduces to a single data point: we consider the
distribution of all possible scores and contrast this with the ‘distribution’ of the
score for the given training example (which is obviously non-zero only for one
value). Therefore learning theory applicable to FDA would be directly translated
to our algorithm. (We will not go into this aspect in the present paper).

Following the definition of Z -score given at the end of Section 3, the opti-
mization problem we are interested in is:

maxθ
θT b∗

√
θT C∗θ

(4)

We note that, C∗ being a positive semidefinite matrix, the objective function
is convex and the problem admits a global solution. We can find the optimal θ
simply by inverting the covariance matrix (θ = C∗−1

b∗). Alternatively, consid-
ering the invariance of the problem to positive rescaling and the monotonicity
of the square root, (4) becomes:

minθ
1
2
θT C∗θ (5)

s.t. θT b∗ ≥ 1

Classical Lagrangian duality enables the primal problem (5) to be transformed
into the associated dual, which can be easier to solve for large values of d. It is
simple to verify that the dual problem is:

max
α≥0

−1
2
αT Jα + hα (6)

282 E. Ricci, T. de Bie, and N. Cristianini

where we have defined J = b∗
T
C∗−1

b∗ and h = 1. The solution of the primal
is given by θ = C∗−1

b∗α. The computational cost in the optimization phase is
dominated by the inversion of the matrix C∗. General matrix inversions usually
take O(d3) time. However since C∗ is a symmetric positive definite matrix the
use of iterative methods as conjugate gradient greatly speed up the computation.

5.1 Incorporating Hamming Loss Function

Imposing constraints (3) a zero-one loss 0/1(y,y′) = I(y �= y′) is implicitly
considered: unfortunately 0/1(y,y′) is 1 if the complete sequence is not labeled
correctly, both when the entire sequence is wrong and when only one label is
predicted incorrectly. A better loss function that discriminates between similar
pairs of sequences and very different ones, is the Hamming loss H(y,y′) =∑

i I(yi �= y′i). Originally proposed in [7] for MM algorithms it can be also used
in our method. For each pair of sequences (x,y) we consider the score:

s(x,y) = θT φ(x,y) + H(y, ȳ) = θ′T φ′(x,y)

where we define the vectors θ′T = [θ 1]T and φ′(x,y)T = [φ(x,y) H(y, ȳ)]T .
It is easy to verify that the associate Z-score turns out into a dual convex
optimization problem with the same form of (6), with h = 1−μ� − b∗T

C∗−1
c�.

The optimal vector of parameters in the primal is θ = C∗−1(b∗α− c�), which is
used to perform decoding with Viterbi algorithm. Here μ� represents the mean
value of the terms H(y, ȳ) computed along all possible paths while c� is the
vector containing the covariance values between the loss term and all the other
parameters. The computation of μ� and c� is realized with Algorithm 1 and
recursive relations similar to those in Algorithm 2. For example the value μ�

is computed with Algorithm 1 with the only difference that at line 11 M = 1
if yj �= ȳj. It is worth noting that in general every loss function that can be
computed by DP can be used in our method.

6 Experimental Results

Artificial Data. In the first series of experiments our method has been tested
with artificial data. An HMM with ns = 3, no = 4 has been considered. The
parameters to be determined are the transition and emission probabilities. Se-
quences with length m = 10 have been generated randomly, so that the optimal
parameter vector may not exist. In the experiments the size of training set varies
while the number of pairs in the test set is fixed to 100. We compared the per-
formance of our approach with CRFs, and the HMP and the MM method in
[2] with linear kernel. For the latter and for the Z-score a formulation with a
Hamming loss is also considered. For MM algorithms the soft margin parameter
C has been set to 0.1 and 1 for the standard and the rescaled margin version
respectively, a constant ε = 10−12 specifies the accuracy for constraints to be
satisfied. The maximum number of iterations of the HMP is T = 100. The CRFs

Discriminative Sequence Labeling by Z-Score Optimization 283

have been optimized using a conjugate gradient method. Parameter values have
been determined by cross-validation. The performance are evaluated in terms
of labeling error on test set (average number of misclassified labels) (Fig 1.a).
Results are averaged over 100 runs. The simple Z-score maximization is only
slightly outperformed by Z-score and MM methods with Hamming loss which
have comparable performance. For the two latter algorithms we also examine the
computational cost. Figure 1.b shows, for the same experiment, the training time
as function of the training set size: our approach is definitely faster, especially
for larger datasets.

We performed similar experiments for different datasets and HMMs and we
observed that maximizing the Z-score the performance is comparable or better
than MM method for nonseparable data (which is the more common situation
with real-life data). In the separable case, we can also impose the constraints (3)
with an iterative algorithm similar to that proposed in [2]. In this way labeling
accuracy is comparable to MM method but much less constraints are used. We
do not report associated simulation results due to lack of space. In terms of
computation time our approach is generally much faster.

For very large numbers of parameters, however, the time required to compute
b∗ and C∗ may exceed the computation time of competing MM approaches.
However, in this case, good approximations for b and C can be used by con-
sidering a randomly sampled subset of paths in the trellis, rather than using
DP. Results in Table 6 demonstrate this is a valid approach. Here, sequences
of length 100 have been considered, the training and test set sizes are 50 and
100. Various HMM models have been used: the hidden alphabet size is fixed to
ns = 2, while no varies. The average test error and the computation time are
reported for the Z-score method with exact b and C, when they are computed
on a set of 100 random paths, and for the MM method with Hamming loss.

Named Entity Recognition. NER is a subtask of information extraction
which deals with finding phrases containing person, organization and locations

5 10 15 20 25 30
16

17

18

19

20

21

22

Training set size

T
es

t e
rr

or

Z−score
Z−score (H)
MM
HMP
MM (H)
CRFs

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

T
im

e
(s

ec
)

Training set size

Z−score (H)
MM (H)

Fig. 1. (a) Average number of uncorrect labels and (b) computational time as function
of the training set size for an HMM with ns = 3 and no = 4

284 E. Ricci, T. de Bie, and N. Cristianini

Table 1. Test error. Time (sec) in parenthesis.

no Z-score Z-score (100) MM (H)

3 15.82 (0.88) 15.91 (0.43) 15.81 (5.63)

5 10.10 (1.28) 10.13 (0.63) 10.02 (8.29)

7 7.49 (1.80) 7.58 (0.68) 7.22 (10.68)

9 4.99 (2.48) 4.99 (0.69) 4.94 (14.24)

11 4.74 (3.29) 4.78 (0.72) 4.58 (16.03)

names or temporal and numerical expressions. The experimental setup is similar
to [2]. We considered 300 sentences extracted from the Spanish news wire article
corpus used for the Special Session of CoNLL-2002 on NER. Our subset contains
more than 7000 tokens (about 2000 unique) and each sentence has an average
length of 30 words. The hidden alphabet is limited to ns = 9 different labels,
since the expression types are only persons, organizations, locations and miscel-
laneous names. We use only a small subset of CoNLL-2002 since our aim here is
simply to compare Z-score with previous methods and not to compete with large
scale NER systems. We performed experiments with 5-fold crossvalidation and
two different sets of binary features: S1 (HMM features) and S2 (S1 and HMM
features for the previous and the next word). We compared the performance of
our approach with CRFs and with the HMP and the MM method with linear
kernel. As for artificial datasets, we also report results for our method and MM
with Hamming loss. For MM algorithms the soft margin parameter C has been
set to 1, while the required accuracy for constraints to be satisfied is given by
ε = 0.01. The number of iterations of the HMP is T = 200.

The results shown in Table 6 demonstrate the competitiveness of the proposed
method. Here the test error is reported. Optimizing the Z-score, we obtain per-
formance very close to MM-methods. Admittedly, since the length of feature
vectors is large, our approach results generally slower than the other methods.
However experiments have been performed with a naive implementation of our
algorithm based on a conjugate gradient method for inverting C∗. Perhaps more
sophisticated iterative methods exploiting the sparseness of C∗ and the use of
approximate matrices can speed up the computation. For example the average
running times with features S1 is about 9465.34 sec for Z-score, while the MM
approach (SVM-struct implementation [8], ε = 0.01) takes 1043.16 sec. However
computing b∗ and C∗ with sampling (150 paths) the time required by Z-score
optimization decreases to 607.45 sec.

Table 2. Classification error on test set on NER

Z-score Z-score (H) MM MM (H) HMP CRFs

S1 11.66 11.07 13.94 10.97 20.99 12.01

S2 8.01 7.89 9.04 8.11 13.78 8.29

Discriminative Sequence Labeling by Z-Score Optimization 285

7 Conclusions

In this paper a new discriminative algorithm for sequence labeling has been
proposed. The algorithm is fast and easy to implement. It relies on DP to com-
pute the Z-score as a function of the parameters, and a simple linear system to
maximize it. Similar to recent discriminative methods, the learning problem is a
convex optimization with an objective function that takes into account arbitrary
dependencies between input and output labels and penalizes incorrect decoded
sequences based on the Hamming distance from the given output. Our approach
avoids the need to explicitly consider the exponential number of constraints
that arise in this kind of problems and, unlike previous works, naturally and ad-
equately deals with the infeasible case where there exists no parameter setting
for which the correct given pairs are optimal. Moreover the proposed algorithm
does not rely on any parameter that needs to be tuned with time-consuming
procedures as cross-validation. We are currently developing a kernelized version
of our algorithm which will enable us to circumvent the computational problems
when the size of the features vectors becomes large. A further investigation in-
cludes the analysis of approximate algorithms to obtain mean and covariance
matrices in order to reduce the computational cost.

Acknowledgments

This work was partially supported by NIH grant R33HG003070-01, and the EU
Project SMART.

References

1. Altun, Y., Hofmann, T., Johnson, M.: Discriminative learning for label sequences
via boosting. In: Advances in Neural Information Processing Systems (NIPS) (2003)

2. Altun, Y., Tsochantaridis, I., Hofmann, T.: Hidden markov support vector machines.
In: 20th International Conference on Machine Learning (ICML) (2003)

3. Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: Proc. Conference on Empirical
Methods in Natural Language Processing (EMNLP) (2002)

4. Collins, M.: Parameter estimation for statistical parsing models: Theory and practice
of distribution-free methods. In: IWPT (2001)

5. Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: International Conference on
Machine Learning (ICML) (2001)

6. McCallum, A., Freitag, D., Pereira, F.: Maximum entropy Markov models for infor-
mation extraction and segmentation. In: Proceedings of the International Conference
on Machine Learning (ICML) (2000)

7. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Neural In-
formation Processing Systems (NIPS) (2003)

8. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: Proceedings of the
International Conference on Machine Learning (ICML) (2004)

Fast Optimization Methods for L1

Regularization: A Comparative Study and Two
New Approaches

Mark Schmidt1, Glenn Fung2, and Rómer Rosales2

1 Department of Computer Science University of British Columbia
2 IKM CKS, Siemens Medical Solutions, USA

Abstract. L1 regularization is effective for feature selection, but the
resulting optimization is challenging due to the non-differentiability of
the 1-norm. In this paper we compare state-of-the-art optimization tech-
niques to solve this problem across several loss functions. Furthermore,
we propose two new techniques. The first is based on a smooth (differen-
tiable) convex approximation for the L1 regularizer that does not depend
on any assumptions about the loss function used. The other technique is a
new strategy that addresses the non-differentiability of the L1-regularizer
by casting the problem as a constrained optimization problem that is
then solved using a specialized gradient projection method. Extensive
comparisons show that our newly proposed approaches consistently rank
among the best in terms of convergence speed and efficiency by measur-
ing the number of function evaluations required.

1 Introduction

Parsimonious models are normally preferred over more complex ones. Sparsity,
a concept commonly employed to describe model complexity, can be defined in
terms of the training examples that are used to define the model (as in Support
Vector Machines), or in terms of the covariates (feature selection). In addition to
parsimony, feature selection can help prevent overfitting in problems with many
input features relative to the amount/variability of the data; see [9,18] for an
overview.

The problem of obtaining an optimal subset of features for a linear classifier
is known to be NP-hard [18], and is computationally unsolvable in most large
applications. A popular strategy is to use a continuous, convex relaxation of the
non-convex feature selection problem, through the use of a prior or a regularizer
that encourages sparsity in the model1.

In recent years, there has been an increasing interest in the L1 regularizer,
since it has the beneficial effects of regularizing model coefficients (as in L2
regularization), but yields sparse models that are more easily interpreted [17].

1 E.g., the number of nonzero components of the normal to a hyperplane classifier is
equivalent to the number of features it needs to employ.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 286–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fast Optimization Methods for L1 Regularization 287

Logarithmic sample complexity bounds2 allow L1-regularized models to learn
effectively even under an exponential number of irrelevant features (relative
to training samples) [13], giving better performance than ridge (L2) penal-
ties in these scenarios. Furthermore, L1-regularization has appealing asymptotic
sample-consistency in terms of variable selection [19].

For this paper, we will consider problems with the general form:

min
x

f(x) ≡ L(x) + λ||x||1. (1)

Here, L(x) is a loss function, and the goal is to minimize this loss function with
the L1-penalty, yielding a regularized sparse solution. Efficient algorithms have
been proposed for the special cases where L(x) has a specific functional form,
such as a Gaussian [3] or Logistic [11] negative log-likelihood. In this paper,
we focus on the more general case where L(x) is simply a twice-differentiable
continuous function, no specific form is assumed.

Since the objective function is non-differentiable when x contains values of 0,
this precludes the use of standard unconstrained methods. This has lead to a wide
variety of approaches proposed in the literature to solve problems of this form.
In this paper we evaluate twelve classical and state-of-the-art L1 regularization
methods over several loss functions in this general scenario (in most cases these
are generalized versions of algorithms for specific loss functions proposed in the
literature). In addition, we propose two new methods:

(i) The first proposed method, SmoothL1, uses a smooth approximation to the
L1-regularizer that is continuous and differentiable, allowing us to formu-
late Newton (or Quasi-Newton) methods to solve the resulting optimization
problems independently of the loss function used.

(ii) The second method proposed, ProjectionL1, addresses the differentiability
by reformulating the problem as a non-negatively constrained optimization
problem. We further describe the use of the Two-Metric Projection method
put forward by [7] to solve the resulting optimization problem efficiently.

Our numerical results indicate that some strategies for addressing the non-
differentiable loss are much more efficient than others, while our two simple
proposed strategies are competitive with the best strategies (including more
complex algorithms). We end with a discussion of the choice of algorithms in
different scenarios.

2 Fast Optimization Methods for L1 Regularization

In this section, we review various previously proposed approaches and propose
two new optimization techniques that can be used for L1-regularized optimiza-
tion (Table 1 at the end gives a high level overview of these approaches). Al-
though most methods proposed in the literature have been for individual loss

2 Number of training examples required to learn a function.

288 M. Schmidt, G. Fung, and R. Rosales

functions, we focus on methods that can be extended to handle a general uncon-
strained differentiable loss. We concentrate on a single scalar λ value, although
all techniques below are easily generalized to include a λ for each element (that
may be equal to zero to avoid penalizing some elements). Except where oth-
erwise noted, the algorithms are stabilized (to ensure global convergence) by
using a back-tracking line search that finds a step length t satisfying the Armijo
condition (we generate trial points using cubic interpolation of function and di-
rectional derivative values, and use a sufficient decrease parameter of 0.0001). In
this section we will assume analytic second derivatives, and defer discussion of
methods that avoid explicit Hessian calculation until the end.

2.1 SubGradient Strategies

We first examine optimization strategies that use sub-gradients to extricate the
task of dealing with the non-differentiable gradient. At a local minimizer x̄ of
f(x), we observe the following first-order optimality conditions:

{
∇iL(x̄) + λsign(x̄i) = 0, |x̄i| > 0

|∇iL(x̄)| ≤ λ, x̄i = 0

These conditions can be used to define a sub-gradient for each xi whose nega-
tion represents the coordinate-wise direction of maximum descent:

∇if(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∇iL(x) + λsign(xi), |xi| > 0
∇iL(x) + λ, xi = 0,∇iL(x) > −λ
∇iL(x)− λ, xi = 0,∇iL(x) > λ

0, xi = 0,−λ ≤ ∇iL(x) ≤ λ

Using this sub-gradient, the Gauss-Seidel algorithm of [16] uses a working set
of variables, and does an exact line search to optimize the working set variable
whose sub-gradient is largest. Variables begin at xi = 0 with an empty work-
ing set, and the variable with the largest sub-gradient magnitude is introduced
whenever the working set satisfies the optimality conditions. This continues un-
til no variable can be introduced. The Grafting procedure uses a variation that
jointly solves the working set variable optimization with standard unconstrained
techniques [15]. In contrast, rather than separating variables into active and
working sets, and introducing the working set variable with the largest sub-
gradient magnitude, the Shooting algorithm simply cycles through all variables,
optimizing each in turn [6]. Analogously, we can also define a Sub-Gradient De-
scent strategy that attempts to minimize f(x) in terms of x jointly using the
above sub-gradient, and defines the working set at each iteration to be those
variables not satisfying the optimality conditions3.

3 In our experiments, we used the line search of [16] for both the Gauss-Seidel and
Shooting algorithm. For Grafting and Sub-Gradient Descent, we use Newton steps
of the form x := x − t∇2f(x)−1∇f(x) for a step length t to optimize the working
set.

Fast Optimization Methods for L1 Regularization 289

2.2 Unconstrained Approximations

An alternative to working directly with f(x) and using sub-gradients to address
non-differentiability, is to replace f(x) with an (often continuous and twice-
differentiable) approximation g(x). The problem of minimizing g(x) can then be
solved with unconstrained optimization techniques, such as performing Newton
iterations of the form x := x − t∇2g(x)−1∇g(x) for a suitable step length t. A
simple example is the epsL1 approximation [11]:

g(x) = L(x) + λ
√

xT x + ε

This function is differentiable and approximates f(x) for small ε. An alterna-
tive approximation is the class of log-barrier functions:

g(x) = L(x) + λ||x||1 − μ log c(x)

In the Log-Barrier method, the constraint function c(x) forces feasibility of
iterates in a constrained formulation (see Section 2.3). In the Log(norm(x))
method, c(x) is set to ||x||22, preventing any variable from becoming exactly
0. For these methods, the unconstrained optimizer must implement truncation
of the step lengths in order to maintain positivity of c(x). Although the optimiza-
tion can be performed for a fixed small value of μ, in the Log-Barrier method
it is standard to solve (or approximately solve) the unconstrained problem with
a decreasing sequence of μ values, which avoids ill-conditioning of the Hessian
preventing convergence (see [14] for additional details).

SmoothL1 Approximation Method. We propose another type of smooth
approximation, that takes advantage of the non-negative projection operator
(x)+ = max(x, 0). This projection function can be smoothly approximated, by
the integral of a sigmoid function:[1]:

(x)+ ≈ p(x, α) = x +
1
α

log(1 + exp(−αx)) (2)

p(x, α) is a member of the class of smoothing functions presented in [1] pro-
posed to solve complementarity problems. This smooth approximation of the
projection has been used to transform the standard L2-penalized SVM formu-
lation into an efficiently-solved unconstrained problem [12]. We also make use
of the nice properties of p(x, α), but aiming for the different goal of achieving
sparsity in the covariates.

By combining p(x, α) with the identity |x| = (x)+ + (−x)+ we arrive at the
following smooth approximation for the absolute value function that consists of
the sum of the integral of two sigmoid functions:

|x| = (x)+ + (−x)+ ≈ p(x, α) + p(−x, α)
= 1

α [log(1 + exp(−αx)) + log(1 + exp(αx))]
def= |x|α

(3)

290 M. Schmidt, G. Fung, and R. Rosales

The corresponding loss function is: g(x) = L(x) + λ
∑

i |xi|α; we called it
the SmoothL1 approximation. It can be shown that |x|α converges to |x| as α
approaches ∞ (the proof is similar to [12]), while |x|α is twice differentiable:

∇(|x|α) = (1 + exp(−αx))−1 − (1 + exp(αx))−1 (4)
∇2(|x|α) = 2α exp(αx)/(1 + exp(αx))2 (5)

With a smooth approximation, an unconstrained optimization method can
be applied to g(x) for a large value of α as a proxy for minimizing f(x). How-
ever, for large α the SmoothL1 approximation is not appropriately modeled by
a quadratic for variables near 0. To account for this, we use a continuation strat-
egy analogous to Log-Barrier methods, where we take Newton steps between
increasing the parameter α (beginning from a small α where the quadratic ap-
proximation is appropriate, and terminating at a sufficiently large value of α).
The advantage of this new approach over Log-Barrier approximations is that a
specialized line search that truncates the step to maintain constraint feasibility
is not required (allowing the potential use of more sophisticated line search cri-
teria), and that it does not involve solving a problem with double the number
of variables (associated with using a constrained formulation).

An approach related to unconstrained approximations are Expectation Max-
imization (EM) approaches (see [4]). These approaches use a scale mixture of
normals prior on the variables (xi|τi ∼ N(0, τi)), where the variances of the
individual Gaussians have an exponential prior: p(τi|

√
λ) =

√
λ

2 exp(−τi

√
λ

2). Un-
der this representation, integrating over τi yields a Laplacian density (and thus
an L1-regularizer after taking logarithms) for p(xi|λ). In the EM approach the
individual τi are treated as missing variables, and the ‘E-step’ computes the ex-
pectation of τi. Subsequently, the ‘M-Step’ uses this expectation to (exactly or
approximately) compute the MAP parameters with the scale mixture (L2) prior.
Algorithmically, this is equivalent to using the following approximation (where
xold is the value from the previous iteration)4:

g(x) = L(x) + λ
∑

i

||xi||22
|xold

i |1

Although this approach has previously been presented as a fixed-point Iteratively
Reweighted Least Squares (IRLS) update, it is straightforward to modify it
in order to compute the Newton descent direction under this approximation
(allowing the method to be applied to loss functions that do not yield an IRLS
approximation).

2.3 Constrained Formulations

A third general approach to address the non-differentiability of the L1-regularizer
is to cast the problem as a constrained optimization problem. One approach
4 Numerical instability of this approach arises as xi approaches 0. Strategies to avoid

this include using a pseudo-inverse [17], reformulation [4], or by defining the working
set as those variables whose magnitude is above a threshold.

Fast Optimization Methods for L1 Regularization 291

to do this is to replace λ with a variable t ∝ 1/λ and solve the constrained
problem:

min
x

L(x) s.t.||x||1 ≤ t (6)

Recently, [11] presented an algorithm for L1-regularized Logistic Regression,
where the Logistic Regression IRLS update is computed subject to the constraint
||x||1 ≤ t. The solution to the constrained Weighted Least Squares problem
can be efficiently calculated using the LARS algorithm [3]. This ‘IRLS-LARS’
algorithm (with an Armijo backtracking linesearch) proved more efficient than
other approaches examined in [11] for L1-regularized Logistic Regression. This
specific strategy can clearly be more generally applied to any loss function that
yields an IRLS update, but it is not a general strategy since many loss functions
do not yield an IRLS approximation5.

We can extend the IRLS-LARS algorithm to a general algorithm by observing
that the algorithm is an IRLS reformulation of a Sequential Quadratic Program-
ming (SQP) update (where a unit step length is assumed). That is, IRLS-LARS
minimize a Quadratic approximation to the function, subject to a lineariza-
tion of the constraints (the linearization is redundant in this case). To handle
the L1 constraint in a more general setting, we split x into non-negative vari-
ables representing positive and negative components, by defining new variables
x+ = max(0, x) and x− = −min(0, w) (thus, x = x+ − x−). This gives the
following constrained problem (a general form of a formulation used in [17]):

min
x+,x−

L(x+ − x−) s.t.
∑

i

[x+
i + x−

i] ≤ t, ∀ix
+
i ≥ 0, x−

i ≥ 0 (7)

From a probabilistic perspective, a difficulty with this formulation is that
the constraints become degenerate as t approaches the L1-norm of the Maxi-
mum Likelihood Estimate (an analogous problem is present for non-probabilistic
losses), a value that may not be known or desirable to compute. We use the fol-
lowing alternative formulation that avoids this problem, makes clear the strength
of the Laplacian regularizer, and yields simple bound constraints on the vari-
ables:

min
x+,x−

L(x+ − x−) + λ
∑

i

[x+
i + x−

i] s.t.∀ix
+
i ≥ 0, x−

i ≥ 0 (8)

A general SQP algorithm takes descent steps of the form x := x − td for a
step length t, where the descent direction d is calculated by solving the following
Quadratic Program [8]:

min
d
∇(L(x+ − x−)T + λ1)T d +

1
2
dT∇2L(x+ − x−)d (9)

s.t.∀ix
+
i + d+

i ≥ 0, x−
i + d−i ≥ 0 (10)

5 IRLS updates are typically applicable in cases where the loss is an affine function of
the covariates.

292 M. Schmidt, G. Fung, and R. Rosales

The linear constraints allow the objective function f(x) to be used directly as
a measure of progress (assuming the variables are initially non-negative and the
step length is never greater than one), avoiding the need to use special techniques
to avoid a scenario known as the Maratos effect [14]. For strictly convex problems,
the SQP iterates converge super-linearly to the optimal solution [8], explaining
the low number of iterates reported by [11] for IRLS-LARS. This general SQP
algorithm can be considerably less efficient than the IRLS-LARS algorithm, since
a general Quadratic Program must be solved at each iteration (although warm-
starting is possible), and the algorithm does not take advantage of the form of
the constraints.

ProjectionL1 Method. We propose to take advantage of the non-negative
bound constraints by using a Two-Metric Projection method [7], which we now
outline. Using the notation x∗ = [x+ x−]T , the active set of constraints for non-
negative bounds x∗

i ≥ 0 at an iterate x∗ is defined as {i|x∗
i = 0,∇L(x+ − x−) +

λ > 0}. To avoid very small steps, we replace the test x∗
i = 0 with 0 ≤ x∗

i ≤ ε, for
a small ε. At each iteration, we optimize the variables whose bound constraint
is not active (the working set) using a projected-gradient strategy. A standard
projected-gradient algorithm would take descent steps on the working set of the
form: x∗ := [x∗ − t∇f(x+ − x−)]+, where t represents the step length6 and the
element-wise ‘plus’ function projects onto the non-negative orthant.

The gradient projection strategy is appealing since it allows rapid changes in
the active set, and is especially suited to handle this type of problem due to
the simplicity of the constraint projection operator. However, its convergence
may be slow due to the use of the steepest decent direction. Hence, the ‘Two-
Metric Projection’ strategy scales the descent direction by the inverse of the
working set’s Hessian matrix, yielding the following simple update: x∗ := [x∗ −
t∇2f(x∗)−1∇f(x∗)]+. As in SQP, this algorithm achieves a superlinear rate of
convergence [7]. However, it has a substantially reduced iteration cost compared
to SQP (or IRLS-LARS).

To complete our discussion of the L1-regularized optimization methods pro-
posed in the literature, we note that in the Basis Pursuit Denoising literature,
Interior Point (primal-dual log-barrier) methods have been used (for example,
[2]). These methods, closely related to Log-Barrier methods, simultaneously op-
timize both the primal variables x∗ and a set of dual variables ν corresponding
to the Lagrange multipliers. It is straightforward to adapt these methods to the
general case using the bound-constrained formulation above. Assuming x∗ is fea-
sible and ν is non-negative, for a barrier parameter μ the remaining (modified)
first-order optimality (KKT) conditions for the bound-constrained problem can
be written as follows (where ◦ denotes the element-wise Hadamard product):

0 = r(x∗, ν) ≡
[
∇L(x+ − x−)− ν
−ν ◦ x∗ − μ1

]
.

6 The line search along the projection arc requires a modified Armijo condition [7].

Fast Optimization Methods for L1 Regularization 293

This equation corresponds to the gradient of the Lagrangian, and the (modi-
fied) complementary condition. We seek to solve the equation r(x∗, ν) = 0 by tak-
ing Newton-Raphson steps of the form [x∗ ν]T := [x∗ ν]T − t∇r(x∗, ν)−1r(x∗, ν),
where the step length t is truncated to ensure that x∗ and ν are non-negative
(computing ∇r(x∗, ν)−1r(x∗, ν) requires some algebraic manipulation). Between
iterates, the barrier parameter μ is updated based on an update rate (we use
10), the number of constraints m, and the duality gap νTx∗:μ = 10m(νTx∗)−1

(see [5] for a review of Interior Point methods).

3 Experiments

We have applied the above strategies to a variety of loss functions and data sets.
Specifically, we looked at a generalized version of the Gauss-Seidel, Shoot-
ing, Grafting, Sub-Gradient, epsL1, Log-Barrier, EM, Log(norm(w)),
SmoothL1, SQP, ProjectionL1, and Interior Point methods. Although the
general-L1 framework make no assumptions about convexity, we have restricted
our experiments to convex functions.

All methods were run until the same convergence criteria was met (i.e., where
appropriate, that the step length between iterates, change in function value
between iterates, negative directional derivative, or optimality condition was less
than 10−6). We assessed the ability of the methods to optimize a loss function
known only through a ‘black box’ function that returns the objective value and
derivatives for a given parameter setting. Convergence was measured based on
function evaluations; this is, the number of times the algorithm invoked the ‘black
box’ (to make the comparisons fair, all of the implementations were designed and
tuned with this in mind). The iterates were truncated to 250 such evaluations,
and methods whose final loss was greater than 10−3 times the minimum found
across the methods were assigned the maximum value of 250 evaluations to
punish for low accuracy. This was only needed in a small minority of cases,
since all methods typically either found a high accuracy solution, or reached the
maximum number of iterations. We used a second-order (Hessian-based Newton)
strategy across all methods examined.

3.1 Binary Classification

Our first experiment focused on the problem of optimizing the negative log-
likelihood associated with binary Probit Regression (using y as class labels,
z as the features, φ as the error function, and x as the paramters): L(x) =
log(φ(yix

T zi√
(2)

)) . We applied all 12 optimization strategies to 12 publicly avail-

able data sets7 from the UCI repository8. All methods were initialized with x = 0
7 1: Wisconsin Breast Cancer, 2: Australian Heart, 3: Pima Diabetes, 4: Australian

Credit, 5: Sonar, 6: Ionosphere, 7: German, 8: Bright, 9: Dim, 10: Adult, 11: Census,
12: 2Norm.

8 http://www.ics.uci.edu/∼mlearn/MLRepository.html

294 M. Schmidt, G. Fung, and R. Rosales

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (ProbitTrain)

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (SVMTrain)

Fig. 1. Distribution of function evaluations (averaged over λ) across 12 data sets to
train: (left) a Probit Regression classifier with L1-regularization and (right) a Smooth
Support Vector Machine classifier with L1-regularization (*=new method)

(those that do not allow this used x = 0.01). Using λmax
def= maxi |∇L(0)| as

the maximum value of λ for each data set9, we evaluated each data set at λmax

multiplied by each of [.1, .3, .5, .7, .9].
Since the methods discussed in this report apply to general differentiable

loss functions, we can easily replace the binary Probit Regression loss function
with other loss functions. We tested the optimizers using a differentiable loss
function closely related to the hinge loss used in Support Vector Machines: l(x) =
(1 − yix

T zi)+. In ‘Smooth’ Support Vector Machines, the projection (’plus’)
function in the hinge loss is replaced with the smooth approximation in Section
2.2, yielding a differentiable objective [12]. We repeated the Probit Regression
experiment with the Smooth Support Vector Machine loss function (we set the
parameter α controlling the accuracy of the loss approximation to 5). Fig. 1 plots
the distribution of the mean number of iterations to convergence across the data
sets for both binary classification loss functions. We also examined the binary
Logistic Regression loss (not shown due to space limit), finding results similar to
the Probit Regression experiment (these results are consistent with the findings
reported in [11]).

3.2 Multinomial and Structured Classification

We examined optimizing two more complicated objectives than those described
above: Multinomial Logistic Regression (using the Softmax function) and (2-
dimensional) Conditional Random Fields (CRFs). These represent more chal-
lenging scenarios since the Hessians of these models are often indefinite. We
9 This and higher values produce x = 0 as their solution, following from the first-order

optimality conditions of the unconstrained problem.

Fast Optimization Methods for L1 Regularization 295

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence (SoftMaxTrain)

0

50

100

150

200

250

Ite
ra

tio
ns

G
au

ss
−

S
ei

de
l

S
ho

ot
in

g

G
ra

fti
ng

S
ub

G
ra

di
en

t

ep
sL

1

Lo
gN

or
m

0

E
M

Lo
gB

ar
r−

C
T

S
m

oo
th

L1
−

C
T

*

S
Q

P

P
ro

je
ct

io
nL

1*

In
tP

oi
nt

Average number of iterations to convergence for different λ (PseudoTrain)

Fig. 2. Left: Distribution of function evaluations (averaged over λ) across 11 data
sets to train a Multinomial Logistic Regression classifier with L1-regularization. Right:
evaluations on the image patch classification data set to train an L1-regularized 2D
Conditional Random Field evaluated for various λ values (*=new method).

trained Multinomial Logistic Regression classifiers on 11 data sets10 from the
UCI repository and the Statlog project11. We trained the 2D Conditional Ran-
dom Field on an image patch classification task [10], using the following Pseudo-
likelihood (v represents edge weights that are also penalized).

l(x, v) = log(1 + exp(yix
T zi +

∑

j∈nei(i)

yiyjv
T zij)) (11)

A clear advantage of our approach of treating the loss as a generic function, is
that it is trivial to apply the methods to these more complicated objectives (once
the loss function and its partial derivatives are defined). We used the ‘CRF2D’
software to provide the CRF loss that we augmented with L1-regularization12.
The summarized results of these experiments are shown in Fig. 2.

4 Discussion

Table 1 summarizes the different methods we have examined, including an ag-
gregate convergence ranking across the experiments (ie. number of times the
loss is evaluated over all training examples), and a ranking of the iteration speed
of the different methods (which typically only depends on the number of vari-
ables). If we were to completely ignore iteration cost, SQP would be the fastest

10 1:Iris, 2:Glass, 3:Wine, 4:Vowel, 5:Vehicle, 6:LED, 7:Satellite, 8:Waveform21, 9:DNA,
10:Waveform40, 11:Shuttle.

11 http://www.liacc.up.pt/ML/old/statlog/
12 http://www.cs.ubc.ca/∼murphyk/Software/CRF/crf.html

http://www.liacc.up.pt/ML/old/statlog/

296 M. Schmidt, G. Fung, and R. Rosales

Table 1. Convergence ranking is determined by the average number of iterations to
convergence across the 405 experiments (methods whose average values are within 5
are grouped, the methods that required the fewest iterations are ranked 1, methods re-
quiring the most iterations ranked 8). Iteration speed is based on the cost of computing
the descent direction if all variables are non-zero (the fastest methods are ranked 1, the
slowest ranked 4). Notes: ∗: method improves the approximation between iterations. ∗∗:
method uses a constrained objective that is improved between iterations. ∗∗∗: methods
use the correct gradient, but only for the working set (other sub-gradient methods also
restrict to the working set).

Optimization Approx Sub- Explicit Convergence Iteration Speed
Method Objective Gradient Constraints Ranking Ranking

Gauss-Seidel [16] N Y N 6 1
Shooting [15] N Y N 8 1
Grafting [6] N Y N 4 2
Sub-Gradient N Y N 9 2

epsL1 [11] Y N N 5 2
Log(norm(x)) Y N N 10 2
EM [4] Y∗ Y∗∗∗ N 7 2
Log-Barrier [14] Y∗ N Y 3 3
SmoothL1 [ThisPaper] Y∗ N N 3 2

SQP [11] N N Y 1 4
ProjectionL1 [ThisPaper] Y Y∗∗∗ Y 1 3
Interior Point [5] Y∗∗ N Y 2 3

method. However, in terms of runtime, ProjectionL1 was typically the fastest
method across the experiments, since its iteration cost (solving a symmetric lin-
ear system) is substantially smaller than the cost of solving a quadratic program
(even if LARS is used). Although the approaches that explicitly enforced con-
straints were generally superior to the unconstrained approaches, the SmoothL1
approach was the most effective approach that did not use a constrained ap-
proach (the constrained approaches have a higher iteration cost since they solve
a linear system with double the number of variables). The 250 iteration limit
may have favorably skewed the convergence of methods that reached this limit
(making it difficult to draw definite conclusions on these). However, overall our
experiments indicated that the proposed ProjectionL1 strategy was the most effi-
cient in terms of runtime on the test problems, although the proposed SmoothL1
algorithm may be efficient on problems with many variables, while SQP may be
more efficient on problems with very expensive function evaluations.

In some scenarios, it might not be practical to compute (or store) analytic
Hessians. If we replace the analytic Hessian with a suitable (limited-memory)
Hessian approximation (ie. L-BFGS), all of the above methods can be applied
without modification (with the exception of the InteriorPoint method). This
substantially reduces the iteration cost and memory requirements (for all but the
coordinate descent strategies), at the cost of an increase in function evaluations.

In this work, we have reviewed 12 methods for solving general L1-regularized
optimization problems, and provided a numerical comparison on several standard

Fast Optimization Methods for L1 Regularization 297

machine learning problems. Two of these methods are novel (introduced in this
paper) and prove to be among the most efficient overall. Due to space constraints,
we have omitted some information that we would have liked to include. Online13,
we have made available additional details/proofs on some of the methods, code
(to enable reproducible research), and additional experimental results.

References

1. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and
mixed complementarity problems. Comput. Optim. Appl 5(2), 97–138 (1996)

2. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput. 20(1), 33–61 (1999)

3. Efron, B., Johnstone, I., Hastie, T., Tibshirani, R.: Least angle regression.
Ann. Stat. 32(2), 407–499 (2004)

4. Figueiredo, M.: Adapative sparseness for supervised learning. IEEE. Trans. Pat-
tern. Anal. Mach. Intell. 25(9), 1150–1159 (2003)

5. Freund, R.M., Mizuno, S.: Interior point methods: Current status and future di-
rections. Optima 51, 1–9 (1996)

6. Fu, W.: Penalized regressions: The bridge versus the LASSO. J. Com-
put. Graph. Stat. 7(3), 397–416 (1998)

7. Gafni, E., Bertsekas, D.: Two-metric projection methods for constrained optimiza-
tion. SIAM J. Contr. Optim. 22(6), 936–964 (1984)

8. Garcia Palomares, U.M., Mangasarian, O.L.: Superlinearly convergent Quasi–
Newton algorithms for nonlinearly constrained optimization problems. Math. Pro-
gram. 11, 1–13 (1976)

9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection.
J. Mach. Learn. Res. 3, 1157–1182 (2003)

10. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework
for contextual interaction in classification. In: ICCV (2003)

11. Lee, S.-I., Lee, H., Abbeel, P., Ng, A.Y.: Efficient L1 regularized logistic regression.
In: AAAI (2006)

12. Lee, Y.-J., Mangasarian, O.L.: SSVM: A smooth support vector machine. Com-
put. Optim. Appl. 20, 5–22 (2001)

13. Ng, A.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In:
ICML, pp. 78–85. ACM Press, New York (2004)

14. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
15. Perkins, S., Lacker, K., Theiler, J.: Grafting: Fast, incremental feature selection by

gradient descent in function space. J. Mach. Learn. Res. 3, 1333–1356 (2003)
16. Shevade, S., Keerthi, S.: A simple and efficient algorithm for gene selection using

sparse logistic regression. Bioinformatics 19(17), 2246–2253 (2003)
17. Tibshirani, R.: Regression shrinkage and selection via the lasso.

J. Roy. Stat. Soc. B 58(1), 267–288
18. Weston, J., Elisseeff, A., Scholkopf, B., Tipping, M.: Use of the zero norm with

linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)
19. Zhao, P., Yu, B.: On model selection consistency of LASSO. J. Mach. Learn. Res. 7,

2541–2567 (2007)

13 http://www.cs.wisc.edu/∼gfung/GeneralL1

http://www.cs.wisc.edu/~gfung/GeneralL1

Bayesian Inference for Sparse Generalized

Linear Models

Matthias Seeger, Sebastian Gerwinn, and Matthias Bethge

Max Planck Institute for Biological Cybernetics
Spemannstr. 38, Tübingen, Germany

Abstract. We present a framework for efficient, accurate approximate
Bayesian inference in generalized linear models (GLMs), based on the ex-
pectation propagation (EP) technique. The parameters can be endowed
with a factorizing prior distribution, encoding properties such as sparsity
or non-negativity. The central role of posterior log-concavity in Bayesian
GLMs is emphasized and related to stability issues in EP. In particular,
we use our technique to infer the parameters of a point process model
for neuronal spiking data from multiple electrodes, demonstrating sig-
nificantly superior predictive performance when a sparsity assumption is
enforced via a Laplace prior distribution.

1 Introduction

The framework of generalized linear models (GLM) [5] is a cornerstone of modern
Statistics, offering unified estimation and prediction methods for a large num-
ber of models frequently used in Machine Learning. In a Bayesian generalized
linear model (B-GLM), assumptions about the model parameters (sparsity, non-
negativity, etc) are encoded in a prior distribution. For example, it is common
to use an overparameterized model with many features together with a sparsity
prior. Only such features relevant for describing the data will end up having
significant weight under the Bayesian posterior. Importantly, for the models of
interest in this paper, inference does not require combinatorial computational
efforts, but can be done even with a large number of parameters.

Exact Bayesian inference is not analytically tractable in most B-GLMs. In
this paper, we show how to employ the expectation propagation (EP) technique
for approximate inference in GLMs with factorizing prior distributions. We focus
on models with log-concave (therefore unimodal) posterior, for which a careful
EP implementation is numerically robust and tends to convergence rapidly to
an accurate posterior approximation. The code used in our experiments will be
made publicly available.

We apply our technique to a point process model for neuronal spiking data
from multiple electrodes. Here, each neuron is assumed to receive causal input
from an external stimulus and the spike history, represented by features in a
GLM. In the presence of high-dimensional stimuli (such as images), with many
neurons recorded at a reasonable time resolution, we end up with a lot of features,
but we can assume that the system can be described by a much smaller number

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 298–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bayesian Inference for Sparse Generalized Linear Models 299

of parameters. This calls for a sparsity prior, and we are able to confirm the
importance of this prior assumption through our experiments, where our model
achieves much better predictive performance with a Laplace sparsity prior than
with a (traditionally favoured) Gaussian prior, especially for small to moderate
sample sizes. Our model is inspired by [10], who identify commonly used spiking
models as log-concave GLMs, but the Bayesian treatment as well as the usage
of sparsity in this context is novel.

The structure of the paper is as follows. In Section 2, we introduce and mo-
tivate the model class of B-GLMs. In Section 3, we show how the expectation
propagation method can be applied to B-GLMs, motivating the central role of
log-concavity in this context. Our multi-neuron spiking model is presented in
Section 4, and experimental results are presented in Section 5. We close with a
discussion in Section 6.

2 Bayesian Generalized Linear Models

The models we are interested in here are specified in terms of primary parameters
w (or weights) and hyperparameters θ . If D denotes the set of observations, the
likelihood is P (D|w), and the (Bayesian) prior distribution is P (w). We require
that

P (w|D) ∝
∏

j

φj(uj), uj = wT ψj , (1)

where P (w |D) ∝ P (D|w)P (w) is the (Bayesian) posterior. uj is a scalar-valued1

linear function of w , and the sites φj(·) are non-negative scalar functions. We
require that all φj are log-concave, i.e. each − logφj is convex2. The role of
log-concavity is clarified shortly, see also Section 3. Note that our framework
can be extended with no additional difficulties to models with an additional
joint Gaussian factor N(w|μ0,Σ0) in (1). Here, Σ0 need not be diagonal. Most
Gaussian process models fall in our class, for example [9].

Perhaps the simplest B-GLM is the linear one, where the likelihood is
Gaussian and given by factors φj(uj) = N(yj |uj, σ

2), describing data D =
{(ψj , yj)}, yj ∈ R. Equivalently, yj = ψT

j w + εj , where εj ∼ N(0, σ2) is noise.
If the linear model is used with a Gaussian prior on w, Bayesian inference can
be done analytically, essentially by solving the normal equations. However, this
convenient conjugate choice does not encode any strong assumptions about w
and can severely underperform in situations where such assumptions are reason-
able. What non-Gaussian priors can we use within our model class? We restrict
ourselves to factorizing priors: P (w) =

∏
k P (wk). Log-concave choices include

the Laplace (or double exponential) P (wk) ∝ e−ρk|wk| (sparsity); positive Gaus-
sian P (wk) ∝ N(wk|0, σ2

k)I{wk>0} (non-negativity); or exponential distribution
P (wk) ∝ e−ρkwk I{wk>0} (sparsity and non-negativity). Furthermore, any prod-
uct of log-concave functions is log-concave again.
1 Our framework applies just as well if the uj are low-dimensional vectors, but this is

not in the scope of this paper.
2 We allow for generalized convex functions, which may take the value +∞.

300 M. Seeger, S. Gerwinn, and M. Bethge

Gaussian Laplace Very Sparse

Fig. 1. Different prior distributions over coefficients of w

In this paper, we are principally interested in the Laplace distribution as a
sparsity prior. The linear model with this prior is the basis of the Lasso [19],
extensively used in Machine Learning (under names such as L1 regularization,
basis pursuit, and others). In the Lasso, we compute point estimates for the pa-
rameters, by maximizing the sum of the log likelihood and the log of the Laplace
sparsity prior. The latter L1 regularizer tends to force coefficient estimates to
zero exactly if they are not required. L1 penalization can be applied to nonlin-
ear GLMs as well, resulting in a convex estimation problem, for which several
algorithms have been proposed in Machine Learning.

The Bayesian inference approach is quite different. Rather than just estimat-
ing a single parameter value, a posterior distribution over parameters is com-
puted. More than a point estimate, we obtain credibility regions and information
about parameter correlations from the posterior. Parameters are never forced ex-
actly to zero under the posterior, since such a conclusion could not be justified
from finite observations. The function of the Laplace sparsity prior in Bayesian
inference is motivated in Figure 1. It leads to shrinkage of posterior mass towards
coordinate axes (vertical in the figure), something a Gaussian prior does not do.
On the other hand, the posterior remains log-concave, so that all contours en-
close convex sets. The stronger sparsity prior ∝ e−|aij|0.4

is not log-concave and
induces a multimodal posterior, which can be very hard to approximate. Note
that the role of the Laplace prior in our work here is not to provide feature
selection or sparse estimation, but rather to improve our inference for an over-
parameterized model from limited data. Note that the method proposed here
has been applied to Bayesian inference for the sparse linear model underlying
the Lasso in [16]. However, our application here requires a nonlinear model, since
the data are event times rather than real-valued responses.

Generalized linear models [5] extend the linear model to a range of differ-
ent tasks beyond real-valued regression estimation, while maintaining desirable
properties such as identifiability, efficient estimation, and simple asymptotics. All

Bayesian Inference for Sparse Generalized Linear Models 301

log-concave GLMs are of the form (1). The likelihood has exponential family
form, in that P (D|w) = exp(φ(D)T g − l(g) − a(D)), where g = g(w) are the
natural parameters, and l(g) is the log partition function, which is convex in
g. If g is linear in w , then P (D|w) is log-concave in w, since − logP (D|w) =
−φ(D)T w + l(g) up to a constant. Therefore, any log-concave factorizing prior
on w induces a B-GLM. If g(w) is composed of a linear map and a nonlinear
link function, log-concavity must be established separately. A concrete example
of a B-GLM of this kind is given in Section 4.

Importantly, the posteriors of B-GLMs are log-concave in w , therefore uni-
modal. This property is quite crucial to ensure that our approximate inference3

method is accurate and can be implemented in a numerically stable manner.
Note that many models of general interest are not B-GLMs, such as mixture
models, models with Student-t likelihoods. Many of the commonly used spar-
sity priors, such as “spike-and-slab” (mixture of narrow and wide Gaussian),
Student-t, or ∝ exp(−ρ|wk|α), α < 1 (see Figure 1 for α = 0.4), are not log-
concave, and accurate approximate inference is in general a very hard problem.
Furthermore, most approximate inference methods known today are numerically
unstable when applied to such models.

Several approximate inference methods for B-GLMs have been proposed. The
MCMC technique of [11] could be applied, together with adaptive rejection sam-
pling [3] for the likelihood factors. Our approach is significantly faster and more
robust than MCMC (where convergence is very hard to assess). Sparse Bayesian
Learning (SBL) [20] is the most well-known method for the sparse linear model.
SBL is related to our EP variant in [16]. It has been combined with EP and ap-
plied to B-GLMs in [12]. The main technical difference to our proposal is that they
use separate techniques to deal with likelihood sites (EP, moment matching) and
prior sites (scale mixture decomposition of Student-t), while we employ EP for
all sites. The EP update for Laplace prior sites is numerically challenging, and an
equivalent direct EP variant for a non-log-concaveStudent-t prior (used in SBL) is
likely to behave non-robustly (Malte Kuss, pers. comm.). The scale mixture treat-
ment circumvents these numerical difficulties, and stronger sparsity Student-t pri-
ors can be used. On the other hand, our direct approach runs significantly faster on
models of interest here, where there are many more likelihood than prior factors.
The method of [12] is a double-loop algorithm, where EP is run to convergence
on the likelihood sites after each update of the (prior) scale mixture parameters.
Our method is also more transparent, not mixing two different approximate infer-
ence principles4. Finally, their method approximates a multimodal posterior with
a single Gaussian in a variational lower-bound fashion (SBL can be interpreted
3 Faced with non-log-concave models with multimodal posteriors, most approximate

inference techniques somewhat break down, with the exception of MCMC techniques,
which however typically become very inefficient in such situations.

4 These principles may in fact be based on qualitatively different divergence measures,
noting that SBL has variational mean-field character [22], which uses a different diver-
gence than EP [6]. Since these divergences focus on different aspects of approximation
[6], mixing them is non-transparent and may lead to algorithmic problems such as slow
convergence.

302 M. Seeger, S. Gerwinn, and M. Bethge

in a variational way, see [22]), which is often quite loose. Typical robustness and
“symmetry-breaking” problems in such methods are hidden in the optimization
over the scale mixture (prior) parameters, which may be hard to solve properly.
Even if their SBL approach is applied to a model with Laplace priors (by using the
scale mixture decomposition of the Laplace, see [11]), the implications of posterior
log-concavity for their method are less clear.

Note that the Laplace approximation frequently used for approximate
Bayesian inference cannot be applied directly to the sparse GLM, since the
Hessian does not exist at the posterior mode. A double-loop method can be
derived by applying the Laplace approximation to the likelihood only, this has
been proposed in [20].

3 Expectation Propagation

Exact Bayesian inference is not analytically tractable for the application con-
sidered here, or for most B-GLMs in general. However, it can be approximated,
and our approach is based on the expectation propagation (EP) method [7,9]. EP
results in a Gaussian approximation Q(w) to a posterior P (w |D) of the form
(1). While the latter is not Gaussian, its log-concavity (and unimodality) moti-
vates such an approximation. EP is used for a linear model (Gaussian likelihood)
with Laplace prior in [16], and has been used for a range of models with Gaus-
sian prior and log-concave likelihood [9], albeit not for point process data (as
is done here; an application to discrete-state continuous-time Markov processes
was given in [8]). In general, there has not been much work on approximate
inference for nonlinear models with sparsity priors (an exception is [12]).

The posterior P (w |D) in (1) is formally a product of J sites φj , normalized
to integrate to one. Each site φj is either part of the likelihood P (D|w) or of the
prior P (w). Let K be the number of variables: w ∈ RK . We use a factorizing
Laplace prior on w ,

P (w) =
K∏

k=1

φk(wk), φk(wk) ∝ e−ρ|wk|, ρ > 0, (2)

whose sparsity-enducing role has been motivated above. The likelihood sites
φj , j = K + 1, . . . , J in (1) are log-concave and will be specified further below
for the model of interest.

The EP posterior approximation of (1) has the form Q(w) ∝
∏

j φ̃j(uj),
where φ̃j(uj) = exp(bjuj− 1

2πju
2
j) are site approximations of Gaussian form, the

bj, πj are called site parameters. The log-concavity of the model implies that
all πj ≥ 0. Some of them may be 0, as long as Q(w) is a (normalizable) Gaus-
sian throughout. An EP update at j consists of computing the Gaussian cavity
distribution Q\j ∝ Qφ̃−1

j and the non-Gaussian tilted distribution P̂ ∝ Q\jφj ,
then updating bj , πj such that the new Q′ has the same mean and covariance as
P̂ (moment matching). This is iterated in some random ordering over the sites
until convergence.

Bayesian Inference for Sparse Generalized Linear Models 303

Let Q(w) = N(w|h,Σ). An EP update at site j leads to a rank-one update
of Σ , featuring vj = Σψj , and costs O(K2). Details are given in the appendix.
It is shown in [15] that for log-concave sites this update can always be done, and
results in πj ≥ 0. In this case, EP updates can typically be done in a stable way,
and empirically the method converges reliably and quickly. In contrast to this,
EP tends to be very problematic to run on non-log-concave models. Full updates
may not always be possible (for example resulting in negative variances), and
damping techniques are typically required to attain convergence at all. Cases
of EP divergence for multimodal posteriors have been reported [7]. EP updates
often become inherently unstable operations in these cases5.

A good initialization of b, π depends on the concrete B-GLM. For our sparse
spiking model (see Section 4), we start with b = 0, and πj = 0 for all likelihood
sites, but πk = ρ2/2 for prior sites, ensuring that φk (2) and φ̃k have the same
first and second moments initially, k = 1, . . . ,K.

It is reported in [16] that in the presence of a factorizing Laplace prior, EP
can behave extremely unstably if w is only weakly constrained by the likeli-
hood. This happens in strongly underdetermined linear models (more variables
than observations), but will typically not be the case in parametric B-GLMs.
For example, in our spiking model application, we have many more likelihood
sites than w components. In such cases, an initial EP update sweep over all
likelihood sites is recommended, before any Laplace prior sites are updated.
In an underdetermined case, the measures developed in [16] may have to be
applied.

The marginal likelihood P (D|θ) is the probability of the data, given model
and hyperparameters θ, where primary parameters w have been integrated out.
It is the normalization constant in (1). This quantity, also known as partition
function or evidence, can be used to conduct Bayesian tests (via Bayes factors),
or to adjust θ in a way robust to overfitting. EP comes with a marginal like-
lihood approximation, which in our case can be derived from [16,15], together
with its gradient w.r.t. θ . Details will be described in a longer version of this
paper.

4 Sparse Feature Neuronal Spiking Model

An important approach to understanding neural systems is to build models in
order to predict spike responses to natural stimuli [2]. Traditionally, single cell
responses are characterized using spike-triggered averaging techniques6, allowing
for efficient estimation of the linear receptive field, a concise description of what
the cell is most sensitive to. For example, a neuron in the early visual cortex may
5 In this case, a multimodal posterior is approximated by a unimodal Gaussian, so

that spontaneous “symmetry breaking” does occur. The outcome may then depend
significantly on artificial choices such as site ordering for the updates, or numerical
roundoff errors during the updates.

6 Statistics are obtained by averaging over a window [ti − Δ, ti), ti a spike, character-
izing effects which precede a spike emission [14].

304 M. Seeger, S. Gerwinn, and M. Bethge

act as a detector of certain features such as edges or lighting/texture gradients
of particular orientation in a small area of the visual field: its receptive field
can be thought of as a localized, oriented filter, and only the appearance of the
specific event will elicit a strong response. This notion can be grounded in a spe-
cific GLM: the linear-nonlinear cascade model [10]. Recent developments apply
this formalism to multi-neuron responses [4,10]. We present another important
conceptual extension: rather than computing point estimates of model param-
eters only, we employ a full Bayesian inference scheme, allowing us to encode
desirable properties via the prior. The resulting posterior gives quantitative an-
swers about localization and dispersion of inferred model parameters, together
with credibility intervals (“error bars”) describing the range of uncertainty in
the parameters. Assessing uncertainty is essential in this application, since neu-
ral response models come with many parameters, and only a limited amount of
data is available.

We adopt linear-nonlinear-Poisson (LNP) cascade models [17], where spikes
Di = {tj,i} of neuron i come from an inhomogeneous Poisson process, whose
instantaneous firing rate λi(t) is a nonlinear function of the output of a linear
filter. The filter coefficients are the primary parameters wi. λi(t) depends on both
stimulus events as well as the spiking history of all neurons. There are stimulus-
neuron dependencies (normally described by the linear receptive field) as well as
neuron-neuron dependencies: λi(t) may depend on spikes from D = ∪iDi, lying
in [0, t). In summary, LNP models are obtained as λi(t) = λi(wT

i ψ(t)), where
ψ(t) does not depend on primary parameters: a linear filter is followed by a non-
linear transfer function λi, which feeds into an inhomogeneous Poisson process.
According to general point process theory [18], the negative log likelihood for
spike data D is

∑

i

⎛

⎝−
∑

j

logλi(wT
i ψ(tj,i)) +

∫
λi(wT

i ψ(t)) dt

⎞

⎠ .

It has been shown in [10] that the likelihood is log-concave in wi if λi(·) is convex
and log-concave.

The model we consider here is a generalization of a Poisson Network [13], and a
special LNP model. For a sequence of changepoints 0 = t̃0 < t̃1 < · · · < t̃j < . . . ,
we assume that ψ(t) is constant in each [t̃j−1, t̃j), attaining the value ψj there.
The semantics of changepoints are given below, here we note that all spikes
(from all neurons) are changepoints, with ξj,i = 1 iff t̃j ∈ Di and ξj,i = 0 oth-
erwise. Under this assumption, the likelihood is P (D|{wi}) =

∏
i Li(wi), where

each Li(wi) has the form (1), with φj,i(uj,i) = λi(uj,i)ξj,i exp(−τjλi(uj,i)), τj =
t̃j − t̃j−1. Importantly, while we require that all rates λi(t) are piecewise con-
stant, we do not restrict ourselves to a uniform quantization of the time axis.
The changepoint spacing is far from uniform, but rather tracks current spiking
activity and stimulus quantization.

A simple transfer function is λi(u) = eu, giving rise to a log-linear point
process model. Another option is λi(u) = euI{u<0} + (1 + u)I{u≥0}, which grows
linearly only [4]. The class of admissable λi is characterized in [10].

Bayesian Inference for Sparse Generalized Linear Models 305

The piecewise constant features ψ(t) encode spike history and input stimulus
(with some history as well) by using windows back in time. In order to infer
the precise timing of relationships, we need a narrow spacing, and thus end up
with many features, only a small part of which will be necessary to describe the
data. This notion is embodied in the Laplace sparsity prior. We use P ({wi}) =∏

i P (wi), each factor having the form (2). The posterior for our sparse multi-
neuron spiking model factorizes w.r.t. wi, each factor constituting a B-GLM
of the form (1). The prior sites have the form φk,i(uk,i) = ρi

2 exp(−ρi|uk,i|)
with ψk = δk = (I{l=k})l. EP is used for approximate inference, as detailed in
Section 3. It can be run in parallel across neurons, although the feature vectors
ψj are shared among them.

We describe the composition of ψ(t) informally only. A more formal descrip-
tion will be given in a longer version of this paper. The spike-history part of
ψ(t) depends on windows Il(t) = (t−ΔH

l , t−ΔH
l−1], 0 = ΔH

0 < ΔH
1 < . . . , com-

ponents are ni,l(t) = |{j| tj,i ∈ Il(t)}|. These give rise to changepoints tj,i + Δl

for all j, i, and l ≥ 0. The input stimulus x(t) is a step function, changing at
tIj , j ≥ 1. This adds components x(t −ΔI

l) to ψ(t) for another system of lags
0 ≤ ΔI

0 < ΔI
1 < The corresponding changepoints are tIj + ΔI

l for all j, l.
The list of changepoints can be computed from the dataset, it does not depend
on parameter settings. We also use a constant feature in ψ(t), whose parameter
controls the mean firing rate.

For fixed parameters wi, we can easily compute the log likelihood for some
data by an accumulation of logφj,i. Here, the list of changepoints can be grown
sequentially. The posterior expected log likelihood can be approximated by av-
eraging over a sample drawn from Q({wi}), or by just plugging in the posterior
means. We can also sample data exactly from the model for fixed parameters
wi, using a simple variant of the Gillespie algorithm (e.g., [21]). This is possible
only because we restrict ourselves to piecewise constant features ψ(t). Sampling
from the model is useful to approximate predictive probabilities for essentially
arbitrary queries.

5 Experimental Results

In this section we present results for the multi-neuron spiking model of Section 4,
applied to data recorded from retinal ganglion cells stimulated with white noise in
a whole-mount preparation. More precisely, the stimulus has been generated from
an m-sequence, yielding 16x16 bitmaps of spatially and temporally decorrelated
light intensity patterns presented at about 50 Hz (20 ms between stimulus onset
and offset). We selected four out of 27 neurons for our analysis, with average
mean firing rate of 9 Hz for a recording time of 658 s . Details about the recording
technique and the spike-sorting method can be found in [23].

The goal of our first analysis is to investigate how the Gaussian and the
Laplace priors differentially affect the inference in our neuronal spiking model, de-
pending on the amount of data used. This study is carriedout for one out of the four
neurons, with a substantially reduced set of parameters, in that we use a single time

306 M. Seeger, S. Gerwinn, and M. Bethge

Fig. 2. Left: Comparison between Gaussian and Laplace prior for the reduced model.
Hyperparameters are chosen by crossvalidation (see text). The negative log-likelihood
value on the test dataset is plotted as a function of dataset size of the training set.
Errorbars are obtained by sampling from the approximative posterior distribution and
correspond to 2 standard deviations. Right: Receptive fields (shown are posterior
means) under model with Gaussian (upper) and with Laplace prior (lower), for different
training set sizes. Curves below show marginal posteriors (absolute value of mean, one
std. dev. error bars, cut off at zero), decreasing order.

lag ΔI
0 = 120 ms for stimulus dependence, six windows ΔH

l = 0, 1, 10, 20, 40, 80,
160 ms for spike history, and a constant offset feature. The complete data set was
partitioned into test set, validation set (10% each), and a training pool (80%). The
training sets are selected as increasing portions of the latter, in steps of 10%. Our
B-GLM at present comes with a single hyperparameter ρ, the scale of the prior.
This parameter is determined, independently for the Gaussian and the Laplace
variant, by maximizing the log likelihood of the validation set under the posterior
mean parameters for a training set of size 10%.

The log likelihood scores on the test set (Figure 2, left) show that the Laplace
prior configuration of our model clearly outperforms the Gaussian prior variant.
As expected, the difference is most pronounced for small training set sizes, and
does eventually vanish for large data sets, when the prior has less and less in-
fluence on the inference. This confirms the statistical validity of the sparseness
assumption for this task. As discussed in Section 2 and Figure 1, the Gaussian
has a strong tendency to push large values towards zero, while the Laplace prior
concentrates more on shrinking smaller values strongly to zero (see Figure 2,
right; 80%, lower panel). The intolerance of even a small number of large coeffi-
cients means that the prior variance of the Gaussian has to be chosen larger than
for the Laplace, leading to very diffuse receptive field estimates (see Figure 2,
right).

The goal of our second study is to demonstrate that the sparse Bayesian
estimation framework allows us to obtain reliable results also for more complex
models with a large number of parameters. We did the same experiments as
above with a full setup consisting of n = 4 neurons, five time lags for stimu-
lus dependency (20, 40, 80, 120, 160ms), the same six windows for spike history

Bayesian Inference for Sparse Generalized Linear Models 307

Fig. 3. Left: Stimulus dependence for the four neurons (columns) at different time
lags (rows). Shown are posterior means. Gray scale from dark (minimum) to light
(maximum). Right: Causal dependencies between the four neurons. Each plot shows
the parameter value as function of increasing time lag. Shown are posterior mean and
three std. dev. Note that all inter-dependency parameter estimates are positive, while
the offset parameters for each of the neurons is significantly negative. Self-excitation
can be clearly seen, explaining the bursting behaviour seen in the data.

and constant offset feature as above, resulting in a total number of parameters
K = 1305 (versus K = 263 for the restricted setup). We use training set size
10%, and score Gaussian and Laplace variant by the negative test set log like-
lihood for the one neuron used in the restricted setup. We have nlh1,Gauss =
1953.14, nlh1,Laplace = 1920.35, diff1,Gauss−Laplace = 32.79 for the restricted, and
nlh4,Gauss = 2984.5, nlh4,Laplace = 1992.59, diff4,Gauss−Laplace = 991.91 for the
full setup. Both Gaussian and Laplace variant become worse on the full setup,
owing to the fact that there is a much larger number of parameters and inter-
dependence features, explaining the same number of spikes (although the data
from the other neurons can be used as well in the full setup). In summary the
Laplace prior becomes more import the more parameters the model has.

Using the full training pool (80%, 178326 changepoints), we obtain reliable
posterior mean estimates for both the stimulus-neuron and the neuron-neuron de-
pendencies (we used the ρ value determined for the restricted setup). The recep-
tive fields (Figure 3, left) are localized in space and time, as is typical for retinal
ganglion cells. Self-feedback dominates the spike history parameters (Figure 3,
right), allowing the model to explain short burst behaviour of retinal cells [1].

6 Conclusion

We have presented a method for approximate Bayesian inference in generalized
linear models with factorizing priors, which is accurate, efficient, and numerically
robust. In particular, we applied this method to a multi-neuron spiking model
and showed that the usage of a Laplace sparsity prior leads to superior prediction
performance at no extra cost, compared to the standard Gaussian choice.

308 M. Seeger, S. Gerwinn, and M. Bethge

Our method is versatile and flexible, catering to various applications as the
family of B-GLMs is large, containing the sparse linear model, the generalized
linear and Gaussian process models for classification, robust regression, ordinal
regression, survival analysis and many more. While these models are often fitted
to data by point estimation techniques, our framework can be used to obtain a
good approximation to the full posterior distribution efficiently.

In future work, we will explore ideas to speed up our method drastically, for
example by exploiting the fact that ψj+1 − ψj is sparse. We will also consider
factor representations of the parameters wi, for example to learn wide-horizon,
fine-grained spatio-temporal receptive fields, and extensions of our basic model
by latent variables. Both will render the complete model non-log-concave, but our
method here will still be useful as subroutine in a surrounding belief propagation
architecture.

Acknowledgments

We thank G. Zeck for providing us with data, and J. Macke for helpful discus-
sions. Supported in part by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778.

References

1. Berry, M., Warland, D., Meister, M.: The structure and precision of retinal spike
trains (1997)

2. Carandini, M., Demb, J., Mante, V., Tolhurst, D., Dan, Y., Olshausen, B., Gallant,
J., Rust, N.: Do we know what the early visual system does? J Neurosci 25(46),
10577–10597 (2005)

3. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Applied
Statistics 41(2), 337–348 (1992)

4. Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., Buzsaki, G.: Organization of cell
assemblies in the hippocampus. Nature 424(6948), 552–556 (2003)

5. McCullach, P., Nelder, J.A.: Generalized Linear Models. In: Monographs on Statis-
tics and Applied Probability, 1st edn. no. 37, Chapman & Hall (1983)

6. Minka, T.: Divergence measures and message passing. Technical Report MSR-TR-
2005-173, Microsoft Research, Cambridge (2005)

7. Minka, T.: Expectation propagation for approximate Bayesian inference. Uncer-
tainty in AI 17 (2001)

8. Nodelman, U., Koller, D., Shelton, C.: Expectation propagation for continuous
time Bayesian networks. Uncertainty in AI 21, 431–440 (2005)

9. Opper, M., Winther, O.: Gaussian processes for classification: Mean field algo-
rithms. N. Comp. 12(11), 2655–2684 (2000)

10. Paninski, L.: Maximum likelihood estimation of cascade point-process neural en-
coding models. Network: Computation in Neural Systems 15, 243–262 (2004)

11. Park, T., Casella, G.: The Bayesian Lasso. Technical report, University of Florida
(2005)

12. Qi, Y., Minka, T., Picard, R., Ghahramani, Z.: Predictive automatic relevance
determination by expectation propagation. In: Proceedings of ICML 21 (2004)

Bayesian Inference for Sparse Generalized Linear Models 309

13. Rajaram, S., Graepel, T., Herbrich, R.: Poisson networks: A model for structured
point processes. AI and Statistics 10 (2005)

14. Rieke, F., Warland, D., van Steveninck, R.R., Bialek, W.: Spikes: Exploring the
Neural Code, 1st edn. MIT Press, Cambridge (1999)

15. Seeger, M.: Expectation propagation for exponential families. Tech-
nical report, University of California at Berkeley (2005) See
http://www.kyb.tuebingen.mpg.de/bs/people/seeger

16. Seeger, M., Steinke, F., Tsuda, K.: Bayesian inference and optimal design in the
sparse linear model. AI and Statistics 11 (2007)

17. Simoncelli, E., Paninski, L., Pillow, J., Schwartz, O.: Characterization of neural
responses with stochastic stimuli. In: Gazzaniga, M. (ed.) The Cognitive Neuro-
sciences, 3rd edn., MIT Press, Cambridge (2004)

18. Snyder, D., Miller, M.: Random point processes in time and space. Springer Texts
in Electrical Engineering (1991)

19. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat.
Soc. B 58, 267–288 (1996)

20. Tipping, M.: Sparse Bayesian learning and the relevance vector machine.
J. M. Learn. Res. 1, 211–244 (2001)

21. Wilkinson, D.: Stochastic Modelling for Systems Biology. Chapman & Hall (2006)
22. Wipf, D., Palmer, J., Rao, B.: Perspectives on sparse Bayesian learning. In: Ad-

vances in NIPS 16 (2004)
23. Zeck, G., Xiao, Q., Masland, R.: The spatial filtering properties of local edge de-

tectors and brisk-sustained retinal ganglion cells. Eur J Neurosci 22(8), 2016–2026
(2005)

Appendix

EP update: Match moments of P̂ (uj) ∝ φj(uj)φ̃j(uj)−1Q(uj) and Q′(uj), so
bj → b′j = bj + Δbj , πj → π′

j = πj + Δπj . If Q(w) = N(h,Σ), then Q′(w) ∝
exp((Δbj)uj − 1

2 (Δπj)u2
j)Q(w) with uj = ψT

j w . If vj = Σψj , aj = ψT
j vj ,

μj = ψT
j h:

Σ′ = Σ − Δπj

1 + Δπjaj
vjv

T
j , h′ = h +

Δbj −Δπjμj

1 + Δπjaj
vj .

The computation of b′j , π
′
j depends on the exact form of φj(uj). For Laplace sites,

the computation is analytic, but numerically challenging [16]. For the likelihood
sites of our spiking model, the required one-dimensional integrals are numerically
harmless and can be approximated with Gauss-Hermite quadrature.

http://www.kyb.tuebingen.mpg.de/bs/people/seeger

Classifier Loss Under Metric Uncertainty

David B. Skalak1, Alexandru Niculescu-Mizil2, and Rich Caruana2

1 Highgate Predictions, LLC, Ithaca, NY 14850 USA
2 Cornell University, Ithaca, NY 14853 USA
{skalak,alexn,caruana}@cs.cornell.edu

http://www.cs.cornell.edu/

Abstract. Classifiers that are deployed in the field can be used and eval-
uated in ways that were not anticipated when the model was trained. The
final evaluation metric may not have been known at training time, addi-
tional performance criteria may have been added, the evaluation metric
may have changed over time, or the real-world evaluation procedure may
have been impossible to simulate. Unforeseen ways of measuring model
utility can degrade performance. Our objective is to provide experimental
support for modelers who face potential “cross-metric” performance dete-
rioration. First, to identify model-selection metrics that lead to stronger
cross-metric performance, we characterize the expected loss where the
selection metric is held fixed and the evaluation metric is varied. Sec-
ond, we show that the number of data points evaluated by a selection
metric has substantial impact on the optimal evaluation. While address-
ing these issues, we consider the effect of calibrating the classifiers to
output probabilities influences. Our experiments show that if models are
well calibrated, cross-entropy is the highest-performing selection metric
if little data is available for model selection. With these experiments,
modelers may be in a better position to choose selection metrics that are
robust where it is uncertain what evaluation metric will be applied.

Keywords: performance metric, evaluation, calibration, cross-metric.

1 Introduction

Most machine learning research on classification has assumed that it is best to
train and select a classifier according to the metric upon which it ultimately will
be evaluated. However, this characterization makes several assumptions that we
question here. What if we don’t know the metric upon which the classifier will
be judged? What if the classification objective is not optimal performance, but
simply robust performance across several metrics? Does it make any difference
how much data is available on which to base model performance estimates? What
if we want at least to avoid the worst-performing selection metrics?

In this paper we give experimental results to begin to answer questions like
the ones we have just posed. The results show that the choice of selection metric
depends to a large degree on how much data is available to measure perfor-
mance and depends also on whether the underlying models produce accurate
probabilities.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 310–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Classifier Loss Under Metric Uncertainty 311

It is not so far-fetched that we may not have as much knowledge of — and
access to — the ultimate evaluation metric as is usually assumed. In some sit-
uations a modeler may have the discretion to build models that optimize one
of several metrics but not have access to a classification algorithm that directly
optimizes the evaluation metric. For example, the modeler may decide between
optimizing cross-entropy or root-mean-squared error through the choice of model
class and training algorithm. But if these models are evaluated with respect to
the F-score metric, it would be important to compare expected performance
losses in going from cross-entropy to F-score and from root-mean-squared er-
ror to F-score. These considerations arise in natural language processing (NLP)
tasks, such as noun phrase coreference resolution, where classification models
may be built to maximize accuracy, but where F-score or average precision pro-
vides the ultimate measure of success [1]. In fact, NLP tasks are often evaluated
on multiple reporting metrics, compounding the cross-metric problem.

The complex data processing required for NLP systems often places NLP
classifiers in a pipeline where they are judged according to the performance they
enable in downstream modules that receive the class predictions. Embedded
classifiers may be subjected to evaluation(s) that cannot easily be tested and
that may change according to evolving criteria of the entire system.

A marketing group in a large organization may request a model that maxi-
mizes response lift at 10% of the universe of customers. After the model has been
built, the marketing budget for the campaign is cut, but the marketing group
has the campaign ready to roll out and so not have the time to commission an-
other model. In that case the database marketing group may decide to contact
only 5% of the customers. The model that optimized response at the 10% level
will now be judged in the field according to a different criterion: response from
5% of the customers. (Alternatively, the marketing group may not even specify
its performance criterion, but may request a model that “simply” yields opti-
mal profits, accuracy, and lift.) What model should be selected to be robust to
changes such as these?

The availability of multiple performance metrics also poses questions for ma-
chine learning research. For example, an author may want to use a test metric
that would be most acceptable to a wide readership. An author might also want
to apply a second test metric under which performance is most likely to vary
meaningfully from the first, and therefore provide complementary guidance.

Thus real-world considerations make evaluation more complicated than might
be generally assumed. Performance metrics may change over time, may not be
known, may be difficult to simulate, or may be numerous. In this paper we ex-
amine uncertain evaluation by providing experimental answers to two questions:

1. What selection metrics yield the highest performance across commonly ap-
plied evaluation metrics?

2. What is the effect of the number of data points available for making model
selection judgments where the ultimate evaluation metric may be unknown?

In our experiments, we show one important factor is whether a classifier has
been calibrated to output accurate probabilities. Context for all these results is

312 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

provided by a brief survey of closely related research (Section 2) and a discussion
of the characteristic shape of distributions gleaned from plotting selection metric
performance against evaluation metric performance (Section 6).

2 Related Research

As part of an extensive set of experiments, Huang and Ling defined a model
selection ability measure called MSA to reflect the relative abilities of eight met-
rics to optimize one of three target metrics: accuracy, area under the ROC curve
(“AUC”) and lift [2]. Given one of these three “goal” metrics, MSA measures
the probability that one of the eight metrics correctly identifies which member
of all pairs of models will be better on the goal metric. While this is an attrac-
tive summary approach, our experiments hew more closely to how we see model
selection done in practice. Our experiments measure how one metric’s best per-
forming models perform when measured by a second metric. Since practitioners
tend to focus on superior models only, our methodology also reflects that bias.
Our empirical study below also evaluates all our metrics as reporting methods
rather than limiting the study to a proper subset of three goal metrics. The roles
of probability calibration and classifier combination in reducing performance loss
are also studied additionally here.

Several related efforts to develop algorithms to handle multiple performance
criteria have also been made [3,4,5]. Additionally, Ting and Zheng [6] have pro-
vided an approach to deal with changes in costs over time.

In 2004 as part of a statistical study of AUC, Rosset showed empirically that,
even where the goal is to maximize accuracy, optimizing AUC can be a superior
strategy for Naive Bayes and k-nearest neighbor classifiers [7]. Joachims has ex-
tended support vector methodology to optimize directly non-linear performance
measures that cannot be decomposed into measures over individual examples,
and any measure derived from a contingency table [8]. Cortes and Mohri give a
statistical analysis of accuracy and AUC and show that classifiers with the same
accuracy can yield different AUC values when accuracy is low [9].

3 Experimental Design

3.1 Performance Metrics

The performance metrics we study are accuracy (ACC), lift at the 25th per-
centile (LFT), F-score (FSC), area under the ROC curve (ROC), average pre-
cision (APR), precision-recall break-even point (BEP), root-mean squared error
(RMS), and mean cross-entropy (MXE). We also synthesize a hybrid metric that
is defined as the equally-weighted mean performance under RMS, ROC and ACC
(called “ALL”). We follow the definitions of these performance metrics found in
Caruana and Niculescu [10], since they are implemented in the PERF code that
was made available by Caruana in connection with the KDD Cup 2004.

Classifier Loss Under Metric Uncertainty 313

We have also adopted the same conventions as to the normalization of classifier
performance with respect to various metrics. Unfortunately, normalization is
necessary in order to compare directly metrics with different measurement scales.
Metrics have been normalized to values in [0, 1] where 0 represents the baseline
performance of classifying all instances with the most frequent class in the data,
and 1 corresponds to the best performance of any model developed in our lab
on that data 1.

3.2 Problems

Eleven binary classification problems were used in these experiments. ADULT,
COV TYPE and LETTER are from the UCI Repository [11]. COV TYPE has
been converted to a binary problem by treating the largest class as the posi-
tive and the rest as negative. We converted LETTER to boolean in two ways.
LETTER.p1 treats “O” as positive and the remaining 25 letters as negative,
yielding a an unbalanced problem. LETTER.p2 uses letters A-M as positives
and the rest as negatives, yielding a well-balanced problem. HS is the Indi-
anPine92 data set [12] where the difficult class Soybean-mintill is the positive
class. SLAC is a problem from the Stanford Linear Accelerator. MEDIS and MG
are medical data sets. COD, BACT, and CALHOUS are three of the datasets
used in [13]. ADULT, COD, and BACT contain nominal attributes. For neu-
ral networks, SVMs, KNNs, and logistic regression we transform nominal at-
tributes to boolean (one boolean per value). Each decision tree, bagged deci-
sion tree, boosted tree, boosted stump, random forest and naive Bayes model
is trained twice, once with transformed attributes and once with the original
ones.

3.3 Model Types

The 10 model types that we used in this experiment were: back-propagation
neural networks, bagging of decision trees, boosting of decision trees, k-nearest
neighbor, logistic regression, Naive Bayes, random forests, decision trees, boost-
ing decision stumps and support vector machines. We create a library of ap-
proximately 2,000 models trained on training sets of size 4,000. We train each of
these models on each of the 11 problems to yield approximately 22,000 models.
The models are all as described in [14].

The output of such learning methods as boosted decision trees, boosted de-
cision stumps, SVMs and Naive Bayes cannot be interpreted as well-calibrated
posterior probabilities [15]. This has a negative impact on the metrics that in-
terpret predictions as probabilities: RMS, MXE and ALL (which invokes RMS).
To address this problem, we use post-training calibration to transform the pre-
dictions of all the methods into well-calibrated probabilities. In this paper cali-
bration is done via Platt scaling [16].

1 The performance upper bounds are available to interested researchers.

314 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

To fit the calibrated model we use a set of 1000 points reserved solely for
calibration (i.e. they are not part of the training, validation or final test set).2

While in practice one would use the same set of points both for calibration and
for model selection, here we use separate sets in order to separate the effects
of calibration from the effects of model selection on performance. The effect of
calibration is further discussed in Section 5.

4 The Effect of Sample Size on Selection Metric Choice

In this section we discuss the effect of small data sample size on the decision
of which selection metrics to use. Our primary objective in this section is to
quantify the loss in selecting on one metric but reporting on another. To obtain
the results in this section, we use the following methodology. For each prob-
lem, we train each of the approximately 2000 models on a 4000 points training
set, and calibrate it using the extra 1000 points calibration set. All the trained
models are then evaluated on a validation (selection) set, and the model with
the best performance on the selection metric is found. Finally, we report the
evaluation (reporting) metric performance of the best model on a final indepen-
dent test set. To ensure that the results are not dependent on the particular
train/validation/test set split, we repeat the experiment five times and report
the average performance over the five trials.

To investigate how the size of the selection set affects the performance of
model selection for different selection metrics, we consider selection sets of 100,
200, 500 and 1000 points. For comparison we also show results for “optimal”
selection, where the final test set is used as the selection set.

We use the following experimental procedure. We are given a problem, a
selection metric, s, and a reporting metric, r. We choose from our library the
classifier Cs that has the highest normalized score under the selection metric s.
We then measure the score of that classifier Cs under the reporting metric r.
Call that score r(Cs).

Next we identify the classifier C∗ that has the highest performance on the
reporting metric. Call that score r(C∗) . The difference r(C∗) − r(Cs) is the
loss we report. The selection of Cs is done on a validation set and the reporting
metric performance of both classifiers is computed on an independent test set.

Figure 1 shows the loss in performance due to model selection for nine selec-
tion metrics averaged across the nine reporting metrics. The tenth line, ORM
(Optimize to the Right Metric), shows the loss of always selecting using the
evaluation metric (i.e. select using ACC when the evaluation metric is ACC,
ROC when the evaluation metric is ROC, etc.). On the X axis we vary the size
of the selection set on a log scale. The right-most point on the graph, labeled
2 This approach could give metrics affected by calibration (e.g., RMS and MXE) an

advantage for model selection over metrics not affected by calibration (e.g., ACC,
ROC, and LFT). To verify that this is not a problem we repeated the experiments
with well-calibrated models that do not require post-training calibration (and thus
do not use extra calibration data) and obtained similar results.

Classifier Loss Under Metric Uncertainty 315

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

ACC
ALL
APR
BEP
FSC
LFT

MXE
RMS
ROC
ORM

Fig. 1. Average across all nine reporting metrics

OPT, shows the loss when selection is done “optimally” (by cheating) using the
final test set. This represents the best achievable performance for any selection
metric, and can be viewed as a bias, or mismatch between the selection metric
and the evaluation metric.3

The most striking result is the good performance of selecting on mean cross-
entropy (MXE) for small sizes of the selection set. When the selection set has
only 100 or 200 points, using cross-entropy as the selection metric incurs the
lowest loss. In fact, at 100 and 200 points, selecting on MXE has the lowest
loss for every individual reporting metric, not only on average! This may be a
surprising result in that it undermines the common belief that it is always better
to optimize to the metric on which the classifier will be evaluated.

We propose two hypotheses that would account for the superior performance
of MXE for small data sets, but we do not yet have support for these possible
explanations. MXE provides the maximum likelihood probability estimation of
the binary targets. Under this hypothesis, MXE reflects the “correct” prior for
target values as a binomial distribution [17]. Priors are particularly important
where data are scarce. The second hypothesis recognizes that (of the metrics
we consider) MXE assesses the largest penalty for large errors, which may be
desirable where not much data is available.

For larger selection sets, MXE continues to be competitive, but ROC and ALL
catch up when the selection set has 500 points. At 1000 points all metrics except
BEP, ACC, FSC, and LFT have similar performance (on average across reporting
metrics). This result suggests that, when the evaluation metric is uncertain, cross

3 Of course, this bias/mismatch depends on the underlying set of classifiers to select
among.

316 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

ACC
ALL

MXE
RMS
ROC

Fig. 2. Loss when reporting on ACC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

ACC
MXE
RMS
ROC

Fig. 3. Loss when reporting on RMS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

APR
BEP
FSC
MXE
ROC

Fig. 4. Loss when reporting on APR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

APR
BEP
FSC
MXE
ROC

Fig. 5. Loss when reporting on FSC

entropy should be used as a selection metric, especially when validation data is
scarce. When the validation set is larger, ROC, RMS and ALL also are robust
selection metrics. LFT and FSC seem to be the least robust metrics, followed by
BEP and ACC. Contrary to common belief, directly optimizing the evaluation
metric (the ORM line) actually yields worse performance than both using MXE
and RMS as a selection metric. Even for larger validation set sizes optimizing to
the right metric does not yield a benefit on average.

Figure 2 shows the performance for a few selection metrics when ACC is the
evaluation metric. The figure shows ROC is superior as a selection metric to
ACC even when the evaluation metric is ACC. ROC-based selection yields lower
loss across all selection set sizes (except of course OPT, where ACC has zero
loss by definition). This confirms the observation made by Rosset [7], which was
discussed in Section 2. Although at low selection set sizes MXE has the best
performance (followed by RMS), looking at the OPT point, we see that MXE
has the largest bias (followed by RMS). Of all metrics ALL has the smallest bias.

In the Information Retrieval (IR) community, APR is often preferred to ROC
as a ranking evaluation metric because it is more sensitive to the high end of the
ranking and less sensitive to the low end. Figure 4 shows the loss in normalized

Classifier Loss Under Metric Uncertainty 317

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

LFT
MXE
RMS
ROC

Fig. 6. Loss when reporting on LFT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

ACC
ALL

MXE
RMS
ROC

Fig. 7. Loss when reporting on ALL

score when the evaluation metric is APR. Besides APR and ROC, we also show
the selection performance of MXE and two other IR metrics: BEP and FSC.
The results suggest that selection based on ROC performs the same, or slightly
better than selecting on APR directly. In fact ROC has a very low bias relative
to APR, as shown by the OPT point in the graph. The other two IR metrics
have lower performance, with FSC incurring a significantly higher loss.

Figure 5 depicts the loss in normalized score when using FSC as an evaluation
metric. This figure may also be of interest to IR practitioners, since FSC is often
relied upon in that field. The figure shows that, except for small validation set
sizes, if FSC is the metric of interest, then FSC should also be used as a selection
metric. For small validation sets, MXE again provides significantly lower loss.
One other interesting observation is the large mismatch between FSC and the
other metrics (the OPT point in the graph). This mismatch is one reason why,
given enough validation data, FSC is the preferred selection metric when one is
interested in optimizing FSC.

One other interesting case is shown in Figure 6 for LFT as the evaluation
metric. The figure shows that even if one is interested in lift, one should not
select based on it. MXE, RMS and ROC all lead to selecting better models.

Figure 7 shows the case when the performance is evaluated using a combina-
tion of multiple metrics. For the figure, the reporting metric is ALL which is an
equally weighed average of ACC, RMS and ROC. Selecting on the more robust
RMS or ROC metrics performs as well as selecting on the evaluation metric ALL.
This is not the case for ACC, which is a less robust metric. For small validation
sets, cross-entropy is again the best selection metric.

5 The Effect of Model Probability Calibration on
Selection Metric Choice

In this section we investigate how cross-metric optimization performance is af-
fected by models with poor calibration such as boosted trees, boosted stumps,

318 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

MXE-uncalibrated models
MXE-calibrated models

ROC-uncalibrated models
ROC-calibrated models

ACC-uncalibrated models
ACC-calibrated models

Fig. 8. Evaluation metric MXE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

OPT.........1000500200100

 L
os

s
in

 n
or

m
al

iz
ed

 s
co

re

 Selection set size

MXE-uncalibrated models
MXE-calibrated models

ROC-uncalibrated models
ROC-calibrated models

ACC-uncalibrated models
ACC-calibrated models

Fig. 9. Evaluation metric APR

SVMs and Naive Bayes. To this end, we repeat the experiments in Section 4,
but use the original uncalibrated models instead of the Platt-calibrated ones.

As expected, having a mix of well calibrated and poorly calibrated models
hurts cross-metric optimization. The effect of poorly calibrated models is two-
fold. On one hand, when selecting on a metric such as ROC, APR or ACC that
does not interpret predictions as probabilities, and evaluating on a metric such
as RMS, MXE or ALL that is sensitive to probability calibration, the selected
model, while performing well on the “non-probability” measures, may be poorly
calibrated, thus incurring a high loss on the “probability” measures.

This effect can be clearly seen in Figure 8. The figure shows the loss in normal-
ized score when the reporting metric is MXE, and the selection metric is MXE,
ROC or ACC. For each selection metric, two lines are shown: one for select-
ing from uncalibrated models, and the other for selecting from Platt-calibrated
models. When selecting from uncalibrated models, using either ROC or ACC as
selection metrics (the top two lines) incurs a very large loss in performance (note
the scale). In fact, quite often, the MXE performance of the selected models is
worse than that of the baseline model (the model that predicts, for each instance,
the ratio of the positive examples in the training set). Using calibrated models
eliminates this problem driving down the loss.

On the other hand, when selecting on one of the “probability” measures (RMS,
MXE or ALL), the poorly calibrated models will not be selected because of their
low performance on such metrics. Some of these models, however, do perform
very well on “non-probability” measures such as ROC, APR or ACC. This leads
to increased loss when selecting on probability measures and evaluating on non-
probability ones because, in a sense, selection is denied access to some of the
best models.

Figure 9 shows the loss in normalized score when the reporting metric is APR,
and the selection metric is MXE, ROC or ACC. Looking at MXE as a selection
metric we see that, as expected, the loss from model selection is higher when
using uncalibrated models than when using calibrated ones. Since calibration
does not affect ROC or APR, selecting on ROC and evaluating on APR yields

Classifier Loss Under Metric Uncertainty 319

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

 R
O

C

 RMS

’funnel.plattnet.RMS.ROC’
’funnel.plattvm.RMS.ROC’
’funnel.plattbg.RMS.ROC’
’funnel.plattbst.RMS.ROC’

’funnel.plattstmp.RMS.ROC’
’funnel.plattdt.RMS.ROC’
’funnel.plattlr.RMS.ROC’
’funnel.plattrf.RMS.ROC’

’funnel.plattnb.RMS.ROC’
’funnel.plattmbl.RMS.ROC’

Fig. 10. Covertype data funnel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.275 0.28 0.285 0.29 0.295 0.3 0.305 0.31 0.315

 R
O

C

 RMS

’funnel.plattnet.RMS.ROC’
’funnel.plattvm.RMS.ROC’
’funnel.plattbg.RMS.ROC’
’funnel.plattbst.RMS.ROC’

’funnel.plattstmp.RMS.ROC’
’funnel.plattdt.RMS.ROC’
’funnel.plattlr.RMS.ROC’
’funnel.plattrf.RMS.ROC’

’funnel.plattnb.RMS.ROC’
’funnel.plattmbl.RMS.ROC’

Fig. 11. Medis data funnel

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

 R
M

S

 MXE

’funnel.plattnet.MXE.RMS’
’funnel.plattvm.MXE.RMS’
’funnel.plattbg.MXE.RMS’
’funnel.plattbst.MXE.RMS’

’funnel.plattstmp.MXE.RMS’
’funnel.plattdt.MXE.RMS’
’funnel.plattlr.MXE.RMS’
’funnel.plattrf.MXE.RMS’

’funnel.plattnb.MXE.RMS’
’funnel.plattmbl.MXE.RMS’

Fig. 12. Adult data funnel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

 M
X

E

 LFT

’funnel.plattnet.LFT.MXE’
’funnel.plattvm.LFT.MXE’
’funnel.plattbg.LFT.MXE’
’funnel.plattbst.LFT.MXE’

’funnel.plattstmp.LFT.MXE’
’funnel.plattdt.LFT.MXE’
’funnel.plattlr.LFT.MXE’
’funnel.plattrf.LFT.MXE’

’funnel.plattnb.LFT.MXE’
’funnel.plattmbl.LFT.MXE’

Fig. 13. Covertype data funnel

the same results no matter if the models were calibrated or not. The same is not
true when selecting using ACC because calibration can affect threshold metrics
by effectively changing the threshold.

6 Visualizing the Joint Distribution of Selection and
Evaluation Metric Performance

One way to gain further insight is to graph for each pair of metrics the distri-
bution of performances for a large set of classifiers. For this experiment we rely
on the pool of classifiers trained for the previous experiments. Recall that these
classifiers came from 10 model classes. A variety of parameter settings for each
model class yielded 8,910 classifiers, each of which may be evaluated according to
its test-set performance for pairs of metrics. With 9 performance metrics, there
are 36 plots of pairs of metrics to examine for each problem. Figures 10, 11, 12
and 13 show four of these that illustrate a variety of behaviors.

Figure 10 is a scatterplot of the ROC vs. RMS performance of the models
on the Covertype problem. In this figure boosted decision trees (purple boxes)

320 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

clearly dominate all other model types on both ROC and MXE. Bagged decision
trees (blue stars) are the second best model. At the better-performing end of the
spectrum (upper left of the plot) there is a strong correlation between perfor-
mance on the two metrics. This correlation is reduced as performance worsens,
leading to the broadening of the “funnel”.

Figure 11 shows a scatterplot for the same two metrics (ROC vs. RMS) but
on the Medis problem. The shape of the funnel differs somewhat from that of
Figure 10. On this problem, there is no one model type that dominates the other
model types on both metrics. Calibrated boosted stumps have the best RMS,
but neural nets and logistic regression yield somewhat better ROC. Also, there
is less correlation between the two performance measures for different families
of algorithms – the thread for each family is more distinguishable in this plot.

Figure 12 shows RMS vs. MXE performance for the Adult data set. As one
might expect for two measures such as RMS and MXE that are so similar, this
scatterplot shows a remarkably strong linear correlation between the two mea-
sures, with the best-performing models being neural nets and SVMs. Figure 13
shows MXE vs. LFT for Covertype. In this scatterplot there is a reasonably
strong correlation between the two measures for most algorithms, but SVMs
(green Xs) form a cloud of outliers with overall worse MXE.

One general feature of these “funnel” plots is that there is a narrowing at
the high-performing end of the graph because it is difficult with most metrics
to achieve near-optimal performance on one metric while achieving poorer per-
formance on the other metric. When performance is poorer, however, often the
funnel widens because when performance is poor on one metric it is possible to
achieve a wide range of performances on other metrics. When performance is
not optimal, it makes a larger difference what metric is used for selection.

The shape of the distribution of scores is seen many times for pairs of metrics.
Often a wedge-shaped distribution can be seen reflecting the relatively wide
variance in performance for classifiers that do not perform well along one or
both of the two metrics. But we see a much tighter distribution at the vertex of
the wedge for classifiers that do perform well under both metrics.

These distinctive distributions may provide a clue as to why calibrated clas-
sifiers suffer less cross-metric loss. Ensemble classifiers and calibrated classifiers
both tend to yield higher-performing classifiers for a variety of metrics. In many
graphs, they fall towards the narrow, extreme vertex of the wedge. At this thin
edge of the plot, little variance in performance from metric to metric is seen. Con-
sequently, cross-metric loss is lower in that region of the plot, which is inhabited
by superior classifiers.

7 Conclusion

Our experiments have shown that when only a small amount of data is available,
cross-entropy yields the strongest cross-metric performance. The experiments
have also shown that calibration can affect the performance of selection metrics

Classifier Loss Under Metric Uncertainty 321

in general, and of cross-entropy in particular. In general, MXE and ROC per-
formed strongly as selection metrics and FSC, LFT, ACC, and BEP performed
poorly. The next step in our research is to go beyond the empirical results pre-
sented in this paper and try to create a formal decomposition of cross-metric loss.

Acknowledgments. This work was supported by NSF Award 0412930.

References

1. Munson, A., Cardie, C., Caruana, R.: Optimizing to arbitrary NLP metrics using
ensemble selection. In: Proc. of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing (HLT/EMNLP), pp.
539–546 (2005)

2. Huang, J., Ling, C.X.: Evaluating model selection abilities of performance mea-
sures. In: Evaluation Methods for Machine Learning, Papers from the AAAI work-
shop, Technical Report WS-06-06, AAAI, pp. 12–17 (2006)

3. Soares, C., Costa, J., Brazdil, P.: A simple and intuitive measure for multicriteria
evaluation of classification algorithms. In: ECML 2000. Proceedings of the Work-
shop on Meta-Learning: Building Automatic Advice Strategies for Model Selection
and Method Combination, Barcelona, Spain (2000)

4. Nakhaeizadeh, C., Schnabl, A.: Development of multi-criteria metrics for evalu-
ation of data mining algorithms. In: Heckerman, D., Manilla, H., Pregibon, D.
(eds.) Proceedings of the 3rd International Conference on Knowledge Discovery in
Databases, Newport Beach, CA, AAAI Press, Menlo Park, CA (1997)

5. Spiliopoulou, M., Kalousis, A., Faulstich, L.C., Theoharis, T.: NOEMON: An in-
telligent assistant for classifier selection. In: FGML98. Number 11 in 98, Dept. of
Computer Science, TU Berlin, pp. 90–97 (1998)

6. Ting, K.M., Zheng, Z.: Boosting trees for cost-sensitive classifications. In: Nédellec,
C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 190–195. Springer,
Heidelberg (1998)

7. Rosset, S.: Model selection via the auc. In: ICML ’04: Proceedings of the Twenty-
first International Conference on Machine Learning, p. 89. ACM Press, New York
(2004)

8. Joachims, T.: A support vector method for multivariate performance measures
9. Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In: Thrun, S.,

Saul, L., Scholkopf, B. (eds.) Advances in Neural Information Processing Systems
16, MIT Press, Cambridge (2004)

10. Caruana, R., Niculescu-Mizil, A.: Data mining in metric space: an empirical anal-
ysis of supervised learning performance criteria. In: KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 69–78. ACM Press, New York (2004)

11. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
12. Gualtieri, A., Chettri, S.R., Cromp, R., Johnson, L.: Support vector machine classi-

fiers as applied to aviris data. In: Proc. Eighth JPL Airborne Geoscience Workshop
(1999)

13. Perlich, C., Provost, F., Simonoff, J.S.: Tree induction vs. logistic regression: a
learning-curve analysis. J. Mach. Learn. Res. 4, 211–255 (2003)

14. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning
algorithms. In: ICML ’06: Proceedings of the 23rd International Conference On
Machine Learning, pp. 161–168. ACM Press, New York (2006)

322 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

15. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised
learning. In: Proc. 22nd International Conference on Machine Learning (ICML’05)
(2005)

16. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Smola, A., Bartlett, P., Schlkopf, B., Schu-
urmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press,
Cambridge (1999)

17. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

Additive Groves of Regression Trees

Daria Sorokina, Rich Caruana, and Mirek Riedewald

Department of Computer Science, Cornell University, Ithaca, NY, USA
{daria,caruana,mirek}@cs.cornell.edu

Abstract. We present a new regression algorithm called Groves of trees
and show empirically that it is superior in performance to a number
of other established regression methods. A Grove is an additive model
usually containing a small number of large trees. Trees added to the
Grove are trained on the residual error of other trees already in the Grove.
We begin the training process with a single small tree in the Grove and
gradually increase both the number of trees in the Grove and their size.
This procedure ensures that the resulting model captures the additive
structure of the response. A single Grove may still overfit to the training
set, so we further decrease the variance of the final predictions with
bagging. We show that in addition to exhibiting superior performance
on a suite of regression test problems, bagged Groves of trees are very
resistant to overfitting.

1 Introduction

We present a new regression algorithm called Grove, an ensemble of additive
regression trees. We initialize a Grove with a single small tree. The Grove is
then gradually expanded: on every iteration either a new tree is added, or the
trees that already are in the Grove are made larger. This process is designed
to try to find the simplest model (a Grove with the fewest number of small
trees) that captures the underlying additive structure of the target function. As
training progesses, this algorithm yields a sequence of Groves of slowly increasing
complexity. Eventually, the largest Groves may begin to overfit the training set
even as they continue to learn important additive structure. This overfitting is
reduced by applying bagging on top of the Grove learning process.

In Section 2 we describe the Grove algorithm step by step, beginning with
the classical way of training additive models and incrementally making this pro-
cess more complicated – and better performing – at each step. In Section 3 we
compare bagged Groves with two other regression ensembles: bagged regression
trees and stochastic gradient boosting. The results show that bagged Groves
outperform these other methods and work especially well on highly non-linear
data sets. In Section 4 we show that bagged Groves are resistant to overfitting.
We conclude and discuss future work in Section 5.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 323–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 D. Sorokina, R. Caruana, and M. Riedewald

2 Algorithm

Bagged Groves of Trees, or bagged Groves for short, is an ensemble of regression
trees. Specifically, it is a bagged additive model of regression trees where each
individual additive model is trained in an adaptive way by gradually increasing
both number of trees and their complexity.

Regression Trees. The unit model in a Grove is a regression tree. Algorithms
for training regression trees differ in two major aspects: (1) the criterion for
choosing the best split in a node and (2) the way in which tree complexity is
controlled. We use trees that optimize RMSE (root mean squared error) and we
control tree complexity (size) by imposing a limit on the size (number of cases)
at an internal node. If the fraction of the data points that reach a node is less
than a specified threshold α, then the node is declared a leaf and is not split
further. Hence the smaller α, 0 ≤ α ≤ 1, the larger the tree. (See Table 7.)

Note that because we will later bag the tree models, the specific choice of
regression tree is not particularly important. The main requirement is that the
complexity of the tree should be controllable.

2.1 Additive Models — Classical Algorithm

A Grove of trees is an additive model where each additive term is represented
by a regression tree. The prediction of a Grove is computed as the sum of the
predictions of these trees: F (x) = T1(x)+T2(x) + · · ·+TN(x). Here each Ti(x),
1 ≤ i ≤ N , is the prediction made by the i-th tree in the Grove. The Grove
model has two main parameters: N , the number of trees in the Grove, and α,
which controls the size of each individual tree. We use the same value of α for
all trees in a Grove.

In statistics, the basic mechanism for training an additive model with a fixed
number of components is the backfitting algorithm [1]. We will refer to this as
the Classical algorithm for training a Grove of regression trees (Algorithm 1).

The algorithm cycles through the trees until the trees converge. The first tree
in the Grove is trained on the original data set, a set of training points {(x, y)}.
Let T̂1 denote the function encoded by this tree. Then we train the second tree,
which encodes T̂2, on the residuals, i.e., on the set {(x, y−T̂1(x))}. The third tree
then is trained on the residuals of the first two, i.e., on {(x, y− T̂1(x)− T̂2(x))},
and so on.

After we have trained N trees this way, we discard the first tree and retrain it
on the residuals of the other N − 1 trees, i.e. on the set {(x, y− T̂2(x)− T̂3(x)−
· · · − T̂N(x))}. Then we similarly discard and retrain the second tree, and so
on. We keep cycling through the trees in this way until there is no significant
improvement in the RMSE on the training set.

Bagging. As with single decision trees, a single Grove tends to overfit to the
training set when the trees are large. Such models show a large variance with
respect to specific subsamples of the training data and benefit significantly from

Additive Groves of Regression Trees 325

Algorithm 1. Classical additive model training

function Classical(α,N ,{x,y})
for i = 1 to N do

Tree
(α,N)
i = 0

Converge(α,N ,{x,y}, Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

function Converge(α,N ,{x,y},Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

repeat
for i = 1 to N do

newTrainSet = {x, y −
∑

k �=i Tree
(α,N)
k (x)}

Tree
(α,N)
i = TrainTree(α, newTrainSet)

until (change from the last iteration is small)

bagging, a well-known procedure for improving model performance by reducing
variance [2]. On each iteration of bagging, we draw a bootstrap sample (bag)
from the training set, and train the full model (in our case a Grove of additive
trees) from that sample. After repeating this procedure a number of times, we
end up with an ensemble of models. The final prediction of the ensemble on each
test data point is an average of the predictions of all models.

Example. In this section we illustrate the effects of different methods of training
bagged Groves on synthetic data. The synthetic data set was generated by a
function of 10 variables that was previously used by Hooker [3].

F (x) = πx1x2
√

2x3 − sin−1(x4) + log(x3 + x5)−
x9

x10

√
x7

x8
− x2x7 (1)

Variables x1, x2, x3, x6, x7, x9 are uniformly distributed between 0.0 and 1.0
and variables x4, x5, x8 and x10 are uniformly distributed between 0.6 and 1.0.1

Figure 1 shows a contour plot of how model performance depends on both α,
the size of tree, and N , the number of trees in a Grove, for 100 bagged Groves
trained with the classical method on 1000 training points from the above data set.
The performance is measured as RMSE on an independent test set consisting of
25,000 points. Notice that lower RMSE implies better performance. The bottom-
most horizontal line for N = 1 corresponds to bagging single trees. The plot
clearly indicates that by introducing additive model structure, with N > 1,
performance improves significantly. We can also see that the best performance
is achieved by Groves containing 5-10 relatively small trees (large α), while for
larger trees performance deteriorates.

2.2 Layered Training

When individual trees in a Grove are large and complex, the Classical additive
model training algorithm (Section 2.1) can overfit even if bagging is applied.
1 Ranges are selected to avoid extremely large or small function values.

326 D. Sorokina, R. Caruana, and M. Riedewald

Algorithm 2. Layered training

function Layered(α,N ,train)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α
for j = 0 to max do

if j = 0 then
for i = 1 to N do

Tree
(α0,N)
i = 0

else
for i = 1 to N do

Tree
(αj ,N)
i = Tree

(αj−1,N)
i

Converge(αj ,N ,train,Tree
(αj ,N)
1 , . . . , Tree

(αj ,N)
N)

Consider the extreme case α = 0, i.e., a Grove of full trees. The first tree will
perfectly model the training data, leaving residuals with value 0 for the other
trees in the Grove. Hence the intended Grove of several large trees will degenerate
to a single tree.

One could address this issue by limiting trees to very small size. However, we
still would like to be able to use large trees in a Grove so that we can capture
complex and non-linear functions. To prevent the degeneration of the Grove as
the trees become larger, we developed a “layered” training approach. In the first
round we grow N small trees. Then in later cycles of discarding and re-training
the trees in the Grove we gradually increase tree size.

More precisely, no matter what the value of α, we always start the training
process with small trees, typically using a start value α0 = 0.5. Let αj denote the
value of the size parameter after j iterations of the Layered algorithm (Algorithm
2). After reaching convergence for αj−1, we increase tree complexity by setting
αj to approximately half the value of αj−1. We continue to cycle through the
trees, re-training all trees in the Grove in the usual way, but now allow them
to reach the size correspondent to the new larger αj , and as before, we proceed
until the Grove converges on this layer. We keep gradually increasing tree size
until αj ≈ α.

For a training set with 1000 data points and α = 0, we use the following
sequence of values of αj : (0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001). It is
worth noting that while training a Grove of large trees, we automatically obtain
all Groves with the same N for all smaller tree sizes in the sequence. Figure 2
shows how 100 bagged Groves trained by the layered approach perform on the
synthetic data set. Overall performance is much better than for the classical
algorithm and bagged Groves of N large trees now perform at least as well as
bagged Groves of N smaller trees.

2.3 Dynamic Programming Training

There is no reason to believe that the best (α,N) Grove should always be con-
structed from a (≈ 2α,N) Grove. In fact, a large number of small trees might

Additive Groves of Regression Trees 327

overfit the training data and hence limit the benefit of increasing tree size in
later iterations. To avoid this problem, we need to give the Grove training al-
gorithm additional flexibility in choosing the right balance between increasing
tree size and the number of trees. This is the motivation behind the Dynamic
Programming Grove training algorithm.

This algorithm can choose to construct a new Grove from an existing one by
either adding a new tree (while keeping tree size constant) or by increasing tree
size (while keeping the number of trees constant). Considering the parameter
grid, the Grove for a grid point (αj , n) could be constructed either from its left
neighbor (αj−1, n) or from its lower neighbor (αj , n − 1). Pseudo-code for this
approach is shown in Algorithm 3. We make a choice between the two options
for computing each Grove (adding another tree or making the trees larger) in a
greedy manner, i.e., the one that results in better performance of the Grove on
the validation set. We use the out-of-bag data points [4] as the validation set
for choosing which of the two Groves to use at each step.

Figure 3 shows how the Dynamic Programming approach improves bagged
Groves over the layered training. Figure 4 shows the choices that are made during
the process: it plots the average difference between RMSE of the Grove created
from the lower neighbor (increase n) and performance of the Grove created from
the left neighbor (decrease αj). That is, a negative value means that the former
is preferred, while a positive value means that the latter is preferred at that grid
point. We can see that for this data set increasing the tree size is the preferred
direction, except for cases with many small trees.

This dynamic programming version of the algorithm does not explore all pos-
sible sequences of steps to build a Grove of trees, because we require that every
grove built in the process should contain trees of equal size. We have tested sev-
eral other possible approaches that don’t have this restriction, but they failed
to produce any improvements and were noticeably worse from the running time
point of view. For these reasons we prefer the dynamic programming version
over other, less restricted options.

2.4 Randomized Dynamic Programming Training

Our bagged Grove training algorithms so far performed bagging in the usual way,
i.e., create a bag of data, train all Groves for different vallues of (α,N) on that
bag, then create the next bag, generate all models on this bag; and so on for 100
different bags. When the Dynamic Programming algorithm generates a Grove
using the same bag, i.e., the same train set that was used to generate its left and
lower neighbors, complex models might not be very different from their neighbors
because those neighbors already might have overfitted and there is not enough
training data to learn anything new. We can address this problem by using a
different bag of data on every step of the Dynamic Programming algorithm,
so that every Grove has some new data to learn from. While performance of a
single Grove might become worse, performance of bagged Groves improves due to
increased variability in the models. Figure 5 shows the improved performance of
this final version of our Grove training approach. The most complex Groves are

328 D. Sorokina, R. Caruana, and M. Riedewald

0.16

0.2

0.2

0.
2

0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 1. RMSE of bagged Grove, Classical
algorithm

0.
11

0.11

0.12

0.12 0.12

0.13

0.13
0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 2. RMSE of bagged Grove, Layered
algorithm

0.1

0.1

0.11

0.11 0.11

0.12

0.12 0.12

0.13

0.13

0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.40.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 3. RMSE of bagged Grove, Dynamic
Programming algorithm

−
0.

05

−0.05

−0.05 −0.05

−0
.0

4

−0
.0

4

−0.04 −0.04

−0.03

−0
.0

3

−0.03 −0.03

−
0.02

−0.02

−0.02 −0.02

−
0.

01

−0.01

−0.01

0

0
0.

01

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Fig. 4. Difference in performance be-
tween “horizontal” and “vertical” steps

0.09

0.09

0.1

0.1
0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16
0.16

0.2

0.2

0.2 0.2

0.3

0.3
0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 5. RMSE of bagged Grove (100
bags), Randomized Dynamic Program-
ming algorithm

0.09

0.09

0.1

0.1 0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 6. RMSE of bagged Grove (500
bags), Randomized Dynamic Program-
ming algorithm

Additive Groves of Regression Trees 329

Algorithm 3. Dynamic Programming Training

function DP(α,N ,trainSet)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α
for j = 0 to max do

for n = 1 to N do

for i = 1 to n − 1 do
Treeattempt1,i = Tree

(αj ,n−1)
i

Treeattempt1,n = 0
Converge(αj ,n,train,Treeattempt1,1, . . . , Treeattempt1,n)

if j > 0 then
for i = 1 to n do

Treeattempt2,i = Tree
(αj−1,n)
i

Converge(αj ,n,train,Treeattempt2,1, . . . , Treeattempt2,n)

winner = Compare
∑

i Treeattempt1,i and
∑

i Treeattempt2,i on validation set
for i = 1 to n do

Tree
(αj ,n)
i = Treewinner,i

now performing worse than their left neighbors with smaller trees. This happens
because those models need more bagging steps to converge to their best quality.
Figure 6 shows the same plot for bagging with 500 iterations where the property
“more complex models are at least as good as their less complex counterparts”
is restored.

3 Experiments

We evaluated bagged Groves of trees on 2 synthetic and 5 real-world data sets
and compared the performance to two other regression tree ensemble methods
that are known to perform well: stochastic gradient boosting and bagged regres-
sion trees. Bagged Groves consistently outperform both of them. For real data
sets we performed 10 fold cross validation: for each run 8 folds were used as a
training set, 1 fold as a validation set for choosing the best set of parameters
and the last fold was used as the test set for measuring performance. For the
two synthetic data sets we generated 30 blocks of data containing 1000 points
each and performed 10 runs using different blocks for training, validation and
test sets. We report mean and standard deviation of the RMSE on the test set.
Table 1 shows the results; for comparability across data sets all numbers are
scaled by the standard deviation of the response in the dataset itself.

3.1 Parameter Settings

Groves. We trained 100 bagged Groves using the Randomized Dynamic Pro-
gramming technique for all combinations of parameters N and α with 1 ≤ N ≤

330 D. Sorokina, R. Caruana, and M. Riedewald

Table 1. Performance of bagged Groves (Randomized Dynamic Programming training)
compared to boosting and bagging. RMSE on the test set averaged over 10 runs.

California Elevators Kinematics Computer Stock Synthetic Synthetic
Housing Activity No Noise Noise

Bagged Groves
RMSE 0.38 0.309 0.364 0.117 0.097 0.087 0.483
StdDev 0.015 0.028 0.013 0.0093 0.029 0.0065 0.012

Boosting
RMSE 0.403 0.327 0.457 0.121 0.118 0.148 0.495
StdDev 0.014 0.035 0.012 0.01 0.05 0.0072 0.01

Bagged trees
RMSE 0.422 0.44 0.533 0.136 0.123 0.276 0.514
StdDev 0.013 0.066 0.016 0.012 0.064 0.0059 0.011

15 and α ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Notice that with these settings
the resulting ensemble can consist of at most 1500 trees. From these models we
selected the one that gave the best results on the validation set. The performance
of the selected Grove on the test set is reported.

Stochastic Gradient Boosting. The obvious main competitor to bagged
Groves is gradient boosting [5] [6], a different ensemble of trees also based on
additive models. There are two major differences between boosting and Groves.
First, boosting never discards trees, i.e., every generated tree stays in the model.
Grove iteratively retrains its trees. Second, all trees in a boosting ensemble are
always built to a fixed size, while groves of large trees are trained first using
groves of smaller trees. We believe that these differences allow Groves to better
capture the natural additive structure of the response function.

The general gradient boosting framework supports optimizing for a variety of
loss functions. We selected squared-error loss because this is the loss function
that our current version of the Groves algorithm optimizes for. However, like
gradient boosting, Groves can be modified to optimize for other loss functions.

Friedman [6] recommends boosting small trees with at most 4–10 leaf nodes
for best results. However, we discovered for one of our datasets that using larger
trees with gradient boosting did significantly better. This is not surprising since
some real datasets contain complex interactions, which cannot be accurately
modeled by small trees. For fairness we therefore also include larger boosted
trees in the comparison than Friedman suggested. More precisely, we tried all
α ∈ {1, 0.5, 0.2, 0.1, 0.05}. Table 7 shows the typical correspondence between α
and number of leaf nodes in a tree, which was very similar across the data sets.
Preliminary results did not show any improvement for tree size beyond α = 0.05.

Stochastic gradient boosting deals with overfitting by means of two techniques:
regularization and subsampling. Both techniques depend on user-set parameters.
Based on recommendations in the literature and on our own evaluation we used
the following values for the final evaluation: 0.1 and 0.05 for the regularization

Additive Groves of Regression Trees 331

α # leaf nodes

1 2 (stump)
0.5 3
0.2 8
0.1 17
0.05 38
0.02 100
0.01 225
0.005 500

0 full tree

Fig. 7. Typical number of leaf nodes for
different values of α

100 200 300 400 500

0.48

0.5

0.52

0.54

0.56

0.58

0.6

bagging iterations

R
M

S
E

α = 0.1, n = 5
α = 0, n = 10

Fig. 8. Performance of bagged Grove for
simpler and more complex models

coefficient and 0.4, 0.6, and 0.8 as the fraction of the subsampling set size from
the whole training set.

Boosting can also overfit if it is run for too many iterations. We tried up to
1500 iterations to make the maximum number of trees in the ensemble equal for
all methods in comparison. The actual number of iterations that performs best
was determined based on the validation set, and therefore can be lower than
1500 for the best boosted model.

In summary, to evaluate stochastic gradient boosting, we tried all combina-
tions of the values described above for the 4 parameters: size of trees, number of
iterations, regularization coefficient, and subsampling size. As for Groves, we de-
termine the best combination of values for these parameters based on a separate
validation set.

Bagging. Bagging single trees is known to provide good performance by sig-
nificantly decreasing variance of the individual tree models. However, compared
with Groves and boosting, which are both based on additive models, bagged
trees do not explicitly model the additive structure of the response function.
Increasing the number of iterations in bagging does not result in overfitting and
bagging of larger trees usually produces better models than bagging smaller
trees. Hence we omitted parameter tuning for bagging. Instead we simply report
results for a model consisting of 1500 bagged full trees.

3.2 Datasets

Synthetic Data without Noise. This is the same data set that we used as a
running example in the earlier sections. The response function is generated by
Equation 1. The performance of bagged Groves on this dataset is much better
than the performance of other methods.

Synthetic Data with Noise. This is the same synthetic dataset, only this time
Gaussian noise is added to the response function. The standard deviation σ of

332 D. Sorokina, R. Caruana, and M. Riedewald

the noise distribution is chosen as 1/2 of the standard deviation of the response
in the original data set. As expected, the performance of all methods drops.
Bagged Groves still perform clearly better, but the difference is smaller.

We have used 5 regression data sets from the collection of Lúıs Torgo [7] for
the next set of experiments.

Kinematics. The Kinematics family of datasets originates from the Delve repos-
itory [8] and describes a simulation of robot arm movement. We used a kin8nm
version of the dataset: 8192 cases, 8 continuous attributes, high level of non-
linearity, low level of noise. Groves show 20% improvement over gradient boost-
ing on this dataset. It is worth noticing that boosting preferred large trees on
this dataset; trees with α = 0.05 showed clear advantage over smaller trees.
However, there was no further improvement for boosting even larger trees. We
attribute these effects to high non-linearity of the data.

Computer Activity. Another dataset from the Delve repository, describes the
state of multiuser computer systems. 8192 cases, 22 continuous attributes. The
variance of performance for all algorithms is low. Groves show small (3%) im-
provement compared to boosting.

California Housing. This is a dataset from the StatLib repository [9] and it
describes housing prices in California from the 1990 Census: 20, 640 observations,
9 continuous attributes. Groves show 6% improvement compared to boosting.

Stock. This is a relatively small (960 data points) regression dataset from the
StatLib repository. It describes daily stock prices for 10 aerospace companies:
the task is to predict the first one from the other 9. Prediction quality from all
methods is very high, so we can assume that the level of noise is small. This
is another case when Groves give significant improvement (18%) over gradient
boosting.

Elevators. This data set is obtained from the task of controlling an aircraft
[10]. It seems to be noisy, because the variance of performance is high although
the data set is rather large: 16, 559 cases with 18 continuous attributes. Here we
see a 6% improvement.

3.3 Discussion

Based on the empirical results we conjecture that Bagged Groves outperform
the other algorithms most when the datasets are highly non-linear and not very
noisy. (Noise can obscure some of the non-linearity in the response function,
making the best models that can be learned from the data more linear than they
would have been for models trained on the response without noise.) This can be
explained as follows. Groves can capture additive structure yet at the same time
use large trees. Large trees capture non-linearity and complex interactions well,
and this gives Groves an advantage over gradient boosting which relies mostly
on additivity. Gradient boosting usually works best with small trees, and fails
to make effective use of large trees. At the same time most data sets, even non-
linear ones, still have significant additive structure. The ability to detect and

Additive Groves of Regression Trees 333

model this additivity gives Groves an advantage over bagging, which is effective
with large trees, but does not explicitly model additive structure.

Gradient boosting is a state of the art ensemble tree method for regression.
Chipman et al [11] recently performed an extensive comparison of several algo-
rithms on 42 data sets. In their experiments gradient boosting showed perfor-
mance similar to or better than Random Forests and a number of other types
of models. Our algorithm shows performance consistently better than gradi-
ent boosting and for this reason we do not expect that Random Forests or other
methods that are not superior to gradient boosting would outperform our bagged
Groves.

In terms of computational cost, bagged Groves and boosting are comparable.
In both cases a large number of tree models has to be trained (more for Groves)
and there is a variety of parameter combinations that need to be examined (more
for boosting).

4 Bagging Iterations and Overfitting Resistance

In our experiments we used a fixed number of bagging iterations and did not
consider this a tuning parameter because bagging rarely overfits. In bagging the
number of iterations is not as crucial as it is for boosting: if we bag as long
as we can afford, we will get the best value that we can achieve. In that sense
the experimental results we report are conservative and Bagged Groves could
potentially be improved by additional bagging iterations.

We observed a similar trend for parameters α and N as well: more complex
models (larger trees, more trees) are at least as good as their less complex coun-
terparts, but only if they are bagged sufficiently many times. Figure 8 shows how
the performance on the synthetic data set with noise depends on the number of
bagging iterations for two bagged Groves. The simpler one is trained with N = 5
and α = 0.1 and the more complex one is trained with N = 10 and α = 0. We
can see that eventually they converge to the same performance and that the
simpler model only does better than the complex model when the number of
bagging iterations is small. 2

We observed similar behavior for the other datasets. This suggests that one
way to get good performance with bagged Groves might be to build the most
complex Groves (large trees, many trees) that can be afforded and bag them
many, many times until performance tops out. In this case we might not need
a validation set to select the best parameter settings. However, in practice the
most complex models can require many more iterations of bagging than simpler
models that achieve almost the same level of performance much faster. Hence
the approach that used in our experiments can be more useful in practice: select
2 Note that this is only true because of the layered approach to training Groves which

trains Groves of trees of smaller size before moving on to Groves with larger trees. If
one initialized a Grove with a single large tree, performance of bagged Groves might
still decrease with increasing tree size because the ability of the Grove to learn the
additive structure of the problem would be injured.

334 D. Sorokina, R. Caruana, and M. Riedewald

a computationally acceptable number of bagging iterations (100 seems to work
fine, but one could also use 200 or 500 to be more confident) and search for the
best N and α for this number of bagging iterations on the validation set.

5 Conclusion

We presented a new regression algorithm, bagged Groves of trees, which is an
additive ensemble of regression trees. It combines the benefits of large trees
that model complex interactions with benefits of capturing additive structure
by means of additive models. Because of this, bagged Groves perform especially
well on complex non-linear datasets where the structure of the response function
contains both additive structure (which is best modeled by additive trees) and
variable interactions (which is best modeled within a tree). We have shown that
on such datasets bagged Groves outperform state-of-the-art techniques such as
stochastic gradient boosting and bagging. Thanks to bagging, and the layered
way in which Groves are trained, bagged Groves resist overfitting—more complex
Groves tend to achieve the same or better performance as simpler Groves.

Groves are good at capturing the additive structure of the response function.
A future direction of our work is to develop techniques for determining proper-
ties inherent in the data using this algorithm. In particular, we believe we can
use Groves to learn useful information about statistical interactions between
variables in the data set.

References

1. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
Springer, Heidelberg (2001)

2. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
3. Hooker, G.: Discovering ANOVA Structure in Black Box Functions. In: Proc. ACM

SIGKDD, ACM Press, New York (2004)
4. Bylander, T.: Estimating Generalization Error on Two-Class Datasets Using Out-

of-Bag Estimates. Machine Learning 48(1–3), 287–297 (2002)
5. Friedman, J.: Greedy Function Approximation: a Gradient Boosting Machine. An-

nals of Statistics 29, 1189–1232 (2001)
6. Friedman, J.: Stochastic Gradient Boosting. Computational Statistics and Data

Analysis 38, 367–378 (2002)
7. Torgo, L.: Regression DataSets,

http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html
8. Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M.,

Ghahramani, Z., Kustra, R., Tibshirani, R.: Delve. University of Toronto,
http://www.cs.toronto.edu/∼delve

9. Meyer, M., Vlachos, P.: StatLib. Department of Statistics at Carnegie Mellon Uni-
versity, http://lib.stat.cmu.edu

10. Camacho, R.: Inducing Models of Human Control Skills. In: Nédellec, C., Rou-
veirol, C. (eds.) Machine Learning: ECML-98. LNCS, vol. 1398, Springer, Heidel-
berg (1998)

11. Chipman, H., George, E., McCulloch, R.: Bayesian Ensemble Learning. In: Ad-
vances in Neural Information Processing Systems 19, pp. 265–272 (2007)

http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html
http://www.cs.toronto.edu/~delve
http://lib.stat.cmu.edu

Efficient Computation of Recursive Principal
Component Analysis for Structured Input

Alessandro Sperduti

Department of Pure and Applied Mathematics, University of Padova, Italy
sperduti@math.unipd.it

Abstract. Recently, a successful extension of Principal Component Analysis for
structured input, such as sequences, trees, and graphs, has been proposed. This
allows the embedding of discrete structures into vectorial spaces, where all the
classical pattern recognition and machine learning methods can be applied. The
proposed approach is based on eigenanalysis of extended vectorial representa-
tions of the input structures and substructures. One problem with the approach
is that eigenanalysis can be computationally quite demanding when considering
large datasets of structured objects. In this paper we propose a general approach
for reducing the computational burden. Experimental results show a significant
speed-up of the computation.

1 Introduction

In many real-world applications it is natural to represent data in a structured form. Just
to name a few, in Chemistry chemical compounds can be represented as undirected
annotated graphs; in Natural Language Processing, the semantics of a sentence is de-
scribed in terms of a parse tree. In addition, many problems in these application domains
are characterized by the presence of noise and/or uncertainty in the data. Moreover,
these problems can naturally be formulated as clustering, or classification, or regres-
sion tasks, which are well suited to be treated by machine learning approaches. Many
standard machine learning approaches, however, can deal only with numerical vectors.
Thus, a first necessary step to their application to structured objects is the apriori selec-
tion of a set of structural features of interest which will constitute the dimensions of a
vectorial space where each structure can be represented according to its own degree of
matching.

Recently, different an more direct approaches have been proposed and successfully
applied to structured domains, such as Recursive Neural Networks (e.g. see [11,2,4,1,9]),
and Kernel Methods for structured patterns (see [3] for a survey). Both these approaches,
however, have their problems, such has local minima for Neural Networks, and the a
priori definition of the kernel for Kernel Methods.

More recently, an alternative approach has been proposed. The idea is to devise
vectorial representations of structures, belonging to a data set, which preserve all the
information needed to discriminate among each other. This approach hinges on the
calculation of Principal Component Analysis (PCA) for structured objects, such as
sequences, trees, and graphs [10,8]. The aim is to provide a method to generate in-
formative representations which are amenable to be used into already well known un-
supervised and supervised techniques for clustering, classification, and regression.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 335–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

336 A. Sperduti

A problem with this approach, however, is that it is computationally quite demand-
ing. In this paper, we address this problem by proposing some techniques to reduce
the computational burden. After presenting in Section 2 the basic concepts about PCA
for vectors and structures, we discuss in Section 3 three different approaches that, if
applied simultaneously, can significantly reduce the computational burden in the case
of structures. This is experimentally demonstrated in two datasets of relevant size and
complexity (Section 4).

2 Principal Components Analysis for Vectors and Structures

In the following we present the main ideas underpinning the computation of PCA for
vectors and structured inputs. We briefly recall the standard PCA with a perspective that
will allow us to readily introduce its extension to the case of sequences. The suggested
approach is then further extended to cover the direct treatment of trees, and finally we
discuss our proposal to deal with directed or undirected graphs.

2.1 Vectors

The aim of standard PCA [6] is to reduce the dimensionality of a data set, while pre-
serving as much as possible the information present in it. This is achieved by looking
for orthogonal directions of maximum variance within the data set. The principal com-
ponents are sorted according to the amount of variance they explain, so that the first
few retain most of the variation present in all of the original variables. It turns out that
the qth principal component is given by the projection of the data onto the eigenvec-
tor of the (sample) covariance matrix C of the data corresponding to the qth largest
eigenvalue.

From a mathematical point of view, PCA can be understood as given by an orthogo-
nal linear transformation of the given set of variables (i.e., the coordinates of the vecto-
rial space in which data is embedded):

yi = Wxxi (1)

where xi ∈ Rk are the vectors belonging to the data set, and Wx is the orthogonal
matrix whose qth row is the qth eigenvector of the covariance matrix. Typically, larger
variances are associated with the first p < k principal components. Thus one can con-
clude that most relevant information occur only in the first p dimensions. The process
of retaining only the first p principal components is known as dimensional reduction.
Given a fixed value for p, principal components allow also to minimize the reconstruc-
tion error, i.e. the square error of the difference between the original vector xi and the
vector obtained by projecting its principal components yi back into the original space
by the linear transformation WT

xyi:

Wx = argmin
M∈R

p×k

∑

i

‖xi −MTMxi‖2

where the rows of Wx corresponds to the first p eigenvectors of C.

Efficient Computation of Recursive Principal Component Analysis 337

2.2 Sequences

In [10] it is shown how PCA can be extended to the direct treatment of sequences. More
specifically, given a temporal sequence x1,x2, . . . ,xt, . . . of input vectors, where t is a
discrete time index, we are interested in modeling the sequence through the following
linear dynamical system:

yt = Wxxt + Wyyt−1 (2)

which extends the linear transformation defined in eq. (1) by introducing a memory term
involving the matrix Wy and the principal components yt−1 computed up to time step
t− 1, i.e. the principal components describing the input sequence up to time step t− 1.
The aim is to define proper matrices Wx and Wy such that yt can be considered a good
“encoding” of the input sequence read till time step t, i.e., the sequence is first encoded
using eq. (2), and then, starting from the obtained encoding yt, it should be possible to
reconstruct backwards the original sequence using the transposes of Wx and Wy. This
requirement implies that the following equations

xt = WT
xyt (3)

yt−1 = Wxxt−1 + Wyyt−2 = WT
yyt (4)

should hold. In fact, the perspective of this proposal for recursive principal component
analysis is to find a low-dimensional representation of the input sequence such that
the expected reconstruction error, i.e. the sum of the (squared) differences between the
vectors generated by equation (3) and the original input vectors for different values of t

error(t) =
t∑

i=1

‖xi −WT
x(WT

y)t−i
t∑

j=1

(Wy)t−jWxxi

︸ ︷︷ ︸
yt

‖2 (5)

is as small as possible, i.e. given a fixed value of p, where yt ∈ Rp, we look for

(Wx,Wy) = argmin
M∈ R

p×k

N ∈ R
p×p

t∑

i=1

‖xi −MT(NT)t−i
t∑

j=1

Nt−jMxi‖2.

In [10] it has been shown that, when considering several sequences for the same linear
system, it is possible to find a value of p where the reconstruction error is zero by per-
forming eigenanalysis of extended vectorial representations (belonging to the so called
state space) of the input sequences, where a sequence at time t is represented by the
vector

[xT
t , . . . ,x

T
1 ,0

T, . . . ,0T
︸ ︷︷ ︸

(T−t)

] (6)

being T the maximum length for any input sequence. This representation can be un-
derstood as an explicit representation of a stack where a new input vector, e.g. xt+1,

338 A. Sperduti

is pushed into the stack by shifting to the right the current content by k positions, and
inserting (adding) xt+1 into the freed positions:

[0T,xT
t , . . . ,x

T
1 ,0

T, . . . ,0T
︸ ︷︷ ︸

(T−t−1)

] + [xT
t+1,0

T, . . . ,0T
︸ ︷︷ ︸

(T−1)

] = [xT
t+1,x

T
t , . . . ,x

T
1 ,0

T, . . . ,0T
︸ ︷︷ ︸

(T−t−1)

]

More precisely, let X be the matrix which collects all the vectors of the above form
by columns (for all sequences at any time step), if the input vectors xi ∈ Rk have zero
mean, s = T ·k, UΛUT is the eigenvalue decomposition of XXT and Ũ ∈ Rs×p is the
matrix obtained by U removing all the eigenvectors corresponding to null eigenvalues
λi, the “optimal” matrices for an encoding space of dimension p can be defined as:

W̃x ≡ ŨT
[
Ik×k

0(s−k)×k

]

︸ ︷︷ ︸
adding to the
first k positions

and W̃y ≡ ŨT
[
0k×(s−k) 0k×k

I(s−k)×(s−k) 0(s−k)×k

]

︸ ︷︷ ︸
shifting to the right of k positions

Ũ.

2.3 Trees

In [10] a similar, but a bit more elaborated result than the one presented for sequences,
has been obtained for trees (with maximum outdegree b). Specifically, for trees the
linear dynamical system to be considered is

yu = Wxxu +
b−1∑

c=0

Wcychc[u] (7)

where u is a node of the tree, chc[u] is the c + 1-th child of u, and a different matrix
Wc is defined for each child.

Let us illustrate what happens for binary complete trees. For b = 2, we have the
following linear model

yu = Wxxu + Wlychl[u] + Wrychr[u] (8)

where u is a vertex of the tree, chl[u] is the left child of u, chr[u] is the right child
of u, Wl,Wr ∈ Rs×s, where s is the dimension of the state space. In this case, the
basic idea is to partition the state space S according to a perfectly balanced binary
tree. More precisely, each vertex u of the binary tree is associated to a binary string
id(u) obtained as follows: the binary string “1” is associated to the root of the tree.
Any other vertex has associated the string obtained by concatenating the string of its
parent with the string “0” if it is a left child, “1” otherwise. Then, all the dimensions
of S are partitioned in s/k groups of k dimensions. The label associated to vertex v is
stored into the j-th group, where j is the integer represented by the binary string id(u).
E.g. the label of the root is stored into group 1, since id(root) =“1”, the label of the
vertex which can be reached by the path ll starting from the root is stored into group
4, since id(u) =“100”, while the label of the vertex reachable through the path rlr is
stored into group 13, since id(u) =“1101”. Notice that, if the input tree is not complete,

Efficient Computation of Recursive Principal Component Analysis 339

the components corresponding to missing vertexes are set to be equal to 0. Using this
convention, extended state space vectors maintain the definition of eq. (6), where the
first k components are used to store the current input label, i.e. the label associated to
the root of the (sub)tree presented up to now as input, while the remaining components
are defined according to the scheme described above.

Matrices Wl and Wr are defined as follows. Both matrices are composed of two
types of blocks, i.e. Ik×k and 0k×k. Matrix Wl has to implement a push-left operation,
i.e. the tree T encoded by a vector yroot(T) has to become the left child of a new node
u whose label is the current input xu. Thus root(T) has to become the left child of
u and also all the other vertexes in T have their position redefined accordingly. From
a mathematical point of view, the new position of any vertex a in T is obtained by
redefining id(a) as follows: i) the most significative bit of id(a) is set to “0”, obtaining
the string id0(a); ii) the new string idnew(a) =“1”+id0(a) is defined, where + is the
string concatenation operator. If idnew(a) represents a number greater than s/k then
this means that the vertex has been pushed outside the available memory, i.e. the vertex
a is lost. Consequently, groups which correspond to lost vertexes have to be annilated.
Thus, Wl is composed of (q+1)×(q+1) blocks, all of type 0k×k, except for the blocks
in row idnew(a) and column id(a), with idnew(a) ≤ s/k, where a block Ik×k is placed.
Matrix Wr is defined similarly: it has to implement a push-right operation, i.e.: i) the
most significative bit of id(a) is set to “1”, obtaining the string id1(a); ii) the new string
idnew(a) =“1”+id1(a) is defined. Matrix Wx is defined as in the case of sequences.
Performing the eigenspace analysis, we obtain the solution matrices W̃x ≡ ŨTWx,
W̃l ≡ ŨTWlŨ, and W̃r ≡ ŨTWrŨ. A description of the construction for the
general case, i.e. when b > 2, can be found in [10].

A problem in dealing with complete trees is that very soon there is a combinatorial
explosion of the number of paths to consider, i.e. in order for the machine to deal with
moderately deep trees, a huge value for s needs to be used. In practical applications,
however, the observed trees tend to follow a specific generative model, and thus there
may be many topologies which are never, or very seldomly, generated. Thus, in prac-
tice, instead of considering each possible path in the complete tree, only paths that are
present into the dataset are considered.

2.4 Graphs

When considering the possibility to extend Recursive PCA to graphs either with di-
rected or undirected edges we have to face two problems: i) how to deal with cycles
during the encoding; ii) how to identify the origin and destination of an edge during
decoding.

In [8], these two problems are solved through a coding trick. The basic idea is to
enumerate the set of vertexes following a given convention and representing a (directed
or undirected) graph as an (inverted) ordered list of vertex’s labels associated with a
list of edges for which the vertex is origin and where the position in the associated list
is referring to the destination vertex. The idea is that the list is used by the linear dy-
namical system during encoding to read one by one the information about each vertex
and associated edges, pushing the read information into the internal stack. Decoding is

340 A. Sperduti

obtained by popping from the internal stack, one by one, the information about vertexes
and associated edges.

The proposed linear dynamical system supporting the above idea is defined as

yi = Wv[vT
label,v

T
edges]

T + Wyyi−1 (9)

where i ranges over the enumeration of the vertexes, i.e. positions in the list representing
the graph, vlabel ∈ Rk is the numerical encoding of the current label, vedges ∈ RN

is the vector representing the information about the edges entering the current vertex
where N is the maximum number of vertexes that the system can manage for a single
input graph, and y0 is the null vector. Thus [vT

label,v
T
edges]

T ∈ Rk+N and the space
embedding the explicit representation of the stack is N(k + N) since no more than N
vertexes can be inserted. It should be noted that this size of the stack is needed only if
the input graphs are directed, and the above system is basically equivalent to system (2)
for sequences.

However, if undirected graphs are considered, a specific state space optimization can
be performed. In fact, when inserting the first vertex into the internal stack only the first
entry of the vector vedges may be non null (the one encoding the self-connection), since
no other vertex has already been presented to the system. In general, if vertex i is being
inserted, only the first i components of vedges may be non null. Because of that, the
shift operator embedded into matrix Wy may “forget” the last component of each field
into which the internal stack is organized. Formally, the shift operator described above
can be implemented by the following matrix

S ≡

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

0d×s

I(d−1)×(d−1) 0(d−1)×(s−d+1)

0(d−2)×d I(d−2)×(d−2) 0(d−2)×(s−2(d−1))

0(d−3)×(2d−1) I(d−3)×(d−3) 0(d−3)×(s−3(d−1))

· · ·
0(k+1)×(s−k−1) I(k+1)×(k+1)

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

and the solution matrices defined as W̃v ≡ ŨT

[
Id×d

0(s−d)×d

]
and W̃y ≡ ŨTSŨ.

3 Improving the Computation

In the previous section we have presented the theoretical basis for the definition of PCA
for structured inputs. In this section we discuss some practical problems which are en-
countered when trying to apply the theory “as is”. Then we make some observations
about some specific features of structured domains. Finally, on the basis of these ob-
servations we suggest some techniques that help in reducing the computational burden,
thus allowing the application of PCA for structures to larger and more complex datasets.

3.1 Practical Problems

The definition of PCA for structures, as outlined above, hinges on the explicit definition
of the state space in order to get the “compressed” solution of the problem, i.e. the

Efficient Computation of Recursive Principal Component Analysis 341

weights matrices. From a practical point of view this implies that when considering
datasets of significant size and complexity (in terms of number of components for single
structure) a quite large matrix X describing the state space should be explicitly defined.
Specifically, X will have a column for each single component of the dataset and a given
number1 of rows for each element of the encoding scheme. More precisely, in the case of
sequences, k rows for each time step; in the case of trees, k rows for each path explicitly
defined in the training data; finally, in the case of graphs, k + N − i rows for each item
in the internal stack at distance i from the top. It is not difficult to understand that when
considering a large number of components and sufficiently deep structures, the global
size of X can soon become unmanageable because of storage requirements. In addition
to that, computing the eigenvalues and eigenvectors of X can become problematic even
for small dimensions since additional storage is required for the internal data structures
used for the computation. Least, but not last, even if storage requirements are satisfied,
the time needed to perform the eigenanalysis is more than quadratic with respect to the
size of X. Thus, it is clear that strategies which try to keep X as small as possible and to
reduce the computational time for its eigenanalysis should be defined in order to allow
the treatment of datasets of significative size and complexity.

In the next subsection we observe that, even before resorting to more or less sophis-
ticated numerical analysis techniques and algorithms, the structured nature of the data
can be exploited to get a significative reduction of the size of X, as well as a (fractional)
reduction of the time needed to perform its eigenanalysis.

3.2 Some Basic Observations and Their Exploitation

Let make some observations about the structure of X: i) the number of rows is de-
termined by both the size of the representation of each possible component and the
adopted structural encoding scheme; ii) if the components are finite and discrete, then
it is quite probable that different structures will have one or more components in com-
mon. This implies that columns in X that correspond to these common components will
be identical; this can be exploited by redefining a more compact version of X where
each distinct component is represented only once, but considering its multiplicity; iii) a
quicker eigenanalysis of X can be computed by precomputing a QR decomposition of
either X or XT.

Observation i) leads to a general scheme for defining a “minimal” state space. Obser-
vation ii) may lead to a significative reduction in size of X when considering structures
compounded of discrete components, while observation iii) can be exploited in general.

In the following three subsections we discuss the above points, according to the order
of presentation given above.

3.3 Defining a “Minimal” State Space

The state space defined in Section 2 is designed to be able to potentially represent
all possible structures up to a given predefined limit. For example, when considering
sequences, all the possible sequences up to length T can be represented in the state

1 We previously assumed that each component could be described by a vector of dimension k.

342 A. Sperduti

space. The same is true for graphs. Only for trees, a strategy which tries not to represent
all possible paths has been suggested: only paths defined in the dataset are represented
in the state space. However, any input vector can be associated to any position within
the defined paths. In conclusion, it is clear that, since PCA is computed on a specific
dataset, there is no point in having such a general encoding scheme for the state space.
It is better to devise from the beginning an encoding scheme for the state space which
takes into account the dataset.

Here we suggest to define a state space where for each structural component only
items which occur associated to it in the dataset are explicitly represented. For example,
if we consider the set of sequences Tr = {x(1), . . . ,x(N)} up to length T , then given
position i, the state space is designed to be able to represent only those input vectors
x(s1)

i , . . . ,x(si)
i (more precisely, the subspaceSubs(Tr, i)=spanned(x(s1)

i , . . . ,x(si)
i)

spanned by the input vectors) which occur at position i when they are processed. Please,
note that: i) an input vector x(j)

p ∈ Rk that occurs at position p into the sequence j of
length lj , occurs into the state space as a sub-vector from position k · p to position
k(lj − p), i.e. into the state space vectors

[x(j)T

p , . . . ,x(j)T

1 ,0T, . . . ,0T
︸ ︷︷ ︸

(T−i)

], · · · , [x(j)T

lj
, . . . ,x(j)T

p , . . . ,x(j)T

1 ,0T, . . . ,0T
︸ ︷︷ ︸

(T−lj)

];

ii) the matrix obtained by using the input vectors x(s1)
i , . . . ,x(si)

i as columns may
have rank r < k (full rank is k), which implies that if with Bi we refer to a basis
of Subs(Tr, i), then a “minimal” state space can be obtained by using as basis of the
space the union of these bases, i.e. Bss =

⋃T
i=1 Bi. A suitable shift operator performing

a change of basis at each position should correspondingly be defined, which is always
possible.

If we consider the special case of structures where each component may be one
among k different labels represented by vectors of the canonical basis, Bi will corre-
spond to the subset of canonical vectors associated to the labels occurring at position i
into the “state space stack”. In this case the shift operator will just “forget” the compo-
nents that are not present from that point up to the last components of the state space.

3.4 Representing Unique Substructures in the Case of Discrete Components

When each component is described by a discrete entity, e.g. a symbol or label, the like-
lihood that different input structures share a common substructure is often not marginal.
This is particularly true if the structures are created by a generative source, such as a
generative model, e.g. a grammar. Repeated components correspond to repeated iden-
tical columns in X. Without loss of generality, let assume that the columns of X are
sorted so to have identical columns in contiguous positions. Let r1, . . . , rz be the all
different columns occurring in X, and μ1, . . . , μz their multiplicity in X. Then it is not
difficult to verify that the matrix Xred ≡ [

√
μ1r1, . . . ,

√
μzrz] has the same covari-

ance matrix as X, and thus it shares the same column eigenvectors with X. However,
Xred has only z columns versus

∑z
i=1 μi ≥ z columns of X. The problem, then, is

to discover these repeated components, and their multiplicity, even before generating

Efficient Computation of Recursive Principal Component Analysis 343

MinimalDAG

Input: A tree forest
/* , , */
Initialize: void DAG;

for to do
InvTopologOrder ;

while do
;

if s.t. then
else add to a node where and

forall children of
add arc to where and

return

Fig. 1. The algorithm to transform a tree-forest into a minimal DAG, where all the subtrees are
represented only once

columns representing them. Since graphs are basically treated as a special type of lists,
here we focus on trees, which constitute the most general case since a list can be con-
sidered as a tree with outdegree 1. The problem is how to efficiently remove from the
dataset repeated occurrences of (sub)trees. A dataset consisting of trees can be repre-
sented as a tree forest F . We define a procedure that merges all the trees in F into a
single minimal DAG, i.e., a DAG with a minimal number of vertices. We will refer to
this DAG as μD = μDAG(F).

In Figure 1, we give an algorithm to efficiently compute shared subtrees, and to effi-
ciently represent a forest as an annotated DAG (ADAG). More formally, with annotated
DAG, we refer to a DAG where each node is annotated with a pair (label,frequency).
The label field represents information associated with the node, while the frequency
field is used to count how many repetitions of the same subtree rooted in that node
are present in the tree forest. The frequency can then be used to define Xred The pro-
cedure InvTopologOrder(Tj) used in the algorithm returns a total order of ver-
texes of Tj which is compatible with the (inverted) partial order defined by the arcs of
Tj . Thus, the first vertexes of the list will be vertexes with zero outdegree, followed
by vertexes which have only children with zero outdegree, and so on. Using this or-
der guarantees the (unique) existence of vertexes ci ∈ μD s.t. tree rooted at(ci) ≡
tree rooted at(chi[v]). In fact, for each i, the vertex chi[v] is processed before vertex
v and is either inserted in μD or recognized as a duplicated of a vertex already present
in μD.

It should be noted that the function tree rooted at(·) can be implemented quite
efficiently by an indexing mechanism, where a unique code is defined for a void child,
and a unique code for the root of each different (sub)tree is generated by recursively
considering the label of the root and the (unique) codes computed for its children.

Exploiting the indexing mechanism described above, the overall time complexity of
the algorithm is O(n log(n)), where n is the total number of vertexes of the forest F .

344 A. Sperduti

Please, notice that both the encoding scheme (i.e. the different paths defined by the
forest) and the columns of Xred can be generated by a visit of μDAG(F).

3.5 Exploiting QR Decomposition

Eigenanalysis of the correlation matrix XXT can be performed in a robust and “eco-
nomic” way by performing an SVD decomposition of either X, in the case the number
of rows is higher than the number of columns, or XT in the case the number of columns
is higher than the number of rows. In fact, if we consider the SVD decomposition of
X = USVT, where U and V are orthogonal matrices, and S is a diagonal matrix con-
taining the singular values, the eigenvectors of XXT are the columns of matrix U and
the corresponding eigenvalues are the square of the singular values stored in S.

The SVD of X can be performed by first performing a QR decomposition of X =
QR, where Q is an orthogonal matrix, and R is an upper triangular matrix, and then
performing an SVD decomposition of R = USVT. In this way the eigenvectors are
obtained by computing QU. The decomposition described above is quicker than the
direct SVD decomposition of X or XT if we choose to start from the matrix that pro-
duces a smaller R, so that the successive SVD decomposition is quicker. Moreover,
we do not need to compute the full product between Q and U, since, already knowing
the singular values returned in S, only the relevant columns of the product need to be
computed, savings additional computations.

4 Experimental Evaluation

Two datasets were used to test our approach. The first one is derived from the data set
of the PTC (Predictive Toxicology Challenge, [5]) originally provided by the U.S. Na-
tional Institute for Environmental Health Sciences - US National Toxicology Program
(NTP) in the context of carcinogenicity studies. The publicly available dataset (see
http://www.predictive-toxicology.org/data/ntp/) is a collection of about four hundred
chemical compounds. The dataset includes a range of molecular classes and molecular
dimension spanning from small and simple cases to medium size with multi-cycles. In
order to represent these chemical structures and their components, we used undirected
graphs with labels associated to vertexes and edges. The vertexes of these graphs corre-
spond to the various atoms and the vertexes labels correspond to the type of atoms. The
edges correspond to the bonds between the atoms and the edges labels correspond to the
type of bonds. This explicit graph modeling can be obtained through the information di-
rectly extracted by standard formats based on connection table representation, limited,
in our case, to the information on atoms type (including C and H), bond type (single,
double or triple) and their 2D-topology, as implicit in the set of vertexes connections.
Here, we do not assume any specific canonical ordering of such information, assuming
directly the form provided in the original PTC data set.

For testing our approach, we have considered molecules with atoms occurring at least
more than 3 times in the original data set and with a maximum dimension (number
of vertexes) of 70. In all, 394 distinct chemical compounds are considered, with the
smallest having 4 atoms. 10 distinct atoms occur in the used data set, corresponding to

Efficient Computation of Recursive Principal Component Analysis 345

Table 1. Occurrences of atoms symbols in the chemical dataset and some of its statistical
properties

Chemical Symbol C N O P S F Cl Br H Na
Frequency 3608 417 766 25 76 11 326 46 4103 22

examples Max. number Max. number Avg. number Tot. number
atoms bonds atoms (bonds) items (atoms+bonds)

394 70 73 23.86 (24.20) 18,936

Fig. 2. Context-Free Grammar used in the experiments

Table 2. Experimental results

Dataset # components for Time in sec. Time in sec. # col. in Time in sec. Time in sec.
“minimal” direct SVD QR+SVD μDAG direct SVD QR+SVD
state space full matrix full matrix matrix μDAG matrix μDAG matrix

(size full space)

Graphs 1587 313.25 222.87 2020 182.36 138.91
(3115)

Trees 2795 1556.95 1063.41 1217 77.3 63.08
(7158)

the following chemical symbols: C, N, O, P, S, F, Cl, Br, H, Na. In Table 1 we report the
frequencies of such atoms through the compounds as well as some general statistics.

Symbols are represented by 10-dimensional vectors (i.e. k = 10) following a “one-
hot” coding scheme. Bond’s type is coded by integers in the set {0, 1, 2, 3}, where
0 represents the absence of a bond and the other numbers are for single, double and
triple bonds, respectively. Triple bonds occur only 5 times in the dataset. Double bonds
occur 1509 times in the dataset. The remaining bonds are single. Since the graphs do
not have self-connections for vertexes, we can avoid to represent the information about
self-connections. Since the maximum number of vertexes in the dataset is N = 70, a
standard full representation of the state space (stack size) would require s =

∑N−1
i=0 (d−

i) = 3115 different components, since the graphs are undirected. We used the dummy
state ydummy described in [10] to get zero-mean vectors.

The second dataset is given by parse trees derived by the context-free grammar
shown in Figure 2, and already used by Pollack [7]. In all 421 distinct parse trees
have been randomly generated for a total of 14, 815 nodes. Terminal and nonterminal

346 A. Sperduti

symbols are represented by 6-dimensional vectors (i.e. k = 6), where the first compo-
nent is 0 for terminal symbols and 3 for nonterminal symbols, while the remaining 5
components follow a “one-hot” coding scheme. Since in the dataset there were 1193
distinct paths when processing the trees, a standard full representation of the state space
(stack size) would require s = 1193× 6 = 7158 components.

In Table 2 we have reported the results obtained by using an Intel Xeon E5345 based
computer using Scilab.

5 Conclusion

We have suggested a way to speed-up the computation of principal components for
structured input. The validity of the proposed approach has been experimentally evalu-
ated with quite good results. Additional improvements, not explored in this paper, can
be obtained by considering the sparsity of the X matrix, and the adoption of more so-
phisticated numerical algorithms for its eigenanalysis.

References

1. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network
architectures-DAG-RNNs and the protein structure prediction problem. Journal of Machine
Learning Research 4, 575–602 (2003)

2. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data
structures. IEEE Trans. Neural Networks 9(5), 768–786 (1998)

3. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1), 49–58
(2003)

4. Hammer, B.: Learning with Recurrent Neural Networks. Springer Lecture Notes in Control
and Information Sciences. Springer, Heidelberg (2000)

5. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000-
2001. Bioinformatics 17(1), 107–108 (2001)

6. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2002)
7. Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46, 77–105 (1990)
8. Micheli, A., Sperduti, A.: Recursive Principal Component Analysis of Graphs. In: Marques

de Sá, J., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4669, pp.
826–835. Springer, Heidelberg (2007)

9. Micheli, A., Sperduti, A., Starita, A., Bianucci, A.M.: Analysis of the internal representa-
tions developed by neural networks for structures applied to quantitative structure-activity
relationship studies of benzodiazepines. Journal of Chem. Inf. and Comp. Sci. 41(1), 202–
218 (2001)

10. Sperduti, A.: Exact Solutions for Recursive Principal Components Analysis of Sequences
and Trees. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS,
vol. 4131, pp. 349–356. Springer, Heidelberg (2006)

11. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks 8, 714–735 (1997)

Hinge Rank Loss and the Area Under the ROC

Curve

Harald Steck

Siemens Medical Solutions, IKM CAD & Knowledge Solutions,
51 Valley Stream Parkway E51, Malvern, PA 19355, USA

harald.steck@siemens.com

Abstract. In ranking as well as in classification problems, the Area un-
der the ROC Curve (AUC), or the equivalent Wilcoxon-Mann-Whitney
statistic, has recently attracted a lot of attention. We show that the
AUC can be lower bounded based on the hinge-rank-loss, which simply
is the rank-version of the standard (parametric) hinge loss. This bound
is asymptotically tight. Our experiments indicate that optimizing the
(standard) hinge loss typically is an accurate approximation to optimiz-
ing the hinge rank loss, especially when using affine transformations of
the data, like e.g. in ellipsoidal machines. This explains for the first time
why standard training of support vector machines approximately max-
imizes the AUC, which has indeed been observed in many experiments
in the literature.

1 Introduction

The equivalence of the Area under the Receiver Operating Characteristics Curve
(AUC) and the Wilcoxon-Mann-Whitney statistic has in recent years sparked a
lot of interesting work toward a better understanding of classification and rank-
ing problems. While the AUC is a valuable measure for assessing the quality of a
given classifier or ranking method, it was typically not used as an objective func-
tion when training / optimizing a classifier, mainly due to its high computational
cost or different preferences concerning performance measures in the past (e.g.,
0/1-loss). Only recently, computationally tractable optimization methods were
developed for the use of AUC during training. These approaches are reviewed in
Section 8.

This paper aims to better understand the interrelationship among the per-
formance measures AUC (cf. Section 3), 0/1-loss, and our new hinge rank loss
(cf. Section 4). It is not concerned with algorithms for optimizing these mea-
sures. In Section 5, we first show that the AUC is determined by the difference
between the hinge rank loss and the 0/1-loss; and secondly, that the hinge rank
loss provides an asymptotically-tight lower-bound on the AUC. Thirdly, Section
6 argues that the AUC is approximately maximized by the standard training of
support vector machines; this can be improved by using affine transformations
of the data, e.g., employing (kernel) PCA [1] or ellipsoidal machines [2]. This
is supported by our experiments in Section 7 as well as by many experimental
findings in the literature [3,4,5,6], as discussed in Section 8.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 347–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 H. Steck

2 Notation

This section introduces relevant notation concerning classifiers and their para-
metric (real-valued) vs. rank outputs. Like in much of the machine learning
literature, we consider binary classification in this paper. Assume we are given
data D = {(xi, yi)}i=1,...,N with N examples, class labels yi ∈ {−1,+1}, and
input vectors xi; the number of positive examples (i.e., where yi = +1) is N+,
and the number of negative examples is N− = N −N+.

Given a classifier C with real-valued output ci, we have ci = C(xi) for each
input xi, i = 1, ..., N . For simplicity, we assume that there are no ties, i.e.,
ci �= cj for all i �= j.1 Given the real-valued threshold θ, the classification rule is
sign(ci−θ). The rank-version of this classifier is denoted as follows: let the values
ci be ordered in ascending order, i.e., the smallest output-value gets assigned the
lowest rank. Let ri ∈ {1, ..., N} be the rank of example i = 1, ..., N . Moreover,
let r+

j denote the ranks of the positive examples, j = 1, ..., N+; and r−k be
the ranks of the negative ones, k = 1, ..., N−. As the counterpart of the real-
valued threshold θ, a natural definition of the rank-threshold is θ̃ = max{ri :
ci ≤ θ} + 1/2 = min{ri : ci > θ} − 1/2, as it is located half way between the
two neighboring ranks at the (real-valued) threshold.2 The classification rule is
sign(ri− θ̃), so that the real-valued version and the rank-version of the classifier
yield identical classification results.

3 Area Under the Curve

This section briefly reviews the Area under the Receiver Operating Character-
istics (ROC) Curve (AUC). While the AUC, denoted by A, had been used as
a measure for assessing classifier performance in machine learning (e.g., see [7]
for an overview), in recent years it has also become popular as a quality mea-
sure in ranking problems. This is because of its well-known equivalence to the
Wilcoxon-Mann-Whitney (WMW) statistic [9,10]; it can be written in terms of
pairwise comparisons of ranks:

A =
1

N+N−

N+
∑

j=1

N−
∑

k=1

1r+
j >r−

k
, (1)

where 1 is the indicator function: 1a = 1 if a is true and 0 otherwise. Essentially,
it counts the number of pairs of examples that are ranked correctly, i.e., positive
examples are supposed to have a higher rank than negative ones. The AUC
takes values A ∈ [0, 1]; A = 1 indicates perfect classification/ranking, and a
random classification/ranking results in A = 0.5. The AUC is independent of
the threshold value θ used in classification.

1 Given continuous inputs, and assuming that the classifier does not discretize or use
a step-function internally, there are no ties in the outputs to be expected in general.

2 Again, no ties concerning the ci’s are assumed.

Hinge Rank Loss and the Area Under the ROC Curve 349

Even though the computational cost of evaluating Eq. 1 for all pairs of positive
and negative examples (of which there are N+N−) seems to grow quadratically
with N at first glance, it is easy to see that the WMW statistic can be evaluated
in linear time in N given the ranks (if the continuous outputs ci are given, the
ranks can be determined by sorting them in time N logN) [7,8]:

A =
1

N+N−

N+
∑

j=1

(r+
j − j) =

1
N+N−

⎡

⎣

⎛

⎝
N+
∑

j=1

r+
j

⎞

⎠−
(
N+ + 1

2

)
⎤

⎦ . (2)

4 Hinge Rank Loss

In this section, we define the hinge rank loss as a rank-version of the standard
(parametric) hinge loss, which is commonly used for learning support vector
machines (SVM). We show that it can be calculated by summing over the ranks
of the positive examples (or equivalently of the negative ones), similar to Eq. 2.

While classification accuracy is often assessed in terms of the 0/1-loss, the
0/1-loss is computationally expensive to optimize when training the classifier.
For the optimization task, researchers thus typically resort to approximations or
bounds of the 0/1-loss. Among other loss functions, the (linear) hinge loss [11]
(plus a penalty for regularization) is commonly used as objective function when
learning SVMs. The hinge loss has several favorable properties, including: (1)
it is an upper bound on the 0/1-loss, (2) it is differentiable everywhere except
for one point, and (3) leads to a convex optimization problem. The hinge loss
[11] of the real-valued classifier-outputs ci, given the threshold θ and the data
D, is typically defined as LH

θ =
∑N

i=1 [1− yi(ci − θ)]+ , where [·]+ denotes the
positive part, i.e., [a]+ = a if a > 0, and 0 otherwise. In analogy, we propose the
following rank-version of the standard hinge loss:

Definition 1 (Hinge Rank Loss). We define as the hinge rank loss, based on
the ranks ri w.r.t. the rank-threshold θ̃:

LHR
θ̃

=
N∑

i=1

[
1
2
− yi(ri − θ̃)

]

+

. (3)

Note that ri − θ̃ ∈ {±1/2,±3/2, ...}, cf. Section 2, so that [1/2− yi(ri − θ̃)]+ ∈
{0, 1, 2, ...}. Both LH and LHR share the same relevant properties: the loss in-
curred due to each misclassified example i is at least 1 (hence both are an upper
bound on the 0/1-loss), and it increases linearly in ri.3 Conversely, no loss LHR

is incurred for any correctly classified example, as desirable (in contrast to hinge
loss). Note that the ’hinge ranking loss’ defined in [12] is different from our
definition, as discussed in Section 8.

Next, we re-write the hinge rank loss in terms of the sum over the ranks
of the positive examples. For notational convenience, we will use the definition
3 If we had defined the hinge rank loss with 1 in place of 1/2, the results in this paper

would hold with only minor changes.

350 H. Steck

θ̄ = θ̃ − 1/2 ∈ N for the rank-threshold in place of the (equivalent) definition in
Section 2. Hence, the examples with ranks ri ≤ θ̄ get classified as negatives, and
the examples with ranks ri ≥ θ̄ + 1 as positives. Now we can present

Proposition 1. For the hinge rank loss from Definition 1 holds

LHR
θ̄ = N fn

θ̄ + N+θ̄ +
(
N − θ̄ + 1

2

)
−

N+
∑

j=1

r+
j , (4)

with the number of false negatives N fn
θ̄

=
∑N+

j=1 1r+
j ≤θ̄.

Proof: Decomposing the sum in the definition in Eq. 3 into one for either
class, and summing only over the non-zero arguments, one obtains LHR

θ̄
=

∑N+

j=1:r+
j ≤θ̄

(
1− r+

j + θ̄
)
+
∑N−

k=1:r−
k >θ̄

(
r−k − θ̄

)
. Concerning the right-most sum,

we use the following identity regarding all the ranks greater than θ̄,
∑N+

j=1:r+
j >θ̄(r

+
j − θ̄) +

∑N−

k=1:r−
k >θ̄(r

−
k − θ̄) =

(
N−θ̄+1

2

)
. Now the former equation

can be rewritten in terms of sums over the positive examples only (or equiv-
alently over the negative ones only). Merging the two sums over the positive
examples into one, it follows LHR

θ̄
=
∑N+

j=1:r+
j ≤θ̄ 1 −

∑N+

j=1(r
+
j − θ̄) +

(
N−θ̄+1

2

)
,

which yields Eq. 4. �

5 Hinge Rank Loss and AUC

In this section, we decompose the AUC or Wilcoxon-Mann-Whitney-statistic
used in ranking problems in terms of the hinge rank loss and the 0/1-loss used
in classification tasks. From Eqs. 2 and 4, it follows immediately:

Proposition 2. The AUC is related to the hinge rank loss and the number of
false negatives as follows:

A = 1−
LHR

θ̄
− constD,θ̄ −N fn

θ̄

N+N− and A ≥ 1−
LHR

θ̄
− constD,θ̄

N+N− , (5)

where constD,θ̄ =
(
N−−θ̄+1

2

)
if N− ≥ θ̄ and constD,θ̄ =

(
θ̄−N−

2

)
otherwise;

constD,θ̄ is a constant given the data D (and thus N+ and N−) and the rank-
threshold θ̄, i.e., it is independent of the classifier C.

Not only is the hinge rank loss LHR
θ̄

an upper bound on the 0/1-loss (as discussed
earlier), but also it is the decisive term in the lower bound on the AUC, as
apparent from the non-negativity of N fn

θ̄
in Eq. 5.

Proposition 3. The lower bound in Eq. 5 is tight in the asymptotic limit N →∞
under the mild assumption that N+/N → const+D, where 0 < const+D < 1 is a
constant.

Proof: It has to be shown that N fn
θ̄

/(N+N−)→ 0 as N →∞, as this is the only
term omitted from Eq. 5 as to obtain the bound in Eq. 5. This is trivial because

Hinge Rank Loss and the Area Under the ROC Curve 351

0 ≤ N fn
θ̄
≤ N , and N/(N+N−)→ 0 as N →∞ under the assumption N+/N →

const+D > 0. Hence, in the non-separable case, we have 1−A > const > 0, while
N fn

θ̄
/(N+N−)→ 0, which hence becomes negligible for large N . In the separable

case, we have A = 1 and from Eq. 5 thus LHR
θ̄
− constD,θ̄ = N fn

θ̄
, so that the

bound indeed approaches 1 in the asymptotic limit and thus becomes tight. �
The asymptotic tightness of this bound implies that the minimum of the hinge
rank loss indeed coincides with the maximum of the AUC in the asymptotic limit
(our experiments in Section 7 indicate that this holds already for rather small
data sets in excellent approximation). This desirable property is not guaranteed
for the loose bounds on the AUC used in the literature, cf. Section 8.

Apart from that, Eq. 5 relates the AUC, which is independent of threshold θ̄,
with the terms LHR

θ̄
, constD,θ̄ and N fn

θ̄
, which all depend on θ̄. The validity of

Eq. 5 implies that the effect of different values θ̄ cancels out among those terms.
An interesting special case of Eq. 5 is obtained for the natural choice of the

threshold θ̄ = N−, so that the predicted number of positive (negative) examples
equals the true number of positives (negatives); or equivalently, the number of
false positives equals the number of false negatives. This choice has two effects:
(1) it minimizes the constant constD,θ̄, namely it vanishes; (2) it holds that
N fn

N− = L
0/1
N−/2, where the latter is the 0/1-loss. We thus obtain the

Corollary: For the choice θ̄ = N−, the relation among AUC, hinge rank loss
and 0/1-loss reads:

A = 1−
LHR

N− − 1
2L

0/1
N−

N+N− and A ≥ 1−
LHR

N−

N+N− . (6)

6 Hinge Loss as a Parametric Approximation

In this section, we argue that minimizing the (standard) hinge loss—as it is the
parametric counterpart of the hinge rank loss—can be expected to be a good ap-
proximation to maximizing the AUC, especially after pre-processing the data by
an affine transformation, like (kernel-) PCA (principal component analysis) [1]
with subsequent rescaling along each principal component, or the ellipsoidal
machine [2].

While minimizing the hinge rank loss during training would provide an asymp-
totically tight bound on the AUC (as shown in the previous section), this is
computationally expensive due to its discrete nature. For computational rea-
sons, a standard approach is to approximate a discrete function by a continuous
(and possibly differentiable or convex) one, which then can be optimized more
efficiently. For instance, the Wilcoxon-Mann-Whitney-statistic has been approx-
imated by various differentiable functions in [14,15] for efficient optimization
by means of gradient descent (but then suffered from quadratic computational
complexity due to the gradient).

Our propositions suggest an alternative approximation for efficient optimiza-
tion: as the asymptotically-tight lower bound on the AUC is maximized by

352 H. Steck

minimizing the hinge rank loss, the latter may simply be approximated by its para-
metric counterpart: the standard hinge loss, which is computationally less costly
to minimize (as done e.g. in standard SVM training). The rank-threshold θ̄ is ac-
cordingly replaced by (real-valued) threshold θ, cf. Sections 2 and 4.

Note that there exist rank and parametric versions of many commonly-used
statistics, like the Pearson correlation coefficient and the Spearman rank cor-
relation; or the paired Student’s t-test and the Wilcoxon signed-rank test. In
general, the ranked and the parametric versions of a statistic were found to yield
similar results in experiments, even though no theoretical proofs exist in general.
Further experimental insights include that there can also be some differences; in
particular, rank statistics are independent of an (assumed) distribution of the
examples, and are typically less affected by outliers in the data.

Even though the validity of the approximation of the hinge rank loss by the
(standard) hinge loss cannot be proven theoretically, it is strongly supported not
only by our experiments in Section 7 but also by many experimental findings
in the literature, where standard SVM training yielded surprisingly high AUC
values [3,4,5,6], cf. also Section 8.

Given a linear classifier (in feature space), consider an arbitrary orientation of
its hyperplane: regarding the hinge rank loss, the contribution of an individual
misclassified example grows monotonically with its distance from the hyperplane
for both the parametric hinge loss and the hinge rank loss, however at possibly
different rates. Note that the maximum possible contribution of a misclassified
example to the hinge rank loss is a constant (determined by the number of exam-
ples) for any orientation of the hyperplane; this does not hold for the standard
hinge loss, especially if the examples are squished along some dimensions. This
suggests a necessary condition for the hinge loss to be a good approximation to
the hinge rank loss: rescaling the (feature) space such that the examples have the
same spread in every direction. This can be achieved by the ellipsoidal machine
[2], which determines the bounding ellipsoid of the examples (possibly allowing
for outliers for robustness) and transforms the examples such that they lie within
a sphere. Alternatively, a similar affine transformation can be obtained by using
principal component analysis and rescaling / normalizing along every principal
component j by a factor N/stdj (where stdj is the standard deviation along
principal component j, cf. Section 7 for an example), or using its kernelized ver-
sion [1]. The resulting improvement is illustrated in Section 7, which also shows
that such an affine transformation can make the hinge loss more robust against
outliers. Moreover, note that such an affine transformation is independent of
and has a different effect than the (standard) penalty term for regularization;
for instance, the latter would not solve the issue in the third example in Fig. 1.

7 Experiments

In this section, we experimentally evaluated how the hinge rank loss, the (stan-
dard) hinge loss and the 0/1-loss are related to the AUC. We assessed this in
two different ways, as outlined in the following, using artificial data as well as 8

Hinge Rank Loss and the Area Under the ROC Curve 353

Table 1. This table shows the AUC values obtained after optimizing the following
measures: AUC, hinge rank loss (LHR), (standard) hinge loss (LH),(standard) hinge
loss after affine transformation of data (aff. LH), and 0/1-loss (L0/1) on artificial data
(cf. Fig. 1) and 8 data sets from the UCI repository

data set dim. examples AUC LHR LH aff. LH L0/1

artificial data 1 2 1000 0.998 0.998 0.998 0.998 0.998
artificial data 2 2 1000 0.848 0.848 0.848 0.848 0.848
artif. with outliers 2 1000 0.796 0.796 0.574 0.796 0.796

Sonar 60 208 0.996 0.996 0.973 0.996 0.950
Glass 10 214 0.992 0.992 0.987 0.988 0.957
Ionosphere 33 351 0.983 0.983 0.976 0.981 0.958
SPECTF 44 267 0.956 0.952 0.930 0.937 0.910
Pima 8 768 0.841 0.841 0.819 0.837 0.835
Hayes-Roth 4 129 0.730 0.730 0.704 0.710 0.703
Hepatitis 19 80 1.000 1.000 1.000 1.000 0.972
Echocardiogram 7 107 0.826 0.826 0.724 0.798 0.793

data sets from the UCI machine learning repository.4 In a pre-processing step,
we discarded the examples with missing values for simplicity, as the remaining
examples still provide a ’real-world distribution’ for comparing the measures.

As a linear classifier, we used a hyperplane. When learning this classifier
w.r.t. the various measures, only the hinge loss is not invariant under re-scaling
of the data. We thus re-scaled the data in two different ways, as to illustrate
the improvements due to the affine transformation discussed in Section 6. In
the first version, we re-scaled each dimension k by the factor N/stdk, where
stdk is the standard deviation of the examples regarding dimension k. In the
second version, we applied PCA and re-scaled along each principal component
analogously (called the affine transformation in the remainder).

Tab. 1 summarizes the AUC-values achieved after optimizing the various per-
formance measures.5,6 As expected, direct maximization of the AUC resulted
in the highest AUC-values, but the difference to minimizing the hinge rank loss
appeared negligible, as expected due to the asymptotic tightness of our bounds
in Eqs. 5 and 6. Moreover, minimizing the standard hinge loss also yielded quite
good AUC-scores. As expected, the affine transformation leads to a notable im-
provement. In comparison, optimizing the 0/1-loss was clearly inferior to mini-
mizing the hinge rank loss, as expected. Moreover, the 0/1-loss was also slightly
worse than the (standard) hinge loss applied to the data after the affine trans-
formation. This suggests that the latter can indeed serve as a useful parametric

4 http://www.ics.uci.edu/~mlearn/MLRepository.html
5 We omitted the standard penalty term here, as regularization is an important but

different problem. It can simply be included when classifying unseen examples, after
the preprocessing step regarding the affine transformation.

6 For ease of implementation, we used a simulated annealing scheme with random
distortions of the hyperplane as to optimize the ’discrete’ measures directly.

354 H. Steck

−5 0 5
−5

0

5

di
m

. 2

dim. 1

2−dim. artifical Data

0 2 4
x 10

5

0

5

10x 10
5

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

0

0.5

1

A
U

C

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

0

5

10x 10
5

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

−5 0 5
−5

0

5

di
m

. 2

dim. 1

2−dim. artifical Data

−4 −2 0 2 4 6
−4
−2

0
2
4
6

di
m

. 2

dim. 1

2−dim. artifical Data

0 2 4
x 10

5

0

1

2x 10
6

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

0

0.5

1

A
U

C

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

0

5

10x 10
5

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

−4 −2 0 2 4 6
−4
−2

0
2
4
6

di
m

. 2

dim. 1

2−dim. artifical Data

−10 0 10
−10

0

10

di
m

. 2

dim. 1

2−dim. artifical Data

0 2 4
x 10

5

0

5

10x 10
5

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

0

0.5

1
A

U
C

hinge rank loss

2−dim. artifical Data

0 2 4
x 10

5

2

4

6x 10
5

hi
ng

e
lo

ss

hinge rank loss

2−dim. artifical Data

−10 0 10
−10

0

10

di
m

. 2

dim. 1

2−dim. artifical Data

Fig. 1. Two-dimensional artificial data: either class (+, ◦) is represented by 500 ex-
amples, sampled from a standard normal distribution. The first two experiments differ
in the distance between the centroids of the two classes. In the third experiment, both
classes contain 10% of outliers. The two leftmost columns show the results for the hinge
loss without the affine transformation, and the two rightmost columns show the results
(in the original space) when using the affine transformation. The column in the center
applies to both cases. The dashed line is the optimal hyperplane based on the hinge
rank loss, while the dotted line is optimal w.r.t. the (standard) hinge loss.

approximation to the hinge rank loss, as it is computationally less expensive to
optimize.

While the previous evaluation is only concerned with the optimum AUC-
value, in our second assessment we evaluated the relationship between the hinge
loss and the AUC for all possible AUC-values. For each data set, we randomly
sampled various orientations of the hyperplane. We chose the rank-threshold
θ̄ = N−, as in the Corollary, and determined the corresponding (paramet-
ric) threshold as the average parametric classifier-output for the two examples
with ranks N− and N− + 1.7 Then we calculated—for each orientation of the
hyperplane—the parametric hinge loss, the hinge rank loss and the AUC; the
scatter-plots in Figs. 1 and 2 illustrate the relationship between these measures
(each point corresponds to a different random orientation of the hyperplane).
The vertical dashed line indicates the largest possible value of the hinge rank loss
given N+ positive and N− negative examples: it equals N+N−+min{N+, N−},
but its value may not be attained for a given data set due to the configuration
of the examples.

Concerning the first two artificial data sets in Fig. 1, the scatter-plots indicate
a clear monotonic relationship between the parametric hinge loss (with and

7 As long as the parametric and rank thresholds correspond to each other, any other
choice may have been used as well.

Hinge Rank Loss and the Area Under the ROC Curve 355

0 5000 10000
0

2

4x 10
4

hi
ng

e
lo

ss

hinge rank loss

Glass

0 5000 10000
0

5000

10000

hi
ng

e
lo

ss

hinge rank loss

Hayes−Roth

0 2000 4000
0

5000

10000

hi
ng

e
lo

ss

hinge rank loss

Echocardiogram

0 500 1000
0

2000

4000

hi
ng

e
lo

ss

hinge rank loss

Hepatitis

0 2 4
x 10

4

0

5

10x 10
4

hi
ng

e
lo

ss

hinge rank loss

ionosphere

0 1 2
x 10

5

0

2

4x 10
5

hi
ng

e
lo

ss

hinge rank loss

Pima

0 1 2
x 10

4

0

5

10x 10
4

hi
ng

e
lo

ss

hinge rank loss

Sonar

0 1 2
x 10

4

0

2

4x 10
4

hi
ng

e
lo

ss

hinge rank loss

SPECTF

Fig. 2. The scatter-plots show the relationship of our hinge rank loss with the hinge
loss on 8 data sets from the UCI machine learning repository

without the affine transformation) and the hinge rank loss, and between the
hinge rank loss and the AUC. Hence, minimizing the hinge loss is an excellent
approximation to minimizing the hinge rank loss, and to maximizing the AUC.
Only in the third experiment, where many outliers are present, the optimal hy-
perplane w.r.t. the hinge loss (without affine transformation) differs significantly
from the result based on the hinge rank loss, as expected (cf. Section 6); the cor-
responding scatter-plot shows a non-monotonic relationship, illustrating that the
minima of the two loss functions are vastly different. The graphs on the lower
right in Fig. 1 show the benefit of the affine transformation: when the (standard)
hinge loss is applied to the data after the affine transformation, the scatter-plot
shows a monotonic relationship, as desired, and the optimal hyperplanes w.r.t.
either loss function are very similar. Apart from that, note that the relationship
of the hinge rank loss and the AUC is well approximated by a linear function,
as expected from the asymptotic tightness of the lower bounds in Eqs. 5 and 6.

Fig. 2 shows the relationship of the hinge rank loss and the (standard) hinge
loss applied to 8 data sets from the UCI repository after the affine transforma-
tion: also here, it is notably monotonic. The fact that this relationship is different
for each data set is irrelevant for minimization as long as it is monotonic. Apart
from that, this relationship is much more ’noisy’ for these real-world data sets
than for our artificial data sets. Interestingly, the ’noise level’ typically decreases
as the hinge loss decreases, so that minimizing the hinge loss appears to be
a good approximation to optimizing the hinge rank loss, and hence the AUC.
Only for the data set ’Echocardiogram’, the noise level is large for small values
of the hinge loss, and thus the optimal hyperplanes with respect to the two loss
functions are notably different, possibly due to dominating outliers.

Like in Fig. 1, we also found for these real-world data sets that the relationship
between the hinge rank loss and the AUC is linear in excellent approximation
(the plots have to be omitted due to lack of space), as expected.

356 H. Steck

8 Related Work

This section describes related work concerning boosting and SVMs in the context
of ranking, and points out differences to our approach. A ’hinge ranking loss’ was
first defined in [12]. Its main difference to our Definition 1 is that they measure
the difference in the ranks among all incorrectly ordered pairs of examples, so
their measure is essentially quadratic in the rank-differences, while our measure
is linear. As our hinge rank loss provides an asymptotically tight bound on the
AUC, it is clear that the ’hinge ranking loss’ does not.

Boosting can be understood as gradient descent, and the various flavors of
boosting essentially differ in the objective function or in the (heuristic) mini-
mization method, e.g., [16]. The objective function minimized by RankBoost [17],
LRBoost, provides a lower bound on the AUC [13], namely 1−LRBoost/(N+N−) ≤
A. It has essentially the same form as our bounds in Eqs. 5 or 6 involving the
hinge rank loss. While our bounds are asymptotically tight, RankBoost opti-
mizes a loose bound, as LRBoost =

∑N+

j=1

∑N−

k=1 ec−
k −c+

j ≥
∑N+

j=1

∑N−

k=1 1c+
j <c−

k
=

N+N−(1−A), cf. [13], where each c+j (or c−k) denotes the weighted sum over the
weak learners’ outputs for the positive (or negative) example j (or k). In [13],
it was also shown that AdaBoost’s loss function equals the one of RankBoost
in the case where the positive and negative examples contribute equally to the
loss.

The average and the variance of the AUC statistic were derived in [18], reveal-
ing interesting relations to the misclassification rate, among other properties. In
[19], confidence intervals for the AUC were obtained from these results by apply-
ing Chebyshev’s inequality. The average and variance of the AUC was calculated
with respect to all possible rankings with fixed misclassification rate, where each
ranking got implicitly assigned the same probability/weight. This average-case
analysis of a combinatorial problem may only be of limited use in practice: given
fixed data, it is unlikely that all possible rankings occur with the same prob-
ability; in fact, many rankings may not occur at all in a given data set (e.g.,
cf. the scatter-plots in Section 7, where the extreme (small and large) values
are actually not reached in many data sets). A different kind of generalization
bounds were derived in [20].

It was mentioned in [3] that optimizing standard SVMs leads to maximizing
the AUC in the special (trivial) case when the given data is separable. As a
perfect separation implies an AUC of 1 (which is maximal), the more interesting
case is non-separable data. Our results are derived without any assumptions on
the kind of classifier used or the (non-)separability of the given data.

Apart from that, it was experimentally observed in [3] that there was no
significant difference in AUC-scores between SVMs trained in the standard way
and other approaches tailored to directly maximize the AUC, like RankBoost
[17], AUCsplit (local optimization of AUC) [21], or ROC-SVM [3]. This provides
additional support for the point made in this paper, namely that the hinge rank
loss can indeed be accurately approximated by its parametric counterpart, the
standard hinge loss.

Hinge Rank Loss and the Area Under the ROC Curve 357

In [4], the objective was to directly maximize the AUC when learning SVMs,
which led to slight experimental improvements over the standard SVM train-
ing. This approach may be considered a special case of the SVM-approach to
ordinal regression [22]. Both gradient-descent methods suffered from quadratic
computational complexity, which made additional approximations necessary for
computational reasons.

In [5], a generalized SVM approach was developed that is able to optimize mul-
tivariate non-linear performance measures in polynomial time, including AUC
among others. The experiments focused on 4 data sets with unbalanced class dis-
tributions: in this scenario, their new approach was superior to standard SVMs
when assessed with respect to the F1-score or the precision/recall breakeven
area. However, when assessed with respect to the AUC, the superiority of their
new approach over standard SVMs appeared less convincing on the 4 data sets
presented.

Among the many performance measures compared experimentally in [6], it
was found that ’... maximum margin methods such as boosting and SVMs ...
surprisingly ... also yield excellent performance on the ordering metrics.’

In summary, the experimental observations in the literature, e.g., [3,4,5,6],
suggest that—despite the various sophisticated methods tailored to directly max-
imize the AUC—standard SVMs could not be consistently outperformed when
assessed with respect to the AUC. This paper provides a simple explanation:
minimizing the (standard) hinge loss typically is an accurate approximation to
maximizing the AUC.

9 Conclusions

We have derived a simple equation that relates the Area under the ROC Curve
(AUC) with the hinge-rank-loss and the number of false negatives. This imme-
diately yields an asymptotically-tight lower bound on the AUC, based on the
hinge rank loss. While the surprisingly high AUC-scores after standard SVM
training in the literature provide indirect evidence, our experiments corroborate
directly that minimization of the (standard) hinge loss typically is an accu-
rate approximation to minimizing the hinge rank loss, especially after applying
affine transformations like in ellipsoidal machines. In summary, this suggests that
standard SVM training typically is a simple, yet effective and computationally
efficient way of approximately maximizing the AUC.

Acknowledgments. I am grateful to R. Bharat Rao for encouragement and
support of this work, and to the anonymous reviewers for excellent comments.

References

1. Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

2. Shivaswamy, P., Jebara, T.: Ellipsoidal machines. In: Proc. Int. Conf. on Artificial
Intelligence and Statistics, pp. 481–488 (2007)

358 H. Steck

3. Rakotomamonjy, A.: Optimizing area ROC curve with SVMs. In: workshop ”ROC
Analysis in AI” at the European Conference on Artificial Intelligence (2004)

4. Brefeld, U., Scheffer, T.: AUC maximizing support vector learning. In: workshop
”ROC Analysis in Machine Learning” at Int. Conf. on Machine Learning (2005)

5. Joachims, T.: A support vector method for multivariate performance measures. In:
Proc. Int. Conf. on Machine Learning, pp. 377–384 (2005)

6. Caruana, R., Niculescu-Mizil, A.: Data mining in metric space: an empirical anal-
ysis of supervised learning performance criteria. In: Proc. Int. Conf. on Knowledge
Discovery and Data Mining, pp. 69–78 (2004)

7. Hand, D.J., Till, R.J.: A simple generalization of the area under the ROC curve
for multiple class classification problems. Machine Learning 45, 171–186 (2001)

8. Wu, S., Flach, P.: A scored AUC metric for classifier evaluation and selection. In:
workshop ”ROC Analysis in Machine Learning” at Int. Conf. on Machine Learning
(2005)

9. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83
(1945)

10. Mann, H.B., Whitney, D.R.: On a test whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

11. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

12. Agarwal, S., Niyogi, P.: Stability and generalization of bipartite ranking algorithms.
In: Proc. Conf. on Learning Theory, pp. 32–47 (2005)

13. Rudin, C., Cortes, C., Mohri, M., Schapire, R.: Margin-based ranking meets boost-
ing in the middle. In: Proc. Conf. on Learning Theory, pp. 63–78 (2005)

14. Yan, L., Dodier, R., Mozer, M.C., Wolniewicz, R.: Optimizing classifier perfor-
mance via the Wilcoxon-Mann-Whitney statistics. In: Proc. Int. Conf. on Machine
Learning, pp. 848–855 (2003)

15. Herschtal, A., Raskutti, B.: Optimising the area under the ROC curve using gra-
dient descent. In: Proc. Int. Conf. on Machine Learning, pp. 49–56 (2004)

16. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical
view of boosting. The Annals of Statistics 38, 337–374 (2000)

17. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

18. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. Advances in
Neural Information Processing Systems 16, 313–320 (2003)

19. Cortes, C., Mohri, M.: Confidence intervals for the area under the ROC curve.
Advances in Neural Information Processing Systems 17, 305–312 (2004)

20. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization
bounds for the area under the ROC curve. Journal of Machine Learning Research 6,
393–425 (2005)

21. Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the area
under the ROC curve. In: Proc. Int. Conf. on Machine Learning, pp. 139–146 (2002)

22. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal re-
gression. In: Proc. Int. Conf. on Neural Networks, pp. 97–102 (1999)

Clustering Trees with Instance Level Constraints

Jan Struyf1 and Sašo Džeroski2

1 Dept. of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

Jan.Struyf@cs.kuleuven.be
2 Dept. of Knowledge Technologies, Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si

Abstract. Constrained clustering investigates how to incorporate do-
main knowledge in the clustering process. The domain knowledge takes
the form of constraints that must hold on the set of clusters. We con-
sider instance level constraints, such as must-link and cannot-link. This
type of constraints has been successfully used in popular clustering algo-
rithms, such as k-means and hierarchical agglomerative clustering. This
paper shows how clustering trees can support instance level constraints.
Clustering trees are decision trees that partition the instances into ho-
mogeneous clusters. Clustering trees provide a symbolic description for
each cluster. To handle non-trivial constraint sets, we extend clustering
trees to support disjunctive descriptions. The paper’s main contribution
is ClusILC, an efficient algorithm for building such trees. We present
experiments comparing ClusILC to COP-k-means.

1 Introduction

Clustering methods partition a given set of instances into subsets (clusters) such
that the instances in a given cluster are similar [1]. Traditional clustering algo-
rithms, such as k-means and hierarchical agglomerative clustering (HAC), are
unsupervised, that is, they only have access to the attributes describing each in-
stance; no direct information about the actual assignment of instances to clusters
is available. This distinguishes clustering from supervised classification, where
the class of each instance is given.

Constrained clustering investigates how domain knowledge can improve clus-
tering performance. Domain knowledge is given as a set of constraints that must
hold on the clusters. We consider two common types of instance level (IL) con-
straints: must-link and cannot-link [2]. A must-link constraint ML(a,b) specifies
that instances a and b must belong to the same cluster, and a cannot-link con-
straint CL(a,b) specifies that a and b must not be placed in the same cluster. IL
constraints provide additional information about the assignment of instances to
clusters. Clustering with IL constraints is therefore considered to be a form of
semi-supervised learning.

IL constraints have been successfully incorporated in popular clustering algo-
rithms, such as k-means [3,4,5,6] and HAC [7,8]. This paper shows how clustering

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 359–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

360 J. Struyf and S. Džeroski

(a) (c)

(b) (d)

0

50

100

150

200

250

0 25 50 75 100 125 150 175 200

C1 C2

C3

0

50

100

150

200

250

0 25 50 75 100 125 150 175 200

C1 C2

C
L

CL
CL

C
L M

L M
L

ML

X > 95.5
yes no

Y > 120.5
yes no

[154.1,172.6] [152.8,71.3]

[39.9,75.2]

Y > 103.5
yes no

X > 113.5
yes no

C2
[160.1,155.9]

C1
[55.9,163.1]

C2
[104,55.8]

Fig. 1. (a) A simple data set with three clusters. (b) A clustering tree for (a). Each
leaf is labeled with the cluster’s centroid (the attribute-wise mean of the instances).
(c) Data with must-link (ML) and cannot-link (CL) constraints. (d) A disjunctive
clustering tree for (c), which takes the IL constraints into account.

trees can support IL constraints. Clustering trees are decision trees that are used
for clustering [9] (Fig. 1.b). Each leaf of a clustering tree corresponds to a clus-
ter and is labeled with the cluster’s centroid. Similar to regular decision trees,
the internal nodes of a clustering tree contain attribute-value tests. The main
advantage of clustering trees is that they provide a symbolic description for each
cluster (i.e., they perform conceptual clustering [10]). For example, cluster C2

in Fig. 1.a is the set of instances for which X > 95.5 and Y > 120.5.
A disadvantage of clustering trees is that they only allow conjunctive cluster

descriptions. This corresponds to rectangular clusters in the two-dimensional
case (Fig. 1.a). One of the main goals of constrained clustering is dealing with
non-trivial cluster shapes. In this paper, we therefore adapt clustering trees to
support disjunctive cluster descriptions. To this end, we introduce cluster labels
in the leaves of the clustering tree. All leaves that share the same label make up
one cluster. We call a clustering tree with such labels a disjunctive clustering tree.
For example, the L-shaped cluster C2 in Fig. 1.c is represented by two leaves in
Fig. 1.d and its disjunctive description is Y ≤ 103.5∨ (Y > 103.5∧X > 113.5).
Note that this is similar to how classification trees represent disjunctive concepts,
but here the labels are not given in the data.

2 Top-Down Induction of Clustering Trees

Clustering tree learning algorithms, such as Tilde [9] or Clus [11], are similar
to top-down induction (TDI) algorithms for regular decision trees, such as C4.5
[12]. A TDI algorithm builds a tree starting from the root node in a depth-
first manner. Given a set of instances, it considers all possible attribute-value
tests, and selects the test t∗ that maximizes a certain heuristic function. Next,

Clustering Trees with Instance Level Constraints 361

it creates a new internal node, labels it t∗, and calls itself recursively to create a
subtree for each subset in the partition induced by t∗ on the instances. If, at a
given point, no suitable test can be found, then it creates a leaf.

To induce a clustering tree, the TDI algorithm computes the heuristic value
of a test t given instances I as H(t, I) = Var(I) −

∑
Ik∈P(t,I)

|Ik|
|I| Var(Ik), with

Var(I) the variance of I, and P(t, I) the partition induced by t on I. H(t, I) takes
all attributes into account, that is, Var(I) is the variance summed over all at-
tributes. H(t, I) guides the algorithm to a tree with homogeneous (low variance)
leaves. If no test yields a significant reduction in variance, then the algorithm
creates a leaf and labels it with the attribute-wise mean of the instances.

3 ClusILC

This section presents ClusILC, the main contribution of this paper. ClusILC is
an algorithm that constructs a disjunctive clustering tree given a set of instances
and a set of IL constraints. ClusILC performs soft constrained clustering [4,5,6],
that is, the output is not guaranteed to satisfy all the given constraints.

3.1 ClusILC’s Heuristic

Decision tree learners that follow the TDI approach (Section 2) employ a local
heuristic: H(t, I) only depends on the instances local to the node that is being
constructed. ClusILC uses a global heuristic. Such a heuristic measures the qual-
ity of the entire tree and takes all instances into account. The heuristic that we
propose for ClusILC is

H(T, I, IL) = (1 − γ) · 1
Var(I)

∑

l∈T

|Il|
|I| Var(Il) + γ · |{c ∈ IL|violated(T, I, c)}|

|IL| ,

with T the disjunctive clustering tree for which the heuristic is to be computed,
I the set of instances, IL the set of IL constraints, and Il the instances in leaf l of
T . The first term of H(T, I, IL) measures the average variance in the leaves of the
tree, normalized by the data’s total variance. The second term is the proportion
of IL constraints that is violated by the tree. The heuristic trades off both terms
by means of a parameter γ. Note that it is not possible to convert this heuristic
into an equivalent local one because of the second term. This term cannot be
split into a term for each leaf that only depends on local instances because IL
constraints may link these instances to instances in other leaves.

3.2 ClusILC’s Search Strategy

ClusILC (Fig. 2) searches greedily for a tree that minimizes H(T, I, IL). It starts
with a tree that consists of only a single leaf covering all instances. In each main
loop iteration, it refines the current tree by replacing one of its leaves with a
subtree consisting of a new test node and two new leaves. The candidate refined

362 J. Struyf and S. Džeroski

procedure ClusILC(I ,IL)

1: T = leaf(I ,C1,mean(I))
2: h = H(T, I, IL)
3: while true do
4: (T ∗, h∗) = (null, h)
5: for each Tr ∈ Refine(T) do
6: hr = H(Tr, I, IL)
7: if hr < h∗ then
8: (T ∗, h∗) = (Tr, hr)

9: if h∗ < h then
10: (T, h) = (T ∗, h∗)
11: else
12: return T

procedure Refine(T)

1: R = ∅
2: for each leaf l ∈ T do
3: Il = instances(l)
4: for each attribute a do
5: for each split point v do
6: t = “a > v”
7: (I1, I2) = apply(Il,t)
8: for each label pair (c1, c2) do
9: l1 = leaf(I1,c1,mean(I1))

10: l2 = leaf(I2,c2,mean(I2))
11: n = node(t,l1,l2)
12: Tr = replace l by n in T
13: R = R ∪ {Tr}
14: return R

Fig. 2. The ClusILC algorithm

trees are constructed by the procedure Refine. ClusILC computes for each such
tree its heuristic value and selects the one with the smallest heuristic value (T ∗).
If T ∗ is better than the current tree, then T ∗ becomes the current tree and the
search continues. If, on the other hand, no refined tree is able to improve on the
heuristic value of the current tree, then the search ends and the current tree is
returned.

Refine computes the set of candidate refined trees R. It consists of four nested
loops. The first loop iterates over all leaves of the current tree. For each such leaf,
Refine considers all attributes that can be used to construct an attribute-value
test. For each attribute, it considers all possible split points and constructs a
test of the form a > x. This test introduces two new leaves in the tree, where
each should be assigned a cluster label (Fig. 1.d). The label can be either a label
that already appears in the tree, or it can be a new label. For each pair of such
labels (one for each leaf), Refine creates an internal node with the test and the
two leaves, and then uses this node to create a new refined tree.

Note that ClusILC does not follow the depth-first approach of most TDI al-
gorithms. The reason is that such a search strategy is not suitable for optimizing
a global heuristic. (For a local heuristic, both methods produce the same tree
and TDI algorithms use depth-first construction because it is more efficient and
easier to implement.)

The efficiency of the algorithm in Fig. 2 can be improved in several ways.
The most obvious optimization is that the candidate generation and the evalu-
ation part of the algorithm can be integrated. Instead of storing all candidate
refined trees, ClusILC only stores the current best refinement. Each time a new
refinement is generated, ClusILC immediately computes its heuristic value and
updates the current best refinement if the new refinement is better. The next
two sections discuss how to efficiently assign cluster labels and how to find the
best split point for a numerical attribute.

Clustering Trees with Instance Level Constraints 363

Y > 103.5
yes no

X
yes no

(α)

(α) (β)

Fig. 3. We distinguish two constraint groups when refining the leaf marked “X”: (α)
constraints either local to one of the new leaves, or connecting the two new leaves, and
(β) constraints connecting one of the two new leaves to another leaf already in the tree

3.3 Assigning Cluster Labels

The second optimization is that ClusILC does not consider all pairs of cluster
labels when generating refined trees. The reason is that the choices (select a
label for each leaf) are mostly independent. We distinguish two groups of con-
straints when refining a leaf: α and β (defined in Fig. 3). The number of violated
constraints in group α does not depend on the actual labels (c1, c2) of the new
leaves (ClusILC only considers splits with c1 �= c2). The heuristic value therefore
only changes if vβ

1 (c1)+vβ
2 (c2) changes, with vβ

k (c) the number of violated group
β constraints when labeling leaf k with c. Because the two leaves have disjoint
sets of constraints in group β, the two terms in the sum can be optimized sepa-
rately, that is, the optimal labels can be assigned sequentially to the leaves. The
optimal label c∗k for leaf lk is the label that minimizes vβ

k (c). There is, however,
one problem with this approach: the constraint c1 �= c2 introduces a dependency
between the two labels. Therefore, two cases must be considered. The first case
is to first select the optimal label c∗1 for leaf l1, then select the label c2 �= c∗1 for
leaf l2 that minimizes vβ

2 (c2). The second case is symmetrical, but starts with
labeling l2. ClusILC picks the case that minimizes vβ

1 (c1)+vβ
2 (c2). The resulting

labeling is the same as when the labeling would be obtained by considering all
pairs (c1,c2). This optimization makes the labeling step linear in the number of
possible cluster labels (instead of quadratic).

3.4 Selecting a Split Point

When refining a given leaf, ClusILC considers for each attribute all possible split
points in one pass over the leaf’s instances. This is similar to how TDI algorithms
such as C4.5 select the best split point for a numerical attribute. The main dif-
ference is that ClusILC computes a number of additional statistics to be able to
efficiently compute, for each candidate split, the number of violated constraints.
We first discuss the basic algorithm and then the required modifications.

BestSplit (Fig. 4) considers all possible tests a > x in one iteration over the
instances. It first sorts the instances by their value for a from large to small.
Each value x in the middle of two subsequent values in this sorted list is a
candidate split point (line 7). To compute the corresponding heuristic value,
the algorithm needs to compute the variance in the two subsets induced by

364 J. Struyf and S. Džeroski

procedure BestSplit(l,a,h0)

1: initialize S1, S2, h∗, r∗

2: initialize vα, MLβ
1 , MLβ

2 , CLβ
1 , and CLβ

2
3: aprev = ∞
4: for each i ∈ instances(l) sorted by a from large to small do
5: if i[a] �= aprev ∧ aprev �= ∞ then
6: x = (i[a] + aprev)/2
7: t = “a > x”
8: vβ = AssignLabels(MLβ

1 , MLβ
2 , CLβ

1 , CLβ
2)

9: h = Heuristic(h0,S1,S2,v
α + vβ)

10: if h < h∗ then
11: h∗ = h; r∗ = “refine l using t”

12: aprev = i[a]

13: Update(S1, i, +1); Update(S2, i, -1)
14: for each il ∈ ILα(i) do
15: Update(vα, il)
16: for each il ∈ ILβ(i) do
17: Update(MLβ

1 , CLβ
1 , il , +1); Update(MLβ

2 , CLβ
2 , il , -1)

Fig. 4. Selecting the split point for an attribute

the split on the instances. This can be done in constant time if appropriate
statistics for the two subsets are available (S1 and S2 in the algorithm). Subset
1 contains the instances for which the test succeeds; subset 2 the instances for
which it fails. Sk summarizes the instances in subset k; it counts the number
of instances, and for each attribute, the sum of its values and the sum of its
squared values. Based on these numbers, the variances of the attributes can
be computed (Var(a) = a2 − (a)2). The algorithm starts with all instances in
subset 2 (test a > ∞). S2 is therefore initialized to represent all instances and
S1 is initialized to all zeros. Each iteration of the loop decreases the value of the
split point x (assuming no identical attribute values) and correspondingly moves
one instance from subset 2 to subset 1. This is reflected in line 13, which adds
the instance to S1 and removes it from S2. These updates simply correspond
to adding (subtracting) the (squared) attribute values of the given instance to
(from) the corresponding components of S1 (S2).

The first modification is required to be able to assign cluster labels for the two
new leaves in O(|C|) time with C the set of cluster labels already in the tree. To
this end, the algorithm uses the arrays MLβ

k and CLβ
k . Similar to the Sk statis-

tics, there is one array of a given type for each of the two subsets. The arrays are
used to count, for each cluster label, the number of ML and CL constraints in
group β (Fig. 3). For example, MLβ

k [c] counts the number of ML constraints that
connect the instances in subset k to one of the label c leaves already in the tree.
The number of group β constraints vβ

k (c) that are violated by assigning label c

to subset k can now be computed as vβ
k (c) = CLβ

k [c] +
∑

cj �=c MLβ
k [cj]; the num-

ber of constraints violated by assigning a new label is vβ
k (new) =

∑
cj∈C MLβ

k [cj]

Clustering Trees with Instance Level Constraints 365

(all ML constraints violated). The former can be rewritten as vβ
k (c) = CLβ

k [c] +
(vβ

k (new) −MLβ
k [c]). By first computing vβ

k (new) and then computing for each
c ∈ C, vβ

k (c) using the second formula, all vβ
k values can be computed in O(|C|)

time. The vβ
k values are used to assign optimal labels (Section 3.3). Line 17

updates the CLβ
k arrays based on the group β constraints in which instance

i participates. Such an update consists of retrieving the cluster label of the
other instance participating in the constraint and updating the corresponding
component of the ML or CL array (depending on the constraint’s type). To make
this step efficient, each instance stores its current cluster label and associated
set of group β constraints ILβ(i).

To be able to compute the heuristic value BestSplit needs, in addition to the
optimal labeling and its corresponding number of violated group β constraints
(vβ , line 8), also the number of violated group α constraints. It counts this
number in the variable vα. Initially, all instances are in subset 2. As a result,
all ML constraints of group α are satisfied and all CL constraints are violated.
vα is initialized to the latter. Each time an instance moves from subset 2 to
subset 1, vα is updated to take into account the group α constraints in which
it participates. vα is increased by one for each such constraint that becomes
violated by moving the instance; it is decreased by one for each constraint that
was violated before and becomes satisfied by moving the instance. Note that
group α constraints change state (from violated to satisfied and the other way
around) if one of their associated instances changes subset.

Based on the above statistics, BestSplit computes the heuristic value of a split
a > x and the optimal labeling of the corresponding new leaves (line 9). It uses
S1 and S2 to compute the first term of the heuristic (the variance part) and
the number of violated constraints vα + vβ for the second term. Note that these
statistics only account for the variance in the new leaves and the constraints
associated to their instances. To compute the heuristic of the entire tree (T with
l replaced by node(t,l1,l2)), the algorithm adds the offset h0. h0 is computed as
H(T − {l}, I, IL− ILl); h0 takes the variance in the other leaves of T and the
violated constraints that do not have a participating instance in l into account.

3.5 Algorithm Complexity

BestSplit(l,a,h0) sorts the instances, which takes O(|Il| log |Il|) time, with Il leaf
l’s instances. Its main loop iterates over Il. The main loop’s most expensive
steps are the call to AssignLabels, which takes O(|C|) time (C is the set of
cluster labels), and updating the Sk, which takes O(|A|) time (A is the attribute
set). BestSplit also processes the constraints in which the instances participate.
Each such constraint is processed at most once (β) or twice (α). As a result, the
total cost of BestSplit is O(|Il| log |Il| + |Il| · (|C| + |A|) + |ILl|), with ILl the
constraints in which l participates.

To iterate over all refinements of T , ClusILC calls BestSplit for each of T ’s
leaves and for each attribute in the data set. For a given attribute, the cost of
calling BestSplit for all leaves is O(|I| log |I|+ |I| ·(|C|+ |A|)+ |IL|) because each

366 J. Struyf and S. Džeroski

instance occurs in at most one leaf and each constraint is included for at most
two leaves. Each such iteration yields two additional nodes. As a result, the cost
of building a tree with N nodes is O(N · |A| · (|I| log |I|+ |I| · (|C|+ |A|)+ |IL|)).
This is more expensive than the TDI algorithm. The complexity of the latter is
O(D · |A| · (|I| log |I|+ |I| · |A|)), with D the depth of the tree (D < N).

4 Experimental Evaluation

4.1 Setup

We present preliminary experiments with ClusILC, which has been implemented
in the Clus system1. ClusILC has two parameters. The parameter γ trades off
the relative variance and the proportion of violated constraints in the heuristic.
The parameter m lower bounds the number of instances in each leaf. We set
both parameters (ad-hoc) to their default values γ = 0.5 and m = 2.

We compare ClusILC to COP-k-means [3]. COP-k-means is a version of k-
means that takes IL constraints into account. During each iteration, k-means
assigns each instance in turn to its closest cluster. COP-k-means instead assigns
each instance to the closest cluster center such that none of the constraints in
which it participates are violated. If a given instance can’t be assigned to one of
the clusters without violating constraints, then COP-k-means fails (it performs
hard constrained clustering).

The experimental setup is similar to that of Wagstaff et al. [3]. We use classi-
fication data sets from the UCI [13] repository as input (Table 1). The clustering
algorithms only use the descriptive attributes. The class attribute is used to gen-
erate constraints. To generate a constraint, two instances are picked at random.
If they belong to the same class, then the constraint becomes a ML constraint;
if they belong to different classes then it becomes a CL constraint. We augment
the IL constraints by adding all entailed constraints (during the initialization of
the learners) [3]. The ML constraints represent an equivalence relation over the
instances. We therefore add all constraints in the transitive closure of the original
ML constraints. Assuming consistency, a CL constraint between two instances
can be extended to their ML equivalence classes. That is, for each pair of ML
equivalence classes A and B that are linked by at least one CL constraint, we
add a CL constraint between every pair of instances (a, b), a ∈ A, b ∈ B.

The number of classes k is given in each classification task. We use this number
to set the parameter k (number of clusters) of COP-k-means. We also introduce
an upper bound on the number of cluster labels in ClusILC. This can be accom-
plished by changing the AssignLabels procedure so that it does not introduce a
new cluster label if there are already k labels in the tree.

We compare the result of the clustering algorithms to the correct labels in
terms of the Rand index. Given two clusterings C1 and C2, Rand(C1, C2) =

a+b
|I|·(|I|−1)/2 , with a the number of instance pairs (i1, i2) where i1 and i2 are in

1 Available at http://www.cs.kuleuven.be/∼dtai/clus.

http://www.cs.kuleuven.be/~dtai/clus

Clustering Trees with Instance Level Constraints 367

Table 1. Data set properties: number of instances |I |, attributes |A|, and classes k

Name |I | |A| k

1 iris 150 4 3
2 hayes-roth 160 4 4
3 wine 178 13 3
4 glass 214 9 6
5 heart-statlog 270 13 2
6 ecoli 336 7 8

Name |I | |A| k

7 liver-disorders 345 6 2
8 ionosphere 351 34 2
9 balance 625 4 3
10 yeast 1484 8 10
11 image 2310 19 7
12 pendig 7494 16 10

the same cluster in both C1 and C2, and b the number of pairs where i1 and i2
are assigned to different clusters by both C1 and C2.

We report, besides the Rand index for all instances (i.e., cluster all instances
and compute the Rand index for that clustering), also the cross-validated Rand
index. The latter indicates how the algorithms perform on unconstrained in-
stances. We use 10 fold cross-validation. In each iteration, constraints are gen-
erated for nine folds. The tenth fold is used to compute the Rand index. (The
algorithms cluster the data in all folds.) The cross-validated Rand index is the
average of the values computed for each of the folds. The results (both all data
and cross-validated) are averages over 60 random sets of constraints2.

4.2 Results

Fig. 5 presents the results. Consider first the curves for the clustering of all in-
stances (labeled “All”). The Rand index of COP-k-means increases with the num-
ber of constraints and, in 8 out of 12 data sets, clearly surpasses that of ClusILC for
a sufficiently large number of generated constraints. This was to be expected be-
cause COP-k-means only returns a clustering if it can satisfy all constraints: given
enough constraints, the Rand index will become 1.0. (For the large data sets im-
age and pendig COP-k-means requires many constraints.) ClusILC, on the other
hand, may also return a solution that does not satisfy all constraints. This can
happen either because, even if a solution exists, the greedy search fails to find it,
or because the target concept cannot be expressed as a clustering tree with the
given set of features. The result in both cases is a lower Rand index.

Next consider the cross-validation results (labeled “CV”). For these results,
ClusILC does better for wine, ecoli, ionosphere, balance, image, and pendig
(6 out of 12 data sets). It only does clearly worse for one data set (yeast).
For the other 5 data sets it performs comparable to COP-k-means. One reason
for the good generalization performance of ClusILC is that it can represent
2 For wine, heart-statlog, liver-disorders, and ionosphere, COP-k-means was, for large

constraints sets, unable to find a consistent clustering. To obtain results for these
data sets, we generated in each trial different random constraint sets until it found a
solution (up to 105). The probability of finding a consistent solution strongly depends
on the number of constraints. E.g., for wine, the peak was at 300 constraints and
required on average 1087 sets before a consistent solution was found.

368 J. Struyf and S. Džeroski

0.85

0.90

0.95

1.00

R
an

d
in

de
x

0 100 200 300 400 500

Constraints

iris

0.60

0.70

0.80

R
an

d
in

de
x

0 50 100 150 200 250 300

Constraints

hayes-roth

0.70

0.80

0.90

1.00

R
an

d
in

de
x

0 100 200 300 400

Constraints

wine

0.65

0.70

0.75

0.80

0.85

R
an

d
in

de
x

0 100 200 300 400 500

Constraints

glass

0.50

0.60

0.70

0.80

0.90

R
an

d
in

de
x

0 50 100 150 200 250 300

Constraints

heart-statlog

0.80

0.85

0.90

R
an

d
in

de
x

0 100 200 300 400 500

Constraints

ecoli

0.50

0.60

0.70

R
an

d
in

de
x

0 100 200 300

Constraints

liver-disorders

0.50

0.60

0.70

0.80

0.90

1.00

R
an

d
in

de
x

0 100 200 300 400

Constraints

ionosphere

0.55

0.60

0.65

0.70

0.75

0.80

0.85

R
an

d
in

de
x

0 100 200 300 400 500

Constraints

balance

0.70

0.75

0.80

0.85

R
an

d
in

de
x

0 1000 2000 3000

Constraints

yeast

0.80

0.85

0.90

0.95

R
an

d
in

de
x

0 1000 2000 3000 4000 5000

Constraints

image

0.85

0.90

0.95

R
an

d
in

de
x

0 1000 2000 3000 4000 5000

Constraints

pendig

ClusILC All ClusILC CV COP-k-means All COP-k-means CV

Fig. 5. Results for ClusILC and COP-k-means

more complex clusters than COP-k-means, which essentially assumes spherical
clusters (i.e., a strong bias). Note also that not all constraints are useful and the
possibility to ignore constraints can be beneficial [14].

Clustering Trees with Instance Level Constraints 369

We also measure the execution times and clustering tree sizes of ClusILC.
The maximum execution time (over all sets of constraints) for one run ranges
from 1.4 seconds (on balance) to 9 minutes (on heart-statlog). The maximum
tree size ranges from 23 nodes (iris) to 773 nodes (yeast). Typically, the more
constraints, the larger the tree. Note that this may yield to overfitting as can be
seen, for example, from the graphs for iris and ecoli. The experiments were run
on a cluster of AMD Opteron processors (1.8 - 2.4GHz, >2GB RAM) running
Linux.

5 Conclusion and Further Work

Clustering trees are decision trees used for clustering tasks. The main advan-
tage of such trees over other clustering methods is that they provide a symbolic
description for each cluster. This paper shows how clustering trees can support
instance level (IL) constraints. We extend clustering trees to be able to represent
disjunctive descriptions by assigning cluster labels to the leaves. This modifica-
tion is required to handle non-trivial constraint sets.

The main contribution is ClusILC, an algorithm that builds a disjunctive
clustering tree given a set of instances and a set of IL constraints. ClusILC
is a greedy algorithm guided by a global heuristic that takes the constraints
into account. We discuss two important optimizations that are implemented in
ClusILC: an algorithm for efficiently assigning cluster labels, and an algorithm
for efficiently finding the optimal split point for a numeric attribute.

The experimental evaluation compares ClusILC to COP-k-means. While COP-
k-means performs better on all data (its solution satisfies all constraints if it finds
one), ClusILC has a better or comparable generalization performance.

We consider data sets with numeric attributes only. In future work, we plan
to extend ClusILC to support data with mixed numeric and nominal attributes.
The main modification that is required to this end is to redefine the variance
metric used in the heuristic (e.g., to use the Gini index for nominal attributes
[15]). ClusILC uses greedy hill-climbing search. We plan to investigate alternative
search strategies, such as beam search, for which we have shown that it improves
the performance of predictive clustering trees [16]. We also consider experiments
comparing ClusILC to other constrained clustering algorithms, such as k-means
algorithms that implement soft constrained clustering [4,5,6], metric learning
approaches (e.g., [4,5]), and HAC [7,8]. Finally, we plan to investigate how other
constraint types, such as constraints on the size of the tree [11], can be integrated
in ClusILC.

Acknowledgments. Jan Struyf is a postdoctoral fellow of the Research Foun-
dation - Flanders (FWO-Vlaanderen). The authors thank Siegfried Nijssen and
Elisa Fromont for the fruitful discussion on clustering trees and IL constraints,
and the anonymous reviewers for their constructive comments.

370 J. Struyf and S. Džeroski

References

1. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Sur-
veys 31(3), 264–323 (1999)

2. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: 17th Int’l
Conf. on Machine Learning, pp. 1103–1110 (2000)

3. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means clustering
with background knowledge. In: 18th Int’l Conf. on Machine Learning, pp. 577–584
(2001)

4. Bilenko, M., Basu, S., Mooney, R.: Integrating constraints and metric learning in
semi-supervised clustering. In: 21st Int’l Conf. on Machine Learning, pp. 81–88
(2004)

5. Basu, S., Bilenko, M., Mooney, R.: A probabilistic framework for semi-supervised
clustering. In: 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pp. 59–68. ACM Press, New York (2004)

6. Davidson, I., Ravi, S.: Clustering with constraints: Feasibility issues and the K-
means algorithm. In: SIAM Int’l Data Mining Conf. (2005)

7. Davidson, I., Ravi, S.: Agglomerative hierarchical clustering with constraints: The-
oretical and empirical results. In: 9th European Conf. on Principles and Practice
of Knowledge Discovery in Databases, pp. 59–70 (2005)

8. Klein, D., Kamvar, S., Manning, C.: From instance-level constraints to space-level
constraints: Making the most of prior knowledge in data clustering. In: 19th Int’l
Conf. on Machine Learning, pp. 307–314 (2002)

9. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
15th Int’l Conf. on Machine Learning, pp. 55–63 (1998)

10. Michalski, R., Stepp, R.: Learning from observation: Conceptual clustering. In:
Machine Learning: An Artificial Intelligence Approach, vol. 1, Tioga Publishing
Company (1983)

11. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: 4th Int’l Workshop on Knowledge Discovery in Inductive Databases:
Revised Selected and Invited Papers, pp. 222–233 (2006)

12. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in
Machine Learning. Morgan Kaufmann, San Francisco (1993)

13. Merz, C., Murphy, P.: UCI repository of machine learning databases, University of
California, Department of Information and Computer Science, Irvine, CA (1996),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

14. Davidson, I., Wagstaff, K., Basu, S.: Measuring constraint-set utility for parti-
tional clustering algorithms. In: 10th European Conf. on Principles and Practice
of Knowledge Discovery in Databases, pp. 115–126 (2006)

15. Raileanu, L., Stoffel, K.: Theoretical comparison between the Gini index and in-
formation gain criteria. Annals of Mathematics and Artificial Intelligence 41(1),
77–93 (2004)

16. Kocev, D., Struyf, J., Džeroski, S.: Beam search induction and similarity con-
straints for predictive clustering trees. In: 5th Int’l Workshop on Knowledge Dis-
covery in Inductive Databases: Revised Selected and Invited Papers (to appear,
2007)

http://www.ics.uci.edu/~mlearn/MLRepository.html

On Pairwise Naive Bayes Classifiers

Jan-Nikolas Sulzmann1, Johannes Fürnkranz1, and Eyke Hüllermeier2

1 Department of Computer Science, TU Darmstadt
Hochschulstr. 10, D-64289 Darmstadt, Germany

{sulzmann,juffi}@ke.informatik.tu-darmstadt.de
2 Informatics Institute, Marburg University

Hans-Meerwein-Str., Lahnberge, D-35032 Marburg, Germany
eyke@mathematik.uni-marburg.de

Abstract. Class binarizations are effective methods for improving weak
learners by decomposing multi-class problems into several two-class prob-
lems. This paper analyzes how these methods can be applied to a Naive
Bayes learner. The key result is that the pairwise variant of Naive Bayes is
equivalent to a regular Naive Bayes. This result holds for several aggrega-
tion techniques for combining the predictions of the individual classifiers,
including the commonly used voting and weighted voting techniques.
On the other hand, Naive Bayes with one-against-all binarization is not
equivalent to a regular Naive Bayes. Apart from the theoretical results
themselves, the paper offers a discussion of their implications.

1 Introduction

The Naive Bayes classifier is a Bayesian learner that often outperforms more
sophisticated learning methods such as neural networks, nearest neighbor esti-
mation, or decision tree learning in many application areas. It is widely esteemed
because of its simplicity, versatility, efficiency, and comprehensibility to domain
experts (Kononenko, 1993). Even though the Naive Bayes classifier is directly
amenable to multi-class problems, we consider the question whether its perfor-
mance can be improved by combining it with class binarization methods. This
question is motivated by the fact that class binarization has yielded good results
for other multi-class learners as well (Fürnkranz, 2003).

The paper starts with a brief recapitulation of the Naive Bayes classifier (Sec-
tion 2) and class binarization methods (Section 3). The main results are then
presented in Section 4. We first derive a general method for combining pair-
wise Bayesian classifiers (Section 4.1), and then show that this method and the
commonly used weighted and unweighted voting techniques are equivalent to
the regular classifier (Sections 4.2 and 4.3). In Section 5, we address the same
question for the alternative one-against-all class binarization technique and show
that, in this case, equivalence to the regular Naive Bayes learner is lost. Finally,
in Section 6, we briefly recapitulate the results and discuss some implications
thereof.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 371–381, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

372 J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier

2 Naive Bayes Classifier

Consider a simple setting of classification learning, in which the goal is to predict
the class c ∈ C = {c1, . . . , cm} of an query input x = (a1, . . . , an), given a
training set of pre-classified examples; instances are characterized in terms of an
attribute-value representation, and ai is the value of the ith attribute.

In general, the classification error can be minimized by selecting

arg max
ci∈C

Pr(ci|x), (1)

i.e., the class with maximum posterior probability. To identify this class, esti-
mates of the conditional probabilities Pr(ci|x), i = 1, . . . ,m, are needed. Bayes
theorem states that

pi = Pr(ci|x) =
Pr(x|ci) · Pr(ci)

Pr(x)
, (2)

and therefore allows one to reverse the original (direct) estimation problem into
a more tractable (indirect) one: instead of estimating the probability of a class
given the input, it suffices to estimate the probability of an input given a class.

The denominator in (2), Pr(x) =
∑

j Pr(x|cj) · Pr(cj), is a normalizing con-
stant that does not influence the solution of the maximization problem (1). Thus,
the following basic version of a Bayesian learner is obtained:

cB = arg max
ci∈C

Pr(x|ci) · Pr(ci)

= arg max
ci∈C

Pr(a1, a2, ..., an|ci) · Pr(ci)

Under the so-called Naive Bayes assumption, which assumes the probabilities
of attributes to be conditionally independent given the class, the difficult esti-
mation of the (high-dimensional) probability Pr(x|ci) can be reduced to the es-
timation of (one-dimensional) class-conditional attribute probabilities Pr(aj |ci):

Pr(x|ci) = Pr(a1, a2, ..., an|ci)
!=

n∏

j=1

Pr(aj |ci)

The probabilities Pr(ci) and Pr(aj |ci) can now be estimated from the training
data, which is typically done by referring to corresponding relative frequencies.
Even though the Naive Bayes assumption is usually violated in practice, and the
probability estimates for Pr(ci|x) are often not very accurate, the Naive Bayes
prediction

cNB = argmax
ci∈C

⎛

⎝Pr(ci) ·
n∏

j=1

Pr(aj |ci)

⎞

⎠

achieves surprisingly high classification rates. This is because, for a correct clas-
sification, it is only important that the true class receives the highest (estimated)

On Pairwise Naive Bayes Classifiers 373

probability. In other words, only the order of the probability estimates Pr(ci|x)
is relevant, and this order is, to some extent, robust toward deviations of the
estimated from the real probabilities (Domingos and Pazzani, 1997).

3 Class Binarization

Class binarization techniques turn multi-class problems into a set of binary prob-
lems.Prominent examples includeone-against-allbinarization (Clark and Boswell,
1991; Anand et al., 1995; Cortes and Vapnik, 1995; Rifkin and Klautau, 2004),
pairwise classification (Friedman, 1996; Hastie and Tibshirani, 1998; Fürnkranz,
2002), and error-correcting output codes (Dietterich and Bakiri, 1995). A general
framework for such techniques is presented in (Allwein et al., 2000).

The main goal of these methods is to enable machine learning methods which
are inherently designed for binary problems (e.g., perceptrons, support vector
machines, etc.) to solve multi-class problems. However, there is also evidence
that ensembles of binary classifiers may improve the performance of multi-class
learners (Dietterich and Bakiri, 1995; Fürnkranz, 2003).

There are several reasons why such approaches can work. First, the binary
problems are typically less complex and will often have a simpler decision bound-
ary that is easier to model. For example, Knerr et al. (1992) observed that
the classes of a digit recognition task were pairwise linearly separable, while
it was not possible to discriminate each class from all other classes with linear
perceptrons. It is well-known that Naive Bayes is essentially a linear classifier
(Duda and Hart, 1972), and thus it can be expected to profit from such a pair-
wise decomposition of the task. Furthermore, a large number of binary classi-
fiers introduces an ensemble effect in the sense that mistakes of a single classifier
have a smaller impact on the final predictions, thus increasing the robustness
of the classifier. For Naive Bayes classifiers in particular, which is known for
giving good predictions but uncalibrated probabilities, class binarization is of
importance because most calibration techniques operate on two-class problems
(Zadrozny and Elkan, 2002). Finally, regarding computational efficiency, train-
ing a large number of classifiers from subsets of the training examples may be
cheaper than training an entire classifier, in particular when the base classifier
has a super-linear time or space complexity.

4 Pairwise Bayesian Classification

We are primarily interested in pairwise classification, which transforms an m-
class problem into m(m − 1)/2 two-class problems 〈i, j〉, one for each pair of
classes {i, j}, 1 ≤ i < j ≤ m. The binary classifier for problem 〈i, j〉 is trained
with examples of classes ci and cj , whereas examples of classes k �= i, j are
ignored for this problem. At classification time, a query x is submitted to all

374 J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier

binary models, and the predictions of the binary classifiers are combined to yield
a final overall prediction.

A pairwise probabilistic classifier, Rij , is therefore trained to estimate pairwise
probabilities of the form

pij = Pr(ci|x, cij),

that is, the probability of class ci given that the example x either belongs to class
ci or cj (abbreviated as cij). These probabilities can, for example, be estimated
by training a Bayes classifier on training sets Dij which only contain the exam-
ples of classes ci and cj . More specifically, such a Bayes classifier estimates the
pairwise probabilities Pr(ci|x, cij) and Pr(cj |x, cij) of class pair cij as follows:

Pr(ci|x, cij) =
Pr(x|ci, cij) · Pr(ci|cij)

Pr(x|ci, cij) · Pr(ci|cij) + Pr(x|cj , cij) · Pr(ci|cij)

Pr(cj |x, cij) = 1− Pr(ci|x, cij)

Again, a naive implementation of a Bayes classifier expands Pr(x|ci, cij) into
Pr(a1|ci, cij) · Pr(a2|ci, cij) · · ·Pr(am|ci, cij).

4.1 Bayesian Combination of Votes

The probabilities pij = Pr(ci|x, cij) need to be combined into probabilities
(scores) si = Pr(ci|x), a process that is known as pairwise coupling
(Hastie and Tibshirani, 1998; Wu et al., 2004). In particular, we will consider
simple linear combiners of the form

si =
∑

j �=i

wij · Pr(ci|x, cij) (3)

Interestingly, linear combination of that kind is sufficient to imitate regular Bayes
classification:

Theorem 1. Weighting the pairwise probabilities with

wij =
Pr(cij |x)
m− 1

=
Pr(ci|x) + Pr(cj |x)

m− 1
(4)

reduces a pairwise Bayes classifier to a regular Bayes classifier.

Proof. Noting that

(m− 1)Pr(ci|x) =
∑

j �=i

Pr(ci|x)

=
∑

j �=i

Pr(ci|x, cij) · Pr(cij |x),

On Pairwise Naive Bayes Classifiers 375

replacing wij in (3) by (4) yields

si =
∑

j �=i

wij · Pr(ci|x, cij)

=
1

m− 1

∑

j �=i

Pr(ci|x, cij) · Pr(cij |x)

=
1

m− 1

∑

j �=i

Pr(ci|x)

= Pr(ci|x) = pi �	

This result is interesting, as it shows that an optimal Bayes decision can in
principle be derived from an ensemble of pairwise learners. Or, stated differently,
the binary decomposition of the original multi-class problem does not cause a loss
of information. Moreover, the result shows how the weights wij should ideally
be defined. As will be seen later on, the voting methods commonly used in
practice refer to more simple weighting schemes, which can hence be considered
as approximations of the ideal weights wij .

Anyway, as mentioned previously, the main interest in classification does not
concern the probability estimates Pr(ci|x, cij) themselves, but only the resulting
predictions. In the following, we will show that the use of voting or weighted
voting will yield the same predictions as the Naive Bayes classifier.

4.2 Weighted Voting

Weighted Voting simply sums up the pairwise probability estimates of each class,
i.e., it uses wij ≡ 1 in (3):

cWV = argmax
ci

∑

j �=i

Pr(ci|x, cij)

Weighted voting has been frequently used in empirical studies and maintained
a good performance. More importantly, Hüllermeier and Fürnkranz (2004) have
shown that pairwise classification with weighted voting optimizes the Spearman
rank correlation between the predicted ranking of all class labels and the true
ranking, given that the predicted pairwise probabilities are unbiased estimates
of their true values.

Theorem 2. A pairwise Naive Bayes classifier with weighted voting predicts
the same class ranking as a regular Naive Bayes classifier, i.e.,

Pr(ci|x) ≤ Pr(cj |x)⇔
∑

k �=i

Pr(ci|x, cik) ≤
∑

k �=j

Pr(cj |x, cjk)

Pr(ci|x) < Pr(cj |x)⇔
∑

k �=i

Pr(ci|x, cik) <
∑

k �=j

Pr(cj |x, cjk)

376 J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier

Proof. Let pi = Pr(ci|x) and si =
∑

k �=i Pr(ci|x, cik). Then

si − sj = (pij − pji) +
∑

k �=i,j

pik − pjk

=
pi − pj

pi + pj
+
∑

k �=i,j

pk(pi − pj)
(pi + pk)(pj + pk)

From this, it immediately follows that (pi < pj) ⇒ (si < sj), and that (pi ≤
pj) ⇒ (si ≤ sj). The other directions can thus be obtained by contraposition:
(si < sj)⇒ (pi < pj) and (si ≤ sj)⇒ (pi ≤ pj). �	

Obviously, due to their construction, the pairwise probabilities pij are in full
agreement with the total order induced by the regular Bayes probabilities pi. In
particular, it is interesting to note that these probabilities satisfy a certain type
of transitivity property, namely

(pij < 1/2) ∧ (pjk < 1/2) ⇒ (pik < 1/2). (5)

This obviously holds, since pij < 1/2 means that pi < pj , pjk < 1/2 means that
pj < pk, and therefore pi < pk, which in turn implies pik < 1/2. It deserves
mentioning, however, that, for many other pairwise base classifiers, this type
of transitivity is not guaranteed. In fact, it is well possible that classifier Rik

predicts class ck, classifier Rkj predicts class cj , but classifier Rij , predicts class
ci, resulting in a tie between the three classes. In fact, for rule learning algorithms
not even symmetry will hold, i.e., Rij �= Rji (Fürnkranz, 2002).

On the other hand, one should also note that transitivity of a pairwise clas-
sifier is not enough to imply equivalence to the original (m-class) classifier. For
example, suppose that p1 = 0.6, p2 = 0.3, p3 = 0.1. The pairwise classifier with
p12 = p13 = 0.6 and p23 = 0.9 is clearly transitive in the sense of (5) and also in
agreement with the ranking c1 , c2 , c3. Still, weighted voting gives s1 = 1.2,
s2 = 1.3, s3 = 0.5, and therefore the ranking c2 , c1 , c3.

4.3 Unweighted Voting

An even simpler combination scheme for the predictions of pairwise classifiers is
unweighted voting. To classify a new example, each of the learned base classifiers
determines which of its two classes is the more likely one. The winning class
receives a vote, and the algorithm eventually predicts the class that accumulates
the highest number of votes. Essentially, it adds up the number of cases where
class ci has a higher pairwise probability than some other class cj , i.e., the
number of indexes j such that Pr(ci|x, cij) ≥ 0.5 holds:

cV = argmax
ci

∑

j �=i

[Pr(ci|x, cij)] =
∑

j �=i

[Pr(ci|x, cij)]
Pr(ci|x, cij)

· Pr(ci|x, cij)

where [x] is the rounding operator that returns x� if x ≥ -x. + 1/2 and -x.
otherwise; thus, wij = [Pr(ci|x,cij)]

Pr(ci|x,cij)
in (3).

On Pairwise Naive Bayes Classifiers 377

Again, we can show that this algorithm is equivalent to a regular Naive Bayes
learner.

Theorem 3. A pairwise Naive Bayes classifier with unweighted voting predicts
the same class ranking as a regular Naive Bayes classifier.

Proof. Let pi = Pr(ci|x) and pij = Pr(ci|x, cij) = pi/(pi +pj). Ignoring the issue
of ties (i.e., pi �= pj for all i �= j), one obviously has (pi < pj) ⇔ (pij < pji).
Therefore, the number of votes received by class ci is

si =
∑

k �=i

[pik]

and just corresponds to the number of classes ck such that pi > pk. Therefore,
the class with the k-th highest probability receives m − k votes, which in turn
means that the two rankings are identical. �	

Remark 1. The above result can easily be generalized to the case of ties: If one
splits up a vote in the case pij = 1/2, i.e., both classes receive one half of the
vote, then si = sj iff pi = pj .

From the above proof it becomes immediately clear that the result in principle
holds for all probabilistic or scoring classifiers that are “class-order-invariant”
in the following sense: A class ci receives a higher score than class cj in the
original m-class problem if and only if it is also favored in the direct (pairwise)
comparison with cj. In other words, the pairwise order between ci and cj is not
reversed due to the consideration of additional classes, i.e., it is not influenced
by the complementary set of classes C \ {ci, cj}. This property, which is quite
interesting by itself, is obviously satisfied by a Bayes classifier but does not
necessarily hold for other classifiers. Note that a class-order-invariant classifier
also satisfies the transitivity property (5).

The above result is also interesting in light of the well-known robustness of
Naive Bayes classification. As it shows in a rather explicit way, the main prereq-
uisite for correct classification or, more generally, ranking of class labels, is not
a very accurate estimation of probabilities. In fact, these probabilities are used
by the pairwise classifier only in a very crude way, namely in the form of binary
votes. Therefore, the only important thing is to correctly decide which among
two given classes is the more probable one.

5 One-Against-All Class Binarization

In the previous section, we have seen that three versions of pairwise Naive Bayes
classification are equivalent to a regular Naive Bayes classifier. At first sight,
this is somewhat surprising, because what the Naive Bayes classifier does is
modeling separate probability distributions for each individual class ci first, and
predicting the class with the maximum probability afterward. Thus, it seems to
have much more in common with one-against-all classifiers than with pairwise

378 J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier

decomposition. However, it is not difficult to see that just the opposite is true,
at least for the naive implementation of Bayes classification.

In one-against-all classification, an m-class problem is split into m binary
problems that discriminate one class ci, i = 1 . . .m, from all other classes. These
classifiers are trained using all examples of class ci as positive examples and the
examples of the union of all other classes ci =

⋃
j �=i cj as negative examples. If

we compare the two probabilities

Pr(ci|x)OA =
Pr(x|ci) · Pr(ci)

Pr(x|ci) · Pr(ci) + Pr(x|
⋃

j �=i cj) · Pr(
⋃

j �=i cj)

Pr(ci|x)NB =
Pr(x|ci) · Pr(ci)

Pr(x|ci) · Pr(ci) +
∑

j �=i Pr(x|cj) · Pr(cj)

we can see that the difference lies in the normalizing constant, which in the case
of the one-against-all Naive Bayes classifier estimates the probabilities from the
sum of all counts over all classes cj , j �= i, whereas the regular Naive Bayes
classifier sums the probabilities over these classes.

Since the equality relation

Pr

⎛

⎝x|
⋃

j �=i

cj

⎞

⎠ · Pr

⎛

⎝
⋃

j �=i

cj

⎞

⎠ =
∑

j �=i

Pr(x|cj) · Pr(cj)

generally holds, there is indeed no difference for a true Bayesian classifier. How-
ever, this equality is not valid for the probability estimates that are derived by
Naive Bayes. If we use

f(c) = Pr(c)
n∏

k=1

Pr(ak|c)

to denote the score that Naive Bayes computes for each class c, then

f(
⋃

j �=i

cj) �=
∑

j �=i

f(cj)

and, consequently, Pr(ci|x)OA �= Pr(ci|x)NB. In particular, the probabilities
Pr(ci|x)OA will in general not sum up to 1 (

∑
i Pr(ci|x)OA �= 1, but instead

Pr(ci|x)OA + Pr(ci|x)OA = 1 for all i = 1, . . . ,m).
To see that this may also lead to different classifications (rankings of class

labels), let us consider a sample problem with three classes A, B, and C, and 10
examples for each of them. We have two binary attributes X and Y . For X = 1
we have observed 15 examples distributed as (1, 10, 4). Likewise, for Y = 1, we
have 12 examples distributed as (8, 1, 3). This gives

f(A) = Pr(A) · Pr(X = 1|A) · Pr(Y = 1|A) =
1
3
· 1
10
· 8
10

=
2
75

f(A) = Pr(A) · Pr(X = 1|A) · Pr(Y = 1|A) =
2
3
· 14
20
· 4
20

=
7
75

On Pairwise Naive Bayes Classifiers 379

Analogously, we get

f(B) =
1
30

, f(B) =
11
120

; f(C) =
1
25

, f(C) =
33
200

For a regular Naive Bayes, normalization yields

Pr(A|X = 1, Y = 1)NB =
f(A)

f(A) + f(B) + f(C)
=

4
15

,

Pr(B|X = 1, Y = 1)NB =
5
15

; Pr(C|X = 1, Y = 1)NB =
6
15

,

and therefore the prediction C, whereas

Pr(A|X = 1, Y = 1)OA =
f(A)

f(A) + f(A)
=

8
36

,

Pr(B|X = 1, Y = 1)OA =
8
30

; Pr(C|X = 1, Y = 1)OA =
8
41

,

and class B is predicted.

6 Discussion

The results obtained in this work, showing that various pairwise versions of
a Naive Bayes classifier are equivalent to a regular Naive Bayes classifier, are
interesting for several reasons. As a first consequence, decomposing a multi-class
problem into a pairwise ensemble of binary classifiers does not work for Naive
Bayes classifiers, that is, it is not possible no improve classification performance
in this way.

The weights derived in Theorem 1 are not specific to Naive Bayes, but apply to
probabilistic algorithms in general. It remains to be seen whether this technique
can be applied to other base classifiers as well. The main practical impediment is
the estimation of Pr(cij |x). For example, one could try to estimate them using a
pairwise variant of Naive Bayes that predicts a pair of classes instead of a single
class. First experiments with a few related variants, presented in (Sulzmann,
2006), were not very encouraging, however.

Hüllermeier and Fürnkranz (2004) have shown that weighted voting optimizes
the Spearman rank correlation, provided the pairwise probabilities are estimated
correctly. In this work, we have shown the equivalence of Naive Bayes to pairwise
Naive Bayes using weighted voting. Combining these two results lets us conclude
that the regular Naive Bayes also optimizes the Spearman rank correlation. The
main problem, of course, is that its probability estimation is biased because of
the independence assumption, which will in general not hold. However, just as
the bias in the probability estimation does not necessarily affect the prediction
of the top rank (Domingos and Pazzani, 1997), it might well turn out that its
effect on the entire ranking of the classes is not very strong; the equivalence
result for pairwise Naive Bayes with unweighted voting in Section 4.3 is clearly

380 J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier

indicative in this regard, as is the generally good performance of Naive Bayes
on ranking tasks (Zhang and Su, 2004). We plan to elaborate on this issue in
future work.

Another interesting issue concerns the generalization of the results obtained in
this paper. For example, we already mentioned that the equivalence between reg-
ular Bayes and pairwise Bayes with unweighted voting in principle holds for all
“class-order-invariant” classifiers. Finding a characterizing property of a similar
kind appears to be more difficult in the case of weighted voting. For Bayes classi-
fication, there is a very simple relationship between the multi-class probabilities
pi and the pairwise probabilities pij : the latter are directly proportional to the
former. As we have seen, this relationship assures that the order of the classes
remains unchanged, that is, this property is sufficient to guarantee equivalence.
However, it is presumably not a necessary condition.

Acknowledgments

This research was supported by the German Science Foundation (DFG).

References

Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research 1, 113–141
(2000)

Anand, R., Mehrotra, K.G., Mohan, C.K., Ranka, S.: Efficient classification for multi-
class problems using modular networks. IEEE Transactions on Neural Networks 6,
117–124 (1995)

Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Ko-
dratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg
(1991)

Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning 29(2-3), 103–130 (1997)

Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley, New
York (1972)

Friedman, J.H.: Another approach to polychotomous classification. Technical report,
Department of Statistics, Stanford University, Stanford, CA (1996)

Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research
(JMLR) 2, 721–747 (2002)

Fürnkranz, J.: Round robin ensembles. Intelligent Data Analysis 7(5), 385–403 (2003)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns,

M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10
(NIPS-97), pp. 507–513. MIT Press, Cambridge (1998)

Hüllermeier, E., Fürnkranz, J.: Ranking by pairwise comparison: A note on risk min-
imization. In: Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE-04), Budapest, Hungary (2004)

On Pairwise Naive Bayes Classifiers 381

Kononenko, I.: Inductive and bayesian learning in medical diagonsis. Applied Artificial
Intelligence 7(4), 331–337 (1993)

Knerr, S., Personnaz, L., Dreyfus, G.: Handwritten digit recognition by neural networks
with single-layer training. IEEE Transactions on Neural Networks 3(6), 962–968
(1992)

Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learn-
ing Research 5, 101–141 (2004)

Sulzmann, J.-N.: Pairwise Naive Bayes classifier. In: Althoff, K.-D., Schaaf, M. (eds.)
Proceedings of the LWA 2006, Lernen Wissensentdeckung Adaptivität, Hildesheim,
Germany, pp. 356–363. Gesellschaft für Informatik e. V (GI) (2006)

Wu, T.-F., Lin, C.-J., Weng, R.: Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning Research (JMLR) 5, 975–1005
(2004)

Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass proba-
bility estimates. In: Proceedings of the 8th International Conference on Knowledge
Discovery and Data Mining (KDD-02), pp. 694–699 (2002)

Zhang, H., Su, J.: Naive Bayesian Classifiers for Ranking. In: Boulicaut, J.-F., Esposito,
F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp.
501–512. Springer, Heidelberg (2004)

Separating Precision and Mean in

Dirichlet-Enhanced High-Order Markov Models

Rikiya Takahashi

IBM Tokyo Research Laboratory,
1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa 242-8502, Japan

rikiya@jp.ibm.com

Abstract. Robustly estimating the state-transition probabilities of
high-order Markov processes is an essential task in many applications
such as natural language modeling or protein sequence modeling. We pro-
pose a novel estimation algorithm called Hierarchical Separated Dirichlet
Smoothing (HSDS), where Dirichlet distributions are hierarchically as-
sumed to be the prior distributions of the state-transition probabilities.
The key idea in HSDS is to separate the parameters of a Dirichlet distri-
bution into the precision and mean, so that the precision depends on the
context while the mean is given by the lower-order distribution. HSDS is
designed to outperform Kneser-Ney smoothing especially when the num-
ber of states is small, where Kneser-Ney smoothing is currently known
as the state-of-the-art technique for N-gram natural language models.
Our experiments in protein sequence modeling showed the superiority of
HSDS both in perplexity evaluation and classification tasks.

1 Introduction

To precisely predict or detect time-series sequences of discrete symbols, we de-
sire robust inference techniques to estimate the state-transition probabilities in
high-order Markov processes. Using state-transition probabilities for N -grams, a
high-order Markov process is often used to model natural language [1], protein se-
quences [2], or the dynamics of consumers [3], where one state is assigned to each
word, amino acid, or customer type, respectively. In these applications, the sta-
tistical robustness of the estimated state-transition probabilities often becomes a
crucial issue for the predictive accuracy of the model, because the training data
of the state-transition frequencies are limited. For example, word error rates in
automatic speech recognition become high if we use N -gram language models
trained with limited corpora.

In prior work, the state-of-the-art estimation techniques are not effective for
cases when the number of states is small, such as a protein sequence, unless we use
Markov Chain Monte Carlo (MCMC) methods. Generally, a standard strategy
to robustly estimate the state-transition probabilities is to properly interpolate
the probabilities of the N -grams, (N−1)-grams, and lower order distributions. In
natural language modeling, the most advanced smoothing techniques currently
used are Kneser-Ney smoothing [4] and its derivative versions [1]. The essence of
Kneser-Ney smoothing and its derivatives is a modification of the state-transition

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 382–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Separating Precision and Mean 383

frequencies in calculating the lower order distributions, so that any frequency
of a state-transition larger than one is reduced to one while the zero-frequency
remains at zero. Such modifications of the frequencies are derived as a fast ap-
proximated inference of a hierarchical Poisson-Dirichlet (Pitman-Yor) process
[5,6,7,8]. If we do not use that approximation, precisely estimating the param-
eters of hierarchical Pitman-Yor processes requires Gibbs sampling, which is a
computationally intensive MCMC method. In addition, since the approximation
is adequate only when the number of states is unbounded or sufficiently large,
we are seeking another advanced estimation technique for when the number of
states is bounded and small.

In this paper, we propose a novel technique to smooth the state-transition prob-
abilities more effectively than Kneser-Ney smoothing when the number of states is
small, and which does not require MCMC algorithms. We call our method Hierar-
chical Separated Dirichlet Smoothing (HSDS), because Dirichlet distributions are
hierarchically assumed to be prior distributions of the state-transition probabili-
ties. Our main idea is to separate the parameters of a Dirichlet distribution into a
context-dependent precision and a mean given by the lower order distribution, and
to estimate them alternately. Using the Dirichlet precision, we can quantify the ef-
fective frequency. Since the modified frequency adopted in Kneser-Ney smoothing
is a special case of our effective frequency when the number of states is sufficiently
large, HSDS can work flexibly when the number of states is small or large. In addi-
tion, since optimizing the parameters of a Dirichlet distribution does not require
MCMC methods, HSDS runs relatively fast.

The rest of the paper is organized as follows. Section 2 introduces the hi-
erarchical Dirichlet distributions that we use. Section 3 describes procedures
to estimate the parameters of Dirichlet distributions and discusses when HSDS
outperforms Kneser-Ney smoothing. Section 4 shows experimental results in the
tasks of perplexity evaluation and classification, using natural language and pro-
tein sequence data. Section 5 concludes the paper.

2 Hierarchical Dirichlet Distributions for Prior

In this section, we introduce our custom Dirichlet distributions as the prior dis-
tributions of the state-transition probabilities, where our key idea is to impose
different constraints on the precision and mean of the Dirichlet distribution.
We hierarchically calculate the expectation of the state-transition probability
on the posterior distribution, which is determined by the training data and the
prior distribution. The mean of the Dirichlet distribution is given by lower-order
distributions such as the (N−1)-gram models, which are more robust than the
higher-order distributions. The precision of the Dirichlet distribution is a spe-
cific parameter for each context, to incorporate the numbers of unique states
depending on that context. Our model is an extension of the hierarchical Dirich-
let language model [9].

For a given discrete-state space S whose size is |S|, assume we want to predict
a prospective state sN that will follow a state sequence s1, s2, · · · , sN−1 with

384 R. Takahashi

bounded length N ≥ 1. Since sN is a random variable, we need a model of
Pr(s|h), the probability with which a state s ∈ S follows a (N−1)-length context
h ∈ SN−1 ≡ S ×S × · · ·×S. We aim to estimate precise values of phs ≡ Pr(s|h)
for each s and h from limited training data D =

{
nhs; s ∈ S, h ∈ SN−1

}
, where

nhs is the frequency of state s that follows context h. A vector of estimated
probabilities ph, whose i-th element phi is the probability with which the i-th
state follows h, is defined as a random variable, because the estimated probability
fluctuates around the true probability. For simplicity, hereinafter when a vector
is defined with a bold face, such as x, it is assumed that we simultaneously define
its elements with a normal typeface of the same letter, such as xs, where the
element with the subscript s is a variable related to the state s.

Our aim is to estimate the expectation of ph on the posterior distribution
P (ph|D). To compute a relevant posterior distribution, we need to specify a
proper prior distribution P (ph) for applying Bayes theorem. The expectation of
the state-transition probability and the posterior distribution is given as

〈phs|D〉 =
∫

ph

phsP (ph|D)dph (1)

P (ph|D) =
P (D|ph)P (ph)∫

ph
P (D|ph)P (ph)dph

, (2)

where 〈·|D〉 is the expectation on the posterior distribution.
We assume a Dirichlet distribution in P (ph) because its probability density

function and its likelihood function are analytically tractable, and in order to
avoid MCMC methods. This is contrast to adopting hierarchical Pitman-Yor
processes that are more general stochastic processes but which require MCMC
methods. With the parameters of the Dirichlet distribution φh and the observed
frequencies nh, the prior and posterior distributions are given as follows:

P (ph) = Dir (ph; φh) ≡
Γ
(∑

s∈S φhs

)
∏

s∈S Γ (φhs)
·
∏

s∈S
pφhs−1

hs (3)

P (ph|D) = Dir (ph; nh + φh) ≡
Γ
(∑

s∈S nhs + φhs

)
∏

s∈S Γ (nhs + φhs)
·
∏

s∈S
pnhs+φhs−1

hs (4)

Here we introduce the main idea of separating the parameters of the Dirichlet
distribution into a precision and a mean that have different constraints from
each other. We denote a truncated context, which is generated by removing the
earliest state from h, by π(h). We parameterize φh as a product of the coefficient
αh =

∑
s∈S φhs and the normalized vector θπ(h). The expectation of the state

transition probability phs on the posterior distribution is given as

〈phs|D〉 =
nhs + αhθπ(h)s

nh + αh
. (5)

Following Minka in [10], we call αh the “Dirichlet precision” and θπ(h) the
“Dirichlet mean”.

Separating Precision and Mean 385

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 10 100 1000 10000
p.

m
.f.

rank

α=0.1
α=1

α=10
α=102

α=103

Fig. 1. Distributions of the states controlled by the Dirichlet precision α

The Dirichlet mean is hierarchically given by the expectation of the lower-
order distribution, making use of the robustness of the lower-order distribu-
tions. We give θπ(h) = 〈pπ(h)|D〉, assuming the prior P (pπ(h)) by a Dirichlet
distribution which has a precision απ(h) and a mean θπ(π(h)). Analogously, for
each lower-order distribution from the (N − 2)-gram to the 1-gram, the Dirich-
let distribution is hierarchically assumed as its prior distribution. For the 1-
gram, where h is empty, we define its Dirichlet mean by the 0-gram distribution
θ0 = (1/|S|, · · · , 1/|S|)T .

The Dirichlet precision depends on the context after which the different num-
bers of unique states will appear. Fig. 1 shows the multinomial distributions
sorted in rank of probability with a log-log scale, where their parameters obey the
10,000-dimension symmetric Dirichlet distribution Dir(α/10000, · · · , α/10000).
In Fig. 1, we see power-law distributions except when the states are extremely
sporadic and that the higher Dirichlet precision α will yield larger numbers of
unique states. Since a different number of unique states can follow from a dif-
ferent context h, we define the Dirichlet precision αh for each context h. For
example, in the 2-gram natural language model, αh will be high if h is an article
which does not strongly limit the following word, and αh will be low if h is some
specific verb such as “quantify”, which tends to limit the following word.

HSDS can be regarded as an extension of the smoothing used in the hierarchical
Dirichlet language model [9]. We believe MacKay and Peto were the first to use a
Dirichlet distribution to smooth the probabilities of the 2-grams, where the prior
distribution is given by P (ph) = Dir(ph;αθπ(h)h). Yet the original MacKay and
Peto hierarchical Dirichlet language model was shown to be non-competitive with
other smoothing techniques [8]. Since they discuss extensions to have the Dirichlet
precision be context-dependent with classifying the contexts, HSDS is the first
competitive method to extend the hierarchical Dirichlet language model.

3 Variational Inference by Effective Frequency

In this section, we present an algorithm to estimate the optimal Dirichlet preci-
sion and mean, and discuss when HSDS will outperform Kneser-Ney smoothing.

386 R. Takahashi

Our inference scheme is based on a variational approximation, where the in-
fimum of the likelihood in a Dirichlet-multinomial distribution is maximized.
The Dirichlet precision is optimized by a kind of Newton-Raphson method and
the Dirichlet mean is calculated with the effective frequency, which is a fre-
quency controlled by the Dirichlet precision. We explain when HSDS outper-
forms Kneser-Ney smoothing based on the meaning of the effective frequency.

First, we introduce the concept of the effective frequency by deriving the
infimum of the likelihood of the training data. Since the observed frequencies nh

obey a Dirichlet-multinomial (Polya) distribution, Eq. (6) gives the likelihood of
D under the set of hyperparameters Φ =

{
αh,θπ(h);h ∈ SN−1

}
. We referred to

[10] in deriving Inequality (7).

P (D|Φ) ∝
∏

h

Γ (αh)
Γ (nh + αh)

∏

s:nhs>0

Γ
(
nhs + αhθπ(h)s

)

Γ
(
αhθπ(h)s

) (6)

≥
∏

h

Γ (ᾱh)
Γ (nh + ᾱh)

exp [(Ψ (nh + ᾱh)− Ψ (ᾱh)) (ᾱh − αh)]

∏

s:nhs>0

[
Γ
(
nhs + ᾱhθ̄π(h)s

)

Γ
(
ᾱhθ̄π(h)s

)
(
ᾱhθ̄π(h)s

)−ñhs

]
(
αhθπ(h)s

)ñhs , (7)

where Ψ(·) denotes a digamma function such that Ψ(x) ≡ ∂
∂x log Γ (x), and

ñhs = ᾱhθ̄π(h)s

(
Ψ
(
nhs + ᾱhθ̄π(h)s

)
− Ψ

(
ᾱhθ̄π(h)s

))
. (8)

We call ñhs the “effective frequency”, because the infimum of the likelihood
has the same formulation as a multinomial distribution for context h where the
observed frequency of state s is ñhs. Minka also discusses the effective frequency
in [10], by differentiating the likelihood of the Polya distribution with respect to
the Dirichlet mean. We explain the meaning of the effective frequency in Section
3.2. For convenience, we also define ñh ≡

∑
s∈S ñhs, ñπ(h)s ≡

∑
u ñhs where u

is the earliest state in context h and thus h ≡ uπ(h), and ñπ(h) ≡
∑

s∈S ñπ(h)s.

3.1 Estimating the Dirichlet Precision

Next, we estimate the Dirichlet precision as the expectation of αh on an approx-
imated posterior distribution. The procedure for estimation is divided into the
following two cases. First, when nhs = 1 for all s such that nhs > 0, we initially
set αh = ∞, which is equivalent to using only the state-transition probability
of the (N−1)-gram1. Second, in all other cases, αh is given by the expectation
of a gamma distribution that approximates the posterior distribution of αh. We
assume the prior for αh is a non-informative uniform distribution. Since the part
of the likelihood related to αh can be expressed as

P (D|αh) ∝ exp [− (Ψ (nh + ᾱh)− Ψ (ᾱh))αh]αñh

h , (9)
1 If ∀s, nhs = 1, then the exact likelihood expressed by Eq. (6) becomes a function

of the Dirichlet mean alone. Therefore, the posterior distribution of αh becomes the
non-informative uniform distribution U [0, ∞], whose expectation is infinity.

Separating Precision and Mean 387

we can derive the approximated posterior Q(αh|D) as

Q(αh|D) ∝ P (D|αh)P (αh)
∝ Ga (αh; ñh + 1, Ψ (nh + ᾱh)− Ψ (ᾱh)) , (10)

where we denote a gamma distribution by Ga(·, ·). The expectation of αh on the
approximated posterior Q(αh|D) is given as

〈αh|D〉 =
ñh + 1

Ψ (nh + ᾱh)− Ψ (ᾱh)
. (11)

To calculate the optimal Dirichlet precision α∗
h, we assume 〈αh|D〉 = ᾱh,

which means that the likelihood of the Polya distribution is approximated by
the gamma distribution that has the same expectation. We can immediately
derive the following equation, which we can solve quickly with the modified
Newton-Raphson method proposed in [11].

Ψ (nh + α∗
h)− Ψ (α∗

h) =
1
α∗

h

+
∑

s:nhs>0

θπ(h)s

[
Ψ
(
nhs + α∗

hθπ(h)s

)
− Ψ

(
α∗

hθπ(h)s

)]

(12)
Note that the estimated α∗

h values tend to be underestimated when nh is small,
because the true posterior distribution of αh has a heavier-tail than the gamma
distribution. Based on several earlier experiments, we decided to multiply α∗

h by
2 if α∗

h > 10. This is a simple heuristic rule, but it works for many datasets. A
better estimation technique should be developed.

3.2 Estimating the Dirichlet Mean

The optimal Dirichlet mean θ∗π(h)s is calculated from the effective frequency and
the Dirichlet precision of the lower-order distributions. The terms related to
θπ(h)s in the infimum of the represented likelihood are also given by multinomial
distributions that have effective frequencies as

Q(D|Φ) ∝
∏

π(h)

∏

s:nhs>0

θ
ñπ(h)s

π(h)s . (13)

Since we also assume a Dirichlet distribution in P (pπ(h)), the optimal Dirichlet
mean θ∗π(h)s is given as

θ∗π(h)s =
ñπ(h)s + απ(h)θπ(π(h))s

ñπ(h) + απ(h)
. (14)

Because the optimal Dirichlet precision and Dirichlet mean must be estimated
iteratively, we summarized the computational procedure in Algorithm 1, except
for the last heuristic multiplication for the Dirichlet precision.

388 R. Takahashi

Algorithm 1. Estimating the Dirichlet precision and Dirichlet mean
Initialize all the parameters

{
αh, θπ(h)

}
.

repeat
for n = N downto 1 do

for all h ∈ Sn−1 do
if ∃s, nhs > 1 then

αh ⇐ α∗
h by solving Eq. (12).

end if
for all s ∈ S do

Calculate ñhs by Eq. (8).
end for

end for
if n ≥ 2 then

for all h ∈ Sn−1 do
Update θπ(h) by Eq. (14).

end for
end if

end for
until all the parameters have converged.

3.3 Effects of the Effective Frequency

Finally, we discuss the cases when HSDS outperforms Kneser-Ney smoothing, by
clarifying the meaning of the effective frequency. Fig. 2 shows the relationships
between the effective frequency ñ and the raw frequency n, as functions of the
Dirichlet precision α where ñ = α (Ψ(α + n)− Ψ(α)). When α→ 0, the effective
frequency converges to an indicator function of the raw frequency: ñ = 1 if
n > 0 and ñ = 0 if n = 0 and it is the same as the modified frequency adopted
in Kneser-Ney smoothing.

Fig. 2 and the actual effective frequency defined by Eq. (8) suggest that ap-
proximating the effective frequency by the modified frequency of Kneser-Ney
smoothing is adequate only for s and h such that αhθπ(h)s is low. When the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9 10

ef
fe

ct
iv

e
fr

eq
ue

nc
y

raw frequency

α=0.001
α=0.01

α=0.1
α=1

(a) In case α is low

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

ef
fe

ct
iv

e
fr

eq
ue

nc
y

raw frequency

α=1
α=10

α=100
α=1000

(b) In case α is high

Fig. 2. Effective frequencies with various values of the Dirichlet precision α

Separating Precision and Mean 389

number of states is large, which is true for natural language modeling, the ap-
proximation is adequate because most of the values of θπ(h)s are very low.

HSDS will outperform Kneser-Ney smoothing in two cases: when the number
of states is small, or when the order of the Markov processes is high, in that
αhθπ(h)s is not too low in either case. First, if the number of states is small,
some of the

{
θπ(h)s

}
are not low. Second, if N is high and nh is too small,

αh becomes a high value in estimating the Dirichlet precision. At such times,
the effective frequency approaches the raw frequency. Intuitively, if the observed
frequency of N -grams is too low, we should ignore the frequency of that N -grams
and should just use the raw frequency of the (N−1)-grams.

4 Experiments

In this section, we experimentally show that HSDS outperforms Kneser-Ney
smoothing when the number of states is small, by comparing the results for
two different types of datasets: a natural language corpus and some protein
sequence data. A natural language is chosen as a sequence with large number of
states, because natural languages have large and potentially infinite vocabularies.
Protein sequences are chosen as sequences with small number of states, because
any protein sequence consists of only 20 types of amino acids, which means the
number of states in a protein sequence N -gram is also limited to 20.

To evaluate the performance of each model, we focused on calculating the test-
set perplexity, where its low values usually mean better predictive accuracies.
In addition, we checked the results of classification tests for protein sequence
modeling. For a K-length sequence sK

1 ≡ s1s2 · · · sK , its perplexity evaluated by
the N -gram model Θ =

{
Pr(s|h), s ∈ S, h ∈ S0,S1 ∪ · · · ∪ SN−1

}
is given as

PP
(
sK
1 |Θ

)
= exp

[

− 1
K

K∑

k=1

logPr
(
sk|smax{1,k−N+1}, · · · , sk−1

)
]

. (15)

The other experimental conditions, which are common in natural language
modeling and protein sequence modeling, are given below. After studying the
numbers of unique N -grams in the training data, we decided to train the 2-,
3-, 4-, and 5-gram models. The 6-gram models were also trained for the pro-
tein sequence data. To compare the smoothing methods, we tested Hierarchi-
cal Separated Dirichlet Smoothing (HSDS), Interpolated Kneser-Ney Smooth-
ing (IKNS), Modified Kneser-Ney Smoothing (MKNS), Absolute Discounting
(ABSD) [12], and Witten-Bell smoothing (WBS) [13]. The smoothing methods
except for IKNS and MKNS were selected to compare the performances broadly.
The formulas used in IKNS and MKNS are described in [1], where we adopted
the versions without cross-validation in estimating the discounting factors.

4.1 Natural Language Modeling

As natural language data, we used the Reuters-21578 text categorization test
collection [14], which is a popular English corpus mainly used for text

390 R. Takahashi

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(a) When OOV words were included.

 80

 90

 100

 110

 120

 130

 140

 150

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(b) When OOV words were excluded.

Fig. 3. Test-set perplexity in Reuters-21578 dataset

categorization research. By extracting all of the text, we prepared 172,900 sen-
tences that consisted of a total of 2,804,960 words, and divided them into 162,900
training sentences and 10,000 test sentences. The training data had 118,602
unique words that appeared at least once, and we chose the most frequent 20,000
words as the vocabulary set. We calculated test-set perplexity both when out-
of-vocabulary (OOV) words were included and excluded. When the OOV words
were included, we replaced all of the OOV words with the same special token.

Fig. 3 shows each model’s test-set perplexity and HSDS is inferior to both
IKNS and MKNS. We think that the relatively weak performance of HSDS is
because the Dirichlet distribution cannot precisely capture the power-law in the
frequencies of the words. As shown in Fig. 1, the Dirichlet distribution cannot
represent the heavy-tail of the frequencies of the words, while the Pitman-Yor
process and Kneser-Ney smoothing can control the exponent of the power-law [8],
which is important for the distribution within a potentially infinite vocabulary.

Still, HSDS outperformed the other smoothing techniques except for IKNS
and MKNS. We think that the effective frequency in HSDS worked more effec-
tively than the raw-frequencies, in calculating the lower-order distributions.

4.2 Protein Sequence Modeling

For protein sequence data, we performed classification tests as well as a perplex-
ity evaluation, using the DBsubloc dataset [15]. Though DBsubloc is a protein
database mainly used for protein subcellular localization, because of the amount
of available data, we only classified the unlabeled data into one of 4 types of
organisms: viruses, archaea, bacteria, and eukaryotes. After dividing the non-
redundant dataset into training data and test data, we independently trained 4
types of N -gram models. In the training data, the numbers of unique sequences
were 1,082 for the viruses, 1,131 for the archaea, 9,701 for the bacteria, and
18,043 for the eukaryotes. The test data consisted of 100 unique sequences for
each organism, where their numbers of amino acids were 43,990 for the viruses,
26,455 for the archaea, 29,075 for the bacteria, and 62,286 for the eukaryotes.

Separating Precision and Mean 391

 18

 19

 20

 21

 22

 23

 24

 25

 26

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(a) viruses

 16

 17

 18

 19

 20

 21

 22

 23

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(b) archaea

 16

 17

 18

 19

 20

 21

 22

 23

 24

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(c) bacteria

 17

 18

 19

 20

 21

 22

 23

 24

 25

 1 2 3 4 5 6 7

pe
rp

le
xi

ty

N

HSDS
IKNS

MKNS
ABSD
WBS

(d) eukaryotes

Fig. 4. Test-set perplexity in DBsubloc dataset

Perplexity Evaluation. In the perplexity evaluation task, each test-set was
evaluated by a model of the same organism. i.e. The viruses test data was evalu-
ated with viruses model. Fig. 4 shows the test-set perplexity for each organism.

HSDS achieved the lowest test-set perplexity, and its performance was slightly
improved even when N became larger, while the other smoothing techniques had
worse performances. As mentioned in Section 3.3, in protein sequence modeling,
the effective frequency seemed to work more effectively than the modified fre-
quency adopted in Kneser-Ney smoothing.

Classification. In the classification task, we made unlabeled data by removing
the labels from all of the test data, and classified the unlabeled data into one
of the 4 organism types using a naive Bayes classifier. Let ci be one of the 4
organism types. For a sequence sK

1 , the organism type of the sequence c(sK
1)

was determined as

c(sK
1) = argmax

ci

P (sN
1 |ci)P (ci), (16)

where P (sN
1 |ci) was calculated by the trained N -gram model of the organism

type ci, and ∀ci, P (ci) = 0.25. For each organism, we calculated the recall,
precision, and F1-measure. We used the arithmetic average of the 4 organism
types as a performance metric of our multi-class classification.

392 R. Takahashi

 35

 40

 45

 50

 55

 60

 65

 70

 75

 1 2 3 4 5 6 7

re
ca

ll
[%

]

N

HSDS
IKNS

MKNS
ABSD
WBS

(a) recall

 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75

 1 2 3 4 5 6 7

pr
ec

is
io

n
[%

]

N

HSDS
IKNS

MKNS
ABSD
WBS

(b) precision

 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 1 2 3 4 5 6 7

F
1-

m
ea

su
re

 [%
]

N

HSDS
IKNS

MKNS
ABSD
WBS

(c) F1-measure

Fig. 5. Performances in classifying 4 organism-types

The results also show that HSDS is stable as N increases. Fig. 5 shows the
averages of the recall, precision, and F1-measure for the 4 organism types when
the order of the N -gram changes. As in the perplexity evaluation, the perfor-
mance of HSDS was stable even as N increased, while the performances of the
other methods peaked for the 2-gram models. If we only look at the absolute
performance, the 2-gram model with ABSD recorded the highest F1-measure,
but the other methods also recorded almost the same performances in 2-gram
models.

5 Conclusion

We proposed a smoothing method for probabilistic N -gram models, which we
named Hierarchical Separated Dirichlet Smoothing (HSDS). We hierarchically
assumed a Dirichlet distribution to be a prior distribution of the state-transition
probabilities, and separated the parameters of a Dirichlet distribution into
precision and mean. The context-specific Dirichlet precision can reflect the
context-dependent number of unique states, and the Dirichlet mean based on
the effective frequencies gives appropriate lower-order distributions. Theoreti-
cally and experimentally, HSDS was shown to outperform Kneser-Ney smoothing
when the number of states is small and N increases.

Separating Precision and Mean 393

In the future, we will extend our context-specific formulation for more general
stochastic process models such as the hierarchical Pitman-Yor processes, to more
precisely incorporate the effects of the power-law in the observed frequencies.

Acknowledgment

The author wishes to thank Gakuto Kurata and Hisashi Kashima for many
fruitful discussions about Kneser-Ney smoothing and other related topics.

References

1. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard Computer Science (1998)

2. Ganapathiraju, M., Manoharan, V., Klein-Seetharaman, J.: BLMT: Statistical se-
quence analysis using n-grams. Applied Bioinformatics 3 (November 2004)

3. Netzer, O., Lattin, J.M., Srinivasan, V.: A Hidden Markov Model of Customer
Relationship Dynamics. Stanford GSB Research Paper (July 2005)

4. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 1, pp. 181–184 (May 1995)

5. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. The Annals of Probability 25(2), 855–900 (1997)

6. Goldwater, S., Griffiths, T., Johnson, M.: Interpolating between types and tokens
by estimating power-law generators. In: Advances in Neural Information Processing
Systems (NIPS), vol. 18 (2006)

7. Teh, Y.W.: A Bayesian interpretation of interpolated Kneser-Ney. Technical Report
TRA2/06, School of Computing, National University of Singapore (2006)

8. Teh, Y.W.: A hierarchical Bayesian language model based on Pitman-Yor pro-
cesses. In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics, vol. 44 (2006)

9. MacKay, D.J.C., Peto, L.: A hierarchical Dirichlet language model. Natural Lan-
guage Engineering 1(3), 1–19 (1994)

10. Minka, T.: Estimating a Dirichlet distribution. Technical report, Microsoft Re-
search (2003)

11. Minka, T.: Beyond Newton’s method. Technical report, Microsoft Research (2000)
12. Ney, H., Essen, U., Kneser, R.: On structuring probabilistic dependences in stochas-

tic language modeling. Computer, Speech, and Language 8, 1–38 (1994)
13. Witten, I.H., Bell, T.C.: The zero-frequency problem: Estimating the probabilities

of novel events in adaptive text compression. IEEE Transactions on Information
Theory 37(4), 1085–1094 (1991)

14. Lewis, D.D.: Reuters-21578 text categorization test collection distribution 1.0
(1997) Available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/

15. Guo, T., Sun, Z.: Dbsubloc: Database of protein subcellular localization (2005)
Available at http://www.bioinfo.tsinghua.edu.cn/∼guotao/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.bioinfo.tsinghua.edu.cn/~guotao/

Safe Q-Learning on Complete History Spaces

Stephan Timmer and Martin Riedmiller

Neuroinformatics Group, University of Osnabrueck, Germany

Abstract. In this article, we present an idea for solving deterministic
partially observable markov decision processes (POMDPs) based on a
history space containing sequences of past observations and actions. A
novel and sound technique for learning a Q-function on history spaces
is developed and discussed. We analyze certain conditions under which
a history based approach is able to learn policies comparable to the
optimal solution on belief states. The algorithm presented is model-free
and can be combined with any method learning history spaces. We also
present a procedure able to learn history spaces especially suited for our
Q-learning algorithm.

1 Introduction

In a POMDP setting, the learning agent does not have full information about
the current state of the system. The common approach for solving POMDPs is
therefore to replace the original state space S by the belief space of probability
distributions over S. The belief space is huge and computing the optimal value
function over beliefs can be very costly even for small state spaces. A still bigger
problem is solving POMDPs without a model. In general, estimating the model
(stochastic transitions and stochastic observations) is hard, since the current
state st ∈ S is unknown at any time step.

In this article, we investigate the technique of including short-time memory
into the representation of the POMDP. By using short-time memory, we can
maintain an estimate of the current state st ∈ S of the system, which is adapt-
able with respect to size and precision. A reasonable way of establishing such
an estimate is to consider a sequence of past observations and actions. Such a
sequence is called a history list. In contrast to the history list approach, the
belief space formulation of the POMDP is a perfect solution to the problem of
estimating the current state, since all information about past events is merged
into a probability distribution over states. However, due to the enormous com-
plexity of learning policies on belief states, we restrict ourselves to suboptimal,
but good policies that can be found with an algorithm based on history lists.

The overall problem of solving POMDPs without a model using history lists
can be divided into two subproblems:

1. Building a set of history lists constituting a history space
2. Learning a policy on history lists after substituting the state space by the

history space

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 394–405, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Safe Q-Learning on Complete History Spaces 395

First, we will concentrate on the second problem mentioned above, assuming that
a history space is already available. We want to analyze certain conditions under
which a history space can be used to learn near optimal policies by a variant
of Q-learning. We will then present a procedure for learning history spaces,
which is especially suited for our Q-learning algorithm. Unfortunately, it does not
suffice to compute a Q-function on history lists and then extract a greedy policy.
Before the Q-function can be exploited it is necessary to establish a sequence
of observations and actions providing reliable information about the current
state. We will discuss how such an approach relates to the optimal solution on
belief states and present empirical evidence for a benchmark with more than one
hundred states.

Although we will consider only deterministic systems, we choose to stay within
the POMDP framework. Our work aims at solving reinforcement learning prob-
lems. The task of learning policies for deterministic POMDPs can be naturally
formulated as such a problem.

2 Basic Facts About History Lists

Throughout the paper, we will assumea deterministic POMDP (T, S, U,O, r, f,Ω)
such that T is a discrete set of time steps, S is a discrete state space, U is a discrete
action space, O is a discrete observation space, r : S × U → R is the reward
function, f : S×U → S is a deterministic transition function and Ω : S×U → O
is a deterministic observation model. To illustrate the use of history lists, consider
the maze given in Figure 1. The agent, which is denoted by an arrow in a circle,
is expected to find a certain goal cell in the maze. To determine the current
position of the agent, only bump-sensors are available. These sensors, denoted
by black dots, can tell the agent if there are walls at the four surrounding cells.
The observation space therefore consists of sixteen combinations of walls plus
an additional goal observation. The action space contains four distinct actions
for moving left, right, up or down. If the agent tries to break through a wall or
tries to leave the maze, the position of the agent remains the same.

How can the agent make use of history lists in this situation? The basic idea
is to determine the current position of the agent by comparing history lists at

Fig. 1. Maze with partial observability

396 S. Timmer and M. Riedmiller

different time steps. If the same sequence of past wall observations and actions
is given at two time steps t �= t′, it is likely that also the position of the agent is
the same at these time steps (st = st′). We do not expect a history list to contain
the complete sequence of past observations and actions. In general, history lists
can be of arbitrary length.

Definition 1. History Lists
A history list h ∈ (U × O)∗ is a possibly empty sequence of action-observation
pairs. The length |h| of a history list is defined as the number of observations it
contains. The space of possible history lists H∗ ⊆ (U ×O)∗ contains all history
lists which can be generated by the transition function f and the observation
model Ω.1

Every time the agent notices a sequence of observations and actions that matches
a history list h ∈ H of a given history space H ⊆ H∗, an action uh with respect
to history h is executed. Assume that the sequence of observations and actions
until time step t ∈ T is given by [u0, o1, u1, o2..., ut−1, ot]. We call a history list
h ∈ H the current history list at time step t ∈ T if h is a maximal suffix of this
sequence with respect to the history space H . The current history list at time
step t is denoted by ht similar to the current state st ∈ S. To be compatible with
the literature [1], we decided not to include reward signals into the definition of
a history list. However, our algorithm will make use of reward signals.

A history list h ∈ H is especially useful if it helps us to determine the current
state st ∈ S of the system. We will now give a more general definition of such
sequences.

Definition 2. Identifying History Lists
A history list h ∈ H∗ is called identifying for a set of states S′ ⊆ S, if |h| > 0
and the following proposition holds: If [u0, o1, ..., ut−1, ot] is a sequence of obser-
vations and actions that can be generated by the transition function f and the
observation model Ω, and h is a suffix of this sequence, then it holds that st ∈ S′.

In the following, we will use the term ”identifying history list” only in the context
of single states (|S′| = 1), unless the set S′ is explicitly specified. What makes
identifying history lists interesting is the fact that these lists are closed under
some typical list operations.

Lemma 1. Extension of History Lists (at the front)
Let h be an identifying history list for a set of states S′ ⊆ S. If h′ is an extension
of h such that h is a suffix of h′, then h′ is identifying for the set of states S′.

Proof. Let h′ be a suffix of a possible sequence [u0, o1, ..., ut−1, ot]. Since h is a
suffix of h′, h is also a suffix of this sequence. Thus, it holds that st ∈ S′ because
h is identifying for S′.

1 If the observation model solely depends on the state (Ω : S → O) we allow history
lists to have an additional observation at the front, representing the observation of
the initial state of the history sequence.

Safe Q-Learning on Complete History Spaces 397

Lemma 2. Extension of History Lists (at the end)
Let h be an identifying history list for a single state s ∈ S. Let h′ be an extension
of h such that an action u ∈ U and an observation o ∈ O is added at the end of
h. If h′ ∈ H∗, then h′ is identifying for the single state s′ = f(s, u)

3 Solving POMDPs with History Lists

Our algorithm consists of two separate modules.

1. At time step t = 0, a preferably short sequence of actions is executed, such
that the current history list at time step t′ ≥ 0 becomes identifying for a
single state. This corresponds to establishing a belief state in which a single
state s ∈ S has probability p(s) = 1, while all other states have probability
zero. This module is called the efficient exploration strategy

2. From time step t′ on, follow a greedy policy extracted from a Q-function
defined on identifying history lists. This is reasonable, since every identifying
history list corresponds to a single state s ∈ S. If at some time step later
than t′, the current history list becomes non-identifying, jump back to the
first step of this enumeration (to reestablish an identifying history list)

To implement a procedure as described above, it is necessary to have a criterion
able to decide whether a history list h ∈ H is identifying or not. Furthermore,
we need an efficient exploration strategy leading to an identifying history list as
quickly as possible. We will now develop two criterions for detecting identifying
history lists, as well as an efficient exploration strategy.

Definition 3. Sufficient History Length
Given a deterministic POMDP M := (T, S, U,O, r, f,Ω), the sufficient history
length lsu is defined as
lsu := maxs∈S min h∈H∗ {|h|, h identifies state s}

It is possible to find an identifying history list no longer than lsu for an arbitrary
state s ∈ S . Thus, every history space H ⊆ H∗ should contain identifying
history lists having a size at least equal to lsu. Otherwise, it would be impossible
to identify every state in S.

Definition 4. k-Complete History Space
Let Hk denote the set of identifying history lists (for single states) which have
a length less or equal to k. Let the set of minimal suffixes Hmin

k ⊆ Hk contain
all identifying history lists h ∈ Hk such that � ∃h′ ∈ Hk : h′ �= h and h′ is a
suffix of h. A history space H ⊆ H∗ is k-complete if Hmin

k ⊆ H and there are
no identifying history lists h, h′ ∈ H,h �= h′ with h ∈ Hmin

k−lsu
such that h is a

suffix of h′.

A k-complete history space must contain an identifying history list h of length
|h| ≤ k, if h is a minimal suffix of an identifying history list. If h is such a suffix
with length no longer than k− lsu, a k-complete history space must not contain
extensions at the front of h.

398 S. Timmer and M. Riedmiller

Theorem 1. Detection of Identifying History Lists
Let H ⊆ H∗ be a history space and h ∈ H a history list of length k̂ := |h|. If
k − k̂ ≥ lsu for a fixed k ∈ N, then the following two propositions hold:
H is k-complete : h is identifying ⇒ � ∃h′ ∈ H : h′ �= h and h is a suffix of h′

Hmin
k ⊆ H : h is identifying ⇐ � ∃h′ ∈ H : h′ �= h and h is a suffix of h′

Proof. (⇒):
Let h ∈ H be an identifying history list and let hmin be the minimal identifying
suffix of h. Since |hmin| ≤ |h| = k̂ ≤ k − lsu < k and H is k-complete, it must
hold that hmin ∈ H . We assume that there exists a history list h′ ∈ H such that
h is a suffix of h′. From Lemma 1, it follows that h′ is an identifying history
list. In this situation, H would not be k-complete since both hmin and h′ are
identifying history lists in H , hmin ∈ Hmin

k−lsu
and hmin is a suffix of h′.

(⇐):
Let [u∗

0, o
∗
1, ..., u

∗
t−1, o

∗
t] be a possible sequence of observations and actions and

[s0, ..., st−k̂, ..., st] be a corresponding sequence of system states.
Let h := [u0, o1, ..., uk̂−1, ok̂] be a suffix of the above sequence. By definition of

the sufficient history length lsu, there exists an identifying history list h′ ∈ H∗,
h′ := [u′

0, o
′
1, ..., u

′
r−1, o

′
r] for state st−k̂ with r ≤ lsu. Consider the history list

h′′ := [u′
0, o

′
1, ..., u

′
r−1, o

′
r, u0, o1, ..., uk̂−1, ok̂] which is built by extending h′ with

history list h (at the end). It is easy to see that h′′ ∈ H∗. By applying Lemma
2 several times, it follows that h′′ is an identifying history list for state st.
Furthermore, h′′ has a length of at most k, since |h| = k̂ and |h′| ≤ lsu. Since
Hmin

k ⊆ H , there must exist an identifying history list h′′′ ∈ H such that h′′′ is
a minimal suffix of h′′ and an identifying history list for state st . Since also h is
a suffix of h′′, it must hold that either h is a suffix of h′′′ or h′′′ is a suffix of h.
Since we assume that there is no history list in H containing h as a suffix, h′′′

must be a suffix of h. Thus by Lemma 1, h is an identifying history list for st.

Note that it is not necessary to know the exact value of lsu. An overestimation
of lsu will not affect the proof of the above theorem. It is easy to show that if the
observation model only depends on the current state (Ω : S → O), the above
theorem also holds for an extended history list h = [o0, u0, .., ut−1, ot] including
the observation of the initial state of the history sequence.

Since the criterion above can be checked solely by inspecting the history space
H , it is possible to compute an efficient exploration strategy on the basis of H
and a set of transitions F sampled from the underlying POMDP. These sample
transitions can also be used to establish an alternative criterion: For a determin-
istic system, the sequence of observations and rewards is uniquely determined
given a starting state and a sequence of actions. A history list h contains a link
to all sampled episodes in which h became the current history list at some time
t. By examining these episodes, it can be checked whether for an action sequence
occurring after time t, the corresponding sequence of observations and rewards
is uniquely determined. If this is the case for all action sequences (occurred af-
ter time t), the history list h is considered to be identifying. The idea for this

Safe Q-Learning on Complete History Spaces 399

Safe Q-Learning on History Lists
Initialization

1. N := 0, F = ∅, ∀h ∈ H, u ∈ U : Q̂0(h, u) := 0
Main Loop

1. Sample a set Fnew of transition instances by applying an ε-greedy exploration
2. F = F ∪ Fnew

3. Fvl := {(ht, ut, rt, ht+1) ∈ F | ut ∈ Uvl
ht

and ht+1 is identifying }
Q-Learning Update Loop

1. ∀(ht, ut, rt, ht+1) ∈ Fvl

Q̂N+1(ht, ut) = rt + γ maxu∈Uvl
ht

Q̂N(ht+1, u)

2. N = N + 1
Until Q̂N converges

End of Main Loop

Fig. 2. Q-Learning on Identifying History Lists

criterion was already introduced in [1] for building a prediction suffix tree, but
without considering reward signals.

– To apply Q-learning on history spaces, two alternative criterions are available
to detect identifying history lists.
Criterion A A history list h ∈ H is considered to be identifying if this

can be proved by Theorem 1, assuming a k-complete history space or at
least Hmin

k ⊆ H . Additionally, h is considered to be identifying if it is
an extension of another history list h′ ∈ H which can be proved to be
identifying. Otherwise, h is considered to be non-identifying.

Criterion B If the sequence of observations and rewards following a history
list h is uniquely determined for action sequences occurred on sampled
episodes, h is considered to be identifying. Otherwise, h has been proven
to be non-identifying.

– Transition instances are represented by four tuples (ht, ut, rt, ht+1) ∈ F ,
where rt denotes the reward

– The set of valid actions Uvl
h ⊆ U for history list h is empty if h is not

identifying. Otherwise, the set Uvl
h contains action u ∈ U if there exists a

transition instance (ht = h, ut = u, rt, ht+1) ∈ F such that ht+1 is identifying
– The greedy action of h ∈ H is computed with respect to the set of valid

actions Uvl
h . If Uvl

h = ∅, a random action is taken

We implemented an efficient exploration strategy (Figure 3) trying to minimize
the expected length of a path to an identifying history list. It would also be
possible to develop a reward-based exploration which maximizes the rewards on
a path to an identifying history list.

Theorem 2. Safe Q-Learning on History Lists
Let H be a history space. If criterion A is used to detect identifying history lists
and it holds Hmin

k ⊆ H, then the Q-function will converge to a unique fix point.
If criterion B is used, then the Q-function will converge without any assumptions
with respect to H.

400 S. Timmer and M. Riedmiller

Efficient Exploration Strategy
Input Set of sampled transitions F , Q-function QN , current history list ht

Algorithm
1. Estimate transition probabilities p((h, u) → h′) for the history space H based on

transition instances from F .
2. If ht is identifying, return the greedy action according to the function QN . If

ht is not identifying, compute an action sequence probably leading to an iden-
tifying history list. This can be implemented by considering action sequences
of length 1 < l ≤ lmax starting from the current history list ht ∈ H . By
inspecting the estimated transition model, every possible current history list
ht+l ∈ H after l time steps can be discovered and added to a candidate set.
Then, it can be checked by criterion A or criterion B, how many candidates
are identifying history lists.

Fig. 3. Efficient Exploration Strategy

Proof. A detailed proof is omitted due to space constraints. If criterion A is
used, convergence immediately follows from Theorem 1, since updates of the Q-
function are made only on sequences consisting of identifying history lists. Since
every identifying history list corresponds to a single state s ∈ S, the subset of the
history space used to update the Q-function is markovian. If criterion B is used,
then a similar argument holds: For an updated history list h, it holds that all
stored sequences of observations and rewards (occurred on a sampled episode)
are deterministic after history list h becomes the current history list. Thus, it is
possible to create a new deterministic POMDP with a new state space S′ and
observation model Ω′ such that all sampled episodes are compatible with the
new POMDP and h is an identifying history list for a state in S′.

Now we want to discuss which criterion is better suited to detect identifying
history lists. If a k-complete history space is available, it is preferable to choose
criterion A, because it has been proven to work correctly and can be checked
efficiently. Note that if the history space used is not k-complete, but at least it
holds that Hmin

k ⊆ H , then Q-learning will still converge, but the criterion will
detect only a subset of all identifying history lists. If the history space used is of
very poor quality, it seems to be better to choose criterion B. Criterion B gives
only empirical evidence that a history list identifying, but at least guarantees
convergence of the Q-learning algorithm. The problem with criterion B is that
even if the Q-function converges, the extracted policy is not necessarily successful
if applied to the problem. This comes from the fact that a history list classified as
identifying by criterion B can actually be non-identifying. In such a situation, the
efficient exploration strategy might lead to non-identifying history lists. Thus,
we propose to consider a history list as identifying only if this is confirmed by
both criterions. By this procedure we achieve guaranteed convergence and the
performance of the exploration strategy will gradually improve with the quality
of the history space used. The reason for this is that criterion B will never classify
a history list as non-identifying if this is not truly the case but it will revise wrong
classifications made by criterion A. In other words, if the criterions are combined,

Safe Q-Learning on Complete History Spaces 401

the resulting classification will always be better than a classification solely based
on criterion A.

The question arises whether the learned Q-function gives a policy of high
performance. It is easy to see that if H (or rather k) is sufficiently large, then
the safe Q-learning algorithm will converge to a near optimal policy. This is due
to the fact that every extension (at the end) of an identifying history list is again
identifying (Lemma 2). If H contains identifying history lists corresponding to
an optimal path from a starting state to the goal, Q-learning will investigate this
path.

4 Empirical Results

We applied our algorithm to the partially observable maze shown in Figure 1.
The size of the state space is |S| = 104, which is rather large compared to typical
POMDP benchmarks from the literature. The reward is -1 at all non-goal cells.
Note that for the maze considered it holds that lsu = 5. Since there are many cells
in the maze having no walls surrounding them, it is necessary to take a couple
of well advised steps to identify the current state. Since the observations only
depend on the state, we used history lists with an additional (initial) observation
at the front.

We compared our algorithm against the optimal solution on belief states com-
puted by the Witness algorithm [2] and a random exploration strategy. The ini-
tial probability distribution over states (belief state) is chosen according to the
initial observation of the sampled episode. By this procedure, we incorporate
knowledge about the observation of the initial state of an episode into the belief
state. Unfortunately, we were not able to compute the optimal policy on belief
states for the whole maze. Since the state space contains more than one hun-
dred states, the computational effort for establishing the optimal value function
becomes intractable. We therefore conducted an additional experiment in which
only the lower right part of the maze is considered. This reduced maze only
has twenty states. For both mazes, we computed the optimal solution of the
corresponding MDP (fully observable maze). This solution always bounds the
optimal solution of the POMDP mazes.

The random exploration samples an action at random if it is not possible to
prove that the current history list is identifying. Otherwise, it takes the greedy
action according to the learned Q-function. The efficient exploration (Figure 3)
tries to identify the current state as quickly as possible and then takes a greedy
policy to the goal. Thus, the resulting policy is not optimal, but reasonably close
to the optimum.

We conducted experiments with three k-complete history spaces such that
each experiment corresponds to a different choice of the parameter k ∈ {6, 7, 8}.
Only criterion A was used to detect identifying history lists, because for k-
complete history spaces this criterion works perfectly (Theorem 1). All values
presented are mean values from ten runs of the algorithm. Every run of an

402 S. Timmer and M. Riedmiller

Table 1. Performance of learned policies. The fourth/fifth column gives the number of
steps to the goal averaged over every possible starting state. The values given in braces
are the performance of the policy learned after the third iteration of the main loop.

Algorithm History Space Size (|H |) Efficient Random Maze

MDP Opt. - - 2.2 - small

POMDP Opt. - - 2.7 - small

Safe Q 7-complete 3200 3.48 4.40 small

MDP Opt. - - 7.77 - large

Safe Q 8-complete 119082 12.40 (13.83) 32.15 (34.75) large

Safe Q 7-complete 30712 13.46 (19.37) 39.39 (40.36) large

Safe Q 6-complete 14850 14.00 (22.78) 61.59 (55.17) large

Table 2. Results of the second experiment. The setup of the experiment is equal to the
first experiment (large maze, 8-complete) but with a reduced history space. The third
(fifth) column of the last row shows an experiment in which all extensions of history
lists of size six (seven) are deleted.

Deletion Method # Deleted Lists # Steps # Deleted Lists # Steps

Random 10000 12.52 (13.54) 20000 13.57 (14.59)

Random 30000 13.52 (22.76) - -

No Extensions 77432 13.08 (14.33) 96428 13.62 (14.19)

experiment (large maze) consists of fifteen iterations of the main loop of the safe
Q-learning algorithm. In every iteration, 105 transition instances are collected
by applying an ε-greedy policy. For the small maze, only a single iteration of
the main loop is carried out, sampling a total number of 50000 transition in-
stances. An episode sampled to collect transition instances ends if the goal state
is reached or the number of collected transition instances exceeds the threshold
max step = 200. Sampling 105 transition instances approximately corresponds
to 660 sampled episodes. The exploration rate is set to ε = 0.1.

Table 1 shows that it is possible to learn good policies based on a Q-function
defined on history lists. The performance of the algorithm develops with the
size of the history space and with the length of the history lists, respectively.
Moreover, the efficient exploration strategy achieves significantly better results
than the random exploration strategy. The optimal solution on belief states for
the large maze is presumably close to ten steps. To show the robustness of the
algorithm against non k-complete spaces, we conducted an additional experiment
with the efficient exploration strategy in which a number of identifying history
lists are randomly selected from all lists having size eight (8-complete history
space) and then deleted from the history space. To detect identifying history
lists, we used a combination of criterions as discussed in the previous section.
Table 2 shows that even if it holds that Hmin

k �⊆ H , the algorithm still performs
well.

Safe Q-Learning on Complete History Spaces 403

5 Discussion

In this section, we want to discuss the applicability of history based approaches
to real world problems. From our perspective, two questions are especially im-
portant in this context.

1. Is it possible to learn a k-complete history space?
2. Is it possible to scale the approach to stochastic POMDPs?

We performed preliminary experiments in which it was possible to learn k-
complete history spaces by the following procedure based on sampling a number
of episodes at random.

– Initially, the history space H consists of all possible history lists of length
one (e.g. h = uo), l := 0

– Loop (until the history space H does no longer changes)
• l = l + 1
• Delete old data and collect new data by sampling a number of episodes.

An episode is a sequence consisting of actions, observations and rewards.
• Build all one step extensions (at the end and at the front) of all history

lists in H having a size equal to l. One step means a single action-
observation pair. If the size of an extended list does not exceed the
threshold k − lsu, add the list to H .

• If a history list in H is a (possibly multi step) front extension of an-
other history list in H , which is classified as identifying by criterion B,
then shorten the extended list by deleting the first (at the front) action-
observation pair of the list

– End of loop
– Add all possible history lists to H having size k − lsu < |h| ≤ k except

for front extensions of those identifying history lists, which were previously
included during the loop (detected with criterion B)

The above procedure can be proven not to include front extensions of an identi-
fying history list h ∈ H with |h| ≤ k− lsu. This is a critical aspect of learning a
k-complete history space. We were able to learn a 8-complete history space for
the large maze.

In the past, it has already been demonstrated that history list approaches are
practical and can be scaled to complex problems, e.g. continuous, multidimen-
sional state spaces ([3], [4]). In fact, even in cases in which it is not possible
to learn k-complete history spaces, e.g. for infinite state spaces, the convergence
proof for our algorithm still applies (criterion B). A certain benefit of k-complete
history spaces is that the size of the history space learned can be adjusted by the
parameter k. Even for small values of k, it will be possible to learn good poli-
cies on a k-complete space because of the efficient exploration strategy. While
applying a policy, the efficient exploration strategy establishes exactly those
identifying history lists for which stored Q-values are available.

We think that the basic idea of this approach can be carried over to the general
case of stochastic POMDPs. It may always be advantageous to explicitly search

404 S. Timmer and M. Riedmiller

for belief states in which the probability mass concentrates on few states. This
is the reason why our definition of identifying history lists also covers sets of
states. We think that a search procedure as mentioned above is much more
efficient than computing Q-values for every single belief as it is done in classical
POMDP algorithms. Following this idea, we currently work on an extension of
our algorithm to sparse stochastic systems (systems with less stochasticity).

6 Related Work

This section contains a summary of existing work concerning the issue of learning
POMDP representations with short-time memory as well as learning policies on
those representations.

For a deterministic transition function and a deterministic observation model,
a POMDP can be represented by a Finite State Automaton (FSA). To learn a
model of an FSA, the concept of tests is introduced in [5]. A test itself consists
of a sequence of actions, while the outcome of a test is defined as the obser-
vation made after executing the action sequence. A randomized algorithm is
presented which is able to learn a sufficient number of tests such that future
observations can be perfectly predicted. In [6], this idea is generalized to the
stochastic case yielding Predictive State Representations (PSRs). In the context
of PSRs, tests are considered to be sequences of observations and actions such
that probabilities can be assigned to these sequences. Precisely, the expression
p(t|h) = p(o1, .., ok|hu1, ..., uk) for a test t = u1o1...ukok denotes the probability
of observing a certain sequence of observations, given that a certain sequence
of actions is executed and a certain history h (past events) occurred. Similar
to the work in [5], it can be shown that the model of an arbitrary POMDP of
finite size can be expressed by a sufficiently large set of tests {t1, ..., tn} which is
then called a PSR. The prediction vector p(h) = [p(t1|h), ..., p(tn|h)] constitutes
a sufficient statistic of the system. In [1], it is shown that for the deterministic
case, it is possible to derive a PSR from a prediction suffix tree, which can be
decomposed into a set of history lists. Existing literature about PSRs focuses
only on predicting the state, but not on learning policies.

In [1], predictions of future observations of an FSA are made by building a
prediction suffix tree with loops. A path through this tree starts at the root node
and corresponds to a certain, possibly cyclic sequence of past observations and
actions. The leaf nodes of the tree contain predictions about future observations.
By allowing the tree to have loops, it is possible to deal with long subsequences
of useless information which can be sandwiched into an enclosing sequence. This
procedure can substantially reduce the number of history lists (branches of the
tree) needed to be stored in memory. In our approach, we did not include loops,
because loop detection is a potential source of error. An incorrectly detected
loop (by inspecting sampled episodes) could damage the performance of the
efficient exploration strategy. However, it would be easily possible to include the
looping mechanism by inserting links from longer (identifying) history lists to
shorter (identifying) history lists. In contrast to our algorithm, the suffix tree

Safe Q-Learning on Complete History Spaces 405

is only designed for prediction purposes. Neither an efficient exploration is used
to identify the current state in minimal time nor is a policy learned. Moreover,
the concept of k-complete history spaces makes it possible to bound the size
of the history space by the parameter k. A suffix tree always provides perfect
prediction, but is possibly of great depth.

In [3], a Q-learning variant is used to learn policies for POMDPs based on a
tree structure called UTree. The tree is used to estimate the current state by
distinguishing future rewards of sequences of observations and actions. Unfortu-
nately, there is no guarantee that Q-learning will eventually converge in such a
setting. Thus, UTree can only heuristically be applied to POMDPs.

7 Conclusion

We developed a variant of Q-learning able to learn near optimal policies for de-
terministic POMDPs without a model. This is accomplished by substituting the
state space by a history space consisting of sequences of past observations and
actions. The algorithm is sound in the sense that convergence can by achieved
without any assumptions with respect to the history space used. By introducing
the concept of k-complete history spaces, we showed that the performance of
the algorithm gradually improves with the quality of the history space available.
We empirically showed that the algorithm is robust against ”incomplete” his-
tory spaces and a relatively simple algorithm is able to learn k-complete history
spaces.

References

1. Holmes, M.P., Isbell, C.L.: Looping suffix tree-based inference of partially observ-
able hidden state. In: Proceedings of the 23th International Conference on Machine
Learning (ICML), Pittsburgh, Pennsylvania, USA, pp. 409–416 (2006)

2. Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Efficient dynamic-programming
updates in partially observable markov decision processes. Technical Report CS-95-
19, Brown University (1995)

3. McCallum, A.: Learning to use selective attention and short-term memory in se-
quential tasks. In: From Animals to Animats 4: Proceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behavior, pp. 315–324. The MIT
Press, Cambridge (1996)

4. Timmer, S., Riedmiller, M.: Abstract state spaces with history. In: Proceedings of
the 25th International Conference of NAFIPS, the North American Fuzzy Informa-
tion Processing Society (2006)

5. Rivest, R.L., Schapire, R.E.: Diversity-based inference of finite automata. Journal
of the Association for Computing Machinery 43, 555–589 (1994)

6. Littman, M., Sutton, R., Singh, S.: Predictive representations of state. In: Proceed-
ings of the 14th International Conference on Neural Information Processing Systems
(NIPS), pp. 1555–1561 (2002)

Random k-Labelsets: An Ensemble Method for

Multilabel Classification

Grigorios Tsoumakas and Ioannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
{greg,vlahavas}@csd.auth.gr

Abstract. This paper proposes an ensemble method for multilabel clas-
sification. The RAndom k-labELsets (RAKEL) algorithm constructs each
member of the ensemble by considering a small random subset of labels and
learning a single-label classifier for the prediction of each element in the
powerset of this subset. In this way, the proposed algorithm aims to take
into account label correlations using single-label classifiers that are applied
on subtasks with manageable number of labels and adequate number of
examples per label. Experimental results on common multilabel domains
involving protein, document and scene classification show that better per-
formance can be achieved compared to popular multilabel classification
approaches.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification (or
filtering in the case of textual and web data), while if |L| > 2, then it is called
multi-class classification. In multilabel classification, the examples are associated
with a set of labels Y ⊆ L.

Multilabel classification is a challenging research problem that emerges in
several modern applications such as music categorization [1], protein function
classification [2,3,4,5] and semantic classification of images [6,7]. In the past,
multilabel classification has mainly engaged the attention of researchers working
on text categorization [8,9,10], as each member of a document collection usually
belongs to more than one semantic category.

Multilabel classification methods can be categorized into two different groups
[11]: i) problem transformation methods, and ii) algorithm adaptation methods.
The first group of methods are algorithm independent. They transform the mul-
tilabel classification task into one or more single-label classification, regression
or label ranking [12] tasks. The second group of methods extend specific learn-
ing algorithms in order to handle multilabel data directly. There exist multilabel
extensions of decision tree [2], support vector machine [13,14], neural network

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 406–417, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

RAKEL: An Ensemble Method for Multilabel Classification 407

[15,5], Bayesian [9], lazy learning [16] and boosting [10] learning algorithms. This
paper focuses on the former group of methods.

The most widely-used problem transformation method considers the predic-
tion of each label as an independent binary classification task. It learns one
binary classifier hλ : X → {¬λ, λ} for each different label λ ∈ L. It transforms
the original data set into |L| data sets Dλ that contain all examples of the orig-
inal data set, labeled as λ if the labels of the original example contained λ and
as ¬λ otherwise. It is the same solution used in order to deal with a multi-class
problem using a binary classifier, commonly referred to as one-against-all or
one-versus-rest. Following [12], we will refer to this method as Binary Relevance
(BR) learning, a name popular within the Information Retrieval community. BR
is criticized for not considering correlations among the labels.

A less common problem transformation method considers each different subset
of L as a single label. It so learns one single-label classifier h : X → P (L) , where
P (L) is the powerset of L, containing all possible label subsets. We will refer to
this method as Label Powerset (LP) learning. LP has the advantage of taking
label correlations into account, but suffers from the large number of label subsets,
the majority of which are associated with very few examples.

This paper proposes an approach that constructs an ensemble of LP classi-
fiers. Each LP classifier is trained using a different small random subset of the
set of labels. The proposed approach, dubbed RAKEL (RAndom k-labELsets),
aims at taking into account label correlations and at the same time avoiding
the aforementioned problems of LP. Ensemble combination is accomplished by
thresholding the average zero-one decisions of each model per considered la-
bel. The paper investigates the issue of selecting appropriate parameters (subset
size, number of models, threshold) for RAKEL through an experimental study
on three domains concerning protein, image and document classification. Results
of performance comparison against the BR and LP methods are in favor of the
proposed approach.

A secondary contribution of this paper is a unified presentation of existing
evaluation measures for multilabel classification, including their categorization
into example-based and label-based measures. The categorization goes further
discussing micro and macro averaging operations for any label-based measure.

The remainder of this paper is organized as follows: Section 2 introduces
the proposed approach and Section 3 presents the categorization of evaluation
measures. Section 4 gives the setup of the experimental study and Section 5
discusses the results. Finally, Section 6 concludes and points to future work.

2 The RAKEL Algorithm

We first define the concept of k-labelsets and introduce notation that is sub-
sequently used. Let L = {λi}, i = 1..|L| be the set of labels in a multilabel
classification domain. A set Y ⊆ L with k = |Y | is called k-labelset. We will use
the term Lk to denote the set of all distinct k-labelsets on L. The size of Lk is
given by the binomial coefficient: |Lk| =

(|L|
k

)
.

408 G. Tsoumakas and I. Vlahavas

The RAKEL (RAndom k-LabELsets) algorithm iteratively constructs an en-
semble of m Label Powerset (LP) classifiers. At each iteration, i = 1..m, it
randomly selects a k-labelset, Yi, from Lk without replacement. It then learns
an LP classifier hi : X → P (Yi). The pseudocode of the ensemble production
phase is given in Figure 1.

Input: Number of models m, size of labelset k, set of labels L, training set D
Output: An ensemble of LP classifiers hi and corresponding k-labelsets Yi

R ← Lk;
for i ← 1 to min(m, |Lk|) do

Yi ← a k-labelset randomly selected from R;
train an LP classifier hi : X → P (Yi) on D;
R ← R \ {Yi};

Fig. 1. The ensemble production phase of RAKEL

The number of iterations (m) is a user-specified parameter with acceptable
values ranging from 1 to |Lk|. The size of the labelsets (k) is another user-
specified parameter with meaningful values ranging from 2 to |L| − 1. For k = 1
and m = |L| we get the binary classifier ensemble of the Binary Relevance
(BR) method, while for k = |L| (and consequently m = 1) we get the single-
label classifier of the LP method. We hypothesize that using labelsets of small
size and an adequate number of iterations, RAKEL will manage to model label
correlations effectively. The experimental study in Section 5 provides evidence
in support of this hypothesis and guidelines on selecting appropriate values for
k and m.

For the multilabel classification of a new instance x, each model hi provides
binary decisions hi(x, λj) for each label λj in the corresponding k-labelset Yi.
Subsequently, RAKEL calculates the average decision for each label λj in L and
outputs a final positive decision if the average is greater than a user-specified
threshold t. An intuitive value for t is 0.5, but RAKEL performs well across a
wide range of t values as it shown by the experimental results. The pseudocode
of the ensemble production phase is given in Figure 2.

2.1 Computational Complexity

If the complexity of the single-label base classifier is O(g(|C|, |D|, |A|)) for a
dataset with |C| class values, |D| examples and |A| predictive attributes, then
the computational complexity of RAKEL is O(mg(2k, |D|, |A|)). The complexity
is linear with respect to the number of models m, as in most ensemble methods,
and it further depends on the complexity of the base classifier.

One important thing to note is the high number of class values (2k) that each
LP classifier of RAKEL must learn. This may become an important hindrance
of the proposed algorithm, especially if the base classifier has quadratic or greater

RAKEL: An Ensemble Method for Multilabel Classification 409

Input: new instance x, ensemble of LP classifiers hi, corresponding set of
k-labelsets Yi, set of labels L

Output: multilabel classification vector Result
for j ← 1 to |L| do

Sumj ← 0;
V otesj ← 0;

for i ← 1 to m do
forall labels λj ∈ Yi do

Sumj ← Sumj + hi(x, λj);
V otesj ← V otesj + 1;

for j ← 1 to |L| do
Avgj ← Sumj/V otesj ;
if Avgj > t then

Resultj ← 1 ;

else Resultj ← 0 ;

Fig. 2. The ensemble combination phase of RAKEL

complexity with respect to the number of class values, as in the case of support
vector machine classifiers. In practice however, the actual number of class values
is never 2k, because LP can simply consider the label subsets that appear in
the training data. The number of these subsets is typically significantly smaller
than 2k. See for example the number of label subsets for the multilabel datasets
considered in the experimental study of this paper (Section 4, Table 1).

3 Evaluation Measures

Multilabel classification requires different evaluation measures than those used
in traditional single-label classification. Several measures have been proposed in
the past for the evaluation of multilabel classifiers. Some of them are calculated
based on the average differences of the actual and the predicted sets of labels
over all test examples. Others decompose the evaluation process into separate
evaluations for each label, which they subsequently average over all labels. We
call the former example-based and the latter label-based evaluation measures.

3.1 Example-Based

Let D be a multilabel evaluation data set, consisting of |D| multilabel examples
(xi, Yi), i = 1..|D|, Yi ⊆ L. Let h be a multilabel classifier and Zi = h(xi) be the
set of labels predicted by h for example xi.

Schapire and Singer [10] consider the Hamming Loss, which is defined as:

HammingLoss(h,D) =
1
|D|

|D|∑

i=1

|Yi#Zi|
|L|

410 G. Tsoumakas and I. Vlahavas

where# stands for the symmetric difference of two sets, which is the set-theoretic
equivalent of the exclusive disjunction (XOR operation) in Boolean logic.

Classification Accuracy [17] or Subset Accuracy [18] is defined as follows:

ClassificationAccuracy(h,D) =
1
|D|

|D|∑

i=1

I(Zi = Yi)

where I(true)=1 and I(false)=0. This is a very strict evaluation measure as it
requires the predicted set of labels to be an exact match of the true set of labels.

The following measures are used in [14]:

Precision(h,D) =
1
|D|

|D|∑

i=1

|Yi ∩ Zi|
|Zi|

Recall(h,D) =
1
|D|

|D|∑

i=1

|Yi ∩ Zi|
|Yi|

F(h,D) =
1
|D|

|D|∑

i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

Accuracy(h,D) =
1
|D|

|D|∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

3.2 Label-Based

Any known measure for binary evaluation can be used here, such as accuracy,
area under the ROC curve, precision and recall. The calculation of these mea-
sures for all labels can be achieved using two averaging operations, called macro-
averaging and micro-averaging [8]. These operations are usually considered for
averaging precision, recall and their harmonic mean (F -measure) in Information
Retrieval tasks.

Consider a binary evaluation measure M(tp, tn, fp, fn) that is calculated
based on the number of true positives (tp), true negatives (tn), false positives
(fp) and false negatives (fn). Let tpλ, fpλ, tnλ and fnλ be the number of true
positives, false positives, true negatives and false negatives after binary evalua-
tion for a label λ. The macro-averaged and micro-averaged versions of M , are
calculated as follows:

Mmacro =
1
|L|

|L|∑

λ=1

M (tpλ, fpλ, tnλ, fnλ)

Mmicro = M

⎛

⎝
|L|∑

λ=1

tpλ,

|L|∑

λ=1

fpλ,

|L|∑

λ=1

tnλ,

|L|∑

λ=1

fnλ

⎞

⎠

Note that micro-averaging has the same result as macro-averaging for some
measures, such as accuracy, while it differs for other measures, such as precision,
recall and area under the ROC curve. Note also that the average (macro/micro)
accuracy and Hamming loss sum up to 1, as Hamming loss is actually the average
binary classification error.

RAKEL: An Ensemble Method for Multilabel Classification 411

4 Experimental Setup

4.1 Datasets

We experiment with 3 datasets from 3 different application domains: bioin-
formatics, semantic scene analysis and document categorization. The biolog-
ical dataset yeast [13] is concerned with protein function classification. The
image dataset scene [6] is concerned with semantic indexing of still scenes.
The textual dataset tmc2007 [19] concerns aviation safety reports. These and
other multilabel datasets are available for download in Weka’s ARFF format at:
http://mlkd.csd.auth.gr/multilabel.html

Table 1 shows certain standard statistics of these datasets, such as the number
of examples in the train and test sets, the number of numeric and discrete at-
tributes and the number of labels, along with multilabel data statistics, such as
the number of distinct label subsets, the label cardinality and the label density
[11]. Label cardinality is the average number of labels per example, while label
density is the same number divided by |L| .

Table 1. Standard and multilabel statistics for the data sets used in the experiments

Examples Attributes Distinct Label Label
Dataset Train Test Numeric Discrete Labels Subsets Cardinality Density

scene 1211 1196 294 0 6 15 1.074 0.179
tmc2007 21519 7077 0 48981 22 1341 2.158 0.098

yeast 1500 917 103 0 14 198 4.327 0.302

Feature selection was applied on tmc2007, in order to reduce the computa-
tional cost of training. We used the χ2 feature ranking method separately for
each label in order to obtain a ranking of all features for that label. We then
selected the top 500 features based on the their maximum rank over all labels. A
similar approach was found to have high performance in previous experimental
work on textual datasets [20].

4.2 Multilabel Methods

We compare RAKEL against the BR and LP methods. In all datasets we ex-
periment with 9 different threshold values for RAKEL, ranging from 0.1 to 0.9
with a 0.1 step. We also experiment with a range of subset sizes and number of
models, that differ depending on the dataset. We evaluate the performance of
methods using a hold-out set. In particular, we use the original train and test
set splits that come with the distributions of the datasets. Although we calcu-
late most of the evaluation measures of Section 3, we only present results for
Hamming loss and the micro-averaged F -measure, due to limited space. These
two metrics are widely-used in the literature and indicative of the performance
of multilabel classification methods.

412 G. Tsoumakas and I. Vlahavas

The BR, LP and RAKEL methods can utilize any learning algorithm for
classifier training. Evaluating the performance of different algorithms was out of
the scope of this paper. We selected the support vector machine (SVM) [21] for
the experiments, based on its strong performance in a past study [11]. The SVM
was trained with a linear kernel and the complexity constant C equal to 1. The
one-against-one strategy is used for dealing with multi-class tasks.

We have implemented a package of Java classes for multilabel classification
based on Weka [22]. The package includes implementations of BR, LP, RAKEL
and other methods, an evaluation framework that supports the measures pre-
sented in Section 3 and code for the calculation of multilabel statistics. It has a
command line interface similar to Weka but the full feature set is available only
as an API. The package contains source code and a compiled library. Java v1.5
or better and Weka v3.5.5 is required to run the software, which is available for
download at http://mlkd.csd.auth.gr/multilabel.html.

5 Results and Discussion

5.1 Scene Dataset

For the scene dataset we experiment with all meaningful values for k (2 to 5).
We also build incrementally the ensemble with values for m ranging from 1 to
|Lk|. Figures 3(a) and 3(b) show the Hamming loss and F -measure respectively
(y-axis) of BR, LP and RAKEL for t = 0.5, with respect to the number of
iterations m (x-axis).

0,09

0,1

0,11

0,12

0,13

0,14

0,15

0,16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k=2 k=3

k=4 k=5

BR LP

(a)

0,64

0,65

0,66

0,67

0,68

0,69

0,7

0,71

0,72

0,73

0,74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k=2 k=3

k=4 k=5

BR LP

(b)

Fig. 3. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5

We first notice that LP is better than the more popular BR in this dataset.
The small number of labels (6) and label subsets (15) are factors that may
contribute to this result. We also notice that for all values of k RAKEL has
better performance than BR after the construction of a few models. For k = 3,
RAKEL achieves the best results, which are better than LP for m >= 10. Better

RAKEL: An Ensemble Method for Multilabel Classification 413

0,09

0,1

0,11

0,12

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

BR LP

(a)

0,65

0,66

0,67

0,68

0,69

0,7

0,71

0,72

0,73

0,74

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

BR LP

(b)

Fig. 4. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

results than LP are also achieved for certain values of m in the cases where
k = 4 and k = 5. These results show that for the default threshold value (0.5)
the performance of RAKEL exceeds that of BR and LP for a range of subset
sizes and iterations.

Figures 4(a) and 4(b) show the minimum Hamming loss and maximum F -
Measure respectively (y-axis) for RAKEL across all iterations m, with respect
to all values of t. The performance of BR and LP is given too. These figures
show the best performance that can be achieved by RAKEL irrespectively of
the number of models for the different threshold values.

We notice that low Hamming loss can be achieved for a range of t values for
k = 3 and k = 4, with the best results being achieved for t = 0.6. The F -measure
on the other hand seems to be favored by threshold values around 0.4. RAKEL
can achieve higher F -measure than LP for k = 3 or k = 4 for threshold values
ranging from 0.2 to 0.5.

5.2 Yeast Dataset

For the yeast dataset we experimented with k values from 2 to 7 (half of all
labels). The number of iterations (m) were ranging from 1 to min(|Lk|, 300).
Similarly to the scene dataset, Figures 5(a) and 5(b) show the Hamming loss
and F -measure respectively (y-axis) of BR, LP and RAKEL for t = 0.5, with
respect to the number of iterations m (x-axis). For clarity of presentation, we
grouped the values in batches of 5 models and calculated the average.

In Figure 5(a) we notice that the Hamming loss of BR and LP is not displayed,
as their values (BR=0.1997 and LP=0.2022) are beyond the focus of the plot.
RAKEL achieves better Hamming loss than BR and LP for all values of k after
the first 20 models. Hamming loss has a decreasing trend up to around 150 mod-
els, while from then on it seems to have a slightly increasing trend. In Figure 5(b)
we notice similar results for F -measure, but this time for k > 3. As a conclusion
we can argue that RAKEL using the default threshold value (0.5) attains better
performance than BR and LP for a wide range of k and m values.

414 G. Tsoumakas and I. Vlahavas

0,193

0,194

0,195

0,196

0,197

0,198

0,199

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290

k=2 k=3 k=4

k=5 k=6 k=7

(a)

0,63

0,64

0,65

0,66

0,67

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290

k=2 k=3 k=4

k=5 k=6 k=7

BR LP

(b)

Fig. 5. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5

0,19

0,192

0,194

0,196

0,198

0,2

0,202

0,204

0,206

0,208

0,21

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

k=6 k=7

BR LP

(a)

0,62

0,63

0,64

0,65

0,66

0,67

0,68

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

k=6 k=7

BR LP

(b)

Fig. 6. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

In Figure 6(a), we notice that irrespectively of the subset size, RAKEL has
lower Hamming loss than BR and LP for a range of t values (0.4 to 0.8). Re-
garding the different subset sizes, we notice high performance for k = 4 and
k = 5 consistently for a range of t values (0.5 to 0.8). The lowest Hamming
loss is achieved for k=4 and t=0.7. In Figure 6(b), we notice that similarly to
the Hamming loss results, RAKEL has higher F -measure than BR and LP for
a range of t values (0.1 to 0.6), but this time for k > 2. We also notice that
compared to Hamming loss, the F -measure is favored by low threshold values.
In fact, it seems that F -measure is linearly decreasing with t. The highest F -
measure is achieved for k = 7 and t = 0.2. For k > 4 we notice consistently
higher performance than for k ≤ 4 for a range of t values (0.2 to 0.5).

5.3 Tmc2007 Dataset

For the tmc2007 dataset we present preliminary experiments for k = 5, k = 7
and m ranging from 1 to 50. Similarly to the previous datasets, Figures 7(a) and
7(b) show the Hamming loss and F -measure respectively (y-axis) of BR and

RAKEL: An Ensemble Method for Multilabel Classification 415

0

0,02

0,04

0,06

0,08

0,1

0,12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

k=5

k=7

BR

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

k=5

k=7

BR

(b)

Fig. 7. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5

0,03

0,035

0,04

0,045

0,05

0,055

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=5

k=7

BR

(a)

0,71

0,72

0,73

0,74

0,75

0,76

0,77

0,78

0,79

0,8

0,81

0,82

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=5

k=7

BR

(b)

Fig. 8. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

RAKEL for t = 0.5, with respect to the number of iterations m (x-axis). The
performance of the full LP classifier was not computed, due to the high memory
requirements and computational complexity that comes from the high number
of distinct subsets and the quadratic complexity of SVM with respect to the
classes.

In Figure 7, we notice that RAKEL achieves better Hamming loss and F -
measure than BR for both values of k after the first 10 models. For k = 7 the
results are better than for k = 5. Once more, we conclude that RAKEL using
the default t = 0.5 value has better performance than BR for a wide range of m
values and for both the two k values of the preliminary experiments.

In Figures 8, we notice that irrespectively of the subset size and the threshold
value, RAKEL has better Hamming loss and F -measure than BR. Similarly to
the yeast dataset, we notice that the F -measure is linearly decreasing with t.
This behavior of the F -measure with respect to the threshold is consistent in all
three datasets, so we can conclude that low t values lead to higher F measure.
Similar behavior is noticed for Hamming loss in this dataset, which is linearly

416 G. Tsoumakas and I. Vlahavas

increasing with respect to t. This result is different from the previous datasets
where large t values seemed to favor Hamming loss.

6 Conclusions and Future Work

This paper has presented a new ensemble method for multilabel classification
that is based on random projections of the label space. We train an ensemble of
Label Powerset (LP) classifiers in this work and show that higher performance
can be achieved than the popular Binary Relevance (BR) method and the LP
classifier on the full set of labels. We consider the novel idea of label space pro-
jection an important contribution, as it offers a framework for the development
of new multilabel ensemble methods, using different multilabel classifiers than
LP at the base level and heuristic projection approaches, instead of random.

The latter issue definitely deserves further investigation, as the random nature
of RAKEL may be leading to the inclusion of models that affect the ensemble’s
performance in a negative way. To alleviate this problem, we plan as future work
to couple RAKEL with an ensemble selection method [23] in order to select those
models that will lead to increased performance.

Acknowledgements

The authors would like to thank Robert Friberg for his valuable contribution in
the development of the Java software for multilabel classification. This work is
partly funded by the Greek General Secretariat for Research and Technology,
project Regional Innovation Pole of Central Macedonia.

References

1. Li, T., Ogihara, M.: Detecting emotion in music. In: Proceedings of the Interna-
tional Symposium on Music Information Retrieval, Washington D.C., USA, pp.
239–240 (2003)

2. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In: Siebes,
A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer,
Heidelberg (2001)

3. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with
multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS,
vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

4. Roth, V., Fischer, B.: Improved functional prediction of proteins by learning kernel
combinations in multilabel settings. In: Proceeding of 2006 Workshop on Proba-
bilistic Modeling and Machine Learning in Structural and Systems Biology (PMSB
2006), Tuusula, Finland (2006)

5. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to func-
tional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering 18, 1338–1351 (2006)

6. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recognition 37, 1757–1771 (2004)

RAKEL: An Ensemble Method for Multilabel Classification 417

7. Kang, F., Jin, R., Sukthankar, R.: Correlated label propagation with application
to multi-label learning. In: CVPR ’06: Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, New York City,
NY, USA, pp. 1719–1726. IEEE Computer Society Press, Los Alamitos (2006)

8. Yang, Y.: An evaluation of statistical approaches to text categorization. Journal of
Information Retrieval 1, 78–88 (1999)

9. McCallum, A.: Multi-label text classification with a mixture model trained by em.
In: Proceedings of the AAAI’ 99 Workshop on Text Learning (1999)

10. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text catego-
rization. Machine Learning 39, 135–168 (2000)

11. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3, 1–13 (2007)

12. Brinker, K., Furnkranz, J., Hullermeier, E.: A unified model for multilabel classifi-
cation and ranking. In: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI ’06), Riva del Garda, Italy, pp. 489–493 (2006)

13. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. Advances
in Neural Information Processing Systems 14 (2002)

14. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification.
In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056,
pp. 22–30. Springer, Heidelberg (2004)

15. Crammer, K., Singer, Y.: A family of additive online algorithms for category rank-
ing. Journal of Machine Learning Research 3, 1025–1058 (2003)

16. Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label clas-
sification. In: Proceedings of the 1st IEEE International Conference on Granular
Computing, pp. 718–721. IEEE Computer Society Press, Los Alamitos (2005)

17. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum
entropy method. In: Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in Information Retrieval, pp. 274–281.
ACM Press, New York (2005)

18. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings
of the 3005 ACM Conference on Information and Knowledge Management (CIKM
’05), Bremen, Germany, pp. 195–200. ACM Press, New York (2005)

19. Srivastava, A., Zane-Ulman, B.: Discovering recurring anomalies in text reports re-
garding complex space systems. In: 2005 IEEE Aerospace Conference, IEEE Com-
puter Society Press, Los Alamitos (2005)

20. Rogati, M., Yang, Y.: High-performing feature selection for text classification. In:
CIKM ’02: Proceedings of the eleventh international conference on Information
and knowledge management, pp. 659–661 (2002)

21. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, Cambridge
(2000)

22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco (2005)

23. Tsoumakas, G., Angelis, L., Vlahavas, I.: Selective fusion of heterogeneous classi-
fiers. Intelligent Data Analysis 9, 511–525 (2005)

Seeing the Forest Through the Trees: Learning a

Comprehensible Model from an Ensemble

Anneleen Van Assche and Hendrik Blockeel

Computer Science Department, Katholieke Universiteit Leuven, Belgium
{anneleen.vanassche,hendrik.blockeel}@cs.kuleuven.be

Abstract. Ensemble methods are popular learning methods that usu-
ally increase the predictive accuracy of a classifier though at the cost of
interpretability and insight in the decision process. In this paper we aim
to overcome this issue of comprehensibility by learning a single decision
tree that approximates an ensemble of decision trees. The new model is
obtained by exploiting the class distributions predicted by the ensemble.
These are employed to compute heuristics for deciding which tests are to
be used in the new tree. As such we acquire a model that is able to give
insight in the decision process, while being more accurate than the single
model directly learned on the data. The proposed method is experimen-
tally evaluated on a large number of UCI data sets, and compared to an
existing approach that makes use of artificially generated data.

Keywords: ensembles, decision trees, comprehensibility.

1 Introduction

In the process of knowledge discovery, one seeks to extract useful knowledge from
data bases. But for knowledge to be useful, predictive accuracy is not sufficient:
the extracted models also need to be understood by human users in order to
trust them and accept them. Moreover users often construct models to gain
insight in the problem domain rather than to obtain an accurate classifier only.
For this reason, researchers have advocated machine learning methods which
yield comprehensible models, such as decision tree learners and rule learners.
Another issue in knowledge discovery is the stability of the classifier. A classifier
may be very accurate and also comprehensible, but as long as the model is very
instable, meaning that small changes in the data might have a large influence
on the predictions of the model, users may have a hard time accepting it.

For quite some years now, a lot of interest has been shown to a class of learn-
ing methods called ensembles. The main goal in the design of ensemble methods
is to increase the predictive accuracy of the classifier. And indeed, studies have
shown the discrimination power of ensemble methods both theoretically and em-
pirically [1,2,6], and in propositional as well as relational learning [12,11,5,17].
Ensemble methods are learning algorithms that first construct a set of (diverse)
classification models and then classify new data points by combining the predic-
tions of each of these models. Exactly by doing so, they are often able to increase

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 418–429, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Seeing the Forest Through the Trees 419

the stability and predictive accuracy significantly over the single models. On the
other hand the comprehensibility of the learned hypothesis drops significantly,
since the result of an ensemble method is a large set of models with (weighted)
votes connected to each of them, which obviously becomes harder to interpret.

Some authors have pointed out that striving for comprehensibility is one of
the important issues in ensemble learning requiring future investigations [1,14].
Quite some successful research has been carried out already in this area. More
in particular researchers have tried to obtain comprehensibility by means of ex-
tracting a new interpretable model from an existing (ensemble) model without
sacrificing too much accuracy. Craven and Shavlik [4] presented an algorithm
Trepan for extracting comprehensible, symbolic representations from trained
neural networks. Trepan extracts a decision tree using the network as an or-
acle to answer queries during the extraction process. Domingos [7] proposed
Combined Multiple Models (Cmm). Cmm first builds an ensemble of multiple
models and then reapplies the base learner to recover the partitioning implicit in
the multiple model ensemble. This is achieved by giving the base learner a new
training set, composed of a large number of examples generated and classified
according to the ensemble. Zhou et al. [19] utilize neural network ensembles to
generate new instances and then extract symbolic rules from those instances.
Ferri et al. [8] describe a method to learn a comprehensible model from an en-
semble by selecting the single hypothesis from a multi-tree that is most similar
to the combined hypothesis according to a similarity measure.

The approaches described above all rely on artificially generated data to tackle
the problem of finding an interpretable model that approximates the ensemble:
either by classifying this new data by the ensemble and constructing a new inter-
pretable model on it, or by using this new data to measure similarity between the
ensemble model and candidate interpretable models. However in some domains,
generating artificial data is not straightforward: for instance when dealing with
relational data, data distributions are far more complex and examples no longer
have a fixed set of attributes.

For this reason, we propose a method to learn a single interpretable model
from an ensemble without the need of generating artificial data. Instead of first
generating artificial data and computing class distributions for different possible
tests on this data, class distributions are estimated directly from the information
available from the different decision trees in the ensemble in order to decide which
tests are to be used in the new tree. In this paper we investigate how well this
method performs in a propositional context, though most of its benefit might lie
in a relational context, where other methods, based on artificial data, become
hard to apply. We describe the proposed approach in detail in the next section.
Afterwards it is evaluated on a large number of benchmark data sets comparing
accuracy, complexity and stability to the original single tree and the ensemble
classifier as well as to the single tree obtained by using the Cmm method [7]
that makes use of artificially generated data. In the last section we formulate
conclusions and some ideas for future research.

420 A. Van Assche and H. Blockeel

2 Algorithm

In the remainder of the paper we will propose a method to learn a single decision
tree from an ensemble that is constructed via bagging but the method applies
to other ensemble learners such as boosting [9] or random forests [3] as well.

2.1 Motivation

Dietterich [6] describes three fundamental reasons why an ensemble may work
better than a single classifier. The first reason is statistical: without sufficient
data, a learner may find several different hypotheses that correctly classify all
training data. Constructing an ensemble consisting of these different hypotheses
and then averaging over them may reduce the risk of choosing a wrong hypoth-
esis. The second reason is computational. By performing some form of local
search, learning algorithms may end up in different local optima and an ensem-
ble consisting of these classifiers may give a better approximation to the true
unknown function than the individual classifiers. The last reason is representa-
tional. Often the true function cannot be represented by any of the hypotheses
in the hypotheses space of the learner. By applying weighted voting among these
hypotheses the hypotheses space may be expanded. However, in the particular
case of ensembles of decision trees, the reason of representability does not hold:
actually a single decision tree in itself is able to represent any function described
over the instance space as it can separate the instance space completely if nec-
essary. The improvement obtained by ensembles of decision trees thus follows
from the statistical and computational reasons. We aim to retain at least part
of this improvement by constructing a tree that approximates the ensemble.

2.2 Constructing a Single Tree Exactly Representing an Ensemble

Assume E is an ensemble of N decision trees, which we would like to represent
by one single decision tree. The ensemble E gives predictions to new examples
x according to a combination of the predictions of each of its base trees, in this
case the average:

LE(x) = argmaxCi(
1
N

N∑

k

Pk(Ci|x)) (1)

As a decision tree is able to represent any function described over the instance
space, there also exists a decision tree that exactly represents the function de-
scribed by the ensemble. Depending on the order of the tests in the nodes, the
tree that represents the same concept as the ensemble, can consist of up to 2d

leaves, with d the number of different tests in the ensemble. So although it repre-
sents the same concept as the ensemble, such a tree would not satisfy our needs,
namely be interpretable and give insight in the ensemble’s decisions, simply be-
cause it is too big. Very often even the smallest tree exactly representing the
concept in the ensemble might be far too large to be considered interpretable
and an approximation to the ensemble will be preferred over the exact represen-
tation of the ensemble.

Seeing the Forest Through the Trees 421

2.3 Computing Heuristics from the Ensemble

In order to give insight into the ensemble, the tests placed in the nodes of the
new tree should be the ‘most informative’ nodes at that point according to
the ensemble. Usually tests with a higher information gain or gain ratio are
considered more informative than tests with a lower value for these heuristics.
So we need a way of computing these heuristics from the ensemble. The aim
is to approximate the concept in the ensemble, therefore the class distributions
predicted by the ensemble are used and not those directly available in the training
data. Let’s say we want to compute which test has the highest information gain
according to the ensemble in a certain node n of the new tree. Suppose B is the
conjunction of tests that occurred along the path from the root until node n,
then the regular formula of information gain IG for a certain test T in n is

IG(T |B) = entropy(B) −P (T |B)entropy(T ∧B)
−P (¬T |B)entropy(¬T ∧B) (2)

where

entropy(A) =
c∑

i=1

−P (Ci|A) log2 P (Ci|A) (3)

with c the total number of classes, Ci the ith class and A any set of conditions.
A decision tree is constructed to model class distributions in the data and

thus can be used to estimate these P (Ci|A). Suppose we have a decision tree
DTk, now for any A we can estimate P (Ci|A) by propagating it through the
tree, applying the law of total probability in each node, until we end up in the
leaves. Then we get:

Pk(Ci|A) =
∑

leaves lkj in DTk

P (Ci|Ykj ∧A)P (Ykj |A) (4)

where Ykj is the conjunction of tests from the root of tree DTk until leaf lkj

and Pk() is the estimate of P () by tree DTk. The class probability estimate
PE(Ci|A) of the ensemble E is then the average over the class probability esti-
mates Pk(Ci|A) of the N trees in E.

Now the probability P (Ci|Ykj ∧ A) corresponds to the probability estimate
Pk(Ci|Ykj) given by leaf lkj (by using example frequencies in that leaf). Indeed,
either A ⊆ Ykj and P (Ci|Ykj) = P (Ci|Ykj ∧ A) or , A �⊆ Ykj and then we can
assume that the class Ci is conditionally independent from the tests in A given
the tests in Ykj , because if not, the leaf lkj would have been split at least once
more on a test T ∈ A \ Ykj .

For the other probability P (Ykj |A), we can distinguish 3 possible cases:

– Ykj ⊆ A: then P (Ykj |A) = 1 and for other leaves Ykl : P (Ykl|A) = 0 hence
Pk(Ci|A) = Pk(Ci|Ykj)

– ∃T : T ∈ Ykj ,¬T ∈ A: then P (Ykj |A) = 0 and leaf lkj of tree DTk will not
contribute in the probability Pk(Ci|A)

422 A. Van Assche and H. Blockeel

– else: 0 < P (Ykj |A) < 1 and leaf lkj of tree DTk partly contributes to the
probability Pk(Ci|A)

To be able to estimate these probabilities P (Ykj |A) from the trees, we need
to make the assumption that Ykj is conditionally independent from A \ {Te ∈
A|Te ∈ Ykj ∨ ¬Te ∈ Ykj}. Then P (Ykj |A) = P (Ykj |{Te ∈ A|Te ∈ Ykj ∨ ¬Te ∈
Ykj}), which can be estimated from the tree by looking at the proportion of
examples in the tree fulfilling these constraints. This assumption is exactly the
same as made by Quinlan [13], when classifying instances with missing values
by a tree. But since decision trees are not specifically constructed to model
distributions among the tests, another, maybe better way to estimate the prob-
abilities P (Ykj |A) is by computing them on the training set (if the test set is
already available, using both training and test set might provide an even better
estimate). The same holds for the P (T |B), as requested in equation 2.

Using the method described above to compute the information gain for tests
according to an ensemble E, a decision tree is built representing the ensemble E,
each time replacing a leaf n in the tree by an internal node as long as we can find
a test T where IGE(T |n) ≥ IGE(Ti|n) and IGE(T |n) > 0 for all possible tests
Ti. On the other hand, if IGE(Ti|n) = 0 for all tests Ti, all examples ending
up in n will be labeled the same by the ensemble, and no further splitting is
required to represent the ensemble.

2.4 Stop Criteria

The tree obtained using the method described above (where all probabilities
are estimated from the ensemble), represents the ensemble but is often very
large and also constructing it will be very time consuming. For that reason, it
will be necessary to impose some stop criteria to avoid the tree from becoming
too big. First we describe a way to do safe prepruning in order to avoid splits
to be added that will not have an influence on the predicted class. This will
not change the eventual predictions of the tree. Next, we will impose a none
equivalence preserving stop criterion, to make the tree even more interpretable.

Safe Prepruning. At the end of the tree construction, some redundant splits
will still be present in the tree, as they might change the class distributions
in the leaves but not the eventual classes predicted by the leaves. Usually in
decision tree algorithms, these nodes are removed by postpruning. The same can
be applied here, but since the tree deduced from an ensemble usually becomes
rather large, quite some time might be spent in adding all these redundant splits
and it would be desirable to preprune the tree if possible.

We will check whether indeed all possible examples that end up in a node
n of the new tree will be predicted the same class by the ensemble as follows.
Examples that end up in n are examples that succeed for Dn, where Dn is the
conjunction of tests along the path from the root until node n of the new tree.
For each tree DTk of the ensemble we keep track of the possible leaves lkj in that
tree where these examples fulfilling Dn might end up. Each of these leaves lkj

Seeing the Forest Through the Trees 423

gives a prediction of the probability of a class P (Ci|Ykj), with Ykj the tests along
the path from the root of tree k to leaf lkj . Then we can define a lower bound
on the class probability prediction of the ensemble E for examples fulfilling Dn

as follows:

PEmin(Ci|Dn) =
1
N

∑

k

min
lDn
kj

P (Ci|Ykj)

and equivalently an upper bound:

PEmax(Ci|Dn) =
1
N

∑

k

max
lDn
kj

P (Ci|Ykj)

where lDn

kj are all the leaves in DTk where examples satisfying Dn can possibly
end up. Then if

∃C ∈ C, ∀Ci ∈ C \ {C} : PEmin(C|Dn) > PEmax(Ci|Dn)

(where C contains all possible class values), all examples in n will be predicted
as C by the ensemble, and the tree should not be split any further in that node.

None Equivalence Preserving Stop Criterion. As mentioned before, the
tree constructed using safe prepruning might still be very large. Because of this,
we will introduce another stop criterion, such that a more comprehensible ap-
proximation to the ensemble is obtained. If all training examples ending up in
a node are classified the same by the ensemble, no further splitting will be per-
formed and the node will become a leaf. As a consequence, the training examples
will be labeled the same by the new tree as by the ensemble, but for other new
examples this is not necessarily the case.

3 Implementation

The method described above was implemented in the Weka data mining system
[18]. Bagging with J48 (Weka’s C4.5) as base learner was used as the ensemble
to start from. Theoretically it is sufficient to use the tests that were used in the
ensemble in order to represent the hypothesis of the ensemble by a single tree.
And also intuitively, it makes sense only to use these tests to construct a new
tree as these were probably the most important amongst all possible tests. More-
over in practice, tests not appearing in the ensemble will always have a lower
information gain than the tests appearing in the ensemble and would never be
chosen. As detailed in Section 2.3, to find the best test in a certain node of the
new tree, each of the possible candidate tests are assigned a heuristic value by
propagating them through the ensemble trees, and using the class probability
estimates of the leaves they end up in. To estimate the probability that examples
satisfying a set of tests A end up in a certain leaf Ykj (so P (Ykj |A)) or to find
the probability of a certain test T given the tests B appearing already in the
new tree along the path from the root until the current node, we can either use

424 A. Van Assche and H. Blockeel

the ensemble or the data as indicated before. We distinguish the following three
cases in the implementation:

1. both P (Ykj |A) from equation 4 and P (T |B) from equation 2 are estimated
from the trees in the ensemble. Then the assumption is made that Ykj is
independent from A\{Te ∈ A|Te ∈ Ykj ∨¬Te ∈ Ykj}, the same for P (T |B).
This means we assume tests are independent from each other unless the tree
indicates they’re not. [Ism t]

2. P (Ykj |A) from equation 4 is estimated from the ensemble assuming indepen-
dencies as above, but P (T |B) is estimated from the available data. [Ism td]

3. both P (Ykj |A) and P (T |B) are estimated from the available data, and only
the conditional class probabilities are estimated from the ensemble. [Ism d]

Without using the stop criterion based on the data, applying Ism t will result
in a (often very large) tree that exactly represents the decisions of the ensem-
ble. This is no longer necessarily the case when applying Ism td or Ism d as
probabilities on the data are used and they might be 0 if no data is available
for certain conditions. As ‘available data’ we usually have the training data to
estimate certain probabilities. Sometimes the test set is also available on be-
forehand, or in a transductive learning setting, unlabeled examples might be at
our disposal. When data is used to compute probabilities, the predictions of the
new tree will be equivalent to those of the ensemble at least for all provided
(unlabeled) instances. For other unseen examples there is no guarantee as the
(shorter) tree is now only an approximation to the ensemble.

We also implemented Cmm as described by Domingos [7]. But while the origi-
nal version describes it for rule sets, for comparison with our method, we applied
the general framework to decision trees. N artificial examples are generated as
follows: suppose we have m trees obtained via bagging, then Cmm generates
N/m examples from each tree. For each leaf in the tree, if it classified r of the
s examples in the bootstrap sample it was induced from, (r/s)(N/m) examples
covered by it will be generated. For each example this is done by ensuring that
it satisfies all the tests from the root of the tree until that leaf, and beyond that
by setting the values of its attributes according to a uniform distribution. The
label of the new example is the prediction given by the ensemble. After having
constructed a new training set, J48 is again applied to learn a new tree.

4 Empirical Evaluation

We will investigate empirically whether the proposed method can indeed retain
some of the accuracy and stability gains of bagging while providing a more in-
terpretable model. Experiments were carried out using a representative sample
of 34 data sets from the UCI repository [10]. We omitted a few data sets where
bagging performed worse than a single model, as these are cases where it actually
makes no sense to apply the method described above. We used 25 iterations of
bagging. This was also described by Domingos [7] to be a sufficiently large num-
ber: 50 models did not perform significantly better, while 10 models led to poor

Seeing the Forest Through the Trees 425

Table 1. Win-draw-loss table using a 90% two-tailed significance test comparing the
different algorithms on 34 benchmark data sets from the UCI repository

(w/d/l) Bagging Ism t Ism td Ism d Cmm(up) Cmm(p) Ism tu Ism tdu Ism du

J48 (19/15/0) (9/25/0) (9/25/0) (6/23/5) (5/25/4) (5/29/0) (17/17/0) (19/15/0) (18/16/0)
Bagging / (0/13/21) (0/13/21) (0/12/22) (0/12/22) (0/9/25) (0/31/3) (0/31/3) (0/31/3)
Ism t / / (5/26/3) (1/22/11) (1/22/11) (2/23/9) (19/15/0) (19/15/0) (19/14/1)
Ism td / / / (1/19/14) (0/24/10) (1/25/8) (18/16/0) (18/16/0) (18/16/0)
Ism d / / / / (4/23/6) (8/23/3) (19/15/0) (20/14/0) (19/15/0)
Cmm(up) / / / / / (8/25/1) (21/13/0) (21/13/0) (21/13/0)
Cmm(p) / / / / / / (24/10/0) (24/10/0) (24/10/0)
Ism tu / / / / / / / (2/32/0) (2/32/0)
Ism tdu / / / / / / / / (0/34/0)

results. The number of artificial examples generated by Cmm to learn a new tree
was set to 1000, augmented with the training examples1. As Cmm applies J48 af-
ter generating new data, C4.5’s pruning procedure could be used as well: we both
build a pruned (Cmm(p)) and an unpruned tree (Cmm(up)) on the data. We com-
pare the different versions of the Ism method (Ism t, Ism td, Ism d as detailed
in Section 3) all using the stop criteria described in Section 2.4. For deciding on
stopping and (if necessary) estimating probabilities, these versions are only pro-
vided with the training data. Moreover we also evaluate the same algorithms in a
transductive learning setting where also the unlabeled test instances are provided
(Ism tu, Ism tdu, Ism du). All results were obtained averaging over five 10-fold
cross-validations. Binary decision trees were used in all methods.

4.1 Predictive Accuracy

Table 1 describes the significant wins and losses on the 34 data sets comparing
the different algorithms to each other, to J48, Bagging and Cmm.

Comparing the different versions of Ism we find that Ism d is clearly inferior
to the other two versions that make more use of information available in the
ensemble instead of the data. It is significantly outperformed on 11 data sets
by Ism t and on 14 by Ism td while it outperforms those only on one data set.
Moreover Ism d was also significantly outperformed by J48 on some data sets,
while this is not the case for the other versions of Ism. For space limitations
and as it is clearly inferior we will not consider Ism d in further results. Table
2 shows more detailed accuracy results for all data sets. As can be seen, the
other versions were able to do at least as good as J48, but in almost all cases
accuracies were higher (9 significantly).

Surprisingly the unpruned version of Cmm did not improve the results of J48.
This might support the claim of Domingos [7] that a good match is needed
between the learner’s bias and that of the probability estimation procedure and
that estimating probabilities from the frequencies in the leaves of the trees in
1 Note that the results for Cmm and bagging here do not easily compare to the results

obtained by Domingos [7]. This is because both the base learner of bagging as the
learner for Cmm differ from [7], moreover a different set of data sets was used.

426 A. Van Assche and H. Blockeel

Table 2. Test accuracy of the different algorithms on some benchmark data sets from
the UCI repository

Data Set J48 Bagging Ism t Ism td Cmm(up) Cmm(p) Ism tu Ism tdu
anneal.ORIG 92.65 94.07 ◦ 93.52 93.94 94.63 ◦ 94.28 ◦ 93.76 94.12 ◦
audiology 78.26 80.50 ◦ 81.47 ◦ 80.94 ◦ 80.86 ◦ 80.13 80.50 ◦ 80.50 ◦
autos 76.21 79.59 79.88 ◦ 80.58 ◦ 78.49 77.32 79.10 79.59
balance-scale 77.59 81.30 ◦ 79.15 ◦ 79.05 ◦ 79.09 ◦ 79.98 ◦ 81.20 ◦ 81.20 ◦
breast-cancer 69.95 71.67 70.49 70.20 67.48 69.65 71.67 71.67
breast-w 94.99 96.02 ◦ 95.19 95.16 95.22 95.22 96.02 ◦ 96.05 ◦
car 97.16 97.35 97.50 97.42 97.15 97.05 97.35 97.35
cmc 52.96 52.74 52.23 51.62 49.69 52.34 52.73 52.74
colic 85.57 85.25 85.35 85.46 82.70 • 85.52 85.41 85.41
credit-a 83.91 85.10 83.97 83.77 81.86 • 83.91 85.13 85.10
credit-g 69.70 74.30 ◦ 72.38 ◦ 71.88 ◦ 67.38 • 71.04 74.30 ◦ 74.30 ◦
cylinder-bands 73.52 78.78 ◦ 75.81 76.93 72.48 72.85 78.89 ◦ 78.78 ◦
dermatology 95.35 96.11 95.41 95.52 95.18 95.73 96.11 96.11
glass 70.97 73.65 68.02 69.44 68.70 67.36 73.65 73.65
heart-c 76.88 80.28 ◦ 79.55 79.15 79.02 79.09 80.41 ◦ 80.28 ◦
ionosphere 90.59 92.70 91.92 92.04 91.51 91.16 92.70 92.70
iris 94.67 95.33 95.33 95.20 95.07 95.47 95.33 95.33
kropt 77.95 80.88 ◦ 80.94 ◦ 80.75 ◦ 77.39 • 78.16 ◦ 80.81 ◦ 80.82 ◦
letter 88.31 93.50 ◦ 89.67 ◦ 89.69 ◦ 88.23 88.16 93.50 ◦ 93.50 ◦
liver-disorders 65.16 70.50 ◦ 66.36 67.86 66.94 67.46 70.50 ◦ 70.50 ◦
lymph 73.05 81.27 ◦ 77.20 76.64 76.62 75.32 81.27 ◦ 81.27 ◦
mfeat-pixel 88.30 93.00 ◦ 89.17 89.55 ◦ 87.36 87.53 93.00 ◦ 93.00 ◦
nursery 99.31 99.59 ◦ 99.56 ◦ 99.56 ◦ 99.43 ◦ 99.36 ◦ 99.56 ◦ 99.56 ◦
optdigits 90.94 95.59 ◦ 90.40 90.83 90.99 90.88 95.59 ◦ 95.59 ◦
page-blocks 96.89 97.33 ◦ 97.01 97.05 96.86 97.05 97.33 ◦ 97.33 ◦
primary-tumor 43.07 45.96 ◦ 43.83 43.18 43.07 44.07 45.78 45.95 ◦
segment 96.93 97.52 ◦ 96.61 97.01 96.85 96.87 97.52 ◦ 97.52 ◦
sonar 74.05 80.05 70.32 71.63 70.00 71.55 80.05 80.05
soybean 91.81 92.39 91.25 91.42 91.16 91.63 91.22 91.48
tae 58.25 60.81 60.97 60.97 61.07 60.43 60.81 60.81
tic-tac-toe 94.26 97.60 ◦ 96.79 ◦ 96.89 ◦ 96.30 ◦ 96.43 ◦ 97.60 ◦ 97.60 ◦
vehicle 73.87 75.32 74.47 74.82 72.67 72.60 75.32 75.32
yeast 55.46 61.07 ◦ 57.18 ◦ 56.35 55.72 56.52 61.07 ◦ 61.07 ◦
zoo 91.09 91.67 91.89 91.89 91.47 91.87 91.67 91.67
average accuracy 80.58 83.2 81.49 81.6 80.54 81 83.14 83.17
(◦/ / •) (19/15/0) (9/25/0) (9/25/0) (5/25/4) (5/29/0) (17/17/0) (19/15/0)

◦, • statistically significant improvement/degradation over J48

the ensemble is not the best way to go. Pruning of these Cmm trees on the other
hand increased overall performance.

Although Ism also estimates class probabilities from the frequencies in the
leaves, it is less disturbed by it. Ism seems to retain more of the accuracy gains
of bagging than Cmm(p) did: it outperforms J48 in more cases, its average
accuracy is slightly higher, and moreover it is in less cases significantly different
from bagging than Cmm(p). Also comparing Ism and Cmm(p) directly to each
other we find that while Ism t and Ism td win 9 and 8 times significantly of
Cmm(p), Cmm(p) wins respectively only 2 and 1 time.

If we take a look at the results for the transductive learning setting (rightmost
two columns in Table 2), where the unlabeled test set is also provided to Ism, we
see that Ism is able to retain usually all of bagging’s accuracy gain on the test set.
This means that, for the provided examples, Ism can give exactly the decisions
needed to label these examples as the bagging ensemble does. Note that these
decisions might not necessarily be sufficient to classify unseen examples exactly
as the ensemble does.

Seeing the Forest Through the Trees 427

Table 3. Average relative model size compared to J48 and Cmm(p) of the different
models

Cmm(p) Cmm(up) Bagging Ism t Ism td Ism tu Ism tdu

J48 1.82 3.08 25.73 3.28 2.4 3.36 2.5

4.2 Comprehensibility

To compare the comprehensibility of different models usually the complexity
of the model is considered. As all the models we are dealing with consist of
decision trees, we can here define the complexity of a model to be the number of
nodes occurring in the tree2. Assuming a single tree learned with J48 provides
a comprehensible model, we compare the complexity of the new models to that
of J48. Table 3 reports the average relative model size of a model X to J48
(nb nodes(X)/nb nodes(J48)).

As could be expected, the model size of a bagged ensemble (of 25 iterations)
is about 25 times larger than that of a single model. Ism td is able to reduce this
to 2.4 times. Provided we are dealing with binary trees, this means that in a tree
built with Ism td on average only 1.2 extra tests are occurring on a path from
the root to a leaf compared to a tree built by J48. In general, models induced
by Ism t are slightly larger than those of Ism td. Since the information gain is
completely estimated from the ensembles, in Ism t splits might occur where all
training examples go in one branch. In Ism td, tests that give rise to such splits
will get an information gain of zero as the probability that examples end up
in one of the branches is computed on the training set. Additionally, the more
(labeled or unlabeled) data is provided, the larger the models induced by Ism

can become. The complexity of Cmm with pruning is still smaller than that of
Ism td. Overall we assume that, provided an end-user is able to interpret a tree
induced by J48, he should be able to interpret a tree induced by Ism as well.

4.3 Stability

Semantic stability is often measured by estimating the probability that mod-
els generated by the same learner on different training sets will give the same
prediction to a randomly selected instance. Following the method described by
Turney [15], for each data set 1000 unlabeled examples were generated from a
uniform distribution and predictions of models obtained on the different folds of
the data in cross-validations were compared to each other. The exact formula of
the stability S of a certain learner X is then given below:

S(X) =
1

1000

1000∑

i=0

[
2

(n− 1)n

n∑

k=1

k−1∑

l=0

δ(Xk(i), Xl(i))] (5)

2 Note that in case of an ensemble this is still an overly optimistic measure for com-
prehensibility because to understand the decisions it is not sufficient to look at all
tests used in the trees but also how the trees are combined.

428 A. Van Assche and H. Blockeel

Table 4. Average stability of the different models

J48 Bagging Ism t Ism td Cmm(up) Cmm(p) Ism tu Ism tdu

73.74% 80.73% 74.89% 74.51% 76.08% 76.63% 75.64% 75.26%

where n is the number of folds, Xk(i) is the prediction for example i from the
model learned by learner X on fold k and δ(L,M) is 1 if L equals M else 0.

Table 4 presents the average stability of the different algorithms over all data
sets. As can be seen, Ism is able to increase the stability only with about 1% over
J48. Providing Ism with more information about the complete data distribution
(by offering extra unlabeled data3) results in a further small increase of the
stability. Bagging on the other hand, led to an improvement of 7% and Cmm

2.8%. While Ism retains more of the accuracy gain of bagging than Cmm, Cmm

seems to preserve more of the stability gain.

5 Conclusions and Future Work

In this paper we presented a method to learn a decision tree that approximates the
decisions made by an ensemble of decision trees. The tree is constructed without
the need of generating artificial data. Instead, heuristics are computed for each of
the possible tests by predicting class distributions for these tests using the ensem-
ble. We show thatwe indeed obtain a tree that is able to retain some of the accuracy
(and less of the stability) gains of bagging, while providing a model that keeps most
of the comprehensibility of a single model directly learned on the data. Moreover
the method can easily benefit from a transductive learning setting, where unla-
beled instances are already available in the training phase. The supplied examples
will be predicted the same as the ensemble by the new tree. Our method is also
clearly competitive with an existing approach Cmm, which makes use of artifi-
cially generated data. In general, our method outperforms Cmm with respect to
accuracy, while Cmm has a higher stability. Since for Cmm postpruning was very
beneficial, both in terms of accuracy and complexity, this should be considered as
future work for our method as well. To ensure comprehensibility of the obtained
model one might even want to impose user defined size constraints on the model.
The effect on the accuracy of constraining the size of the models further should
be investigated. We would also like to assess our method using other ensemble
learners, such as random forests and boosting. Furthermore this method should
be extensively evaluated in the relational case. First experiments, reported in Van
Assche et al. [16], already show promising results. Last, we would also like to ex-
tend the method for regression. This means a heuristic based on variance should
be estimated from the ensemble instead of entropy. As variance is an additive mea-
sure, the variance for a certain test can be estimated based on the variances in the
ensemble leaves that are consistent with the test.

3 This is the unlabeled test data from the train-test folds, not the unlabeled data
generated to compute the stability, if so, the stability would be the same as bagging.

Seeing the Forest Through the Trees 429

Acknowledgements

Anneleen Van Assche is supported by the Institute for the Promotion of In-
novation by Science and Technology in Flanders (I.W.T.-Vlaanderen). Hendrik
Blockeel is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium) (F.W.O.-Vlaanderen).

References

1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36, 105 (1999)

2. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
4. Craven, M.W.: Extracting Comprehensible Models from Trained Neural Networks.

PhD thesis, University of Wisconsin, Madison (2003)
5. de Castro Dutra, I., Page, D., Costa, V., Shavlik, J.: An empirical evaluation

of bagging in inductive logic programming. In: Proc. of the 12th International
Conference on Inductive Logic Programming, pp. 48–65 (2002)

6. Dietterich, T.: Ensemble methods in machine learning. In: Proc. of the 1th Inter-
national Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

7. Domingos, P.: Knowledge discovery via multiple models. Intelligent Data Analy-
sis 2, 187–202 (1998)

8. Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: From Ensemble Methods
to Comprehensible Models. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002.
LNCS, vol. 2534, pp. 165–177. Springer, Heidelberg (2002)

9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Saitta,
L. (ed.) Proc. of the 13th International Conference on Machine Learning, pp. 148–
156. Morgan Kaufmann, San Francisco (1996)

10. Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases
(1998)

11. Hoche, S., Wrobel, S.: Relational learning using constrained confidence-rated boost-
ing. In: Rouveirol, C., Sebag, M. (eds.) Proc. of the 11th International Conference
on Inductive Logic Programming, pp. 51–64. Springer, Heidelberg (2001)

12. Quinlan, J.: Boosting first-order learning. In: Arikawa, S., Sharma, A.K. (eds.)
ALT 1996. LNCS, vol. 1160, Springer, Heidelberg (1996)

13. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
14. Ridgeway, G., Madigan, D., Richardson, J., adn O’Kane, T.: Interpretable boosted

naive bayes classification. In: Proc. of the 4th International Conference on Knowl-
edge Discovery in Databases, pp. 101–104. AAAI Press (1998)

15. Turney, P.: Bias and quantification of stability. Machine Learning 20, 23–33 (1995)
16. Van Assche, A., Blockeel, H.: Seeing the forest through the trees: Learning a com-

prehensible model from a first order ensemble. In: Proc. of the 17th International
Conference on Inductive Logic Programming (to appear, 2007)

17. Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests:
Learning relational classifiers with complex aggregates. Machine Learning 64(1-3),
149–182 (2006)

18. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

19. Zhou, Z., Jiang, Y., Chen, S.: Extracting symbolic rules from trained neural net-
work ensembles. AI Communications 16(1), 3–15 (2003)

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 430–441, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Avoiding Boosting Overfitting by Removing Confusing
Samples

Alexander Vezhnevets and Olga Barinova

Moscow State University, dept. of Computational Mathematics and Cybernetics,
Graphics and Media Lab
119992 Moscow, Russia

{avezhnevets,obarinova}@graphics.cs.msu.ru

Abstract. Boosting methods are known to exhibit noticeable overfitting on
some datasets, while being immune to overfitting on other ones. In this paper
we show that standard boosting algorithms are not appropriate in case of over-
lapping classes. This inadequateness is likely to be the major source of boosting
overfitting while working with real world data. To verify our conclusion we use
the fact that any overlapping classes’ task can be reduced to a deterministic task
with the same Bayesian separating surface. This can be done by removing
“confusing samples” – samples that are misclassified by a “perfect” Bayesian
classifier. We propose an algorithm for removing confusing samples and ex-
perimentally study behavior of AdaBoost trained on the resulting data sets. Ex-
periments confirm that removing confusing samples helps boosting to reduce
the generalization error and to avoid overfitting on both synthetic and real
world. Process of removing confusing samples also provides an accurate error
prediction based on the work with the training sets.

1 Introduction

Problem of overfitting is one of the key problems in machine learning. Boosting was
first believed to be immune to overfitting. It was even reported to eventually lower its
test error while training after the training error reaches zero. Later, Dietterich [4]
found that boosting is very sensitive to noise and overfits it greatly. Grove [11] and
Friedman et al [9] noted that boosting actually overfits on some real-world datasets,
although much less then one should expect from such general model after consider-
able amount of iterations.

The best explanation of boosting generalization capabilities so far is margin theory
[26]. It was put under serious doubt by Briemans experiments, but was rehabilitated
recently [22]. Margin theory provides an upper generalization bound independent of
number of iterations made by boosting. This bound suggests that boosting may not
overfit even if ran for many rounds. But as stated by authors: “unfortunately, how-
ever, in their current form, our upper bounds are too pessimistic to be used as actual
numerical estimates of the error“. Although margin theory explains why boosting may
not overfit it does not provide any explanation why boosting actually does overfit in
practice on real world data even with constant complexity base learner (stump).
Domingos [5] showed the relation between margin theory explanation of boosting and

 Avoiding Boosting Overfitting by Removing Confusing Samples 431

bias-variance explanation. He also made an interesting statement that reducing vari-
ance (increasing margins) is beneficial only for unbiased samples, while for biased
samples it is preferable to have high variance (lower margin). Biased sample is a
sample, for which the optimal prediction, for a given loss and the family of classifiers,
differs from its current label. Freund & Schapire [7] in their discussion on Friedmans
paper suggest that for overlapping classes (when Bayesian error is not zero)
“AdaBoost is not the optimal method in this case”. It should be noted that in real
world applications it is a rare case if Bayesian error is zero and classes are perfectly
separable due to imperfect feature vector representation of objects, limitations of
measuring equipment and noise.

2 Related Work

After the discovery of the fact that boosting does overfit many works were devoted to
explaining and avoiding this phenomenon. Several authors reported that boosting
tends to increase the weights of few hard-to-learn samples, which leads to overfitting.
Several modifications of the reweighting scheme were proposed that make weights
change more smoothly. Domingo et al. [6] propose a modification of AdaBoost in
which the weights of the examples are kept bounded by its initial value, however the
authors admit no significant difference between AdaBoost and its modification in
experiments on noisy data. Friedman [10] suggests that shrinking the weights of base
hypothesis would increase boosting generalization capability.

The property of concentrating on few hard-to-learn patterns can be interpreted in
terms of margin maximization; this view leads to regularized modifications. Ratsch et
al. [21] view boosting as minimization of cost functional through an approximate
gradient descent with respect to a margin. The authors propose regularization methods
to achieve “soft margins” for AdaBoost which should avoid boosting from concentrat-
ing on misclassified samples with large negative margins. Friedman [10] also consid-
ers regularization methods through introducing proportional shrinkage into gradient
boosting.

In contrast to regularization methods and weight shrinking methods, we do not pe-
nalize algorithm’s behavior that can lead to overfitting and concentrate on removing
samples that we prove to be harmful for boosting (Section 3.). We consider such
approach more appropriate because it explicitly and strictly defines samples to be
ignored, rather then penalize behavior that seems to lead to overfitting, but also may
be the fitting of hard data.

Other authors see unboundness of loss function as the major source of overfitting.
Viewing boosting as a gradient descent search for a good fit in function space allows
modifying loss functions. Mason et al. [15] views boosting as gradient descent on an
appropriate cost functional in a suitable inner product space. Proposed modification of
boosting algorithm with normalized sigmoid cost function was reported to outperform
AdaBoost when boosting decision stumps, particularly in the presence of label noise.
Friedman [10] considers Huber loss function.

Rosset [23] proposes an approach of weight decay for observation weights which is
equivalent to "robustifying" the underlying loss function. However the author admits
that in experiments on real-world data there is no consistent winner between the non-
decayed and the decayed versions of boosting algorithm.

432 A. Vezhnevets and O. Barinova

In contrast to referenced methods, we see the main source of boosting overfitting
not in an inappropriateness of particular loss function, but in general concept of aver-
age loss minimization (Section 3.). We show that this procedure is not adequate for
tasks with overlapping classes’.

A large body of research addresses learning in the presence of noise. Robust statis-
tics emerged in the 1960s in the statistical community [12]. However in classification
tasks we cannot use the usual definition of robustness from statistics. In random clas-
sification noise model, the binary label of each example which the learner receives is
independently inverted from the true label with fixed probability, which is referred to
as the noise rate.

Krause & Singer [14] suggest employing EM algorithm and changing loss function
to make boosting tolerant to known level of noise. Takenouchi & Eguchi [27] develop
a modification of AdaBoost for classification noise case. The authors modify loss
function and show that proposed method moderates the overweighting for outliers
using a uniform weight distribution.

In contrast to the works described above we do not assume presence of classifica-
tion noise and do not request any prior knowledge about data such as noise level. It
should be noted that our method provides performance gain on real world data with-
out adding artificial noise, while most methods show performance gain only if noise
is present, and several even note degraded performance if no artificial noise added.

Previous research demonstrates that removing hard examples is worthwhile
[17][16][1]. The main goal of these approaches is to enhance the classification accu-
racy by improving the quality of training data. These methods have various mecha-
nisms to identify examples “suspicious, surprising or close to the boundary” [1]. In
most works the decision as to which of the examples should be excluded is based on
observations of algorithm behavior. In [17] analysis of dynamical evolution of
AdaBoost weights is performed for estimating ‘hardness’ of every training example.
Then the points with hardness above certain threshold, which is a parameter of the
algorithm, are removed from the training set. In contrast to referenced works we ex-
plicitly and strictly define samples to be removed and propose non-parametric algo-
rithm for removing these samples.

Our underlying concept resembles comments provided by Domingos [5] who states
that increasing margin (lowering variance) for some samples can actually be harmful
for the learner.

In this paper we study the reasons of overfitting of boosting in case of noiseless
data with overlapping classes. In this case both samples (, 1)x + and (, 1)x − (consid-
ering binary classification task) can occur with positive probabilities. We show that
minimization of average loss over the training set, which is used by all boosting-like
algorithms, is not adequate in case of overlapping classes. We call training samples
that have conditional probability of their own label lower than of the opposite “con-
fusing samples”. Forcing classifier to fit confusing samples by minimizing average
loss over the training set can lead to non-optimal solutions. We view this as one of the
main reasons of boosting overfitting on real-world data.

Removing confusing samples from the dataset leads to a deterministic task with the
same Bayesian separating surface. This finding suggests that by removing these sam-
ples from training set we can enhance boosting capabilities and avoid overfitting.

Described below is the algorithm for removing confusing samples, which requires
no prior information about data. We also show how generalization error can be

 Avoiding Boosting Overfitting by Removing Confusing Samples 433

predicted from the training set only, by estimating the amount of confusing samples.
In order to support our conclusions we perform experiments on both synthetic and
real world data from UCI-repository. Experiments confirm that removing confusing
samples helps avoiding overfitting and increasing the accuracy of classification. The
error prediction is also experimentally confirmed to be quite accurate.

Other sections of this paper are organized as follows. In section 3. we present rea-
soning explaining boosting inadequateness in case of overlapping classes. In section
4. we describe an algorithm for removing confusing samples from training set. Sec-
tion 5 describes our experiments and section 6. is left for conclusion.

3 Average Loss and Confusing Samples

Let (), , 1, ...,
i i

T x y i n= = be the training set, where
i

x X∈ is the vector of attributes
and { 1, 1}

i
y ∈ − + is the class label (for simplicity we consider binary classification

task). We take the assumption, that the pairs (x,y) are random variables distributed
according to an unknown distribution (),P x y .

We consider the general case of overlapping classes, which means that for some
instances x the probability of both labels is positive.

: (, 1) 0, (, 1) 0x p x p x∃ + > − >

Definintion 1. Let us call }{(,) : (|) 0.5 (|)
i i i ii ix y T P y x P y x∈ − > > “confusing

samples”. Samples }{(,) : (|) 0.5 (|)
i i i ii ix y T P y x P y x∈ − < < will be called “regular

samples”.

Lemma 1. The fraction of confusing samples in the training set converges (in
probability) to Bayesian rate with training set size increasing indefinitely.

Proof. Let us denote Bayesian rule by ()B x . The exposition immediately follows
from classical Bernoulli theorem and the fact that confusing samples are those sam-
ples, which are misclassified by the perfect Bayesian classifier:

(|) 0.5 (|)
i i i i

P y x P y x− > > ⇔ ()
i iB x y= − .

Lemma 1 says that in case of overlapping classes training set (), , 1, ...,
i i

T x y i n= =
contains a mixture of regular and confusing samples; the fraction of confusing sam-
ples in the training set is governed by the value of Bayesian rate. This lemma provides
us with error prediction algorithm, which will be described in section 4.1 .

Lemma 2. Removing all confusing samples from the training set reduces overlapping
classes’ task to a deterministic classification task with the same Bayesian separating
surface.

Proof. Removing confusing samples leads to a deterministic classification task with
conditional class distribution

()
(|) 0.5 (|)

|
(|) 0.5 (|)

1,

0,

P y x P y x
P y x

P y x P y x

− < <

− ≥ ≥

⎧
= ⎨
⎩

.

434 A. Vezhnevets and O. Barinova

One can see that Bayesian rule for this derived task and original task are the same,
which proves the lemma.

In standard boosting algorithms, training set is sequentially reweighed and fitted by
weak learner in order to minimize average loss :C × → on the training set:

1

1
(, ()) min

n

i i
F

i

C y F x
n =

→∑ ,

where)(xF is the current classifiers ensemble. In case of probabilistic setup, one
seeks to minimize the conditional expectation of loss for all instances x [9]

()() () ()(1 |) (1 |), () | 1, () 1, ()E C x P x P xy F x C F x C F x= + −−

Consider overlapping classes’ task. Let n stand for a number of samples with fea-
ture vector x in a given training set

()
1

1 1
(, ()) , ()

i

n

i i i
i x xx

x

x T

C y F x C y F x
n n

n

n= =∈
=

⎛ ⎞
× =⎜ ⎟

⎝ ⎠
∑ ∑∑

() ()
, 1 , 1

1 1
1, () 1, ()

i i i ix x y x x yx x

x

x T

C C
n n

n
F x F x

n = =+ = =−∈

= ⋅ + ⋅ =
⎛ ⎞

× + −⎜ ⎟
⎝ ⎠

∑ ∑∑

() (), 1 , 11, () 1, ()x x

x x

x

x T

n n
C F x C F x

n n

n

n
+ −

∈

= ⋅ + + ⋅ −
⎛ ⎞

× ⎜ ⎟
⎝ ⎠

∑ ,

where
, 1 , 1

,
x x

n n+ − respectively denote amount of samples (, 1)x + and (, 1)x − .

Consider the score of a fixed instance x from T in average loss:

() (), 1 , 1() 1, () 1, ()x x

x x

n n
Score x C F x C F x

n n
+ −= ⋅ + + ⋅ − .

One can see that the score of every instance x from T in average loss converges to
the conditional loss expectation with indefinitely increasing number of copies of in-
stance x in training set. Training set can contain several copies of an instance only in
case of very large and dense training set, that almost never holds in practice.

Usually 1xn = , and ()() , ()iScore x C y F x= . In this case minimizing the score of a

confusing sample actually increases the true expectation of loss for the fixed instance.
Broadly speaking, minimizing average loss means forcing classifier to fit all training
samples, including the confusing samples, while correct classification of confusing
samples is undesirable. Removing confusing samples reduces classification task with
overlapping classes to deterministic, which makes PAC learning framework (in which
boosting is formulated) directly applicable.

In this paper we rely on Lemma 2 and reduce task with overlapping classes’ to a
deterministic one with the same Bayesian separating surface. We propose an algo-
rithm that removes confusing samples and experimentally study the performance of
boosted stumps being trained on reduces training set.

 Avoiding Boosting Overfitting by Removing Confusing Samples 435

4 Algorithm

Our goal is to roughly estimate the conditional probabilities of training set samples
labels and to exclude those samples, for which

(|) 0.5 (|)
i i i i

P y x P y x− > > .

A. Niculescu-Mizil and R. Caruana [19] suggested using Platt scaling or Isotonic
regression to obtain calibrated probabilities from boosting. Platt’s scaling method fits
the sigmoid into raw classifier output, thus approximating posterior as:

()BxFA
xyP

+⋅+
≈

)(exp1

1
)|(

We build an iterative process. During iterations we randomly divide data into 3
parts. We train a boosted committee on the first part, calibrate probabilities on the
second and estimate posterior for samples labels in the third part (using the built clas-
sifier and estimated calibration parameters). We repeat this procedure several times.
At each step we acquire an estimate of class probabilities for training instances. Poste-
rior estimates for every sample are averaged.
__
Algorithm. Removing “confusing samples”
__
Input: A training set (){ }

1
,

n

i i i
T x y

=
= ; number of epochs K;

1. for k=1 to K

2. Divide a training set into three subsets
3

1

i
k

i

T T
=

=∪ and
3

1

i
k

i

T
=

= ∅∩

3. Train boosted weak learners on 1
kT and obtain classifier ()kF x

4. Estimate calibration parameters A and B for posterior output on 2
kT using Platt

scaling

5. Estimate posterior probability of labels for samples in 3
kT ,

()
1

(|)
1 exp ()

k

i k

i

p y x
A F x B

≈
+ ⋅ +

6. end for

7. Calculate the average of posterior probability:

()
:

3
(|) (|)

i

k

i i
k x Tk

p y x mean p y x
∈

=

8. Construct reduced training set 'T from those samples, for which

{ }arg max (|)
i i

y

p y x y=

9. return 'T

__

436 A. Vezhnevets and O. Barinova

Those samples that have average posterior probability estimate of their label lower
than of its opposite are considered to be “confusing samples”. After removing “con-
fusing samples” the reduced training set can be learned by boosted committee.

Averaging of estimates was extensively studied in context of regression tasks [28].
Perrone [20] proved that averaging estimates always generates improved estimate in
the sense of any convex optimization measure even without independence assumption
on the estimates. Brieman [3] experimented with averaging class probability estimates
obtained by learning decision trees on bootstrap replicates of the training set. He
showed that averaging decreases error of class probability estimation.

Proposed algorithm is in relation with data editing approach [13] [24] [17]. Data
editing methods are developed for improving the Nearest Neighbor classification
accuracy by removing (or relabelling) outliers from the training set. In [13] [24] en-
sembles of neural networks, built by bagging, are employed to identify outliers. In
contrast, we use calibrated boosted trees, which provide better posterior estimation
[19].

4.1 Error Estimation

Since we are reducing classification task with overlapping classes to deterministic
task, then the percent of detected confusing samples should, according to Lemma 1,
be the prediction of error. Our experiments, described below, confirm this.

5 Experiments

In order to study the behavior of Boosting incorporated with removing of confusing
samples we have conducted a set of experiments on both synthetic and real world
data. We compare the performance of boosted stumps trained on full training set with
boosted stumps trained on reduced dataset. We use Boosting algorithm described by
Schapire, R., & Singer, Y. [25]. Stumps were chosen as base learners to avoid possi-
ble issues with base learner complexity [22].

5.1 Synthetic Data

We used two overlapping Gaussians to check our conclusions. Each Gaussian has
standard deviation σ=1 and centers at (1,0) and (-1,0).A perfect, Bayesian classifier
would be a straight line coinciding with the second coordinate axis (a stump). We take
10000 random samples drawn from these Gaussians as a test set and randomly con-
struct a training set of 200, 500 and 1000 samples. In each experiment the test set was
fixed and the training set was randomly drawn from distribution. This was repeated
for 100 times and the results were averaged. We measured the quality of pruning as
the precision of detecting confusing and regular samples in the training set. We could
do it explicitly since the Bayesian classifier is known. Precision is defined as

Tp
Pn

Tp Fp
=

+
,

 Avoiding Boosting Overfitting by Removing Confusing Samples 437

where Tp is the number of correct detections (of confusing or regular samples) and
the Fp is the number of false positive detections. It is the ratio of correctly detected
confusing or regular samples in the full set.

Figure 1 illustrates performance on our toy example. AdaBoost applied to full set
overfitts greatly and produces cluttered separating surface. Removing confusing sam-
ples allows AdaBoost to produce smooth boundary, very close to Bayesian.

Fig. 1. Artificial data points and separating surfaces. From left to right: full dataset; dataset
reduced by proposed algorithm.

Table 1 lists the results. It is clear that AdaBoost does overfit on confusing samples,
especially in case of modest training set size. The estimated error comes to be quite
consistent with actual error on the test set while is somewhat higher then error of the
Bayesian classifier. Accuracy of error prediction is also confirmed by experiments on
real world data presented in the next section. Looking at precision of pruning we can
see that confusing samples precision is significantly lower then the precision of regular
samples detection. This means that some percentage (10-15%) of removed samples is
actually regular, while most (~98%) of samples marked as regular are marked cor-
rectly. It seems that losing some regular samples does not really degrade the perform-
ance of boosting, while removing the majority of confusing ones helps noticeably.

The more data we have, the closer is average loss to its expectation. Also, the less
iterations boosting does, the smaller is the effect of overfitting. Thus, with a lot of
data and after only few iterations AdaBoost should not noticeably overfit, while

Table 1. Test error (%) of AdaBoost trained on raw and reduced data, error estimation and
pruning precision on synthetic data

10 iterations 100 iterations Bayesian classifier error

Set Size

Estimated

error
Full Reduced Full Reduced Train Test

Regular

samples

precision

Confusing

samples

precision

200 16.48 17.38 16.45 19.72 16.55 15.49 16.07 97.93 89.26

500 16.39 16.13 15.98 17.38 16.01 15.70 15.66 98.05 86.04

1000 16.39 16.14 16.33 16.89 16.37 15.89 15.95 97.67 85.34

438 A. Vezhnevets and O. Barinova

AdaBoost trained on reduced data may start suffering form underfitting, because of
smaller training set. This happened in an experiment with training set containing 1000
samples and 10 iterations of boosting.

5.2 Measuring the Quality of Pruning on Real World Data

In case of synthetic data one can explicitly measure the error of confusing samples
detection, but in case of real world data this is impossible. The important issue here is
how to devise an appropriate metric for the quality of pruning algorithm for real
world data. Consider dividing dataset into two parts and separately pruning both of
them. If pruning is done correctly, a classifier trained on first reduced part is expected
to misclassify samples marked as confusing in the other part and vice-versa. Thus, we
propose to measure the precision of detecting regular and confusing samples by the
classifier trained on the separate, reduced part of the same set.

The precision of regular samples detection is the ratio of samples that were marked
as regular samples by pruning algorithm that were correctly classified by classifier
trained on the separate, reduced subset. Analogously, precision of confusing samples
detection is the ratio of samples marked as confusing in the set of samples that were
misclassified by classifier trained on another separate, reduced subset.

Table 2. Test error (%) of AdaBoost trained on raw and reduced data; test error of MadaBoost
and error estimation and pruning precision on various data sets

100 iterations 1000 iterations

Dataset
Esti-

mated Full Reduced Mada Full Reduced Mada

Regular

samples

precision

Conf.

samples

precision

BREAST 3.73 4.6±0.08 3.65±0.09 4.01±0.09 4.77±0.1 3.67±0.09 4.15±0.22 98.83 72.91

AUSTRALIAN 13.06 15.2±0.17 13.8±0.17 14.93±0.23 17.68±0.17 13.88±0.16 16.23±0.64 96.78 74.43

GERMAN 24.66 25.72±0.16 25.35±0.14 23.4±0.38 28.4±0.18 25.05±0.16 24.9±0.03 91.22 71.54

HABERMAN 25.96 29.67±0.29 26.33±0.31 27.78±0.31 34.50±0.36 26.37±0.32 34.97±0.1 92.14 77.14

HEART 18.34 21.41±0.36 18.36±0.30 16.66±0.58 23.13±0.36 18.07±0.30 20.37±0.35 92.60 68.26

PIMA 24.03 25.58±0.20 23.99±0.16 25.26±0.17 28.07±0.20 24.10±0.17 28.26±0.12 93.38 79.29

SPAM 5.79 6.19±0.04 6.02±0.04 5.59±0.03 6.35±0.04 5.97±0.04 6.26±0.03 98.83 78.01

TIC-TAC-TOE 6.49 8.47±0.20 13.59±0.29 12.84±0.03 2.04±0.05 2.12±0.08 1.67±0.07 97.83 35.70

VOTE 4.51 4.75±0.13 4.61±0.1 5.51±0.43 5.90±0.14 4.63±0.10 7.35±0.29 99.51 88.84

5.3 UCI-Repository Data

In order to measure the performance of our algorithm on real world data we have
selected 9 datasets from UCI-repository [2]. In our experiments we split the dataset in
two subsets of equal size and use one subset for training and the other for testing and
vice-versa. We measured the test error, pruning precision (as described above) and

 Avoiding Boosting Overfitting by Removing Confusing Samples 439

the error prediction from the training set (as described in section 2.3). This procedure
was repeated 50 times for a total of 100 runs (50x2 cross-validation). We had to use
equally sized training and test set to be able to measure the quality of pruning. We
also compared our approuch with one of the regularized boosting methods, namely
MadaBoost [6].

Table 2 presents the results of our experiments, the lowest error is shown in bold.
AdaBoost trained on reduced dataset has lowest test error on 5 of 9 datasets if ran for
100 iterations and is best on 7 of 9 if ran for 1000 iterations. It performs better than
AdaBoost trained on full set on all, but Tic-Tac-Toe dataset. The failure on Tic-tac-toe
dataset is actually anticipated, because the data is perfectly separable and the Bayesian
error is zero. As the number of learning iteration increases, AdaBoost trained on full
dataset tends to overfit on most datasets, while AdaBoost trained on reduced data has
almost non-increasing error very close to the predicted estimate. Moreover, MadaBoost
is also prone to overfitting when ran for 1000 iterations despite regularization. This
confirms our conclusions that the source of boosting overfitting are the confusing sam-
ples, and that for most real world data class overlapping is present.

Figure 2 provides test curves for two datasets. On Breast dataset AdaBoost does not
have any significant gain in error with the increase of training iterations, what was
also noted before [22], but it still benefits from pruning.

Fig. 2. Test and training error curves. From top left to bottom right: test error on German data-
set; test error on Breast dataset.

5.4 Margins

It is common to interpret the performance of Boosting in terms of margins maximiza-
tion. Figure 3 shows the cumulative margin for AdaBoost trained on full and reduced
Breast and Tic-Tac-Toe datasets after 100 rounds of training. On Breast dataset
AdaBoost trained on reduced dataset has lower minimal margin but has uniformly
higher margin for the margins higher than a small threshold (0.03). Low minimal
margin is a direct consequence of pruning – it is natural to expect negative margins
for the removed samples. Pruning makes the data simpler and allows AdaBoost to
maximize the margins of regular samples more efficiently. The behavior of margins
on Tic-Tac-Toe is the same, but in case of Tic-Tac-Toe, gain in margins on lower
cumulative frequencies is insignificant. Thus sacrificing minimal margin does not
actually give any benefit and only worsens the performance.

440 A. Vezhnevets and O. Barinova

Fig. 3. Cumulative margins for AdaBoost trained on full and reduced dataset after 100 rounds.
From left to right: Breast dataset; Tic-Tac-Toe dataset.

As pointed out by Reyzin & Schapire [22], margin theory would suggest sacrific-
ing minimal margin for the higher margin at low cumulative frequencies. Removing
confusing samples seems to make AdaBoost perform in such manner.

6 Conclusion

We described the problem of overfitting in boosting in case of overlapping classes. In
this case, it is likely that overfitting is induced by fitting so called “confusing sam-
ples”, that are samples misclassified by “perfect” Bayesian classifier. Overfitting in
boosting seems to occur only when target distributions overlap or the noise is present,
thus boosting could show no overfitting on some datasets and overfit greatly on oth-
ers. An algorithm for removing the confusing samples is described, which is experi-
mentally confirmed to help boosting get lower test error and avoid overfitting. We
also show that by pruning confusing samples one can effectively predict the generali-
zation error of the classifier by analyzing only the training set. We prove our conclu-
sion by the experiments on both synthetic data and nine UCI-repository datasets.

Acknowledgments. Authors would like to thank Dr. D. Vetrov, D. Kropotov and Dr.
V. Vezhnevets for inspiring discussions; and E. Vezhnevets for proof reading.

References

1. Angelova, A., Abu-Mostafa, Y., Perona, P.: Pruning Training Sets for Learning of Object
Categories. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2005)

2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
3. Breiman, L.: Bagging Predictors. Machine Learning 24, 2, 123–140 (1996)
4. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles

of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2) (1999)
5. Domingos, P.: A Unified Bias-Variance Decomposition for Zero-One and Squared Loss.

In: Proc. of the 17th National Conference on Artificial Intelligence (2000)
6. Domingo, C., Watanabe, O.: Madaboost: A modication of adaboost. In: 13th Annual Con-

ference on Comp. Learning Theory (2000)

 Avoiding Boosting Overfitting by Removing Confusing Samples 441

7. Freund, Y., Schapire, R.: Discussion of the paper Additive logistic regression: a statistical
view of boosting. Friedman, J., Hastie, T., Tibshirani, R., The Annals of Statistics 38, 2,
391–393 (2000)

8. Freund, Y.: An Adaptive Version of the Boost by Majority Algorithm. Machine Learn-
ing 43(3), 293–318 (2001)

9. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical View of
Boosting. The Annals of Statistics 28, 2, 337–407 (2000)

10. Friedman, J.: Greedy function approximation: A gradient boosting machine. Annals of
Statistics 29, 5 (2001)

11. Grove, A.J., Schuurmans, D.: Boosting in the limit: Maximizing the margin of learned en-
sembles. In: Proceedings of the Fifteenth National Conference on Artifical Intelligence
(1998)

12. Hampel, F.R., Rousseeuw, P.J., Ronchetti, E.M., Stahel, W.A.: Robust Statistics: the Ap-
proach Based on Influence Functions. Wiley, New York (1986)

13. Jiang, Zhou: Editing training data for kNN classifiers with neural network ensemble.
LNCS (2004)

14. Krause, N., Singer, Y.: Leveraging the Margin More Carefully. In: ACM International
Conference Proceeding Series, vol. 69 (2004)

15. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In:
Neural Information Processing Systems 12, pp. 512–518. MIT Press, Cambridge (2000)

16. Merler, S., Caprile, B., Furlanello, C.: Bias-variance control via hard points shaving. Inter-
national Journal of PatternRecognition and Artificial Intelligence (2004)

17. Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances.
Intelligent Information Systems 22, 1, 89–109 (2004)

18. Nicholson, A.: Generalization Error Estimates and Training Data Valuation, Ph.D. Thesis,
California Institute of Technology (2002)

19. Niculescu-Mizil, A., Caruana, R.: Obtaining Calibrated Probabilities from Boosting. In:
Proc. 21st Conference on Uncertainty in Artificial Intelligence (2005)

20. Perrone, M.: Improving regression estimation: Averaging methods for Variance reduction
with extension to General Convex Measure Optimization, Ph.D. Thesis, Brown University
(1993)

21. Ratsch, G.: Robust Boosting and Convex Optimization. Doctoral dissertation, University
of Potsdam (2001)

22. Reyzin, L., Schapire, R.: How boosting the margin can also boost classifier complexity. In:
Proceedings of the 23rd International Conference on Machine Learning (2006)

23. Rosset, S.: Robust Boosting and Its Relation to Bagging. In: KDD-05 (2005)
24. Sanchez, et al.: Analysis of new techniques to obtain quality training sets. Pattern Recog-

nition Letters (2003)
25. Schapire, R., Singer, Y.: Improved Boosting Algorithms Using Confidence-rated Predic-

tions. Machine Learning 37, 3, 297–336 (1999)
26. Schapire, R., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation

for the effectiveness of voting methods. In: Machine Learning: Proceedings of the Four-
teenth International Conference (1997)

27. Takenouchi, T., Eguchi, S.: Robustifying AdaBoost by adding the naive error rate. Neural
Computation 16 (2004)

28. Taniguchi, M., Tresp, V.: Averaging Regularized Estimators. Neural Computation (1997)

Planning and Learning in Environments with

Delayed Feedback

Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman

Rutgers, The State University of New Jersey
Department of Computing Science

110 Frelinghuysen Rd., Piscataway, NJ 08854
{thomaswa,nouri,lihong,mlittman}@cs.rutgers.edu

Abstract. This work considers the problems of planning and learning in
environments with constant observation and reward delays. We provide a
hardness result for the general planning problem and positive results for
several special cases with deterministic or otherwise constrained dynam-
ics. We present an algorithm, Model Based Simulation, for planning in
such environments and use model-based reinforcement learning to extend
this approach to the learning setting in both finite and continuous envi-
ronments. Empirical comparisons show this algorithm holds significant
advantages over others for decision making in delayed environments.

1 Introduction

In traditional reinforcement learning [1], or RL, an agent’s observations of its
environment are almost universally assumed to be immediately available. How-
ever, as tasks and environments grow more complex, this assumption falters. For
example, the Mars Rover program has tremendously broadened the theater of
engagement available to roboticists, but direct control of these agents from Earth
is limited by the vast communication latency. Delayed observations are also a
challenge for agents that receive observations through terrestrial networks [2],
such as the Internet or a multi-agent sensor network. Even solo agents that do
advanced processing of observations (such as image processing) will experience
delay between observing the environment, and acting based on this informa-
tion. Such delay is not limited to a single timestep, especially when processing
may occur in a pipeline of parallel processors. These scenarios involving delayed
feedback have generated interest within the academic community, leading to the
inclusion of a delayed version of the “Mountain Car” environment in the First
Annual Reinforcement Learning Competition1. This paper considers practical
solutions for dealing with constant observation and reward delays.

Prior work in the area of delayed environments dates back over thirty years [3]
and several important theoretical results have been developed, including the in-
sight that action and observation delays are two sides of the same coin [4] and
that planning can be performed for both finite- and infinite-horizon delayed
1 http://rlai.cs.ualberta.ca/RLAI/rlc.html.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 442–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Planning and Learning in Environments with Delayed Feedback 443

MDPs or POMDPs using algorithms for their undelayed counterparts in much
larger state spaces constructed using the last observation and the actions after-
ward [5,6]. We cover this and several other approaches for planning and learning
in delayed environments in Section 3. We then show that such augmented ap-
proaches can lead to an exponential state space expansion and provide a hardness
result for the planning problem in general delayed MDPs. In light of these re-
sults, we develop algorithms for planning and learning in four special cases of
Markovian (if not for the delay) environments: finite and continuous worlds with
deterministic transitions, “mildly stochastic” finite environments, and continu-
ous environments with bounded noise and smooth value functions. In Section 5,
we provide the first empirical studies of learning agents in such delayed envi-
ronments. We assume throughout this work that the delay value is constant and
provided to the planner or learner at initialization.

2 Definitions

A finite Markov Decision Process [7] is defined as a 5-tuple 〈S,A, P,R, γ〉, where
S is a set of states, A is a set of actions, and P is a mapping: S×A×S /→ [0, 1]
indicating the probability of an action taking the agent from state s ∈ S to state
s′ ∈ S. R is a mapping: S /→ �, which governs the reward an agent receives
in state s (similar results to those in this paper hold for R : S × A /→ �),
and γ is the discount factor. A deterministic Markov policy, π : S /→ A,
maps states to actions. We refer to such policies as memoryless, as they de-
pend only on the current state. The value function V π(s) represents the ex-
pected cumulative sum of discounted reward, and satisfies the Bellman equation:
V π(s) = R(s)+γ

∑
s′ P (s, π(s), s′)V π(s′). Every finite MDP has an optimal pol-

icy π∗ = argmaxπ V π(s) and a unique optimal value function V ∗(s). Given an
MDP, techniques exist for determining V ∗(s) and π∗(s) in time polynomial in
the size of the MDP [7].

In this work, we will also consider continuous MDP’s where S ⊆ �n and A
may also be continuous (A ⊆ �m). Computing value functions in this case often
requires approximation methods, an issue we treat in Sections 3.3 and 4.2.

We define a constant delayed MDP (CDMDP) as a 6-tuple 〈S,A, P,R, γ, k〉,
where k is a non-negative integer indicating the number of timesteps between an
agent occupying a state and actually receiving its feedback (the state observation
and reward). We assume that k is bounded by a polynomial function of the size
of the underlying MDP and the agent observes its initial state in response to
each of its first k actions.

One may think of a CDMDP policy as a mapping from previous state
observations and actions (that is, histories) to actions, since the current state is
not revealed at the time an action is taken if k > 0. It is known that an optimal
CDMDP policy can be determined using Ik ∈ S × Ak, the last observation
and previous k actions, following [5]. In light of this fact, we formally define
a CDMDP policy as π : (S×Ak) /→ A. The CDMDP planning problem is defined

444 T.J. Walsh et al.

as: given a CDMDP, initial state I0
k , and a reward threshold θ, determine whether

a policy exists that achieves an expected discounted reward (from the initial
state) of at least θ. In the CDMDP learning problem, an agent deployed in a
delayed-feedback environment knowing only S,A, γ, and k is tasked with finding
an optimal policy for the environment online.

The positive results of this paper pertain to the following special cases for the
underlying (undelayed) Markovian dynamics:

I Deterministic finite: The undelayed MDP is finite and ∀s∃s′P (s, a, s′) = 1.
II Deterministic continuous: Same as Case I except S and A are continuous.

III Mildly stochastic finite: The undelayed MDP is finite and there is some
δ ≥ 0 s.t. ∀s∃s′P (s, a, s′) ≥ 1− δ. Case I is a degenerate case where δ = 0.

IV Bounded-noise continuous: The underlying MDP is continuous, and tran-
sitions are governed by st+1 = T (st, at) + wt, where T is a deterministic
transition function: S × A /→ S, and wt is bounded noise: ‖wt‖∞ ≤ Δ for
some Δ ≥ 0. We further assume that the CDMDP’s optimal value function
is Lipschitz continuous when the action sequences for two Ik’s coincide. That
is, |V ∗(s, a1, · · · , ak)− V ∗(s′, a1, · · · , ak)| ≤ CV ‖s− s′‖ for some constant
CV > 0. This assumption is a consequence of smoothness of the underlying
MDP’s dynamics. We note that this case covers a wide class of dynamical
systems, including those with linear transitions and bounded white noise.

3 Strategies for Dealing with Delay

We now cover several known methods for acting in delayed environments and
introduce a new method for planning in the special cases covered above.

3.1 General Approaches

The first solution we consider is the wait agent, which “waits” for k steps,
and acts using the optimal action in the undelayed MDP. More formally, this
approach corresponds to a CDMDP policy of π(Ik) = π∗(s) if Ik = (s, ∅k), and
∅ otherwise. Here, ∅ is the “wait” action. Some environments, such as Mountain
Car, where the agent is rarely at a standstill, will not permit waiting, and even
in those that do, the resultant policies will usually be suboptimal.

Another intuitive planning approach is to just treat the CDMDP as an
MDP and use the memoryless policy π(Ik) = {π∗(s) | Ik = (s, a1, · · · , ak)}.
In some environments, this simple solution can produce reasonable policies,
especially if the delay is relatively small compared to the magnitude of the state
transitions. For the CDMDP learning problem, searching for the best policy
that ignores delay is intimately connected to the search for good memoryless
policies in POMDPs. One known technique that has shown empirical success
in the latter theater is the use of eligibility traces [8], particularly in the online
value-function-learning algorithm Sarsa(λ). Using λ > 0, the values of states
in the same trajectory become “blurred” together, mitigating the effect of partial

Planning and Learning in Environments with Delayed Feedback 445

observability (in our case, delayed observations). As such, we include Sarsa(λ)
in our empirical study (see Section 5) of the CDMDP Learning Problem.

The traditional method for modeling MDPs with constant delay is the aug-
mented approach [5], which involves explicitly constructing an MDP equivalent
to the original CDMDP in the much larger state space S ×Ak. The formal con-
struction of such an MDP is covered in previous work [4]. One can then use any
of the standard MDP planning algorithms to determine V ∗(Ik) for Ik ∈ S×Ak.
The corresponding optimal policy is known to be an optimal policy for the
CDMDP [6]. Unfortunately, this expansion renders traditional MDP planning
algorithms intractable for all but the smallest values of k. In Section 4.1, we
show that the exponential state space growth is unavoidable in general, but in
Section 3.2, we describe an approach that averts this computational burden and
provides optimal or near-optimal policies in the special cases from Section 2.
In Section 4.3, we outline a practical way to learn the augmented model with
a polynomial number of samples. We note here that several RL modeling tech-
niques that have an intuitive relationship to the CDMDP paradigm reduce, in
the worst case, to the augmented approach and are therefore equally infeasible.
These include modeling CDMDPs via factored MDPs, POMDPs, or POMDPs
with variable length wait actions. The focus of this paper is on practical solu-
tions for CDMDPs, and so we do not further discuss these generally intractable
solutions, comparing simply against the augmented approach.

3.2 A New Approach: Model Based Simulation (MBS)

We now introduce a planning algorithm, Model Based Simulation (MBS), de-
signed for the restricted CDMDP cases from Section 2. The intuition behind
MBS is that, in a deterministic or benignly stochastic environment, given Ik,
one can use P to “simulate” the most likely single-step outcomes of the last
k actions, starting from the last observed state, thus determining, or at least
closely approximating, the current state of the agent. In the deterministic cases,
this prediction is straightforward. In the other two cases, (mildly stochastic and
bounded noise) the algorithm will use the most likely or expected outcome, re-
spectively. The MBS algorithm appears in Algorithm 1.2

Extending MBS to the learning setting is fairly straightforward in the context
of finite CDMDPs (Cases I and III). One needs only to employ a model-based
RL algorithm such as R-max [9] to learn the parameters (P and R) of the under-
lying zero-delay MDP. However, to extend MBS to continuous CDMDPs, simply
discretizing the environment is not sufficient because this approach can easily
turn deterministic (Case II) or slightly perturbed (Case IV) state transitions into
far less benign dynamics, making the action simulations unsuitable. Instead, we
require a method that trains a model of the transitions in the continuous space
itself, but still plans in the discretized space (in order to make valid comparisons
against the policies of the other finite-space algorithms). The next section defines
such an algorithm.

2 Note: for continuous MDPs, some steps may require approximation, see Section 4.2.

446 T.J. Walsh et al.

Algorithm 1. Model Based Simulation
1: Input: A CDMDP M = 〈S, A,P, R, γ, k〉, and Ik = (s, a1, a2, · · · , ak) ∈ S × Ak.
2: Output: The optimal action a∗ = π∗(Ik)
3: Construct a regular MDP M̄ = 〈S, A, P̄ , R, γ〉 where P̄ (s, a, s′) = 1 for the most

likely (finite) or expected (continuous) outcome of a in s.
4: Find the optimal value function V̄ ∗ and an optimal policy π̄∗ for M̄ .
5: Compute the current (but unobserved) state s̄ by applying action sequence

(a1, · · · , ak) to s according to P̄ .
6: Return π̄∗(s̄).

Algorithm 2. Model Parameter Approximation
1: Input:
2: A collection of N sample instances X = {(si, ai, ri, s

′
i) | i = 1, 2, · · · , N}

3: S, A, γ and Rmax from a continuous MDP
4: Function approximators TA and RA

5: The current continuous observation s
6: Output: The action to be taken from s.
7: Train TA and RA using X.
8: Construct discrete MDP M̂ = 〈Ŝ, A, P̂ , R̂, γ〉; for any s̄ ∈ Ŝ and a ∈ A:
9: if we have enough samples in X then

10: use maximum-likelihood estimates
11: else if TA and RA have high confidence then
12: generate an artificial sample set X ′ using TA and RA, build model using X ∪X ′

13: else
14: P̂ (s̄, a, s̄) = 1 and R̂(s̄, a) = Rmax.
15: end if
16: Find the optimal value function V̂ ∗ and an optimal policy π̂∗ for M̂ .
17: ŝ = Discretize(s)
18: Return π̂∗(ŝ).

3.3 Model Parameter Approximation

Model Parameter Approximation, or MPA, (Algorithm 2) is a model-based RL
algorithm designed for MDPs with bounded, continuous state and action spaces.
MPA is closely related to Lazy Learning [10], which uses locally weighted regres-
sion to build approximations of the MDP dynamics and then plans in a dis-
cretized version of the MDP, using the trained regressor as a generative model.
MPA performs a similar construction, but it can use any function approximator
and borrows from the R-max algorithm by tagging state/action pairs as “known”
or “unknown” and encouraging exploration of the unknown areas.

MPA is a model-based reinforcement-learning algorithm for zero-delay MDPs
whose planning component is very similar to MBS without simulation. Therefore,
to use MPA in the continuous CDMDP learning setting, we perform MBS’s
simulation before the discretization of the current state using MPA’s transition
function approximator, TA, to apply the action sequence (using the expected

Planning and Learning in Environments with Delayed Feedback 447

one-step outcomes). We then discretize the outcome of that simulation and use
the appropriate action. This CDMDP learning algorithm, MBS+MPA, produces
a “discretized” policy, valid for comparison against the other algorithms we will
investigate in Section 5.

4 Theoretical Analysis of Delayed Problems

In this section, we develop several theoretical properties of the CDMDP planning
and learning problems for CDMDPs as described in Section 2. Our treatment
includes a hardness result in the general case, positive results for the four special
cases, and an efficient way to learn augmented models.

4.1 Planning Results I: The General Case

The augmented approach represents a sound and complete method for finding
an optimal policy. Although in certain cases it is unnecessary to fully expand
the state space to S×Ak, Theorem 1 below shows that converting the CDMDP
representation to an equivalent augmented MDP representation can require an
exponential expansion over the size of the compact CDMDP model.

Theorem 1. The smallest regular MDP M̄ = 〈S̄, A, P̄ , R̄, γ〉 induced by a finite
CDMDP M = 〈S,A, P,R, γ, k〉 can have a lower bound of |S̄| = Ω(|A|k).

Proof (sketch). In an MDP, applying action a from state s produces a probability
distribution over next states. It follows from the Markov assumption that in an
MDP with |S| states, there can be at most |S| distinct probability distributions
over next states for any possible action. Thus, the compact CDMDP represen-
tation, which has only |S| states, requires |S| · |A| probability distributions. In
the worst case, however, we’re able to construct an MDP such that each action
can result in Θ(|A|k) probability distributions based on different k-step histories
(s, a1, ..., ak). Thus, the representation of the induced augmented MDP provably
has |S| · |A|k states and |S| · |A|k+1 distributions. �	
The exponential increase in the number of states suggests that this approach is
intractable in general, and the next theorem establishes that it is unlikely the
CDMDP planning problem can be solved in polynomial time.

Theorem 2. The general CDMDP planning problem is NP-Hard.

Proof (sketch). The proof is by reduction from the problem of planning in a
finite-horizon unobservable MDP (UMDP). The construction takes a UMDP
with |S| states and horizon k and turns it into an infinite-horizon CDMDP with
delay k and k + k|S| + 1 states. The first k states are merely “dummy” states
needed to define I0

k . Each of the next k|S| states represents one of the UMDP
states at a timestep t, the new rewards are r(s)/γt, and extra transitions are
added from the old “final” states to a new final trap state with 0 reward. A
solution to this problem would provide an answer to whether any policy from a
given start state in a finite horizon UMDP can have a value of at least θ, which
is known to be NP-Complete [11]. �	

448 T.J. Walsh et al.

A more complicated reduction from 3-SAT shows this problem is indeed strongly
NP-Hard. We note that if P �= NP, then Theorem 1 would be a direct conse-
quence of Theorem 2 since an MDP can be solved in time polynomial in the size
of its representation. However, Theorem 1 gives a stronger result, showing an
exponential blowup in representation is unavoidable when converting a CDMDP
to an MDP, even if P=NP. The NP-Hardness result for CDMDP planning mo-
tivates the search for constrained cases where one can take advantage of special
structure within the problem to avoid the worst case. We now provide theoretical
results concerning the four special cases previously defined.

4.2 Planning Results II: Special Cases

The following results provide bounds on
∥
∥V̄ ∗ − V ∗∥∥

∞, where V̄ ∗ is the value
function for π̄∗ computed by MBS in its deterministic approximation M̄ (c.f.
Algorithm 1), and V ∗ is the true CDMDP value function. These bounds are also
accuracy bounds for answering the CDMDP planning problem using M̄ instead
of M and can be used to derive the actual online performance bounds when
using greedy policies w.r.t. V̄ ∗ compared to the optimal CDMDP policy [12].

We begin with the finite-state cases, starting with the more general “mildly
stochastic” setting (Case III) where MBS will assume that the last k transitions
have each had the most likely one-step outcome.

Theorem 3. In Case III,
∥
∥V̄ ∗ − V ∗∥∥

∞ ≤
γδRmax
(1−γ)2 . Hence, MBS solves the CD-

MDP planning problem for such CDMDPs with this accuracy in polynomial time.

Proof (sketch). We first bound the error on the one-step backup of the deter-
ministic approximation, and then extend this result over the value function. An-
swering the CDMDP planning problem within this accuracy can then be done
by approximating the current state s through simulation and comparing V̄ ∗(s)
to the reward bound θ. The major operation for MBS is the computation of V̄ ∗

for a deterministic MDP M̄ , which can be done in O(SA + S3) [13]. �	
We note that, by definition, V̄ ∗ has taken the k-step prediction error into ac-
count; therefore, Theorem 3 provides a bound (indirectly) for the performance
of MBS when it has to predict forward k steps using an inaccurate model. The
bound above is only practically useful for small values of δ, because larger values
could cause M̄ to be a very poor approximation of M . At the opposite extreme,
setting δ = 0, we arrive at the following result for Case I:

Corollary 1. In Case I, MBS solves the CDMDP planning problem exactly in
polynomial time.

In the continuous cases (II and IV), computing V̄ ∗ and its maximum, even in
the undelayed case, requires approximation (e.g. discretization [14]) that will
introduce an additional error, denoted ε, to V̄ ∗ as compared to V ∗. Computing
V̄ ∗ will also require some (possibly not polynomially bounded) time, T . In Case
IV, we assume the magnitude of the noise is bounded by Δ and the optimal
CDMDP value function is Lipschitz continuous with constant CV , leading to
the following result.

Planning and Learning in Environments with Delayed Feedback 449

Theorem 4. In Case IV, assuming an approximation algorithm for computing
V̄ ∗ within ε accuracy, MBS solves the CDMDP planning problem with accuracy
2γCV Δ

1−γ + ε in time polynomial in the size of the input and T .

Proof (sketch). We establish an error bound on the one-step backup
of the deterministic approximation using the Lipschitz condi-
tion given in Section 2. The major step in this proof is showing∣
∣maxa

∫
S

P (s, a1, s
′)V ∗(s′, a2, · · · , ak, a)ds′ − maxa V ∗(s0, a2, · · · , ak, a)

∣
∣ ≤ 2CV Δ,

where s0 is the expected next state by taking a in s. From there, the proof is
similar to Theorem 3, using the approximation algorithm when appropriate. �	

Similarly to Case III, this bound is only of interest if Δ and ε are small. By setting
Δ = 0, we arrive at the following result that says planning in deterministic
continuous CDMDPs is the same as in their equivalent undelayed ones:

Corollary 2. In Case II, the MBS algorithm, using an approximation algorithm
to compute V̄ ∗, can answer the CDMDP planning problem with accuracy ε in
time polynomial in the size of the input and T .

4.3 A Remark on Learning

A naive approach to the general CDMDP learning problem would be to apply
standard RL algorithms in the augmented state space. While theoretically sound,
this tack requires gathering experience for every possible Ik (an exponential
sampling requirement). A preferable alternative is to instead learn the one-step
model from experience, then build the augmented model and use it to plan,
in conjunction with an algorithm, like R-max [9], that facilitates exploration.
While this compact learning approach still suffers in the worst case from the
unavoidable exponential burden of planning (Theorems 1 and 2), its sampling
requirement is polynomially bounded, making it somewhat more practical.

5 Empirical Algorithm Comparisons

We now evaluate several of the methods discussed in Section 3 in the learning
setting for each of the four cases. Agents were evaluated in episodic domains
based on average cumulative reward for 200 episodes with a cap of 300 steps
per episode. All data points represent an average over 10 runs. We implemented
the “wait agent” using R-max in the finite-state setting and with MPA for con-
tinuous environments. Several variants of the memoryless-policy strategy were
appraised, including model-based RL algorithms, R-max and MPA, as well as
Sarsa(0)3, Sarsa(.9), and “Batch” versions of Sarsa (B-Sarsa) that used experi-
ence replay [15] every 1000 steps. The Sarsa learning rate was set to .3 (empiri-
cally tuned) and exploration in these cases was guided by optimistic initialization
of the value function along with an ε-greedy [1] approach for picking actions, with
ε initialized to .1 and decaying by a factor of .95 per episode. Due to the large
3 Variants of Q(λ)-learning were also tried, yielding similar results to Sarsa(λ).

450 T.J. Walsh et al.

number of variations, only the best and worst of these “memoryless” approaches
are plotted for each environment. For the “augmented” MDP approaches, we
investigated both the naive and compact learners described in Section 4.3, with
planning taking place in the augmented space using R-max. We also evaluated
a naive Sarsa(λ) learner in the augmented space. Unfortunately, the computa-
tional burden of planning made these augmented approaches infeasible beyond
delays of 5. Finally, for MBS, we again used R-max or MPA, as appropriate.

5.1 Delayed W-Maze I: A Deterministic Finite Environment

We begin with a deterministic finite (Case I) world, the “W-maze”, as depicted
in Figure 1 (left). The agent starts in a random cell and its goal is to escape
the maze through the top center square by executing the “up” action. All steps
within the maze garner a reward of −1. The environment is designed to thwart
memoryless approaches, which have trouble finding the right situation to begin
going “up” and instead alternate between the extreme branches.

Figure 1 (right) shows the results of this experiment. The “wait” agent
performs well in this environment, but sub-optimally for k > 0. In contrast,
MBS+R-max quickly achieves optimality for all delay values. The best memory-
less performer was B-Sarsa(.9), but its performance drops well below the random
agent at higher delays. The worst memoryless learner was R-max, which fails to
learn the transition function for k > 0. The compact version of the augmented
learner performs comparably to MBS+R-max, but the planning for this method
becomes intractable beyond a delay of 5. As expected, the naive augmented
learners see a significant performance drop-off as delay increases. Unlike the
memoryless approaches, which learn fast but can’t represent the optimal policy,
these learners are too slow to learn from the finite samples available to them.

G

-300

-250

-200

-150

-100

-50

0

0 2 4 6 8 10
delay

av
g.

 c
um

ul
at

iv
e

re
w

ar
d

MBS+R-max

Aug Compact

Wait R-max

Aug R-max

Aug Sarsa(.9)

B-Sarsa(.9)

Random

R-max

Fig. 1. Left: W-maze. Right: Experimental results for deterministic W-maze.

5.2 Delayed Mountain Car: A Case II Environment

We further investigated these algorithms in a domain with deterministic contin-
uous dynamics (Case II), a delayed version of “Mountain Car” [1], which was an

Planning and Learning in Environments with Delayed Feedback 451

event in the First Annual Reinforcement Learning Competition. The environ-
ment is made up of two continuous variables, representing the car’s location and
speed. The car has 3 actions (forward, neutral, reverse) and rewards of −1 for
all steps and 0 at the top of the hill. For the “memoryless”, and “augmented”
approaches, we continued to use the algorithms described in the previous section
and overlaid a 10 × 10 (empirically tuned) grid for discretization. The “wait”
agent strategy was not applicable because this domain has momentum. For MPA,
we used Locally Weighted Progression Regression (LWPR) [16] to approximate
the transition function, and an averager to approximate the reward function.
The results are illustrated in Figure 2 (left). Again, the best performer was
MBS+MPA, which has the advantage of modeling continuous actions and effi-
ciently compensating for delay. However, for many delay values, Batch Sarsa(.9)
performed almost as well, because action effects in Mountain Car are quite small.
By focusing on the results of the memoryless learners (Figure 2 (right)), we see
the clear benefit of eligibility traces as both B-Sarsa(.9) and Sarsa(.9) outperform
B-Sarsa(0), Sarsa(0) and MPA (without MBS) when k > 0.

-250

-200

-150

-100

-50

0

0 5 10 15 20
delay

av
g.

 c
um

ul
at

iv
e

re
w

ar
d

MBS+MPA
B-Sarsa(.9)
Aug Compact
Aug R-max
Aug Sarsa(.9)
Sarsa(0)
Random

-250

-200

-150

-100

-50

0

0 5 10 15 20
delay

av
g.

 c
um

ul
at

iv
e

re
w

ar
d

B-Sarsa(0)
B-Sarsa(.9)
MPA
Sarsa(0)
Sarsa(.9)
Random

Fig. 2. Mountain Car Results. Left: various strategies. Right: memoryless learners.

5.3 Delayed W-Maze II: A Stochastic Finite Environment

We also considered a mildly stochastic (Case III) version of W-maze, where
actions succeed with a probability of .7 and “slip” in one of the other three
directions with probability .1 each. The results of this experiment are illustrated
in Figure 3 (left). Despite the non-determinism in the domain, MBS+R-max
performed comparably to the compact augmented learner and outperformed all
of the other approaches. The memoryless approaches all flounder with increasing
delay, being outdone even by the naive augmented R-max and “wait” learners.

5.4 Delayed Puddle World: A Case IV Environment

Finally, we investigated a Case IV environment, Stochastic Puddle World [17]
where action outcomes were perturbed by bounded Gaussian noise. The 2-D en-
vironment contains two puddles and a goal. Steps within the puddles garner large

452 T.J. Walsh et al.

-160

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10

delay

av
g.

 c
um

ul
at

iv
e

re
w

ar
d

MBS+R-max
Aug Compact
Wait R-max
Aug R-max
B-Sarsa(.9)
Aug Sarsa(.9)
Random
R-max

-1300

-1100

-900

-700

-500

-300

-100

0 5 10 15 20 25
delay

av
g.

 c
um

ul
at

iv
e

re
w

ar
d

B-Sarsa(.9)
MBS+MPA
Random
Sarsa(0)
Wait MPA
Aug Compact
Aug R-max
Aug Sarsa(.9)

Fig. 3. Experimental results for stochastic W-maze (left) and Puddle World (right)

negative rewards while all other steps yield −1. A 10×10 tiling was used for dis-
cretization. The batch learners used experience replay every 2500 steps because
of noise effects. The results are reported in Figure 3 (right). MBS+MPA clearly
outperforms its memoryless counterparts, though eligibility traces help maintain
performance with increasing delay. As with Mountain Car, MBS+MPA outper-
forms some augmented learners at k = 0 because MPA’s function approximators
quickly and accurately learn the domain dynamics. The “wait” agent, which loi-
ters in the puddles, performs poorly for large delays. This domain dramatically
exhibits the benefits of the compact augmented approach over the naive ones.

6 Conclusions and Future Work

In this paper, we evaluated algorithms for environments with constant obser-
vation and reward delay. We showed the general CDMDP planning problem is
NP-Hard, but planning can be done in polynomial time in the deterministic fi-
nite setting, and we provided loss bounds in three other settings. We introduced
Model Based Simulation (MBS) for planning in CDMDPs, and Model Parameter
Approximation (MPA) to extend MBS for learning in continuous environments.
Our experiments show this approach outperforms various natural alternatives in
several benchmark delayed MDPs.

Several open research topics in this area remain. In the learning setting, one
could relax the assumption that the delay is known, perhaps learning the delay
values using clustering. A related problem is variable delay, or jitter, which is
common when dealing with network latency and has been studied in prior work
on augmented models [4]. Also, though we covered two important stochastic
special cases, there may be more conditions that facilitate efficient planning.
A related open question is whether an algorithm that exploits structure within
the belief space (for instance, if the number of reachable belief states from any
start state within k steps is small) could plan in time not influenced by the
potential exponential expansion. We note that MBS is an extreme case of such
an algorithm, which considers only |S| reachable belief states, all of them pure.

Planning and Learning in Environments with Delayed Feedback 453

Acknowledgments. This work was supported in part by NSF IIS award
0329153. We thank the First Annual Reinforcement Learning Competition,
Adam White, and the anonymous reviewers for their contributions.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

2. Altman, E., Nain, P.: Closed-loop control with delayed information. In: Proc. 1992
ACM SIGMETRICS and PERFORMANCE, 1-5 1992, pp. 193–204. ACM Press,
New York (1992)

3. Brooks, D.M., Leondes, C.T.: Markov decision processes with state-information
lag. Operations Research 20(4), 904–907 (1972)

4. Katsikopoulos, K.V., Engelbrecht, S.E.: Markov decision processes with delays and
asynchronous cost collection. IEEE Transactions on Automatic Control 48, 568–
574 (2003)

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn., vol. 1/2.
Athena Scientific (2001)

6. Bander, J.L., White III, C.C.: Markov decision processes with noise-corrupted and
delayed state observations. The Journal of the Operational Research Society 50,
660–668 (1999)

7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

8. Loch, J., Singh, S.: Using eligibility traces to find the best memoryless policy in
partially observable Markov decision processes. In: ICML, pp. 323–331 (1998)

9. Brafman, R.I., Tennenholtz, M.: R-max–a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research 3, 213–
231 (2002)

10. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control.
Artificial Intelligence Review 11(1–5), 75–113 (1997)

11. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Mathematics of Operations Research 12(3), 441–450 (1987)

12. Singh, S.P., Yee, R.C.: An upper bound on the loss from approximate optimal-value
functions. Machine Learning 16(3), 227–233 (1994)

13. Littman, M.L.: Algorithms for Sequential Decision Making. PhD thesis, Brown
University, Providence, RI (1996)

14. Munos, R., Moore, A.W.: Rates of convergence for variable resolution schemes in
optimal control. In: ICML, pp. 647–654 (2000)

15. Lin, L.J.: Reinforcement Learning for Robots using Neural Networks. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA (1993)

16. Vijayakumar, S., Schaal, S.: Locally weighted projection regression: An o(n) algo-
rithm for incremental real time learning in high dimensional space. In: ICML, pp.
1079–1086 (2000)

17. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely ap-
proximating the value function. In: NIPS, pp. 369–376 (1995)

Analyzing Co-training Style Algorithms

Wei Wang and Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210093, China

{wangw,zhouzh}@lamda.nju.edu.cn

Abstract. Co-training is a semi-supervised learning paradigm which
trains two learners respectively from two different views and lets the
learners label some unlabeled examples for each other. In this paper, we
present a new PAC analysis on co-training style algorithms. We show that
the co-training process can succeed even without two views, given that
the two learners have large difference, which explains the success of some
co-training style algorithms that do not require two views. Moreover, we
theoretically explain that why the co-training process could not improve
the performance further after a number of rounds, and present a rough
estimation on the appropriate round to terminate co-training to avoid
some wasteful learning rounds.

1 Introduction

Unlabeled training data are usually much easier than labeled training data to
be obtained in many practical machine learning applications, so semi-supervised
learning which attempts to exploit unlabeled data to help improve the perfor-
mance of learning with limited labeled training data has attracted much atten-
tion during the past few years [5,9,13,6,12,10,17,3]. Co-training is a well-known
semi-supervised learning paradigm. In its initial form [5], co-training trains two
classifiers separately on two sufficient and redundant views, i.e., two attribute
sets each of which is sufficient for learning and conditionally independent to
the other given the class label, and lets the two classifiers label some unlabeled
instances for each other. Since in most real-world scenarios sufficient and redun-
dant views do not exist, variants of co-training that do not require two views
have been developed. For example, rather than using two views, Goldman and
Zhou [8] used two different supervised learning algorithms, Zhou and Li [16] used
two different parameter configurations of the same base learner, etc.

There are several theoretical studies on co-training. Dasgupta et al. [7] proved
that when the requirement of sufficient and redundant views is met, the co-
trained classifiers could make fewer generalization errors by maximizing their
agreement over the unlabeled data. Balcan et al. [2] showed that given appro-
priately strong PAC-learners on each view, an assumption of expansion on the
underlying data distribution, which is weaker than the assumption of sufficient
and redundant views, is sufficient for iterative co-training to succeed. This tells
that the conditional independence [5] or even the weak dependence [1] between

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 454–465, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Analyzing Co-training Style Algorithms 455

the two views is not needed, at least, for iterative co-training which is the popular
routine taken by many variants of co-training.

Previous theoretical studies mainly investigate co-training with two views.
Although the applicability of co-training style algorithms that do not require
two views is better in practice and empirical studies have shown the effectiveness
of those algorithms, there is no theoretical analysis that can explain that why
co-training without two views can succeed. On the other hand, in experiments
we have observed that the co-training process could not improve the learning
performance further after a number of rounds, which has not been analyzed by
previous theoretical studies.

In this paper, we present a new PAC analysis which addresses the above issues.
In detail, we derive a theorem on why co-training can work without two views,
and a theorem on why co-training could not improve the performance after a
number of learning rounds. The second theorem provides a rough estimation
on the appropriate round to terminate the co-training process to avoid some
wasteful learning rounds, which is validated by an empirical study in this paper.

The rest of this paper is organized as follows. After stating some preliminaries
in Section 2, we present our theoretical results in Section 3, then report on our
empirical study on determining the appropriate round to terminate co-training
in Section 4, and finally conclude the paper in Section 5.

2 Preliminaries

Given data set S = L ∪ U , where L = {(x1, y1), · · · , (xl, yl)} ⊂ X × Y is the
labeled data set and U = {(xl+1, xl+2, · · · , xn)} ⊂ X is the unlabeled data set.
Y = {−1,+1}; X is with distribution D. Let H : X → Y denote the hypothesis
space. Assume that |H| is finite, and D is generated by the ground truth h∗ ∈ H.
It is obvious that the generalization error of h∗ is zero. Since we have only finite
sample, it is hard to achieve h∗ over S. Suppose we obtain a classifier hi ∈ H
from S, which is somewhat different from h∗. Let d(hi, h∗) denote the difference
between the two classifiers hi and h∗, then

d(hi, h∗) = Prx∈D[hi(x) �= h∗(x)]. (1)

Let ε bound the generalization error of the classifiers what we wish to achieve
finally. That is, if d(hi, h∗) = Prx∈D[hi(x) �= h∗(x)] < ε, we say that we have
obtained a desired classifier since the difference between this classifier and the
ground truth h∗ is very small; otherwise we say that the classifier hi is ‘bad’. Of
course we wish to have a high probability to achieve a good classifier. The confi-
dence parameter δ can play this role. The learning process is said to do probably
approximately correct learning of h∗ if and only if Pr[d(hi, h∗) ≥ ε] ≤ δ, where
the probability is taken over all possible training data. Formally, the require-
ment is that the difference between the ground truth h∗ and the hypothesis hi

be small (less than ε) with high probability (more than 1− δ).

456 W. Wang and Z.-H. Zhou

3 Main Results

Given the initial labeled data L and unlabeled data U , consider the following
co-training learning process:

Co-Training Process: At first, two initial classifiers h0
1 and h0

2 are trained
using L which contains l labeled examples. Then, h0

1 selects u number of unlabeled
instances from U to label, and puts these newly labeled examples into the data set
σ2 which contains all the examples in L; at the same time, h0

2 selects u number
of unlabeled instances from U to label, and puts these newly labeled examples into
the data set σ1 which contains all the examples in L. h1

1 and h1
2 are trained from

σ1 and σ2, respectively. After that, h1
1 selects u number of unlabeled instances to

label, and uses these newly labeled examples to update σ2; while h1
2 also selects u

number of unlabeled instances to label, and uses these newly labeled examples to
update σ1. Such a process is repeated for a pre-set number of learning rounds.

Different learners have different biases, which is an intuitive explanation to that
why co-training style algorithms can succeed. The two classifiers that have differ-
ent biases will label some instances with different labels. The difference d(hi, hj)
between the two classifiers hi and hj implies the different biases between them.
If the examples labeled by the classifier hi is useful for the classifier hj , hi should
know some information that hj does not know. In other words, hi and hj should
have large difference. As the Co-Training Process proceeds, the two classifiers
will become more and more similar and the difference between them will become
smaller and smaller since the two classifiers label more and more unlabeled in-
stances for each other. The difference can be helpful for analyzing the co-training
style algorithms.

In the i-th learning round, let ai and bi denote the upper bound of the gen-
eralization error of hi

1 and hi
2, respectively; let d(hi−1

1 , hi
2) denote the difference

between hi−1
1 and hi

2, and let d(hi
1, h

i−1
2) denote the difference between hi

1 and
hi−1

2 . It is feasible to estimate the difference when there are a large mount of
unlabeled instances. Now we present our main result.

Theorem 1. Given the initial labeled data set L, assuming that the size of L
is sufficient to learn two classifiers h0

1 and h0
2 whose upper bound of the gener-

alization error is a0 < 0.5 and b0 < 0.5 respectively with high probability (more
than 1− δ) in the PAC model, i.e., l ≥ max{ 1

a0
ln |H|

δ , 1
b0

ln |H|
δ }. Then h0

1 selects
u number of unlabeled instances from U to label and puts them into σ2 which
contains all the examples in L, and then h1

2 is trained from σ2 by minimizing
the empirical risk. If lb0 ≤ e M

√
M !−M , then

Pr[d(h1
2, h∗) ≥ b1] ≤ δ. (2)

where M = ua0 and b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0}.

Proof. Firstly, we analyze the expected rate of disagreement between the clas-
sifier hi and the sample sequence σ2 which consists of u number of newly labeled
examples and L. By minimizing the empirical risk, the classifier which has the

Analyzing Co-training Style Algorithms 457

lowest observed rate of disagreement with the sample sequence σ2 will be gen-
erated. Let d(hi, σ2) denote the expected rate of disagreement between hi and
σ2. Then

d(h∗, σ2) =
u× d(h0

1, h
∗)

l + u
(3)

d(h1
2, σ2) =

l × d(h1
2, h

∗) + u× d(h0
1, h

1
2)

l + u
(4)

In order to achieve ‘good’ classifiers whose generalization errors are less than b1
by minimizing the empirical risk, the sample sequence σ2 must be sufficient to
guarantee that no classifier whose generalization error is no smaller than b1 has
a lower observed rate of disagreement with σ2 than h∗ with a probability bigger
than 1− δ.

Since the upper bound of the generalization error of the classifier h0
1 is a0,

d(h∗, σ2) is no more than ua0
l+u . Let M = ua0, the probability that the classifier

h1
2 has a lower observed rate of disagreement with σ2 than h∗ is less than

CM
l+ud(h

1
2, σ2)M [1− d(h1

2, σ2)]l+u−M . (5)

Let b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0}, if d(h1

2, h
∗) ≥ b1,

d(h1
2, σ2) =

l × d(h1
2, h

∗) + u× d(h0
1, h

1
2)

l + u

≥ lb1 + u× d(h0
1, h

1
2)

l + u

≥ lb0 + ua0

l + u

>
M

l + u
.

The function Cs
mxs(1 − x)m−s is monotonically decreasing as x increases when

s/m < x < 1. So, if d(h1
2, h

∗) ≥ b1, the value of Eq.5 is smaller than

CM
l+u(

lb0 + ua0

l + u
)M (1− lb0 + ua0

l + u
)l+u−M . (6)

In other words, the probability for that the classifier with generalization error
no less than b1 has a lower observed rate of disagreement with σ2 than h∗ is
smaller than the value of Eq.6.

The calculation of the real value of Eq.6 is quite complex, so we approximate
it by using the Poisson Theorem:

CM
l+u(

lb0 + ua0

l + u
)M (1− lb0 + ua0

l + u
)l+u−M ≈ (lb0 + ua0)M

M !
e−(lb0+ua0) (7)

When lb0 ≤ e M
√
M !−M , the right-hand term of Eq.7 is no more than e−lb0 . Since

the classifier h0
2 is PAC-learnable and the sample size of L is at least 1

b0
ln |H|

δ ,

458 W. Wang and Z.-H. Zhou

e−lb0 ≤ δ/|H|. Therefore, the value of Eq.6 is no more than δ/|H|. Considering
that there are at most |H| − 1 classifiers with generalization error no less than
b1 having a lower observed rate of disagreement with σ2 than h∗ in H, the prob-
ability that Pr[d(h1

2, h
∗) ≥ b1] is at most δ. �

Theorem 1 shows that given the initial labeled data, if we can train two learn-
ers which have large difference, the learners can be improved by exploiting the
unlabeled data through the Co-Training Process. It is easy to see that the Co-
Training Process reassembles the main process of existing co-training style al-
gorithms [5,8,16]. It can be recognized that the two views used in the standard
co-training algorithm [5], the two different supervised learning algorithms used
in Goldman and Zhou’s algorithm [8], and the different configurations of the
base learner used in Zhou and Li’s algorithm [16] are actually exploited to make
the classifiers to have large difference. This explains why co-training without two
views [8,16] can succeed.

When co-training style algorithms are executed, the number of labeled exam-
ples is usually small while the initial classifiers are usually not very bad, thus the
condition that lb0 ≤ e

M
√
M !−M in Theorem 1 can be satisfied. Note that using

a bigger u will increase the upper bound of lb0. This is because that a bigger u
will result in a bigger M since M = ua0, while Fig. 1 shows that the value of
the function f(M) = e M

√
M !−M increases as M increases.

In Theorem 1 we know that when the difference d(h0
1, h

1
2) is bigger than a0,

the upper bound b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0} is smaller than b0. The bigger

the difference d(h0
1, h

1
2), the smaller the upper bound of the generalization error

of the classifiers h1
2. In the Co-Training Process, the difference between the two

learners decreases as the value of u increases. When u increases to a certain
degree, the difference between the two learners becomes very small. This is easy
to understand since the learner h1

2 is trained by minimizing the empirical risk
with a large number of examples provided by h0

1.
From the above we know that when d(h0

1, h
1
2) is larger than a0, we can generate

‘good’ classifiers according to Theorem 1. But when d(h0
1, h

1
2) is smaller than a0,

20 40 60 80 100 120 140 1601
1.5

2

2.5

3

3.5

M

f(
M

)

Fig. 1. The value of f(M) = e M
√

M ! − M

Analyzing Co-training Style Algorithms 459

what is the performance of the Co-Training Process? In this case, if d(h1
2, σ2) is

bigger than d(h∗, σ2) (for any d(h1
2, h

∗) ≥ b1), we can still obtain ‘good’ classifiers
(d(h1

2, h
∗) < b1) by minimizing the empirical risk because the expected rate of

disagreement between the ‘bad’ classifiers and sample sequence is bigger than
that between the ground truth h∗ and sample sequence. So, with the Co-Training
Process we can obtain classifiers which satisfy d(h1

2, h
∗) < b1 with big probability.

It is requested that u should be smaller than lb1/[a0−d(h0
1, h

1
2)] for searching the

‘good’ classifiers. Thus, if d(h0
1, h

1
2) is smaller than a0, the Co-Training Process

will work well when u < lb1/[a0 − d(h0
1, h

1
2)]. For u0 l, we have Theorem 2:

Theorem 2. In the Co-Training Process, if u0 l, then for any 0 < ε < 1,

Pr[d(h0
1, h

1
2) ≥ ε] ≤ δ, (8)

and

Pr[|d(h0
1, h

∗)− d(h1
2, h

∗)| ≥ ε] ≤ δ. (9)

Proof. In the Co-Training Process, the training data of the classifier h1
2 contain

the l number of initial labeled examples and the u number of newly labeled
examples given by the classifier h0

1 . When u0 l, it could be considered that the
training data of the classifier h1

2 comes from another distribution D′
generated by

the classifier h0
1 which is different from h∗. In distribution D′

, the ground truth
is h0

1. According to the PAC learning theory, for any 0 < ε < 1, in distribution
D′

if u is large enough,

Pr[d(h0
1, h

1
2) ≥ ε] ≤ δ.

Eq.9 is true considering

Prx∈D[h0
1(x) �= h∗(x))] − Prx∈D[h1

2(x) �= h0
1(x))]

≤ Prx∈D[h1
2(x) �= h∗(x))]

≤ Prx∈D[h0
1(x) �= h∗(x))] + Prx∈D[h1

2(x) �= h0
1(x))] �

From Theorem 2 we can find that when u 0 l, the difference between the
two learners is very small (less than ε). The two learners become very similar
and could not improve each other any more. In Section 4, we will report on
an empirical study to show that whether the appropriate learning round of co-
training could be estimated based on Theorem 2.

In the above we have discussed the situation when we should proceed with the
Co-Training Process to improve the two learners, and when we should terminate
the Co-Training Process. As a short summary, our theoretical study shows that

– If the two initial learners have large difference, they can be improved through
the Co-Training Process;

– If the two initial learners have small difference, they can be improved if u/l
is small;

460 W. Wang and Z.-H. Zhou

– As the Co-Training Process proceeds, more and more unlabeled data are
labeled for the learners each other, which makes the difference between the
two learners become smaller and smaller. Thus, after a number of learning
rounds the Co-Training Process could not improve the performance further.

4 Empirical Study

In order to study that whether the appropriate number of learning rounds of
co-training could be estimated based on Theorem 2, we perform an empirical
study.

4.1 Configurations

In the experiments we use the course data set [5], ads data set [11] and three
UCI data sets , i.e. kr-vs-kp, mushroom and tic-tac-toe [4]. The course and ads
data sets have multiple views but the UCI data sets have only one view.

The course data set has two views (pages view and links view) and con-
tains 1,051 examples each corresponds to a web page, and the task is to predict
whether an unseen web page is a course page or not. There are 230 positive
examples (roughly 22%). Sixty-six attributes are used in pages view and five
attributes in links view. The ads data set has five views. We use the 1st and 3rd
views since the standard co-training algorithm only uses two views. This data set
contains 983 examples, among which there are 138 positive examples (roughly
14%). As for the UCI data sets, kr-vs-kp contains 3,196 examples, among which
there are 1,527 positive examples (roughly 48%); mushroom contains 8,124 exam-
ples, among which there are 3,916 positive examples (roughly 48%); tic-tac-toe
contains 958 examples, among which there are 332 positive examples (roughly
35%). For each of these data sets, we randomly use 25% data as the test set while
using the remaining 75% data to generate a labeled data set L whose concrete
size will be mentioned later, and using the rest of the 75% data to generate the
unlabeled data set U .

In each learning round, each classifier labels the positive and negative exam-
ples on which it is with the most confidence for the other classifier, and the
number of newly labeled positive and negative examples is in proportion to that
of the positive and negative examples in L. Since the size of L plays an impor-
tant role in the Co-Training Process, we run experiments with different sizes of
L on each data set. Moreover, each experiment is repeated for 20 runs and the
average performance is recorded.

We study whether we can estimate the appropriate number of learning rounds
to terminate the co-training process for avoiding wasteful further training. Here
we estimate the value of d(hi

1, h
i
2) using L ∪ U . Note that this is a simpli-

fication since as described in Section 3, the difference between hi−1
1 and hi

2

and that between hi
1 and hi−1

2 should be estimated. When the difference be-
tween the two classifiers is smaller than min[ai, bi] and u > max{Lbi/[ai−1 −
d(hi−1

1 , hi
2)], Lai/[bi−1 − d(hi

1, h
i−1
2)]}, we terminate the Co-Training Process.

Analyzing Co-training Style Algorithms 461

Since in real-world tasks we do not have the test data to estimate the error of
the two classifiers, we could not estimate the value of ai and bi directly. In Theo-
rem 2 we know that the difference between the two classifiers will be stable when
u is large, so we could utilize the stability of the difference to roughly estimate
the appropriate round for termination. Note that this is an approximation which
may cause the estimated round inaccurate. In our experiments we set to termi-
nate the Co-Training Process when the change of the difference in consecutive
three rounds is smaller than 0.001. We run the Co-Training Process with various
classifiers including SMO, NaiveBayes and MultilayerPerceptron in WEKA [15].

4.2 Results on Data with Two Views

Firstly, we run experiments with the same classifier (SMO) on data sets with
two views (i.e., the course and ads data sets) using the standard co-training
algorithm [5]. The results are shown in Table 1.

Table 1. Experimental results on data sets with two views. SMO is used to train the
classifiers. data-a-b-c-d means that on the data set data, the initial labeled training set
contains a positive examples and b negative examples, and in each round each classifier
labels c positive and d negative examples for the other classifier. eC1 and eC2 denote
the error rates of the two classifiers trained in the two views, respectively. dis denotes
the disagreement of the two classifiers. r denotes the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r
course-3-9-1-3 .151 .179 .157 0 .119 .127 .145 60 .119 .127 .145 60
course-6-18-1-3 .127 .155 .177 0 .124 .121 .166 20 .113 .122 .143 60
course-9-27-1-3 .125 .136 .171 0 .118 .116 .154 49 .114 .118 .148 60

ads-4-24-1-6 .114 .100 .046 0 .086 .075 .038 15 .079 .068 .032 25
ads-8-48-1-6 .104 .081 .055 0 .079 .067 .034 21 .078 .062 .031 25
ads-12-72-1-6 .093 .072 .058 0 .082 .065 .041 11 .076 .059 .034 25

We can find from Table 1 that the performances of the classifiers at the es-
timated round can be quite close to the performances of the classifiers at the
last learning round, e.g. on course-9-27-1-3. This suggests that estimating the
appropriate terminating round based on Theorem 2 is feasible for the standard
co-training algorithm.

4.3 Results on Data Without Two Views

Then, we run experiments on data sets without two views, by using two differ-
ent classifiers on the same view. Here we use SMO and NaiveBayes as the two
different base learners on the kr-vs-kp, mushroom and tic-tac-toe data set. The
results are shown in Table 2.

462 W. Wang and Z.-H. Zhou

Table 2. Experimental results on data sets without two views. SMO and NaiveBayes
are used to train the two classifiers, respectively. data-a-b-c-d means that on the data
set data, the initial labeled training set contains a positive examples and b negative
examples, and in each round each classifier labels c positive and d negative examples
for the other classifier. eC1 and eC2 denote the error rates of the classifiers SMO and
NaiveBayes, respectively. dis denotes the disagreement of the two classifiers. r denotes
the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r
kr-vs-kp-35-35-1-1 .137 .220 .175 0 .134 .164 .096 50 .134 .164 .096 50
kr-vs-kp-50-50-1-1 .096 .186 .178 0 .097 .136 .079 50 .097 .136 .079 50
kr-vs-kp-65-65-1-1 .087 .182 .172 0 .090 .128 .079 50 .090 .128 .079 50

mushroom-3-3-1-1 .173 .168 .060 0 .130 .129 .026 32 .130 .134 .027 50
mushroom-6-6-1-1 .096 .100 .059 0 .089 .093 .044 26 .082 .088 .028 50
mushroom-12-12-1-1 .077 .097 .064 0 .069 .085 .043 19 .066 .080 .030 50

tic-tac-toe-10-10-1-1 .432 .433 .197 0 .423 .419 .099 39 .424 .424 .084 50
tic-tac-toe-15-15-1-1 .378 .410 .191 0 .370 .403 .104 31 .373 .399 .102 50
tic-tac-toe-20-20-1-1 .355 .392 .181 0 .353 .403 .102 39 .359 .396 .093 50

We can find that the performances of the classifiers at the estimated round can
be quite close to the performances of the classifiers at the last learning round, e.g.
on mushroom-3-3-1-1. This suggests that estimating the appropriate terminating
round based on Theorem 2 is also feasible for co-training style algorithms which
do not require two views, e.g. [8,16].

The estimated round is sometimes relatively loose, but the results shown in
Tables 1 and 2 verify that after a number of learning rounds, continuing the co-
training process could not improve the performance further. It is expected that
by developing better methods for estimating the difference between the learn-
ers, tighter estimation on the appropriate terminating round could be obtained,
which is a future issue.

4.4 Further Experiments and Discussion

In order to study the influence of the difference between the two learners further,
more experiments are conducted. We run the Co-Training Process with two
different groups of base learners on the pages view of the course data set. The
first group is SMO and MultilayerPerceptron and the second group is SMO
and NaiveBayes. With this experiment, it could be more clear that whether the
learners with larger difference could be improved more than the learners with
smaller difference. The results are shown in Table 3.

It can be found from Table 3 that the difference between the second group
of classifiers is larger than that between the first group of classifiers. Note that
the SMO classifier appears in both groups, while its improvement is larger in
the second group than in the first group. This confirms that the larger the

Analyzing Co-training Style Algorithms 463

Table 3. Comparing the performance of co-training using two different groups of base
learners on the pages view of the course data set. SMO and MultilayerPerceptron (or
SMO and NaiveBayes) denote the two classifiers, respectively. data-a-b-c-d means that
on the data set data, the initial labeled training set contains a positive examples and
b negative examples, and in each round each classifier labels c positive and d negative
examples for the other classifier. eC1 and eC2 denote the error rates of the classifiers
SMO and MultilayerPerceptron(or SMO and NaiveBayes), respectively. dis denotes
the disagreement of the two classifiers. r denotes the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r
C1 = SMO & C2 = MultilayerPerceptron

pagesview -3-9-1-3 .137 .139 .018 0 .127 .126 .043 11 .123 .118 .026 50
pagesview -9-27-1-3 .113 .118 .036 0 .107 .108 .041 13 .099 .105 .028 50
pagesview -15-45-1-3 .100 .101 .038 0 .089 .090 .033 35 .087 .087 .029 50

C1 = SMO & C2 = NaiveBayes

pagesview -3-9-1-3 .137 .133 .069 0 .106 .095 .040 15 .097 .087 .031 50
pagesview -9-27-1-3 .113 .097 .075 0 .096 .085 .045 23 .087 .078 .036 50
pagesview -15-45-1-3 .100 .081 .076 0 .089 .075 .048 20 .078 .074 .032 50

difference between the two learners, the more the improvement from the Co-
Training Process.

5 Conclusion

In this paper, we present a new PAC analysis on co-training style algorithms. We
theoretically explain that why co-training without two views can succeed, and
that why co-training could not improve the performance further after a number
of learning rounds. Our theoretical result on the second issue provides a feasible
approach for estimating the appropriate learning rounds to terminate the co-
training process to avoid wasteful learning rounds. We study the effectiveness of
the approach in empirical study.

The current estimation of the appropriate learning rounds requires informa-
tion on the generalization ability of the learners. Since such information is not
available in real-world tasks, we use an approximation to realize the approach.
So, although the approach has a theoretical foundation and empirical study
shows that it works not bad, the approximation makes the estimation not as
accurate as we have expected. To improve the estimation in real-world tasks is
a future issue.

Note that in some empirical study of the natural language processing com-
munity, it has been found that sometimes the performances of the two learners
can degrade if the co-training process is run to convergence [14]. Our theoretical
study in this paper gives an explanation to this phenomenon. That is, after a
number of learning rounds the co-training process could not improve the perfor-
mance further since the difference between the learners becomes very small. In

464 W. Wang and Z.-H. Zhou

other words, the two learners becomes very similar. Thus, if the co-training pro-
cess is continued to convergence, these two learners will have very high chance to
make similar errors. Since the co-trained learners are usually combined to use,
the similar errors will be reinforced. Thus, overfitting is aggravated and therefore
the degradation of performance is observed.

Acknowledgment

We want to thank the anonymous reviewers for their helpful comments and
suggestions. This work was supported by the National Science Foundation of
China (60635030, 60505013) and the Foundation for the Author of National
Excellent Doctoral Dissertation of China (200343).

References

1. Abney, S.: Bootstrapping. In: Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, Philadelphia, PA, pp. 360–367 (2002)

2. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: Towards bridging
theory and practice. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems 17, pp. 89–96. MIT Press, Cambridge, MA (2005)

3. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine
Learning 56, 209–239 (2004)

4. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases.
Department of Information and Computer Science, University of California, Irvine,
CA (1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the 11th Annual Conference on Computational Learning Theory,
Madison, WI, pp. 92–100 (1998)

6. Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learn-
ing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems 15, pp. 585–592. MIT Press, Cambridge, MA (2003)

7. Dasgupta, S., Littman, M., McAllester, D.: PAC generalization bounds for co-
training. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neu-
ral Information Processing Systems 14, pp. 375–382. MIT Press, Cambridge, MA
(2002)

8. Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In:
Proceedings of the 17th International Conference on Machine Learning, San Fran-
cisco, CA, pp. 327–334 (2000)

9. Joachims, T.: Transductive inference for text classification using support vector
machines. In: Proceedings of the 16th International Conference on Machine Learn-
ing, Bled, Slovenia, pp. 200–209 (1999)

10. Krogel, M.A., Scheffer, T.: Effectiveness of information extraction, multi-relational,
and semi-supervised learning for predicting functional properties of genes. In: Pro-
ceedings of the 3rd IEEE International Conference on Data Mining, Melbourne,
FL, pp. 569–572. IEEE Computer Society Press, Los Alamitos (2003)

11. Kushmerick, N.: Learning to remove internet advertisements. In: Proceedings of the
3rd Annual Conference on Autonomous Agents, Seattle, WA, pp. 175–181 (1999)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Analyzing Co-training Style Algorithms 465

12. Mladenic, D.: Modeling information in textual data combining labeled and unla-
beled data. In: Proceedings of the ESF Exploratory Workshop on Pattern Detection
and Discovery, pp. 170–179

13. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from la-
beled and unlabeled documents using EM. Machine Learning 39, 103–134 (2000)

14. Pierce, D., Cardie, C.: Limitations of co-training for natural language learning from
large data sets. In: Proceedings of the 2001 Conference on Empirical Methods in
Natural Language Processing, Pittsburgh, PA, pp. 1–9 (2001)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco, CA (2005)

16. Zhou, Z.H., Li, M.: Semi-supervised regression with co-training. In: Proceedings
of the 19th International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, pp. 908–913 (2005)

17. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: Proceedings of the 20th International Conference
on Machine Learning, Washington, DC, pp. 912–919 (2003)

Policy Gradient Critics

Daan Wierstra1 and Jürgen Schmidhuber1,2

1 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),
CH-6928 Manno-Lugano, Switzerland

daan@idsia.ch
2 Department of Embedded Systems and Robotics, Technical University Munich,

D-85748 Garching, Germany
schmidhu@in.tum.de

Abstract. We present Policy Gradient Actor-Critic (PGAC), a new model-free
Reinforcement Learning (RL) method for creating limited-memory stochastic
policies for Partially Observable Markov Decision Processes (POMDPs) that re-
quire long-term memories of past observations and actions. The approach in-
volves estimating a policy gradient for an Actor through a Policy Gradient Critic
which evaluates probability distributions on actions. Gradient-based updates of
history-conditional action probability distributions enable the algorithm to learn
a mapping from memory states (or event histories) to probability distributions on
actions, solving POMDPs through a combination of memory and stochasticity.
This goes beyond previous approaches to learning purely reactive POMDP poli-
cies, without giving up their advantages. Preliminary results on important bench-
mark tasks show that our approach can in principle be used as a general purpose
POMDP algorithm that solves RL problems in both continuous and discrete ac-
tion domains.

1 Introduction

Reinforcement Learning [1] algorithms often need to deal with partial observability
problems naturally arising in real-world tasks. A naive approach would be to learn re-
active stochastic policies [2] which simply map observations to probabilities for actions.
The underlying philosophy here is that utilizing random actions, as opposed to deter-
ministic actions, will prevent the agent from getting stuck. In general this is clearly
suboptimal, and the employment of some form of memory seems essential for many re-
alistic RL settings. However, for cases where our memory system’s capacity is limited –
that is, imperfect, like for example all Recurrent Neural Network architectures – reac-
tive stochasticity may still facilitate learning good policies for realistic environments.
Hence the need to stress the importance of learning what we define as limited-memory
stochastic policies, that is, policies that map limited memory states to probability dis-
tributions on actions.

In spite of their apparent advantages, work on limited-memory stochastic policies has
been scarce so far, notable exceptions being finite state-based policy gradients [3,4] and
evolutionary search (e.g. [5]). We propose a novel approach to learning limited-memory
stochastic policies in partially observable environments. Conventional policy gradient
approaches update policy parameters using a sampling-based Monte Carlo estimate of

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 466–477, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Policy Gradient Critics 467

the gradient in policy space – they constitute a framework of Actor-only methods – but
this tends to lead to high variance estimates. Our new approach Policy Gradient Actor-
Critic (PGAC), however, is a dual Actor-Critic [1] architecture and updates a policy’s
parameters – the Actor – using a model-based estimated gradient on action probabil-
ities, the model being the Policy Gradient Critic. Since PGAC uses a gradient that is
provided directly by a Policy Gradient Critic, representing an action distribution evalu-
ation function over pairs of history / action distribution parameters, we can avoid brute
force Monte Carlo sampling, which provides numerous advantages including the power
of function approximator generalization. Computing the gradient from the Policy Gra-
dient Critic has the potential to yield a substantially improved estimate of beneficial
policy updates for the Actor. Moreover, by representing a Q-function over action prob-
ability distributions rather than over concrete actions, we can explicitly represent the
value of stochasticity.

We use Long Short-Term Memory (LSTM) [6] as our memory-capable differentiable
recurrent function approximator (DRFA) for both Actor and Policy Gradient Critic.
DRFA-based RL algorithms are a perfect example of limited-memory algorithms. The
recurrency or memory of DRFAs can capture hidden state effects, which enables the
algorithm to deal with the partial observability that plagues many real-world tasks. Like
other DRFAs, they are limited in their learning capacity, however, and prone to local
minima. These limitations can be partly compensated for by using PGAC’s explicitly
learned value of stochasticity in action probabilities. We show that the resulting PGAC
method using LSTM is able to solve three fundamentally different benchmark tasks:
continuous control in a non-Markovian pole balancing task, discrete control on the deep
memory T-maze task, and discrete control on the extremely stochastic 89-state Maze.

2 The Algorithm

In this section we explain our basic algorithm for learning limited-memory stochas-
tic policies. First, we summarily review the Reinforcement Learning framework as
used in this paper. The particular differentiable recurrent function approximator ap-
plied, LSTM, is briefly described. Then we outline how PGAC operates within the RL
framework using LSTM as DRFA for both Actor and Policy Gradient Critic.

2.1 Reinforcement Learning – Generalized Problem Statement

First let us introduce the notation used in this paper and the corresponding RL frame-
work (see Figure 1 for a schematic depiction of the framework used). The environment,
which is assumed to be Markovian, produces a state gt at every time step. Transitions
from state to state are governed by probabilities T (gt+1|at, gt) dependent upon action
at executed by the agent. Let rt be the reward assigned to the agent at time t, and let ot

be the corresponding observation produced by the environment. Both quantities, gov-
erned by fixed distributions p(o|g) and p(r|g), are solely dependent on the state gt. Let
Rt =

∑τ
k=t+1 rkγ

t−k−1 be the return at time t, where 0 < γ < 1 denotes a discount
factor and τ denotes the length of the episode. The agent operates in episodes on the
stochastic environment, executing action at at every time step t, after observing obser-
vation ot and special ‘observation’ rt (the reward) which both depend only on gt. The

468 D. Wierstra and J. Schmidhuber

perturbation final draw

Q

World

Agent

π at

pt

gt gt

ot rt

Q(ht, pt) Q(ht, p
∗
t) Q(ht, at)

pt at

ot ∼ O(gt) rt ∼ r(gt)

p∗t

T (gt+1|gt, at)

Fig. 1. PGAC in the reinforcement learning framework. Shown is the interaction between the
Agent and the World. The Agent consists of two components, the Actor πθ parameterized by
weights θ and the Policy Gradient Critic Qw parameterized by weights w. Q evaluates Actor-
provided action probability distribution parameters p, its perturbation p∗ and the actually exe-
cuted action a. Using the Jacobian of the Policy Gradient Critic, the parameters/weights of the
DRFA defining the Actor are updated using regular gradient ascent.

environment-generated experience consists of finite episodes. A history ht is the string
of observations, rewards and actions up to moment t since the beginning of the episode:
ht = 〈o0, r0, a0, o1, r1, a1, . . . , ot, rt〉. Policy π(st; θ) produces a vector pt of proba-
bility distribution parameters (describingDpt) over actions given a memory state, from
which actions at are drawn at ∼ Dpt . Here, internal state variable s is some DRFA-
trained representation of the agent’s entire history of actions, rewards and observa-
tions st = f∗(〈o0, r0, a0, o1, r1, a1, . . . , ot, rt〉; θ) = f∗(ht; θ) = f(st−1, (ot, rt); θ).
Now the objective of our algorithm is to optimize expected future discounted reward

E[R1] = E
[∑τ

t=1 γtrt

]
by adjusting action probabilities Dpt appropriately. The esti-

mate on the quality of action probabilities described by some parameter vector p can
be expressed by a Q-function-like quantity: Q(ht,p) = Q(f(ht),p) = Q(st,p) is
a function that indicates the estimated expected future discounted reward of choosing
actions following distribution Dp at time step t after history ht, and following policy π

thereafter: Q(ht,p) ≈ E
[
Rt|ht, at ∼ Dpt , ak>t ∼ Dπ

]
.

2.2 LSTM Recurrent Function Approximators

Differentiable recurrent function approximators constitute a class of architectures de-
signed to deal with issues of time, such as approximating time series. A crucial feature
of this class of architectures is that they are capable of relating events in a sequence, in
principle even if placed arbitrarily far apart. A typical DRFA π maintains an internal
state st (its memory so to say) which it uses to pass on (compressed) history information

Policy Gradient Critics 469

to the next moment by using recurrent connections. At every time step, the DRFA takes
an input vector ot and produces an output vector π(st; θ) from its internal state, and
since the internal state st of any step is a function f of the previous state and the cur-
rent input signal st = f(ot, st−1; θ), it can take into account the entire history of past
observations by using its recurrent connections for recalling events. Like conventional
neural networks, DRFAs can be trained using backpropagation and related techniques
based on gradient information. However, backpropagation is modified such that it works
through time (BackPropagation Through Time (BPTT) [7,8]).

Recurrent Neural Networks (RNNs), a subset of this class of algorithms, have at-
tracted some attention in the past decade because of their simplicity and potential power.
However, though powerful in theory, they turn out to be quite limited in practice due to
their inability to capture long-term time dependencies – they suffer from the problem
of vanishing gradient [9], the fact that the gradient vanishes as the error signal is prop-
agated back through time. Because of this, events more than 10 time steps apart can
typically not be related.

One method purposely designed to circumvent this problem is Long Short-Term
Memory (LSTM), a special RNN architecture capable of capturing long term time de-
pendencies. The defining feature of this architecture is that it consists of a number of
memory cells, which can be used to store activations arbitrarily long. Access to the
memory cell is gated by units that learn to open or close depending on the context –
context being present observations ot and the previous internal state st−1.

LSTM has been shown to outperform other RNNs on time series requiring the use
of deep memory [10]. Therefore, they seem well-suited for usage in RL algorithms for
complex, deep memory requiring tasks. Whereas DRFAs are typically used for next
step prediction, we use them as a function approximator to both estimate value change
(the Policy Gradient Critic) and to control (the Actor) given histories of observations,
actions and rewards.

2.3 Policy Gradient Actor-Critic

PGAC Reinforcement Learning for stochastic policies relies on the following observa-
tion: actions can be represented as special cases of probability distribution parameters.
For example, any discrete action a can be represented as a special vector p where one
element of p is 1 and the other 0. Action a2 in a three-dimensional discrete action space
can be expressed p = [0, 1, 0]. We can apply this representation to conventional value
functions, but now we can express more. Representing actions as probability distribu-
tion parameters enables us to construct Q-value functions over action probabilities. For
example, Q(s, [0.5, 0.5]) would denote the value of executing a1 with probability 0.5
and executing a2 with probability 0.5 in state s. For a one-dimensional Gaussian case, a
single action could be represented as p = [μ, σ] = [3.0, 0.0] with μ = 3.0 and σ = 0.0,
but now this vector is more expressive: Q(s, [μ, σ]) represents the estimated expected
value of executing a continuous action a drawn from normal distribution a ∼ N (μ, σ2).

Like many conventional temporal difference learning algorithms for POMDPs, the
PGAC algorithm uses two differentiable recurrent function approximators: one Actor
πθ parameterized by θ, and one Critic Qw parameterized by w. The crucial difference

470 D. Wierstra and J. Schmidhuber

Algorithm 1. Policy Gradient Actor-Critic
for each episode e do

for each time step t do
Actor produces parameter vector pt from π(ht; θ)
Perturb vector pt to p∗

t : p∗
t ∼ P(pt)

Finally draw an action at according to p∗
t : at ∼ Dp∗

t

Execute action at, observe effects ot+1 and rt+1

Update (SARSA-fashion) the Policy Gradient Critic’s Qw-value function for
〈ht, {at,pt,p∗

t }〉 pairs using the following TD-errors for updating w:

ETD〈ht−1,pt−1〉 = rt + γQ(ht,pt) − Q(ht−1,pt−1)

ETD〈ht−1,p∗
t−1〉 = rt + γQ(ht,pt) − Q(ht−1,p∗

t−1)

ETD〈ht−1,at−1〉 = rt + γQ(ht, pt) − Q(ht−1,at−1)

Update Actor’s parameters θ defining policy π as

Δθ =
∑

i

α

Critic
︷ ︸︸ ︷
∂Q(ht, pt; w)

∂p(i)
t

∂p(i)
t

∂θ︸ ︷︷ ︸
Actor

end for
end for

between PGAC and other methods is the fact that its Policy Gradient Critic’s Q-function
evaluates probability distributions over actions rather than single actions. The Policy
Gradient Critic is forced to operate on incomplete information, i.e. it has to be able to
provide estimates on the quality of the policy given that the agent intends to let the ac-
tual action be drawn from a probability distribution governed by p. This way, the agent
explicitly includes the value of stochasticity in action selection in its Q-function. The
fact that this extended Policy Gradient Critic evaluates action probability distributions,
combined with the fact that the Actor provides the parameters for such a distribution,
eliminates the need for a prewired exploration policy, since exploration is adjusted on-
line while executing the policy. Another important reason for explicitly representing
the value of stochasticity is that, because of limited memory, a stochastic policy might
be the optimal one for some real-world tasks. It has been shown [2] that for some do-
mains deterministic policies can produce arbitrarily worse performance than stochastic
policies.

The Actor πθ outputs, at every time step t, deterministically given history ht, proba-
bility distribution parameters pt = π(ht; θ) from which the agent’s actions are drawn
at ∼ Dpt . Additionally, the Policy Gradient Critic Q(ht,p;w) estimates the value

E
[
Rt|ht, at ∼ Dp, ak>t ∼ Dπ

]
for Actor-produced pt. After every episode, the

Actor’s policy can be updated by using the Policy Gradient Critic as a teacher which
provides a derivative for the direction in which to adjust Actor-provided policy pt =
π(ht; θ). The Policy Gradient Critic can be taught using on-policy Temporal Difference
Learning techniques.

Policy Gradient Critics 471

Actor Learning. The Actor is updated by updating Actor-defining parameters θ in
the direction of higher expected future discounted reward as predicted by the Policy
Gradient Critic:

Δθ = α
∑

i

∂Q(ht,pt)

∂p(i)
t

∂p(i)
t

∂θ

where p(i)
t denotes parameter i of distribution parameter vector pt = π(ht) produced

by the Actor at time t, and α denotes the learning rate. In order to compute this, using
a fixed Policy Gradient Critic, we backpropagate a gradient signal towards higher Q-
values from the Policy Gradient Critic’s inputs p, yielding the Jacobian of the Policy

Gradient Critic, the quantities ∂Q(ht,p
(i)
t)

∂p
(i)
t

for all i action probability distribution param-

eters. These values are then further backpropagated from the Policy Gradient Critic into
the Actor architecture, now updating parameters θ along the way. In essence, the Policy
Gradient Critic provides an estimate of the expected steepest gradient ascent for future
discounted reward on the current incoming action distribution parameters. These esti-
mated derivatives are then used by the Actor to update its policy, exactly in the direction
of better value suggested by the Policy Gradient Critic. The algorithm pseudocode is
provided in Algorithm 1.

Policy Gradient Critic Learning. The Actor can only be updated if the Policy Gra-
dient Critic provides sufficiently accurate estimations on future discounted reward. To
train the Policy Gradient Critic, on-policy Temporal Difference Learning is used. Un-
like most reinforcement learning algorithms, PGAC does not learn a Q-value for actions
performedQ(h, a;w), it rather learns a Q-value for distributions on actions: the Q-value
Q(ht,p;w), represented by the Policy Gradient Critic, learns the expected value of ex-
ecuting one action randomly drawn from probability distribution Dp, and following
stochastic policy πθ thereafter.

The Q-function estimates the value of a stochastic action under the policy provided
by the Actor. The Temporal Difference (TD) Errors ETD that can be easily extracted
from the experience are (history, action probability distribution) pairs 〈ht−1,pt−1〉 and
〈ht−1,at−1〉:

ETD〈ht−1,pt−1〉 = rt + γQ(ht,pt)−Q(ht−1,pt−1)

ETD〈ht−1,at−1〉 = rt + γQ(ht,pt)−Q(ht−1,at−1)

where p is the Actor-produced vector of action probability distribution parameters, and
a denotes the actually executed action. The algorithm uses the Policy Gradient Critic’s
Jacobian to update the Actor, that is, it has to be able to represent how a difference
in action probabilities relates to a difference in value. The above two TD-errors might
not provide enough data points to reliably estimate such derivatives, though, since the
region around pt is not sampled by the Actor, although that is the region where the most
useful training information is localized. Therefore, we want to add perturbed samples
around pt in order to be able to estimate how the Q-value changes with respect to pt.

472 D. Wierstra and J. Schmidhuber

Providing such samples without biasing learning can be done using what we call a
‘perturbation / final draw’ operation. A ‘perturbation’ operation P perturbs probability
distribution parameters p – provided by the Actor – onto a new parameter vector p∗ ∼
P(p), such that the expected distribution of actions a drawn from a ∼ Dp∗ follow the
same distribution as actions drawn from the original a ∼ Dp.

Example distributions that can be perturbed are finite discrete distributions, where
all elements of vector p sum up to 1 (which, in our experiments, is implemented as a
softmax layer), or a Gaussian distribution, e.g. p = [μ.σ]. For finite discrete distribu-
tions, one way to construct a perturbation operation is to use a random number generator
ui where each ui represents a uniformly distributed random number between 0 and 1.
Good approximate values for p∗ can then be generated by p∗i = pi+βpiui∑

j pj+βpjuj
where β

is a constant, taken to be 1 in this paper. For the simple Gaussian case p = [μp, σp], we
could construct perturbation p∗ = [μp∗ ∼ N (μp, σp/2), 0.866σp].

Thus constructing p∗ values around p provides us with informative extra samples –
we could see them as hypothetical stochastic actions – that enable the function approx-
imator to estimate the value of other action probabilities than just those provided by the
Actor. This yields the following SARSA-like TD-errors for p, p∗ and a:

ETD〈ht−1,pt−1〉 = rt + γQ(ht,pt)−Q(ht−1,pt−1)

ETD〈ht−1,p∗
t−1〉 = rt + γQ(ht,pt)−Q(ht−1,p∗

t−1)

ETD〈ht−1,at−1〉 = rt + γQ(ht,pt)−Q(ht−1,at−1)

It seems prudent to choose P such that p∗ are generated reasonably close to p.
Because of limited memory’s inheritantly imperfect state-from-history extraction ca-

pabilities, there will always be a measure of hidden state present. If the amount of state
uncertainty reaches undesirable levels, it may be appropriate not to use TD-learning
techniques to train the Policy Gradient Critic, since conventional TD-updates are essen-
tially flawed in hidden state situations with discounted payoff [2]. Instead, one would
use direct history-to-return mappings. In essence, this can already be accomplished by
simply using eligibility traces, which achieves a similar effect as λ approaches 1.

3 Experiments

We carried out experiments on three fundamentally different problem domains. The
first task, pole balancing with incomplete state information, is a continuous control task
that has been a benchmark in the RL community for many years. The second task, the
T-maze, is a difficult discrete control task that requires the agent to learn to remember
its initial observation until the end of the episode. The third task, the 89-state Maze [11],
is an extremely stochastic discrete control task.

All experiments were carried out with 15-cell LSTMs with direct input-output con-
nections for both Actor and Policy Gradient Critic, and learning took place in batches of
100 sequences (251 in the case of the 89-state Maze). Plain gradient descent and ascent
were used for Policy Gradient Critic and Actor, respectively. All experiments used an
eligibility trace with λ = 0.8.

Policy Gradient Critics 473

3.1 Continuous Control: Non-markovian Pole Balancing

This task involves trying to balance a pole hinged to a cart that moves on a finite track
(see Figure 2). The single control consists of the force F applied to the cart (in New-
tons), and observations usually include the cart’s position x and the pole’s angle β and
velocities ẋ and β̇. It provides a perfect testbed for algorithms focussing on learning
fine control in continuous state and action spaces. However, recent successes in the RL
field have made the standard pole balancing setup too easy and therefore obsolete. To
make the task more challenging, an extension is made: remove velocity information
ẋ and β̇ such that the problem becomes non-Markov. This yields non-Markovian pole
balancing [12], a more challenging task.

β

x

F

Fig. 2. The non-Markov pole balancing task. The task consists of a moving cart on a track, with
a pole hinged on top. The controller applies a (continuous) force F to the cart at every time
step, after observing the pole angle β (but not the angular velocity, making this a non-Markovian
problem). The objective is to indefinitely keep the pole from falling.

We applied PGAC to the pole balancing task, using a Gaussian output structure,
consisting of a μ output neuron (which was interpreted linearly) and a σ output neuron
(which was scaled with the logistic function in order to prevent σ from being negative).
Using γ = 0.99, reward was set to 0.0 at all time steps, except for the last time step
when one of the poles falls over, where the reward is −1.0.

A run was considered a success when the pole did not fall over for 5, 000 time
steps. Averaged over 20 runs, it took 34, 823 evaluations until the success criterion
was reached. Interesting is that during learning, often the full stochastic policy had a
higher value than the greedy policy (setting σ to 0), showing the usefulness of learn-
ing stochastic policies. The results for non-Markovian control clearly outperform most
other single-agent memory-based continuous RL methods as far as we are aware (e.g.
compare [4]’s finite state controller which cannot hold up the pole for more than 1000
time steps even after half a million evaluations), but some methods that are not single-
agent, like evolutionary methods (e.g. [5]), still hold a competitive edge over PGAC.

3.2 Discrete Control: The Long Term Dependency T-Maze

The second experiment was carried out on the T-maze [13] (see Figure 3), a discrete
control task with output neurons that code for a softmax layer from which an action is

474 D. Wierstra and J. Schmidhuber

S
X G

Fig. 3. The T-maze task. The agent observes its immediate surroundings and is capable of the
actions north, east, south, and west. It starts in the position labeled ‘S’, there and only there
observing either the signal ‘up’ or ‘down’, indicating whether it should go up or down at the
T-junction. It receives a reward if it goes in the right direction, and a punishment if not. In this
example, the direction is ‘up’ and N , the length of the alley, is 35.

drawn probabilistically. Designed to test an RL algorithm’s ability to correlate events
far apart in history, it involves having to learn to remember the observation from the first
time step until the episode ends. At the first time step, it starts at position S and perceives
the X either north or south – meaning that the goal state G is in the north or south part of
the T-junction, respectively. Additionally to the first state’s X-flag, the agent perceives
only its immediate surroundings – whether there is a wall north, east, south or west of it.
The agent has four possible actions: North, East, South and West. While in the corridor,
if the agent bumps into the wall, it receives a punishment of −0.1, while if it goes east
or west, it receives a reward of 0.0. When the agent makes the correct decision at the
T-junction, i.e. go south if the X was south and north otherwise, it receives a reward
of 4.0, otherwise a reward of -0.1. In both cases, this ends the episode. Note that the
corridor length N can be increased to make the problem more difficult, since the agent
has to learn to remember the initial ‘road sign’ for N + 1 time steps. In Figure 3 we see
an example T-maze with corridor length 35.

Corridor length N was systematically varied from 10 to 60, and for each length 10
runs were performed. Discount factor γ = 0.98 was used. In Figure 4 the results are
displayed. Using LSTM, PGAC is able to capture the relevant long term dependencies
(up to 40 time steps) necessary for solving this task. This is only slightly worse than
the best performing algorithm known to solve this task [13] which learns the task up to
corridor length 70.

3.3 Discrete Control: The 89-State Maze

In this extremely noisy benchmark task (see Figure 5; see [11] for a complete descrip-
tion) the aim is to get to the goal as fast as possible (where the reward is 1), but within
251 time steps. Discount factor γ = 0.98 is used.

Good results were achieved for 10 runs of the algorithm. Each run was executed for
30, 000, 000 iterations. After that, the resulting policy was evaluated. The median num-
ber of steps to achieve the goal (in case the goal is achieved) was 70, and the goal was
reached in 85% of cases. This compares favorably with memory-less SARSA(λ) [14],
one of the best (and similar) model-free approaches on this task, with numbers 73 steps
and 77%, respectively. However, Bakker’s RL-LSTM method [15] still clearly outper-
forms the PGAC algorithm with 61 steps and 93.9%, respectively.

Policy Gradient Critics 475

Successful runs on TMaze

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60

N
o.

 s
uc

ce
ss

fu
l r

un
s

Corridor Length

 0

Performance on TMaze

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60

N
o.

 it
er

at
io

ns
 (

m
ill

io
ns

)

Corridor Length

 2

Fig. 4. T-maze results. The upper chart shows the number of successful runs for N = 10, . . . , 60.
PGAC Reinforcement Learning’s performance starts to degrade at length N = 50. The lower plot
shows the number of average iterations required to solve the task, averaged over the successful
runs.

Fig. 5. The 89-state maze. In this extremely stochastic maze, the agent has a position, an orienta-
tion, and can execute five different actions: forward, turnleft, turnright, turnabout, and doNothing.
The agent starts every trial in a random position. Its goal is to move to the square labeled ‘G’.
Observations comprise the local walls but are noisy (there is a high probability of observing
walls where there are none and vice versa). Action outcomes are noisy and cannot be relied on.
See [11] for a complete description of this problem domain. It is interesting to note that, to the
authors’ knowledge, this domain has as of yet not been satisfactorily solved, that is, solved up to
human-comparable performance. That is what makes this a very interesting task.

4 Discussion

Initial results with PGAC Reinforcement Learning show that it is competitive with some
of the best approaches on very different benchmark tasks. It does not yet outperform the

476 D. Wierstra and J. Schmidhuber

best available approaches, though. This might be due to two reasons. First, the selec-
tion of the perturbation operator has a large influence on estimation variance. Further
research into adjusting the choice of this operator might include investigating the ap-
propriate finetuning of perturbations given the entropy in action distributions. Second,
since the algorithm uses a limited-memory algorithm, some measure of hidden state
remains present. This means that using on-policy temporal difference value updates as
discussed above is essentially flawed, although this problem is largely overcome by
the use of eligibility traces. A more correct but likely slower approach would involve
estimating returns directly from histories.

Since the algorithm addresses learning limited-memory stochastic policies – an
under-researched general class of problems which is essential to numerous real-world
reinforcement learning tasks – in a simple, natural framework, we hope its performance
will be boosted in future research by further analysis and the use of more advanced
techniques in, for example, gradient-based learning methods, temporal difference al-
gorithms and DRFA architectures. One area for improvement could include the devel-
opment of a more principled method for creating action distribution perturbations, or,
alternatively, the use of noise in the executed actions while weighting the obtained data
points proportionally to their respective probability densities.

Although policy gradient methods can also learn stochastic policies, PGAC is specif-
ically designed to both learn memory and to assign explicit value to stochasticity, mak-
ing it ideally suited to learning limited-memory stochastic policies. A key feature of
the algorithm is that the resulting stochastic policies are not learnt from brute force
sampling, but by using an actual Policy Gradient Critic model, with the advantage of
generalization and possibly lower estimation variance.

PGAC can be seen as an instance of generalized policy iteration, where value and
policy iteratively improve, reinforcing each other. Since a gradient is used to update
the action probabilities, it is not guaranteed to converge to a global optimum. However,
the use of stochasticity in continuous action spaces holds the promise of overcoming
at least part of the sensitivity normally associated with gradient-based continuous rein-
forcement learning.

5 Conclusion

We have introduced PGAC Reinforcement Learning, a new RL method for learning
limited-memory stochastic policies which updates continuous and stochastic policies.
A Policy Gradient Critic explicitly attributes value to stochasticity, yielding a flexible
algorithm that does not need a prewired exploration strategy since it learns to adapt
its stochastic action probabilities through experience. Using an appropriate recurrent
function approximator, Long Short-Term Memory, the algorithm is capable of solv-
ing difficult tasks in environments with long time dependencies and continuous action
spaces. Showing competitive results on three benchmark tasks, this algorithm seems
promising for extensions to real-world RL tasks.

Acknowledgments

This research was funded by SNF grant 200021-111968/1.

Policy Gradient Critics 477

References

1. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cambridge, MA
(1998)

2. Singh, S., Jaakkola, T., Jordan, M.: Learning without state-estimation in partially observable
markovian decision processes. In: International Conference on Machine Learning, pp. 284–
292 (1994)

3. Aberdeen, D.: Policy-Gradient Algorithms for Partially Observable Markov Decision Pro-
cesses. PhD thesis, Australian National University (2003)

4. Meuleau, N.L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers for partially ob-
servable environments. In: Proc. Fifteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI ’99), pp. 427–436. Morgan Kaufmann, San Francisco (1999)

5. Gomez, F.J., Schmidhuber, J.: Co-evolving recurrent neurons learn deep memory POMDPs.
In: Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Wash-
ington, D. C., ACM Press, New York (2005)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–
1780 (1997)

7. Werbos, P.: Back propagation through time: What it does and how to do it. Proceedings of
the IEEE 78, 1550–1560 (1990)

8. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent net-
works. Neural Computation 1(2), 270–280 (1989)

9. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field
Guide to Dynamical Recurrent Neural Networks, IEEE Press, Los Alamitos (2001)

10. Schmidhuber, J.: RNN overview, with links to a dozen journal publications (2004)
http://www.idsia.ch/∼juergen/rnn.html

11. Littman, M., Cassandra, A., Kaelbling, L.: Learning policies for partially observable envi-
ronments: Scaling up. In: Prieditis, A., Russell, S. (eds.) Machine Learning: Proceedings
of the Twelfth International Conference, pp. 362–370. Morgan Kaufmann Publishers, San
Francisco, CA (1995)

12. Wieland, A.: Evolving neural network controllers for unstable systems. In: Proceedings of
the International Joint Conference on Neural Networks, Seattle, WA, pp. 667–673. IEEE,
Piscataway, NJ (1991)

13. Bakker, B.: Reinforcement learning with long short-term memory. Advances in Neural In-
formation Processing Syst. 14 (2002)

14. Loch, J., Singh, S.: Using eligibility traces to find the best memoryless policy in partially ob-
servable Markov decision processes. In: Proc. 15th International Conf. on Machine Learning,
pp. 323–331. Morgan Kaufmann, San Francisco, CA (1998)

15. Bakker, B.: The State of Mind: Reinforcement Learning with Recurrent Neural Networks.
PhD thesis, Leiden University (2004)

http://www.idsia.ch/~juergen/rnn.html

An Improved Model Selection Heuristic for AUC

Shaomin Wu1, Peter Flach2, and Cèsar Ferri3

1 Cranfield University, United Kingdom
Shaomin.Wu@cranfield.ac.uk

2 University of Bristol, United Kingdom
Peter.Flach@bristol.ac.uk

3 Universitat Politècnica de València, Spain
cferri@dsic.upv.es

Abstract. The area under the ROC curve (AUC) has been widely used to mea-
sure ranking performance for binary classification tasks. AUC only employs the
classifier’s scores to rank the test instances; thus, it ignores other valuable in-
formation conveyed by the scores, such as sensitivity to small differences in the
score values. However, as such differences are inevitable across samples, ignor-
ing them may lead to overfitting the validation set when selecting models with
high AUC. This problem is tackled in this paper. On the basis of ranks as well
as scores, we introduce a new metric called scored AUC (sAUC), which is the
area under the sROC curve. The latter measures how quickly AUC deteriorates
if positive scores are decreased. We study the interpretation and statistical prop-
erties of sAUC. Experimental results on UCI data sets convincingly demonstrate
the effectiveness of the new metric for classifier evaluation and selection in the
case of limited validation data.

1 Introduction

In the data mining and machine learning literature, there are many learning algorithms
that can be applied to build candidate models for a binary classification task. Such mod-
els can be decision trees, neural networks, naive Bayes, or ensembles of these models.
As the performance of the candidate models may vary over learning algorithms, effec-
tively selecting an optimal model is vitally important. Hence, there is a need for metrics
to evaluate the performance of classification models.

The predicted outcome of a classification model can be either a class decision such
as positive and negative on each instance, or a score that indicates the extent to which
an instance is predicted to be positive or negative. Most models can produce scores; and
those that only produce class decisions can easily be converted to models that produce
scores [3,11]. In this paper we assume that the scores represent likelihoods or posterior
probabilities of the positive class.

The performance of a classification model can be evaluated by many metrics such
as recall, accuracy and precision. A common weakness of these metrics is that they
are not robust to the change of the class distribution. When the ratio of positive to
negative instances changes in a test set, a model may no longer perform optimally,
or even acceptably. The ROC (Receiver Operating Characteristics) curve, however, is
invariant to changes in class distribution. If the class distribution changes in a test set,

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 478–489, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Improved Model Selection Heuristic for AUC 479

but the underlying class-conditional distributions from which the data are drawn stay
the same, the ROC curve will not change. It is defined as a plot of a model’s true
positive rate on the y-axis against its false positive rate on the x-axis, and offers an
overall measure of model performance, regardless of the different thresholds used. The
ROC curve has been used as a tool for model selection in the medical area since the
late 1970s, and was more recently introduced to evaluate machine learning algorithms
[9,10].

The area under the ROC curve, or simply AUC, aggregates the model’s behaviour
for all possible decision thresholds. It can be estimated under parametric [13], semi-
parametric [6] and nonparametric [5] assumptions. The nonparametric estimate of the
AUC is widely used in the machine learning and data mining research communities.
It is the summation of the areas of the trapezoids formed by connecting the points on
the ROC curve, and represents the probability that a randomly selected positive in-
stance will score higher than a randomly selected negative instance. It is equivalent to
the Wilcoxon-Mann-Whitney (WMW) U statistic test of ranks [5]. Huang and Ling [8]
argue that AUC is preferable as a measure for model evaluation over accuracy.

The nonparametric estimate of the AUC is calculated on the basis of the ranks of the
scores. Its advantage is that it does not depend on any distribution assumption that is
commonly required in parametric statistics. Its weakness is that the scores are only used
to rank instances, and otherwise ignored. The AUC, estimated simply from the ranks of
the scores, can remain unchanged even when the scores change. This can lead to a loss
of useful information, and may therefore produce sub-optimal results.

In this paper we argue that, in order to evaluate the performance of binary classifi-
cation models, both ranks and scores should be combined. A scored AUC metric is in-
troduced for estimating the performance of models based on their original scores. The
paper is structured as follows. Section 2 reviews ways to evaluate scoring classifiers,
including AUC and Brier score, and gives a simple and elegant algorithm to calculate
AUC. Section 3 introduces the scored ROC curve and the new scored AUC metric, and
investigates its properties. In Section 4 we present experimental results on 17 data sets
from the UCI repository, which unequivocally demonstrate that validation sAUC is su-
perior to validation AUC and validation Brier score for selecting models with high test
AUC when limited validation data is available. Section 5 presents the main conclusions
and suggests further work. An early version of this paper appeared as [12].

2 Evaluating Classifiers

There are a number of ways of evaluating the performance of scoring classifiers over a
test set. Broadly, the choices are to evaluate its classification performance, its ranking
performance, or its probability estimation performance. Classification performance is
evaluated by a measure such as accuracy, which is the proportion of test instances that
is correctly classified. Probability estimation performance is evaluated by a measure
such as mean squared error, also called the Brier score, which can be expressed as
∑x(p̂(x)− p(x))2, where p̂(x) is the estimated probability for instance x, and p(x) is 1
if x is positive and 0 if x is negative. The calculation of both accuracy and Brier score is
an O(n) operation, where n is the size of the test set.

480 S. Wu, P. Flach, and C. Ferri

Ranking performance is evaluated by sorting the test instances on their score, which
is an O(n logn) operation. It thus incorporates performance information that neither ac-
curacy nor Brier score can access. There are a number of reasons why it is desirable to
have a good ranker, rather than a good classifier or a good probability estimator. One of
the main reasons is that accuracy requires a fixed score threshold, whereas it may be de-
sirable to change the threshold in response to changing class or cost distributions. Good
accuracy obtained with one threshold does not imply good accuracy with another. Fur-
thermore, good performance in both classification and probability estimation is easily
obtained if one class is much more prevalent than the other. For these reasons we prefer
to evaluate ranking performance. This can be done by constructing an ROC curve.

An ROC curve is generally defined as a piecewise linear curve, plotting a model’s
true positive rate on the y-axis against its false positive rate on the x-axis, evaluated
under all possible thresholds on the score. For a test set with t test instances, the ROC
curve will have (up to) t linear segments and t + 1 points. We are interested in the
area under this curve, which is well-known to be equivalent to the Wilcoxon-Mann-
Whitney sum of ranks test, and estimates the probability that a randomly chosen positive
is ranked before a randomly chosen negative. AUC can be calculated directly from the
sorted test instances, without the need for drawing an ROC curve or calculating ranks,
as we now show.

Denote the total number of positive instances and negative instances by m and n,
respectively. Let {y1, . . . ,ym} be the scores predicted by a model for the m positives,
and {x1, . . . ,xn} be the scores predicted by a model for the n negatives. Assume both yi

and x j are within the interval [0,1] for all i = 1,2, ...,m and j = 1,2, ...,n; high scores
are interpreted as evidence for the positive class. By a slight abuse of language, we
will sometimes use positive (negative) score to mean ‘score of a positive (negative)
instance’.

AUC simply counts the number of pairs of positives and negatives such that the
former has higher score than the latter, and can therefore be defined as follows:

θ̂ =
1

mn

m

∑
i=1

n

∑
j=1

ψi j (1)

where ψi j is 1 if yi− x j > 0, and 0 otherwise. Let Za be the sequence produced by
merging {y1, . . . ,ym} and {x1, . . . ,xn} and sorting the merged set in ascending order (so
a good ranker would put the positives after the negatives in Za), and let ri be the rank of
yi in Za. Then AUC can be expressed in terms of ranks as follows:

θ̂ =
1

mn

(
m

∑
i=1

ri−
m(m+ 1)

2

)

=
1

mn

m

∑
i=1

(ri− i) =
1

mn

m

∑
i=1

ri−i

∑
t=1

1 (2)

Here, ri− i is the number of negatives before the ith positive in Za, and thus AUC is the
(normalised) sum of the number of negatives before each of the m positives in Za.

Dually, let Zd be the sequence produced by sorting {y1, . . . ,ym} ∪ {x1, . . . ,xn} in
descending order (so a good ranker would put the positives before the negatives in Zd).
We then obtain

θ̂ =
1

mn

n

∑
j=1

(s j− j) =
1

mn

n

∑
j=1

s j− j

∑
t=1

1 (3)

An Improved Model Selection Heuristic for AUC 481

Table 1. Column-wise algorithm for calculating AUC

Inputs: m positive and n negative test instances, sorted by decreasing score;
Outputs: θ̂: AUC value of the model;
Algorithm:

1: Initialise: AUC← 0, c← 0
2: for each consecutive instance in the ranking do
3: if the instance is positive then
4: c← c+1
5: else
6: AUC← AUC +c
7: end if
8: end for
9: θ̂← AUC

mn

where s j is the rank of x j in Zd , and s j− j is the number of positives before the jth neg-
ative in Zd . From this perspective, AUC represents the normalised sum of the number
of positives before each of the n negatives in Zd .

From Eq. (3) we obtain the algorithm shown in Table 1 to calculate the value of the
AUC. The algorithm is different from other algorithms to calculate AUC (e.g., [4]) be-
cause it doesn’t explicitly manipulate ranks. The algorithm works by calculating AUC
column-wise in ROC space, where c represents the (un-normalised) height of the current
column. For simplicity, we assume there are no ties (this can be easily incorporated by
reducing the increment of AUC in line 6). A dual, row-wise algorithm using the ascend-
ing ordering Za can be derived from Eq. (2). Alternatively, we can calculate the Area
Over the Curve (AOC) row-wise using the descending ordering, and set θ̂← mn−AOC

mn at
the end.

3 sROC Curves and Scored AUC

Our main interest in this paper is to select models that perform well as rankers. To
that end, we could simply evaluate AUC on a validation set and select those models
with highest AUC. However, this method may suffer from overfitting the validation set
whenever small difference in the score values lead to considerable differences in AUC.

Example 1. Two models, M1 and M2, are evaluated on a small test set containing 3
positives and 3 negatives. We obtain the following scores:

M1 : 1.0+ 0.7+ 0.6+ 0.5− 0.4− 0.0−
M2 : 1.0+ 0.9+ 0.6− 0.5+ 0.2− 0.0−

Here, for example, 0.7+ means that a positive instance receives a score of 0.7, and 0.6−
means that a negative instance receives a score of 0.6. In terms of AUC, M1 achieves the
perfect ranking, while M2 has AUC = 8/9. In terms of Brier score, both models perform
equally, as the sum of squared errors is 0.66 in both cases, and the mean squared error is
0.11. However, one could argue that M2 is preferable as its ranking is much less sensitive

482 S. Wu, P. Flach, and C. Ferri

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

M
1

M
2

Fig. 1. sROC curves for example models M1 and M2 from Example 1

to drift of the scores. For instance, if we subtract 0.25 from the positive scores, the AUC
of M1 decreases to 6/9, but the AUC of M2 stays the same.

In order to study this more closely, we introduce the following parameterised version
of AUC.

Definition 1. Given a margin τ with 0≤ τ≤ 1, the margin-based AUC is defined as

θ̂(τ) =
1

mn

m

∑
i=1

n

∑
j=1

ψi j(τ) (4)

where ψi j(τ) is 1 if yi− x j > τ, and 0 otherwise.

Clearly, θ̂(0) = θ̂, and θ̂(1) = 0. More generally, θ̂(τ) is a non-increasing step function
in τ. It has (up to) mn horizontal segments. For a given τ, θ̂(τ) can be interpreted as
the AUC resulting from decreasing all positive scores with τ (or increasing all negative
scores with τ). Figure 1 plots θ̂(τ) of models M1 and M2 from Example 1. It is clear
that the margin-based AUC of M1 deteriorates more rapidly with τ than that of M2, even
though its initial AUC is higher. We call such a plot of θ̂(τ) against τ an sROC curve.

Consider the area under the sROC curve, denoted by θ̂s. This is a measure of how
rapidly the AUC deteriorates with increasing margin. It can be calculated without ex-
plicitly constructing the sROC curve, as follows.

Theorem 1. θ̂s = 1
mn ∑m

i=1 ∑n
j=1(yi− x j)ψi j .

Proof

θ̂s =
∫ 1

0
θ̂(τ)dτ =

∫ 1

0

1
mn

m

∑
i=1

n

∑
j=1

ψi j(τ)dτ

=
1

mn

m

∑
i=1

n

∑
j=1

∫ 1

0
ψi j(τ)dτ =

1
mn

m

∑
i=1

n

∑
j=1

(yi− x j)ψi j (5)

An Improved Model Selection Heuristic for AUC 483

Thus, just as θ̂ is the area under the ROC curve, θ̂s is the area under the sROC curve; we
call it scored AUC (sAUC). An equivalent definition of sAUC was introduced in [12],
and independently by Huang and Ling, who refer to it as soft AUC [7]. Its interpretation
as the area under the sROC curve is, to the best of our knowledge, novel. The sROC
curve depicts the stability of AUC with increasing margins, and sAUC aggregates this
over all margins into a single statistic.

Whereas in Eq. (1) the term ψi j is an indicator that only reflects the ordinal com-
parison between the scores, (yi− x j)ψi j in Eq. (5) measures how much yi is larger than
x j. Notice that, by including the ordinal term, we combine information from both ranks
and scores. Indeed, if we omit ψi j from Eq. (5) the expression reduces to 1

m ∑m
i=1 yi−

1
n ∑n

i=1 xi = M+−M−; i.e., the difference between the mean positive and negative scores.
This measure (a quantity that takes scores into account but ignores the ranking) is
investigated in [2].

We continue to analyse the properties of sAUC. Let R+ = 1
m ∑m

i=1
ri−i

n yi be the
weighted average of the positive scores, weighted by the proportion of negatives that
are correctly ranked relative to each positive. Similarly, let R− = 1

n ∑n
j=1

s j− j
m x j be the

weighted average of the negative scores, weighted by the proportion of positives that
are correctly ranked relative to each negative (i.e., the height of the column under the
ROC curve). We then have the following useful reformulation of sAUC.

Theorem 2. θ̂s = R+−R−.

Proof

θ̂s =
1

mn

m

∑
i=1

n

∑
j=1

(yi− x j)ψi j =
1

mn

m

∑
i=1

n

∑
j=1

yiψi j−
1

mn

m

∑
i=1

n

∑
j=1

x jψi j =

=
1

mn

m

∑
i=1

ri−i

∑
j=1

yi−
1

mn

n

∑
j=1

s j− j

∑
i=1

x j =
1
m

m

∑
i=1

ri− i
n

yi−
1
n

n

∑
j=1

s j− j

m
x j = R+−R−

This immediately leads to the algorithm for calculating θ̂s in Table 2. The algorithm
calculates R+ column-wise as in the AUC algorithm (Table 1), and the complement of
R− row-wise (so that the descending ordering can be used in both cases).

Example 2. Continuing Example 1, we have

M1: R+ = 0.77, R− = 0.3 and θ̂s = 0.47;
M2: R+ = 0.74, R− = 0.2 and θ̂s = 0.54.

We thus have that M2 is somewhat better in terms of sAUC than M1 because, even
though its AUC is lower, it is robust over a larger range of margins.

The following theorems relate θ̂s, θ̂ and M+−M−.

Theorem 3. (1) R+ ≤M+ and R− ≤M−.
(2) M+−M− ≤ θ̂s ≤ θ̂.

484 S. Wu, P. Flach, and C. Ferri

Table 2. Algorithm for calculating sAUC

Inputs: m positive and n negative test instances, sorted by decreasing score;
Outputs: θ̂s: scored AUC;
Algorithm:

1: Initialise: AOC← 0, AUC← 0, r← 0, c← 0
2: for each consecutive instance with score s do
3: if the instance is positive then
4: c← c+ s
5: AOC← AOC + r
6: else
7: r← r + s
8: AUC← AUC +c
9: end if
10: end for
11: R− ← mr−AOC

mn
12: R+← AUC

mn
13: θ̂s← R+−R−

Proof. (1)

R+ =
1

mn

m

∑
i=1

ri−i

∑
j=1

yi ≤
1

mn

m

∑
i=1

n

∑
j=1

yi = M+

R− =
1

mn

n

∑
j=1

s j− j

∑
i=1

x j ≤
1

mn

n

∑
j=1

m

∑
i=1

x j = M−

(2)

M+−M− =
1

mn

m

∑
i=1

n

∑
j=1

(yi− x j)≤
1

mn

m

∑
i=1

n

∑
j=1

(yi− x j)ψi j

= θ̂s ≤
1

mn

m

∑
i=1

n

∑
j=1

ψi j = θ̂

The last step follows because yi ≤ 1 and 0≤ x j ≤ 1, hence yi− x j ≤ 1, for any i and j.

Theorem 4. (1) For separated scores (i.e., yi > x j for any i and j), M+−M− = θ̂s ≤
θ̂ = 1.
(2) For perfect scores (i.e., yi = 1 and x j = 0 for any i and j), M+−M− = θ̂s = θ̂ = 1.

Proof. (1) For separated scores we have ψi j = 1 for any i and j, hence M+−M− = θ̂s

and θ̂ = 1.
(2) For perfect scores we additionally have yi− x j = 1 for any i and j, hence θ̂s = 1.

Finally, we investigate the statistical properties of sAUC. We note that θ̂s is an unbiased
estimate of θs =

∫ 1
0 P(y > x + τ)dτ, which is proved in the following theorem.

Theorem 5. θ̂s is an unbiased estimate of θs.

An Improved Model Selection Heuristic for AUC 485

Proof. From Eq. (5), we have

E(θ̂s) = E

[
1

mn

m

∑
i=1

n

∑
j=1

∫ 1

0
ψi j(τ)dτ

]

=
∫ 1

0

(

E

[
1

mn

m

∑
i=1

n

∑
j=1

ψi j(τ)

])

dτ

=
∫ 1

0
P(y > x + τ)dτ

The variance of the estimate θ̂s can be obtained using the method of DeLong et al. [1]
(we omit the proof due to lack of space).

Theorem 6. The variance of θ̂s is estimated by

var(θ̂s) =
n−1

mn(m−1)

m

∑
i=1

(
1
n

n

∑
j=1

(yi− xi)ψi j− θ̂s

)2

+
m−1

mn(n−1)

n

∑
j=1

(
1
m

m

∑
i=1

(yi− xi)ψi j− θ̂s

)2

.

4 Experimental Evaluation

Our experiments to evaluate the usefulness of sAUC for model selection are described
in this section. Our main conclusion is that sAUC outperforms AUC and BS (Brier
score) for selecting models, particularly when validation data is limited. We attribute
this to sAUC having a lower variance than AUC and BS. Consequently, validation set
values generalise better to test set values.

In the first experiment, we generated two artificial data sets (A and B) of 100 exam-
ples, each labelled with a ‘true’ probability p which is uniformly sampled from [0,1].
Then, we label the instances (+ if p ≥ 0.5, − otherwise). Finally, we swap the classes
of 10 examples of data set A, and of 11 examples of data set B. We then construct
‘models’ MA and MB by giving them access to the ‘true’ probabilities p, and record
which one is better (either MA on data set A or MB on data set B). For example, by
thresholding p at 0.5, MA has accuracy 90% on data set A, and MB has accuracy 89%
on data set B. We then add noise to obtain ‘estimated’ probabilities in the following
way: p′ = p+ k ∗U(−0.5,0.5), where k is a noise parameter, and U(−0.5,0.5) obtains
a pseudo-random number between −0.5 and 0.5 using a uniform distribution (if the
corrupted values are > 1 or < 0, we set them to 1 and 0 respectively).

After adding noise, we again determine which model is better according to the four
measures. In Figure 2, we show the proportion of cases where noise has provoked a
change in the selection of the better model, using different values of the noise param-
eter k (averaged over 10,000 runs for each value of k). As expected, the percentage of
changes increases with respect to noise for all four measures, but sAUC presents the
most robust behaviour among all these four measures. This simple experiment shows
that AUC, BS and accuracy are more vulnerable to the existence of noise in the pre-
dicted probabilities, and therefore, in this situation, the model selected by sAUC is
more reliable than the models selected by the other three measures.

486 S. Wu, P. Flach, and C. Ferri

Fig. 2. The effect of noise in the probability estimates on four model selection measures

We continue reporting our experiments with real data. We use the three metrics
(AUC, sAUC and BS) to select models on the validation set, and compare them using
the AUC values on the test set. 17 two-class data sets are selected from the UCI repos-
itory for this purpose. Table 3 lists their numbers of attributes, numbers of instances,
and relative size of the majority class.

Table 3. UCI data sets used in the experiments (larger data sets used in separate experiment in
bold face)

Data set #Attrs #Exs %Maj.Class
1 Monk1 6 556 50.00
2 Monk2 6 601 65.72
3 Monk3 6 554 55.41
4 Kr-vs-kp 36 3,196 52.22
5 Tic-tac-toe 9 958 64.20
6 Credit-a 15 690 55.51
7 German 20 1,000 69.40
8 Spam 57 4,601 60.59
9 House-vote 16 435 54.25

Data set #Attrs #Exs %Maj.Class
10 Breast Cancer 9 286 70.28
11 Breast-w 9 699 65.52
12 Colic 22 368 63.04
13 Heart-statlog 13 270 59.50
14 Sick 29 3,772 93.87
15 Caravan 85 5,822 94.02
16 Hypothyroid 25 3,163 95.22
17 Mushroom 22 8,124 51.80

The configuration of the experiments is as follows. We distinguish between small
data sets (with up to 1,000 examples) and larger data sets. For the 11 small data sets, we
randomly split the whole data set into two equal-sized parts. One half is used as training
set; the second half is again split into 20% validation set and 80% test set. In order to ob-
tain models with sufficiently different performance, we train 10 different classifiers with
the same learning technique (J48 unpruned with Laplace correction, Naive Bayes, and
Logistic Regression, all from Weka) over the same training data, by randomly removing
three attributes before training. We select the best model according to three measures:
AUC, sAUC and BS using the validation set. The performance of each selected model
is assessed by AUC on the test set. Results are averaged over 2000 repetitions of this

An Improved Model Selection Heuristic for AUC 487

Table 4. Experimental results (AUC) on small data sets. Figures in bold face indicate a win of
sAUC over AUC/BS. The last line indicates the total number of wins, which is never smaller than
the critical value (9 out of 11).

J48 Naive Bayes Logistic Regression
sAUC AUC BS sAUC AUC BS sAUC AUC BS
1 86.34 83.76 85.81 70.80 67.98 69.96 70.07 67.28 69.23
2 51.79 51.32 51.05 51.19 51.81 51.78 51.19 51.76 51.80
3 95.92 93.20 95.47 95.47 92.21 94.96 95.98 92.65 95.58
5 79.48 77.72 78.16 72.13 70.88 71.05 74.62 72.11 72.68
6 90.16 89.25 89.56 89.70 89.06 89.61 91.12 90.62 90.55
7 68.95 68.75 68.85 77.69 77.24 77.25 77.60 77.29 77.20
9 98.11 97.81 97.98 96.90 96.74 96.81 98.36 98.24 98.28
10 61.75 62.10 62.09 69.62 69.09 68.98 65.19 64.94 65.33
11 97.68 97.64 97.67 98.01 97.94 98.00 99.24 99.18 99.22
12 87.13 85.65 86.13 83.85 83.60 83.82 84.18 83.74 83.76
13 83.42 83.56 83.45 88.69 88.68 88.49 89.24 89.12 89.13
wins 9 9 10 10 10 9

experiment to reduce the effect of the random selection of attributes. These results are
reported in Table 4. We performed a sign test over these results to compare the overall
performance. The critical value for a two-tailed sign test over 11 data sets at α = 0.05 is
9 wins. We conclude that sAUC significantly outperforms AUC/BS in all experiments.
Given that the sign test is relatively weak, we consider this to be strong experimental
evidence that sAUC is a good model selector for AUC in cases where we have limited
validation data.

For the 6 larger data sets we employed a slightly different experimental configura-
tion. In this case we employ 50% of the data for training the models, 25% for validation,
and 25% for test. Here we only run 100 iterations. Our intuition is that when we have
enough validation data, sAUC demonstrates less of an advantage for selecting models
with higher test AUC because the variance of validation AUC is drastically reduced.
The results included in Table 5 confirm this intuition, as the critical number of wins or
losses (6 at α = 0.10) is never achieved, and thus no significant differences in perfor-
mance are observed.

Table 5. Experimental results (AUC) on larger data sets. Figures in bold face indicate a win of
sAUC over AUC/BS. According to the sign test, the numbers of wins and losses are not significant.

J48 Naive Bayes Logistic Regression
sAUC AUC BS sAUC AUC BS sAUC AUC BS
4 99.92 99.91 99.91 95.88 96.45 96.45 99.59 99.55 99.57
8 96.69 96.78 96.67 95.88 96.50 96.45 96.95 96.93 96.91
14 98.70 98.67 98.65 91.85 92.00 91.62 93.68 93.78 93.59
15 69.55 69.67 69.90 70.47 70.59 70.75 94.83 96.55 94.90
16 96.73 97.28 96.59 98.00 97.99 97.90 96.91 97.01 96.98
17 100 100 100 99.80 99.88 99.79 100 100 100
wins 2 3 1 3 2 3

488 S. Wu, P. Flach, and C. Ferri

Fig. 3. Scatter plots of test AUC vs. validation AUC (left) and test AUC vs. validation sAUC
(right) on the Credit-a data set.

Finally, Figure 3 shows two scatter plots of the models obtained for the Credit-a data
set, the first one plotting test AUC against validation AUC, and the second one plotting
test AUC against validation sAUC. Both plots include a straight line obtained by linear
regression. Since validation sAUC is an underestimate of validation AUC (Theorem 3),
it is not surprising that validation sAUC is also an underestimate of test AUC. Validation
AUC appears to be an underestimate of test AUC on this data set, but this may be caused
by the outliers on the left. But what really matters in these plots is the proportion of
variance in test AUC not accounted for by the linear regression (which is 1−g2, where
g is the linear correlation coefficient). We can see that this is larger for validation AUC,
particularly because of the vertical lines observed in Figure 3 (left). These lines indicate
how validation AUC fails to distinguish between models with different test AUC. This
phenomenon particularly occurs for a number of models with perfect ranking on the
validation set. Since sAUC takes the scores into account, and since these models do
not have perfect scores on the validation set, the same phenomenon is not observed in
Figure 3 (right).

5 Conclusions

The ROC curve is useful for visualising the performance of scoring classification mod-
els. ROC curves contain a wealth of information about the performance of one or more
classifiers, which can be utilised to improve their performance and for model selection.
For example, Provost and Fawcett [10] studied the application of model selection in
ROC space when target misclassification costs and class distributions are uncertain.

In this paper we introduced the scored AUC (sAUC) metric to measure the perfor-
mance of a model. The difference between AUC and scored AUC is that the AUC
only uses the ranks obtained from scores, whereas the scored AUC uses both ranks and
scores. We defined sAUC as the area under the sROC curve, which shows how quickly
AUC deteriorates if the positive scores are decreased. Empirically, sAUC was found to
select models with larger AUC values then AUC itself (which uses only ranks) or the
Brier score (which uses only scores).

An Improved Model Selection Heuristic for AUC 489

Evaluating learning algorithms can be regarded as a process of testing the diversity
of two samples, that is, a sample of the scores for positive instances and that for negative
instances. As the scored AUC takes advantage of both the ranks and the original values
of samples, it is potentially a good statistic for testing the diversity of two samples,
in a similar vein as the Wilcoxon-Man-Whitney U statistic. Preliminary experiments
suggest that sAUC has indeed higher power than WMW. Furthermore, while this paper
only investigates sAUC from the non-parametric perspective, it is worthwhile to study
its parametric properties. We plan to investigate these further in future work.

Acknowledgments

We thank José Hernández-Orallo and Thomas Gärtner for useful discussions. We would
also like to thank the anonymous reviewers for their helpful comments.

References

1. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44,
837–845 (1988)

2. Ferri, C., Flach, P., Hernández-Orallo, J., Senad, A.: Modifying ROC curves to incorporate
predicted probabilities. In: Proceedings of the Second Workshop on ROC Analysis in Ma-
chine Learning (ROCML’05) (2005)

3. Fawcett, T.: Using Rule Sets to Maximize ROC Performance. In: Proc. IEEE Int’l Conf. Data
Mining, pp. 131–138 (2001)

4. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Let. 27-8, 861–874 (2006)
5. Hanley, J.A., McNeil, B.J.: The Meaning and Use of the AUC Under a Receiver Operating

Characteristic (ROC) Curve. Radiology 143, 29–36 (1982)
6. Hsieh, F., Turnbull, B.W.: Nonparametric and Semiparametric Estimation of the Receiver

Operating Characteristic Curve. Annals of Statistics 24, 25–40 (1996)
7. Huang, J., Ling, C.X.: Dynamic Ensemble Re-Construction for Better Ranking. In: Proc. 9th

Eur. Conf. Principles and Practice of Knowledge Discovery in Databases, pp. 511–518
(2005)

8. Huang, J., Ling, C.X.: Using AUC and Accuray in Evaluating Learing Algorithms. IEEE
Transactions on Knowledge and Data Engineering 17, 299–310 (2005)

9. Provost, F., Fawcett, T., Kohavi, R.: Analysis and Visualization of Classifier Performance:
Comparison Under Imprecise Class and Cost Distribution. In: Proc. 3rd Int’l Conf. Knowl-
edge Discovery and Data Mining, pp. 43–48 (1997)

10. Provost, F., Fawcett, T.: Robust Classification for Imprecise Environments. Machine Learn-
ing 42, 203–231 (2001)

11. Provost, F., Domingos, P.: Tree Induction for Probability-Based Ranking. Machine Learn-
ing 52, 199–215 (2003)

12. Wu, S.M., Flach, P.: Scored Metric for Classifier Evaluation and Selection. In: Proceedings
of the Second Workshop on ROC Analysis in Machine Learning (ROCML’05) (2005)

13. Zhou, X.H., Obuchowski, N.A., McClish, D.K.: Statistical Methods in Diagnostic Medicine.
John Wiley and Sons, Chichester (2002)

Finding the Right Family: Parent and Child

Selection for Averaged One-Dependence
Estimators

Fei Zheng and Geoffrey I. Webb

Faculty of Information Technology, Monash University, VIC 3800, Australia
{feizheng,Geoff.Webb}@infotech.monash.edu.au

Abstract. Averaged One-Dependence Estimators (AODE) classifies by
uniformly aggregating all qualified one-dependence estimators (ODEs).
Its capacity to significantly improve naive Bayes’ accuracy without undue
time complexity has attracted substantial interest. Forward Sequential
Selection and Backwards Sequential Elimination are effective wrapper
techniques to identify and repair harmful interdependencies which have
been profitably applied to naive Bayes. However, their straightforward
application to AODE has previously proved ineffective. We investigate
novel variants of these strategies. Our extensive experiments show that
elimination of child attributes from within the constituent ODEs results
in a significant improvement in probability estimate and reductions in
bias and error relative to unmodified AODE. In contrast, elimination
of complete constituent ODEs and the four types of attribute addition
are found to be less effective and do not demonstrate any strong advan-
tage over AODE. These surprising results lead to effective techniques for
improving AODE’s prediction accuracy.

1 Introduction

Semi-naive Bayesian techniques further improve naive Bayes’ accuracy by re-
laxing its assumption that the attributes are conditionally independent [1, 2, 3,
4,5,6,7,8,9,10,11,12,13,14,15,16]. One approach to weakening this assumption
is to use an x-dependence classifier [7], in which each attribute depends upon
the class and at most x other attributes. Examples include Tree Augmented
Naive Bayes (TAN) [9], Super Parent TAN (SP-TAN) [11], NBTree [5], Lazy
Bayesian rules (LBR) [12] and Averaged One-Dependence Estimators (AODE)
[13]. Among these techniques, TAN, SP-TAN and AODE restrict themselves to
one-dependence classifiers, which readily admit to efficient computation. Another
approach to remedying violations of the attribute independence assumption is
to apply naive Bayes with a new attribute set by deleting or merging highly
related attributes. Key such approaches include Backwards Sequential Elimi-
nation (BSE) [1], Forward Sequential Selection (FSS) [4], Backward Sequential
Elimination and Joining (BSEJ) [6] and Hierarchical Naive Bayes (HNB) [16].
An extensive comparative study of semi-naive Bayes techniques [17] shows that

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 490–501, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding the Right Family: Parent and Child Selection for AODE 491

AODE has a significant advantage in error over many other semi-naive Bayesian
algorithms, with the exceptions of LBR and SP-TAN. It shares similar levels of
error with these two algorithms, while having considerably lower training time
complexity relative to SP-TAN and test time complexity relative to LBR. AODE
is a powerful alternative to naive Bayes, significantly reducing its error, while
retaining much of its attractive simplicity and efficiency. Consequently it has
received substantial attention. Indeed, at the time of writing, the paper intro-
ducing AODE [13] is the most cited paper from 2005 in the Machine Learning
journal [18].

FSS and BSE use a simple heuristic wrapper approach that seeks to minimize
error on the training set. Starting from the empty attribute set, FSS operates
by iteratively adding attributes, each time adding the attribute whose addition
best reduces training set error. BSE uses the opposite search direction and oper-
ates by iteratively removing attributes, each time removing the attribute whose
elimination most improves training set accuracy. When applied to naive Bayes,
FSS and BSE have proved to be beneficial in domains with highly correlated at-
tributes. It is therefore surprising that two attempts to apply these approaches
to AODE have proved ineffective [15, 19]. Where the training time overheads of
attribute selection are not a major concern, attribute selection has the potential
of two beneficial effects, both of improving accuracy and also of reducing test
time due to the need to process fewer attributes. This paper investigates why
previous approaches to attribute selection for AODE have proved ineffective,
and develops novel attribute selection algorithms that do prove effective when
applied to AODE and which have potential for wider application.

2 Averaged One-Dependence Estimators (AODE)

The Bayesian classifier [20] predicts a class for an unseen example x=〈x1, . . . , xn〉
by selecting

argmax
y

(
P̂ (y | x1, . . . , xn)

)
, (1)

where P̂ (·) is an estimate of the probability P (·), xi is a value of the ith attribute
Xi, and y ∈ {c1, . . . , ck} is a value of the class variable Y . Naive Bayes estimates
P̂ (y | x1, . . . , xn) by assuming that the attributes are independent given the
class, and hence classifies x by selecting

argmax
y

(

P̂ (y)
n∏

i=1

P̂ (xi | y)

)

. (2)

Domingos and Pazzani (1996) point out that interdependencies between at-
tributes will not affect naive Bayes’ accuracy, so long as it can generate the
correct ranks of conditional probabilities for the classes. However, the success of
semi-naive Bayesian methods show that appropriate relaxation of the conditional
independence assumption is effective.

492 F. Zheng and G.I. Webb

One natural extension to naive Bayes is to relax the independence assump-
tion by utilizing a one-dependence classifier (ODE) [7], such as TAN [9], in which
each attribute depends upon the class and at most one other attribute. To avoid
model selection, AODE [13] selects a limited class of ODEs and aggregates the
probability estimates of all qualified classifiers within this class. A single at-
tribute, called the parent attribute, is selected as the parent of all the other
attributes in each ODE. In order to avoid unreliable base probability estimates,
when classifying an object 〈x1, . . . , xn〉 the original AODE excludes ODEs with
parent xi where the frequency of the value xi is lower than limit m=30, a widely
used minimum on sample size for statistical inference purposes. However, subse-
quent research [14] shows that this constraint actually increases error and hence
the current research uses m=1.

From the definition of conditional probability we have

P (y | x) = P (y,x)/P (x) ∝ P (y,x), (3)

and for any attribute value xi,

P (y,x) = P (y, xi)P (x | y, xi). (4)

This equality holds for every xi. Therefore,

P (y,x) =

∑
i:1≤i≤n∧F (xi)≥m P (y, xi)P (x | y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}| , (5)

where F (xi) is the frequency of attribute-value xi in the training sample.
To this end, AODE classifies by selecting:

argmax
y

⎛

⎝
∑

i:1≤i≤n∧F (xi)≥m

P̂ (y, xi)
n∏

j=1

P̂ (xj | y, xi)

⎞

⎠. (6)

At training time AODE generates a three-dimensional table of probability
estimates for each attribute-value, conditioned by each other attribute-value
and each class. The resulting space complexity is O(k(nv)2), where v is the
mean number of values per attribute. The time complexity of forming this table
is O(tn2), where t is the number of training examples, as an entry must be
updated for every training case and every combination of two attribute-values
for that case. Classification requires the tables of probability estimates formed at
training time of space complexity O(k(nv)2). The time complexity of classifying
a single example is O(kn2) as we need to consider each pair of qualified parent
and child attribute within each class.

AODE maintains the robustness and much of the efficiency of naive Bayes,
and at the same time exhibits significantly higher classification accuracy for
many data sets. Therefore, it has the potential to be a valuable substitute for
naive Bayes over a considerable range of classification tasks.

Finding the Right Family: Parent and Child Selection for AODE 493

3 Attribute Selection

In naive Bayes, all attributes are used during prediction, and hence all influence
classification. When two attributes are strongly related, the influence from these
two attributes may be given too much weight, and the influence of the other
attributes may be reduced, which can result in prediction bias. Selecting an
appropriate attribute subset, which excludes highly correlated attributes, might
alleviate this problem.

Since there are 2n candidate subsets of n attributes, an exhaustive search of
the space is prohibitive. This necessitates the use of heuristic search. Greedy
hill climbing is a simple and widely used technique, which adds or removes an
attribute irrevocably at each step. That is, once an attribute is added or removed,
it cannot be respectively removed from or added to the set. To measure the
goodness of alternative attribute subsets, we need an evaluation function, which
commonly measures the discriminating ability of an attribute or an attribute set
among classes. The Wrapper [22] approach uses accuracy estimates on the target
induction algorithm as the evaluation function. Leave-one-out cross validation is
an attractive technique for estimating accuracy from the training set in Bayesian
classifier, as it can be efficiently performed by simply modifying the frequency
tables.

Another two issues in hill climbing search are the direction of search and
stopping criteria. Forward Sequential Selection (FSS) [4] begins with the empty
attribute set and successively adds attributes, while Backwards Sequential Elim-
ination (BSE) [1] starts with the complete attribute set and successively removes
attributes. There are three commonly used options for halting the search. We
call the first strategy Stop on First Nonimprovement (SFN), as it terminates the
search when there is no classification accuracy improvement [1, 6]. The second
option, called Stop on First Reduction (SFR), considers performing selection
continually so long as the accuracy is not reduced [4]. The third, called Continue
Search and Select Best (CSSB), continues the search until all attributes have
been added or removed and then selects the attribute subset with the highest
accuracy evaluation [19].

In the context of naive Bayes, FSS and BSE select a subset of attributes
using leave-one-out cross validation error as a selection criterion and apply naive
Bayes to the new attribute set. The subset of selected attributes is denoted as S.
Independence is assumed among the resulting attributes given the class. Hence,
FSS and BSE classify x by selecting

argmax
y

(

P̂ (y)
∏

x∈S

P̂ (x|y)

)

. (7)

4 Attribute Selection for AODE

In theory, AODE would appear to be a promising candidate for attribute selection.
While an individual ODE can factor out harmful attribute inter-dependencies in

494 F. Zheng and G.I. Webb

which the parent is involved, it will not help when the parent is not. When there are
many more attributes than those that participate in a particular inter-dependency,
the majority of ODEs will not factor out the inter-dependency, and hence it is
credible that deleting one of the attributes should be beneficial. Why then have
previous attempts [15,19] to apply attribute-selection to AODE provedunfruitful?

One difference between applying attribute selection in NB compared to AODE
may be the greater complexity of an AODE model, resulting in greater variance
in estimates of performance as the model is manipulated through attribute elim-
ination and hence reduced reliability in these estimates. Another difference may
be that attributes play multiple roles in an AODE model (either a parent or a
child) whereas they play only a single role of child in an NB model.

To explore the first issue, we evaluate the use of a statistical test to assess
whether an observed difference in holdout evaluation scores should be accepted
as meaningful during the attribute selection process.

To explore the second issue, we investigate the separate selection of attributes
in each of the parent and child roles, as well as in both roles together.

In the context of AODE, FSS and BSE use leave-one-out cross validation error
on AODE as a selection criterion. Each available selection is attempted and the
one that results in the lowest error is implemented. The process is repeated for
successive attributes until the decrease in error fails a one-tailed binomial sign
test at a significance level of 0.05.

To formalize the various attribute selection strategies we introduce into AODE
the use of a parent (p) and a child (c) set, each of which contains the set of indices
of attributes that can be employed in respectively a parent or child role in the
AODE. The number of indices in each set is denoted respectively as ‖p‖ and
‖c‖. We define AODEp,c as

argmax
y

⎛

⎝
∑

i∈p:F (xi)≥m

P̂ (y, xi)
∏

j∈c

P̂ (xj | y, xi)

⎞

⎠. (8)

Assume that attribute xi is related to other attributes, and that these harmful
interdependencies can be detected and repaired by FSS or BSE. The exclusion
of xi from c may have influence on ‖p‖ - 1 ODEs, while the exclusion of xi

from p may only factor out the effect of the single ODE in which xi is the
parent. In AODEp,c, a linear function is used to combine constituent ODEs, and
a multiplicative function is used to combine attributes within each ODE. Large
improvements are possible because of the multiplicative influence, and hence
exclusion of a child may have greater effect than exclusion of a parent.

4.1 FSS for AODE

There are four different types of attribute addition. The first type of attribute
addition, called parent addition (PA), starts with p and c initialized to the empty
and full sets of {1 . . . n} respectively. It adds attribute indexes to p, effectively
adding a single ODE at each step. The second type of attribute addition, called

Finding the Right Family: Parent and Child Selection for AODE 495

Table 1. Data sets

No. Domain Case Att Class No. Domain Case Att Class

1 Abalone 4177 9 3 29 Liver Disorders (bupa) 345 7 2
2 Adult 48842 15 2 30 Lung Cancer 32 57 3
3 Annealing 898 39 6 31 Lymphography 148 19 4
4 Audiology 226 70 24 32 Mfeat-mor 2000 7 10
5 Autos Imports-85 205 26 7 33 Mushrooms 8124 23 2
6 Balance Scale 625 5 3 34 Nettalk(Phoneme) 5438 8 50
7 Breast Cancer (Wisconsin) 699 10 2 35 New-Thyroid 215 6 3
8 Car Evaluation 1728 7 4 36 Optical Digits 5620 49 10
9 Chess 551 40 2 37 Page Blocks 5473 11 5

10 Contact Lenses 24 5 3 38 Pen Digits 10992 17 10
11 Credit Approval 690 16 2 39 Pima Indians Diabetes 768 9 2
12 Dmplexer 1000 15 2 40 Postoperative Patient 90 9 3
13 Echocardiogram 131 7 2 41 Primary Tumor 339 18 22
14 German 1000 21 2 42 Promoter Gene Sequences 106 58 2
15 Glass Identification 214 10 3 43 Satellite 6435 37 6
16 Heart 270 14 2 44 Segment 2310 20 7
17 Heart Disease (cleveland) 303 14 2 45 Sign 12546 9 3
18 Hepatitis 155 20 2 46 Sonar Classification 208 61 2
19 Horse Colic 368 23 2 47 Splice-junction Gene Sequences 3190 62 3
20 House Votes 84 435 17 2 48 Syncon 600 61 6
21 Hungarian 294 14 2 49 Sick-euthyroid 3772 30 2
22 Hypothyroid(Garavan Institute) 3772 30 4 50 Tic-Tac-Toe Endgame 958 10 2
23 Ionosphere 351 35 2 51 Vehicle 846 19 4
24 Iris Classification 150 5 3 52 Volcanoes 1520 4 4
25 King-rook-vs-king-pawn 3196 37 2 53 Vowel 990 14 11
26 Labor negotiations 57 17 2 54 Waveform-5000 5000 41 3
27 LED 1000 8 10 55 Wine Recognition 178 14 3
28 Letter Recognition 20000 17 26 56 Zoo 101 18 7

child addition (CA), begins with p and c initialized to the full and empty sets
respectively. It adds attribute indexes to c, effectively adding an attribute to
within every ODE at each step. Starting with the empty set for both p and c,
Parent and child addition (P∧CA) at each step adds the same value to both p
and c , hence selecting it for use in any role in the classifier. Parent or child
addition (P∨CA) performs any one of the other types of attribute additions in
each iteration, selecting the option that most improves the accuracy.

4.2 BSE for AODE

All four types of attribute elimination start with p and c initialized to the full
set. The first approach, called parent elimination (PE), deletes attribute indexes
from p, effectively deleting a single ODE at each step. The second approach,
called child elimination (CE), deletes attribute indexes from c, effectively delet-
ing an attribute from within every ODE at each step. Parent and child elimina-
tion (P∧CE) [15] at each step deletes the same value from both p and c, thus
eliminating it from use in any role in the classifier. Parent or child elimination
(P∨CE) performs any one of the other types of attribute eliminations in each
iteration, selecting the option that best reduces error.

4.3 Complexity

As child selection requires modifying the probability estimates for ‖p‖ ODEs
at each step, it has higher training time complexity than that of parent selec-
tion, which only considers one ODE at each step. At training time PA and PE
generate a three-dimensional table of probability estimates, as AODE does. They

496 F. Zheng and G.I. Webb

must also store the training data, with additional space complexity O
(
tn
)
, to

perform leave-one-out cross validation on AODE. A three-dimensional table,
indexed by instance, class and attribute, is introduced to speed up the process of
evaluating the classifiers, with space complexity O

(
tkn
)
. Therefore, the resulting

space complexity is O
(
tkn + k(nv)2

)
. Deleting attributes has time complexity

of O
(
tkn2

)
, as a single leave-one-out cross validation is order O(tk) and it is

performed at most O
(
n2
)

times. They have identical time and space complexity
with AODE at classification time. For the strategies involving child selection,
they have identical space complexity and classification time complexity with PA
and PE, but higher training time complexity of O

(
tkn3

)
, as a single leave-one-

out cross validation is order O(tkn).

4.4 Statistical Test

It is quite likely that small improvements in leave-one-out error may be at-
tributable to chance. In consequence it may be beneficial to use a statistical test
to assess whether an improvement is significant. We employ a standard binomial
sign test. Treating the examples for which an attribute addition or deletion cor-
rects a misclassification as a win and one for which it misclassifies a previously
correct example as a loss, a change is accepted if the number of wins exceeds the
number of losses and the probability of obtaining the observed number of wins
and losses if they were equiprobable was no more than 0.05.

5 Empirical Comparison

The main goal in this comparison is to assess the efficacy of the statistical test
and study the influence of the use of different types of attribute selection in
AODE. The fifty-six natural domains from the UCI Repository of machine learn-
ing [23] used in our experiments are shown in Table 1. Continuous attributes were
discretized using MDL discretization [24] and missing values were replaced with
the modes and means from the training data. The base probabilities were esti-
mated using Laplace estimation [25]. Algorithms are implemented in the Weka
workbench [26], and the experiments were performed on a dual-processor 1.7
GHz Pentium 4 Linux computer with 2 Gb RAM.

We compare the classification error of AODE with different attribute selection
techniques on AODE using the repeated cross-validation bias-variance estima-
tion method proposed by Webb (2000). This is preferred to the default method
in Weka, which uses 25% of the full data set as training sets, because it results
in the use of substantially larger training sets. In order to maximize the varia-
tion in the training data from trial to trial we use two-fold cross validation. The
training data are randomly divided into two folds. Each fold is used as a test
set for a classifier generated from the other fold. Hence, each available example
is classified once for each two-fold cross-validation. Bias and variance are esti-
mated by fifty runs of two-fold cross-validation in order to give a more accurate
estimation of the average performance of an algorithm. The advantage of this

Finding the Right Family: Parent and Child Selection for AODE 497

technique is that it uses the full training data as the training set and test set,
and every case in the training data is used the same number of times in each
of the roles of training and test data. In addition to the classification error, we
use the information loss function to evaluate the probabilistic prediction of each
technique.

Two variants of attribute selection were evaluated, one employing a binomial
sign test and the other not. Algorithms using a binomial sign test are super-
scripted by S and those without by NS . We use Stop on First Reduction with
attribution addition algorithms and Stop on First Nonimprovement with at-
tribute elimination algorithms as these produce the best performance (results
not presented due to lack of space). The number of times that an algorithm
performs better, worse or equally to the others is summarized into pairwise
win/loss/draw records which are presented in Table 2. Algorithms are sorted in
descending order on the value of wins minus losses against AODE on each metric.
Each entry compares the algorithm with which the row is labelled (L) against
the algorithm with which the column is labelled (C). We assess a difference as
significant if the outcome of a one-tailed binomial sign test is less than 0.05. For
space reason, we only present bias, variance and information loss results for the
attribute elimination algorithms.

5.1 Error

CES, P∨CES and P∧CES , enjoy a significant advantage in error over AODE
(p = 0.011, p = 0.011 and p = 0.048 respectively), while attribute addition
(both with and without statistical test) always has a significant disadvantage to
AODE. The rest of the algorithms share a similar level of error with AODE.

The algorithms using attribute elimination share a similar level of error with
the exception that CES and P∨CES outperform PES, PENS outperforms CSNS

and P∧CENS outperforms CENS . The advantage of all the attribute elimination
algorithms is significant compared with all the attribute addition algorithms but
PANS . PANS has a significant advantage over CA, P∧CA and P∨CA (with and
without statistical test). The reason the performances of CA, P∧CA and P∨CA
are disappointing might be that they are susceptible to getting trapped into poor
selections by local minima during the first several child additions.

5.2 Bias and Variance

All the attribute elimination algorithms, except PES, have a significant advan-
tage in bias over AODE and PES. P∧CENS , CENS and P∨CENS outperform
PENS and the remaining four algorithms with statistical tests. The advantage
of P∧CENS is significant compared with CENS. AODE enjoys a significant ad-
vantage over all the algorithms with respect to variance. The algorithms with
statistical tests have a significant advantage over the algorithms without a sta-
tistical test. PES has a significant advantage over P∧CES .

498 F. Zheng and G.I. Webb

5.3 Information Loss

Two algorithms, P∧CES and CES , significantly improve AODE’s probability
estimate. PENS is the only algorithm that has a significant disadvantage over
AODE. It also has a significant disadvantage over P∧CES , CES, P∨CES and
PES. The advantage of P∨CES is marginal compared with AODE and is signif-
icant compared with CES and PENS.

5.4 Continue Search and Select Best (CSSB)

To observe the behaviors of parent and child selection, we also examine the
attribute selection techniques with CSSB. Due to the significantly increasing
variance, all of these selection approaches have proved ineffective. Figure 1 shows
the error ratio of PA [19], PE, CA and CE against AODE as a function of the
number of attributes on 3 data sets with more than 3000 instances, in which
both selection of parent and child have lower error compared with AODE (for
the space reason, the other 6 data sets are not presented). The values on the
x-axis are the number of attributes in the p set for PA and PE, and the number
of attributes in the c set for CA and CE. The values on the y-axis are the
classification error of each selection algorithm divided by that for AODE. The
smaller the ratio, the more accuracy improvement will be.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 2 3 4 5 6 7 8 9 10 11 12 13

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

io
 a

ga
in

st
 A

O
D

E

Number of Attributes in p or c set

(a) Adult PE / AODE
CE / AODE
PA / AODE
CA / AODE

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 3 5 7 9 11 13 15 17 19 21 23 25 27

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

io
 a

ga
in

st
 A

O
D

E

Number of Attributes in p or c set

(c) Hypothyroid
PE / AODE
CE / AODE
PA / AODE
CA / AODE

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 5 9 13 17 21 25 29 33

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

io
 a

ga
in

st
 A

O
D

E

Number of Attributes in p or c set

(d) Kr-vs-kp
PE / AODE
CE / AODE
PA / AODE
CA / AODE

Fig. 1. Error ratio of parent and child selection using CSSB against AODE, as function
of the number of attributes

Slight error differences between PA and PE are observed as shown in the graph
(win/draw/loss being 25/8/23). Notice that PA tends to achieve the minima at
an early stage, while PE appears to reach it at a late stage. CE has greater error
reduction compared with PE until there are a small number of children left, after
which it increases error sharply. The error ratios for PE and CE for the first
attribute elimination are 0.98 and 0.94, 0.99 and 0.96, 1 and 0.83, and 0.98 and
0.79 for Adult, Nettalk, Hypothyroid and King-rook-vs-king-pawn respectively.
The performance of CA fluctuates over the first several attribute additions for
King-rook-vs-king-pawn. Similar behavior is observed for many other data sets
in our collection.

Finding the Right Family: Parent and Child Selection for AODE 499

T
ab

le
2.

W
in

/
L
o
ss

/
D

ra
w

re
co

rd
s

o
n

5
6

d
a
ta

se
ts

w
it
h

b
in

o
m

ia
l
si
g
n

te
st

E
r
r
o
r

W
/
L
/
D

C
E

S
P

∨
C

E
S

P
∧
C

E
S

P
E

N
S

P
E

S
C

E
N

S
P

∨
C

E
N

S
P

∧
C

E
N

S
P
A

N
S

P
∧
C

A
N

S
P
A

S
C

A
N

S
P

∨
C

A
N

S
P

∨
C

A
S

P
∧
C

A
S

C
A

S

C
E

S

P
∨
C

E
S

6
/
/
5
/
4
5

P
∧
C

E
S

8
/
6
/
4
2

3
/
8
/
4
5

P
E

N
S

2
4
/
2
3
/
9

2
4
/
2
3
/
9

2
4
/
2
3
/
9

P
E

S
4
/
1
3
/
3
9

4
/
1
4
/
3
8

6
/
1
2
/
3
8

2
0
/
2
5
/
1
1

C
E

N
S

2
4
/
2
7
/
5

2
4
/
2
7
/
5

2
4
/
2
7
/
5

1
9
/
3
4
/
3

2
5
/
2
6
/
5

P
∨
C

E
N

S
2
4
/
2
9
/
3

2
4
/
2
9
/
3

2
4
/
2
9
/
3

2
3
/
2
8
/
5

2
4
/
2
8
/
4

3
2
/
1
8
/
6

P
∧
C

E
N

S
2
5
/
2
8
/
3

2
4
/
2
9
/
3

2
4
/
2
9
/
3

2
1
/
3
1
/
4

2
3
/
2
9
/
4

3
3
/
1
7
/
6

1
9
/
3
1
/
6

P
A

N
S

2
2
/
3
2
/
2

2
2
/
3
1
/
3

2
2
/
3
1
/
3

2
1
/
3
3
/
2

2
3
/
3
1
/
2

2
9
/
2
3
/
4

2
1
/
3
2
/
3

2
6
/
2
6
/
4

P
∧
C

A
N

S
1
7
/
3
7
/
2

1
7
/
3
7
/
2

1
7
/
3
7
/
2

1
3
/
4
1
/
2

1
7
/
3
7
/
2

1
5
/
3
8
/
3

1
0
/
4
4
/
2

1
2
/
4
0
/
4

1
3
/
4
1
/
2

P
A

S
1
3
/
4
1
/
2

1
2
/
4
2
/
2

1
2
/
4
2
/
2

1
0
/
4
3
/
3

1
4
/
4
0
/
2

1
3
/
4
1
/
2

1
0
/
4
4
/
2

1
1
/
4
3
/
2

4
/
4
9
/
3

2
4
/
2
9
/
3

C
A

N
S

1
4
/
4
0
/
2

1
4
/
4
0
/
2

1
4
/
4
0
/
2

1
0
/
4
4
/
2

1
3
/
4
1
/
2

8
/
4
4
/
4

7
/
4
7
/
2

7
/
4
6
/
3

1
0
/
4
4
/
2

1
5
/
3
5
/
6

1
8
/
3
6
/
2

P
∨
C

A
N

S
1
2
/
4
2
/
2

1
2
/
4
2
/
2

1
2
/
4
2
/
2

1
2
/
4
2
/
2

1
2
/
4
2
/
2

1
7
/
3
7
/
2

1
6
/
3
8
/
2

1
6
/
3
8
/
2

1
5
/
3
9
/
2

2
1
/
3
2
/
3

2
3
/
3
1
/
2

2
9
/
2
5
/
2

P
∨
C

A
S

1
1
/
4
3
/
2

1
1
/
4
3
/
2

1
1
/
4
3
/
2

1
0
/
4
4
/
2

1
0
/
4
4
/
2

1
5
/
3
9
/
2

1
4
/
4
0
/
2

1
4
/
4
0
/
2

1
3
/
4
1
/
2

1
9
/
3
5
/
2

1
9
/
3
5
/
2

2
8
/
2
6
/
2

4
/
2
0
/
3
2

P
∧
C

A
S

9
/
4
6
/
1

9
/
4
6
/
1

9
/
4
6
/
1

9
/
4
6
/
1

1
0
/
4
5
/
1

7
/
4
8
/
1

6
/
4
9
/
1

6
/
4
9
/
1

7
/
4
8
/
1

4
/
5
0
/
2

1
0
/
4
4
/
2
1
4
/
4
1
/
1

1
8
/
3
7
/
1

2
0
/
3
4
/
2

C
A

S
6
/
4
9
/
1

6
/
4
9
/
1

6
/
4
9
/
1

6
/
4
9
/
1

7
/
4
8
/
1

5
/
5
0
/
1

6
/
4
9
/
1

6
/
4
9
/
1

6
/
4
9
/
1

3
/
5
1
/
2

7
/
4
7
/
2

6
/
4
7
/
3

1
3
/
4
2
/
1

1
6
/
3
9
/
1

1
9
/
3
4
/
3

A
O

D
E

3
/
1
3
/
4
0

3
/
1
3
/
4
0

5
/
1
3
/
3
8

2
0
/
2
5
/
1
1

4
/
3
/
4
9

2
6
/
2
4
/
6

2
8
/
2
4
/
4

2
9
/
2
3
/
4

3
1
/
2
3
/
2

3
7
/
1
7
/
2

4
0
/
1
4
/
2
4
1
/
1
3
/
2

4
2
/
1
2
/
2

4
4
/
1
0
/
2

4
5
/
1
0
/
1

4
8
/
7
/
1

B
ia

s
V
a
r
ia

n
c
e

W
/
L
/
D

P
∧
C

E
N

S
C

E
N

S
P

∨
C

E
N

S
P
E

N
S

P
∨
C

E
S

C
E

S
P

∧
C

E
S

P
E

S
W

/
L
/
D

P
E

S
C

E
S

P
∧
C

E
S

P
∨
C

E
S

P
E

N
S

C
E

N
S

P
∧
C

E
N

S
P

∨
C

E
N

S

P
∧
C

E
N

S
P
E

S

C
E

N
S

1
4
/
3
6
/
6

C
E

S
6
/
1
3
/
3
7

P
∨
C

E
N

S
2
8
/
2
6
/
2

3
2
/
2
3
/
1

P
∧
C

E
S

5
/
1
4
/
3
7

4
/
8
/
4
4

P
E

N
S

1
2
/
4
0
/
4

1
2
/
4
0
/
4

1
2
/
4
2
/
2

P
∨
C

E
S

6
/
1
1
/
3
9

4
/
9
/
4
3

6
/
4
/
4
6

P
∨
C

E
S

6
/
4
7
/
3

7
/
4
5
/
4

8
/
4
7
/
1

1
9
/
2
8
/
9

P
E

N
S

1
4
/
3
2
/
1
0

1
6
/
3
2
/
8
1
6
/
3
1
/
9

1
7
/
3
1
/
8

C
E

S
6
/
4
7
/
3

7
/
4
5
/
4

9
/
4
6
/
1

1
9
/
2
8
/
9

3
/
8
/
4
5

C
E

N
S

1
0
/
4
2
/
4

1
1
/
4
2
/
3
1
1
/
4
2
/
3

1
0
/
4
3
/
3

1
4
/
3
9
/
3

P
∧
C

E
S

6
/
4
7
/
3

7
/
4
5
/
4

8
/
4
7
/
1

1
9
/
2
8
/
9

2
/
7
/
4
7

7
/
5
/
4
4

P
∧
C

E
N

S
1
1
/
4
2
/
3

1
1
/
4
2
/
3
1
1
/
4
1
/
4

1
1
/
4
1
/
4

1
2
/
4
1
/
3

2
0
/
2
7
/
9

P
E

S
6
/
4
7
/
3

7
/
4
5
/
4

9
/
4
6
/
1

1
4
/
3
0
/
1
2

1
/
1
6
/
3
9

2
/
1
6
/
3
8

2
/
1
5
/
3
9

P
∨
C

E
N

S
1
1
/
4
0
/
5

1
1
/
4
0
/
5
1
1
/
4
0
/
5

1
1
/
4
0
/
5

1
6
/
3
7
/
3

3
1
/
1
6
/
9

3
7
/
1
4
/
5

A
O

D
E

6
/
4
7
/
3

7
/
4
5
/
4

9
/
4
6
/
1

1
4
/
3
0
/
1
2

1
/
1
6
/
3
9

2
/
1
6
/
3
8

2
/
1
5
/
3
9

2
/
5
/
4
9

A
O

D
E

6
/
0
/
5
0

1
4
/
5
/
3
7
1
5
/
5
/
3
6

1
3
/
5
/
3
8

3
3
/
1
4
/
9

4
3
/
1
0
/
3

4
2
/
1
1
/
3

4
0
/
1
1
/
5

In
fo

L
o
s
s

W
/
L
/
D

C
E

N
S

P
∧
C

E
N

S
P

∧
C

E
S

C
E

S
P

∨
C

E
N

S
P

∨
C

E
S

P
E

S
P
E

N
S

C
E

N
S

P
∧
C

E
N

S
2
6
/
2
7
/
3

P
∧
C

E
S

2
1
/
3
3
/
2

2
2
/
3
2
/
2

C
E

S
2
1
/
3
3
/
2

2
1
/
3
3
/
2

7
/
8
/
4
1

P
∨
C

E
N

S
2
8
/
2
7
/
1

2
7
/
2
8
/
1

3
3
/
2
3
/
0

3
2
/
2
4
/
0

P
∨
C

E
S

2
1
/
3
3
/
2

2
1
/
3
2
/
3

9
/
5
/
4
2

1
1
/
2
/
4
3

2
3
/
3
3
/
0

P
E

S
2
2
/
3
2
/
2

2
2
/
3
2
/
2

7
/
1
4
/
3
5

6
/
1
3
/
3
7

2
4
/
3
2
/
0

7
/
1
3
/
3
6

P
E

N
S

2
6
/
2
8
/
2

2
5
/
2
9
/
2

1
6
/
3
6
/
4

1
6
/
3
6
/
4

2
5
/
3
1
/
0

1
6
/
3
6
/
4

1
6
/
3
5
/
5

A
O

D
E

2
2
/
3
2
/
2

2
2
/
3
2
/
2

6
/
1
5
/
3
5

5
/
1
3
/
3
8

2
4
/
3
2
/
0

7
/
1
4
/
3
5

2
/
6
/
4
8

3
5
/
1
6
/
5

500 F. Zheng and G.I. Webb

6 Conclusion

AODE efficiently induces classifiers that have competitive classification perfor-
mance with other state-of-the-art semi-naive Bayes algorithms. Its accuracy and
classification time complexity might be further improved if harmful ODEs are
excluded. In view of their effectiveness with naive Bayes, it is surprising that
previous applications of FSS and BSE to AODE have proved ineffective. In
this paper we explore two explanations of this phenomenon. One is that AODE
has higher variance compared with naive Bayes, and hence appropriate variance
management is required. Another is that child selection appears to have greater
effect than parent selection, as ODEs are combined using a linear function but
attributes within an ODE are combined using a multiplicative function.

Our extensive experiments suggest that the types of attribute elimination that
remove child attributes from within the constituent ODEs can significantly re-
duce bias and error, but only if a statistical test is employed to provide variance
management. In contrast, elimination of complete constituent ODEs does not
consistently provide error reduction. CE and P∧CE also significantly improve
probability estimates when used with a statistical test. The types of attribute
addition that add child attributes to within the constituent ODEs do not pro-
vide any positive benefits, possibly due to being mislead early in the search by
local minima. These results suggest that the elimination of a child is more effec-
tive than the elimination of a parent, leading to effective approaches to further
enhance AODE’s accuracy.

References

1. Kittler, J.: Feature selection and extraction. In: Young, T.Y., Fu, K.-S. (eds.)
Handbook of Pattern Recognition and Image Processing, pp. 60–81. Academic
Press, New York (1986)

2. Kononenko, I.: Semi-naive Bayesian classifier. In: Proc. 6th European Working
Session on Machine learning, pp. 206–219. Springer, Berlin (1991)

3. Langley, P.: Induction of recursive Bayesian classifiers. In: Proc. 1993 European
Conf. Machine Learning, pp. 153–164. Springer, Berlin (1993)

4. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proc. 10th
Conf. Uncertainty in Artificial Intelligence, pp. 399–406. Morgan Kaufmann, San
Francisco (1994)

5. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hy-
brid. In: Proc. 2nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Min-
ing, pp. 202–207. ACM Press, New York (1996)

6. Pazzani, M.J.: Constructive induction of Cartesian product attributes. In: ISIS:
Information, Statistics and Induction in Science, pp. 66–77 (1996)

7. Sahami, M.: Learning limited dependence Bayesian classifiers. In: Proc. 2nd Int.
Conf. Knowledge Discovery in Databases, pp. 334–338. AAAI Press, Menlo Park,
CA (1996)

8. Singh, M., Provan, G.M.: Efficient learning of selective Bayesian network classifiers.
In: Proc. 13th Int. Conf. Machine Learning, pp. 453–461. Morgan Kaufmann, San
Francisco (1996)

Finding the Right Family: Parent and Child Selection for AODE 501

9. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2), 131–163 (1997)

10. Webb, G.I., Pazzani, M.J.: Adjusted probability naive Bayesian induction. In: Proc.
11th Australian Joint Conf. Artificial Intelligence, pp. 285–295. Springer, Berlin
(1998)

11. Keogh, E.J., Pazzani, M.J.: Learning augmented Bayesian classifers: A comparison
of distribution-based and classification-based approaches. In: Proc. Int. Workshop
on Artificial Intelligence and Statistics, pp. 225–230 (1999)

12. Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Machine Learning 41(1),
53–84 (2000)

13. Webb, G.I., Boughton, J., Wang, Z.: Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning 58(1), 5–24 (2005)

14. Cerquides, J., Mántaras, R.L.D.: Robust Bayesian linear classifier ensembles. In:
Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005.
LNCS (LNAI), vol. 3720, pp. 70–81. Springer, Heidelberg (2005)

15. Zheng, F., Webb, G.I.: Efficient lazy elimination for averaged-one dependence esti-
mators. In: Proc. 23th Int. Conf. Machine Learning (ICML 2006), pp. 1113–1120.
ACM Press, New York (2006)

16. Langseth, H., Nielsen, T.D.: Classification using hierarchical naive Bayes models.
Machine Learning 63(2), 135–159 (2006)

17. Zheng, F., Webb, G.I.: A comparative study of semi-naive Bayes methods in classi-
fication learning. In: Proc. 4th Australasian Data Mining Conference (AusDM05),
pp. 141–156 (2005)

18. Thomson ISI: Web of science (2007),
http://scientific.thomson.com/products/wos/

19. Yang, Y., Webb, G., Cerquides, J., Korb, K., Boughton, J., Ting, K.M.: To select or
to weigh: A comparative study of model selection and model weighing for SPODE
ensembles. In: Proc. 18th European Conf. Machine Learning (ECML2006), pp.
533–544. Springer, Berlin (2006).

20. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and
Sons, New York (1973)

21. Domingos, P., Pazzani, M.J.: Beyond independence: Conditions for the optimality
of the simple Bayesian classifier. In: Proc. 13th Int. Conf. Machine Learning, pp.
105–112. Morgan Kaufmann, San Francisco (1996)

22. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: Proc. 11th Int. Conf. Machine Learning, pp. 121–129. Morgan Kauf-
mann, San Francisco, CA (1994)

23. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine
learning databases. University of California, Department of Information and Com-
puter Science, Irvine, CA (1998)

24. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proc. 13th Int. Joint Conf. Artificial Intelli-
gence (IJCAI-93), pp. 1022–1029. Morgan Kaufmann, San Francisco (1993)

25. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proc.
9th European Conf. Artificial Intelligence, pp. 147–149. Pitman, London (1990)

26. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, San Francisco (2005)

27. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Ma-
chine Learning 40(2), 159–196 (2000)

http://scientific.thomson.com/products/wos/

Stepwise Induction of Multi-target Model Trees

Annalisa Appice1 and Saso Džeroski2

1 Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

2 Department of Knowledge Technologies, Jožef Stefan Institute
Jamova 39 - Ljubljana, Slovenia 1000

appice@di.uniba.it, Saso.Dzeroski@ijs.si

Abstract. Multi-target model trees are trees which predict the values
of several target continuous variables simultaneously. Each leaf of such a
tree contains several linear models, each predicting the value of a different
target variable. We propose an algorithm for inducing such trees in a
stepwise fashion. Experiments show that multi-target model trees are
much smaller than the corresponding sets of single-target model trees
and are induced much faster, while achieving comparable accuracies.

1 Introduction

Many problems encountered in ecological applications involve the prediction of
several targets associated with a case. More formally, given a set of observed data
(x,y) ∈ X ×Y, where X consists of m explanatory (or independent) variables
Xi, the goal is to predict several target (or dependent) variables Y1, . . . , Yn.
The range of each Yj can be either a finite set of unordered category labels for
classification or a subset of real number � for regression.

The problem of predicting several target variables simultaneously has been
approached in the predictive clustering framework [1], where now methods exist
to construct clusters of examples which are similar to each other and simul-
taneously associate a predictive model (classification or regression) with each
constructed cluster. Several systems have been developed to induce decision and
regression trees [1,9,5] or rules [8] within the predictive clustering framework,
but to the best of our knowledge there is no attempt of inducing a model tree to
predict the values of several continuous target variables simultaneously.

Model trees [3,10,6,7,4] are decision trees whose leaves contain linear regres-
sion models that predict the value of a single continuous target variable. In this
paper, we address the task of inducing multi-target model trees that predict the
values of several target continuous variables simultaneously. We propose an algo-
rithm named MTSMOTI (Multi Target S tepwise Model T ree Induction) that
induces the multi-target trees in a stepwise fashion [2]. The tree is induced top-
down by choosing at each step to either partition the training space (split nodes)
or introduce a regression variable in the set of linear models to be associated
with leaves (regression nodes).

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 502–509, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stepwise Induction of Multi-target Model Trees 503

The paper is organized as follows. The stepwise induction of multi-target
model trees is presented in Section 2. Experimental results are reported in Sec-
tion 3 and some conclusions are drawn in Section 4.

2 The Algorithm

Our system for the induction of multi-target model trees employs the basic
stepwise construction of a regression model as it is implemented in SMOTI [4].

To explain the stepwise procedure, let us consider an example: suppose we
are interested in analyzing a target variable Y in a region R described by two
continuous explanatory variables X1 and X2 when R can be partitioned into two
regions R1 and R2 and two linear regression models involving both X1 and X2

can be built independently for each region Ri. It may be found that the Y value
is proportional to X1 and this behavior is independent of any partitioning of R.
In this case, the effect of X1 on Y is global, since it can be reliably predicted for
the whole region R. The initial regression model is approximated by regressing
on X1 for the whole region R : Ŷ = â0 + b̂0X1. The effect of another variable in
the partially constructed regression model is introduced by eliminating the effect
of X1: we have to compute the regression model for the whole region R, that is,
X̂2 = â20 + b̂21X1, as well as the residuals X ′

2 = X2 − X̂2 and Y ′ = Y − Ŷ =
Y − (â0 + b̂0X1). The partitioning of R into R1 and R2 leads to building two
independent regression models to capture the effect of the variable X2 locally in
the subregions R1 and R2, respectively. Obviously, a straight-line regression now
involves the residual variables Y ′ and X ′

2, but can be automatically translated
into a multiple linear function involving Y , X1 and X2.

This stepwise procedure corresponds to a tree structure with split nodes that
produce binary partitions of the training data and regression nodes that perform
straight-line regressions. Similarly to SMOTI, MTSMOTI induce such trees.
However, MTSMOTI differs from SMOTI in several ways. First, MTSMOTI
predicts several target variables simultaneously, assuming there is some (linear)
dependence among target variables. Second, it resorts to a MAUVE [7]-based
heuristic function to reduce the SMOTI time complexity of evaluating a node,
yielding trees with better accuracy. Finally, it adopts some different stopping
criteria and a post-pruning method. We discuss these topics below.

2.1 Model Tree Construction

The top-level description of the model tree construction performed by MTSMOTI
is sketched in Algorithm 1.

A split node t on a variable Xi performs a binary test. If Xi is continuous,
the split test is in the form Xi ≤ α vs Xi > α. Possible values of α are found
by sorting the distinct values of Xi in the training sample falling in t, then
identifying one threshold for each distinct value. If Xi is discrete, a discrete split
partitions attribute values into two complementary sets, so that a binary tree is
always built. To determine discrete split thresholds, we use the same criterion

504 A. Appice and S. Džeroski

applied in CART. If SXi = {xi1 , . . . , xik
} is the set of distinct values of Xi in t,

SXi is sorted according to the sample mean of the target variable Y (or residual
of Y) over all training cases falling in t, that is, Ȳ1, . . . , Ȳk. In the multi-target
case, the set of distinct values of Xi is sorted according to the “average” of the
sample means for each target variable Yj from Y. Since the range of different
target variables may differ by several orders of magnitude, the sample means are
scaled within the range [0, 1]. The scaled value of Ȳjs is Ȳjs→[0,1]

= |Ȳjs−minj |
(maxj−minj) ,

where minj = min
s=1,...,k

{Ȳjs} and maxj = max
s=1,...,k

{Ȳjs}.

Algorithm 1. MTSMOTI top-level description.
1: function build-MTSMOTI-tree(X, Y, R,E) return T
2: X → set of m continuous (XC) and discrete (XD) explanatory variables
3: Y → set of n continuous target variables
4: R → set of residuals of continuous variables; initially R = XC ∪ Y
5: E → {(xj , yj)|j = 1 . . . N} a training sample
6: T → a multi-target model tree with regression and split nodes
7: begin
8: RegList=regressionCandidates(X, Y, R, E);
9: if stopping criteria then

10: t is the best regression node on RegList; T =leaf(bestt);
11: else
12: SplitList=splitCandidates(X, Y, R, E); t is the best node on RegList∪SplitList;
13: if t is a regression node on variable Xi then
14: R′ is a copy of R; RXi is residual of Xi in R′;
15: for each Ri ∈ R′ do
16: if Ri represents either a target variable or a continuous explanatory variable

not yet included in the current model then
17: replace Ri in R′ with its new residual by removing effect of RXi ;
18: end if
19: end for
20: T ′ =build-MTSMOTI-tree(X, Y, R′, E); T = tree with root in t and child T ′;
21: end if
22: if t is a split node on variable Xi then
23: TL =build-MTSMOTI-tree(X, Y, R, {(xj , yj) ∈ E| test in t is true});
24: TR =build-MTSMOTI-tree(X, Y, R, {(xj , yj) ∈ E| test in t is false});
25: T is the tree with root in t, left branch TL, right branch TR;
26: end if
27: end if
28: end

A regression node performs a set of straight-line regressions on a continuous
variable Xi, one for each target variable Yj . Straight-line regressions in the sub-
tree rooted in a regression node will involve residuals of both the target variables
and the continuous explanatory variables not yet included in the model.

Stepwise Induction of Multi-target Model Trees 505

2.2 Split and Regression Node Evaluation

The choice of either a split test or a regression step at a node t is based on the
evaluation measures s(t,Y) and r(t,Y), respectively.

Let t be a split onXi then sj(t, Yj) is computed as sj(t;Yj) = N(tL)
N(t) RE(tL;Yj)+

N(tR)
N(t)) RE(tR;Yj), where N(t) is the number of cases reaching t, N(tL) (N(tR)) is
the number of cases passed down to the left (right) child, and RE(tL) (RE(tR)) is
the resubstitution error of the left (right) child. The resubstitution error is com-

puted as RE(t;Yj) =
√

1
N(t)

∑N(t)
i=1 (yji − ŷji)2. For the left(right) child of a split

t, the estimate ŷj combines the straight-line regressions associated with regression
nodes along the path from the root to tL (tR) with the straight-line regression on
Xi computed on tL (tR). In case Xi is a discrete variable, straight-line regression
on tL (tR) is replaced with the sample mean of Yj (or residual of Yj) values falling
in tL (tR). This evaluation function is derived by MAUVE [7] as an alternative
to consider no regression (M5’)[10], simple regression on all continuous variables
(SMOTI) or multiple regression on all continuous variables together (RETIS) [3].
The motivation in favor of the MAUVE measure is in its lower computational com-
plexity. In fact, similarly to M5’, MAUVE is linear in the number of variables, but
the MAUVE split evaluation avoids some pathological behaviors of M5’ [7]. The
evaluation of a regression step Yj = αj + βjXi at node t is based on the resub-
stitution error RE(t;Yj). In this way, the selection of the best regression step re-
quires the computation of a straight-line regressionwith complexity linear by num-
ber of examples falling in t, for each of the m target variables. Measures obtained
at t for separate target variables are scaled to the interval [0, 1] and combined as
s(t,Y) = 1

n

∑n
j=1 s→[0,1](t;Yj)

(
r(t,Y) = 1

n

∑n
j=1 RE→[0,1](t;Yj)

)
. The most

promising split (regression) minimizes the evaluation measure s (r) on the set of
split (regression) candidates.

As pointed in [4], a regression step on Xi would result in values of r(t;Yj)
less than or equal to values of s(t;Y) for some split test involving Xi. Hence,
the split selection criterion in MTSMOTI is improved to consider the special
case of identical regression models associated with both children (left and right):
a useless split is replaced with a regression candidate. To check for this case,
MTSMOTI compares pairs of lines associated with the children according to a
statistical test for coincident regression lines [11] with linear time complexity.

2.3 Stopping Criteria

Three different stopping criteria are implemented. The first uses the partial
F-test to evaluate the actual contribution provided by a new explanatory variable
to the model [2]. The F-test is performed separately for each target variable.
Hence, stopping can operate at different tree depth for different target variables.
The second requires the number of examples in each node to be greater than
a minimum value. The third stops the induction process when all continuous
explanatory variables along the path from the root to the current node are used
in regression steps and there are no discrete variables in the training set.

506 A. Appice and S. Džeroski

2.4 Pruning

MTSMOTI adopts a pruning procedure to determine which nodes of the tree
should be taken as leaves and compute the set of linear models for each interior
node of the un-pruned tree. Linear models built in a stepwise fashion at each node
are expanded by sequentially adding variables, one at a time, on the basis of the
strength of the average resubstitution error. The models are built by using only
the continuous variables tested or regressed in the subtree below this node. For
each target variable, the contribution of an added term is immediately evaluated
according to the F-test and eventually dropped whenever it is not statistically
significant. Once a linear model is in place for an interior node, the tree is
pruned back from the leaves so long as the expected estimated error decreases.
The estimate of the expected error is the average of the resubstitution errors
(scaled in the range [0,1]) on the training cases reaching that node for each target
variable. To avoid the underestimation of the expected error on unseen cases, the
average resubstitution error is multiplied by the factor (N(t)−ν(t))/(N(t)+ν(t)),
where N(t) is the number of training cases that reach t an ν(t) is the number of
variables in the linear model associated with the node.

3 Experimental Results

The performance of MTSMOTI is evaluated on both single-target and multi-
target datasets by 10-fold cross-validation. For each target variable Yj , we esti-
mate the basis of the average relative mean square error (RRMSE(D,Yj) =

1
10

10∑

i=1

(

√
N(Di)∑

h=1

(yjh
− ŷjh

(D/Di))2/

√
N(Di)∑

h=1

(yjh
− ȳj(Di))2)), where ŷjh

(D/Di)

is the value predicted for the j-th target variable of the h-th testing case by the
model tree induced on D/Di and ȳj is the mean value of yj on Di. RRMSE is
averaged on separate target variables. The complexity of trees is evaluated on
the basis of the number of leaves. All the multi-target datasets as well as the
results for PC-Tree reported in this Section are provided by Bernard Ženko [8].

3.1 Single-Target Datasets

MTSMOTI is tested on single-target datasets taken from the UCI Machine
Learning Repository (http://www.ics.uci.). MTSMOTI is run in two settings.
In the former setting (SR), model trees are built in a stepwise fashion, while
in the latter setting (S), model trees are built by partitioning the training sam-
ple and then associating leaves with multiple linear models by post-pruning the
tree. MTSMOTI is compared with REGTREE, i.e., our implementation of a re-
gression tree learner, SMOTI, M5’, predictive clustering trees (PCT) and rules
(PCR). SMOTI and M5’ are run with default stopping thresholds. The pruning
of M5’ is enabled, but no smoothing is used. Results are reported in Table 1.

Several conclusions are drawn from these experimental results. First, model
trees outperform regression trees in accuracy and size. Second, our implementa-
tion of the stepwise tree construction generally improves performance of SMOTI

Stepwise Induction of Multi-target Model Trees 507

Table 1. Single-target regression: comparison of the average RRMSE and average size

RRMSE Size

Dataset MT
(SR)

MT
(S)

REG
TR.

SMO
TI

M5 PCT MT
(SR)

MT
(S)

REG
TR.

SMO
TI

M5 PCT

AutoHorse 0.38 0.43 0.47 0.49 0.35 0.41 3.8 4.2 6.8 6.6 2.4 23

AutoMpg 0.40 0.44 0.44 0.46 0.37 0.45 12.7 10.5 16.5 10 4.8 16

AutoPrice 0.48 0.46 0.60 0.53 0.40 0.49 7.2 4.5 10.2 6.6 7.4 9

Tumor 1.00 1.16 1.16 1.34 0.99 0.96 4.7 17 16.6 8 1.1 3

Cloud 0.53 0.68 0.82 0.70 0.52 0.58 3.2 4.2 6.9 5 2.4 9

CPU 0.17 0.34 0.65 0.80 0.20 0.33 8.3 3.9 13 7 3.1 12

Housing 0.45 0.47 0.49 0.45 0.44 0.43 4.5 18.5 21.1 11 13.5 32

Quake 0.99 1.12 1.03 2.38 1.01 0.99 2.3 29 28.8 23 3.3 3

Sensory 0.93 0.93 0.93 1.00 0.96 0.94 16.5 16.5 16.5 12 4.7 7

Servo 0.60 0.60 0.60 0.45 0.43 0.42 7 7 7 7 5.6 11

Strike 0.94 0.91 0.96 1.88 1.24 0.98 3.9 18.7 18.7 12 6.5 12

Veteran 1.20 1.15 1.34 2.40 1.22 0.99 3.2 6.1 7.8 6 1 2

in accuracy. Third, the comparison between trees built in a stepwise fashion
(SR) and trees in classical mode (S) show that trees with split and regression
nodes achieve better (or at worst comparable) accuracy than trees with only
split nodes. No general conclusion can be drawn on the tree size. Fourth, the
comparison with M5’ accuracy shows that MTSMOTI is sometime better, at
worst comparable, to M5’, but M5’ typically builds smaller trees. In any case,
MTSMOTI is able to detect the presence of global effects without significantly
affecting accuracy. Finally, the comparison with predictive clustering trees shows
that MTSMOTI does not exhibit an irrefutable superiority with respect to PC-
TREE, although results are still good.

3.2 Multi-target Datasets

The multi-target datasets in this study are not public available. Only solar-
flare (SOLARF) is available in the UCI Machine Learning Repository. A brief
description of these datasets is reported in Table 2.

Table 2. Properties of multi-target datasets used in our study

Dataset #Cases #Explan. #Target Dataset #Cases #Explan. #Target
Var. Var. Var. Var.

EDM 154 16 3 SOLARF 323 10 3

MICROA 1944 142 3 WATERQ 1060 16 14

SIGMEAR 817 6 2 LANDSAT 60607 160 11

SIGMEAS 10368 11 2

508 A. Appice and S. Džeroski

Table 3. Multi-target regression: comparison of the average RRMSE and average size

RRMSE Size

Dataset MTSMOTI STSMOTI MTREG PC MTSMOTI STSMOTI MTREG PC
TREE T TREE T

EDM 0.86 0.86 0.83 0.72 4 5 7 11

MICROA 0.78 0.60 0.87 1.01 18 47 17 50

SIGMEAR 0.71 0.91 1.15 0.85 3 8 11 7

SIGMEAS 0.03 0.03 0.03 0.03 23 27 49 166

SOLARF 1.02 1.06 1.02 1 13 30 13 2

WATERQ 0.96 0.97 0.98 0.96 12 92 13 5

LANDSAT 0.67 0.64 0.69 0.62 21 238 31.9 518

For each dataset, multi-target model trees (MTSMOTI) are first compared
with the set of single-target model trees (STSMOTI), induced one for each target
variable. The RRMSE is averaged over the target variables. The tree size for
STSMOTI is the sum of size for all separate trees. Secondly, multi-target model
trees are compared with multi-target regression trees (MTREGTREE) as well
as predictive clustering trees. Results are reported in Table 3.

Results show that multi-target model trees are much smaller than the set of
single-target model trees, while achieving comparable (sometime better) accu-
racy. MICROA is the only dataset where the multi-target model tree performs
significantly worse than the set of single-target trees (0.78 vs. 0.60). A deeper
analysis reveals that the worst performance involves only the prediction of one
target variable (Shannon biodiversity: 0.7 vs. 0.28), while the accuracy estimates
are comparable for the remaining two target variables (mites: 0.85 vs 0.82 and
springehrtails: 0.78 vs 0.72). This negative result suggests the absence of a “lin-
ear” dependence between the Shannon biodiversity and the variables mites and
springertails. In any case, multi-target trees are always induced much faster than
the set of single-target ones (18 vs 25 (EDM), 202 vs 412 (MICROA), 5 vs 9
(SIGMEAR), 69 vs 84 (SIGMEAS), <1 vs 2 (SOLARF), 718 vs 1272 (WATERQ)
and 9214 vs 25372 (LANDSAT): running times are in secs.

The comparison between multi-target model trees and regression trees re-
veals that although model trees are typically smaller than regression trees, they
achieve comparable (or sometime better) accuracy than corresponding the re-
gression trees. MTSMOTI is capable of detecting the presence of a global effect
of some explanatory variable on “all” of the target variables that no previous
study on these datasets have revealed. In this way, regression nodes implicitly
reveal the existence of some linear dependences among the target variables at
different depth of the tree hierarchy. Finally, the comparison with predictive
clustering trees confirms are sometime more accurate than model trees (EDM
and SIGMEA-REAL), but clustering trees can be significantly more complex.
Finally, clustering trees predict the same constant values (for each example cov-
ered by the same leaf), and they are not be able of capturing any linear pattern
in the data.

Stepwise Induction of Multi-target Model Trees 509

4 Conclusions

In this work, we present MTSMOTI, a system that induces multi-target model
trees and predict the values of several target variables simultaneously. Leaves of
such a tree contain several linear models, each predicting the value of a different
target variable. Multi-target model trees are built with two types of nodes: split
nodes and regression nodes. Experiments on single-target datasets shows that
MTSMOTI is competitive with respect to regression tree learners, SMOTI and
M5’, as well as predictive clustering trees. Experiments on multi-target datasets
confirm that multi-target model trees are much smaller than the set of single-
target model trees, while achieving comparable accuracies. In addition, they are
induced much faster. As future work, we plan to combine decision trees and
model trees to predict continuous and discrete target variables, simultaneously.
A comparison to predictive clustering rules should be interesting. Finally, adding
linear regression models to predictive clustering rules is worth to be explored.

References

1. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In:
Shavlik, J. (ed.) Proceedings of the 15th International Conference on Machine
Learning, pp. 55–63. Morgan Kaufmann, San Francisco (1998)

2. Draper, N.R., Smith, H.: Applied regression analysis. John Wiley & Sons, Chich-
ester (1982)

3. Karalic, A.: Linear regression in regression tree leaves. In: Proceedings of Interna-
tional School for Synthesis of Expert Knowledge, Slovenia, pp. 151–163 (1992)

4. Malerba, D., Esposito, F., Ceci, M., Appice, A.: Top down induction of model trees
with regression and splitting nodes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(5), 612–625 (2004)

5. Struyf, J., Dzeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) Workshop on Knowledge Discovery in
Inductive Databases, pp. 222–233 (2005)

6. Torgo, L.: Functional models for regression tree leaves. In: Fisher, D. (ed.) Pro-
ceedings of the 14th International Conference on Machine Learning, pp. 385–393.
Morgan Kaufmann, San Francisco (1997)

7. Vens, C., Blockeel, H.: A simple regression based heuristic for learning model trees.
Intelligent Data Analysis 10(3), 215–236 (2006)

8. Ženko, B.: Learning Predictive Clustering Rules. PhD thesis, Faculty of Computer
and Information Science, University of Ljubljana, Slovenia (2007)

9. Suzuki, M.G.W., Choki, Y.: k-nearest neighbour classification of symbolic objects.
In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp.
436–446. Springer, Heidelberg (2001)

10. Wang, Y., Witten, I.: Inducing model trees for continuous classes. In: van Someren,
M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 128–137. Springer, Hei-
delberg (1997)

11. Weisberg, S.: Applied regression analysis, 2nd edn. Wiley, Chichester (1985)

Comparing Rule Measures for Predictive

Association Rules�

Paulo J. Azevedo1 and Aĺıpio M. Jorge2,3

1 CCTC, Departamento de Informática, Universidade do Minho
pja@di.uminho.pt

2 Faculdade de Economia, Universidade do Porto
amjorge@fep.up.pt

3 LIAAD, INESC PORTO L.A.

Abstract. We study the predictive ability of some association rule mea-
sures typically used to assess descriptive interest. Such measures, namely
conviction, lift and χ2 are compared with confidence, Laplace, mutual
information, cosine, Jaccard and φ-coefficient. As prediction models, we
use sets of association rules. Classification is done by selecting the best
rule, or by weighted voting. We performed an evaluation on 17 datasets
with different characteristics and conclude that conviction is on average
the best predictive measure to use in this setting. We also provide some
meta-analysis insights for explaining the results.

1 Introduction

Association rule mining is primarily used for exploratory data mining. In that
setting it is useful to discover relations between sets of variables, which may
represent products in an on-line store, disease symptoms, keywords, demographic
characteristics, to name a few. To guide the data analyst identifying interesting
rules, many objective interestingness rule measures have been proposed in the
literature [10]. Although these measures have descriptive aims, we will evaluate
their use in predictive tasks. One of these measures, conviction, will be shown
as particularly successful in classification.

The general idea of classification based on association rules [7] is to generate
a set of association rules with a fixed class attribute in the consequent and
then use subsets of these rules to classify new examples. This approach has the
advantage of searching a larger portion of the rule version space, since no search
heuristics are employed, in contrast to decision tree and traditional classification
rule induction. The extra search is done in a controlled manner enabled by the
good computational behavior of association rule discovery algorithms. Another
advantage is that the produced rich rule set can be used in a variety of ways
without relearning, which can be used to improve the classification accuracy [5].

� Supported by Fundação Ciência e Tecnologia, Project Site-o-matic, FEDER e Pro-
grama de Financiamento Plurianual de Unidades de I & D.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 510–517, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparing Rule Measures for Predictive Association Rules 511

2 The Measures

We now describe the measures used in this work (Table 1), after introducing
some notation. Let r be a rule of the form A → C where A and C are sets of
items. In a classification setting, each item in A is a pair < attribute = value >,
and C has one single pair < class attribute = class value >. The rules are
obtained from a dataset D of size N .

Table 1. Measures

Measure Definition Range

confidence conf(A → C) = sup(A∪C)
sup(A) [0, 1]

Laplace lapl(A → C) = sup(A∪C)+1
sup(A)+2 [0, 1[

lift lift(A → C) = conf(A→C)
sup(C) [0, +∞[

conviction conv(A → C) = 1−sup(C)
1−conf(A→C) [0.5, +∞[

leverage leve(A → C) = sup(A ∪ C) − sup(A) × sup(C) [−0.25, 0.25]

χ2 χ2(A → C) = N ×
∑

X∈{A,¬A},Y ∈{C,¬C}
(sup(X∪Y)−sup(X).sup(Y))2

sup(X)×sup(Y) [0, +∞[

Jaccard jacc(A → C) = sup(A∪C)
sup(A)+sup(C)−sup(A∪C) [0, 1]

cosine cos(A → C) = sup(A∪C)√
sup(A)×sup(C)

[0, 1]

φ-coeff φ(A → C) = leve(A→C)√
(sup(A)×sup(C))×(1−sup(A))×(1−sup(C))

[−1, 1]

mutual inf. MI(A → C) =

∑
i

∑
j

sup(Ai∪Cj)×log(
sup(Ai∪Cj)

sup(Ai)×sup(Cj))

min(
∑

i
−sup(Ai)×log(sup(Ai)),

∑
j

−sup(Cj)×log(sup(Cj)))
[0, 1]

In association rule discovery, Confidence (of A → C) is a standard measure.
It is an estimate of Pr(C | A), the probability of observing C given A. After
obtaining a rule set, one can immediatly use confidence as a basis for classifying
one new case x. Of all the rules that apply to x (i.e., the rules whose antecedent
is true in x), we choose the one with highest confidence. Laplace is a measure
mostly used in classification. It is a confidence estimator that takes support into
account, becoming more pessimistic as the support of A decreases.

Confidence alone (or Laplace) is not be enough to assess the descriptive in-
terest of a rule. Rules with high confidence may occur by chance. Such spurious
rules can be detected by determining whether the antecedent and the consequent
are statistically independent. This inspired a number of measures for association
rule interest. One of them is Lift which measures how far from independence
are A and C. Values close to 1 imply that A and C are independent and the
rule is not interesting. Lift measures co-occurrence only (not implication) and is
symmetric with respect to antecedent and consequent.

Conviction [3] measures the degree of implication of a rule, but also assesses
the independence between A and C. Its value is 1 in case of independence and
is infinite for logical implications (confidence 1). Unlike lift, it is sensitive to
rule direction (conv(A → C) �= conv(C → A)). Unlike confidence, the support
of both antecedent and consequent are considered in conviction. Leverage was
recovered by Webb for the Magnus Opus system [11], but previously proposed by
Piatetsky-Schapiro [9]. The idea is to measure, through a difference, how much

512 P.J. Azevedo and A.M. Jorge

A and C deviate from independence (from zero). The definite way for measuring
the statistical independence between antecedent and consequent is the χ2 test.
As stated in [2], χ2 does not assess the strength of correlation between antecedent
and consequent. It only assists in deciding about the independence of these items
which suggests that the measure is not feasible for ranking purposes. Our results
will corroborate these claims.

The following measures evaluate the degree of overlap between the cases cov-
ered by A and C. The Jaccard coefficient is the binary similarity between the
sets of cases covered by both sides of the rule, whereas Cosine views A and C as
two binary vectors. In both cases, higher values mean similarity The φ-coefficient
is analogous to the discrete case of the Pearson correlation coeficient. In [10],
it is shown that φ2 = χ2

N . The last measure, Mutual Information, measures the
amount of reduction in uncertainty of the consequent when the antecedent is
known [10]. In the definition (table 1), Ai ∈ {A,¬A} and Cj ∈ {C,¬C}. No-
tice that measures lift, leverage, χ2, Jaccard, cosine, φ and MI are symmetric,
whereas confidence, Laplace and conviction are asymmetric. We will see that
this makes all the difference in terms of prediction. Other measures could have
been considered, but we focused mainly on the ones used in association rules.

2.1 Prediction

The simplest approach for prediction with association rules is Best Rule, where
we choose, among the rules that apply to a new case, the one with the highest
value of the chosen predictive measure. Ties can be broken by support [7]. A kind
of best rule strategy, combined with a coverage rule generation method, provided
encouraging empirical results when compared with state of the art classifiers on
some datasets from UCI [8]. Our implementation of Best Rule follows closely the
rules ordering described in CMAR [6]:

R1≺R2 if meas(R1) > meas(R2) or meas(R1)==meas(R2)∧ sup(R1)>sup(R2)

or meas(R1)==meas(R2)∧ sup(R1)==sup(R2) ∧ ant(R1)<ant(R2).

where meas is the used interest measure and ant is the length of the antecedent.
For prediction, we have also tried Weighted Voting. This strategy combines

the rules F (x) that fire upon a case x. The answer of each rule is a vote, and
the final decision is obtained by assigning a specific weight to each vote.

predwv = arg maxg∈G

∑
x′∈antec(F (x)) vote(x

′, g).maxmeas(x′ → g).

3 Experiments

We have tested the effects of each measure on benchmark datasets. For that,
we ran CAREN [1] using “Best Rule” and “Weighted Voting”. For reference we
show the results of the rpart and the c4.5 TDIDT algorithms (see [5] for more de-
tails). Stratified 10 fold cross-validation was used to estimate error rates(Table 3)
and to derive algorithm ranking (Table 4). The datasets used for evaluation
(table 2) have varied sizes, number of attributes and classes and were obtained

Comparing Rule Measures for Predictive Association Rules 513

Table 2. Datasets used for the empirical evaluation

Dataset nick #examples #classes #attr #numerics norm. Gini norm. entropy
australian aus 690 2 14 6 0.99 0.99
breast bre 699 2 9 8 0.90 0.93
pima pim 768 2 8 8 0.91 0.93
yeast yea 1484 10 8 8 0.86 0.75
flare fla 1066 2 10 0 0.61 0.70
cleveland cle 303 5 13 5 0.81 0.80
heart hea 270 2 13 13 0.99 0.99
hepatitis hep 155 2 19 4 0.66 0.73
german ger 1000 2 20 7 0.84 0.88
house-votes hou 435 2 16 0 0.95 0.96
segment seg 2310 7 19 19 1.00 1.00
vehicle veh 846 4 18 18 1.00 1.00
adult adu 32561 2 14 6 0.73 0.80
lymphography lym 148 4 18 0 0.71 0.61
sat sat 6435 6 36 36 0.97 0.96
shuttle shu 58000 7 9 9 0.41 0.34
waveform wav 5000 3 21 21 1.00 1.00

Table 3. Error rates (in percent) for rpart, c4.5 and the different CAREN variants

aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav
rpart 16.23 6.15 24.72 43.27 17.73 46.16 20.00 26.00 25.20 4.87 8.31 31.76 15.55 25.27 19.04 0.53 26.64
c4.5 13.92 5.00 24.36 44.27 17.44 50.04 21.09 21.32 30.20 3.25 3.21 25.96 13.61 23.07 13.97 0.05 22.73
BR.conf 14.21 4.57 22.78 41.27 19.14 45.70 18.52 19.99 28.50 8.11 9.91 38.74 14.81 17.29 19.75 0.47 17.40
BR.lift 36.09 18.88 41.66 44.57 21.66 44.09 31.48 47.51 63.80 46.67 9.91 43.92 36.49 47.75 34.51 21.74 29.82
BR.conv 14.35 4.28 22.38 42.07 19.78 44.09 18.89 16.78 26.70 8.11 9.91 38.63 14.27 18.00 19.39 0.45 17.42
BR.chi 32.89 14.02 33.71 45.10 21.66 44.09 27.04 47.51 63.30 40.95 31.77 46.21 36.49 47.08 32.43 20.59 21.04
BR.lapl 14.22 5.86 25.25 44.29 18.86 45.70 17.04 20.58 28.90 6.48 10.61 39.22 15.70 18.00 19.86 0.47 17.34
BR.lev 14.51 11.58 30.71 48.13 18.85 44.09 21.85 21.68 29.30 5.55 36.58 48.82 20.10 27.40 47.64 1.64 26.82
BR.jacc 14.51 19.45 34.89 44.81 18.86 45.70 38.15 20.58 30.00 5.55 34.03 48.81 24.08 34.32 42.14 15.58 26.74
BR.cos 14.51 23.17 34.89 55.80 18.86 45.70 44.44 20.58 30.00 5.55 33.94 49.75 24.08 43.62 42.75 15.58 32.16
BR.phi 14.51 6.85 27.85 44.55 19.22 44.09 18.89 30.27 30.70 5.55 33.12 49.06 17.91 28.69 36.25 6.45 26.46
BR.MI 25.81 5.85 24.20 46.14 17.90 44.09 27.04 19.99 29.90 15.88 14.50 37.90 17.41 45.76 35.29 6.04 28.52
Voting.conf 16.24 3.57 22.64 42.61 18.47 45.70 17.41 16.27 24.10 13.35 15.11 35.43 16.35 27.37 35.17 2.85 17.28
Voting.lift 15.37 3.29 25.63 42.01 19.50 45.70 16.67 17.14 27.50 14.73 15.11 35.55 20.02 32.19 33.43 9.20 17.24
Voting.conv 18.40 4.72 22.77 41.87 18.56 45.70 19.63 17.45 26.50 13.80 20.22 36.04 15.07 22.50 23.17 0.60 28.42
Voting.chi 16.10 3.43 25.63 42.88 18.94 45.70 17.04 15.22 25.70 13.81 15.89 36.03 18.42 32.19 35.79 3.60 17.12
Voting.lapl 16.39 3.57 22.77 42.41 18.38 45.70 17.41 16.27 23.90 13.35 15.15 35.55 16.41 27.37 35.17 2.84 17.22
Voting.Lev 15.82 4.58 24.72 46.04 18.56 45.70 17.78 14.12 24.40 14.50 22.34 39.00 17.04 32.72 36.60 2.69 19.72
Voting.Jacc 17.41 4.87 24.07 43.34 18.19 45.70 17.78 15.53 24.40 14.26 21.52 38.89 18.14 32.10 35.04 2.55 19.96
Voting.Cos 16.98 4.29 23.29 43.41 17.91 45.70 17.04 14.86 24.40 13.57 18.40 38.30 16.50 30.72 35.21 2.14 18.30
Voting.Phi 15.52 3.43 24.59 42.68 18.93 45.70 17.41 15.88 26.00 14.50 18.31 38.17 18.03 30.72 34.50 5.54 17.98
Voting.MI 77.84 49.08 34.36 45.03 18.66 45.70 73.33 80.09 66.00 80.63 97.71 74.69 34.88 93.25 84.38 40.84 90.90

Table 4. Ranks

mean aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav
BR.conv 6.35 4 6 1 4 20 3.5 11.5 8 10 8.5 4 11 2 2.5 3 2 7
BR.conf 7.18 2 8 5 1 17 13.5 10 11.5 12 8.5 4 12 3 1 4 3.5 6
Voting.conf 7.44 14 4.5 2 6 7 13.5 6 6.5 2 10.5 8.5 3 7 7.5 12.5 12 4
Voting.lapl 7.47 15 4.5 3.5 5 6 13.5 6 6.5 1 10.5 10 4.5 8 7.5 12.5 11 2
c4.5 7.65 1 12 9 12 1 22 15 16 18 1 1 1 1 5 1 1 13
rpart 8.74 13 15 11.5 9 2 21 14 18 6 2 2 2 5 6 2 5 15
BR.lapl 8.79 3 14 13 13 13 13.5 3 14 13 7 6 15 6 2.5 5 3.5 5
Voting.Cos 9 16 7 6 11 4 13.5 3 2 4 12 13 10 9 11.5 14 8 9
Voting.conv 9.38 18 10 3.5 2 8.5 13.5 13 10 9 13 14 7 4 4 6 6 18
Voting.chi 10 12 2.5 14.5 8 16 13.5 3 3 7 14 11 6 15 14.5 16 13 1
Voting.Phi 10 10 2.5 10 7 15 13.5 6 5 8 16.5 12 9 13 11.5 9 14 8
Voting.lift 10.03 9 1 14.5 3 19 13.5 1 9 11 18 8.5 4.5 16 14.5 8 17 3
Voting.Jacc 10.65 17 11 7 10 5 13.5 8.5 4 4 15 15 13 14 13 11 9 11
Voting.Lev 11.56 11 9 11.5 19 8.5 13.5 8.5 1 4 16.5 16 14 10 16 18 10 10
BR.MI 13.15 19 13 8 20 3 3.5 17.5 11.5 15 19 7 8 11 19 15 15 19
BR.phi 13.82 6.5 16 16 14 18 3.5 11.5 19 19 4.5 18 20 12 10 17 16 14
BR.lev 14.03 6.5 17 17 21 11 3.5 16 17 14 4.5 21 19 17 9 21 7 17
BR.jacc 15.97 6.5 20 20.5 16 13 13.5 20 14 16.5 4.5 20 18 18.5 17 19 18.5 16
BR.cos 16.97 6.5 21 20.5 22 13 13.5 21 14 16.5 4.5 19 21 18.5 18 20 18.5 21
BR.chi 17.15 20 18 18 18 21.5 3.5 17.5 20.5 20 20 17 17 21.5 20 7 20 12
BR.lift 17.47 21 19 22 15 21.5 3.5 19 20.5 21 21 4 16 21.5 21 10 21 20
Voting.MI 20.21 22 22 19 17 10 13.5 22 22 22 22 22 22 20 22 22 22 22

from [8]. Since the existence of minority classes may be important to explain
the results, we have also measured class balancing. For that, we use normalized
Gini, defined as

∑
i pi

2/(1 − nclasses−1), where pi is the proportion of class i,

514 P.J. Azevedo and A.M. Jorge

and normalized entropy, −
∑

i pilog2(pi)/log2(nclasses). Both measures equal 1
when the classes are balanced and tend to 0 otherwise. The two measures are
not very different in value for these 17 datasets.

We have preprocessed numerical attributes using Fayyad and Irani’s super-
vised discretization method [4]. Minimal support was set to 0.01 or 10 training
cases. The only exception was the sat dataset, where we used 0.02 for computa-
tional reasons. Minimal improvement was 0.01 and minimal confidence 0.5. We
have also used the χ2 filter to eliminate potentially trivial rules. C4.5 and rpart
were ran using the original raw data.

4 Discussion

The first observation is that conviction gets the best mean rank. This confirms
the experiments in [5] which motivated the present study of this measure. We
observe that, using a t-test with 5% significance, conviction has 2 out of 17 sig-
nificant wins over confidence and 3 over Laplace (and loses none). This seems
to be a marginal but consistent advantage, which is not observed for the Voting
strategy. The second observation is that the other 7 measures do not produce
competitive classifiers. Notice that these are the symmetric rule interest mea-
sures. Using the error rate arrays, we can group the pairs strategy-measure using
hierarchical clustering. The distance between strategies was measured using plain
Euclidean distance and the clusters were aggregated using complete linkage. The
obtained clustering (Fig. 1) indicates the predictive proximity of confidence, con-
viction and Laplace (the three symmetric measures employed), when used with
best rule. Almost all Voting strategies are clustered together, except for Vot-
ing.conv (which is clustered with the top performing best rule approaches) and
Voting.MI which performs particularly poorly. Other expected pairs of measures
also cluster together. These are Jaccard and cosine (for best rule), lift and χ2,
leverage and φ and also rpart and C4.5.

We now try to study if some features of the data set (meta features) may
indicate whether to use either conviction, confidence or laplace. As meta features

V
ot

in
g.

M
I

B
R

.li
ft

B
R

.c
hi

rp
ar

t

c4
.5

V
ot

in
g.

co
nv

B
R

.la
pl

B
R

.c
on

f

B
R

.c
on

v

B
R

.ja
cc

B
R

.c
os

B
R

.le
v

B
R

.p
hi

B
R

.M
I

V
ot

in
g.

Le
v

V
ot

in
g.

Ja
cc

V
ot

in
g.

lif
t

V
ot

in
g.

co
nf

V
ot

in
g.

la
pl

V
ot

in
g.

C
os

V
ot

in
g.

ch
i

V
ot

in
g.

P
hi

0.
0

1.
0

2.
0

Fig. 1. Clustering measures and strategies using complete linkage and Euclidean
distance

Comparing Rule Measures for Predictive Association Rules 515

F

VV

F

L

V

L

V

V

L

XV

V

F

V

V

L

2 4 6 8 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Best of Laplace (L), Confidence (F) and Conviction (V)

#classes

no
rm

al
iz

ed
 e

nt
ro

py

aus

bre
pim

yea

fla

cle

hea

hep

ger

hou

segveh

adu

lym

sat

shu

wav

Fig. 2. Meta exploration of the results. The chart plots the datasets in a two di-
mensional space. Each dataset is represented by the symbol corresponding to the best
performing measure. Ties are represented by “X”.

we have selected nclasses, the number of classes and n.entropy, normalized class
entropy, which measures the balance of class distribution. Given the relatively
small number of datasets, we performed visual exploration using 2-dimensional
xy-plots. In Fig. 2 we can see which of the three measures performed better
with a best rule approach. The chart represents the datasets in the “number of
classes” × “class distribution” space. Each dataset is represented by the measure
that performed better within the considered pool. Conviction is represented by
“V”, confidence by “F” and Laplace by “L”. When there is a tie between the
two best ones the dataset point is signaled by an “X”.

As we observe, there is no clear pattern explaining the success of each measure.
Conviction dominates in general. Confidence is successful with the yeast dataset
(10 classes, relatively unbalanced), and with two other. Laplace has a visible
but not dominating presence in datasets with 2 or 3 classes. Regarding class
balancing, there is no visible tendency. We observe, however, that the most
unbalanced dataset is won by conviction.

Confidence and conviction differ in the rule ranking they produce when rules
of different classes are involved. For rules of the same class, or of classes with
the same support, conviction preserves the ordering given by confidence. This is
because conviction (table 1) has the same numerator for rules with classes with
the same support. The denominator increases when confidence of the rule de-
creases and vice-versa. The datasets considered are never exactly balanced (The
values of normalized entropy and Gini shown in table 2 are 1.00 only because of
rounding). In Fig. 3 we can compare the rule rankings provided by confidence
and conviction for some datasets. These charts were built by generating a rule set

516 P.J. Azevedo and A.M. Jorge

5 10 15

0.
5

0.
6

0.
7

0.
8

0.
9

wav

conviction

co
nf

id
en

ce

5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

pim

conviction

co
nf

id
en

ce
2 4 6 8 10 12

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

hep

conviction

co
nf

id
en

ce

0 200 400 600 800

0.
6

0.
7

0.
8

0.
9

1.
0

shu

conviction

co
nf

id
en

ce

Fig. 3. Visualization of the comparison of the rule rankings produced by conviction
and confidence. Each point represents one rule generated for the respective dataset.
Different rule classes are represented with different characters.

for each dataset, and plotting each rule on a 2 dimensional space defined by con-
fidence and conviction. For the almost balanced datasets (segment, vehicle and
waveform), the ranking is practically preserved. This explains the almost equal
error values of BR.conf and BR.conv (Table 3). For datasets with normalized en-
tropy above 0.9 and two classes (australian, pima, heart and house-votes) we can
observe two different curves, one for each class (each class is represented with a
different marker). Despite the small difference between class supports, the differ-
ent effects of conviction and confidence are quite visible. However, in these cases,
the difference in error is still very small. The two significant wins of BR.conv over
BR.conf are in datasets adult and hepatitis. These are datasets with mid-range
entropy and 2 classes. In the case of hepatitis we can see that confidence tends
to rank first the rules of one of the classes, whereas conviction tends to interleave
rules of the two classes. The dataset with lowest entropy (highly unbalanced)
is shuttle. It has 7 classes, but only rules for 3 of the classes were derived. For
this dataset, conviction has advantage over confidence. In summary, what we
observe is that conviction favours rules with less frequent classes, and ranks the
rules differently from confidence. This is relatively innocuous for most of the
datasets, although more frequently advantageous to conviction. When there is a
significant difference it is in favour of BR.conv.

5 Conclusion

We have compared conviction with a few different measures and concluded that it
shows a systematic advantage with best rule classifier. Compared to confidence,
conviction favours low frequency classes and produces different rule orderings.
This is mainly visible with unbalanced datasets. Besides conviction, confidence
and Laplace, all the other yielded uninteresting results for best rule. In the case of
Voting confidence and Laplace ranked relatively high, whereas conviction ranked
amid the other measures. However Voting.conviction clustered close to the top
performing best rule approaches. The negative results of conviction with the
voting strategy may be due to the fact that rule ordering is diluted by the
combined effect of voting rules. Another difficulty in using conviction with a

Comparing Rule Measures for Predictive Association Rules 517

voting strategy may be related with its overly stretched value range. Asymmetric
measures obtained superior results with respect to symmetric ones. For future
work it would be worthwhile to combine different measures to produce ensembles
of classifiers.

References

1. Azevedo, P.J.: A data structure to represent association rules based classifiers.
Technical report, Universidade do Minho, Departamento de Informática (2005)

2. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing associa-
tion rules to correlations. In: Peckham, J. (ed.) SIGMOD Conference, pp. 265–276.
ACM Press, New York (1997)

3. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and im-
plication rules for market basket data. In: Peckham, J. (ed.) Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data, Tucson,
Arizona, 13–15 June 1997, pp. 255–264. ACM Press, New York (1997)

4. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

5. Jorge, A., Azevedo, P.J.: An experiment with association rules and classification:
Post-bagging and conviction. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS
2005. LNCS (LNAI), vol. 3735, pp. 137–149. Springer, Heidelberg (2005)

6. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple
class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 369–
376. IEEE Computer Society Press, Los Alamitos (2001)

7. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
KDD ’98: Proceedings of the fourth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 80–86. ACM Press, New York (1998)

8. Merz, C.J., Murphy, P.: UCI repository of machine learning database (1996)
http://www.cs.uci.edu/∼mlearn

9. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In:
Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)

10. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for
association analysis. Inf. Syst. 29(4), 293–313 (2004)

11. Webb, G.I.: Efficient search for association rules. In: KDD ’00: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 99–107. ACM Press, New York (2000)

http://www.cs.uci.edu/~mlearn

User Oriented Hierarchical Information

Organization and Retrieval

Korinna Bade, Marcel Hermkes, and Andreas Nürnberger

Otto-von-Guericke-University, D-39106 Magdeburg, Germany
{kbade,nuernb}@iws.cs.uni-magdeburg.de, marcel.hermkes@googlemail.com

Abstract. In order to organize huge document collections, labeled hi-
erarchical structures are used frequently. Users are most efficient in nav-
igating such hierarchies, if they reflect their personal interests. Thus, we
propose in this article an approach that is able to derive a personalized
hierarchical structure from a document collection. The approach is based
on a semi-supervised hierarchical clustering approach, which is combined
with a biased cluster extraction process. Furthermore, we label the clus-
ters for efficient navigation. Besides the algorithms itself, we describe an
evaluation of our approach using benchmark datasets.

1 Introduction

With the increasing number of data publicly available also the personal collec-
tions of documents have become larger. A useful personal organization of these
files is necessary to allow efficient re-finding of information. Hierarchical folder
structures have proven to be useful in the past, e.g. in personal file folders or
library catalogs. These structures have the advantage that they provide at the
same time a (categorized) overview of the collection and direct access to all doc-
uments therein. However, users are most efficient in navigating such hierarchies
if they reflect their personal interests instead some generally applicable criteria.

The goal of the work presented in the following is to provide the user a tool for
building and maintaining such a personal hierarchy. We consider the following
scenario. A starting point for the user can be a completely unstructured col-
lection. At this point, the system can provide the user with an initial although
unpersonalized structure purely based on standard document similarities. Once
the user starts with explicitly filing documents in his own personal structure,
either by himself or assisted by the system, this information is used to adapt the
structuring of the still unstructured part of the collection towards user specific
structuring preferences. Furthermore, these preferences can be applied to other,
external collections, which the user is viewing. This allows the user faster access
to interesting information therein.

In this paper, we present and evaluate an approach that is capable of ex-
tracting such a personal structure, while having different amounts of previously
structured data available. The approach consists of three main steps: hierarchical
clustering, extraction of clusters from the obtained dendrogram, and labeling.
Each step is presented in an own section, also including important related work.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 518–526, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

User Oriented Hierarchical Information Organization and Retrieval 519

2 Personalized Hierarchical Clustering

Our considered task is a two-fold semi-supervised hierarchical learning problem
with having unlabeled documents as well as unknown classes. The predominant
classes C in the collection are split into the set of known classes Ck and a set
of unknown classes Cu. As a consequence, the given labeled documents Dk are
only mapped to classes in Ck. The task of the algorithm is to map the unlabeled
documents Du to classes in C = Ck

⋃
Cu. This means that the algorithm either

derives a mapping to a known class or extracts new classes by grouping similar
documents and assigning a class label to this group. Furthermore, we assume
hierarchical relations RH between the classes in form of a tree structure. When
structuring a collection into classes, the algorithm should preserve the existing
structure RHk and extract the relations of discovered classes in CU to each other
and to the classes in Ck. Considering our user scenario, Ck and RHk are defined
by the hierarchical filing system of the user. Dk are the documents, which were
filed in the past. Du consists of the documents, which are still unstructured.

Considering related work, semi-supervised clustering is often performed by
constraint based clustering. Here, the supervised information is used to generate
Must-Link and Cannot-Link constraint sets [9], which influence the clustering.
Several approaches exist that either change the underlying similarity space or
directly modify the clustering process itself, e.g. [9,6,10,2]. All these approaches
search for a flat partitioning of the data, while we want to find a hierarchical
structure. In principle, these algorithms could be applied recursively to create
a hierarchy. However, partitioning algorithms require the number of clusters as
input parameter, which is not known in our scenario and hard to determine
automatically. Additionally, it needs to be determined on each hierarchy level.
Therefore, we decided to use Hierarchical Agglomerative Clustering (HAC) that
directly produces a hierarchical representation of the data by a dendrogram.
Furthermore, hierarchical approaches produce more stable and more accurate
results, especially if the data of the used collection is naturally hierarchical.

In our approach, labeled data is used to change the underlying similarity space
of a HAC algorithm to express personal structuring preferences. We assume
that the extracted features are sufficient to describe these preferences. In our
current work, we restricted ourselves to content features, i.e. occurring terms in
text documents. For each feature fi, a weight wi is computed that expresses its
influence in the clustering. These weights are integrated in the cosine similarity
measure: sim(fv1, fv2, w) =

∑
i wi · fv1,i · fv2,i. In [1], we present a method

to learn and apply these weights in detail. Its evaluation showed that feature
weighting improves the initial clustering towards a user specific structure.

3 Cluster Extraction

The goal of cluster extraction is to compress the dendrogram representation to
the most ”meaningful” nested clusters, i.e. to the clusters describing classes in
C = Ck

⋃
Cu. In our setting, ”meaningful” is partially defined by the given

520 K. Bade, M. Hermkes, and A. Nürnberger

labeled data. However, it is usually rare, does not cover all classes and might be
erroneous. Therefore, we first develop an unsupervised algorithm, which is then
enhanced with labeled data.

An Unsupervised Approach. In published research, there is a common under-
standing that clusters could be extracted by two basic approaches. The dendro-
gram is either recursively cut with similarity thresholds or clusters are extracted
on a node to node basis (e.g. by looking for significant changes in the merging
similarity between a node (i.e. the similarity of its two child clusters) and its
parent node). Both algorithm need a threshold as parameter. While the second
approach can better handle different densities of sibling clusters, the first ap-
proach allows the use of a ”global” criterion that helps in the extraction of less
obvious clusters by using more obvious sibling clusters. Furthermore, it can also
be used to always reduce the dendrogram, even without obvious sub-clusters.
Nevertheless, cluster extraction is not widely discussed in the literature. To our
knowledge, no work was published that dealt with this problem more thoroughly.
Some work was done on extracting clusters from reachability plots produced by
density based clustering (see [7,3]). The authors of [7] also show the similarities
between reachability plots and dendrograms making it possible to apply their
algorithms to dendrograms. However, these algorithms require specific assump-
tions that do not necessarily hold in our setting. The work in [7] works best with
sharp cluster distinctions usually obtained, when data points are only assigned
to leaf-clusters, which violates our problem definition. The work in [3] focused
on extraction of narrowing sub-clusters. However, their approach requires a very
smooth reachability plot, which is not produced in our application.

In this paper, we used a threshold approach. A recursive procedure is applied
that starts at the root of the dendrogram and is repeated for each top node
of an extracted cluster. A threshold t is computed in each iteration depending
on the standard deviation σ of merging similarities in the considered sub-tree.
The idea is to skip a top fraction of nodes with merging similarities that are
”outstanding” from the others. As reference value the merging similarity of the
current top node is used, which is also the minimum merging similarity of the
whole sub-tree simmin. t is computed by simmin +p ·σ. While simmin and σ are
computed from the dendrogram, p is a parameter to determine the size of the
fraction of minimal merging similarities to skip. Further parameters can restrict
the cluster extraction, which are useful from the application point of view, i.e.
the minimum number of items per cluster (preventing the extraction of too small
clusters), the minimum difference in item size between a cluster and its parent
cluster (preventing narrowing sub-clusters of being too similar to their parents),
a minimum standard deviation (underneath it, merging similarities are supposed
to be indistinguishable). Appropriate values for these are highly dependent on
personal preference. Their values are not very crucial for the extraction process
and adaptations to them can be made during interaction with the collection.

Using Supervision. The labeled data is used locally to make known class
extraction more robust, i.e. avoiding the split of such a class. However, one has

User Oriented Hierarchical Information Organization and Retrieval 521

to be cautious in doing so, as this ”robustness” should not overextend onto
unknown classes. Due to this, we use the labeled data in a post-processing step
after the unsupervised extraction rather than integrating it directly. First, the
extracted clusters are labeled with known classes, if possible, as described in
Sec. 4. We then merge sibling clusters labeled equally. As simple merge, we
create intermediary clusters for groups of at least two equally labeled siblings.
More interesting is what we call a deep merge based on the original dendrogram.
Here, the sibling nodes are merged by extracting the common ancestor node from
the dendrogram. The idea is that other items that also belong to the common
ancestor node, but were not extracted or labeled as such, also belong to the same
class. This combines more items of one class. However, it only works correctly,
if the initial clustering represents the desired cluster structure appropriately.
This can be detected, if integrated clusters are labeled differently, in which case
the merge is not performed. However, this can especially not be detected for
unknown classes, making it vulnerable for mislabeling.

Additionally and maybe more important is the use of the labeled data for
estimating initial parameter values. Especially if the user starts interacting with
the collection, he might not know how to set the parameters appropriately. Once
he has a first result, it is easier to adapt parameters according to preference. For
estimation, we label the clusters in the dendrogram. For each labeled cluster,
we use the distance in merging similarity between this cluster and the cluster
labeled with the parent class to estimate p. The mean value of all estimates is
the final estimate. Minimum cluster size and standard deviation could be set to
the maximum value that still allows the extraction of all labeled clusters.

4 Cluster Labeling

Labeling extracted clusters is crucial for the effectiveness of the hierarchy as it
guides the user in browsing it. A good label must be capable of summarizing
the content of a cluster. At the same time, it must be very short. In a hierarchy,
the label must also be able to distinguish a cluster from its sibling clusters.
Furthermore, it must show the differences between the cluster and its parent
cluster. Although there are different approaches to automatically extract good
cluster labels, a label given by the user himself is most descriptive. Therefore, we
try to reuse known labels, if possible, before computing user independent labels.

Labeling Clusters as Known Classes. Known classes can be identified with
the labeled data. As it is rare and possibly erroneous, we cannot trust every
single instance but can also not assume high support or confidence of a labeling
decision. In our work, we use two parameters to deal with this problem and
constrain the labeling. We require to have a minimum precision for one class in
all labeled items of the cluster and a minimum number of items labeled as such.
The higher we set the thresholds of these parameters the less errors we make.
However, this also means labeling less data. Good parameter values depend on
the available amount of labeled data and on the clustering quality.

522 K. Bade, M. Hermkes, and A. Nürnberger

The clusters are labeled in a recursive procedure starting from the root of the
cluster tree. If a label following the defined criteria is found, it is assigned to the
cluster. All sub-clusters of it are then restricted to be labeled with sub-labels.
This ensures the consistency of the hierarchy of known classes. Furthermore,
labels are propagated upwards during cluster merges.

Labeling Clusters of Unknown Classes. The basis for most existing ap-
proaches are term statistics. Unfortunately, most related work only considers a
flat cluster environment, which makes them not necessarily applicable to a hi-
erarchical structure. [5] dealt with hierarchies by distinguishing three different
concepts: terms describing the cluster itself, terms that are more general and
thus better describe the parent cluster, and terms that are more specific, de-
scribing a child cluster. The distinction between these three concepts is made by
predefined thresholds on term frequencies. However, these thresholds are hard
to determine. Furthermore, it is questionable, whether one threshold works for
different hierarchy levels as the distribution of term frequencies might vary. [4]
uses a linear function that combines different statistical features that include hi-
erarchical labeling criteria. In contrast to our work, they try to learn weights for
different features by using linear regression on the basis of a set of labeled data.
Our approach also uses statistical measures. As [5] and [4], we integrate parent
and child clusters to avoid several occurrences of the same label along pathes
in the hierarchy. A score of descriptiveness Dest,C is computed for each term t
and each cluster C mainly based on the (absolute) document frequencies dft,C ,
i.e. the number of documents that contain t (see (1), (2)). Here, each cluster is
handled as containing all documents assigned to it and its child clusters.

Dest,C = log
(

rankP (dft,P)
rankC(dft,C)

)
· (1− SIt,P + SIt,C)/2 (1)

SIt,C =

{
1 if Child(C) = ∅(∑

ci∈Child(C)−
dft,ci

dft,C
log2

dft,ci

dft,C

)
/ log2 |Child(C)| else

(2)
The first factor measures the boost in document frequency ranking of t in

comparison to the parent cluster P (as rankC(dft,C) is the rank of t in an
descending order according to the document frequency of t in C, as in [4]). This
assures that terms get higher scores that were not already good descriptors for
the parent cluster and are therefore too general for the current cluster. The
second factor considers information on how the term is distributed in sibling
and child nodes, expressed by SI, which is bound to [0; 1]. Terms occurring in
several child clusters are favored by SIt,C , while terms that are also descriptors of
sibling clusters are penalized by 1−SIt,P . For each cluster, n terms with highest
descriptiveness are used as label. Unfortunately, our score cannot completely
avoid that a term occurs several times along pathes through the cluster hierarchy
(i.e. pathes from the root cluster to all leaf nodes). Therefore, we go through all
such pathes in a post-processing step. If we encounter a term in the selected n
descriptive labels occurring several times in a path, we remove it from the set of

User Oriented Hierarchical Information Organization and Retrieval 523

descriptive labels in all clusters except the one with highest Dest,C . All clusters
now having less than n terms as label get added new terms by taking the next
best descriptive terms from the initially computed list.

5 Evaluation

In this evaluation, the general performance of the algorithms is evaluated using
two different datasets of web pages that simulate the problem. The first is the
banksearch dataset [8] (see Fig. 1). The second was created by us by downloading
parts of the open directory (www.dmoz.org). The properties can be summarized
as: hierarchy depth 4, 3 to 16 direct child nodes per inner node, about 50 doc-
uments directly in each node, 2119 documents in total. All documents were
represented with standard tfidf document vectors.

We evaluated different settings to simulate different user data. For both
datasets, we evaluated a setting with 10 labeled documents per class, i.e. a
classification scenario (settings (1), (5)). For the banksearch data, we also eval-
uated settings with unknown classes: (2) Motor Sport, (3) Science, (4) Science
and Sport. As measure, we used the f-score gained in accordance to the given
dataset, which is supposed to be the true user defined class structure that shall
be recovered. For its computation in an unlabeled cluster tree, we followed a
common approach that selects for each class in the dataset the cluster gaining
the highest f-score on it. When evaluating cluster labeling, the f-score of known
classes is determined based on all documents labeled as such. The unknown
classes are again extracted as best f-score clusters, however only in hierarchy
consistent unlabeled parts of the cluster tree.

As we already evaluated the baseline performance of the clustering algorithm
in [1], we focus here on evaluating cluster extraction and labeling. The compet-
itiveness of our approach for classification can briefly be shown by comparison
with SVM. For the banksearch data, the SVM reaches a mean F-score of 0.6892,
while our approach reaches 0.7570 on the dendrogram. For the open directory
data, the SVM reaches 0.6198, while our approach reaches 0.6100. Hence, our
algorithm has a good baseline performance.

In Tables 1 and 2, we evaluate our cluster extraction methods (CE - unsu-
pervised extraction, SM - simple merge, DM - deep merge) in comparison to the
baseline given by the dendrogram (DG). As we consider here only a single cluster
per class, this evaluation shows how good the algorithms are in preserving the
best cluster. We only varied p for cluster extraction as the other parameters only
do pruning of the cluster tree. We set the minimum cluster size and the minimum

• Finance (0)
◦ Commercial Banks (100)
◦ Building Societies (100)
◦ Insurance Agencies (100)

• Programming (0)
◦ C/C++ (100)
◦ Java (100)
◦ Visual Basic (100)

• Science (0)
◦ Astronomy
(100)

◦ Biology (100)

• Sport (100)
◦ Soccer (100)
◦ Motor

Sport (100)

Fig. 1. Class structure of the banksearch dataset

524 K. Bade, M. Hermkes, and A. Nürnberger

Table 1. F-Score for different cluster extraction methods using the banksearch data

p = 0.1 p = 0.05 p = 0.03 p = 0.01
Setting DG CE SM DM CE SM DM CE SM DM CE SM DM

(1) 0.757 0.693 0.733 0.723 0.735 0.737 0.735 0.718 0.760 0.745 0.754 0.754 0.754

(2) 0.771 0.699 0.727 0.752 0.713 0.724 0.724 0.762 0.762 0.762 0.767 0.767 0.767

(3) 0.734 0.582 0.654 0.667 0.676 0.705 0.709 0.717 0.729 0.731 0.732 0.732 0.732

(4) 0.697 0.542 0.585 0.583 0.575 0.622 0.617 0.641 0.653 0.643 0.694 0.694 0.694

Table 2. F-Score open direc-
tory data for CE/SM/DM

Setting (5)

DG 0.610

p = 0.2 0.551/0.581/0.568

p = 0.1 0.577/0.587/0.585

p = 0.01 0.586/0.590/0.587

Table 3. Estimation p

Setting p

(1) 0.196

(2) 0.072

(3) 0.047

(4) 0.030

(5) 0.212

Table 4. F-Score after labeling

Setting SM DM SM-l DM-l

(1) 0.760 0.745 0.696 0.696

(2) 0.762 0.762 0.728 0.728

(3) 0.729 0.731 0.692 0.694

(4) 0.653 0.643 0.624 0.519

(5) 0.587 0.585 0.525 0.521

Table 5. Example labeling for the banksearch data

Class Five selected terms

Banking mortgage, savings, payments, debit, income

Commercial Banks bank, depositor, internet, abbey, advert

Building Societies society, interest, building, telegraphic, superseeded

Insurance Agencies insurance, cover, claims, wording, policy

difference in cluster size between parent and child cluster to 10. The minimum
standard deviation was set to 0. Increasing p leads in general to broader cluster
trees and a fewer number of extracted clusters. A too high value for p therefore
will split a ”class cluster” into several clusters, causing a decrease in the f-score.
There is always a value for p that can (almost) recover the best f-score clusters
from the dendrogram, while highly condensing the dendrogram representation,
shrinking the number of clusters from over 2000 to about 100 or less for the
banksearch data and from over 4000 to 200 or less. Furthermore, it seems that
good values for p are quite stable for different data. Its order of magnitude, which
is quite low, is in our opinion given by the fact that we cluster high dimensional
text data. Both merging methods are useful for getting back lost performance
due to splits in the cluster tree with similar results. Although hypothesized dif-
ferently by us, the deep merge seems not to be better. This suggest that a simple
merge, which also requires less computation time, is a sufficient and therefore
better choice. Table 3 shows the estimations for p as computed based on the
labeled data. Although these values are not perfect, they provide a good initial
starting point for the exploration of the cluster tree.

User Oriented Hierarchical Information Organization and Retrieval 525

Table 4 evaluates the identification of given classes using a minimum precision
of 0.6 and a minimum number of labeled items of 2. We used a fixed p of 0.03
for the banksearch settings and 0.1 for the open directory setting. Both merges
are considered. Labeling f-score is always less than the best cluster f-score as the
given labeled data is not sufficient to always identify the best clusters. In setting
(4), the deep merge performs a lot worse than the simple merge as it overextends
the label of the known class Programming onto the unknown Science class. This
suggests that the deep merge might be problematic in the case of unknown
classes. Nevertheless, the identification of existing classes works well in general.

Table 5 gives an inside on how the labeling of unknown classes works with
a small example. The labeling algorithm was directly applied to the dataset
hierarchies to compute class labels. In general, the manually chosen labels are
in about 70% of the classes among the five selected terms. The computed terms
seem quite descriptive for the classes. Nevertheless, a more thorough evaluation
of the labeling method is still necessary.

6 Conclusion

In this paper, we presented an integrated approach that provides a personalized
hierarchical cluster structure for a certain collection. The algorithm comprises
of several steps, i.e. (1) do personalized HAC, (2) extract clusters unsupervised,
(3) label clusters according to known classes, (4) merge clusters, and (5) label
still unlabeled clusters. We evaluated each step and showed the validity of our
approach. The algorithms presented as solutions to certain steps can also be
applied in different settings and are not necessarily restricted to our application.

References

1. Bade, K., Nürnberger, A.: Personalized hierarchical clustering. In: Proceedings
of the 2006 IEEE/WIC/ACM Int. Conference on Web Intelligence, pp. 181–187
(2006)

2. Basu, S., Banerjee, A., Mooney, R.: Active semi-supervision for pairwise con-
strained clustering. In: Proc. of SIAM Int. Conf. on Data Mining, pp. 333–344
(2004)

3. Brecheisen, S., Kriegel, H.P., Kröger, P., Pfeifle, M.: Visually mining through clus-
ter hierarchies. In: Proc. of SIAM Int. Conf. on Data Mining, pp. 400–412 (2004)

4. Callan, J., Treeratpituk, P.: Automatically labeling hierarchical clusters. In: Pro-
ceedings of the 2006 International Conference on Digital Government Research.
ACM International Conference Proceeding Series, vol. 151, pp. 167–176. ACM
Press, New York (2006)

5. Glover, E., Pennock, D., Lawrence, S., Krovetz, R.: Inferring hierarchical descrip-
tions. In: Proceedings of 11th International Conference on Information and Knowl-
edge Management, pp. 507–514 (2002)

6. Kim, H., Lee, S.: An effective document clustering method using user-adaptable
distance metrics. In: Proceedings of the 2002 ACM symposium on Applied com-
puting, pp. 16–20. ACM Press, New York (2002)

526 K. Bade, M. Hermkes, and A. Nürnberger

7. Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: Automatic extraction of clusters
from hierarchical clustering representations. In: Advances in Knowledge Discovery
and Data Mining: 7 th Pacific-Asia Conference (Proc.), pp. 75–87 (2003)

8. Sinka, M., Corne, D.: A large benchmark dataset for web document clustering.
In: Soft Computing Systems: Design, Management and Applications, Frontiers in
Artificial Intelligence and Applications, vol. 87, pp. 881–890 (2002)

9. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Proceedings of 18 th International Conference on
Machine Learning, pp. 577–584 (2001)

10. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application
to clustering with side-information. Advances in Neural Information Processing
Systems 15, 505–512 (2003)

Learning a Classifier with Very Few Examples:
Analogy Based and Knowledge Based Generation

of New Examples for Character Recognition

S. Bayoudh1, H. Mouchère2, L. Miclet1, and E. Anquetil2

1 IRISA-ENSSAT
{bayoudh,miclet}@enssat.fr

2 IRISA-INSA
{mouchere,anquetil}@irisa.fr

Abstract. This paper is basically concerned with a practical problem:
the on-the-fly quick learning of handwritten character recognition sys-
tems. More generally, it explores the problem of generating new learning
examples, especially from very scarce (2 to 5 per class) original learning
data. It presents two different methods. The first one is based on ap-
plying distortions on original characters using knowledge on handwriting
properties like speed, curvature etc. The second one consists in genera-
tion based on the notion of analogical dissimilarity which quantifies the
analogical relation “A is to B almost as C is to D”. We give an algorithm
to compute the k-least dissimilar objects D, hence generating k new ob-
jects from three examples A, B and C. Finally, we experimentally prove
the efficiency of both methods, especially when used in conjunction.

Keywords: instance generation, sequence generation by analogy, know-
ledge-based generation, handwritten character recognition.

1 Introduction

In a number of Pattern Recognition systems, the acquisition of labeled data
is user unfriendly. Still, the classification system has to be retrained with as
many examples as possible. A way to overcome this difficulty is to generate
artificial new examples. It can be done either in the feature space or on the raw
representation of the data.

The first technique has already been studied and experimented. [1] combines
feature selection and generation of “corrupted” examples to avoid overfitting
when boosting on small samples. [2] analyzes the regularization performed by
adding noise on the learning data. In the framework of neural networks, the
effect of generating more examples is known as a good way to avoid overfitting.

For on-line character recognition systems, several image distortions have been
used [3]: slanting, shrinking, ink erosion and ink dilatation; [4] extends the learn-
ing data base by elastic distortions before training a neural network. Text lines
can also be distorted as in [5] before training a Hidden Markov Model.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 527–534, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

528 S. Bayoudh et al.

Bishop [6] gives no theoretical coverage about example generation, but draws
a pragmatic conclusion: “ (. . .) the addition of random noise to the inputs (. . .)
has been shown to improve generalization in appropriate circumstances”.

In this paper, we deal with the quick tuning of a handwritten character recog-
nition to a new user, when only a very small set of examples is available. We
describe in section 2 our system and the representation used to generate new ex-
amples. This operation is realized along two different axes, before transforming
the data into the feature space. Firstly, we consider the inputs as sequences of a
combination of Freeman chain-codes and of special symbols (anchorage points)
describing pen up and downs, extrema, etc. Then, in section 3, we use an original
method of generating: from any three examples, we produce as many examples
as required, provided that they are in weak analogical dissimilarity from the
three basic patterns. Secondly, as described in section 4, we extract high-level
information from the characters : slant, writing speed, etc. and we randomly
vary these parameters to generate new examples. To finish, we combine the two
methods and we describe in section 5 our experimental protocol. We show in
particular in this section that generating hundreds of fake examples from a very
small number of real samples per class is a better learning strategy than using
10 real samples per class and comparable to use 30 real samples per class.

2 On-Line Handwriting Signal Description

The on-line characters used in this paper have been gathered on a PDA using
a specialized pen-based human-computer interface. The characters are isolated.
They are acquired without any context, in a random order, and on-line.

When acquired on-line, a character is considered as a function p(t) describing
the pen positions. Each point p(t) is defined by its x and y geometric position.

Contrary to the knowledge-based generation, the generation based on Ana-
logical Proportion (AP) requires a slightly more elaborated representation of
the signal. Hence, before the AP generation, the signal is re-sampled in space
and basically transformed into a Freeman chain-code. In this paper we use the
extended 16-Freeman code Σ = {0, 1, .., 16}, where the direction 0 corresponds
to an isolated point in the original signal. The AP generation produces char-
acters in Freeman chain-code. Then they are decoded into an on-line signal by
following the direction sequence using the same inter-point distance.

For the needs of the AP generation we have extended the Freeman code with
a set of 8 capital letters {C,D,E,H,K,L,M,N} each one corresponding to a
special point in a handwritten character. They are called anchorage points and
they lead to a better AP generation. These anchorage points come from an
analysis of the stable handwriting properties, as defined in [7]: pen-up/down,
y-extrema, angular points and in-loop y-extrema.

Figure 1 shows a global overview of the complete generation process of new
examples using knowledge-based distortions and AD generation on Freeman en-
coding. After generation, the characters are transformed in a vector of 21 fea-
tures. These features are the input of our handwriting recognition system. They

Learning a Classifier with Very Few Examples 529

Original characters

Anchorage points
Re−sampling &

13

9

1

5

Analogycal
Disimilarity
Generation

Freeman
Decoding

Freeman coding
E

2 2 2 2 2 2 E ... 12 12 12 N 0

M
L

E

N

L

M

N

Synthetic

Database
Learning

Knowledge−based
Distortions

Fig. 1. Overview of the generation process of synthetic learning data base using
knowledge-based distortions and AD generation on Freeman encoding.

are based on stable properties of handwriting like downstrokes [7]. The classifi-
cation and test processes of the section 5 are done in this 21-dimension feature
space.

3 Analogy Based Generation

In this section, we give general notions on analogy and explain how it can be
used to generate new examples. Generally speaking, an analogy, or to be more
specific, an analogical proportion, involves four objects (or terms) such that “the
second term is to the first as the fourth is to the third” according to the seminal
definition by Aristotle. Analogy has been widely used as a model of reasoning,
in philosophy [8], Artificial Intelligence [9], computational linguistics [10].

3.1 Analogical Proportion

An analogical proportion (AP) between four objects A, B, C and D, in the
same universe, is expressed by : “A is to B as C is to D”. If an element x of
the analogical equation is unknown, finding it is called resolving an analogical
equation. For example, in “fins is to fish as wings is to x”, the solution x
would be bird in the semantic domain.

Definition 1. An AP on a set X is a relation between four elements of X (i.e.
a subset of X4). An element of this relation writes “a : b :: c : d” and reads
“a is to b as c is to d”, or “a, b, c and d are in AP ”. According to [10], an
AP must fulfill the three properties:

Symmetry of the “as” relation: (a : b :: c : d) ⇔ (c : d :: a : b)
Exchange of the means: (a : b :: c : d) ⇔ (a : c :: b : d)
Determinism: (a : a :: b : x) ⇒ (x = b)

How can we use this definition in pattern generation ? Suppose that the hand-
written character “a” is encoded as a sequence and that we have 3 examples
a1, a2 and a3 of this character. We can generate more “a” characters by solving
analogical equations on sequences like: “a1 : a2 :: a3 : x” or “a3 : a2 :: a1

: x”. If we have n examples, the number of new “a” that we can generate is
n2 × (n− 1)/2. We can even go further, as we show in the following paragraph,
by relaxing the definition of the solution to an analogical equation.

530 S. Bayoudh et al.

3.2 Analogical Dissimilarity Between Objects

We give in this section a precise definition of the approximate analogical propor-
tion “a is to b almost as c is to d”. For this purpose, we have introduced a
quantity that reflects how far are four objects from being in AP . This measure
is called Analogical Dissimilarity (AD) [11]. To coherently extend the AP , it has
to verify the following properties:

1. ∀u, v, w, x,AD(u, v, w, x) = 0⇔ u : v :: w : x
2. ∀u, v, w, x,AD(u, v, w, x) = AD(w, x, u, v) = AD(v, u, x, w)
3. ∀u, v, w, x, z, t, AD(u, v, z, t) ≤ AD(u, v, w, x) + AD(w, x, z, t)
4. In general, ∀u, v, w, x,AD(u, v, w, x) �= AD(v, u, w, x).

3.3 Analogical Dissimilarity Between Sequences

Let Σ = {1, 2, . . . , 16, 0, C, . . . , N} be the alphabet of the Freeman symbols
code and of the anchorage points. A handwritten character is represented by
a sequence of letters of Σ. We introduce a new letter � to Σ, to be added
anywhere in a sequence without changing its semantics (“35C4” means the same
as “3 � 5C �� 4”). With this augmented alphabet, we can define an alignment
between four sequences and the notion of analogical dissimilarity.

Alignment. An alignment of four sequences of different lengths is realized by
inserting letters � so that all the four sequences have the same length. Once this
is done, we consider in each column of the alignment the analogical dissimilarity
in the augmented alphabet. For example AD(1, 5, 2, 6) = 0 because they are in
exact AP, AD(3, A, 4, A) = 1 (because shifting 4 to 3, which are at distance 1,
would give an exact AP).

The principle of our generation process is to align three sequences of charac-
ters “h” for example, and resolving column after column to generate the fourth
sequence (see Figure 2). We define the cost of an alignment as the sum of the
AD on columns, and an optimal alignment as one of minimal cost. The Ana-
logical Dissimilarity between four Sequences (ADS) is the cost of an optimal
alignment. It has all the properties given above, except the third point (the
triangular inequality).

To generate the k best sequences regarding to ADS, we use the general search
algorithm A� [12] used to find the k shortest paths in a graph [13], with a heuristic
value set to 0.

h1 = 9 9 9 9 9 9 9 H 1 2 4 K 6 9 9 9
h2 = 1 K 8 9 9 9 9 9 10 H 2 2 4 K 8 8 9
h3 = 9 8 9 9 9 9 9 10 H 2 2 3 3 K 8 9 9
x = 1 K 8 9 9 9 9 9 10 H 2 2 3 3 K 8 8 8

Fig. 2. Example of a resolution on Freeman direction sequences by AP and the corre-
sponding characters representation

Learning a Classifier with Very Few Examples 531

4 Knowledge Based Generation

In this section we present two classical image distortions and two new on-line
distortions based on specificities of the on-line handwriting. Each distortion de-
pends on one or more random parameters. To generate a synthetic character
from an original one using a distortion, we first randomly choose a value for
each corresponding parameter and then we apply it.

4.1 Generation by Image Distortions: Scaling and Slanting

To generate new learning examples, one has to choose distortions according to
the data acquisition process. Indeed images captured with a camera or in a video
can be perturbed by perspective, rotation, noise. . . while scanned handwriting is
disturbed by ink thick variation only. In this paper we limit us to scaling and
slanting deformations because of the nature of our data. Two random parame-
ters correspond to the scale transformations, αx and αy which are the ratio of
the corresponding scales. The slant allows to generate inclined handwriting. It
depends of one random parameter αs which represents the tangent of the slant.

4.2 Generation by On-Line Distortions

There are few works about using handwriting generation in order to increase on-
line learning data. In [14] authors use works about handwriting generation [15]
to increase the size of a learning database to train an off-line sentence writer-
independent recognizer. The authors use a unique on-line handwriting model.
This approach is unusable in our context because we need writer-dependent
models. That is why we propose two simple distortions of on-line handwriting:
Speed Variation and Curvature Modification.

Speed Variation. The aim of Speed Variation distortion is to modify the size
of vertical and horizontal parts of the stroke, as shown in Figure 3, depending
of a random parameter αv. Indeed this straight parts of the writing can vary
without changing the handwriting style. For this we modify the speed V (t) =
(x(t + 1)− x(t), y(t + 1)− y(t)) depending of its direction. If this vector is near
one of the axes then it is increased or decreased by the ratio αv. The new
synthetic handwriting is defined by p′(t):

p′(t) = p′(t− 1) + β ∗ V (t− 1), with β =
{

1 if arg(V (t− 1))
[

π
2

]
∈ [π

8 ,
3π
8],

αv else.

Curvature Modification. The Curvature Modification distortion modify the
curvature of the writing as shown in Figure 3. It allows to close or open the
loops of handwriting. The curvature modification uses a random parameter
αc. The curvature at the point p(t− 1) is defined by the angle θ̂(t− 1) =

̂(p(t− 2), p(t− 1), p(t)) in] − π, π]. In order to keep the structure of the char-
acter, we do not modify the straight lines and cusps. The following equation gives

532 S. Bayoudh et al.

the position of the point p′(t) depending of the two previous points and of the
original curvature θ̂(t− 1) modified by αc:

̂(p′(t− 2), p′(t− 1), p′(t)) = θ̂(t− 1)− αc ∗ 4 ∗ |θ̂(t−1)|
π ∗ (1− |θ̂(t−1)|

π).

5 Experimentations

5.1 Experiment Protocol

Twelve different writers have written 40 times the 26 lowercase letters (1040
characters) on a PDA. Each writer database is randomly split in four parts with
10 characters per class. We use them in a 4-fold stratified cross validation: one
fourth for D10 database (260 data) and three fourth for D30 database (780
data). Thus the experiment is done four times by switching these parts. The
experimentations are composed of two phases in which three writer-dependent
recognition systems are learned: a Radial Basis Function Network (RBFN) and
a one-against-all Support Vector Machine (SVM).

Firstly, we compute two Reference recognition Rates without data generation :
RR10 and RR30. For RR10, writer-dependent classifiers are learned for each
writer on his D10 and evaluated on his D30 database for the four splits. For
RR30, the classifiers are learned on D30 and tested on D10. Hence, RR10 is
the recognition rate achievable with 10 original characters without character
generation and RR30 gives an idea of achievable recognition rates with more
original data. Practically speaking, in the context of on the fly learning phase
we should not ask the user to input more than 10 characters per class.

Secondly the handwriting generation strategies are tested. For a given writer,
one to ten characters per class are randomly chosen in his D10. Then 300 syn-
thetic characters per class are generated to make a synthetic learning database.
A classifier is learned with this base and tested on the database D30 of the
writer. This experiment is done 3 times per cross validation split and per writer
(12 times per user). Finally the means of the writer dependent mean recognition
rate and the mean standard deviation are computed.

We study three different strategies for the generation of synthetic learning
databases. The strategy “Image Distortions" chooses randomly for each gen-
eration one among the three image distortions. In the same way the strategy
“On-line and Image Distortions" chooses randomly one distortion among the
image distortions and on-line distortions. The “Analogy and Distortions" strat-
egy generates two-thirds of the base with the previous strategy and the remaining
third with AP generation.

5.2 Results

Figure 4 compares the recognition rates achieved by the three generation strate-
gies for the three classifiers. Firstly we can note that the global behavior is the
same for the two classifiers. Thus the following conclusions do not depend on the

Learning a Classifier with Very Few Examples 533

Fig. 3. Examples of synthetic characters generated by the three approaches

On−line and Image Distortions

Image Distortions

RR30

RR10

 95

 90

 85

 80

 75

 2 3 4 5 6 7 8 9 10

Distortions and Analogy

RBFN

R
ec

og
ni

tio
n

ra
te

 (
%

)

Number of original characters

On−line and Image Distortions

Image Distortions

Distortions and Analogy

SVM

RR30

RR10

 10 9 8 7 6 5 4 3 2

 86

 88

 90

 92

 94

 96

R
ec

og
ni

tio
n

ra
te

 (
%

)

Number of original characters

Fig. 4. Writer-dependent recognition rates and their standard deviation depending on
the number of used original characters compared to reference rates using 10 or 30
characters per class for RBFN and SVM classifiers

classifier type. Secondly the three generation strategies are complementary be-
cause using “On-line and Image Distortions" is better than “Image Distortions"
alone and “Analogy and Distortions" is better than using distortions. We proved
statistically the signigicance of the improvement between the three generation
strategies using the t-test and the sign test [16]. Thus, for each classifier and
each number of original characters the difference between the strategies is due
to chance has a probability less than 10−3 using the t-test and less than 10−30

using the sign-test.
Therefore, using only four original character with the complete generation

strategy is better than the RR10. The RR30 is achieved by using 9 or 10 original
characters. Thus we can conclude that using our generation strategies allows to
learn classifier with very few original data as efficiently as using original data
from a long input phase: we need about three times fewer original data to achieve
the same recognition rate.

6 Conclusion

In this paper, we have shown how to generate synthetic examples for a quick
tuning of a handwritten character classifier to a new writer. We have presented
two complementary ways of generation, the first being based on the prior knowl-
edge and the second on analogy on sequences. Both methods in conjunction have
led to efficient results on writer-dependent recognition.

534 S. Bayoudh et al.

Although empirical, these experiments lead to the conclusion that it may be
efficient to generate new samples, provided that the variation on few learning
samples is not made in the feature decision space, but rather in a representation
space close to the raw data. Knowledge-based and analogy-based generation,
although of very different nature, have proved in this case to be both efficient.

References

1. Wolf, L., Martin, I.: Robust boosting for learning from few examples. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Press, Los Alamitos (2005)

2. Bishop, C.: Training with noise is equivalent to Tikhonov regularization. Neural
Computation 7(1), 108–116 (1995)

3. Cano, J., Pérez-Cortes, J.C., Arlandis, J., Llobet, R.: Training set expansion in
handwritten character recognition. In: Proc. of the 9th Int. Workshop on Structural
and Syntactic Pattern Recognition, pp. 548–556 (2002)

4. Simard, P., Steinkraus, D., Platt, J.C.: Best practice for convolutional neural net-
work applied to visual analysis. In: Proc. of the 7th Int. Conf. on Document Anal-
ysis and Recognition (2003)

5. Varga, T., Bunke, H.: Generation of synthetic data for an HMM-based handwriting
recognition system. In: Proc. of 7th Int. Conf. on Document Analysis and Recog-
nition, pp. 618–622 (2003)

6. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2007)

7. Anquetil, E., Lorette, G.: Perceptual model of handwriting drawing application to
the handwriting segmentation problem. In: Proc. of the 4th Int. Conf. on Document
Analysis and Recognition, pp. 112–117 (1997)

8. Hesse, M.: Aristotle’s logic of analogy. The Philosophical Quarterly 15(61), 328–340
(1965)

9. Gentner, D., Holyoak, K.J., Kokinov, B.: The analogical mind: Perspectives from
cognitive science. MIT Press, Cambridge (2001)

10. Lepage, Y.: Solving analogies on words: an algorithm. In: Proc. of COLING-
ACL’98, vol. 1, pp. 728–735 (1998)

11. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: a classification rule for
binary and nominal data. In: Proc. of the Int. Joint Conf. on Artificial Intelligence,
vol. 20, pp. 678–683 (2007)

12. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publishing Company (1980)
13. Eppstein, D.: Finding the k shortest paths. SIAM J. Computing 28(2), 652–673

(1998)
14. Varga, T., Kilchhofer, D., Bunke, H.: Template-based synthetic handwriting gen-

eration for the training of recognition systems. In: Proc. of 12th Conf. of the In-
ternational Graphonomics Society, pp. 206–211 (2005)

15. Plamondon, R., Guerfali, W.: The generation of handwriting with delta-lognormal
synergies. Biological Cybernetics 78, 119–132 (1998)

16. Gillick, L., Cox, S.J.: Some statistical issues in the comparison of speech recogni-
tion algorithms. In: IEEE (ed.) Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, Glasgow, Scotland, pp. 532–535. IEEE
Computer Society Press, Los Alamitos (1989)

Weighted Kernel Regression for Predicting

Changing Dependencies

Steven Busuttil and Yuri Kalnishkan

Computer Learning Research Centre and Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom
{steven,yura}@cs.rhul.ac.uk

Abstract. Consider the online regression problem where the depen-
dence of the outcome yt on the signal xt changes with time. Standard re-
gression techniques, like Ridge Regression, do not perform well in tasks of
this type. We propose two methods to handle this problem: WeCKAAR,
a simple modification of an existing regression technique, and KAARCh,
an application of the Aggregating Algorithm. Empirical results on artifi-
cial data show that in this setting, KAARCh is superior to WeCKAAR
and standard regression techniques. On options implied volatility data,
the performance of both KAARCh and WeCKAAR is comparable to
that of the proprietary technique currently being used at the Russian
Trading System Stock Exchange (RTSSE).

1 Introduction

Consider the online regression problem where the dependence of the outcome yt

on the signal xt changes with time. An example of this is the prediction of
financial options implied volatility described in Sect. 4.2. Standard regression
techniques, like Ridge Regression, treat all training examples equally. In time
series theory there is a method called GARCH (see, for example, [1, Chap. 19]),
which assigns exponentially decreasing weights to old examples. This method
is used to estimate historical volatility in finance. We would like to extend this
idea to the more general problem of online regression.

In Sect. 3 we present two methods as a solution to this problem: WeCKAAR
and KAARCh. WeCKAAR is a simple method that adds decaying weights to an
existing regression technique. KAARCh is a new method based on the Aggre-
gating Algorithm (AA). The AA (see [2]) allows us to merge experts from large
pools to obtain optimal strategies. To get KAARCh, the AA is used to merge
all predictors that can change with time.

We report the empirical performance of these methods in Sect. 4; first on an
artificial dataset, and then on options implied volatility data. These results show
that when dealing with changing dependencies, KAARCh is an improvement on
standard and weighted regression techniques. In addition, the performance of
WeCKAAR and KAARCh on options implied volatility data provided by the
Russian Trading System Stock Exchange (RTSSE) is comparable to that of the
specially designed proprietary technique currently being used.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 535–542, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

536 S. Busuttil and Y. Kalnishkan

2 Background

In the online regression framework at every moment in time t = 1, 2, . . . , the
value of a signal xt ∈ X arrives1. Statistician (or Learner) S observes xt and
then outputs a prediction γt ∈ R, before the outcome yt ∈ R arrives. The set X
is a signal space which is assumed to be known to Statistician in advance. We
will be referring to a signal-outcome pair as an example. The performance of S
is measured by the sum of squared discrepancies between the predictions and
the outcomes, known as square loss. Therefore, on trial t Statistician S suffers
loss (yt−γt)2. The losses incurred after T trials sum up to the cumulative square
loss at time T ,

LT (S) =
T∑

t=1

(yt − γt)2 .

Clearly, a smaller value of LT (S) means a better predictive performance.

2.1 Linear and Kernel Regression

If X ⊆ Rn we can consider simple linear regressors of the form w ∈ Rn. Given a
signal x ∈ X , such a regressor makes a prediction w′x. Linear methods are easy
to manipulate mathematically but their use in the real world is limited since
they can only model simple dependencies. The kernel trick (first used in this
context in [3]) is now a widely used technique which can make a linear algorithm
operate in feature space without the inherent complexities. For a function k :
X×X → R to be a kernel it has to be symmetric, and for all and all x1, . . . ,x� ∈
X , the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , must be positive semi-
definite (have nonnegative eigenvalues). For every kernel there exists a unique
reproducing kernel Hilbert space (RKHS) F such that k is the reproducing kernel
of F . In fact, there is a mapping φ : X → F such that kernels can be defined
as k(x, z) = 〈φ(x), φ(z)〉. We will be referring to any function in the RKHS F
as D. Intuitively D(x) is a decision rule in F that produces a prediction for the
object x. We will be measuring the complexity of D by its norm ‖D‖ in F . For
more information on kernels and RKHS see, for example, [4] and [5].

2.2 Ridge Regression (RR)

Ridge Regression (RR), introduced to statistics in [6], is a popular regression
technique that at time T aims to find a wR that minimises

LT (RR) = a‖wR‖2 +
T−1∑

t=1

(yt − 〈wR,xt〉)2 ,

1 As usual, all vectors are identified with one-column matrices and A′ stands for the
transpose of matrix A. We will not be specifying the size of simple matrices like the
identity matrix I when this is clear from the context.

Weighted Kernel Regression for Predicting Changing Dependencies 537

where a is a fixed positive real number. RR’s solution is wR = (aI+X′X)−1X′y,
where I is the identity matrix, X = (x1, . . . ,xT−1)

′ and y = (y1, . . . , yT−1)
′. The

kernel version of RR, called Kernel Ridge Regression (KRR) (see [7]) calculates
the prediction for a new example xT by

γKRR = y′(aI + K)−1k , (1)

where k = (k(xi,xT)) and K = (k(xi,xj))i,j , i, j = 1, . . . , T − 1.

2.3 The Aggregating Algorithm for Regression (AAR)

The Aggregating Algorithm (AA) (see [2]), allows us to merge strategies (or
experts) from large pools to obtain optimal strategies. Typically, such an optimal
strategy performs nearly as good as the best expert in the pool in terms of the
cumulative loss. The AA was applied to the problem of linear regression resulting
in the AA for Regression (AAR) [2, Sect. 3] (also known as the Vovk-Azoury-
Warmuth forecaster, see [8, Sect. 11.8]). Using a Gaussian prior, AAR merges
all the static linear predictors that map signals to outcomes. AAR’s solution to
the regression problem is wA = (aI+ X̃

′
X̃)−1X̃

′
ỹ, where X̃ = (x1, . . . ,xT)′ and

ỹ = (y1, . . . , yT−1, 0)′. It can be shown (see [9]) that this solution minimises

LT (AAR) = a‖wA‖2 + 〈wA,xT 〉2 +
T−1∑

t=1

(yt − 〈wA,xt〉)2 .

The main property of AAR is that it is optimal in the sense that the total loss it
suffers is only a little worse than that of any linear predictor. In [10] AAR was
kernelised to get Kernel AAR (KAAR) which makes a prediction at time T by

γKAAR = ỹ′(aI + K̃)−1k̃ ,

where K̃ = (k(xi,xj))i,j , i, j = 1, . . . , T , and k̃ =
(
k′, k(xT ,xT)

)′.

2.4 Controlled KAAR (CKAAR)

Controlled KAAR (CKAAR) [9] is a generalisation of both KRR and KAAR. At
time T the linear version of CKAAR aims to find a solution wC that minimises

LT (CKAAR) = a‖wC‖2 + b〈wC,xT 〉2 +
T−1∑

t=1

(yt − 〈wC,xt〉)2 ,

where b ≥ 0. It is clear that when b = 0, CKAAR is equivalent to RR and
equivalent to AAR when b = 1. Empirical results in [9] suggest that in general,
the performance of CKAAR is as good as or better than that of both KAAR
and KRR. The linear CKAAR solution is wC = (aI + X̂

′
X̂)−1X̂

′
ỹ, where X̂ =

(X′,
√
bxT)′. The kernel version of CKAAR makes a prediction at time T by

γCKAAR = ỹ′(aI + K̂)−1k̂ ,

where K̂ =
[

K
√
bk√

bk′ b k(xT ,xT)

]
and k̂ =

(
k′,
√
b k(xT ,xT)

)′
.

538 S. Busuttil and Y. Kalnishkan

3 Methods

We are interested in making predictions in online regression where the depen-
dency of yt on xt changes with time. We present two solutions to this problem:
a simple method named WeCKAAR and our new method KAARCh. It is inter-
esting that the prediction formulae of these two methods are very similar.

3.1 WeCKAAR

Weighted CKAAR (WeCKAAR) is a simple modification of CKAAR that em-
ploys a decaying factor such that old examples are given less importance. The
objective of WeCKAAR is to find a w that minimises

LT (WeCKAAR) = a‖w‖2 + b〈w,xT 〉2 +
T−1∑

t=1

dt(yt − 〈w,xt〉)2 , (2)

where dt ∈ R are nonnegative weights that increase with t. Let dT = b and
D = diag(d1, . . . , dT) be the diagonal matrix with elements d1 . . . dT . It can
be shown by differentiation that the minimum of (2) is achieved when w =(
X̃

′
DX̃ + aI

)−1

X̃
′
Dỹ. If we use the identity (AA′+aI)−1A = A(A′A+aI)−1

(see, for example, [10, Sect. 3.1]) to obtain the dual form of this and introduce
kernels, WeCKAAR’s prediction for the signal xT becomes

γT = ỹ′√D
(√

DK̃
√

D + aI
)−1√

Dk̃ , (3)

where
√

D = diag(
√

d1, . . . ,
√
dT), and

√
DK̃
√

D =

⎡

⎢
⎢⎢
⎣

d1k(x1,x1)
√

d1d2k(x1,x2) · · ·
√

d1dT k(x1,xT)√
d2d1k(x2,x1) d2k(x2,x2) · · ·

√
d2dT k(x2,xT)

...
...

. . .
...√

dT d1k(xT ,x1)
√

dTd2k(xT ,x2) · · · dTk(xT ,xT)

⎤

⎥
⎥⎥
⎦

.

3.2 KAARCh

The main idea behind our new method, the Kernel Aggregating Algorithm for
Regression with Changing dependencies (KAARCh), is to apply the Aggregating
Algorithm (AA) to the case where the pool of experts is made up of all linear
predictors that can change with time. More formally, an expert in this case is a
sequence θ1, θ2, . . ., that at time T predicts x′

T (θ1+θ2+ . . .+θT), where xT ∈ Rn

and for every t, θt ∈ Rn.
Due to space limitations we are only going to give an overview of the main

theoretical results achieved (for details see [11]). Let a1, . . . , aT be positive con-
stants. Applying the AA to the pool of experts described above with a Gaussian
prior and introducing kernels, we get KAARCh which makes a prediction by

γT = ỹ′ (K̄ + I
)−1

k̄ , (4)

Weighted Kernel Regression for Predicting Changing Dependencies 539

where K̄ =
((∑min(i,j)

t=1
1
at

)
k(xi,xj)

)

i,j
, and k̄ =

((∑i
t=1

1
at

)
k(xi,xT)

)

i
, for

i, j = 1, . . . , T .
The main property of KAARCh is that its cumulative loss is less or equal to

that of a wide class of experts plus a term of the order o(T). Informally, this
class is comprised of all the predictors that do not change very rapidly with time.
We assume that outcomes are bounded by Y , therefore, for any t, yt ∈ [−Y, Y]
(however, we do not require our algorithm to know Y).

Theorem 1. Let k be a kernel on a space X, let Dt be decision rules in the
RKHS induced by k and let D = (D1, D2, . . . , DT)′. Then for any point in time T
and any at > 0, t = 1, . . . , T ,

LT (KAARCh) ≤ inf
D

(

LT (D) +
T∑

t=1

at‖Dt‖2
)

+ Y 2 ln det
(
K̄ + I

)
.

Let us bound the norm of D1 by d and assume that T is known in advance. If
each ‖Dt‖, for t = 2, . . . , T , is small, we can find a1, . . . , aT such that the extra
terms become of the order o(T).

Corollary 1. Under the conditions of Theorem 1, let T be known in advance.
For every positive d and ε, if ‖D1‖ ≤ d and, for t = 2, . . . , T , ‖Dt‖ ≤ d

T 0.5+ε , we
can choose a1, . . . , aT such that

LT (KAARCh) ≤ LT (D) + O
(
Tmax(0.5,(1−ε))

)
= LT (D) + o(T) .

This result can also be achieved if we assume that there are only a few nonzero
Dt, for t = 2, . . . , T . In this case, the nonzero Dt can have greater flexibility.

Implementation Notes. For simplicity, we may take all equal a1, a2, . . . , aT =
a. In this case, (4) becomes

γT = ỹ′
(
K̆ + aI

)−1

k̆ , (5)

where

K̆ =

⎡

⎢⎢
⎢
⎢
⎢
⎣

1k(x1,x1) 1k(x1,x2) 1k(x1,x3) · · · 1k(x1,xT)
1k(x2,x1) 2k(x2,x2) 2k(x2,x3) · · · 2k(x2,xT)
1k(x3,x1) 2k(x3,x2) 3k(x3,x3) · · · 3k(x3,xT)

...
...

...
. . .

...
1k(xT ,x1) 2k(xT ,x2) 3k(xT ,x3) · · · Tk(xT ,xT)

⎤

⎥⎥
⎥
⎥
⎥
⎦
, k̆ =

⎡

⎢⎢
⎢
⎢
⎢
⎣

1k(x1,xT)
2k(x2,xT)
3k(x3,xT)

...
Tk(xT ,xT)

⎤

⎥⎥
⎥
⎥
⎥
⎦
.

Recalling that a scalar multiplied by a kernel is still a kernel, and making al-
lowances such that steps in time can be skipped (for instance there is no data
available for some steps), the coefficients 1, . . . , T in K̆ and k̆ can be replaced
with any increasing, positive real numbers t1, . . . , tT , representing the real-world
time at which examples arrive.

540 S. Busuttil and Y. Kalnishkan

0 50 100 150 200
−0.05

0

0.05

t

θ t

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

t

C
um

ul
at

iv
e

sq
ua

re
 lo

ss

KRR
WeCKAAR
KAARCh

(a) (b)

Fig. 1. The behaviour of θt with time (a), approximating Brownian motion, and the
cumulative loss suffered by KRR, WeCKAAR and KAARCh on the artificial dataset (b)

4 Empirical Results

In this section we measure the empirical performance of our methods on an
artificial dataset and on a real-world dataset on options implied volatility.

4.1 Artificial Dataset

Let w1, . . . , wT ∈ R be T normally distributed random variables with mean 0
and variance σ2, and θt =

∑t
i=1 wi. Drawing xt ∈ R from the interval [0, 1] using

a uniform distribution, we generate a dataset by the equation yt = θ′txt. In our
experiments, we set T = 200 and σ = 0.01, and repeated the procedure 20 times
on such randomly generated datasets. The typical behaviour of a resulting θt

with time can be seen in Fig. 1 (a). In the normal regression setting (where the
dependency does not change with time) this graph would simply be a flat line. In
Fig. 1 (b) we show the mean over all runs of the cumulative square loss suffered
by KRR, WeCKAAR and KAARCh using a linear kernel on these datasets.

4.2 Options Implied Volatility Data

The Russian Trading System Stock Exchange (RTSSE) have provided us with
data containing the details of option transactions on several underlying assets.
Options are types of derivative securities that give the right to buy or sell assets
for a particular strike price in the future (see [1] for more details). The accurate
pricing of these options is an important problem. The most popular approach
to pricing options is based on the Black-Scholes (B-S) theory. This assumes that
the asset price follows an exponential Wiener process with constant volatility σ
which cannot be directly observed but can be estimated from historical data.
In practice this model is often violated. Given the current prices of options and
the underlying asset we can find σ that satisfies the B-S equations. This σ is
known as the implied volatility and exhibits a dependence on the strike price

Weighted Kernel Regression for Predicting Changing Dependencies 541

Table 1. Results on options implied volatility data. All mean square losses reported
are ×10−3, apart from the ones for EERU1206 which are ×10−2.

RTSI1206 (10126 transactions) RTSI0307 (8410 transactions)
RTSSE: 2.91 RTSSE: 2.78

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 36.56 2.19 (2.16) Poly 8.29 2.40 2.38
Spline 2.63 (2.23) (2.24) Spline 3.49 2.29 2.29
RBF 3.31 2.33 2.31 RBF 3.87 2.33 2.32

GAZP1206 (9382 transactions) GAZP0307 (10985 transactions)
RTSSE: 1.29 RTSSE: 2.13

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 1.59 1.54 1.53 Poly 3.16 2.45 2.45
Spline 5.21 1.49 1.49 Spline 2.85 2.47 2.47
RBF 1.59 1.47 1.48 RBF 3.53 2.49 2.49

EERU1206 (13152 transactions) EERU0307 (14776 transactions)
RTSSE: 1.47 RTSSE: 4.74

KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 162.43 1.71 1.72 Poly 5.49 4.58 4.52
Spline 1.92 1.65 1.66 Spline 5.07 4.49 4.50
RBF 6.36 1.65 1.65 RBF 5.83 (4.46) 4.49

and time. There is no generally recognised theory explaining the phenomenon of
implied volatility; however, it remains a useful parameter and traders often use
it to quote option prices. We are interested in using learning theory methods to
predict implied volatility without assuming any model for its behaviour. In our
experiments we treat the implied volatility of a transaction as the outcome and
the parameters of the transaction and other market information as the signal.

For WeCKAAR’s d1, . . . , dT and KAARCh’s t1, . . . , tT , we used a real number
representing the time at which the transactions occurred. The kernels used were
the spline, polynomial degree 2, and RBF with σ = 1 (see, for example, [5]). We
employed a sliding window (of size 50) approach. The parameter a (see (1), (3),
and (5)) was updated every 50 steps by finding a value that works well on
previous examples. Due to computational limitations, we ran experiments on
100 randomly selected segments containing 200 transactions from every dataset.

In Table 1 we give the results obtained on different options data. EERU and
GAZP are options on futures of liquid stocks and RTSI is related to options on
futures of a popular RTSSE index (the appended numbers specify different trans-
action periods). The results show the mean square loss suffered by WeCKAAR,
KAARCh and KRR, and also that of the proprietary method used at the RTSSE
for comparison. To measure the statistical significance of the difference between
the results of our methods and that of the RTSSE we used the Wilcoxon signed
rank test. When there is no statistical significance in the difference (we use the
conventional 5% threshold) the corresponding loss is enclosed in parentheses.

542 S. Busuttil and Y. Kalnishkan

5 Discussion

KAARCh’s performance on the artificial dataset is much better than that of
WeCKAAR and KRR. We attribute this to KAARCh’s superior theoretical prop-
erties. Six real-world datasets on options implied volatility were also considered.
The results achieved by KAARCh and WeCKAAR on these datasets are always
better than those of KRR and very close to those of the RTSSE (and slightly
better in half of them). The proprietary method used at the RTSSE was specif-
ically designed for this application and is constantly monitored and tuned by
experts to predict better. Therefore, it is remarkable that our methods perform
comparably. These results show that our new methods KAARCh and (to a lesser
extent) WeCKAAR are capable of handling changing dependencies and, in this
context, are an improvement on standard regression techniques.

Acknowledgements. We are grateful to Dr Michael Vyugin at the RTSSE for
providing the data and sharing his expertise with us. We also thank Prof Volodya
Vovk and Prof Alex Gammerman for useful discussions and comments.

References

1. Hull, J.C.: Options, Futures and Other Derivatives, 6th edn. Prentice-Hall, Engle-
wood Cliffs (2005)

2. Vovk, V.: Competitive on-line statistics. International Statistical Review 69(2),
213–248 (2001)

3. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the po-
tential function method in pattern recognition learning. Automation and Remote
Control 25, 821–837 (1964)

4. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-
ematical Society 68, 337–404 (1950)

5. Schölkopf, B., Smola, A.J.: Learning with Kernels — Support Vector Machines,
Regularization, Optimization and Beyond. The MIT Press, USA (2002)

6. Hoerl, A.E.: Application of ridge analysis to regression problems. Chemical Engi-
neering Progress 58, 54–59 (1962)

7. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. In: Proceedings of the 15th International Conference on Machine
Learning, pp. 515–521. Morgan Kaufmann, San Francisco (1998)

8. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

9. Busuttil, S., Kalnishkan, Y., Gammerman, A.: Improving the aggregating algo-
rithm for regression. In: Proceedings of the 25th IASTED International Conference
on Artificial Intelligence and Applications (AIA 2007), pp. 347–352. ACTA Press
(2007)

10. Gammerman, A., Kalnishkan, Y., Vovk, V.: On-line prediction with kernels and
the complexity approximation principle. In: Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pp. 170–176. AUAI Press (2004)

11. Busuttil, S., Kalnishkan, Y.: Online regression competitive with changing predic-
tors. In: Proceedings of the 18th International Conference on Algorithmic Learning
Theory (ALT 2007). LNCS, Springer, Heidelberg (to appear, 2007)

Counter-Example Generation-Based One-Class

Classification

András Bánhalmi, András Kocsor, and Róbert Busa-Fekete

Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and of the University of Szeged,

H-6720 Szeged, Aradi vértanúk tere 1., Hungary
{banhalmi,kocsor,busarobi}@inf.u-szeged.hu

Abstract. For One-Class Classification problems several methods have
been proposed in the literature. These methods all have the common
feature that the decision boundary is learnt by just using a set of the
positive examples. Here we propose a method that extends the training
set with a counter-example set, which is generated directly using the set
of positive examples. Using the extended training set, a binary classi-
fier (here ν-SVM) is applied to separate the positive and the negative
points. The results of this novel technique are compared with those of
One-Class SVM and the Gaussian Mixture Model on several One-Class
Classification tasks.

1 Introduction

In the field of machine learning there are several problems to which usual multi-
class classification methods cannot be applied or do not perform that well.
Among these problems an important one is the so-called ”One-Class Classifi-
cation” problem [1], where only positive examples are available for a particular
class, or the negative examples are highly under-represented. These problems are
also referred to as Data Description, Outlier Detection, and Novelty Detection
in different fields. What the methods proposed for this task have in common
is that since only positive examples are available from a particular class during
the training phase, the decision boundary is learnt not between two or more
classes, but it is a set of closed surfaces which surround the majority of the
positive training instances. The area of one-class training includes several algo-
rithms like generative probability density estimation methods (Gaussian Mixture
Model (GMM), Parzen estimator), reconstruction methods (k-means, Autoen-
coder Neural Networks), and boundary estimators (k-centers, SVDD [2] [3] [4],
NNDD [1]).

We propose here a new method for multidimensional real-valued one-class
classification tasks. Firstly, our method selects the boundary points of the pos-
itive data. Next, these boundary points are used to generate counter-examples
that surround the positives; and finally, a binary classifier (here ν-Support Vector
Machine (SVM) [5]) is used to separate the positive and negative data samples.
Overall, the goal of the proposed method is to force the binary classifier to learn
a ”multidimensional contour” at a distance from the positive examples.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 543–550, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

544 A. Bánhalmi, A. Kocsor, and R. Busa-Fekete

2 Generation of Counter-Examples

In order to train the ν-SVM binary classifier by taking just the positive examples
of a class, we propose a method for generating negative examples using the
positive ones. Essentially, this method first finds the local boundary points of
the input data. Then all the positive examples are transformed using the closest
boundary point for each. The points obtained after these transformations will
form the set of negative examples. This method is described below in more detail.

After, when we have negative examples surrounding the positives, a ν-SVM
is trained to separate these two classes. During the testing phase the position of
the decision boundary between the positive and negative sets can be controlled
by setting a threshold for the acceptance.

2.1 Finding Boundary Points

Our goal is to find those points of the n-dimensional positive examples for which
a hyperplane exists that separates this point from the other positive examples
in its neighborhood. Here we suggest a method for solving this problem (see the
pseudo-code in the Table 1).

Table 1. The Boundary Point Search Method

Input: A set of N positive examples (X)

Output: A set of K boundary points (B), and inner points (I)

0 B = ∅
1 For each x in X do
2 Take xi, the k closest points (but with a positive distance) to x.
3 Compute the unit vectors: ei = xi−x

‖xi−x‖
4 Try to separate ei points from the origin using a

hard margin linear SVM
5 If the optimization of SVM fails

I = I ∪ {x}
else

B = B ∪ {x}, and form the vector: xcenter =
k∑

i=1
αiei

(this vector is needed for counter-example generation)

The explanation of this algorithm is the following. In the 2nd and 3rd rows
the k closest points to x are determined (xi), and unit vectors are computed
from xi − x vectors. Then in the 4th row a linear SVM is applied to separate
these normalized vectors from the origin. Next, if the separation process fails,
then x is added to the set of inner points. If the points are separable, then x is
added to the set of boundary points and an xcenter vector is computed, which
will be needed later for counter-example generation.

Here the center vector will be defined as follows. Let xb a boundary point,
and let xi the k nearest neighbors of xb (i = 1 . . . k). Let ei be defined by:

Counter-Example Generation-Based One-Class Classification 545

ei = xi−xb

‖xi−xb‖ . Then the center vector corresponding to xb will be defined as the
normal vector of the hyperplane separating the origin from the points ei with
maximal margin.

A hard-margin linear SVM is used to find the hyperplane separation with
maximal margin, and the normal vector of this hyperplane is computed using
the support vectors and the corresponding αi values computed by the SVM. For
more information and for a proof see [6].

2.2 Generating Counter-Examples

The method suggested here is based on the transformation of the positive ex-
amples using the boundary points chosen earlier and the corresponding center
vectors. For more details about the algorithm, see Table 2 with the following
explanation.

Table 2. The base method used to generate counter-examples

Input: A set of N positive examples (X)

Output: A set of M negative examples (Y)

0 Y = ∅, B = boundaryPoints(X)
1 For each x in X do
2 Find xb, the closest boundary point (but with a positive distance) to x
3 Transform x to xb using the following formula:

y = v(1 + T (x, xb, X)/ ‖v‖) + x, where
v = xb − x, T is a function of the X dataset, x, xb

4 Check y to see if it is an inner point with the algorithm
described in Table 1

5 If y is not an inner point, then Y = Y ∪ {y}
else B = B\{xb}, and with the next
closest boundary point repeat the procedure.

In the 2nd row the closest boundary point xb to x is selected. The transfor-
mation of the point x will be a translation along the v = xb − x direction, and
the distance of the transformed point y from the boundary point xb depends on
the T (x, xb, X) function. In the 4th and 5th rows the algorithm checks to see if
y is an inner point, and if it is, then we do not take it as a negative example, and
the boundary point will be deleted from the set. For the T function we suggest
the following formula:

T (x, xb, X) =
dist

dist · curv + CosAngle(x, xb, X)
, (1)

where

CosAngle(x, xb, X) =
xT

b,center · (x− xb)∥
∥∥xT

b,center

∥
∥∥ ‖x− xb‖

, (2)

546 A. Bánhalmi, A. Kocsor, and R. Busa-Fekete

Fig. 1. These figures show the generated boundary points with different settings.
Left to right: 1st: (dist, curv) = (1, 0), 2nd: (dist, curv) = (0.4, 0), 3rd: (dist, curv) =
(1, 0.5), 4th: (dist, curv) = (1, 1). One can see that curv = 0 will generate points of
a hyperplane, while curv > 0 will generate points of a better fitting boundary hyper-
surface. With the dist parameter the distance between the boundary points and the
generated counter-examples can be controlled.

and xb,center is the center vector for the xb obtained and stored by the boundary
point selection method (see Table 1). The constant parameter dist controls the
distance between the transformed point and the boundary point, and the curv
parameter controls the curvature of the hyper-surface of the counter-examples
obtained by the transformation for the same boundary point. Figure 1 provides
some examples with different dist and curv parameter values. The method gen-
erates N counter examples for a positive dataset of N data samples.

3 Refinements and Variants

The previously described boundary point selection algorithm is based on a local
convexity condition. This method can also work on distinct or concave sets, but
the condition may exclude many points from the boundary point set. To increase
the number of the boundary points, we suggest some refinements.

The first modification we propose to apply can be used to increase the number
of boundary points and also to filter extreme distal points. The idea is that we
could also add some inner points to the set of the boundary points that are close to
the local surface. The modified method iteratively separates new boundary points
from the X\B dataset, where B is the set of the boundary points found in the
previous iterations. The effect of this method on the dataset is shown in Figure 2.

The second modification of the base method is proposed for the counter-
example generation algorithm. The boundary points do not necessarily have the
same ”popularity”. In some cases there are a lot of boundary points which are

Counter-Example Generation-Based One-Class Classification 547

Fig. 2. The first picture shows the result of using the base method. The second picture
is obtained with the proposed modification after 3 iterations.

Fig. 3. The left picture shows the generated negative examples without applying the
proposed modification, while the right picture shows the result when it is applied

rarely chosen for the point-transformation, and this can cause an imbalance in
the density of the counter-examples. This problem can be handled by adding
extra counter-examples to the original ones in the following way. First, the num-
ber of transformations have to be counted for all the boundary points. Then
extra boundary points should be added using the following rule: for each rarely
used boundary point, select their k closest points, and after applying the trans-
formation method add the new points to the set of counter-examples. To define
which boundary points the rule can be applied to, a frequency threshold has to
be used. The effect of this modification can be seen in Figure 3 above.

4 Time Complexity and Applicability

The time complexity of counter-example generation depends on k and N , where
k is the number of nearest neighbors used in the boundary point test, and N is
the total number of positive training examples. The boundary point test method
uses a linear SVM, so the time complexity is o(k3). To choose the k-nearest
neighbors, o(N · log(N)) time is needed, so altogether for N points the total
time complexity is o(k3 · N2 · logN). When generating counter-example for a
specified point, we need the closest boundary point, and a test has to be done
to see if the transformed point is an inner point. The combined time complexity
of this part after summing for each training example is o(|B| · n · k3), where |B|
is the number of boundary points.

548 A. Bánhalmi, A. Kocsor, and R. Busa-Fekete

The time complexity of the training method depends on which method is
chosen for this purpose. Here ν-SVM was applied, which has a time complexity of
o(N3). However, some other methods which have a slightly lower time complexity
could be applied for the classification task like the Core Vector Machine [7].

We suggest applying the method proposed here on those problems where the
attributes are continuous real-valued variables. Some preprocessing should also
be made to eliminate redundant or useless attributes. Since a hyperplane in
an n-dimensional space is determined by at least n points (this is important
when determining center vectors), we suggest that it also should be guaranteed
that the size of the training data is higher than the dimension of the problem.
However among our test cases there is an example which does not satisfy this
condition, but the proposed method still works well.

5 Experiments and Results

In order to separate the examples from the artifically generated counter-examples
ν-SVM with an RBF kernel function was applied using the WEKA system [8]
[9]. For the boundary point tests the Matlab SVM Toolbox by Steve Gunn
was applied 1. For a comparison we used GMM (from the GMMBayes Matlab
Toolbox [10]) and One-Class SVM (from WEKA) as baselines. All the models
were trained using different free parameter settings, and the results with the
best scores were taken. The free parameters are the number of clusters and
confidence value for the GMM, the ν and γ values for the one-class SVM and
the ν-SVM, the number of clusters, the (curv, dist) parameters, the number of
nearest neighbors that need to be considered (k) and the acceptance threshold
for the counter-example generation-based method. The ν-SVM with n clusters is
a construction where the positive training examples are grouped into n clusters
using k-means. After that, the counter examples are generated, and a separate
ν-SVM is trained for each cluster (the free parameters were set to the same
value). In the decision phase the score of an example is the maximum value of
the scores given by the SVM models corresponding to the clusters.

For testing purposes 10 one-class datasets were employed 2. The ”unvoiced
DB”, and ”silence DB” were constructed by us and contain feature vectors
of 25 Mel Filter Bank coefficients created from human speech samples. In the
”Unvoiced” one-class problem the task was to train the examples of unvoiced
phonemes. The ”Silence” one-class database contained feature vectors of silent
parts (and also contained the short silences in a plosive). The ”Ball-Bearing”,
”Water Pump” train and test datasets (used in fault detection) were downloaded
from [11]. That is, from the Ball-Bearing datasets the ”rectangular window” ver-
sion (containing 26-dimensional vectors), and from the ”Water Pump” datasets
the ”autocorrelation function” version (containing 26-dimensional vectors) were
utilized. In [12] these datasets are described in detail, and were used to find
1 http://www.isis.ecs.soton.ac.uk/resources/svminfo/
2 All the datasets can be downloaded from:

http://www.inf.u-szeged.hu/oasis/oneclass/

Counter-Example Generation-Based One-Class Classification 549

Table 3. Best test results using different models in one-class tasks: classification ac-
curacies, and rates of true positives and false positives

Accuracy/TP/ train DB size one-class SVM GMM ν-SVM &
FP rates (%) and dimension counter examples

Silence DB (1) 301/12 82.4/89.7/24.8 85.8/82.5/36.8 85.6/ 83.8/12.4

Unvoiced DB (2) 405/12 78.6/86.3/29.0 78.1/82.9/26.6 82.9/ 80.0/14.4

Ball B. DB (3) 56/26 99.3/96.9/ 0.0 96.3/81.3/ 0.0 100.0/100.0/0.0

Water P. DB (4) 224/26 94.0/88.5/ 4.4 94.9/87.5/ 4.4 95.7/ 94.8/ 4.1

OC 507 DB (5) 163/13 67.2/78.8/44.4 60.3/26.9/ 6.3 67.5/ 77.5/42.5

OC 511 DB (6) 126/5 85.2/88.8/18.4 78.8/80.0/22.4 86.8/ 92.8/19.2

OC 514 DB (7) 236/278 70.9/82.6/40.9 67.7/53.2/17.9 71.9/ 68.3/34.4

OC 589 DB (8) 125/34 52.4/ 4.8/ 0.0 52.4/ 4.8/ 0.0 71.6/ 62.4/19.2

OC 598 DB (9) 300/21 77.8/76.0/20.3 50.5/ 1.0/ 0.0 77.7/ 86.3/31.0

OC 620 DB (10) 4490/10 86.3/89.6/17.0 84.9/93.1/23.2 84.6/ 91.1/22.1

the optimal parameter settings for the One-class SVM, and to choose the best
preprocessing method. The other 6 datasets (OC xxx) were downloaded from
the webpage given in [13]. More information about these datasets can be found
there. These datasets did not contain separate train and test sets, so train sets
and test sets were generated using a 5-fold cross-validation technique. In the ex-
periments each test dataset contained an equal number of positive and negative
examples. Moreover, when preprocessing the positive datasets a normalization
and a PCA transformation was applied.

Table 3 below lists the best results of the different classification algorithms
applied to one-class tasks3.

6 Conclusions and Future Work

Based on the results of our experiments we can say that the proposed method
seems superior to the statistical GMM, and the One-Class SVM in most cases.
3 The settings of the free parameters of the models are the following. Here cn de-

notes the number of clusters (the default value is 1), conf represents the confidence
threshold for GMM (the default value is 1), ν and γ are the parameters of ν-SVM
and One-Class SVM, (dist, curv, k) are the parameters for counter-example genera-
tion – see Equation 1 – and the default values are (1, 0.5, 2 · dim). The acceptance
threshold is represented by ath, whose default value is 0.5. Here G means that the
second modification (see Section 3) was applied.
(1) (ν, γ) = (0.1, 0.01), (conf, cn) = (1, 2), (ν, γ, cn, ath) = (0.1, 0.01, 2, 0.9); (2)

(ν, γ) = (0.3, 0.01), (conf, cn) = (1, 2), (ν, γ, cn, ath) = (0.1, 0.3, 2, 0.9) G; (3)

(ν, γ) = (0.01, 0.01), (conf, cn) = (0.95, 1), (ν, γ, ath, k) = (0.3, 0.01, 0.3, 56);
(4) (ν, γ) = (0.05, 0.1), (conf, cn) = (0.95, 1), (ν, γ, dist, curv, ath) =
(0.3, 1, 1.5, 0.1, 0.9); (5) (ν, γ) = (0.1, 0.05), (ν, γ, ath) = (0.3, 0.3, 0.1) G; (6)

(ν, γ) = (0.1, 0.5), (ν, γ) = (0.3, 0.3); (7) (ν, γ) = (0.1, 0.005), (ν, γ, ath) =
(0.3, 0.01, 0.3); (8) (ν, γ) = (0.001, 0.5), (ν, γ) = (0.3, 0.3); (9) (ν, γ) = (0.1, 0.3),
(ν, γ, ath) = (0.3, 0.3, 0.6); (10) (ν, γ) = (0.1, 0.3), (ν, γ, ath) = (0.3, 0.3, 0.8).

550 A. Bánhalmi, A. Kocsor, and R. Busa-Fekete

However, to make it work better in practice some improvements should be made
to reduce the time complexity of our algorithm. Currently we are working on a
faster iterative boundary-searching method that begins with a small subset of
the whole, then modifies the boundary points by iteratively adding only suitable
points to them from the database. In the near future we will implement a faster
boundary point search method, and other distance-based classifiers will be tested
to separate the positive and the negative examples.

Acknowledgement

We would like to thank György Szarvas, Richárd Farkas and László Tóth for
their helpful advice and constructive comments, and also thank David Curley
for checking this paper from a linguistic point of view.

References

1. Tax, D.: One-class classification; Concept-learning in the absence of counter-
examples. PhD thesis, Delft University of Technology (2001)

2. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Computation 13,
1443–1471 (2001)

3. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn.
Lett. 20, 1191–1199 (1999)

4. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54,
45–66 (2004)

5. Chen, P.H., Lin, C.J., Schölkopf, B.: A tutorial on ν-support vector machines:
Research articles. Appl. Stoch. Model. Bus. Ind. 21, 111–136 (2005)

6. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Son, Chichester (1998)
7. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast svm training

on very large data sets. J. Mach. Learn. Res. 6, 363–392 (2005)
8. EL-Manzalawy, Y., Honavar, V.: WLSVM: Integrating LibSVM into Weka Envi-

ronment (2005), Software available at
http://www.cs.iastate.edu/∼yasser/wlsvm

9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

10. Paalanen, P.: Bayesian classification using Gaussian mixture model and EM esti-
mation: Implementations and comparisons. Technical report, Department of Infor-
mation Technology, Lappeenranta University of Technology, Lappeenranta (2004)

11. Unnthorsson, R.: Datasets for model selection in one-class ν-svms using rbf kernels,
http://www.hi.is/∼runson/svm/

12. Unnthorsson, R., Runarsson, T.P., Jonsson, M.T.: Model selection in one-class ν-
svms using rbf kernels. In: COMADEM – Proceedings of the 16th international
congress (2003)

13. Tax, D.M.: Occ benchmark, http://www-it.et.tudelft.nl/∼davidt/occ/

http://www.cs.iastate.edu/~yasser/wlsvm
http://www.hi.is/~runson/svm/
http://www-it.et.tudelft.nl/~davidt/occ/

Test-Cost Sensitive Classification Based on

Conditioned Loss Functions

Mumin Cebe and Cigdem Gunduz-Demir

Department of Computer Engineering
Bilkent University

Bilkent, Ankara 06800, Turkey
{mumin,gunduz}@cs.bilkent.edu.tr

Abstract. We report a novel approach for designing test-cost sensitive
classifiers that consider the misclassification cost together with the cost
of feature extraction utilizing the consistency behavior for the first time.
In this approach, we propose to use a new Bayesian decision theoretical
framework in which the loss is conditioned with the current decision and
the expected decisions after additional features are extracted as well as
the consistency among the current and expected decisions. This approach
allows us to force the feature extraction for samples for which the current
and expected decisions are inconsistent. On the other hand, it forces not
to extract any features in the case of consistency, leading to less costly
but equally accurate decisions. In this work, we apply this approach to
a medical diagnosis problem and demonstrate that it reduces the over-
all feature extraction cost up to 47.61 percent without decreasing the
accuracy.

1 Introduction

In classification, different types of cost have been investigated till date [1]. Among
these costs, the most commonly investigated one is the cost of misclassification
errors [2]. Compared to the misclassification cost, the other types are much less
studied. The cost of computation includes both static complexity, which arises
from the size of a computer program [3], and dynamic complexity, which is in-
curred during training and testing a classifier [4]. The cost of feature extraction
arises from the effort of acquiring a feature. This type of cost is especially im-
portant in some real-world applications such as medical diagnosis in which one
would like to balance the diagnosis accuracy with the cost of medical tests used
for acquiring features.

In machine learning literature, a number of studies have investigated the cost
of feature extraction [5,6,7,8,9,10,11,12,13,14,15]. The majority of these studies
focus on the construction of decision trees in a least costly manner by selecting
features based on both their information gain and their extraction cost [5,6,7,8,9].
While the earlier studies [5,6,7] consider only the feature extraction cost, more
recent ones [8,9] consider the misclassification cost as well. Another group of
studies focuses on the sequential feature selection also based on the informa-
tion gain of features and their extraction cost [10,11,12]. In these studies, the

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 551–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

552 M. Cebe and C. Gunduz-Demir

gain is measured as the difference in the amount of information before and after
extracting the features. As the information after feature extraction cannot be
known in advance, these studies estimate this information making use of max-
imum likelihood estimation [10], dynamic Bayesian networks [11], and neural
networks [12]. The theoretical aspects of such feature selection are also studied
in [13]. The other group of studies considers the feature selection as optimal
policy learning and solves it formulating the classification problem as a Markov
decision process [14] and a partially observable Markov decision process [15]. All
of these studies select features based on the current decision and those obtained
after features are extracted. None of them considers the consistency between
these decisions.

In this paper, we report a novel cost-sensitive learning approach that takes
into consideration the misclassification cost together with the cost of feature
extraction utilizing the consistency behavior for the first time. In this approach,
we make use of a Bayesian decision theoretical framework in which the loss func-
tion is conditioned with the current decision and the estimated decisions after
the additional features are extracted in conjunction with the consistency among
the current and estimated decisions. Using this proposed approach, the system
tends to extract features that are expected to change the current decision (i.e.,
yield inconsistent decisions). It also tends to stop the extraction if all possi-
ble features are expected to confirm the current decision (i.e., yield consistent
decisions), leading to less costly but equally accurate decisions. In this paper,
working with a medical diagnosis problem, we demonstrate that the overall fea-
ture extraction cost is reduced up to 47.61% without decreasing the classification
accuracy. To the best of our knowledge, this is the first demonstration of the use
of conditioned loss functions for the purpose of test-cost sensitive classification.

2 Methodology

In our approach, we propose to use a Bayesian decision theoretical framework in
which the loss function is conditioned with the current and estimated decisions
as well as their consistency. For a given instance, the proposed approach decides
whether or not to extract a feature, and in the case of deciding in favor of
extraction, which feature to be extracted by using conditional risks computed
with the new loss function definition.

In Bayesian decision theory, decision has to be made in favor of the action for
which the conditional risk is minimum. For instance x, the conditional risk of
taking action αi is defined as

R(αi|x) =
N∑

j=1

P (Cj |x) λ(αi|Cj) (1)

where {C1, C2, ..., CN} is the set of N possible states of nature and λ(αi|Cj) is
the loss incurred for taking action αi when the actual state of nature is Cj . In

Test-Cost Sensitive Classification Based on Conditioned Loss Functions 553

Table 1. Definition of the conditioned loss function for feature extraction, classifica-
tion, and reject actions

extractk classify reject

Case 1: Cactual = Ccurr = Cestk costk −REWARD PENALTY

Case 2: Cactual �= Ccurr �= Cestk costk + PENALTY PENALTY −REWARD

Case 3: Ccurr = Cestk �= Cactual costk + PENALTY PENALTY −REWARD

Case 4: Cactual = Ccurr �= Cestk costk + PENALTY −REWARD PENALTY

Case 5: Cactual = Cestk �= Ccurr costk − REWARD PENALTY PENALTY

our approach, we consider Cj as the class that an instance can belong to and αi

as one of the following actions:

(a) extractk: extract feature Fk,
(b) classify: stop the extraction and classify the instance using the current

information, and
(c) reject: stop the extraction and reject the classification of the instance.

In the proposed framework, we use a new loss function definition in which
the loss is conditioned with the current and estimated decisions along with their
consistency. The loss function for each of the aforementioned actions is given in
Table 1. In this table, Cactual is the actual class, Ccurr is the class estimated
by the current classifier, and Cestk

is the estimated class when feature Fk is
extracted. Here, Cactual and Cestk

should be estimated using the current infor-
mation as it is not possible to know these values in advance.

As shown in Table 1, for a particular action, the loss function takes differ-
ent values based on the consistency among the actual (Cactual), current (Ccurr),
and estimated (Cestk

) classes. In this definition, the actions that lead to cor-
rect classifications and the action that rejects the classification when the correct
classification is not possible are rewarded with an amount of REWARD value by
adding −REWARD to the loss function. When there are more than one feature that
could be extracted, reject action is rewarded only if none of the classifiers using
each of these features could yield the correct classification. On the contrary, the
actions that lead to misclassifications and the action that rejects the classifica-
tion when the correct classification is possible are penalized with an amount of
PENALTY value. Additionally, the extraction cost (costk) is included in the loss
function when feature Fk is to be extracted. In this definition of loss function,
the only exception that does not follow these rules is the case of extractk action
in Case 1. In this case, although it yields the correct classification, this action
is not rewarded since it does not provide any additional information but brings
about an extra feature extraction cost. By doing so, for Case 1, we force the
algorithm not to extract an additional feature.

For a particular instance x, we express the conditional risk of each action us-
ing the definition of loss function above. With C = {Ccurr, Cest1 , Cest2 , ..., CestM

}

554 M. Cebe and C. Gunduz-Demir

being the set of the current class and the classes estimated after extracting each
feature, the conditional risk of the extractk action is defined as follows.

R (extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (2)

⎡

⎢
⎢
⎢
⎢
⎣

P (Ccurr=j|x) P (Cestk
= j|x) costk +

P (Ccurr �=j|x) P (Cestk
�=j|x) P (Ccurr=Cestk

|x) [costk + PENALTY] +
P (Ccurr �=j|x) P (Cestk

�=j|x) P (Ccurr �=Cestk
|x) [costk + PENALTY] +

P (Ccurr=j|x) P (Cestk
�=j|x) [costk + PENALTY] +

P (Ccurr �=j|x) P (Cestk
=j|x) [costk − REWARD]

⎤

⎥
⎥
⎥
⎥
⎦

R (extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (3)

⎡

⎢
⎢
⎣

P (Ccurr=j|x) P (Cestk
=j|x) costk +

[1− P (Ccurr=j|x)] [1− P (Cestk
=j|x)] [costk + PENALTY]+

P (Ccurr=j|x) [1− P (Cestk
=j|x)] [costk + PENALTY]+

[1− P (Ccurr=j|x)] P (Cestk
=j|x) [costk − REWARD]

⎤

⎥
⎥
⎦

R (extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (4)

⎡

⎣
costk +
[1− P (Cestk

= j|x)] PENALTY +
P (Cestk

= j|x) [1− P (Ccurr = j)|x] [−REWARD]

⎤

⎦

Equation 4 implies that the extraction of feature Fk requires paying for its
cost. It also implies that the extractk action is penalized with PENALTY if the
class estimated after feature extraction is incorrect and is rewarded with REWARD
if this estimated class is correct but it is different than the currently estimated
class. Similarly, for a particular instance x, we derive the conditional risk of the
classify and the reject actions in Equations 5 and 6, respectively.

R (classify|x, C) =
N∑

j=1

P (Cactual = j|x) × (5)

[
P (Ccurr = j|x) [−REWARD] + [1− P (Ccurr = j|x)] PENALTY

]

R (reject|x, C) =
N∑

j=1

P (Cactual = j|x) × (6)

⎡

⎢
⎢
⎣

[
[1− P (Ccurr = j|x)]

M∏

m=1
[1− P (Cestm = j|x)]

]
[−REWARD] +

[
1− [1− P (Ccurr = j|x)]

M∏

m=1
[1− P (Cestm

= j|x)]
]
PENALTY +

⎤

⎥
⎥
⎦

Equation 5 means that classifying the instance with the current classifier
(classify action) is rewarded with REWARD if this is a correct classification

Test-Cost Sensitive Classification Based on Conditioned Loss Functions 555

and is penalized with PENALTY otherwise. Equation 6 means that rejecting the
classification is only rewarded with REWARD if neither the estimated classes nor
the current class is correct; otherwise, it is penalized with PENALTY.

As given in Equations 4, 5, and 6, the conditional risks are computed using
the posterior probabilities. Posterior probabilities P (Ccurr = j|x) can be calcu-
lated by the current classifier before any possible feature extraction, since all
of its features are already extracted. On the other hand, posterior probabilities
P (Cestk

= j|x) could not be known prior to extracting feature Fk. Thus, these
posteriors should be estimated making use of the currently available informa-
tion. For that, we use estimators which are trained as follows: First, we learn the
parameters of the classifier Yk that use both the previously extracted features
and feature Fk on training samples. Then, for each of these samples, we com-
pute the posterior probabilities using the classifier Yk. Subsequently, we train
the estimators to learn these posteriors by using only the previously extracted
features. Note that similar posterior probability estimations have been achieved
by using linear perceptrons [4] and dynamic Bayesian networks [11].

In the computation of posterior probabilities P (Cactual = j|x) in Equation 4,
we employ the posteriors computed for the current classifier as well as those
estimated for the classifiers whose features are to be extracted. To do so, for each
class, we multiply the corresponding posteriors, and then normalize them such
that

∑N
j=1 P (Cactual = j|x) = 1. For Equations 5 and 6, we only use the posterior

probabilities of the current classifier, since the corresponding actions (classify
and reject) require stopping feature extraction, and thus, no additional features
are extracted after taking these actions.

In order to dynamically select a subset of features for the classification of
a given instance x, our algorithm first computes the conditional risk of the
classify action, the extractk action for each feature Fk that is not extracted
yet, and the reject action as given in Equations 4, 5, and 6, and then selects the
action for which the conditional risk is minimum. This selection is sequentially
conducted until either the classify or the reject action is selected.

3 Experiments

We conduct our experiments on the Thyroid Dataset1 in which there are three
classes (hypothyroid, hyperthyroid, and normal) and 21 features. The first 16 fea-
tures are based on the answers of the questions that are asked to a patient; thus,
we assign no cost to them. The next four features are obtained from the blood tests
and the assigned cost of these blood tests is {$22.78, $11.41, $14.51, $11.41}. The
last feature is calculated from the nineteenth and twentieth features; we use the
last feature in classification only if these two features are already extracted.

In our experiments, we use decision tree classifiers and Parzen window es-
timators whose window function defines hypercubes. We train both classifiers
and estimators on the training set. For Parzen window estimators, the test set

1 This dataset is available at the UCI repository [16].

556 M. Cebe and C. Gunduz-Demir

Table 2. Confusion matrix for the test set when our test-cost sensitive classification
algorithm is used. Here, the reduction in the overall feature extraction cost is 47.61%.

Selected class Reject
Hypothyroid Hyperthyroid Normal cases

Hypothyroid 70 0 0 3
Actual class Hyperthyroid 0 173 0 4

Normal 13 23 3140 2

Table 3. Confusion matrix for the test set when all features are used in classification

Selected class
Hypothyroid Hyperthyroid Normal

Hypothyroid 70 0 3
Actual class Hyperthyroid 0 173 4

Normal 13 29 3136

includes some samples for which there is no training sample falling in the spec-
ified hypercubes. For these samples, we do not penalize any feature extraction
since the estimators provide no information and we consider only the posteriors
obtained on the current classifier to compute the conditional risks.

In Table 2, we report the test results obtained by our algorithm. In this ta-
ble, we provide the confusion matrix for the test set, indicating the number of
samples for which the reject action is taken. These results are obtained when
REWARD and PENALTY values are selected to be 100 and 10000, respectively. For
comparison, in Table 3, we also report the confusion matrix for the test set
when all features are used in classification; here, we also use a decision tree clas-
sifier (herein referred to as all-feature-classifier). Tables 2 and 3 demonstrate
that, compared to the all-feature-classifier, our algorithm yields the same num-
ber of correct classifications for hypothyroid and hyperthyroid classes. Moreover,
for these classes, our algorithm does not lead to any misclassification. For the
samples misclassified by the all-feature-classifier, our algorithm takes the reject
action, reducing the overall misclassification cost. Furthermore, for normal class,
our algorithm yields a larger number of correct classifications. For the selected
parameters, the decrease in the overall feature extraction cost is 47.61%. This
demonstrates that the proposed algorithm significantly decreases the overall fea-
ture extraction cost without decreasing the accuracy.

In the proposed algorithm, there are two free model parameters: REWARD and
PENALTY. Next, we investigate the effects of these parameters on the classification
accuracy and the reduction in the overall cost of feature extraction. For that, we
fix one of these parameters and observe the accuracy and the cost reduction in
feature extraction as a function of the other parameter. In Figures 1(a) and 1(b),
we present the test set accuracy, for each individual class, and the percentage of
the reduction in the overall feature extraction cost as a function of the PENALTY
value when REWARD is set to 100. These figures demonstrate that as the penalty

Test-Cost Sensitive Classification Based on Conditioned Loss Functions 557

0 5000 10000 15000 20000
65

70

75

80

85

90

95

100

PENALTY

T
es

t s
et

 a
cc

ur
ac

y

Hypothyroid
Hyperthyroid
Normal

0 5000 10000 15000 20000
40

45

50

55

60

65

PENALTY

R
ed

uc
tio

n
pe

rc
en

ta
ge

(a) (b)

0 500 1000 1500 2000
65

70

75

80

85

90

95

100

REWARD

T
es

t s
et

 a
cc

ur
ac

y

Hypothyroid
Hyperthyroid
Normal

0 500 1000 1500 2000
25

30

35

40

45

50

55

60

65

REWARD

R
ed

uc
tio

n
pe

rc
en

ta
ge

(c) (d)

Fig. 1. For our test-cost sensitive classification algorithm, (a)-(b) the test set accuracy
and the percentage of the cost reduction as a function of PENALTY when REWARD
is set to 100, and (c)-(d) the test set accuracy and the percentage of the cost reduction
as a function of REWARD when PENALTY is set to 10000.

of misclassifications and selecting the reject action increases, the number of
correctly classified samples, for especially hypothyroid and hyperthyroid classes,
increases too. With the increasing PENALTY value, the algorithm tends to extract
more number of features not to misclassify the samples, leading to the decrease
in the cost reduction. Similarly, in Figures 1(c) and 1(d), we present the test set
accuracy and the percentage of the cost reduction as a function of the REWARD
value when PENALTY is set to 10000. These figures demonstrate that the test
set accuracy for hypothyroid and hyperthyroid classes decreases with the in-
creasing REWARD value. As shown in Equations 4, 5, and 6, as the REWARD value
increases, the conditional risks decrease. The factor that affects the conditional
risks for all actions is P (Ccurr). While this decrease is proportional to P (Ccurr)
for the classify action, it is proportional to [1−P (Ccurr)] for the extractk and
reject actions. This indicates that when P (Ccurr) is just slightly larger than
[1− P (Ccurr)] (e.g., 0.51), the decrease in the conditional risk for the classify
action is larger. Thus, as the REWARD value increases, the algorithm tends to
classify the samples without extracting additional features. While this decreases
the classification accuracy, it increases the cost reduction.

558 M. Cebe and C. Gunduz-Demir

4 Conclusion

This work introduces a novel Bayesian decision theoretical framework to incorpo-
rate the cost of feature extraction into the cost of misclassification errors utilizing
the consistency behavior for the first time. In this framework, the loss function is
conditioned with the current decision and the estimated decisions that are to be
taken after the feature extraction as well as the consistency among the current
and the estimated decisions. By using this framework, we propose a new test-
cost sensitive learning algorithm that selects a subset of features, dynamically for
each instance. The experiments on a medical diagnosis dataset demonstrate that
the proposed algorithm leads to a significant decrease (47.61%) in the feature
extraction cost without decreasing the classification accuracy.

References

1. Turney, P.D.: Types of cost in inductive concept learning. In: Workshop on Cost-
Sensitive Learning. ICML 2000, Stanford, CA (2000)

2. Duda, O.R., Hart, E.P., Stork, G.D.: Pattern Classification. Wiley-Interscience,
New York (2001)

3. Turney, P.D.: Low size-complexity inductive logic programming: The East-West
Challenge considered as a problem in cost-sensitive classification. In: ILP 1995
(1995)

4. Demir, C., Alpaydin, E.: Cost-conscious classifier ensembles. Pattern Recognit
Lett. 26, 2206–2214 (2005)

5. Norton, S.W.: Generating better decision trees. In: IJCAI 1989, Detroit, MI (1989)
6. Nunez, M.: The use of background knowledge in decision tree induction. Mach.

Learn. 6, 231–250 (1991)
7. Tan, M.: Cost-sensitive learning of classification knowledge and its applications in

robotics. Mach. Learn. 13, 7–33 (1993)
8. Turney, P.D.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic

decision tree induction algorithm. J. Artif. Intell. Res. 2, 369–409 (1995)
9. Davis, J.V., Ha, J., Rossbach, C.J., Ramadan, H.E., Witchel, E.: Cost-sensitive

decision tree learning for forensic classification. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, Springer, Heidelberg
(2006)

10. Yang, Q., Ling, C., Chai, X., Pan, R.: Test-cost sensitive classification on data
missing values. IEEE T Knowl. Data. En. 18, 626–638 (2006)

11. Zhang, Y., Ji, Q.: Active and dynamic information fusion for multisensor systems
with dynamic Bayesian networks. IEEE T. Syst. Man. Cy. B 36 (2006)

12. Gunduz, C.: Value of representation in pattern recognition. M.S. thesis, Bogazici
University, Istanbul, Turkey (2001)

13. Greiner, R., Grove, A.J., Roth, D.: Learning cost-sensitive active classifiers. Artif.
Intell. 139, 137–174 (2002)

14. Zubek, V.B., Dietterich, T.G.: Pruning improves heuristic search for cost-sensitive
learning. In: ICML 2002, San Francisco, CA (2002)

15. Ji, S., Carin, L.: Cost-sensitive feature acquisition and classification. Pattern
Recogn 40, 1474–1485 (2007)

16. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases (1998),
Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 559–566, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Models for Action-Based Chinese
Dependency Parsing

Xiangyu Duan, Jun Zhao, and Bo Xu

Institute of Automation, Chinese Academy of Sciences, Beijing, China
{xyduan,jzhao}@nlpr.ia.ac.cn, xubo@hitic.ia.ac.cn

Abstract. Action-based dependency parsing, also known as deterministic
dependency parsing, has often been regarded as a time efficient parsing
algorithm while its parsing accuracy is a little lower than the best results
reported by more complex parsing models. In this paper, we compare action-
based dependency parsers with complex parsing methods such as all-pairs
parsers on Penn Chinese Treebank. For Chinese dependency parsing, action-
based parsers outperform all-pairs parsers. But action-based parsers do not
compute the probability of the whole dependency tree. They only determine
parsing actions stepwisely by a trained classifier. To globally model parsing
actions of all steps that are taken on the input sentence, we propose two kinds of
probabilistic parsing action models that can compute the probability of the
whole dependency tree. Results show that our probabilistic parsing action
models perform better than the original action-based parsers, and our best result
improves much over them.

Keywords: probabilistic, action-based, Chinese dependency parsing.

1 Introduction

Syntactic parsing is one of the most important tasks in Natural Language Processing
(NLP). The mainstream of syntactic parsing is the statistical method that often focuses
on generative and discriminative models. These models use different optimization
objects for parameter training, and use non-deterministic parsing techniques, usually
employing some kind of dynamic programming, to compute the probability of the
candidate trees. The tree with the highest probability is outputted. If reranking is used,
n-best trees are outputted and a different ranking scheme is adopted to rerank these
trees.

All these methods perform well while the time complexity is very high due to the
computation of candidate trees. Action-based parsers, also known as deterministic
parsers, emerge as efficient algorithms that take parsing actions stepwisely on the
input sentence, and reduce the time complexity to linear or quadratic with the
sentence’s length. Action-based parsers were firstly proposed for dependency parsing
[1, 2, 3, 4]. Later, Sagae and Lavie [5] and Wang et al. [6] applied deterministic
parsing for phrase structure parsing.

On the standard data set of Penn English Treebank, action-based parsers show
great efficiency in terms of time, offering accuracy just below the state-of-the-art

560 X. Duan, J. Zhao, and B. Xu

parsing methods. In this paper, for Chinese dependency parsing, we use action-based
algorithms [2, 4] and compare them with state-of-the-art parsing methods such as a
generative constituent parser [7] and a discriminative all-pairs dependency parser
(MSTParser version 0.2) [8, 9] on Penn Chinese Treebank version 5.0 [10]. The
comparison has never been done before. Contrary to English parsing, we get the result
that action-based parsers perform much better than the generative constituent parser
and the discriminative all-pairs dependency parser.

Furthermore, we observe that original action-based parsers are greedy. They do not
score the entire dependency tree, and only stepwisely choose the most probable
parsing action. To avoid greedy property and further enhance the performance of the
original action-based parsers, we propose two kinds of probabilistic models of parsing
actions at all steps. Results show that our two probabilistic models perform better than
the original action-based dependency parsers. Our best dependency parser improves
much over them and gets the state-of-the-art performance.

This paper is organized as follows. Section 2 introduces the action-based
dependency parsers that are basic components of our models. In section 3, we present
our two probabilistic models for the modeling of parsing actions. Experiments and
results are presented in section 4. We get a conclusion in section 5.

2 Introduction of Action-Based Dependency Parsing

There are two representative action-based dependency parsing algorithms which are
proposed respectively by Yamada and Matsumoto [2], Nivre [3]. Action-based
parsing algorithms regard parsing as a sequence of parsing actions that are taken step
by step on the input sentence. Parsing actions construct dependency relations between
words. A classifier is trained to classify parsing actions. During testing, parsing
actions are determined by the trained classifier.

Next we briefly describe Yamada and Matsumoto’s method as an illustration of
action-based dependency parsing. The other representative method of Nivre also
parses sentences in a similar deterministic manner except different data structure and
parsing actions.

Figure 1 illustrates the parsing process of Yamada and Matsumoto’s method. The
example sentence is “Work achieves remarkable success.” There are three kinds of
parsing actions used to construct the dependency relation between two focus words.
In figure 1, the two focus words are in black bold boxes. Every parsing action results
in a new parsing state, which includes all elements of the current partially built tree.
In the training phase, features extracted from current parsing state and corresponding
parsing actions compose the training data. In the testing phase, the classifier
determines which parsing action should be taken based on the features. The parsing
algorithm ends when there is no further dependency relation can be made on the
whole sentence. The details of the three parsing actions are as follows:

LEFT: it constructs the dependency that the right focus word depends on the left
focus word.

RIGHT: it constructs the dependency that the left focus word depends on the right
focus word.

SHIFT: it does not construct dependency, just moves the parsing focus.

 Probabilistic Models for Action-Based Chinese Dependency Parsing 561

Fig. 1. The example of parsing process of the method of Yamada and Matsumoto

3 Probabilistic Models of Parsing Actions

Action-based dependency parsing introduced in section 2 is greedy. They only choose
the most probable parsing action at every parsing step. To overcome this
shortsightedness, we propose two kinds of probabilistic models of parsing actions to
compute the probability of whole dependency tree. The two models are different from
sequential and structural learning models in a way that is explained at the end of
section 3.1.

3.1 Parsing Action Chain Model (PACM)

The parsing process can be viewed as a Markov Chain. At every parsing step, there
are several candidate parsing actions. The object of this model is to find the right
sequence of parsing actions that constructs the dependency tree. As shown in figure 1,
the action sequence “RIGHT -> SHIFT -> RIGHT -> LEFT” is the right sequence.

Firstly, we should define the probability of the dependency tree conditioned on the
input sentence.

.),...|()|(
...1

10∏
=

−=
ni

ii SdddPSTP
(1)

where T denotes the dependency tree, S denotes the original input sentence,
id

denotes the parsing action at time step i. We add an artificial parsing action
0d as

initial action.
We introduce a variable

idcontext to denote the resulting parsing state when the

action
id is taken on

1−idcontext .
0dcontext is the original input sentence.

achieves remarkable success RIGHT achieves remarkable success

SHIFT

LEFT

RIGHTremarkable achieve success success

remarkable

achieves

success

remarkable

Work

Work

Work Work

Work

achieves

562 X. Duan, J. Zhao, and B. Xu

Suppose
ndd ...0

 are taken sequentially on the input sentence S, and result in a

sequence of parsing states
ndd contextcontext ...

0
, then P(T|S) defined in equation (1)

becomes as below:

.)|(

)|(),...,|(

...1

...1...1

1

110

∏
∏∏

=

==

−

−−

=

≈

ni
di

ni
dd

ni
ddd

i

iiii

contextdP

contextcontextPcontextcontextcontextP

(2)

In equation (2), the second formula comes from the first formula by obeying the
Markov assumption. Note that the third formula is about the classifier of parsing
actions. It denotes the probability of the parsing action

id given the parsing state

1−idcontext . If we train a classifier that can predict with probability output, then we

can compute P(T|S) by computing the product of the probabilities of parsing actions.
The classifier we use throughout this paper is Libsvm [11], which can train multi-
class classifier and support training and predicting with probability output.

For this model, the object is to choose the parsing action sequence that constructs
the dependency tree with the maximal probability.

.)|(max)|(max
...1

... 1
1

∏
=

−
=

ni
di

dd i
n

contextdPSTP
(3)

Because this model chooses the most probable sequence, not the most probable
parsing action at only one step, it avoids the greedy property of the original parsers.

Note that probabilistic models of parsing actions decompose parsing problem into
actions. This is the main difference between them and traditional structural learning
models, which decompose parsing problem into dependency pairs solely over graphs
(dependency trees). PACM is related with Searn [14], which also decomposes
structural learning into incremental decisions. But Searn uses policy iterations to find
the optimal decision sequence.

At each step, although there are same candidate parsing actions, the parsing states
are variant. This property makes exact inference like Viterbi unsuitable for the
decoding. Best-first search is the appropriate one. Considering efficiency, we use
beam search for the decoding of this model. m is used to denote the beam size. At
every parsing step, all parsing states are ordered (or partially m ordered) according to
their probabilities. Probability of a parsing state is determined by multiplying the
probabilities of actions that generate that state. Then we choose m best parsing states
for this step, and next parsing step only consider these m best parsing states. Parsing
terminates when the first entire dependency tree is constructed.

3.2 Parsing Action Phrase Model (PAPM)

In the Parsing Action Chain Model (PACM), actions are competing at every parsing
step. That is, only m best parsing states resulted by the corresponding actions are kept
at every step. But for the parsing problem, it is reasonable that actions are competing
for which next phrase should be built. This is the motivation of Parsing Action Phrase
Model (PAPM). For dependency syntax, one phrase consists of the head word and all

 Probabilistic Models for Action-Based Chinese Dependency Parsing 563

its dependents. The key question is when the next phrase is built. This can be solved
by dividing parsing actions into two classes: constructing action and shifting action.

If a phrase is built after an action is performed, the action is called constructing
action. In Yamada and Matsumoto’s algorithm, constructing actions are LEFT and
RIGHT. For example, if LEFT is taken, the right focus word has found all its
dependents and becomes the head of this new phrase. Note that one word with no
dependents can also be viewed as a phrase if its dependence on other word is
constructed. Nivre’s method has the similar constructing actions.

If no phrase is built after an action is performed, the action is called shifting action.
Such action is SHIFT in both Yamada and Matsumoto’s method and Nivre’s method.

We introduce a new concept: parsing action phrase. It is denoted by iA , the ith

parsing action phrase. It can be expanded as jjkji abbA 1... −−→ , where a is

constructing action and b is shifting action, j indexes the time step. That is, parsing

action phrase iA is a sequence of parsing actions, which consists a constructing action

at last step and all its preceding shifting actions. It is this action sequence that
constructs the next syntactic phrase.

For example, consider the parsing process in figure 1,
1A is “RIGHT”,

2A is

“SHIFT, RIGHT”,
3A is “LEFT”.

The probability of the dependency tree given the input sentence is redefined as:

.)|(),...|()|(
...1...1

11 1∏∏
==

− −
==

ni
Ai

ni
ii i

contextAPSAAAPSTP
(4)

where
iAcontext is the parsing state resulted by a sequence of actions taken on

1−iAcontext . The object in this model is to find the most probable sequence of parsing

action phrases.
Similar with Parsing Action Chain Model (PACM), we use beam search for the

decoding of Parsing Action Phrase Model (PAPM). The difference is that PAPM do
not keep m best parsing states at every parsing step. Instead, PAPM keep m best states
which are corresponding to m best current parsing action phrases (several steps of
SHIFT and the last step of a constructing action).

Table 1. The division of CHTB data set.

 CHTB files word num
Train set 001-815, 1001-1136 434,936

Development set 886-931, 1148-1151 21,595
Test set 816-885, 1137-1147 50,319

4 Experiments and Results

4.1 Experimental Setup

The data set for the experiments is taken from Penn Chinese Treebank (CHTB)
version 5.0 [10], consisting of 500k words mostly from different resources of Xinhua

564 X. Duan, J. Zhao, and B. Xu

newswire, Sinorama news magazine and Hongkong news. To balance each resource
in train set, development set and test set, we split the data set as in table 1. We use
head rules reported in Sun and Jurafsky’s work [12] to convert constituent structure to
dependency structure

We implement Yamada and Matsumo’s method, and the optimal size of the feature
context window is six, which consists of left two sub trees, two focus words and right
two sub trees. Nivre’s method is also implemented, and the optimal feature template
is the same with the work [4].

The following metrics are used for evaluation:

Dependency accuracy (DA): The proportion of non-root words (excluding
punctuations) that are assigned the correct head.

Root accuracy (RA): The proportion of root words that are correctly found.
Complete match (CM): The proportion of sentences whose dependency structures
are completely correct.

4.2 Comparison of Action-Based Parsers with Generative Constituent Parser
and Discriminative All-Pairs Parser

For the comparison, we use dbparser, a generative constituent parser implemented by
Daniel M. Bikel [7], and MSTParser version 0.2, a discriminative dependency parser
implemented by Ryan Mcdonald [8, 9]. The dbparser is an emulating version of
Collins parser [13]. We use the same head rules as that used in this paper for both
training and testing of dbparser. We present both first-order (

1MSTParser) and

second-order (
2MSTParser) performances of MSTParser. The comparison of these

parsers is presented in part of table 2.

Table 2. Performances of different Parsers

 DA RA CM
dbparser 79.84 69.03 27.56

1MSTParser 80.83 68.20 25.72

2MSTParser 82.26 69.36 28.23

Nivre 82.52 68.19 29.82
Yamada 82.82 70.13 30.39
PACM 84.05 73.49 32.34
PAPM 84.36 73.70 32.70

From table 2, we can see that action-based parsers perform better than both
dbparser and MSTParser. It is interesting that Wang etc. [6] got the similar results of
Chinese constituent parsing on Penn Chinese Treebank. Their experiments showed
that action-based parser outperform state-of-the-art parsers. This observation is
contrary as to English parsing.

 Probabilistic Models for Action-Based Chinese Dependency Parsing 565

4.3 The Performances of Parsers Based on Action Modeling

Due to the simplicity and comparable performance of Yamada and Matsumoto’s
method, only their method is adopted in parsers which are based on action modeling.

The performances of these parsers are presented in part of table 2. We can see that
the two probabilistic models (PACM and PAPM) all perform much better than the
original action-based parsers. Parsing action phrase model (PAPM) gets the highest
performance with 9% error reduction over Yamada and Matsumoto’s method
considering DA, 12% error reduction over MSTParser’s second-order model, 22%
error reduction over dbparser. It shows the great effectiveness in avoiding greediness
when we save m-best parses at each parsing step, and the promising tree can possibly
rank first at the end of parsing.

We also do the experiments of outputting n-best parses by using Parsing Action
Chain Model (PACM) and Parsing Action Phrase Model (PAPM) respectively. The
performance is listed in table 3, which presents the performance of a “perfect” parser
that magically picks the best parse tree from the top n trees. The best parse tree has
the highest average accuracy when compared to the Treebank. In terms of outputting
n-best parses, PAPM is superior to PACM by a large margin and shows its propriety
for reranking research which appears to be a promising work to improve the
performance.

Table 3. The performance of a “perfect” parser that picks best among 20-best trees

 DA RA CM
PACM 88.64 84.78 46.35
PAPM 91.30 86.88 54.59

5 Conclusion

This paper compares the original action-based dependency parsers with state-of-the-
art parsing methods such as a generative constituent parser and a discriminative all-
pairs dependency parser for Chinese dependency parsing. The results show that
original action-based dependency parsers perform best. Based on the observation that
original action-based parsers are greedy, we propose two kinds of probabilistic
models of the parsing actions for Chinese dependency parsing. The results show that
our probabilistic parsing action models improve much over original action-based
parsers.

Acknowledgements

This work was supported by Hi-tech Research and Development Program of China
under grant No. 2006AA01Z144, the Natural Sciences Foundation of China under
grant No. 60673042, and the Natural Science Foundation of Beijing under grant No.
4052027, 4073043.

566 X. Duan, J. Zhao, and B. Xu

References

1. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In:
Proceedings of the Sixth Conference on ComputationalLanguage Learning (CoNLL)
(2002)

2. Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector
machines. In: Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT) (2003)

3. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings of the
8th International Workshop on Parsing Technologies (IWPT) (2003)

4. Nivre, J., Scholz, M.: Deterministic dependency parsing of English text. In: Proceedings of
the 20th International Conference on Computational Linguistics (COLING) (2004)

5. Sagae, K., Lavie, A.: A classifier-based parser with linear run-time complexity. In:
Proceedings of the 9th International Workshop on Parsing Technologies (IWPT) (2005)

6. Wang, M., Sagae, K., Mitamura, T.: A fast, accurate deterministic parser for Chinese. In:
Proceedings of the 44th AnnualMeeting of the Association for ComputationalLinguistics
(ACL) (2006)

7. Daniel, M.: Bikel, On the Parameter Space of Generative Lexicalized Statistical Parsing
Models. Ph.D. thesis, University of Pennsylvania (2004)

8. McDonald, R., Crammer, K., Pereira, F.: Online Large-margin Training of Dependency
Parsers. In: Proceedings of the 43rd AnnualMeeting of the Association for Computational
Linguistics (ACL) (2005)

9. McDonald, R., Pereira, F.: Online Learning of Approximate Dependency Parsing
Algorithms. In: Proceedings of the 11th European Chapter of the Association for
Computational Linguistics (EACL) (2006)

10. Xue, N., Xia, F., Chiou, F.-D., Palmer, M.: The Penn Chinese Treebank: Phrase structure
annotation of a large corpus. Natural Language Engineering (2005)

11. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines (2005)
12. Sun, H., Jurafsky, D.: Shallow semantic parsing of Chinese. In: Proceedings of the

HLT/NAACL ’04 (2004)
13. Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis,

University of Pennsylvania (1999)
14. Daum‘e III, H., Langford, I.J., Marcu, D.: Search-based structured prediction, 2006

(Submission)

Learning Directed Probabilistic Logical Models:
Ordering-Search Versus Structure-Search

Daan Fierens, Jan Ramon, Maurice Bruynooghe, and Hendrik Blockeel

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium
{Daan.Fierens,Jan.Ramon,Maurice.Bruynooghe,

Hendrik.Blockeel}@cs.kuleuven.be

Abstract. We discuss how to learn non-recursive directed probabilistic logical
models from relational data. This problem has been tackled before by upgrading
the structure-search algorithm initially proposed for Bayesian networks. In this
paper we propose to upgrade another algorithm, namely ordering-search, since
for Bayesian networks this was found to work better than structure-search. We
experimentally compare the two upgraded algorithms on two relational domains.
We conclude that there is no significant difference between the two algorithms in
terms of quality of the learnt models while ordering-search is significantly faster.

Keywords: statistical relational learning, probabilistic logical models, inductive
logic programming, Bayesian networks, probability trees, structure learning.

1 Introduction

A Bayesian network is a compact specification of a joint probability distribution on
a set of random variables under the form of a directed acyclic graph (the structure)
and a set of conditional probability distributions (CPDs). When learning from data the
goal is usually to find the structure and CPDs that maximize a certain scoring criterion.
The most traditional approach to learning Bayesian networks is structure-search [5].
Recently, an alternative algorithm called ordering-search was introduced that was found
to perform at least as good as structure-search while usually being faster [9].

The past few years a variety of formalisms has been introduced to describe proba-
bilistic logical models. Many of these formalisms deal with directed models that are
upgrades of Bayesian networks to the relational case. Learning algorithms have been
developed for several such formalisms [4,6,7]. Most of these algorithms are essentially
upgrades of the structure-search algorithm for Bayesian networks. In this paper we in-
vestigate how ordering-search can be upgraded to the relational case.

The contributions of this paper are two-fold. First, we upgrade the ordering-search
algorithm towards learning non-recursive directed probabilistic logical models. Second,
we experimentally compare the resulting algorithm with the upgraded structure-search
algorithm on two relational domains. We use the formalism Logical Bayesian Networks
but the proposed approach is also valid for related formalisms such as Probabilistic
Relational Models, Bayesian Logic Programs and Relational Bayesian Networks [1].

This paper is structured as follows. We review Logical Bayesian Networks in Section
2. We discuss learning in Section 3 and show experimental results in Section 4. We
conclude in Section 5. More details about Sections 2 to 4 are given in the full paper [3].

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 567–574, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

568 D. Fierens et al.

2 Logical Bayesian Networks

We now briefly review Logical Bayesian Networks. For details and formal semantics we
refer to the full papers [1,3]. A Logical Bayesian Network or LBN is essentially a speci-
fication of a Bayesian network conditioned on some logical input predicates describing
the domain of discourse. For instance, when modelling the well-known ‘university’
domain [4], we would use predicates student/1, course/1, prof/1, teaches/2 and
takes/2 with their obvious meanings. The semantics of an LBN is that, given an inter-
pretation of these logical predicates, the LBN induces a particular Bayesian network.

In LBNs random variables are represented as ground atoms built from certain special
predicates, the probabilistic predicates. For instance, if intelligence/1 is a probabilis-
tic predicate then the atom intelligence(ann) is called a probabilistic atom and rep-
resents a random variable. Which random variables exist for a particular interpretation
of the logical predicates is determined by a set of random variable declarations [1]. An
LBN contains two parts that are typically to be learned: a set of dependency clauses and
a set of logical CPDs. We now illustrate this for the university domain.

The dependency clauses for the university domain are the following.

grade(S,C) | intelligence(S).
grade(S,C) | difficulty(C).
ranking(S) | grade(S,C).
satisfaction(S,C) | grade(S,C).
satisfaction(S,C) | ability(P) <- teaches(P,C).
rating(C) | satisfaction(S,C).
popularity(P) | rating(C) <- teaches(P,C).

Informally, the first clause should be read as “the grade of a student S for a course C
depends on the intelligence of S” and the last clause as “the popularity of a professor
P depends on the rating of a course C if P teaches C”. In this clause, popularity(P)
is called the head, rating(C) the body and teaches(P,C) the context of the clause.

To quantify the dependencies specified by the dependency clauses, LBNs associate
with each probabilistic predicate a so-called logical CPD. In this work we represent
logical CPDs under the form of logical probability trees [2]. The internal nodes in the
tree for a probabilistic atom ptarget can contain a) tests on the values of probabilistic
atoms that are parents of ptarget according to the dependency clauses, b) conjunctions of
logical literals, and c) combinations of the two. Leaves contain probability distributions
on the values of ptarget. An example of such a tree is shown in Figure 1.

3 Learning Non-recursive Logical Bayesian Networks

The dependency clauses and the logical CPDs in an LBN can be learned from a dataset
of examples where each example consists of two parts: an interpretation of the logical
predicates and an assignment of values to all ground random variables (as determined by
the random variable declarations). The goal of learning is to find the clauses and logical
CPDs that maximize the scoring criterion. In this paper we only deal with learning non-
recursive LBNs, i.e. LBNs with non-recursive dependency clauses. For a discussion on
the relation to learning recursive LBNs we refer to the full paper [3].

Learning Directed Probabilistic Logical Models 569

teaches(P,C), ability(P) = low

grade(S,C) = high grade(S,C) = low

high: 0.2 low: 0.8 high: 0.1 low: 0.9 high: 0.7 low: 0.3 high: 0.9 low: 0.1

Fig. 1. Example of a logical CPD for satisfaction(S, C). Tests in internal nodes are binary.
When a test succeeds the left branch is taken, when it fails the right branch is taken.

Next we discuss a generic hillclimbing algorithm for learning non-recursive LBNs
and give two instantiations of this generic algorithm. The first is the upgraded ordering-
search algorithm that we introduce in this paper. The second is the existing upgraded
structure-search algorithm. To stress the difference with Logical Bayesian Networks we
will refer to ordinary Bayesian networks as ‘propositional’ Bayesian networks.

3.1 A Generic Hillclimbing Algorithm for Learning Logical Bayesian Networks

For LBNs, as for propositional Bayesian networks, there exists a generic learning algo-
rithm of which the structure-search and ordering-search algorithms are specific instan-
tiations. The idea is to perform hillclimbing-search through a space of solutions. In the
case of structure-search a solution is a structure (a set of dependency clauses), while in
the case of ordering-search it is an ordering on the set of probabilistic predicates. The
generic algorithm is shown in Figure 2. The neighbourhood of the current solution is the
set of solutions that can be obtained by making a small change to the current solution.
The score of a solution is computed as the product of the scores of the logical CPDs for
that solution. In this work we learn logical CPDs under the form of logical probability
trees (like the tree in Figure 1). Which probabilistic predicates can be used as input for
the tree is determined by the particular solution. We use the standard probability tree al-
gorithms in the TILDE learner and score trees using the Bayesian Information Criterion
(BIC) for logical probability trees [2]. Since BIC is a decomposable scoring criterion,
the above algorithm can be implemented quite efficiently [3,5].

To use the generic algorithm of Figure 2 with a specific kind of solutions (structures,
orderings, . . .) one has to determine a) how to obtain an initial random solution1, b) how
to define the neighbourhood of a solution, and c) how to extract the dependency clauses
from the learned solution. We will explain each of these issues for ordering-search in
Section 3.2 and for structure-search in Section 3.3.

3.2 Ordering-Search

First we discuss the propositional case, then we discuss case of LBNs.

1 The initial solution might influence the final result since the algorithm only converges to a
local optimum. Hence, we experimented with multiple runs with different initial solutions but
we found this not to be significantly better than a single run.

570 D. Fierens et al.

% find a good solution:
Solcurrent = random solution
repeat until convergence

for each Solcand ∈ neighbourhood(Solcurrent)
compute Δscore(Solcand) = score(Solcand) − score(Solcurrent)

end for
Solcurrent = argmax(Δscore(Solcand))

end repeat
% extract the dependency clauses from the final solution:
for each probabilistic predicate p

extract the dependency clauses for p from Solcurrent

end for

Fig. 2. Generic hillclimbing algorithm for learning LBNs. In the two instantiations of this generic
algorithm that we consider, a solution Sol corresponds to respectively a structure or an ordering.

Ordering-Search for Propositional Bayesian Networks. Ordering-search is based
on the fact that it is relatively easy to learn a Bayesian network if an ordering on the
set of random variables is given [9]. Such an ordering eliminates the possibility of
cycles. This makes it possible to decide for each variable X separately which variables,
from all variables preceding it in the ordering, are its parents. This can simply be done
by learning a CPD for X under the assumption that ‘selective’ CPDs are used , i.e.
CPDs that select from all candidate inputs the relevant inputs (for instance conditional
probability tables with a bound on the number of effective inputs [9]). However, the
score of the Bayesian network that is learned in this way depends heavily on the quality
of the ordering that is used. Hence, the idea of ordering-search is to perform hillclimbing
through the space of possible orderings, in each step applying the above procedure.

Teyssier and Koller [9] experimentally compared structure-search and ordering-
search and found that ordering-search is always at least as good as structure-search
and usually faster. As an explanation they note that the space of orderings is smaller
than the space of structures and that ordering-search has no costly acyclicity checks.

Ordering-Search for Logical Bayesian Networks. Until now ordering-search has not
yet been upgraded to the case of non-recursive directed probabilistic logical models.
The above conclusions from the propositional case motivated us to investigate this. We
now show how to upgrade ordering-search towards learning non-recursive LBNs.

Similar to the case of propositional Bayesian networks, it is easy to learn an LBN if
an ordering on the set of probabilistic predicates is given. We can then learn an LBN
simply by learning for each probabilistic predicate p a logical probability tree with
as inputs all predicates preceding p in the ordering. Ordering-search corresponds to
applying the generic algorithm of Figure 2 with orderings as solutions, this is basically
hillclimbing-search through the space of orderings. The neighbourhood of an ordering
O is defined as the set of orderings that can be obtained by swapping a pair of adjacent
predicates in O. As an initial ordering we use a random ordering.

Apart from using orderings on the set of predicates instead of on the set of random
variables, there are two major differences between our algorithm and the propositional

Learning Directed Probabilistic Logical Models 571

algorithm. First, we use logical probability trees instead of simple conditional proba-
bility tables. Second, in the case of LBNs once we found the optimal ordering and the
logical CPDs for this ordering, we still need an extra step to extract the dependency
clauses from these logical CPDs. We now discuss the latter in more detail.

Extracting the Dependency Clauses from the Logical CPDs. Below we explain how
to extract the clauses from a logical probability tree. The goal is to find the most specific
set of clauses that is ‘consistent’ with the tree [3]. To obtain an LBN, this procedure has
to be applied to the probability tree for each probabilistic predicate.

When extracting clauses from a tree, we create a clause for each test on a probabilistic
atom in a node of the tree. Call the atom that is tested ptest, the node N and the target
atom of the tree ptarget. In the most general case, apart from the test on ptest, the
node N can contain a number of tests on other probabilistic atoms and a conjunction
of logical literals. Call this conjunction l. We then create a clause of the form ptarget |
ptest ← l, path(N), where path(N) is a conjunction of logical literals that describes
the path from the root to N . Each node on this path can contribute a number of logical
literals to path(N). A succeeded node contributes all logical literals that it contains.
A failed node that does not contain any tests on probabilistic atoms contributes the
negation of all its logical literals. All other failed nodes do not contribute to the path.

As an example, consider the probability tree in Figure 1. For this tree, ptarget is
satisfaction(S,C). For the root node, ptest is ability(P), l is teaches(P,C) and the
path is empty. For the internal node below the root to the left, ptest is grade(S,C), l
is empty and the path is teaches(P,C). For the node below the root to the right, ptest

is grade(S,C) and l and the path are both empty. The three resulting clauses for these
nodes are respectively the following.

satisfaction(S,C) | ability(P) <- teaches(P,C).
satisfaction(S,C) | grade(S,C) <- teaches(P,C).
satisfaction(S,C) | grade(S,C).

The second clause is redundant (it is a special case of the third) and can be dropped.

3.3 Structure-Search

Structure-search is the most traditional and most straightforward approach for learning
propositional Bayesian networks [5]. It is essentially hillclimbing through the space of
possible structures. The neighbourhood of the current structure typically consists of all
acyclic structures that can be obtained by adding, deleting or reversing an edge.

The structure-search algorithm for propositional Bayesian networks has already been
upgraded to the relational case for several formalisms [4,6,7]. The algorithm that we use
for LBNs is very similar to these existing upgrades. The main difference is that we use
logical probability trees instead of combining rules [6,7] or aggregates [4].

To derive a concrete structure-search algorithm for LBNs from the generic algorithm
of Figure 2, we have to define the notion of a neighbourhood and define how an initial
structure is obtained (note that the final step in the generic algorithm, extracting clauses
from the solution, is not needed for structure-search since a solution is already a set
of dependency clauses). We define the neighbourhood of the current structure as the

572 D. Fierens et al.

set of all non-recursive structures that can be obtained by adding a dependency clause,
deleting a clause or swapping the head and body of a clause in the current structure.
To find an initial set of clauses we borrow some elements from the ordering-search
algorithm. Specifically, we generate a random ordering, learn logical CPDs for this
ordering and apply the procedure for extracting dependency clauses from logical CPDs.
As a consequence, in our experiments ordering-search and structure-search always start
from the same point. This ensures that an experimental comparison of both algorithms
effectively evaluates the search process itself and not the starting point of the search.

4 Experiments

We first discuss the datasets and the experimental setup. Then we discuss our results.

4.1 Datasets and Experimental Setup

We perform experiments on two relational domains. First, we generate synthetic datasets
of varying size from the given LBN for the university domain (see Section 2). We use 5,
10, 15, 31, 62, 125 and 250 examples. Each example corresponds to 230 random vari-
ables (describing 20 students, 10 courses and 5 professors) and examples are mutually
independent. Second, we use the UWCSE dataset, a real-world dataset constructed by
extracting information about graduate students, professors and courses from the web
pages of a computer science department [8]. Since in this dataset relations are of spe-
cial importance2, we model them as probabilistic predicates, leading to what Getoor
et al. call “relational uncertainty” [4]. This dataset consists of 5 disjoint subsets (each
corresponding to a specific research area) and contains 9607 random variables in total
(describing 140 students, 132 courses and 52 professors).

For all experiments we performed 5-fold cross validation. For the university domain,
examples were assigned to folds randomly. For UWCSE, each fold corresponds to a
research area. We report the average results over the folds and use two-tailed paired
t-tests (with α=0.05) to assess the significance of differences between two algorithms.

We use six evaluation criteria. The first four criteria measure characteristics of the
learned LBN: normalized test log-likelihood (the log-likelihood on the test data divided
by the number of examples), normalized train score (the score on the training data
divided by the number of examples; while not important in itself, this gives some addi-
tional insight into the results), number of dependency clauses learned (smaller is usu-
ally better because of ease of interpretation) and number of correct dependency clauses
learned (we can only report this for the synthetic university domain since there we
know the correct dependency clauses). The other two criteria measure the efficiency of
the learning process: runtime and average time per iteration (in terms of the generic
algorithm in Figure 2, one iteration is one step in the repeat loop; while not impor-
tant in itself, this time gives an idea about the size of a neighbourhood and how ef-
ficiently all elements in a neighbourhood can be scored and hence helps to explain
runtime).

2 For supervised learning, for instance, the ‘advised by’ relation is often the target [8].

Learning Directed Probabilistic Logical Models 573

4.2 Results

The results for ordering-search (OS) and structure-search (SS) are shown in Table 1.

Table 1. Experimental results on various datasets. If the result for one of the two algorithms (OS
or SS) is significantly better than the result for the other, the best result is indicated in bold.

Dataset Method LogLik(Test) Score(Train) #Clauses #CorrectClauses Time TimePerIter
Univ5 OS -1.3789 -1.3485 9.0 2.0 27s 6s
Univ5 SS -1.3750 -1.3365 9.8 3.6 130s 17s
Univ5 empty -1.4799 -1.4989 - - - -

Univ10 OS -1.3669 -1.3524 9.8 4.2 33s 11s
Univ10 SS -1.3461 -1.3410 9.4 5.0 126s 20s
Univ10 empty -1.4722 -1.4880 - - - -
Univ15 OS -1.3444 -1.3415 8.6 3.2 42s 8s
Univ15 SS -1.3328 -1.3305 9.6 3.8 155s 20s
Univ15 empty -1.4697 -1.4792 - - - -
Univ31 OS -1.3083 -1.3135 8.8 5.0 43s 12s
Univ31 SS -1.3023 -1.3060 9.6 6.4 158s 24s
Univ31 empty -1.4575 -1.4647 - - - -
Univ62 OS -1.3051 -1.3097 11.2 4.8 63s 13s
Univ62 SS -1.2973 -1.3012 10.4 6.2 249s 30s
Univ62 empty -1.4554 -1.4595 - - - -

Univ125 OS -1.2905 -1.2959 8.8 5.0 99s 19s
Univ125 SS -1.2828 -1.2861 8.2 6.6 389s 62s
Univ125 empty -1.4562 -1.4586 - - - -
Univ250 OS -1.3001 -1.3035 9.8 4.8 154s 62s
Univ250 SS -1.2894 -1.2913 7.6 6.4 553s 84s
Univ250 empty -1.4561 -1.4573 - - - -
UWCSE OS -0.4288 -0.3539 15.2 - 183s 43s
UWCSE SS -0.4160 -0.3489 14.6 - 586s 93s
UWCSE empty -0.4631 -0.3961 - - - -

Table 1 reports the test log-likelihood and train score for OS and SS and also for the
‘empty LBN’ as a baseline. With an ‘empty LBN’ we mean an LBN with no dependency
clauses, this is the LBN according to which all random variables are independent. For all
datasets OS and SS perform significantly better than the empty LBN on both training
and test data (significance is not indicated in the table). The differences between OS
and SS are small as compared to the differences with the empty LBN. For none of the
datasets there is a significant difference between OS and SS on the test data (although
SS is significantly better on training data for UWCSE).

For none of the datasets there is a significant difference between the number of de-
pendency clauses learned by OS and by SS. However, the number of correct dependency
clauses learned is sometimes significantly higher for SS than for OS. The fact that these
differences do not lead to a significantly worse likelihood or score for OS indicates that
OS learns all dependencies except the very weak ones [3].

574 D. Fierens et al.

On all the datasets runtime is significantly lower for OS than for SS (differences
range from a factor 3.2 to 4.8). This is explained by the fact that also the average time
per iteration is lower for OS than for SS. The latter was expected since an iteration ba-
sically corresponds to scoring all solutions in the neighbourhood of the current solution
and the size of the neighbourhood is typically smaller for OS than for SS (it is linear in
the number of probabilistic predicates for OS but quadratic for SS).

5 Conclusion

In this paper we upgraded the ordering-search algorithm for propositional Bayesian net-
works towards non-recursive directed probabilistic logical models. We experimentally
compared the resulting algorithm with the existing upgraded structure-search algorithm
on two relational domains. The results show that ordering-search is competitive with
structure-search in terms of quality of the learned models but is significantly faster than
structure-search. We conclude that ordering-search is a good alternative to structure-
search for learning directed probabilistic logical models.

Acknowledgements. Research supported by the Institute for the Promotion of Innova-
tion by Science and Technology in Flanders (IWT Vlaanderen), Research Foundation-
Flanders (FWO Vlaanderen) and GOA 2003/08 “Inductive Knowledge Bases”.

References

1. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks and their
relation to other probabilistic logical models. In: Proceedings of the 15th International Con-
ference on Inductive Logic Programming (ILP), pp. 121–135. Springer, Heidelberg (2005)

2. Fierens, D., Ramon, J., Blockeel, H., Bruynooghe, M.: A comparison of pruning criteria for
learning trees. Technical Report CW 488, Department of Computer Science, Katholieke Uni-
versiteit Leuven (April 2007)

3. Fierens, D., Ramon, J., Bruynooghe, M., Blockeel, H.: Learning directed probabilistic logical
models: ordering-search versus structure-search. Technical Report CW 490, Department of
Computer Science, Katholieke Universiteit Leuven (May 2007)

4. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning Probabilistic Relational Models. In:
Relational Data Mining, pp. 307–334. Springer, Heidelberg (2001)

5. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning 20, 197–243 (1995)

6. Kersting, K., De Raedt, L.: Towards combining inductive logic programming and Bayesian
networks. In: Proceedings of the 11th International Conference on Inductive Logic Program-
ming (ILP), pp. 118–131. Springer, Heidelberg (2001)

7. Natarajan, S., Wong, W., Tadepalli, P.: Structure refinement in First Order Conditional Influ-
ence Language. In: Proceedings of the workshop on Open Problems in Statistical Relational
Learning (SRL) (2006)

8. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1–2), 107–136
(2006)

9. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm for learning
Bayesian networks. In: Proceedings of the 21st conference on Uncertainty in AI (UAI), pp.
584–590. AUAI Press (2005)

A Simple Lexicographic Ranker and Probability
Estimator

Peter Flach1 and Edson Takashi Matsubara2

1 Department of Computer Science, University of Bristol, United Kingdom
Peter.Flach@bristol.ac.uk

2 Instituto de Ciências e Matemáticas e de Computação, Universidade de São Paulo
edsontm@icmc.usp.br

Abstract. Given a binary classification task, a ranker sorts a set of instances from
highest to lowest expectation that the instance is positive. We propose a lexico-
graphic ranker, LexRank , whose rankings are derived not from scores, but from
a simple ranking of attribute values obtained from the training data. When using
the odds ratio to rank the attribute values we obtain a restricted version of the
naive Bayes ranker. We systematically develop the relationships and differences
between classification, ranking, and probability estimation, which leads to a novel
connection between the Brier score and ROC curves. Combining LexRank with
isotonic regression, which derives probability estimates from the ROC convex
hull, results in the lexicographic probability estimator LexProb. Both LexRank
and LexProb are empirically evaluated on a range of data sets, and shown to be
highly effective.

1 Introduction

ROC analysis is increasingly being employed in machine learning. It has brought with
it a welcome shift in attention from classification to ranking. There are a number of
reasons why it is desirable to have a good ranker, rather than a good classifier or a good
probability estimator. One of the main reasons is that accuracy requires a fixed score
threshold, whereas it may be necessary to change the threshold in response to changing
class or cost distributions. Furthermore, good performance in both classification and
probability estimation is easily and trivially obtained if one class is much more prevalent
than the other, but this wouldn’t be reflected in ranking performance.

In this paper we show that, even if one is primarily interested in probability estima-
tion, it is both advantageous and feasible to first construct a ranker. We demonstrate this
by proposing a very simple non-scoring ranker, which is based on a linear preference
ordering on attributes, which is then used lexicographically. We can obtain calibrated
probability estimates from its ROC convex hull, which is in fact equivalent to isotonic
regression [1], as noted independently by [2]. In extensive experiments we demonstrate
that both our lexicographic ranker and our lexicographic probability estimator perform
comparably with models employing a much weaker bias.

The outline of the paper is as follows. In Section 2 we compare and contrast the
notions of classification, ranking, and probability estimation, and discuss how to assess

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 575–582, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

576 P. Flach and E.T. Matsubara

performance in each of these cases. In Section 3 we uncover the fundamental relation-
ship between ROC curves and the Brier score or mean squared error of the probability
estimates. Section 4 defines lexicographic ranking and the LexRank algorithm, which
can easily be turned into the lexicographic probability estimator LexProb by means of
constructing its ROC convex hull. In Section 5 we report on an extensive set of experi-
ments, and Section 6 concludes.

2 Classification, Ranking, and Probability Estimation

Let X = A1× . . .×An be the instance space over the set of discrete attributes A1, . . . ,An.
A classifier is a mapping ĉ : X →C, where C is a set of labels. For a binary classifier,
C = {+,−}. A ranker orders the instance space X , expressing an expectation that some
instances are more likely to be positive than others. The ranking is a total order, possibly
with ties. The latter are represented by an equivalence relation over X , so the total order
is on those equivalence classes; we call them segments in this paper. For notational
convenience we represent a ranker as a function r̂ : X ×X → {>,=,<}, deciding for
any pair of instances whether the first is more likely (>), equally likely (=), or less
likely (<) to be positive than the second. (By a slight abuse of notation, we also use >
and < for the total order on the segments of X). If X1,X2 ⊆ X are segments such that
X1 > X2, and there is no segment X3 such that X1 > X3 > X2, we say that X1 and X2 are
adjacent. We can turn a ranker into a binary classifier by splitting the ranking between
two adjacent segments. Furthermore, given a ranker r̂, we can construct another ranker
r̂′ by joining two adjacent segments X1 and X2, and removing X1 > X2 from the total
order. We say that r̂′ is coarser than r̂, or equivalently, that the latter is finer than the
former.

A scoring classifier is a mapping ŝ : X→R, assigning a numerical score ŝ(x) to each
instance x. We will use the convention that higher scores express more preference for the
positive class. A probability estimator is a scoring classifier that assigns probabilities,
i.e., a mapping p̂ : X → [0,1]. p̂(x) is taken to be an estimate of the posterior p(+|x),
i.e., the true probability that a random instance with attribute-value vector x belongs
to the positive class. Clearly, given a scoring classifier ŝ (or a probability estimator)
we can construct a ranker r̂ that orders instances on decreasing scores. Furthermore,
we can turn a scoring classifier into a classifier by turning the associated ranker into a
classifier as described above, or equivalently, by setting a threshold t ∈R and assigning
all instances x such that ŝ(x)≥ t to the positive class and the remaining instances to the
negative class.

We illustrate the above on decision trees. [3] and [4] showed that decision trees can be
used as probability estimators and hence as rankers. We obtain a probability estimator
from a decision tree by considering the numbers of positive (n+

i) and negative (n−i)
training examples belonging to the i-th leaf. The estimated posterior odds in lea fi is

then P(+|lea fi)
P(−|lea fi)

= n+
i

n−i
(or

n+
i +1

n−i +1
if we apply Laplace correction, as recommended by [4]).

The corresponding ranker is obtained by ordering the leaves on decreasing posterior
odds. A classifier is obtained by labelling the first k+ leaves in the ordering positive and
the remaining k− leaves negative. Figure 1 shows a small example.

A Simple Lexicographic Ranker and Probability Estimator 577

+
+

++

+ +
+

+++

- -
-

- -
-

-

-

- -

A1

A2

0 1

0

1

1-,4+ 1-,3+ 5-,1+

A2

A1 A1

3-,2+

0 1

1 0 1 0

Fig. 1. A data set, and an induced decision tree. Instead of leaf labellings, the class distributions
of training instances are indicated for each leaf, which can be used to obtain the ranking leaf 2 –
leaf 3 – leaf 1 – leaf 4.

The performance of a binary classifier can be assessed by tabulating its predictions
on a test set with known labels in a contingency table, from which true and false positive
rates can be calculated. An ROC plot plots true positive rate on the Y-axis against false
positive rate on the X-axis; a single contingency table corresponds to a single point in an
ROC plot. The performance of a ranker can be assessed by drawing a piecewise linear
ROC curve. Each segment of the curve corresponds to one of the segments induced
by the ranker; the order of the ROC segments corresponds to the total ordering on the
ranking segments. If the i-th segment contains n+

i out of a total of n+ positives and
n−i out of n− negatives, the segment’s vertical length is n+

i /n+, its horizontal width is

n−i /n− and its slope is li = n+
i

n−i
c−1, where c = n+/n− is the prior odds. We will denote

the proportion of positives in a segment as pi = n+
i

n+
i +n−i

= li
li+1/c . We will call these

empirical probabilities; they allow us to turn a ranker into a probability estimator , as
we will show later. The area under the ROC curve or AUC estimates the probability
that a randomly selected positive is ranked before a randomly selected negative, and is
a widely used measure of ranking performance. An ROC curve is convex if the slopes li
are monotonically non-increasing when moving along the curve from (0,0) to (1,1). A
concavity in an ROC curve, i.e., two or more adjacent segments with increasing slopes,
indicates a locally worse than random ranking. In this case, we would get better ranking
performance by joining the segments involved in the concavity, thus creating a coarser
classifier.

The performance of a scoring classifier can be assessed in the same way as a ranker.
Alternatively, if we know the true scores s(x) we can calculate a loss function such as
mean squared error 1

|T | ∑x∈T (ŝ(x)− s(x))2, where T is the test set. In particular, for a

probabilistic classifier we may take s(x) = 1 for a positive instance and s(x) = 0 for a
negative; in that case, mean squared error is also known as the Brier score [5]. Note that
the Brier score takes probability estimates into account but ignores the rankings (it does
not require sorting the estimates). Conversely, ROC curves take rankings into account
but ignore the probability estimates. Brier score and AUC thus measure different things
and are not directly comparable.

578 P. Flach and E.T. Matsubara

3 ROC Curves, the Brier Score, and Calibration

In this section we demonstrate a fundamental and novel relationship between Brier
score and ROC curves. We do this by means of a decomposition of the Brier score in
terms of calibration loss and refinement loss. A very similar decomposition is well-
known in forecasting theory (see, e.g., [6]), but requires a discretisation of the prob-
ability estimates and is therefore approximate. Our decomposition uses the segments
induced by the ranking and is therefore exact.

Theorem 1. Given an ROC curve produced by a ranker on a test set T , let p̂i be the
predicted probability in the i-th segment of the ROC curve. The Brier score is equal to
BS = 1

|T | ∑i ni(p̂i− pi)2 + 1
|T | ∑i ni pi(1− pi).

Proof. BS= 1
|T | ∑x∈X (p̂(x)− p(x))2= 1

|T | ∑i[n
+
i (p̂i−1)2+n−i p̂2

i]=
1
|T | ∑i[ni p̂2

i −2n+
i p̂i +

n+
i] = 1

|T | ∑i[ni(p̂i−
n+

i
ni

)2 + n+
i (1− n+

i
ni

)] = 1
|T | ∑i ni(p̂i− pi)2 + 1

|T | ∑i ni pi(1− pi).

Both terms in this decomposition are computed by taking a weighted average over all
segments of the ROC curve. The first term, the calibration loss, averages the squared
prediction error in each segment. It is important to note that the error is taken relative to
pi, which is the proportion of positives in the segment and thus not necessarily 0 or 1. In
other words, the calibration loss as defined above relates the predicted probabilities to
the empirical probabilities obtained from the slopes of the segments of the ROC curve.
The second term in the Brier score decomposition is called refinement loss. This term
is 0 if and only if all ROC segments are either horizontal or vertical, which is the case
if all segments are singletons. Consequently, refinement loss is related to the coarse-
ness of the ranker, hence its name. For instance, refinement loss is maximal (0.25) for
the ranker which ties all test instances. Notice that refinement loss only takes empirical
probabilities into account, not predicted probabilities. It is therefore a quantity that can
be evaluated for any ranker, not just for probability estimators. Notice also that, while
the Brier score itself does not require ranking the probability estimates, its decomposi-
tion into calibration loss and refinement loss does. As an illustration, the decision tree
from Figure 1 has 0 calibration loss on the training set (if Laplace correction is not used)
and refinement loss (5 ·4/5 ·1/5+4 ·3/4 ·1/4+5 ·2/5 ·3/5+6 ·1/6 ·5/6)/20= 0.18.

Theorem 2. The calibration loss is 0 only if the ROC curve is convex.

Proof. Suppose the ROC curve is not convex, then there are two adjacent segments
such that p̂i > p̂ j but li < l j. From the latter it follows that pi < p j, and thus at least one
of the error terms (p̂i− pi)2 and (p̂ j− p j)2 is non-zero.

Theorem 3. Let p̂ be a probability estimator with a convex ROC curve but a non-
zero calibration loss. Let p̂′ be derived from p̂ by predicting pi rather than p̂i in each
segment. Then p̂′ has the same AUC as p̂ but a lower Brier score.

Proof. p̂′ may be coarser than p̂ because it may merge adjacent segments with p̂i > p̂ j
but pi = p j. But this will not affect the shape of the ROC curve, nor the AUC. We thus
have that the slopes of all segments remain the same, hence the pi; but since p̂′ has zero
calibration loss the Brier score is decreased.

A Simple Lexicographic Ranker and Probability Estimator 579

Many models do not guarantee convex training set ROC curves. For such models, the
above suggests a straightforward procedure to obtain calibrated probabilities, by con-
structing the convex hull of the ROC curve [7]. This can be understood as creating a
coarser ranking, by joining adjacent segments that are in the wrong order. Clearly, join-
ing segments results in additional refinement loss, but this is compensated by setting the
probability estimates equal to the empirical probabilities, hence obtaining zero calibra-
tion loss (although in practice we don’t achieve zero calibration loss because we apply
the Laplace correction in order to avoid overfitting). This procedure can be shown to be
equivalent to isotonic regression [1]; a proof can be found in [2].

4 Lexicographic Ranking

While a ranker is commonly obtained by sorting the scores of a scoring classifier as
indicated in Section 2, it is possible to define a ranker without scores. Probably the
simplest way to do so is to assume a preference order on attribute values, and to use
that ordering to rank instances lexicographically. In the rest of this paper, we will show
that such a simple ranker, and the probability estimates derived from it, can perform
competitively with less biased models such as decision trees and naive Bayes.

For notational convenience we will assume that all attributes are binary; since a nom-
inal attribute with k values can be converted into k binary attributes, this doesn’t repre-
sent a loss of generality.

Definition 1 (Lexicographic ranking). Let A1, . . . ,An be a set of boolean attributes,
such that the index represents a preference order. Let vi+ denote the preferred value
of attribute Ai. The lexicographic ranker corresponding to the preference order on at-
tributes and attribute values is defined as follows:

r̂lex(x1,x2) =
{

> if A j(x1) = v j+
< if A j(x1) �= v j+

where j denotes the lowest attribute index for which x1 and x2 have different values (if
no such index exists, the two instances are tied).

A lexicographic ranker can be represented as an unlabelled binary decision tree with
the following properties: (1) the only attribute occurring at depth i is Ai – i.e., along
each path from root to leaf the attributes occur in the preference order; (2) in each split,
vi+ is the left branch. Consequently, the ranking order is represented by the left-to-right
order of the leaves. We call such a tree a lexicographic ranking tree. The decision tree
shown in Figure 1 is also a lexicographic ranking tree, representing that A2 is preferred
to A1, 1 is the preferred value of A1, and 0 the preferred value of A2. However, as
a lexicographic ranking tree, its leaves are ranked left-to-right, which results in a non-
convex ROC curve. Clearly, decision trees are much more expressive than lexicographic
ranking trees.

We can also draw a connection between lexicographic ranking and the naive Bayes
classifier, as we will now show. The naive Bayes ranker obtained from the data from
Fig. 1 is as follows. Using LR(·) to denoted the likelihood ratio estimated from the

580 P. Flach and E.T. Matsubara

data, we have LR(A1 = 0) = p(A1=0|+)
p(A1=0|−) = 5/6, LR(A1 = 1) = p(A1=1|+)

p(A1=1|−) = 5/4, LR(A2 =

0) = p(A2=0|+)
p(A2=0|−) = 6/4, and LR(A2 = 1) = p(A2=1|+)

p(A2=1|−) = 4/6. The prior odds doesn’t affect
the ranking, and so we can just use the products of these marginal likelihood ratios to
determine the ranking: LR(A1 = 1)LR(A2 = 0) = 30/16 > LR(A1 = 0)LR(A2 = 0) =
30/24 > LR(A1 = 1)LR(A2 = 1) = 20/24 > LR(A1 = 0)LR(A2 = 1) = 20/36. This is
a lexicographic ranking, which is equivalent to the lexicographic ranking tree in Fig. 1.

Definition 2. LexRank is the lexicographic ranker which uses the following preference
criteria. The preferred value vi+ for attribute Ai is defined as the one which has LR(Ai =
vi+) > 1 (if there is no such value then the attribute doesn’t express preference and
can be discarded). The preference order on attributes is defined by sorting them on
decreasing odds ratio OR(Ai) = LR(Ai=vi+)

LR(Ai=vi−) , where vi− denotes the non-preferred value.

Theorem 4. For every LexRank ranker over a given set of binary attributes, there
exists a data set such that LexRank and naive Bayes, trained on that data set, result in
equivalent rankers.

Proof. Assuming without loss of generality that A1, . . . ,An are already sorted on de-
creasing odds ratio and that 0 is the preferred value of each attribute, then the leaves
of the lexicographic ranking tree can be interpreted as integers in binary representation
that are ordered from 0 to 2n. The naive Bayes ranker will respect this ordering, un-
less there is an i such that OR(Ai) < ∏ j>i OR(A j), as this would reverse any ranking
decision for instances differing not just in Ai but also in attributes ranked lower than Ai.

For instance, if OR(A1) = 5, OR(A2) = 3 and OR(A3) = 2, then LexRank will rank
011 before 100, whereas naive Bayes will reverse the ranking, since A2 = 0∧A3 = 0
outweighs A1 = 0.

We conclude that LexRank exhibits a much stronger bias than naive Bayes, but as
we show in the next section this added bias does not result in a loss of ranking per-
formance. We can turn LexRank into a calibrated probability estimator by deriving
probability estimates from its convex hull. The resulting lexicographic probability esti-
mator is called LexProb.

5 Experimental Evaluation

Our experiments were conducted on 27 data sets from the UCI repository [8] using
the Weka toolbox. Continuous attributes were discretised using unsupervised ten-bin
discretisation; non-binary k-valued attributes were replaced with k binary-valued at-
tributes. We compared the following algorithms: LexRank and LexProb, the algo-
rithms proposed in this paper; NB and J48, naive Bayes and decision tree learners as
implemented in Weka; and CaliNB, which uses the same wrapper to calibrate proba-
bility estimates as LexRank , but applied to NB. We ran J48 without pruning and with
Laplace correction, to get good ranking performance. We evaluated both ranking per-
formance by means of AUC, and probability estimation performance by means of the
Brier score. We used 10-fold cross-validation for all data sets except the ones with less
than 270 instances where we used 5-fold cross-validation to ensure the folds contained

A Simple Lexicographic Ranker and Probability Estimator 581

enough instances for the tests to be meaningful. Table 1 shows the results of all pairwise
counts of wins/ties/losses (row vs. column) using AUC (lower triangle) and BS (upper
triangle). Most of these counts are not significant according to a sign test (critical value
at 0.05 confidence level is 20.7). For illustrative purposes we included LexRank in the
Brier score results, by calculating scores based on the binary representation of the rank-
ing; these scores are clearly not meaningful as probabilities, resulting in four out of five
of the significant counts.

Table 1. Counts of wins/ties/losses using AUC (lower triangle) and BS (upper triangle). Counts
in bold face are significant according to a sign test at 0.05 confidence level.

set LexRank LexProb NB CaliNB J48
LexRank - 1 0 26 4 0 23 2 0 25 4 0 23
LexProb 12 2 13 - 17 0 10 10 0 17 17 0 10
NB 18 3 6 17 2 8 - 3 0 24 11 0 16
CaliNB 16 1 10 16 1 10 9 2 16 - 17 0 10
J48 12 1 14 14 2 11 11 2 14 9 2 16 -

The Friedman test uses average ranks of each algorithm over all data sets. From the
AUC results, the average ranks are 2.407 for NB, 2.926 for CaliNB, and 3.222 for J48,
LexRank , and LexProb, resulting in an F-statistic of 1.38. The critical value of the
F-statistics with 4 and 104 degrees of freedom and at 95 percentile is 2.46. According
to the Friedman test, the null-hypothesis that all algorithms have similar ranking per-
formance should not be rejected. The average ranks on the basis of the Brier scores, on
the other hand, result in an F-statistic of 17.20, and we proceed to a post-hoc analysis.

CD

CaliNB

LexProb
J48

NB

LexRank

1 2 3 4

Fig. 2. Critical Difference diagram

According to the Bonferroni-Dunn statistic, the Critical Difference (CD) for compar-
ing the mean-ranking of an algorithm to a control at 95 percentile is 1.07. Mean-ranking
differences above this value are significant. Following [9], we can now plot the average
ranks in a CD diagram (Figure 2). In this diagram, we connect algorithms that are not
significantly different. We also show the CD above the main axis. The analysis reveals
that CaliNB performs significantly better than NB. This demonstrates that isotonic re-
gression can significantly improve the probability estimates of naive Bayes. LexProb
is connected with – i.e., has comparable performance with – CaliNB, J48 and NB.

Finally, we report some runtime results. A single train and test run over all 27 data
sets without cross-validation takes 46.72 seconds for LexRank against 49.50 seconds
for NB, and 94.14 seconds for LexProb against 100.99 seconds for CaliNB.

582 P. Flach and E.T. Matsubara

6 Conclusions

In this paper we have made a number of contributions. First of all, we have clearly
defined the relationship and differences between classification, ranking and probability
estimation. Secondly, we have defined the notion of lexicographic ranking, which sim-
ply employs a linear preference order on attributes. To the best of our knowledge, this
is the first ranker that doesn’t base its ranking on numerical scores. Thirdly, we have
shown that using the odds ratio for ranking attributes results in a lexicographic ranker,
called LexRank , which is a restricted version of naive Bayes. Fourthly, we have demon-
strated a close and fundamental connection between ROC curves and the Brier score,
linking in particular the calibration of probability estimates to the convexity of the ROC
curve. Experimental results show that lexicographic ranking, and the probability esti-
mates derived from it using isotonic regression, perform comparably to decision trees
and naive Bayes.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments and the Brazilian Research Council CAPES (Proc.N. 2662060).

References

1. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and
naive Bayesian classifiers. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the Eigteenth
International Conference on Machine Learning (ICML 2001), pp. 609–616. Morgan Kauf-
mann, San Francisco (2001)

2. Fawcett, T., Niculescu-Mizil, A.: PAV and the ROC convex hull. Machine Learning 68(1),
97–106 (2007)

3. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees using the area under the
ROC curve. In: Sammut, C., Hoffmann, A.G. (eds.) Proceedings of the Nineteenth Interna-
tional Conference (ICML 2002), pp. 139–146. Morgan Kaufmann, San Francisco (2002)

4. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learn-
ing 52(3), 199–215 (2003)

5. Brier, G.: Verification of forecasts expressed in terms of probabilities. Monthly Weather Re-
view 78, 1–3 (1950)

6. Cohen, I., Goldszmidt, M.: Properties and benefits of calibrated classifiers. In: Boulicaut, J.-
F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp.
125–136. Springer, Heidelberg (2004)

7. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learn-
ing 42(3), 203–231 (2001)

8. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases
(1998)

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7, 1–30 (2006)

On Minimizing the Position Error

in Label Ranking

Eyke Hüllermeier1 and Johannes Fürnkranz2

1 Department of Mathematics and Computer Science, Marburg University
eyke@mathematik.uni-marburg.de

2 Department of Computer Science, TU Darmstadt
juffi@informatik.tu-darmstadt.de

Abstract. Conventional classification learning allows a classifier to make
a one shot decision in order to identify the correct label. However, in many
practical applications, the problem is not to give a single estimation, but
to make repeated suggestions until the correct target label has been iden-
tified. Thus, the learner has to deliver a label ranking, that is, a ranking
of all possible alternatives. In this paper, we discuss a loss function, called
the position error, which is suitable for evaluating the performance of a
label ranking algorithm in this setting. Moreover, we introduce “ranking
through iterated choice”, a general strategy for extending any multi-class
classifier to this scenario, and propose an efficient implementation of this
method by means of pairwise decomposition techniques.

1 Introduction

The main interest in the context of classification learning typically concerns the
correctness of a prediction: A prediction is either correct or not and, correspond-
ingly, is rewarded in the former and punished in the latter case. The arguably
best-known loss function reflecting this problem conception is the misclassifica-
tion or error rate of a classifier, that is, the probability of making an incorrect
prediction. In this paper, we are interested in another scenario which motivates
a generalization of the misclassification rate. As an illustration, consider a fault
detection problem which consists of identifying the cause for the malfunctioning
of a technical system. Suppose that a classifier has been trained to predict the
true cause, e.g., on the basis of certain sensor measurements serving as input
attributes (see, e.g., [1] for an application of that type). Now, if it turned out
that a predicted cause is not correct, one cannot simply say that the classifica-
tion process terminated with a failure. Instead, since the cause must eventually
be found, alternative candidates must be tried until the problem is fixed.

What is needed in applications of this type is not only a prediction in the
form of a single class label but instead a ranking of all candidate labels. In fact,
a ranking suggests a simple (trial and error) search process, which successively
tests the candidates, one by one, until the correct cause is found. An obvious
measure of the quality of a predicted ranking is a loss function that counts the
number of futile trials made before the target label is identified.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 583–590, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

584 E. Hüllermeier and J. Fürnkranz

Apart from a suitable loss function, one needs a learner that produces label
rankings as outputs. In this regard, the most obvious idea is to use a scoring
classifier which outputs a score for each label, which is then used for sorting
the labels. In particular, one may use a probabilistic classifier that estimates,
for every candidate label λ, the conditional probability of λ given the input x.
Intuitively, probabilistic ranking (PR), i.e., ordering the labels according to their
respective probabilities of being the target label, appears to be a reasonable
approach.

In Section 3, we show that this approach is indeed optimal in a particular
sense. Despite this theoretical optimality, however, an implementation of the
approach turns out to be intricate in practice, mainly because estimating con-
ditional probabilities is a difficult problem. In fact, it is well-known that most
classification algorithms commonly used in the field of machine learning do not
produce accurate probability estimates, even though they may have a strong hit
rate. This motivates an alternative approach, to be introduced in Section 3.1,
that we call ranking through iterated choice (RIC). The idea of this method
is to employ a (multi-class) classifier as a choice function which, given a set
of candidate labels and related training data, selects the most promising among
these candidates. Roughly speaking, a label ranking is then obtained by repeated
classification: In every iteration, the learning algorithm removes this label, and
retrains a classifier for the remaining labels. Due to the retraining, RIC obvi-
ously comes along with an increased complexity. To overcome this problem, an
efficient implementation of this approach, which is based on pairwise decom-
position techniques, is proposed in Section 3.2. Experimental results, showing
that RIC does indeed improve accuracy in comparison with PR, are presented
in Section 4.

2 Label Ranking and Position Error

We consider a learning problem which involves an input space X and an output
set L = {λ1 . . . λm} consisting of a finite number of class labels. Assuming X ×L
to be endowed with a probability measure, one can associate a vector

px = (P(λ1 |x) . . .P(λm |x)) (1)

of conditional class probabilities with every input x ∈ X , where P(λi |x) =
P(λi = λx) denotes the probability that x belongs to class λi.

Given a set of training examples D = {(x1, λx1) . . . (xn, λxn)} ⊂ (X × L)n,
the learning problem is to induce a “label ranker”, which is a function that
maps any input x to a total order of the class labels, i.e., a complete, transitive,
and asymmetric relation ,x on L; here, λi ,x λj means that λi precedes λj in
the ranking associated with x. Formally, a ranking ,x can be identified with
a permutation τx of {1 . . .m}, e.g., the permutation τx satisfying λτ−1

x (1) ,x

λτ−1
x (2) ,x . . . ,x λτ−1

x (m). Here, τx(i) = τx(λi) is the position of label λi in the
ranking.

On Minimizing the Position Error in Label Ranking 585

In hitherto existing approaches to label ranking [4,3], the quality of a predic-
tion is measured in terms of a similarity or distance measure for rankings; for
example, a commonly used measure for comparing a predicted ranking (permu-
tation) τx and a true ranking τ∗

x is the Spearman rank correlation. Measures of
that type take the position of all labels into account, which means, e.g., that
swapping the positions of the two bottom labels is as bad as swapping the posi-
tions of the two top labels.

Measures such as Spearman rank correlation quantify, say, the ranking error of
a prediction [5]. In this paper, we are interested in an alternative type of measure,
which is especially motivated by practical performance tasks where a prediction
is used in order to support the search for a true target label. As outlined in the
introduction, an obvious loss function in this context is the number of labels
preceding that label in the predicted ranking. Subsequently, a deviation of the
predicted target label’s position from the top-rank will be called a position error.
Note that, while a ranking error relates to the comparison of two complete
label rankings τx and τ∗

x, the position error refers to the comparison of a label
ranking τx and a true class λx. More specifically, we define the position error of a
prediction τx as PE(τx, λx) df= τx(λx), i.e., by the position of the target label λx

in the ranking τx. To compare the quality of rankings of different problems, it is
useful to normalize the position error for the number of labels. This normalized
position error is defined as

NPE(τx, λx) df=
τx(λx)− 1

m− 1
∈ {0, 1/(m− 1) . . . 1}. (2)

The position error of a label ranker is the expected position error of its predic-
tions, where the expectation is taken with respect to the underlying probability
measure on X × L.

Compared with the conventional misclassification rate, the position error dif-
ferentiates between “bad” predictions in a more subtle way: In the case of a
correct classification, both measures coincide. In the case of a wrong top label,
however, the misclassification rate is 1, while the position error assumes values
between 1 and m, depending on how “far away” the true target label is.

Like most performance measures, the position error is a simple scalar index. To
characterize a label ranking algorithm in a more elaborate way, an interesting
alternative is to look at the mapping C : {1 . . .m} → R such that C(k) =
P (τx(λx) ≤ k), i.e., C(k) is the probability that the target label is among the
top k labels in the predicted ranking. Of course, on the basis of this distribution,
only a partial order can be defined on a class of learning algorithms: Two learners
are incomparable in the case of intersecting C-distributions.

3 Minimizing the Position Error

What kind of ranking procedure should be used in order to minimize the risk
of a predicted ranking with respect to the position error as a loss function? As
mentioned before, an intuitively plausible idea is to order the candidate labels λ

586 E. Hüllermeier and J. Fürnkranz

according to their probability P(λ = λx) of being the target label. In fact, this
idea is not only plausible but also provably correct. Even though the result is
quite obvious, we state it formally as a theorem.

Theorem 1. Given a query instance x ∈ X , ranking the labels λ ∈ L according
to their (conditional) probabilities of being the target class λx yields a risk min-
imizing prediction with respect to the position error (2) as a loss function. That
is, the expected loss E(τx) = 1

m−1

∑m
i=1(i− 1) · P (τx(λx) = i) becomes minimal

for any ranking ,x such that P(λi = λx) > P(λj = λx) implies λi ,x λj .

According to the above result, the top rank (first position) should be given to the
label λ	 for which the estimated probability is maximal. Regarding the second
rank, recall the fault detection metaphor, where the second hypothesis for the
cause of the fault is only tested in case the first one turned out to be wrong.
Thus, for the next choice, one has obtained additional information, namely that
λ	 is not the correct label. Taking this information into account, the second
rank should not simply be given to the label with the second highest probability
according to the original probability measure, say, P1(·) = P(·), but instead to
the label that maximizes the conditional probability P2(·) = P(· |λx �= λ) of
being the target label given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) may appear meaningless from a
ranking point of view, since standard probabilistic conditioning yields

P2(λ) =
1− P1(λ)
P1(λ)

∝ P1(λ) (3)

for λ �= λ	, and therefore does not change the order of the remaining labels. And
indeed, in case the original P(·) is a proper probability measure and conditioning
is performed according to (3), the predicted ranking will not change at all.

3.1 Empirical Conditioning

One should realize, however, that standard conditioning is not an incontestable
updating procedure in our context, simply because P1(·) is not a “true” prob-
ability measure over the class labels. Rather, it is only an estimated measure
coming from a learning algorithm, perhaps one which is not a good probability
estimator. In fact, it is well-known that most machine learning algorithms for
classification perform rather poorly in probability estimation, even though they
may produce good classifiers. Thus, it seems sensible to perform “conditioning”
not on the measure itself, but rather on the learner that produced the measure.
What we mean by this is that the learner should be retrained on the original
data without the λ	-examples, an idea that could be paraphrased as “empirical
conditioning”.

This type of conditioning depends on the data D and the model assumptions,
that is, the hypothesis space H from which the classifier is taken. To emphasize
this dependence and, moreover, to indicate that it concerns an estimated (“hat”)
probability, the conditional measure P2(·) could be written more explicitly as

On Minimizing the Position Error in Label Ranking 587

2

2
2
2

22

2
2

2
2

2

2

�
�

�

�

�

•

•

•

•⊕

�
�

�

�

�

•

•

•

•⊕

Fig. 1. Example of empirical conditioning: The optimal model (decision stump) for the
complete training data (left) and the data omitting the examples of the top label (�)

P2(·) = P̂(· |λx �= λ	,D,H). To motivate the idea of empirical conditioning,
consider the simple example in Fig. 1, where the hypothesis space H is given by
the class of decision stumps (univariate decision trees with only one inner node,
i.e., axis-parallel splits in the case of numerical attributes). Given the examples
from three classes (represented, respectively, by the symbols 2, �, and •), the
best model corresponds to the split shown in the left picture. By estimating
probabilities through relative frequencies in the leaf nodes of the decision stump,
one derives the following estimates for the query instance, which is marked by a
⊕ symbol: P̂(2 |⊕) = 12/15, P̂(� | ⊕) = 2/15, P̂(• |⊕) = 1/15; thus, the induced
ranking is given by 2 , � , •. Now, suppose that the top label 2 turned out
to be an incorrect prediction. According to the above ranking (and probabilistic
conditioning), the next label to be tested would be �. However, when fitting a
new model to the training data without the 2-examples, the preference between
� and • is reversed, because the query instance is now located “on the • -side”
of the decision boundary. Roughly speaking, conditioning by “taking a different
look” at the data, namely a look that suppresses the 2 examples, gives a quite
different picture (shown on the right-hand side of Fig. 1) of the situation. In
fact, one should realize that, in the first model, the preference between � and •
is strongly biased by the 2-examples: The first decision boundary is optimal only
because it classifies all 2-examples correctly, a property that looses importance
once it turned out that 2 is not the true label of the query.

According to the above idea, a classifier is used as a choice function: Given
a set of potential labels with corresponding training data (and a new query in-
stance x), it selects the most likely candidate among these labels. We refer to
the process of successively selecting alternatives by estimating top-labels from
(conditional) probability measures P1(·),P2(·) . . .Pm(·) as ranking through iter-
ated choice (RIC). As an important advantage, note that this approach can be
used to turn any multi-class classifier into a label ranker. In principle, it is not
required that a corresponding classifier outputs a score, or even a real probabil-
ity, for every label. In fact, since only a simple decision in favor of a single label
has to be made in each iteration, any classifier is good enough. In this regard, let

588 E. Hüllermeier and J. Fürnkranz

us note that, for the ease of exposition, the term “probability” will subsequently
be used in a rather informal manner.

Regarding its effect on label ranking accuracy, one may expect the idea of
RIC to produce two opposite effects: (1) Information loss: In each iteration, the
size of the data set to learn from becomes smaller. (2) Simplification: Due to
the reduced number of classes, the learning problems become simpler in each
iteration. The first effect will clearly have a negative influence on generalization
performance, as a reduction of data comes along with a loss of information. In
contrast to this, the second effect will have a positive influence: The classifiers
will become increasingly simple, because it can be expected that the decision
boundary for separating m classes is more complex than the decision boundary
for separating m′ < m classes of the same problem. The hope is that, in practice,
the second (positive) effect will dominate the first one.

3.2 Efficient Implementation

An obvious disadvantage of RIC concerns its computational complexity. In fact,
since empirical conditioning essentially means classifying on a subset of L, the
number of models needed is (potentially) of the order 2|L|. To overcome this
problem, we propose the use of pairwise decomposition techniques.

The idea of pairwise learning is well-known in the context of classification [2],
where it allows one to transform a polychotomous classification problem, i.e., a
problem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary prob-
lems. To this end, a separate model (base learner) Mij is trained for each pair
of labels (λi, λj) ∈ L, 1 ≤ i < j ≤ m; thus, a total number of m(m− 1)/2 mod-
els is needed. Mij is intended to separate the objects with label λi from those
having label λj . Depending on the classifier used, an outputMij(x) can be inter-
preted, e.g., as the conditional probability pij = P (λx = λi |λx ∈ {λi, λj},x).
In a second step, an estimation of the probability vector (1), i.e., of the indi-
vidual probabilities pi = P(λx = λi |x), has to be derived from these pairwise
probabilities. To this end, different techniques have been developed. Here, we
resorted to the approach proposed in [7], which derives the pi as a solution of a
system of linear equations, S, that includes one equation for every label.

RIC can then be realized as follows: First, the aforementioned system of linear
equations is solved, and the label λi with maximal probability pi is chosen as
the top-label λ	. This label is then removed, i.e., the corresponding variable pi

and its associated equation are deleted from S. To find the second best label,
the same procedure is then applied to the reduced system S′ thus obtained, i.e.,
by solving a system of m− 1 linear equations and m− 1 variables. This process
is iterated until a full ranking has been constructed.

This approach reduces the training effort from an exponential to a quadratic
number of models. Roughly speaking, a classifier on a subset L′ ⊆ L of classes
is efficiently assembled “on the fly” from the corresponding subset of pairwise
models {Mij |λi, λj ∈ L′}. Or, stated differently, the training of classifiers is
replaced by the combination of associated binary classifiers.

On Minimizing the Position Error in Label Ranking 589

The hope that empirical conditioning improves accuracy in comparison with
conventional probabilistic conditioning is essentially justified by the aforemen-
tioned simplification effect of RIC. Note that this simplification effect is also
inherently present in pairwise learning. Here, the simplification due to a reduc-
tion of class labels is already achieved at the very beginning and, by decomposing
the original problem into binary problems, carried to the extreme. Thus, if the
simplification effect is indeed beneficial in the original version of RIC, it should
also have a positive influence in the pairwise implementation (RIC-P). These are
exactly the two conjectures to be investigated empirically in the next section:
(i) Empirical conditioning (RIC) pays off with respect to accuracy, and (ii) the
increased efficiency of the pairwise implementation, RIC-P, is achieved without
sacrificing this gain in accuracy.

4 Empirical Results

In order to investigate the practical usefulness of empirical conditioning and the
related RIC procedure, we compare the corresponding strategy to the most ob-
vious alternative, namely ordering the class labels right away according to the
respective probabilities produced by a multi-class classifier (probabilistic rank-
ing, PR). So, given any multi-class classifier, capable of producing such prob-
abilities, as a base learner, we consider the following three learning strategies:
PR: A ranking is produced by applying the base learner to the complete data
set only once and ordering the class labels according to their probabilities. RIC:
This version refers to the ranking through iterated choice procedure outlined in
Section 3.1, using the multi-class classifier as a base learner. RIC-P: This is the
pairwise implementation of RIC as introduced in Section 3.2 (again using as base
learners the same classifiers as RIC and PR). In cases of non-unique top-labels,
we always break ties by coin flipping.

For 18 benchmark data sets from the UCI repository and the StatLib archive1

we estimated the mean (absolute) position error of each method using leave-one-
out cross validation, using two widely known machine learning algorithms as
base learners: C4.5 and Ripper. For comparison purpose, we also derived results
for the naive Bayes (NB) classifier, as this is one of the most commonly used
“true” probabilistic classifiers. Note that, since conditional probabilities in NB
are estimated individually for each class, empirical conditioning is essentially the
same as conventional conditioning, i.e., RIC is equivalent to PR.

From the win-loss statistics for NB in comparison with PR using, respectively,
C4.5 (10/8) and Ripper (10/8), there is no visible difference between these multi-
class classifiers in terms of label ranking accuracy. Important are the win-loss
statistics summarized in Table 1 (detailed results had to be omitted here due
to space restrictions but can be found in an extended version of this paper [6]).
These results perfectly support the two conjectures raised above. First, RIC
significantly outperforms PR: According to a simple sign test for the win-loss
statistic, the results are significant at a level of 2%. Second, RIP-P is fully
1 http://www.ics.uci.edu/∼mlearn, http://stat.cmu.edu/

http://www.ics.uci.edu/~mlearn
http://stat.cmu.edu/

590 E. Hüllermeier and J. Fürnkranz

Table 1. Win/loss statistics for each pair of methods, using C4.5 (left) and Ripper
(right) as base learners

PR RIC RIC-P PR RIC RIC-P

PR — 3/13 4/13 — 3/13 3/12
RI 13/3 — 7/8 13/3 — 2/13
RIC-P 13/4 8/7 — 12/3 13/2 —

competitive to RIC (and actually shows a better performance in the case of
Ripper as a base learner).

5 Concluding Remarks

In the context of the label ranking problem, we have discussed the position er-
ror as an alternative loss function. To minimize this loss function, we proposed
ranking through iterated choice (RPC), a strategy that essentially reduces label
ranking to repeated classification. In each iteration, RPC performs empirical con-
ditioning, which in turn requires the retraining of classifiers. To avoid the need
for training a potentially large number of models, we used a pairwise implemen-
tation in which retraining is done implicitly, namely by combining the outputs
of certain pairwise models. In an experimental study, RPC was compared to
standard probabilistic ranking, where the class labels are ranked according to
the originally estimated probabilities. Our results suggest that retraining (em-
pirical conditioning) does indeed reduce the expected loss when using standard
multi-class classifiers as base learners, and that this gain in accuracy is preserved
by the pairwise implementation.

References

1. Alonso, C., Rodŕıguez, J.J., Pulido, B.: Enhancing consistency based diagnosis with
machine learning techniques. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz,
J.-L. (eds.) Current Topics in Artificial Intelligence. LNCS (LNAI), vol. 3040, pp.
312–321. Springer, Heidelberg (2004)

2. Fürnkranz, J.: Round robin classification. J. of Mach. Learn. Res. 2, 721–747 (2002)
3. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač,

N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI),
vol. 2837, Springer, Heidelberg (2003)

4. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to
multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT
2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

5. Hüllermeier, E., Fürnkranz, J.: Learning label preferences: Ranking error versus
position error. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A.
(eds.) IDA 2005. LNCS, vol. 3646, Springer, Heidelberg (2005)

6. Hüllermeier, E., Fürnkranz, J.: On minimizing the position error in label ranking.
Technical Report TUD-KE-2007-04, TU Darmstadt (2007)

7. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Machine Learning Res. 5, 975–1005 (2004)

On Phase Transitions in Learning Sparse Networks

Goele Hollanders1, Geert Jan Bex1, Marc Gyssens1,
Ronald L. Westra2, and Karl Tuyls2

1 Department of Mathematics, Physics, and Computer Science,
Hasselt University and Transnational University of Limburg,

Hasselt, Belgium
������������	�
������������

2 Department of Mathematics and Computer Science,
Maastricht University and Transnational University of Limburg,

Maastricht, the Netherlands

Abstract. In this paper we study the identification of sparse interaction networks
as a machine learning problem. Sparsity means that we are provided with a small
data set and a high number of unknown components of the system, most of which
are zero. Under these circumstances, a model needs to be learned that fits the
underlying system, capable of generalization. This corresponds to the student-
teacher setting in machine learning. In the first part of this paper we introduce
a learning algorithm, based on L1-minimization, to identify interaction networks
from poor data and analyze its dynamics with respect to phase transitions. The
eÆciency of the algorithm is measured by the generalization error, which repre-
sents the probability that the student is a good fit to the teacher. In the second part
of this paper we show that from a system with a specific system size value the
generalization error of other system sizes can be estimated. A comparison with a
set of simulation experiments show a very good fit.

Keywords: machine learning, sparse network reconstruction, feature
identification.

1 Introduction and Motivation

In this paper we consider the problem of identifying interaction networks from a given
set of observations. An example of such a network is a sparse gene-protein interaction
network, for more details see [1,5,2,7,10,11].

In some engineering applications, the number of measurements M available for sys-
tem identification and model validation is much smaller than the system order N, which
represents the number of components. This substantial lack of data can give rise to
an identifiability problem, in which case a larger subset of the model class is entirely
consistent with the observed data so that no unique model can be proposed. Since con-
ventional techniques for system identification are not well suited to deal with such situ-
ations, it thus becomes important to work around this by exploiting as much additional
information as possible about the underlying system. In particular, we are interested in
the relation between the number of measurements and the number of components, the
sparsity of the regulatory network and the influence of noise.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 591–599, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

592 G. Hollanders et al.

In this setting, it is natural to link network identification to feature selection. Only
very few components influence the expression level of any given component, so one can
restate the problem as selecting exactly those few among the large amount of compo-
nents under consideration. Hence the results presented here will not only be applicable
to network identification, but more generally to feature selection as well.

In Section 2, we will introduce the definitions of several concepts we use. Section 3
summarizes five research questions we will answer on experimental results. A brief
discussion and our conclusions will be presented in Section 4.

2 Definitions and Algorithm

In the first paragraph we translate the problem of network identification formally into
machine learning terminology [6]. In the next paragraph we introduce and elucidate the
learning algorithm. Then we elaborate on the relation to feature selection. Finally, we
discuss the issue of noisy data.

Terminology: Data and Teacher. In order to formalize the problem stated in the previ-
ous section we now introduce the model which we will consider more rigorously below.
We assume that a training set of M input�output pairs �tr � �(xm� ẋm) � m : 1� � � � � M� is
given, where xm� ẋm � �N . The components of the input vectors xm are independently
and identically distributed so that they are linearly independent. Since the data is as-
sumed to be generated by some interaction network, this network will be denoted by
T � (AT � BT) where AT � �

N�N and BT � �
N . In this context, we refer to T as the

unknown teacher. For each (xm� ẋm) � �tr, ẋm � AT � xm � BT , i.e., ẋm is the output pro-
duced by the teacher T on input xm. In general, the teacher’s output ẋ on some input x is
computed as follows: ẋ � T (x) � AT � x � BT � Moreover, we consider sparse networks,
for each row of the matrix AT , only KT components are non-zero. Since the latter mod-
els the interactions in the network, a non-zero value of AT

i� j indicates that component i
of input x influences component j of the output ẋ. So the sparsity constraint implies that
each component of the output is determined by exactly KT components of the input.

Learning Algorithm. The learning algorithm should return a network S � (AS � BS),
referred to as the student, with AS � �N�N and BS � �N , that reproduces the training set
�tr: ẋm � AS � xm � BS for m : 1� � � � � M. More importantly however, the student should
also perform well on input that was not used by the algorithm, i.e., the algorithm should
be able to generalize beyond the training set �tr. To test the student’s generalization
ability, we use a validation set �v � �(xv� ẋv) � v : 1� � � � �V� such that ẋv � AT � xv � BT

for each v : 1� � � � �V . The generalization error �gen is defined as the ratio of the number
of tuples in �v that is not reproduced by the student to the total number of tuples. More
formally, it is the fraction of the patterns in �v for which �ẋv � AS � xv � BS ���ẋv� � �err,
where �err is the maximum deviation from zero that is considered insignificant. The
learning task can now be formulated as follows: the algorithm should produce a student
S given �tr such that �gen is minimal.

The algorithm we use is a reformulation of the problem in terms of linear program-
ming: the objective is to minimize �AS �1 subject to the M constraints ẋm � AS � xm�BS .

On Phase Transitions in Learning Sparse Networks 593

In the target function, �C�1 denotes the 1-norm of the matrix C, i.e., �C�1 �
�

i� j �Ci� j�.
This choice is motivated by the sparsity constraint on the networks to be identified.
If the student S reproduces the teacher T , it will be sparse, hence we prefer solutions
with as few non-zero components as possible. It is known from the literature [3,4] that
the 1-norm is an acceptable approximation for the 0-norm. Since the latter can only
be computed by explicit enumeration, it is unsuitable in practice due to the ensuing
combinatorial explosion. For more details about this technique, see [8] and [9].

The constraints can be written more explicitly as:

N�

i�1

AS
i� jxm� j � BS

i � ẋm�i� j : 1� � � � � N; m : 1� � � � � M� (1)

Hence each row of A and B is a solution to a set of M equations and can be deter-
mined independently, an observation to which we will return later on. For M 	 N,
infinitely many solutions can be found, from which linear programming will select the
most sparse. Trivially, for M � N � 1 the set of equations will have a unique solution:
the teacher T . This implies that one can expect a generalization error �gen
 1 for very
small training sets, i.e., M � N, while �gen
 0 for M
 N. We may conclude that �gen

will be a function of the training set size M. By convention, the number of patterns such
that �gen � 1�2 is denoted by Mgen, the generalization threshold.

Although the generalization error is a good measure to evaluate the student’s quality,
it will nevertheless be useful to consider a measure to compare the student’s structure
to that of the teacher. Since our setting is that of identifying interaction networks, the
presence or absence of such an interaction in the inferred model S is important. This
can be characterized by the following three quantities: (1) nfneg, the number of false
negatives, i.e., interactions that are modeled by T , but not by S ; (2) nfpos, the number
of false positives, i.e., interaction modeled by S , but not by T ; and (3) ncorr the number
of correlation errors, i.e., those components of S and T that are significantly non-zero,
but have opposite sign. These three quantities measure the quality of the identification
process. By definition, 0 	 nfneg 	 NKT , 0 	 nfpos 	 N(N � KT) and 0 	 ncorr 	 NKT .
Note that these error measures can all be zero, even if the student does not generalize
well, i.e., �gen � 0. Also notice that 0 	 nfneg � nfpos � ncorr 	 N2. Therefore, we
aggregate these three measures into the operator S � T � (N2 � nfneg � nfpos � ncorr)�N2

that measures the quality of the identification.

Relation to Feature Selection. From Eq. (1), it is clear that the problem of identify-
ing the interactions within a network modeled by the matrix AT can be decomposed
into identifying the N rows of that matrix. Since, apart from the sparsity constraint,
interactions in the teacher are completely random, these rows can be determined inde-
pendently. Hence we can reformulate the original problem in terms of N simpler ones:
given an input vector x � �

N , which of the N components of x will e�ectively con-
tribute to the output ẋ � �? This can be viewed as a feature selection problem, since the
sparsity of the teacher implies that only very few components will contribute. As for
network identification, we can define the generalization error for feature selection �fs

gen.
At this point, it is useful to note that the generalization error can be interpreted as the
probability that the student will not compute the correct output on a random input. The

594 G. Hollanders et al.

probability that N independent feature selection problems will all compute the correct
answer is thus given by (1��fs

gen)N , which allows us to compute the generalization error
for network identification �gen from that for feature selection �fs

gen as follows:

�gen � 1 � (1 � �fs
gen)N (2)

Noisy data. Until now, we have considered an ideal situation in the sense that the data
�tr used to identify the network was noise-free. Obviously, the quality of real world data
is typically far from ideal and an algorithm can only be used e�ectively in practice if it is
robust to noise. To model this situation, we will consider a training set with noise: �tr �

�(xm� ẋm � Æm) � m : 1� � � � � M� where Æm � �N . The Æm are identically and independently
distributed and randomly drawn from a normal distribution with zero mean and standard
deviation �noise. To quantify the quality of a student derived from a noisy training set,
we introduce the output deviation, defined as Æẋ �

�
x��v

�T (x) � S (x)���T (x)�.

3 Experiments

In this section, we will consecutively address the following research questions:

1. Is it possible to identify T with a training set that contains less than N � 1 input-
output pairs? If so, what is the value of the generalization error �gen as a function
of the training set size?

2. Does the generalization error �gen depend on the teacher’s sparsity?
3. What is the evolution of the student when compared with the teacher as a function

of the training set size?
4. Is the algorithm robust against noise?
5. How does the generalization error �gen scale with the system size N?

All experiments have been carried out using the algebra package Maple 9.5 on a
Pentium-M class processor of 1.73 GHz and 1 GB of RAM. The standard implementa-
tion of linear programming in Maple is used, which is very convenient since it allows
to specify the objective function and the constraints symbolically.

To facilitate the discussion, we first introduce some convenient notation. The ratio
of the training set size to the system size is denoted by � � M�N. In particular, �gen �

Mgen�N. The fraction of non-zero components per row of a system is denoted by 	 �

K�N. In particular, 	T � KT �N. The amplitude of the noise should be considered relative
to the amplitude of the signal, i.e., we define � � �noise��ẋ, where �ẋ is the standard
deviation of the output vectors’ components ẋm�i. The components of the teacher AT ,
BT and of the input xm are drawn from an uniform distribution over] � 1� 1[.

Generalization error. To determine the generalization error, we randomly generate a
set of M input vectors and a random teacher system so that we can compute the output
to obtain a training set �tr . The algorithm produces a student, for which we calculate
the generalization error. Since its value depends on the particular selection of input and
teacher, we independently repeat this procedure many times to compute the average.
Fig. 1 shows the observed generalization error as a function of the training set size �.

On Phase Transitions in Learning Sparse Networks 595

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The generalization error �gen as a
function of the training set size � for N �

100 (Æ), N � 160 (�) and N � 300 (�) for
�T � 0�03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. The generalization error for feature
selection �fs

gen as a function of the training
set size � for N � 100 (Æ), N � 160 (�) and
N � 300 (�) for �T � 0�03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The observed (�) versus the com-
puted (Æ) generalization error �gen as a func-
tion of � for N � 80, �T � 0�03. The curve
representing �fs

gen (�) is given as reference.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. The generalization threshold �gen as
a function of the sparsity �T for N � 80
(Æ) and a few values for N � 160 (�). The
generalization threshold for feature selec-
tion �fs

gen (�) is given as reference.

This result is surprising in two respects: (1) the generalization error decreases to zero
for a training set size �
 1 and (2) the transition towards generalization is quite abrupt.
It is also clear from Fig. 1 that the transition is increasingly abrupt for increasing system
size N. It is instructive to relate the generalization error �gen for network identification to
that for feature selection �fs

gen in Fig. 2. The latter figure illustrates that �fs
gen, the training

set size � for �fs
gen � 1�2, is independent of the system size N and that the �fs

gen converges
to a step-function for N �. Hence we observe a first order phase transition between
a regime for �
 �fs

gen where the student simply reproduces the training set, and another
regime for � � �fs

gen where he is able to reproduce the teacher’s output perfectly.
The relation between the generalization error for the network identification problem

�gen and that for feature selection �fs
gen, given by Eq. (2), is illustrated in Fig. 3. It is clear

that �gen for the network identification problem can reliably be estimated from �fs
gen for

596 G. Hollanders et al.

the feature selection problem. Values beyond �gen are less reliable since inaccuracies
for �fs

gen are amplified considerably due to the mathematical form of Eq. (2).

Sparsity. The next question concerns the relation between the sparsity of the teacher
and the generalization threshold. For a non-sparse teacher, i.e., 	T
 1, one would need
a training set of size �
 1 since each of the N(N � 1) components has to be deter-
mined. However, as Fig. 1 illustrated, the fact that the teacher is sparse simplifies the
identification process considerably. Fig. 4 shows the generalization threshold �gen for
network identification as a function of 	T . It is clear that training sets of increasing size
� are required to facilitate the transition to the generalization regime as 	T increases,
i.e., as the sparsity decreases. As expected, for 	T
 1, �gen
 1. It is clear that the
advantage sparsity o�ers to the eÆciency of the learning algorithm virtually vanishes
for 	T
 0�5. However, it is very pronounced for 	T
 0�2. As before, these results have
been obtained for many independent instances of the training set and teacher.

Learning process. To gain a better understanding of the learning process, i.e., the evo-
lution of the student with respect to the teacher as a function of the training set size
we first consider a fixed training set and teacher. Define a sequence of training sets
�m for m : 1� � � � � M such that �m � �m�1 and ��m�1� � ��m� � 1. These sets are used
to determine a sequence of students S m for m : 1� � � � � M. Fig. 5 shows S �N � T as a
function of the training set size �. For �N � 1, the number of false negatives is N2	T

and the number of false positives is 0. For increasing �, the number of false positives
increases approximately linearly with �, while the number of false negatives decreases
very slowly. The plot illustrates clearly that the transition to generalization is very sud-
den: at �gen, S �genN � T � 1. Fig. 6 and 7 confirm that the scenario sketched above is
indeed the typical behavior when it is averaged over many independent training sets
and teachers. The latter plot illustrates the explanation given above for the behavior of
S �N � T .

0 0.05 0.1 0.15 0.2 0.25
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Fig. 5. The learning process characterized
by S m � T as a function of the size of the
training set m�N for an individual run

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Fig. 6. The learning process characterized
by S m � T as a function of the size of the
training set m�N, system sizes N � 100 (Æ),
N � 160 (�) and N � 300 (�) for �T � 0�03

On Phase Transitions in Learning Sparse Networks 597

0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 7. Measures nfneg (�, N � 100 dotted
line, N � 160 solid line), nfpos (Æ, N � 100
dotted line, N � 160 solid line) and ncorr (�,
N � 100 dotted line, N � 160 solid line)
as a function of the training set size � for
�T � 0�03

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8. Fig. 2 using Eq. (3) for N � 100 (Æ),
N � 160 (�) computed, N � 160 observed
(�), �T � 0�03

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.5

1

1.5

2

2.5

Fig. 9. Deviation of the student and teacher
output Æẋ as a function of the noise level �
on the training set

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

5

10

15

20

25

30

Fig. 10. nfneg (�), nfpos (�) and ncorr (Æ) as a
function of the noise level � for N � 100,
�T � 0�03

Noisy data. Noise is ubiquitous in real world applications, hence it is mandatory to test
the algorithm’s robustness. Fig. 9 shows the relative deviation of the respective output of
student and teacher Æẋ as a function of the noise level �. As can be expected for a linear
system, the quality is acceptable for low noise levels only. In particular, �
 0�01 still
yields a reasonably accurate output. The breakdown for higher noise levels is explained
by Fig. 10 which shows a very large increase in the number of false positives nfpos for an
increasing noise level �. Although these components are very small, they nevertheless
preclude perfect identification of the network.

Scaling with system size. How the system scales with the system size has already been
illustrated in Fig. 1, 4, 6 and 7. However, it is Fig. 2 that provides the most insight. It
turns out that the generalization error curves for various system sizes can be computed

598 G. Hollanders et al.

by applying the correct scaling on the system size �. Suppose we have a curve for �fs
gen

versus � for N0, then the curve for system size N can be obtained by scaling

�(N) � �fs
gen �

�
N0�N (�(N0) � �fs

gen) (3)

The result is shown in Fig. 8 for system sizes N � 100 and N � 160 with sparsity
	T � 0�03. The curve computed for N � 160 from that for N � 100 is in very good
agreement with the one observed for that system size.

4 Discussion and Conclusions

It is quite remarkable that a simple model such as the one considered here exhibits
so many interesting features. With respect to the research questions addressed, we may
conclude that the algorithm identifies a network with N(N�1) interactions using a train-
ing set of considerably smaller size. This turns out to be a consequence of the teacher’s
sparsity. Moreover, a first order phase transition occurs during the learning process. The
system shows a sudden transition to perfect generalization during the learning process.
The latter can be explained by considering the geometric interpretation of linear pro-
gramming. Adding an additional constraint in the form of an input-output pair can lead
to abrupt changes of the minimal values that can be attained by the objective function
when its domain is further restricted. The relation between the feature selection problem
and the network identification task is of note, especially since the generalization behav-
ior of the latter can be derived from the former’s. Moreover, the scaling properties of
feature selection have been demonstrated: given the generalization curve for a certain
size and a fixed sparsity, one can compute the generalization curve for a system of any
size with that sparsity. Unfortunately, the algorithm’s robustness to noise is fairly lim-
ited. This is to be expected given the nature of linear programming as mentioned above.
This is definitely an area for future research.

References

1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review.
Comp. Biol. 9, 67–103 (2002)

2. Jong, H.d., et al.: Qualitative simulation of genetic regulatory networks using piecewise-
linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)

3. Fuchs, J.: More on sparse representations in arbitrary bases. In: Proc. 13th IFAC Symp. on
System Identification, pp. 1357–1362 (2003)

4. Fuchs, J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Infor. The-
ory 50(6), 1341–1344 (2004)

5. Glass, L., Kau�man, S.: The logical analysis of continuous non-linear biochemical control
networks. J. Theor. Biol. 39(1), 103–129 (1973)

6. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
7. Novak, B., Tyson, J.: Modeling the control of dna replication in fission yeast. PNAS 94,

9147–9152 (1997)
8. Peeters, R.L.M., Westra, R.L.: On the identification of sparse gene regulatory networks. In:

Proc. of the 16th Intern. Symp. on Math. Theory of Networks and Systems (2004)

On Phase Transitions in Learning Sparse Networks 599

9. Westra, R.L.: Piecewise linear dynamic modeling and identification of gene-protein interac-
tion networks. In: Nisis�JCB Workshop Reverse Engineering (2005)

10. Westra, R.L., Hollanders, G., Bex, G., Gyssens, M., Tuyls, K.: The identification of dynamic
gene-protein networks. In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds.) KDECB 2006.
LNCS (LNBI), vol. 4366, pp. 157–170. Springer, Heidelberg (2007)

11. Yeung, M.K.S., Tegnér, J., Collins, J.: Reverse engineering gene networks using singular
value decomposition and robust regression. PNAS 99(9), 6163–6168 (2002)

Semi-supervised Collaborative Text

Classification

Rong Jin1, Ming Wu, and Rahul Sukthankar2

1 Michigan State University, East Lansing MI 48823, USA
rongjin@cse.msu.edu

2 Intel Research Pittsburgh and Carnegie Mellon University, USA
rahuls@cs.cmu.edu

Abstract. Most text categorization methods require text content of
documents that is often difficult to obtain. We consider “Collabora-
tive Text Categorization”, where each document is represented by the
feedback from a large number of users. Our study focuses on the semi-
supervised case in which one key challenge is that a significant number
of users have not rated any labeled document. To address this problem,
we examine several semi-supervised learning methods and our empirical
study shows that collaborative text categorization is more effective than
content-based text categorization and the manifold regularization is more
effective than other state-of-the-art semi-supervised learning methods.

1 Introduction

Most studies of text categorization are based on the textual contents of docu-
ments. The most common approach for text categorization is to first represent
each document by a vector of term frequency, often called the bag-of-words rep-
resentation, and then to apply classification algorithms based on term frequency
vectors. The classification accuracy often heavily depends on the quality of tex-
tual contents of documents.

This paper focuses on the case where the textual contents of documents are
either inaccurate or difficult to acquire, which makes it difficult to apply the
standard text categorization methods. To this end, we propose Collaborative
Text Categorization (as opposed to content-based text categorization) which
classifies documents using the users’ feedback such as ratings and click-through
data. The underlying assumption is that two documents are likely to be in one
category if they share similar feedback from a large number of users.

A straightforward approach toward collaborative text categorization is to rep-
resent each document by a vector of users’ feedback. The problem arises when
the number of labeled documents is small, which we refer to as “semi-supervised
collaborative text categorization”. Given a small number of labeled documents,
the feedback from users who gave no feedback for any of the labeled documents
will not be incorporated into the classification model. We refer to this problem
as the “missing user” problem. This paper focuses on how to address the missing
user problem in semi-supervised collaborative text categorization by exploiting

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 600–607, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Semi-supervised Collaborative Text Classification 601

the unlabeled documents. We will examine four semi-supervised approaches in-
cluding label propagation, user clustering, the kernel approach, and manifold
regularization.

The remainder of this paper is organized as follows: Section 2 briefly reviews
the previous work on text categorization as well as the studies on exploiting
collaborative feedback for information retrieval; Section 3 describes the problem
of collaborative text categorization and the four semi-supervised approaches for
the missing user problem; Section 4 presents our empirical study with movie
classification; Section 5 concludes this paper with the future work.

2 Related Work

This work is closely related to previous studies on exploiting user feedback in-
formation for information retrieval [5, 8, 11]. Unlike the previous studies in in-
formation retrieval, this study utilizes the user feedback information for text
categorization. Our work also differs from the previous studies on adaptive in-
formation filtering (e.g., [10]) in that the adaptive information filtering employs
the feedback as a class label while our work uses feedback as part of the document
representation.

Our work is related to the previous research on text categorization, including
decision trees [2], logistic regression [12], and support vector machines (SVM)
reported as the best [7]. A number of studies have also been devoted to using
semi-supervised learning techniques for text categorization, including transduc-
tive support vector machine [9], graph-based approaches [13, 1] and Bayesian
classifiers [4]. Our work differs from earlier research in that it uses the users’
feedback, rather than the textual content, for classification and it focuses on
exploiting the unlabeled documents to alleviate the missing user problem.

3 Semi-supervised Collaborative Text Categorization

We describe the semi-supervised collaborative text categorization problem, and
then present four semi-supervised learning approaches that can potentially allevi-
ate the missing user problem in semi-supervised collaborative text categorization.

3.1 Problem Description

Let D = (d1,d2, . . . ,dn) denote the document collection; the first nl docu-
ments are labeled, ȳl = (ȳ1, ȳ2, . . . , ȳnl

), where each ȳi ∈ {−1,+1}. Let U =
(u1, u2, . . . , um) denote the m users who provided feedback on D. Let F ∈ Rm×n

be the user feedback matrix. Fi,j indicates the feedback of the user ui for the
document dj . It can be a binary number, i.e., either +1 or −1, for binary rel-
evance judgments, or a categorical number, such as 1, 2, 3, . . ., for user rating

602 R. Jin, M. Wu, and R. Sukthankar

information. Fi,j = 0 if no feedback is provided by ui for dj . The goal of collab-
orative text categorization is to exploit the feedback information encoded in F
to classify the documents in the document collection D.

A straightforward approach is to first represent each document di by its user
feedback di = (F1,i, F2,i, . . . , Fn,i) and then apply standard supervised learning
methods using the feedback information. The underlying assumption is that two
documents are likely to share the same category if their user feedbacks are sim-
ilar, which we refer to as the “user feedback assumption”. We examine this
assumption using the movie rating data in Sect. 4. The important challenge in
collaborative text categorization is the “missing user” problem. For users who
have not provided feedback for any labeled document, their feedback informa-
tion cannot be exploited in standard supervised learning and therefore will be
completely wasted. We refer to the users who provide no feedback for any labeled
documents as the missing users.

3.2 Semi-supervised Learning Approaches

We discuss four semi-supervised approaches for collaborative text categorization.

Label Propagation. One difficulty from the missing user problem is that the
feedback of the missing users cannot be used to assess the similarity between
the labeled and unlabeled documents. To alleviate this problem, we can employ
the label propagation approach. The key idea behind label propagation is to
propagate the class labels of documents to neighbors that share similar feedback
ratings from a large number of users. Thus, given two documents di and dj

sharing no common users, we may still be able to infer the category of dj from
di if there is a sequence of documents di, dp1 , dp2 , . . . , dpl

, dj such that every
two consecutive documents in the sequence share large similarity. A potential
problem with label propagation is that there may be a sequence of consecutively-
similar documents for two documents with completely opposite user feedback.
This issue becomes more serious when the similarity information is sparse, as is
often the case in collaborative text categorization.

User Clustering. The second approach toward the missing user problem is to
reduce the number of distinct users. We can cluster a large number of users into
a relatively small number of user clusters and then represent each document
by the aggregated feedback from each user cluster. In this study, we choose the
probabilistic spectral clustering algorithm [6] because of its effectiveness and
soft cluster membership assignments that is better for capturing the feedback
of users with mixed interests. One difficulty in the user clustering approach is
how to determine the number of clusters. A small number of user clusters may
not capture the diversity of user interests while a large number of user clusters
may not alleviate the missing user problem sufficiently. Cross validation may
be employed, but it is unlikely that cross validation will reliably identify the
optimal number with the small number of labeled documents.

Semi-supervised Collaborative Text Classification 603

The Kernel Method. The key idea of the kernel method is to improve the esti-
mation of document similarity by exploiting the user similarity. Two documents
di and dj that share no common users may have zero similarity computed as
Sd

i,j = d	
i dj . Based on the intuition that di and dj are similar if the two sets of

users who provided feedback for di and dj have similar feedback, we can improve
document similarity by a kernel similarity measure as S̃d

i,j = d	
i Sudj with the

user similarity matrix Su. We refer to S̃d
i,j as the “transformed document simi-

larity” as opposed to standard Sd. Such a kernel can then be incorporated into a
support vector machine for document classification. A potential problem with the
proposed kernel is the overestimated document similarities. This problem could
be partially addressed by the user clustering approach, which unfortunately has
its own significant weaknesses as described above.

Manifold Regularization. In a linear classifier, the most important parameters
are the weights w = (w1, w2, . . . , wm) assigned to the m users. Given the limited
number of labeled documents, a typical algorithm for maximum margin classifi-
cation (e.g., SVM) would assign zero weights to these missing users and lead to
a classifier that ignores the feedback from these missing users. Given the labeled
documents d1,d2, . . . ,dnl

, a standard support vector machine is formulated as:

min
w,ε

1
2

m∑

k=1

w2
k + C

nl∑

i=1

εi

s. t. yi(w	di − b) ≥ 1− εi, εi ≥ 0, i = 1, 2, . . . , nl .

Clearly, zero weights are assigned to the missing users because the conventional
regularizer, l(w) =

∑m
k=1 w2

k, encourages wk to be set to zero whenever possible.
Based on manifold regularization [3], our approach alleviates the missing user

problem by replacing l(w) with lm(w) =
∑m

i,j=1 Su
i,j(wi−wj)2 = w	Luw where

the graph Laplacian Lu = Du − Su and the diagonal matrix Du has Du
i,i =∑n

j=1 Su
i,j . The regularizer lm(w) measures the inconsistency between w and

Su. By minimizing lm(w), we enforce similar weights for those users sharing a
large similarity in their interests. Hence, the missing users can still be assigned
significant weights if they share large similarity with the users who did provide
feedback for the labeled documents. lm(w) leads to the following problem:

min
w,ε

1
2
w	Luw + C

nl∑

i=1

εi

s. t. yi(w	di − b) ≥ 1− εi, εi ≥ 0, i = 1, 2, . . . , nl . (1)

It is not difficult to compute the dual form of the above problem, i.e.,

max
α

nl∑

i=1

αi −
1
2
α	X	[Lu]−1Xα

s. t.
nl∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . , nl . (2)

604 R. Jin, M. Wu, and R. Sukthankar

where X = (d1,d2, . . . ,dn) represents the document collection. We make the
transformation di ← [Lu]−1/2di (i = 1, 2, . . . , nl) which turns the dual formulism
in (2) into the dual form of the standard SVM. We add a small identity matrix
δInl×nl

(δ ' 1) to Lu to avoid a singularity graph Laplacian.

4 Experiments

We evaluate four methods for semi-supervised collaborative text categorization
and address two questions: (1) How effective is collaborative text categorization
in comparison to content-based approaches? (2) How effective are the various
proposed algorithms in the study?

We employ the MovieRating dataset1 which consists of 1682 movies in 19
categories rated by 943 users with the integer ratings ranging from 1 (worst) to
5 (best) or 0 for unavailable ratings. We select the four most popular categories:
“Action”, “Comedy”, “Drama”, and “Thriller”. The resulting dataset has 1422
movies each represented by a vector of ratings from 943 users. We also download
the movie keywords from the online movie database2 resulting in 10116 unique
words for 1422 movies. We use the linear SVM as the baseline implemented in
SVM-light3. For every category, we compute the F1 metric by averaging F1
scores over 40 independent trials. We compute both the movie similarity matrix
Sd and the user similarity matrix Su by the linear kernel similarity.

4.1 Effectiveness of Collaborative Text Categorization

The number of unique movie keywords is significantly greater than the number
of users who rated the movies. This raises the concern that the user feedback
representation may be less rich than the keyword representation and thus col-
laborative text categorization may not be as effective as content-based text cat-
egorization. We summarize in Table 1 the F1 results for both collaborative text
categorization and content-based text categorization. In all cases, collaborative
text categorization is considerably more effective.

We then verify the “user feedback assumption”, which is that two documents
tend to be in the same category if they have similar user ratings. Figure 1 shows
the distribution of the probability for two movies to share the same category
w.r.t the pairwise movie similarity based on user ratings. The high end of the
distribution appears to be spiky because few document pairs are able to achieve
a similarity score greater than 0.6. The overall trend proves that our assumption
is reasonable for document categorization.

4.2 Semi-supervised Collaborative Text Categorization

To study the effectiveness of semi-supervised collaborative approaches, we ran-
domly select 10, 20, 30, and 40 movies for training. To avoid a skewed number
1 http://www.cs.usyd.edu.au/∼irena/movie data.zip
2 http://us.imdb.com/
3 http://svmlight.joachims.org/

http://www.cs.usyd.edu.au/~irena/movie_data.zip
http://us.imdb.com/
http://svmlight.joachims.org/

Semi-supervised Collaborative Text Classification 605

Table 1. F1 scores of collaborative and
content-based categorization

Training examples

Cat. Classif. 20 40 80 100

Act.
collab. 0.291 0.337 0.353 0.344
content 0.170 0.229 0.346 0.343

Com.
collab. 0.349 0.399 0.436 0.459
content 0.321 0.345 0.363 0.374

Dra.
collab. 0.509 0.603 0.645 0.665
content 0.398 0.416 0.546 0.575

Thri.
collab. 0.159 0.184 0.209 0.207
content 0.118 0.131 0.153 0.165

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pairwise movie similarity

P
ro

ba
bi

lit
y

fo
r

tw
o

m
ov

ie
s

to
 b

e
in

 o
ne

 c
at

eg
or

y

Distribution of the Probability for Two
Movies to Belong to One Category

Fig. 1. Distribution of the probability that
two movies are in one category

Table 2. The fraction of “missing
users” in four categories

Training examples

Category 10 20 30 40

Action 60.8% 42.2% 34.2% 20.4%

Comedy 57.4% 41.1% 33.2% 23.0%

Drama 57.0% 44.9% 34.9% 22.5%

Thriller 61.4% 41.3% 31.3% 21.1%

Table 3. F1 scores of user clustering with
10 training examples

Clu. Action Comedy Drama Thriller

5 0.140 0.329 0.431 0.120
10 0.117 0.308 0.396 0.121
30 0.113 0.311 0.427 0.120
50 0.119 0.290 0.436 0.112
100 0.121 0.319 0.427 0.118

of positively-labeled examples, we set the number of positively-labeled examples
to be same as the number of negatively-labeled examples. We first examine the
missing user problem. Table 2 shows the percentage of users who did not rate
any of the labeled movies (i.e., the fraction of missing users). Clearly the missing
user problem can be significant when the number of labeled examples is small.

We then examine the classification accuracy of the four discussed methods.
Tables 4(a) to 4(d) summarize the F1 results of the four methods and linear
SVM for the chosen categories. Our implementation of label propagation is based
on [13]. We set the number of user clusters to be 5 for the user clustering ap-
proach. From the results in Tables 4(a) to 4(d), we first observe that among
the four approaches, the manifold regularization approach is the only one that
consistently improves the performance of the linear SVM. For a number of cases,
manifold regularization yields considerable improvements.

The second observation drawn from Tables 4(a) to 4(d) is that the other
three methods: user clustering, the kernel method, and label propagation, all
perform significantly worse than the linear SVM for all categories but Comedy.
The failure of label propagation may be attributed to a sparse similarity matrix
in which more than 2/3 of the pairwise similarity is less than 0.1 and only
0.5% percentage of the pairwise similarity is significantly large (i.e., > 0.5).
Such a sparse similarity matrix is unlikely to reveal any clustering structure of
movies. One major problem with the user clustering method is the difficulty in
determining the appropriate number of clusters. Table 3 shows the F1 scores of

606 R. Jin, M. Wu, and R. Sukthankar

Table 4. F1 measure of the four semi-supervised learning methods for chosen
categories

(a) Action Category

Training examples

Classifier 10 20 30 40

SVM 0.219 0.291 0.308 0.344

Manifold Reg. 0.264 0.341 0.375 0.381

User Cluster. 0.140 0.140 0.140 0.140

Kernel 0.146 0.178 0.204 0.207

Label Prop. 0.155 0.147 0.142 0.135

(b) Comedy category

Training examples

Classifier 10 20 30 40

SVM 0.308 0.349 0.394 0.400

Manifold Reg. 0.338 0.370 0.421 0.423

User Cluster. 0.329 0.339 0.343 0.350

Kernel 0.322 0.351 0.355 0.386

Label Prop. 0.300 0.296 0.296 0.295

(c) Drama Category

Training examples

Classifier 10 20 30 40

SVM 0.507 0.509 0.562 0.603

Manifold Reg. 0.519 0.568 0.589 0.643

User Cluster. 0.431 0.484 0.493 0.534

Kernel 0.354 0.496 0.530 0.537

Label Prop. 0.353 0.353 0.360 0.353

(d) Thriller Category

Training examples

Classifier 10 20 30 40

SVM 0.144 0.159 0.171 0.184

Manifold Reg. 0.161 0.169 0.196 0.201

User Cluster. 0.120 0.121 0.122 0.127

Kernel 0.124 0.125 0.125 0.126

Label Prop. 0.136 0.129 0.125 0.129

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Top 50 ranks

E
ig

en
va

lu
es

Spectrum for the Transformed Similarity Matrix
and the Original similarity matrix

Original
Transformed

Fig. 2. Spectrum of the original and
transformed movie similarity matrix

0 200 400 600 800 1000
−0.10

−0.06

−0.02

0.02

0.06

Index of Users (40 training examples)

U
se

r
W

ei
gh

t

Compasison of Weigh Vectors for SVM
and Manifold Regularization Methold

SVM
Manifold Regularization

Fig. 3. User weights by linear SVM and
manifold regularization

user clustering with different cluster numbers. Regardless of cluster numbers, the
algorithm is unable to consistently outperform the linear SVM model. The failure
of the kernel method may be explained by the overestimated movie similarity
which can lead to the skewed spectrum of the similarity matrix. Figure 2 shows
the top 100 eigenvalues of the transformed similarity matrix and the original
similarity matrix. Clearly the spectrum of the original similarity matrix is much
flatter than the transformed one. This is consistent with our hypothesis.

Finally, we examine the missing user problem. Figure 3 shows the weights of
943 users computed by the linear SVM and the manifold regularization method.
The horizontal axis (i.e., the user index) is sorted in the ascending order of
their weights that are computed by the linear SVM. Evidently most users are
assigned zero weights by the linear SVM because of the missing user problem

Semi-supervised Collaborative Text Classification 607

while most users are assigned non-zeros weights by the manifold regularization
method which is more effective in alleviating the missing user problem.

5 Conclusions

In this paper, we study the problem of collaborative text categorization by using
user feedback as the basis for classifying documents. Our experiments validate
the basic assumption behind collaborative text categorization. Moreover, this
work evaluated four algorithms for semi-supervised collaborative text catego-
rization and our empirical finding is that manifold regularization is the most
effective among the four competitors and is a considerable improvement over
traditional content-based categorization.

References

1. Angelova, R., Weikum, G.: Graph-based text classification: learn from your neigh-
bors. In: Proceedings of SIGIR (2006)

2. Apte, C., Damerau, F., Weiss, S.: Automated Learning of Decision Rulesfor Text
Categorization. ACM Transactions on Information Systems 12(3) (1994)

3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: a Geometric Frame-
work for Learning from Examples. Technical Report (2004)

4. Dayanik, A., Lewis, D., Madigan, D., Menkov, V., Genkin, A.: Constructing in-
formative prior distributions from domain knowledge in text classification. In: SI-
GIR’06 (2006)

5. Hoi, C.H., Lyu, M.R.: A novel log-based relevance feedback technique in content-
based image retrieval. In: Proceedings of ACM Multimedia, ACM Press, New York
(2004)

6. Jin, R., Ding, C., Kang, F.: A Probabilistic Approach for Optimizing Spectral
Clustering. In: Advances in NIPS, vol. 18 (2006)

7. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Proceedings European Conference on Machine Learning
(1998)

8. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD, ACM Press, New York (2002)

9. Joachims, T.: Transductive Inference for Text Classification using Support Vector
Machines. In: Proceedings of ICML (1999)

10. Robertson, S., Callan, J.: Routing and filtering. In: TREC: Experiment and Eval-
uation In Information Retrieval, MIT Press, Cambridge (2006)

11. Xue, G., Zeng, H., Chen, Z., Ma, W., Zhang, H., Lu, C.: Implicit link analysis for
small web search. In: Proceedings of SIGIR (2003)

12. Zhang, J., Jin, R., Yang, Y., Hauptmann, A.: Modified Logistic Regression: An
Approximation to SVM and its Applications in Large-Scale Text Categorization.
In: Proceedings of ICML (2003)

13. Zhu, X., Gharahmani, Z., Lafferty, J.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: Proceedings of ICML (2003)

Learning from Relevant Tasks Only

Samuel Kaski and Jaakko Peltonen�

Laboratory of Computer and Information Science, Helsinki University of Technology,
P.O. Box 5400, FI-02015 TKK, Finland

{samuel.kaski,jaakko.peltonen}@tkk.fi

Abstract. We introduce a problem called relevant subtask learning, a
variant of multi-task learning. The goal is to build a classifier for a task-
of-interest having too little data. We also have data for other tasks but
only some are relevant, meaning they contain samples classified in the
same way as in the task-of-interest. The problem is how to utilize this
“background data” to improve the classifier in the task-of-interest. We
show how to solve the problem for logistic regression classifiers, and show
that the solution works better than a comparable multi-task learning
model. The key is to assume that data of all tasks are mixtures of relevant
and irrelevant samples, and model the irrelevant part with a sufficiently
flexible model such that it does not distort the model of relevant data.

Keywords: multi-task learning, relevant subtask learning.

1 Introduction

All too often in classification tasks there is too little training data to estimate
sufficiently powerful models. This problem is ubiquitous in bioinformatics; it
appears also in image classification from few examples, finding of relevant texts,
etc. Possible solutions are to restrict the classifier complexity by prior knowledge,
or to gather more data. However, prior knowledge may be insufficient or may
not exist, measuring new data may be too expensive, and there may not exist
more samples of representative data. Most classifiers assume that learning data
are representative, that is, they come from the same distribution as test data.

Often, partially representative data is available; e.g., in bioinformatics there
are databases full of data measured for different tasks, conditions or contexts; for
texts there is the web. They can be seen as training data from a (partly) different
distribution as the test data. Assuming we have several sets, each potentially
having some portion of relevant data, our research problem is, can we use the
partially relevant data sets to build a better classifier for the test data?

This is a special type of multi-task learning problem. In multi-task learning [1],
where learning a classifier for one data set is called a task, models have mainly
been symmetrical, and transfer to new tasks is done by using the posterior from
other tasks as a prior (e.g. [2,3]). By contrast, our problem is fundamentally
asymmetric and more structured: test data fits one task, the “task-of-interest,”
and other tasks may contain subtasks relevant for the task-of-interest, but no
� The authors contributed equally to the work.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 608–615, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning from Relevant Tasks Only 609

other task needs to be wholly relevant. Our models are better suited in the task-
of-interest yet have the same order of complexity as earlier multi-task models.

Previous work. The problem is partly related to several other learning problems:
transfer learning, multi-task learning, and semisupervised learning.

A common multi-task learning approach is to build a hierarchical (Bayesian)
model of all tasks, with constrained priors favoring similar parameters across
tasks. Tasks may be learned together [4,5,6] or a new task can use a prior
learned from previous tasks [2,3]. Both approaches model all tasks symmetri-
cally. Support vector machines (SVMs) have been used in symmetric hierarchi-
cal modeling as well (e.g. [7]). We study an asymmetric situation with a specific
task-of-interest for which only some tasks, or parts thereof, are relevant.

In some multi-task solutions all tasks are not relevant for all others. In [8] tasks
are assumed to come in clusters, and tasks in the same cluster are generated with
the same parameters. Tasks are also clustered or gated in [9], and based on SVMs
in [7]. In all these approaches all tasks are equally important with respect to the
clustering so there is no specific task-of-interest.

In some interesting partly heuristic approaches a single task-of-interest is as-
sumed. In [10] a global parameter controls the weight of auxiliary samples in
nonparametric classification, or background data are used as support vectors or
constraints in SVMs. In [11] extra variables are used to artificially improve the
log-likelihood of undesirable samples of auxiliary data, and a constraint on the
use of the extra variables forces the model to seek useful auxiliary samples.

2 Relevant Subtask Learning

Consider a set of classification tasks indexed by S = 1, ...,M . Each task S has
a training data set DS = {xi, ci}NS

i=1 where xi ∈ Rd are d-dimensional input
features, ci are class labels, and NS is the number of samples for that task. For
simplicity, in this paper we assume all tasks are two-class classification tasks (ci

is +1 or -1) with the same d, but the process that generates the classes is different
in each task. One task, with index U , is the task-of-interest. The other tasks are
supplementary tasks; in each, some portion (0-100%) of the samples are assumed
to come from the same distribution as the task-of-interest. The rest come from
another distribution, potentially different for each supplementary task.

We wish to learn to predict classes well for data coming from the task-of-
interest. We are not interested in the other tasks except as a source of in-
formation for the task-of-interest. There are no paired samples between tasks;
the only connections between tasks are possible similarities in their underlying
distributions.

The relevant subtask learning problem is to build a classifier, more specifically
a model for the class density p(c|x, U) in task U , because test data is known to
come from this distribution. In addition to data DU = {(ci,xi)}NU

i=1 of task U ,
data DS from other tasks S are available. The assumption is that some samples
of each DS may come from the distribution p(c|x, U) but the rest do not.

610 S. Kaski and J. Peltonen

As usual, the analyst chooses a model family for the task-of-interest, by prior
knowledge, or resorting to a nonparametric or semiparametric model. Particular
models are denoted by p(c|x, U ;wU), where the parameter values wU identify
the model. The interesting question is how to model the relationships between
the task-of-interest and the other tasks, which we discuss next.

For each supplementary task S we assume part of the samples come from the
same distribution p(c|x, U ;wU), part from a different one. Only the former are
relevant for modeling the task-of-interest. The analyst must specify a model for
the non-relevant samples as well; typically a nonparametric or semiparametric
model would be used to avoid collecting prior infomation about all tasks. Denote
the model for the non-relevant samples of subtask S by pnonrelevant(c|x, S;wS).
Since task S is a mix of relevant and nonrelevant data, its model should be

p(c|x, S; θ) = (1− πS)p(c|x, U ;wU) + πSpnonrelevant(c|x, S;wS) , (1)

where πS ∈ [0, 1] is a parameter modeling the mixture proportion of irrelevant
samples in task S and θ denotes all parameters of all tasks. Note that this model
reduces to p(c|x, U ;wU) for the task-of-interest (where πS = 0).

The solution is to use (1) to model the data. The idea behind the functional form
is that a flexible enough model for pnonrelevant “explains away” irrelevant data in
the auxiliary subtasks, and hence p(c|x, U ;wU) learns only on the relevant data.
By forcing one of the subtasks to use the same parameters in all tasks, we force
the model to find from the other tasks the common part that is useful for the task
of interest. The tradeoff is that to improve performance on the task-of-interest,
we spend much computational time to model data of the supplementary tasks
too. This is sensible when the bottleneck is the amount of data in the task-of-
interest. We call this method Relevant Subtask Model (RSM).

We introduce our solution with a simple parametric model; it can easily be
generalized to more general parametric or semiparametric models. We model the
task-of-interest U with logistic regression, p(c|x, U ; θ) = (1 + exp(−cwT

Ux))−1.
We include the bias in the weights wU , yielding standard logistic regression when
one element in the inputs x is constant.

We model the non-relevant data in the other tasks with logistic regression
models as well. Each supplementary task S has a different regression model,
having its own parameters: pnonrelevant(c|x, S; θ) = (1 + exp(−cwT

Sx))−1, where
wS is the weight vector. Hence the supplementary tasks are each generated from
a mixture of two logistic regression models (with mixture weight πS):

p(c|x, S; θ) = (1 − πS)/(1 + exp(−cwT
Ux)) + πS/(1 + exp(−cwT

Sx)) . (2)

In this first paper we use simple optimization and spend effort in designing
controlled experiments. More advanced methods will be added in later papers.

Since the task is to model the distribution of classes given data, the objective
function is the conditional log-likelihood LRSM =

∑
S

∑
i∈DS

log p(ci|xi, S; θ)
where S goes over all tasks including the task-of-interest, and p(ci|xi, S; θ) is
given in (2). To optimize RSM, we use standard conjugate gradient to maximize

Learning from Relevant Tasks Only 611

LRSM with respect to the parameters (wU , the wS , and the πS). The computa-
tional cost per iteration is linear with respect to both dimensionality and number
of samples.

3 Comparison Methods

As a proof-of-concept we compare RSM to three standard approaches, which as-
sume progressively stronger relationships between tasks, using simple but com-
parable models, all optimized by maximizing the (conditional) likelihood with a
conjugate gradient. More advanced versions will be compared in later work.

One of the most promising multi-task strategies is to assume tasks come from
task clusters, and parameters of tasks are shared within each cluster [8]. We
implement a simplified maximum likelihood-based clustering comparable to the
other methods. Generality is not reduced: all approaches can in principle be
given a state-of-the-art full-Bayesian treatment.

Assume there is a fixed number K of task clusters. To keep complexity com-
parable to RSM, each cluster k is a mixture of two logistic regression models1:
p(c|x, k; θ) = πk/(1 + exp(−cwT

k,1x)) + (1− πk)/(1 + exp(−cwT
k,2x)) where the

weight vectors wk,1 and wk,2 and the mixing weight πk are the parameters of
cluster k. Each task is fully generated by one cluster but it is unknown which.
The class probability of task S is pS(θ) =

∑K
k=1 γk|S

∏
i∈DS

p(ci|xi, k; θ) where
the parameter γk|S models the probability that task S comes from cluster k.

The parameters are optimized by maximizing the conditional class likelihood
LTCM =

∑
S log pS(θ). We call this model “Task Clustering Model” (TCM). It

is meant to be a maximum likelihood version of [8], but having a more complex
model per cluster (mixture of two instead of one logistic regression model).

We try two naive models. “Single-task learning” uses data of the given task,
but does not exploit other tasks. This may work well if there is a lot of data,
otherwise it will overfit. It is also good if the other tasks are known to be very
different. We simply used a single logistic regression model for single-task learn-
ing. The “extreme” multi-task strategy, here called “all together”, is: learn as
if all data from all tasks came from the task-of-interest. This may work well
if tasks are very similar, otherwise the mixture will hide the features of the
task-of-interest. This strategy is essentially TCM with a single cluster.

4 Experiments

We have three experimental settings. In the first two we study how RSM and
TCM tolerate deviations from their assumptions. We then study news classifica-
tion according to the interest of one user, when classifications from other users
are available. A note on terminology: A multi-task problem has several tasks,
each with its own data. The multi-task problem comes from a domain specifying
the data distribution in each task, and the relationships of the tasks.
1 We have checked that RSM outperforms a regular one-submodel clustering.

612 S. Kaski and J. Peltonen

Experiment 1: When Task Clustering Fails. Here we created a continuum of
multi-task domains where the relationship between the task-of-interest and the
other tasks changes. The continuum was set up so the tasks always follow the
assumptions of RSM but the assumption of underlying task clusters in TCM
starts to fail. The setting is explained in a schematic diagram in Fig. 1 (left).
We created 10 domains and generated 40 learning problems from each. Each
problem had 10 tasks; the task-of-interest had less samples than others. Inputs
xi were Gaussian and labels ci were from a task-dependent mixture of two logistic
regression models, with weight vectors chosen differently in each domain, so the
domains form a continuum progressively worse for TCM. We lastly added some
Gaussian noise to the xi.2

Fig. 1 (right) shows average results for all domains. RSM maintains high per-
formance, close to the upper limit.3 TCM worsens as tasks become less clustered,
as expected. The number of clusters in TCM was set to the correct value used
when generating the data, to give some advantage to TCM. The naive methods
perform poorly. “All together” places all data together which introduces noise as
well as useful information. For single-task learning, poor performance and large
variance are due to overfitting to the small “proper” training data.

task−of−
interest

other
tasks

intermediate
domainscommon subtask common subtask

individual tasks,task clusters, 1 2 3 4 5 6 7 8 9 10
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

domain

av
er

ag
e

cl
as

s
lo

g−
lik

el
ih

oo
d

(o
n

te
st

 d
at

a)

appr. bound
RSM
TCM
single−task
all together

Fig. 1. Comparing methods on domains progressively less suited for TCM. Left:
conceptual illustration; columns are domains and rows are tasks within a domain.
Tasks (data sets) are generated from a mixture of two logistic regression models (weight
vectors shown as lines). One subtask (line with closed ball) corresponds to the task-of-
interest and appears in all tasks. The other subtask (line with open ball) is common to
task clusters in the leftmost domain; in the rightmost domain it differs for each task.
Right: Results, averaged over 40 problems for each domain. RSM performs well; TCM
worsens progressively. The difference at right is significant (Wilcoxon signed rank test).

Experiment 2: When Relevant Subtask Modeling Fails. Above we showed that
when the assumptions of RSM hold better it outperforms TCM. Now we show
what happens when the assumptions of RSM go wrong. The setting is similar
2 More details about all experiments can be found in [12].
3 The bound was computed by using the parameters with which the data was gener-

ated. It is approximate because noise has been added to the inputs.

Learning from Relevant Tasks Only 613

to experiment 1 and is explained in Fig. 2 (left). Domains were set up so that
assumptions of TCM hold but those of RSM become progressively worse: neither
of the two logistic regression models needs to be common to all tasks.

The results are shown in Fig. 2 (middle). TCM has high performance for all
domains, as expected because the tasks always come from task clusters. RSM
starts equally good but worsens as its assumptions begin to fail; however, it
remains better than the naive methods which behave as in the first experiment.

So far the task-of-interest had less data than the others, meaning that RSM
tries to retrieve relevant tasks with little information for the “query.” When the
task-of-interest has a comparable amount of data4 RSM performs well for all
domains (Fig. 2 (right)). It locates relevant tasks (ones from the same task cluster
as the task-of-interest). RSM does not overfit to the other tasks; it models them
mostly with the task-specific model. This demonstrates successful “information
retrieval” of relevant tasks.

intermediate
domainscommon subtask

task clusters,
common subtask
task clusters, no

tasks
other

task−of−
interest

2 4 6 8 10
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

domain

av
er

ag
e

cl
as

s
lo

g−
lik

el
ih

oo
d

(o
n

te
st

 d
at

a)

appr. bound
RSM
TCM
single−task
all together

2 4 6 8 10

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

domain

av
er

ag
e

cl
as

s
lo

g−
lik

el
ih

oo
d

(o
n

te
st

 d
at

a)

appr. bound
RSM
TCM
single−task
all together

Fig. 2. Comparison of methods on domains progressively less suited for RSM. Left:
conceptual illustration. Tasks are always clustered; tasks in a cluster are generated with
the same model. In the leftmost domain, one subtask (equaling the task-of-interest)
is the same in all clusters. In the rightmost domain, clusters are completely different.
All domains can be learned by TCM; RSM fits the leftmost domain well but not the
rightmost one. Middle: Results for a continuum of 10 domains (10 tasks in each; results
are averages over 40 replicates); only little data in the task-of-interest. Right: Results
when the amount of data in the task-of-interest is comparable to the other tasks.

Experiment 3: Predicting Document Relevance. Here we have real news from
the Reuters-21578 collection but simulated users to control the problem domain.
Each “user” classifies articles as interesting or not. The goal is to learn to pre-
dict interestingness for a “user-of-interest,” who labels news interesting if they
belong to the category “acq.” The other users are interested in “acq” part of the
time, but otherwise they are interested in another category specific to each user.
The problem can be seen as combining collaborative filtering and content-based
prediction. Earlier work includes e.g. [13] (partly heuristic kernel combination)

4 A similar increase in the data amount does not help TCM in experiment 1.

614 S. Kaski and J. Peltonen

and [14] (naive Bayes imputation followed by collaborative filtering). Note that
RSM is more general than [13] which needs samples rated by several users (to
estimate meaningful correlation kernels) whereas RSM requires none.

We used a simplistic feature extraction, including stopword removal etc., vec-
tor representation, selecting most “informative” words, discarding too sparse
documents, and dimensionality reduction by linear discriminant analysis; see
[12] for details. As a design parameter we varied how often the other users la-
beled according to “acq” on average. The user-of-interest had less data than
others; test data were left-out documents from the user-of-interest. We repeated
the experiment 10 times to reduce variation due to initializations and small
datasets.

Results are shown in Fig. 3. RSM performs best. Since there is little data for
the user-of-interest, single-task learning overfits badly. TCM5 and “all together”
perform about equally here. At the extreme where all data begins to be relevant,
performances of RSM, TCM and “all together” naturally converge.

0.5 0.6 0.7 0.8 0.9

−0.6

−0.4

−0.2

average probability of relevance

av
er

ag
e

cl
as

s
lo

g−
lik

el
ih

oo
d

(o
n

te
st

 d
at

a)

RSM
TCM
single−task
all together

Fig. 3. Comparison of RSM to TCM and two naive methods on Reuters data. Average
results over 10 generated problems are shown, as a function of one design parameter,
the average probability that a sample is relevant to the task-of-interest. RSM performs
the best. Performance of single-task learning varies highly due to overlearning; the
worst results (at design parameter values 0.75 and 0.95) do not fit in the figure.

5 Conclusions

We introduced a new problem, relevant subtask learning, where multiple back-
ground tasks are used to learn one task-of-interest. We showed how a carefully
constructed but generally applicable graphical model solves the problem; the
idea is to model relevant parts of other tasks with a shared mixture component,
and nonrelevant parts by (at least equally) flexible models, to avoid a perfor-
mance tradeoff between the task-of-interest and the other tasks. Using logistic re-
gression as an example, we showed that the resulting “Relevant Subtask Model”

5 We used K = 6 clusters to have roughly equally many parameters in RSM and TCM.

Learning from Relevant Tasks Only 615

(RSM) outperforms a comparable traditional multi-task learning model and two
naive alternatives, on toy domains and on more realistic text classification.

The method is not restricted to logistic regression or to supervised learning.
Here we used simple maximum conditional likelihood estimators, which will be
generalized to full-Bayesian treatments of more general models in the next stage.

Acknowledgments. The authors belong to Helsinki Institute for Information
Technology and the Adaptive Informatics Research Centre. They were supported
by the Academy of Finland, decision numbers 108515 and 207467. This work
was also supported in part by the IST Programme of the European Community,
PASCAL Network of Excellence, IST-2002-506778. This publication only reflects
the authors’ views. All rights are reserved because of other commitments.

References

1. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)
2. Marx, Z., Rosenstein, M.T., Kaelbling, L.P.: Transfer learning with an ensemble of

background tasks. In: Inductive Transfer: 10 Years Later, NIPS workshop (2005)
3. Raina, R., Ng, A.Y., Koller, D.: Transfer learning by constructing informative

priors. In: Inductive Transfer: 10 Years Later, NIPS workshop (2005)
4. Niculescu-Mizil, A., Caruana, R.: Inductive transfer for Bayesian network structure

learning. In: Proceedings of AISTATS. Electronic proceedings (2007)
5. Rosenstein, M.T., Marx, Z., Kaelbling, L.P.: To transfer or not to transfer. In:

Inductive Transfer: 10 Years Later, NIPS workshop (2005)
6. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple

tasks. In: Proceedings of ICML 2005, pp. 1012–1019. ACM Press, New York (2005)
7. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-

ods. J. Mach. Learn. Res. 6, 615–637 (2005)
8. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-

tion with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)
9. Bakker, B., Heskes, T.: Task clustering and gating for Bayesian multitask learning.

J. Mach. Learn. Res. 4, 83–99 (2003)
10. Wu, P., Dietterich, T.G.: Improving SVM accuracy by training on auxiliary data

sources. In: Proceedings of ICML 2004, pp. 871–878. Omnipress, Madison, WI
(2004)

11. Liao, X., Xue, Y., Carin, L.: Logistic regression with an auxiliary data source. In:
Proceedings of ICML 2005, pp. 505–512. Omnipress, Madison, WI (2005)

12. Kaski, S., Peltonen, J.: Learning from relevant tasks only. Technical Report E11,
Helsinki University of Technology, Lab. of Comp. and Information Science (2007)

13. Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In:
Proceedings of ICML 2004, pp. 65–72. Omnipress, Madison, WI (2004)

14. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering
for improved recommendations. In: Proceedings of AAAI-2002, pp. 187–192. AAAI
Press (2002)

An Unsupervised Learning Algorithm for Rank

Aggregation

Alexandre Klementiev, Dan Roth, and Kevin Small

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Avenue, Urbana, IL 61801, USA
{klementi,danr,ksmall}@uiuc.edu

Abstract. Many applications in information retrieval, natural language
processing, data mining, and related fields require a ranking of instances
with respect to a specified criteria as opposed to a classification. Fur-
thermore, for many such problems, multiple established ranking models
have been well studied and it is desirable to combine their results into
a joint ranking, a formalism denoted as rank aggregation. This work
presents a novel unsupervised learning algorithm for rank aggregation
(ULARA) which returns a linear combination of the individual ranking
functions based on the principle of rewarding ordering agreement be-
tween the rankers. In addition to presenting ULARA, we demonstrate
its effectiveness on a data fusion task across ad hoc retrieval systems.

1 Introduction

Ranking items is a fundamental computer and information sciences problem.
Most closely associated with information retrieval [1], ranking has recently at-
tracted significant attention from the machine learning [2,3,4,5] and natural lan-
guage processing [6,7,8] communities. While classification is the standard task
of inductive learning, many applications require the expressivity of ranking. A
related, but less thoroughly studied problem is rank aggregation, where multiple
existing rankings of an item set are combined into a joint ranking. In the informa-
tion retrieval community, this is the data fusion problem [9,10] and corresponds
to deriving a document ranking based on the input of multiple retrieval systems.
For domains where ranking algorithms exist which utilize different modalities or
views over the data, rank aggregation is particularly appealing as these views
are difficult to combine into a single model.

From a machine learning perspective, this work is most ostensibly related
to [2] which extends ideas regarding expert ensembles [11] and boosting [12] to
ranking. In addition to a different model representation, the fundamental dif-
ference is that our algorithm is an unsupervised learning algorithm. Another
related vein is the study of deriving voting policies which satisfy specified ax-
iomatic properties [13] (e.g. the independence of irrelevant alternatives [14]). Our

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 616–623, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Unsupervised Learning Algorithm for Rank Aggregation 617

algorithm is similar in that the input is a set of ranking functions and no super-
vised training is required. However, our work adaptively learns a parameterized
linear combination to optimize the relative influence of individual rankers.

In the data fusion domain, one widely cited set of approaches is [15]. These
solutions are deterministic functions which mix rankings heuristically, differing
from our work in that we learn the mixing parameters. One data fusion approach
which has learned parameters measuring the reliability of ranking functions is
ProbFuse [9], where probabilities that specific rankers return relevant documents
are combined to determine the rank ordering. A second supervised approach pre-
sented by [10] also resembles our approach in that they use a linear combination
of ranking functions to determine the joint ranking. However, unlike both meth-
ods, we present an unsupervised learning algorithm.

This paper presents an unsupervised learning algorithm for rank aggregation
(ULARA) based on a linear combination of ranking functions, guided by the
simple but effective principle that the relative contribution of an individual or-
dering to the joint ranking should be determined by its tendency to agree with
other members of the expert pool. To the best of our knowledge, ULARA pre-
scribes the first method for learning a parameterized rank aggregation without
supervision. The remainder of the paper proceeds as follows. In addition to de-
riving ULARA in section 2, we also demonstrate specific properties on synthetic
data. Section 3 proceeds by presenting experimental results for a data fusion
task. Finally, we conclude and describe future work in section 4.

2 Rank Aggregation Framework

Let x ∈ X denote an item (e.g. document) in the instance space and x represent
a set of items (e.g. corpus) to be ranked relative to each other. Furthermore, let
q ∈ Q represent a query and r : Q × X → N represent a ranking function (e.g.
retrieval system) where the output represents the item position in the ranked
list such that r(q, x) < r(q, x′) specifies that x is ranked higher than x′ with
respect to q. We use the notation ru ,E rv to signify that ru is a better ranking
function than rv with respect to the application specific evaluation criteria E .
Examples of E include Spearman’s rank correlation coefficient [16] for general
ranking problems or F1 measure for information retrieval.

Given a set of ranking functions {ri}Ni=1, we desire an aggregate ranking func-
tion R : Q × X → N such that R ,E ri for i = 1, . . . , N . This work studies
aggregation based on the functional form R′(q, x) =

∑N
i=1 wi · ri(q, x), where

wi are the linear combination parameters, noting that R′ is the expected value
of the rank if w is a probability distribution (i.e. 0 ≤ wi ≤ 1 for all i and∑N

i=1 wi = 1). This representation has been shown successful in supervised sit-
uations [10], which we look to extend to the unsupervised case. Our specific
approach derives a surrogate supervision signal in the absence of labeled data,
referred to as an incidental supervision signal. Given this seting, the technical
goals are three-fold: (1) derive an incidental supervision signal, (2) develop a cor-
responding unsupervised learning algorithm to learn the parameters of R′, and

618 A. Klementiev, D. Roth, and K. Small

(3) demonstrate that this incidental supervision signal works well for multiple
evaluation criteria E .

2.1 Incidental Supervision Based on Ranker Agreement

The fundamental intuition for our incidental supervision signal is that in non-
adversarial situations, accurate ranking functions will rank items according to a
similar conditional distribution while poor ranking functions will tend towards a
more uniformly random ranking distribution. For our representation, rankers
that tend to agree with the plurality of rankers will be given large relative
weight, while rankers that tend to disagree will be given small relative weight. Let
μ(q, x) =

∑Nx
i=1 ri(q,x)

Nx
signify the mean ranking where Nx =

∑N
i=1�ri(q, x) ≤ κi�

1

(i.e. the number of ranking functions which return a ranking higher than a
threshold κi for x). For each item to be ranked, each ranker will return a value
ri(q, x) which is used to measure agreement using the variance-like measure
σi(q, x) = [ri(q, x)− μ(q, x)]2. If this value is small for a given item ranking, the
corresponding ranker agrees with other rankers for this item and should be given
a large weight and vice versa. Therefore, if we use a scaled variance-like measure
δi(q, x) = wi ·σi(q, x) and sum this value across all {query, item, ranker} triples,
this statement leads to an optimization problem that minimizes the weighted
variance of the aggregate ranking function over the component rankings,

argmin
w

∑
q∈Q

∑
x∈x

∑N
i=1 δi(q, x) (1)

s.t.
∑N

i=1 wi = 1; ∀i, wi ≥ 0. (2)

2.2 Unsupervised Learning Algorithm for Rank Aggregation

As opposed to optimizing this problem of section 2.1 directly, ULARA uses
iterative gradient descent [17] to derive an effective online learning algorithm.
Observing that δ(q, x) is linear in w, the gradient for equation 1 with respect to
a single weight wi is ∇ =

∑
q∈Q

∑
x∈x σi(q, x). To derive an update rule, we are

interested in the gradient of the utility function components, δi(q, x), stated as

∇i =
∂δi(q, x)

∂wi
= [ri(q, x) − μ(q, x)]2 (3)

and resulting in algorithm 1. ULARA takes as input a set of ranking functions
{ri}Ni=1 along with the associated ranking function threshold values κi, a learn-
ing rate λ, and a significance threshold value θ, all discussed in greater detail
below. Also, ULARA takes a set of queries Q of which we do not know the true
ranking. In general, for each item x and query q, the expert ranking for each of
the N rankers are determined using ri(q, x), the mean is calculated (line 8), the
gradient is determined (line 11), and the weight update is made (line 14/15).
Once all of these updates are completed, the weight vector is normalized (line

1 �p� = 1 if the predicate p is true; else �p� = 0.

An Unsupervised Learning Algorithm for Rank Aggregation 619

Algorithm 1 ULARA - Training
1: Input: Q, {ri, κi}N

i=1, λ, θ
2: w ← 0 {additive}
3: w ← 1

N {exponentiated}
4: t ← 1
5: for all q ∈ Q do
6: for all x ∈ x do
7: if Nx ≥ θ then

8: μ(qq, x) =
PNx

i=1 ri(q,x)
Nx

9: for i ← 1, . . . , N do
10: if ri(x) ≤ κi then
11: ∇i ← [ri(q, x) − μ(q, x)]2

12: else
13: ∇i ← [κi + 1 − μ(q, x)]2

14: wt
i ← wt−1

i + λ · ∇i {additive}
15: wt

i ← wt−1
i e−λ∇i

PN
j=1 wt−1

j e−λ∇i
{exp.}

16: t ← t + 1
17: Normalize(w) {additive}
18: Output: w ∈ [0, 1]N

Algorithm 2 ULARA - Evaluation
1: Input: q,w, {ri, κi}N

i=1

2: for all x ∈ x do
3: Rx ← 0
4: for i ← 1, . . . , N do
5: if ri(q, x) ≤ κi then
6: Rx ← Rx + wi · ri(q, x)
7: else
8: Rx ← Rx + wi · (κi + 1)
9: ArgsortAscending(Rx)

10: R(q, x) ← Ranking(Rx)
11: Output: R : Q × X → N

Fig. 1. An Unsupervised Learning Algorithm for Rank Aggregation (ULARA). Note
that lines 2, 14, and 17 are only used in the case of additive updates and lines 3 and
15 are only used in the case of exponentiated updates.

17) to generate a probability vector for evaluation in algorithm 2. The remaining
discussion entails algorithmic details to accommodate practical situations:

– Additive vs. Exponentiated Updates - Two methods for gradient descent are
additive and exponentiated updates [17], each with specific properties that
will be explored. If using additive updates, lines 3 and 15 should be removed.
If using exponentiated updates, lines 2, 14, and 17 should be removed noting
that normalization is not necessary.

– Missing Rankings (κi) - For most settings, there are more items in the in-
stance space than the individual ranking functions will return. For data fu-
sion, systems return rankings for a fixed set of documents and most corpus
documents remain unranked. We denote this threshold value as κi, noting
that ranking functions may have different thresholds. If a ranking is not re-
turned by a specific ranker, we substitute κi +1 for update calculations (line
13), assuming unranked items are ranked just below the last ranked item.

– Learning Rate (λ) - For ULARAadd, λ = 1 was used for all experiments. For
ULARAexp, λ was set proportional to κ−2.

– Variable Number of Rankers (θ) - For some items, only a small fraction of
the ranking functions return a valid rank. If less than θ rankers, as defined
by the user, return a valid rank for an item, the information is deemed
untrustworthy and no updates are made for this item (line 7).

620 A. Klementiev, D. Roth, and K. Small

Studying ULARA Via Controlled Experiments. We first explore ULARA
on synthetic data to: (1) examine robustness (2) compare additive and
exponentiated updates. We begin by generating M = 1000 items with rank des-
ignated as r�(x) = {1, 2, . . . , 1000}. We then specify N = 14 ranking functions
ri(x) with varying degrees of perturbation from the true ranking by perturbing
r�(x) by a random sample from the discrete uniform distribution with window
size ω. Formally, ri(x) ∼ U

[
max

(
0, r�(x)− ω

2 − ε
)
,min

(
r�(x) + ω

2 + ε,M
)]

where ε ≥ 0 is the amount necessary to maintain window size ω. Ties are broken
with the policy that all tied items receive an the average rank of the item posi-
tions as per [16]. |Q| = 50 queries were generated for N = 14 ranking function
with two ri(x) where ω = 200, two ri(x) where ω = 600, and 10 ri(x) where
ω = 1000.

Figure 2 displays performance of both ULARAadd and ULARAexp on the
synthetic data. As a baseline, we modify the CombMNZ [15] to use rank infor-
mation as opposed to the underlying real-valued score since we do not have this
information in our task; CombMNZrank ←

∑N
i=1 ri(q, x) ·Nx. We use a modi-

fied CombMNZ as it is unsupervised (albeit without learning) and widely used
for data fusion. For evaluation, we use Spearman’s rank correlation coefficient,
ρ ∈ [−1, 1] [16]. ULARAexp achieves an increase of 0.28 (39% relative increase)
in ρ relative to CombMNZrank after 40 queries and ULARAadd achieves an
increase of 0.24 (35% relative increase) in ρ after only 5 queries, demonstrating
that ULARA can effectively weigh rankers without explicit supervision.

The second result is presented in figure 3, showing the average weights as-
sociated with the rankers in the three groups (ω = 200, 600, and 1000) during
training. ULARA assigns the most weight to the best ranking functions, some
weight to the reasonable ranking functions, and almost no weight to the worst
ranking functions. In accordance with theory [17], ULARAexp tends to select the
best ranking functions by assigning all of the weight to these rankers. Conversely,
ULARAadd tends to mix the ranking functions relative to their performance,
which proves beneficial in cases where many reasonable rankers exist and can
complement each other in different areas of the item distribution.

3 Data Fusion

The real-world task we study empirically is data fusion [9], utilizing data from
the ad hoc retrieval shared task of the TREC-3 conference. For this task, each
group of N = 40 shared task participants was provided with a set of documents
and |Q| = 50 of queries, returning the κ = 1000 documents for which the ex-
pected relevance is greatest for each query. ULARA was used to combine the
rankings of the individual research groups into an aggregate ranking function R.
Performance is quantified by the precision/recall curves and mean average preci-
sion metric as provided by the software (trec eval) from the TREC conference
series [18].

Figure 4 shows the results of the top individual submissions, CombMNZrank,
and ULARA for the data fusion task. We observe that ULARA outperforms

An Unsupervised Learning Algorithm for Rank Aggregation 621

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60

 (
av

er
ag

ed
 o

ve
r

10
 r

un
s)

Iteration

ULARAexp
ULARAadd

CombMNZrank

Fig. 2. Experimental results on syn-
thetic data comparing ULARA to
CombMNZrank. Exponentiated updates
achieve a 39% relative increase compared
to CombMNZrank in the Spearman’s
ranking coefficient with only 40 queries,
while additive updates achieve a 35%
relative increase in only 5 queries.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45 50 55 60

R
an

ki
ng

 w
ei

gh
ts

 (
av

er
ag

ed
 o

ve
r

10
 r

un
s)

Iteration

expP=200
expP=600

expP=1000
addP=200
addP=600

addP=1000

Fig. 3. ULARA ranker weights through-
out training on synthetic data, noting
the best rankers are weighted the high-
est, while the poorest rankers have negli-
gible weight. Furthermore, exponentiated
updates tends to select the best rankers
while additive updates mix rankers rela-
tive to their performance.

all component ranking functions as well as CombMNZrank. More significantly,
while CombMNZrank performs slightly better than the top system, ULARAadd

achieves a relative increase in average precision of 4.0% at the top ranking, 6.4%
at 0.1 recall, and 6.0% at 0.2 recall over CombMNZrank. ULARAexp achieves
a relative increase in average precision of 4.3% at the top ranking, 7.7% at 0.1
recall, and 8.1% at 0.2 recall over CombMNZrank. These results are significant
in that they demonstrate that ULARA can not only distinguish good ranking
functions from bad as in the synthetic data task, but in practice can generate a
joint ranking function superior to its best components on the data fusion task.

The second experiment demonstrates the robustness properties of ULARA
by looking not at the situation where we are working with world-class retrieval
systems, but at the hypothetical situation where many of the ranking systems
were poor. Specifically, we replaced a specified number of the N = 40 systems
with a rankings drawn uniformly from all documents returned by all systems for
a given query, denoted as random rankings. As figure 5 shows, the mean average
precision of ULARA versus CombMNZrank is consistently superior, becoming
more pronounced as the number of random rankings is increased. To further
explore this effect, we varied θ and observe that as more noise is added, θ must
be lowered to accommodate the lack of agreement between rankers. However,
even under relatively extreme cicumstances, ULARA returns a joint ranking
function competitive with a noise free system. This experiment demonstrates
that ULARA is capable of discounting bad rankers in a real-world setting such
that they are not detrimental to the aggregate ranking function R.

622 A. Klementiev, D. Roth, and K. Small

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

ULARAexp
ULARAadd

CombMNZrank
citya1

INQ101
CrnlEA
westp1
pircs1

ETH002

Fig. 4. Experimental results for data fu-
sion of the retrieval systems submit-
ted to the TREC-3 shared task. While
CombMNZrank only negligibly outper-
forms the top system, ULARA performs
significantly better than any component
system at multiple recall levels.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of random rankings

ULARAadd, = 10
ULARAadd, = 20
ULARAadd, = 30
ULARAexp, = 10
ULARAexp, = 20
ULARAexp, = 30

CombMNZrank

Fig. 5. Experimental results where a num-
ber of TREC-3 systems are replaced with
random rankings, demonstrating robust-
ness of ULARA. While the performance
of the CombMNZrank algorithm deterio-
rates rapidly, ULARA performs well even
when more than half of the systems are
replaced.

4 Conclusions and Future Work

We have presented a novel approach to the rank aggregation problem by specify-
ing an optimization problem to learn a linear combination of ranking functions
which maximizes agreement. Secondly, we introduce an unsupervised learning
algorithm, ULARA, to solve this problem. This criteria is driven by the assump-
tion that correctly ranked instances will possess a similar position in multiple
ranking functions, allowing us to assign a high weight to rankers that tend to
agree with the expert pool and reduce the influence of those rankers which tend to
disagree. We have successfully demonstrated the effectiveness of our algorithm in
two diverse experimental settings which each use a different evaluation function:
on synthetic data which quantifies performance with Spearman’s rank correla-
tion coefficient and an information retrieval data fusion task which quantifies
performance using precision/recall. For future work, we have already generated
preliminary results extending ULARA to generalize a reranking approach [6] to
named entity discovery [8], which we expect to pursue further.

Acknowledgments

This work is supported by NSF grant NSF ITR IIS-0428472 and by MIAS, a
DHS Institute of Discrete Science Center for Multimodal Information Access
and Synthesis.

An Unsupervised Learning Algorithm for Rank Aggregation 623

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press
/ Addison-Wesley (1999)

2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of
Artificial Intelligence Research 10, 243–270 (1999)

3. Agarwal, S., Roth, D.: Learnability of bipartite ranking functions. In: Proc. of the
Annual ACM Workshop on Computational Learning Theory (COLT), pp. 16–31
(2005)

4. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk
minimization. In: Proc. of the Annual ACM Workshop on Computational Learning
Theory (COLT), pp. 1–15 (2005)

5. Rudin, C., Cortes, C., Mohri, M., Schapire, R.E.: Margin-based ranking and boost-
ing meet in the middle. In: Proc. of the Annual ACM Workshop on Computational
Learning Theory (COLT), pp. 63–78 (2005)

6. Collins, M., Koo, T.: Discriminative reranking for natural language parsing. In:
Proc. of the International Conference on Machine Learning (ICML), pp. 175–182
(2000)

7. Li, H., Rudin, C., Grishman, R.: Re-ranking algorithms for name tagging. In:
HLT/NAACL Workshop on Joint Inference (2006)

8. Klementiev, A., Roth, D.: Weakly supervised named entity transliteration and
discovery from multilingual comparable corpora. In: Proc. of the Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 817–824 (2006)

9. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: Probfuse: A probabilistic approach
to data fusion. In: Proc. of the International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 139–146 (2006)

10. Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. Information
Retrieval 1(3), 151–173 (1999)

11. Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the Association for Computing
Machinery 44(3), 427–485 (1997)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

13. Conitzer, V.: Computational Aspects of Preference Aggregation. PhD thesis,
Carnegie Mellon University (2006)

14. Arrow, K.: Social Choice and Individual Values, 2nd edn. Cowles Foundation, New
Haven (1963)

15. Shaw, J.A., Fox, E.A.: Combination of multiple searches. In: Text REtrieval Con-
ference (TREC), pp. 243–252 (1994)

16. Kendall, M., Gibbons, J.D.: Rank Correlation Methods, 5th edn. Edward Arnold,
London (1990)

17. Kivinen, J., Warmuth, M.K.: Additive versus exponentiated gradient updates for
linear prediction. In: Proc, of the Annual ACM Symposium on Theory of Comput-
ing, pp. 209–218 (1995)

18. Voorhees, E.M., Buckland, L.P. (eds.): The Fourteenth Text REtrieval Conference
Proceedings (TREC) (2005)

Ensembles of Multi-Objective Decision Trees

Dragi Kocev1, Celine Vens2, Jan Struyf2, and Sašo Džeroski1

1 Department of Knowledge Technologies, Jožef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia

{dragi.kocev,saso.dzeroski}@ijs.si
2 Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, 3001 Leuven, Belgium
{celine.vens,jan.struyf}@cs.kuleuven.be

Abstract. Ensemble methods are able to improve the predictive per-
formance of many base classifiers. Up till now, they have been applied to
classifiers that predict a single target attribute. Given the non-trivial in-
teractions that may occur among the different targets in multi-objective
prediction tasks, it is unclear whether ensemble methods also improve
the performance in this setting. In this paper, we consider two ensem-
ble learning techniques, bagging and random forests, and apply them
to multi-objective decision trees (MODTs), which are decision trees that
predict multiple target attributes at once. We empirically investigate the
performance of ensembles of MODTs. Our most important conclusions
are: (1) ensembles of MODTs yield better predictive performance than
MODTs, and (2) ensembles of MODTs are equally good, or better than
ensembles of single-objective decision trees, i.e., a set of ensembles for
each target. Moreover, ensembles of MODTs have smaller model size and
are faster to learn than ensembles of single-objective decision trees.

1 Introduction

In this work, we concentrate on the task of predicting multiple attributes. Ex-
amples thus take the form (xi,yi) where xi = (xi1, . . . , xik) is a vector of k
input attributes and yi = (yi1, . . . , yit) is a vector of t target attributes. This
task is known under the name of multi-objective prediction. Existing learning
techniques have been extended to address this task by learning to predict all
target attributes at once [1,2,3,4]. This has two main advantages over building
a separate model for each target: first, a multi-objective model is usually much
smaller than the total size of the individual models for all target attributes, and
second, such a multi-objective model explicates dependencies between the dif-
ferent target attributes. Moreover, the cited literature reports similar or slightly
improved predictive performance results for the multi-objective models.

The goal of this paper is to investigate whether ensemble methods [5] can be
applied to multi-objective prediction problems in order to achieve better perfor-
mance. Ensemble methods construct a set of classifiers for a given prediction task
and classify new data instances by taking a vote over their predictions. Ensemble
methods typically improve the predictive performance of their base classifier [6].

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 624–631, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ensembles of Multi-Objective Decision Trees 625

Up till now, they have only been applied to single-objective prediction, i.e.,
predicting one target attribute. Given the non-trivial interactions between the
target attributes in a multi-objective domain, it is unclear whether ensembles are
also able to improve predictive performance in this non-standard setting. A pos-
itive answer would stimulate further research towards multi-objective problems,
which are present in many real world applications [1,7,8,9,10,11,12].

In this paper, we use decision trees as base classifiers. The ensemble meth-
ods that we investigate are bagging [6] and random forests [13]. More precisely,
the main questions we want to answer are (1) does building ensembles of multi-
objective decision trees improve predictive performance, and (2) how do ensem-
bles of multi-objective decision trees compare to ensembles of single-objective
decision trees, i.e., a set of separate ensembles for each target attribute. The last
comparison is made along three dimensions: predictive performance, model size,
and running times.

The paper is organized as follows. In Section 2, we briefly discuss ensemble
methods. Section 3 explains multi-objective decision trees in more detail. Sec-
tion 4 presents a detailed experimental evaluation. Conclusions and some ideas
for further work are presented in Section 5.

2 Ensemble Methods

An ensemble is a set of classifiers constructed with a given algorithm. Each
new example is classified by combining the predictions of every classifier from
the ensemble. These predictions can be combined by taking the average (for
regression tasks) or the majority vote (for classification tasks), as described by
Breiman [6], or by taking more complex combinations [17,18].

A necessary condition for an ensemble to be more accurate than any of its
individual members, is that the classifiers are accurate and diverse [14]. An
accurate classifier does better than random guessing on new examples. Two
classifiers are diverse if they make different errors on new examples. There are
several ways to introduce diversity: by manipulating the training set (by changing
the weight of the examples [6,15] or by changing the attribute values of the
examples [16]), or by manipulating the learning algorithm itself [5].

In this paper, we consider two ensemble learning techniques that have pri-
marily been used in the context of decision trees: bagging and random forests.

2.1 Bagging

Bagging [6] is an ensemble method that constructs the different classifiers by
making bootstrap replicates of the training set and using each of these replicates
to construct one classifier. Each bootstrap sample is obtained by randomly sam-
pling training instances, with replacement, from the original training set, until
an equal number of instances is obtained.

Breiman [6] has shown that bagging can give substantial gains in predictive
performance, when applied to an unstable learner (i.e., a learner for which small

626 D. Kocev et al.

Table 1. The top-down induction algorithm for PCTs

procedure PCT(E) returns tree

1: (t∗, h∗, P∗) = BestTest(E)
2: if t∗ �= none then
3: for each Ek ∈ P∗ do
4: treek = PCT(Ek)

5: return node(t∗,
⋃

k{treek})
6: else
7: return leaf(Prototype(E))

procedure BestTest(E)

1: (t∗, h∗, P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E)−

∑
Ek∈P

|Ek|
|E| Var(Ek)

5: if (h > h∗) ∧ Acceptable(t, P) then
6: (t∗, h∗, P∗) = (t, h, P)

7: return (t∗, h∗, P∗)

changes in the training set result in large changes in the predictions), such as
classification and regression tree learners.

2.2 Random Forests

A random forest [13] is an ensemble of trees, where diversity among the predictors
is obtained by using bagging, and additionally by changing the feature set during
learning. More precisely, at each node in the decision trees, a random subset of
the input attributes is taken, and the best feature is selected from this subset.
The number of attributes that are retained is given by a function f of the total
number of input attributes x (e.g., f(x) = 1, f(x) =

√
x, f(x) = -log2(x) +

1. . . .). By setting f(x) = x, we obtain the bagging procedure.

3 Multi-Objective Decision Trees

Multi-objective decision trees (MODTs) [2] are decision trees capable of predict-
ing multiple target attributes at once. They are an instantiation of predictive
clustering trees (PCTs) [2] that are used for multi-objective prediction. In the
PCT framework, a tree is viewed as a hierarchy of clusters: the top-node corre-
sponds to one cluster containing all data, which is recursively partitioned into
smaller clusters while moving down the tree.

PCTs can be constructed with a standard “top-down induction of decision
trees” (TDIDT) algorithm [19]. The algorithm is shown in Table 1. The heuris-
tic that is used for selecting the tests is the reduction in variance caused by
partitioning the instances (see line 4 of BestTest). Maximizing the variance re-
duction maximizes cluster homogeneity and improves predictive performance.

The main difference between the algorithm for learning PCTs and a stan-
dard decision tree learner is that the former treats the variance function and the
prototype function that computes a label for each leaf as parameters that can
be instantiated for a given learning task. In order to construct MODTs, these
functions have been instantiated towards multiple target attributes [2,20]. For
the classification case, the variance function is computed as the sum of the en-
tropies of class variables, i.e., Var(E) =

∑t
i=1 Entropy(E , yi) (this definition has

also been used in the context of multi-label prediction [21]), and the prototype
function returns a vector containing the majority class for each target attribute.

Ensembles of Multi-Objective Decision Trees 627

For multi-objective regression trees, the sum of the variances of the targets is
used, i.e., Var(E) =

∑t
i=1 V ar(yi), and each leaf’s prototype is the vector mean

of the target vectors of it’s training examples.
The PCT framework is implemented in the Tilde [2] and Clus [22,4] systems.

In this work we use Clus. More information about PCTs and Clus can be found
at http://www.cs.kuleuven.be/∼dtai/clus.

4 Experimental Evaluation

In this section, we empirically evaluate the application of bagging and random
forests to multi-objective decision trees. We describe the experimental method-
ology, the datasets, and the obtained results.

4.1 Ensembles for Multi-Objective Decision Trees

In order to apply bagging to MODTs, the procedure PCT (Ei) (Table 1) is used
as a base classifier. For applying random forests, the same approach is followed,
changing the procedure BestTest (Table 1, right) to take a random subset of size
f(x) of all possible attributes.

In order to combine the predictions output by the base classifiers, we take
the average for regression, and apply a probability distribution vote instead of a
simple majority vote for classification, as suggested by Bauer and Kohavi [23].
These combining functions generalize trivially to the multi-objective case. Each
ensemble consists of 100 trees, which are unpruned [23]. For building random
forests, the parameter f(x) was set to -log2(x) + 1. as in Breiman [13].

4.2 Datasets

Table 2 lists the datasets that we use, together with their properties. Most
datasets are of ecological nature. Each dataset represents a multi-objective pre-
diction problem. Of the 13 listed datasets, 8 are used both for multi-objective
regression and for multi-objective classification (after discretizing the target at-
tributes), resulting in 21 datasets in total.

4.3 Results

We assess the predictive performance of the algorithms comparing the accuracy
for classification, and RRMSE (relative root mean squared error) for regression.
The results are obtained by a 10-fold cross validation procedure1, using the same
folds for all experiments.

Here, we discuss the results along two dimensions of interest: comparing en-
sembles of MODTs to single multi-objective decision trees, and to ensembles of
single-objective decision trees. Afterwards, we investigate ensembles of MODTs
1 When using bagging or random forests, one could also use the out-of-bag error

measure [13]. In order to obtain a fairer comparison with the (non-ensemble) decision
tree methods, we instead used 10-fold cross validation.

http://www.cs.kuleuven.be/~dtai/clus

628 D. Kocev et al.

Table 2. Dataset properties: domain name, number of instances (N), number of input
attributes (Attr), number of target attributes (T), and whether used as multi-objective
classification (Class) or regression (Regr) dataset

Domain Task N Attr T Class Regr

E1 Bridges [24] 85 7 5
√

E2 EDM - 1 [7] 154 16 2
√ √

E3 Monks [24] 432 6 3
√

E4 Sigmea real [8] with coordinates 817 6 2
√ √

E5 without coordinates 817 4 2
√ √

E6 Sigmea simulated [9] 10368 11 2
√ √

E7 Soil quality 1 [10] Acari/Coll./Biodiv. 1944 142 3
√

E8 Solar-flare 1 [24] 323 10 3
√ √

E9 Solar-flare 2 [24] 1066 10 3
√

E10 Thyroid [24] 9172 29 7
√

E11 Water quality [11,12] Plants 1060 16 7
√ √

E12 Animals 1060 16 7
√ √

E13 Plants & Animals 1060 16 14
√ √

Table 3. Wilcoxon test outcomes (SO Single-Objective, MO Multi-Objective; DT
Decision Tree, Bag Bagging, RF Random Forest)

Classification Regression

MOBag > MODT MOBag > MODT
p = 5.14 ∗ 10−6 p = 2.44 ∗ 10−3

MORF > MODT MORF > MODT
p = 6.61 ∗ 10−7 p = 2.03 ∗ 10−5

Classification Regression

MOBag > SOBag MOBag > SOBag
p = 0.301 p = 1.28 ∗ 10−6

MORF > SORF MORF > SORF
p = 0.451 p = 0.094

in more detail, and compare bagging and random forests in the multi-objective
setting. For testing whether the difference in predictive performance between
different methods is statistically significant over all datasets and all targets, we
use the Wilcoxon test [25]. The results are summarized in Table 3. In the results,
A > B means that method A has a better predictive performance than method
B. The significance is reported by the corresponding p-value.

Ensembles of Multi-Objective Decision Trees versus Multi-Objective
Decision Trees. The left part of Table 3 shows the outcome of the Wilcoxon
test comparing ensembles of MODTs to MODTs. The results show that the
predictive performance of ensembles of MODTs is better than MODTs, which
is the same as for ensembles in the single-objective setting.

A preliminary empirical evaluation of boosting of multi-objective regression
trees has been performed by Sain and Carmack [26]. Experimental results on a
single dataset yielded the same conclusion.

Ensembles of Multi-Objective Decision Trees versus Ensembles of
Single-Objective Decision Trees. Ensembles of single-objective decision
trees are ensembles that predict one target attribute. Results of the Wilcoxon

Ensembles of Multi-Objective Decision Trees 629

Table 4. Total model size (number of nodes) for the different methods (SO Single-
Objective, MO Multi-Objective; Bag Bagging, RF Random Forest)

Classification Regression
MOBag SOBag MORF SORF MOBag SOBag MORF SORF

E1 4344 6996 4614 8910
E2 4102 4916 5014 5930 4780 5900 5746 7390
E3 18580 20360 17222 22362
E4 29586 37906 30360 38988 46482 70896 46866 71842
E5 29936 38082 29422 38312 46816 71660 44896 69928
E6 6184 6544 13104 13990 153994 192038 164814 203416
E7 53586 160506 24722 73356
E8 5158 7742 4364 6588 9330 15562 7840 13842
E9 23196 33264 15248 24018
E10 55454 77244 83506 126916
E11 68560 137860 71258 163948 78310 221832 79606 257122
E12 69484 137514 72590 164484 80034 229990 81122 267364
E13 80804 275374 81568 328432 82842 451822 83036 524486

test comparing a ensemble of MODTs to building ensembles for each target
attribute separately are presented in the right part of Table 3. For regression,
ensembles of MODTs are significantly better than ensembles of single-objective
decision trees in case of bagging, and, to a lesser extent, in the case of random
forests. For classification, the two methods perform comparably.

In addition, we have compared the total sizes of ensembles of multi-objective
and single-objective decision trees. While the number of trees will be smaller
for ensembles of MODTs (with a factor equal to the number of targets), the
effect on the total number of nodes of all trees is less obvious. Table 4 presents
the results. We see that ensembles of MODTs yield smaller models, with an
increased difference in the presence of many target attributes.

We have also compared the running times of the different methods. Except
for dataset E1, the multi-objective ensemble method is always faster to learn
than its single-objective counterpart, with an average speed-up ratio of 2.03.

Multi-Objective Bagging versus Multi-Objective Random Forests. We
compared the performance of the two multi-objective ensemble methods. The
test concludes that multi-objective random forests have a better predictive per-
formance than multi-objective bagging (p-values of 0.025 for classification and
0.060 for regression). Note that, also in terms of efficiency, random forests are
to be preferred, since they are faster to learn.

The obtained results are similar to results obtained in single-objective setting.
In their experimental comparison, Banfield et al. [27] obtain significantly better
results for random forests on 8 of 57 datasets. Also for our datasets, random
forests perform better than bagging in the single-objective case (p-values of
0.047 for classification and 2.37 ∗ 10−5 for regression).

630 D. Kocev et al.

5 Conclusions and Further Work

In this paper, an empirical study is presented on applying ensemble methods to
multi-objective decision trees. As such, the interaction between two dimensions
(multi-objective learning and ensemble learning) was investigated. The results
can be summarized as follows. First, the performance of a multi-objective tree
learner is significantly improved by learning an ensemble (using bagging or ran-
dom forests) of multi-objective trees. This suggests that the non-trivial relations
that may be present between the different target attributes are preserved when
combining predictions of several classifiers or when injecting some source of
randomness in the learning algorithm. Second, ensembles of MODTs perform
equally good as or significantly better than single-objective ones. In addition,
ensembles of MODTs are faster to learn and reduce the total model size. Third,
multi-objective random forests are significantly better than multi-objective bag-
ging, which is consistent with results in the single-objective context.

As future work, we plan to extend the empirical evaluation along two dimen-
sions: (a) to other ensemble methods, such as boosting; one research question
here is how to adapt boosting’s reweightening scheme to the multi-objective case;
and (b) to multi-objective datasets with mixed nominal and numeric targets.

A different line of work that we consider is to develop methods for directly
controlling the model diversity of predictive clustering trees. Model diversity im-
proves the predictive performance of ensemble methods [14]. In particular, Kocev
et al. [28] show that beam search with a heuristic that explicitly incorporates
the diversity of the trees can be used to this end. We plan to investigate if beam
search can yield more accurate ensembles than bagging or random forests.

Acknowledgements. This work was supported by the EUFETIST project “In-
ductive Querying”, contract number FP6-516169. Jan Struyf is a post-doctoral
fellow of the Research Foundation - Flanders (FWO-Vlaanderen). The authors
would like to thank Hendrik Blockeel for providing valuable suggestions.

References

1. Caruana, R.: Multitask learning. Machine Learning 28, 41–75 (1997)
2. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:

Proc. of the 15th ICML, pp. 55–63 (1998)
3. Suzuki, E., Gotoh, M., Choki, Y.: Bloomy decision trees for multi-objective classi-

fication. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168,
Springer, Heidelberg (2001)

4. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Proc.
of the Workshop on KDID at the 16th ECML (2005)

5. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

6. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
7. Karalič, A., Bratko, I.: First order regression. Machine Learning 26, 147–176 (1997)
8. Demšar, D., Debeljak, M., Lavigne, C.: Džeroski, S.: Modelling pollen dispersal of

genetically modified oilseed rape within the field. In: The Annual Meeting of the
Ecological Society of America (2005)

Ensembles of Multi-Objective Decision Trees 631

9. Džeroski, S., Colbach, N., Messean, A.: Analysing the effect of field characteristics
on gene flow between oilseed rape varieties and volunteers with regression trees. In:
Proc.of the 2nd Int’l Conference on Co-existence between GM and non-GM based
agricultural supply chains (2005)

10. Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Pedersen, M., Krogh,
P.: Using multi-objective classification to model communities of soil microarthro-
pods. Ecological Modelling 191(1), 131–143 (2006)

11. Blockeel, H., Džeroski, S., Grbović, J.: Simultaneous prediction of multiple chemical
parameters of river water quality with Tilde. In: Żytkow, J.M., Rauch, J. (eds.)
Principles of Data Mining and Knowledge Discovery. LNCS (LNAI), vol. 1704, pp.
32–40. Springer, Heidelberg (1999)

12. Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river water
quality from bioindicator data. Applied Intelligence 13(1), 7–17 (2000)

13. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
14. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. on Pattern Anal.

and Mach. Intell. 12, 993–1001 (1990)
15. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc.

of the 13th ICML, pp. 148–156. Morgan Kaufmann, San Francisco (1996)
16. Breiman, L.: Using adaptive bagging to debias regressions. Technical report, Statis-

tics Department, University of California, Berkeley (1999)
17. Ho, T., Hull, J., Srihari, S.: Decision combination in multiple classifier systems.

IEEE Trans. on Pattern Anal. and Mach. Intell. 16(1), 66–75 (1994)
18. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.

on Pattern Anal. and Mach. Intell. 20(3), 226–239 (1998)
19. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression

Trees. Wadsworth, Belmont (1984)
20. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for

hierarchical multilabel classification: A case study in functional genomics. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, Springer, Heidelberg (2006)

21. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In: Siebes,
A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, Springer, Heidelberg
(2001)

22. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
222–233. Springer, Heidelberg (2006)

23. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36, 105 (1999)

24. Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases
(1998)

25. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1 (1945)
26. Sain, R.S., Carmack, P.S.: Boosting multi-objective regression trees. Computing

Science and Statistics 34, 232–241 (2002)
27. Banfield, R., Hall, L., Bowyer, K., Kegelmeyer, W.: A comparison of decision

tree ensemble creation techniques. IEEE Trans. on Pattern Anal. and Mach. In-
tell. 29(1), 173–180 (2007)

28. Kocev, D., Džeroski, S., Struyf, J.: Beam search induction and similarity con-
straints for predictive clustering trees. In: 5th Int’l Workshop on KDID: Revised
Selected and Invited Papers (to appear, 2007)

Kernel-Based Grouping of Histogram Data

Tilman Lange and Joachim M. Buhmann

Institue of Computational Science
ETH Zurich

8092 Zurich, Switzerland
{langet,jbuhmann}@inf.ethz.ch

Abstract. Organizing objects into groups based on their co-occurrence
with a second, relevance variable has been widely studied with the In-
formation Bottleneck (IB) as one of the most prominent representatives.
We present a kernel-based approach to pairwise clustering of discrete his-
tograms using the Jensen-Shannon (JS) divergence, which can be seen as
a two-sample test. This yields a cost criterion with a solid information-
theoretic justification, which can be approximated in polynomial time
with arbitrary precision. In addition to that, a relation to optimal hard
clustering IB solutions can be established. To our knowledge, we are the
first to devise algorithms for the IB with provable approximation guar-
anties. In practice, one obtains convincing results in the context of image
segmentation using fast optimization heuristics.

1 Introduction

Data clustering plays a central role in exploratory data analysis. Formally, one
aims at finding a k-partition C : [n] → [k] 1 of a finite set X = {x1, . . . , xn}.
Often, objects X are characterized by their joint occurrence with an additional
variable Y , Y ∈ Y = {y1, . . . , yb}: E.g., text documents can be characterized by
the words they contain. Image sites may be characterized by colors. In docu-
ment categorization or image segmentation, this data can be summarized in a
table of counts – each entry containing the number of joint occurrences of object
(e.g. pixel or document) x and variable (e.g. word or gray value) y. By normal-
ization, one obtains the Maximum Likelihood (ML) estimate of the joint distri-
bution p(x, y). In clustering, one tries to organize the objects into classes based
on the co-occurrence patterns. To this end, the normalized histograms p̂(y|x) are
usually considered to characterize the objects x ∈ X . Hence, clustering aims at
determining the group structure such that empirically estimated distributions,
that might have arisen from the same source, are grouped together. In this work,
we introduce the Jensen-Shannon (JS) divergence as a kernel (sec. 2) and use it
as distance for pairwise clustering of histograms (sec. 3). This clustering model is
motivated by the observation that the JS divergence is a test for the two-sample
problem [5]. As it is bounded, it has less pathologies in a pairwise setting than
the classical Kullback-Leibler (KL) or the Jeffrey divergence.
1 We use [n] as a shorthand for the set {i | 1 ≤ i ≤ n} throughout this work.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 632–639, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Kernel-Based Grouping of Histogram Data 633

A principled approach to address the problem of grouping histogram data rep-
resents the Information-Bottleneck (IB) introduced in [15] with the Histogram
Clustering Model (HCM) [12] as a special case. The idea of the IB approach is
to find a compact representation of the variable X while preserving as much
information as possible about a second (relevance) variable Y – given the joint
distribution p(x, y). The mutual information, I, is here the performance measure
of interest: the IB problem consists of finding cluster assignment probabilities
p(ν|x) such that the functional L = 1

β I(X,C) − I(Y,C) is minimized, where
β ≥ 0 is a Lagrange parameter. As the IB is intimately related to the JS diver-
gence, we can develop a relationship to the IB for β →∞. Following [13], we use
Euclidean embeddings to restate the pairwise as a k-means problem. Thereby,
we can devise polynomial time approximation algorithms for pairwise clustering
with JS divergences. We establish a relationship to the IB for the HCM case
allowing us to extend the approximation results to the IB in the β → ∞ limit
– which is known to be NP-hard. These are the first rigorous approximation
results for such clustering models. We also discuss optimization heuristics allow-
ing quick operation in practice. In the experimental section, the applicability to
image segmentation problems is demonstrated. We also show the possibility of
simple data fusion in combination with kernel PCA-based de-noising leading to
competitive solutions in comparison with HCM (sec. 4).

2 The Jensen-Shannon-Kernel

Let p = (p(y)) ∈ M(Y) and q = (q(y)) ∈ M(Y) be distributions over a discrete
domain Y with M(Y) the set of distributions on Y. The JS divergence is a
symmetrized version of the KL divergence dKL:

R≥0 4 dJS(p‖q) :=
1
2
dKL(p‖m) +

1
2
dKL(q‖m) (1)

with m = 1
2p + 1

2q. Clearly, dJS is symmetric, > 0 iff p �= q, and the square of
a metric [6]. In fact, dJS represents a conditionally negative semi-definite kernel
function [8]. An outline of the proof and a discussion of the issue of embeddings
into vector spaces follows. Let k be a conditionally positive definite (cpd) kernel.
Then, k can be transformed into a positive definite kernel function and there
is a Hilbert space H, such that −k corresponds to squared 2-norm distances H
[14]. Hence, we show that k = −dJS is cpd.

Definition 1 (e.g. in [14]). A symmetric function k on M(Y)×M(Y) is called
conditionally positive definite (cpd) kernel if it is a positive semi-definite kernel
for all m ∈ N and all ci ∈ R with

∑

i∈[m]

ci = 0. (2)

634 T. Lange and J.M. Buhmann

Thus, we show that dJS obeys
∑

i,j cicjdJS(pi‖pj) ≤ 0. for all ci, cj fulfilling
eq. 2 and for all pi,pj ∈M(Y) (c.f. [1]). Now, note that

dJS(p‖q) =
1
2

∑

y∈Y

[
p(y) log

(
2p(y)

p(y) + q(y)

)
+ q(y) log

(
2q(y)

p(y) + q(y)

)]
(3)

and, hence, if each summand is negative definite, then dJS is. By expansion
∑

i,j

cicjpi(y) log (2pi(y))

︸ ︷︷ ︸
=0

+
∑

i,j

cicjqj(y) log (2qj(y))

︸ ︷︷ ︸
=0

(4)

−
∑

i,j

cicj(pi(y) + qj(y)) log (pi(y) + qj(y)) ,

since
∑

i ci = 0. Because −z log z is negative definite for z ∈ R+, −dJS is cpd
(see e.g. [1],p. 89 & pp. 218-19). Next, we discuss how an embedding can be
found using the empirical kernel map.

Let In be the n×n identity matrix and en = (1, . . . , 1)	. Let Qn := In− 1
nene	n

be the centering matrix. The centered matrix K̃ = − 1
2QnDJSQn, with DJS =

(dJS(pi‖pj))1≤i,j≤n, is positive definite (prop. 8 in [14]), since K = −DJS is cpd,
and, hence, DJS must derive from squared Euclidean distances (thm. 1 in [13]).
Kernel Principal Component Analysis (kPCA) can be used to find a (n − 1)-
dimensional, isometric embedding in (Rn−1, ‖ · ‖) (cf. [13]): Let K̃ = UΛU	 be
an eigen-decomposition of K̃ with U = (u1, . . . , un) and Λ = diag(λ1, . . . , λn),
λi ≥ λj , for i ≤ j. Then, a d-dimensional embedding, d ≤ n − 1, can be found
by X := Ud(Λd)1/2 with Ud = (u1, . . . , ud) and Λd = diag(λ1, . . . , λd). Taking
d < n − 1 comes at the expense of distorting the inter-point distances in the
embedding space. However, de-noising of the original data can be achieved this
way which can be advantageous for clustering [13]. For d = n− 1, using kPCA
an (n−1)-dimensional, isometric embedding into real vector space can be found
such that squared Euclidean distances in the embedding space correspond to JS
divergences in M(Y).

3 Pairwise Clustering with the JS-Kernel

The problem of Pairwise Clustering [9] can be stated as follows: Given an n×n
matrix D = (Dij) of pairwise dissimilarities between objects i and j, find an
assignment C : [n]→ [k] of objects to classes such that

hpw(D;C) =
1
2

∑

ν∈[k]

1
nν

∑

i,j∈C−1(ν)

Dij (5)

is minimized where nν := |C−1(ν)| with C−1(ν) = {i ∈ [n]|C(i) = ν}. hpw mea-
sures the avg. within-cluster dissimilarity and aims at finding compact clusters.

In histogram grouping, a problem instance consists of n empirical distributions
px = (p̂(y|x))y∈Y assuming p(x) = 1

n , x ∈ X . Here, dJS represents a natural

Kernel-Based Grouping of Histogram Data 635

measure for testing if two empirical distributions p and q might have arisen
from the same source: the authors of [5] quantified the probability that the
(sequence of) measurements for objects xi and xj were drawn from the same
distribution by the method of types [3]. Using the JS divergence as dissimilarity
Dij = dJS(pxi‖pxj) for pairwise histogram grouping is, hence, natural, as objects
are grouped together that are likely to have the same origin.

The pairwise clustering criterion hpw can be rephrased as a k-means problem
(cf. [13]) if pairwise dissimilarities correspond to squared Euclidean distances.
We exploit this to get approximation guaranties for pairwise grouping with JS
divergences. The results are extended to the first approximation guaranties for
the IB in the literature.

Approximation Results: JS divergences correspond to squared distances in a real
Hilbert space (cf. sec. 2). Thus, there is a function φ mapping distributions p to
φ(p) in that space. Hence, one obtains for hkm and hpw (cf. [13]):

hpw-js =
∑

ν,i,j

1
2nν

=dJS(pxi
‖pxj

)

︷ ︸︸ ︷
‖φ(pxi)− φ(pxj)‖2 = hkm =

∑

i∈[n]

‖φ(pxi)− zC(i)‖2, (6)

where zν = 1
nν

∑
i∈C−1(ν) φ(pxi) is the centroid in feature space. An isometric

embedding into a real vector space based on the empirical kernel map can be
computed by the procedure discussed in sec. 2 (cf. [13]). Optimizing hpw with
pairwise JS divergences and minimizing hkm on the embedded data are, thus,
equivalent problems. Hence, every approximation algorithm for hkm is one for
hpw-js. There is, e.g., a polynomial time approximation scheme (PTAS) for the k-
means objective function [11]. Hence, one can get ε-close, ∀ε > 1, to the optimal
solution of hkm in running time polynomial in n. A 2-approximation can also
be obtained by a k-dimensional embedding (via kPCA) of the data: an optimal
solution in the k-dimensional subspace is known to yield a 2-approximation for
the (n−1)-dimensional problem [4]. Finding the optimal solution by enumerating
all Voronoi partitions in Rk takes O(nk2+1) steps (cf. [10]), and, hence, one
obtains a polynomial time 2-approximation algorithm.

Theorem 2. If DJS is a matrix of pairwise JS divergences, there is a PTAS for
hpw(DJS;C). Using kPCA, there is also a 2-approximation for hpw(DJS;C).

Relation to the Information Bottleneck: One motivation for studying the JS ker-
nel for clustering stems from its close relationship to the Information Bottleneck
(IB) in its hard clustering version, i.e. the Histogram Clustering Model (HCM)
(cf. [12]). Here, we develop a connection between hard-clustering IB/HCM and
Pairwise Clustering with the JS kernel yielding approximation guaranties for the
hard-clustering IB case.

The HCM cost function is related to the IB as follows: Suppose, C : [n]→ [k]
is a hard clustering, then I(X,C) = H(C) holds, since p(ν|x) ∈ {0, 1}, for ν ∈ [k].

636 T. Lange and J.M. Buhmann

Now consider I(Y,C): With qν = (p(y|ν))y∈Y , where p(y|ν) =
∑

x p(y|x)p(x|ν)
one obtains for the second term of the IB functional

I(Y,C) = −
∑

ν,i

p(xi, ν)dKL (pxi‖qν) + const. (7)

with the second term being a data-dependent constant. Assuming that p(x) =
1/n and p(ν|x) ∈ {0, 1}, one gets in the β →∞-limit after dropping the constant
the HCM cost function:

hhcm({pxi | i ∈ [n]};C) :=
1
n

∑

ν∈[k]

∑

i∈C−1(ν)

dKL (pxi‖qν) . (8)

A relationship between hhcm and hpw-js is now established. First note, that we
have dJS ≤ 1

2dKL (eq. (9) in [16]). Consider now

hcjs({pxi | i ∈ [n]};C) =
1
n

∑

ν∈[k]

∑

i∈C−1(ν)

dJS (pxi‖qν) (9)

obtained by replacing dKL with dJS in hhcm. Clearly, hcjs ≤ 1
2h

hcm and nhcjs ≤
2hpw-js holds, by the joint convexity of the JS divergence [2]. Also from [16]:

2hpw-js − nhcjs =
n

2
hhcm − α ≥ 0⇔ 2hpw-js − n

2
hhcm + α = nhcjs ≥ 0 (10)

for some α ≥ 0. Hence, we finally arrive at a lower bound on hhcm in terms of
hpw-js:

hcjs ≤ 1
2
hhcm ⇒ hpw-js ≤ n

2
hhcm. (11)

We now look for an upper bound: At first, we note that for any two distribu-
tions p and q, we have

dKL(p‖q) ≤ 2dJS(p‖q) + log(
1
2
(1 + γ)), (12)

where γ = maxy
p(y)
q(y) (thm. 4 in [16]). For any solution of hhcm, assuming p(y|ν) =

1/nν

∑
i∈C−1(ν) p̂(y|xi): γ is bounded for dKL(pxi‖qν) if only quotients with

p(y|ν) �= 0 are considered. We can neglect the other case because if p(y|ν) = 0,
then p̂(y|xi) = 0 and, thus, 0 log 0

0 = 0. Let γ̄ := maxν maxi∈C−1(ν) log(1
2 (1 +

maxy{ p̂(y|xi)
p(y|ν) | p(y|ν) �= 0})). Clearly, γ̄ is also finite. Then,

2
n
hpw-js ≤ hhcm ≤ 2hcjs + γ̄ ≤ 4

hpw-js

n
+ γ̄. (13)

Intuitively, it is clear that an optimal solution for hhcm minimizes γ̄, since a large
γ̄ corresponds to a large cost contribution. Thereby, we arrive at the following

Theorem 3. Let {pxi | i ∈ [n]} be a fixed instance and let C∗ be an optimal
solution for hhcm. Then, if C is an ε-approximate solution for hpw-js, the costs
w.r.t. hhcm can be bounded from above by 2εhhcm(C∗) + γ̄ ≥ hhcm(C).

Kernel-Based Grouping of Histogram Data 637

Thus, by efficiently approximating hpw-js, we find a good approximate solution
to the hard clustering IB / HCM cost function. To the knowledge of the authors,
this is the first approximation guaranty for HCM in the literature.

Heuristic Optimization: Although it is pleasing to derive an algorithm that pro-
duces results of guaranteed quality, such algorithms still might be impractical
since they may require unacceptable computation time, especially for large k.
We, thus, resort to the classical k-means algorithm applied to the data embedded
into Rk using kPCA. The embedding represents a major computational burden,
as it requires the computation of an eigenbasis usually taking O(n3) steps. In
practice, this can be significantly sped up by first selecting m ' n randomly
sampled objects to compute an approximate eigenbasis and then use this basis to
get a representation of the full data set in the embedding space. This is achieved
using the technique in [13] which is the Nyström extension that has been suc-
cessfully applied in the spectral clustering context (see [7]). 2 The running time
for the embedding step can be reduced from O(n3) to O(m2n) being linear in
n if m = const. In total, one gets a running time of O(m2n + snk2) (s = #
iterations needed by k-means). This is linear in the number of objects in each
iteration for constant k and m.

4 Experimental Results

We provide experimental evidence for the usefulness of hpw-js and compare our
results with those obtained with HCM. For the optimization of hpw-js, we used
k-means on the data embedded in a k-dimensional subspace. The required eigen-
basis has been computed on a random sub-sample of size m = 500 (less than
10% of the full data set) and the Nyström extension technique was employed to
embed the whole data. For HCM, a multi-scale annealing implementation was
used. The number of classes was set to k = 5 for the toy image and to k = 3
for the real world image. We extracted 12-bin gray-value histograms from the
image data on a grid of 128 × 128 image sites. Gabor feature histograms (with
12 bins/channel) for 4 orientations and 3 different scales of the Gabor wavelet
were computed. The Gabor feature histograms were then stacked into a sin-
gle histogram consisting of 144 bins. By suitable re-normalization one obtains
empirical probability distributions.

A Toy Example: On the left side of fig. 1(a), an artificial image is shown with 5
segments: 3 segments are characterized by their texture while 2 of the segments
are characterized by intensity. We added Gaussian noise to the image to make
the segmentation task more difficult. All 5 classes cannot be separated based
on either only gray-value or texture information. The information contained in
2 Let DJS be the matrix for which the embedding was computed and Dnew

JS be the
n −m×m matrix with JS divergences between new and already known objects. Set
K̃new := − 1

2 (Dnew
JS Qm − 1

m
en−me	

mDJSQm). Then the embedding in d dimensions

can be obtained by Xnew = K̃newUd(Λd)
−1/2.

638 T. Lange and J.M. Buhmann

the gray-value and in the Gabor histograms was, thus, combined by averaging
the JS divergences obtained from both information sources. As the sum of two
kernels is a kernel, the algorithms mentioned above can still be applied to perform
segmentation (a trace normalization was also applied to the matrices). On the
right of figure 1(a) the result for k = 5 on this data set is shown, which identifies
all segments correctly. A similar combination can be obtained with HCM as well
but proves itself to be less efficient. The HCM segmentation, given in the middle
of fig. 1(a), was obtained by treating all channels independently, i.e. the costs
1
ln

∑
j∈[l]

∑
ν∈[k]

∑
i∈C−1(ν) dKL(p(j)

xi ‖q
(j)
ν) were considered, where j runs over

the l = 12 + 1 different (one intensity and 12 texture) channels. This strategy
obviously produces poorer results.3

(a) Toy Image Data: (left) Original Image, (middle) segmentation by HCM,
(right) JS Pairwise Clustering

(b) A real world example: Toy Image Data: (left) Original Image, (middle) Seg-
mentation by HCM, (right) JS Kernel Clustering

Fig. 1. Experimental results on the image data

Segmentation of Real World Images: On the left of figure 1(b) a real word
image depicting two zebras is shown. Again, HCM and Pairwise Clustering
with dJS were used. Obviously, segmentations obtained with JS divergences
on the combined data are smoother than those of HCM. In contrast to the
HCM result, the segmentation based on hpw-js nicely separates the zebras from
the two background classes. The use of kPCA for de-noising turned out to
be an important component as it emphasizes the group structure in this
example.

3 In principle one could resort to a distribution for the joint occurrence of a gray value
and a certain Gabor response. However, this implies a severe estimation problem.

Kernel-Based Grouping of Histogram Data 639

5 Conclusions

This work discussed the grouping of histogram data using pairwise clustering
with JS divergences. Theoretical results demonstrate that the JS kernel renders
the pairwise clustering problem tractable: efficient approximation algorithms can
be devised and fast heuristics exist. A connection to HCM as a special case of
IB was established. The experimental section demonstrated that our approach
can be useful in image segmentation: Segmentations obtained with hpw-js were
more meaningful than those generated using hhcm. Particularly noteworthy is the
possibility to fuse data in a straightforward way allowing for better segmentation
results in practice.

References

1. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups.
Springer, Heidelberg (1984)

2. Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on
entropy functions. IEEE T-IT 28(3) (1982)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, New York (1991)

4. Drineas, P., Frize, A., Kannan, R., Vempala, S., Vinay, V.: Clustering in large
graphs and matrices. Technical report, Yale University (1999)

5. El-Yaniv, R., Fine, S., Tishby, N.: Agnostic classification of markovian sequences.
In: NIPS 10 (1998)

6. Endres, D., Schindelin, J.: A new metric for probability distributions. IEEE T-
IT 49, 1858–1860 (2003)

7. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström
method. IEEE T-PAMI 26, 214–225 (2004)

8. Fuglede, B., Topsœ, F.: Jensen-shannon divergence and hilbert space embedding.
In: Proc. ISIT (2004)

9. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing.
IEEE T-PAMI 19 (1997)

10. Inaba, M., Katoh, N., Ima, H.: Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering. In: 10th Computational Geometry
(1994)

11. Ostrovsky, R., Rabani, Y.: Polynomial time approximation schemes for geometric
min-sum median clustering. JACM 49, 139–156 (2002)

12. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: 31st
ACL (1993)

13. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving
embedding of nonmetric proximity data. IEEE T-PAMI 25, 1540–1551 (2003)

14. Schölkopf, B.: The kernel trick for distances. In: NIPS 12 (2000)
15. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: 37th

ACL (1999)
16. Topsøe, F.: Some inequalities for information divergence and related measures of

discrimination. IEEE T-IT 46, 1602–1609 (2000)

Active Class Selection

R. Lomasky1, C.E. Brodley1, M. Aernecke2, D. Walt2, and M. Friedl3

1 Computer Science Department, Tufts University, Medford, MA
{rlomas01,brodley}@cs.tufts.edu

2 Chemistry Department, Tufts University, Medford, MA
{matthew.aernecke,david.walt}@tufts.edu

3 Dept. of Geography, Boston University, Boston, MA
friedl@bu.edu

Abstract. This paper presents Active Class Selection (ACS), a new
class of problems for multi-class supervised learning. If one can control
the classes from which training data is generated, utilizing feedback dur-
ing learning to guide the generation of new training data will yield better
performance than learning from any a priori fixed class distribution. ACS
is the process of iteratively selecting class proportions for data genera-
tion. In this paper we present several methods for ACS. In an empirical
evaluation, we show that for a fixed number of training instances, meth-
ods based on increasing class stability outperform methods that seek to
maximize class accuracy or that use random sampling. Finally we present
results of a deployed system for our motivating application: training an
artificial nose to discriminate vapors.

1 Introduction

Active Class Selection (ACS) addresses the question: if one can collect n addi-
tional training instances, how should they be distributed with respect to class?
We recognized this new class of supervised learning problems when working with
chemists to train an artificial nose. In this domain, creating more data requires
chemists to conduct experiments where vapors are passed over a sensor (the
nose). Thus, the new data is labeled at the same time as it is generated. This is
in contrast to a domain, such as the Reuters articles [15], in which data can be
collected independent of the labeling process.

One might assume that ACS is a subclass of active learning rather than its
complement [5]. Both iteratively grow the training data. However, active learning
requests labels for existing instances [1] or explicitly queries the feature space
by creating instances for an expert to label [5]. ACS requests that instances be
generated for a particular class.

Successful methods for ACS can be grounded by recent results in stability
and generalization [3,13,10], which show that one can predict expected error
based on empirical error with a stable learning algorithm that satisfies certain
constraints [13]. The goal of ACS is to minimize the number of new training
examples needed in order to maximize learning performance. In our case, given
the ability to choose class proportions for data collection we are interested in

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 640–647, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Active Class Selection 641

assessing for each class whether empirical error is converging to expected error;
i.e., to determine when we can do no better for this class. Uniform sampling
works best if the error rates of all classes are converging at the same rate. If this
is not the case, then one heuristic is to sample in proportion to the inverse of the
convergence rates for each class. Using this intuition, we propose two methods
for ACS that base class proportions on heuristic assessments of class stability.
We compare these two methods to uniform and random sampling (sampling in
proportion to the distribution specified as best by the domain expert), and to a
method that uses error rate directly.

Section 2 outlines five methods for ACS. Section 3 presents a comparison of
methods for ACS on both a land cover task and on the motivating problem of
this research, building an artificial nose, including results of ACS deployed in the
laboratory. In Section 4 we discuss the relationship of ACS to active learning and
instance weighting methods. Finally, in Section 5 we conclude with a discussion
of the open problems in this new research area.

2 ACS Methods

In this section, we present several methods for determining the class proportions
for the generation of new training instances. We assume there are no limits
on generating instances of a particular class. All of our methods begin with a
small set of labeled training data T1 of size b[1], where b[r] is the number of
instances to add in round r. The choice of b[1] and the class proportions of T1

are domain specific issues. We perform a f -fold cross validation (CV) over T1 (in
our experiments, f=10). From the CV, we obtain class predictions for T1. Our
methods differ in how they use these predictions to specify the class proportions
(Pr[c], c ∈ classes) for the next round of data generation. Specifically, on round
r, we generate a new set of examples, Tnew, a set of b[r] examples generated
using the class proportions Pr[c]. We add this data to the existing data to create
a new set Tr := Tr−1 +Tnew. We next describe five methods for generating Pr[c]
followed by a discussion of the choice of batch size and stopping criteria.

1) Uniform: Sample uniformly from all classes. Pr [c] := 1
|classes| ∗ b[r]

2) Inverse: Select class proportions Pr[c] inversely proportional to their CV
accuracy on round r − 1. Thus, we obtain more instances from classes on which
we have a low accuracy. This method relies on the assumption that poor class
accuracy is due to not having observed sufficient training data. Although this
may be true initially, our results show that this method does not perform well.

Pr[c] :=
1

acc[c]
∑ |classes|

i=1
1

acc[i]

∗ b[r]

3) Original Proportion: Sample in proportion to the class proportions in T1. The
idea is that domain knowledge led to these proportions, perhaps because they
are the true underlying class distribution or because of the creator’s intuition as
to which classes are more difficult. Pr[c] := nc ∗ b[r], where nc is the proportion
of class c found in the collected data Tr.

642 R. Lomasky et al.

4) Accuracy Improvement: Sample in proportion to each classes’ change in ac-
curacy from the last round. If the change for class c is ≤ 0, then Pr[c] = 0. The
intuition is the accuracy of classes that have been learned as well as possible will
not change with the addition of new data and thus we should focus on classes
that can be improved. This method looks for stability in the empirical error of
each class. Pr[c] := max(0, currAcc[c]−lastAcc[c]

∑ |classes|
i=1 currAcc[i]−lastAcc[i]

∗ b[r])

5) Redistricting: The idea behind redistricting is that instances from Tr−1 whose
classification changes when classified by a new classifier trained on Tr−1 ∪ Tnew

are near volatile boundaries. Thus, we strive to assess which classes are near
volatile boundaries in order to sample from these these “unstable” classes. The
pseudocode is shown in Algorithm 1. We begin with a CV over T1, the initial
sample of the data. We obtain a prediction for each xi ∈ T1. In the second round,
we collect T2 of size b[2]. We next perform a CV over all of the data collected thus
far and create a classifier for each fold. Note that on subsequent iterations, we
keep the data from Tr−1 in the same folds, and stratify only the newly generated
data Tnew into the existing folds. For each fold f , we compare the classification
results of Cr,f and Cr−1,f on each instance xi ∈ Tr−1. If the labels are different,
then the counter for the class specified by the true label yi, redistricted[yi] is
incremented. We conclude by generating predictions of the new batch of data
Tnew and increment r.

After the second round we add instances using the formula in Step 12, where
c is a class from the set of all classes in the dataset, Pr[c] is the number of
instances of c to add, nc is the proportion of c in Tr−1 and b[r] is the number
of new training instances. We divide redistricted[c] by nc to keep small classes
from being ignored and large classes from being overemphasized.

We note the special cases here rather than in pseudocode. First, for any round
r the next batch is added uniformly if instances were not redistricted in round r−
1. Second, if instances of class c have not been redistricted, then instances of c will
not be generated in the next round. Thus, resources are not wasted generating
instances of a class in which the accuracy is not changing. Redistricting may
temporarily blacklist c, but request c later. Empirical results show a class may
be removed from the blacklist upon adding instances of neighboring classes.

Because redistricting seeks to measure stability of the class boundaries, it cares
whether the prediction for instances are different than prediction in the previous
iteration, not whether it is correct. Ideally, we would like new instances to be
near the volatile class boundary. However, for many domains, there is no control
over whether data from a particular class is near a classification boundary.

Before moving to our experimental section, we discuss the issues of batch size
and stopping criteria. Batch size depends on the cost of generating instances.
If too few instances are added, the method may be impractical for domains in
which data is generated in large batches. If the batch size is too large, then
potentially less instructive training data may be gathered. Note that a different
batch size can be specified for each round. Stopping criteria depend on domain-
based constraints. Data collection terminates if the accuracy is acceptable to the

Active Class Selection 643

Algorithm 1. Redistricting Algorithm (b)
Require: b, array of the number of instances to add in round r
1: Generate a sample T1 of size b[1]
2: Divide T1 into 10 stratified folds T1,1, T1,2....T1,10

3: for f = 1 to 10 do
4: Build Classifier C1,f from {T1 − T1,f}
5: for all instances xi in T1,f do label1[xi] := C1,f (xi) end for
6: end for
7: r := 2
8: while instance creation resources exist and stopping criteria not met do
9: if r = 2 then

10: Tnew := “random” sample of size b[2]
11: else
12: Tnew := sample of size b[r] where the number of instances for class c is com-

puted as: Pr[c] =
redistricted[c]

nc
∑ |classes|

i=1
redistricted[i]

nc

∗ b[r]

13: end if
14: Tr := Tr−1 + Tnew

15: Initialize redistricted[c], ∀c ∈ classes
16: Divide Tnew into 10 stratified folds Tnew,1,Tnew,2....Tnew,10

17: for f = 1 to 10 do
18: Tr,f := Tr−1,f ∪ Tnew,f

19: Build Classifier Cr,f from {Tr − Tr,f}
20: for all instances xi in Tr−1,f do
21: labelr[xi] := Cr,f (xi)
22: if labelr[xi] �= labelr−1[xi] then
23: redistricted[yi]++ /* yi is the true label of xi */
24: end if
25: end for
26: for all instances xi in Tnew,f do labelr[xi] := Cr,f (xi) end for
27: end for
28: r++
29: end while

domain expert, data generation resources are exhausted, or given the available
features one is unable to wring more accuracy from the data. Investigation of
stopping criteria is an open problem.

3 Experiments

Our experiments compare the proposed methods on two domains for which ACS
is applicable. ACS can be applied with any supervised learning algorithm. In
our experiments, we report results run with (SVMs)1 and k-NN.

1 We used the SMO [12] with pair-wise classification to assess accuracy [7]. Using the
default parameters in Weka [21], the complexity parameter is set to one, and we use
a linear kernel.

644 R. Lomasky et al.

Experimental Method for Static Datasets: We simulate ACS using pre-existing
static datasets. We used a uniform distribution for the test set because it is
the default choice without knowledge of the class distribution of the underlying
population. We performed experiments where T1 had the same class distribution
as the entire dataset, but found no significant difference in any method and
thus present the results for T1 collected uniformly. Because the data are pre-
existing static datasets, we may run out of instances from a particular class. In
this case, we make the large classes uniform and include all instances from the
smaller classes. Similarly, when running the proposed ACS methods, we may not
have sufficient data of class c on round r as dictated by the proportion Pr[c].
In such cases, we sample the remainder of Tnew uniformly with respect to the
classes that still contain data. In our experiments, we used a 5-fold CV to assess
accuracy. This is distinct from the 10-fold CV that redistricting uses on training
data.

Artificial Nose Dataset: Gathered in the Walt Laboratory at Tufts University
[19], the “artificial nose” dataset consists of experiments in which vapors were
passed over an array of sensors (the nose) [2]. The nose is a general purpose
device that can be trained to discriminate the k vapors of interest. The accuracy
is a function of how well the sensors can differentiate among the vapors. We
first present results on a static dataset, and then at the end of this section, we
present results from deploying redistricting in the lab.

Prior to our collaboration, the chemists on our team generated a dataset of six-
teen classes2. The dataset is not uniformly distributed according to class because
the chemists used their intuition to collect data from “needed” classes. The nose
software currently uses 3-NN and we continued this practice. We repeated the ex-
periments using SVMs, with no significant difference in the results. We started
with 100 instances because the chemists believe it is sufficient to to make the ini-
tial redistricting decisions. We then add ten instances at a time. As more data is
added, all methods have seen the same data, and the results converge.

Figure 1(a) shows the results for the nose. The x-axis represents the number
of instances collected and the y-axis shows accuracy. We see that redistricting
rivals the scientists’ intuitions (“proportion” in the graph), and performs over
10% better than uniform sampling for parts of the graph. The reason that pro-
portion performs comparably to redistricting for this data set is because it was
collected before we began to work with the chemists. Prior to our collaboration,
the chemists were performing ACS by manually examining the results after each
new data collection to see where they were doing poorly and which classes were
confused. Inverse performs poorly because as mentioned in Section 2, it skews
data collection to favor classes that are “less learnable.” Results for “Improve-
ment” for this dataset are inconclusive because this method tends to focus on
just a few classes at a time, improving their accuracy, and then moving on to

2 Toluene, Dimethylmethlphosponate, ethanol, heptane, p-cymene, Isopropenyl ac-
etate, combinations of these vapors, water, and air For some vapor classification prob-
lems, the artificial nose can achieve almost 100% accuracy [2].

Active Class Selection 645

(a) Nose (b) Land Cover

Fig. 1. Results show that the stability-based method, Redistricting, outperforms other
methods of ACS

the next set of classes. The small number of instances in the dataset does not
allow the full cycle.

Land Cover Data: The land cover dataset consists of a time series of globally
distributed satellite observations of the Earth’s surface [4]. ACS is applicable
because geographers know where on the Earth’s surface one can expect to find
a given land cover type. We used an existing static dataset to illustrate the ben-
efits of ACS for this domain. Figure 1(b) shows the results for the land cover
data. The x-axis represents the number of training instances. The y-axis is the
accuracy obtained by applying a set of pair-wise SVMs on the test data that vote
based on the confidence assigned by the SVMs. T1=5000 and b[r]=250, a rea-
sonable number to be hand-labeled at one sitting. We exhaust the entire static
dataset, causing the same ultimate accuracies for all of the methods because
each method has seen the entire dataset. This is a function of the experimen-
tal method, not redistricting or ACS, nor limitations in the land cover types
of the Earth. Redistricting outperforms uniform, inverse and proportional (for
land cover, class proportions are dictated by the geographers’ intuition, which
is a highly skewed distribution). Accuracy improvement outperforms inverse,
proportional and uniform, but is worse than redistricting. We conjecture this is
because it looks only for improvements in accuracy rather than stability.

ACS in the Field: We deployed our software in the Walt Laboratory and the
chemists have begun gathering data guided by redistricting. An initial dataset
was gathered using the chemists’ intuition of the eight vapors of interest3. We
compute accuracy using k-NN with k=3 and 5-fold CV. Because of time limita-
tions in the lab, we only deployed uniform and redistricting.

The CV accuracy on the initial 168 instances was 74%. On each iteration,
we collected 49 additional instances. After one iteration, uniform achieves an

3 The vapors are benzaldehyde, benzene, butyraldehyde, chloroform, decanol, ethyl
propionate, and n-butanol.

646 R. Lomasky et al.

accuracy of 74% and redistricting leads to an accuracy of 83%. The second
iteration gives 85% and 86% accuracy, respectively. On the second iteration, both
uniform sampling and redistricting obtain similar performance. We conjecture
that we are close to the maximum obtainable accuracy for this set of vapors
and beads. To test this conjecture we re-ran the k-NN with all of the data (325
instances in total) and obtained an accuracy of 86%, supporting our conjecture.

4 Related Work: Active Learning and Instance Selection

Little attention has been paid to determining whether more accuracy can be
achieved when a practitioner can select the classes from which to generate train-
ing data. One notable exception is Jo and Japkowicz’s method for collecting
more examples of the minority class with the goal of increasing accuracy [9].

Active learning, like ACS, adds training examples to the dataset after exam-
ining properties of the classifier learned thus far. However, it assumes an existing
set of unlabeled data or that one can query the feature space explicitly [14,11].
For active learning, requesting more data is actually requesting a label [18]. ACS
does not draw from unlabeled data, rather it guides the generation of new data.
Indeed, situations in which both ACS and active learning are applicable trans-
late into situations where both the features’ values and the labels exist. In this
case, instance selection or weighting are applicable.

ACS is similar to methods for constructing a training set, either by instance
selection [17,11], or by weighting methods such as boosting [8]. Instance selection
methods focus on removing instances from a dataset that hinder classification
accuracy, e.g. [17,4,20,16]. Other methods change the training set’s class distri-
bution by sampling or instance replication to handle misclassification costs or
minority class issues (see [8] for an overview).

5 Conclusion

This paper identified a new class of problems called Active Class Section. ACS
answers the question: If given the opportunity, from which classes should you
generate additional training data? We evaluated several methods for ACS, each
of which can be applied in conjunction with any supervised learning al-
gorithm. We deployed redistricting as part of a real-world system in the Walt
Laboratory.

Many open problems remain. First, a deeper analysis of the relationship be-
tween the proposed methods and results on stability may lead to even better
methods. Second, determining when all of the available “structure” has been
learned from the data, and additional learning will lead to over-fitting, is a
critical objective for any learning problem. Thus, a more thorough analysis of
stopping criteria is needed.

Active Class Selection 647

References

1. Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms.
JMLR 5, 255–291 (2004)

2. Bencic-Nagale, S., Walt, D.: Extending the longevity of fluorescence-based sensor
arrays using adaptive exposure. Anal. Chem. 77(19), 6155–6162 (2005)

3. Bousquet, O., Elisseeff, A.: Stability and generalization. JMLR 2, 499–526 (2002)
4. Brodley, C., Friedl, M.: Identifying and eliminating mislabeled training instances.

JAIR 11, 131–167 (1999)
5. Cohn, D.A., Ghahramani, Z., Jordan, M.l.: Active learning with statistical models.

In: Advances in NIPS vol. 7, pp. 705–712 (1995)
6. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: ICML,

pp. 148–156 (1996)
7. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: NIPS, pp. 507–

513 (1998)
8. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intel.

Data Anal. 6(5), 429–449 (2002)
9. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. In: KDD, pp. 40–49

(2004)
10. Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-

out cross-validation. In: COLT, pp. 152–162 (1997)
11. Lewis, D.: A sequential algorithm for training text classifiers: Corrigendum and

additional data. SIGIR 29(2), 13–19 (1995)
12. Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal

Optimization. MIT Press, Cambridge, MA, USA (1999)
13. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity

in learning theory. Nature 428(6981), 419–422 (2004)
14. Raskutti, B., Ferra, H., Kowalczyk, A.: Combining clustering and co-training to

enhance text classification using unlabelled data. In: KDD, pp. 620–625 (2002)
15. Sanderson, M.: Reuters Test Collection. In: BSC IRSG (1994)
16. Sebban, M., Nock, R., Lallich, S.: Stopping criterion for boosting-based data re-

duction techniques: From binary to multiclass problem. JMLR 3, 863–885 (2003)
17. Srinivasan, A., Muggleton, S., Bain, M.: Distinguishing exceptions from noise in

non-monotonic learning. In: Int. Workshop on ILP (1992)
18. Tong, S., Chang, E.: Support vector machine active learning for image retrieval.

Multimedia, 107–118 (2001)
19. Optical sensing arrays. White paper, Tufts University (2006),

ase.tufts.edu/chemistry/walt/research/projects/artificialnosepage.htm
20. Wilson, D., Martinez, T.: An integrated instance-based learning algorithm. Comp.

Intel. 16(1), 1–28 (2000)
21. Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.: Weka:

Practical machine learning tools and techniques with java implementations (1999)

ase.tufts.edu/chemistry/walt/research/projects/artificialnosepage.htm

Sequence Labeling with Reinforcement Learning

and Ranking Algorithms

Francis Maes, Ludovic Denoyer, and Patrick Gallinari

LIP6 - University of Paris 6

Abstract. Many problems in areas such as Natural Language Process-
ing, Information Retrieval, or Bioinformatic involve the generic task of
sequence labeling. In many cases, the aim is to assign a label to each el-
ement in a sequence. Until now, this problem has mainly been addressed
with Markov models and Dynamic Programming.

We propose a new approach where the sequence labeling task is seen as
a sequential decision process. This method is shown to be very fast with
good generalization accuracy. Instead of searching for a globally optimal
label sequence, we learn to construct this optimal sequence directly in a
greedy fashion. First, we show that sequence labeling can be modelled
using Markov Decision Processes, so that several Reinforcement Learning
(RL) algorithms can be used for this task. Second, we introduce a new
RL algorithm which is based on the ranking of local labeling decisions.

1 Introduction

Sequence labeling is the generic task of assigning labels to the elements of a
sequence. This task corresponds to a wide range of real world problems (e.g.
character recognition, user modeling, bioinformatic, or information extraction).
We consider here supervised sequence labeling where a user provides a training
set of labeled sequences and wants to learn a model able to label new unseen
sequences. Training examples consist of pairs (X,Y), where X ∈ X is an input
sequence of elements (x1, . . . xT) and Y ∈ Y is the corresponding sequence of
labels (y1, . . . yT). Each yt is the label that corresponds to element xt and yt

belongs to the label dictionary denoted L. For example in handwritten recogni-
tion, X is a written word (an image for example) and Y is the corresponding
recognized word, with characters in L.

The sequence labeling problem has mainly been addressed with models that
are based on first-order Markov dependencies assumptions upon the label se-
quence. For example, the basic Hidden Markov Models model considers that a
label yt only depends on the previous label yt−1 and the corresponding input el-
ement xt. This assumption allows us to use Dynamic Programming algorithms –
typically the Viterbi algorithm [1] – for computing the best sequence of labels
knowing an input sequence. We would like to point out two important lim-
itations of this approach. At first, such models exclude the use of long-term
output dependencies and particularly the use of features defined globally on the
whole label sequence. NLP offers many examples of such long-term dependencies

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 648–657, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Sequence Labeling with Reinforcement Learning and Ranking Algorithms 649

(e.g. is there yet any verb in the sentence?) that cannot be handled by classi-
cal Markovian models such as Hidden Markov Models (HMM) or Conditional
Random Fields (CRF). A second important issue is that some sequence labeling
tasks consider that labels are structured data, e.g a label may represent a set
of features, or a relation to another element. For example, for the dependency
parsing task, the aim is to identify relations between words. For these problems,
the complexity of Viterbi based inference may be prohibitive. These two points
motivate a need to develop fast inference methods for sequence labeling.

Contribution: Recently, a promising new approach has been proposed and has
been instantiated in two systems named LaSO [2] and Searn [3] (see part 5 for
more details). This approach does not try to model joint or posterior probabilities
of sequences, but rather attempts at directly modeling the process of inferring
the ideal label sequence. Using the same type of idea, we have developed a new
method that builds the label sequence sequentially from any input sequence. It
is based on Reinforcement Learning (RL) models and allows us to obtain nice
performances with a very low complexity. The contributions of this paper are
then threefold:

– First, we formalize the sequence labeling task as a Markov Decision Pro-
cess (MDP) and then we cast the problem of learning as a Reinforcement
Learning problem. This idea will make possible the use of different RL meth-
ods for sequence labeling and is new up to our knowledge. In the paper, we
will use a specific RL method, namely SARSA, to evaluate this idea. This
straightforward application of the MDP/ RL framework to sequence labeling
incrementally builds the desired label sequence in a sequential order start-
ing from the first element of the sequence. We also propose an alternative
method where labels can be predicted in any order. The idea is that labels
with stronger confidence should be decided first so that an enriched con-
textual information could help to reduce the ambiguities when deciding for
labels with smaller confidence. Since the method can take into account non
local contexts, the more decisions there are, the more informative the context
is for future decisions.

– Second, we propose a new RL algorithm based on a ranking method. Current
RL algorithms use classification or regression frameworks for estimating the
next ”optimal” action. However all that is needed here is an ordering of
these potential actions which will allow us to choose the best one. This is
closer to a ranking problem than it is to regression or classification one. The
new algorithm relies on the idea of learning to rank possible labeling actions
at each step of the inference process. This approach will be shown to have
performances comparable to state-of-the-art sequence labeling models while
keeping a much lower complexity.

– Third, our MDP view allows us to compare methods like LaSO or Searn with
standard RL algorithms and with our ranking based method. We especially
discuss the Sampling strategy of these methods, focussing on ideas from the
field of RL that could help for the structured prediction community.

650 F. Maes, L. Denoyer, and P. Gallinari

The paper is organized as follows: general background on MDPs and RL al-
gorithms is provided in section 2, section 3 presents our MDP-based models
for label sequence building. Section 4 describes our new ranking based approach
for learning in these MDP-models. Section 5 describes related work in sequence
labeling. The efficiency of the proposed RL approach is demonstrated on three
standard datasets in section 6. Last, in section 7, we compare the different meth-
ods discussed in the paper.

2 Background

Markov Decision Processes [4] provide a mathematical framework for modeling
sequential decision-making problems. They are used in a variety of areas, in-
cluding robotics, automated control, economics and manufacturing. A MDP is
defined by a set of states S, a set of actions A, a transition function δ, a scalar
reward function in �. It describes an environment in which agents can evolve.
At any time t, an agent is in a given state st ∈ S. In each state s, it can choose
between several actions As ⊆ A. Once the agent has chosen one of those actions
at, the transition function computes a new state st+1 and the agent receives the
immediate reward rt ∈ �. An agent relies on a policy π which is a function that
maps states to action probabilities. Reinforcement Learning (RL) algorithms
attempt to find the policy that maximizes the cumulative reward which corre-
sponds to the total amount of reward the agent receives in the long run. Such a
policy is called an optimal policy.

Many RL algorithms consider a value function of each state-action pair given
a policy. Informally, this Q-function corresponds to how good it is to select a
given action in a given state. In this paper, we approximate the action value
function using a linear function [5] :

Qθ(s, a)
approx

= Q̃θ(φ(s, a)) =< θ, φ(s, a) > (1)

where < ., . > is the classical dot product, θ is a vector of parameters and φ
is feature function φ : S × A → �n that transforms state-action pairs into vec-
tors. Q̃θ : �n → � is called the action value prediction function. Note that this
function could also use non-linear models. In order to demonstrate the straight-
forward application of RL algorithms to the task of sequence labeling, we used
the standard approximate-SARSA(0) algorithm [6], for learning Q̃ which defines
the sequence labeling policy.

3 MDPs for Sequence Labeling

In this section, we develop models of incremental sequence labeling using the
MDP formalism. We consider that the sequence labeling task is solved by an
agent that, knowing the input sequence X , incrementally builds the correspond-
ing output label sequence Y . The MDP defines the environment of this agent.

Sequence Labeling with Reinforcement Learning and Ranking Algorithms 651

We first propose, in part 3.1, a model where the agent labels the sequence starting
from the first element and then sequentially chooses the label of the next element.
In part 3.2, we propose an original approach to sequence labeling, where the
agent will label the elements of the input sequence in an order-free manner.

3.1 Left to Right Labeling

In order to show how sequence labeling can be modeled using MDPs, we first
present the idea of predicting labels from left to right. In Left to Right labeling,
initial states correspond to unlabeled element sequences. At each step t ∈ [1, T]
of the process, where T is the length of the input sequence, the agent selects a
label yt corresponding to element xt. The process finishes at time T when the
whole label sequence has been built. In order to express this with an MDP, we
define the state space S, the set of actions A, the transition function δ, and the
rewards.

State space. Since labels can depend on the whole input sequence X and on
other labels, our states include both the current X and the current partially
labeled sequence Ŷ . Partially labeled sequences are composed of labels in L∪{⊥}
where ⊥ means that the corresponding element has not been labeled yet. There
is one initial state per input sequence X : s⊥X = (X, (⊥, . . . ,⊥)).

Action space and transitions. At time t, in state st, we want our agent to
select a label for yt. The possible actions Ast are simply the possible labels for
yt given by L. When such an action is performed, the transition function of the
MDP returns the new state of the agent. In our case, the transition consists in
adding the selected label yt to the already built partial sequence Ŷ .

Rewards. Sequence labeling is often evaluated using the Hamming loss which
counts the number of wrong labels. Since each action corresponds to a single
label prediction, we can directly decompose the Hamming Loss over individual
actions. Each time the agent fails to predict the correct label it receives a penalty
of 1. Since reward should be maximized, a penalty of 1 corresponds to a reward
of −1. With this reward, maximizing the total amount of reward is equivalent
to minimizing the Hamming loss. Sequence labeling can be evaluated with other
loss functions, which eventually are not additively decomposable (e.g. F1-scores).
In order to enable learning with any loss, the generic solution is to give the whole
reward (the opposite of the loss) at the end of the episode. This corresponds to
a more traditional RL configuration where the whole sequence of actions leads
to a single reward.

Complexity. The Left to Right (LR) sequence labeling MDP is illustrated in
figure 1 (a). Since inference is greedy, its complexity is the number of steps times
the complexity of one step. One step requires to evaluate all actions available in
As. The complexity of inference in the LR labeling is thus O(T |L|) where |L| is
the number of possible labels. This complexity is lower than the usual Viterbi
complexity O(T |L|2).

652 F. Maes, L. Denoyer, and P. Gallinari

(a) Left to Right (b) Order Free

Fig. 1. This figure illustrates the Left to Right and Order Free Sequence Labeling
MDPs. Each node is a state, which includes both the input sequence X and the partially
labeled output sequence Ŷ . Each edge corresponds to an action and leads to a new
state. We have illustrated here, a possible value function Q(s, a) and the corresponding
greedy trajectories (bold edges).

3.2 Order Free Labeling

Instead of labeling from left to right (or equivalently from right to left), we
consider here a model that is able to label in any order. The underyling idea
is that it may be easier to first label elements with a high confidence and then
to label elements with lower confidence given the labels already chosen. For
example, in a handwritten recognition task, some letters may be very noisy
whereas others are clear and easy to recognize. If the agent begins to recognize
the letters with a high confidence, it then will be able to use these labels, as
additional context, to decide how to label the remaining letters. In order to
enable order free labeling, an action will consist of both the position p and the
label of an element. The action set As of this new MDP is the cartesian product
between L and the set of unlabeled element positions in s. The Order Free (OF)
sequence labeling MDP is illustrated in figure 1 (b).

Order Free sequence labeling is an original and attracting solution, but it
comes with a cost: the number of possible actions per step is much higher than
in LR labeling. The inference complexity of OF labeling is O(T 2|L|). This should
be contrasted with the fact that, when the description function φ only takes
into account local dependencies (as with Markov models), a majority of actions
remains unchanged when performing one step and their scores do not need to
be re-computed at the next step. An efficient implementation could rely on this
idea in order to reduce the inference complexity of OF.

4 Ranking Approach

In this section, we introduce a new ranking based method for learning the optimal
policy in MDPs, such as those presented above. This method will be shown

Sequence Labeling with Reinforcement Learning and Ranking Algorithms 653

to outperform SARSA on the sequence labeling tasks in section 6. Many RL
approximate algorithms rely on the idea of modeling the action value function
Q(s, a). During inference – the greedy execution of a policy – this value function
is used to sort actions and to pick the best one at each step. Since inference only
uses an order information in Q, we propose here to directly learn to rank actions
instead of learning to approximate the value function. This is done by learning
an action utility function which defines an order over the set of possible actions.

Algorithm 1. Ranking Based Algorithm
1: θ ← initial value of parameters (e.g. 0)
2: repeat � For all episodes
3: s ← sample an initial state
4: while not isStateFinal(s) do � For all states
5: for each action a ∈ As do
6: a∗ ← ImproveAction(s, a)
7: if a∗ �= a then
8: Learn Q̃θ(φ(s, a)) � Q̃θ(φ(s, a∗)) � Learning step
9: end if

10: end for
11: a ← SampleAction(s, θ) � Sampling step
12: Take action a and observe new state s′

13: s ← s′

14: end while
15: until convergence of θ
16: return θ

The proposed algorithm (algorithm 1) samples the state-action space in the
same way as most RL algorithms do (e.g. with ε-greedy sampling, which most
of time selects the action with best score, and sometimes selects a random ex-
ploratory action). For learning, the algorithm makes the assumption that it can,
for any action a, get a better action a∗. This better action is provided through
the improvement function ImproveAction(a) (line 6). In models such as LR and
OF with Hamming loss, the improvement function is easy to construct: it simply
gives the action that provides the best label. In more general situations, the im-
provement function can be implemented on the basis of simulation using rollout
algorithms. We refer the interested reader to [6] and [7] for more information.

For each visited state, the algorithm considers all available actions. For each
of those actions a, it computes the action a∗ =ImproveAction(a) and builds a
ranking pair (a, a∗). This pair is then used to update the ranking model (line
9 where the ' symbol means that utility Q̃θ(φ(s, a)) should be made lower
than utility Q̃θ(φ(s, a∗))). Note that any ranking method can be used within
algorithm 1. In our experiments, we used a linear utilty function, updated with
the online τ -perceptron rule, which is a method close to the standard perceptron
update rule that offers better empirical results [8].

654 F. Maes, L. Denoyer, and P. Gallinari

5 Related Work

In this part we present state-of-the-art models for sequence labeling. Some of
these models will be used as baselines in the experiments part. Many sequence
labeling models based on a Markov assumption over labels have been proposed
such as Hidden Markov Models and Conditional Random Fields [9] (CRFs). In
such models, a label yt only interacts with the input sequence and its neighbor-
hood labels yt−1 and yt+1. This enables Dynamic Programming based inference.
CRFs model the conditional probability of the label sequence knowing the input
sequence, by using the Maximum Entropy principle. Some recent works suggest
the use of discriminant training, such as Hidden Markov Support Vector Machine
[10] which have been generalized to different structured learning tasks through
the SVMstruct model [11]

An other family of methods based on the idea of learning the label sequence
building process has started to be explored recently in the structured learning
community. The Learning as Search Optimization [2] (LaSO) model learns a
scoring function associated to building states. This function is then used to pri-
oritize states using a beam-search procedure. Choosing a beam size of 1 leads
to greedy learning and inference methods, which are close to ours. More re-
cently, the same authors have proposed the Searn – Search-Learn – algorithm
[3] which reduces the building process to a standard classification task. Searn
starts with a good initial policy defined over training examples. The algorithms
slowly transforms this initial policy into a fully learned policy able to generalize
to new examples. Each learning iteration follows the current policy in order to
create a classification example per visited state. These examples are then used
to learn a standard classifier. A new policy, which is a linear mixture of the
current one and of the new classifier, is then defined for the next iteration. At
the end of learning, the initial policy – which only works on training examples
– has no more influence on the learned policy. Searn is shown to perform better
than LaSO, and also gives better theoretical bounds. See section 7 and [12] for
comparison of our approach, LaSO and Searn.

6 Experiments

Baseline Models. We have used three baseline methods in order to compare
our models: CRFs, SVMstruct and Searn. For CRFs, we used the FlexCRFs im-
plementation1 with default parameters. We compared with discriminant training
of the SVMstruct approach, thanks to the implementation given by the authors:
SVMhmm2. For each dataset, we tried three values of the C parameter: 0.01,
1, and 100, and kept only the best results. Our last baseline is a simple imple-
mentation of Searn provided by the authors. This implementation is limited to
sequence labeling with Hamming loss and works with an averaged perceptron as
base learner. The implementation does not give access to many parameters, so
1 http://flexcrfs.sourceforge.net
2 http://svmlight.joachims.org/svm struct.html

Sequence Labeling with Reinforcement Learning and Ranking Algorithms 655

few tuning was performed. It should be noted that the authors reports better
results than those we present here, when using a Support Vector Machine as
base learner.

Data Sets. We performed our experiments on three standard sequence label-
ing datasets corresponding to three tasks: Spanish Named Entity Recognition
(NER3: 9 labels, 10,000 sentences of 50 words), Natural Language Chunking
(Chunk4: 3 labels, 250,000 tokens) and Handwritten Recognition (HandWritten
[13]: 26 labels, 6,000 words of 5-10 letters). These data sets correspond to the
experiments performed in [3] and [11]. We used two train/test splits for NER and
HandWritten. In the Large split, we used 90% for training and 10% for testing
and Small is the inverted data set.

Feature Descriptions. All the models we compare rely on a feature function
that allows us to jointly describe an (X, Ŷ) pair. Our approach can use any
non-Markovian features but, in order to compare the different methods, we
decided to use the same feature information. Due to a lack of space, we do not
detail here the features that have been used. The features are described in [12]
and are the same than the ones in [3].

SARSA Ranking Baselines
Left Right Order Free Left Right Order Free CRF SVMstruct Simple Searn (LR)

NER-small 91.90 91.28 93.67 93.35 91.86 93.45 93.8
NER-large 96.31 96.32 96.94 96.75 96.96 - 96.3

HandWritten-small 68.41 70.63 74.01 73.57 66.86 76.94 64.1
HandWritten-large 80.33 79.59 83.80 84.08 75.45 - 73.5

Chunk 96.08 96.17 96.22 96.54 96.71 - 95.0
NER-large ≈ 35min ≈ 11h ≈ 25min ≈ 8h ≈ 8h > 3 days ≈ 6h

HandWritten-large ≈ 15min ≈ 6h ≈ 12min ≈ 4h ≈ 2h > 3 days ≈ 3h

Results. We compared the LR and OF approaches using both a SARSA learn-
ing algorithm and our new ranking algorithm. We also give results of the three
baselines described above. We use ε-greedy sampling where ε decreases expo-
nentially with the number of iterations. The discount rate in SARSA was tuned
manually. Learning rate in both SARSA and our Ranking algorithm decreases
linearly. It is not clear whether the OF model helps for better predictions on
these datasets. It has been previously shown that first-order dependencies on
labels in the NER task do not help much. This could explain why OF and LR
are not significantly different on these tasks. In HandWritten and Chunk, OF
seams to help a little bit, at the price of a much larger learning time. The rank-
ing approach always perform better than its SARSA counterpart. The idea of
ranking actions directly, instead of learning to approximate the value function,
leads in our experiments to better generalization. The results demonstrate that
our approaches are very competitive for the task of sequence labeling. One can

3 http://www.cnts.ua.ac.be/conll2002/ner
4 http://www.cnts.ua.ac.be/conll2000/chunking

656 F. Maes, L. Denoyer, and P. Gallinari

choose between the fast method: LR, or the method which suffers much less from
local ambiguities: OF.

7 Discussion

LaSO, Searn, SARSA (and most RL algorithms) or our ranking algorithm are
tightly related one to the others. We propose a comparison in [12] which is based
on four key points: the sampling strategy, the base learning problem, the feature
description strategy and the main learning assumptions each method is based
on. We focus here on one major point: the sampling strategy which is the way
the actions of the MDPs are chosen during learning. Note that this comparison
concerns the use of these methods on general structured prediction tasks and is
not specific to sequence labeling.

LaSO: Optimal Sampling. The optimal strategy corresponds to an algorithm
that only chooses correct actions. This leads to optimal trajectories: each visited
state corresponds to a perfect partial solution. The problem with such trajec-
tories is that the learner is not trained to recover from previous errors. This is
very undesirable, since when generalizing, the action chooser will probably do
some prediction errors.

Searn: Optimal → Predicted Sampling. The Predicted Sampling means that
the learner always chooses the action that is predicted by itself at that point.
With this kind of sampling, if an error occurs, the learner will be trained to re-
cover from this error. Searn works by moving away from the optimal trajectories
toward the predicted trajectories. This has proved to be much more robust than
a pure optimal strategy.

Most RL algorithms, Sarsa and Ranking: Predicted + noise Sampling.
The Predicted + noise strategy corresponds to a strategy where the agent follows
its predicted actions, corrupted with some noise (e.g. with ε-greedy or Gibbs
sampling). The quantity of noise can be controlled and is generally a decreasing
parameter. We believe that this idea from the field of RL should be looked at
more closely in the structured prediction community. We believe that this kind
of exploration in the state-space leads to more robust learning, especially in the
case of few training examples.

8 Conclusion

In this paper, we have proposed a new sequence labeling method based on the
RL formalism (MDP and SARSA). The key idea proposed here is to model the
label sequence building process using a Markov Decision Process. This led us to
an original sequence labeling method in which labels can be chosen in any order.
We then introduced a Ranking based algorithm in order to efficiently learn how
to label a new sequence. Our approach is shown to be competitive with state-of-
the-art sequence labeling methods while being simpler and much faster. Finally,

Sequence Labeling with Reinforcement Learning and Ranking Algorithms 657

on the basis of the link with MDP and RL algorithms, we discussed sampling
strategies in LaSO, Searn and RL approaches such as the one we proposed.

We believe that our work is also of general interest for the RL community
since it develops an original application of RL algorithms. In order to solve
sequence labeling, we construct very large MDPs, where states and actions are
formed of structured data. We use a high dimensional feature description of
states and actions and present a large scale application of RL which is shown to
be competitive with domain specific methods. Furthermore, our application is a
successful example of the generalization capability of RL methods.

References

1. Forney, G.D.: The viterbi algorithm. Proceedings of The IEEE 61(3), 268–278
(1973)

2. Daumé III, H., Marcu, D.: Learning as search optimization: Approximate large
margin methods for structured prediction. In: ICML, Bonn, Germany, ACM Press,
New York (2005)

3. Daumé III, H., Langford, J., Marcu, D.: Search-based structured prediction (2006)
4. Howard, R.A.: Dynamic Programming and Markov Processes. Technology Press-

Wiley, Cambridge, Massachusetts (1960)
5. J. Si, A. G. Barto, W.B., P., W.II., D.: Handbook of Learning and Approximate

Dynamic Programming. Wiley&Sons, INC., Publications (2004)
6. Sutton, R., Barto, A.: Reinforcement learning: an introduction. MIT Press, Cam-

bridge (1998)
7. Bertsekas, D.P: Rollout agorithms: an overview. In: Decision and Control, pp. 448–

449 (1999)
8. Tsampouka, P., Shawe-Taylor, J.: Perceptron-like large margin classifiers (2005)
9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In: ICML, pp. 282–289. Morgan
Kaufmann, San Francisco, CA (2001)

10. Altun, Y., Tsochantaridis, I., Hofmann, T.: Hidden markov support vector ma-
chines. In: ICML, pp. 3–10. ACM Press, New York (2003)

11. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: ICML, ACM Press,
New York (2004)

12. Maes, F., Denoyer, L., Gallinari, P.: Sequence labeling with reinforcement learning
and ranking algorithms. Technical report, LIP6 - University of Paris 6 (2007)

13. Kassel, R.H.: A comparison of approaches to on-line handwritten character recog-
nition. PhD thesis, Cambridge, MA, USA (1995)

Efficient Pairwise Classification

Sang-Hyeun Park and Johannes Fürnkranz

TU Darmstadt, Knowledge Engineering Group,
D-64289 Darmstadt, Germany

{park,juffi}@ke.informatik.tu-darmstadt.de

Abstract. Pairwise classification is a class binarization procedure that converts a
multi-class problem into a series of two-class problems, one problem for each pair
of classes. While it can be shown that for training, this procedure is more efficient
than the more commonly used one-against-all approach, it still has to evaluate a
quadratic number of classifiers when computing the predicted class for a given
example. In this paper, we propose a method that allows a faster computation of
the predicted class when weighted or unweighted voting are used for combining
the predictions of the individual classifiers. While its worst-case complexity is
still quadratic in the number of classes, we show that even in the case of com-
pletely random base classifiers, our method still outperforms the conventional
pairwise classifier. For the more practical case of well-trained base classifiers, its
asymptotic computational complexity seems to be almost linear.

1 Introduction

Many learning algorithms can only deal with two-class problems. For multi-class prob-
lems, they have to rely on class binarization procedures that transform the original
learning problem into a series of binary learning problems. A standard solution for this
problem is the one-against-all approach, which constructs one binary classifier for each
class, where the positive training examples are those belonging to this class and the
negative training examples are formed by the union of all other classes. An alternative
approach, known as pairwise classification or round robin classification has recently
gained attention [3,12]. Its basic idea is to transform a c-class problem into c(c− 1)/2
binary problems, one for each pair of classes. This approach has been shown to produce
more accurate results than the one-against-all approach for a wide variety of learning al-
gorithms such as support vector machines [7] or rule learning algorithms [3]. Moreover,
Fürnkranz [3] has also proved that despite the fact that its complexity is quadratic in the
number of classes, the algorithm can in fact be trained faster than the conventional one-
against-all technique.1 However, in order to obtain a final prediction, we still have to
combine the predictions of all c(c − 1)/2 classifiers, which can be very inefficient for
large values of c.

1 It is easy to see this, if one considers that in the one-against-all case each training example
is used c times (namely in each of the c binary problems), while in the round robin approach
each example is only used c − 1 times, namely only in those binary problems, when its own
class is paired against one of the other c − 1 classes.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 658–665, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Pairwise Classification 659

The main contribution of this paper is a novel solution for this problem. Unlike pre-
vious proposals (such as [10]; cf. Section 3.2) our approach is not heuristic but is guar-
anteed to produce exactly the same prediction as the full pairwise classifier, which in
turn has been shown to optimize the Spearman rank correlation with the target labels
[8]. In essence, the algorithm selects and evaluates iterative pairwise classifiers using a
simple heuristic to minimize the number of used pairwise classifiers that are needed to
determine the correct top rank class of the complete (weighted) voting. We will describe
and evaluate this algorithm in Section 3.

2 Pairwise Classification

In the following, we assume that a multi-class problem has c classes, which we denote
with c1, . . . , cc. A pairwise or round robin classifier trains a set of c(c − 1)/2 binary
classifiers Ci,j , one for each pair of classes (ci, cj), i < j. We will refer to the learning
algorithm that is used to train the classifiers Ci,j as the base classifier. Each binary
classifier is only trained on the subset of training examples that belong to the classes
ci and cj , all other examples are ignored for the training of Ci,j . Typically, the binary
classifiers are class-symmetric, i.e., the classifiers Ci,j and Cj,i are identical. However,
for some types of classifiers this does not hold. For example, rule learning algorithms
will always learn rules for the positive class, and classify all uncovered examples as
negative. Thus, the predictions may depend on whether class ci or class cj has been
used as the positive class. As has been noted in [3], a simple method for solving this
problem is to average the predictions of Ci,j and Cj,i, which basically amounts to the
use of a so-called double round robin procedure, where we have two classifiers for each
pair of classes. We will use this procedure for our results with Ripper. At classification
time, each binary classifier Ci,j is queried and issues a vote (a prediction for either ci or
cj) for the given example. This can be compared with sports and games tournaments,
in which all players play each other once. In each game, the winner receives a point,
and the player with the maximum number of points is the winner of the tournament.
In our case, the class with the maximum number of votes is predicted (ties are broken
arbitrarily for the larger class). In this paper, we will assume binary classifiers that return
class probabilities p(ci|ci∨cj) and p(cj |ci∨cj). These can be used for weighted voting,
i.e., we predict the class that receives the maximum number of votes:

c′ = arg max
i=1...c

c∑

j=1

p(ci|ci ∨ cj)

This procedure optimizes the Spearman rank correlation with the target ranking [8].
Other algorithms for combining votes exist (cf. pairwise coupling [5,12]), but are not
subject of this paper.

Note that weighted or unweighted voting produce a ranking of all classes. For pre-
diction problems, one is typically only interested in the top ranked class, but in some
applications one might also be interested in the complete ranking of classes. Due to
space restrictions we will focus here only on classification. However, the extended ver-
sion of this paper [9] deals also with the problem of efficiently predicting a full class

660 S.-H. Park and J. Fürnkranz

ranking. We propose for this case the so-called Swiss-System, a common scheme for
conducting multi-round chess tournaments. Our results show that this algorithm offers
a good trade-off between the number of evaluated classifiers and the quality of the ap-
proximation of the complete ranking.

3 Efficient Pairwise Classification

3.1 The Quick Weighted Voting (QWEIGHTED) Algorithm

Weighted or unweighted voting predicts the top rank class by returning the class with
the highest accumulated voting mass after evaluation of all pairwise classifiers. During
such a procedure there exist many situations where particular classes can be excluded
from the set of possible top rank classes, even if they reach the maximal voting mass
in the remaining evaluations. Consider following simple example: Given c classes with
c > j, if class a has received more than c − j votes and class b lost j votings, it is
impossible for b to achieve a higher total voting mass than a. Thus further evaluations
with b can be safely ignored. To increase the reduction of evaluations we are interested
in obtaining such exploitable situations frequently. Pairwise classifiers will be selected
depending on a loss value, which is the amount of potential voting mass that a class
has not received. More specifically, the loss li of a class i is defined as li := pi − vi,
where pi is the number of evaluated incident classifiers of i and vi is the current vote
amount of i. Obviously, the loss will begin with a value of zero and is monotonically
increasing.2 The class with the current minimal loss is one of the top candidates for the
top rank class. First the pairwise classifier Ca,b will be selected for which the losses la

Algorithm 1. QWEIGHTED

while ctop not determined do
ca ← class ci ∈ K with minimal li;
cb ← class cj ∈ K\{ca} with minimal lj & classifier Ca,b not yet evaluated;
if no cb exists then

ctop ← ca;

else
vab ← Evaluate(Ca,b);
la ← la + (1 − vab);
lb ← lb + vab;

and lb of the relevant classes ca and cb are minimal, provided that the classifier Ca,b has
not yet been evaluated. In the case of multiple classes that have the same minimal loss,
there exists no further distinction, and we select a class randomly from this set. Then,
the losses la and lb will be updated based on the evaluation returned by Ca,b (recall
that vab is interpreted as the amount of the voting mass of the classifier Ca,b that goes

2 This loss is essentially identical to the voting-against principle introduced by [1,2], which we
will discuss later on in Section 3.2.

Efficient Pairwise Classification 661

to class ca and 1 − vab is the amount that goes to class cb). These two steps will be
repeated until all classifiers for the class cm with the minimal loss has been evaluated.
Thus the current loss lm is the correct loss for this class. As all other classes already
have a greater loss, cm is the correct top rank class. Theoretically, a minimal number
of comparisons of c − 1 is possible (best case). Assuming that the incident classifiers
of the correct top rank ctop always returns the maximum voting amount (ltop = 0), ctop

is always in the set {cj ∈ K|lj = minci∈K li}. In addition, ctop should be selected as
the first class in step 1 of the algorithm among the classes with the minimal loss value.
It follows that exactly c− 1 comparisons will be evaluated, more precisely all incident
classifiers of ctop. The algorithm terminates and returns ctop as the correct top rank. The
worst case, on the other hand, is still c(c − 1)/2 comparisons, which can, e.g., occur
if all pairwise classifiers classify randomly with a probability of 0.5. In practice, the
number of comparisons will be somewhere between these two extremes, depending on
the nature of the problem. The next section will evaluate this trade-off.

3.2 Related Work

Cutzu [1,2] recognized the importance of the voting-against principle and observed that
it allows to reliably conclude a class when not all of the pairwise classifiers are present.
For example, Cutzu claims that using the voting-against rule one could correctly pre-
dict class i even if none of the pairwise classifiers Cik (k = 1 . . . c, k �= i) are used.
However, this argument is based on the assumption that all base classifiers classify cor-
rectly. Moreover, if there is a second class j that should ideally receive c − 2 votes,
voting-against could only conclude a tie between classes i and j, as long as the vote of
classifier Cij is not known. The main contribution of his work, however, is a method
for computing posterior class probabilities in the voting-against scenario. Our approach
builds upon the same ideas as Cutzu’s, but our contribution is the algorithm that exploits
the voting-against principle to effectively increase the prediction efficiency of pairwise
classifiers without changing the predicted results. The voting-against principle was al-
ready used earlier in the form of DDAGs [10], which organize the binary base classifiers
in a decision graph. Each node represents a binary decision that rules out the class that
is not predicted by the corresponding binary classifier. At classification time, only the
classifiers on the path from the root to a leaf of the tree (at most c − 1 classifiers) are
consulted. While the authors empirically show that the method does not lose accuracy
on three benchmark problems, it does not have the guarantee of our method, which will
always predict the same class as the full pairwise classifier. Intuitively, one would also
presume that a fixed evaluation routine that uses only c− 1 of the c(c− 1)/2 base clas-
sifiers will sacrifice one of the main strengths of the pairwise approach, namely that the
influence of a single incorrectly trained binary classifier is diminished in large ensemble
of classifiers [4].

3.3 Evaluation

We compare the QWEIGHTED algorithm with the full pairwise classifier and with
DDAGs [10] on seven arbitrarily selected multi-class datasets from the UCI database
of machine learning databases [6]. We used four commonly used learning algorithms

662 S.-H. Park and J. Fürnkranz

0 5 10 15 20 25

0
50

10
0

15
0

20
0

25
0

30
0

number of classes c

nu
m

be
r

of
 c

om
pa

ris
on

s

vehicle glass/image yeast vowel
soybean

letter

c(c −1)
2

 full voting

QWeighted

Fig. 1. Efficiency of QWEIGHTED in comparison to a full pairwise classifier

as base learners (the rule learner RIPPER, a Naive Bayes algorithm, the C4.5 deci-
sion tree learner, and a support vector machine) all in their implementations in the
WEKA machine learning library [11]. Each algorithm was used as a base classifier for
QWEIGHTED, and the combination was run on each of the datasets. As QWEIGHTED

is guaranteed to return the same predictions as the full pairwise classifier, we are only
interested in the number of comparisons needed for determining the winning class.3

These are measured for all examples of each dataset via a 10-fold cross-validation ex-
cept for letter, where the supplied testset was used. Table 1 shows the results. With
respect to accuracy, there is only one case in a total of 28 experiments (4 base classifiers
× 7 datasets) where DDAGs outperformed the QWEIGHTED, which, as we have noted
above, optimizes the Spearman rank correlation. This and the fact that, to the best of
our knowledge, it is not known what loss function is optimized by DDAGs, confirm our
intuition that QWEIGHTED is a more principled approach than DDAGs. It can also be
seen that the average number of comparisons needed by QWEIGHTED is much closer
to the best case than to the worst case. Next to the absolute numbers, we show the trade-
off between best and worst case (in brackets). A value of 0 indicates that the average
number of comparisons is c− 1, a value of 1 indicates that the value is c(c− 1)/2 (the
value in the last column). As we have ordered the datasets by their respective number
of classes, we can observe that this value has a clear tendency to decrease with the
number of the classes. For example, for the 19-class soybean and the 26-class letter
datasets, only about 6 − 7% of the possible number of additional pairwise classifiers
are used, i.e., the total number of comparisons seems to grow only linearly with the
number of classes. This can also be seen from Fig. 1, which plots the datasets with their
respective number of classes together with a curve that indicates the performance of the
full pairwise classifier. Finally, we note that the results are qualitatively the same for all
base classifiers. QWEIGHTED does not seem to depend on a choice of base classifiers.

3 As mentioned above, we used a double round robin for Ripper for both, the full pairwise
classifier and for QWEIGHTED. In order to be comparable to the other results, we, in this case,
divide the observed number of comparisons by two.

Efficient Pairwise Classification 663

Table 1. Comparison of QWEIGHTED and DDAGs with different base learners on seven multi-
class datasets. Next to the average numbers of comparisons for QWEIGHTED we show their
trade-off n−(c−1)

max −(c−1) between best and worst case (in brackets).

Accuracy ∅ Comparisons
dataset c learner QWeighted DDAG QWeighted DDAG full

vehicle 4 NB 45.39 44.92 4.27 (0.423) 3 6
SMO 75.06 75.06 3.64 (0.213)
J48 71.99 70.92 3.96 (0.320)
JRip 73.88 72.46 3.98 (0.327)

glass 7 NB 49.07 49.07 9.58 (0.238) 6 21
SMO 57.01 57.94 9.92 (0.261)
J48 71.50 69.16 9.69 (0.246)
JRip 74.77 74.30 9.75 (0.250)

image 7 NB 80.09 80.09 9.03 (0.202) 6 21
SMO 93.51 93.51 8.29 (0.153)
J48 96.93 96.75 8.55 (0.170)
JRip 96.62 96.41 8.75 (0.183)

yeast 10 NB 57.55 57.21 15.86 (0.191) 9 45
SMO 57.68 57.41 15.52 (0.181)
J48 58.56 57.75 15.48 (0.180)
JRip 58.96 58.09 15.87 (0.191)

vowel 11 NB 63.84 63.64 17.09 (0.158) 10 55
SMO 81.92 81.52 15.28 (0.117)
J48 82.93 78.28 17.13 (0.158)
JRip 82.42 76.67 17.42 (0.165)

soybean 19 NB 92.97 92.97 27.70 (0.063) 18 171
SMO 94.14 93.41 28.36 (0.068)
J48 93.56 91.80 29.45 (0.075)
JRip 94.00 93.56 27.65 (0.063)

letter 26 NB 63.08 63.00 44.40 (0.065) 25 325
SMO 83.80 82.58 42.26 (0.058)
J48 91.50 86.15 47.77 (0.076)
JRip 92.33 88.33 45.01 (0.068)

For a more systematic investigation of the complexity of the algorithm, we performed
a simulation experiment. We assume classes in the form of numbers from 1 . . . c, and,
without loss of generality, 1 is always the correct class. We further assume pairwise base
pseudo-classifiers i ≺ε j, which, for two numbers i < j, return true with a probability
1 − ε and false with a probability ε. For each example, the QWEIGHTED algorithm is
applied to compute a prediction based on these pseudo-classifiers. The setting ε = 0 (or
ε = 1) corresponds to a pairwise classifier where all predictions are consistent with a
total order of the possible class labels, and ε = 0.5 corresponds to the case where the
predictions of the base classifiers are entirely random.

Table 2 shows the results for various numbers of classes (c = 5, 10, 25, 50, 100)
and settings of the error parameter (ε = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5). Each data point is

664 S.-H. Park and J. Fürnkranz

Table 2. Average number n of pairwise comparisons for various number of classes and different
error probabilities ε of the pairwise classifiers, and the full pairwise classifier. Below, we show
their trade-off n−(c−1)

max −(c−1) between the best and worst case, and an estimate of the growth ratio
log(n2/n1)
log(c2/c1) of successive values of n.

c ε = 0.0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.5 full

5 5.43 5.72 6.07 6.45 6.90 7.12 10
0.238 — 0.287 — 0.345 — 0.408 — 0.483 — 0.520 —

10 14.11 16.19 18.34 21.90 25.39 28.74 45
0.142 1.378 0.200 1.501 0.259 1.595 0.358 1.764 0.455 1.880 0.548 2.013

25 42.45 60.01 76.82 113.75 151.19 198.51 300
0.067 1.202 0.130 1.430 0.191 1.563 0.325 1.798 0.461 1.974 0.632 2.109

50 91.04 171.53 251.18 422.58 606.74 868.25 1225
0.036 1.101 0.104 1.515 0.172 1.709 0.318 1.893 0.474 2.005 0.697 2.129

100 189.51 530.17 900.29 1684.21 2504.54 3772.45 4950
0.019 1.058 0.089 1.628 0.165 1.842 0.327 1.995 0.496 2.045 0.757 2.119

the average outcome of 1000 trials with the corresponding parameter settings. We can
see that even for entirely random data, our algorithm can still save about 1/4 of the
pairwise comparisons that would be needed for the entire ensemble. For cases with a
total order and error-free base classifiers, the number of needed comparisons approaches
the number of classes, i.e., the growth appears to be linear. To shed more light on this,
we provide two more measures below each average: the lower left number (in italics)
shows the trade-off between best and worst case, as defined above. The result confirms
that for a reasonable performance of the base classifiers (up to about ε = 0.2), the
fraction of additional work reduces with the number of classes. Above that, we observe
a growth. The reason for this is that with a low number of classes, there is still a good
chance that the random base classifiers produce a reasonably ordered class structure,
while this chance is decreasing with increasing numbers of classes. On the other hand,
the influence of each individual false prediction of a base classifier decreases with an
increasing number of classes, so that the true class ordering is still clearly visible and
can be better exploited by QWEIGHTED. We tried to directly estimate the exponent
of the growth function of the number of comparisons of QWEIGHTED, based on the
number of classes c. The resulting exponents, based on two successive measure points,
are shown in bold font below the absolute numbers. For example, the exponent of the
growth function between c = 5 and c = 10 is estimated (for ε = 0) as log(14.11/5.43)

log(10/5) ≈
1.378. We can see that the growth rate starts almost linearly (for a high number of
classes and no errors in the base classifiers) and approaches a quadratic growth when
the error rate increases.

In summary, our results indicate that QWEIGHTED always increases the efficiency
of the pairwise classifier: for high error rates in the base classifiers, we can only expect
improvements by a constant factor, whereas for the practical case of low error rates we
can also expect a significant reduction in the asymptotic algorithmic complexity.

Efficient Pairwise Classification 665

4 Conclusions

In this paper, we have proposed a novel algorithm that allows to speed up the prediction
phase for pairwise classifiers. QWEIGHTED will always predict the same class as the
full pairwise classifier, but the algorithm is close to linear in the number of classes,
in particular for large numbers of classes, where the problem is most stringent. For
very hard problems, where the performance of the binary classifiers reduces to random
guessing, its worst-case performance is still quadratic in the number of classes, but even
there practical gains can be expected. A restriction of our approach is that it is only
applicable to combining predictions via voting or weighted voting. There are various
other proposals for combining the class probability estimates of the base classifiers
into an overall class probability distribution (this is also known as pairwise coupling
[5,12]). Nevertheless, efficient alternatives for other pairwise coupling techniques are
an interesting topic for further research.

Acknowledgments

This research was supported by the German Science Foundation (DFG).

References

1. Cutzu, F.: How to do multi-way classification with two-way classifiers. In: Kaynak, O., Al-
paydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp.
375–384. Springer, Heidelberg (2003a)

2. Cutzu, F.: Polychotomous classification with pairwise classifiers: A new voting principle. In:
Proceedings of the 4th International Workshop on Multiple Classifier Systems, pp. 115–124.
Springer, Berlin (2003b)

3. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747
(2002)

4. Fürnkranz, J.: Round robin ensembles. Intelligent Data Analysis 7, 385–404 (2003)
5. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Advances in Neural Infor-

mation Processing Systems 10 (NIPS-97), pp. 507–513. MIT Press, Cambridge (1998)
6. Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. Depart-

ment of Information and Computer Science, University of California at Irvine, Irvine CA
(1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

7. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks 13, 415–425 (2002)

8. Hüllermeier, E., Fürnkranz, J.: Ranking by pairwise comparison: A note on risk minimiza-
tion. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-
04), Budapest, Hungary (2004)

9. Park, S.-H., Fürnkranz, J.: Efficient Pairwise Classification and Ranking. Technical Report
TUD-KE-2007-3. Knowledge Engineering Group, TU Darmstadt (2007)

10. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification.
In: Advances in Neural Information Processing Systems 12 (NIPS-99), pp. 547–553. MIT
Press, Cambridge (2000)

11. Witten, I.H., Frank, E.: Data mining — practical machine learning tools and techniques with
Java implementations, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)

12. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pair-
wise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Scale-Space Based Weak Regressors for Boosting

Jin-Hyeong Park1 and Chandan K. Reddy2

1 Integrated Data Systems Department, Siemens Corporate Research,
Princeton, NJ-08540, USA

jin-hyeong.park@siemens.com
2 Department of Computer Science, Wayne State University,

Detroit, MI-48202, USA
reddy@cs.wayne.edu

Abstract. Boosting is a simple yet powerful modeling technique that
is used in many machine learning and data mining related applications.
In this paper, we propose a novel scale-space based boosting framework
which applies scale-space theory for choosing the optimal regressors dur-
ing the various iterations of the boosting algorithm. In other words, the
data is considered at different resolutions for each iteration in the boost-
ing algorithm. Our framework chooses the weak regressors for the boost-
ing algorithm that can best fit the current resolution and as the iterations
progress, the resolution of the data is increased. The amount of increase
in the resolution follows from the wavelet decomposition methods. For
regression modeling, we use logitboost update equations based on first
derivative of the loss function. We clearly manifest the advantages of us-
ing this scale-space based framework for regression problems and show
results on different real-world regression datasets.

1 Introduction

In statistical machine learning, boosting techniques have been proven to be ef-
fective for not only improving the classification/regression accuracies but also in
reducing the bias and variance of the estimated classifier. The most popular vari-
ant of boosting, namely the AdaBoost (Adaptive Boosting) in combination with
trees has been described as the “best off-the-shelf classifier in the world” [1]. In
simple terms, boosting algorithms build multiple models from a dataset, using
some learning algorithm that need not be a strong learner. Boosting algorithms
are generally viewed as functional gradient descent schemes and obtain the opti-
mal updates based on the global minimum of the error function [2]. In spite of its
great success, boosting algorithms still suffer from a few open-ended problems
such as the choice of the parameters for the weak regressor.

In this paper, we propose a novel boosting framework for regression prob-
lems using the concepts of scale-space theory. In the scale-space based approach
to boosting, the weak regressors are determined by analyzing the data over a
range of scales (or resolutions). Our algorithm provides the flexibility of choosing
the weak regressor dynamically compared to static weak regressor with certain

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 666–673, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scale-Space Based Weak Regressors for Boosting 667

pre-specified parameters. For every iteration during the boosting process, the res-
olution is either maintained or doubled and a weak regressor is used for fitting
the data. This method of manipulating different resolutions and modeling them
accurately looks similar to wavelet decomposition methods for multi-resolution
signal analysis. Throughout this paper, we used a Gaussian kernel as an approxi-
mate (or weak) regressor for every iteration during boosting. The data is modeled
at multiple resolutions and the final boosted (or additive) model will combine the
weak models obtained at various resolutions. In this way, we propose a hierarchi-
cal (or scale-space) approach for modeling the data using Gaussian kernels. This
approach is similar to decomposing a signal using wavelets. Basically, the low
frequency components in wavelet decomposition correspond to fitting a Gaussian
for the entire dataset and the high frequency components correspond to fitting
fewer data points. We formulate this scale-space based boosting regressor using
logitboost with exponential L2 norm loss function. Though our method can be
potentially applied with any base regressor, we chose to have Gaussian model
because of its nice theoretical scale-space properties [3].

The rest of this paper is organized as follows: Section 2 gives some relevant
background on various boosting techniques. It also gives the problem formula-
tion in detail and discusses the concepts necessary to comprehend our algorithm.
Section 3 describes our scale-space based boosting algorithm for regression prob-
lems. Section 4 gives the experimental results of our algorithm on different real-
world datasets. Finally, Section 5 concludes our discussion with future research
directions.

2 Background

Ensemble learning is one of the fundamental data mining operations that has
become popular in recent years. As opposed to other popular ensemble learning
techniques like bagging [4], boosting methods reduce the bias and the variance
simultaneously. A comprehensive study on boosting algorithms and their theo-
retical properties are given in [5]. One main advantage of boosting methods is
that the weak learner can be a black-box which can deliver only the result in
terms of accuracy and can potentially be any model [2]. The additive model pro-
vides a reasonable flexibility in choosing the optimal weak learners for a desired
task. Various extensions for the original adaboost algorithm had also been pro-
posed in the literature [6,7,8]. A detailed study on L2 norm based classification
and regression is given in [9].

In this paper, we propose a novel scale-space based scheme for choosing optimal
weak regressors during the iterations in boosting regression problems. The scale-
space concept allows for effective modeling of the dataset at a given resolution. The
theory of scale-space for discrete signals was first discussed in [10]. Data clustering
is one of the most successful applications of the scale-space based techniques [11].
Gaussian kernels have been extensively studied in this scale-space framework [3].
The scale-space based weak regressors will allow systematic hierarchical modeling
of the regression function. They also provide more flexibility and can avoid over-
fitting problem by allowing the user to stop modeling after a certain resolution.

668 J.-H. Park and C.K. Reddy

2.1 Problem Specification

Let us consider N i.i.d. training samples with d features D = (X ,Y) consisting
of samples (X ,Y) = (x1, y1), (x2, y2), .., (xN , yN) where X ∈ RN×d and Y ∈
RN×1. Let us denote xi ∈ RN×d as ith data point in the d-dimensional feature
space. For the case of binary classification problems, we have yi ∈ {−1,+1}
and for regression problems, yi takes any arbitrary real value. In other words,
the univariate response Y is continuous for regression problems and discrete for
classification problems. The goal of a regression problem is to obtain the function
F (X) that can approximate Y.

The basic idea of boosting is to repeatedly apply the weak learner to modified
versions of the data, thereby producing a sequence of weak regressors f (t)(x) for
t = 1, 2, .., T where T denotes predefined number of iterations. Each boosting
iteration performs the following three steps: (1) Computes response and weights
for every data point. (2) Fits a weak learner to the weighted training samples and
(3) Computes the error and updates the final model. In this way, the final model
obtained by boosting algorithm is a linear combination of several weak learning
models. It was also proved that boosting algorithms are stage-wise estimation
procedures for fitting an additive logistic regression model [5]. We derive the
scale-space boosting algorithm based on this spirit.

2.2 Boosting for Regression

In the case of regression problems, the penalty function is given by:

L(yi, F
(t)(xi)) = ‖yi − F (t)(xi)‖p (1)

where ‖ · ‖p indicates the Lp norm. We will consider p = 2 namely the Euclidean
norm in this paper.

Proposition 1 [5]. The Adaboost algorithm fits an additive logistic regression
model by using quasi-Newton method using the analytical Hessian matrix updates
for minimizing the expected value of the loss function.

Let us consider the following exponential loss function

J(f) = exp(‖ y − F − f ‖2) (2)

Let us now define the residual r as the absolute difference between Y and F .
We chose to use first derivative updates (for faster convergence) by choosing the
weak regressor using the residual (f = r).

2.3 Scale-Space Kernels

Let us consider the general regression problem which is a continuous mapping
p(x) : Rd → R. In scale-space theory, p(x) is embedded into a continuous family
P (x, σ). Our method starts with an approximation of the entire dataset with
Gaussian kernel of σ = 0. As the resolution (or scale) increases, the sigma value

Scale-Space Based Weak Regressors for Boosting 669

is reduced and eventually converges to zero. In our case, the highest frequency
(or resolution) corresponds to fitting every data point with a Gaussian kernel.
In simple terms, one can write the new kernel p(x, σ) as a convolution of p(x)
with a Gaussian kernel g(x, σ). As described earlier, choosing optimal σ value
during every iteration of boosting becomes a challenging task. In other words,
one cannot predetermine the reduction in the σ value. We choose to reduce it by
halves using the concepts of wavelet decomposition methods. In signal processing
applications, wavelet transformation constructs a family of hierarchically orga-
nized decompositions [12]. The frequencies in the wavelet domain correspond to
resolutions in our scale-space based algorithm. The original target function (Y)
is decomposed using weak regressors(f) and residuals(r). The final regression
model at any given resolution is obtained by a weighted linear combination of
the weak regressors obtained so far.

3 Scale-Space Based Framework

Algorithm 1 describes our scale-space based approach for boosting regression
problems. The initial regressor is set to the mean value of the target values.
The main program runs for a predefined number (T) of iterations. To make the
problem simpler, 1) we control the resolution of the kernel using the number of
data samples; 2) we fit the target values, Y, only using one feature, Xi, i ∈ [1, d],
at a time. Initially, the number of data points to be modeled is set to the total
number of samples in the dataset. Xi’s are sorted independently by column-wise
and the indices corresponding to each column are stored. This will facilitate the
Gaussian based regression modeling that will be performed later on. For every
iteration, the best kernel is fit to the data based on a single feature, Xi, i ∈ [1, d],
at a particular resolution. The procedure bestkernelfit performs this task for
a resolution corresponding to n data points. We used Gaussian weak regressors
as our kernels since the Gaussian kernels are one of the most popular choice
for scale-space kernel. The basic idea is to slide a Gaussian window across all
the sorted data points corresponding to each feature, Xi, i ∈ [1, d], at a given
resolution.

As the iterations progress, the number of data points considered for fitting
the weak regressor is retained or halved depending on the error of the model.
In other words, depending on the error at a given iteration, the resolution
of the data is maintained or increased for the next iteration. For every itera-
tion, the residual r is set to the absolute difference between the target value (Y)
and the final regressor (F). By equating the first derivative of the loss function
to zero, we will set the residual as the data to be modeled during the next itera-
tion using another weak regressor. The main reason for retaining the resolution
in the next iteration is that sometimes there might be more than one significant
component at that particular resolution. One iteration can model only one of
these components. In order to model the other components, one has to perform
another iteration of obtaining the best Gaussian regressor at the same resolution.
Increasing the resolution for the next iteration in this case might fail to model

670 J.-H. Park and C.K. Reddy

the component accurately. Only after ensuring that there are no more significant
components at a given resolution, our algorithm will increase the resolution for
the next iteration. Hence, the best Gaussian regressor corresponding to n or
n/2 data points is obtained at every iteration and the model with the least
error added to the final regressor. The main aspect of our algorithm, which is
the scale-space, can be seen from the fact that the resolution of the data to be
modeled is either maintained or increased as the number of iterations increase.
Hence, the algorithm proposed here can be more generally termed as “scale-
space based Boosting” that can model any arbitrary function using the boosting
scheme with scale-space based weak regressors. Our algorithm obtains the weak
regressors and models the data in a more systematic (hierarchical) manner. Most
importantly, the change in resolution is monotonically non-decreasing, i.e. the
resolution either remains the same or increased.

Algorithm 1. Scale-space Boosting
Input: Data (D), No. of samples (N), No. of iterations (T).
Output: Final Regressor (F)
Algorithm:
set n = N , F = ∅
for i = 1 : d do

[X̂ , idx(:, i)] =sort(X (:, i))
end for
for t = 1 : T do

r = |Y − F |
[f̂0, err0] = bestkernelfit(X̂ , r, N, d, n, idx)
[f̂1, err1] = bestkernelfit(X̂ , r, N, d, n/2, idx)
if err0 < err1 then

F = F + f̂0

else
F = F + f̂1

n = n/2
end if

end for
return F

4 Experimental Results

We performed experiments using two non-linear regression datasets from NIST
StRD (Statistics Reference Datasets [13]). We selected two datasets : (1) Gauss3
from the category of average level of difficulty containing 250 samples with 1 pre-
dictor variable (x) and 1 response variable (y). (2) Thurber from the category of
high level of difficulty containing 37 samples with 1 predictor variable (x) and 1
response variable (y). Figure 1 shows experimental results on these two datasets
using the proposed scale-space boosting algorithm after 1, 5, 10 and 50 iterations

Scale-Space Based Weak Regressors for Boosting 671

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

−4 −3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

−4 −3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

−4 −3 −2 −1 0 1 2 3
0

500

1000

1500

−4 −3 −2 −1 0 1 2 3
0

500

1000

1500

(a) Iteration 1 (b) Iteration 5 (c) Iteration 10 (d) Iteration 50

Fig. 1. Experimental results for Gauss3 (first row) and Thurber (second row) datasets
after 1,5,10 and 50 iterations

(a) Diabetes (b) Ozone

Fig. 2. Convergence of the regression error during the boosting procedure (training
phase) using scale-space kernel and other static and dynamic kernels of various widths

are shown. We also ran our experiments on the following more complicated real
world datasets:

– Diabetes [14] dataset contains 43 samples with 2 predictor variables.
– Ozone [1] dataset contains 330 samples with 8 predictor variables.
– Abalone [15] dataset contains 4177 samples with 8 predictor variables.

4.1 Discussion

The scale-space boosting algorithm is very effective in reducing the error quickly
in the first few iterations. Significant reduction in the training error occurs within
first 10 boosting iterations. By using scale-space kernels, one can achieve the op-
timal point (point where the over-fitting starts) within this first few iterations.
Usually this point is obtained after at least 40 boosting iterations in the case of

672 J.-H. Park and C.K. Reddy

(a) Diabetes (b) Ozone (c) Abalone

Fig. 3. Results of training and test error on different datasets using 5-fold cross vali-
dation. The solid lines indicate the mean of the error and the dashed lines indicate the
standard deviation in the errors.

static kernels as shown in Fig. 2, which gives the convergence of the regression
error during the boosting iterations. Clearly the behavior of the convergence is
similar to static kernels of very less width but the error is much lesser in the case
of scale-space kernel. The main reason for using the scale-space framework is for
faster convergence of the results by dynamically choosing the weak regressors
during the boosting procedure. One can also see the comparison between the
convergence behaviour of a randomly chosen dynamic kernel versus the scale-
space kernel. Choosing an optimal weak regressor by exploring all possibilities
might yield a better result, but it will be computationally inefficient and infea-
sible for most of the practical problems. For such problems, scale-space kernels
will give the users with a great flexibility of adaptive kernel scheme at a very low
computational effort (also considering the fact of speedy convergence). To the
best of our knowledge, this is the first attempt to use the concepts of scale-space
theory and wavelet decomposition in the context of boosting algorithms for any
regression modeling.

We also demonstrate that the scale-space framework does not suffer from the
over-fitting problem. Fig. 3 shows the train and test errors during the boosting
iterations along with the standard deviation using 5-fold cross validation scheme
for the different datasets. For improving the computational efficiency, the sliding
window kernel in the bestkernelfit procedure is moved in steps of multiple data
points rather than individual data points. One other advantage of using the scale-
space based boosting approach is that it obtains smooth regression functions
(approximators) at different level of accuracies as shown in our results. This
cannot be achieved by using a decision tree or a boosting stump though they
might yield lower RMSE values for prediction. Hence, our comparisons were
specifically made with other smooth kernels that were used in the literature.

5 Conclusions and Future Research

Recently, boosting have received great attention from several researchers. Choos-
ing optimal weak regressors and setting their parameters during the boosting

Scale-Space Based Weak Regressors for Boosting 673

iterations have been a challenging task. In this paper, we proposed a novel boost-
ing algorithm that uses scale-space theory to obtain the optimal weak regressor
at every iteration. We demonstrated our results for logitboost based regres-
sion problems on several real-world datasets. Similarities and differences of our
method compared to other popular models proposed in the literature are also
described. Extensions to Adaboost framework and use of scale-space kernels in
classification problems are yet to be investigated. Effects of different loss func-
tions in this scale-space boosting framework will also be studied in the future.

References

1. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–849 (1998)
2. Hastie, T., Tibshirani, R., Friedman, J.: Boosting and Additive Trees. In: The

Elements of Statistical Learning. Data Mining, Inference, and Prediction, Springer,
Heidelberg (2001)

3. Sporring, J., Nielsen, M., Florack, L., Johansen, P.: Gaussian Scale-Space Theory.
Kluwer Academic Publishers, Dordrecht (1997)

4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
5. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical

view of boosting. Annals of Statistics 28(2), 337–407 (2000)
6. Zemel, R.S., Pitassi, T.: A gradient-based boosting algorithm for regression prob-

lems. Neural Information Processing Systems, 696–702 (2000)
7. Schapire, R.E., Singer, Y.: Improved boosting using confidence-rated predictions.

Machine Learning 37(3), 297–336 (1999)
8. Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class adaboost. Technical Report

430, Department of Statistics, University of Michigan (2005)
9. Buhlmann, P., Yu, B.: Boosting with the l2 loss: Regression and classification.

Journal of American Statistical Association 98(462), 324–339 (2003)
10. Lindeberg, T.: Scale-space for discrete signals. IEEE Transactions on Pattern Anal-

ysis Machine Intelligence 12(3), 234–254 (1990)
11. Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Transactions

on Pattern Analysis Machine Intelligence 22(12), 1396–1410 (2000)
12. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet rep-

resentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 11,
674–693 (1989)

13. Information Technology Laboratory, N.I.o.S. (NIST), T.: Nist strd (statistics ref-
erence datasets), http://www.itl.nist.gov/div898/strd/

14. Hastie, T., Tibshirani, R.: Generalized additive models. p. 304. Chapman and Hall,
London (1990)

15. Blake, C., Merz, C.: UCI repository of machine learning databases. Univer-
sity of California, Irvine, Dept. of Information and Computer Sciences (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.itl.nist.gov/div898/strd/
http://www.ics.uci.edu/~mlearn/MLRepository.html

K-Means with Large and Noisy Constraint Sets

Dan Pelleg and Dorit Baras

IBM Haifa Labs
dpelleg@il.ibm.com, doritb@il.ibm.com

Abstract. We focus on the problem of clustering with soft instance-
level constraints. Recently, the CVQE algorithm was proposed in this
context. It modifies the objective function of traditional K-means to in-
clude penalties for violated constraints. CVQE was shown to efficiently
produce high-quality clustering of UCI data. In this work, we examine
the properties of CVQE and propose a modification that results in a
more intuitive objective function, with lower computational complex-
ity. We present our extensive experimentation, which provides insight
into CVQE and shows that our new variant can dramatically improve
clustering quality while reducing run time. We show its superiority in a
large-scale surveillance scenario with noisy constraints.

1 Introduction

Recently, a growing interest in utilizing side-information in clustering led to a
variety of new clustering techniques. The side information is used to encode a
tacit bias to counter that of the original clustering algorithm. In this sense, the
new algorithm can be thought of as supervised. But in contrast to traditional
supervision, the ground truth labels need not be explicitly present in the input.

Typically, the side information is in the form of pairwise instance-level con-
straints. Constraints of this type come in two flavors: a must-link (ML) con-
straint, to indicate that a pair of input points need to be in the same output
cluster, and a cannot-link (CL) constraint, to indicate the opposite. These types
of constraints were thoroughly investigated and have been shown to improve re-
sults in different application areas. Some of these areas include GPS lane finding
[1], video and image indexing [2,3], robot navigation [4], image segmentation [5],
and text categorization [6,7]. The constraints are considered to increase cluster
purity, decrease convergence time, and reduce error [8].

The method in which the constraints are acquired depends on the application
itself. For example, spatial or temporal proximity of observations may be used
to induce constraints, or user feedback on a clustering result may be used in an
active-learning or semi-supervised setting. In experimentation, it is also popular
to use the ground truth labels to induce constraints.

In general, existing methods fall into one of two categories: constraint-driven
and distance-driven. The first type tries to directly satisfy the constraints. There
are hard and soft versions of these, which vary in their ability to ignore some

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 674–682, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

K-Means with Large and Noisy Constraint Sets 675

constraints. The second type learns a distance metric from the constraints, and
it is later used in a constraint-agnostic clustering algorithm.

This work is motivated by a surveillance application. In this setting, a sen-
sor (e.g., a video camera), or a network of such sensors, is located in a public
area. The sensor can locate objects in a 2-D or 3-D space. It can also track
their movement over a short period of time. For example, if object locations
are recorded every minute, the sensor may also identify that the same object
that was at location P at time t, is at location P ′ at time t + 1. Noise in the
measurements may come in the form of false tracking due to objects or agents
leaving and entering the scene, occlusion, etc. The goal of the application is to
perform long-term tracking of objects. That is, cluster the observation points
such that each cluster corresponds to a single object. This naturally gives rise
to the constrained clustering problem with the following characteristics: 1) The
number of data points and constraints is large (thousands or more, depending
on the monitoring period and frequency). 2) The constraints are mostly ML. 3)
The constraints are noisy.

This paper explores solutions to such problems. From the description above,
some required properties for such solutions emerge: scalability, efficiency, and
resilience to constraint noise. The latter immediately precludes hard satisfaction
algorithms. Of the soft variants, algorithms based on K-means are a natural fit
to the scalability requirement, since they are potentially linear in the number of
points, dimensions, constraints and clusters.

We also note the common practice of augmenting the constraint set by tran-
sitive and entailed constraints. This is a widely-used heuristic [9], but unfortu-
nately, it cannot be used in our scenario for two reasons. First, the noise may
introduce ML constraints between some members of different clusters. When the
number of constraints is large, the probability of such an event is high, and the
result would be the complete— and useless— clique in the ML graph. Second,
the size of the augmented set is huge. In one experiment with around 20000
points and constraints, this kind of pre-processing generated approximately half
a million constraints.

Davidson et al. [10] propose using a black-box method to evaluate the use-
fulness of constraints. Two measurements are defined on constraint sets: infor-
mativeness and coherence. Informativeness represents the tacit bias, due to the
constraints, that is different from the algorithm’s own bias. Coherence is the dis-
parity between ML and CL pairs. These measures can be used to evaluate a given
constraint set. In a convincing experiment, an extremely small constraint set is
shown to dramatically enhance clustering results. Taking this idea further, the
authors suggest using the same measures to filter constraint sets before feeding
them to a constrained clustering algorithm. The benefit would be smaller and
cleaner sets, resulting in faster operation and increased accuracy. This approach
seems like a viable alternative to our scalable algorithms. We look forward to
the bridging of the gap between this idea and a working embodiment, enabling
us to directly compare the two approaches.

676 D. Pelleg and D. Baras

2 The CVQE Algorithm

The unconstrained clustering problem is defined on instances Si, i = 1, ...n and
a parameter K for the number of clusters. Let Cj be the centroid representing
cluster j. Denote by Qj the set of instances that are closest to Cj . The K-means
algorithm uses the following update rule: Cj = 1

|Qj |
∑

si∈Qj
si, where after every

centroid update, each instance is reassigned to the cluster of its closest centroid
(i.e., the groups Qj are recalculated). This update rule is derived from minimiza-
tion of the vector quantization error function, V QE = 1

2

∑K
j=1

∑
si∈Qj

(
Cj−si

)2.
The Constrained Vector Quantization Error(CVQE) algorithm [4] generalizes

K-means to handle constraints. It does so by modifying the error function to
penalize violated constraints. In the original notation, there are r must-link and
s cannot-link constraints,

{(
s1(i), s2(i)

)}s+r

i=1
. Let Qj be the set of instances

assigned to the j-th cluster, and Cj be the centroid corresponding to the j-
th cluster. Define M(x) = {j |x ∈ Qj }, and let g(i) = M(s1(i)) and g′(i) =
M(s2(i)). Further, let h(i) be the cluster index whose centroid is closest to Ci.
As in Davidson et al. [4], in the case of violation, s2(i) is associated with the
violation. Finally, v(i) indicates whether the i-th constraint is violated. Namely,
for i = 1, ..., r, v(i) = 1 ↔ g(i) �= g′(i) and for i = r + 1, ..., s + r, v(i) = 1 ↔
g(i) = g′(i), and v(i) = 0 in all other cases. The update rule is as follows:

Cj =
1
Nj

{ ∑

si∈Qj

(si) +
r∑

l=1,g(l)=j

v(l) · Cg′(l) +
s+r∑

l=r+1,g(l)=j

v(l) · Ch(g′(l))

}

And Nj = |Qj | +
∑r+s

l=1,g(l)=j v(l). Intuitively, in violations of ML constraints,
one of the two affected centroids is moved towards the other, wheres CL vi-
olations move one of the points towards its next-closest centroid. Similarly to
K-means, after each iteration, each instance is reassigned to minimize the error
function (described below). Hence unlike K-means, Qj can contain instances
where Cj is not their closest centroid. This update rule minimizes the error
function CV QE =

∑K
j=1 CV QEj , where

CV QEj =
1
2

∑

si∈Qj

Tj,1 +
1
2

r∑

l=1,g(l)=j

Tj,2 +
1
2

r+s∑

l=r+1,g(l)=j

Tj,3 (1)

where Tj,1 =
(
Cj − si

)2, Tj,2 =
[(

Cj − Cg′(l)

)2 · v(l)
]
, and

Tj,3 =
[(

Cj − Ch(g′(l))

)2 · v(l)
]
.

In each step of the CVQE algorithm, each pair of instances that form a con-
straint are assigned such that the CVQE error function is minimized. The rest
of the algorithm (initialization and termination) is the same as K-means.

We now discuss some properties of CVQE. First, the order of the points
in a constraint is significant. Consider a violated constraint generated by the
instances (s1(l), s2(l)) such that s1(l) ∈ Qg(l), s2(l) ∈ Qg′(l). Only Cg(l) is affected

K-Means with Large and Noisy Constraint Sets 677

(a) (b)

Fig. 1. CVQE examples

by violation of this link, while Cg′(l) is not affected at all. This observation holds
in both the ML and CL cases.

Second, determining the assignment that minimizes the error function requires
O(K2) calculations for every constraint, which can be expensive when dealing
with large numbers of either constraints or clusters. It is also not possible to
prune out any possibility (other than the trivial s1(l) ∈ Qg′(l), s2(l) ∈ Qg(l))
from the calculation. To see this, consider Figure 1(a). The pair (x, y) is ML and
the current centroids are Ci, i = 1, ..., 6. The distances are shown in the figure.
Depending on the values of R, δ, and ε, points may be assigned to any of the
pairs (C1, C2), (C3, C4), or (C5, C6). Hence, all K2 options must be checked for
every constraint.

Another issue arises from the fact that the penalty for violated links depends
on the distance between the corresponding centroids, but the locations of the
instances are not taken into account. Consider the two clustering problems shown
in Figure 1(b). In both, the initial centroids are C1, C2. One problem includes
the ML (x1, y), while the other includes ML (x2, y). Table 1 summarizes the
available assignments in each case and the CVQE value. Note that, regardless of
d and f , both problems always have the same solution, although our intuition
says that violating (x1, y) is “worse” than violating (x2, y). Furthermore, the
corrective action in both cases is the same: move C1 along the line connecting it
to C2, completely ignoring the relative orientation of the offending instance.

3 The LCVQE Algorithm

Our modification of CVQE follows. The proposed algorithm minimizes a tar-
get function composed of the vector quantization error as well as a penalty
for violated constraints, in the style of CVQE. For each constraint assignment,
the LCVQE algorithm considers at most two naturally chosen clusters, hence
its complexity is independent of K. Informally, violated ML constraints update
each centroid toward the opposite instance, hence they are symmetric in instance
order. For violated CL constraints, the instance that is farther from the cluster

678 D. Pelleg and D. Baras

Table 1. CVQE values for Figure 1

Algorithm Constraint y ∈ Q1, xi ∈ Q2 xi, y ∈ Q1 xi, y ∈ Q2

CVQE (x1, y) R2 + R2 + f2 R2 + d2 R2 + d2

CVQE (x2, y) R2 + R2 + f2 R2 + d2 R2 + d2

LCVQE (x1, y) (d2 + d2)/2 d2 d2

LCVQE (x2, y) (d2 + d2)/2 d2 d2

centroid is determined and the closest centroid to that instance (other than the
current centroid) is moved towards it.

To formalize the algorithm, we define two new functions. Rj(l) returns the
instance among s1(l), s2(l) whose distance to Cj is larger. MM(s) returns the
centroid which is the closest to s, other than CM(s). The LCVQE update rule is
given by:

Cj =
1
Nj

{ ∑

si∈Qj

si +
1
2

r∑

l=1,g(l)=j

v(l) · s2(l) +
1
2

r∑

l=1,g′(l)=j

v(l) · s1(l) (2)

+
s+r∑

l=r+1,j=MM(RM(s1(l))(l))

v(l) · RM(s1(l))(l)
}

Nj = |Qj|+ 1
2

∑r
l=1,g(l)=j v(l)+ 1

2

∑r
l=1,g′(l)=j v(l)+

∑s+r
l=r+1,j=MM(RM(s1(l))(l))

v(l).

This update rule minimizes the error function:

Ej =
1
2

∑

si∈Qj

Tj,1 +
1
2

r∑

l=1,g(l)=j

Tj,2 +
1
2

r∑

l=1,g′(l)=j

Tj,3

+
1
2

s+r∑

l=r+1,j=MM(RM(s1(l))(l))

Tj,4

Here,
Tj,1 =

(
Cj − si

)2
Tj,2 =

[
1
2

(
Cj − s2(l)

)2 · v(l)
]

Tj,3 =
[

1
2

(
Cj − s1(l)

)2 · v(l)
]

Tj,4 =
[(

Cj −RM(s1(l))(l))
)2 · v(l)

]

Detailed pseudo-code is in [11]. The LCVQE algorithm requires O(d) oper-
ations (for d dimensions) in each step because only three possible assignments
are checked, regardless of K. Hence, this algorithm is faster and efficient for
problems having large numbers of constraints or clusters. Another benefit of the
algorithm is that the constraints are symmetric and that the centroid that is up-
dated depends on the exact setting of both instances rather than the violating
instance alone.

Finally, our algorithm does a better job of handling the example shown in
Figure 1(b). Table 1 summarizes the available assignments in each case and the

K-Means with Large and Noisy Constraint Sets 679

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE

LCVQE

Kmeans

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20

N
M

I

K

CVQE

LCVQE

Kmeans

Fig. 2. Performance on Iris

LCVQE values. Assume that the assignment in both problems is xi ∈ Q2, y ∈ Q1.
In the case of (x1, y), the centroid is updated as follows: C1 = (y + 1

2x1)/1.5.
In the case of (x2, y), the centroid is updated as follows: C1 = (y + 1

2x2)/1.5,
which is intuitively better (because the centroid is moving toward the mean of
the instances rather then toward the other centroid).

4 Experiments

We first compare the performance of LCVQE and CVQE on UCI data. We
implemented both, as well as K-means, in C, and used a 3.6GHz Pentium 4
machine for testing. Times in the plots are all in seconds.

We drew random data pairs to generate constraints. Noise was inserted with
probability p = 1% by changing the labels in a pair to labels drawn uniformly
from the set of classes. Afterwards, the labels were compared to generate either
an ML or a CL constraint. In each case 25 ML and 25 CL constraints were
generated.

We generated the augmented set of transitive and entailed constraints in pre-
processing, which did not contribute towards the measured run time of any
algorithm. To measure clustering performance, we used NMI [7]. Figure 2 shows
NMI and run time values averaged over 100 runs over the Iris dataset. Data for
the other UCI datasets can be found in [11]. Accuracy is increased dramatically
for all values of K in the Iris and Glass datasets, and is significantly better for
most values of K for Ionosphere, Wine, and Pima, and at par for E-coli and
Breast. Note that for the Glass and Wine datasets, CVQE is substantially worse
than unconstrained K-means, a phenomenon we did not observe for LCVQE.

For run times, the quadratic growth in K is clearly visible for CVQE, whereas
LCVQE (and, as expected, K-means), are linear in K. At the same time, there
are cases where LCVQE is slower, especially at the low end of K. We explore
this point below.

Recall that, for each constraint, LCVQE searches over a space that includes
just two centroids, whereas CVQE performs the search over all K centroids. This
reduction in search space movement has the potential to make each change in

680 D. Pelleg and D. Baras

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5000 10000 15000 20000 25000

tim
e

constraints

CVQE

LCVQE

Kmeans

MPC-Kmeans

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0 5000 10000 15000 20000 25000

N
M

I

constraints

CVQE

LCVQE

Kmeans

MPC-Kmeans

Fig. 3. Performance on tracking data, k = 10

centroids smaller. We tested this hypothesis, and conclude that that LCVQE
does tend to iterate longer than CVQE, which explains the longer run times for
low values of K. See [11] for details.

We also examined the dependence of run time on the size of the input. Here
we added to the mix the MPC-Kmeans algorithm [12], which is an efficient
hybrid of the distance-learning and constraint-satisfaction approaches1. Results
are omitted due to lack of space, and can be found in [11]. They show that the K-
means variants are linear in the number of constraints, whereas MPC-Kmeans
is super-linear. Here, too, the entailed constraints were generated by the wrapper
script, and MPC-Kmeans was instructed not to run its own entailment code.

Our final experiment tests performance on surveillance data from a realistic
arena. In it, ten uncontrolled agents move in a 2-D space and interact among
themselves and with the surroundings. Each minute, a snapshot is taken, and
the location and true identity of each agent are recorded. We generate raw data
that corresponds to the locations of agents, and ML constraints between each
agent’s location and its location at the previous time step. In a sense, this is
a version of the famous GPS lane finding data but with greater freedom of
movement for the agents. Noise was added as above. Here we did not augment
the constraint set (nor did MPC-Kmeans run its own augmentation routine).
Because of the long chains in the ML graph, the transitive closure becomes huge
and mostly uninformative. See Figure 3. We observe that LCVQE produces
better or equivalent results to CVQE, while running much faster. In particular,
the performance of MPC-Kmeans degrades very quickly when the number of
constraints increases. We can speculate that this could be the effect of noise.
Another possible reason is the absence of the connected-component heuristic —
published work on MPC-Kmeans did not explore any of these scenarios.

5 Conclusion

Having emerged as a new technology a few short years ago, constrained clus-
tering methods are now transitioning to the status of established practice.
1 In terms of NMI, it outperforms LCVQE on the small UCI datasets.

K-Means with Large and Noisy Constraint Sets 681

Consequently, the question of constraint acquisition is increasing in importance.
Without automatic constraint generation, plugging in a constrained method in
place of a traditional unsupervised method is impossible. We hypothesize that,
in many realistic scenarios, the graphs of generated constraints will look very
different from the label-based constraint sets that are traditionally used to eval-
uate new algorithms. In particular, the graphs of ML constraints are likely to
contain long chains rather than (dense or sparse) cliques. An interesting avenue
of research is to explore the effect of graph structure and noise on the quali-
ties and desired properties of constrained clustering algorithms, in the spirit of
Davidson et al. [13]. We explore this issue in a forthcoming paper.

In this light, we discuss a real-world tracking scenario where data points
and constraints are plentiful and possibly noisy. This notion alone breaks the
consistency assumption central to many of the existing constrained clustering
algorithms, resulting in poor performance. We propose a scalable and robust
algorithm, based on the CVQE framework, capable of operating in this kind of
environment. We show extensive experimental results that shed light on the rel-
ative performance of both algorithms and compare them to a distance-learning
algorithm.

Acknowledgments

We thank Ian Davidson for helpful comments and discussion.

References

1. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Brodley, C., Danyluk, A. (eds.) Proceeding of
the 17th International Conference on Machine Learning, Morgan Kaufmann, San
Francisco (2001)

2. Lin, W.-H., Hauptmann, A.: Structuring continuous video recordings of everyday
life using time-constrained clustering. In: IS&T/SPIE Symposium on Electronic
Imaging, San Jose, CA (January 2006)

3. Hertz, T., Shental, N., Bar-Hillel, A., Weinshall, D.: Enhancing image and video
retrieval: Learning via equivalence constraints. In: Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los
Alamitos (2003)

4. Davidson, I., Ravi, S.S.: Clustering with constraints: Feasibility issues and the
k-means algorithm. In: 5th SIAM Data Mining Conference (2005)

5. Yu, S.X., Shi, J.: Grouping with directed relationships. In: Figueiredo, M., Zerubia,
J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, Springer, Heidelberg
(2001)

6. Cohn, D., Caruana, R., McCallum, A.: Semi-supervised clustering with user feed-
back. Technical report, Cornell University, TR2003-1892 (2003)

7. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Seattle, WA, pp. 59–68. ACM Press, New York (2004)

682 D. Pelleg and D. Baras

8. Basu, S., Davidson, I.: Clustering with constraints: Theory and practice. In: Online
Proceedings of a KDD tutorial (2006),
http://www.ai.sri.com/∼basu/kdd-tutorial-2006/

9. Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints for
clustering. In: AAAI, AAAI Press (2006)

10. Davidson, I., Wagstaff, K., Basu, S.: Measuring constraint-set utility for partitional
clustering algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD
2006. LNCS (LNAI), vol. 4213, pp. 115–126. Springer, Heidelberg (2006)

11. Pelleg, D., Baras, D.: k-means with large and noisy constraint sets. Technical Re-
port H-0253, IBM (2007)

12. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in
semi-supervised clustering. In: Brodley, C.E. (ed.) ICML, ACM, New York (2004)

13. Davidson, I., Ravi, S.S.: Intractability and clustering with constraints. In: ICML
(2007)

http://www.ai.sri.com/~basu/kdd-tutorial-2006/

Towards ‘Interactive’ Active Learning in Multi-view
Feature Sets for Information Extraction

Katharina Probst and Rayid Ghani

Accenture Technology Labs, Chicago, IL, USA
katharina.a.probst@accenture.com, rayid.ghani@accenture.com

Abstract. Research in multi-view active learning has typically focused on al-
gorithms for selecting the next example to label. This is often at the cost of
lengthy wait-times for the user between each query iteration. We deal with a
real-world information extraction task, extracting attribute-value pairs from prod-
uct descriptions, where the learning system needs to be interactive and the users
time needs to be used efficiently. The first step uses coEM with naive Bayes as
the semi-supervised algorithm. This paper focuses on the second step which is
an interactive active learning phase. We present an approximation to coEM with
naive Bayes that can incorporate user feedback almost instantly and can use any
sample-selection strategy for active learning. Our experimental results show high
levels of accuracy while being orders of magnitude faster than using the standard
coEM with naive Bayes, making our IE system practical by optimizing user time.

1 Introduction

There has been a lot of recent research in semi-supervised learning algorithms for multi-
view feature sets that deal with learning problems where each example is described by
two distinct sets of features, either of which is sufficient to approximate the function;
that is, they fit the cotraining problem setting [1,3,8]. These approaches have been ap-
plied to several domains such as Named Entity Recognition, Information Extraction,
Text Classification, and Speech Recognition. The major motivation behind this work
has been to exploit the multiple feature sets in order to reduce the number of labeled
examples required to learn by making use of the abundance and cheapness of unlabeled
data.

Active learning is a closely related field of research that seeks to make efficient
use of a trainer’s time by intelligently selecting examples to label based on the an-
ticipated value of that label to the learner. Because of the effectiveness of multi-view
semi-supervised algorithms, several techniques have been proposed to combine semi-
supervised learning with active learning. [7] proposed Co-EMT which interleaves semi-
supervised coEM (with naive Bayes) and co-Testing. [6] propose active learning with
multiple feature sets and experiment with various selection strategies. Both of these
contributions show the efficacy of using unlabeled data by combining multi-view semi-
supervised learning with active learning.

However, the focus, as in most other active learning research, has mostly been on
improving algorithms and measures for selecting the next example to be labeled by
the user. This has often been at the cost of increased time between iterations of active

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 683–690, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

684 K. Probst and R. Ghani

learning feedback which in practice results in lengthy wait times between interactions
for the user. Here, we address the ‘interactive’ aspect of active learning which is one
of the major motivations for this line of research - making the most efficient use of
the trainer’s time. Our motivation comes from a real-world information extraction task:
extracting attribute-value pairs from free-text product descriptions [9]. The work pre-
sented in this paper aims at making the process of extracting attribute-value pairs from
product descriptions more efficient and cheaper by developing an interactive tool.

Our system consists of two parts. The first part is a semi-supervised (non-interactive)
classifier (coEM with naive Bayes) that results in a set of attribute-value pairs described
in earlier work [9]. The focus of this paper is the next step where the user works with
our tool to provide feedback in order to improve the extraction accuracy. When coEM
is interleaved in the active learning phase as the underlying semi-supervised classifier
(as in [7], [6]), we get good extraction accuracy but the wait time for the user becomes
extremely long. In order to make this active learning phase faster while achieving com-
parable accuracy, we developed a fast approximation to coEM with naive Bayes that
can incorporate user feedback almost instantly and can work with any sample-selection
strategy for active learning. Our experimental results, on a real world data set of sports
products, show high levels of accuracy while being orders of magnitude faster than us-
ing the standard coEM with naive Bayes, making our system practical by minimizing
user wait time between feedback iterations.

2 Attribute Extraction

Before we discuss our contributions in active learning, we briefly describe the larger
system we are building. Our goal is to take natural language product descriptions (such
as those on retail catalogs or websites) and extract sets of attribute-value pairs. The
products can then be represented in a structured way, which enables a number of busi-
ness applications, e.g., product recommendations, assortment optimization, and pric-
ing.Since there are no off-the-shelf tools available to extract these attribute-value pairs,
it is mostly being done manually which makes the process very expensive. Our system
automates the extraction and then learns incrementally from user feedback.

3 Making coEM with Naive Bayes Fast

In this paper, we focus on developing a fast semi-supervised learning algorithm in the
context of an active learning system that is interactive. Since the semi-supervised learn-
ing algorithm needs to be retrained at every iteration of active learning, it commonly
leads to long spans when the user sits idle waiting for the system, something we want
to avoid.

Our main contribution is a fast approximation to coEM with naive Bayes which is
used in active learning in order to make our system interactive. The sections below
describe coEM with naive Bayes (our initial approach which was accurate but slow), an
approximation to coEM with naive Bayes, and the fast version of that approximation.

Our initial system uses coEM with naive Bayes since that has been previously shown
to outperform other semi-supervised algorithms for text learning and information tasks

Towards ‘Interactive’ Active Learning in Multi-view Feature Sets 685

[4,5,7]. When we incorporate this algorithm in our active learning setting, we get high
extraction accuracy but the training time at each iteration is too slow. Thus, we de-
veloped an approximation that uses relative frequencies and devise a fast version of it
by formulating coEM as a matrix multiplication algorithm. This fast approximation to
coEM with naive Bayes is able to retrain and incorporate new labeled data instantly,
making our attribute extraction system practical by minimizing user wait time. The sec-
tions below describe each of these three algorithms: coEM with naive Bayes (our initial
approach which was accurate but slow), approximation to coEM with naive Bayes, and
the fast version of that approximation.

3.1 coEM

For the initial (batch) learning phase, our system uses coEM [8] which has been shown
to outperform other semi-supervised algorithms for several text learning tasks [4,5,7].

To express the data in two views, each word is expressed in view1 by the stemmed
word itself, plus the part of speech as assigned by the Brill tagger [2]. The view2 for
this data item is a context of window size 8, i.e. up to 4 words (plus parts of speech)
before and up to 4 words (plus parts of speech) after the word or phrase in view1. We
are currently experimenting with adding additional features (such as syntactic features,
spelling features, etc.) to measure whether they can significantly enhance performance.
By default, all words are processed into view1 as single words. Sequences of words with
high correlation scores (Yule’s Q, χ2, and pointwise mutual information) are treated as
phrasal entities and thus as a single view1 data item. Co-EM uses the initial labels
to label all training examples in view1. These labels are then used to probabilistically
label all view2 elements [9]. The view2 labels are in turn used to relabel view1, etc.

3.2 Simpler Version of Co-EM with Naive Bayes

When we use coEM with naive Bayes as the semi-supervised algorithm in our active
learning setting, the wait time between interactions is unacceptable1. To make our tool
interactive, we propose an approximation to coEM with naive Bayes that does not com-
promise much on accuracy but is orders of magnitude faster. We briefly describe the
algorithm here, and give the fast version of it in the next section. The algorithm works
as follows (following [5]): Suppose we want to determine a distribution over all possi-
ble labels for each training element, both in view1 and view2. In our case, the possible
labels are unassigned (the default before learning), attribute, value, neither (all items
default to unassigned at the beginning). Denote these labels as p(1|〈view1, view2〉),
. . . , p(4|〈view1, view2〉). The goal of the algorithm is to assign these probabilities to
each item. In each iteration, however, we label view1 and view2 separately as follows.
Using the initial labeled data, we assign all labeled view1 items to their respective
class (attribute, value, or neither) as the initial labeling. The next step is to relabel all
view2 data items using the view1 labels. The label distribution of a view2 element
v2i2, 1 ≤ i2 ≤ n2, where n2 is the number of distinct v2 elements, is obtained from
the view1 elements v1i1, 1 ≤ i1 ≤ n1, where n1 is the number of distinct v1 elements,

1 See section 4 for more details.

686 K. Probst and R. Ghani

it aligns with, weighted by the number of times the v1 and v2 elements align. Denote
cooc(v1i1, v2i2) as the number of times v1i1 and v2i2 align to each other. Then:

p(1|v2i2) =
∑n1

i1=1 cooc(v2i2, v1i1) ∗ p(1|v1i1)
∑n1

i1=1 cooc(v2i2, v1i1)
(1)

Similarly for p(2|v2i2), p(3|v2i2), and p(4|v2i2). Re-estimation of all view1 ele-
ments follows in the reverse way. However, for those v1i1 that are found in the initial
labels, there is no re-estimation.The re-estimation steps are repeated until convergence
or for a fixed number of iterations. The final probabilities for a data item in its context
is finally assigned by averaging p(j|v1i1) and p(j|v2i2) for 1 ≤ j ≤ 4.

3.3 Fast Incremental Approximation of coEM with Naive Bayes

We will now reformulate a fast, incremental variation of the above algorithm that com-
promises little on accuracy but is orders of magnitude faster. The first insight is that
the re-estimation can essentially be viewed as a matrix multiplication: Let A1 be the
probability matrix of view1 that is obtained by the initial labeling of all view1 ele-
ments using the labeled data. A1 is of size n1x4. Denote each view1 data element as
v1i, 1 ≤ i ≤ n1, where n1 is the number of view1 data elements. Denote the classes
cj , 1 ≤ j ≤ 4, where the classes are as described above. This matrix will have the
following form:

A1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

p(c1|v11) p(c2|v11) p(c3|v11) p(c4|v11)

p(c1|v12) p(c2|v12) p(c3|v12) p(c4|v12)

.

p(c1|v1n1) p(c2|v1n1) p(c3|v1n1) p(c4|v1n1)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

Let A2 be the n2x4 probability matrix of view2, defined in the same ways as A1.
Further, let B1,2 be the (n1xn2) transition matrix from view1 to view2. This transition
matrix is a sparse matrix that stores for every view1 entry all the view2 data elements
that it co-occurs with, along with the count of how often the view1 and view2 co-occur.
The transition matrices are normalized by the total number of co-occurrences for each
data element. This matrix will take the following form:

B1,2 =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

p(v21|v11) p(v22|v11) . . . p(v2n2|v11)

p(v21|v12) p(v22|v12) . . . p(v2n2|v12)

.

p(v21|v1n1) p(v22|v1n1) . . . p(v2n2|v1n1)

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

Where

p(v2i2|v1i1) =
cooc(v2i2, v1i1)

∑n2
i2=1 cooc(v2i2, v1i1)

. (2)

Towards ‘Interactive’ Active Learning in Multi-view Feature Sets 687

B2,1 is defined in an analogous way. Each iteration of the coEM algorithm can then
be seen as a matrix multiplication:

A′
2 = B2,1 ∗A1, Similarly : A′

1 = B1,2 ∗A′
2 (3)

This multiplication is equivalent to the above iterative algorithm for those items that
are not in the initial training data: each cell (i,j) in the resulting matrix will be the result
of the sum of all the probabilities for column j (the class label) for all the data items
in the other view with which i has a non-zero transition probability, weighted by this
transition probability. Note also that these multiplications are the first iteration of the
coEM algorithm. Further iterations proceed by the same principle, e.g., A′′

2 = B2,1∗A′
1.

This computation is recursive, and the following holds:

A′′
2 = B2,1 ∗ A′

1 = B2,1 ∗ (B1,2 ∗ A′
2) (4)

= B2,1 ∗ (B1,2 ∗ (B2,1 ∗ A1)) = (B2,1 ∗ B1,2 ∗ B2,1) ∗ A1

Similarly for further iterations. The modified probability matrix of each view is
computed by multiplying the original probability matrix of the other view by a product
of transition matrices, where the number of factors is a function of the number of desired
coEM iterations. Thus, coEM can either be run iteratively as described in the previous
section, or by multiplying the original A1 by the transition matrices.

When recomputing A2, we will have a product of transition matrices that is different
from the one used for recomputing A1: A1 will be recomputed as follows:

An
1 = (B1,2 ∗ · · · ∗B1,2 ∗B2,1) ∗A1 = T1,1 ∗A1 (5)

whereas A2 will be recomputed with:

An
2 = (B2,1 ∗ · · · ∗B1,2 ∗B2,1) ∗A1 = T2,1 ∗A1 (6)

T1,1 and T2,1 are the products of transition probabilities. Their interpretation is as
follows: each cell (i,j) in the matrix T1,1 represents the influence view1 data element j
has on view1 data element i after n iterations; similarly for T2,1.

So far, we have described the base algorithm, and how it can be expressed as a set of
matrix multiplications. However, as laid out in the iterative algorithm, re-estimation as
described here only applies to the cases where a data item is not already known from
the original labeled data. For known examples, the iterative algorithm will proceed by
simply not relabeling view1 elements in any of the iterations. The computation of T1,1

and T2,1 as described above did not take this into account. Rather, in such cases, the
transition matrix should reflect that the view1 element is known. To see how this can
be accomplished, note again that the transition matrices capture how much impact one
data element has on another. Known data items receive the same probability distribution
in each iteration, i.e., they should not be updated from other data items. This is done
by setting all transition probabilities in T1,1 into the data item to 0 except the transition
from itself, i.e., the row for data item v1i1 is all 0s except for the cell T1,1(i1, i1).

Although we have now reformulated the coEM algorithm, we have not yet dealt with
user feedback. How can this be done efficiently? Note that new labeled examples do not
modify the transition matrix, but rather only the current probability matrix, i.e., A1. This
is because the transition matrix only captures the cooccurrence counts, and says nothing

688 K. Probst and R. Ghani

about the labels for either the view1 or the view2 element. For this reason, a user
interaction will not have any impact on the transition matrix products T1,1 and T2,1, and
we can therefore precompute the transition matrix products. The interactive algorithm
will now proceed as follows: in an offline step, we precompute the matrices T1,1 and
T2,1. When the user provides feedback, we simply modify A1, recompute A1 and A2

by multiplication with the transition matrices. Final probabilities are then assigned as
in the iterative algorithm (i.e., by averaging the view1 and view2 probabilities).

4 Experimental Results

For the experiments reported in this paper, we crawled the web site of a sporting goods
retailer2, concentrating on the domain of tennis. The crawler gives us a set of product
descriptions, which we use as unlabeled training data. Some examples are:

4 rolls white athletic tape
Audio/Video Input Jack
Vulcanized latex outsole construction is lightweight and flexible

For more details on the dataset, please refer to [9]. The experiments reported here
were run on 3194 product descriptions. The results were then compared to 620 ran-
domly selected descriptions that were manually labeled with the correct pairs. Below,
we show a sample of extracted attribute-value pairs:

〈val〉 1 1/2-inch〈/val〉 〈att〉polycotton blend tape〈/att〉
〈val〉1 roll〈/val〉 〈att〉underwrap〈/att〉
Synthetic 〈val〉leather〈val〉 〈att〉upper〈/att〉
〈val〉adiWear tough〈/val〉 〈att〉rubber outsole〈att〉

We provide results comparing the performance of the fast approximation to coEM
with naive Bayes. The first set of results demonstrates that the approximation yields
comparable performance to coEM with naive Bayes. We compare three sample selec-
tion methods over 25 user interaction iterations: the first method randomly selects the
next example to present to the user. Another method, density-based sample selection,
selects the most frequent data elements. Finally, KL-divergence is a method that selects
those examples that the algorithm is most uncertain about. We measure uncertainty by
the KL-divergence between the view1 and view2 probability distributions for each data
element. The KL-divergences are weighted by frequency. For precision (figure 1a), we
report only fully correct pairs, because almost all (around 96%) of the extracted pairs
are at least partially correct in the baseline system. We further report recall (figure 1b),
i.e., how many of the manually extracted pairs were at least partially extracted by the
system. Finally, we report the f-measure (figure 1c).

The results, as in previous active learning studies, show that density and KL-
divergence sample selection outperform random sample selection consistently. More
importantly to this paper, the results also show that the proposed algorithm is an effec-
tive approximation of the coEM algorithm with naive Bayes for our task. Moreover, this
statement holds true for all the sample selection methods that are commonly used in this

2 www.dickssportinggoods.com

Towards ‘Interactive’ Active Learning in Multi-view Feature Sets 689

(a)
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 5 10 15 20 25

P
re

ci
si

on

User iterations

Precision vs. User Interactions

Random Selection (fast approximation)
Density Selection (fast approximation)

KL-Distance Selection (fast approximation)
Random Selection (coEM with Naive Bayes)
Density Selection (coEM with Naive Bayes)

KL-Distance Selection (coEM with Naive Bayes)

(b)
 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0 5 10 15 20 25

R
ec

al
l

User iterations

Recall vs. User Interactions

Random Selection (fast approximation)
Density Selection (fast approximation)

KL-Distance Selection (fast approximation)
Random Selection (coEM with Naive Bayes)
Density Selection (coEM with Naive Bayes)

KL-Distance Selection (coEM with Naive Bayes)

(c)
 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0 5 10 15 20 25

F
-m

ea
su

re

User iterations

F-measure vs. User Interactions

Random Selection (fast approximation)
Density Selection (fast approximation)

KL-Distance Selection (fast approximation)
Random Selection (coEM with Naive Bayes)
Density Selection (coEM with Naive Bayes)

KL-Distance Selection (coEM with Naive Bayes)

Fig. 1. Precision, Recall, and F-measure for fast algorithm compared to coEM with naive Bayes.
The y-value for k indicates the recall, precision, and F-measure after the kth user interaction

(a)
 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25

T
im

e
in

 m
se

cs

User interations

Times vs. User Interactions

Random selection (fast)
Density selection (fast)

KL-Distance selection (fast)
Random selection (Naive Bayes)
Density selection (Naive Bayes)

KL-Distance selection (Naive Bayes)

(b)
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 100 1000 10000 100000 1e+06 1e+07

F
-m

ea
su

re

Time in msecs

F-measure results by time

Density selection (fast)
KL-Distance selection (fast)

Density selection (Naive Bayes)
KL-Distance selection (Naive Bayes)

Fig. 2. Time comparison between Fast algorithm and coEM with naive Bayes. The y-value for k
indicates the time the user needed to wait until the kth user interaction.

setting. We then compare the fast approximation algorithm and coEM with naive Bayes
in terms of user time. The time reported is the time that a user has to wait between inter-
actions (iterations). We show that the fast approximation algorithm performs about two
orders of magnitude faster than the coEM algorithm with naive Bayes (figure 2a). The
time is plotted on a log scale to enable plotting in one figure. We plot the cumulative
times for user interactions. The results show that the interaction with the fast approx-
imation algorithm is almost instantaneous, which was the goal of our work, whereas
coEM with naive Bayes will require long user idle times. We finally combine the ac-
curacy and time performance results to show that the fast approximation algorithm can

690 K. Probst and R. Ghani

yield comparable performance, but orders of magnitude faster (figure 2b). In fact, the
performance after 25 user interactions was reached by the fast approximation algorithm
before coEM with naive Bayes had finished even one user interaction iteration.

5 Conclusions

We addressed interactivity, an important issue that has not received much attention
when combining active learning and semi-supervised learning for multi-view feature
sets. Most research in multi-view active learning has focused on algorithms for select-
ing the next example to label. This is often at the cost of long wait-times for the user
between each query iteration. We were motivated by a practical task, attribute-value
extraction from product descriptions, where the learning system needs to be interac-
tive and the user’s time needs to be used efficiently. We use coEM with naive Bayes,
a state-of-the art multi-view semi-supervised algorithm, which yields good extraction
accuracy but is too slow to be interactives. We present an effective method for interac-
tively incorporating user feedback in real-time with a fast approximation to coEM with
naive Bayes where the bulk of computation can be done offline, before the user gets
involved. Our approach can take any sample selection metric; we show experimental
results with random, density-based and KL-divergence based metrics. Our experiments
show that our algorithm gives comparable performance (precision, recall, and F1) to
the original coEM with naive Bayes algorithm but is orders of magnitude faster. This
results in our information extraction system being practical and minimizing user wait
time. We believe that the combination of active learning and semi-supervised learning
has enormous practical implications but the issue of long wait times can be a hinderance
in many real applications. The work presented in this paper is a step towards building
practical systems and will hopefully drive further research in this direction.

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT
(1998)

2. Brill, E.: Transformation-based error-driven learning and natural language processing: A case
study in part of speech tagging. Computational Linguistics (1995)

3. Collins, M., Singer, Y.: Unsupervised models for named entity classification. In: Joint SIGDAT
Conference on EMNLP and VLC (1999)

4. Ghani, R., Jones, R.: A comparison of efficacy of bootstrapping algorithms for information
extraction. In: LREC 2002 Workshop on Linguistic Knowledge Acquisition (2002)

5. Jones, R.: Learning to extract entities from labeled and unlabeled text. Ph.D. Thesis (2005)
6. Jones, R., Ghani, R., Mitchell, T., Riloff, E.: Active learning for information extraction with

multiple view feature sets. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.)
ECML 2003. LNCS (LNAI), vol. 2837, Springer, Heidelberg (2003)

7. Muslea, I., Minton, S., Knoblock, C.A.: Active + Semi-supervised Learning = Robust Multi-
View Learning. In: ICML (2002)

8. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training. In: CIKM
(2000)

9. Probst, K., Ghani, R., Krema, M., Fano, A., Liu, Y.: Semi-supervised learning of attribute-
value pairs from product descriptions. In: IJCAI (2007)

Principal Component Analysis

for Large Scale Problems
with Lots of Missing Values

Tapani Raiko, Alexander Ilin, and Juha Karhunen

Adaptive Informatics Research Center, Helsinki Univ. of Technology
P.O. Box 5400, FI-02015 TKK, Finland

{Tapani.Raiko,Alexander.Ilin,Juha.Karhunen}@tkk.fi
http://www.cis.hut.fi/projects/bayes/

Abstract. Principal component analysis (PCA) is a well-known classi-
cal data analysis technique. There are a number of algorithms for solving
the problem, some scaling better than others to problems with high di-
mensionality. They also differ in their ability to handle missing values in
the data. We study a case where the data are high-dimensional and a
majority of the values are missing. In case of very sparse data, overfitting
becomes a severe problem even in simple linear models such as PCA. We
propose an algorithm based on speeding up a simple principal subspace
rule, and extend it to use regularization and variational Bayesian (VB)
learning. The experiments with Netflix data confirm that the proposed
algorithm is much faster than any of the compared methods, and that
VB-PCA method provides more accurate predictions for new data than
traditional PCA or regularized PCA.

1 Introduction

Principal component analysis (PCA) [1,2,3] is a classic technique in data analysis.
It can be used for compressing higher dimensional data sets to lower dimensional
ones for data analysis, visualization, feature extraction, or data compression.

PCA can be derived from a number of starting points and optimization
criteria [3,4,2]. The most important of these are minimization of the mean-
square error in data compression, finding mutually orthogonal directions in the
data having maximal variances, and decorrelation of the data using orthogonal
transformations [5].

In this paper, we study PCA in the case that most of the data values are miss-
ing (or unknown). Common algorithms for solving PCA prove to be inadequate
in this case, and we thus propose a new algorithm. The problem of overfitting is
also studied and solutions given.

We make the typical assumption that values are missing at random, that is,
the missingness does not depend on the unobserved data. An example where
the assumption does not hold is when out-of-scale measurements are marked
missing.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 691–698, 2007.
© Springer-Verlag Berlin Heidelberg 2007

692 T. Raiko, A. Ilin, and J. Karhunen

2 Principal Component Analysis

Assume that we have n d-dimensional data vectors x1,x2, . . . ,xn, which form
the d × n data matrix X = [x1,x2, . . . ,xn]. The matrix X is decomposed into
X ≈ AS, where A is a d× c matrix, S is a c×n matrix and c ≤ d ≤ n. Principal
subspace methods [6,4] find such A and S that the reconstruction error

C = ‖X−AS‖2F =
d∑

i=1

n∑

j=1

(xij −
c∑

k=1

aikskj)2 , (1)

is minimized. Typically the row-wise mean is removed from X as a preprocessing
step. Without any further constraints, there exist infinitely many ways to per-
form such a decomposition. PCA constraints the solution by further requiring
that the column vectors of A are of unit norm and mutually orthogonal and the
row vectors of S are also mutually orthogonal [3,4,2,5].

There are many ways to solve PCA [6,4,2]. We will concentrate on the subspace
learning algorithm that can be easily adapted for the case of missing values and
further extended.

Subspace Learning Algorithm. Works by applying gradient descent to the
reconstruction error (1) directly yielding the update rules

A← A + γ(X−AS)ST , S← S + γAT (X−AS) . (2)

Note that with S = AT X the update rule for A is a batch version of Oja’s
subspace rule [7]. The algorithm finds a basis in the subspace of the largest
principal components. If needed, the end result can be transformed into the
PCA solution by proper orthogonalization of A and S.

3 Principal Component Analysis with Missing Values

Let us consider the same problem when the data matrix has missing entries. We
would like to find A and S such that X ≈ AS for the observed data samples.
The rest of the product AS represents the reconstruction of missing values.

The subspace learning algorithm works in a straightforward manner also in
the presence of missing values. We just take the sum over only those indices i
and j for which the data entry xij (the ijth element of X) is observed, in short
(i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c∑

k=1

aikskj , (3)

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (4)

PCA for Large Scale Problems with Lots of Missing Values 693

We propose to use a speed-up to the gradient descent algorithm. In Newton’s
method for optimization, the gradient is multiplied by the inverse of the Hessian
matrix. Newton’s method is known to be fast-converging, but using the full
Hessian is computationally costly in high-dimensional problems (d0 1). Here we
use only the diagonal part of the Hessian matrix, and include a control parameter
α that allows the learning algorithm to vary from the standard gradient descent
(α = 0) to the diagonal Newton’s method (α = 1). The final learning rules then
take the form

ail ← ail − γ′
(

∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑
j|(i,j)∈O eijslj

(∑
j|(i,j)∈O s2

lj

)α , (5)

slj ← slj − γ′

(
∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑
i|(i,j)∈O eijail

(∑
i|(i,j)∈O a2

il

)α . (6)

For comparison, we also consider two alternative PCA methods that can be
adapted for missing values.

Imputation Algorithm. Another option is to complete the data matrix by
iteratively imputing the missing values (see, e.g., [8]). Initially, the missing val-
ues can be replaced by zeroes. With completed data, PCA can be solved by
eigenvalue decomposition of the covariance matrix. Now, the missing values are
replaced using the product AS, PCA is applied again, and this process is it-
erated until convergence. This approach requires the use of the complete data
matrix, and therefore it is computationally very expensive if a large part of the
data matrix is missing.

EM Algorithm. Grung and Manne [9] studied the EM-like algorithm for PCA
in the case of missing values.1 In the E-step, A is fixed and S is solved as a
least squares problem. In the M-step, S is fixed and A is solved again as a
least squares problem. Computations are a lot heavier than in the fully observed
case, but still, experiments in [9] showed a faster convergence compared to the
iterative imputation algorithm.

4 Overfitting in PCA

A trained PCA model can be used for reconstructing missing values by x̂ij =∑c
k=1 aikskj . Although PCA performs a linear transformation of data, overfitting

is a serious problem for large-scale datasets with lots of missing values. This
happens when the cost value (3) is small for training data but the quality of
prediction x̂ij is poor for new data. This effect is illustrated using the following
toy example.

1 The procedure studied in [9] can be seen as the zero-noise limit of the EM algorithm
for a probabilistic PCA model [8].

694 T. Raiko, A. Ilin, and J. Karhunen

Fig. 1. An artificial example where all but two data points have one of the two com-
ponents missing. On the left, the correlation between the components is determined by
these two samples, giving a badly overfitted solution. On the right, the desired solution
where the correlation is not trusted as much (the reconstruction is obtained using the
VB algorithm explained in Section 4).

Assume that the observation space is d = 2-dimensional, and most of the data
are only partly observed, that is either x1j or x2j is unknown for most js. These
observations are represented by triangles placed on the two axes in Fig. 1. There
are only two full observations (x1j , x2j) which are shown on the plot by circles.
A solution which minimizes the cost function (3) to zero is defined by a line that
passes through the two fully observed data points (see the left subfigure). The
missing values are then reconstructed by points lying on the line.

In this example, the solution is defined by only two points and the model is
clearly overfitted: There is very little evidence in the data that there exists a
significant correlation between the two dimensions. The overfitting problem is
even more severe in high-dimensional problems because it is likely that there exist
many such pairs of directions in which the evidence of correlation is represented
by only a few samples. The right subfigure of Fig. 1 shows a regularized solution
that is not overfitted. The correlation is not trusted and the missing values are
reconstructed close to the row-wise means. Note that in regularized PCA, the
reconstructions are no longer projections to the underlying subspace.

Another way to examine overfitting is to compare the number of model pa-
rameters to the number of observed values in data. A rule of thumb is that the
latter should be at least tenfold to avoid overfitting. Consider the subproblem of
finding the jth column vector of S given jth column vector of X while regarding
A a constant. Here, c parameters are determined by the observed values of the
jth column vector of X. If the column has fewer than 10c observations, it is likely
to suffer from overfitting, and if it has fewer than c observations, the subproblem
is underdetermined.

Regularization. A popular way to regularize ill-posed problems is penalizing
the use of large parameter values by adding a proper penalty term into the cost

PCA for Large Scale Problems with Lots of Missing Values 695

function. This can be obtained using a probabilistic formulation with (indepen-
dent) Gaussian priors and a Gaussian noise model:

p(xij | A,S) = N
(

xij ;
c∑

k=1

aikskj , vx

)

(7)

p(A) =
d∏

i=1

c∏

k=1

N (aik; 0, 1) , p(S) =
c∏

k=1

n∏

j=1

N (skj ; 0, vsk) . (8)

The cost function (ignoring constants) is minus logarithm of the posterior of the
unknown parameters:

CBR =
∑

(i,j)∈O

(
e2

ij/vx + ln vx

)
+

d∑

i=1

c∑

k=1

a2
ik +

c∑

k=1

n∑

j=1

(
s2

kj/vsk + ln vsk

)
. (9)

The cost function can be minimized using a gradient-based approach as described
in Section 3. The corresponding update rules are similar to (5)–(6) except for the
extra terms which come from the prior. Note that in case of joint optimization
of CBR w.r.t. aik, skj , vsk, and vx, the cost function (9) has a trivial minimum
with skj = 0, vsk → 0. We try to avoid this minimum by using an orthogonalized
solution provided by unregularized PCA for initialization. Note also that setting
vsk to small values for some components k is equivalent to removal of irrelevant
components from the model. This allows for automatic determination of the
proper dimensionality c instead of discrete model comparison (see, e.g., [10]).

Variational Bayesian Learning. Variational Bayesian (VB) learning provides
even stronger tools against overfitting. VB version of PCA [10] approximates the
joint posterior of the unknown quantities using a simple multivariate distribu-
tion. Each model parameter is described a posteriori using independent Gaussian
distributions: q(aik) = N (aik; aik, ãik) and q(skj) = N (skj ; skj , s̃kj), where aik

and skj denote the mean of the solution and ãik and s̃kj denote the variance of
each parameter. The means aik, skj can then be used as point estimates of the
parameters while the variances ãik, s̃kj define the reliability of the estimates (or
credible regions). The direct extension of the method in [10] to missing values
can be computationally very demanding. VB-PCA has been used to reconstruct
missing values in [11,12] with algorithms that complete the data matrix, which
is also very inefficient in case a large part of data is missing. In this article, we
implement VB learning using a gradient-based procedure similar to the subspace
learning algorithm described in Section 3.

By applying the framework described in [12] to the model in Eqs. (7–8), the
cost function becomes:

CKL = Eq

{
ln

q(A,S)
p(X,A,S)

}
=

∑

(i,j)∈O

Cxij +
d∑

i=1

c∑

k=1

Caik +
c∑

k=1

n∑

j=1

Cskj , (10)

696 T. Raiko, A. Ilin, and J. Karhunen

where individual terms are

Cxij =
(xij −

∑c
k=1 aikskj)2 +

∑c
k=1

(
ãiks

2
kj + a2

iks̃kj + ãik s̃kj

)

2vx
+

ln 2πvx

2
,

Caik =
a2

ik + ãik

2
− 1

2
ln ãik −

1
2
, Cskj =

s2
kj + s̃kj

2vsk
− 1

2
ln

s̃kj

vsk
− 1

2
.

We update ã and s̃ to minimize the cost by setting the gradient of the cost
function to zero:

ãik ←

⎡

⎣1 +
∑

j|(i,j)∈O

s2
kj + s̃kj

vx

⎤

⎦

−1

, s̃kj ←

⎡

⎣ 1
vsk

+
∑

i|(i,j)∈O

a2
ik + ãik

vx

⎤

⎦

−1

.

(11)

The gradients for learning a and s are somewhat similar to (4):

∂CKL

∂ail
= ail +

∑

j|(i,j)∈O

− (xij −
∑c

k=1 aikskj) slj + ails̃lj

vx
, (12)

∂CKL

∂slj
=

slj

vsk
+

∑

i|(i,j)∈O

− (xij −
∑c

k=1 aikskj) ail + ãilslj

vx
. (13)

We can use the speed-up described in Section 3 by computing the second deriva-
tives. These derivatives happen to coincide with the inverse of the updated vari-
ances given in (11): ∂2CKL/∂a

2
il = ã−1

il and ∂2CKL/∂s
2
lj = s̃−1

lj . The vx and vs

parameters are updated to minimize the cost CKL assuming all the other pa-
rameters fixed. The complete algorithm works by alternating four update steps:
{ã}, {s̃}, {a, s}, and {vx, vs}.

5 Experiments

Collaborative filtering is the task of predicting preferences (or producing personal
recommendations) by using other people’s preferences. The Netflix problem [13]
is such a task. It consists of movie ratings given by n = 480189 customers to
d = 17770 movies. There are N = 100480507 ratings from 1 to 5 given, and
the task is to predict 2817131 other ratings among the same group of customers
and movies. 1408395 of the ratings are reserved for validation (or probing). Note
that the 98.8% of the values are thus missing. We tried to find c = 15 principal
components from the data using a number of methods.2 The mean rating was
subtracted for each movie and robust estimation of the mean was used for the
movies with few ratings.

2 The PCA approach has been considered by other Netflix contestants as well (see,
e.g., [14,15]).

PCA for Large Scale Problems with Lots of Missing Values 697

0 1 2 4 8 16 32 64
0.76

0.8

0.84

0.88

0.92

0.96

1

gradient
speed−up
imputation
EM

0 1 2 4 8 16 32

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

gradient
speed−up
regularized
VB1
VB2

Fig. 2. Left: Learning curves for unregularized PCA (Section 3) applied to the Netflix
data: Root mean square error on the training data is plotted against computation time
in hours. Runs are given for two values of the speed-up parameter α and marks are
plotted after every 50 iterations. For comparison, the training errors for the imputation
algorithm and the EM algorithm are shown. The time scale is linear below 1 and
logarithmic above 1. Right: The root mean square error on the validation data from
the Netflix problem during runs of several algorithms: basic PCA (Section 3) with two
values of α, regularized PCA (Section 4) and VB (Section 4). VB1 has vsk fixed to large
values while VB2 updates all the parameters. The curves clearly reveal overlearning
for unregularized PCA.

Computational Performance. In the first set of experiments we compared
the computational performance of different algorithms for PCA with missing
values. The root mean square (rms) error is measured on the training data, that
is, the observed values in the training set. All experiments were run on a dual
cpu AMD Opteron SE 2220.

The comparison methods, the imputation algoritm and the EM algorithm,
were very slow, except for the first iteration of the imputation algorithm due to
the complete data matrix being sparse. Fig. 2 (left) shows the learning curves.
The closer a curve is to the origin, the faster the algorithm minimizes the cost
function.

We also tested the subspace learning algorithm described in Section 3 with
and without the proposed speed-up, starting from the same random starting
point. The learning rate γ was adapted such that if an update decreased the
cost function, γ was multiplied by 1.1. Each time an update would increase the
cost, the update was canceled and γ was divided by 2. The best α seemed to
be around 0.6 to 0.7, the curve shown in Fig. 2 is for α = 5/8. It gave a more
than tenfold speed-up compared to the gradient descent algorithm even if one
iteration took on average 97 seconds against the gradient descent’s 57 seconds.

Overfitting. We compared PCA (Section 3), regularized PCA (Section 4) and
VB-PCA (Section 4) by computing the root mean square reconstruction error
for the validation set, that is, ratings that were not used for training. We tested

698 T. Raiko, A. Ilin, and J. Karhunen

VB-PCA by firstly fixing vsk to large values (this run is marked as VB1 in
Fig. 2) and secondly by adapting them (marked as VB2) to isolate the effects of
the two types of regularization. We initialized regularized PCA and VB1 using
unregularized subspace learning algorithm with α = 0.625 transformed into the
PCA solution. VB2 was initialized using VB1. The parameter α was set to 2/3.

Fig. 2 (right) shows the results. The performance of unregularized PCA starts
to degrade after a while of learning, especially with large values of α. This effect,
known as overlearning, did not appear with VB. Regularization helped a lot and
the best results were obtained using VB2: The final validation rms error was
0.9180 and the training rms error was 0.7826 which is naturally a bit larger than
the unregularized 0.7657.

Acknowledgments. This work was supported in part by the Academy of Fin-
land under its Centers for Excellence in Research Program, and the IST Program
of the European Community, under the PASCAL Network of Excellence, IST-
2002-506778. This publication only reflects the authors’ views. We would like to
thank Netflix [13] for providing the data.

References

1. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

2. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (1986)
3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg

(2006)
4. Diamantaras, K., Kung, S.: Principal Component Neural Networks - Theory and

Application. Wiley, Chichester (1996)
5. Haykin, S.: Modern Filters. Macmillan (1989)
6. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing - Learning

Algorithms and Applications. Wiley, Chichester (2002)
7. Oja, E.: Neural networks, principal components, and subspaces. International Jour-

nal of Neural Systems 1(1), 61–68 (1989)
8. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999)
9. Grung, B., Manne, R.: Missing values in principal components analysis. Chemo-

metrics and Intelligent Laboratory Systems 42(1), 125–139 (1998)
10. Bishop, C.: Variational principal components. In: Proc. 9th Int. Conf. on Artificial

Neural Networks (ICANN99), pp. 509–514 (1999)
11. Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.: A Bayesian

missing value estimation method for gene expression profile data. Bioinformat-
ics 19(16), 2088–2096 (2003)

12. Raiko, T., Valpola, H., Harva, M., Karhunen, J.: Building blocks for variational
Bayesian learning of latent variable models. Journal of Machine Learning Re-
search 8(January), 155–201 (2007)

13. Netflix: Netflix prize webpage (2007), http://www.netflixprize.com/
14. Funk, S.: Netflix update: Try this at home (December 2006), Available at

http://sifter.org/∼simon/journal/20061211.html
15. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for col-

laborative filtering. In: Proc. Int. Conf. on Machine Learning (to appear, 2007)

http://www.netflixprize.com/
http://sifter.org/~simon/journal/20061211.html

Transfer Learning in Reinforcement Learning

Problems Through Partial Policy Recycling�

Jan Ramon, Kurt Driessens, and Tom Croonenborghs

K.U. Leuven, Dept. of Computer Science, Celestijnenlaan 200A, B-3001 Leuven

Abstract. We investigate the relation between transfer learning in rein-
forcement learning with function approximation and supervised learning
with concept drift. We present a new incremental relational regression
tree algorithm that is capable of dealing with concept drift through tree
restructuring and show that it enables a Q-learner to transfer knowl-
edge from one task to another by recycling those parts of the generalized
Q-function that still hold interesting information for the new task. We
illustrate the performance of the algorithm in several experiments.

1 Introduction

Inductive transfer or transfer learning is concerned with the connection between
learning in different but related contexts, e.g. learning to drive a bus after having
learned to drive a car. In a machine learning context, transfer learning is con-
cerned with the added benefits that learning one task can have on a different,
but related task. More specifically, in a reinforcement learning (RL) context, the
added effects of transfer learning can help the learning agent to learn a new (but
related) task faster, i.e., with a smaller amount of training experience.

Concept drift [14] refers to changes over time in the concept under considera-
tion. Examples include socioeconomic phenomena such as fashion, but also more
technical subjects such as computer-fraud and -intrusion. In a machine learning
context, concept drift is usually seen as an added difficulty in a learning task
and has given rise to the field of theory revision.

In principle, the two notions of transfer learning and concept drift are very
similar. Both deal with a change in the target hypothesis, but both also assume
that there will be large similarities between the old and the new target concept.
The biggest difference between the two problem definitions is that for transfer
learning, it is usually known when the context change takes place. For concept
drift, this change is usually unannounced.

In this paper, we investigate the possibility of using methods from theory
revision in a transfer learning context. While reinforcement learning, we will try
to recycle from one task, those parts of a learned policy that still hold relevant
information for a new, related task. We do this by introducing a new incremental
� Research supported by Research Foundation-Flanders (FWO-Vlaanderen), by the

Institute for the Promotion of Innovation through Science and Technology in Flan-
ders (IWT-Vlaanderen) and by GOA 2003/08 ”Inductive Knowledge Bases”.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 699–707, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

700 J. Ramon, K. Driessens, and T. Croonenborghs

relational regression tree algorithm that uses a number of tree restructuring
operators that are suited for first-order regression trees. The algorithm does not
store past training experience but instead stores statistical information about
past experience that allows it to decide when to use which operator. We will
illustrate the performance both on a relational task with concept drift and for
transfer learning in relational reinforcement learning tasks.

2 Transfer Learning and Theory Revision

Most current work in transfer learning does not incorporate ideas from theory
revision. A lot of transfer learning approaches use a mapping to relate the new
task to the task for which a policy was already learned. Some approaches use
the learned knowledge to aid exploration in the new task [7,9]. Although guided
exploration is well suited to overcome the problem of sparse rewards, we believe
that a lot of knowledge is lost if one only uses earlier experience to steer explo-
ration. In the context of concept drift or theory revision it is common to try to
use knowledge learned previously to facilitate learning the new concept.

The approach of Torrey et al. [12] incorporates knowledge about the Q-values
of the first task into the construction of the Q-function of the new task as soft-
constraints to the linear optimization problem that approximates the Q-function.
However, we feel that a lot of knowledge about the structure of the Q-function
is lost. Taylor et al. [11] take a first step into this direction by reusing policies
represented by neural networks. In a general game playing context, there is the
approach of Banerjee and Stone [1] where game independent features that encode
search knowledge are learned that can be used in new tasks.

However, we would like to re-use partial policies to a larger extend. As is
common in theory revision approaches, we will conserve structures in the target
function that were discovered for the first task when they apply to the second and
expand on them or, if necessary delete them from the learned model. Building
an adapted model of the target concept based on already discovered structural
knowledge about related tasks should facilitate learning and thus create a new
form of transfer learning for reinforcement learning.

3 Incremental Tree Learning and Restructuring

We will be using logical decision trees as our target models. Because we will
be re-using learned models from related but different tasks, we need to be able
to learn models that generalize well over tasks which share some properties.
For this, relational or first-order representations are very well suited. We will
use decision trees because the built-in modularity of trees allows easy access to
different parts of the learned theory.

Chapman and Kaelbling [3] proposed an incremental regression tree algorithm
designed with reinforcement learning in mind. On a high level, the G-algorithm
stores the current decision tree and, for each leaf, statistics for all tests that
can be used to split that leaf further. Except for the leaf-splitting, i.e. building

Transfer Learning in RL Problems Through Partial Policy Recycling 701

the tree incrementally, no tree-restructuring operators are used. Tg [5] upgrades
the G-algorithm to a first-order context and uses a similar approach to build
first-order decision trees. A first-order decision tree is a binary decision tree in
which internal nodes contain tests which are a conjunction of first-order literals.
A constraint placed on the first-order literals is that a variable that is introduced
in a node (i.e., it does not occur in higher nodes) does not occur in the right
subtree of the node. This constraint stems from the fact that variables in the
tests of internal nodes are existentially quantified. Suppose a node introduces a
new variable X . Where the left subtree of a node corresponds to the fact that a
substitution for X has been found to make the conjunction true, the right side
corresponds to the situation where no substitution for X exists, i.e., there is no
such X . Therefore, it makes no sense to refer to X in the right subtree.

Probably the best known tree-restructuring algorithm is the ITI-algorithm
[13]. It stores statistics about the performance of all splitting criteria for all
the nodes in the tree and incorporates operators for tree-restructuring such
as tree-transposition or slewing cut-points for numerical attributes. The tree-
transposition operator switches tests between parent and child nodes and copies
the statistical information from the original tree to the restructured one. Recur-
sive tree-transpositioning can be used to install a designated test at any internal
node of a propositional tree. Recently, Dabney and McGovern [4] developed rela-
tional UTrees (which incorporate relational tests in nodes) and an ITI-based in-
cremental learner. However, this system has several drawbacks. First, it requires
all training examples to be remembered. Second, the performance of nodes is
measured by a set of randomly generated trees, which are of limited depth and
whose generation is computationally expensive.

We will introduce the TgR algorithm, an incremental relational decision tree
algorithm that employs tree restructuring operators and does not need to store
all past learning experience. It extends the Tg algorithm mentioned above, the
difference being the availability of four tree-restructuring operators:

Splitting a leaf. This operator splits a leaf into two subleafs, using the best
suited test. This is the only operator used by standard (non-restructuring)
top down induction of decision trees (TDIDT) algorithms such as Tg .

Pruning a leaf. This is the inverse operator of the first. When predictions
made in two sibling-leafs (leafs connected to the same node) become similar,
it will join the two leafs and remove the internal node.

Revising an internal node. This is a bit more complex than the two previous
ones. It is illustrated on the left side of Figure 1. When it turns out that
a different test from the one originally chosen at an internal node becomes
significantly better, the dependencies between tests in first-order trees make
it impossible to make a straightforward swap of the two tests. Instead, we
construct a new node with the new test and repeat on both sides the original
tree (Figure 1). This avoids any information loss, and it can be hoped that
redundant nodes will be further pruned away by the other operators.

Pruning a subtree. This operator is related to the previous one, but will
shrink the tree instead of enlarging it. It is illustrated at the right side

702 J. Ramon, K. Driessens, and T. Croonenborghs

...

...

...

...

remove
subtree

...

...

...

...

A

...
B

...
...

A

...

...

A revise

...

A

...
B

...

A

...

Fig. 1. Revising a test (left) and pruning a subtree (right)

of Figure 1. This operator is used when a node can (or should) be deleted.
Because of the dependencies between tests in a first-order tree, the choice of
subtrees to replace the original tree starting at the deleted node is limited
to the right-side one. As before, the left subtree can contain references to
variables introduced by the test used in the deleted node (e.g. B in Figure 1).

Although these restructuring operators differ from those used in ITI, the re-
sulting trees are quite similar. One difference is that the recursive application
of the transposition operator changes the bottom most tests in the tree and our
revision operator does not. Just like the Tg algorithm, TgR will not store learn-
ing examples, but discard them after the update of the statistics in the tree. The
major difference between the two is that TgR stores the statistics that Tg only
stores in the leafs for all the nodes in the tree. On top of this, to be able to use
the pruning operator, TgR stores the predictive performance of both the entire
subtree and just the right subtree for each node in the tree.

4 Experimental Evaluation

4.1 Bongard Problems with Concept Drift

In a first series of experiments we will use Bongard problems [2] to evaluate
the performance in the context of concept drift. One Bongard learning exam-
ple consists of a (varying) number of objects and relations between them. For
our experiments, we created a dataset of Bongard examples (with every exam-
ple having randomly 0-4 circles, 0-4 triangles and a number of in/2 relations
depending on the concept) and feed them to the learner one by one, together
with the classification (positive or negative) for a chosen concept. After a certain
number of learning examples, we change the concept. We will show the predic-
tive accuracy (tested on 500 examples) for both Tg and TgR on all problems.
The results are averaged over 10 runs, evaluated once per 500 training examples.

In the first experiment we interleave two target concepts. We start with the
concept “Is there a triangle inside a circle?” (A) for 2000 learning examples,
then change it to “Is there a circle inside a triangle?” (B) and alternate the
two in an ABABAB fashion every 5000 learning examples with in the end 5000
examples extra to show further convergence. Figure 2 (left) shows that TgR is
able to keep up with the concept changes while Tg adapts much more slowly. In
Figure 2 (right), one can see that although the tree size of the theory built by
TgR can grow suddenly when TgR decides to swap one of the topmost tests in
the tree using the third revision operator and thereby almost doubling the size

Transfer Learning in RL Problems Through Partial Policy Recycling 703

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000 35000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of Parsed Learning Examples

ABABAB Concept Drift - Accuracy

’TG’
’TGR’

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000 25000 30000 35000

T
re

e
S

iz
e

Number of Parsed Learning Examples

ABABAB Concept Drift - Tree Sizes

’TG-size’
’TGR-size’

Fig. 2. Bongard problem with ABABABB concept drift

of the tree, TgR usually recovers quickly by deleting appropriate parts of the
tree. The tree does however stay larger than the Tg one most of the time. This
experiment also shows the independence of the TgR algorithm to the number
of already processed examples.

In a second experiment, we increase the difficulty of the concept change during
the experiment. We again start with concept A and change it into concept B
after 5000 learning examples, but after 10 000 examples we change it into “Is
there a circle in a circle?” and after 20 000 learning examples into “Is there a
triangle in a triangle?”. The concept changes are ordered by difficulty, i.e. by the
size of the subtree that will have to be changed. Between the first two concepts,
there is only a change in the relationship of the two objects involved. The built
tree will still have to verify the existence of both a circle and a triangle, but will
have to change the test on the in/2 relation. The second change will require the
change of both the in/2 relation and one of the existence checks. The last step
changes the entire concept.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of Parsed Learning Examples

ABCD Concept Drift - Accuracy

’TG’
’TGR’

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

T
re

e
S

iz
e

Number of Parsed Learning Examples

ABCD Concept Drift - Tree Sizes

’TG-size’
’TGR-size’

Fig. 3. Bongard problem with increasingly difficult concept changes

Figure 3 shows that TgR adapts to concept changes better and faster than
the Tg algorithm. Tg quickly starts to slow down and, after a while, is not
able to react to the concept changes within a reasonable amount of learning
examples. The right graph clearly shows the advantage of TgR with respect to
the size of the resulting theory. Although this is difficult to show, TgR succeeds

704 J. Ramon, K. Driessens, and T. Croonenborghs

TgR with transfer
Tg with transfer
TgR without transfer
Tg without transfer

TgR with transfer
Tg with transfer
TgR without transfer
Tg without transfer

Fig. 4. The performance of RRL with and without inductive transfer

in transferring the usable part of its tree through the concept changes. The dip
in performance that can be seen for TgR is largely caused by the time it takes
TgR to actually notice the concept change, before it starts rebuilding its model.
The fact that the second and especially the last concept change require more
changes in the tree cause TgR to take a bit more time before the new concepts
are learned, but the differences are minimal compared to Tg.

4.2 Relational Reinforcement Learning with Transfer of Knowledge

We also present experiments with inductive transfer for relational reinforcement
learning problems. In relational reinforcement learning as presented by Džeroski
et al. [6], a relational regression algorithm is used to learn a generalized Q-
function. We performed experiments in the blocks world [10], an often used test
bed for relational reinforcement learning and in the tic-tac-toe game as an exam-
ple application from the general game playing challenge [8]. In the experiments,
we use two versions of the RRL system, one that uses Tg as a regression algo-
rithm to approximate the Q-function and one that uses the new TgR algorithm.
We will refer to these two systems with RRL-Tg and RRL-TgR respectively.

Blocks World. In the blocks world experiments, we added transfer learning to
the regular blocks world setting by allowing the agent to train in worlds with
easier goal-concepts before learning the target task. The agent only receives a
reward when it reaches the desired goal in the minimal number of steps. If the
goal is not reached in that time, the episode ends without any rewards.

We consider the on(A,B)-goal, i.e. block A needs to be directly on top of
block B, as target task in a blocks world with 13 blocks. In the setting with
inductive transfer, the agent’s goal in the first 300 episodes is to clear a certain
block (clear(A)) in a world with 4 blocks, then the goal is changed so that
the agent only receives a reward iff 2 target blocks are clear at the same time
(clear(A), clear(B)) in a world with 7 blocks. In episode 600 the goal is changed
to on(A,B) with 10 blocks and finally to the target goal-concept of on(A,B) in an
environment with 13 blocks at episode 1000. For both RRL-Tg and RRL-TgR

Transfer Learning in RL Problems Through Partial Policy Recycling 705

we use a language bias similar to previously reported experiments performed
with RRL-Tg in the blocks world [5].

Figure 4 shows the learning graph for RRL-Tg and RRL-TgR both with
and without transfer of knowledge. The shown received reward was obtained by
freezing the Q-function approximation and testing its policy on 100 test-episodes,
every 100 episodes. The results are averaged over 10 runs. The horizontal lines
indicate where the goal-concept is changed. Hence the reader should compare
the performance in the target task for the experiment without transfer with that
for the experiment with transfer, starting after 1000 training episodes.

The performance without transfer is tested on the target goal from the start.
In this setting the learning behavior of RRL-TgR is slightly better than that
of RRL-Tg since concept drift is by nature unavoidable in reinforcement learn-
ing. As the learning agent explores more of the world and gets a better idea
of the optimal strategy, the utility (e.g. Q)-values that it computes will auto-
matically increase and earlier underestimates should be forgotten. In the setting
with inductive transfer, a good policy for the target task is learned a lot faster.
Although inductive transfer also helps RRL-Tg , the concept changes make it
harder to learn an optimal policy.

Making a direct comparison of the RRL-TgR system to the Relational UTrees
of [4] is difficult, both because they did not perform any experiments involving
changing goals and because they only report results obtained by an ε-greedy
policy on the on(A,B) task in a blocks world with three blocks. We can state
however that on on(A,B) in a world with three blocks, RRL-TgR clearly learns
much faster (converging to an optimal policy after 200-300 learning episodes with
a maximum length of 3 steps) than the results reported in [4] where an “epsilon-
optimal” policy is only reached after learning on 20.000 (state,action)-pairs.

Tic-tac-toe. We also present an experiment using tic-tac-toe, an application
from the general game playing challenge. This is a well known two player game.
If both players play optimally it results in a draw. The game is very asymmetric
and although it is relatively easy to learn to draw against an optimal player
using reinforcement learning when one is allowed to start the game, it becomes
really hard to do this when the opposing player is allowed to act first. In fact,
against a starting player that optimizes his game strategy against a random
player, the probability of playing a draw with a random strategy is only 0.52%.
This sparsity of the reward makes it very hard to build a good policy starting
from scratch against an optimal player. We therefor devised an experiment which
allowed RRL to start playing against a starting player which performs 1-step-
look-ahead and transfer the learned knowledge when learning against the optimal
player. The 1-step-look-ahead player will play winning moves if they exist and
counter winning moves of the opponent. However, in states where neither exists,
it will play randomly and therefor will not be immune to the generation of forks.

The language used by Tg and TgR includes both non-game-specific knowl-
edge (e.g. search related features) and game-specific features that can be au-
tomatically extracted from the specification of the game in the general game
description language as used in the general game playing challenge.

706 J. Ramon, K. Driessens, and T. Croonenborghs

Figure 4 shows the percentage of draws (the optimal result) RRL achieves
against an optimal player both with and without inductive transfer averaged over
10 runs. In the experiment without transfer, RRL-TgR does slightly better than
RRL-Tg . In the case where the agent can start learning against an easier player
and transfer the learned knowledge, it learns to draw much faster against the
optimal player. For these experiments we let RRL practice against the 1-step-
look-ahead player for the first 300 games. The first seven reported results in the
graph are draws against the 1-step-look-ahead player. In fact, RRL-TgR learned
to win against that player in 76% of its games after 300 training games (56% for
RRL-Tg). After game 300, RRL is allowed to train against the optimal player
and using the results from the first 300 games, learns to achieve draws against
the optimal player a lot faster. In this setting, RRL-TgR can adapt his policy a
lot faster while RRL-Tg needs more time to adjust its policy to the new player.

5 Conclusions and Future Work

We introduced inductive transfer in reinforcement learning through partial re-use
of previously learned policies, by using an incremental learner capable of dealing
with concept drift. We designed a first-order decision tree algorithm that uses
four tree-restructuring operators suited for first-order decision trees to adapt its
theory to changes in the target concept. These operators take the dependencies
that occur between the tests in different nodes in first-order trees into account
and can be applied without the need to store the entire past training experience.

Experimental results from a Bongard learning problem with concept drift
showed that the resulting algorithm is indeed capable of dealing with changes
in the target concept using partial theory revision. Experiments with relational
reinforcement learning show both that the new algorithm allows the RRL system
to react to goal changes more rapidly and to benefit from the re-use of parts of
previously learned policies when the learning task becomes more difficult.

The TgR algorithm currently does not know when the agent changes to a
new task. Exploiting this knowledge is an important direction for future work.

References

1. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: The
20th International Joint Conference on Artificial Intelligence, pp. 672–677 (2007)

2. Bongard, M.: Pattern Recognition. Spartan Books (1970)
3. Chapman, D., Kaelbling, L.: Input generalization in delayed reinforcement learning:

An algorithm and performance comparisons. In: Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, pp. 726–731 (1991)

4. Dabney, W., McGovern, A.: Utile distinctions for relational reinforcement learning.
In: Proc. of IJCAI’07, pp. 738–743 (2007)

5. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learn-
ing through the use of an incremental first order decision tree learner. In: Flach,
P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 97–108.
Springer, Heidelberg (2001)

Transfer Learning in RL Problems Through Partial Policy Recycling 707

6. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43, 7–52 (2001)

7. Fernández, F., Veloso, M.: Probabilistic policy reuse in a reinforcement learning
agent. In: AAMAS ’06: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pp. 720–727. ACM Press, New York
(2006)

8. Genesereth, M., Love, N.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2), 62–72 (2005)

9. Madden, M., Howley, T.: Transfer of Experience Between Reinforcement Learning
Environments with Progressive Difficulty. AI Rev. 21(3-4), 375–398 (2004)

10. Slaney, J., Thiébaux, S.: Blocks world revisited. AI Jour. 125(1-2), 119–153 (2001)
11. Taylor, M., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy

search reinforcement learning. In: AAMAS’07 (2007)
12. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning

and advice taking. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML
2006. LNCS (LNAI), vol. 4212, pp. 425–436. Springer, Heidelberg (2006)

13. Utgoff, P.: Decision tree induction based on efficient tree restructuring. Machine
Learning 29(1), 5–44 (1997)

14. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(2), 69–101 (1996)

Class Noise Mitigation

Through Instance Weighting

Umaa Rebbapragada and Carla E. Brodley

Dept. of Computer Science, Tufts University
161 College Ave., Medford, MA 02155, USA

{urebbapr,brodley}@cs.tufts.edu

Abstract. We describe a novel framework for class noise mitigation
that assigns a vector of class membership probabilities to each train-
ing instance, and uses the confidence on the current label as a weight
during training. The probability vector should be calculated such that
clean instances have a high confidence on its current label, while mis-
labeled instances have a low confidence on its current label and a high
confidence on its correct label. Past research focuses on techniques that
either discard or correct instances. This paper proposes that discarding
and correcting are special cases of instance weighting, and thus, part
of this framework. We propose a method that uses clustering to calcu-
late a probability distribution over the class labels for each instance.
We demonstrate that our method improves classifier accuracy over the
original training set. We also demonstrate that instance weighting can
outperform discarding.

1 Introduction

Cleaning training data of mislabeled instances improves a classifier’s accuracy.
Past research has focused on cleaning the training data by either discarding
or correcting mislabeled instances. This paper proposes a different approach:
assign a probability vector of class membership to each training instance, and use
the confidence on the current label as a weight during training. Correcting and
discarding techniques can also make use of this probability vector, and indeed,
are special cases of instance weighting. A technique that discards is effectively
assigning a 0 to the current label of an instance it discards and a 1 to the label
of an instance it keeps. Similarly, a correcting technique assigns a confidence of
1 to the new class label, and 0 to all others.

An objective then is to find an accurate method for assigning confidences such
that incorrect labels receive a low confidence and correct labels receive a high
confidence. This paper presents pair-wise expectation maximization (PWEM), a
confidence-labeling technique that clusters instances from pairs of classes and as-
signs to each instance a probability distribution over the class labels. We use the
EM [3] algorithm to perform the clustering because it conveniently outputs the
probability distribution of the instance’s cluster membership, but our approach
can be used with any partitioning clustering technique.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 708–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Class Noise Mitigation Through Instance Weighting 709

We validate our method on three data sets in which we introduce both random
and rule-based noise of up to 40%. Our experiments demonstrate that PWEM
correctly assigns a low confidence to the mislabeled examples. We discuss lim-
itations on PWEM to generate accurate confidences caused by noise level and
class separability. We demonstrate that these confidences can be used to imple-
ment instance discarding and weighting, and show empirical evidence in favor
of instance weighting over discarding. Finally, we demonstrate that PWEM in
conjunction with instance weighting can significantly improve the accuracy of a
classifier over the original mislabeled training set.

2 Instance Weighting

Instance weighting may be preferable to discarding when class noise mitigation
techniques make errors. Discarding can lead to two types of errors: 1) discarding
a clean instance and 2) retaining a mislabeled instance. Another disadvantage
of discarding is that it reduces the training set’s size. If valuable minority class
instances are mislabeled or erroneously identified as noise and discarded, the re-
sulting classifier will not generalize well for examples of those classes. Correcting
methods retain the full data set, but have the potential to maintain or introduce
more noise into the labeling process via three types of errors: 1) changing the
label on a clean instance, 2) retaining the label of a mislabeled instance, and 3)
changing the label of a mislabeled instance to another incorrect label.

Instance weighting via confidences on the current label may be preferable
over 0|1 weights because the full data set is retained and the penalty for making
errors may be smaller. Let P (l|x) be the confidence associated with instance x’s
current label l. The error associated with the instance is P (l|x) if the instance
is mislabeled, and 1− P (l|x) if the instance is clean.

Consider a discarding technique that bases its decision on an instance’s confi-
dence. One can synthetically assign these confidences to any discarding algorithm
such that each instance it discards has a confidence below a threshold T and each
instance it keeps has a confidence greater than T . As a best case scenario for in-
stance weighting in comparison to discarding, imagine that both make mistakes
on the same set of mislabeled and clean instances. Given a training set composed
of a set of mislabeled instances M and a set of clean instances C (where xi is
an instance), and assuming all other confidences are correct, instance weighting
errors are bounded by:

|M ′|∑

i=1

P (l|xi) ≤ |M ′| where M ′ = {P (l|xi) > T |∀xi ∈M}

|C′|∑

i=1

(1 − P (l|xi)) ≤ |C′| where C′ = {P (l|xi) ≤ T |∀xi ∈ C}

Thus, in terms of error, instance weighting is penalized less for making mistakes
on the same instances because the loss is not 0|1. Of course, instance weight-
ing incurs a penalty on correct decisions while discarding does not. However,

710 U. Rebbapragada and C.E. Brodley

our hypothesis is that weighting’s error gain on correct decisions is more than
offset by its error reduction on mistakes. We defer an analytical proof of this hy-
pothesis to future work. Meanwhile, Section 4 presents empirical evidence that
weighting outperforms discarding. A similar argument applies for correcting ver-
sus weighting. The skew in error is even more pronounced under correcting as it
is capable of three types of error rather than two. We defer both our analytical
and empirical analysis of weighting versus correcting to future work.

3 Computing Confidence on the Class Labels

Instance weighting is only as effective as the quality of the confidences associated
with each instance. PWEM is our method for assigning a probability distribution
over the class labels to each instance. For each instance x, PWEM outputs the
confidence P (l|x) that the label of x is l ∈ L, where L is the set of class labels.
In this section, we describe how we use clustering to find P (l|x).

Intuitively, one expects instances from the same class to cluster together.
We can use clustering to create a set of class probability vectors by having
each instance inherit the distribution of classes within its assigned cluster. The
drawback of this method is that there is no guarantee that a multi-class data
set will cluster perfectly along class lines. Feature selection may improve class
separability, but it is possible that two or more classes may not separate under
any circumstances because their distributions overlap.

We improve class separability by clustering pairs of classes, and leave feature
selection as an area of future work. For each of the

(|L|
2

)
pairs of classes, we

cluster only those instances assigned a label in that pair. Thus, each instance
belongs to only |L− 1| clusterings. If an instance’s label has a low confidence in
one clustering due to class inseparability, it may still receive a high confidence
in its other clusterings if its assigned class separates well from others.

Our method, called PWEM, uses the EM algorithm to perform clustering.1

Given a set of L− 1 clusterings for instance x, we calculate the probability that
x belongs to class l as follows:

P (l|x) =
∑

θ

P (θ)P (l|x, θ) =
∑

θ

P (θ)
k∑

c=1

P (l|c, θ)P (c|x, θ) (1)

where l is a class label, x is an instance, c is a cluster, k is the number of
clusters (determined by the Bayesian Information Criterion [9]), and θ is the
given clustering model. P (l|x) represents the probability that instance x should
have class label l. P (l|x, θ) represents the probability that x should have label l
given the clustering θ. This probability is calculated by summing the probability
that x belongs to cluster c (as calculated by EM) times the probability that c
should be labeled as l. Summing over all clusters results in the probability that
x should be labeled l. If P (l|c, θ) and P (c|x, θ) form probability distributions, it
1 Our implementation of EM estimates both the mean and variance of a finite mixture

of Gaussians.

Class Noise Mitigation Through Instance Weighting 711

is trivial to show that P (l|x) also forms a probability distribution over the class
labels. We assume each clustering (θ) is equally likely. Thus, P (θ) is 1

L−1 . Each
P (l|x) acts as a confidence on the class label l for instance x.

4 Experiments

Our experimental goals are to 1) assess the quality of the confidences produced
by PWEM, 2) demonstrate that PWEM in conjunction with instance weighting
improves classifier accuracy over the mislabeled data set and 3) show empirical
evidence in favor of instance weighting over discarding as a technique for class
noise mitigation.

4.1 Data

We perform experiments on three data sets, refered to as segmentation (or segm),
road, and modis. These are multi-class data sets with 2310, 2056 and 3398 in-
stances and 7, 9 and 11 classes respectively. Segmentation has an even distribu-
tion of classes, while road and modis do not. For detailed descriptions, we refer
the reader to Brodley & Friedl (1999) [1].

We perform ten runs of each experiment. For each run we randomly shuffle the
data set and reserve 2/3 for training and 1/3 for testing. Both test and training
sets are stratified samplings. Copies of the training set are mislabeled to have
up to 30% random and 40% rule-based noise. Our experiments use Weka’s [13]
implementation of the C4.5 classifier, which allows the input of instance weights.

Random noise is introduced by randomly flipping n% instances of the training
set, with noise introduced in proportion to class distribution. The new label is
chosen uniformly among the other classes. We denote random noise levels of 10,
20, and 30% as MA10, MA20, and MA30.

Rule-based noise is introduced with the assistance of rules provided by a
domain expert for each data set. These rules reflect the natural confusions that
exist between classes. We use the rules outlined in Brodley & Friedl (1999) [1].
Each instance has a n% chance of being flipped according to its rule. Thus, the
data set potentially has n% noise. The actual noise level is usually less than n%.
Mislabeling to ensure n% noise in the data can create pathological mislabeling
among minority classes in cases where minority classes have mislabeling rules
and majority classes do not. For rule-based noise, MU10, MU20, MU30 and
MU40 indicate the potential noise levels of 10, 20, 30 and 40%. Table 2 provides
the mean actual noise levels. In this paper, the unqualified use of the word ’noise’
refers to potential noise. Only under rule-based noise is potential noise not equal
to actual noise.

4.2 Quality of Confidences

To assess the efficacy of PWEM, we examine the confidences associated with
the current label of the clean (C) and mislabeled (M) instances. For PWEM to

712 U. Rebbapragada and C.E. Brodley

Table 1. Mean and standard deviation on the confidence of the current class label for
clean (C) and mislabeled (M) instances for random (MA) and rule-based (MU) noise

DATA M/C MA10 MA20 MA30 MU10 MU20 MU30 MU40

segm M .45 ± .22 .46 ± .19 .47 ± .15 .39 ± .18 .45 ± .16 .53 ± .17 .58 ± .17
segm C .82 ± .11 .77 ± .11 .73 ± .11 .83 ± .12 .78 ± .11 .74 ± .11 .72 ± .11
road M .47 ± .15 .46 ± .13 .47 ± .12 .62 ± .16 .63 ± .15 .65 ± .13 .65 ± .13
road C .85 ± .16 .83 ± .16 .81 ± .15 .86 ± .15 .84 ± .15 .82 ± .15 .80 ± .15

modis M .46 ± .19 .47 ± .16 .47 ± .13 .70 ± .17 .72 ± .16 .75 ± .15 .78 ± .14
modis C .86 ± .13 .83 ± .13 .79 ± .14 .90 ± .11 .89 ± .11 .88 ± .11 .87 ± .12

work effectively with instance weighting, there must be a separation between the
means of the C and M instances.

Table 1 shows average confidences on the current label of clean and mislabeled
instances. There are several observable trends in the results. First, as the level
of noise increases, the separation between the confidences decreases. At best,
that separation is approximately 0.4 (modis, MA10), and at worst it is 0.09
(segmentation, MU40). As class noise increases, it becomes more difficult for
PWEM to assign high and low confidences to the clean and mislabeled data
respectively. PWEM also has more difficulty separating confidences under rule-
based noise than random noise. This is an expected result, as rule-based noise is
a tougher problem. However, in all cases, the mean confidences of the mislabeled
instances are always lower than the mean confidences of the clean instances. This
will downweight the effect of the mislabeled instances in relation to clean ones.

PWEM currently does a poor job at assigning a high confidence to the true la-
bels of mislabeled instances, rendering it ineffective as a label correction method.
We leave label correction as an area of future work.

4.3 Weighting Versus Discarding

We now compare the accuracy of classifiers on training sets created by discarding
and weighting instances. First, we establish two baselines for classifier accuracy.
The first, MK, is the accuracy of a classifier trained from the mislabeled training
set (MK stands for mislabeled kept). The second, MD, is the accuracy of a
classifier trained from only the clean instances of the training set (MD stands
for mislabeled discarded). This is the accuracy achieved under perfect discarding
or perfect confidences. We discard instances (DIST(T)) whose confidence on their
assigned class label is less than a user-specified threshold T . We weight instances
(WGHT) according to the confidence on their assigned labels.

Table 2 shows our accuracy results. Each cell of the table shows the mean and
standard deviation of the accuracy for a method at the noise level indicated. Our
results show that, in general, instance weighting achieves a better classifier accu-
racy than discarding (with a sole exception at MA10 in segmentation). Indeed,
in all cases, instance weighting achieves accuracy within three percentage points
of the MD upper limit. For all potential noise levels greater than 20, weighting
improves accuracy significantly over the original mislabeled data (MK).

Class Noise Mitigation Through Instance Weighting 713

Table 2. Accuracy on segmentation, road and modis using random (MA) and rule-
based (MU) noise. The MISL column shows potential noise while ACT reports the
actual noise. Results compare instance weighting (WGHT) and discarding (DISC) at
thresholds 0.2, 0.5 and 0.8.

DATA MISL ACT MK MD DISC(.2) DISC(.5) DISC(.8) WGHT

segm MA10 10.0 94.1 ± 0.9 95.7 ± 0.8 94.8 ± 0.9 94.1 ± 0.8 70.3 ± 5.4 94.4 ± 0.8
segm MA20 20.0 91.1 ± 1.2 95.3 ± 0.4 91.4 ± 1.3 91.7 ± 0.8 36.9 ± 9.6 93.4 ± 0.8
segm MA30 30.0 82.2 ± 2.6 95.0 ± 1.0 82.9 ± 3.2 89.6 ± 1.8 21.3 ± 7.4 92.4 ± 1.5
segm MU10 5.8 95.2 ± 0.7 95.9 ± 0.8 95.3 ± 0.7 94.9 ± 1.5 72.1 ± 6.4 95.3 ± 1.3
segm MU20 11.4 93.5 ± 1.5 95.9 ± 0.9 94.0 ± 1.4 93.1 ± 1.3 56.0 ± 10.7 94.8 ± 1.2
segm MU30 17.2 89.6 ± 1.9 95.9 ± 1.2 90.1 ± 1.8 91.8 ± 1.7 30.6 ± 10.7 94.8 ± 1.0
segm MU40 22.9 84.9 ± 2.9 95.4 ± 1.0 84.7 ± 3.1 86.7 ± 4.3 25.6 ± 11.8 93.0 ± 1.6

road MA10 10.0 78.5 ± 0.8 80.5 ± 2.0 78.3 ± 1.0 78.8 ± 1.5 78.4 ± 0.8 80.2 ± 1.3
road MA20 20.0 76.9 ± 1.7 80.7 ± 1.4 76.9 ± 1.7 77.9 ± 1.1 74.2 ± 4.2 79.9 ± 0.5
road MA30 30.0 69.6 ± 4.8 80.5 ± 1.8 69.6 ± 4.8 77.3 ± 1.2 71.1 ± 2.7 79.9 ± 1.0
road MU10 9.7 79.1 ± 1.3 80.2 ± 1.2 79.2 ± 1.4 78.6 ± 1.5 77.1 ± 1.6 80.8 ± 1.0
road MU20 19.2 76.3 ± 2.9 80.7 ± 1.3 76.7 ± 2.8 76.0 ± 2.4 76.2 ± 3.2 80.7 ± 1.1
road MU30 30.0 67.5 ± 2.6 80.1 ± 1.4 67.7 ± 2.5 68.3 ± 2.8 72.3 ± 3.3 80.3 ± 0.7
road MU40 39.6 59.7 ± 4.8 80.0 ± 1.2 60.8 ± 4.8 59.6 ± 4.6 71.0 ± 2.3 79.6 ± 0.8

modis MA10 10.0 84.0 ± 0.9 85.5 ± 0.9 84.0 ± 0.9 84.6 ± 0.9 77.2 ± 1.8 85.4 ± 0.8
modis MA20 20.0 80.5 ± 1.2 84.7 ± 1.0 80.5 ± 1.2 83.3 ± 1.5 65.7 ± 2.4 83.9 ± 1.4
modis MA30 30.0 75.9 ± 2.4 84.5 ± 1.3 75.9 ± 2.4 81.9 ± 1.6 56.6 ± 5.5 83.7 ± 1.3
modis MU10 6.6 84.4 ± 0.6 85.6 ± 0.8 84.4 ± 0.6 85.1 ± 1.1 81.3 ± 1.0 84.9 ± 0.7
modis MU20 13.4 81.5 ± 1.4 85.1 ± 0.9 81.6 ± 1.6 82.4 ± 1.1 80.1 ± 1.3 84.2 ± 1.0
modis MU30 19.5 79.1 ± 2.1 85.5 ± 1.0 79.3 ± 2.2 78.6 ± 1.4 76.9 ± 2.4 82.6 ± 1.8
modis MU40 26.6 74.2 ± 2.7 84.5 ± 0.9 74.3 ± 2.8 75.1 ± 1.9 68.6 ± 2.5 77.9 ± 1.9

For space reasons, Table 2 shows discard thresholds of 0.2, 0.5 and 0.8 only.
However, we performed experiments with discard thresholds 0.1, 0.2, . . . , 0.9. Our
results show that weighting results in a higher classifier accuracy than discarding
at all nine threshold levels. Discarding performs better than the original misla-
beled training set (MK) up until a certain threshold. This point is generally just
below the mean confidence value for clean instances. At this point, too many
clean instances have been discarded and classifier performance deteriorates. Ta-
ble 2 shows that weighting never falls below MK, and of the two methods, is the
more reliable class mitigation technique.

5 Related Work

With the exception of Lawrence and Schölkopf [7], existing methods discard
[15,5,4,2,1,11,12,16], correct [14,10] or are capable of both [8,6]. The majority of
existing work in class noise mitigation evaluates their methods on random-noise
only. As demonstrated by our results, and discussed in Brodley and Friedl [1] and
Zhu et al. [16], rule-based noise is more difficult to eliminate than random noise.

714 U. Rebbapragada and C.E. Brodley

Our approach differs from existing work by introducing instance weighting as a
technique for class noise mitigation. We also experiment on both types of noise.

Methods for discarding differ in how they determine which instances are mis-
labeled. Using a n-fold CV, Brodley and Friedl discard instances that fail to get
either a majority or consensus vote from the ensemble that matches their label.
Verbaeten [11,12] builds ensembles on different subsets of the data (e.g., via bag-
ging) and identifies mislabeled instances as those that receive high weights by
boosting. Zhu et al. [16] propose an iterative algorithm that partitions the data
set and creates rules for each subset. A set of “good rules” are used to classify an
instance as noise by either majority vote or consensus. The noisy instances along
with a small set of good examples are then set aside as the method repeats on
the reduced data set until a stopping criterion is met. Gamberger et al. [5,4] use
compression-based measures to eliminate noise from the training set. A training
instance is discarded if its elimination reduces the complexity of the hypothesis
on the training set. This process iterates until a user-specified noise-sensitivity
threshold is reached. Zeng and Martinez [14,15] calculate a probability distribu-
tion over the class labels for each instance, which they use to discard or correct
instances. One could adapt their method to use instances weights. Our hypothe-
sis is their accuracy results will improve. Whether their method provides better
confidences than PWEM is an open question to be addressed in the future.

Lawrence and Schölkopf’s [7] method for two class problems learns the condi-
tional probabilities that a class label is flipped. These probabilities are learned
at the class level rather than the instance level. The method uses a kernel Fisher
discriminant in conjunction with the EM algorithm to iteratively estimate class
conditional probabilities that indicate mislabeling.

Finally, class noise mitigation is closely related to instance selection tech-
niques, which were designed either to improve computational efficiency or im-
prove classification accuracy by discarding the data (see [14] for a good overview).

6 Conclusion and Future Work

This paper presents a new technique that reduces the effects of class noise.
PWEM clusters pairs of classes to gain insight into the true class labels of the
training set. We present empirical evidence that PWEM in conjunction with
instance weighting significantly improves classifier accuracy close to the theoret-
ical best on all noise levels. In cases where it does not, weighting significantly
improves classifier accuracy over the original mislabeled set.

An area of future work is to improve PWEM’s ability to calculate the proba-
bility distribution over the class labels. In particular, improvement of PWEM’s
ability to predict the true class label of a mislabeled instance will enable it
to be used as a correcting technique. Other ideas to improve PWEM include
weighting the influence of the each clustering according to its class separability
and size, and incorporating feature selection. Finally, we will investigate a wider
range of weighting techniques that use the full probability vector, rather than
the confidence on the current label only.

Class Noise Mitigation Through Instance Weighting 715

References

1. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. JAIR 11, 131–167
(1999)

2. Brodley, C.E., Friedl, M.A.: Identifying and eliminating mislabeled training in-
stances. In: Proc. of the 13th National Conference on Artificial Intelligence, pp.
799–805 (1996)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)

4. Gamberger, D., Lavrač, N., Grošelj, C.: Experiments with noise filtering in a med-
ical domain. In: Proc. of the 16th ICML, pp. 143–151 (1999)

5. Gamberger, D., Lavrač, N., Džeroski, S.: Noise elimination in inductive concept
learning: a case study in medical diagnosis. In: 7th Int. Wkshp. on Algorithmic
Learning Theory, pp. 199–212 (1996)

6. Lallich, S., Muhlenbach, F., Zighed, D.A.: Improving classification by removing or
relabeling mislabeled instances. In: Proc. of the 13th Int. Symp. on the Foundations
of Intelligent Systems, pp. 5–15 (2002)

7. Lawrence, N.D., Schölkopf, B.: Estimating a Kernel Fisher Discriminant in the
presence of label noise. In: Proc. of the 18th ICML, pp. 306–313 (2001)

8. Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled
instances. Journal of Intelligent Information Systems 22, 89–109 (2004)

9. Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of the
number of clusters. In: Proc. of the 17th ICML, pp. 727–734 (2000)

10. Teng, C.: Correcting noisy data. In: Proc. of the 16th ICML, pp. 239–248 (1999)
11. Verbaeten, S.: Identifying mislabeled training examples in ILP classification prob-

lems. In: Proc. of the Machine Learning Conference of Belgium (2002)
12. Verbaeten, S., Van Assche, A.: Ensemble methods for noise elimination in clas-

sification problems. In: Multiple Classifier Systems, 4th International Workshop
(2003)

13. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

14. Zeng, X., Martinez, T.: An algorithm for correcting mislabeled data. Intelligent
Data Analysis 5 (2001)

15. Zeng, X., Martinez, T.: A noise filtering method using neural networks. In: Proc. of
the Int. Wkshp. of Soft Computing Techniques in Instrumentation, Measurement
and Related Applications (2003)

16. Zhu, X., Wu, X., Chen, S.: Eliminating class noise in large datasets. In: Proc. of
the 20th ICML, pp. 920–927 (2003)

Optimizing Feature Sets for Structured Data

Ulrich Rückert and Stefan Kramer

Institut für Informatik/I12, Technische Universität München, Boltzmannstr. 3,
D-85748 Garching b. München, Germany

{rueckert,kramer}@in.tum.de

Abstract. Choosing a suitable feature representation for structured
data is a non-trivial task due to the vast number of potential candidates.
Ideally, one would like to pick a small, but informative set of structural
features, each providing complementary information about the instances.
We frame the search for a suitable feature set as a combinatorial opti-
mization problem. For this purpose, we define a scoring function that
favors features that are as dissimilar as possible to all other features.
The score is used in a stochastic local search (SLS) procedure to maxi-
mize the diversity of a feature set. In experiments on small molecule data,
we investigate the effectiveness of a forward selection approach with two
different linear classification schemes.

1 Introduction

Feature generation and selection for structured data is complicated by the vast
number of possible candidate features. In graph classification, for instance, the
number of ways to describe a graph is virtually unlimited, and often expert
knowledge is necessary to identify relevant aspects of a graph. A popular choice
is to represent a graph by features that specify whether or not a subgraph
is present. If there is only limited expert knowledge available about relevant
subgraph features in an application, the learning algorithm needs to generate
meaningful features on its own. Unfortunately, the number of subgraphs grows
exponentially with the size of the graphs, so it is clearly infeasible to use all
possible subgraphs as features. Therefore, many approaches restrict the set of
subgraph features to frequently occurring, frequent closed, or class-correlated
subgraphs [3,2]. In all of these cases, however, there is no guarantee that the
resulting feature sets have sufficient coverage over all instances of a dataset.
Moreover, the resulting features may be only slight alterations of a few sub-
graphs. As a consequence, the number of features required to reach some level of
performance may be unnecessarily high, potentially harming comprehensibility
and efficiency. While we focus on graph classification in this paper, the same
problems occur with other forms of structured data, for instance, in logic-based
representations.

Instead of generating a bulk of features and obtaining a well-balanced coverage
only incidentally, it may be worthwhile to actively construct favorable structural
features in the first place. One way to minimize the number of features required

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 716–723, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimizing Feature Sets for Structured Data 717

is to explicitly maximize the diversity of subgraph features. Thus, we frame the
search for diverse, complementary sets of subgraph features as an optimization
problem. We define a scoring function measuring the diversity of a feature set
and present a stochastic local search (SLS) procedure to find subgraphs optimiz-
ing that score. Stochastic local search is motivated by the NP-hardness of the
problem of finding a perfectly complementary subgraph given a set of graphs
and optimal features so far. To focus the search for useful structural features
even further, it is possible to extend the scoring function by balancing diversity
with class correlation. The resulting feature sets are used in linear classifiers.
The effectiveness of the method and its dependence on variations are tested in
experiments on three small molecule datasets from cheminformatics.

2 Background and Motivation

We deal with the problem of feature generation for linear classifiers. In this
setting, the instances are arbitrary objects and we need to find features that
extract meaningful information from the objects. In particular, we are inter-
ested in features that are well suited for use by a learning algorithm to con-
struct a predictive classifier. Information theory gives us the tools to quantify
what constitutes a feature set that is informative about the target class: Let
X ∈ {−1, 1}m×n be the training matrix containing m instances x1, . . . , xm,
where each instance xi = (xi(1), . . . , xi(n)) ranges over n features. Xi denotes
the ith column of the training matrix, that is, the instantiation of the ith feature.
Assuming a binary classification problem, we denote the class labels of the in-
stances by Y ∈ {−1, 1}m. Then we are aiming at features X1, . . . , Xn with high
mutual information I(X ;Y) = I(X1, . . . , Xn;Y) between features and target
class. We can write the mutual information as the difference between the entropy
of X and the conditional entropy of X given Y : I(X ;Y) = H(X) − H(X |Y).
Thus, in order to obtain highly informative features, we need to maximize
H(X) := H(X1, . . . , Xn) and to minimize H(X |Y) := H(X1, . . . , Xn|Y). This
leads to the following three criteria:

– High correlation with the class. Since we would like to minimize H(X |Y), we
are looking for features that are highly correlated with Y . This is the criterion
that is most prominently applied in most traditional multi-relational learning
systems. Theoretically, a single feature Xi agreeing with Y on all instances
would be enough to ensure H(Xi|Y) = 0. In practice it is rarely possible to
find such a perfect feature and often there is only a small number of features
with high correlation. In such a setting, the learning algorithm also needs to
consider features with comparably low correlation and the two other criteria
below become relevant for optimal feature construction.

– High feature entropy. The joint entropy can be upper-bounded by the sum
of single features: H(X) =

∑n
i=1 H(Xi|Xi−1, . . . , X1) ≤

∑n
i=1 H(Xi). Thus,

in order to maximize H(X) we need to maximize the entropy of each single
feature. For Boolean features this means that each feature should divide the
training instances in two parts of preferably equal size, so that it assigns −1

718 U. Rückert and S. Kramer

to roughly the same number of objects as +1. This is intuitively intriguing:
a set of k features that assign +1 to only one training instance and −1 to the
others can discriminate only between k different instances, whereas a set of
features that divide the instances into two equal-sized parts can discriminate
between up to 2k bins of instances.

– High inter-feature entropy. Even if all single features have maximal entropy,
it could be the case that the features are highly correlated to each other.
In the most extreme case, it could be that all features assign the same
labels to all instances X1 = . . . = Xn. Clearly, we need to ensure that
the features complement each other and do not provide the same informa-
tion all over again. In terms of information theory one can write H(X) =∑n

i=1 H(Xi|Xi−1, . . . , X1) ≤
∑n

i=1 H(Xi|Xi−1). Thus we need to maximize
H(Xi|Xi−1) for all 1 < i ≤ n. Since the features can be ordered arbitrar-
ily, this essentially means we need to maximize H(Xi|Xj) for each pair of
features.

The first criterion has been dealt with to great extent in the existing literature
on relational learning, the second is sometimes addressed by putting minimum
frequency constraints on the features, and the third is usually not considered or
included only implicitly. This is a problem in particular in the graph learning
setting, where a feature indicates the occurrence or absence of a substructure in
a graph. Typically, it is easy to construct substructures that appear in only a
very small number of graphs, so the entropy of single features tends to be low. To
avoid this, one often selects substructures that appear only with a certain mini-
mal frequency in the graph database. Unfortunately, the resulting substructure’s
instantiations are often very similar to each other so that inter-feature entropy
is low. For instance, mining all subgraphs that appear in at least six percent of
the NCTRER dataset (see section 4) yields 83,537 frequent subgraphs. However,
when comparing the instantiation Xi with Xj for all pairs of subgraphs (i, j), it
turns out, that in 19% of the pairs Xi = Xj and in 77% of the pairs Xi differs
from Xj on less than ten instances. Hence, training matrices based on minimum
frequency mining tend to be large and exhibit an unnecessarily large degree of
redundancy.

On the other hand, it is easy to see that Hadamard matrices constitute optimal
training matrices with regard to the latter two criteria, because any two columns
are orthogonal (so H(Xi, Xj) = 2 is maximal for all i �= j), and the number
of ones is equal to the number of minus ones in each column (so H(Xi) = 1
is maximal for all i). Hadamard matrices of order 2i can be generated using
Sylvester’s recursive construction:

H1 =
(

1 1
1 −1

)
, Hi =

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
.

Hadamard matrices are also well suited for linear classifiers, because they have
full rank. One can show that a matrix of rank d leads to 2d different linear
classifiers, so a large-rank matrix allows the linear learner to choose from a
larger amount of different hypotheses. In the following we propose a method

Optimizing Feature Sets for Structured Data 719

that optimizes the second and third criterion for linear classifiers on subgraph
features.

While a Hadamard matrix would be optimal for learning, it is certainly im-
possible to find subgraphs whose instantiations give rise to it. Instead, we are
faced with the problem of finding subgraphs that approximate a Hadamard ma-
trix as good as possible. In the following, we assume a forward selection setting
and frame the problem as an iterative combinatorial optimization problem: Let
D = {g1, . . . , gm} be a set of graphs (the instances), and F = {f1, . . . , fn}
be a set of subgraphs (the already included features), and denote by si the
instantiation vector of the ith subgraph fi with regard to D, i.e., the vector
whose jth component is 1 if fi is a subgraph of gj and -1 otherwise. We are
then looking for a new subgraph fn+1 whose instantiation vector sn+1 optimizes
some score quantifying the criteria explained above. For the experiments in sec-
tion 4, we use what we call a dispersion score in the remainder of the paper:1

d(sn+1) :=
∑n

i=1(s
T
i sn+1)2. Minimizing this score directly addresses the third

criterion: if sn+1 and some si agree on many instances, the square of their dot
product is large. Thus, summing up over all squared dot products essentially pe-
nalizes features that are similar to existing ones. One can show that it promotes
features that discriminate between instances that have not been separated well
by the existing features. It also implicitly optimizes the second criterion, because
it aims at features that agree with existing features on half of the instances and
disagree on the other half, thus leading on average to features which assign +1 to
approximately the same number of instances as -1. Finally, the score reaches the
global optimum zero precisely for the Hadamard matrix. Of course, the disper-
sion score does not aim at finding features that correlate well with the target. In
order to also incorporate the first criterion, we extend it to not only penalize fea-
tures that are similar to the existing features si, but also to reward features that
are similar to the target class vector t: d′(sn+1) :=

∑n
i=1(s

T
i sn+1)2−n(tT sn+1)2.

The modified class-correlated dispersion score is designed to value dispersion to
the same extent as similarity with the target. In the following section we describe
our algorithmic approach to optimizing the dispersion score.

3 Stochastic Local Search for Optimal Dispersion
Features

The dispersion score provides a practical way to formulate the search for fea-
tures with large discriminative power as a combinatorial optimization problem.
Unfortunately, due to the complexity inherent in graph operations, the problem
can be extremely difficult to solve. It is clear that computing the instantiation
vector for an arbitrary graph involves the repeated computation of solutions to
NP-complete graph isomorphism problems. Even if one avoids these subgraph
isomorphism tests, the problem can be shown to be NP-hard:

1 In principle one could also apply mutual information instead of the dispersion score,
but experiments have shown that this is not effective for the datasets in section 4.

720 U. Rückert and S. Kramer

Theorem 1. The problem of deciding whether there exists a graph, that achieves
a dispersion score of zero on a given training matrix and a given graph database
is NP-hard.

(Proof omitted)

There is no generally applicable approach to solving such a combinatorial
optimization problem. However, in recent years stochastic local search (SLS)
algorithms have been applied with remarkable success on similar NP-hard combi-
natorial problems. In particular, they are among the best algorithms available to
solve hard satisfiability problems. SLS can be described as a randomized greedy
walk in the space of solution candidates. More precisely, an SLS algorithm starts
by generating a random solution candidate. It then iterates in a loop over two
steps: in the first step, it calculates “neighboring” solution candidates accord-
ing to some predefined neighborhood relation. For each neighbor, it computes a
score indicating to which degree the candidate is optimal. In the second step, it
randomly selects a new candidate among the neighbors with the best score. As
such a pure greedy algorithm can easily be trapped in local optima, the second
step is from time to time (i.e., with a predefined noise probability p) replaced
by a step, where a completely random neighbor is selected as new candidate.
Finally, the algorithm keeps track of the best candidate found so far and out-
puts this candidate as a solution after a maximum number of iterations. While
modern SLS algorithms often use more sophisticated decision functions, the ba-
sic principle has been shown to be effective on a range of NP-hard problems, see
e.g. [8] for an generic SLS algorithm and applications.

The SLS framework can be easily adjusted to the optimization problem pre-
sented in this paper. A solution candidate is simply a graph, and the scor-
ing function is the dispersion score explained in the preceding section. For the
neighborhood relation we generate two different kinds of neighbors: more specific
neighbors are built by extending the current candidate graph with an edge so
that the resulting subgraph occurs in at least one graph of the graph database.
This avoids generating neighbors that do not occur in the database at all. More
general neighbors are built by removing one edge from the current candidate. If
the removal of the edge separates the graph into two unconnected components,
we keep the larger of the two as neighbor and discard the smaller one.

It is crucial for the effectivity of an SLS algorithm that the calculation of the
score function and the neighbors is as fast as possible. Unfortunately, both tasks
are exceptionally expensive in our case. To compute the dispersion score and to
determine more specific neighbors, one needs to identify the instantiation vector
and that implies a subgraph isomorphism test with each graph in the database.
To overcome this performance bottleneck, we pre-compute an index structure
that stores all subgraphs up to a maximum size that occur in the database. The
calculation of a candidate’s instantiation vector and more specific neighbors is
then just a lookup or a limited search operation in the index structure. As there
is a huge number of subgraphs in a typical database, it is important to design
the index structure to be space efficient, yet fast to access. We achieve this
by associating each (sub-)graph with a canonical code string, i.e., a string that

Optimizing Feature Sets for Structured Data 721

uniquely determines the graph, and storing those canonical strings in a trie. We
follow the breadth-first-search scheme [1] to compute the canonical code strings
of all subgraphs with less than a user-defined number of edges. The strings are
then stored in a trie structure, so that the SLS procedure can simply look up
which of the database graphs contain a specific subgraph.

4 Experiments

In order to evaluate the approach, we implemented the dispersion optimizing
SLS algorithm and applied it to three data sets. The NCTRER dataset [4] deals
with the binding activity of small molecules at the estrogen receptor, the Yoshida
dataset [10] classifies molecules according to their bio-availability, and the blood-
barr dataset [7] deals with the degree to which a molecule can cross the blood-
brain barrier. For the experiments, we set the noise probability of taking a purely
random step in the SLS loop to 0.2, the maximum size of subgraphs stored in
the graph trie to fifteen edges and the maximal number of iterations for the SLS
loop to 2000. The resulting feature sets are processed by a SVM with the C
parameter set to 1 and Margin Minus Variance (MMV) optimization [9] with
the p parameter set to 2. To keep the induced linear model comprehensible, we
build it in an iterative fashion: we start with an empty feature set and then add
the features one by one according to the optimal dispersion criterion. Whenever
the number of features exceeds one hundred, we compute the linear classifier and
remove the feature with the smallest weight before adding a new feature. The
time to generate the trie is typically a few minutes. As it is generated once per
dataset (like an index structure in a database), it does not influence the runtimes
of subsequent SLS runs.

For the first experiment, we investigate to what extent SLS with dispersion
and the class-correlated dispersion are able to generate training sets that are
well suited for classification. To do so, we apply SLS with the two scores to
construct four feature sets containing 25, 50, 150 and 300 features. We report
the training set and test accuracies of SVM and MMV as estimated by tenfold
cross-validation in the first four columns of table 1. The results point out some
interesting insights. First of all, dispersion with class correlation is on average
able to obtain a better training accuracy than the pure dispersion score, in
particular with larger feature sets. This is expected as the pure dispersion score
does not consider the class labels. However, the improvement in training accuracy
does not always translate to an improvement in predictive accuracy. It does so
for small feature sets up to 50 features, but for larger feature sets the difference in
predictive accuracy is small even though the training accuracy is way larger for
the class-correlated dispersion score. Also, MMV tends to perform better with
regard to predictive accuracy than the SVM, even though its training accuracy
is generally inferior to that of the SVM. Overall, MMV with the class-correlated
dispersion score achieves good predictive performance for all feature set sizes.

As the SLS-based method should be particularly well-suited for obtaining
small (e.g., size 25 or 50) useful feature sets, we set up an experiment comparing

722 U. Rückert and S. Kramer

Table 1. Results: percentage of correct classifications of four feature generation meth-
ods on training and test set according to tenfold cross validation

Dataset SLS SLS MinFreq MinFreq
& Nr. (Dispersion) (Class Corr.) (Sorted by Size) (Sorted by Corr.)

Features MMV SVM MMV SVM MMV SVM MMV SVM
Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst

25 70.1 61.5 72.4 60.0 75.3 65.3 76.7 60.0 65.7 58.5 68.6 60.0 70.9 61.9 71.2 60.0
yo- 50 75.6 64.5 79.2 62.3 78.0 67.2 80.5 66.4 67.7 57.0 73.4 60.0 72.2 60.4 73.1 60.0
shida 150 76.6 67.2 81.5 62.3 78.8 68.3 81.7 64.2 80.8 66.4 91.3 68.7 73.5 64.9 76.4 60.0

300 77.2 66.4 81.5 63.8 85.9 66.4 96.1 65.7 85.8 66.8 96.4 68.7 76.4 66.8 83.4 63.4

25 84.2 82.8 83.1 77.6 82.6 81.5 82.9 76.3 80.2 76.3 80.7 59.9 79.2 78.4 79.6 59.9
NCT 50 84.1 81.9 85.2 78.4 83.8 82.3 84.5 78.0 83.4 79.7 84.2 69.4 80.6 80.2 79.3 59.9
RER 150 84.2 81.0 84.5 77.2 84.3 82.3 86.1 82.8 87.1 82.3 91.3 78.0 80.8 79.7 82.2 79.3

300 84.4 80.2 84.5 77.2 88.6 81.5 96.5 78.4 87.6 80.6 92.5 75.9 81.1 79.7 82.5 77.6

25 72.7 69.6 76.8 66.5 77.1 72.5 78.2 68.2 72.9 70.4 73.6 66.5 76.2 73.7 77.3 67.5
blood 50 77.5 71.3 80.0 67.2 77.5 73.5 79.5 68.4 76.8 71.3 81.0 70.4 76.7 74.2 79.7 67.5
barr 150 77.3 69.9 81.1 69.9 78.0 74.9 80.8 68.0 83.2 75.7 90.0 75.9 78.4 72.0 85.6 70.1

300 77.7 71.1 81.2 70.4 84.7 73.7 95.2 74.5 85.7 75.2 95.1 74.2 81.3 73.7 87.9 74.0

it to minimum-frequency and class-correlation feature generation within this
range and beyond (size 150 and 300). First, we apply a subgraph mining tool
to identify all subgraphs that occur in more than six percent of the dataset’s
graphs. Then, we sort the subgraphs by size (i.e. number of edges) or by the
correlation with the target according to a χ2 test on the 2x2 contingency table.
Finally we derive four feature sets with 25, 50, 150 and 300 features from those
two sorted feature sequences. Hence, the first sorting order is essentially an
unsupervised propositionalization approach (similar to the one by Deshpande
et al. [3]), while the second resembles the class-correlation based approach by
Bringmann et al. [2]. The third and fourth column of table 1 give the training and
test accuracies for MMV and the SVM. On feature sets with 150 and 300 features,
the differences between dispersion-based and minimum frequency approaches
are only marginal. However, in the target range of small feature sets, the SLS
optimization of dispersion outperforms other approaches on two of the three
datasets (Yoshida and NCTRER) in almost all pairwise comparisons.

We also compared our approach with the published accuracies (as estimated
by tenfold cross validation) of two recently proposed learning systems for struc-
tured data. On the Yoshida dataset, an SVM with optimal assignment kernel
[5] had 67.8% accuracy, a bit more than the dispersion-based SVM (65.7%), but
less than dispersion-based MMV (68.3%). On bloodbarr, the dispersion-based
approaches featured 74.9% (MMV) and 74.5% (SVM), outperforming the OA
kernel SVM with 57.97% by a large margin. On the NCTRER dataset, kFOIL,
an extension of FOIL incorporating an SVM in a novel evaluation function [6],
had 77.6% accuracy, while the presented system yields 82.3% (MMV) and 82.8%
(SVM), a significant improvement.

Optimizing Feature Sets for Structured Data 723

5 Conclusion

On structured data, a small set of strong features is vital for comprehensibility
and efficiency of computation. In the paper, we framed the search for a suitable
set of structural features as a combinatorial optimization problem. We proposed
a scoring function fostering the diversity of feature sets and an optimization
scheme based on stochastic local search (SLS) to maximize that score. The choice
of SLS is motivated by the NP-hardness of finding an optimally complementary
subgraph feature. In our experiments on small molecule data, we found that
the optimization of dispersion pays particularly when aiming for small feature
sets. Unlike many other approaches to feature selection (e.g. [11]), we can take
advantage of the structure of features, intertwining structure search and feature
selection. In principle, the basic approach is more general than presented here.
First, it is not restricted to graphs, but could be extended to more expressive
representations such as first-order logic. Second, it is not restricted to the forward
selection procedure tested in section 4, since a variant of the dispersion score and
SLS could be used for the optimization of fixed-size feature sets as well.

References

1. Borgelt, C.: On canonical forms for frequent graph mining. In: Proc. 3rd Int. Work-
shop on Mining Graphs, Trees, and Sequences, pp. 1–12 (2005)

2. Bringmann, B., Zimmermann, A., De Raedt, L., Nijssen, S.: Don’t be afraid of
simpler patterns. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD
2006. LNCS (LNAI), vol. 4213, pp. 55–66. Springer, Heidelberg (2006)

3. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE Transactions on
Knowledge and Data Engineering 17(8), 1036–1050 (2005)

4. Fang, H., Tong, W., Shi, L.M., Blair, R., Perkins, R., Branham, W., Hass, B.S.,
Xie, Q., Dial, S.L., Moland, C.L., Sheehan, D.M.: Structure-activity relationships
for a large diverse set of natural, synthetic, and environmental estrogens. Chemical
Research in Toxicology 14(3), 280–294 (2001)

5. Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for
attributed molecular graphs. In: Proceedings of the 22nd ICML, pp. 225–232. ACM
Press, New York (2005)

6. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple
relational kernels. In: AAAI, AAAI Press (2006)

7. Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Cao, Z.W., Chen, Y.Z.: Effect of selec-
tion of molecular descriptors on the prediction of blood-brain barrier penetrating
and nonpenetrating agents by statistical learning methods. Journal of Chemical
Information and Modeling 45(5), 1376–1384 (2005)

8. Rückert, U., Kramer, S.: Stochastic local search in k-term DNF learning. In: Pro-
ceedings of the 20th ICML, pp. 648–655. AAAI Press (2003)

9. Rückert, U., Kramer, S.: A statistical approach to rule learning. In: Proceedings
of the 23rd ICML, pp. 785–792. ACM Press, New York (2006)

10. Yoshida, F., Topliss, J.: QSAR model for drug human oral bioavailability. J. Med.
Chem. 43, 2575–2585 (2000)

11. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res. 5, 1205–1224 (2004)

J. N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 724–731, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Roulette Sampling for Cost-Sensitive Learning

Victor S. Sheng and Charles X. Ling

Department of Computer Science, University of Western Ontario,
London, Ontario, Canada N6A 5B7
{ssheng,cling}@csd.uwo.ca

Abstract. In this paper, we propose a new and general preprocessor algorithm,
called CSRoulette, which converts any cost-insensitive classification algorithms
into cost-sensitive ones. CSRoulette is based on cost proportional roulette
sampling technique (called CPRS in short). CSRoulette is closely related to
Costing, another cost-sensitive meta-learning algorithm, which is based on
rejection sampling. Unlike rejection sampling which produces smaller samples,
CPRS can generate different size samples. To further improve its performance,
we apply ensemble (bagging) on CPRS; the resulting algorithm is called
CSRoulette. Our experiments show that CSRoulette outperforms Costing and
other meta-learning methods in most datasets tested. In addition, we investigate
the effect of various sample sizes and conclude that reduced sample sizes (as in
rejection sampling) cannot be compensated by increasing the number of
bagging iterations.

Keywords: meta-learning, cost-sensitive learning, decision trees, classification,
data mining, machine learning.

1 Introduction

Classification is a primary task of inductive learning in machine learning. However,
most original classification algorithms ignore different misclassification errors; or
they implicitly assume that all misclassification errors cost equally. In many real-
world applications, this assumption is not true. For example, in medical diagnosis,
misdiagnosing a cancer patient as non-cancer is very serious than the other way
around; the patient could die because of the delay in treatment.

Cost-sensitive classification [11, 5, 8, 10, 12] has received much attention in recent
years. Many works have been done; and they can be categorized into two groups. One
is to design cost-sensitive learning algorithms directly [11 4, 7]. Another is to make
wrappers that convert existing cost-insensitive inductive learning algorithms into cost-
sensitive ones. This method is called cost-sensitive meta-learning, such as MetaCost
[3], Costing [14], and CostSensitiveClassifier [13]. Section 2 provides a more
complete review of cost-sensitive meta-learning approaches.

These cost-sensitive meta-learning techniques are useful because they let us reuse
existing inductive learning algorithms and their related improvements. CSRoulette
(see Section 3 and 4) is another effective cost-sensitive meta-learning algorithm.
CSRoulette is very similar to Costing, as they both are based on sampling. Costing is

 Roulette Sampling for Cost-Sensitive Learning 725

based on rejection sampling [14]. The weakness of rejection sampling is that the size
of resampled training set is reduced dramatically, and much useful information is
thrown away in the preprocessing procedure.

To overcome this weakness, CSRoulette is based on a cost-sensitive sampling
technique – cost proportionate roulette sampling (CPRS in short). CPRS is an
improvement of the advanced sampling. It can generate samples of any sizes from the
original dataset. By default it generates samples with the same size as the original
dataset (details in Section 3).

We compare CSRoulette with Costing and other cost-sensitive meta-learning
methods. The experimental results show that CSRoulette outperforms others (see
Section 5.1). Furthermore, we investigate the effect of various sample sizes, and
conclude that reduced sample sizes cannot be compensated by increasing the number
of iterations in ensemble learning (see Section 5.2).

2 Related Work

Cost-sensitive meta-learning converts existing cost-insensitive learning algorithms
into cost-sensitive ones without modifying them. Thus, all the cost-sensitive meta-
learning techniques become middleware components that pre-process the training data
for a cost-insensitive learning algorithm or post-process the output of a cost-
insensitive learning algorithm.

Currently, cost-sensitive meta-learning techniques fall into three categories. The
first is relabeling the classes of instances, by applying the minimum expected cost
criterion [3]. This approach can be further divided into two branches: relabeling
training instances and relabeling test instances. MetaCost [3] belongs to the former
branch. CostSensitiveClassifier (called CSC in short) [13] belongs to the latter branch.
The second category is Weighting [10]. It assigns a certain weight to each instance in
terms of its class, according to the misclassification costs, such that the learning
algorithm is in favor of the class with high weight/cost. The Third is sampling, which
changes the distribution of the training data according to their costs. Both Costing
[14] and CSRoulette belong to this category. Thus, we provide a detailed comparison
between them in Section 5.

Costing [14] uses the advanced sampling - rejection sampling - to change the
distribution of the training set according to the misclassification costs shown in a cost
matrix C(i,j). More specifically, each example in the original training set is drawn
once, and accepted into the sample with the accepting probability C(i)/Z, where C(i) is
the misclassification cost of class i, and Z is an arbitrary constant chosen with the
condition maxC(i)≤Z. However, we notice that rejection sampling has a shortcoming.
The sample S’ produced by rejection sampling is much smaller than the original
training set S (i.e. |S’|<<|S|); even the constant Z is set as Z=maxC(i) to maximize the
size of the sample |S’|, if the misclassification costs are not equal or the dataset is
imbalanced. The learning model built on the reduced samples is not stable (see
Section 5.1). Apparently to reduce the instability, Costing [14] applies bagging [2] to
the rejection sampling.

However, cost proportionate roulette sampling can generate samples with any size.
If it generates samples with the same size as the original training set, it uses more

726 V.S. Sheng and C.X. Ling

available information in the training set. Thus, it can be expected that cost
proportionate roulette sampling outperform rejection sampling.

3 Cost Proportionate Roulette Sampling (CPRS)

Roulette sampling is a stochastic sampling with replacement [6]. The training
examples are mapped into segments of a line. The size of each segment is equal to the
weight of the corresponding examples. The weight of each example is assigned
according to the misclassification costs. To simplify this issue, we discuss binary
classification here.

For binary classes, we assume we have the misclassification costs false positive
(FP, the cost of misclassifying a negative instance into positive) and false negative
(FN, the cost of misclassifying a positive instance into negative), and the cost of
correct classification is zero. We simply assign FP as the weight to each negative
instance, and assign FN as the weight to each positive instance. That is, the weight
ratio of a positive instance to a negative instance is proportional to FN/FP [5].

In the cost proportional roulette sampling, we normalize their weights such that the
sum of them equals to the number of instances. If we have a training set with P
positive instances and N negative instances, then the weight of each negative instance
is

FPNFNP

NPFP

×+×
+×)(, and the weight of each positive instance is

FPNFNP

NPFN

×+×
+×)(. Thus,

the sum of the weights is P+N. That is, the length of the mapped line is P+N.
One of the important steps of roulette sampling is to select an example. Each time,

roulette sampling generates a random number within the range of the length of the
line. Then the example whose segment spans the random number is selected. The
selection process does not stop until the total number of examples is reached. That is,
users can indicate the size of samples generated by roulette sampling.

Like rejection sampling, roulette sampling makes use of the misclassification cost
information. However, unlike rejection sampling, which draws examples
independently from the distribution of the original training set, roulette sampling takes
the distribution of original training set into consideration. In sum, roulette sampling
integrates the effect of misclassification cost, the distribution of original training set,
and the size of samples.

4 CPRS with Aggregation (CSRoulette)

Many researchers have shown that bagging (bootstrap aggregating) [2] can reliably
improve base classifiers. Bagging is a voting process, which counts the votes from the
base classifiers trained on different bootstrap samples. The bootstrap samples are
generated from the original training set by uniformly sampling with replacement. In
order to improve the performance of rejection sampling, Zadrozny et al. [14] take
advantage of a voting algorithm, i.e., Costing, a procedure that is similar to bagging.
Instead of using uniformly sampling with replacement, Costing uses rejection
sampling to generate multiple samples and build a classifier on each sample.

 Roulette Sampling for Cost-Sensitive Learning 727

Algorithm: CSRoulette(T, B, C, I, x)
Input: cost proportional roulette sampling (CPRS), training set T, based-classifier B, cost
matrix C, a testing example x, and integer I (number of iterations of bootstrap).
For r = 1 to I do //build I classifiers

S’=CPRS (T, C)
Let hr = B(S’)

Output h(x) = sign (∑
=

I

r
r xh

1

)()

Fig. 1. Pseudo-code of CSRoulette

In the same way that Zadrozny et al. apply bagging to rejection sampling to
become Costing, we also apply bagging on cost proportional roulette sampling. That
is, we repeatedly perform cost proportional roulette sampling to generate multiple set
S’1, …, S’i from the original training set T, and learn a classifier from each sampled
set. The resulting method is called CSRoulette. The procedure of CSRoulette is shown
in Figure 1.

5 Empirical Comparisons

To compare CSRoulette with Costing and other existing cost-sensitive meta-learning
algorithms, we choose seventeen datasets (Breast-cancer, Breast-w, Car, Credit-g,
Cylinder-bands, Diabetes, Heart-c, Heart-statlog, Hepatitis, Ionosphere, Labor,
Molecular, Sick, Sonar, Spect, Spectf, and Tic-tac-toe) from the UCI Machine
Learning Repository [1]. Since misclassification costs are not available for the
datasets in the UCI Machine Learning Repository, we reasonably assign their values
that are inversely proportional to the ratio of the number of class instances in the
experiments. For each dataset in experiments, we set the misclassification cost ratio is
inversely proportional to the number of positive/negative instances.

We choose C4.5 [9] as the base learning algorithm with Laplace correction. We
first conduct experiments to compare CSRoulette with MetaCost, CSC, Weighting,
and Costing. In order to maximize the size of the sample produced by rejection
sampling in Costing, we set the constant Z = maxC(i) in all following experiments.
Furthermore, we also conduct experiments to investigate the effect of various sample
sizes in CPRS.

5.1 Average Cost

The average cost is an ultimate measure for the performance of a cost-sensitive
learning algorithm. It is the average misclassification cost of testing examples. In this
section, we conduct experiments to compare CSRoulette (under default sample sizes)
with Costing, MetaCost, CSC, and Weighting measured by the average cost. To be
comparable with CSRoulette and Costing, we also apply bagging on MetaCost, CSC,
and Weighting. The results are presented in terms of the average of the
misclassification cost per test example via 10 runs over ten-fold cross-validation
shown in Figure 2. The vertical axis represents the average cost, and the horizontal
axis represents the number of iterations. The legends of the first dataset are shared by
others.

728 V.S. Sheng and C.X. Ling

Fig. 2. Average cost of each dataset (the lower, the better)

We can draw the following interesting conclusions from the results shown in
Figure 2. First of all, MetaCost is almost always the worst (twelve out of seventeen
datasets). Bagging does improve its performance. However, the improvement is not as
significant as bagging applied on CSRoulette, Costing, CSC, and Weighting. Second,
CSC performs better than Costing on nine datasets. In other datasets, it is similar or
worse. Third, only in three datasets (Car, Sick and Sonar) is CSC better than
Weighting. In all other datasets, it is similar or worse. Fourth, overall, CSRoulette and
Weighting perform better than MetaCost, Costing, and CSC. However, CSRoulette

performs better than Weighting in
thirteen out of seventeen datasets. In
others, it is similar to Weighting in
three datasets (Car, Heart-statlog and
Spectf). It per-forms worse only in the
dataset Sonar.

From above individual analysis for
the seventeen datasets in our experi-
ments, we can conclude that CSRoulette
performs better than Weighting,
Weighting does better than CSC and
Costing, and CSC and Costing do better
than MetaCost.

10

12

14

16

18

1 10 100 1000
Number of it erations (Breast -w)

A
ve

ra
ge

 c
os

t

23

27

31

35

1 10 100 1000
Number of iterat ions (Car)

A
ve

ra
ge

 c
os

t

125

127

129

131

1 10 100 1000
Number of iterations (Cylinder-bands)

A
ve

ra
ge

 c
os

t

44

46

48

50

52

1 10 100 1000
Number of iterat ions (Breast-cancer)

A
ve

ra
ge

 c
os

t

MetaCost CSC
Weighting Cost ing
CSRoulette

130

135

140

145

150

155

1 10 100 1000
Number of it erations (Credit-g)

A
ve

ra
ge

 c
os

t

85

90

95

100

105

110

115

1 10 100 1000
Number of iterations (Diabetes)

A
ve

ra
ge

 c
os

t

24

26

28

30

32

34

1 10 100 1000
Number of iterations (Heart-statlog)

A
ve

ra
ge

 c
os

t

28

30

32

34

36

1 10 100 1000
Number of it erations (Heart-c)

A
ve

ra
ge

 c
os

t

10

11

12

13

14

15

16

17

1 10 100 1000
Number of iterations (Hepatitis)

A
ve

ra
ge

 c
os

t

13

15

17

19

21

23

1 10 100 1000
Number of iterations (Ionosphere)

A
ve

ra
ge

 c
os

t

6

8

10

12

14

1 10 100 1000
Number of iterations (Molecular)

A
ve

ra
ge

 c
os

t

3.3

4.3

5.3

6.3

1 10 100 1000
Number of iterat ions (Labor)

A
ve

ra
ge

 c
os

t

21

22

23

24

25

26

1 10 100 1000
Number of iterations (Spect)

A
ve

ra
ge

 c
os

t

13

23

33

43

53

63

73

83

1 10 100 1000
Number of iterations (T ic-tac-

toe)

A
ve

ra
ge

 c
os

t

16

20

24

28

32

1 10 100 1000
Number of iterat ions (Spect f)

A
ve

ra
ge

 c
os

t

20

22

24

26

28

30

1 10 100 1000
Number of iterations (Sonar)

A
ve

ra
ge

 c
os

t

10

14

18

22

1 10 100 1000
Number of it erations (Sick)

A
ve

ra
ge

 c
os

t

35

37

39

41

43

45

47

1 10 100 1000
Number of iterat ions (Average)

A
ve

ra
g

e
co

st

MetaCost
CSC
Weighting
Costing
CSRoulette

Fig. 3. The average cost over the seventeen
datasets of meta-learning algorithms (the
lower, the better)

 Roulette Sampling for Cost-Sensitive Learning 729

We further summarize the experimental results in average over all the datasets
represented in Figure 3. The results in Figure 3 agree with our conclusion made from
the analysis for all seventeen datasets in previous paragraphy and show quantitively
that CSRoulette is the best, followed by Weighing and followed by CSC and Costing.
MetaCost is the worst.

5.2 Sample Size vs. Number of Bagging

We further investigate the effect of the size of the sample on the cost-sensitive
sampling techniques between CSRoulette and Costing. CPRS (cost proportional
roulette sampling) can generate any sample sizes according to the size indicated by
users. Thus, CSRoulette can use the various sizes samples to build learning models. In
Costing, we use maximum sample size generated by rejection sampling. The
maximum sample size for each dataset is listed in the following table (Table 1), where

||/|'| SSk = , where |S’| is the maximum sample size, and |S| is the size of the

original data. For CSRoulette, we generate samples under four different sizes
indicated (0.2×|S|, 0.5×|S|, 1×|S|, 2×|S|, and 5×|S|). Note that when k=0.5, the size
of the sample generated by CPRS is similar to the maximum size of most samples
generated by rejection sampling (see Table 1).

Table 1. The ratio of the maximum sample size of the ith dataset shown in Figure 2 over its
original size with the rejection sampling. The 12th dataset (Molecular) is absolute balanced.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.59 0.69 0.60 0.60 0.84 0.70 0.91 0.89 0.41 0.72 0.70 1.00 0.12 0.93 0.41 0.54 0.69

From the above table, we can see that the maximum sample size generated by
rejection sampling of each dataset is less than the original training set, particularly in
the dataset Sick. This is one of reasons why CSRoulette performs much better than
Costing in Section 5.1. That is, the sample size affects the quality of the cost-sensitive
classifier, as CPRS generates samples with the same size of the dataset. Does the
original training set size is optimum for the sample generated? Or does each dataset
have its own optimal sample size for cost sensitive sampling techniques (such as cost
proportional roulette sampling used in CSRoulette)? Can we compensate the effect of
reduced sample sizes by increasing the number of iterations in bagging? To
investigate this question we conduct experiments controlling the number of iterations
for different sample sizes to make the total training size equal. The total training size
is defined as the sample size multiples the number of iterations. To be specific, if we
have i iterations for the sample size |S|, the total training size is i×|S|. Thus, for the
sample size 0.5×|S|, we have to iterate 2i times to make its total training size as i×|S|.
We compare Costing (with its maximum sample size) and CSRoulette (with five
different sample sizes). The detail experimental results could not be shown here as the
limited space.

Generally, our experimental results show that bagging could not compensate the
effect of small sample sizes. In eleven out of seventeen datasets (Breast-w, Car,
Cylinder-bands, Hepatitis, Ionosphere, Labor, Sick, Sonar, Spect, Spectf, and Tic-tac-
toe), bagging could not compensate the effect of the small sample sizes. For these

730 V.S. Sheng and C.X. Ling

datasets, larger sample sizes are preferred. Although in six out of seventeen datasets
(such as Breast-cancer, Credit-g, Diabetes, Heart-c, Heart-statlog, and Molecular),
CSRoulette prefers small sample sizes with more iterations of bagging.

CSRoulette outperforms Costing in most cases. CSRoulette can generate samples
with different sizes. For most sample sizes, CSRoulette have a lower average cost
compared to Costing. Even when the sample size of CSRoulette is similar (when
k=0.5) to the sample size of Costing, CSRoulette still performs better than Costing.

We further summarize the experimental results in average in Figure 4. Its vertical
axis represents the average cost (the lower, the better), and its horizontal axis
represents the total training size. The results are represented in terms of the average of
misclassification cost per test example of 10 runs over ten-fold cross validation. There
are five curves in each figure, one for Costing, and four for CSRoulette (with size

k×|S|, where k=0.2, 0.5, 1.0, 2.0, and
5.0 respectively).

From Figure 4, we can see that
CSRoulette and Costing perform better
when the total training size increases.
Under the same total training size,
CSRoulette performs better when the
sample size increases. However, when
the sample size increases from twice
to five times of the sizes of original
training sets, CSRoulette performs
similarly. We can also see that CS-
Roulette performs badly without ba-
gging (i.e., bagging iteration is 1) when

the sample size is five times (i.e., the curve of CSRoulette, k=5) of that of original
training set. When we further increase the iterations, the average costs of all curves do
not further go down. Thus, we can conclude that bagging is useful, but it could not
compensate the effect of small sample sizes.

6 Conclusions and Future Work

In this paper, we propose a new cost-sensitive meta-learning algorithm CSRoulette. It
is based on the cost proportional roulette sampling technique, called CPRS. It
overcomes the shortcomings of rejection sampling. Rejection sampling reduces
significantly the sample size of an original training set. CPRS can generate different
size samples according to users’ indication. If it generates samples with the same size
as the original training set by default, it makes better use of the available information
in the training set.

Similar to Costing, CSRoulette takes advantage of ensemble learning to further
improve the performance of cost proportional roulette sampling. The experimental
results show that CSRoulette outperforms Costing in most cases. Comparing with
other cost-sensitive meta-learning algorithms (MetaCost, CSC, and Weighting),
CSRoulette also performs better. In general, we can conclude that CSRoulette is the
best, followed by Weighting, followed by CSC and Costing. MetaCost is the worst

33

35

37

39

41

43

45

47

1 10 100 1000
Total training size (×|S|, Average)

A
ve

ra
ge

 c
os

t

Costing
CSRoulette,k=0.2
CSRoulette,k=0.5
CSRoulette,k=1
CSRoulette,k=2
CSRoulette,k=5

Fig. 4. The average cost over all seventeen
datasets of Costing and CSRoulette under
different cases (the lower, the better)

 Roulette Sampling for Cost-Sensitive Learning 731

Our experiment results indicate that the best sample size is a characteristic of a
dataset. The effect of small sample size could not be compensated by increasing the
iterations of bagging, although bagging is useful to improve the performance of all the
meta-learning cost-sensitive algorithms.

In our future work, we will further investigate the performance of CSRoulette by
searching its best sample size for each dataset and compare it with other cost-sensitive
learning algorithms under different cost ratios.

References

1. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases (website).
University of California, Department of Information and Computer Science, Irvine, CA
(1998)

2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
3. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive. In:

Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, pp. 155–164. ACM Press, New York (1999)

4. Drummond, C., Holte, R.: Exploiting the cost (in)sensitivity of decision tree splitting
criteria. In: Proceedings of the 17th International Conference on Machine Learning, pp.
239–246 (2000)

5. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Seventeenth
International Joint Conference of Artificial Intelligence, pp. 973–978. Morgan Kaufmann,
Seattle, Washington (2001)

6. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1989)

7. Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision trees with minimal costs. In:
Proceedings of the Twenty-First International Conference on Machine Learning, Morgan
Kaufmann, Banff, Alberta (2004)

8. Lizotte, D., Madani, O., Greiner, R.: Budgeted learning of naïve-Bayes classifiers. In:
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann, Acapulco, Mexico (2003)

9. Quinlan, J.R. (ed.): C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

10. Ting, K.M.: Inducing cost-sensitive trees via instance weighting. In: Proceedings of the
Second European Symposium on Principles of Data Mining and Knowledge Discovery,
pp. 23–26. Springer, Heidelberg (1998)

11. Turney, P.D.: Cost-sensitive classification: empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research 2, 369–409
(1995)

12. Weiss, G., Provost, F.: Learning when training data are costly: the effect of class
distribution on tree induction. Journal of Artificial Intelligence Research 19, 315–354
(2003)

13. Witten, I.H., Frank, E.: Data Mining – Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Publishers, San Francisco (2005)

14. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate instance
weighting. In: Proceedings of the 3th International Conference on Data Mining (2003)

Modeling Highway Traffic Volumes

Tomáš Šingliar and Miloš Hauskrecht

Computer Science Dept, University of Pittsburgh, Pittsburgh, PA 15260
{tomas,milos}@cs.pitt.edu

Abstract. Most traffic management and optimization tasks, such as
accident detection or optimal vehicle routing, require an ability to ade-
quately model, reason about and predict irregular and stochastic behav-
ior. Our goal is to create a probabilistic model of traffic flows on highway
networks that is realistic from the point of applications and at the same
time supports efficient learning and inference. We study several multi-
variate probabilistic models and analyze their respective strengths. To
balance accuracy and efficiency, we propose a novel learning model, mix-
ture of Gaussian trees, and show its advantages in learning and inference.
All models are evaluated on real-world traffic flow data from highways
of the Pittsburgh area.

1 Introduction

The importance of road transportation systems to our daily lives can hardly
be overstated. To facilitate monitoring and management of their complexities,
sensors collecting traffic information (such as traffic volumes and speeds) are
installed on many roads. Today, coverage is good for major highways in many
metropolitan areas and traffic sensor deployment is rapidly increasing worldwide.

Road networks exhibit strong interaction patterns among traffic variables and
traffic is subject to stochastic fluctuations. The ability to adequately model,
reason about and predict stochastic behavior is crucial to computational support
of many traffic management tasks, such as traffic routing, congestion analysis
and accident detection. The objective of our work is to develop models of large
multivariate continuous probability distributions describing vehicular traffic. We
require that the models be compactly parameterized and admit efficient inference
and learning algorithms.

The quantities of primary interest in this paper are traffic flows. Traffic flow
is defined as the number of vehicles passing a point on a highway in a unit of
time. Traffic flows in the highway network are typically modeled with Gaussian
densities [1]. An assumption very often made in stochastic analysis of a net-
work system is that the components of the system behave independently. The
multivariate probabilistic model of the network then factorizes to a product of
univariate distributions that are easy to learn and reason with. Unfortunately,
the assumption of full independence is unrealistic and ignores strong interaction
patterns between traffic variables observable in real data. On the other hand,
the full-covariance model is too complex to learn reliably from limited data.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 732–739, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling Highway Traffic Volumes 733

Consequently, we seek models between the two extremes that provide the right
balance between model complexity and accuracy. The ideal model captures the
important dependencies and at the same time remains tractable.

Intuitively, vehicles on distant roadways do not interact and the dependency
patterns must be “local” and closely tied to the topology of the physical road
network. In this work we study two models that attempt to capture only the
key local interactions: the conditional autoregressive (CAR) model [2], and our
novel approach with mixture of Gaussian trees.

We analyze and compare all models on real-world traffic data collected at
75 sensor locations on major highways in the Pittsburgh metropolitan region.
We demonstrate that the new model represents the sought middle ground for
Pittsburgh traffic network data.

2 Gaussian Models

The Gaussian probability distribution appears to be particularly suitable for
modeling traffic volumes [1]. The number of cars passing during a given interval
can be thought of as a result of a stochastic process in which drivers choose to
take the particular segment with a probability, resulting in a binomial distribu-
tion of the number of observed cars. The binomial distribution, for large N , is
well approximated by the computationally favorable Gaussian. The multivari-
ate Gaussian model is characterized by its mean μ and covariance matrix Σ.
The parameters are usually learned from observed traffic data using maximum-
likelihood estimates. The estimate quality depends on the number N of data-
points available. The number of free parameters in the covariance matrix grows
quadratically with the number of sensors, adversely impacting the variance of
the parameter estimates.

The model-complexity problem of the full multivariate Gaussian model is
often avoided by assuming that all variables are independent, i.e. the covariance
matrix is restricted to be diagonal. As a result, the learning problem decomposes
to D univariate learning problems, where D is the dimensionality of the data. The
advantage of the approach is that the number of free parameters is linear in the
number of sensors. The drawback is that ignoring all interactions is unrealistic for
traffic networks that exhibit strong correlation between readings of neighboring
sensors.

3 The Conditional Autoregressive Model

Traffic flows at places not directly adjacent will not influence each other except
via the situation on a road segment(s) connecting them. In other words, the
Markov property [3] holds. The popular conditional autoregressive (CAR) model
[2] embodies this intuition about locality. The model assumes that the volume
y observed at location s obeys:

y(s) = εs +
∑

r∈N(s)

θs
ry(r), (1)

734 T. Šingliar and M. Hauskrecht

where N(s) denotes the neighborhood of s and εs ∼ N (0, σ2
s) is additive noise.

We fit the model parameters θ using a ridge-regression procedure [4].
The limitation of the CAR model is that the conditional probabilities need

not define a proper probabilistic model [5]. Even if it exists, the joint distribution
may be intractable and the most natural way to obtain proper probabilities from
the CAR model is Gibbs sampling [6].

4 Mixture of Gaussian Trees

Bayesian networks [7] are an elegant formalism for capturing probabilistic de-
pendencies. A Bayesian network consists of a directed acyclic graph and a prob-
ability specification. In the directed graph, each node corresponds to a random
variable, while edges define the decomposition of the represented joint probabil-
ity distribution:

p(X) =
D∏

i=1

p(xi|pa(xi)),

where pa(Xi) are the parents of Xi in the graph. The probability specification is
the set of conditional distributions p(Xi|pa(Xi)), i = 1, . . . , D. Intuitively (but
not exactly), an edge in a Bayesian network represents a causal influence of the
parent on the child. However, traffic congestions are subject to cyclic interaction
patterns (e.g., gridlocking) that cannot be directly modeled with a Bayesian
network.

One way to address the problem of cyclic interactions is to approximate the
underlying distribution with a simpler dependence structure that permits both
efficient learning and inference. Having the maximum number of edges without
introducing cycles, tree structures are a natural choice. By committing to a single
tree, we capture the maximum number of dependencies without introducing
a cycle; but inevitably, some dependencies will be ignored. In the mixture of
trees model [8], the missed dependencies may be accounted for by the remaining
mixture components.

Meilă developed the model in a discrete variable setting. In this work we
propose the mixture of Gaussian trees (MGT) model where Gaussian instead of
discrete variables are used. The mixture of Gaussian trees consists of:

– a collection of m trees with identical vertex sets T1 = (X,E1), . . . , Tm =
(X,Em), where each node v ∈ Vk with parent xu has a conditional probabil-
ity function such that xv ∼ N (μ + cvxu, σv). Note that it is always possible
to orient a tree so that each node has at most one parent.

– mixture weights λ = (λ1, . . . , λm) such that
m∑

k=1

λi = 1.

Let Tk(x) denote the probability of x under the distribution implied by the
tree Bayesian network Tk. The joint probability for the mixture model is then:

p(x) =
m∑

k=1

λkTk(x). (2)

Modeling Highway Traffic Volumes 735

4.1 Inference in the MGT Model

Any probabilistic query in the form p(y|e) can be answered from the joint dis-
tribution (Equation 2) by taking:

p(y|e) =
p(y, e)
p(e)

=
∑

i λiTi(y, e)
∑

i λiTi(e)
(3)

Both the numerator and denominator represent m instances of inference in tree
Gaussian networks, which is a linear-complexity problem [9].

4.2 Learning in the MGT Model

The maximum likelihood parameters for the MGT model can be obtained by
the EM algorithm. Three quantities must be estimated in each M-step: (1) the
structure of trees that constitute the mixture components, (2) their parameteri-
zation and (3) the mixture proportions. Let γk(n) denote the posterior mixture
proportion:

γk(n) =
λkTk(xn)
∑

i λiTi(xn)
.

The γk(n)s can be interpreted as “responsibility” of tree k for the n-th datapoint.
Computing γk(n)s constitutes the E-step. The quantity Γk =

∑N
n=1 γk(n) takes

on the meaning of the expected count of datapoints that Tk is responsible for
generating. Let us also define the distribution Pk associated with Tk over the set
of datapoints by Pk(xn) = γk(n)

Γk
.

In the M-step, we need to update three quantities: the tree structures, their
parameters and the mixture proportions.

The tree structures are selected using a variant of the Chow-Liu procedure
[10]. The Chow-Liu procedure selects a tree model T such that the KL-divergence
(or equivalently, the cross-entropy) between the responsibilities computed in the
E-step and the tree distribution is minimized:

T new
k = argmax

Tk

N∑

i=1

Pk(xi) logTk(xi). (4)

This is accomplished by finding a Maximum Weight Spanning Tree (MWST),
where the edges are weighted by the mutual information between variables they
connect. The structure update for the tree Tk requires that we compute the
mutual information between all variables xu, xv ∈ X . In the continuous case,
this is computationally infeasible without making a distributional assumption.
We therefore treat Pk(xi) as a sample from a Gaussian and compute the mutual
information in closed form:

Ik(xu, xv) = −1
2

log(|Σ̂k|/(σ2
uσ

2
v)), (5)

where Σ̂k is the maximum likelihood estimate of the 2 × 2 covariance matrix
and σ2

u and σ2
v are its diagonal elements. After we have determined the optimal

736 T. Šingliar and M. Hauskrecht

structure, we orient the tree by picking a vertex at random and directing all the
edges away from it. In this manner we achieve that every vertex has at most one
parent. Mutual information is symmetrical, which means that any orientation of
edges yields an optimal spanning tree.

Parameter learning. It is unsurprising to derive that the M-step update for
λ is to match the expected empirical marginal: λk = Γk

N .
Consider an arc u → v and recall that xv ∼ N(μv + cvxu, σv). We have

data in the form Duv = {(x(i)
u , x

(i)
v , w(i))}Ni=1, where the weight w(i) corresponds

to Pk(xi) computed in the E-step. We can update the parameters of v, denoted
θv = {μv, cv, σv}, by maximizing the likelihood of the data P (Duv|θv). We obtain
that the update of μv and cv is the solution of the following linear system:

⎛

⎜
⎜
⎝

N∑

n=1
w

(i)
v

N∑

i=1

x
(i)
u w

(i)
v

N∑

i=1

x
(i)
v w

(i)
v

N∑

i=1

x
(i)
u w

(i)
v

N∑

i=1

x
(i)
u x

(i)
u w

(i)
v

N∑

i=1

x
(i)
v x

(i)
u w

(i)
v

⎞

⎟
⎟
⎠ . (6)

Knowing μv and cv we can estimate σ2:

σ2
v =

(
N∑

n=1

w(i)
v

)−1 N∑

i=1

(x(i)
v − μv − cvx

(i)
u)2w(i)

v (7)

E- and M- step are alternated until the expected complete log-likelihood stabi-
lizes.

Model selection. The parameter that remains to be chosen is the number
of mixture components (trees). We propose that the search be performed by
learning the model with increasing number of components until the Bayesian
Information Criterion (BIC) no longer decreases. The BIC is defined as an ap-
proximation to the integrated likelihood [11]:

BIC(k) = −2 ln p(D|k, θ̂k) + ψk lnN (8)

where θ̂k is the ML estimate of parameters and ψk is the number of free param-
eters in model with k components.

5 Experimental Evaluation

The data was collected by 75 sensors monitoring Pittsburgh highways. Each dat-
apoint is thus a vector consisting of the numbers of vehicles passing the respective
sensors during a five-minute interval. The dataset contains all measurements at a
fixed time of all workdays throughout one year. The correlations between sensors
are high and we expect that this will be a challenging dataset for the structure
search algorithms, causing them to capture spurious correlations.

Modeling Highway Traffic Volumes 737

5.1 Evaluation Metrics

In order to assess the quality of distribution modeling, we use three metrics: a
log-likelihood score, relative error and coefficient of determination. The com-
plexity of the model is accounted for by also reporting the BIC score obtained
in training of the model. The data is divided into the training and testing set.
After the model is trained on the training set, some variables in each datapoint
of the testing set are chosen to be hidden; they will be denoted by h(n), while
the remaining – observed variables will be denoted by e(n). Denote the set of
hidden variables by H .

We compute the log-likelihood score

LLS(H |θM) =
N∑

n=1

log p(h(n)|e(n), θM) (9)

This score reflects how well the model predicts the set of chosen values, given the
remaining observations. As this measure is computed on a subset of the unseen
test set and the sample space of observables in all models is the same, it is not
skewed by the different complexity of the models.

The coefficient of determination is a classical measure of predictor quality
and can be interpreted as the proportion of the data variance explained by the
model. It is obtained as 1−RSS/TSS. Denoting the actually observed value of
the hidden variable h by x(h) and the model’s prediction by y(h), the residual
sum of squares is RSS =

∑
h∈H(x(h) − y(h))2. The prediction given by model

M is defined to be the mean of p(h(n)|e(n),M, θM). The total sum of squares is
defined as TSS =

∑

h∈H

(y(h)− E(y(h)))2.

The relative error is defined naturally as erel = |x(h)− y(h)|/x(h).
We argue that multivariate metrics such as the LLS, which considers all hidden

values in a particular datapoint jointly, reflect the model prediction quality better
and should be given more weight than the univariate scores such as the coefficient
of determination, which look at each missing value in isolation.

5.2 Experiment Setup and Parameters

The product of univariate Gaussians is learned using the ML estimate of mean
and variance for each dimension separately. Conditioning is trivial for the model:
p(h(n)|e(n), μ, σ) = p(h(n)|μ, σ).

The full covariance Gaussians are parameterized from the data by the maxi-
mum likelihood estimates. Conditionals are obtained as p(h(n)|e(n) = f,μ,Σ) =
N (μ,Σ), where μ = μh −ΣheΣ

−1
ee (μe − f), Σ = Σhh −ΣheΣ

−1
ee Σeh and Σ··

are the respective block submatrices of Σ.
Since the CAR model may not define a proper distribution, we obtain a large

number (106) of samples with the Gibbs sampler and fit a multivariate Gaussian
to compute the likelihood.

738 T. Šingliar and M. Hauskrecht

Table 1. The likelihood scores (larger is better), and BIC scores (smaller is better),
relative errors (smaller is better) and coefficients of determination (larger is better).
The parenthesized numbers are the standard deviations across test splits.

Method # prms LLS BIC Relat err Coef of det

N(μ, Σ) 2,925 −8, 448(664.2) 186,910 (6,751) 0.039(0.0022) 0.889(0.012)

N(μ, diag(σ)) 150 −13, 314(1, 036.3) 197,910 (7,361) 0.073(0.0050) 0.638(0.019)

CAR 1,277 −8, 162(598.3) 203,126 (5,970) 0.037(0.0023) 0.868(0.016)

SingleTree 224 −8, 282(616.6) 13,667 (784.1) 0.057(0.0056) 0.765(0.050)

MixTrees(2) 449 −8, 176(638.6) 17,159 (4,299) 0.053(0.0050) 0.766(0.052)

MixTrees(3) 674 −8, 158(632.0) 24,562 (12,995) 0.055(0.0141) 0.704(0.176)

MixTrees(5) 1,124 −8, 226(624.2) 67,787 (32,787) 0.197(0.4567) 0.305(0.341)

We learn the Mixture of Gaussian Trees (MGT) model using the EM algorithm
described in Section 4, using 1,2,3 and 5 mixture components. The LL score is
computed by conditional inference as described in Section 4.1.

In the reported experiment, 20% of the values are omitted at random from
the testing set; the values omitted are fixed across the methods so that each
method encounters the same set of missing data. This ensures comparability of
the quality metrics across the methods. The statistics from 20 train/test splits
are shown in Table 1.

5.3 Results

Evaluation results show that the mixture-of-trees model performed the best.
The 3-component MGT yielded the best score, closely followed by the condi-
tional autoregressive model. However, the MT model achieves this performance
with much fewer parameters. The difference is reflected in the BIC complexity
penalty. The BIC suggests that even a single-tree model might be appropriate,
although the likelihood is lower for mixtures of 2 and 3 trees. Further in favor
of the mixture model, the MGT model also has an embedded structure-learning
component, while the CAR model operates with informed pre-defined neighbor-
hoods. Therefore MGT achieves this performance with less prior information.
MGT is very good at modeling the training data, yielding low BIC scores. This
can lead to some amount of overfitting: the 5-component MGT shows signs of
testing performance deterioration.

The relative error results confirm our original intuition that the MGT stands
between the full and independent Gaussian in performance and complexity.

We note the disproportionately high BIC scores of the full-Gaussian, inde-
pendent Gaussian and CAR models. In the independent Gaussian case, this is
caused by poor modeling of the dependencies in data. On the other hand, the
full Gaussian and CAR models suffer a high complexity penalty.

This cautions us that normally we do not have the data to fit a full covariance
Gaussian. A variety of factors is observable in traffic networks, of which the most
obvious is the variability with the time of day. The correct way to deal with

Modeling Highway Traffic Volumes 739

observable factors is to condition on them, which cuts down the training data
severely. The full covariance Gaussian will likely meet scaling-up problems in
such context.

6 Conclusions

We developed and presented a new mixture of Gaussian trees model that provides
a middle ground in between the data-hungry full covariance and the unrealistic
all-independent Gaussian models. We have explored several other methods for
modeling traffic density and used a predictive likelihood measure to compare
their performance. If data are plentiful, the full-covariance Gaussian can be es-
timated with a high accuracy. However, in the more realistic case when data is
scarce, our mixture-of-trees model, with a number of parameters that increases
linearly with the dimension of the dataset, offers itself as the method of choice.

Many interesting research issues remain open. For example, when learning
from small sample-size datasets, it would be advantageous to generalize the
Bayesian version of the MT learning algorithm [12] to handle the distributions
in the exponential family (including Gaussians that we used here). Automatic
model complexity selection and greater resistance to overfit are among the ex-
pected benefits of applying the Bayesian framework.

References

1. Belomestny, D., Jentsch, V., Schreckenberg, M.: Completion and continuation of
nonlinear traffic time series: a probabilistic approach. Journal of Physics A: Math.
Gen. 36, 11369–11383 (2003)

2. Besag, J., York, J., Mollie, A.: Bayesian Image Restoration With Two Applications
In Spatial Statistics. Annals of the Institute of Statistical Mathematics 43(1), 1–59
(1991)

3. Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)
4. Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning. Springer,

Heidelberg (2001)
5. Chellappa, R., Jain, A. (eds.): Markov Random Fields - Theory and Applications.

Academic Press, London (1993)
6. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-

tice. Springer, New York (2001)
7. Jensen, F.V.: An Introduction to Bayesian Networks. Springer, New York (1996)
8. Meilă-Predoviciu, M.: Learning with mixtures of trees. PhD thesis, MIT (1999)
9. Shachter, R., Kenley, R.: Gaussian influence diagrams. Management Science 35(5),

527–550 (1989)
10. Chow, C.J.K., Liu, C.N.: Approximating discrete probability distributions with

dependence trees. IEEE Trans. on Inf. Theory 14(3), 462–467 (1968)
11. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464

(1978)
12. Meilă, M., Jaakkola, T.: Tractable Bayesian learning of tree belief networks. Tech-

nical Report CMU–RI–TR–00–15, Carnegie Mellon University Robotics Institute
(2000)

Undercomplete Blind Subspace Deconvolution
Via Linear Prediction

Zoltán Szabó, Barnabás Póczos, and András Lőrincz

Department of Information Systems, Eötvös Loránd University,
Pázmány P. sétány 1/C, Budapest H-1117, Hungary

szzoli@cs.elte.hu, pbarn@cs.elte.hu, andras.lorincz@elte.hu

Abstract. We present a novel solution technique for the blind subspace
deconvolution (BSSD) problem, where temporal convolution of multidi-
mensional hidden independent components is observed and the task is
to uncover the hidden components using the observation only. We carry
out this task for the undercomplete case (uBSSD): we reduce the orig-
inal uBSSD task via linear prediction to independent subspace analysis
(ISA), which we can solve. As it has been shown recently, applying tem-
poral concatenation can also reduce uBSSD to ISA, but the associated
ISA problem can easily become ‘high dimensional’ [1]. The new reduction
method circumvents this dimensionality problem. We perform detailed
studies on the efficiency of the proposed technique by means of numerical
simulations. We have found several advantages: our method can achieve
high quality estimations for smaller number of samples and it can cope
with deeper temporal convolutions.

1 Introduction

There is a growing interest in independent component analysis (ICA) and
blind source deconvolution (BSD) for signal processing and hidden component
searches. For recent reviews on ICA and BSD see [2] and [3], respectively. The
traditional example of ICA is the so-called cocktail-party problem, where there
are D pieces of one-dimensional sound sources and D microphones and the task
is to separate the original sources from the observed mixed signals. Clearly, ap-
plications where not all, but only certain groups of the sources are independent
may have high relevance in practice. For example, there could be independent
rock bands playing at a party. This is the independent subspace analysis (ISA)
extension of ICA [4]. Strenuous efforts have been made to develop ISA algo-
rithms, where the theoretical problems concern mostly (i) the estimation of the
entropy or of the mutual information, or (ii) joint block diagonalization. A recent
list of possible ISA solution techniques can be found in [1].

Another extension of the original ICA task is the BSD problem [3], where
the observation is a temporal mixture of the hidden components (echoic cocktail
party). A novel task, the blind subspace deconvolution (BSSD) [1] arises if we
combine the ISA and the BSD assumptions. One can think of this task as the
separation problem of the pieces played simultaneously by independent rock

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 740–747, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Undercomplete Blind Subspace Deconvolution Via Linear Prediction 741

bands in an echoic stadium. One of the most stringent applications of BSSD
could be the analysis of EEG or fMRI signals. The ICA assumptions could
be highly problematic here, because some sources may depend on each other,
so an ISA model seems better. Furthermore, the passing of information from
one area to another and the related delayed and transformed activities may
be modeled as echoes. Thus, one can argue that BSSD may fit this important
problem domain better than ICA or even ISA. It has been shown in [1] that
the undercomplete BSSD task (uBSSD)—where in terms of the cocktail-party
problem there are more microphones than acoustic sources—can be reduced to
ISA by means of temporal concatenation. However, the reduction technique may
lead to ‘high dimensions’ in the associated ISA problem. Here, an alternative
reduction method is introduced for uBSSD and this solution avoids the increase
of ISA dimensions. Namely, we show that one can apply linear prediction to
reduce the uBSSD task to ISA such that the dimension of the associated ISA
problem equals to the dimension of the original hidden sources. As an additional
advantage, we shall see that this reduction principle is more efficient on problems
with deeper temporal convolutions.

The paper is built as follows: Section 2 formulates the problem domain. Sec-
tion 3 shows how to reduce the uBSSD task to an ISA problem. Section 4 contains
the numerical illustrations. Section 5 contains a short summary.

2 The BSSD Model

We define the BSSD task in Section 2.1. Earlier BSSD reduction principles are
reviewed in Section 2.2.

2.1 The BSSD Equations

Here, we define the BSSD task. Assume that we have M hidden, independent,
multidimensional components (random variables). Suppose also that only their
casual FIR filtered mixture is available for observation:

x(t) =
L∑

l=0

Hls(t− l), (1)

where s(t) =
[
s1(t); . . . ; sM (t)

]
∈ RMd is a vector concatenated of components

sm(t) ∈ Rd. Here, for the sake of notational simplicity we used identical di-
mension for each component. For a given m, sm(t) is i.i.d. (independent and
identically distributed) in time t, there is at most a single Gaussian component
in sms, and I(s1, . . . , sM) = 0, where I stands for the mutual information of
the arguments. The total dimension of the components is Ds := Md, the dimen-
sion of the observation x is Dx. Matrices Hl ∈ RDx×Ds (l = 0, . . . , L) describe
the convolutive mixing. Without any loss of generality it may be assumed that
E[s] = 0, where E denotes the expectation value. Then E[x] = 0 holds, as well.
The goal of the BSSD problem is to estimate the original source s(t) by using

742 Z. Szabó, B. Póczos, and A. Lőrincz

observations x(t) only. The case L = 0 corresponds to the ISA task, and if d = 1
also holds then the ICA task is recovered. In the BSD task d = 1 and L is a
non-negative integer. Dx > Ds is the undercomplete, Dx = Ds is the complete,
and Dx < Ds is the overcomplete task. Here, we treat the undercomplete BSSD
(uBSSD) problem.

For consecutive reductional steps we rewrite the BSSD model using operators.
Let H[z] :=

∑L
l=0 Hlz

−l ∈ R[z]Dx×Ds denote the Dx × Ds polynomial matrix
corresponding to the convolutive mixing, in a one-to-one manner, where z is the
time-shift operation. Now, the BSSD equation (1) can be written as x = H[z]s.
In the uBSSD task it is assumed that H[z] has a polynomial matrix left inverse:
there exists polynomial matrix W[z] ∈ R[z]Ds×Dx such that W[z]H[z] is the
identity mapping. It can be shown [5] that for Dx > Ds such a left inverse exists
with probability 1, under mild conditions: coefficients of polynomial matrix H[z],
that is, the random matrix [H0; . . . ;HL] is drawn from a continuous distribution.
For the ISA task it is supposed that mixing matrix H0 ∈ RDx×Ds has full column
rank, i.e., its rank is Ds.

2.2 Existing Decomposition Principles in the BSSD Problem Family

There are numerous reduction methods for the BSSD problem in the literature.
For example, its special case, the undercomplete BSD task can be reduced (i) to
ISA by temporal concatenation of the observations [6], or (ii) to ICA by means of
either spatio-temporal decorrelation [7], or by linear prediction (autoregressive
(AR) estimation), see e.g., [8]. As it was shown in [1], the uBSSD task can also be
reduced to ISA by temporal concatenation. In Section 3, we show another route
and describe how linear prediction can help to transcribe the uBSSD task to
ISA. According to the ISA Separation Theorem [9,1], under certain conditions,
the solution of the ISA task requires an ICA preprocessing step followed by a
suitable permutation of the ICA elements. This principle was conjectured in [4]
on basis of numerical simulations. Only sufficient conditions are available in [9,1]
for the ISA Separation Theorem.

3 Reduction of uBSSD to ISA by Linear Prediction

Below, we reduce the uBSSD task to ISA by means of linear prediction. The
procedure is similar to that of [8], where it was applied for undercomplete BSD
(i.e., for d = 1).

Theorem. In the uBSSD task, observation process x(t) is autoregressive and its
innovation x̃(t) := x(t) − E[x(t)|x(t − 1),x(t − 2), . . .] is H0s(t), where E[·|·]
denotes the conditional expectation value. Consequently, there is a polynomial
matrix WAR[z] ∈ R[z]Dx×Dx such that WAR[z]x = H0s.

Proof. We assumed that H[z] has left inverse, thus the hidden s can be ex-
pressed from observation x by causal FIR filtering, i.e., s = H−1[z]x, where
H−1[z] =

∑N
n=0 Mnz

−n ∈ R[z]Ds×Dx and N denotes the degree of the H−1[z]

Undercomplete Blind Subspace Deconvolution Via Linear Prediction 743

polynomial. Thus, terms in observation x that differ from H0s(t) in (1) belong to
the linear hull of the finite history of x: x(t) = H0s(t) +

∑L
l=1 Hl(H−1[z]x)(t−

l) ∈ H0s(t)+ 〈x(t− 1),x(t− 2), . . . ,x(t− L + N)〉. Because s(t) is independent
of 〈x(t− 1),x(t− 2), . . . ,x(t− L + N)〉, we have that observation process x(t)
is autoregressive with innovation H0s(t).

Thus, the AR fit of x(t) can be used for the estimation of H0s(t). This innovation
corresponds to the observation of an undercomplete ISA model1, which can be
reduced to a complete ISA model using principal component analysis (PCA).
Finally, the solution can be finished by any ISA procedure. We will call the above
uBSSD method linear predictive approximation (LPA). The LPA pseudocode
is given in Table 1. The reduction procedure implies that hidden components
sm can be recovered only up to the ambiguities of the ISA task [10]: that is,
assuming (without any loss of generality) that both the hidden source (s) and
the observation are white – their expectation values are zeroes and the covariance
matrices are identities – the sm components are determined up to permutation
and orthogonal transformation.

Table 1. Linear predictive approximation (LPA): Pseudocode

Input of the algorithm
Observation: {x(t)}t=1,...,T

Optimization
AR fit: for observation x estimate ŴAR[z]

Estimate innovation: x̃ = ŴAR[z]x
Reduce uISA to ISA and whiten: x̃

′
= ŴPCAx̃

Apply ISA for x̃
′
: separation matrix is ŴISA

Estimation
ŴuBSSD[z] = ŴISAŴPCAŴAR[z]

ŝ = ŴuBSSD[z]x

4 Illustrations

We show the results of our studies concerning the efficiency of the algorithm of
Table 1.2 We compare the LPA procedure with the uBSSD method described
in [1], where temporal concatenation was applied to transform the uBSSD task
to a ‘high-dimensional’ ISA task. We shall refer to that method as the method
of temporal concatenation, or TCC for short. Test problems are introduced in
Section 4.1. The performance index that we use to measure the quality of the
solutions is detailed in Section 4.2. Numerical results are presented in Section 4.3.

1 Assumptions made for H[z] in the uBSSD task implies that H0 is of full column
rank and thus the resulting ISA task is well defined.

2 Further details can be found in our accompanying technical report [11].

744 Z. Szabó, B. Póczos, and A. Lőrincz

4.1 Databases

We define four databases (s) to study our LPA algorithm3. These are the
databases used in [1], too. In the 3D-geom, celebrities and letters data sets, the
d-dimensional hidden components sm are 3,2,2-dimensional random variables,
respectively. They are distributed (a) uniformly on geometric forms, (b) accord-
ing to pixel intensities on cartoons of celebrities, and (c) uniformly on images of
letters A and B. We have M = 6, 10, 2 components, thus the dimension of the
hidden source s is Ds = 18, 20, 4. Databases are illustrated in Figs. 1(a)-(c). Our
Beatles database is a non-i.i.d. example. Here, hidden sources are stereo Beatles
songs. 8 kHz sampled portions of two songs (A Hard Day’s Night, Can’t Buy
Me Love) made the hidden sms (d = 2,M = 2, Ds = 4). In the letters and Bea-
tles test the number of components and their dimensions were minimal (d = 2,
M = 2).

(a) (b) (c)

Fig. 1. Illustration of the (a) 3D-geom, (b) celebrities and (c) letters databases

4.2 The Amari-Index

According to Section 3, in the ideal case, the product of matrix ŴISAŴPCA
and matrix H0, that is matrix G := ŴISAŴPCAH0 ∈ RDs×Ds is a block-
permutation matrix made of d × d blocks. To measure this block-permutation
property, the Amari-error adapted to the ISA task [12] was normalized [9] to
take values in [0, 1] independently from d and Ds. This performance measure,
the Amari-index, was used to compare the TCC and LPA techniques.

4.3 Simulations

The experimental studies concern two questions: (i) the TCC and the LPA meth-
ods are compared on uBSSD tasks, (ii) the performance as a function of convo-
lution length is studied for the LPA technique.

We studied the Dx = 2Ds case, like in [1]. Both the TCC and the LPA method
reduce the uBSSD task to ISA problems and we use the Amari-index (Sec-
tion 4.2) to measure and compare their performances. For all values of the pa-
rameters (sample number: T , convolution length: L + 1), we have averaged the
performances upon 50 random initializations of s and H[z]. The coordinates of
matrices Hl were chosen independently from standard normal distribution. We
3 Smiley : http://www.smileyworld.com, Beatles: http://rock.mididb.com/beatles/ .

Undercomplete Blind Subspace Deconvolution Via Linear Prediction 745

1 2 5 10 20 30 50 100

10
−2

10
−1

10
0

Number of samples (T)

A
m

ar
i−

in
de

x
(r

)
uBSSD: 3D−geom (LPA)

L=1
L=2
L=3
L=4
L=5

x103

(a)

1 2 5 10 20 30 50 100
10

0

10
1

10
2

Number of samples (T)

Q
uo

tie
nt

 o
f A

m
ar

i−
in

di
ce

s

uBSSD: 3D−geom (TCC/LPA)

L=1
L=2
L=3
L=4
L=5

x103

(b)

1 2 5 10 30 50 75

10
−2

10
−1

10
0

Number of samples (T)

A
m

ar
i−

in
de

x
(r

)

uBSSD: Beatles (LPA)

L=1
L=2
L=5
L=10
L=20
L=30

x103

(c)

1 2 5 10 30 50 75

10
0

10
1

10
2

Number of samples (T)

Q
uo

tie
nt

 o
f A

m
ar

i−
in

di
ce

s

uBBSD: Beatles (TCC/LPA)

L=1
L=2
L=5
L=10
L=20
L=30

x103

(d)

Fig. 2. Estimation error of the LPA method and comparisons with the TCC method
for the 3D-geom and Beatles databases. Scales are ‘log log’ plots. Data correspond to
different convolution lengths (L + 1). (a) and (c): Amari-index as a function of the
sample number. (b) and (d): Quotients of the Amari-indices of the TCC and the LPA
methods: for quotient value q > 1, the LPA method is q times more precise than the
TCC method. In the celebrities and letters tests, we found similar results as on the
3D-geom data set.

used the Schwarz’s Bayesian Criterion to determine the optimal order of the AR
process. The criterion was constrained: the order Q of the estimated AR process
(see Table 1) was limited from above, the upper limit was set to twice the length
of the convolution, i.e., Q ≤ 2(L + 1). The AR process and the ISA subtask
of TCC and LPA were estimated by the method detailed in [13], and by joint
f-decorrelation (JFD) [14], respectively.

We studied the dependence of the precision versus the sample number. In
the 3D-geom and celebrities (letters and Beatles) tests, the sample number T
varied between 1, 000 and 100, 000 (1, 000 and 75, 000), the length of the convo-
lution (L + 1) changed between 2 and 6 (2 and 31). Comparison with the TCC
method and the estimations of the LPA technique are illustrated in Figs. 2(a)-
(b) (Figs. 2(c)-(d)) on the 3D-geom (Beatles) database. According to Fig. 2(a),
the LPA algorithm is able to uncover the hidden components with high pre-
cisions on the 3D-geom database. We found that the Amari-index r decreases
according to power law r(T) ∝ T−c (c > 0) for sample numbers T > 2000.
The power law is manifested by straight lines on log log scales. According to

746 Z. Szabó, B. Póczos, and A. Lőrincz

Fig. 3. Illustration of the LPA method on the uBSSD task for the 3D-geom (letters)
database. (a)-(c) [(e)-(g)]: sample number T = 100, 000 [75,000], convolution length
L + 1 = 6 [31]. (a), (e): observed convolved signals x(t). (b) [(f)]: Hinton-diagram
of G, ideally block-permutation matrix with 3 × 3 [2 × 2] blocks. (c) [(g)]: estimated
components (ŝm), Amari-index: 0.2% [0.3%]. (d) [(h)]: estimation of hidden components
(ŝm) for sample number T = 20, 000 [15, 000] and convolution parameter L = 20 [230].

Fig. 2(b) the LPA method is superior to the TCC method (i) for all sample num-
bers 1, 000 ≤ T ≤ 100, 000, moreover (ii) LPA can provide reasonable estimates
for much smaller sample numbers. on the 3D-geom database. This behavior is
manifested by the initial steady increase of the quotients of the Amari indices
of the TCC and LPA methods as a function of sample number followed by a
sudden drop when the sample number enables reasonable TCC estimations, too.
Similar results were found on the celebrities and the letters databases, too. The
LPA method resulted in 1.1− 88, 1.0− 87, 1.2− 110-times increase of precision
for the 3D-geom, celebrities and letters database, respectively. For the 3D-geom
(celebrities, letters) dataset the Amari-index for sample number T = 100, 000
(T = 100, 000, T = 75, 000) is 0.19 − 0.20% (0.33 − 0.34%, 0.30 − 0.36%) with
small 0.01− 0.02 (0.02, 0.11− 0.15) standard deviations.

Visual inspection of Fig. 2(c) shows that on the Beatles database the LPA
method found the hidden components for sample number T ≥ 30, 000. The TCC
method gave reliable solutions for sample number T = 50, 000 or so. According
to Fig. 2(d) the LPA method is more precise than TCC for T ≥ 30, 000. The
increase in precision becomes more pronounced for larger convolution parameter
L. Namely, for sample number 75, 000 and for L = 1, 2, 5, 10, 20, 30 the ratios
of precision are 1.50, 2.24, 4.33, 4.42, 9.03, 11.13, respectively on the average. For
sample number T = 75, 000 the Amari-index stays below 1% on average (0.4 −
0.71%) and has 0.02− 0.08 standard deviation for the Beatles test.

According to our simulations, the LPA method may provide acceptable esti-
mations for sample number T = 20, 000 (T = 15, 000) up to convolution length
L = 20 (L = 230) for the 3D-geom and celebrities (letters and Beatles) datasets.
Such estimations are shown in Fig. 3(d) and Fig. 3(h) for the 3D-geom and
letters tests, respectively.

Undercomplete Blind Subspace Deconvolution Via Linear Prediction 747

5 Summary

We presented a novel solution method for the undercomplete case of the blind
subspace deconvolution (uBSSD) task. We used a stepwise decomposition prin-
ciple and reduced the problem with linear prediction to independent subspace
analysis (ISA) task. We illustrated the method on different tests. Our method
supersedes the temporal concatenation based uBSSD method, because (i) it gives
rise to a smaller dimensional ISA task, (ii) it produces similar estimation errors
at considerably smaller sample numbers, and (iii) it can treat deeper temporal
convolutions.

References

1. Szabó, Z., Póczos, B., Lőrincz, A.: Undercomplete blind subspace deconvolution.
Journal of Machine Learning Research 8, 1063–1095 (2007)

2. Cichocki, A., Amari, S.: Adaptive blind signal and image processing. John Wiley
& Sons, Chichester (2002)

3. Pedersen, M.S., Larsen, J., Kjems, U., Parra, L.C.: A survey of convolutive blind
source separation methods. In: Springer Handbook of Speech, Springer, Heidelberg
(to appear, 2007), http://www2.imm.dtu.dk/pubdb/p.php?4924

4. Cardoso, J.: Multidimensional independent component analysis. In: ICASSP ’98,
vol. 4, pp. 1941–1944 (1998)

5. Rajagopal, R., Potter, L.C.: Multivariate MIMO FIR inverses. IEEE Transactions
on Image Processing 12, 458–465 (2003)

6. Févotte, C., Doncarli, C.: A unified presentation of blind source separation for
convolutive mixtures using block-diagonalization. In: ICA ’03, pp. 349–354 (2003)

7. Choi, S., Cichocki, A.: Blind signal deconvolution by spatio-temporal decorrelation
and demixing. Neural Networks for Signal Processing 7, 426–435 (1997)

8. Gorokhov, A., Loubaton, P.: Blind identification of MIMO-FIR systems: A gener-
alized linear prediction approach. Signal Processing 73, 105–124 (1999)

9. Szabó, Z., Póczos, B., Lőrincz, A.: Cross-entropy optimization for independent
process analysis. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.)
ICA 2006. LNCS, vol. 3889, pp. 909–916. Springer, Heidelberg (2006)

10. Theis, F.J.: Uniqueness of complex and multidimensional independent component
analysis. Signal Processing 84, 951–956 (2004)

11. Szabó, Z., Póczos, B., Lőrincz, A.: Undercomplete blind subspace deconvolution
via linear prediction. Technical report, Eötvös Loránd University, Budapest (2007),
http://arxiv.org/abs/0706.3435

12. Theis, F.J.: Blind signal separation into groups of dependent signals using joint
block diagonalization. In: ISCAS ’05, pp. 5878–5881 (2005)

13. Neumaier, A., Schneider, T.: Estimation of parameters and eigenmodes of multi-
variate AR models. ACM Trans. on Mathematical Software 27, 27–57 (2001)

14. Szabó, Z., Lőrincz, A.: Real and complex independent subspace analysis by gener-
alized variance. In: ICARN ’06, pp. 85–88 (2006)

http://www2.imm.dtu.dk/pubdb/p.php?4924
http://arxiv.org/abs/0706.3435

Learning an Outlier-Robust Kalman Filter

Jo-Anne Ting1, Evangelos Theodorou1, and Stefan Schaal1,2

1 University of Southern California, Los Angeles, CA 90089
2 ATR Computational Neuroscience Laboratories, Kyoto, Japan

{joanneti,etheodor,sschaal}@usc.edu

Abstract. We introduce a modified Kalman filter that performs robust,
real-time outlier detection, without the need for manual parameter tun-
ing by the user. Systems that rely on high quality sensory data (for
instance, robotic systems) can be sensitive to data containing outliers.
The standard Kalman filter is not robust to outliers, and other variations
of the Kalman filter have been proposed to overcome this issue. However,
these methods may require manual parameter tuning, use of heuristics
or complicated parameter estimation procedures. Our Kalman filter uses
a weighted least squares-like approach by introducing weights for each
data sample. A data sample with a smaller weight has a weaker contribu-
tion when estimating the current time step’s state. Using an incremental
variational Expectation-Maximization framework, we learn the weights
and system dynamics. We evaluate our Kalman filter algorithm on data
from a robotic dog.

1 Introduction

Systems that rely on high quality sensory data are often sensitive to data con-
taining outliers. While data from sensors such as potentiometers and optical
encoders are easily interpretable in their noise characteristics, other sensors such
as visual systems, GPS devices and sonar sensors often provide measurements
populated with outliers. As a result, robust, reliable detection and removal of
outliers is essential in order to process these kinds of data. For example, in the
application domain of robotics, legged locomotion is vulnerable to sensory data
of poor quality, since one undetected outlier can disturb the balance controller
to the point that the robot loses stability.

An outlier is generally defined as an observation that “lies outside some overall
pattern of distribution” [1]. Outliers may originate from sensor noise (producing
values that fall outside a valid range), from temporary sensor failures, or from
unanticipated disturbances in the environment (e.g., a brief change of lighting
conditions for a visual sensor). Note that some prior knowledge about the ob-
served data’s properties must be known. Otherwise, it is impossible to discern
if a data sample that lies some distance away from the data cloud is truly an
outlier or simply part of the data’s structure.

For real-time applications, storing data samples may not be a viable option
due to the high frequency of sensory data and insufficient memory resources. In

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 748–756, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning an Outlier-Robust Kalman Filter 749

this scenario, sensor data are made available one at a time and must be discarded
once they have been observed. Hence, techniques that require access to the entire
set of data samples, such as the Kalman smoother [2] are not applicable. Instead,
the Kalman filter [3] is a more suitable method, since it assumes that only data
samples up to the current time step have been observed.

The Kalman filter is a widely used tool for estimating the state of a dynamic
system, given noisy measurement data. It is the optimal linear estimator for
linear Gaussian systems, giving the minimum mean squared error [4]. Using state
estimates, the filter can also estimate what the corresponding (output) data are.
However, the performance of the Kalman filter degrades when the observed data
contains outliers.

To address this, previous work has tried to make the Kalman filter more
robust to outliers by addressing the sensitivity of the squared error criterion
to outliers [5,6] and by considering non-Gaussian, heavy-tailed distributions for
random variables (e.g., [7,8]) or for observation and state noise, e.g., [9]. However,
the resulting estimation of parameters may be quite complicated for systems with
transient disturbances, and these filters may be more difficult to implement.
Other approaches use resampling techniques or numerical integration, e.g., [10],
that are not suitable for real-time applications.

Yet another class of methods uses a weighted least squares approach, as done
in robust least squares [11], where each data sample is assigned a weight that
indicates its contribution to the hidden state estimate at each time step, e.g., [12].
These methods model the weights as some heuristic function of the data (e.g., the
Huber function [11]) and often require manual tuning of threshold parameters
for optimal performance. Using incorrect or inaccurate estimates for the weights
may lead to deteriorated performance, so special care is necessary with these
techniques.

In this paper, we are interested in making the Kalman filter more robust to the
outliers in the observations (i.e. the filter should identify and eliminate possible
outliers as it tracks observed data). Identifying outliers in the state is a different
problem, left for another paper. We introduce a modified Kalman filter that
can detect outliers in the observed data without the need for manual parameter
tuning or use of heuristic methods. For ease of analytical computation, we assume
Gaussian distributions for variables and states. We illustrate the performance
of this robust Kalman filter on robotic data, comparing it with other robust
Kalman filter methods and demonstrating its effectiveness at detecting outliers
in the observations.

2 Outlier Detection in the Kalman Filter

Let us assume we have data observed over N time steps, {zk}Nk=1, and the
corresponding hidden states as {θk}Nk=1 (where θk ∈ �d2×1, zk ∈ �d1×1). The
Kalman filter system equations are:

zk = Cθk + vk

θk = Aθk−1 + sk

(1)

750 J.-A. Ting, E. Theodorou, and S. Schaal

where C ∈ �d1×d2 is the observation matrix, A ∈ �d2×d2 is the state transition
matrix, vk ∈ �d1×1 is the observation noise at time step k, and sk ∈ �d2×1 is the
state noise at time step k. We assume vk ∼ Normal (0,R), sk ∼ Normal (0,Q),
where R ∈ �d1×d1 and Q ∈ �d2×d2 are diagonal covariance matrices (with vec-
tors r and q on their diagonals) for the observation and state noise, respectively.
The corresponding filter propagation and update equations are, for k = 1, .., N :

Propagation:

θ′
k = A 〈θk−1〉 (2)

Σ ′
k = AΣk−1A

T + Q (3)

Update:

S′
k =

(
CΣ ′

kC
T + R

)−1
(4)

K′
k = Σ ′

kC
T S′

k (5)

〈θk〉 = θ′
k + K′

k

(
zk − Cθ′

k

)
(6)

Σk =
(
I − K′

kC
)
Σ ′

k (7)

where 〈θk〉1 is the posterior mean vector of the state θk, Σk is the posterior
covariance matrix of θk, and S′

k is the covariance matrix of the residual prediction
error—all at time step k. The system dynamics (C, A, R and Q) are unknown,
and we can use a maximum likelihood framework to estimate these parameter
values [13]. Unfortunately, the standard Kalman filter is not robust to outliers.

2.1 Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a scalar weight wk for each observed
data sample zk such that the variance of zk is weighted with wk, as done
in [14]. [14] considers a weighted least squares regression model and assumes
that the weights are known and given. We place a Gamma prior distribution
over the the weights to ensure they remain positive, as done previously in [15].
Additionally, we learn estimates for the system dynamics at each time step. The
prior distributions of our model are:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk , bwk)

(8)

We can treat this problem as an Expectation-Minimization-like (EM) learn-
ing problem [16, 17] and maximize the log likelihood log p(θ1:N). Due to an-
alytical issues, we only have access to a lower bound of this measure. This
lower bound is based on an expected value of the “complete” data likelihood
〈log p (θ1:N , z1:N ,w)〉, formulated over all variables of the learning problem.
Since we are considering a real-time problem, we will have observed only data
samples z1:k at time step k. Consequently, we should consider the log evidence
1 Note that 〈〉 denotes the expectation operator.

Learning an Outlier-Robust Kalman Filter 751

of only the data samples observed to date, i.e., log p (θ1:k, z1:k,w1:k), when esti-
mating the posterior distributions of random variables at time step k.

The expectation of the complete data likelihood should be taken with respect
to the true posterior distribution of all hidden variables Q (w,θ). Since this is
an analytically intractable expression, we use a technique from variational cal-
culus to construct a lower bound and make a factorial approximation of the true
posterior as follows: Q (w,θ) =

∏N
i=1 Q (wi)

∏N
i=1 Q (θi|θi−1)Q(θ0) (e.g., [17]).

This factorization of θ conserves the Markov property that Kalman filters, by
definition, have and makes the resulting posterior distributions over hidden vari-
ables analytically tractable. The factorial approximation was chosen purposely
so that Q(wk) is independent from Q(θk); performing joint inference of wk and
θk does not make sense in the context of our generative model. The final EM
update equations for time step k are:

E-step:

Σk =
(
〈wk〉CT

k R−1
k Ck + Q−1

k

)−1
(9)

〈θk〉 = Σk

(
Q−1

k Ak 〈θk−1〉 + 〈wk〉CT
k R−1

k zk

)
(10)

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈
(zk − Ckθk)T R−1

k (zk − Ckθk)
〉 (11)

M-step:

Ck =
(∑k

i=1 〈wi〉 zi 〈θi〉T
) (∑k

i=1 〈wi〉
〈
θiθ

T
i

〉)−1
(12)

Ak =
(∑k

i=1 〈θi〉 〈θi−1〉T
) (∑k

i=1

〈
θi−1θ

T
i−1
〉)−1

(13)

rkm = 1
k

∑k
i=1 〈wi〉

〈
(zim − Ck(m, :)θi)

2〉 (14)

qkn = 1
k

∑k
i=1

〈
(θin − Ak(n, :)θi−1)

2〉 (15)

where m = 1, .., d1, n = 1, .., d2; rkm is the mth coefficient of the vector rk; qkn

is the nth coefficient of the vector qk; Ck(m, :) is the mth row of the matrix Ck;
Ak(n, :) is the nth row of the matrix Ak; and awk,0 and bwk,0 are prior scale
parameters for the weight wk. Equations (9) to (15) should be computed once
for each time step k (e.g., [18]) when the data sample zk becomes available.

Since storing sensor data is not possible in real-time applications, (12) to
(15)—which require access to all observed data samples up to time step k—need
to be re-written using only values observed, calculated or used in the current
time step k. We can do this by collecting sufficient statistics in (12) to (15) and
rewriting them as:

Ck = sumwzθT

k

(
sumwθθT

k

)−1
(16)

Ak = sumθθ′
k

(
sumθ′θ′

k

)−1
(17)

rkm = 1
k

[
sumwzz

km − 2Ck(m, :)sumwzθ
km + diag

{
Ck(m, :)sumwθθT

k Ck(m, :)T
}]

(18)

qkn = 1
k

[
sumθ2

kn − 2Ak(n, :)sumθθ′
kn + diag

{
Ak(n, :)sumθ′θ′

k Ak(n, :)T
}]

(19)

752 J.-A. Ting, E. Theodorou, and S. Schaal

where m = 1, .., d1, n = 1, .., d2, and the sufficient statistics are:

sumwzθT

k = 〈wk〉 zk 〈θk〉T + sumwzθT

k−1 sumwθθT

k = 〈wk〉
〈
θkθT

k

〉
+ sumwθθT

k−1

sumθθ′
k = 〈θk〉 〈θk−1〉T + sumθθ′

k−1 sumθ′θ′
k =

〈
θk−1θ

T
k−1

〉
+ sumθ′θ′

k−1

sumwzz
km = 〈wk〉 z2

km + sumwzz
k−1 sumwzθ

km = 〈wk〉 zkmθk + sumwzθ
k−1,m

sumθ2

kn =
〈
θ2

kn

〉
+ sumθ2

k−1,n sumθθ′
kn = 〈θkn〉 〈θk−1〉 + sumθθ′

kn

A few remarks should be made regarding the initialization of priors used in (9)
to (11), (16) to (19). In particular, the prior scale parameters awk,0 and bwk,0

should be selected so that the weights 〈wk〉 are 1 with some confidence, i.e., the
algorithm starts by assuming most data samples are inliers. We set awk,0 = 1
and bwk,0 = 1 so that 〈wk〉 has a prior mean of awk,0/bwk,0 = 1 with a variance
of awk,0/b

2
wk,0 = 1. This set of values is generally valid for any data set and/or

application and does not need to be modified, unless the user has good reason to
insert strong biases towards particular parameter values. Since prior knowledge
about the observed data’s properties must be known in order to distinguish if a
data sample is an outlier or part of the data’s structure, this Bayesian approach
provides a natural framework to incorporate this information.

Secondly, the algorithm is relatively insensitive to the the initialization of A
and C and will always converge to the same final solution, regardless of these
values. For our experiments, we initialize C = A = I, where I is the identity
matrix. The initial values of R and Q should be set based on the user’s initial
estimate of how noisy the observed data is (e.g., R = Q = 0.01I for noisy data,
R = Q = 10−4I for less noisy data [19]).

2.2 Relationship to the Kalman Filter

If we substitute (2) and (3) into (4) to (7), we reach recursive expressions for 〈θk〉
and Σk, proving that our model is a variant of the Kalman filter. By applying
this sequence of algebraic manipulations in reverse order to (9) and (10), we
arrive at the following:

Propagation:

θ′
k = Ak 〈θk−1〉 (20)

Σ ′
k = Qk (21)

Update:

S′
k =

(
CkΣ′

kC
T
k +

1

〈wk〉Rk

)−1

(22)

K′
k = Σ ′

kC
T
k S′

k (23)

〈θk〉 = θ′
k + K′

k

(
zk − Ckθ′

k

)
(24)

Σk =
(
I − K′

kCk

)
Σ′

k (25)

Close examination of the above equations show that (9) and (10) in the Bayesian
model correspond to standard Kalman filter equations, with modified expressions

Learning an Outlier-Robust Kalman Filter 753

for Σ′
k and S′

k and time-varying system dynamics. Σ′
k is no longer explicitly

dependent on Σk−1, since Σk−1 does not appear in (21). However, the current
state’s covariance Σk is still dependent on the previous state’s covariance Σk−1

(through parameters K ′ and Ck).
Additionally, the term Rk in S′

k is now weighted. Equation (11) reveals that if
the prediction error in zk is so large that it dominates the denominator, then the
weight 〈wk〉 of that data sample will be very small. If zk has a very small weight
〈wk〉, then S′

k, the posterior covariance of the residual prediction error, will be
very small, leading to a very small Kalman gain K ′

k. In short, the influence of the
data sample zk will be downweighted when predicting θk, the hidden state at
time step k. The resulting Bayesian algorithm has a computational complexity
on the same order as that of a standard Kalman filter, since matrix inversions are
still needed, as in the standard Kalman filter. In comparison to other Kalman
filters that use heuristics or require more involved computation/implementation,
this outlier-robust Kalman filter is principled and easy to implement.

3 Experimental Results

We evaluated our weighted robust Kalman filter on data collected from a a
robotic dog, LittleDog, manufactured by Boston Dynamics Inc. (Cambridge,
MA), and compared it with two other filters. We omitted the filter of [12], since
we had difficulty implementing it. Instead, we used a hand-tuned thresholded
Kalman filter to serve as a baseline comparison. The two other filters consist of
the standard Kalman filter and a Kalman filter where outliers are determined by
thresholding on the Mahalanobis distance. If the Mahalanobis distance exceeds
a certain threshold value, the associated data sample is considered an outlier and
ignored. If we have a priori access to the entire data set and are able to manually
hand-tune this threshold value accordingly, the thresholded Kalman filter gives
near-optimal performance. Recall that we are interested in the Kalman filter’s
prediction of the observed data and detection of outliers in the observations.
Estimation of the system dynamics for the purpose of parameter identification
is a different problem, and more details can be found in [20].

3.1 LittleDog Robot

Fig. 1. LittleDog

We evaluated all filters on a 12 degree-of-freedom robotic
dog, LittleDog, shown in Fig. 1. The robot dog has two
sources that measure its orientation: a motion capture
(MOCAP) system and an on-board inertia measurement
unit (IMU). Both provide a quaternion q of the robot’s
orientation: qMOCAP from the MOCAP and qIMU from the
IMU. qIMU drifts over time, since the IMU cannot provide
stable orientation estimation but its signal is clean. In con-
trast, qMOCAP has outliers and noise, but no drift. We would like to estimate the
offset between qMOCAP and qIMU, and this offset is a noisy slowly drifting signal

754 J.-A. Ting, E. Theodorou, and S. Schaal

containing outliers. Depending on the quality of estimate desired, we can esti-
mate it with a straight line, as done in [15]. Alternatively, if we want to estimate
the signal more accurately, we can use the proposed outlier-robust Kalman filter
to track it. For optimal performance, we manually tuned C, A, R and Q for the
standard Kalman filter—a tricky and time-consuming process. The system dy-
namics of the thresholded Kalman filter were learnt using a maximum likelihood
framework. Its threshold parameter was manually tuned for best performance
on this data set.

0 2000 4000 6000

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time step

O
ut

pu
t d

at
a

Observed output
Kalman Filter
Weighted Robust KF

(a) Predicted data for the standard
and weighted robust KFs

0 2000 4000 6000

−0.1

−0.05

0

0.05

0.1

0.15

Time step

O
ut

pu
t d

at
a

Observed Output
Thresholded KF
Weighted Robust KF

(b) Predicted data for the thresh-
olded and weighted robust KFs

Fig. 2. Observed vs. predicted data from LittleDog robot shown for all Kalman filters
(KF), over 6000 samples

Figure 2 shows the offset data (in gray circles) between qMOCAP and qIMU

for one of the four quaternion coefficients, collected over 6000 data samples, at
1 sample/time step. Figure 2(a) shows that the standard Kalman filter fails to
detect outliers occurring between the 4000th and 5000th sample. Figure 2(b)
shows that the thresholded Kalman filter does not react as violently as the
standard Kalman filter to outliers and, in fact, appears to perform similarly to
the weighted robust Kalman filter. This is to be expected, given we hand-tuned
the threshold parameter for optimal performance.

4 Conclusions

We derived an outlier-robust Kalman filter by introducing weights for each data
sample. This Kalman filter learns the weights and the system dynamics, without
the need for any manual parameter tuning by the user, heuristics or sampling. It
performs as well as a hand-tuned Kalman filter (that required prior knowledge of
the data) on robotic data. It provides an easy-to-use competitive alternative for
robust tracking of sensor data and offers a simple outlier detection mechanism
that can potentially be applied to more complex, nonlinear filters.

Learning an Outlier-Robust Kalman Filter 755

Acknowledgments

This research was supported in part by National Science Foundation grants
ECS-0325383, IIS-0312802, IIS-0082995, ECS-0326095, ANI-0224419, a NASA
grant AC#98−516, an AFOSR grant on Intelligent Control, the ERATO Kawato
Dynamic Brain Project funded by the Japanese Science and Technology Agency,
and the ATR Computational Neuroscience Laboratories.

References

1. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. W.H. Free-
man & Company (1999)

2. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, Lon-
don (1970)

3. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME - Journal of Basic Engineering 183, 35–45 (1960)

4. Morris, J.M.: The Kalman filter: A robust estimator for some classes of linear
quadratic problems. IEEE Transactions on Information Theory 22, 526–534 (1976)

5. Tukey, J.W.: A survey of sampling from contaminated distributions. In: Olkin, I.
(ed.) Contributions to Probability and Statistics, pp. 448–485. Stanford University
Press (1960)

6. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical
Statistics 35, 73–101 (1964)

7. West, M.: Robust sequential approximate Bayesian estimation. Journal of the Royal
Statistical Society, Series B 43, 157–166 (1981)

8. Meinhold, R.J., Singpurwalla, N.D.: Robustification of Kalman filter models. Jour-
nal of the American Statistical Association, 479–486 (1989)

9. Masreliez, C.: Approximate non-Gaussian filtering with linear state and observation
relations. IEEE Transactions on Automatic Control 20, 107–110 (1975)

10. Kitagawa, G., Gersch, W.: Smoothness priors analysis of time series. In: Lecture
Notes in Statistics, Springer, Heidelberg (1996)

11. Huber, P.J.: Robust Statistics. Wiley, Chichester (1973)
12. Chan, S.C., Zhang, Z.G., Tse, K.W.: A new robust Kalman filter algorithm under

outliers and system uncertainties. In: IEEE International Symposium on Circuits
and Systems, pp. 4317–4320. IEEE Computer Society Press, Los Alamitos (2005)

13. Myers, K.A., Tapley, B.D.: Adaptive sequential estimation with unknown noise
statistics. IEEE Transactions on Automatic Control 21, 520–523 (1976)

14. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis. Chapman
and Hall (2000)

15. Ting, J., D’Souza, A., Schaal, S.: Automatic outlier detection: A Bayesian ap-
proach. In: IEEE International Conference on Robotics and Automation, IEEE
Computer Society Press, Los Alamitos (2007)

16. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of Royal Statistical Society. Series B 39(1), 1–38 (1977)

17. Ghahramani, Z., Beal, M.J.: Graphical models and variational methods. In: Saad,
D., Opper, M. (eds.) Advanced Mean Field Methods - Theory and Practice, MIT
Press, Cambridge (2000)

756 J.-A. Ting, E. Theodorou, and S. Schaal

18. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models,
pp. 355–368. MIT Press, Cambridge (1999)

19. Maybeck, P.S.: Stochastic models, estimation, and control. Mathematics in Science
and Engineering, vol. 141. Academic Press, London (1979)

20. Ting, J., D’Souza, A., Schaal, S.: Bayesian regression with input noise for high
dimensional data. In: Proceedings of the 23rd International Conference on Machine
Learning, pp. 937–944. ACM Press, New York (2006)

Imitation Learning Using Graphical Models

Deepak Verma and Rajesh P.N. Rao

Dept. of Computer Science & Engineering
University of Washington

Seattle, WA, USA
{deepak,rao}@cs.washington.edu

http://neural.cs.washington.edu/

Abstract. Imitation-based learning is a general mechanism for rapid
acquisition of new behaviors in autonomous agents and robots. In this
paper, we propose a new approach to learning by imitation based on
parameter learning in probabilistic graphical models. Graphical models
are used not only to model an agent’s own dynamics but also the dynam-
ics of an observed teacher. Parameter tying between the agent-teacher
models ensures consistency and facilitates learning. Given only observa-
tions of the teacher’s states, we use the expectation-maximization (EM)
algorithm to learn both dynamics and policies within graphical mod-
els. We present results demonstrating that EM-based imitation learning
outperforms pure exploration-based learning on a benchmark problem
(the FlagWorld domain). We additionally show that the graphical model
representation can be leveraged to incorporate domain knowledge (e.g.,
state space factoring) to achieve significant speed-up in learning.

1 Introduction

Learning by imitation is a general mechanism for rapidly acquiring new skills
or behaviors in humans and robots. Several approaches to imitation have previ-
ously been proposed (e.g., [1,2]). Many of these treat the problem of imitation
as trajectory-following where the goal is to follow the teacher’s trajectory as
best as possible. However, imitation often involves the need to infer intentions
and goals which introduces considerable uncertainty into the problem, besides
the uncertainty already existing in the observation process and in the environ-
ment. Previous models of imitation have typically not been probabilistic and
are therefore not geared towards handling uncertainty. There have been some
recent efforts in modeling goal-based imitation [3] but these either assume that
the dynamics of environment are given or need to learn the dynamics using a
time-consuming exploration stage.

A different approach to imitation is based on ideas from the field of Rein-
forcement Learning (RL) [4]. In reinforcement learning, the agent is assumed
to receive rewards in certain states and the agent’s goal is to learn a state-to-
action mapping (“policy”) that maximizes the total future expected reward. The
computational challenge of solving RL problem is hard for a variety of reasons:
(1) the state space is often exponential in the number of attributes, and (2) for

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 757–764, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

758 D. Verma and R.P.N. Rao

uncertain environments with large state spaces, the agent needs to perform a
large amount of exploration to learn a model of the environment before learning
a good policy. These problems can be ameliorated by using imitation [5] (or
“apprenticeship” [6]) where a teacher exhibits the optimal behavior that is ob-
served by the student or the teacher guides the student to the most important
states for exploration. Price and Boutilier formulate this in the RL framework
as Implicit Imitation [7], in which the student learns the dynamics of the envi-
ronment by passively observing the teacher without any explicit communication
regarding what actions to take. This speeds up the learning of policies. However,
these approaches rely on knowing or inferring an explicit reward function in the
environment, which may not always be available or easy to infer.

In this paper, we propose a new approach to imitation that is based on prob-
abilistic Graphical Models (GMs). We pose the problem of imitation learning as
learning the parameters of the underlying GM for the mentor’s and observer’s be-
havior (we use the terms mentor/teacher (and observer/student) interchangeably
in the paper). To facilitate the transfer of knowledge from mentor to observer
we tie the parameters of dynamics for the mentor with that of the observer,
and update the observer’s policy using the learned mentor policy. Parameters
are learned using the expectation-maximization (EM) algorithm for learning in
GMs from partial data. Our approach provides a principled approach to imita-
tion based completely on an internal GM representation, allowing us to leverage
the growing number of efficient inference and learning techniques for GMs.

2 Graphical Models for Imitation

Notation: We use capital letters for variables and small case letters to denote
specific instances. We assume there are two agents, the observer Ao and the
mentor Am operating in the environment1. Let ΩS be the set of states in the
environment and ΩA the set of all possible actions available to the agent2 (both
finite). At time t, the agent is in state St and executes action At. The agent’s
state changes in a stochastic manner given by the transition probability P (St+1 |
St, At), which is assumed to be independent of t, i.e., P (St+1 = s′ | St = s,At =
a) = τs′sa. When obvious from context, we use s for St = s and a for At = a,
etc. For each state s and action a, there is a real valued reward Rm(s, a) for
the mentor (Ro(s, a) for the observer) associated with being in state s and
executing the action a (with negative values denoting undesirable states or the
cost of the action). The parameters described above define a Markov Decision
Process (MDP) [9]. Solving an MDP typically involves computing an optimal
policy a = π(s) that maximizes total expected future reward (either a finite

1 We use the superscript to distinguish the two agents and omit it for common variables
(e.g., dynamics of the environment).

2 For simplicity of exposition, we assume that agents operate (non-interactively) in
the same environment. However, as discussed in [8], this assumption is not essential
and one can apply the techniques discussed here to the more general setting where
observer and mentor(s) have different action and state spaces.

Imitation Learning Using Graphical Models 759

horizon cumulative reward or discounted infinite horizon cumulative reward)
when action a is executed in state s.

In a typical Reinforcement Learning problem, the dynamics and the reward
function are not known, and one cannot therefore compute an optimal policy
directly. One can learn both these functions by exploration but this requires the
agent to execute a large number of exploration steps before an optimal policy
can be computed. Learning can be greatly sped up via implicit imitation [7]
which involves an agent (the observer) observing another agent (mentor) who
has similar goals. . The main idea is to allow the agent to quickly learn the
parameters in the relevant portion of the state space, thereby cutting down on
the exploration required to compute a near-optimal policy.

We assume that the mentor follows a stationary policy πm(s) which defines
its behavior completely. The observer is only able to observe the sequence of
states that mentor has been in (Sm

1:t) and not the actions: this is important be-
cause some of the most useful forms of imitation learning are those in which the
teacher’s actions are not available, e.g., when a robot must learn by watching a
human – in such a scenario, the robot can observe body poses but has no access
to the human’s actions (muscle or motor commands). The task of the observer
is then to compute the best estimate of the dynamics τ̂ and mentor policy π̂m,
given its own history So

1:t, A
o
1:t and the mentor’s state history Sm

1:t. Note that πm

can be completely independent of the observer’s reward function Ro: in fact, the
problem as formulated above does not require the introduction of a reward func-
tion at all. The goal is simply to imitate the mentor by estimating and executing
the mentor’s policy. In the special case where the mentor is optimizing the same
reward function as the observer, πm becomes the optimal MDP policy. Note that
since the observer cannot see actions that the mentor took and the transition
parameters are not given, the problem is different from other approaches which
speed up RL via imitation [6,10].

2.1 Generative Graphical Model

Both the mentor and the observer are solving an MDP. One key observation
we make is that given the mentor policy the action choice and dynamics can
be modeled easily using a generative model based on the well-known graphical
model for MDP shown in Fig. 1(a). One does not need to know the mentor’s
reward model as πm completely explains the mentor state sequence observed.
The figure shows the 2-slice representation of the Dynamic Bayesian Network
(DBN) used to model the imitation problem. Since we are assuming that the two
agents are operating in the same environment, they have the same transition
parameters (τm=τo=τ). Note that the two graphical models (for the mentor and
observer respectively) are disconnected as the two agents are non-interacting.
The mentor’s actions are guided by the optimal mentor policy P (Am

t = a|Sm
t =

s) = πm(a|s) and the observer’s actions by the policy P (Ao
t = a|Sm

t = s) =
πo

t (a|s). Unlike the mentor, the observer updates its policy over time (hence
the subscript t on πo). We require only the mentor to have a stationary policy.
The mentor observations sm

1:T are generated by “sampling” the DBN. In our

760 D. Verma and R.P.N. Rao

tS
m

t+1Sm

t+1Am

tS
o

tA
o

t+1So

t+1Ao

tA
m

Tied parameters

Mentor

Observer

π
m

τsas′

τsas′

π
o
t

S GF1

F2

F3

(a) (b)

Fig. 1. Model and Domain for Imitation. (a) Graphical Model Representation for
Imitation. (b) FlagWorld Domain.

experiments, when a goal state is reached, we jump to the start state in the next
step. T thus represents the total number of steps taken by agent, which could
span multiple “episodes” of reaching a goal state.

3 Imitation Via Parameter Learning

Our approach to imitation is based on estimating the unknown parameters θ =
(τ, πm) of the graphical model in Fig. 1(a) given observed data as “evidence,”
i.e., θ̂ = (τ̂ , π̂m) = argmax

θ
P (θ|sm

1:T , so
1:T , ao

1:T). Note that the evidence does not
include mentor actions Am

1:T . This means that the data is “incomplete” as not all
nodes of the graphical model are observed. A well-known approach to learning
the parameters of a GM from incomplete data [11] is to use the expectation-
maximization (EM) algorithm [12]. Although any parameter learning method
could be used, we use EM in the present study since it is a general-purpose,
well-understood algorithm widely used in machine learning.

The EM algorithm involves starting with an initial estimate θ0 (chosen ran-
domly or incorporating any prior knowledge) which is then iteratively improved
by performing the following two steps:

Expectation: The current set of parameters θi is used to compute a distribution
(expectation) over the hidden nodes: h(Am

1:T) = P (Am
1:T |θi, sm

1:T , so
1:T , ao

1:T). This
allows the expected sufficient statistics to be computed for the complete data set.

Maximization: The distribution h is then used to compute the new parameters
θi+1 which maximize the (expected) log-likelihood of evidence:

θi+1=argmax
θ

∑

a1:T

h(am
1:T)log(P (sm

1:T , am
1:T , so

1:T , ao
1:T |θ))

When states and actions are discrete, the new estimate can be computed by sim-
ply using the expected counts. The two steps above are performed alternatively

Imitation Learning Using Graphical Models 761

until convergence. The method is guaranteed to improve performance in each
iteration in that the incomplete log likelihood of data (logP (sm

1:T , so
1:T , ao

1:T |θi))
is guaranteed to increase in every iteration and converge to a local maximum
[12]. We then use the estimate for θ̂ to control the observer. In particular, the
observer combines the learned mentor policy π̂m with an exploration strategy
to arrive at the policy πo

t .

3.1 Parameter Learning Results

Domain: We tested our results on a benchmark problem known as the “Flag-
World” domain [13] shown in Fig. 1(b). The agent’s objective is to reach the
goal state G starting from the state S and pick up a subset of the three flags
located at states F1, F2 and F3. It receives a reward of 1 point for each flag
picked up but rewards are discounted by a factor of γ = 0.99 at each time step
until the goal is reached; the latter constraint favors shortest paths to goal. The
environment is a standard maze environment used in RL [4] in that each action
(N,E,S,W) takes the agent to the intended state with a high probability (0.9)
and to a state perpendicular to the intended state with a small probability (0.1).
The probability mass going into the wall or outside the maze is assigned to the
state in which action taken. This domain is interesting in that there are 264
states (33 locations, augmented with a boolean attribute for each flag picked),
resulting in a large number of parameters that needs to be learned (264 × 4
state action pairs for which τ(s, a, :) and πm(a|s) needs to be learned). However,
the optimal policy path is sparse and hence only a small subset of parameters
needs to be learned to compute a near-optimal policy, thereby making it ideal
for demonstrating the utility of imitation as a medium to speed up RL.

Exploration versus Exploitation: We used the ε−greedy method to trade-
off exploration of the domain with exploitation of the current learned policy: a
random action is chosen with probability ε, with ε gradually decreased over time
to favor exploration initially and exploitation of the learned policy in later time
steps.

Results: The results of EM-based learning are shown in Fig 2(a) (averaged
over 50 runs). The parameters were learned in a “batch” mode where T was
increased from 0 to 5000 in steps of 200 and reward in the last 200 steps was
reported. Average reward received is shown in top right corner. Also shown
are the Error in parameters (mean absolute difference w.r.t. true parameters3),
the log-likelihood of the learned parameters and value function of start state
under the current estimate for observer policy Vπ̂o(S) w.r.t the true transition
parameters. The results show that the observer is able to learn the mentor policy
to a high degree of accuracy, though not perfectly. The uncertain dynamics of
the environment leads it to collect less rewards than the mentor as the optimal
policy is not learned everywhere. An important point to note is that the error in

3 The error between uniformly random parameters and true parameters is 1.5 for πm

and ≈1.75 for τ .

762 D. Verma and R.P.N. Rao

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

Number of Steps

A
ve

ra
ge

 E
rr

or
 (

M
ea

n
A

bs
 d

is
t f

ro
m

 tr
ue

) Error in Learnt Parameters

transition
policy

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

Number of Steps

R
ew

ar
d

Reward obtained by two agents in last 200 steps (50 Runs)

Mentor (Oracle)
Observer

0 1000 2000 3000 4000 5000
−5

−4.5

−4

−3.5

−3

−2.5

−2

Number of Steps

A
ve

ra
ge

 L
og

−
lik

el
ih

oo
d

(p
er

 s
te

p)

Log likelihood of learnt parameters

Training
Test

0 1000 2000 3000 4000 5000
0

2

4

6

8

Number of Steps

V
al

ue

Value Function of Start State of learnt observer policy

V(S) for Obs
Optimal V(S)

0

2

4

6

8

10

12

14

(a) (b)

Fig. 2. Imitation Learning Results for FlagWorld Domain. (a) (Clockwise)
Error in parameters (mean absolute difference w.r.t. true parameters), average re-
ward received, the log-likelihood of the learned parameters, and value function of start
state Vπ̂o(S) w.r.t the true transition parameters. (b) Comparison of learned policy
(ParamImit) with some popular exploration techniques (measured in terms of aver-
age discounted reward obtained per 200 steps). ParamImit outperforms all the pure
exploration-based methods.

parameters is still quite high even when observer policy is quite good, thereby
confirming the intuition that only a small (relevant) subset of parameters needs
to be learned well before the agent can start exploiting a learned policy.

Figure 2(b) compares the relative quality of the learned policy with a number
of pure exploration-based techniques used in [13]. The bars represent the average
discounted reward obtained per 200 steps in the 2nd stage, i.e., obtained in next
20,000 steps after an initial 1st stage of exploration consisting of 20,000 steps.
For ParamImit (our algorithm) the average is taken after only 4000 steps of
exploration. The rightmost bar is the Mentor value. As can be seen, ParamImit
outperforms all the exploration strategies with far less experience.

3.2 Factored Graphical Model

A major advantage of using a graphical models-based approach to imitation is
the ability to leverage domain knowledge to speed up learning. For example,
the number of true parameters in the FlagWorld is actually much less than the
number that was learned in the previous section since there are only 33 loca-
tions for which the transition parameters need to be learned: the dynamics are
the same irrespective of which flags have been picked up. To reflect this fact,
we can factor the mentor state Sm

t into location Lm
t and flag status variable

“Picked Flag” PFm
t as shown in Fig. 3(a) (and similarly for the observer). This

reduces the number of transition parameters significantly (from τsas′ to τlal′).

Imitation Learning Using Graphical Models 763

We can incorporate domain knowledge about the flags by defining the CPT
P (PFt+1|Lt+1, PFt) as the ,

P (PFt+1|Lt+1, PFt) = δ(PFt+1, pf(PFt, i)) if Lt+1 = Fi

= δ(PFt+1, PFt) otherwise

where pf(PFt, i) is the determinstic function4 which maps the old value of PFt

to one in which the ith flag is picked up.

tA
m

tL
m

 tPF m

t+1Am

t+1Lm

PF m
 t+1

π
m
l,pf

τlal′

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

Number of Steps

A
ve

ra
ge

 E
rr

or
 (

M
ea

n
A

bs
 d

is
t f

ro
m

 tr
ue

) Error in Learnt Parameters

transition
policy

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

Number of Steps

R
ew

ar
d

Reward obtained by two agents in last 200 steps (50 Runs)

Mentor (Oracle)
Observer

0 1000 2000 3000 4000 5000
−5

−4.5

−4

−3.5

−3

−2.5

−2

Number of Steps

A
ve

ra
ge

 L
og

−
lik

el
ih

oo
d

(p
er

 s
te

p)

Log likelihood of learnt parameters

Training
Test

0 1000 2000 3000 4000 5000
0

2

4

6

8

Number of Steps

V
al

ue

Value Function of Start State of learnt observer policy

V(S) for Obs
Optimal V(S)

(a) (b)

Fig. 3. Fast Learning using Factored Graphical Models. (a) Factored model for
FlagWorld (only the mentor model is shown). (b) Results using factored model. Note
the speed-up in learning w.r.t. the unfactored case (Fig. 2(a)).

The results of EM-based parameter learning for the factored graphical model
are shown in Fig. 3(b). As expected, the error in transition parameters goes
down much more rapidly than in the unfactored case (compare with Fig. 2(a)).

4 Conclusion

This paper introduces a new framework for learning by imitation based on mod-
eling the imitation process in terms of probabilistic graphical models. Imitative
policies are learned in a principled manner using the expectation-maximization
(EM) algorithm. The model achieves transfer of knowledge by tying the param-
eters for the mentor’s dynamics with those of the observer. Our results5 demon-
strate that the mentor’s policy can be estimated directly from observations of
4 This is a common trick used in GMs to encode deterministic domain knowledge.
5 Additional results are presented in the extended version of the paper available at
http://neural.cs.washington.edu/. In particular, we show how learning can be
further sped up by incorporating reward information collected on the way. Also, we
demonstrate the generality of parameter learning by extending the graphical model
to learn task-oriented policies.

764 D. Verma and R.P.N. Rao

the mentor’s state sequences and that significant speed-up in learning can be
achieved by exploiting the graphical models framework to factor the state space
in accordance with domain knowledge. Our current work is focused on testing
the approach more exhaustively, especially in the context of robotic imitation.
Not only do Graphical Models provide a computationally efficient framework for
general imitation, they are also being used for modeling behavior [14]. An excit-
ing prospect of using graphical models for imitation is the ease of extension to
models with more abstraction, including partially observable, hierarchical, and
relational models.

Acknowledgments

This material is based upon work supported by ONR, the Packard Foundation,
and NSF Grants 0413335 and 0622252.

References

1. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences 3, 233–242 (1999)

2. Dautenhahn, K., Nehaniv, C.: Imitation in Animals and Artifacts. MIT Press,
Cambridge, MA (2002)

3. Verma, D., Rao, R.P.N.: Goal-based imitation as probabilistic inference over graph-
ical models. In: NIPS 18 (2006)

4. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

5. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Proc. 14th
ICML, pp. 12–20 (1997)

6. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: ICML ’04, pp. 1–8 (2004)

7. Price, B., Boutilier, C.: Accelerating reinforcement learning through implicit imi-
tation. JAIR 19, 569–629 (2003)

8. Price, B., Boutilier, C.: A bayesian approach to imitation in reinforcement learning.
In: IJCAI, pp. 712–720 (2003)

9. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. JAIR 11, 1–94 (1999)

10. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In:
ICML06, pp. 729–736 (2006)

11. Heckerman, D.: A tutorial on learning with bayesian networks. Technical report,
Microsoft Research, Redmond, Washington (1995)

12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39,
1–38 (1977)

13. Dearden, R., Friedman, N., Andre, D.: Model-based Bayesian Exploration. In: UAI-
99, San Francisco, CA, pp. 150–159 (1999)

14. Griffiths, T.L., Tenenbaum, J.B.: Structure and strength in causal induction. Cog-
nitive Psychology 51(4), 334–384 (2005)

Nondeterministic Discretization of Weights

Improves Accuracy of Neural Networks

Marcin Wojnarski

Warsaw University, Faculty of Mathematics, Informatics and Mechanics
ul. Banacha 2, 02-097 Warszawa, Poland

mwojnars@ns.onet.pl

Abstract. The paper investigates modification of backpropagation al-
gorithm, consisting of discretization of neural network weights after each
training cycle. This modification, aimed at overfitting reduction, restricts
the set of possible values of weights to a discrete subset of real numbers,
leading to much better generalization abilities of the network. This, in
turn, leads to higher accuracy and a decrease in error rate by over 50%
in extreme cases (when overfitting is high).

Discretization is performed nondeterministically, so as to keep ex-
pected value of discretized weight equal to original value. In this way,
global behavior of original algorithm is preserved. The presented method
of discretization is general and may be applied to other machine-learning
algorithms. It is also an example of how an algorithm for continuous opti-
mization can be successfully applied to optimization over discrete spaces.
The method was evaluated experimentally in WEKA environment using
two real-world data sets from UCI repository.

Keywords: Generalization, Overtraining, Overfitting, Regularization.

1 Introduction

Multi-layer artificial neural networks [1,2] are well-established tools in machine
learning, with proven effectiveness in many real-world problems. However, there
are still many tasks in which they perform worse than other machine-learning
systems [3]. One of the reasons is that neural networks contain usually thousands
of real-valued adaptive parameters, and so they have strong tendency to get
overtrained (overfitted), especially when the size of the training set is not large
enough. Thus, methods to improve generalization abilities of neural networks
are necessary.

Several such methods have been already proposed: early stopping [2] – the sim-
plest and most commonly used – which consists of finishing the training process
when the error on a validation set starts increasing; regularization [4,5,6] based on
adding a regularization term to the error function; pruning [4,7], i.e. removing un-
necessary weights or neurons during or after training; training with noise [5,8,9],
i.e. disturbing training instances in a random way; weight sharing [10].

This paper introduces a novel method based on discretization of weights.
The method is easy to implement and potentially more versatile than existing

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 765–772, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

766 M. Wojnarski

ones, yet it can lead to significant improvement in generalization abilities and
accuracy of the neural network. It can be also used in conjunction with the
above-mentioned algorithms.

Motivation which underlies the presented method is described in Sect. 2. It is
followed by presentation of the algorithm in Sect. 3 and its experimental assess-
ment in Sect. 4. Finally, Sect. 5 recaps main points of the paper and presents
conclusions.

2 Motivation

Discretization of weights means restricting the set of possible values of neuron
weights to a small discrete subset of real numbers. In this way, the decision model
represented by a neural network gets simpler and can be described using fewer
number of bits, since every weight may be represented, for instance, by a single
byte instead of four or eight bytes. This in turn leads to better generalization
abilities.

Theoretical justification of the method is provided by Rissanen’s Minimum
Description Length (MDL) Principle [11,12] which states that the best way to
capture regularities in data and avoid overfitting is to choose a model that has
short description. Thus, a neural network which uses only one byte to represent
a weight value is better than a network requiring 4-byte-long description of every
weight, even if the latter has slightly higher accuracy on training data than the
former.

A more intuitive justification might be given by considering a system whose
accuracy (measured during training on a training set) abruptly decreases when
some weight is slightly disturbed, e.g. by 0.01. High accuracy of such a system is
probably accidental and will not recur on test data. A system which is insensitive
to such small perturbations of weight values would be much more trustworthy.

3 The Algorithm

Let us denote by Ω, Ω ⊂ R, the set of permitted values of weights. Assume
that Ω is discrete (and usually 0 ∈ Ω). There is a training algorithm A given,
e.g. backpropagation, which searches through a family F of models to find the
one that achieves (approximately) minimum error rate on training data. Let
us denote by FΩ the family of models from F whose weights belong to Ω (so
FΩ ⊂ F). The goal is to create a discretized variant of algorithm A, which finds
a model in FΩ that minimizes the error rate over FΩ.

The easiest way to do this is to discretize weights of the model found by
algorithm A, by simply rounding them to the closest values from Ω. This pro-
cedure is very simple, but it does not provide any control over the accuracy of
the discretized model, so it cannot be beneficial for accuracy of the final model.

A better method is to interlace discretization with training processA by round-
ing weights every time they are updated. In this case, the process of searching

Nondeterministic Discretization of Weights Improves Accuracy 767

for the best model is restricted to FΩ from the beginning, so it is directed by accu-
racy of discretized models and thus is able to find a better model than the previous
method.

However, there is still another problem if the process of searching guided by
algorithm A moves slowly through the space F , which happens for example
in backpropagation algorithm when the learning rate [1] is small. In this case,
simple discretization – meant as deterministic rounding of every weight to the
nearest value in Ω – may turn values of all updated weights back to the values
from before the update. Consequently, the searching process guided by discrete
variant of A may easily get stuck in some point of FΩ which is neither global
nor even local minimum of error function.

This can be avoided by performing discretization in a nondeterministic way.
Let v denote the weight value to be discretized; LΩ(v) is the greatest value

in Ω not greater than v; GΩ(v) is the least value in Ω not less than v. Value v
is discretized by replacing it nondeterministically with either LΩ(v) or GΩ(v),
according to the formula:

DΩ(v) =
{

LΩ(v) with probability (GΩ(v)− v)/RΩ(v)
GΩ(v) with probability (v − LΩ(v))/RΩ(v) , (1)

where DΩ(v) denotes discretized value of v and RΩ(v) = GΩ(v) − LΩ(v). The
above choice of probabilities makes the following important property hold:

E(DΩ(v)) = v , (2)

i.e. expected value of discretized weight is equal to the original value. In this way,
discretization may be viewed as adding some zero-mean random fluctuations to
weight values, without disturbing global behavior of the original algorithm. Note,
however, that discretization is not equivalent to adding random fluctuations
to weight values. General structure of the training algorithm which performs
discretization of weights is presented in Figure 1.

for cycle := 1 to number of training cycles do
pattern := GetNextPattern();
CalculateResponse(network, pattern);
UpdateWeights(network); /* standard algorithm, e.g. backpropagation */
for each weight in network do

w := ValueOf(weight);
d := DΩ(w); /* nondeterministic discretization of w, Eq. (1) */
ValueOf(weight) := d;

end
end

Fig. 1. Outline of the neural network training algorithm with discretization of weights

768 M. Wojnarski

Some attention should be paid to the question of what set of permitted values
Ω to use. Simple yet efficient choice is to take a set of evenly-spaced numbers
containing zero:

Ω = {kγ : k ∈ Z} , (3)

where γ ∈ R is a parameter that controls granularity of discretization.

4 Experimental Results

The presented modification was applied to standard backpropagation algorithm
[2,1] used for training of multilayer neural networks. The modified algorithm was
compared with the standard one on two real-world datasets from the UCI [13]
machine-learning repository: Labor and Image Segmentation. Experiments were
conducted in WEKA [14] environment, whose implementation of backpropaga-
tion algorithm was extended by the author to handle discretization of weights.

To enable thorough analysis and reliable comparison of the algorithms, dif-
ferent numbers of hidden neurons were tested: 5, 10, 20, 30, 50, 70, 100, 150,
200 and 250. In this way, it was possible to draw final conclusions that were
independent from specific choice of training parameters.

To obtain plausible results, 20 networkswere trained for each algorithm and size
of hidden layer, using different (random) split of data into training and test sets
each time (percentage split: 50+50% for Labor data; 25+75% of training and test
instances respectively for Image Segmentation data). Thus, 20 estimates of error
rate on test set were obtained for each algorithm and size of hidden layer. Mean
and standard deviation of these 20 values formed the basis of subsequent analysis.

Throughout all experiments, the learning rate [1] of neural networks (which
controls magnitude of updates) was set to 0.1 and each network underwent 20
epochs of training. In discrete variant of the algorithm, all weights of networks –
both in hidden and output layers – were discretized in the same way, with gran-
ularity γ = 0.1.

4.1 Labor Data

Labor data set1 [13,15,16] contains information on final settlements in labor ne-
gotiations in Canadian industry. It is composed of 57 instances described by
16 attributes – mixed symbolic and numeric. In the experiment, symbolic at-
tributes were turned into binary, which resulted in a data set described by 26
numeric or binary attributes. Then, all attributes were normalized. There were
two classes with 37 and 20 instances respectively. Neural networks created dur-
ing the experiment consisted of two layers of sigmoidal neurons: hidden one, of
different size; and output one, containing two neurons, one for each class. Results
of experiments are listed in Table 1 and presented graphically in Figure 2.

The results show that discretization substantially improves accuracy of neural
networks trained on Labor data. The lowest error rate obtained with discretized
1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/labor-negotiations .

Nondeterministic Discretization of Weights Improves Accuracy 769

Table 1. Error rates [%] and their standard deviations for neural networks trained
with either standard or discrete backpropagation algorithm, evaluated on Labor data

No. of hidden neurons Discrete backpropagation Standard backpropagation

5 22.55 ± 9.83 35.10 ± 0.63

10 15.25 ± 7.93 35.10 ± 0.63

20 10.17 ± 5.42 34.06 ± 2.28

30 9.49 ± 4.99 28.08 ± 5.61

50 8.25 ± 5.37 26.00 ± 9.45

70 7.54 ± 4.98 22.62 ± 9.30

100 7.37 ± 3.94 18.26 ± 8.48

150 7.20 ± 3.33 21.39 ± 9.29

200 7.72 ± 4.37 21.25 ± 10.85

250 7.91 ± 4.11 21.96 ± 11.67

510 20 30 50 70 100 150 200 250
0

5

10

15

20

25

30

35

Number of hidden neurons

E
rr

or
 ra

te
 [%

]

Fig. 2. Error rates [%] and their standard deviations (vertical bars) for neural networks
trained with either standard (squares) or discrete (circles) backpropagation algorithm,
evaluated on Labor data. Networks with different number of hidden neurons (horizontal
axis) were checked.

algorithm (7.20%) is by 60% smaller than with standard algorithm (18.26%),
which is a huge difference. Moreover, standard deviation of the error rate among
networks with the same size of hidden layer is also significantly lower when

770 M. Wojnarski

Table 2. Error rates [%] and their standard deviations for neural networks trained
with either standard or discrete backpropagation algorithm, evaluated on Image Seg-
mentation data

No. of hidden neurons Discrete backpropagation Standard backpropagation

5 24.41 ± 3.84 37.72 ± 5.94

10 15.18 ± 3.02 27.88 ± 3.94

20 12.12 ± 1.43 19.94 ± 2.26

30 11.15 ± 1.12 19.61 ± 2.10

50 10.91 ± 1.25 17.45 ± 1.50

70 10.34 ± 0.97 16.59 ± 1.21

100 10.24 ± 0.99 16.24 ± 1.29

150 10.87 ± 1.40 16.24 ± 1.68

200 10.77 ± 1.75 16.76 ± 2.11

250 10.63 ± 1.90 17.04 ± 2.41

510 20 30 50 70 100 150 200 250
0

5

10

15

20

25

30

35

40

45

Number of hidden neurons

E
rr

or
 ra

te
 [%

]

Fig. 3. Error rates [%] and their standard deviations (vertical bars) for neural networks
trained with either standard (squares) or discrete (circles) backpropagation algorithm,
evaluated on Image Segmentation data. Networks with different number of hidden
neurons (horizontal axis) were checked.

discretization is used. These large differences indicate that standard backpropa-
gation highly overtrains on Labor data and discretization of weights is an efficient
way to reduce this overtraining.

Nondeterministic Discretization of Weights Improves Accuracy 771

4.2 Image Segmentation Data

Image Segmentation data set2 [13,3] contains 2310 instances, described by 19
numeric attributes and uniformly distributed in 7 classes. The attributes were
normalized before training. Neural networks created during the experiment con-
sisted two layers of sigmoidal neurons: hidden one, of different size; and output
one, containing 7 neurons, one for each class. Results of experiments are listed
in Table 2 and presented graphically in Figure 3.

As in the case of Labor data, also for Image Segmentation data the perfor-
mance of neural networks can be improved by discretization of weights. The best
result achieved with discretization (10.24% error rate) is by 37% better than the
best result of standard algorithm (16.24%). The improvement is smaller than
for Labor data, probably due to significantly bigger size of the training set and
thus smaller degree of overfitting.

5 Conclusions

A novel method that reduces overfitting of neural networks has been presented.
The method is based on non-deterministic discretization of weights after every
training cycle, which restricts the set of possible weight values to a discrete sub-
set of real numbers and enables much shorter description of the network. This, in
turn, improves generalization abilities and performance of the system, according
to Minimum Description Length principle. Thanks to non-determinism, there
is no risk that discretization would force the training process to stop in some
far-from-optimal point of parameter space. The method was evaluated on two
real-world data sets from UCI repository, exhibiting high effectiveness in prevent-
ing neural network from overfitting: the use of discretization enabled decrease
in error rate by 60% and 37% respectively. Importantly, it was better to use
discretization than to decrease the number of hidden neurons, so discretization
appeared to be more effective than the most straightforward method of avoiding
overtraining.

It should be emphasized that the presented method is potentially very ver-
satile. Although the paper covers only neural networks and backpropagation
algorithm, discretization of parameters of a model could be applied to many
other algorithms and systems, as different as evolutionary algorithms, Bayesian
networks or Gaussian mixture models, to name just a few.

There are also two more general conclusions which follow from the presented
study. They may seem strange at first sight but have deep consequences. Firstly,
it appears that methods of continuous optimization – like gradient descend,
which lies in the basis of backpropagation algorithm – can be successfully applied
to optimization over discontinuous (e.g. discrete) spaces, as well.

Secondly, all decision systems built from data and described by real-valued
parameters might probably benefit from some kind of restriction imposed on
possible parameter values.

These conclusions definitely need more investigation.
2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/image

772 M. Wojnarski

Acknowledgement

The author thanks anonymous reviewers for their helpful remarks.

References

1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (1995)

2. Ripley, B.D.: Pattern recognition and neural networks. Cambridge University
Press, Cambridge (1996)

3. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Sta-
tistical Classification. Elis Horwood, London (1994)

4. Rychetsky, M., Ortmann, S., Glesner, M.: Pruning and regularization techniques for
feed forward nets applied on a real world data base. In: Heiss, M. (ed.) International
Symposium on Neural Computation, pp. 603–609 (1998)

5. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural
Computation 7(1), 108–116 (1995)

6. Burger, M., Neubauer, A.: Analysis of tikhonov regularization for function approx-
imation by neural networks. Neural Networks 16(1), 79–90 (2003)

7. Wojnarski, M.: LTF-C: Architecture, training algorithm and applications of new
neural classifier. Fundamenta Informaticae 54(1), 89–105 (2003)

8. Sietsma, J., Dow, R.J.F.: Creating artifical neural networks that generalize. Neural
Networks 4(1), 67–79 (1991)

9. Holmström, L., Koistinen, P.: Using additive noise in back-propagation training.
IEEE Transactions on Neural Networks 3(1), 24–38 (1992)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

11. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
12. Grünwald, P., Myung, I.J., Pitt, M.: Advances in Minimum Description Length.

MIT Press, Cambridge (2005)
13. Newman, D.J., Hettich, S., Merz, C.B.: UCI repository of machine learning

databases (1998)
14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
15. Bergadano, F., Matwin, S., Michalski, R.S., Zhang, J.: Measuring quality of concept

descriptions. In: EWSL, pp. 1–14 (1988)
16. Bergadano, F., Matwin, S., Michalski, R.S., Zhang, J.: Representing and acquiring

imprecise and context-dependent concepts in knowledge-based systems. In: ISMIS,
pp. 270–280 (1988)

Semi-definite Manifold Alignment

Liang Xiong, Fei Wang, and Changshui Zhang

Dept. Automation, Tsinghua University,
Beijing, China

{xiongl,feiwang03}@mails.tsinghua.edu.cn,
zcs@mail.tsinghua.edu.cn

Abstract. We study the problem of manifold alignment, which aims at “align-
ing” different data sets that share a similar intrinsic manifold provided some
supervision. Unlike traditional methods that rely on pairwise correspondences
between the two data sets, our method only needs some relative comparison in-
formation like “A is more similar to B than A is to C”. This method provides a
more flexible way to acquire the prior knowledge for alignment, thus is able to
handle situations where corresponding pairs are hard or impossible to identify.
We optimize our objective based on the graphs that give discrete approximations
of the manifold. Further, the problem is formulated as a semi-definite program-
ming (SDP) problem which can readily be solved. Finally, experimental results
are presented to show the effectiveness of our method.

1 Introduction

In machine learning, we are often faced with data with very high dimensionality. Di-
rectly dealing with these data is usually intractable due to the computational cost and
the curse of dimensionality. In recent years, researchers have realized that in many situ-
ations the samples are confined to a low-dimensional manifold embedded in the feature
space [1,2]. This intrinsic structure is of great value to facilitate the analysis and learn-
ing. Consequently, many methods have been developed to reveal data manifolds, such
as Locally Linear Embedding [2], Laplacian Eigenmaps [3] and Maximum Variance
Unfolding [4]. However, all these algorithms are unsupervised. Therefore, their results
usually fail to reflect samples’ underlying parameters (e.g. the pose parameters for head
images). Fortunately, provided some supervised information, we are able to develop
methods that can reveal these parameters.

In this paper, we will focus on the problem of manifold alignment. More concretely,
given some data sets sharing the same manifold structure, we seek to learn the corre-
spondences between samples from different data sets (e.g. Finding different persons’
face images with the same pose). Besides its usage in data analysis and visualization,
this problem also have wide range of applications. For instance, in facial expression
recognition, one may have a set of labeled images with known expressions. Then we
can recognize the expressions of another person by aligning his/her facial images to the
standard image set. One can refer to [5] for more details.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 773–781, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

774 L. Xiong, F. Wang, and C. Zhang

Fig. 1. An example of data sharing the same manifold. Above are facial expressions from JAFFE
[6]. The top and bottom rows show pairs with the same underlying facial expression.

(a) (b) (c)

Fig. 2. Three facial expression images. (a) and (c) is surprised and (b) is neutral. It is hard to
make a confident decision that (a) and (c) have the same expression. However, it is obvious that
(c) is more similar to (a) than (b) is.

There have already been some methods to align manifolds in a semi-supervised way
[7,8,5,9,10]. Specifically, they assume that some pairwise correspondences of samples
between data sets are known, and then use those information to guide the alignment.
However, in practice it might be difficult to obtain and use such information since:

1. The sizes of data sets can be very large, then finding high-quality correspondences
between them can be very time consuming and even intractable.

2. There may exist some ambiguities in the images (see Fig. 2 for an example), which
makes explicit matching a hard task. Brutally determine and enforce these unreli-
able constraints may lead to poor results;

3. There may not exist exact correspondences. For example, this situation may happen
when the data is restricted and users can only access a small subset.

To solve these problems, we propose to apply another type of supervision to guide
manifold alignment. In particular, we consider a relative and qualitative supervision of
the form “A is closer to B than A is to C”. We believe that this type of information is
more easily available than traditional correspondence information. With this informa-
tion, we show that the manifold alignment problem can be formulated as a Quadrati-
cally Constrained Quadratic Programming (QCQP) [11] problem. To make the solu-
tion tractable, we further relax it to a Semi-Definite Programming (SDP) [11] problem,
which can be readily solved. Besides, under this formulation we can incorporate both
relative relations and correspondences to align manifolds in a very flexible way. Finally
experimental results are presented to show the effectiveness of our method.

The rest of this paper is organized as follows. Section 2 will introduce some basic
notations and related works. The detailed algorithm will be presented in section 3. The
experimental results will be provided in section 4, followed by the discussions in section
5 and conclusions in section 6.

Semi-definite Manifold Alignment 775

2 Notations and Related Works

We study the problem of aligning different data sets that share the same underlying
manifold. For the convenience of presentation, first let us consider the case of two data
sets X and Y in high-dimensional vector spaces

X = {x1,x2, · · · ,xN} ⊂ Rdx , Y = {y1,y2, · · · ,yN} ⊂ Rdy . (1)

Manifold learning methods such as Laplacian eigenmaps [3] can learn the low-
dimensional embeddings by constructing an undirected weighted graph that captures the
local structure of data. For example, for X we can construct a graph GX = (VX , EX),
where VX = X are the vertices and EX are the edges. Generally there is a nonnega-
tive weight Wij associated with each edge eij ∈ EX , and all the edge weights form an
N ×N weight matrix WX with its (i, j)-th entry WX (i, j) = Wij . The degree matrix
DX is an N ×N diagonal matrix with the i-th diagonal entry DX (i, i) =

∑
j Wij , and

the combinatorial graph Laplacian is defined as LX = DX −WX .
The low-dimensional embeddings of the data in X , say F = [f1, f2, · · · , fN] ∈

Rd×N (d ' dX) can be achieved by minimizing the criterion SX = tr(FLXFT),
where tr(·) represents the trace of a matrix. According to [3], SX measures the smooth-
ness of the embeddings of X over the its underlying manifold. Similarly, we can define
a graph GY = (VY , EY) for Y with its combinatorial graph Laplacian LY = DY−WY .
And the low-dimensional embeddings of Y , say G = [g1,g2, · · · ,gN] ∈ Rd×N can
also be achieved by minimizing SY = tr(GLYG)T . Moreover, we can minimize the
following combined criterion to achieve the common embeddings of both X and Y

S = tr(FLXFT) + tr(GLYGT). (2)

Now let’s return to our manifold alignment problem. Assuming that we have known
some pairwise correspondences {xi,yi}li=1, we can align X and Y in a common low-
dimensional space by minimizing [8]

J = μ
∑l

i=1
‖fi − gi‖2 + tr(FLXFT) + tr(GLYGT), (3)

where μ is a regularization parameter to balance the embedding smoothness and the
matching precision. When μ = ∞, the pairwise correspondences will become hard
constraints which impose fi = gi after embedding [7,10]. However, as we explained in
the introduction, it may be difficult to obtain the pairwise correspondences. Hence we
propose a novel scheme for manifold alignment in this paper, which is based on relative
comparisons among the data points.

3 Manifold Alignment Via Semi-definite Programming

3.1 The Quadratic Formulation

In this section we show how to correctly embed the data from different data sets into a
common low-dimensional space with the guidance of supervised information.

776 L. Xiong, F. Wang, and C. Zhang

Co-embedding Without Prior Knowledge. Following [8], we adopt the graph based
criterion as our optimization objective. We construct weighted undirected graphsGX ,GY
for data sets X and Y respectively, and then seek a embedding which minimize Eq.(2).
To avoid the illness of this problem, we impose the scale and translational invariance
constraints. Then the co-embedding problem can be formulated as

minF,G tr(FLXFT) + tr(GLYGT)
s.t. tr(FFT) = 1, tr(GGT) = 1

Fe = 0,Ge = 0 (4)

which is a co-dimensionality reduction problem without any prior knowledge about the
relationship between X and Y . For the choice of the Laplacian matrices LX and LY ,
we use the iterated Laplacian [3] MX = (I−QX)T (I−QX), where QX is an N ×N
matrix with its (i, j)-th entry qij being calculated by optimizing

min
qij

∥
∥
∥
∥xi −

∑

xj∈N (xi)
qijxj

∥
∥
∥
∥

2

s.t.
∑

j
qij = 1,

where N (xi) is the neighborhood of xi (e.g. k-nearest neighborhood or ε-ball neigh-
borhood), and for xj /∈ N (xi), qij = 0. Similarly, we can define the iterated Laplacian
MY for data set Y .

Manifold Alignment by Incorporating the Prior Knowledge. Now let’s take the
relative comparison constraints into account. As we have introduced in section 2, the
knowledge “yi is closer to xj than xk” can be translated into the relative distance
constraint

‖gi − fj‖2 ≤ ‖gi − fk‖2 (5)

in the embedded space. In the rest of this paper, for notational convenience, we will
denote the constraint shown in Eq.(5) as an ordered 3-tuple tc = {yi,xj ,xk}. We use

T = {tc}Cc=1 to denote the set of constraints. Let H = [F,G], M =
[
MX 0
0 MY

]
. By

incorporating those constraints, our optimization problem (4) can be formulated as

minH tr(HMHT)
s.t. ∀{yi,xj ,xk} ∈ T , ‖hi+N − hj‖2 ≤ ‖hi+N − hk‖2

tr(HF HT
F) = 1, tr(HGHT

G) = 1
HFe = 0,HGe = 0, (6)

where HF and HG are the sub-matrices of H corresponding to F and G.
Now we have formulated our tuple-constrained optimization as a Quadratically Con-

strained Quadratic Programming (QCQP) [11] problem. However, since the relative
distance constraints in Eq.(6) is not convex, then 1) computationally the solution is dif-
ficult to derive and 2) the solution is trapped in local minima. Therefore, a reformulation
is needed to make this problem tractable.

Semi-definite Manifold Alignment 777

3.2 A Semi-definite Approach

Now we present how to relax the QCQP problem Eq.(6) to a SDP problem. Note that

‖hi+N − hj‖2 ≤ ‖hi+N − hk‖2 ⇔ 2hT
i+Nhj + 2hT

i+Nhk + hT
j hj − hT

k hk ≤ 0

tr(HMHT) = tr(MHTH).

These two facts motivate us to deal with the Gram matrix of data instead, which is
defined as K = HTH. K can be divided into four blocks as

K =
[
FTF FT G
GTF GTG

]
=
[
KFF KFG

KGF KGG

]
. (7)

Using K, we are able to convert the formulas in Eq.(6) into linear forms as follows:

– The objective function is
min
K

tr(MK). (8)

– The relative distance constraints is

∀{yi,xj ,xk} ∈ T ,−2Ki+N,j + 2Ki+N,k + Kj,j −Kk,k ≤ 0. (9)

– The scale invariance is achieved by constraining the traces of KFF and KGG i.e.

trace(FFT) = trace(KFF) = 1, trace(GGT) = trace(KGG) = 1. (10)

– The translation invariance is achieved by constraints
∑

i,j
KFF

i,j = 0,
∑

i,j
KGG

i,j = 0. (11)

To see this, consider the following fact for F (and similar for G)

∑

i
fi = 0⇔

∣
∣
∣
∑

i
fi
∣
∣
∣
2

=
∑

i,j
fT
i fj =

∑

i,j
KFF

ij = 0 (12)

Finally, K must be positive semi-definite i.e. K 7 0 to be a valid Gram matrix.
And to avoid the case of empty feasible set and to encourage the influence of prior
knowledge, we introduce slack variables E = {εc}Cc=1 and write the problem as:

minK,ε tr(MK) + α

C∑

c=1

εc

s.t. ∀{yi,xj ,xk} ∈ T ,−2Ki+N,j + 2Ki+N,k + Kj,j −Kk,k ≤ εc

trace(KFF) = 1, trace(KGG) = 1,
∑

i,j
KFF

i,j = 0,
∑

i,j
KGG

i,j = 0,

K 7 0,
∀εc ∈ E , εc ≤ 0, (13)

where α is a parameter to balance between the data’s structure and the supervision.

778 L. Xiong, F. Wang, and C. Zhang

Since Eq.(13) is a Semi-Definite Programming (SDP) problem [11], we call our
method Semi-Definite Manifold Alignment (SDMA). Clearly, Eq.(13) is convex and thus
is free of local minima. Besides, various software packages are available for efficient
solutions, and we have preferred the Sedumi [12] package in this paper. When the Gram
matrix K is solved, the embedded coordinates F,G can be recovered from KFF and
KGG’s dominant eigenvectors.

We emphasize that SDMA can serve as a very flexible framework for manifold
alignment and embedding. More concretely, Eq.(13) can be generalized (or degen-
erated) in the following ways. 1) Flexible supervision. First, the form of tuple con-
straints can be changed from tc = {yi,xj ,xk} to tc = {hi,hj ,hk}. This means
that SDMA can accept relative distance constraints between any three samples (e.g.
all from the same manifold, or from 3 different manifolds). Moreover, our formulation
is able to incorporate the traditional correspondence information by adding constraints
“Ki,i = Ki,j = Kj,j”. 2) Multi-manifold alignment. This can be done straightfor-
wardly by adding more manifold components into H and M along with corresponding
constraints. 3) Semi-supervised embedding. When there is only one manifold compo-
nent, SDMA provides a way to embed it with the guide of flexible supervision.

4 Experiments

4.1 Data and Settings

– Head pose [13]. This data set contains head images of 15 sets, each of which has 2
series of 93 images of the same person at 93 different poses.

– Facial expression [6]. This data set contains 213 images of 7 facial expressions
posed by 10 Japanese female models. The underlying parameters are unknown.

The relative distance constraints T are obtained as follows. First, samples are ran-
domly drawn to form a tuple T = {yi,xj ,xk} meaning that “yi is more similar to
xj than to xk”. Then let a user judge if this tuple is valid based on relative similarity.
Finally, valid tuples are collected into T . Since only “yes/no” questions are involved,
this procedure is very easy for the users. Specifically, for the head pose data, similarity
is determined by the sum of horizontal and vertical angle differences. For the facial ex-
pression data, if yi and xj have the same expression that is different from xj , then T is
valid. This strategy gives a conservative yet reliable supervision.

The parameter α tunes the strength of relative distance constraints. In our experi-
ments it is chosen manually from the grid {10−5, · · · , 10−1, 1}.

4.2 Results

Figure 3 shows the experimental result of SDMA on head pose data. We construct the
graph using neighborhood size 7, and use 500 tuples, α = 10−3. 130 samples from
2 subjects are embedded onto a 2-D plane. It can be seen that both of the underlying
manifold parameters are successfully captured and aligned.

Figure 4 shows the alignment of facial expression data. The graph is constructed with
neighborhood size 5, and 50 tuples are used. Since its manifold structure is not evident,

Semi-definite Manifold Alignment 779

Fig. 3. Alignment of head pose images. (a) and (b) shows the embedding by SDMA and the cor-
respondences found. Points are colored according to horizontal angles in (a) and vertical angles
in (b). (c) shows some samples of matched pairs.

Fig. 4. Alignment of facial expression images. (a) and (b) shows the embedding, with points
colored according to the true expressions. (a) shows the true correspondences, while (b) shows
those found by SDMA. (c) shows some matched pairs.

we set α = 10−1 to strengthen the influence of relative distance constraints. 40 samples
are embedded onto a 2-D plane since only two eigenvalues of K are not zero.

5 Discussions

The idea of learning with relative comparisons has also been used in other problems.
[14] treat relative distance relations as the character of data, and use AdaBoost to seek
for an embedding where this character is preserved. However, they did not utilize the
data’s intrinsic structure. [15] and [16] propose to learn distance metrics from relative
comparisons. They both seek a distance measure d(x,y) =

√
(x− y)T A(x − y) and

use the relative relations to constrain the feasible region of A through mathematical
programming. In spirit, our method is similar to [15]. They learn a distance measure
that preserves global distance relations, and we learn an embedding that preserves local
manifold structures.

SDMA are closely related to kernel methods. By the semi-definite relaxation, we
first derive the data’s Gram matrix (a.k.a. Kernel matrix), and then calculate the low-
dimensional coordinates by eigen-decomposition. This procedure is similar to kernel
principal component analysis (KPCA) [17] except that our kernel matrix is learnt by
aligning manifolds. Therefore, SDMA can be considered a kernel learning method. From
this perspective, SDMA is similar to [18]. The difference is that they only use a single
manifold’s structure, while we exploit multiple manifolds and their correspondences.

One drawback of SDMA is that its computational cost is high when dealing with
large data sets. Although the semi-definite relaxation makes the problem tractable, it
inevitably increases the number of variables. In the future we are aiming at finding
more efficient solutions.

780 L. Xiong, F. Wang, and C. Zhang

6 Conclusion

Traditional align algorithms rely on the knowledge of high-quality pairwise correspon-
dence, which is difficult to acquire in many situations. In this paper, we study a new
way of aligning manifold based on the smoothness on graphs. To achieve maximum ap-
plicability and minimum user effort, we introduce the novel relative distance constraint
to guide the alignment. Alignment using this type of prior knowledge is first formulized
as a quadratically constrained quadratic programming (QCQP) problem. Further, by
manipulating the Gram matrix of data instead of the coordinates, we relax this problem
to a semi-definite programming (SDP) problem, which can be solved readily. Besides,
we show that this semi-definite formulation can serve as a general framework for semi-
supervised manifold alignment and embedding. Experiments on aligning various data
demonstrate the effectiveness of our method.

Acknowledgement

Funded by Basic Research Foundation of Tsinghua National Laboratory for Informa-
tion Science and Technology (TNList).

References

1. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)
2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.

Science 290, 2323–2326 (2000)
3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-

tation. Neural Computation 15, 1373–1396 (2003)
4. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite

programming. International Journal of Computer Vision 70(1), 77–90 (2006)
5. Ham, J., Ahn, I., Lee, D.: Learning a manifold-constrained map between image sets: Appli-

cations to matching and pose estimation. In: CVPR-06 (2006)
6. Lyons, M.J., Kamachi, M., Gyoba, J., Akamatsu, S.: Coding facial expressions with gabor

wavelets. In: Procedings of the 3rd IEEE Aut. Face and Gesture Recog., IEEE Computer
Society Press, Los Alamitos (1998)

7. Ham, J., Lee, D., Saul, L.: Learning high dimensional correspondence from low dimensional
manifolds. In: Workshop on The Continuum from Labeled to Unlabeled Data in Machine
Learning and Data Mining, ICML-03 (2003)

8. Ham, J., Lee, D., Saul, L.: Semisupervised alignment of manifolds. In: Proceedings of the
8th International Workshop on Artificial Intelligence and Statics (AISTATS 2005) (2005)

9. Verbeek, J., Roweis, S., Vlassis, N.: Non-linear cca and pca by alignment of local models.
In: Advances in NIPS-04 (2004)

10. Verbeek, J., Vlassis, N.: Gaussian fields for semi-supervised regression and correspondence
learning. Pattern Recognition 39(10), 1864–1875 (2006)

11. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge, UK (2004)
12. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization overy symmetric cones.

Optimization Methods and Software 11-12, 625–653 (1999)
13. Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of

salient facial features. In: Proceedings of Pointing 2004, ICPR, International Workshop on
Visual Observation of Deictic Gestures, Cambridge, UK (2004)

Semi-definite Manifold Alignment 781

14. Athitsos, V., Alon, J., Sclaroff, S., Kollios, G.: Boostmap: A method for efficient approximate
similarity rankings. In: CVPR-04 (2004)

15. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: Ad-
vances in NIPS-03 (2003)

16. Rosales, R., Fung, G.: Learning sparse metrics via linear programming. In: KDD-06 (2006)
17. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigen-

value problem. Neural Computation 10, 1299–1319 (1998)
18. Weinberger, K., Fei, S., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality

reduction. In: ICML-04 (2004)

General Solution for Supervised Graph

Embedding

Qubo You, Nanning Zheng, Shaoyi Du, and Yang Wu

Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University,
Xi’an,Shaanxi Province 710049 P.R. China

youqubo@gmail.com, nnzheng@mail.xjtu.edu.cn, sydu@aiar.xjtu.edu.cn,
ywu@aiar.xjtu.edu.cn

Abstract. Recently, Graph Embedding Framework has been proposed
for feature extraction. However, it is an open issue that how to compute
the robust discriminant transformation. In this paper, we first show that
supervised graph embedding algorithms share a general criterion (Gen-
eralized Rayleigh Quotient). Through novel perspective to Generalized
Rayleigh Quotient, we propose a general solution, called General Solu-
tion for Supervised Graph Embedding (GSSGE), for extracting the robust
discriminant transformation of Supervised Graph Embedding. Finally,
extensive experiments on real-world data are performed to demonstrate
the effectiveness and robustness of our proposed GSSGE.

1 Introduction

Distance metric learning plays an important role in the field of machine learning.
Actually, learning a robust distance metric is equivalent to looking for a robust
transformation which transforms the original space into the feature space. Hence,
those traditional methods for feature extraction can be viewed as metric learning
algorithms, such as Linear Discriminant Analysis (LDA) [1], Local Discriminant
Embedding (LDE) [2] and Locality Sensitive Discriminant Analysis (LSDA) [3].
In 2007, Yan et al. [4] presented a general framework (Graph Embedding) to
unify the above algorithms. In this framework, however, it is an open issue that
how to compute the robust discriminant transformation. Since this framework
uses a general criterion, it is natural that a general solution can be used for
extracting the robust discriminant transformation. Unfortunately, most of algo-
rithms don’t thoroughly consider the problem that how to compute the robust
discriminant transformation. Similar to classical LDA [1], LDE and LSDA first
use Principal Component Analysis (PCA) to reduce dimension for dealing with
small sample size problem (SSS) where the data dimension is much larger than
the sample size. However, this method may result in the loss of important dis-
criminative information [5]. In the literature of LDA, different variations have
been proposed to deal with the SSS problem [6,7,8,9]; however, they aim at LDA.

In this paper, we focus on the problem that how to compute the robust dis-
criminant transformation of Supervised Graph Embedding. We first show that
supervised graph embedding algorithms share a general criterion (Generalized

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 782–789, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

General Solution for Supervised Graph Embedding 783

Rayleigh Quotient). Then, we propose a general solution, called General Solution
for Supervised Graph Embedding (GSSGE), to extract the robust discriminant
transformation. Finally, experimental results on real-world data demonstrate the
robustness of GSSGE.

The rest of the paper is organized as follows: Supervised Graph Embedding
framework is briefly reviewed in Section 2. In Section 3, General Solution for
Supervised Graph Embedding (GSSGE) is described. Extensive experiments
are performed to demonstrate the effectiveness and robustness of our proposed
GSSGE in Section 4. Finally, conclusions are summarized in Section 5.

2 Supervised Graph Embedding

For the convenience of understanding, in the following, the small italic letters
denote scalars, such as a, b, c; the small bold non-italic letters denote vectors,
such as a, b, c; and the capital bold non-italic letters denote matrices, such as
A, B, C. Let we have n samples {xi|xi ∈ Rd}ni=1 belonging to c classes.

Let G = {X,W} be an undirected weight graph with vertex set X =
[x1,x2, · · · ,xn] and the similarity matrix W ∈ Rn×n. The element of similarity
matrix W measures the similarity of the vertex pair. Graph Embedding is to
extract the optimal low dimensional vector representation for each vertex of the
graph G. Assume that the low dimensional vector representation of each vertex
can be obtained from linear projections. For simplicity, we consider the one di-
mensional case. It is easy to extend to multi-dimensional cases. Let q ∈ Rd×1 be
the linear mapping from the d-dimensional space to a line, and {yi = qT xi}ni=1

are the low dimensional representation of the vertex set X. In order to preserve
the similarity of the graph G, we should minimize the graph preserving criterion
as follows [4]:

q∗ = arg min
q

qT XBXT q=c

qTXLXTq (1)

where c is a constant, B is the constraint matrix and L = D−W is the Laplacian
matrix. D is the diagonal matrix with diagonal element Dii =

∑
j �=i Wij∀i.

In supervised learning problem, Supervised Graph Embedding is to extract
the graph embeddings which best characterize the compactness of the intra-class
graph and the separability of the inter-class graph. Therefore, in order to provide
the robust graph embeddings, we should maximize the following criterion:

q∗ = arg max
q

qTXLbXT q
qT XLwXT q

(2)

where Lb = Db −Wb and Lw = Dw −Ww are the Laplacian matrices of the
inter-class graph Gb and the intra-class graph Gw respectively. Both Db and
Dw are the diagonal matrices with diagonal element Db

ii =
∑

j �=i W
b
ij∀i and

Dw
ii =

∑
j �=i W

w
ij∀i respectively.

784 Q. You et al.

3 General Solution for Supervised Graph Embedding

As we know in Section 2, the criterion of Supervised Graph Embedding is:

J(q) =
qTXLbXT q
qTXLwXTq

(3)

Thus, the optimal vector is q∗ = arg max
q

J(q). From Eq. (3), we can find that the

criterion of Supervised Graph Embedding is a Generalized Rayleigh Quotient.
The optimal q∗ is the top eigenvector of the generalized eigenvalue problem

(XLbXT)q = λ(XLwXT)q (4)

For the convenience of description, we define that Mb = XLbXT , Mw =
XLwXT and Mt = Mb+Mw. Since both Lb and Lw are the Laplacian matrices,
Mb, Mw and Mt are symmetric positive semi-definite.

Since the null space of Mt = Mb +Mw is the intersection of the null space of
Mb and the null space of Mw, the samples are projected onto the range space
of Mt without loss of any discriminant information. Therefore, the criterion of
Supervised Graph Embedding can be changed to:

J1(p) =
pTM̃bp
pT M̃wp

(5)

where M̃b = UT
t MbUt, M̃w = UT

t MwUt and Ut is the set of eigenvectors, cor-
responding to all the nonzero eigenvalues, of Mt. Then, the optimal discriminant
transformation vector is q∗ = Utp∗ where p∗ = arg max

p
J1(p).

Let λt
i and ut

i be the ith eigenvalue and the corresponding eigenvector of
Mt, λt

1 ≥ · · · ≥ λt
�t
1
, Σt = diag(λt

1, · · · , λt
�t
1
), Ut = [ut

1, · · · ,ut
�t
1
] and t

1 =

rank(Mt). Then, M̃t = UT
t MtUt = Σt. Let λ̄b

i and ūb
i be the ith eigenvalue

and the corresponding eigenvector of Σ−1/2
t M̃bΣ

−1/2
t , λ̄b

1 ≥ · · · ≥ λ̄b
�t
1
≥ 0,

Σ̄b = diag(λ̄b
1, · · · , λ̄b

�t
1
) and Ūb = [ūb

1, · · · , ūb
�t
1
].

Theorem 1. Σ−1/2
t Ūb simultaneously diagonalizes M̃b, M̃w and M̃t.

Proof. Due to ŪT
b Ūb = I, we can obtain

(Σ−1/2
t Ūb)TM̃tΣ

−1/2
t Ūb = ŪT

b Ūb = I (6)

Because of M̃t = M̃b + M̃w, we can rewrite Eq. (6) as:

(Σ−1/2
t Ūb)T M̃tΣ

−1/2
t Ūb = Σ̄b + (Σ−1/2

t Ūb)TM̃wΣ−1/2
t Ūb = I

Then, we can obtain

(Σ−1/2
t Ūb)T M̃wΣ−1/2

t Ūb = I− Σ̄b = Σ̄w (7)

where Σ̄w = diag(λ̄w
1 , · · · , λ̄w

�t
1
). Due to I − Σ̄b = Σ̄w, we can find that Σ̄w =

diag(1− λ̄b
1, · · · , 1− λ̄b

�t
1
), 1 ≥ λ̄b

i , λ̄
w
i ≥ 0 and λ̄w

1 ≤ · · · ≤ λ̄w
�t
1
. �	

General Solution for Supervised Graph Embedding 785

Theorem 2. Σ−1/2
t Ūb is the optimal discriminant transformation which max-

imizes the following criterion:

J2(p) =
pTM̃bp

pTM̃tp
(8)

Proof. From Eq. (8), we can find that the optimal p∗, maximizing J2, is the top
eigenvector of the eigenvalue problem

M̃bp = λM̃tp
M̃t=Σt⇒ Σ−1/2

t M̃bp = λΣ1/2
t p (9)

Let p′ = Σ1/2
t p, we can obtain

Σ−1/2
t M̃bΣ

−1/2
t p′ = λp′ (10)

Since λ̄b
i and ūb

i are the ith eigenvalue and the corresponding eigenvector of Eq.
(10), Σ−1/2

t Ūb maximizes the criterion J2. �	

Theorem 3. When M̃w is nonsingular, Σ−1/2
t Ūb is the optimal discriminant

transformation which maximizes the criterion J1 in Eq. (5).

Proof. From Eq. (5), we can find that the optimal p∗, maximizing J1, is the top
eigenvector of the eigenvalue problem

M̃bp = λM̃wp (11)

Adding both sides of Eq. (11) by λM̃bp, we can find

M̃bp =
λ

1 + λ
M̃tp = μM̃tp (12)

Since both M̃w and M̃t are nonsingular, we can find that Eq. (11) and Eq. (12)
share the same eigenvector with different eigenvalues. Therefore, the optimal
discriminant transformation, maximizing the criterion J1, is Σ−1/2

t Ūb. �	

Since M̃w is singular in the case of the SSS problem, we can’t directly computed
the eigenvector v in the following generalized eigenvalue problem

M̃bv = λM̃wv (13)

Theorem 4. When M̃w is singular, λi = λ̄b
i

/
λ̄w

i and Σ−1/2
t ūb

i are the ith eigen-
value and the corresponding eigenvector in Eq. (13).

Proof. Let rank(M̃w) = w
1 < t

1, w
2 = t

1 − w
1 , rank(M̃b) = b

1 ≤ t
1 and

 b
2 = t

1 − b
1. According to Theorem 1, Σ̄w and Σ̄b can be rewritten as

Σ̄w = diag(λ̄w
1 , λ̄w

2 , · · · , λ̄w
�t
1
) =

⎡

⎣
0w 0 0
0 Dw 0
0 0 Iw

⎤

⎦

786 Q. You et al.

Σ̄b = I− Σ̄w = diag(λ̄b
1, λ̄

b
2, · · · , λ̄b

�t
1
) =

⎡

⎣
Ib 0 0
0 Db 0
0 0 0b

⎤

⎦

where 0w ∈ R�w
2 ×�w

2 and 0b ∈ R�b
2×�b

2 are zero matrices, Iw ∈ R�b
2×�b

2 and Ib ∈
R�w

2 ×�w
2 are identity matrices, Dw = diag

(
λ̄w

�w
2 +1, λ̄

w
�w
2 +2, · · · , λ̄w

�b
1

)
and Db =

diag
(
λ̄b

�w
2 +1, λ̄

b
�w
2 +2, · · · , λ̄b

�b
1

)
are diagonal matrices, 0 < λ̄w

�w
2 +1 ≤ λ̄w

�w
2 +2 ≤ · · · ≤

λ̄w
�b
1
< 1 and 1 > λ̄b

�w
2 +1 ≥ λ̄b

�w
2 +2 ≥ · · · ≥ λ̄b

�b
1
> 0.

Let V = Σ−1/2
t Ūb = [v1,v2, · · · ,v�t

1
]. According to Theorem 1, VT M̃wV =

Σ̄w and VT M̃bV = Σ̄b. Then, M̃wV = (V−1)T Σ̄w and M̃bV = (V−1)T Σ̄b.
Let V′ = (V−1)T = [v′

1,v′
2, · · · ,v′

�t
1
], we can find, for i = 1, · · · , t

1

M̃wvi = λ̄w
i v′

i (14)

M̃bvi = λ̄b
iv

′
i (15)

λ̄w
i M̃bvi = λ̄b

iM̃wvi (16)

Then, M̃bvi = (λ̄b
i

/
λ̄w

i)M̃wvi. Thus, λi = λ̄b
i

/
λ̄w

i and Σ−1/2
t ūb

i are the ith
eigenvalue and the corresponding eigenvector in Eq. (13). �	

Since M̃w is symmetric positive semi-definite and λ̄w
1 = · · · = λ̄w

�w
2

= 0, vi

lies in the null space of M̃w for i = 1, · · · , w
2 according to Eq. (14). Due to

0 < λ̄w
�w
2 +1 ≤ · · · ≤ λ̄w

�b
1

< 1, vi doesn’t lie in the null space of M̃w for i =

 w
2 + 1, · · · , b

1. According to the definition of λi, we can find that λi = +∞ for
i = 1, · · · , w

2 , 0 < λi < +∞ for i = w
2 + 1, · · · , b

1 and λ�w
2 +1 ≥ · · · ≥ λ�b

1
> 0.

Due to J1(vi) = λi, the robust discriminant transformation vectors can be first
extracted from the null space of M̃w, and then from the range space of M̃w.

When transformation vector ṽ lies in the null space of M̃w not in the null
space of M̃b, J1(ṽ) = +∞, which means that the null space of M̃w is an effective
discriminant space with respect to the criterion J1. Assume that both ṽ1 and ṽ2

lie in the null space of M̃w, ṽT
1 M̃bṽ1 > 0 and ṽT

2 M̃bṽ2 > 0; however, J1(ṽ1) =
J1(ṽ2) = +∞. That means every vector, lying in the null space of M̃w not
in the null space of M̃b, can make J1 infinite. In this case, the criterion J1

can’t characterize the separability of the inter-class graph. Therefore, we should
replace J1. In this paper, we extract the robust discriminant transformation
vectors from the null space of M̃w based on the following criterion:

J3(p) =
pTM̃bp
pTp

(17)

where pTp normalizes pTM̃bp so that the optimal vector can’t be selected ran-
domly. Therefore, the optimal discriminant transformation vector p∗ is

p∗ = arg max
p

pT M̃wp=0

J3(p) (18)

General Solution for Supervised Graph Embedding 787

Let λ̃w
i and ũw

i be the ith eigenvalue and the corresponding eigenvector of M̃w,
0 ≤ λ̃w

1 ≤ · · · ≤ λ̃w
�t
1
. We define Ũa

w = [ũw
1 , · · · , ũw

�w
2
] and Ũb

w = [ũw
�w
2 +1, · · · , ũw

�t
1
].

Since the vector p in Eq. (18) lies in the null space of M̃w, let p = Ũa
wz.

Therefore, the objective function in Eq. (18) can be changed to

z∗ = arg max
z

zT (Ũa
w)TM̃bŨa

wz
zT z

(19)

Thus, theoptimalz∗ is the topeigenvectorof the eigenvalueproblem (Ũa
w)T M̃bŨa

w .
Let the column vectors z1, z2, · · · , z�w

2
be the leading eigenvectors of the eigenvalue

problem (Ũa
w)T M̃bŨa

w. Thus, the optimal discriminant transformation of J3 in Eq.
(17) is P∗

1 = Ũa
w[z1, z2, · · · , z�w

2
].

When the extracted transformation vector lies in the range of M̃w, the objec-
tive function is

max
p

pT M̃wp �=0

pTM̃bp

pTM̃wp
(20)

Since the vector p in Eq. (20) lies in the range space of M̃w, let p = Ũb
wz′.

Therefore, Eq. (20) can be rewritten as:

max
z′

z′T (Ũb
w)T M̃wŨb

wz′ �=0

z′T (Ũb
w)TM̃bŨb

wz′

z′T (Ũb
w)TM̃wŨb

wz′
(21)

Due to (Ũb
w)TM̃wŨb

w = diag(λ̃w
�w
2 +1, · · · , λ̃w

�t
1
) where 0 < λ̃w

�w
2 +1 ≤ · · · ≤ λ̃w

�t
1
,

(Ũb
w)T M̃wŨb

w is nonsingular. Therefore, the optimal z′∗ is the top eigenvector of
((Ũb

w)TM̃wŨb
w)−1(Ũb

w)TM̃bŨb
w. Let the column vectors z′1, z′2, · · · , z′�w

1
be the

leading eigenvectors of the eigenvalue problem ((Ũb
w)TM̃wŨb

w)−1(Ũb
w)T M̃bŨb

w .
Thus, the optimal discriminant transformation of the objective function in Eq.
(20) is P∗

2 = Ũb
w[z′1, z′2, · · · , z′�w

1
].

Based on the analysis of Eq. (16), we have known that the robust discriminant
transformation vectors can be first extracted from the null space of M̃w, and then
from the range space of M̃w. Therefore, the robust discriminant transformation
of Supervised Graph Embedding is Q = Ut[P∗

1,P
∗
2] when M̃w is singular.

4 Experiments

In order to validate GSSGE, we apply GSSGE for computing the discriminant
transformation of Local Discriminant Embedding (LDE) [2]. Extensive experi-
ments on FERET [10] are performed to demonstrate the effectiveness and ro-
bustness of GSSGE. Since ULDA/GSVD [6], Exact Algorithm [7], LDA/FKT [8]
and LDA/GSVD [9] are essentially equivalent, we only compare ULDA/GSVD
with other algorithms without loss of generality. Therefore, the system perfor-
mance of GSSGE is compared to the ones of classical LDA [1], ULDA/GSVD,
LDE [2] and LSDA [3]. Since the dimension of the facial image is often very high,

788 Q. You et al.

Fig. 1. Twenty facial images of ten individuals in the FERET database

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension of reduced space

R
ec

og
ni

tio
n

ra
te

Comparison of recognition rate

GSSGE
LDA
ULDA/GSVD
LDE
LSDA

Fig. 2. Recognition rate versus dimension m of reduced space

which can result in the SSS problem, the experimental results can demonstrate
the robustness of each method for dealing with the SSS problem.

This dataset consists of all the 1195 people from the FERET Fa/Fb data
set. There are two face images for each person. We preprocessed these original
images by aligning transformation and scaling transformation so that the two
eyes were aligned at the same position. Then, the facial areas were cropped into
the resulting images. The size of each cropped image is 64 × 64, with 256 grey
levels per pixel. We didn’t perform further preprocessing. Fig. 1 shows the twenty
facial images of ten individuals from this dataset.

We selected randomly 495 people for training and used the remaining 700
people as testing. For each testing people, one face image is in the gallery and the
other is for probe. Thus, this dataset has no overlap between the training set and
gallery/probe set, which results in the requirement of generalizable ability from
known objects in the training set to unknown objects in the gallery/probe set
for each method. Therefore, the result on the dataset from the FERET database
is convincing to evaluate the robustness of each method. We performed 50 times
to choose randomly the training set. The final result is the average recognition
rate over 50 random training sets. Fig. 2 illustrates the plot of recognition rate
versus the dimension m of reduced space for LDA, ULDA/GSVD, LDE, LSDA
and GSSGE. From the experimental results, we can find that GSSGE is superior
to the other methods. However, it is obvious that ULDA/GSVD works badly.

General Solution for Supervised Graph Embedding 789

5 Conclusions

In this paper, we first show that supervised graph embedding algorithms share
a general criterion (Generalized Rayleigh Quotient). Through thorough perspec-
tive to Generalized Rayleigh Quotient, we propose a general solution, called Gen-
eral Solution for Supervised Graph Embedding (GSSGE), to extract the robust
discriminant transformation. Experimental results on FERET database demon-
strate the effectiveness and robustness of GSSGE. Furthermore, because our pro-
posed GSSGE is a general solution for Supervised Graph Embedding, GSSGE
can be used to extract the robust discriminant transformation of Supervised
Graph Embedding algorithms, such as LDA [1] and LSDA [3], and so on.

Acknowledgments. This work was supported by the National High-Tech Re-
search and Development Plan of China under Grant No. 20060101Z1059, and
the National Basic Research Program of China under Grant No. 2006CB708303.

References

1. Belhumeur, P.N., Hepanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recog-
nition using class specific linear projection. IEEE Trans. Pattern Anal. Machine
Intell. 19(7), 711–720 (1997)

2. Chen, H.-T., Chang, H.-W., Liu, T.-L.: Local discriminant embedding and its vari-
ants. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2, pp. 846–853 (2005)

3. Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality Sensitive Discriminant Anal-
ysis. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (2007)

4. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph Embedding
and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans.
Pattern Anal. Machine Intell. 29(1), 40–51 (2007)

5. You, Q., Zheng, N., Du, S., Wu, Y.: Neighborhood Discriminant Projection for Face
Recognition. In: Proceedings of the International Conference on Pattern Recogni-
tion, vol. 2, pp. 532–535 (2006)

6. Ye, J., Janardan, R., Li, Q., Park, H.: Feature Reduction via Generalized Uncor-
related Linear Discriminant Analysis. IEEE Trans. Knowledge Data Eng. 18(10),
1312–1322 (2006)

7. Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for general-
ized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal.
Machine Intell. 26(8), 982–994 (2004)

8. Zheng, S., Sim, T.: When Fisher meets Fukunage-Koontz: A New Look at Lin-
ear Discriminant. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 323–329 (2006)

9. Howland, P., Park, H.: Generalizing discriminant analysis using the generalized
singular value decomposition. IEEE Trans. Pattern Anal. Machine Intell. 26(8),
995–1006 (2004)

10. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation method-
ology for face-recognition algorithms. IEEE Trans. Pattern Anal. Machine In-
tell. 22(10), 1090–1104 (2000)

Multi-objective Genetic Programming for

Multiple Instance Learning

Amelia Zafra and Sebastián Ventura

Department of Computer Science and Numerical Analysis,
University of Córdoba

{azafra,sventura}@uco.es

Abstract. This paper introduces the use of multi-objective evolution-
ary algorithms in multiple instance learning. In order to achieve this pur-
pose, a multi-objective grammar-guided genetic programming algorithm
(MOG3P-MI) has been designed. This algorithm has been evaluated
and compared to other existing multiple instance learning algorithms. Re-
search on the performance of our algorithm is carried out on two well-
known drug activity prediction problems, Musk and Mutagenesis, both
problems being considered typical benchmarks in multiple instance prob-
lems. Computational experiments indicate that the application of the
MOG3P-MI algorithm improves accuracy and decreases computational
cost with respect to other techniques.

1 Introduction

Multiple instance learning, or multi-instance learning (MIL) introduced by Di-
etterich et al. [1] is a recent learning framework which has stirred interest in
the machine learning community. In this paradigm, instances are organized in
bags (i.e., multisets) and it is the bags, instead of individual instances, that are
labeled for training. Multiple instance learners assume that every instance in
a bag labeled negative is actually negative, whereas at least one instance in a
bag labeled positive is actually positive. Note that a positive bag may contain
negative instances.

Since its introduction, a wide range of tasks have been formulated as multi-
instance problems. Among these tasks, we can cite content-based image retrieval
[2] and annotation [3], text categorization [4], web index page recommendation
[5,6] and drug activity prediction [7,8]. Also, a variety of algorithms have been
introduced to learn in the multi-instance setting. Some of them are algorithms
designed from scratch [1,7,8], while others [4,9,10,11,12,13,14] are based on well-
known supervised learning algorithms. In this sense, the work of Zhou [15] is
relevant in that it shows a general way in which supervised learners can be
turned into multi-instance learners by shifting their focus from a discrimination
on instances to the discrimination on the bags.

In this paper, we introduce a multi-objective grammar guided genetic pro-
gramming algorithm designed to handle MIL problems. Our main motivations
with this are: (a) genetic programming that allows a rule based classifier to be

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 790–797, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-objective Genetic Programming for Multiple Instance Learning 791

generated (well known are the exceptional properties of these systems with re-
spect to the comprehensibility and clarity of the knowledge being discovered)
and (b) multi-objective strategy solutions that represent a tradeoff between dif-
ferent rule quality measurements, which is more interesting than maximising one
individual measurement. As we will see, our algorithm (MOG3P-MI) generates
a simple rule based classifier that increases generalization ability and includes
interpretability and clarity in the knowledge discovered. Experiments are carried
out by solving two well-known examples of drug activity prediction, Musk and
Mutagenesis, which have been extensively used as benchmarks in evaluating and
comparing MIL methods. Results show that this approach improves accuracy
considerably with respect to existing techniques used to date.

The rest of this paper is organized as follows. Section 2 describes the proposed
MOG3P-MI algorithm. Section 3 reports on experimental results. Finally, section
4 presents the conclusions and future work.

2 Multi-objective Genetic Programming for
Multiple-Instance Learning

In this section we specify different aspects which have been taken into account
in the design of the MOG3P-MI algorithm: individual representation, genetic
operators and fitness function. With regard to the evolutionary process, our
algorithm is based on the well-known Strength Pareto Evolutionary Algorithm 2
(SPEA2) [16] and, for this reason, no explanation about how it works is included.

2.1 Individual Representation

An individual consists of two components, a genotype which is encoded as tree
structures with limitations in tree depth to avoid too large a size, and a phenotype
which represents the full rule with antecedents and consequences. The antecedent
consists of tree structures and represents a rule which can contain multiple com-
parisons attached by conjunction or disjunction, while the consequence specifies
the class for the instance that satisfies all the conditions of the antecedent. To
carry out the classification of the bags of instances, we use the formal definition
of multi-instance coverage given by [15]. We consider that the possible value of
the consequence is always the positive class, that is, all individuals are classified
in the positive class and all examples that do not satisfy the individuals rule set
are implicitly classified as belonging to the negative class.

We use a grammar to enforce syntactic constrains and satisfy the closure
property (see Figure 1). This grammar mantains syntactical and semantic con-
straints in both the generation of individuals in the initial population and the
production of new individuals via crossover.

2.2 Genetic Operators

The elements of the next population are generated by means of two operators:
mutation and crossover.

792 A. Zafra and S. Ventura

 antecedent -> comparison
 OR comparison antecedent
 AND comparison antecedent

comparison -> comparatorNumerical valuesToCompare
 comparatorCategorical valuesToCompare

comparatorNumerical -> <
 ≥

comparatorCategorical -> CONTAIN
 NOT_CONTAIN

valuesToCompare -> attribute value

Fig. 1. Grammar used for individual representation

Mutation. The mutation operator can be applied to either a function node or
a terminal node. A node in the tree is randomly selected. If the chosen node is a
terminal it is simply replaced by another terminal. If it is a function, there are
two possibilities with the same likelihood: (a) the function is replaced by a new
function with the same arity and, (b) a new function node (not necessarily with
the same arity) is chosen, and the original node together with its relative sub-
tree is substituted by a new randomly generated sub-tree. If the new offspring
is too large, it will be eliminated to avoid having invalid individuals.

Crossover. The crossover is performed by swapping the sub-trees of two parents
between two compatible points randomly selected in each parent. Two tree nodes
are compatible if their operators can be swapped without producing an invalid
individual according to the defined grammar. If any of the two offspring is too
large, they will be replaced by one of their parents.

2.3 Fitness Function

The fitness function evaluates the quality of each individual according to two
indices that are normally used to evaluate the accuracy of algorithms in clas-
sification problems [17,18]. These are sensitivity and specificity. Sensitivity is
the proportion of cases correctly identified as meeting a certain condition and
specificity is the proportion of cases correctly identified as not meeting a certain
condition. A value of 1 in both measures represents a perfect classification.

specificity =
tn

tn + fp
, sensitivity =

tp

tp + fn
(1)

Where tp is the number of positive bags correctly predicted, tn is the number
of negative bags correctly predicted, fp is the number of positive bags incorrectly
predicted and fn is the number of negative bags incorrectly predicted.

Our fitness function combines these two indicators and the goal is to maxi-
mize them at same time. These measures are relationed, that is, there is a tradeoff

Multi-objective Genetic Programming for Multiple Instance Learning 793

between sensitivity and specificity (any increase in sensitivity will be accompa-
nied by a decrease in specificity).

3 Experiments and Results

Our experiments are aimed to evaluate our proposed algorithm as compared to
other classification techniques. Experimental results were estimated by 5 runs
of 10-fold cross-validation with five different seeds for each partition and the
average values of accuracy are reported in the next sections.

3.1 Datasets and Running Parameters

Experiments have been made on a drug activity prediction problem which is
the most famous application for MIL. We discuss two datasets, Musk and Mu-
tagenesis which are available at http://www.cs.waikato.ac.nz/ml/milk. The key
properties of these datasets are shown in Table 1.

Table 1. Characteristics of the Musk and Mutagenesis datasets

Musk Mutagenesis

Data Set Musk1 Musk2 Easy Hard

Number of bags 92 102 188 42
Number of positive bags 47 39 125 13
Number of negative bags 45 63 63 29
Number of instances 476 6598 10486 2132

These datasets are the most popular ones in the MIL domain, especially Musk.
Every MIL algorithm developed so far has been tested using this problem. There-
fore, we evaluated our algorithm based on these datasets.

The parameters used in all MOG3P-MI runs were: population size: 1000, ex-
ternal population size: 50, generations: 100, crossover probability: 95%, mutation
probability: 15%, selection method for both parents: binary tournament selection
with replacement, maximum tree depth: 15. The initial population was generated
using the ramped-half-and-half method. The algorithm has been implemented
in the JCLEC framework [19].

3.2 Comparison with Other Algorithms

Solving the Musk Problem. Comparisons are made with previous algorithms
that include the ones specially designed for attacking the multiple-instance prob-
lem, as ITERATED-DISCRIM-APR which is the best of the four APR algo-
rithms reported in [1], TILDE which is a top-down induction system for learning
first order logical decision tree [20], CITATION-KNN [11] which is a variant of k
nearest neighbour algorithm, RIPPER and RIPPERMI [21] which are a generic

794 A. Zafra and S. Ventura

Table 2. Summary results for Musk dataset

Musk1 Musk2

Algorithm Acc Acc

MOG3P-MI 0.93 0.93
ITERATED-DISCRIM-APR 0.92 0.89
CITATION-KNN 0.92 0.86
DIVERSE DENSITY 0.89 0.82
RIPPERMI 0.88 0.77
NAIVE-RIPPERMI 0.88 0.77
TILDE 0.87 0.79
SVM 0.87 0.83

extension to propositional rule learners to handle multiple-instance data, Diverse
Density [22] which is one of the most popular algorithms and MI-SVM [4] which
is the best approach of support vectorial machines for MIL.

Table 2 shows a summary with the average values obtained by the different
algorithms for each association of datasets. The results of the different algorithms
are taken from [4] and [21].

In the Musk1 dataset, the hypotheses generated by MOG3P-MI contain an
average of eight literals. These results are more accurate than those of other
techniques which also generate interpretable knowledge. Moreover, the results are
better than models which are not directly interpretable and have been specifically
designed for this learning task, as ITERATED-DISCRIM-APR algorithm. The
following is an example of rules generated by our algorithm.

IF ((f10 > -220.3815) ∧ (f7 > 35.2688) ∧ (f163 ≤ 199.6827)
∧ (f55 > -84.9990) ∧ (f134 > -216.0463) ∧ (f34 > -216.1496)
∧ ((f128 ≤ 18.1158) ∨ (f140 > 13.6820) ∨ (f136 > -78.2625)))

THEN Molecules have a musky smell.
ELSE Molecules have not a musky smell.

In the Musk2 dataset, MOG3P-MI obtains an accuracy of 93%, which is far
from the results found with the other techniques. This dataset has more bags and
more instances by bags than in Musk1. However, our algorithm is not affected
by these characteristics, and again it obtains the best results with respect to the
rest of the techniques, these being comparable to those obtained in Musk1.

Solving the Mutagenesis Problem. The results of MOG3P-MI are com-
pared to learners able to generate comprehensible hypotheses like PROGOL
[23], FOIL and TILDE [20]. Also, we compare them to propositional rule learn-
ers, RIPPERMI [21] and NAIVE-RIPPERMI [21]. Table 3 displays the accuracy
of MOG3P-MI, as well as the accuracy of five popular learners explained previ-
ously. The results of the different algorithms are taken from [21].

The best accuracy was obtained using Mutagenesis-hard which uses individual
atoms and global molecular features that are highly correlated with the activity

Multi-objective Genetic Programming for Multiple Instance Learning 795

Table 3. Summary results for Mutagenesis dataset

Mutagenesis-easy Mutagenesis-hard

Algorithm Acc Acc

MOG3P-MI 0.84 1.00
RIPPERMI 0.82 0.91
NAIVE-RIPPERMI 0.78 0.91
TILDE 0.77 0.86
PROGOL 0.76 0.86
FOIL 0.61 0.83

of the molecule. For this dataset, the other techniques obtain a good perfor-
mance, but the best results are obtained by MOG3P-MI which obtains a perfect
classification.

In a Mutagenesis-easy dataset, the accuracy of all the techniques fell. Never-
theless, our algorithm got the best results on the other ones. Thus, we can say
that MOG3P-MI is competitive in terms of predictive accuracy, with respect to
other learners. In addition, the induced hypotheses are concise, they contain an
average of seven literals. The following is an example of the rule generated by
our algorithm.

IF ((element2 = 7.0) ∧ (charge1 > -0.4862) ∧ (charge2 ≤ -0.5673) ∧
((quanta1 �= 9.0) ∨ (charge2 > -0.3719)))

THEN Molecules have mutagenic activity.
ELSE Molecules do not have a mutagenic activity.

4 Conclusion and Future Work

The problem of MIL is a learning problem which has raised interest in the
machine learning community. This problem is encountered in contexts where
an object may have several alternative vectors to describe its different possible
configurations.

In this paper, we describe the first attempt to apply multi-objective gram-
mar guided genetic programming for multiple instance learning. MOG3P-MI is
derived from the traditional G3P method and the SPEA2 multiobjective al-
gorithm. Experiments on the Musk and Mutagenesis datasets show that our
approach obtains the best results in terms of accuracy in the rest of the existing
learning algorithm. Added to this are the benefits of interpretability and clarity
in the knowledge discovered which provides a rule based system. The experi-
mental study shows the success of our approach. However, further optimization
is possible: issues such as the stopping criterion, the pruning strategy, and intro-
duction of a third objective to improve the simplicity of obtaining easier rules
would be an interesting issue for future work.

796 A. Zafra and S. Ventura

Acknowledgment

This work has been financed in part by the TIN2005-08386-C05-02 project of
the Spanish Inter-Ministerial Commission of Science and Technology (CICYT)
and FEDER funds.

References

1. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artifical Intelligence 89(1-2), 31–71 (1997)

2. Yang, C., Lozano-Perez, T.: Image database retrieval with multiple-instance learn-
ing techniques. In: ICDE ’00: Proceedings of the 16th International Conference on
Data Engineering, p. 233. IEEE Computer Society Press, Washington (2000)

3. Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation.
Pattern Recognition 40(2), 728–741 (2007)

4. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: NIPS’02: Proceedings of Neural Information Pro-
cessing System, pp. 561–568 (2002)

5. Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied
Intelligence 22(2), 135–147 (2005)

6. Xue, X., Han, J., Jiang, Y., Zhou, Z.: Link recommendation in web index page
based on multi-instance learning techniques. Jisuanji Yanjiu yu Fazhan/Computer
Research and Development 44(3), 406–411 (2007)

7. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
NIPS’97: Proceedings of Neural Information Processing System 10, pp. 570–576.
MIT Press, Cambridge (1997)

8. Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning tech-
nique. In: NIPS’01: Proceedings of Neural Information Processing System, pp.
1073–1080 (2001)

9. Zucker, J.D., Chevaleyre, Y.: Solving multiple-instance and multiple-part learning
problems with decision trees and decision rules. Application to the mutagenesis
problem. In: Proceedings of the 14th Canadian Conference on Artificial Intelligence,
Lecture Notes in Artificial Intelligence, Ottawa, Canada, pp. 204–214 (2000)

10. Ruffo, G.: Learning single and multiple instance decision tree for computer security
applications. PhD thesis, Department of Computer Science. University of Turin,
Torino, Italy (2000)

11. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning
approach. In: ICML’00: Proceedings of the Seventeenth International Conference
on Machine Learning, pp. 1119–1126. Morgan Kaufmann Inc., San Francisco (2000)

12. Tao, Q., Scott, S., Vinodchandran, N.V., Osugi, T.T.: SVM-based generalized
multiple-instance learning via approximate box counting. In: ICML’04: Proceed-
ings of the twenty-first international conference on Machine learning, pp. 799–806.
ACM Press, New York (2004)

13. Zhang, M.L., Zhou, Z.H.: Ensembles of multi-instance neural networks. In: Intel-
ligent information processing II, vol. 163, pp. 471–474. Springer Boston, London,
UK (2005)

14. Zhang, M.L., Zhou, Z.H.: Adapting RBF neural networks to multi-instance learn-
ing. Neural Processing Letters 23(1), 1–26 (2006)

Multi-objective Genetic Programming for Multiple Instance Learning 797

15. Zhou, Z.H.: Multi-instance learning from supervised view. Journal Computer Sci-
ence and Technology 21(5), 800–809 (2006)

16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich,
Switzerland (2001)

17. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Genetic programming for knowledge
discovery in chest-pain diagnosis. IEEE Engineering in Medicine and Biology Mag-
azine 19(4), 38–44 (2000)

18. Tan, K.C., Tay, Lee, A., Heng, T.H., C.M.: Mining multiple comprehensible classi-
fication rules using genetic programming. In: CEC’02: Proceedings of the Congress
on Evolutionary Computation. Honolulu, HI, USA, vol. 2, pp. 1302–1307(2002)

19. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A java
framework for evolutionary computation soft computing. Soft Computing (2007)
((in Press)

20. Blockeel, H., Raedt, L.D., Jacobs, N., Demoen, B.: Scaling up inductive logic
programming by learning from interpretations. Data Mining Knowledge Discov-
ery 3(1), 59–93 (1999)

21. Chevaleyre, Y., Zucker, J.D.: A framework for learning rules from multiple instance
data. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167,
pp. 49–60. Springer, Heidelberg (2001)

22. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification.
In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine
Learning, pp. 341–349. Morgan Kaufmann Publishers Inc., San Francisco (1998)

23. Srinivasan, A., Muggleton, S.: Comparing the use of background knowledge by
inductive logic programming systems. In: ILP ’95: Proceedings of International
Workshop on Inductive Logic Programming (1995)

Exploiting Term, Predicate, and Feature

Taxonomies in Propositionalization and
Propositional Rule Learning

Monika Žáková and Filip Železný

Czech Technical University
Technická 2, 16627 Prague 6, Czech Republic
zakovm1@fel.cvut.cz, zelezny@fel.cvut.cz

Abstract. Knowledge representations using semantic web technologies
often provide information which translates to explicit term and predicate
taxonomies in relational learning. We show how to speed up the propo-
sitionalization by orders of magnitude, by exploiting such taxonomies
through a novel refinement operator used in the construction of conjunc-
tive relational features. Moreover, we accelerate the subsequent propo-
sitional search using feature generality taxonomy, determined from the
initial term and predicate taxonomies and θ-subsumption between fea-
tures. This enables the propositional rule learner to prevent the ex-
ploration of conjunctions containing a feature together with any of its
subsumees and to specialize a rule by replacing a feature by its subsumee.
We investigate our approach with a deterministic top-down proposi-
tional rule learner, and propositional rule learner based on stochastic
local search.

1 Introduction

With the development of semantic web technologies and knowledge manage-
ment using ontologies, increasing amounts of expert knowledge in important
knowledge-intensive domains such as bioinformatics is becoming available in the
form of ontologies and semantic annotations. However, semantic representation
is becoming popular even in industrial use [13] for sharing and efficient searching
of information in production enterprises. Knowledge representation formalisms
used to capture ontologies and semantic annotations are based on description
logics, which have convenient properties with regard to complexity and decid-
ability of reasoning [1].

Inductive logic programming (ILP) aims at learning a theory in a subset of
first-order logic from given examples, taking background knowledge into account.
It has been considerably successful in various knowledge discovery problems
such as in bioinformatics [4]. Standard ILP techniques cannot efficiently exploit
explicit taxonomies on concepts and relations, which are typically available in
semantic knowledge representations [13]. While in principle, any taxonomy can
be encoded in background knowledge, there is good reason to view ontologies

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 798–805, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exploiting Term, Predicate, and Feature Taxonomies 799

as meta-information, which can be directly exploited to guide the refinement
operator used to search through the space of first-order rules.

Recently, effort has been exerted to utilize the information available in ontolo-
gies out of the scope of the traditional ILP settings. There are 3 main approaches to
this problem: introduce learning mechanisms into description logics [1], [3], hybrid
languages integrating Horn logic and description logics [7], [10] and learning in a
more expressive formalism [9]. Learning in description logics is useful mainly for
the refinement of existing description hierarchies;however,here we are constrained
to limitations of description logic and therefore e.g. unable to express formulas
with a free variable. Therefore the works investigating learning in description log-
ics are valuable especially in their results on dealing with the open-world assump-
tion in learning and in transformations of description logics into some other subset
of the first-order logic. Reasoning and learning in hybrid languages attempts to
loosely couple descriptions of concept hierarchies in description logics with rules
expressed in function-free Horn logic. Learning in hybrid languages is often split
into two phases, each utilizing well-known algorithms particular to each of the
respective formalisms. Reasoning in hybrid languages is more complex than
reasoning in both its constituent formalisms. E.g. even if reasoning in the chosen
subsets of both DL and HL formalisms separately is decidable, reasoning in the
corresponding hybrid formalism may be undecidable [6]. A growth in computa-
tional complexity is obviously also a deficiency of approaches using representation
formalisms with expressivity exceeding that of first-order logic.

This paper concentrates on the problem of exploiting taxonomies in the frame-
work of propositionalization of relational data by constructing relational features
and subsequent learning from the propositionalized representation. We exploit
the term and predicate taxonomies in the process of relational feature construc-
tion, by adopting the formalism of sorted logic for feature representation and
by adapting a refinement operator for first-order features to be co-guided by
the taxonomies. In contrast to state-of-the-art logic-based propositionalization
systems [5], we explicitly store the information that a feature has been obtained
by specializing another feature. The propositional algorithm utilizes the result-
ing feature taxonomy to prevent the exploration of a conjunction containing a
feature together with any of its subsumees and to specialize a rule by replacing
a feature by its subsumee. Since the feature taxonomy is determined partly by
θ-subsumption, it can be exploited whether or not relation and term taxonomies
were available.

2 Sorted Logic

Our approach to propositionalization is based on RSD system [14]. In RSD, a
predicate declaration assigns a type symbol to each argument, from a finite set
of type symbols. The present approach replaces the notion of type with that of
sort borrowed from the formalism of sorted logic, which is suitable for encoding
term taxonomies. We shall introduce sorted logic and its use by an example.
The Gene Function Ontology declares a concept binding and its subconcept

800 M. Žáková and F. Železný

protein binding. Such concepts are reflected by terms in ILP. It is possible to
declare in background knowledge e.g.

subclass(binding, protein binding).
geneFunction(G, F1) :- geneFunction(G, F2), subclassTC(F1, F2).

(where subclassTC/2 is defined as the transitive closure of subclass/2). Un-
fortunately, in such an approach, for the following two exemplary clauses (hy-
potheses)

C = activeGene(G):- geneFuction(G, binding).
D = activeGene(G):- geneFuction(G, protein binding).

it does not hold Cθ ⊆ D, so clause D is not obtained by applying a specialization
refinement operator onto clause C. Similar reasoning applies to taxonomies on
relations (predicates).

Sorted logic contains in addition to predicate and function symbols also a
disjoint set of sort symbols. A sort symbol denotes a subset of the domain called
a sort [2]. A sorted variable is a pair, x :τ , where x is a variable name and τ
is a sort symbol. Semantically, a sorted variable ranges over only the subset of
the domain denoted by its sort symbol. The semantics of universally-quantified
sorted formulas can be defined in terms of their equivalence to ordinary formu-
las: ∀x :τ φ is logically equivalent to ∀x : ¬τ(x) ∨ φ

′
where φ

′
is the result of

substituting x for all free occurrences of x :τ ∈ φ.
A sort theory Σ is a finite set of formulas containing function formulas and

subsort formulas. A function formula has the form

∀x1, . . . , xnτ1(x1) ∧ . . . ∧ τn(xn)→ τ(f(x1, . . . , xn)) (1)

where, in this paper, we constrain ourselves to n = 0, thus reducing function
formulas to the form τ(f) reflecting that constant f is of sort τ . A subsort
formula has the form

∀xτ1(x)→ τ2(x) (2)

reflecting that τ1 is a direct subsort of τ2. It is required that the directed graph
corresponding to the subsort theory is acyclic and has a single root denoted
univ.

For a sort theory Σ, a Σ-sorted substitution is a mapping from variables to
terms such that for every variable x :τ , it holds that Σ |= ∀τ(t) where t is (x :τ)θ,
where θ is the sorted substitution. Informally, this is a substitution that does
not violate the sort theory.

In the present propositionalization approach, terms in features are constants
or sorted variables. Background knowledge consists of an ordinary first-order
theory and a sort theory Σ. A declaration for a predicate of symbol π and arity
n has the form

π(m1τ1, . . . ,mnτn)

where mi ∈ {+,−} denotes whether i-th argument is an input (+) or an output
(-). Besides the constraints imposed on features in RSD, correct features must

Exploiting Term, Predicate, and Feature Taxonomies 801

respect the sort relationships. Formally, a literal Lit may appear in a feature only
if there is a declaration π(m1τ1, . . . ,mnτn) and a Σ-sorted substitution θ such
that π(τ1, . . . , τn)θ = Lit. Next we turn attention to the refinement operator
through which features are constructed.

3 Feature Construction and Adaptation of Learning

We have adapted the sorted downward refinement from [2], which accounts for
term taxonomies, to further account for the earlier defined feature constraints
and predicate declarations used in propositionalization, and for a further kind
of taxonomy – the predicate taxonomy – often available in ontology data. This
taxonomy is encoded through meta-predicates in the form

subrelation(pred1/n, pred2/n).

providing the explicit meta-information that goal pred1(Arg1, . . . , Argn) suc-
ceeds whenever goal pred2(Arg1, . . . , Argn) succeeds, i.e. pred1 is more general.
The directed graph corresponding to the entire set of the subrelation/2 state-
ments (where direction is such that edges start in the more general goal) is
assumed to be a forest. The set of its roots is exactly the set of predicates de-
clared through the predicate declarations defined in the previous section. It is
assumed that the non-root predicates inherit the argument declarations from
their respective roots.

As feature heads are fixed in our propositionalization framework, we are con-
cerned with refinement of their bodies, i.e. conjunctions. We will use the notion of
an elementary Σ-substitution. Its general definition can be found in [2], however,
adapted to our framework, the definition simplifies.

An elementary Σ-substitution for a sorted conjunction C is {x : τ1} → {x : τ2}
where {x : τ1} occurs in C and Σ contains the subsort formula ∀ψτ2(ψ)→ τ1(ψ)
for some variable ψ. If {x : τ2} already occurs in C, then x is deterministically
renamed1 to a variable not occurring in C. Unlike in [2], we can disregard the
case of substituting a sorted variable by a function (as we work with function-
free features) and, similarly to RSD [14], we neither allow to unify two distinct
variables (an equality theory can be defined instead in background knowledge).

Let C be a conjunction of non-negated atoms where any term is either a
constant or a sorted variable, Σ be a sort theory, and Δ a set of predicate
declarations. We define the downward Δ,Σ-refinement, written ρΔ,Σ(C), as the
smallest set such that:

1. For each θ that is an elementary Σ-substitution for C, ρΔ,Σ(C) contains Cθ.
2. Let π(m1τ1, . . . ,mnτn) be a declaration in Δ such that for each i for which

mi = +, C contains a variable (denote it xi) of sort τ ′
i which equals or is

a subsort of τi. Let further {xi|mi = −} be a set of distinct variables not
appearing in C. Then ρΔ,Σ(C) contains C ∧ π(x1 : υ1, ..., xn : υn), where
υi = τ ′

i if mi = + and υi = τi otherwise.
1 That is, we do not allow several elementary substitutions differing only in the chosen

renaming.

802 M. Žáková and F. Železný

3. Let C contain a literal pred1(x1τ1, . . . , xnτn) and let pred2 be a direct sub-
relation of pred1. Then ρΔ,Σ(C) contains C′, which is acquired by replacing
pred1(x1τ1, . . . , xnτn) with pred2(x1τ1, . . . , xnτn) in C.

Confined to 8 pages, we skip the proof that, under very general assumptions
on Δ, the defined refinement operator is (i) finite, (ii) complete, in that all correct
features (as defined in [14] and Section 2) up to variable renaming are enumerated
by its recursive closure, whenever the initial C in the recursive application of
ρΔ,Σ(C) is true, and also (iii) non-redundant, in that ρΔ,Σ(C1)∩ρΔ,Σ(C2) = {} if
C1 �= C2. However, the operator is not necessarily correct, in that all its products
would be correct feature bodies. In particular, it may produce a conjunction
violating the undecomposability condition defined in [14].

During the recursive application of the refinement operator, a feature gener-
ality taxonomy becomes explicit. For purposes of enhancing the performance of
the propositional learning algorithm applied subsequently on the proposition-
alized data, we pass the feature taxonomy information to the learner through
two Boolean matrices.2 Assume that features f1, . . . fn have been generated with
corresponding conjunctive bodies b1, . . . bn. The elementary subsumption matrix
E of n rows and n columns is defined such that Ei,j = 1 whenever bi ∈ ρΔ,Σ(bj)
and Ei,j = 0 otherwise. The exclusion matrix X of n rows and n columns is
defined such that Xi,j = 1 whenever i = j or bi ∈ ρΔ,Σ(ρΔ,Σ(. . . ρΔ,Σ(bj) . . .))
and Xi,j = 0 otherwise.

A skeleton of the propositionalization algorithm is shown in Fig. 1. The algo-
rithm is a depth-first search generally similar to the feature constructor of RSD
[14]. The main difference lies in using the novel sorted refinement operator ρΔ,Σ

and also in creating the matrices E and X storing the generality taxonomy of
constructed features. The Undecomposable procedure checks whether a fea-
ture is not a conjunction of already generated features, through a method used
in RSD and detailed in [14]. The AddFeatureHead forms a feature clause by
formally attaching a head to the body, which consists of the constructed conjunc-
tion Curr. The Coverage procedure verifies the truth value of a conjunction
for all examples in E returning a vector of Boolean values. The verification is
done by a transformation of the sorted conjunction Curr to an ordinary first-
order conjunction as explained in Sec. 2 and then using a standard resolution
procedure against a Prolog database consisting of B and Σ. For efficiency, the
procedure obtains the coverage AParent,1...l of the closest ancestor (subsuming)
conjunction whose coverage was tested: any example i such that AParent,i is
false can be left out of testing as it makes the current conjunction necessarily
false as well. The Closure procedure computes the transitive closure of the el-
ementary subsumption relation captured in E in the manner described above,
and represents the closed relation analogically in matrix X, in which it further
sets Xi,i = 1 for all 1 ≤ i ≤ n.

2 While alternative data structures are of course possible for this sake, the elected bi-
nary matrix form requires modest space for encoding (our implementation uses one
byte for each 8 matrix elements) and also is conveniently processed in the proposi-
tional algorithm implementation.

Exploiting Term, Predicate, and Feature Taxonomies 803

Propositionalize(Δ,B, Σ, E, l) : Given, a set Δ of predicate declarations, a first-
order theory (background knowledge) B, a sort theory Σ, a set of unary ground
facts (examples) E = {e1, . . . , em} and a natural number l; returns a set
{f1, . . . , fn} of constructed features, each with at most l atoms in the body, an
elementary subsumption matrix E, an exclusion matrix X, and an attribute-value
matrix A where Ai,j = 1 whenever fi is true for ej and Ai,j = 0 otherwise.

1. n = 0; Agenda = a single element list [(C, 0)], where C = true;
2. If Agenda = []: go to 10
3. (Curr, Parent) := Head(Agenda); Tail := Tail(Agenda)
4. If Nonempty(Curr) and Undecomposable(Curr):
5. n := n + 1; fn = AddFeatureHead(Curr);
6. En,Parent = 1; Parent = n;
7. An,1...l =Coverage(Curr,E, B, Σ,AParent,1...l)
8. Rfs := ρΔ,Σ(Curr); Rfs := {(Cnj, Parent)|Cnj ∈ Rfs, |Cnj| ≤ l}
9. Agenda := Append(Rfs, Tail); go to 2

10. X = Closure(E)
11. Return f1, . . . , fn, E, X, A

Fig. 1. A skeleton of the algorithm for propositionalization through relational feature
construction using the sorted refinement operator ρΔ,Σ

We have adapted two rule learning algorithms to account for the feature tax-
onomy information provided by the propositionalization algorithm. The first
algorithm stems from the rule inducer of RSD [14]. It is based on a heuris-
tic general-to-specific deterministic beam search for the induction of a single
propositional conjunctive rule for a given target class, and a cover-set wrapper
for the induction of the entire rule set for the class. Given a set of features
F = {f1, . . . fn}, the standard algorithm refines a conjunction C of features into
the set {C ∧ fi|fi ∈ F, fi /∈ C}. In our enhanced version, the algorithm is pro-
vided with the elementary subsumption matrix E and the exclusion matrix X.
Using these matrices it can prevent the useless combination of a feature and its
subsumee within the conjunction, and specialize a conjunction by replacing a
feature with its elementary (direct) subsumee. Furthermore, we have similarly
enhanced the stochastic local DNF search algorithm introduced in [11] and later
transferred into the propositionalization framework by [8]. This algorithm con-
ducts search in the space of DNF formulas, i.e. it refines entire propositional rule
sets. Refinement is done by local, non-deterministic DNF term changes detailed
in [11]. In our version, the X matrix is used to prevent the combination of a
feature and its subsumee within a DNF term.

4 Experimental Results

We designed experiments to assess the runtime impact of (i) the novel taxonomy-
aware refinement operator in propositionalization, and (ii) the exploitation of the
feature-taxonomy in subsequent propositional learning. We conducted tests in
two domains. The first concerns genomics, where we used data and language

804 M. Žáková and F. Železný

Fig. 2. Sorted refinement vs. standard refinement on CAD and Genomic data. Left:
Nodes explored Right: Time taken. (Experiments exceeding 1000s were discarded).

Table 1. Propositional rule learning from CAD and Genomic data

Domain CAD data Genomic data
Algorithm Time taken Predict. acc. Time taken Predict. acc.

Top-down 0.22 ± 0.08 0.66 ± 0.21 0.99 ± 0.65 0.79 ± 0.13
Top-down, FT 0.06 ± 0.02 0.66 ± 0.22 0.34 ± 0.19 0.76 ± 0.07
SLS 0.63 ± 1.45 0.62 ± 0.18 3.00 ± 2.59 0.79 ± 0.13
SLS, FT 0.28 ± 0.83 0.61 ± 0.19 1.90 ± 1.69 0.76 ± 0.07

declarations from [12]. The second is concerned with learning from product de-
sign data. Here the examples are semantically annotated CAD documents. We
used the same learning setting and ontology data as in [13].

Figure 2 illustrates on log scale the number of conjunctions searched (left)
and the time spent on search (right) to enumerate all conjunctions true for at
least 80% examples, for increasing maximum conjunction size l. Here, we distin-
guish the sorted refinement operator using a special sort theory Σ encoding the
taxonomy information, against the standard refinement operator, which treats
the taxonomy information only as part of background knowledge. While in both
cases exactly the same set of conjunctions is produced, an order-of-magnitude
runtime improvement is observed for the ‘taxonomy-aware’ operator.

Table 1 shows the runtime spent of inducing a rule set by two algorithms (top-
down and stochastic) through 10-fold cross validation in two scenarios: in the
first, no feature taxonomy information is used by the algorithms, in the second,
feature taxonomy is exploited. A significant speedup is observed when feature
taxonomy is used without compromising the predictive accuracy.

5 Conclusions

In this work we have proposed principled methods to exploit term, predicate
and feature taxonomies to increase the performance of propositionalization and

Exploiting Term, Predicate, and Feature Taxonomies 805

subsequent propositional learning. The significance of our work is supported by
three factors: (i) order-of-magnitude runtime improvements with no sacrifice in
predictive accuracy, (ii) the practical value and common use [5] of the proposi-
tionalization strategy, which was the target of our methodological enhancements,
and (iii) the increasing volumes of semantic knowledge representations provid-
ing explicit taxonomies. In future work, we plan to extend the scope of meta-
information exploitable by refinement operators beyond taxonomy information
including e.g. “relation R is a function” or “binary relation R is symmetrical.”

Acknowledgements. This research was supported by the FP6-027473 Project
SEVENPRO. The authors would like to thank Peter Flach and Simon Rawles
for valuable advice concerning term taxonomies in ILP.

References

1. Badea, L., Neinhuys-Cheng, S.-W.: A Refinement Operator for Descriptionn Log-
ics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp.
40–59. Springer, Heidelberg (2000)

2. Frisch, A.: Sorted downward refinement: Building background knowledge into a
refinement operator for ILP. In: Džeroski, S., Flach, P.A. (eds.) Inductive Logic
Programming. LNCS (LNAI), vol. 1634, pp. 104–115. Springer, Heidelberg (1999)

3. Kietz, J.-U.: Learnability of Description Logic Programs. In: Matwin, S., Sammut,
C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, Springer, Heidelberg (2003)

4. King, R.D., et al.: Functional genomic hypothesis generation and experimentation
by a robot scientist. Nature 427, 247–252 (2004)

5. Krogel, M.-A., Rawles, S., et al.: Comparative evaluation of approaches to propo-
sitionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI),
vol. 2835, pp. 197–214. Springer, Heidelberg (2003)

6. Levy, A.Y., Rousset, M.-C.: The Limits on Combining Recursive Horn Rules with
Description Logics. In: AAAI/IAAI, vol. 1, pp. 577–584 (1996)

7. Lisi, F.A.: Principles of Inductive Reasoning on the Semantic Web: A Framework
for Learning in AL-log. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS,
vol. 3703, pp. 118–132. Springer, Heidelberg (2005)

8. Paes, A., Zaverucha, G., Železný, F., et al.: ILP through Propositionalization and k-
Term DNF Learning. In: Proc. of the 16th Conference on ILP, Springer, Heidelberg
(2007)

9. Popeĺınský, L.: Inductive inference to support object-oriented analysis and design.
Frontiers in Artificial Intelligence and Applications 48, IOS Press (1998)

10. Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN. In: Cussens, J., Frisch,
A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg
(2000)

11. Rückert, U., Kramer, S.: Stochastic local search in k-term dnf learning. In: Proc.
of the 20th ICML, pp. 648–655 (2003)

12. Trajkovski, I., et al.: Relational Subgroup Discovery for Descriptive Analysis of
Microarray Data. In: Proc. of CompLife 06, Springer, Heidelberg (2006)

13. Žáková, M., Železný, F., et al.: Relational Data Mining Applied to Virtual Engi-
neering of Product Designs. In: Proc. of ILP 06, Springer, Heidelberg (2007)

14. Železný, F., Lavrač, N.: Propositionalization-based relational subgroup discovery
with RSD. Machine Learning 62, 33–63 (2006)

Author Index

Aernecke, M. 640
Andrzejewski, David 6
Anquetil, E. 527
Appice, Annalisa 502
Azevedo, Paulo J. 510

Bade, Korinna 518
Baeza-Yates, Ricardo 4
Bánhalmi, András 543
Baras, Dorit 674
Barinova, Olga 430
Bayoudh, S. 527
Becerra Bonache, Leonor 18
Bennett, Paul N. 30, 116
Bethge, Matthias 298
Bex, Geert Jan 591
Bie, Tijl de 274
Blockeel, Hendrik 418, 567
Börm, Steffen 42
Boyer, Laurent 54
Brodley, Carla E. 640, 708
Bruynooghe, Maurice 567
Buhmann, Joachim M. 632
Burge, John 67
Busa-Fekete, Róbert 543
Busuttil, Steven 535

Cai, Xiongcai 79
Callut, Jérôme 91
Carbonell, Jaime G. 116
Caruana, Rich 310, 323
Cebe, Mumin 551
Choi, Seungjin 262
Connor, Michael 104
Cristianini, Nello 274
Croonenborghs, Tom 699
Cunningham, Pádraig 140

De Raedt, Luc 176
Dejori, Mathäus 238
Denoyer, Ludovic 648
Donmez, Pinar 116
Driessens, Kurt 699
Du, Shaoyi 782
Duan, Xiangyu 559

Dupont, Pierre 91
Dwyer, Kenneth 128
Džeroski, Sašo 359, 502, 624

Ferri, Cèsar 478
Fierens, Daan 567
Flach, Peter A. 2, 478, 575
Friedl, M. 640
Fung, Glenn 286
Fürnkranz, Johannes 371, 583, 658

Gallinari, Patrick 648
Garcke, Jochen 42
Garriga, Gemma C. 152
Gärtner, Thomas 152
Gerwinn, Sebastian 298
Ghani, Rayid 683
Greene, Derek 140
Gunduz-Demir, Cigdem 551
Gyssens, Marc 591

Habrard, Amaury 54
Hauskrecht, Miloš 732
Hermkes, Marcel 518
Higuera, Colin de la 18
Hollanders, Goele 591
Holte, Robert 128
Hüllermeier, Eyke 371, 583

Ilin, Alexander 691

Janodet, Jean-Christophe 18
Jebara, Tony 164
Jin, Rong 600
Jorge, Aĺıpio M. 510

Kalnishkan, Yuri 535
Karhunen, Juha 691
Kaski, Samuel 608
Kimmig, Angelika 176
Klementiev, Alexandre 616
Kocev, Dragi 624
Kocsor, András 543
Kramer, Stefan 716
Kuhlmann, Gregory 188

808 Author Index

Lane, Terran 67
Lange, Tilman 632
Li, Lihong 442
Li, Xiao-Li 201
Li, Xiao-Lin 214
Liblit, Ben 6
Ling, Charles X. 724
Littman, Michael L. 442
Liu, Bing 201
Lomasky, R. 640
Lörincz, András 740

Maass, Wolfgang 250
Maes, Francis 648
Matsubara, Edson Takashi 575
Mavroeidis, Dimitrios 226
Miclet, L. 527
Mitchell, Tom M. 1
Mouchère, H. 527
Mulhern, Anne 6

Nägele, Andreas 238
Neumann, Gerhard 250
Ng, See-Kiong 201
Niculescu-Mizil, Alexandru 310
Nouri, Ali 442
Nürnberger, Andreas 518

Park, Jin-Hyeong 666
Park, Sang-Hyeun 658
Park, Sunho 262
Pelleg, Dan 674
Peltonen, Jaakko 608
Pfeiffer, Michael 250
Póczos, Barnabás 740
Probst, Katharina 683

Raiko, Tapani 691
Ramon, Jan 567, 699
Rao, Rajesh P.N. 757
Rebbapragada, Umaa 708
Reddy, Chandan K. 666
Ricci, Elisa 274
Riedewald, Mirek 323
Riedmiller, Martin 394
Rosales, Rómer 286
Roth, Dan 104, 616
Rückert, Ulrich 716

Schaal, Stefan 748
Schmidhuber, Jürgen 466
Schmidt, Mark 286
Sebban, Marc 54
Seeger, Matthias 298
Sheng, Victor S. 724
Šingliar, Tomáš 732
Skalak, David B. 310
Small, Kevin 616
Smyth, Barry 5
Song, Yingbo 164
Sorokina, Daria 323
Sowmya, Arcot 79
Sperduti, Alessandro 335
Steck, Harald 347
Stetter, Martin 238
Stone, Peter 188
Struyf, Jan 359, 624
Sukthankar, Rahul 600
Sulzmann, Jan-Nikolas 371
Szabó, Zoltán 740

Takahashi, Rikiya 382
Tantini, Frédéric 18
Thadani, Kapil 164
Theodorou, Evangelos 748
Timmer, Stephan 394
Ting, Jo-Anne 748
Toivonen, Hannu 176
Tsoumakas, Grigorios 406
Tuyls, Karl 591

Van Assche, Anneleen 418
Vazirgiannis, Michalis 226
Vens, Celine 624
Ventura, Sebastián 790
Verma, Deepak 757
Vezhnevets, Alexander 430
Vlahavas, Ioannis 406

Walsh, Thomas J. 442
Walt, D. 640
Wang, Fei 773
Wang, Wei 454
Webb, Geoffrey I. 490
Westra, Ronald L. 591
Wierstra, Daan 466
Wojnarski, Marcin 765
Wu, Ming 600
Wu, Shaomin 478
Wu, Yang 782

Author Index 809

Xiong, Liang 773
Xu, Bo 559

You, Qubo 782

Zafra, Amelia 790
Žáková, Monika 798

Železný, Filip 798
Zhang, Changshui 773
Zhao, Jun 559
Zheng, Fei 490
Zheng, Nanning 782
Zhou, Zhi-Hua 214, 454
Zhu, Xiaojin 6

	Title Page
	Preface
	Organization
	Table of Contents
	Learning, Information Extraction and theWeb
	Putting Things in Order: On the Fundamental Role of Ranking in Classification and Probability Estimation
	References

	Mining Queries
	Adventures in Personalized Information Access
	Statistical Debugging Using Latent Topic Models
	Introduction
	Cooperative Bug Isolation
	TheΔLDA Model
	Inference

	Experiments
	A Toy Example
	Real Programs

	Conclusions and Discussion
	References

	Learning Balls of Strings with Correction Queries
	Introduction
	On Balls of Strings as Languages
	Learning Balls from Queries
	Identifying Balls Using Corrections
	Experiments with a Human-Like Oracle
	Discussion and Conclusion
	References

	Neighborhood-Based Local Sensitivity
	Introduction
	Variance and Sensitivity
	Neighborhood-Based Locality
	Empirical Analysis
	Post-learning Recalibration
	Local Classifier Combination
	Results and Discussion

	Related Work, Future Work, and Summary
	References

	Approximating Gaussian Processeswith $\mathcal {H}^2$-Matrices
	Introduction
	Gaussian Process Regression
	Iterative Solution with Krylov Subspace Methods
	$\mathcal {H}- and $\mathcal {H}^2$-Matrices
	Coarsening

	Experimental Results
	Conclusions and Outlook
	References

	Learning Metrics Between Tree Structured Data: Application to Image Recognition
	Introduction
	Definitions and Notations
	Tree ED Algorithm
	Learning Tree Edit Probabilities
	Stochastic Tree ED
	Forward and Backward Functions
	Expectation
	Maximization
	Example of Learning

	Experiments in Image Recognition
	From a Numerical to a Symbolic Representation of Images
	Tree Representation of Images
	Experimental Setup and Results

	Conclusion
	References

	Shrinkage Estimator for Bayesian Network Parameters
	Introduction
	Background
	Bayesian Networks
	Shrinkage
	Random Variable Aggregation Hierarchies
	Calculating BN Parameters with Shrinkage
	Progenitor Complications
	Estimating Shrinkage Coefficients

	Results
	Simulated Data
	Neuroimaging Data

	Conclusions
	References

	Level Learning Set: A Novel Classifier Based on Active Contour Models
	Introduction
	Related Work
	Pattern Classification
	Active Contours in Computer Vision

	Level Learning Set (LLS) Classifier
	LLS in One-Class Classification
	Extension to Multi-class Classification
	The Final Proposed LLS

	Experiments
	Setup
	Results and Discussion

	Concluding Remarks
	References

	Learning Partially Observable Markov Models from First Passage Times
	Introduction
	Background
	First Passage Times in Sequences
	Partially Observable Markov Models (POMMs)
	Phase-Type Distributions
	Jensen-Shannon Divergence

	First Passage Times in POMMs
	The Induction Algorithm: POMMStruct
	POMM Induction
	Fitting the FPT: POMMPHit

	Experiments
	Conclusion
	References

	Context Sensitive Paraphrasing with a Global Unsupervised Classifier
	Introduction
	Related Work

	Formal Model
	Definition of Context
	Modeling Context Sensitive Paraphrasing

	Statistical Paraphrase Decisions
	Context Insensitive Decisions
	Adding Context Sensitive Decisions

	Global Context Sensitive Paraphrase Classifier
	Shared Context Features
	Unsupervised Training: Bootstrapping Local Classifiers

	Experimental Results
	Methodology
	Results

	Conclusion and Future Work
	References

	Dual Strategy Active Learning
	Introduction
	Motivation for DUAL
	Density Weighted Uncertainty Sampling (DWUS)
	DUAL Algorithm and Experimental Results
	Description of the DUAL Algorithm
	Experimental Setup

	Observations and Conclusion
	References

	Decision Tree Instability and Active Learning
	Introduction
	Decision Tree Instability
	Quantifying Stability
	Instability in Active Learning
	Experiments
	Experimental Procedure
	Evaluation
	Experimental Results

	Conclusions
	References

	Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Semi-supervised Clustering
	Introduction
	Related Work
	Semi-supervised Clustering
	Ensemble Clustering
	Uncertainty Sampling

	Constraint Identification
	Imputing Constraints from Pairwise Co-associations
	Selecting Informative Constraints

	Evaluation
	Validation of Imputed Constraints
	Constraint Selection Evaluation

	Conclusion
	References

	The Cost of Learning Directed Cuts
	Introduction
	Preliminaries
	Directed Graphs
	Learning Directed Cuts
	The Cost of Learning
	Fixed Parameter Learnability

	Learning with Fixed Minimum Path Cover Size
	Path Covers of DAGs
	Learning Monotone Concepts
	Learning Intersections of (Anti-) Monotone Concepts

	Learning Despite Changing Concepts
	1-Ary Membership Queries
	2-Ary Membership Queries
	3-Ary Membership Queries

	Related Work
	Conclusions
	References

	Spectral Clustering and Embedding with Hidden Markov Models
	Introduction
	HMMs and Kernels
	Hidden Markov Models
	Probability Product Kernels

	Clustering as a Mixture of HMMs
	Spectral Clustering of HMMs
	Experiments
	Datasets
	Results
	Runtime Advantages

	Visualization of HMM Parameters
	Conclusions
	References

	Probabilistic Explanation Based Learning
	Introduction
	ProbLog: Probabilistic Prolog
	Explanation Based Learning
	Probabilistic Explanation Based Learning
	Experiments
	Conclusions and Related Work
	References

	Graph-Based Domain Mapping for Transfer Learning in General Games
	Introduction
	General Game Playing
	Game Description Language
	Automated Domain Analysis

	Graph-Based Domain Mapping
	Rule Graphs
	Correctness Proof
	Identifying Similar Games

	Value Function Transfer
	Reinforcement Learning in Games
	Value Function Mapping
	Case Studies

	Experiments
	Related Work
	Conclusion
	References

	Learning to Classify Documents with Only a Small Positive Training Set
	Introduction
	Related Works
	The Proposed Technique
	Selecting a Set of Representative Word Features from P
	Identifying LP from U and Probabilistically Labeling the Documents in LP
	The Classification Algorithm

	Evaluation Experiments
	Datasets
	Experiment Settings
	Experimental Results

	Conclusions
	References

	Structure Learning of Probabilistic Relational Models from Incomplete Relational Data
	Introduction
	Background
	The MGDA Approach
	Initialization
	Modification and Regulation
	Structure Learning of PRM

	Experiments
	Conclusion
	References

	Stability Based Sparse LSI/PCA: Incorporating Feature Selection in LSI and PCA
	Introduction
	Preliminaries
	Latent Semantic Indexing and Principal Component Analysis
	Bootstrapping
	Matrix Perturbation Theory
	Cauchy’s Interlacing Theorem

	Related Work
	Stability Based Sparse LSI/PCA
	Measuring Resampling Variability of Term-Term Similarities/Covariances
	Relating Variability to Stable Sub-spaces
	Stable Principal Submatrices

	Experiments
	Conclusions and Further Work
	References

	Bayesian Substructure Learning - Approximate Learning of Very Large Network Structures
	Introduction
	Methods
	Background
	Substructure Learning
	Structure Representation
	Time Complexity of Substructure Learning

	Results
	Discussion
	Conclusion
	References

	Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs
	Introduction
	Graph Based Reinforcement Learning
	Structure of the Algorithm
	Building the Adaptive State Graph
	Generating Samples: ${\tt sample_new_node}$
	Evaluating Exploration Nodes: ${\tt exploration_score}$
	Integrating New Exploration Nodes: ${\tt insert_exploration_node}$
	Re-planning Within the Graph: ${\tt replan}$
	Action Selection and Incorporation of Actual Experience
	Inserting New Nodes: ${\tt insert_new_node}$
	Practical Implementation Issues

	Experiments
	Static Puddle World
	3-Link Arm Reaching Task

	Conclusion and Future Work
	References

	Source Separation with Gaussian Process Models
	Introduction
	GP Models for Sources
	Source Separation with GP Models
	Implementation Issues
	NumericalExperiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions
	References

	Discriminative Sequence Labeling by Z-Score Optimization
	Introduction
	Hidden Markov Models
	The Z -Score
	Computing the Z-Score as a Function of theParameters
	Dealing with Arbitrary Features

	Z-Score Optimization
	Incorporating Hamming Loss Function

	Experimental Results
	Conclusions
	References

	Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches
	Introduction
	Fast Optimization Methods for L1 Regularization
	SubGradient Strategies
	Unconstrained Approximations
	Constrained Formulations

	Experiments
	Binary Classification
	Multinomial and Structured Classification

	Discussion
	References

	Bayesian Inference for Sparse Generalized Linear Models
	Introduction
	Bayesian Generalized Linear Models
	Expectation Propagation
	Sparse Feature Neuronal Spiking Model
	Experimental Results
	Conclusion
	References

	Classifier Loss Under Metric Uncertainty
	Introduction
	Related Research
	Experimental Design
	Performance Metrics
	Problems
	Model Types

	The Effect of Sample Size on Selection Metric Choice
	The Effect of Model Probability Calibration on Selection Metric Choice
	Visualizing the Joint Distribution of Selection and Evaluation Metric Performance
	Conclusion
	References

	Additive Groves of Regression Trees
	Introduction
	Algorithm
	Additive Models — Classical Algorithm
	Layered Training
	Dynamic Programming Training
	Randomized Dynamic Programming Training

	Experiments
	Parameter Settings
	Datasets
	Discussion

	Bagging Iterations and Overfitting Resistance
	Conclusion
	References

	Efficient Computation of Recursive Principal Component Analysis for Structured Input
	Introduction
	Principal Components Analysis for Vectors and Structures
	Vectors
	Sequences
	Trees
	Graphs

	Improving the Computation
	Practical Problems
	Some Basic Observations and Their Exploitation
	Defining a “Minimal” State Space
	Representing Unique Substructures in the Case of Discrete Components
	Exploiting QR Decomposition

	Experimental Evaluation
	Conclusion
	References

	Hinge Rank Loss and the Area Under the ROC Curve
	Introduction
	Notation
	Area Under the Curve
	HingeRankLoss
	HingeRankLossandAUC
	Hinge Loss as a Parametric Approximation
	Experiments
	Related Work
	Conclusions
	References

	Clustering Trees with Instance Level Constraints
	Introduction
	Top-Down Induction of Clustering Trees
	ClusILC
	ClusILC’s Heuristic
	ClusILC’s Search Strategy
	Assigning Cluster Labels
	Selecting a Split Point
	Algorithm Complexity

	Experimental Evaluation
	Setup
	Results

	Conclusion and Further Work
	References

	On Pairwise Naive Bayes Classifiers
	Introduction
	Naive Bayes Classifier
	ClassBinarization
	Pairwise Bayesian Classification
	Bayesian Combination of Votes
	Weighted Voting
	Unweighted Voting

	One-Against-All Class Binarization
	Discussion
	References

	Separating Precision and Mean in Dirichlet-Enhanced High-Order Markov Models
	Introduction
	Hierarchical Dirichlet Distributions for Prior
	Variational Inference by Effective Frequency
	Estimating the Dirichlet Precision
	Estimating the Dirichlet Mean
	Effects of the Effective Frequency

	Experiments
	Natural Language Modeling
	Protein Sequence Modeling

	Conclusion
	References

	Safe Q-Learning on Complete History Spaces
	Introduction
	Basic Facts About History Lists
	Solving POMDPs with History Lists
	Empirical Results
	Discussion
	Related Work
	Conclusion
	References

	Random k-Labelsets: An Ensemble Method for Multilabel Classification
	Introduction
	The RAKEL Algorithm
	Computational Complexity

	Evaluation Measures
	Example-Based
	Label-Based

	Experimental Setup
	Datasets
	Multilabel Methods

	Results and Discussion
	Scene Dataset
	Yeast Dataset
	${\em Tmc2007}$Dataset

	Conclusions and Future Work
	References

	Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble
	Introduction
	Algorithm
	Motivation
	Constructing a Single Tree Exactly Representing an Ensemble
	Computing Heuristics from the Ensemble
	Stop Criteria

	Implementation
	Empirical Evaluation
	Predictive Accuracy
	Comprehensibility
	Stability

	Conclusions and Future Work
	References

	Avoiding Boosting Overfitting by Removing Confusing Samples
	Introduction
	Related Work
	Average Loss and Confusing Samples
	Algorithm
	Error Estimation

	Experiments
	Synthetic Data
	Measuring the Quality of Pruning on Real World Data
	UCI-Repository Data
	Margins

	Conclusion
	References

	Planning and Learning in Environments with Delayed Feedback
	Introduction
	Definitions
	Strategies for Dealing with Delay
	General Approaches
	A New Approach: Model Based Simulation (MBS)
	Model Parameter Approximation

	Theoretical Analysis of Delayed Problems
	Planning Results I: The General Case
	Planning Results II: Special Cases
	A Remark on Learning

	Empirical Algorithm Comparisons
	Delayed W-Maze I: A Deterministic Finite Environment
	Delayed Mountain Car: A Case II Environment
	Delayed W-Maze II: A Stochastic Finite Environment
	Delayed Puddle World: A Case IV Environment

	Conclusions and Future Work
	References

	Analyzing Co-training Style Algorithms
	Introduction
	Preliminaries
	MainResults
	Empirical Study
	Configurations
	Results on Data with Two Views
	Results on Data Without Two Views
	Further Experiments and Discussion

	Conclusion
	References

	Policy Gradient Critics
	Introduction
	The Algorithm
	Reinforcement Learning – Generalized Problem Statement
	LSTM Recurrent Function Approximators
	Policy Gradient Actor-Critic

	Experiments
	Continuous Control: Non-markovian Pole Balancing
	Discrete Control: The Long Term Dependency T-Maze
	Discrete Control: The 89-StateMaze

	Discussion
	Conclusion
	References

	An Improved Model Selection Heuristic for AUC
	Introduction
	Evaluating Classifiers
	sROC Curves and Scored AUC
	Experimental Evaluation
	Conclusions
	References

	Finding the Right Family: Parent and Child Selection for Averaged One-Dependence Estimators
	Introduction
	Averaged One-Dependence Estimators (AODE)
	Attribute Selection
	Attribute Selection for AODE
	FSS for AODE
	BSE for AODE
	Complexity
	Statistical Test

	Empirical Comparison
	Error
	Bias and Variance
	Information Loss
	Continue Search and Select Best (CSSB)

	Conclusion
	References

	Stepwise Induction of Multi-target Model Trees
	Introduction
	The Algorithm
	Model Tree Construction
	Split and Regression Node Evaluation
	Stopping Criteria
	Pruning

	Experimental Results
	Single-Target Datasets
	Multi-target Datasets

	Conclusions
	References

	Comparing Rule Measures for Predictive Association Rules
	Introduction
	The Measures
	Prediction

	Experiments
	Discussion
	Conclusion
	References

	User Oriented Hierarchical Information Organization and Retrieval
	Introduction
	Personalized Hierarchical Clustering
	Cluster Extraction
	Cluster Labeling
	Evaluation
	Conclusion
	References

	Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition
	Introduction
	On-Line Handwriting Signal Description
	Analogy Based Generation
	Analogical Proportion
	Analogical Dissimilarity Between Objects
	Analogical Dissimilarity Between Sequences

	Knowledge Based Generation
	Generation by Image Distortions: Scaling and Slanting
	Generation by On-Line Distortions

	Experimentations
	Experiment Protocol
	Results

	Conclusion
	References

	Weighted Kernel Regression for Predicting Changing Dependencies
	Introduction
	Background
	Linear and Kernel Regression
	Ridge Regression (RR)
	The Aggregating Algorithm for Regression (AAR)
	Controlled KAAR (CKAAR)

	Methods
	WeCKAAR
	KAARCh

	Empirical Results
	Artificial Dataset
	Options Implied Volatility Data

	Discussion
	References

	Counter-Example Generation-Based One-Class Classification
	Introduction
	Generation of Counter-Examples
	Finding Boundary Points
	Generating Counter-Examples

	Refinements and Variants
	Time Complexity and Applicability
	Experiments and Results
	Conclusions and Future Work
	References

	Test-Cost Sensitive Classification Based on Conditioned Loss Functions
	Introduction
	Methodology
	Experiments
	Conclusion
	References

	Probabilistic Models for Action-Based Chinese Dependency Parsing
	Introduction
	Introduction of Action-Based Dependency Parsing
	Probabilistic Models of Parsing Actions
	Parsing Action Chain Model (PACM)
	Parsing Action Phrase Model (PAPM)

	Experiments and Results
	Experimental Setup
	Comparison of Action-Based Parsers with Generative Constituent Parser and Discriminative All-Pairs Parser
	The Performances of Parsers Based on Action Modeling

	Conclusion
	References

	Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search
	Introduction
	Logical Bayesian Networks
	Learning Non-recursive Logical Bayesian Networks
	A Generic Hillclimbing Algorithm for Learning Logical Bayesian Networks
	Ordering-Search
	Structure-Search

	Experiments
	Datasets and Experimental Setup
	Results

	Conclusion
	References

	A Simple Lexicographic Ranker and Probability Estimator
	Introduction
	Classification, Ranking, and Probability Estimation
	ROC Curves, the Brier Score, and Calibration
	Lexicographic Ranking
	Experimental Evaluation
	Conclusions
	References

	On Minimizing the Position Error in Label Ranking
	Introduction
	Label Ranking and Position Error
	Minimizing the Position Error
	Empirical Conditioning
	Efficient Implementation

	Empirical Results
	Concluding Remarks
	References

	On Phase Transitions in Learning Sparse Networks
	Introduction and Motivation
	Definitions and Algorithm
	Experiments
	Discussion and Conclusions
	References

	Semi-supervised Collaborative Text Classification
	Introduction
	Related Work
	Semi-supervised Collaborative Text Categorization
	Problem Description
	Semi-supervised Learning Approaches

	Experiments
	Effectiveness of Collaborative Text Categorization
	Semi-supervised Collaborative Text Categorization

	Conclusions
	References

	Learning from Relevant Tasks Only
	Introduction
	Relevant Subtask Learning
	Comparison Methods
	Experiments
	Conclusions
	References

	An Unsupervised Learning Algorithm for Rank Aggregation
	Introduction
	Rank Aggregation Framework
	Incidental Supervision Based on Ranker Agreement
	Unsupervised Learning Algorithm for Rank Aggregation

	DataFusion
	Conclusions and Future Work
	References

	Ensembles of Multi-Objective Decision Trees
	Introduction
	Ensemble Methods
	Bagging
	Random Forests

	Multi-Objective Decision Trees
	Experimental Evaluation
	Ensembles for Multi-Objective Decision Trees
	Datasets
	Results

	Conclusions and Further Work
	References

	Kernel-Based Grouping of Histogram Data
	Introduction
	The Jensen-Shannon-Kernel
	Pairwise Clustering with the JS-Kernel
	Experimental Results
	Conclusions
	References

	Active Class Selection
	Introduction
	ACS Methods
	Experiments
	Related Work: Active Learning and Instance Selection
	Conclusion
	References

	Sequence Labeling with Reinforcement Learning and Ranking Algorithms
	Introduction
	Background
	MDPs for Sequence Labeling
	Left to Right Labeling
	Order Free Labeling

	Ranking Approach
	Related Work
	Experiments
	Discussion
	Conclusion
	References

	Efficient Pairwise Classification
	Introduction
	Pairwise Classification
	Efficient Pairwise Classification
	The QuickWeighted Voting (QWEIGHTED) Algorithm
	RelatedWork
	Evaluation

	Conclusions
	References

	Scale-Space Based Weak Regressors for Boosting
	Introduction
	Background
	Problem Specification
	Boosting for Regression
	Scale-Space Kernels

	Scale-Space Based Framework
	Experimental Results
	Conclusions and Future Research
	References

	K-Means with Large and Noisy Constraint Sets
	Introduction
	The CVQE Algorithm
	The LCVQE Algorithm
	Experiments
	Conclusion
	References

	Towards ‘Interactive’ Active Learning in Multi-view Feature Sets for Information Extraction
	Introduction
	Attribute Extraction
	Making coEM with Naive Bayes Fast
	coEM
	Simpler Version of Co-EMwith Naive Bayes
	Fast Incremental Approximation of coEMwith Naive Bayes

	Experimental Results
	Conclusions
	References

	Principal Component Analysis for Large Scale Problems with Lots of Missing Values
	Introduction
	Principal Component Analysis
	Principal Component Analysis with Missing Values
	Overfitting in PCA
	Experiments
	References

	Transfer Learning in Reinforcement Learning Problems Through Partial Policy Recycling
	Introduction
	Transfer Learning and Theory Revision
	Incremental Tree Learning and Restructuring
	Experimental Evaluation
	Bongard Problems with Concept Drift
	Relational Reinforcement Learning with Transfer of Knowledge

	Conclusions and Future Work
	References

	Class Noise Mitigation Through Instance Weighting
	Introduction
	Instance Weighting
	Computing Confidence on the Class Labels
	Experiments
	Data
	Quality of Confidences
	Weighting Versus Discarding

	Related Work
	Conclusion and Future Work
	References

	Optimizing Feature Sets for Structured Data
	Introduction
	Background and Motivation
	Stochastic Local Search for Optimal Dispersion Features
	Experiments
	Conclusion
	References

	Roulette Sampling for Cost-Sensitive Learning
	Introduction
	Related Work
	Cost Proportionate Roulette Sampling (CPRS)
	CPRS with Aggregation (CSRoulette)
	Empirical Comparisons
	Average Cost
	Sample Size vs. Number of Bagging

	Conclusions and Future Work
	References

	Modeling Highway Traffic Volumes
	Introduction
	Gaussian Models
	The Conditional Autoregressive Model
	Mixture of Gaussian Trees
	Inference in the MGT Model
	Learning in the MGT Model

	Experimental Evaluation
	Evaluation Metrics
	Experiment Setup and Parameters
	Results

	Conclusions
	References

	Undercomplete Blind Subspace Deconvolution Via Linear Prediction
	Introduction
	The BSSD Model
	The BSSD Equations
	Existing Decomposition Principles in the BSSD Problem Family

	Reduction of uBSSD to ISA by Linear Prediction
	Illustrations
	Databases
	The Amari-Index
	Simulations

	Summary
	References

	Learning an Outlier-Robust Kalman Filter
	Introduction
	Outlier Detection in the Kalman Filter
	Robust Kalman Filtering with Bayesian Weights
	Relationship to the Kalman Filter

	Experimental Results
	LittleDog Robot

	Conclusions
	References

	Imitation Learning Using Graphical Models
	Introduction
	Graphical Models for Imitation
	Generative Graphical Model

	Imitation Via Parameter Learning
	Parameter Learning Results
	Factored Graphical Model

	Conclusion
	References

	Nondeterministic Discretization of Weights Improves Accuracy of Neural Networks
	Introduction
	Motivation
	The Algorithm
	Experimental Results
	$\it{Labor} Data
	$\it{Image Segmentation} Data

	Conclusions
	References

	Semi-definite Manifold Alignment
	Introduction
	Notations and Related Works
	Manifold Alignment Via Semi-definite Programming
	The Quadratic Formulation
	A Semi-definite Approach

	Experiments
	Data and Settings
	Results

	Discussions
	Conclusion
	References

	General Solution for Supervised Graph Embedding
	Introduction
	Supervised Graph Embedding
	General Solution for Supervised Graph Embedding
	Experiments
	Conclusions
	References

	Multi-objective Genetic Programming for Multiple Instance Learning
	Introduction
	Multi-objective Genetic Programming for Multiple-Instance Learning
	Individual Representation
	Genetic Operators
	Fitness Function

	Experiments and Results
	Datasets and Running Parameters
	Comparison with Other Algorithms

	Conclusion and Future Work
	References

	Exploiting Term, Predicate, and Feature Taxonomies in Propositionalization and Propositional Rule Learning
	Introduction
	Sorted Logic
	Feature Construction and Adaptation of Learning
	Experimental Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

