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Abstract. Glaucoma is one of the most common causes of blindness
and it is becoming even more important considering the ageing society.
Because healing of died retinal nerve fibers is not possible early detec-
tion and prevention is essential. Robust, automated mass-screening will
help to extend the symptom-free life of affected patients. We devised
a novel, automated, appearance based glaucoma classification system
that does not depend on segmentation based measurements. Our purely
data-driven approach is applicable in large-scale screening examinations.
It applies a standard pattern recognition pipeline with a 2-stage classifi-
cation step. Several types of image-based features were analyzed and are
combined to capture glaucomatous structures. Certain disease indepen-
dent variations such as illumination inhomogeneities, size differences, and
vessel structures are eliminated in the preprocessing phase. The “vessel-
free” images and intermediate results of the methods are novel represen-
tations of the data for the physicians that may provide new insight into
and help to better understand glaucoma. Our system achieves 86 % suc-
cess rate on a data set containing a mixture of 200 real images of healthy
and glaucomatous eyes. The performance of the system is comparable to
human medical experts in detecting glaucomatous retina fundus images.

1 Introduction

Glaucoma is one of the most common causes of blindness with a mean prevalence
of 4.2% for ages above 60 years. This disease is characterized by changes in the
eyeground (fundus) in the region of the optic nerve head (ONH): (i) enlarge-
ment of the excavation, (ii) disc hemorrhage, (iii) thinning of the neuroretinal
rim, (iv) asymmetry of the cup between left and right eye, (v) loss of retina nerve
fibers, and (vi) appearance of parapapillary atrophy. It is induced by the pro-
gressive loss of retinal nerve fibers in the parapapillary region. Although those
lost fibers cannot be revitalized and there is no possibility for healing glaucoma,
the progression of the disease can be stopped [1].
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Nowadays, diagnosis is commonly done by physicians who examine the eye
fundus using an ophthalmoscope or digital retina images acquired by devices
like the Heidelberg Retina Tomograph (HRT) [2] or the Kowa NonMyd fundus
camera.

1.1 State of the Art

In the domain of retina image analysis, automated methods already exist for
certain tasks, for instance determination of components of the eyeground (e.g.
segmenting the vessels [3] or the ONH [4,5]). These measurements can be used
for automated diagnosis of diseases such as diabetic retinopathy [6] or glau-
coma. Existing image-based glaucoma detection methods work on HRT images.
Swindale et al. [7,8] models a smooth two-dimensional surface that is fitted to
the optic nerve head in topography images. Detection of glaucomatous damages
can be done via global shape measures of the optic disc (cup and disc area,
height variation in HRT images) [9]. This global shape approach is compared
with a sector-based analysis by Iester et al. [10]. Zangwill evaluated optic disc
parameters and additional parapapillary parameters via Support Vector Ma-
chine (SVM) for detecting glaucoma [11]. Greaney states that the detection of
glaucoma via separately applied, shape-based methods on different modalities
(confocal laser scanning ophthalmoscopy, scanning laser polarimetry, optical co-
herence tomography) is not better than qualitative assessment of the optic disc
by ophthalmologists [12]. All of these shape approaches assume a valid segmenta-
tion of the optic disc. However, segmentation based techniques have one major
drawback: small errors in segmentation may lead to significant change in the
measurements and thus the estimation and diagnosis.

1.2 Our Approach

We build a robust, automated glaucoma detection system using color fundus
images in a data-driven way. Therefore, image-based features are provided that
are new in the domain of glaucoma detection. This, so called appearance based,
approach is well-known from object and face recognition [13,14]. The technique
is based on statistical evaluation of the data and does not depend on explicit
outlining of the optic disc, as required for global or sector-based shape analysis.
Consequently, preprocessing and image-based feature extraction has a major
influence on the classification process.

This work shows the influence of different image-based features on the accu-
racy of glaucoma classification from fundus images. We analyze different types
of features (pixel intensity values, textures, spectral features, and parameters of
a histogram model) that are intended to capture glaucomatous structures and
evaluate the results using three different classifiers (naive Bayes classifier, k-
nearest neighbor, and Support Vector Machine). They were used to classify the
computed features as is, in combination with an attribute preselection method,
and with an iterative attribute selection by AdaBoosting. The combination of
features is also considered.
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2 Methods

The image processing is structured in a standard 3-stage pipeline: (i) prepro-
cessing, (ii) image-based feature extraction, (iii) classification. In this work, the
preprocessing steps are not changed during the experiments.

2.1 Preprocessing

Our previous studies [15] showed that appearance-based approaches perform
better on images with less disease independent variations. For this reason, a
normalization of the three major variations is applied.

The inhomogeneous illumination caused by deviations in the complex acqui-
sition process are compensated by robust homomorphic surface fitting [6]. Also,
the vessel branches in the images vary much in size, location and shape among
individual cases and introduce a high variance in the data that suppresses vari-
ations due to the disease itself. Thus, we roughly segment blood vessels and
spatially inpaint them to gain a “vessel-free” image. These images, as shown in
Fig. 1, provide a novel image representation with irrelevant parts excluded that
support physicians in diagnosing glaucoma.

Fig. 1. Vessel inpainting on color fundus image: Original color fundus image (left),
image with vessel mask overlayed in black (center), “vessel-free” fundus image (right)

The neuroretinal rim is the most important region for detecting glaucoma
[16]. We normalize the images such that the ONH is centered in all images and
appears in the same size. The images are scaled to an uniform size of 128 × 128
pixels.

2.2 Image-Based Feature Extraction

We propose four feature extraction methods that provide complementary in-
formation with different spatial and frequency resolutions. Their influence on
glaucoma classification is evaluated in this paper.

Pixel Intensity Values: The standard appearance based approach takes pixel
intensity values directly as a high dimensional feature vector [13] as input of
a dimension reduction algorithm. We considered principal component analysis
(PCA) as an unsupervised and linear discriminant analysis (LDA) as a super-
vised method to reduce dimensionality. As evaluated in [15], thirty principal
components capture at least 95% of data variation.
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Textures: The local spatial and spatial-frequency information is characterized
by textures. To capture the structural changes caused by glaucoma, we provide a
set of Gabor filter banks [17] on preprocessed images. The filter is performed for
rotation angles θ = 0◦, 45◦, 90◦, 135◦ and frequencies u0 = 2k

√
2 for k = 0, . . . , 6.

The dimension of each of the computed 28 filter responses (128 × 128px) is
reduced by PCA separately. The resulting eigenspaces are then concatenated to
a single (28 · 30)-dimensional space.

FFT Coefficients: The frequency spectrum contains global frequency informa-
tion that is translation invariant. We calculate the real and imaginary response as
well as the magnitude of the coefficients of the Fast Fourier Transform (FFT). A
dimension reduction via PCA is performed on the three responses and combined
to a (3 · 30)-dimensional space.

Histogram Model: Histograms provide a compact summary of the data
distribution in an image. The histogram of an image is relatively invariant to
translation and rotation of objects. Comparing histograms of different images
is particularly well applicable to the problem of recognizing global intensity
changes. The histograms of the preprocessed retina images show three major
structural parts corresponding to the background, the papilla rim, and the cup.

The expected variation in the images because of the disease is also represented
in the histograms. The increasing cup area and the decreasing rim area cause
a shift of the intensity distribution towards higher values. We fit a Gaussian
mixture model of three normal distributions to the histogram by a maximum
likelihood estimation and the computed distribution parameters, namely the
mean, variance and weight, serve as features. The 10% and 90% quantiles and
the maximum of the histogram are also taken into consideration.

2.3 Classification

Classifiers: The ability of each image-based feature extraction method to sep-
arate glaucoma and non-glaucoma cases is quantified by the results of three
classifiers. Classifiers achieve good results if their underlying separation model
fits well to the distribution of the sample data. As the underlying data distribu-
tion is unknown, we tested different classifiers.

Naive Bayes Classifier: This probabilistic classifier directly applies the Bayes
rule to determine the probability of a test sample belonging to a class. Three
assumptions are made: the feature data is normally distributed, the predictive
attributes are conditionally independent given the class, and no hidden or latent
attributes influence the prediction process [18].

k-Nearest Neighbor Classifier (k-NN): The k-NN classifier as instance-based clas-
sifier, does not assume a specific distribution of the feature data. It adapts well
to the sample data, but also tends to overfit. It is also sensitive to noise and to
irrelevant features. It is applied with k = 5 neighbors.
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Support Vector Machine: This linear classifier determines a maximum-margin
and soft hyperplane that best separates the considered classes. The data is nor-
malized and transformed via the non-linear radial basis kernel. We use the ν-
SVM with penalization parameter ν = 0.5 and cost-parameter c = 1 [19].

Classification Enhancement: The feature data distribution might not op-
timally fit to the classifiers’ data model. We analyze the effect of two known
methods to improve classification result.

(i) Feature selection removes attributes from the initial set. Features that are
highly correlated to a class and have a low correlation to other attributes are
kept [20] and the reduced set is used for classification.

(ii) AdaBoosting is a classification scheme to improve classification results.
The method iteratively applies one arbitrary classifier. AdaBoosting is able to
improve results especially of weak learners on real-world data and is robust to
overfitting [21].

Feature Combination: To further improve the classification correctness and
robustness, we investigated two ways of combining the four image-based feature
types.

(i) Feature Merging concatenates all available feature spaces to a new high
dimensional space (970 dim.) that is used for classification.

(ii) 2-stage classification applies the probability score of belonging to the glau-
coma class, obtained from each of the four classifiers, as new feature vector input
to another classifier.

3 Evaluation

For evaluation, we took images from the Erlangen Glaucoma Registry (EGR)
that contains thousands of records of multi-modal fundus images from a long-
term screening study. Diagnosis was made by an ophthalmologist based on anam-
nesis, image data and other measurements. The images were acquired by a
Kowa NonMyd α-D digital fundus camera that produced lossless compressed
RGB photographs of size 1600×1216 pixels, using a 20◦ field of view and nasal
positioning (papilla-centered).

We evaluated the above described image-based feature extraction methods
and classifiers on a test set of 100 preprocessed images (50 healthy and 50 glau-
comatous). With this set, the measures were calculated for cross-validation tests
and for classification experiments with separated training and test data. The
PCA/LDA models, i.e. the eigenimages, as well as the training of the classifiers
in the case of separated training and test sets was done with another image set
of 100 images (also 50 healthy and 50 glaucomatous cases).

For all experiments we computed the overall classification correctness and the
F-measure for healthy (Fh) and glaucomatous eyes (Fg), which is the harmonic
mean of sensitivity and precision. To mark promising and robust configurations,
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Table 1. Classification performance of the four feature extraction methods. Configu-
rations with “best”-criterion are labeled bold.

Data Classifier Structure Cross-validation Train-Test
Correct (%) Fh Fg Correct (%) Fh Fg

PCA on intensities
(30 dim.)

Bayes
nothing 73 0.72 0.74 48 0.43 0.52

AdaBoost 75 0.76 0.74 64 0.65 0.63
FeatureSel 77 0.75 0.79 63 0.67 0.58

kNN
nothing 77 0.75 0.79 68 0.75 0.57

AdaBoost 74 0.75 0.73 70 0.75 0.63
FeatureSel 82 0.82 0.82 70 0.75 0.62

SVM
nothing 83 0.81 0.85 81 0.83 0.78
AdaBoost 80 0.78 0.82 79 0.82 0.75
FeatureSel 85 0.85 0.85 73 0.76 0.69

PCA on textures
(840 dim.)

Bayes
nothing 69 0.67 0.70 44 0.44 0.44

AdaBoost 69 0.70 0.67 70 0.67 0.72
FeatureSel 76 0.76 0.76 60 0.62 0.57

kNN
nothing 55 0.21 0.69 64 0.73 0.45

AdaBoost 64 0.49 0.72 66 0.74 0.51
FeatureSel 80 0.76 0.83 73 0.77 0.67

SVM
nothing 67 0.57 0.73 60 0.71 0.35

AdaBoost 60 0.41 0.70 76 0.77 0.74
FeatureSel 80 0.78 0.82 81 0.83 0.79

PCA on FFT
(90 dim.)

Bayes
nothing 74 0.73 0.75 47 0.40 0.52

AdaBoost 83 0.83 0.83 59 0.55 0.62
FeatureSel 78 0.77 0.79 72 0.76 0.66

kNN
nothing 75 0.71 0.78 66 0.74 0.50

AdaBoost 74 0.74 0.74 71 0.77 0.60
FeatureSel 83 0.82 0.84 69 0.74 0.62

SVM
nothing 76 0.74 0.77 76 0.79 0.71
AdaBoost 77 0.76 0.78 72 0.76 0.67
FeatureSel 83 0.82 0.84 73 0.77 0.67

Histogram model
(10 dim.)

Bayes
nothing 71 0.69 0.73 58 0.60 0.55

AdaBoost 73 0.71 0.75 65 0.69 0.60
FeatureSel 71 0.69 0.73 45 0.32 0.54

kNN
nothing 81 0.80 0.82 54 0.50 0.57

AdaBoost 72 0.67 0.77 54 0.50 0.57
FeatureSel 69 0.69 0.68 42 0.39 0.44

SVM
nothing 73 0.72 0.74 61 0.61 0.60
AdaBoost 80 0.80 0.80 85 0.00 0.92
FeatureSel 70 0.69 0.71 39 0.30 0.46

LDA on intensities
(30 dim.)

Bayes
nothing 78 0.78 0.78 55 0.52 0.58

AdaBoost 77 0.78 0.76 68 0.71 0.65
FeatureSel 79 0.78 0.80 67 0.71 0.61

kNN
nothing 79 0.78 0.80 68 0.75 0.57

AdaBoost 81 0.80 0.83 74 0.78 0.68
FeatureSel 84 0.84 0.84 69 0.75 0.60

SVM
nothing 82 0.80 0.84 76 0.80 0.71
AdaBoost 78 0.78 0.78 68 0.75 0.57
FeatureSel 80 0.79 0.81 69 0.75 0.60

we defined a “best”-criterion for each feature extraction set. The best configura-
tion within a set has a Fg ≥ 0.60 and Fh ≥ 0.60 in the cross-validation test as
well as in the separated training and test sets experiments and maximum sum
of F-measures Fg + Fh.
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(a) (b) (c) (d)

Fig. 2. (a) “Vessel-free” fundus image, (b)-(c) the first three absolute eigenimages of
PCA on intensities. Bright regions indicate high influence on the features.

Table 2. Classification performance of merged features and 2-stage classification

Data Classifier Structure Cross-validation Train-Test
Correct (%) Fh Fg Correct (%) Fh Fg

Feature Merging
(970 dim.)

Bayes
nothing 71 0.69 0.72 45 0.43 0.47

AdaBoost 79 0.80 0.78 63 0.58 0.67
FeatureSel 76 0.76 0.76 68 0.71 0.64

kNN
nothing 60 0.33 0.71 63 0.72 0.45

AdaBoost 71 0.69 0.73 66 0.74 0.51
FeatureSel 81 0.79 0.83 67 0.74 0.56

SVM
nothing 72 0.65 0.77 61 0.72 0.38

AdaBoost 61 0.42 0.71 62 0.72 0.71
FeatureSel 84 0.83 0.85 80 0.82 0.77

2-stage Classification
(4 dim.)

Bayes nothing 84 0.85 0.86 80 0.82 0.76
AdaBoost 82 0.82 0.82 80 0.82 0.77

kNN nothing 81 0.80 0.82 80 0.82 0.77
AdaBoost 80 0.80 0.80 78 0.81 0.74

SVM nothing 85 0.86 0.84 80 0.82 0.77
AdaBoost 86 0.83 0.88 80 0.82 0.77

In the first step, we tested the four feature extractions with the different
classifier types as described in Section 2. Each feature configuration was applied
as is, in combination with attribute selection or AdaBoosting. The classification
results are given in Table 1. We also computed features based on a LDA model
(trained with the separated training set) and classified them according to our
scheme. The result is shown in Table 1. The absolute eigenimages generated by
PCA on intensities (see Fig. 2) show regions of the fundus with high influence
to the features. Those regions might point to relevant glaucomatous areas and
help in understanding glaucoma.

In the second step, we evaluated the performance of the feature combinations.
Feature merging results are stated in the first block of Table 2. Two stage clas-
sification combines the four best classifiers for each feature extraction method.
For each feature extraction the class probability for glaucoma was taken as an
input to a second classification step. As these features are only 4 dimensional,
there was no need for feature selection. The classification result is shown in the
second block of Table 2.
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4 Results and Discussion

The classification performance using each feature extraction method separately
shows that the correctness varies between 55% and 85% in cross-validation. Also
each feature extraction method itself has varying classification correctness and
F-measures for the different classifier configurations. The SVM separates the fea-
tures most robustly and is always part of configurations labeled with the “best”-
criterion. The configurations with “best”-criterion achieve F-measures between
0.72 and 0.81 for healthy case and between 0.74 and 0.85 for glaucomatous case
in case of cross-validation. They are always using SVM for classification. Only
in case of high dimensional feature space as with PCA on textures (840 dim.)
feature selection is necessary to avoid problems with the curse of dimensionality
and to achieve similar success rates as PCA on intensities. Although the PCA on
pixel values (Fg = 0.85) and on texture (Fg = 0.82) shows slight better results
than PCA on FFT (Fg = 0.77) and the histogram model (Fg = 0.74), all config-
urations show a reasonable discriminative power. Comparing the two dimension
reduction techniques, LDA shows a smaller variance in the results than PCA.
The SVM also classifies the LDA features best.

In case of the feature merging, the highest success rate and F-measures (Fg =
0.85, Fh = 0.83) are obtained if a feature selection is done before using the SVM
in case of cross-validation. In 2-stage classification, the class-probabilities of the
“best”-labeled classifier configurations are used as second stage features. This
scheme shows success rates with F-measures over 0.80 for all classifier configu-
rations in case of cross-validation. Classification on separate training and test
set shows consistent, but slight inferior F-measures. The highest success rate of
all experiments (86%) is gained by SVM with AdaBoosting with Fh = 0.83 and
Fg = 0.88.

As stated in [12], experienced observers achieve an average Fg = 0.79 and
Fh = 0.91 by qualitative assessment of optic nerve head stereophotographs (63
normal and 29 glaucomatous subjects). Regarding classification on separate test
and training set, we gain a slightly inferior performance (Fg = 0.77) while we
get Fh = 0.82 for normals.

5 Conclusion

We presented a novel automated glaucoma classification system using digital
fundus images. In contrast to the commonly used segmentation based measure-
ments, it is purely data-driven and uses image-based features that are new in the
domain of glaucoma recognition. We evaluated several combinations of image-
based features and classifier schemes on a set of 200 real fundus images. The
2-stage classification with SVM produced 86% success rate. The performance
of the fully automatic system presented here is comparable to medical experts
in detecting glaucomatous eyes and it could be used in mass-screenings. The
important features automatically identified by the methods also provide a novel
representation of the data for the physicians and may help to better understand
glaucoma.
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