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Abstract. Robot self-localization using a hemispherical camera system
can be done without correspondences. We present a view-based approach
using view descriptors, which enables us to efficiently compare the image
signal taken at different locations. A compact representation of the im-
age signal can be computed using Spherical Harmonics as orthonormal
basis functions defined on the sphere. This is particularly useful because
rotations between two representations can be found easily. Compact view
descriptors stored in a database enable us to compute a likelihood for
the current view corresponding to a particular position and orientation
in the map.

1 Introduction

Omnidirectional vision has become increasingly popular for the purpose of robot
localization during the last years. Many approaches rely on compact image
descriptors [21,1,5], [11,8] (using principal component analysis) [19,18] (using
Fourier descriptors), [13] (using Haar integrals) to store and compare views effi-
ciently. There are also approaches combining both compact descriptors and local
features, e.g. [14].

We present a view-based method for robot localization in a known environ-
ment. A mobile robot equipped with an omnidirectional camera system provides
a spherical image signal s(θ, φ), i. e. an image signal defined on a sphere. In our
experiments performed so far, the omnidirectional images were obtained from a
simulated ultra-wide angle lens camera mounted face up on the robot, yielding
rectangular images which can be mapped on the semi-sphere in a straightforward
manner. These images were converted into view descriptors, i. e. low dimensional
vectors (Fig. 1). The robot localization task is performed by comparing the cur-
rent view descriptor to those stored in a database of views. Given a suitable
distance metric, this yields a likelihood of the robot location. The image de-
scriptors used here are not rotation invariant; due to their particular structure
it is possible to estimate the orientation (rotation compared to a reference pose)
of the current view. Our view representation is obtained by performing a linear
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Omnidirection view
with planar image plane

Omnidirectional view
projected on hemisphere

low order representation
of omnidirectional view

Fig. 1. Computing an omnidirectional image signal from a planar wide angle image.
The resulting hemispherical image signal is reflected at the equator to obtain an spher-
ical image signal. The right image is a visualization of a low order Spherical Harmonic
descriptor that approximates the omnidirectional image signal.

spectral transform, that is by expanding the spherical image signal s(θ, φ) in
orthonormal basis functions bi(θ, φ) according to

s(θ, φ) =
∑

i

ai · bi(θ, φ). (1)

This is possible for any square integrable signal s(θ, φ) defined on the sphere.
Let b denote the complex conjugate of b. We obtain the coefficients ai by

ai =
∫ 2π

0

∫ π

0
s(θ, φ) · bi(θ, φ) · sin θ dθ dφ. (2)

Our approach benefits from using Spherical Harmonics (Fig. 3) as basis func-
tions bi since they show the same nice properties concerning rotations which the
Fourier basis system has with respect to translations. Rotations are mapped into
a kind of generalized phase changes.

All views in the database are labeled with their corresponding location in the
map (see Fig. 2); thus finding a match in the database – in principle – solves the
localization task. We briefly discuss some obvious problems such as variations
in illumination and impact of occlusions in Sec. 6. For each given view at an
initially unknown robot position and orientation, a figure of (dis-)similarity to
any other view in the database can be generated directly from the compact

Fig. 2. A known environment is represented by a map containing view descriptors.
These are obtained from images taken at reference positions.
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vector representation of these views; this allows for more sophisticated temporal
self-localization strategies [22], e. g. using particle filters.

In order to compare a given descriptor to those stored in a database, an op-
eration has to be performed on the descriptor that corresponds to (virtually)
de-rotating the corresponding view. Hence, for finding a measure of similarity
between two views, de-rotation has to be performed as an integral part of the
comparison. The estimation of 3D rotation between spherical signals has been
investigated in different contexts in the last years [16,17,15,10]. For our applica-
tion, a fast solution is of particular importance since we have to compare many
pairs of descriptors. It is therefore useful to exploit group theoretical properties
of Spherical Harmonics in order to eliminate those descriptors which cannot cor-
respond to the same image signal (=pruning a search tree). This can be done by
comparing the ‘amplitude spectrum’ while disregarding the ‘phase’.

The following sections deal with some essential mathematical characteristics
of Spherical Harmonics, de-rotation and similarity measurement. The paper is
concluded with a description of our experimental setup and the experimental
results that we have obtained so far.

2 Spherical Harmonics

Here we emphasize some facts about Spherical Harmonics (Fig. 3) which are of
particular interest for the matching and self localization task. For further group
theoretical facts see [16] and [6]. Let

N�m =
√

2�+1
2

(�−|m|)!
(�+|m|)! , � ∈ N0, m ∈ Z (3)

and P�m(x) the Associated Legendre Polynomials [23].

The Spherical Harmonics Y�m(θ, φ) are defined as

Y�m(θ, φ) = 1√
2π

· N�m · P�m(cos θ) · eimφ (4)

with eimφ being a complex-valued phase term. � (� > 0) is called order and
m (m = −�..+�) is called quantum number for each �. Note that slightly different
notations of this definition exist. Some authors disregard the so called Condon-
Shortley phase (−1)m in the definition of the associated Legendre polynomials.
We do not omit this factor and conform to the notation of [23,12].

Spherical Harmonics have several properties that we would like to exploit
in the following sections: Each set of Spherical Harmonics of order � forms an
orthonormal basis of dimension 2�+1; Spherical Harmonics of orders 0 . . . � form
an orthonormal basis of dimension (� + 1)2, i. e.

∫ 2π

0

∫ π

0
Y�m(θ, φ) · Y�′m′(θ, φ) · sin θ dθ dφ = δ��′ · δmm′ (5)

where δ�m is the Kronecker delta function. The complex conjugate of a Spherical
Harmonic function is simple to obtain:

Y�,−m(θ, φ) = (−1)m · Y�m(θ, φ). (6)



24 H. Friedrich et al.

Fig. 3. A Spherical Harmonic function is a periodic function on the unit sphere which
has � maxima. The rows show Spherical Harmonics of orders � = 0, 1, 2, 3; columns
show m = 2� + 1 functions for each order �.

To approximate a signal s(θ, φ), i. e.

s(θ, φ) =
∞∑

�=0

�∑

m=−�

a�m · Y�m(θ, φ) (7)

we need to compute the coefficients a�m using Eq. 2

a�m =
∫ 2π

0

∫ π

0
s(θ, φ) · Y�m(θ, φ) · sin θ dθ dφ. (8)

In practice, this is done using Spherical Harmonics of order � = 0 up to a small
number, e. g. � = 4. It may also be useful to use real-valued Spherical Harmonics
as defined in [12]. Eq. 6 implies that the number of coefficients stays the same
for real-valued or complex-valued Spherical Harmonics. Hints on implementation
can be found in [3,7].

3 Rotation Estimation

For general robot self-localization, we have to determine the 3D rotation be-
tween two Spherical Harmonic representations of image signals. This problem
has already been investigated [2], and more recently in [15,16,10]. As an initial
test case, we have chosen a mobile robot moving on a plane. For this particular
application we only need to deal with 1D rotation estimation.

3.1 Rotations

The 3D case. Recall that Spherical Harmonics of order � form a basis. Any
3D rotation can be expressed as a linear transformation (i. e. multiplication
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with an unitary matrix U�) and does not mix coefficients of different order �.
Hence rotations retain the distribution of spectral energy among different orders
[16]. This is a unique characteristic of Spherical Harmonics which makes them
so particularly useful, amongst others for the purpose of robot ego-localization
pursued here. Applying a 3D rotation to a spherical function represented by
coefficients ajk yields new coefficients bjk according to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b00
b10
b11

b1,−1
...
...
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⎞
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=

⎛
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⎛
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(9)

The 1D case: rotation about Z-axis. Since the robot moves on a plane in our
current configuration, the problem of de-rotation is simplified somewhat. Recall-
ing the definition of the complex-valued Spherical Harmonics, the implications
of a rotation of ϕ about the Z-axis are as follows:

Y�m (θ, φ + ϕ) = 1√
2π

· N�m · P�m (cos θ) · ei m (φ+ϕ) = ei m ϕ · Y�m (θ, φ) .

The rotation matrix becomes much simpler because it changes into a diagonal
matrix with elements e−imϕ:

⎛
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3.2 De-rotation

Currently our implementation is based on direct non-linear estimation of ϕ sim-
ilar to the method described in [17]. In this method, the 3D-rotation ΛR for
view descriptors a and b is determined such that ||b − ΛR a||22 is minimized.
This corresponds to the mean square signal difference between both signal ap-
proximations integrated over the sphere, as it will be discussed in more detail
later in Sec. 4.1. The constraint of mere 1-axis rotation which has been main-
tained in our experiments so far, leaving full 3D, 6 DoF pose estimation to
future investigations, leads to simplifications: we have to determine the angle ϕ
that minimizes

∑
�

∑�
m=−�(b�m − e−imϕ a�m)2. We emphasize that full 3D de-

rotation is possible [17,16] for other robot configurations, that is, the spherical
harmonic approach is even more interesting and attractive in that case.
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4 Localization

4.1 Similarity Measure

Similarity between two image descriptors, a for signal g(θ, φ) and b for sig-
nal h(θ, φ), can be defined in a natural way. We define the dissimilarity Q as the
squared difference of the two regarded image signals in the Spherical Harmonic
domain up to order �:

Q =
∫ 2π

0

∫ π

0
(g(θ, φ) − h(θ, φ))2 · sin θ dθ dφ

Eq. 7
=

∫ 2π

0

∫ π

0

( ∞∑

�=0

�∑

m=−�

(a�m − b�m) · Y�m(θ, φ)

)2

· sin θ dθ dφ

Eq. 5
=

∞∑

�=0

�∑

m=−�

∞∑

�′=0

�′∑

m′=−�′

(a�m − b�m) · (a�′m′ − b�′m′) · δ��′ · δmm′ = ||a − b||22

This result is of course not very astonishing, taking into account the fact that
the regarded basis signals form an orthonormal basis. The measure Q is of course
sensitive to any rotation between the signals. Hence, to find the minimum dis-
similarity of two view descriptors we must de-rotate them first.

4.2 A Concept for a Rotation Invariant Similarity Measure

As we mentioned in Sec. 3.1, the norms of the subgroups of coefficients belonging
to Spherical Harmonics of the same order are invariant to arbitrary 3D rotations
of the signal. Thus L2 norms, one for each order of Spherical Harmonics, can be
considered as a kind of energy spectrum of the omnidirectional signal.

This energy spectrum is an efficient means for comparing pairs of spherical
signals [9]. With a proper metric which should be derived from statistical models
of the signal and the expected noise, spherical signals can be compared to each
other even without performing the ‘de-rotation’. If the energy spectrum is iden-
tical or similar, the particular spherical signals can be identical but they need
not to be so. However, if their energy spectra are significantly different, both
signals cannot be identical.

4.3 Robot Localization Algorithm

Robot localization can be done the following way:

For each reference location

1. use the fast rotation invariant similarity measure to drop unlikely views,
2. try to find the best matching rotation for the current image descriptor and

de-rotate the current descriptor,
3. compute the similarity according to Sec. 4.1.
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This yields a similarity map, which in all our experiments performed so far,
has a distinct extremum at the true location of the robot. It can, however, also
contain other extrema, i. e. different poses which have a similar likelihood. Con-
sidering the fact that man-made environments have certain regularities, which
may result in similar views at several distinct positions, this is not too aston-
ishing, forming a general problem of view-based navigation. At each instant,
however, we have prior knowledge about the robots previous course and its pre-
vious pose(s), which is presumably always sufficient to disambiguate the current
pose estimation process. Such strategies are well-known in robot navigation, and
have been, amongst many others, described by Thrun et al. [22] (‘Monte Carlo
Localization’), or Menegatti et al. [19] (using other image descriptors).

5 Experimental Results

For our experiments, we currently use simulated image data rendered by ray trac-
ing software. Using the 3D modeling software Blender [4], we have created an
artificial environment resembling an office area, which provides an experimental
area for a simulated robot (see Fig. 4). An upwards facing wide-angle perspective
camera with a field of view of approx. 172.5◦ yields the simulated input images
of the robot. The resulting images can be projected onto a hemisphere. This
hemispherical signal is extended to a full spherical signal by suitable reflection
at the equator. Subsequently, the spherical signal can be approximated by Spher-
ical Harmonics. Of course, a direct expansion of the 2D wide-angle images into
Spherical Harmonics is possible without the detour of projecting the perspective
signal onto the sphere. We use Spherical Harmonics up to order � = 4. The
reflection across the equator introduces an additional symmetry to the spher-
ical image signal. Hence, additional constraints exist on the coefficients of the
Spherical Harmonics.

Prior to performing a localization of the robot, we must create a set of
reference frames and calculate its corresponding view descriptors. The view-
attributed map needed for performing the robot localization must be computed
beforehand; in a real application, the robot and a precision localization device
will be driven through the envisaged environment while the views and the cor-
responding poses are recorded.

For our localization experiment, we have rendered a series of frames with
the robot moving along a fixed path (Fig. 4(a)). To obtain realistic sequences
of images, each taken at a definite position, a sequence of poses is recorded by
a control script while the robot moves along a given path. The resulting list is
then used to place the camera for the rendering process.

The images in Fig. 5 are maps of the simulation environment showing a mea-
sure corresponding to the likelihood of the robot location, calculated at discrete
positions along the motion path. Note that these positions are in general not
aligned with the grid and the heading direction of the robot is not aligned with
the direction the grid was built with.
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(a) Environment from bird’s eye per-
spective. The path of the robot is marked.

(b) Simulated view of a normal camera
facing forwards.

(c) Robot with camera facing upwards. (d) Wide angle view facing upwards.

Fig. 4. Views of our simulated office environment

Fig. 5. These plots show the dissimilarity between current view descriptors obtained
at six different positions of the path of the robot and the reference views from the
database. The shown results have been obtained using a position grid with a spacing
of 0.2 m and a total of 4636 view descriptors. Dark areas mark likely positions; white
crosses mark the true position. The lower row additionally uses the rotation invariant
measure to drop view descriptors beforehand if their energy spectra deviate excessively.
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6 Next Steps Towards Realistic View Representations:
An Outlook

So far, the view-based representation of the environment in which self-localization
shall be performed has been described as a static one, where only one spherical
view for each reference location has to be regarded. However, every realistic envi-
ronment in which a robot will move is subject to various changes, particularly in
illumination. Therefore, the content of the database has to consider this appropri-
ately. We propose to represent the set of possible views (under varying illumination
etc.) by a stochastic model of low order, as extracted from a larger training set of
images. We denote such a model here as a ‘dynamic spherical view model’ (DSVM).
In the case of ‘normal’ rectangular image areas, such models have already been
successful for (non-spherical) background modeling [20]. Such a stochastic model
inherently induces a suitable and statistically correct metric for the matching pro-
cess, i. e. the Mahalanobis distance induced by the covariance matrix of the dy-
namic spherical view model.

In conventional 1D or n-D signal processing a second order description of
the signal statistics in terms of covariance functions is sufficient to derive a
canonical representation of the signal. This canonical representation is basically
the result of a linear transform into a new coordinate system such that the
covariance between any pair of different spectral coefficients is zero (principal
component analysis [PCA] or Karhunen-Loeve transform [KLT]). The transfer
of this approach to the spherical domain leads to a very practical statistical
model for signal processes defined on the spherical domain. Using such a model,
a PCA representation of spherical stochastic processes (here: spherical stochastic
models for typical omnidirectional signals) can be developed.

The spherical PCA model for omnidirectional signals is a highly practical
means for performing any kind of signal processing for incomplete spherical data.
For example, it allows to compare a given spherical signal with other signals
stored in a database even if the input signal contains areas where the signal
value is not known or very largely destroyed (occlusions, . . . ). The potential and
usefulness of a statistically correct procedure for comparing incomplete data
cannot be overestimated.

These statistical extensions of the self-localization approach using Spherical
Harmonics still remain to be performed in investigations planned for the near
future. We hope that by the paper presented here the feasibility of the baseline
approach and the attractiveness of using Spherical Harmonics for omnidirectional
vision and recognition could be conveyed.
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