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Abstract. In this paper we extend a multi-camera model for simultane-
ous estimation of 3d position, normals, and 3d motion of surface patches
[17] to be able to handle brightness changes coming from changing illumi-
nation. In the target application only surface orientation and 3d motion
are of interest. Thus color related surface properties like bidirectional
reflectance distribution function do not need to be reconstructed. Con-
sequently we characterize only changes of the brightness using a second-
order power series. We test two new models within a total least squares
estimation framework using synthetic data with ground truth available.
Motion estimation results improve severely with respect to the brightness
constancy model when brightness changes are present in the data.

1 Introduction

Our target application is plant leaf growth analysis at a time range of minutes
and spatial resolution of several micrometers. Growth is the divergence of the
motion vector field projected onto the leaf surface, thus we need very accurate
subpixel motion estimates. As temporal resolution is not 30Hz ’real-time’ but
minutes, image acquisition at multiple camera positions may be done by a single
camera mounted on a moving stage as long as overall acquisition time for one
’time instance’ is only a few seconds. Thus we can use elaborate camera setups
at low cost like e.g. a 5 × 5 camera grid with grid-spacing even smaller than
physical camera dimensions instead of really using 25 cameras (as e.g. in [13]).

In our experiments we illuminate the scene using 880nm light emitting diodes
resulting in a directed, but not completely homogeneous illumination. We are
restricted to this, as plants react on visible light. While this is no issue for 3d
reconstruction, it is a major problem when measuring motion using a brightness
constancy assumption. When plant leaves grow, they change their position and
surface orientation with respect to the stationary illumination. Even if bright-
ness changes due position change could be suppressed by optimally homogeneous
illumination, brightness changes due to surface orientation change remain signifi-
cant. These changes depend on the bidirectional reflectance distribution function
(BRDF) of the leaf surface, thus there is no way to suppress this change exper-
imentally without disturbing the plant.

Related Work. Estimating parameters of dynamic scenes like 3d surface posi-
tion and orientation as well as motion of objects is a problem central to computer
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Fig. 1. Motion estimation of cube moving towards camera with spot light moving
around cube center. (a, e): first and last image taken with central camera. (b–d):
color coded model errors (projected on contrast reduced cube) for models without (b),
constant temporal (c), and spatially varying temporal brightness change (d). Below the
model errors, scaled motion estimates for the models are depicted, respectively (f–h).

vision research. For subpixel motion estimation as needed here, as well as stereo
reconstruction optical flow techniques are applied successfully since many years
[10,12] and became more and more accurate [1,9,2,15]. More complex models
like affine motion [5,6], scene flow [20] and physics-based brightness changes
[4,7] have been proposed. Stereo reconstruction extensions to curved surfaces
[11] and depth estimation via optical flow and epipolar geometry [18] have been
presented recently. Simultaneous motion and stereo analysis are addressed in
[19,21,3,17]. The currently richest optical-flow-like model for local scene recon-
struction [17] handles translational motion of slanted surfaces. There the basic
idea is to interpret the camera position (sx, sy) as additional data dimensions.
Hence all image sequences (x-y-t data blocks) acquired by a 2d camera grid are
interpreted as a 5d-Volume in x-y-sx-sy-t-space. The scene model boils down to
be an affine optical flow model with 3 dimensions (sx, sy, t) behaving like time
dimension in an usual affine optical flow model.

Our Contribution.Two extensions of that model [17] need to be addressed in or-
der to be applicable to our application: rotational motion and brightness changes.
In the current paper we only deal with brightness changes. Thereforewe closely fol-
low [17] in the derivation of the geometrical part of the model, including all approx-
imations, even though we will have to change them for rotational motion in future
work. Thus, we will not look at rotating objects under nonmoving illumination
in this paper, but all our tests use translating objects and rotating illumination.
This means that only synthetic sequences fully fulfill the model presented here.
Thus we are restricted to synthetic data for now. Without modeling brightness
changes motion estimates are corrupted by illumination changes, cmp. Fig. 1b,f.
Being an optical-flow-likemodel we follow [7] for physics-basedbrightness changes.
The models derived there assume spatially constant brightness change parameters
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leading to severe inaccuracies when illumination changes spatially (Fig. 1c,g). We
therefore also model spatial changes of temporal changes leading to more accurate
motion estimates (Fig. 1d,h).

Paper organization. We derive the differential model including brightness
changes in Sec. 2 followed by a description of parameter estimation and disen-
tangling of parameters (Sec. 3). We then present experiments showing the per-
formance of the known and new models for various brightness changes (Sec. 4).

2 Derivation of the Model Equation

This section derives the constraint equation describing local changes in data
acquired with a camera grid, following [17]. It combines a 3d object/motion
model, a camera model and a brightness change model. For completeness we
briefly present the full derivation, but focus on the brightness change model.

The dynamic surface patch is modeled by its geometry X, which can be de-
scribed by its initial world coordinate position (X0, Y0, Z0), velocity (Ux, Uy, Uz)
and X- and Y -slopes Zx and Zy (i.e. surface normal (−Zx, −Zy, 1))

X(ΔX, ΔY, t) =

⎛
⎝

X
Y
Z

⎞
⎠ =

⎛
⎝

X0 + Uxt + ΔX
Y0 + Uyt + ΔY
Z0 + Uzt + ZxΔX + ZyΔY

⎞
⎠ (1)

with time t and local world coordinates (ΔX, ΔY ). It is projected into the images
by pinhole cameras at world coordinates (sx, sy, 0), looking in Z-direction

(
x
y

)
=

f

Z

(
X − sx

Y − sy

)
(2)

A camera grid samples camera position space equidistantly. The cameras convert
light intensity L into image intensities I (i.e. gray values). In order to derive a
model for dI/dt, the temporal changes visible in the data, we look into the
dependencies of L. In this paper, a translating surface patch is illuminated by
a spatially smoothly varying, translating and rotating light source (see Sec. 1).
Direction ni of incident irradiance E may vary smoothly with time and space
but reflectance direction nr is kept constant.1 Visible light intensity i.e. reflected
radiance L depends on incident irradiance E and on the patch’s bidirectional
reflectance distribution function (BRDF) B (cmp. e.g. [8]) according to

L(X(ΔX, ΔY, t), t, nr) = B(X(ΔX, ΔY, t), ni(t), nr)E(ΔX, ΔY, t, ni(t)) (3)

and the BRDF depends on the material and hence on the position on the surface
patch as well as the directions of incidence ni and reflectance nr. We assume
that the material does not change with time and therefore

B(X(ΔX, ΔY, t), ni(t), nr) = B(X(ΔX, ΔY, 0), ni(t), nr) (4)
1 Reflectance direction nr obviously also varies with pixel position in the cameras, but

for this paper we do not use this extra information.
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If the BRDF is smooth enough, which is typically given at sufficient angular dis-
tance from specularities, changes due to smoothly changing incidence direction
ni(t) can be modeled using a smooth function hB(t) with hB(0) = 1

B(X(ΔX, ΔY, t), ni(t), nr) = B(X(ΔX, ΔY, 0), ni(0), nr)hB(t) (5)

Being spatially inhomogeneous the moving irradiance E changes not only by a
time dependent factor, but by a factor also varying smoothly in space

E(ΔX, ΔY, t, ni(t)) = E(ΔX, ΔY, 0, ni(0))hE(ΔX, ΔY, t) (6)

Here again hE(ΔX, ΔY, t) is a smooth function with hE(ΔX, ΔY, 0) ≡ 1. Plug-
ging Eq. 5 and Eq. 6 in Eq. 3 the reflected radiance L becomes

L(X(ΔX, ΔY, t), t) = L(X(ΔX, ΔY, 0), 0)hB(t)hE(ΔX, ΔY, t) (7)

We assume image intensities I to be proportional to the radiance L, i.e. the
characteristic curve of the used camera to be linear, and therefore

I(X(ΔX, ΔY, t), t, sx, sy) = I(X(ΔX, ΔY, 0), 0, sx, sy) exp(hI(ΔX, ΔY, t)) (8)

where hI(ΔX, ΔY, t) := ln(hB(t)hE(ΔX, ΔY, t)). The sought for temporal
derivative of Eq. 8 is thus

d
dtI = I(X(ΔX, ΔY, 0), 0, sx, sy) exp(hI(ΔX, ΔY, t)) d

dthI(ΔX, ΔY, t)
= I(X(ΔX, ΔY, t), t, sx, sy) d

dthI(ΔX, ΔY, t)
(9)

The most common assumption in optical-flow-like approaches is brightness con-
stancy, boiling down to hI(ΔX, ΔY, t) ≡ 0. Haussecker and Fleet [7] derive
models for changing surface orientation and a moving illumination envelope ap-
proximating hI as a second order power series respecting temporal changes only

hI(ΔX, ΔY, t) ≈ hHF (t, a) :=
2∑

i=1

ait
i (10)

where a1 and a2 are treated as local constants in the estimation process. Look-
ing at Fig. 1f and g we observe that for highest accuracy this is not sufficient.
Therefore we introduce a more accurate approximation of hI explicitly modeling
spatial variations still respecting hI(ΔX, ΔY, 0) ≡ 0

hI(ΔX, ΔY, t) ≈ h(ΔX, ΔY, t, a) :=
2∑

i=1

(ai + ai,xΔX + ai,yΔY ) ti (11)

The temporal derivative of h is then

f(ΔX, ΔY, t, a) :=
d
dt

h(ΔX, ΔY, t, a) =
2∑

i=1

i (ai + ai,xΔX + ai,yΔY ) ti−1

(12)
using the notation a = (a1, a2, a1,x, a1,y, a2,x, a2,y). Following [17] the brightness
change model is finally formulated as total differential dI = Ifdt or

Ixdx + Iydy + Isxdsx + Isy dsy + Itdt = Ifdt (13)

where lower indices at I indicate partial derivatives, e.g. Ix = ∂I/∂x.
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2.1 Combination of Patch-, Camera-, and Brightness-Models

We will now briefly summarize how to combine the dynamic surface patch
(Eq. 1), camera model (Eq. 2) and the brightness change model (Eq. 13). A
more detailed and comprehensive derivation can be found in [17].

Points (X, Y, Z) of a surface element (Eq. 1) are projected onto the camera
chip at pixel position (x, y) via Eq. 2

(
x
y

)
=

f

Z

(
X0 + Uxt + ΔX − sx

Y0 + Uyt + ΔY − sy

)
(14)

At fixed surface locations with constant ΔX and ΔY differentials dx and dy are
(

dx
dy

)
=

f

Z

(
(Ux − Uz

x
f )dt − dsx

(Uy − Uz
y
f )dt − dsy

)
(15)

being nonlinear in Uz as Z = Z0 +Uzt+ZxΔX +ZyΔY . Using image-based ex-
pressions 3d optical flow, disparity, local pixel coordinates, and projected slopes

ux = f
Z0

Ux, uy = f
Z0

Uy, x = x0 + Δx, Δx=
f(1−Zx

x
f )

Z0
ΔX, zx = Zx

Z0(1−Zx
x
f )

uz = − 1
Z0

Uz, v = − f
Z0

, y = y0 + Δy, Δy =
f(1−Zy

y
f )

Z0
ΔY, zy = Zy

Z0(1−Zy
y
f )

(16)
omitting Uzt in Z by the assumption |Z0| � |Uzt| and linearizing f/Z by

−f

Z0 + ZxΔX + ZyΔY
≈ v + zxΔx + zyΔy (17)

we get an affine-optical-flow-like model [6] when plugging all this into Eq. 13
(

Ix

Iy

) [(
vdsx + (ux + x0uz) dt
vdsy + (uy + y0uz) dt

)
+

(
zxdsx + uzdt zydsx

zxdsy zydsy + uzdt

) (
Δx
Δy

)]

+Isxdsx + Isy dsy + Itdt − Ifdt = 0
(18)

where all nonlinear terms coming from multiplications with zxΔx and zyΔy are
suppressed. We decompose Eq. 18 into data vector d and parameter vector p:

d = (Ix, Iy, IxΔx, IxΔy, IyΔy, IyΔx,
Isx , Isy , It, I, IΔx, IΔy, It, ItΔx, ItΔy)T

p = ( vdsx + (ux + x0uz) dt, vdsy + (uy + y0uz) dt,
zxdsx + uzdt, zydsx, zydsy + uzdt, zxdsy,
dsx, dsy, dt, b1dt, b1,xdt, b1,ydt, b2dt, b2,xdt, b2,ydt)T

(19)

where f has been substituted by the novel brightness change model from Eq. 12
and the brightness change parameters are

b1 = −a1 b1,x = −a1,x
Z0

f(1−Zx
x
f ) b1,y = −a1,y

Z0
f(1−Zy

y
f )

b2 = −a2 b2,x = −a2,x
Z0

f(1−Zx
x
f ) b2,y = −a2,y

Z0
f(1−Zy

y
f )

(20)

For simpler brightness models or when a 1d camera grid is used (i.e. dsy =
0) terms with non-existing parameters are simply omitted. Eq. 18 is a model
equation of the form dT p = 0 (cmp. Eq. 19).
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3 Parameter Estimation

Also for total least squares parameter estimation we closely follow [17]. For
every 5d-pixel a constraint equation of the form dTp = 0 is given. To get an
over-determined system of equations, we assume that all equations within a local
neighborhood Ω are solved by the same parameter vector, i.e. dT

i p = ei for all
pixels i in Ω, with errors ei. The errors are minimized in weighted L2-norm

||e|| = ||Dp|| = pTDTWDp =: pTJp
!= min (21)

with Dij = (di)j and a diagonal matrix W containing the weights. As in [17]
Gaussian weights with variance σ2 are used (see Sec. 4). The matrix J is called
structure tensor. For a 2d camera grid the space of solutions p̃ is spanned by
the 3 eigenvectors to the smallest eigenvalues of J. From these eigenvectors the
sought for parameters are derived by linear combination of the eigenvectors p̃
such that all but exactly one component of {dsx, dsy, dt} vanish. From the linear
combination with dt �= 0 and dsx = dsy = 0, we calculate motion and bright-
ness change components. First uz is derived and then used to calculate ux and
uy from the first and second component of this linear combination. From the
other 2 eigenvector combinations with dt = 0 we derive depth and normals. The
parameters v, zx, zy and uz occur twice in the model (Eq. 18) and therefore
can be estimated independently from different components and/or different lin-
ear combinations of the eigenvectors. The estimates for these parameters can
be combined according to their error estimates, provided that their covariance
matrix (see [14]) is diagonal. This is made sure by suitable coordinate transfor-
mations in x-y-space (for uz) or sx-sy-space (for v, zx, and zy).

4 Experiments

We show a systematic error analysis using sinusoidal patterns, and a reconstruc-
tion of a cube with a high contrast noise texture raytraced with povray [16].

4.1 Sinusoidal Pattern

Sinusoidal pattern data is used to evaluate systematic errors and noise depen-
dence of the estimation process. In Fig. 2 two images of such a sequence are
shown. The wavelengths are 8 pixel in x- and 80 pixel in y-direction and ampli-
tude changing according to Eq. 11. We generated data sets for different values
of brightness change parameters a1, a1,x, a2, and a2,x, but not for a1,y and
a2,y as they work like the respective x-parameters. The other parameters are
UX = UY = ZX = ZY = 0, Z0 = 100, f = 10 and UZ = 0.1. As performance
measure for a parameter Q we use the mean absolute value either of the relative
error if Qref �= 0 or of the absolute error if Qref = 0

Qrel =
1
N

N∑
i

|Qi − Qref |
|Qref | Qabs =

1
N

N∑
i

|Qi − Qref | (22)
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a b

Fig. 2. Sinusoidal pattern data. (a, b): first and last image taken at central camera
position, a1 = a1,x = 0, a2 = −0.2 and a2,x = −0.002 (cmp. Eq. 11).
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Fig. 3. Mean absolute value of relative or absolute error of brightness change param-
eters a1 (top) and a2 (bottom) versus the brightness change parameters a1, a1,x, a2,
and a2,x. Noise free data.

where the sum runs over all pixels not suffering from border effects and the
lower indices rel stand for ’relative error’, abs for ’absolute error’ and ref for
’reference’. Parameter estimation was done according to Sec. 3, with weighting
matrix W implemented via a 65-tab Gaussian with standard deviation σ = 16.

The first experiment evaluates systematic error of and cross talk between
brightness change parameters. In Fig. 3 errors of a1 and a2 versus brightness
change parameters a1, a1,x, a2, and a2,x are shown. We observe that the relative
error of a1 is well below 0.5% if a1 < 1 and then moderately raises. This is due
to the fact that temporal derivatives of the data It become less and less accurate
when exponential behavior of the data becomes more and more prominent. The
same explanation holds for the linear error increase of a2 with increasing a2.
And as local brightness changes due to a1,x come close to changes due to a1 if
a1 = a1,xΔX for the same local patch, we expect and observe severe cross talk
between a1,x and a1, more severe for the model not containing a1,x. This is also
true for a2,x and a2, but there the cross talk is the same for both models, thus
modeling a2,x is of no advantage here. Further a1 is almost independent of a2
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Fig. 4. Mean absolute value of relative error of UZ versus the brightness change pa-
rameters a1, a1,x, a2, and a2,x. Noise free (top row) and noisy data (bottom).

and a2,x, as well as a2 of a1. But while a2 does depend on a1,x if a1,x is not
modeled, the error of a2 is about 1 to 2 orders of magnitude smaller if a1,x is
modeled. The positive effect on accuracy of the method if a1,x is modeled is even
higher for UZ , as we see next.

In Fig. 4 results for UZ,rel versus brightness change parameters are shown,
using noise free data and data with Gaussian noise of standard deviation σn =
0.025 being 2.5% of the amplitude of the signal at t = 0. As before all parameters
except the one on the ordinate have been kept fix. UZ is the most relevant
motion parameter, because errors in UZ directly also influence UX and UY (see
the first 2 components of the parameter vector p in Eq. 19). Let us first look
at the noise free case. As soon as a1 is significantly larger than 0 the brightness
constancy model immediately breaks down, errors get unacceptably high. For
the two other models UZ does not react on small a1 and only weak for larger
values of a1. When brightness changes due to a1,x are present only the model
containing spatial changes remains stable, brightness constancy and Haussecker-
Fleet-like models have severe problems. Looking at UZ,rel with changes due to
a2 or a2,x we observe that a2 and a2,x cause similar errors in UZ . This is in
complete consistency with our earlier observation in Fig. 3. While all models
behave the same for small absolute value of a2 or a2,x, the brightness constancy
model rapidly breaks down at |a2| ≈ 0.1 or |a2,x| ≈ 0.02. Comparing errors of
UZ for noise free and noisy data sets, we see only a small effect when a2 or a2,x

are close to 0. For larger a2 or a2,x the plots for noisy and noise free data look
almost identical. Also for large a1 and a1,x errors remain unchanged. But for
smaller a1 and a1,x the influence of noise can be quite high. We observe that
errors increase from well below UZ,rel = 0.01 up to nearly UZ,rel = 0.1.

We conclude that modeling a1,x is worth the effort while a2,x does not really
help. Noise may be an issue, thus it has to be kept as low as possible.
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4.2 Synthetic Cube

Temporal image sequences with 9 images were created at 25 positions of a 2d 5×5
camera grid using povray [16]. For the whole cube ground truth is UX = UY =
0mm/frame, UZ = 2mm/frame, and ZY = 0. At the left side ZX ≈ 1.73=̂60◦

and on the right ZX ≈ 0.577=̂30◦. As one can see in Fig. 1a and e, a noise
texture with high contrast is mapped on the sides of the cube and in addition to
the ambient illumination a spot light rotates around the center of the cube such
that it moves from right to left. In Fig. 1b-d the numerical model error, i.e. the
largest of the 3 smallest eigenvalues of the structure tensor is depicted as color
overlay on the central input image. For the brightness constancy model (Fig. 1b)
error is highest. Modeling spatially constant brightness changes (Fig. 1c) errors
reduce, but at the edge of the cube and at the border of the spotlight they are
still high. With spatially varying temporal changes errors again become smaller,
visible only at the edge of the cube. The components UX and UY of the motion
vectors shown in Fig. 1f-h are scaled by a factor 135 relatively to UZ in order
to visualize estimation errors (UX and UY should be 0). Even with this large
accentuation of errors motion vectors estimated with the richest model point
in the correct direction almost everywhere. The other models yield much less
accurate vector fields.

5 Summary and Outlook

In this paper we extended the brightness constancy model presented in [17] by
brightness change parameters. They are derived as a power series approximation
of the changes in reflected radiance due to (1) changes of illumination direction
and (2) changes in incoming light intensity caused by moving inhomogeneous
incident irradiance. While the first effect may be modeled by spatially constant
temporal changes, the latter one causes spatially variant temporal changes. The
sinusoidal pattern experiments reveal that modeling spatial variations of bright-
ness changes result in increased motion estimation accuracy with respect to a1,x,
but not with a2,x (cmp. Eq. 11). Motion vector fields of a translating cube illu-
minated by a moving spotlight have been estimated using brightness constancy
assumption and brightness change model with or without spatial changes. The
richest model yields significantly better results than the other ones.

In future work we will extend this model to be able to handle rotating objects.
Rotation leads to divergence visible in the image data, currently used for the
estimation of UZ , leading to erroneous motion estimates.
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