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Abstract. Global optical flow techniques minimize a mixture of two
terms: a data term relating the observable signal with the optical flow,
and a regularization term imposing prior knowledge/assumptions on the
solution. A large number of different data terms have been developed
since the first global optical flow estimator proposed by Horn and Schunk
[1]. Recently [2], these data terms have been classified with respect to
their properties. Thus, for image sequences where certain properties
about image as well as motion characteristics are known in advance,
the appropriate data term can be chosen from this classification. In this
contribution, we deal with the situation where the optimal data term
is not known in advance. We apply the Bayesian evidence framework
for automatically choosing the optimal relative weight between two data
terms as well as the regularization term based only on the given input
signal.

1 Introduction

Motion estimation in image sequences is of crucial importance in computer vi-
sion, it has a wide range of applications spanning from robot navigation over
medical image analysis to video compression. The motion of a single object, i.e.
its displacement vector from frame to frame, which can be inferred from bright-
ness changes in the image sequence is denoted as the optical flow vector. The
set of all optical flow vectors is called the optical flow field. In order to infer
the optical flow field from observable entities, e.g. the gray values in an image
sequence, a functional relationship between the optical flow field and the ob-
servable image signal has to be established. A large number of different types
of these observation equations has been proposed [2], their properties have been
analyzed and classified. It is not very surprising that the simple brightness con-
stancy assumption gives most accurate results when the model assumption - all
brightness changes are due to motion - is fulfilled. But if the model assumption
is only slightly violated, the accuracy breaks down, leading to highly erroneous
results. One way to deal with brightness changes that are not caused by motions
is to model the brightness change and optical flow simultaneously [3]. Another
way is to relate the optical flow with the signal by observation equations that
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are less sensitive to brightness changes that are not caused by motion [2]. Since
they actually disregard parts of the available information, these more robust ob-
servation equations have the drawback that they give less accurate results than
the simple brightness constancy assumption in case if the model assumption is
fulfilled. Furthermore, the most accurate of these illumination-insensitive obser-
vation equations induce an orientation dependency such that they are only valid
for certain classes of motion [2]. In order to find the best compromise between
the different models, it has been proposed to use a combination of different ob-
servation equations. But how to find the optimal weight between the different
models? The present contribution aims at answering this question which was
open so far. It extends the Bayesian evidence framework for choosing the opti-
mal regularization parameter in global optical flow methods presented in [4,5].
Whereas in [4,5] only the optimal weight between data term and regularization
term is estimated, the proposed method chooses also the optimal weights be-
tween two different model assumptions: the brightness constancy assumption
and the generalized constancy assumption that includes the proposed observa-
tion equation proposed in [2] as well as the brightness constancy assumption and
a new observation equation designed for multiplicative brightness chances.

2 Global Optical Flow Estimation

In the following we describe the image sequence intensity values as a continuous
function s(x), x = (x, y, t) defined on the continuous Euclidian space denoted
as the space-time volume A. In order to estimate the optical flow field from the
image sequence, a functional relationship, the observation equation, between
the signal s(x) and the optical flow field u(x), has to be established. A simple
relation can be derived by the assumption that all intensity variations are due to
motion such that the brightness of the signal keeps constant through its evolution
in space-time

s(x(t), y(t), t) = c . (1)

This implies the total time derivative to be zero leading to the brightness con-
stancy constraint equation (BCCE)

gxux + gyuy + gt = 0 ⇔ gT uh = 0 , (2)

where we have defined g = (∂xs, ∂ys, ∂ts)
T and uh = (ux, uy, 1). Since it is

fundamentally impossible to solve for uh by a single linear equation (aperture
problem), additional constraints have to be found and employed. The assump-
tion of spatial [6] or spatiotemporal [7,8] constancy of the flow field u in a local
neighborhood V allows the accumulation of all BCCEs in V for a weighted least
squares or total least squares optical flow estimation, but this provides the de-
sired disambiguation of optical flow only if the spatial gradients of the image
signal vary inside of the regarded neighborhood V . Simoncelli [9] provides a
further regularization of the problem by introducing a prior probability density
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function (pdf) which penalizes large optical flow vectors. Whereas local methods
minimize a loss function (a residual) over a local area V ⊂ A, global methods
[1,10,11,12] estimate the optical flow field by minimizing an error functional (or
error function if u is considered on a discrete grid) over the whole space-time.
The necessary additional constraint is incorporated by a regularization term ρ(u)
(ρ denotes an operator acting on the optical flow u) imposing supplementary in-
formation on the solution, e.g. the optical flow field should be smooth except for
motion boundaries [10]. This means that going from local to global methods is to
jump from the simple constant flow assumption directly to expressing smooth-
ness by functionals on derivatives of the resulting flow function. We emphasize
here that imposing slightly more complicated local flow models, such as affine,
polynomial, etc is still a valid and viable alternative. The regularization parame-
ter λ in global approaches specifies the influence of the regularization term ρ(u)
relative to the data term ψ

(
gT uh

)
, (ψ=real symmetric positive function that is

monotonically increasing). There is a certain tradition of estimating the optical
flow field by minimizing

J(u) =
∫

A

(
ψ

(
gT uh

)
+ λρ(u)

)
dx (3)

with respect to the optical flow field u(x). In principle, the argument of the data
term function ψ(.) could be the residual of any valid observation equation. If the
brightness constancy assumption does not hold, e.g. due to global brightness
changes, (2) does not properly describe the relation between the optical flow
and the observable signal any more. One way to deal with this situation is to
introduce more complex equations modeling the brightness change and optical
flow simultaneously [3]. The drawback is the increase of model parameters that
has to be estimated from the input signal. In cases where one is not interested
in the brightness model parameters but only in the optical flow it is often more
efficient to relate the optical flow with features that are less sensitive to violations
of the brightness constancy assumption [2]. A simple and rather popular strategy
is to consider the constancy of the spatial gradient of the signal

∇s(x(t)), y(t), t) = c . (4)

As in the case of the BCCE, the total time derivative is zero leading to the
following equations, denoted as the generalized BCCE (GBCCE) in the following

gxxux + gxyuy + gxt = 0 ⇔ gT
x uh = 0 (5)

gyxux + gyyuy + gyt = 0 ⇔ gT
y uh = 0 , (6)

where we have defined gx =
(
∂2

xs, ∂x∂ys, ∂x∂ts
)T and gy =

(
∂y∂xs, ∂2

ys, ∂y∂ts
)T

respectively. The optical flow is then, as for the case of the brightness constancy
assumption, estimated by minimizing the energy functional where we exchange
the data term in (3) by ψ1

(
gT

x uh

)
+ ψ1

(
gT

y uh

)
. The gain in robustness with

respect to illumination changes has to be payed with the introduction of direc-
tional information in the constancy assumption, i.e. the orientation of the spatial
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gradients. This means that spatial features are required not to change their orien-
tation through the image sequence, e.g. objects should not to perform a rotation.
One way to cope with this limitation is to introduce observation equations based
on rotationally invariant features as proposed in [2]. The drawback of this strat-
egy is the apparently poorer performance when compared with the generalized
BCCE on an image sequence with violation of the brightness constancy assump-
tion. In [2] a linear combination of different data terms has been proposed. An
open question is the choice of the relative weight between both data term and
also the choice of the regularization term in this context. This contribution fills
this gap by presenting a method for estimating the optimal weights based only
on the information delivered by the input signal. In the following we propose
alternative illumination change robust feature, the derivative of the logarithm
of the signal. Let us assume that the observed signal factorizes into a signal
that fulfills the brightness constancy assumption and a term that describes the
brightness changes that are not caused by motion. If we consider as a feature
the spatial gradient of the logarithm of the signal ∇ log f = ∇ log γ + ∇ log χ,
the feature separates in the sum of a term that depends on the signal which
variations describe the motion and another term that describe all other bright-
ness changes. Taking the total derivative with respect to the time yields the two
equations

d∇ log f

dt
=

d∇ log γ

dt
+

d∇ log χ

dt
. (7)

If we now assume that χ changes only very slowly in spatial direction, its spatial
derivative becomes approximately zero and since per definition d∇ log γ

dt = 0,
equations (7) lead to the two linear observation equations

hxxux + hxyuy + hxt = 0 ⇔ hT
x uh = 0 (8)

hyxux + hyyuy + hyt = 0 ⇔ hT
y uh = 0 , (9)

where we have defined hi = ∂i log f .
In the next section, the variational formulations of the energy functions are re-

formulated into their statistical equivalent formulation and then the Bayesian ev-
idence framework is presented for estimating the optical flow and model weights
simultaneously.

3 Bayesian Motion Estimation

In a Bayesian formulation (see e.g. [9]), the optical flow is estimated via a pdf
which connects the observable signal or its gradient with the entity of interest, the
optical flow. In order to design such a pdf, we assume a regular grid in space-time
considering only signal values and optical flow vectors on the knots of the grid.
Since N knots in space-time are isomorphic to the Euclidian space R

N , the signal
and the optical flow field can be expressed by a set of vectors. The gradients w of
the optical flow components u as well as the gradients g of the signal components
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s can be written in a compact matrix vector equation w = Hu ∈ R
6N , g =

Ps ∈ R
3N . In the Bayesian framework, not only the measured gradients g =

(g(x1), g(x2), ..., g(xN )), but also the estimated parameters u are considered
as random variables with corresponding pdfs p(u) and p(g), respectively. Prior
knowledge about u is incorporated into the estimation framework via the prior
pdf p(u). The maximum a posteriori (MAP) estimator infers the optical flow
field by maximizing the posterior pdf p(u|g). Using Bayes’ law, the posterior
pdf can be expressed by the likelihood function p(g|u), the prior pdf p(u) and
the gradient pdf p(g)

û = arg max
u

{
p(g|u)p(u)

p(g)

}
(10)

= arg min
u

{− ln(p(g|u)) − ln(p(u))} . (11)

The term in the bracket on the right side of equ.(11) is denoted as the objective
function L. For Gibbs fields with the partition functions ZL(α), Zp(β), the
energies JL(g|u, α) and Jp(u, β) and the corresponding hyper-parameters α, β,
the objective function becomes

L = JL(g|u, α) + Jp(u, β) + ln (ZL(α)Zp(β)) . (12)

Note that we parameterize the likelihood energy by multiple hyper-parameters
α that weigh different observation models and the prior by one prior hyper-
parameter. In the following we describe the likelihood and prior energy for the
case of the optical flow estimation. Subsequently, the Bayesian evidence frame-
work for estimating the hyper-parameters is presented.

4 Likelihood Functions and Prior Distributions for
Motion Estimation

The likelihood function relates the observable input signal s with the optical
flow field u. If errors in the spatial gradients can be neglected compared to errors
in the temporal gradients, the residuum εj of the BCCE’s can be assumed to
be independent of the optical flow field gT

sju + gtj = εj [13]. Modeling each
random variable εj as identical independent distributed, the joint pdf is simply
the product p(εt) =

∏N
j=1 p(εtj) of the individual pdfs whereas each pdf is

modeled by an exponential distribution. The equations (5), (6), (8) and (9)
of the gradient brightness constancy assumption can be reformulated in the
same way leading to the corresponding distributions p(εxt) =

∏N
j=1 p(εxtj) and

p(εyt) =
∏N

j=1 p(εytj), respectively. Due to the linear relationship between the
residuum and the temporal gradients gtj , we obtain the following likelihood
functions

p(gkt|u, gks, αk) =
1

ZL(αk)
exp

⎧
⎨

⎩
−αk

N∑

j=1

ψ1
(
gT

kjuhj

)
⎫
⎬

⎭
, (13)
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where we have introduced g1 = g, g2 = gx and g3 = gy for notational convenient
reasons.If we now assume the different error variables εj, εxj and εyj to be
statistically independent, we can combine all likelihood functions yielding

p({gjt}|u, {gjs}, {αj}) =
3∏

j=1

p(gjt|u, gsj , αj) (14)

Note that the statistical independence between components of the same gradient
is in fact fulfilled, if the temporal gradients are approximated by 1D derivative
filter masks. In that case, the error variables of the GBCCE are linear combina-
tions of error variables of the neighborhood of εj that do not intersect. In the
following, we assume the two hyper-parameters belonging to the GBCCE model
are equal reducing the total number of hyper-parameters to α1 for the BCCE
model and α2 for the GBCCE model.

The prior pdf encodes our prior information/assumption of the optical flow
field. The prior pdf corresponding to the smoothness assumption reads

p(u) =
1

Zp(β)
e−β

∑ N
j=1 ψ2(|wj |2) , (15)

where ψ2 is again a positive symmetric function.

5 Bayesian Model Selection

In order to determine the likelihood hyper-parameters α = (α1, α2, ..., αL) as
well as the prior hyper-parameter β, we extend the evidence approach presented
in [4,5] from one likelihood hyper-parameter to at least theoretical arbitrary
number of likelihood parameters. The reason which allows us for doing so is
mainly based on the assumed statistical independence of the likelihood function
at different positions in space-time. Note that this is only approximatively true
since they are actually correlated due to the overlapping derivative filter masks.
We firstly review the main idea of the Bayesian evidence framework before pre-
senting the extensions in more detail. The evidence framework is based on the
MAP estimation, i.e. maximizing p(α, β|g) of the hyper-parameters using the ev-
idence p(g|α, β) which is in fact the likelihood function of the hyper-parameters
(α, β). Multiplying the evidence with the hyper-parameter prior p(α, β) yields
the joint pdf p(g, α, β) of the gradient field and hyper-parameters that is pro-
portional to the desired posterior pdf p(g|α, β), i.e. we can obtain the MAP
estimate by maximizing also the joint pdf. In the following we assume a con-
stant hyper-parameter prior such that it is sufficient to consider the evidence for
estimating the hyper-parameters. The evidence can be obtained from the joint
pdf p(u, g|α, β) of the gradient field g and the optical flow field u by marginal-
izing over the optical flow field. The hyper-parameters are then estimated by
minimizing the negative logarithm of posterior with respect to α and β for the
present realization of the gradient field g. In [4] the evidence for the likelihood
parameter and the prior hyper-parameters has been derived. In [5] the approach
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has been extended to two prior hyper-parameters. Following the derivation in [4],
we obtain the approximated evidence for multiple likelihood hyper-parameters

p̃(g|α, β, û) =
(2π)N

Z̃L(α)Z̃p(β) detQ
1
2

exp
(
−Ĵ

)
. (16)

where û denotes the optical flow field that maximizes the posterior pdf p(u|g, α, β)
and Ĵ the energy of the joint pdf p(g, u|α, β) taken at û. The matrix Q denotes
the Hessian of the joint pdf energy J(u, g) taken at the maximum of the posterior
pdf p(u|g, α, β). The partition function are analytically tractable

Z̃L(α) ∝
∏

j

α
−N/2
j , Z̃p(β) ∝ β−N (17)

due to the Gaussian approximation of prior and likelihood. Note that since we are
only interested in the functional dependency on the hyper-parameters, we can
get rid of the proportional factors in (17) by maximizing the negative logarithm
of the evidence. Since the computation of the determinant detQ is not feasible
for usual image sequence sizes, a further approximation has to be performed. For
computing detQ, we neglect interactions between different pixels, i.e. Q becomes
block diagonal which is in fact the zero order zone determinant expansion [14]
of the matrix Q. Then the determinant of Q(û, α, β) factorizes into the product
of determinants of Qj(û, α, β) = Aj +Bj . The approximated objective function
for the hyper-parameters then becomes

L(û, α, β) ∝ Ĵ +
1
2

N∑

j=1

ln
(
det Q̂j

)
+

N

2

L∑

n=1

log(αn) + N log(β) . (18)

and the hyper-parameters are estimated by minimizing L. Since û itself de-
pends on the hyper-parameters α, β we have to apply an iterative scheme for
estimating the optical flow field and the hyper-parameters simultaneously, i.e.
we estimate the optical flow for fixed hyper-parameters and estimate then the
hyper-parameters using the previously estimated optical flow. This procedure is
repeated until convergence.

6 Experiments

In this section, the performance of our Bayesian Model selection (BMS) al-
gorithm is presented where we combine either the BCCE (with the likelihood
hyper-parameter α1) with the generalized BCCE (GBCCE) with the spatial
gradient of the signal (with the likelihood hyper-parameter α2) or the spatial
gradient of the logarithm of the signal (with the likelihood hyper-parameter α3).
We applied the energy function ψi(x2) = ξ2

i

√
1 + x2/ξ2

i for all prior and like-
lihood terms where ξi is a free parameter that is to be determined by training
data. For the experiment we used three image sequences, together with their
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Table 1. Results (expressed by the average angular error (AAE)) of the Bayesian
model selection (BMS) experiment with the three image sequences: ’Diverging Tree’,
’Yosemite’ and ’Office’ and the linear combination of two out of three models have
been applied. The image sequences fulfill either the brightness constancy assumption,
obey a linear decrease of the global brightness with three different gradients κ =
0.05, 0.1, 0.15 or an exponential brightness decay with three different decay constants
ζ = 0.025, 0.05, 0.075.

Diverging Tree κ = 0 κ = 0.05 κ = 0.1 κ = 0.15 ζ = 0.025 ζ = 0.05 ζ = 0.075
α1 = 1; α2 = 0 1.11 19.89 38.69 59.51 13.12 22.23 29.39
α1 = 0; α2 = 1 1.56 2.93 5.39 11.59 2.66 3.57 4,43
BMS(α1, α2) 1.28 3.46 6.62 15.72 3.23 4.29 5.57
α1 = 0; α3 = 1 1.49 1.62 1.82 7.17 1.55 1.83 1.99
BMS(α1, α3) 1.27 1.55 1.72 7.54 1.52 1.68 1.77
Yosemite
α1 = 1; α2 = 0 1.84 14.09 31.38 47.25 9.02 17.21 24.73
α1 = 0; α2 = 1 2.07 2.38 3.07 4.38 3.21 3.65 4.15
BMS(α1, α2) 1.72 2.24 3.04 4.66 2.17 2.56 3.02

α1 = 0; α2 = 1 3.12 3.12 3.12 3.12 3.12 3.12 3.12
BMS(α1, α3) 2.19 2.66 2.67 2.67 2.65 2.66 2.66
Office
α1 = 1; α2 = 0 3.28 20.2 31.63 48.54 18.37 26.51 31.77
α1 = 0; α2 = 1 3.77 4.33 5.32 6.87 4.22 4.81 5.41
BMS(α1, α2) 3.21 4.43 6.17 9.37 4.29 5.23 6.36
α1 = 0; α2 = 1 3.68 3.70 3.72 3.79 3.69 3.70 3.71
BMS(α1, α3) 3.66 3.65 3.65 3.72 3.65 3.64 3.64

true optical flow 1: ’Yosemite’ (without clouds), ’Diverging Tree’ and ’Office’.
The derivatives occurring in the BCCE were designed according to [15] and are
of size 9 × 9 × 9. The optical flow u and the hyper-parameters α1, α2/α3 and β
were simultaneously estimated by minimizing the objective function (18).

For performance evaluation, the average angular error (AAE) [16] was
computed. We optimized all free parameters, i.e. the pre-smoothing of the im-
age sequences, the parameter ξi of the energy functions and the prior hyper-
parameter (for cases where the hyper-parameters are not estimated) according
to the known ground truth of the ’Diverging Tree’ sequence. The algorithm is
then applied to the ’Yosemite’ and ’Office’ sequence with this fixed parameters.
We apply the algorithm to the original image sequences and to the image se-
quences that obey either a global linear brightness change with three different
gradients κ = 0.05, 0.1, 0.15 or an exponential brightness decay with the decay
constants ζ = 0.025, 0.05, 0.075. Figure 1 (upper left and upper middle) shows
two consecutive frames of the ’Office’ image sequence with a linear decrease of
brightness with κ = 0.1. The experimental results are depicted in table 1. Note

1 The ’Diverging Tree’ sequence has been taken from Barron’s web-site, the ’Yosemite’
sequence from ”http://www.cs.brown.edu/people/black/images.html” and the ’Office’
sequence from ”http://www.cs.otago.ac.nz/research/vision/” .
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Fig. 1. Upper figures (from left to right): first frame of the ’Office’ sequence; second
frame of the ’Office sequence’ with κ = 0.1; estimated flow field using α1 = 1 and
α2 = 0 for κ = 0; Lower figures(from left to right):estimated flow field using α1 = 1
and α2 = 0 for κ = 0.1; estimated flow field using BMS for κ = 0.1; ratio of both
likelihood hyper-parameters α2/α1 vs. κ for the BMS algorithm.

that the overall brightness change from one frame to another is rather weak but
leads to rather strong erroneous results for the BCCE model (α1 = 1, α2 = 0).
The BMS approach gives the most accurate results when applied to the ’test im-
age sequences’ ’Yosemite’ and ’Office’ when compared to fixed models, i.e. only
one data term is applied, whose parameters have been tuned to the ’Diverg-
ing Tree’ sequence . When the brightness constancy assumption is violated the
BSE method increases the weight of the second likelihood hyper-parameter α2
(see figure 1 lower right) in a wide rage depending on the strength of the bright-
ness change leading also to accurate results. Note that in some cases the GBBCE
model gives more accurate results than the BMS approach for the sequences with
overall brightness changes. But if the optimal model is not known in advance the
proposed method estimates automatically the optimal weights between the two
models - resulting in most accurate results if the BCCE model is fulfilled and
also in most cases in accurate results if the BCCE model assumption is violated.

7 Summary and Conclusion

In this contribution, we presented a Bayesian model selection technique for au-
tomatically determining the optimal weights between two data terms in global
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optical flow methods. We demonstrated the proposed approach with three mod-
els: the brightness constancy assumption and gradient brightness constancy as-
sumption of the signal and its logarithm. Further work will examine the expan-
sion of the proposed method to a larger number of models to be selected or
weighted. Further research will also focus on the application of the method to
the regularization term, i.e. a linear combination of different regularization terms
is applied and the optimal weights should optimally be chosen by the Bayesian
evidence framework.
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