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Abstract. We propose a model-based camera pose estimation approach,
which makes use of GPU-assisted analysis-by-synthesis methods on a
very wide field of view (e.g. fish-eye) camera. After an initial registration,
the synthesis part of the tracking is performed on graphics hardware,
which simulates internal and external parameters of the camera, this way
minimizing lens and perspective differences between a model view and a
real camera image. We show how such a model is automatically created
from a scene and analyze the sensitivity of the tracking to the model
accuracy, in particular the case when we represent free-form surfaces by
planar patches. We also examine accuracy and show on synthetic and
on real data that the system does not suffer from drift accumulation.
The wide field of view of the camera and the subdivision of our reference
model into many textured free-form surfaces make the system robust
against moving persons and other occlusions within the environment and
provide a camera pose estimate in a fixed and known coordinate system.

1 Introduction and Previous Work

Camera tracking is nowadays used in many applications, e.g. robotics, visual
navigation or augmented reality [16,8]. It can suffer from poor localization of
visual features, ill-posed estimation (aperture problem, too small field of view),
drifting references and occluded or moving scene content. To overcome these
issues we propose a fish-eye camera as a visual pose sensor, which captures the
surrounding scene in an offline phase and can then be used in an online phase
for real-time tracking. Fish-eye cameras have the advantage that they have a
very wide field of view compared to a standard perspective camera. Therefore
they always “see” large parts of the static scene even if objects or persons move
and occlude parts of the background and when the camera rotates. Furthermore,
pose estimation is better conditioned than for perspective cameras [9,17,18]. In
our approach, the scene in which the camera moves does not need to be set up
with expensive calibrated markers as in [3] and can therefore be any location
which provides textured surfaces for tracking, e.g. outdoor in front of a building.

During the last years several online camera tracking systems have been pro-
posed: Commercially available systems (e.g. [3]) need special calibrated markers,
fast structure-from-motion [1] is prone to drift on long sequences due to a missing
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absolute reference. Object tracking approaches usually cannot cope with clutter
and occlusion as moving objects or persons within the scene [11]. Other systems
tend to jitter, because they apply fast 2D feature extraction methods to every
single image [5,2], which can suffer from few features or poor feature localization
and have to be regularized by temporal pose filtering. Our system overcomes
these limitations. The key idea is that feature tracking is improved by compen-
sating the features’ appearances with respect to 3D viewpoint and lens effects,
which can efficiently be done on graphics hardware with sub-pixel accuracy. The
approach is separated into an offline and an online phase. During the offline
phase, a very wide field of view camera (e.g. fish-eye with 180◦) is moved within
a scene and a structure-from-motion-approach [1] is applied to reconstruct the
environment as a textured triangle mesh. Since no time-constraints are imposed
during offline-processing, an optimal batch tracking with bundle adjustment and
multi-camera depth estimation is possible, yielding high quality models. Next,
robust 2D features (e.g. MSER [7]) are extracted from reference images, their 3D
coordinates are computed and the features are stored in a database according
to [4]. The textured triangle mesh and the robust features database serve as an
offline reference model.

In the online phase, robust features are extracted from the first image and
matched to the robust features of the offline database similar to [4]. Using
these correspondences an approximate camera pose is estimated for initialization
of the system. Our contribution here focuses on the subsequent tracking part of
the online system: From the approximate pose, we synthesize a fish-eye image
of our offline model using the same (intrinsic and extrinsic) camera parameters
as the real fish-eye camera has (see section 2). We need to minimize the differ-
ence between rendered and real camera image to obtain the correct camera pose.
However, since we want to cope with outliers and moving scene content, we do
not use a direct gradient based approach to estimate the pose parameters as
in [11] but search for local 2D offsets of individual free-form surfaces using the
KLT [6]. From the exact locations of the surfaces in the camera image we can
compute the final camera pose as described in section 3. Section 4 is dedicated to
the evaluation of the system on real and synthetic data followed by a conclusion.

2 Spherical Camera

We propose to use a wide field-of-view camera, e.g. with a fish-eye lens, which
has a nearly linear and isotropic relation between distance in pixels to the prin-
cipal point and the angle between the ray and the optical axis[17]. Fleck [10]
calls this the equidistant projection. A comparison between spherical and per-
spective cameras regarding tracking can be found in [9], who showed that pose
estimation is more accurate with a wider field of view and that the lower angular
resolution of the fish-eye lens is more than compensated by its wide field of view.
Furthermore, such a camera covers a larger solid angle and therefore features can
be seen for a longer period of time in image sequences. Let P () be the function
that computes a 2D image point xi from a 3D scene point Xi, which takes care of
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all internal and external camera parameters of our real camera (CCD size, lens
distortion, camera pose p, ...): P (p, k, Xi) = xi

P is actually composed of extrinsic camera parameters, i.e. the pose p (po-
sition and orientation), and intrinsic camera parameters k, which describe the
mapping of 3D points in the camera coordinate system to image coordinates. The
internal parameters do not change, since they depend only on the lens and the
hardware, we are going to estimate the pose. We describe the internal camera pa-
rameters with the function Kk(), where Kk() maps projection rays in the camera
coordinate system to 2D points in the image depending on a vector of internal
parameters k. Therefore when we measure an image point xi in any camera we
can use K−1

k to compute the ray that maps a 2D image point onto the unit
sphere within the camera coordinate system. We define the mapping from world
coordinates to normalized camera coordinates by P̂ : P̂ (p, Xi) = K−1

k (xi) = x̂i

where P̂ is only a function of the pose and the 3D point. k can be determined by
calibration [13]. If the effects of Kk() are removed from the image measurement,
we compute on rays in the camera coordinate system, which is easily applicable
for all camera models with a single center of projection.

In a similar way we can synthesize fish-eye images using the graphics hard-
ware: Given a camera position, we render 6 perspective views in all 6 directions
(cube-mapping of environment). Afterwards we stitch these images together to
form a fish-eye image (displacement mapping). This exploits again that for each
pixel in the fish-eye image, we know the ray and therefore the coordinates where
a perspective camera observes this ray. This can be efficiently implemented us-
ing OpenGL/CG and runs directly on the graphics hardware. Furthermore we
combine the zBuffer values to produce a spherical depth map in a similar way.

3 Camera Tracking

We will first review the offline model generation process and the general system
aspects, then we will study the online correspondence search and pose estimation.

3.1 Offline Model Generation

During the offline phase a video of the scene is captured systematically by scan-
ning the possible range of viewpoints that will be used during online processing.
In this way we learn a 3D reference model for later use. The intrinsics of the
fish-eye camera are known [13], therefore coordinates in the image can be iden-
tified with rays in the camera coordinate system. First we perform a feature
based reconstruction of the camera path similar to [1] using correspondences
from the KLT tracker [6]. Next we generate depth maps by applying a cylindri-
cal rectification method in 3D (again a way of abstracting from the underlying
camera distortion) to the fish-eye images to use a standard stereo algorithm. The
results are fused to robustify the depth maps (for example see figure 1). From
these depth maps, free-form surface models can be built which are represented
by textured triangle meshes. If a very fine resolution is chosen, the real surfaces
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Fig. 1. Left: 3D view of cube-mapped environment (perspective views) Middle:Fish-
eye image with center, 45◦, 90◦, 135◦ and 180◦ field of view circles, Right: Example of
Reconstructed Fish-eye Depth Map

are approximated quite well at the cost of a huge number of triangles. If on the
other hand a very coarse resolution is chosen, the free-form surfaces are actu-
ally approximated by only few planar patches (triangles), which can be rendered
more efficiently. Those regions which have been tracked well over long time in
the offline phase are obviously visible from several viewpoints and serve as a hint
for the online phase where to register the triangle mesh with the camera image.

The textured triangle mesh is a reconstructive model of the scene: It represents
the scene well in the sense that we can render a virtual view of the scene from
any given viewpoint. However, when the camera is switched on during the online
phase, no prior information is given about the viewpoint and we have to initially
register the camera with respect to the scene, i.e. we also need a discriminative
model. We solve this by creating a database of robust features (e.g. MSER[7])
as described in [4], which allows efficient recognition of scene parts.

3.2 Online Pose Estimation

Once we have set up the model we start the online phase, where the system reg-
isters against the database [4] and begins the tracking. The registration is robust
and needs no approximate pose. However, the subsequent tracking approach is
much faster and also more accurate, therefore the database is only used when
the system is lost.

Correspondences between Image and Model. Given an approximate pose,
the model is rendered and the true pose is computed from the displacement vec-
tors between regions of the rendered image and the real camera image. By using
a fish-eye lens we have all the advantages in visibility and geometrical stability,
however the appearance of the model is quite different between distant camera
poses. Therefore we need the rendering to undistort these effects by warping the
model image into the new viewpoint and allowing to establish correspondences
using standard techniques like KLT. After the free-form surfaces are rendered, we
check geometrically which ones are projected into the virtual image and search
for textured regions with a minimum size (e.g. 7x7 pixels) inside each free-form
surface projection. We save its center point xi and create its corresponding 3D
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Fig. 2. From Left to Right, Top Row: Perspective Depth Map and Two Reduced Trian-
gle Meshes (87724, 6882 triangles), Bottom Row: Ground Truth Fish-eye Image (left)
and Photometric Difference for a sample view from meshes above

point Xi by back-projecting the viewing ray onto the model (using the depth
from the renderer). This delivers a 3D model feature.

We start individual gradient-based minimizations [6] of the intensity differ-
ences at these locations xi between the patches in synthesized and real image.
This is more robust than a gradient-based global optimization of the pose across
the whole image (as in [11]), since several scene parts may be occluded by per-
sons or other unmodeled objects and it is hard to decide within one iteration
step, which pixels should be used and which not. For a whole free-form surface
we can test the projection error to see whether it is an outlier. Furthermore, the
difference minimization is always carried out between a synthesized image and
the actual camera image. This way, the offline model serves as a global refer-
ence and we will not accumulate drift as it would be the case when one tracks
from camera image to camera image. The rendering can be seen as a fish-eye
compensation of the patch for tracking. For simplicity, we use the standard KLT
tracker, since our prediction (the rendered image) is usually very close. However,
if illumination changes occur it is easy to use a more light insensitive version.

Robust Pose Estimation. The resulting 2D-3D correspondences are then
processed in a robust non-linear pose estimator (M-Estimator with Huber error
function h() to limit the influence of mismatches), which starts at the predicted
pose and minimizes the ray error for all 2D-3D correspondences. More precisely,
the position xi and the covariance matrix Cxixi from the KLT tracker in the orig-
inal image are transformed to position x̂i and a covariance Ĉi which is obtained
through an unscented transform[15]. Now the Mahalanobis distance between x̂i
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and the ray of the 3D point is minimized, where the transformed covariance Ĉi

of the tracked point defines the Mahalanobis error metric.
∑

i

h
(
(x̂i − P̂ (p, Xi))T Ĉ−1

i (x̂i − P̂ (p, Xi))
)

→ min

We are looking for the pose p which minimizes the sum of these distances for
all points. Once the pose is computed it is possible to render another fish-eye
image from that pose and performing the KLT step again, this way iterating
towards an even better pose. If and how many iterations are needed depends
on the quality of the pose prediction and therefore mainly on the speed and
smoothness of camera movement and the speed of computation. Within the
camera movement, the rotation is the most critical part, because fast rotations
change the fish-eye image more drastically than fast translations (when assuming
a certain distance from the scene). In [14] it was found that the critical point is
mainly the ability of the KLT tracker to establish the correspondence between
rendered and real image at all and that no significant improvement could be
observed when rendering more than two times.

4 Experiments

In this contribution the focus is on the analysis-by-synthesis part of the tracking,
therefore we assume an approximate initialization in the following evaluation is
given. We will compare the approach based on a synthetic scene for ground truth
and a real outdoor scene.

4.1 Ground Truth Experiments

As synthetic ground truth we used a model of a real living room scene with
real textures as reconstructed by the offline modeling part (see figure 2). The
model is fused from four perspective depth maps of the scene, consists of 1.2
million triangles (the bounding box is about 5m x 4m x 2m) and we generated
a sequence of 350 fish-eye images (140◦ field of view, camera translation about
1.5m, rotation in all directions, where the vertical axis rotations dominate by up
to 80◦) with ground truth pose information.

Sensitivity to Model Accuracy. The accuracy of the pose estimation de-
pends on the goodness of the model used for tracking. Therefore, we compared
rendering speed and average pose estimation accuracy (figure 3) at varying res-
olutions of the triangle mesh for tracking (figure 2). The number of triangles is
reduced from 1.200.000 down to 1.600 by a combination of depth map resolution
reduction and quad tessellation similar to what has been proposed in [12].

The main result of this evaluation is not surprising: With increasing number of
triangles rendering performance goes down; if the GPU resource limit is reached,
real-time tracking becomes infeasible. The pose estimation error decreases about
logarithmically with increasing number of triangles. In the extreme case of only a
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Fig. 3. Model detail in number of triangles. Left: Pure Rendering Frame-rate, Right:
Average Orientation and Position Error on Living Room Sequence.

few triangles the scene is actually represented by planar patches, which showed to
be only usable as long as the underlying scene is planar. Otherwise the rendering
does not fulfill the undistortion goal: the rendered and the camera image look
significantly different and cannot be matched by the KLT tracker. Only those
points are found which actually do lie on planes and are approximated well.

Comparison of different algorithms. The system has been compared
against a) incremental structure-from-motion using the same camera (140◦ FOV)
but no model and b) model-based tracking with a 40◦ FOV perspective cam-
era with the same number of pixels and same number of surfaces (of which the
perspective camera sees not all at once). Pose error is given as position (transla-
tional) error in cm and orientation error in degree (axis-angle representation of
the rotation between the ground truth camera and the estimated camera). The
sequence is run forward and backward, generating a total of 700 frames with im-
age 1 and 700 at identical pose. The results in figure 4 show that the model-based
fish-eye tracking outperforms both other approaches. The error is constantly low
over the complete sequence (average errors: position: 0.3 cm, orientation: 0.1◦).

The structure-from-motion algorithm a) has no prior model and generates the
model on the fly. Therefore, the average pose error is higher than with the model.
Scale was fixed such that the tracking can be compared with the model-based
approaches. Drift does not accumulate very much since all features are visible in
most images, however we see an error increase as the camera moves away from
the initial position. We deliberately left out the bundle adjustment, which would
clearly help, but which is not feasible in real-time applications. Average position
error is about 2 cm, average orientation error 0.3◦.

The perspective model-based tracking b) on the other hand has difficulties in
distinguishing between camera rotation and camera translation, which can be seen
from the high correlation between orientation and translation error in figure 4.
Furthermore it does only see about 100 of the about 500 free-form surfaces in the
model at a given time because of its limited field of view. The errors are much
higher with average position error 4 cm and orientation error 0.8◦.
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Fig. 4. Algorithm comparison on ground truth living room sequence (350 images for-
ward+backward). Left: Fish-eye Model Tracking, Center: Fish-eye Structure-From-
Motion, Right: Perspective Model Tracking (40◦ FOV) with triple error range.

Real outdoor fish-eye sequence. To prove the applicability of our method
we evaluate a real sequence (see also figure 1), which consists of 1400 images
of 1200 × 1600pixels, that were taken with a fish-eye lens covering a viewing
angle of 185◦. The camera was moved handheld and translated approximately
6m sidewards while panning up to 90◦. The filmed buildings were up to 20m
away and 12m in height. The camera path was reconstructed with the structure
from motion approach using the full fish-eye images as explained earlier. The
resulting depth map was used to create a mesh yielding a 3D model of the scene
which consists of 90303 triangles (compare figure 5, left).

Without ground-truth data, the verification of the estimated camera path is
difficult. One way to check for consistent model and camera path reconstruction
is to augment the model into a sequence. The right image of figure 5 shows an
augmentation of the model rendered with the estimated camera parameters. In
order to provide an augmentation which is distinguishable from the background
image, the texture of the model was replaced by its gradient magnitude. While
evaluating the model tracking, the difference images between the original image
and the rendered model view were monitored. This qualitative evaluation showed
that the observable tracking error was in the range of one pixel.

In order to analyze potential accumulation of errors in pose estimation for long
sequences, 360 consecutive images of the real sequence were processed forward
and backwards several times, starting at the middle of the sequence. The central
image position is reached eight times and compared to the first pose, which
should always be the same. Figure 5 shows the extent of this path which is
approximately 2 meters to the left and to the right of the middle camera (green).
Looping through this sequence resulted in 2160 images for tracking. Given the
pose for the first (central) image, the camera poses for this “oscillating” sequence
are estimated using SfM tracking and model based tracking with 400 features
for both. Model based tracking uses only one rendering iteration.

Table 1 (top two rows) compares the error development at the middle image
over consecutive passes of a looped sequence using tracking on fish-eye images,
but without a model. Although the error is not constantly growing with each
pass an error increase is visible. On the other hand the tracking error observed
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Fig. 5. Left: Perspective view on reference model and extent of camera movement used
for drift measurement. The camera is going forward/backward from one end of this path
to the other. It passes the green middle camera, where the pose estimation is compared
to previous and following passes (see table 1). Right: augmentation of model view and
real image using estimated parameters. The texture used for the augmentation is the
gradient magnitude of original texture, strong gradient edges colored in red.

Table 1. Pose error evaluation for a looped image sequence, which passed the image
under inspection eight times. The SfM rows show the position and orientation error
using a structure from motion based tracking and how pose estimation has drifted
when passing this image. The model rows prove the avoidance of error accumulation
when tracking is supported by a model.

pass 1 pass 2 pass 3 pass 4 pass 5 pass 6 pass 7 pass 8
ΔT SfM 2.57 cm 1.92 cm 1.92 cm 2.79 cm 2.41 cm 1.06 cm 3.53 cm 3.22 cm
Δφ SfM 0.098◦ 0.085◦ 0.085◦ 0.11◦ 0.11◦ 0.02◦ 0.13◦ 0.14◦

ΔT Model 0.73 cm 0.82 cm 0.69 cm 0.73 cm 0.84 cm 0.68 cm 0.73 cm 0.81 cm
Δφ Model 0.047◦ 0.047◦ 0.046◦ 0.047◦ 0.048◦ 0.046◦ 0.047◦ 0.047◦

using the model (last two rows) is confined and does not increase over consecutive
passes. This confirms that the system does not drift. Furthermore the pose error
is smaller at all times when compared with the SfM tracking.

5 Conclusion

We have discussed a camera tracking system, which first builds a textured model
from the environment and afterwards uses the model in an analysis-by-synthesis
approach for tracking. The graphics hardware is exploited to render a distortion-
compensated and perspectively warped model image with an approximate pose.
Since this compensates the effects of the wide-angle lens, now full advantage can
be taken of the fish-eye properties, which proved to be superior to perspective
cameras in tracking. It was shown that there is no drift accumulation over time
and therefore the system is well-suited to work on infinitely long image sequences.
The accuracy of the model approximation should fit well the free-form surfaces,
since planar approximations of curved surfaces degrade the accuracy. On current
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GPUs a model complexity of about 100.000 triangles is feasible. We showed the
applicability of the approach by using a model of a real outdoor building and a
semi-artificial living room sequence.
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