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Abstract. The measurement of fluid flows is an emerging field for op-
tical flow computation. In a number of such applications, a tracer is
visualized with modern digital cameras. Due to the projective nature of
the imaging process, the tracer is integrated across a velocity profile. In
this contribution, a novel technique is presented that explicitly models
brightness changes due to this integration. Only through this modeling
is an accurate estimation of the flow velocities feasible. Apart from an
accurate measurement of the fluid flow, also the underlying velocity pro-
file can be reconstructed. Applications from shear flow, microfluidics and
a biological applications are presented.

1 Introduction

Recently, modern techniques of motion estimation have made their arrival in
the field of fluid dynamic measurements. Here, the main emphasis has been on
regularizing the flow field, either by div-curl regularization [1] or by modeling
the flow field based on physical constraints [2,3].

Apart from regularizing the flow field, brightness changes play an important
role in a number of fluid dynamic applications. Often, due to transport phenom-
ena the density of tracers change. The same holds true for temperature fields
in the case of thermographic visualizations. An accurate modeling of these in-
tensity changes based on the transport phenomena is fundamental to achieving
accurate flow estimates. Moreover, apart from the flow field, additional informa-
tion can be extracted from estimating parameters of brightness change models.
These can be the air-water net heat flux from infrared image sequences of the
air-water interface or chemical reactions from satellite remote sensing. These are
important parameters in their own right.

For flow visualization, scalar quantities such as tracer particles or dyes are
added to the flow. Also, heat can be used to visualize interfacial fluid flow.
These scalars are visualized with digital or thermographic cameras, respectively.
Due to the projective nature of the imaging process, the scalar concentration is
integrated along the line of sight of the imaging optics. Depending on the flow
configuration and the imaging set-up, frequently an integration across velocity
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Fig. 1. Flow between parallel plates. The bottom plate is stationary, the upper one
moving to the right at the velocity U . In a an additional pressure gradient dp/dx < 0
is driving the fluid, in b Plane Couette flow is shown (dp/dx = 0).

profiles has to be performed. In the case of parabolic flow profiles this process is
also known as Taylor dispersion [4]. The visualized structures appear to diffuse
anisotropically due to the integration. Very often, this unwanted effect cannot
be circumvented experimentally. In this contribution, general motion models will
be presented that explicitly model the projective process across flow profiles of
different orders. This makes it feasible to accurately estimate the velocity and
reconstruct the three dimensional flow profile at the same time.

Based on the novel motion models, the model parameters are estimated in a
local extended structure tensor framework. If physically based regularization is of
interest to the application, the presented framework can readily be incorporated
into variational frameworks. However, this is not the topic of this contribution.
The novel framework will be applied to shear flow configurations, microfluidics
and biological applications.

2 Flow Profiles

2.1 Plane Couette Flow

The equation of motion for a flow of uniform density ρ is given by the Navier-
Stokes equation for an incompressible fluid [5]:

du

dt
= g − 1

ρ
∇p +

μ

ρ
∇2u = −1

ρ
∇pd + ν∇2u, (1)

where μ is the viscosity and ν = μ/ρ is the kinematic viscosity. g is the accel-
eration of gravity and ∇p is a pressure gradient incident on the fluid. u is the
fluid velocity we are interested in. The dynamic pressure is given by pd = p − ps

and g = 1/ρ · ∇ps results from the hydrostatic pressure for a fluid at rest.
Such a flow is generally driven by a combination of an externally imposed

pressure gradient and the motion of the upper plate at uniform velocity U , as
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Fig. 2. Sketch of a marker in plane Couette Flow during time steps t1 − t4 in a. The
marker is written at time t0. It is sheared due to the flow. Shown in b is the depth
integration of the marker, as visualized with the camera.

shown in Figure 1. The two plates are separated by the distance δ. Applying the
appropriate boundary conditions [5] this results in the equation

u(z) =
z · U

δ
− z

2μ

dp

dx
(δ − z) . (2)

In the case of plane Couette flow, illustrated in Figure 1b, the flow is driven
by the motion of the upper plate alone, without any externally imposed pressure
gradient. For this case, Equations (2) reduces to

u(z) =
z · U

δ
(3)

Plane Couette flow is a very good approximation for a number of shear driven
flows. It can be used to describe the velocity structure at the wind driven sheared
interface between atmosphere and ocean, particularly in the event of a surfactant
covered interface. This is due to the fact that surfactants suppress waves and
can be thought of as a rigid interface.

For a number of scientific and industrial applications, it is of interest to accu-
rately measure the flow and velocity profile of the plane Couette flow. This is a
straightforward task when the flow is accessible from the side (along the y-axis
in Figure 1). In this case the velocity can be measured at a range between the
two plates and the gradient with respect to z computed.

Very often, it is not possible to measure the fluid flow in this fashion, since
the flow is not accessible from the side. This can either be due to the minute
separation of the plates in microfluidic applications or because a very small
boundary layer is modulated by relatively high waves at the air-water interface.

The velocity profile in plane Couette flow is given by Equation (3). This leads
to the time dependence x = z

δ U · t = z
μτ · t of the position of a marker attached

to the flow at t = t0 = 0. Here the viscous shear τ is given by τ = μ/δU .
It shall be assumed that the fluid elements are marked at time t0 = 0 with an

appropriate technique. For microfluidic applications, such a technique relies on
the activation of caged dyes with a XeF Excimer laser. At the air-water interface,
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Fig. 3. A sketch of the intensity profile of the dye for a Poiseuille flow at three times
t1-t3 is shown in a together with the velocity profile v(z). The projection of these
profiles onto one plate as seen by the camera is shown in b.

water parcels are heated up with ca CO2 laser and visualize with an infrared
camera. Without taking the Lambert-Beer law into consideration and thus no
attenuation with depth, the marker highlights a homogeneous three dimensional
structure inside the viscous boundary layer. A sketch of such a structure is
presented in Figure 2a.

Once the structure is written at time t0, it is sheared due to the velocity profile
as indicated in the same figure in successive time steps t1 − t4. In the imaging
process the dimension of depth z is lost through integration. The projection of
intensities I onto the surface at z = δ is given by

I(x, t) =
∫ δ·x

U·t

δ·(x−c)
U·t

1 dz =
x · δ

t · U − (x − c) · δ

t · U =
c · δ
t · U

=
μ · c

t · τ
(4)

Here c denotes the width of the area marked, as can be seen in Figure 2.
Differentiating Equation (4) with respect to time leads to

dI

dt
=

d

dt

(
c · δ
t · U

)
= −1

t
I. (5)

Estimating the velocity of the intensity structures subject to a plane Couette
type shear flow with a linear velocity gradient can thus be computed by solving
the differential equation dI/dt = −(t)−1I which can be written in an extension
of the well known brightness change constraint equation (BCCE) [6] as

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= −1

t
I. (6)

Rewriting this equation in vector notation leads to

dI

dt
= d� · p =

[
1
t I

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0 . (7)

This equation can be thought of as the motion equation of density structures
visualized through integration across a plane Couette type flow.
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a b

Fig. 4. In a and b two frames of a microfluidic image sequence are shown. The impli-
cation of Taylor dispersion can be clearly observed. Structures seem to diffuse in the
direction of fluid flow [7].

2.2 Plane Poiseuille Flow

In Poiseuille flow, the configuration is similar to that of Couette flow. Once
more, a fluid is bounded by two infinite plates separated by a distance δ = 2 · b.
However, for Poiseuille flow both plates are stationary (Uδ = U0 = U = 0)
and the flow is driven only by a pressure difference dp/dx. In this configuration,
Equation (2) reduces to

u(z) = − z

2μ

dp

dx
(δ − z) = − z

μ

dp

dx

(
b − z

2

)
=

a

2
z2−a·b·z with a =

1
μ

dp

dx
. (8)

This type of flow and the associated quantities are visualized in the sketch of
Figure 3 a.

Similar to plane Couette flow as presented in Section 2.1, plane Poisseuille
flow has a broad range of applications, especially in microfluidics. In these types
of applications it is important to measure the velocity of fluid parcels in between
parallel plates. However, due to the boundary conditions of the microfluidic
devices, it is not possible to visualize the cross section of the flow. A marker
such as a caged dye is introduced into the fluid and a pattern is written to the
fluid at time t = 0. In later times, this structure is sheared by the parabolic
velocity profile developed by the Poiseuille flow. The 2D cut of this process is
shown for three time steps t1-t3 in Figure 3a. Through this projection, it appears
as though the structure written to the fluid is smeared in the direction of the
fluid flow over time. This process which might appear similarly to anisotropic
diffusion, is also known as Taylor dispersion [8]. An image of this type of process
can be seen in Figure 4.

The marker is visualized through one of the plates, leading to an integration
of the dye with respect to depth z. This results in

I =
∫ b±

√
b2+ 2(x+c)

at

b±
√

b2+ 2x
at

1dz =

√
b2 +

2 · (c + x)
a · t

−
√

b2 +
2 · x
a · t . (9)
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The projected intensity structure is given by Equation (9). This structure can
be developed in a Taylor series around t = 0. This results in

I =

√
2
t

(√
c + x

a
−

√
x

a

)
+

b2
√

t

2
√

2

(√
a

c + x
−

√
a

x

)
+ O

(
t3/2

)
. (10)

Differentiating the first term of the expansion in time leads to

dI

dt
=

d

dt

(√
2
t

(√
c + x

a
−

√
x

a

))
= − 1

2t
I. (11)

Estimating the velocity of the intensity structures subject to Taylor dispersion
can thus be computed by solving the differential

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

2t
I. (12)

This linear differential equation can be rewritten in vector notation which
leads to

dI

dt
= d� · p =

[
1
2tI

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0. (13)

2.3 n-th Order Velocity Profiles

For a number of fluid flow configuration, the velocity profile can be approximated
to leading order by

u(z) = A · zn, (14)

where A is a term independent of z and t. The integration across the profile
results in

I =
∫ n

√
x

A·t

n
√

x−c
A·t

1 dz = n

√
x

A · t
− n

√
x − c

A · t . (15)

Differentiating this expression with respect to time directly leads to the fol-
lowing differential equation

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

n · t
I, (16)

which can be written in vector notation giving

dI

dt
= d� · p =

[
1
ntI

∂I
∂x

∂I
∂y

∂I
∂t

]
·
[
1 u1 u2 1

]� = 0. (17)

It is quite easy to see that this is a generalization of the previous cases of plane
Couette flow (n = 1), compared to Equation (6) and (7) and of plane Poiseuille
flow (n = 2), compared to Equations (12) and (13).
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Fig. 5. In a a sketch of velocity profiles v(z) ∼ zn with n ∈ {2, 4, 6, 10, 20, 60}. The
higher the order n the better the approximation of a constant profile as shown in b. In
the xylem of plants, the flow can be approximated by a number of small hollow tubes
with a Poiseuille flow in between, as shown in b.

The both relevant flow configuration between parallel plates discussed so far
have been plane Couette flow and plane Poiseuille flow. It might seem superfluous
to expand the model to n-th order. However, there are flows for which higher
order flow profiles are relevant. In Figure 5a the velocity profiles for a range of
higher order models is sketched. It becomes apparent, that the central part of
the profile becomes increasingly flat. Choosing ever higher order up to lim

n→∞, we
end up with a constant velocity profile with sharp edges. Water carrying tissue
in plants can be approximated by an array of Poiseuille flows as sketched in
Figure 5b. For an increasing number of such small ”‘pipes”’, this flow can be
approximated by this lim

n→∞ flow.

It is interesting to note that the motion Equations (16) and (17) reduce to

dI

dt
= u1

∂I

∂x
+ u2

∂I

∂y
+

∂I

∂t
= − 1

n · t I, and
lim

n → ∞ dI

dt
= 0, (18)

which is the standard BCCE [6]. This means that in the case of a constant veloc-
ity profile with depth, integration over depth does not matter and the standard
BCCE can be used for estimating velocities of projected quantities. Intuitively
this does make sense and is quite an expected behavior.

3 Parameter Estimation

The technique of simultaneously estimating optical flow and change of image
intensity is well known in literature [9,10,11,12]. Details of the technique em-
ployed in the context of this manuscript are an extension of the structure tensor
approach [13] and have been explained previously [14]. Accuracy improvements
were introduced in [15] and [16].

Basically, the relevant constraint equations (7), (13) and (17) provide one
constraint in two unknowns leading to an ill-posed problem. This can be solved
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Fig. 6. a Relative error for Gaussian test sequences with two different velocities (u1 =
0.625 pixel/frame and u2 = 1.25 pixel/frame) and varying noise levels. b Comparison
of measured values (red circles) compared to ground truth measurement (solid blue
line). Error bars: deviations in three successive frames. c Measurements conducted in a
small wind wave facility. d Perfusion measurements of the center vein of a ricinus leaf.

from additional constraints. A commonly made assumption is that of a locally
smooth motion field. Therefore, the aforementioned constraint equations can
be pooled over a local neighborhood, leading to an overdetermined system of
equations. This system can be solved for the parameter v using a weighted total
least squares approach [17].

4 Applications

In order to test the presented motion models, test measurements were performed.
First, the basic applicability was tested on synthetic sequences. The injection of
a tracer into Couette and Poiseuille flow was modeled and the integration was
performed. The distribution of the tracer in the projection plane was modeled
to be a 2D Gaussian. This test pattern was corrupted with normally distributed
noise of varying standard deviation. Also different flow velocities were simu-
lated. The results of these measurements are shown in Figure 6a for the case of
Poiseuille flow. It should also be noted that the velocity computed is that of the
center layer in between the two plates. From this center plate velocity, the full
flow profile can be reconstructed.
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Apart from measurements on simulated data, the technique was also tested
on real world measurements with ground truth. To test the performance on mi-
crofluidic flow, a spatially homogeneous pressure driven flow was set up in a mi-
crofluidic chamber [18]. Ground truth was derived from accurate measurements
of the water flow through the chamber. Results are presented in [7] and reca-
pitulated in Figure 6b. The slight bias in some measurements can be attributed
to calibration errors of the flow meter [7]. The data points were measured by
integrating over the center part of three frames. The standard deviation was com-
puted over the same area of the three frames. It can clearly be seen that there
exists a good agreement between measurement and ground truth. For most data
points, the ground truth value is well within the error bar.

At the air-water interface, measurements have been conducted by heating up
patches of water with an CO2 laser leading to similar patterns as in the microflu-
idic case. From the velocity profile of Couette flow, the shear at the interface
can be computed leading to the friction velocity u�, an important parameter for
parameterizing air-water interactions. This parameter has been measured with
an alternative instrument for ground truth. The comparison of these measure-
ments is presented in Figure 6c. These measurements have been the first time
that this parameter could be measured directly [19]. The difficulty of measuring
this parameter is reflected in deviations to the standard measuring technique.

Similar to the microfluidic application, ground truth measurements have been
performed in a botanical applications [20]. The leaf of a ricinus plant was perfused
and thus the pressure driven water flow through it was measured. A CO2 laser
was used for writing patterns on the leaf and these patterns were visualized with
an infrared camera. The velocity of these structures were measured and compared
to the perfusion measurements. The results showing excellent agreement are
presented in Figure 6d for different flow velocities [20].

5 Conclusion

In this contribution, motion models were presented incorporating brightness
changes due to the integration of a tracer across velocity profiles. These mod-
els connect the motion of an object in the scene with gray value changes in
the acquired image sequences. This brightness change is very similar in appear-
ance to anisotropic diffusion. Expressions for first- and second-order flow profile
have been developed as well as general n-th order profiles. Applications of these
models were presented, including shear flow at the air-water interface, Poiseuille
flow in pressure driven microfluidic applications and an n-th order model in an
botanical application. The validity of the presented motion models was tested
on simulations as well as on ground truth image sequences. The parameters of
these motion models were estimated in a local structure tensor approach. Only
through this approach is the accurate estimation of fluid flow possible. This
made the presented applications feasible for the first time. This framework can
be readily extended to incorporate physically based regularization to increase
accuracy of the results further.
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