
A Generic, Self-organizing, and Distributed
Bootstrap Service for Peer-to-Peer Networks

Michael Conrad and Hans-Joachim Hof

Institute for Telematics, Universität Karlsruhe (TH), Germany
{conrad,hof}@tm.uka.de

Abstract. In many scenarios, self-organization is the driving force for
the use of a peer-to-peer (p2p) network. However, most current p2p net-
works are not truly self-organizing, as little attention has been paid on
how new nodes join a p2p network, the so-called bootstrapping. Current
p2p network protocols rely on prior-knowledge of nodes like a list of
IP addresses of bootstrap servers or like a list of known peers of a p2p
network. However, this kind of prior knowledge conflicts with the self-
organization principle and the distributed character of p2p networks. In
this paper, we present the design of a generic, self-organizing, and dis-
tributed bootstrap service which can be used to bootstrap p2p networks of
arbitrary size, even very small, private p2p networks. This bootstrap ser-
vice works in today’s Internet and it can be easily integrated into existing
p2p applications. We present an evaluation of the proposed bootstrap-
ping service showing the efficiency of our approach.

1 Introduction

Nowadays, peer-to-peer (p2p) networks are used in many applications, e.g. for
VoIP, Instant Messaging, or filesharing. For most of these applications, decen-
tralized control and self-organization are desired. However, most current p2p net-
works do not achieve true self-organization or true decentralized control because
they often use well-known central servers or a list of known p2p network member
nodes to bootstrap new nodes. In this paper, we propose a generic, distributed
and self-organizing bootstrap service which allows nodes to join into arbitrary
p2p networks. The proposed bootstrap service itself uses a p2p network, the
bootstrap p2p network, for distributed storage of bootstrap information. The
bootstrap information may include nodes which can be used to join the p2p
network of the corresponding p2p application. For example if the user of a file-
sharing application starts the filesharing client for the first time, the client joins
the bootstrap network and retrieves bootstrap information for the filesharing
network. Then, it joins the filesharing network itself. Of course, this approach
only shifts the problem of joining a p2p network to joining the bootstrap p2p
network.

However, if the bootstrap service is implemented in more than one applica-
tion, synergy effects may be used to join the bootstrap network. The synergy
effect results from the larger number of nodes in the bootstrap network, which

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 59–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 M. Conrad and H.-J. Hof

occurs because all nodes join the same bootstrap p2p network. One method for
bootstrapping is Random Address Probing, which probes randomly chosen IP
addresses to find active nodes. These nodes are used to establish initial contact
with the p2p network. We use Local Random Address Probing for the boot-
strapping of the bootstrap p2p network. While Random Address Probing may
be successfully used by very large p2p networks, it is not efficient for small to
medium networks, as many probes are necessary. To evaluate the performance of
our bootstrap p2p network, we collected real world data about the distribution
and number of peers of a deployed, large p2p filesharing network (eDonkey).
Assuming that all eDonkey clients would use our bootstrap service, we evaluate
the performance of our protocol.

This paper is structured as follows: in section 2, requirements for a bootstrap
service are defined. Section 3 reviews related work. In section 4, the design of
our generic, distributed, and self-organizing bootstrap service is presented. The
bootstrap service is evaluated in section 5. Section 6 concludes this paper.

2 Requirements for a Generic Bootstrap Service

A generic bootstrap service for p2p applications and p2p networks must fulfill
the following requirements:

– Self-Organization and Distributed Control (R1):
A p2p network can only be self-organizing if every network protocol step,
including the bootstrapping, is self-organizing. To support the distributed
character of most p2p networks, a bootstrap service may not rely on prior
knowledge (e.g. a list of IP addresses of bootstrap servers).

– Heterogeneity (R2):
A decentralized bootstrap service should support p2p networks of arbitrary
size and function. The service should provide bootstrap support for very
small (private) p2p networks, only consisting of a few nodes, as well as for
huge p2p networks with up to millions of active nodes.

– Scalability and Robustness (R3):
The decentralized bootstrap service itself should scale well with an increasing
number of nodes. The bootstrap service should also scale with the number of
participating networks which is especially important if the bootstrap service
is used to bootstrap a huge number of small, private p2p networks. The
bootstrap service should work as expected, even in case of malfunction of
several nodes.

– Practicability (R4):
The bootstrap service should be designed for today’s Internet. Hence, the
bootstrap service may not rely on currently undeployed protocols like mul-
ticast etc.

– Seamless Integration (R5):
It should be easy to integrate the bootstrap service into an existing p2p
application.

A Generic, Self-organizing, and Distributed Bootstrap Service 61

– Modularity and Extensibility (R6):
A bootstrap service should be extendable to be able to react on changes
of the network environment and to react on innovations. If, for example,
multicast gets widely deployed in the Internet one day, it should be easy to
extend the bootstrap service.

In this paper, we do not consider other requirements like privacy issues of the
bootstrapping service etc.

3 Related Work

Cramer et al. [1] compare different bootstrapping techniques for p2p networks,
including static bootstrap servers, out-of-band node caches, random address
probing, and network layer mechanisms using any- or multicast. The results
of the Random Address Probing method are of interest for our work. We en-
hance this mechanism for the proposed bootstrap service. The focus of [1] is
on locality aware bootstrapping to offer an optimal topology for the join of new
peers. However, no detail is given about the design of a generic bootstrap service.
We fill this void with the proposed bootstrap service.

The idea of a generic bootstrap service for p2p networks was already discussed
in [2] and [3]. The first paper is proposing an approach relying on a distributed
hash table running on top of a structured overlay network, whereas the second
paper uses a prefix based routing on top of a structured overlay network. The
universal ring, which was proposed in [2], relies on a distributed hash table to
store and query informations about services and to provide bootstrap informa-
tion to use these services. While this approach can be used to provide bootstrap
support for p2p networks, it does not meet some of the requirements of section 2:
At first, the requirements R1 (Distributed Control) and R4 (Practicability) can
not be met. To join the universal ring, a server or a globally known multicast
address are used. A central server is prohibitive and multicast is a mostly unde-
ployed technology in today’s Internet. In addition, the scalability of the proposed
for huge peer-to-peer networks seems unclear. Providing bootstrap support for
large p2p networks using a distributed hash table results in storage of a huge
amount of data on a very small set of nodes, hence overloading these nodes. In
our opinion, a special distribution of bootstrapping information for huge peer-to-
peer network is necessary to avoid overloading nodes of the bootstrapping nodes.
The paper [3] lacks information on how nodes join the bootstrap service. The
authors propose to use the NEWSCAST protocol [4] for data storage instead of
a distributed hash table. As NEWSCAST relies on multicast, it does not meet
requirement R4 (Practicability).

Even existing public peer-to-peer frameworks like JXTA [5] use static boot-
strapping nodes (so-called seeds) to integrate new nodes into the peer-to-peer
network. The JXTA framework also includes decentralized bootstrapping sup-
port using multicast, however due the missing deployment of multicast in the
Internet infrastructure, this method is inapplicable for the use in the public
Internet.

62 M. Conrad and H.-J. Hof

4 Design

This sectionpresents thedesignof theproposedgeneric,distributed, self-organizing
bootstrap service. The design meets all requirements of section 2.

4.1 Overview

Instead of creating a stand alone bootstrap mechanism for each existing peer-
to-peer network (p2p network) we propose a single dedicated p2p network for
the bootstrapping of all peer of arbitrary p2p networks. This so called bootstrap
p2p network provides bootstrap information for peers which want to join a p2p
network. Our bootstrap p2p network provides a service similar to the domain
name system (DNS): while DNS resolves domain names to IP addresses, our
bootstrap p2p network resolves p2p network names to bootstrap information
(which is in most cases an IP address of a peer or a list of peers already connected
to the p2p network). These bootstrap information can be used by a node to join
the p2p network. After successfully joining a p2p network, the peer publishes
bootstrap information to the bootstrap p2p network to supporting queries for
bootstrap information for future peers. The peer also joins the bootstrap p2p
network itself.

A dedicated bootstrap p2p network shifts the problem of joining an arbitrary
p2p network to joining the bootstrap p2p network. However, as only one boot-
strap p2p network exists for all p2p networks and all peers join the bootstrap
p2p network, the bootstrap p2p network is larger than any other p2p network,
allowing bootstrapping techniques, which are prohibitive for smaller networks,
for example Random Address Probing. Especially very small p2p networks con-
sisting of only tens or hundreds of peers can profit from this bootstrap p2p
network, but it is also of benefit for large p2p networks because it simplifies the
initial deployment of any p2p network.

4.2 Components of the Bootstrap Service

To achieve a flexible and extensible design our bootstrap service consists of two
separate modules: The first module implements the initial bootstrapping of the
bootstrap p2p network. The second module is responsible for providing bootstrap
information (like a list of IP addresses of active peers) to nodes which want to
join a distinct p2p network. Figure 1 shows the public interface and the schematic
composition of the bootstrap service.

The public interface of the bootstrap service offers two methods. The method
lookup(name) is used by a new node to search for bootstrap information of a
p2p network whose identifier is name (e.g. ed2k for eDonkey peers). The method
returns a list of BootstrapData objects. Each of these object contains a boot-
strap information record (e.g. the IP address of one active node of the p2p
network). After a node successfully joined a p2p network, it uses the method
publish(name,info) to publish bootstrap information (info) about the p2p
network name.

A Generic, Self-organizing, and Distributed Bootstrap Service 63

BootstrapService

publish(name, info)

lookup(name) BootstrapManager

 BootstrapPlugin

BootstrapStorage

BootstrapCache

LocalAddressProbing
BootstrapPlugin

AnycastBootstrapPluginXXXBootstrapPlugin

Fig. 1. Schematic composition of the bootstrap service

Every bootstrap service instance runs the BootstrapManager, which is
responsible for the initial bootstrapping of the bootstrap p2p network. The
BootstrapManager offers the interface BootstrapPlugin to support plugins to
meet requirement R6 (Modularity and Extensibility). Each plugin implements
one distinct bootstrap mechanism, e.g. Random Address Probing. Plugins are
not limited to pure self-organizing bootstrapping methods. For example, there
may be bootstrap plugins which use a node cache, or there may even be server-
based plugins. However, it is recommanded to offer at least one self-organizing
bootstrap plugin as fallback to maintain the self-organizing character of the
boostrap service.

The component BootstrapStorage is responsible for storing bootstrap infor-
mation. The proposed bootstrap service uses a soft sate approach, hence old
bootstrap information will be deleted after a given time. The component Boot-
strapCache is used by the bootstrap service to cache information about peers of
bootstrap p2p network to simplify the bootstrapping in case of a reconnect to
bootstrap p2p network.

The design of the proposed bootstrap service does not contain any constraints
about programming languages or other programming paradigms. Therefore, it
can be integrated into arbitrary p2p applications. Hence, seamless integration
(requirement R5) can be achieved. We expect that the easy and seamless inte-
gration will lead to a rapid deployment of our bootstrap service, especially if the
open source community can be convinced to use the bootstrap service. Hence,
the critical mass for the bootstrap service can be easily achieved.

The following sections give a detailed overview of the two modules Bootstrap-
Manager and BootstrapStorage.

4.3 BootstrapManager: Bootstrapping of the Bootstrap p2p
Network

In our proposed bootstrap service, the BootstrapManager is responsible for the
initial bootstrapping of a new node. To join the bootstrap p2p network, the
BootstrapManager instance of the bootstrap service running on the node may
uses one or more of its bootstrap plugins to join the bootstrap p2p network.

64 M. Conrad and H.-J. Hof

A number of different bootstrapping techniques are possible. Starting from
simple bootstrapping plugins, which query static bootstrap servers (hence do not
meet requirement R1), plugins using multicast or anycast based bootstrapping
(AnycastBootstrapModule) (hence not meeting requirement R4) are possible.
To meet all the requirements of section 2 (especially Practicability (R4)) a more
advanced bootstrapping technique is needed. We propose to use Local Random
Address Probing, a variant of Random Address Probing, as the default boot-
strap technique. Random Address Probing sends probe messages to random IP
addresses hoping to find one active peer of the desired p2p network. The perfor-
mance of Random Address Probing [1] strongly depends on the number of peers
and the distribution of these peers in the IP space. For most p2p networks, Ran-
dom Address Probing is prohibitive because these networks do not have enough
users, resulting in a very poor performance of Random Address Probing.

However, the proposed bootstrap service uses the bootstrap p2p network,
which is potentially very large. Hence, Random Address Probing may be used.
Local Random Address Probing is similar to the classical Random Address Prob-
ing, but instead of probing IP addresses uniformly distributed over the complete
IP address space, the Local Random Address Probing limits the probed IP range
to the local range around the current IP address of the user. This behavior of
Local Random Address Probing improves the performance of Random Address
Probing because local communication may be faster than remote communica-
tion and because the distribution of p2p nodes may not be uniform. Hence, the
improved performance of Local Random Address Probing is partly based on the
assumption that most users of p2p applications are private users which get Inter-
net access via dialup networks (DSL, cable). Hence, we expect a higher locality
of p2p users in dialup networks than in other network ranges. We verify this
assumption in section 5.1. We exploit the higher density of p2p network peers in
dialup networks to further improve the performance of the initial bootstrapping.
Using Local Random Address Probing for our bootstrap service, requirements
R1 and R4 can be met as there are no more dependencies to a central infras-
tructure. In contrast to other bootstrap services (see section 3), our proposed
bootstrap service can be deployed in today’s Internet.

4.4 BootstrapStorage: Efficient Distribution of Bootstrap
Information

Regarding the potentially large number of nodes in the bootstrap p2p network,
the distributed management must be very efficient to avoid overloading of peers.
Management duties includes storage of potentially many published bootstrap
information and an efficient search for existing bootstrap information. These
requirements can be met by using distributed hash tables based on structured
overlays like Chord [6], CAN [7] or Pastry [8]. Distributed hash tables offer a
distributed storage of data and an efficient search. They scale well with an in-
creasing number of peers. Another advantage of structured peer-to-peer overlays
is a common abstract interface described in [9]. Hence, the bootstrap service

A Generic, Self-organizing, and Distributed Bootstrap Service 65

BI
BI

BI
BI
BI

BI
BI
BI

BI
BI
BI

BI

no salt salt

Fig. 2. The use of a salt value for our bootstrap service

can be implemented independent from the used overlay network, offering the
possibility to change it later.

The BootstrapStorage module uses the put(key,data) method to store boot-
strap information in the bootstrap p2p network. The bootstrap information data
is stored under the key key. The key is calculated from the name of the p2p
network. The bootstrap information can be retrieved using the data=get(key)
method. Both methods are provided by the common API of [9]. However, the
usage of these methods implies, that all bootstrap information for one distinct
p2p network is stored under the same key, as the key is derived from the name
of the p2p network in which a peer wants to join (e.g. “ed2k” for eDonkey).
Figure 2 (“no salt”) shows this problem. Regarding very large networks like the
eDonkey filesharing network, it is clear, that the bootstrap information of this
network would surely overload the peer of the bootstrap p2p network which
stores all bootstrap information. We propose an adaptive algorithm for a better
distribution of bootstrap information over the bootstrap p2p network:

Instead of using only the name of the requested p2p network we propose to
include an additional random value, the so called salt, in the calculation of the
key. The key is calculated using the name of the p2p network concatenated with
the salt as input of a hash function H:

key = H(name + salt)

Using this generation of the key results in a uniform distribution of bootstrap
information of one distinct p2p network across the whole bootstrap p2p network.
To search for bootstrap information, a node randomly selects a salt, calculates
the key and queries the bootstrap p2p network for that key. While the improved
distribution avoids overloading single peers of the bootstrap p2p network, it is
not suitable for small p2p networks, as the probability of a successful search
query is very small, hence resulting in many search queries with different salts.
To provide a solution for this problem, we propose an Adaptive Salt Window
Algorithm, which is able to adjust the distribution of bootstrap information
automatically to the size of the particular p2p network without knowing the
number of peers. The Adaptive Salt Window Algorithm uses an interval (the so

66 M. Conrad and H.-J. Hof

01 publish(name, info) { lookup(name) {
02
03 for(window=0, i=n; i>3 && window==0; i--) { for(i=n; i>3; i--) {
04 salt = random(2^i); salt = random(2^i);
05 key = hash(name + salt); key = hash(name + salt);
06
07 result = p2p_lookup(key); result = p2p_lookup(key);
08
09 if (|result| >= 10) { // sufficient data available if (|result| > 0) { // data available
10 window = i + 1 // increase window return result
11 } else if (|result| > 0) { // data available }
12 window = i; }
13 }
14 } for(i=0; i<8 && |result|==0; i++) {
15 key = hash(name + random(8));
16 salt = random(max(2^window, 8));
17 key = hash(name + salt); result = dht_get(key);
18 }
19 dht_put(key, info); return result
20 } }

Fig. 3. Pseudo code of publish and lookup

called Salt Window) in which all salt values are contained. The Salt Window is
adapted to the current number of peers of the p2p network. Small p2p networks
only have a small window, whereas large p2p networks have a large window.

Figure 3 shows the pseudo code of the publish method and of the lookup
method using the Adaptive Key Window Algorithm.

The publish method and the lookup method both automatically detect the
current Salt Window size of the requested p2p network. The publish method
starts with a maximum length interval of [0, 2n] in which a random salt is con-
tained. In each step, the publish method halves this interval and tries to retrieve
data using the name of the p2p network and a random salt in [0, 2i]. This step
is repeated unless bootstrap information is found. The corresponding interval
is the Salt Window used for the storage of the bootstrap information. The size
of the Salt Window is slightly adopted if more than 10 values to allow for an
increase of the Salt Window size.

When a node uses the lookup method to query for bootstrap information of
a p2p network the range of the salt value starts from the maximum value and
will be halved until one valid bootstrap information was found.

The adaptive adjustment of the key window guarantees the support for arbi-
trary p2p network independent of their number of peers. It prevents overloading
single peers hence results in an efficient storage of bootstrap information. The
Adaptive Salt Window Algorithm allows to react on an increasing or decreasing
number of peers. If the number of peers changes significantly, the Salt Window
will be resized with high probability. Therefore the proposed bootstrap service
meets requirements R2 (Heterogeneity) and R3 (Scalability and Robustness).
Other load balancing mechanisms will be addressed in future work.

5 Evaluation

In this section, we evaluate the performance of the proposed bootstrap service
which uses Local Random Address Probing for the initial bootstrapping of the
bootstrap p2p network. We also analyze the scalability of the bootstrap p2p
network.

A Generic, Self-organizing, and Distributed Bootstrap Service 67

5.1 Performance of Local Random Address Probing

In section 4.3 we assumed a non-uniform distribution of p2p network users in
the IP address space. Furthermore we assumed, that computers connected to
the Internet via dialup networks (e.g. DSL, cable) have a higher probability
of running a p2p application than computers in the rest of the Internet. In
this section, we provide strong evidence that these assumptions are justified.
To verify these assumptions, we measured the distribution of active nodes of the
eDonkey network1, one of the biggest filesharing networks in Germany today. By
inspecting a real-world p2p network, we provide a lower bound for the expected
performance of the proposed bootstrap service, because we expect several p2p
networks and not just one to integrate our generic, distributed and self-organizing
bootstrap service. The eDonkey protocol runs as default on Port 4662. To detect
eDonkey nodes, we used nmap2 to perform a TCP SYN scan on port 4662.
This scan provides a lower bound of active eDonkey nodes because it scans only
for the default port. However, it is easy to change the default port and some
users do this to prevent rate regulation of their provider. We also do not take
the blocking of the default port into consideration, which is done sometimes by
several Internet service providers.

We limit our examination of active eDonkey nodes to the German IP address
space to avoid distortion of the results by different time zones and similar effects.
We use the public daily database snapshot of the European Internet Registry
(RIPE)3 to get the currently allocated IP address space of Germany. In April
2007 this list contained about 160.000 IP ranges allocated with the German
country code. These IP ranges are equivalent to 450.000 /24 networks, each net-
work containing about 250 valid IP addresses. We used this list (GIPL, German
IP List) as basis of our experiment. The list of German dialup networks (GDUL,
German dialup network List) was created manually from a set of 38 dialup IP
ranges, consisting of 29.000 /24 networks.

The experiment itself runs on a standard desktop computer connected via 100
MBit Ethernet to the campus network. Every 6 minutes a set of 5 /24 networks
was extracted randomly from both lists (GIPL and GDUL). Each of these 5
networks was scanned for active eDonkey nodes as described above. Starting
from the given network address, nmap was configured to scan the corresponding
/20 network, which consists about 4000 valid IP addresses.

Our experiment was running from April 10th till April 18th. We scanned
21.600 /20 networks (containing 80 million ip addresses) for active eDonkey
nodes, 10.800 from each of the lists (GIPL and GDUL).

Probing ranges from GIPL, 2.987 out of 10.800 probes found at least one
active eDonkey node, whereas 9.193 out of 10.800 probes in the range of GDUL
found active eDonkey nodes.

From over 1.100.000 online computers found in networks of GIPL only 4.39%
(48.525) run the eDonkey software. The probing of the dialup networks of GDUL
1 original website down, see http://en.wikipedia.org/wiki/EDonkey2000
2 network mapper - website: http://insecure.org/nmap
3 website: http://www.ripe.net/ripe/index.html

http://en.wikipedia.org/wiki/EDonkey2000
http://insecure.org/nmap
http://www.ripe.net/ripe/index.html

68 M. Conrad and H.-J. Hof

discovered about 880.000 online computers out of which 11,46% (100.781) were
identified as active eDonkey node.

These results show that the distribution of p2p applications in dialup network
is higher than in other networks. Hence, our assumptions are justified at least
for the eDonkey network. Furthermore, in over 85% of probed dialup networks
of GDUL at least one active eDonkey node was found whereas this is the case
for only 27.65% of networks in GIPL. At the same time, the amount of active
eDonkey nodes in dialup networks is twice higher than in other networks.

Figure 4 shows the distribution of eDonkey nodes across online computers for
random networks (GIPL) and dialup networks (GDUL). It can be easily seen
that the distribution of active eDonkey nodes is higher for dialup networks than
for random networks. The maximum of active eDonkey nodes will be reached on
the weekend (14-th and 15-th of April), corresponding with the Internet usage
of dialup users.

As we will use Local Random Address Probing for the bootstrapping of the
bootstrap p2p network, the number of probes before the first active bootstrap
node stands for the overhead which our proposed bootstrap service generates and,
more important, the number of probes is directly correlated to the time a user has
to wait before it can join the p2p network which uses our bootstrapping service.

Figure 5 shows that in average about 600 probes are necessary to find an ac-
tive node of the eDonkey p2p network in dialup networks (GDUL). Finding the
first active eDonkey node requires in average less than 20 seconds. For random
networks the equivalent value can not be given, because only about 30% of the
network scans discover at least one active eDonkey node.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

19.04.18.04.17.04.16.04.15.04.14.04.13.04.12.04.11.04.10.04.

F
ra

ct
io

n
of

 a
ct

iv
e

eD
on

ke
y

no
de

s
on

 (
de

fa
ul

t)
 p

or
t 4

66
2

Date of scan

Distribution of eDonkey nodes in random networks/dialup networks

random networks
dialup networks

Fig. 4. Distribution of active eDonkey nodes in random or dialup networks

A Generic, Self-organizing, and Distributed Bootstrap Service 69

 0

 500

 1000

 1500

 2000

19.04.18.04.17.04.16.04.15.04.14.04.13.04.12.04.11.04.10.04.

N
um

be
r

of
 p

ro
be

s

Date of probing

Number of probes until first active eDonkey node was found

random networks
dialup networks

Fig. 5. Number of required probes to find first eDonkey node

In comparison with random networks (GIPL) a lower number of probes is re-
quired in dialup networks (GDUL) until the first active eDonkey nodes is found.
At the same time, the deviation is significantly lower. This result support our as-
sumption, that local random address probing is well suited for finding other peer
nodes in dialup networks. The lowest number of required probes for dialup net-
works was reached in our scan on the weekend of 14-th/15-th April.

Figure 6 shows the cumulative distribution of time needed for probing until the
first eDonkey node was found in dialup networks (GDUL) and in random networks
(GIPL). Thereby the results for random networks only rely on the 30% of success-
ful probes. It shows the efficiency of our approach. For example, after 20 seconds,
over 80% of nodes found the first eDonkey node. For our bootstrap service this is
equivalent to a successful bootstrapping.

Analyzing the eDonkey p2p network as a synonym for a distributed bootstrap
service the initial bootstrapping into the bootstrap overlay can be satisfyingly
realized by Local Random Address Probing if the bootstrap service has a large
enough number of nodes. These findings show that Local Random Address Prob-
ing can be efficiently used for the bootstrapping of our bootstrap p2p network.

5.2 Performance of the Bootstrap Information Storage

This section evaluates the performance of the Adaptive Salt Window Algorithm
(see section 4.4) used during storage and retrieval of bootstrap information.

70 M. Conrad and H.-J. Hof

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 150 100 50 25 0

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 fo
un

d
at

 le
as

t o
ne

 a
ct

iv
e

eD
on

ke
y

no
de

Seconds after start of probing

Cumulative distribution of eDonkey nodes in random networks/dialup networks

random networks
dialup networks

Fig. 6. Cumulative distribution of eDonkey nodes

We define 4 different scenarios of p2p networks distinguished by their number
of users (106, 105, 104 and 103). Starting from a running bootstrap p2p network
with 4.200.000 (222) peers, all nodes bootstrap into one network using the pro-
posed bootstrap service. Therefore new peers use to the bootstrap p2p network
to retrieve bootstrap information by generating a lookup query. In all scenarios
the number of overlay queries, resulting from lookup-queries, were inspected. Af-
ter a successful join into the desired p2p network each node publish bootstrap
information for that p2p network.

Figures 7 shows the number of overlay queries generated by lookup requests
for a large p2p network with 106 nodes, where all nodes joining the bootstrap p2p
network subsequently. For the other scenarios, only differing in the number of join-
ing nodes, similar results for the average number of overlay queries generated by
lookup requests, will be archived.

At the beginning, when only few bootstrap information for the requested p2p
network are available, up to 25 overlay queries are necessary for each lookup query.
With an increasing number of nodes which join the new p2p network and publish-
ing bootstrap information the number of overlay queries decreases significantly.

For 103 nodes the average number of lookup queries is about 12, for 104 or
105 peers 9 respectively 6 lookup queries are required in average. For large p2p
networks with 106 nodes in average only 3 lookup queries are necessary. The simu-
lation shows, that the proposed distribution of bootstrap information scales with
a increasing number of peers. At the same time, small p2p networks are also sup-
ported, although a higher number of overlay queries is required.

A Generic, Self-organizing, and Distributed Bootstrap Service 71

 0

 5

 10

 15

 20

 25

 30

106105104103102101

N
um

be
r

of
 D

H
T

 q
ue

rie
s

Number of joining peers [logarithmic scale]

Number of DHT queries until bootstrap information retrieved

106 peers joining

Fig. 7. Number of DHT queries to obtain bootstrap information

6 Conclusion and Future Work

We presented a generic, distributed, and self-organizing bootstrap service for arbi-
trary peer-to-peer networks (p2p networks) which can be used in today’s Internet.
Our proposed bootstrap service offers bootstrapping for small private p2p net-
works as well as for large p2p networks. The bootstrap service is easy to integrate
into existing p2p applications and can be extended by plugins.

For storage of bootstrap information, our bootstrap service uses a distributed
hash table. The Adaptive Salt Window Algorithm is used to achieve an efficient
distribution of bootstrap information across the nodes which run the bootstrap
service, hence preventing the overloading of single nodes.

We evaluated the proposed bootstrap service using real world data of a large
p2p network, the eDonkey filesharing network. The results show that our boot-
strap service can be efficiently used to bootstrap arbitrary p2p networks.

Future work will address a simulator implementation and a prototype imple-
mentation of the proposed bootstrap service.

References

1. Cramer, C., Kutzner, K., Fuhrmann, T.: Bootstrapping locality-aware p2p networks.
In: Proceedings of the IEEE International Conference on Networks (ICON 2004),
Singapore, November 16–19 2004, vol. 1, pp. 357–361. IEEE Computer Society Press,
Los Alamitos (2004)

72 M. Conrad and H.-J. Hof

2. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: One ring to rule them all:
service discovery and binding in structured peer-to-peer overlay networks. In: EW10:
Proceedings of the 10th workshop on ACM SIGOPS European workshop: beyond the
PC, Saint-Emilion, France, pp. 140–145. ACM Press, New York, NY, USA (2002)

3. Jelasity, M., Montresor, A., Babaoglu, O.: The bootstrapping service. In: ICD-
CSW ’06: Proceedings of the 26th IEEE International ConferenceWorkshops on Dis-
tributed Computing Systems, Washington, DC, USA, p. 11. IEEE Computer Society
Press, Los Alamitos (2006)

4. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet, Vrije
Universiteit Amsterdam, Department of Computer Science, Amsterdam. Technical
Report IR-503. Amsterdam, The Netherlands (October 2002)

5. Gong, L.: Project JXTA: A technology overview (August 2001),
http://www.jxta.org

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM’01, San
Diego, California, USA (2001)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols for computer communications,
San Diego, California, United States, pp. 161–172. ACM Press, New York, NY, USA
(2001)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API
for structured peer-to-peer overlays. In: 2nd Int. Workshop on P2P Systems (2003)

http://www.jxta.org

	A Generic, Self-organizing, and Distributed Bootstrap Service for Peer-to-Peer Networks
	Introduction
	Requirements for a Generic Bootstrap Service
	Related Work
	Design
	Overview
	Components of the Bootstrap Service
	BootstrapManager: Bootstrapping of the Bootstrap p2p Network
	BootstrapStorage: Efficient Distribution of Bootstrap Information

	Evaluation
	Performance of Local Random Address Probing
	Performance of the Bootstrap Information Storage

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

