

Lecture Notes in Computer Science 4725
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

David Hutchison Randy H. Katz (Eds.)

Self-Organizing
Systems

Second International Workshop, IWSOS 2007
The Lake District, UK, September 11-13, 2007
Proceedings

13

Volume Editors

David Hutchison
Lancaster University, Computing Department
InfoLab21, Lancaster LA1 4WA, UK
E-mail: d.hutchison@lancaster.ac.uk

Randy H. Katz
University of California, EECS Department
RADLab, Soda Hall #1776, Berkeley, CA 94720-1776, USA
E-mail: randy@eecs.berkeley.edu

Library of Congress Control Number: 2007934515

CR Subject Classification (1998): C.2.4, C.2, D.4.4, D.2, I.2.11, H.3

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-74916-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74916-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12122264 06/3180 5 4 3 2 1 0

Preface

The 2nd International Workshop on Self-Organizing Systems (IWSOS 2007) was
hosted by Lancaster University and held in the beautiful English Lake District.
Lancaster University is fortunate to have on its doorstep some of the finest
scenery in the United Kingdom, and research groups often take the opportunity
to benefit from this natural advantage. For IWSOS 2007 we chose the quiet
North Lakes and specifically the Lodore Falls Hotel, which is situated in the
Borrowdale valley, just south of Derwent Water and the town of Keswick.

It was a fitting location for the second workshop in the series on self-organizing
systems that began last autumn in Passau, Germany.

Future networked systems will, to some degree, need to be self-organizing. For
example, they will be deployed in remote and hostile environments, where man-
ual setup and configuration may be undesirable or impossible. Some networks,
such as mobile ad-hoc networks, will be spontaneously deployed, have a dynamic
population, and may be short-lived. The time it takes traditional management
activities to converge, where people are in the control loop, is unsuitably long
for these kinds of network. Furthermore, the potential scale and complexity of
future networked systems, including the future Internet, will make some form
of self-organization highly desirable and perhaps a necessity. The complexity
of these networked systems comes from the heterogeneity of devices, commu-
nication technologies and protocols, and the stringent user requirements (e.g.,
resilience) that they will need to support.

Research into self-organizing networked systems is in its infancy, and there
is a multitude of open issues to be addressed. Building on the success of its
predecessor, this workshop brought together leading international researchers
in a visionary forum for investigating the potential of self-organization and the
means to achieve it.

These proceedings, which we present to you here, constitute the technical
content of IWSOS 2007. There are 17 full papers, 5 short papers and 2 invited
keynote talks.

This year’s submission was unusual. We received only 36 papers, but the
standard was uniformly high – there was no long tail of unsatisfactory or out-of-
scope papers that is sometimes experienced by workshop organizers (whose only
benefit is to be able to declare a low acceptance ratio). Each paper submitted to
IWSOS 2007 was reviewed by four people drawn from an outstanding Technical
Program Committee. We are extremely grateful to the TPC for providing such
thorough and thoughtful reviews, which made the task of selecting the successful
papers so much easier.

VI Preface

Our technical program consisted of sessions on Ad Hoc Routing for Wire-
less/Sensor Networks (4 papers), Peer-to-Peer Networking (2 papers), Network
Topology and Architecture (3 papers), Adaptive and Self-Organizing Networks
(3 papers), Multicast and Mobility Protocols (2 papers), and a Miscellaneous
session (3 papers) on other important but difficult-to-classify topics. Finally, we
have a short-papers session containing 5 papers on very interesting and highly
promising work in progress.

The opening keynote talk will be given by Joseph Hellerstein, formerly of
IBM Research, who is now a Principal Architect with Microsoft Corporation at
Redmond in the USA. Joe will apply his considerable experience to speaking
about the challenges of engineering self-organizing systems.

The second keynote speaker is Ken Calvert, who is Professor of Computer
Science at the University of Kentucky and a senior figure in computer networking
research. Ken will speak about a current collaborative project that is investigat-
ing the infrastructure and self-organizational aspects of a possible postmodern
Internet architecture.

As Technical Program Committee chairs, we wish to thank a number of key
people whose contributions have made our task an easy one: first, all the authors,
whether successful or not, who chose to send us such high quality papers; second,
again, the TPC who did such splendid reviewing; and finally the local organizing
committee who as with all events take the brunt of the hard work behind the
scenes. To all the above we dedicate these proceedings of IWSOS 2007.

July 2007 David Hutchison
Randy H. Katz

Organization

Steering Committee

Hermann de Meer University of Passau, Germany
David Hutchison Lancaster University, UK
Bernhard Plattner ETH Zurich, Switzerland
James P.G. Sterbenz University of Kansas, USA

Technical Program Chairs

David Hutchison Lancaster University, UK
Randy H. Katz UC Berkeley, USA

Technical Program Committee

Karl Aberer EPFL, Lausanne, Switzerland
Ozalp Babaoglu University of Bologna, Italy
Ernst Biersack Institute Eurecom, France
Andrew Campbell Dartmouth College, USA
Georg Carle University of Tuebingen, Germany
Augusto Casaca INESC-ID, Lisbon, Portugal
Claudio Casetti Polytechnic of Turin, Italy
Tarik Cicic Simula Research Laboratory, Norway
Costas Courcoubetis AUEB, Athens, Greece
Simon Dobson University College Dublin, Ireland
Markus Fiedler Blekinge Institute of Technology, Sweden
Stefan Fischer University of Luebeck, Germany
Michael Fry University of Sydney, Australia
Christos Gkantsidis Microsoft Research, UK
Martin Greiner Siemens AG at Munich, Germany
Indranil Gupta University of Illinois at Urbana Champaign,

USA
Guenter Haring University of Vienna, Austria
Gisli Hjalmtysson University of Reyjkavik, Iceland
Amine Houyou University of Passau, Germany
Karin A. Hummel University of Vienna, Austria
Wolfgang Kellerer DoCoMo Lab Europe, Germany
Anne-Marie Kermarrec INRIA/IRISA, France
Emre Kiciman Microsoft Research, USA
Rajesh Krishnan BBN Technologies, USA
Guy Leduc University of Liege, Belgium

VIII Organization

Baochun Li University of Toronto, Canada
J.P. Martin-Flatin NetExpert, Switzerland
Paul Mueller Kaiserslautern University, Germany
Manish Parashar Rutgers University, USA
Christian Prehofer Nokia Research, Finland
Danny Raz Technion, Israel
Lukas Ruf In&Out AG, Switzerland
Rolf Stadler KTH, Stockholm, Sweden
Ralf Steinmetz Technical University of Darmstadt, Germany
Burkhard Stiller University of Zurich, Switzerland
John Strassner Motorola Labs, USA
Zhili Sun University of Surrey, UK
Kurt Tutschku Wuerzburg University, Germany
Amin Vahdat University of California at San Diego, USA
Maarten van Steen Vrije University Amsterdam, Netherlands
Patrick Wuechner University of Passau, Germany

Local Organizing Committee

Carol Airey Lancaster University
Joe Finney Lancaster University
Johnathan Ishmael Lancaster University
Andreas Mauthe Lancaster University
Nicholas Race Lancaster University
Andrew Scott Lancaster University
Paul Smith Lancaster University

Supporting and Sponsoring Organizations

ACM
IEEE
IFIP

Agilent Technologies
Content NoE
EuroFGI NoE
InfoLab21 KBC
Microsoft Research
Telekom Austria
UK EPSRC

Table of Contents

Keynote Speakers

Engineering Self-Organizing Systems . 1
Joseph L. Hellerstein

Infrastructure and Self-organization in Postmodern Internet
Architecture . 2

Ken L. Calvert

Ad Hoc Routing for Wireless/Sensor Networks

Mercator: Self-organizing Geographic Connectivity Maps for Scalable
Ad-Hoc Routing . 3

Luis A. Hernando and Unai Arronategui

A New Approach to Adaptive Multi-routing Protocol for Mobile Ad
Hoc Network . 18

Ung Heo, Deepak G.C., and Jaeho Choi

The Development of a Wireless Sensor Network Sensing Node Utilising
Adaptive Self-diagnostics . 30

Hai Li, Mark C. Price, Jonathan Stott, and Ian W. Marshall

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 44
Sandrine Calomme and Guy Leduc

Peer-to-Peer Networking

A Generic, Self-organizing, and Distributed Bootstrap Service for
Peer-to-Peer Networks . 59

Michael Conrad and Hans-Joachim Hof

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles . . . 73
Michael Kleis, Kai Büttner, Sanaa Elmoumouhi, Georg Carle, and
Mikael Salaun

Network Topology and Architecture

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 88
Wojciech Galuba and Karl Aberer

X Table of Contents

A Common Architecture for Cross Layer and Network Context
Awareness . 103

Manolis Sifalakis, Michael Fry, and David Hutchison

Network Topology Reconfiguration Against Targeted and Random
Attack . 119

Kosuke Sekiyama and Hirohisa Araki

Adaptive and Self-organizing Networks

A Self-organizing Control Plane for Failure Management in Transparent
Optical Networks . 131

Nina Skorin-Kapov and Nicolas Puech

A Self-organizing Approach to Tuple Distribution in Large-Scale
Tuple-Space Systems . 146

Matteo Casadei, Ronaldo Menezes, Mirko Viroli, and
Robert Tolksdorf

Autonomous Optimization of Next Generation Networks 161
Uwe Walter

Multicast and Mobility Protocols

Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 176
Chia-Cheng Hu

Localising Multicast Using Application Predicates . 193
Ian Wakeman, Stephen Cogdon, Laurent Mathy, and Michael Fry

Miscellaneous Topics

Cost Aware Adaptive Load Sharing . 208
David Breitgand, Rami Cohen, Amir Nahir, and Danny Raz

Self-configuration in MANETs: Different Perspectives 225
Jing Wang, R. Venkatesha Prasad, and Ignas Niemegeers

Knowledge-Based Reasoning Through Stigmergic Linking 240
Kieran Greer, Matthias Baumgarten, Maurice Mulvenna,
Chris Nugent, and Kevin Curran

Short Papers

Dynamic Ontology Mapping for Interacting Autonomous Systems 255
Steven Heeps, Joe Sventek, Naranker Dulay,
Alberto Egon Schaeffer Filho, Emil Lupu,
Morris Sloman, and Stephen Strowes

Table of Contents XI

Trade-Off Between Performance and Energy Consumption in Wireless
Sensor Networks . 264

José-F. Mart́ınez, Ana-B. Garćıa, Iván Corredor, Lourdes López,
Vicente Hernández, and Antonio Dasilva

Automated Trust Negotiation in Autonomic Environments 272
Andreas Klenk, Frank Petri, Benoit Radier, Mikael Salaun, and
Georg Carle

Collaborative Anomaly-Based Attack Detection . 280
Thomas Gamer, Michael Scharf, and Marcus Schöller

Modeling and Management of Service Level Agreements for Digital
Video Broadcasting(DVB) Services . 288

Thapelo Tlhong and Jeff S. Reeve

Author Index . 295

Engineering Self-Organizing Systems

Joseph L. Hellerstein

Microsoft Corporation
Redmond, Washington USA

Self-organizing systems (SOS) hold the promise of addressing many challenges
in large scale distributed systems, especially in reducing the need for human
intervention for configuration, recovery from failures, and performance opti-
mization. While there are many principles for creating SOS such as minimizing
dependencies between components and avoiding the use of globally shared state,
we lack a systematic methodology. This talk explores how techniques from con-
trol theory and game theory might be used in combination to engineer SOS.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Infrastructure and Self-organization in

Postmodern Internet Architecture

Ken L. Calvert

Laboratory for Advanced Networking
University of Kentucky
Lexington, KY, USA

The Postmodern Internetwork Architecture project, a collaboration among re-
searchers at the Universities of Kentucky, Kansas and Maryland, aims to produce
a clean-slate design for a thin (inter)network layer. Design goals for this Internet
layer include complete separation of routing from forwarding, avoidance of hier-
archical or centrally-assigned identifiers in the forwarding plane, and provision of
explicit mechanisms to support policies of the various stakeholders (specifically
users and service providers).

The talk will begin with a high-level overview of the PoMo architecture, fol-
lowed by a description of our routing/forwarding approach, which is based on
loose source routing. The focus will be on design considerations that suggest
which functions of the system should be assigned to the infrastructure, and
which should/can be self-organized.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mercator: Self-organizing Geographic

Connectivity Maps for Scalable Ad-Hoc Routing

Luis A. Hernando and Unai Arronategui

I3A, University of Zaragoza
C/Maŕıa de Luna 1, Ed. Ada Byron, 50018. Zaragoza, Spain

lahernan@unizar.es, unai@unizar.es

Abstract. A fundamental problem of future networks is to get fully self-
organized routing protocols with good scalability properties that produce
good paths in a wide range of network densities. Current approaches,
geographic routing and table based routing, fail to provide very good
scalability with good paths in sparse networks. We propose a method
based on the discovery of connectivity between geographic regions that
are self-organized in a multilevel hierarchy. The Mercator protocol builds
lightweight connectivity maps in a fully decentralized manner and shows
a scalable and resilient behaviour. Each node builds and maintains its
own hierarchical map that summarizes connectivity information of all
the network around itself using geographic regions. Link state routing is
used over the multilevel connectivity graph of the map to obtain global
paths. The analysis and simulation of our approach show that routing
state and communication overhead grows logarithmically with network
size while producing good paths.

Keywords: Self-Organizing Hierarchical Protocol, Geographic Connec-
tivity Maps, Link State, Scalable Ad-hoc Routing.

1 Introduction

A fundamental problem of future ad-hoc networks is to get self-organized routing
protocols with good scalability properties and good enough paths. On the one
hand, best scalability properties are obtained with geographic routing [9,3,10]
where in the best case, there is no communication overhead, location service
aside, and routing state is only related to one hop nodes. But, this kind of pro-
tocols gives efficient paths only with regular dense networks. On the other hand,
table-based routing achieves best paths in all kind of networks, but some state
and communication overhead is always needed, even with best ad-hoc hierar-
chical protocols [14]. Also, scalability with sufficient resiliency seems another
challenge.

We propose a self-organizing method that achieves less state than ad-hoc rout-
ing protocols based on tables, and better paths than geographic routing proto-
cols. Also, its assures resiliency. In our method, routing is done through multilevel
geographic regions. All nodes have an identifier and an address based on GPS

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 3–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 L.A. Hernando and U. Arronategui

like absolute geographic coordinates or derived from GPS enabled neighbours [6].
These coordinates are used like node addresses and region identifiers. The Mer-
cator protocol builds connectivity maps, C-Maps, based on geographic regions
in a fully decentralized way. In this protocol, each node builds and maintains its
own C-Map containing a summary of connectivity information from hierarchical
regions around the node. A fisheye approach on the maps gives more detailed
information in the proximity of the node. These regions are square tiles obtained
from simple geographic operations. Link level connectivity information is pro-
cessed and folded in region connectivity information with a recursive technique.
Link state routing is applied to the graphs that represent connectivity between
the regions, at different levels, from the C-Maps. With Mercator, we achieve
routing state that only depends on the number of levels in the map hierarchy.
Routing communication overhead is severely reduced because low level updates
can remain inside a region scope, if enough density is provided. The number of
levels of the hierarchy arises logarithmically from node density in regions.

The proposal in this paper takes a conservative approach with size of C-Maps
to minimize stored state and traffic loads. Actually, our results in routing state
and communication overhead show that even sensor devices, as the MICAz [5]
with 128k of memory for programs and 256kb/s of bandwidth, can be candidates
to adopt our approach. Of course, energy consumption has to be considered in
sensor networks, which is out of the scope of this paper.

However, in networks with more resources, like mesh networks or vehicular
networks, the detail of a C-Map can be increased to obtain better routes. A trade-
off between route lengths and overhead needs to be evaluated in each network
class to define the size of C-Maps.

Also, location services and node mobility can be easily included, integrating
scalable proposals like [12]and [13] with our techniques.

The rest of the paper is organized as follows. Section 2 shows a review of
existing and related work. In section 3, the connectivity maps are described.
Section 4 presents Mercator, the maps construction protocol. Section 5 presents
the routing protocol. Section 6 offers theoretical information and experimental
results about costs induced by the protocol. And, finally, section 7 offers the
conclusions of this work.

2 Related Work

Two main approaches have been adopted in order to achieve good scalability
properties in ad-hoc networks. On the one hand, hierarchical routing protocols
divide the routing problem in different spatial or temporal levels. On the other
hand, geographic routing protocols use the physical network coordinates of nodes
to perform position based forwarding.

Implicit hierarchy is observed in flat protocols like Fisheye State Routing
(FSR) [15] and Hazy Sighted Link State (HSLS) [16]. FSR provides accurate
path information from the immediate neighbourhood of a node and imprecise
knowledge of paths to distant destinations. Although, this imprecision is solved

Mercator: Self-organizing Geographic Connectivity Maps 5

with the route being more accurate as the packet draws closer to the destination.
We have been inspired by this approach to limit the communication overhead
while maintaining robustness. Both protocols achieve low communication over-
heads by selectively adjusting frequencies of routing updates. However, classical
heavy O(N) routing state is needed in both protocols which could be a funda-
mental limitation in scalability.

Hierarchical State Routing (HSR) [14] is a multilevel clustering-based link
state routing protocol. A clustering scheme recursively defines a logical hier-
archical topology. Communication and storage complexity are the best, H*K,
growing linearly with hierarchy levels (H) and average one hop neighbours of a
node (K). But, resiliency problems can arise as there is only one clusterhead per
cluster to link the hierarchy. Also, cluster needs to be assigned a hierarchical
address to aggregate in the node address format. ARCH [1] decrease the cost of
the organization of clusterheads avoiding the rippling effect. But, one clusterhead
per cluster is still a bottleneck.

In Zone-Based Hierarchical Link State (ZHLS) [8], a GPS-based method is
used to define scope of the regions without clusterheads. A peer-to-peer tech-
nique reduces traffic bottleneck, avoids single point failures, and makes mobility
management easier. There are only two levels in the hierarchy. We have general-
ized this approach with a multilevel hierarchy and we have reduced the routing
state applying a fisheye technique. The GAF [17] protocol also uses a GPS par-
titioning scheme of the network in square grids but it’s focused exclusively on
energy conservation and can run over any ad-hoc routing protocol.

Although geographic routing is simple and light, it has important routing
problems with sparse networks where voids can block position based forwarding.
This dead ends are avoided with recovery algorithms. GPSR [9] uses a right hand
rule algorithm over a planarized graph to get around the void. However, voids
with complex and big shapes can lead to very inefficient paths. So far, GDSTR
[11] is the best recovery solution that improves path lengths. It is based on a
spanning tree built on convex hulls. But, it also applies the recovery algorithm
after getting in a dead end. Thus, it is sensitive to voids and concavities in the
network in order to get shorter routes.

Terminode routing [2] and GeoLANMAR [18] are hybrid protocols with two
levels that use geographic routing for distant destinations and link state in lo-
cal scope. GeoLANMAR uses classical LANMAR methods to manage logical
groups in group mobility applications. Terminode routing has a method called
Geographical Map-Based Path Discovery for remote routing. This method only
operates to get anchored paths at the same level and it is assumed that a density
map is already available somewhere outside the network. Besides, no distribu-
tion technique is presented for the maps. This trend is developed with the use of
geographic maps [4], from vehicular navigation systems, in geographic routing.
However, good node density is assumed to assure connectivity.

Our goal has been to obtain a routing method with better routes than light
state geographic routing protocols and smaller routing state than hierarchical

6 L.A. Hernando and U. Arronategui

routing protocols with managed communication overhead. All this is done as-
suring resiliency.

3 Connectivity Maps

Connectivity information between different areas in the network is stored into
a map, the C-Map. In this approach, the network is modelled as a hierarchy of
square areas defined on a 2D euclidean space where nodes are located. Each node
is able to obtain its localization coordinates by means of an external positioning
system like GPS or other localization techniques.

A C-Map stores information about a hierarchy of nested square regions sur-
rounding the owner node’s location. The highest level of the map, with the
biggest squares, determines the area covered by the whole map. Lower levels
keep information about connectivity of small areas near the node, while higher
levels keep summarized connectivity information about large and faraway areas.

Hierarchy of Network Regions. Information stored in a C-Map is organized
into M hierarchical Map Levels, starting from 0 (the link level), to M − 1. Each
map level is composed of Q non-overlapping squares, known as tiles, properly
sized to fit four tiles of level m into one tile of level m + 1. In addition, C-Maps
are centred around their owner node, which means that all tiles of each level are
placed around the node. The purposes of centring maps are:

– To balance the amount information stored in all directions around the node.
– To enable the propagation of information, by means of the addition of C-

Maps, as explained later.
– To make possible the summarization of information from lower levels into

higher ones, using a composition operator. The final goal is to ensure the
scalability of the protocol by cutting down the amount of information stored
into each C-Map.

C-Maps are constructed and centred following the next two rules:

– Map level m must be completely nested into map level m+1, so Q = 4n, n ∈
IN.

– Into each Map level, the tile containing the owner node, known as central
tile, must be completely surrounded by other tiles.

In the end, the node owner of the C-Map will be placed into one of the 4 tiles
in the middle of each level. Whenever the node moves from one tile to another,
its map has to be re-centred by repositioning the tiles at all levels as needed to
meet the previous rules.

Connectivity Between Tiles. Connectivity is defined as the possibility for a
message coming from a tile to reach a contiguous one across their common bor-
der. For each tile in the C-Map, the connectivity information with its surround-
ing tiles is stored, and as a result, any node having the connectivity information
about all the tiles of each map level is able to quickly find out if a region of the
network is reachable across a path of connected tiles.

Mercator: Self-organizing Geographic Connectivity Maps 7

Connectivity Inside Tiles: Fragments. At first, a tile identified as reachable
through all of its borders, would seem like an ideal tile, enabling communications
to traverse the tile completely, but it is not always true: nodes inside a tile might
be divided into different unconnected groups known as fragments. This important
issue implies that a fragmented tile is not always traversable from one border to
other.

A fragment is defined as a connected group of nodes inside a tile and is always
traversable.

4 The Mercator Protocol: C-Map Construction

In this paper we propose Mercator, a fully distributed protocol that builds,
distributes and maintains the C-Maps for every node in the network. All the
information the protocol produces is inferred from basic status of connectiv-
ity between nodes at link level. First, connectivity between the smallest tiles
is discovered with an interchange of HELLO messages. Then, that information
is distributed to the immediate neighbour areas, giving nodes some knowledge
about its vicinity and the ability to summarize the information they know. In
subsequent iterations of this process, basic and summarized connectivity infor-
mation will be shared using MAP messages, extending the ability of nodes to
build information at higher levels.

After some time, every node will be provided with a map of its neighbourhood
composed of levels at different scales. Later updates of the map will be required
to address the topology changes produced by joining or exiting nodes or even
entire network areas.

4.1 Previous Considerations

A square of level m, Sm, is identified by a tuple <m, (i, j)> where (i, j) are Sm’s
grid coordinates using columns and rows. Sm’s side length, Lm, is calculated as
Lm = L0 ∗ 2m, being L0 a parameter of the network. Given a point P placed
inside Sm, (i, j) can be calculated as the integer division of P ’s coordinates by
Lm.

4.2 Mercator Protocol’s Information: The C-Map

Information produced by Mercator is stored into a C-Map at each node. C-
Maps are composed of a fixed number of Map levels, M , each one filled with
Q tiles arranged in a square matrix layout following the basic centring rules
described in Sec. 3. The minimum Q value that meets the requirements explained
in Sec. 3 is Q = 16 which is adopted by default. Q values lower than 16, do not
guarantee that the central tile at any level is completely surrounded by other
tiles (i.e Q = 4) or do not guarantee the statement Q = 4n, n ∈ IN, which is a
requirement for the addition and the composition operators.

C-Maps are sized in order to cover the whole space occupied by the network,
thus, the number of levels stored into the Map, M , is a well known parameter

8 L.A. Hernando and U. Arronategui

dependent of the maximum diameter of the network. The 4 tiles in the middle
of the highest Map Level (M − 1) should cover the entire network. The coverage
area of a C-Map, ACmap, can be calculated as follows:

ACmap = DCmap
2 = 2 ∗ LM−1

2 = (2 ∗ L0 ∗ 2M−1)2 (1)

Where DCmap = is the guaranteed maximum diameter of the network covered
by the highest Map Level.

Table 1 shows the coverage areas and maximum network diameters achieved
by a C-Map with M levels in a default setup, being Q = 16 and L0 = 500 metres.
Both ACmap and DCmap increase exponentially with M .

Table 1. Maximum network diameter and coverage area achieved by a C-Map with
M map levels in a worst case scenario

M : 4 5 6 7 8 9 10 11

DCmap(Km) : 8 16 32 64 128 256 512 1,024
ACmap(Km2) : 64 256 1,024 4,096 16,384 65,536 262,144 1,048,576

As explained before, nodes inside a tile can be divided into fragments. In-
formation stored into the C-Map about each tile comprehends the identifiers of
the different fragments that the tile is divided into as well as their connectiv-
ity status with neighbour fragments and some expiration timers needed for the
management of the map.

4.3 Calculation of Fragment’s Identifier

Fragments are separated groups of interconnected nodes within the limits of
a tile, and thus, each fragment can only be connected with other ones inside
adjacent tiles. The identifier of a fragment reflects its connectivity properties:
borders of every tile are associated with cardinal directions and, in addition,
identifiers of fragments are the aggregation of those cardinal directions of the
borders traversed by links with neighbour fragments. If two fragments inside a
tile have similar connectivity properties their identifiers will be similar, but they
will occupy different tiles at lower levels which will differentiate them. If two
fragments have similar identifier at level 0, the geographic coordinates of any
node which belongs to them will make the difference, since a node only belongs
to one fragment per level.

4.4 Discovery of Level 0 Information

Once the C-Map is centred, HELLO messages are broadcasted1 periodically by
Mercator protocol to gather information about the fragment the node belongs

1 Local Broadcast. Broadcasted messages are only received by nodes in range and not
forwarded again by any of them.

Mercator: Self-organizing Geographic Connectivity Maps 9

to and its surroundings at the lowest level (level 0). HELLO messages are used
also to maintain a fresh list of neighbour nodes.

Each HELLO message carries information about the sender, its coordinates
and level 0 fragment identifier, in addition, it also contains the identifiers of the
tile’s borders through which link to neighbour fragments are established.

Upon the reception of a HELLO message, each node will update its state: if
HELLO messages are received from a node in a neighbour tile, the shared border
among both tiles is considered traversed by a link and the sender’s fragment will
be considered connected to the receiver’s fragment. By contrast, if a HELLO
message is received from a node which is located in the same tile, then sender and
receiver nodes belong to the same fragment and the receiver node will check the
HELLO message looking for information about the links from its own fragment
to other ones.

The updated information will be broadcasted in subsequent HELLO mes-
sages and after some stabilization time, each node will be able to compute its
fragment’s identifier based on the tile’s borders that seem active.

4.5 C-Map Addition Operation

Connectivity information is shared between nodes when they exchange their C-
Maps. C-Map construction and centring rules guarantee that the C-Maps of two
nodes placed into two adjacent tiles, must be partially or totally overlapped de-
pending on the tile they are placed at each level (See Fig. 1). A node acquires
information from its neighbours’ C-Maps by applying the addition operator de-
fined as follows:

Let C1, C2, Cr be C-Maps,

C1 + C2 → Cr

where Cr is the result of the addition C1+C2. C-Map addition operator works as
follows: first, Cr is centred at the same point as C1, then addition operator will
select tiles from C1 not present in C2 and will copy its information (fragments)
into Cr . Then it will select those tiles present in both maps and will add to
Cr all fragments from C1 as well as those from C2. Finally, if central tiles of
corresponding levels in C1 and C2 are neighbours and thus share a border, C2

owner’s fragment is marked as connected with C1 owner’s fragment into Cr.

4.6 C-Map Information Exchange

After some stabilization time, each node is able to provide information about
its fragment of level 0 and its connections to other neighbour fragments and
will start broadcasting2 MAP messages to its immediate neighbours, sharing
information about its local and surrounding tiles. Initially, all 16 tiles of each
level will be empty except the central tile of level 0, which will include the owner’s
node fragment.
2 Local Broadcast, as in HELLO messages broadcasting.

10 L.A. Hernando and U. Arronategui

Fig. 1. Partially overlapped Map Levels in the picture on the left: the two central
columns are overlapped. Fully overlapped Map Levels in the picture on the right. Note
that a node is always placed inside one of the four tiles in the middle of its map level.

Each MAP message carries the C-Map stored by the node at the sending time
and its owner node’s coordinates.

Upon the reception of a MAP message, the receiver node will add the received
C-Map to its own, acquiring the new information (as explained in 4.5). In sub-
sequent sendings, the new information will be spread producing a propagation
effect.

4.7 Higher Level Fragment Information Composition

Each node is in charge of the fragments it belongs to at each level and is able
to calculate their identifiers and keep them stored into its C-Map. The calcula-
tion of identifiers of fragments with information about lower levels is known as
composition. As result, information about fragments of 4 tiles at level m − 1 is
summarized into one tile at level m. Internal connectivity details are hidden and
external ones summarized.

Each node is able to compute the identifier of the fragment it belongs to at
level m because it keeps stored into its C-Map the fragments of level m − 1
connected to its own. They all conform the fragment of level m. This is possible
because levels in a C-Map are centred at the owner node’s location (see 4.2). The
composition algorithm works as follows: first, it looks for all fragments in the 4
tiles of level m− 1 which are connected (directly or by intermediate fragments)
to the node’s fragment at level m − 1 inside the tile of level m. Then, all those
connected fragments will conform the node’s fragment at level m and its identifier
is inferred from their connectivity properties. See Fig. 2.

4.8 A Global View of Built C-Maps

The behaviour of the Mercator protocol on a network of about 500 nodes
is shown in Fig. 3. It can be observed how connectivity information reflects the
shape of the network including void areas and concavities, and how a summarized
network topology is constructed for each level.

Mercator: Self-organizing Geographic Connectivity Maps 11

Fig. 2. Example of fragment composition

5 Routing with C-Maps

Having a C-Map, traditional ad-hoc routing algorithms can take advantage of
the available connectivity information at different levels. Implicit avoidance of
big concavities and empty areas, which is a big trouble in geographic routing,
can be easily achieved by routing with the aid of high level information.

In this section we propose a routing technique inspired in traditional rout-
ing algorithms over a network graph. Information from the C-Map is used to
construct a graph representing the fragments at all levels in the map and their
interconnections.

Two differentiated protocols are involved in the routing process. The first one,
known as Fragment Routing, acts as a high level path planner, which analyses
the previously constructed network graph, looking for the best path through
connected fragments of any level toward a target fragment of level 0. The second
one, is a classical ad-hoc routing algorithm deployed inside every fragment of
level 0 in the network, which is able to deliver a message to a particular node
within the same fragment as well as to forward the packet to a node connected
with a neighbour fragment.

In Fig. 3, a message is sent from source node toward destination node. Different
snapshots have been taken at different steps: just before the message is sent by
source node and by the time it passed through two intermediate nodes. It can
be observed how the selected best path is progressively more accurate as the
message gets closer to destination.

Mercator Node Addressing. Node addressing in the ad-hoc network is de-
signed to provide fragment information available at all levels. Mercator node
addresses contain the addressee’s geographic coordinates and the identifier of
all the fragments it belongs to (one per level). Since coordinates of tiles can be
calculated from the coordinates of a point inside it, (see Sec. 4.1), localisations
of fragments referred in the address are well known.

A Mercator address is in the form: <(x, y), f0, f1, . . . , fM−1>, where x, y are
the addressee’s coordinates and fk are the identifiers of the fragments it belongs

12 L.A. Hernando and U. Arronategui

Fig. 3. A message is sent from source node to destination node. Snapshots at different
moments are taken showing the network connectivity graphs up to level 2, which are
known by Source Node in Fig. 3(a), by Intermediate Node 1 in Fig. 3(b), and by
Intermediate Node 2 in Fig. 3(c). The planned best path in each snapshot, from current
node toward destination, is displayed using the thickest grey lines. The winding line
represents the exact link level path already followed by the message.

to at each level k. The size of a Mercator address, Waddress, can be calculated
as follows:

Waddress = 2 ∗
⌈
log2(L0 ∗

√
Q ∗ 2M−1)

⌉
+ M ∗ Wid (2)

Using 1 metre precision in 2D integer coordinates (x, y), and where Wid is the
size of a fragment’s identifier (4 bits). Table 2 shows the address length required for
different network diameters in a default setup, with Q = 16 and L0 = 500 metres.

Table 2. Network diameter covered by networks with M levels and the corresponding
Mercator address length

M : 6 9 12 15 17

DCmap(Km) : 32 256 2048 16384 65536
Waddress(bits) : 54 72 90 108 120

The Network Graph. Information stored into a node’s C-Map is enough to
calculate a network graph with the summarized network topology information.
Each fragment is represented by a vertex. A link between two fragments is rep-
resented by a link between their corresponding vertexes while the weight of each
link represents the approximated cost of routing a message from a fragment to
the other and is set to the distance between the central points of the two tiles
where the fragments are placed.

It is remarkable that the graph represent fragments (not nodes) which belong
to different levels. The topology reflected in the graph is more detailed in ar-
eas closer to the node due to the particular construction of the C-Map. Since the

Mercator: Self-organizing Geographic Connectivity Maps 13

number of tiles that a map stores is fixed and the number of fragments stored
per tile is bounded, the cost of processing a graph is upper bounded.

Fragment Routing. This routing algorithm, which is run on every node, com-
putes the best path over the network graph, that starting from the node’s frag-
ment at level 0, reaches the destination node’s fragment at the lowest possible
level. The next hop in the path is then selected and the message is forwarded
toward it. A routing table at each node is periodically constructed, with entries
for all available fragments from node’s C-Map. The routing table is calculated
applying Dijkstra’s Algorithm to the network graph. Every possible destination
fragment in the graph is associated with a next hop, the beginning of the short-
est path to that destination, which is, a fragment of level 0 and a neighbor of
the node’s fragment.

At the time of routing a message, the protocol will use the Mercator address
of the message’s destination, to choose the best next hop fragment. A search
is performed in the routing table, looking for a fragment that matches in coor-
dinates and identifier to any of the included in the address. If more than one
match is found (at different levels), the one with lowest cost is chosen.

Ad-Hoc Routing Inside Fragments of Level 0. A traditional ad-hoc rout-
ing protocol is deployed inside each fragment of level 0 with two objectives. First,
once Fragment Routing has selected the next fragment-hop toward destination,
this ad-hoc routing protocol takes charge of the message and forwards it to the
nearest node within the fragment which is directly connected to the next hop
fragment. And second, when a message finally arrives to the fragment of level 0
which contains the destination node, the protocol is in charge of the delivery of
the message to its final destination.

Understanding How Routing with C-Maps Works. C-Maps are centred,
which means that only a part of the network is mapped at one level, so, if a level
does not cover a destination target, a higher map level has to be used because
it contains information less accurate but broader.

As a message is being routed and approaches its destination, C-Map infor-
mation into intermediate routers gets progressively more accurate toward the
destination target and the path can be slightly modified and optimized.

6 Costs Analysis and Experimental Results

The Mercator protocol has been designed to achieve high scalability properties
with target networks from a few to million nodes. The design has been focused
on keeping conservative storage requirements per node and shared channel band-
width usage.

C-Map Storage Complexity. Each node in the network stores only its own
C-Map which is composed of M Map Levels. Each Map Level stores Q = 16

14 L.A. Hernando and U. Arronategui

tiles which might be divided into different fragments. Storage cost of a C-Map,
SCmap can be calculated as follows:

SCmap = M ∗ Q ∗ F ∗ f (3)

Where F is the average number of fragments per tile and f is the storage cost of
a fragment (fixed). Although F is not a fixed value, our simulations show that
only in very specific cases it grows over 2.0. Thus, storage complexity is O(M)
and grows logarithmically with network size.

Mercator Bandwidth Usage. All Mercator information exchange is per-
formed by means of local broadcast operations. Once the sender node transmits
a message, it is not forwarded again by any of the receiver nodes.

Connectivity information discovery and distribution is done by means of pe-
riodic HELLO and MAP messages broadcastings. HELLO and MAP messages
sending rate is calculated in order to use a low percent of the available channel
bandwidth. In the simplest scenario, without using any kind of optimization like
data compression or variable sending rates, bandwidth required by Mercator per
node, MBw, can be calculated as follows:

MBw = RHELLO ∗ SHELLO + RMAP ∗ SMAP (4)

Where RHELLO and RMAP are the broadcast rates for HELLO and MAP
messages and SHELLO and SMAP are the average size of HELLO and MAP
messages. All parameters but SMAP are constant, SMAP complexity is O(M)
because each MAP message contains a C-Map. Thus MBw complexity is O(M).

6.1 Experimental Results

We have implemented an ad-hoc network simulator to test the Mercator pro-
tocol under different scenarios. The following settings have been used in our
tests: radio range is 200 metres. All nodes receive broadcasted messages within
their radio range. RHELLO is set to 1 message per second. RMAP is set to 1
message each 3 seconds. Expiration ages are set to 4 ticks for each item. Tick
duration is 1/RMAP ∗ 2n seconds where n is the level number of the item mon-
itored by the timer. Side’s length of a tile at level 0, L0, is closely related to
expiration ages and radio range. L0 value has been set to 500 metres, which
allows information to traverse an entire tile of level 0 in less than 4 hops without
expiring.

Storage and Bandwidth Requirements. Using the above parameters, a
C-Map with 9 levels (area of target networks up to 65,000 square kilometres
and average network population of 1300 million nodes using a density of 1 node
per 200 m2) requires 5.3KBytes of storage (according to Equation (3)). In this
scenario, the bandwidth usage per node is 14kbps (according to Equation (4)).

Mercator: Self-organizing Geographic Connectivity Maps 15

Stabilization Time. In a first test we have measured the map’s stabilization
time, which provides an idea of the response speed that the protocol offers against
network topology changes. Stabilization time is measured by the number of MAP
messages that each node sends until the entire network map is completely built.
We have simulated a cold startup in a network with 7000 nodes under different
population density conditions (from 4 to 9 average neighbour count). As shown
in Fig. 4, stabilization time increases linearly with the extension of the mapped
area. High density conditions help to increase information propagation speed
and to reduce stabilization time.

Fig. 4. Stabilization time after a cold startup

We have also simulated dynamic scenarios with nodes joining and going away
from the network. If a new node does not produce a substantial change into the
network topology, stabilization time is about 1 message, by contrast, if a new
link is created between two fragments, the stabilization time is similar to the
case of a cold startup of the level of those fragments.

6.2 Observations

Storage required by Mercator protocol grows logarithmically with the network
area, maintaining a very reduced map with the network connectivity status.
A C-map fits easily into today’s sensors memory [5] even for very large target
networks with thousand kilometres of diameter.

The storage cost reduction is made possible by the hierarchical approach of
the map. Our proposal gives a generalized algorithm for M levels so it can be
applied to target networks of very different natures.

16 L.A. Hernando and U. Arronategui

A consequence of the low storage cost is that complete replication is feasible.
There are no central nodes in the network: every node in the network keeps
a map, which improves network resilience, avoids network congestion around
critical points and helps with adaptive deployment: a node joining to a previously
established network needs only one map from its immediate neighbour to get all
the information it needs to become communicated.

At the highest levels, the fact that connectivity status information is summa-
rized and the big size of network regions compared to link level radio range, turn
the probabilities that a change at link level produce a change in the connectiv-
ity information of high levels very low. Information summarization helps to keep
hidden into lower levels the vast majority of connectivity changes, leaving higher
levels very stable. This fact greatly simplify node mobility management.

Destination addresses of moving nodes must change as they move from one
region to another. Since nodes move with a low speed in relation to network
diameter, in most cases, movements will produce a minor change into the ad-
dress. This fact can be exploited by a distributed location service for efficiency
improvement.

7 Conclusions

In this paper we propose a new approach in ad-hoc routing based on nodes
with absolute geographic coordinates. The Mercator protocol uses these coordi-
nates to build a multilevel connectivity C-Map summarizing network connectiv-
ity information with a fisheye approach. Resiliency is guaranteed with C-Map
computation and distribution done in all nodes. It can nicely marry with exist-
ing mobility solutions. Routing state and communication overhead grow loga-
rithmically with network size. Better paths than light state geographic routing
can be obtained and smaller routing state than hierarchical routing protocols is
provided.

Future work will explore the extension of C-Maps with information about
mobility and congestion.

Acknowledgments. This work has been supported by the Spanish CICYT
DPI2006-15390 project and the GISED, group of excellence recognised by the
Diputación General de Aragón.

References

1. Belding-Royer, E.M.: Multi-level Hierarchies for Scalable Ad hoc Routing. Wireless
Networks (WINET) 9(5), 461–478 (2003)

2. Blazevic, L., Le Boudec, J., Giordano, S.: A Location Based Routing Method for
Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing 4(2), 97–110
(2005)

3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

Mercator: Self-organizing Geographic Connectivity Maps 17

4. Cheng, A.M.K., Rajan, K.: A digital map/GPS based routing and addressing
scheme for wireless ad-hoc networks. In: Proceedings of IEEE Intelligent Vehicles
Symposium, pp. 17–20. IEEE Computer Society Press, Los Alamitos (2003)

5. Crossbow Technology, Inc.: MICAz wireless modules (2007),
http://www.xbow.com/Products/productdetails.aspx?sid=164

6. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.F.: Range-Free
Localization Schemes in Large-Scale Sensor Networks. In: Proc. of the 9th Intl.
Conference on Mobile Computing and Networking (MOBICOM), pp. 81–95 (2003)

7. Hong, X., Xu, K., Gerla, M.: Scalable Routing Protocols for Mobile Ad Hoc Net-
works. IEEE Network 16(4), 11–21 (2002)

8. Joa-Ng, M., Lu, I.-T.: A Peer-to-Peer zone-based two-level link state routing for mo-
bile Ad Hoc Networks. IEEE Journal on Selected Areas in Communication 17(8),
1415–1425 (1999)

9. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In: Proceedings of the 6th ACM International on Mobile Computing
and Networking (MobiCom 00), pp. 243–254. ACM Press, New York (2000)

10. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: Of
theory and practice. In: Proceedings of PODC, pp. 63–72 (2003)

11. Leong, B., Liskov, B., Morris, R.: Geographic Routing without Planarization. In:
Proceedings of the 3rd Symposium on Network Systems Design and Implementa-
tion (NSDI 2006) (2006)

12. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A Scalable Location
Service for Geographic Ad Hoc Routing. In: Proceedings of the 6th Int. Conf. on
Mobile Computing and Networking (MobiCom’00), pp. 120–130 (2000)

13. Li, M., Lee, W.-C., Sivasubramaniam, A.: Efficient peer-to-peer information shar-
ing over mobile ad hoc networks. In: Proceedings of the 2nd Workshop on Emerging
Applications for Wireless and Mobile Access (MobEA 2004) (2004)

14. Pei, G., Gerla, M., Hong, X., Chiang, C.C.: A Wireless Hierarchical Routing Pro-
tocol with Group Mobility. In: Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC’99), pp. 1538–1542. IEEE Computer Society
Press, Los Alamitos (1999)

15. Pei, G., Gerla, M., Chen, T.-W.: Fisheye State Routing: A Routing Scheme for Ad
Hoc Wireless Networks. Proceedings of IEEE International Conference on Com-
munications 1, 70–74 (2000)

16. Santivanez, C., Ramanathan, S., Stavrakakis, I.: Making Link State Routing Scale
for Ad Hoc Networks. In: Proceedings of MobiHOC’2001, pp. 22–32 (2001)

17. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed Energy Conservation for
Ad Hoc Routing. In: Proceedings of Int. Conf. on Mobile Computing and Network-
ing (MobiCom’2001), pp. 70–84 (2001)

18. Zhou, B., de Rango, F., Gerla, M., Marano, S.: GeoLANMAR: Geo Assisted Land-
mark Routing for Scalable, Group Motion Wireless Ad Hoc Networks. Proceed-
ing of the IEEE 61st Semiannual Vehicular Technology Conference (VTC2005-
Spring) 4, 2420–2424 (2005)

http://www.xbow.com/Products/productdetails.aspx?sid=164

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 18–29, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A New Approach to Adaptive Multi-routing Protocol
for Mobile Ad Hoc Network

Ung Heo, Deepak G.C., and Jaeho Choi

Division of Electronic & Information Engineering
Chonbuk National University

Jeonju, Jeonbuk, Republic of Korea
wave@chonbuk.ac.kr

Abstract. A routing protocol is designed considering a particular environment
all the time which is not possible in the case of practical ad hoc networks.
Because of the uncertainty in topological rate of change, mobility model, and
terrain condition, the performance is severely degraded. So the concept of
assigning single routing protocol does not address the problem of most modern
day mobile networks. Instead, the feedback-based routing protocol which is
highly adaptable in changing environment is more suitable and this concept has
been proposed in this paper. The mathematical modeling of feedback
parameters have been designed and analyzed for the highly unstable networks.
Some of the parameters we measure here are network connection ratio, end-to-
end connectivity, packet delivery ratio, and number of nodes. Those are
functionally related with the routing parameter.

Keywords: MANET, Autonomy, Adaptability, Auto-configuration, Routing.

1 Introduction

Mobile Ad Hoc networks are such networks in which autonomous sets of mobile
nodes are dynamically connected via wireless links without using an infrastructure
network. Due to the dynamic nature of Ad Hoc networks, the allocated resources in
priori are not matched with the requirement and the method of communication
between them cannot be fixed in priori. Because the mobility model of nodes is
random way point, the mobility function defined in terms of time cannot be
formulated exactly. In such a flexible network, there must be some flexibility to
choose a suitable routing protocol from a protocol box which is defined later.
Therefore, an adaptive multi-protocol system should be developed, which transits into
appropriate mode of protocol. However, the term multi-mode is different from the
multi-protocol. In the former, the network is segmented and each segment has
different routing policy and duty; the second one is what we have proposed here. We
want to make clearer that multi-protocol does not like “Once Protocol 1, always
Protocol 1” policy in a sub-network. Instead, in our proposed method, the protocol is
a variable factor throughout the network.

It is clear from a circuit theory that the feedback system is more stable because it is
able to adapt in any changing environment. Our proposed scheme will use the same

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 19

concept on protocol design so that it can perform well in various conditions without
performance degradation. Since all routing protocol can function well only under
particular environment, they are categorized into different classes and sub-classes.
One can refer [9] for a brief classification of routing protocols. We will discuss some
of them here in short which we are going to implement. In [1], Multi-Mode routing
protocol has been described considering two algorithms namely Limited Link States
(LLS) and Self Organized (SO). This paper has proposed a reference area concept as
the closer to the destination a node is, the more information related to that destination
it will have. But, it does not consider what happens when the destinations move out of
the reference area. The packet move here and there if we do not change the routing
protocol, instantly.

The collaborative management of MANET, which calculates a capability function
[3] as an optimizing factor, is a self-configuring strategy. The service discovery as a
multi-protocol framework [2] has designed a common architecture for an individual
discovery protocol to enhance configurability and re-configurability of the network,
which is just a core framework and does not deal with the decision support
parameters. The ref. [5] has described adaptable ad hoc routing experience as LID
and Pattern Extraction mechanism, which is merely an extension of [1], but has
described views of an adaptable architecture as structure learning/engaging modules.
The Terminode Project [6] basically operates on a self-organized mobile Ad Hoc
Network and even explores interlayer interactions. Here, the Self-Organized networks
are defined as a network run solely by the end users. The AutoCom principle [7]
addresses some requirements of self-organized networks as well as interoperability
problems due to merge and split problems. It has proposed a heterogeneous routing
protocol as a solution. The combination of Stateless Configuration Initialization (SCI)
and Configuration Conflict Detection and Resolution (CCDR) is proposed in [10].
Here, it is assumed that some nodes may work on two routing protocols if both
routing protocols are operated on neighbors, simultaneously. It is not significant way
of auto-configuration because of the high cost of hardware and software to maintain a
duality.

The remainder of the paper is organized as follows. Section 2 presents routing
scenarios for Ad Hoc Networks. Section 3 discusses our proposed scheme which is
further divided into three sub-sections: namely, adaptable module; configuration
parameters; and configuration beacon. Section 4 describes an analysis of the overall
modules. Section 5 discusses some of implementation issues. The paper draws
conclusions in Section 6 with discussions on some future works.

2 Routing Scenario

For a pair of ad hoc network nodes, the communication will occur between them over
a period of time until the session is finished; or one of the nodes moves away; or the
battery backup power diminishes. An efficient routing protocol must support load
balancing of traffic. So, each node needs some knowledge of network topology
beyond the local neighbors. This concept attempts to collect and process that
knowledge efficiently. Most of routing protocols assume that the nodes have
homogenous resources and capabilities. The bidirectional links are often assumed.

20 U. Heo, Deepak G.C., and J. Choi

No single protocol works well in all environments. Some attempts are made to
develop adaptive/hybrid protocols. The proactive protocols are based on periodic
updates, which involve a high routing overhead. In the reactive protocols, the
source initiates route discovery and determines route time-to-time basis. The hybrid
is a combination of reactive and proactive. Even though it is adaptive, it does not
change protocol when the network is working. The curious readers can refer [9] and
[11] for further details and comparison. Algorithms that are computationally
complex however require significant processing cycles. So, we have chosen well
studied and easy to implement routing protocols in our adaptive modules. These
protocols are DSDV, ZRP, TORA, and AODV, and they are numbered Protocols 1,
2, 3, and 4, respectively. All routing protocols are invalid when the network
connection ratio (NCR) is smaller than unity. Because of this condition, no protocol
is implemented for NCR < 1. Some properties concerning each routing protocol are
given below:

- Destination Sequence Distance Vector (DSDV): This routing is needs periodic
update transmissions and guarantees loop free paths. The latency of route discovery is
very low because the source uses a ready-made route to a valid destination. For the
network with highly dynamic nodes, this protocol should be avoided; otherwise, the
bandwidth will be wasted due to excessive control overheads. It is suitable for a
network with high bandwidth, low mobility, and lower number of nodes.
- Ad Hoc On-Demand Distance Vector (AODV): This routing protocol searches
routes to destination when source needs to communicate. It is less secure because of
its distributed nature. Though its performance is not satisfactory when nodes are
highly mobile, however, it is better than DSDV. Moreover, it is more scalable because
the control overhead is lower by just keeping information about the destination.
- Zone Routing Protocol (ZRP): This routing is a scalable and highly efficient
method. Its performance comes between reactive and proactive protocols.
- Temporally Ordered Routing Protocol (TORA): TORA has advantage to support
multiple routes. It performs in a dynamic mobile networking environment. Its NCR
shown in Fig. 3 comes near to that of the AODV. It has loop free, distributed, and on-
demand properties. It allows a route to be created and maintained proactively for
some destinations while reactively for others. This protocol needs synchronized clock
and requires an extra device such as the GPS.

3 Proposed Method

The auto-configuration strategy allows the infrastructureless networks to react when
there is a change in network parameters and conditions by appropriately selecting and
replacing the current running protocols. All nodes should have equal innate authority
to make a decision in a fully distributed manner. The self stability algorithm should
start with the power on to all the nodes and end with the power off.

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 21

Fig. 1(a). No connectivity topology

Therefore, the protocols should be configured on the fly as it can be dynamically

started up and closed down at runtime. The auto-configured routing protocol should
adapt itself to the present network conditions considering the traffic level and patterns
as well as the mobility patterns of whole network. They are necessary but not
sufficient conditions because the larger the number of decision parameters we
measure, the better will be the performance. The major question that concerns us the
most is what parameters we have to measure. The paper points to that question in the
following sub-sections.

3.1 Configuration Parameters

Consider the network connection ratio defined in terms of the total area covered by
nodes. Assume that the coverage area is squarely proportional to the transmission
range, which is equal to a circular area of a size πr2. Suppose there are N nodes in a
network field Afield the network coverage ratio is defined as follows:

NCR = 1

()

field

N

node
i

S i

R
A

==
∑

(1)

where Snode(i) is the coverage area of node i, and Afield is the total area of the network.
The value of R is maintained by varying two areas mentioned in Eq. (1). The

transmission range of a station can be increased or decreased to maintain these areas.
If so, it becomes a power control routing mechanism, which has been described in
large volume of previous research works. However, we follow a different way since
adaptive transitions between protocols may not be easy, if not impossible, just by
considering the transmission range. Instead, this range is used to develop a new
parameter for making a protocol selection criterion. Figures 1(a), 1(b), and 1(c) show

22 U. Heo, Deepak G.C., and J. Choi

 Fig. 1(b). Low connectivity topology Fig. 1(c). High connectivity topology

the conditions for different value of R. In Figure 1(a), the communication is not
possible; in Figure 1(b), a node must come inside overlap area for proper
communication; and in Figure 1(c), the proper communication can be done between
the nodes.

Define the connectivity of the network in terms of number of nodes and network
coverage ratio. More specifically, the connectivity is defined in terms of reachability
i.e., the number of neighbor nodes with good connection [4]. The reason we define
connectivity is that “A good coverage in MANET network means a good
connectivity.” The connectivity is defined as follows:

1 R

R
C

eγ −=
−

 (2)

where, γ is a protocol decision constant. In fact, this parameter is a function of R and
its relation to R is shown later in this paper. This parameter indicates whether the
communication is possible among the nodes and helps to determine a particular
instant of choosing a better-fitting routing protocol.

We like to maximize the value of C because the higher connectivity is always
desirable in networking. To achieve such higher connectivity, Eq. (2) is differentiated
with respect to R. The first derivative of C with respect to R is as follows:

()2
1

1

R R

R

dC e R e

dR
e

γ γ

γ

− −

−

− −=
−

 (3)

Similarly, the second derivative of C with respect to R is as follows:

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 23

2

2 3
(2 2)

(1)

R R R

R
dC e R e R e

d R e

γ γ γ
γ

− − −

−
− + + +=

−
 (4)

We calculate the minimum required connectivity to maintain the communication

between the nodes by evaluating the function 0
dC

dR
= . The result becomes as

follows:

(1) 0

1

1

R R

R

e R e

e
R

γ γ

γ

− −− − =

⎛ ⎞= ⎜ ⎟+⎝ ⎠

 (5)

Fig. 2. The curves for connectivity C and parameter γ with respect to the coverage ratio R using
γ in Eq. (2)

Fig. 2 graphically shows changes in γ-parameter and the connectivity C with

respect to R, respectively. For all R, γ-parameter and C monotonically increases. For a
large R, γ shows somewhat divergence behavior. Also, the flexibility increases such
that the system has more options to select routing protocols. The routing protocol is
chosen only on this case. Now, we implement the definition of network coverage ratio
so that we are able to calculate its nominal value. Given A as the physical area of
network field, the total coverage area AN covered by N nodes can be determined as
follows:

24 U. Heo, Deepak G.C., and J. Choi

1
2

0

()N

N

node
i

A A i r Nπ
−

=
= =∑ (6)

It is assumed that all the nodes have an equal transmission range r and isotropic
pattern of antenna such that the coverage area becomes circular. From the definition

of the NCR, the total coverage area is 2r Nπ , and the threshold or minimum value
for the transmission range making the communication possible is as follows:

 min

. .

. .

TA R A R
r

N Nπ π
= = (7)

The scalability is taken into consideration by increasing the value of N, and then NCR
goes on increasing. As a result, γ-parameter shows an asymptotic behavior where we
can determine the segments along the γ vs. R plot as shown in Fig. 3. Those segments
decide which routing protocol becomes appropriate at a certain scenario. Considering
N the number of nodes, Afield the network field area, and rmin the transmission range,
with N = 50, 100,150, 200, or 250, Afield = 700m × 700m, and rmin =80m, respectively.

Fig. 3. Multi-protocol operation ranges and decision values for protocol transitions

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 25

For the different values of N= 50, 100, 150, 200, or 250 with the minimum
connectivity γ valued defined in Eq. (5), the values of C becomes R+1. As shown in
Figure 3 we can differentiate four distinct areas which have different properties.
When R is high, the coverage increases as well as the connectivity. In this situation,
the AODV routing protocol is suitable. As shown in that figure, the multi protocol
operation ranges are divided into four segments with respect to C and R, and we can
assign a specific routing protocol for each one of those segmentations. The lower the
value of R, the lower the number of nodes N. DSDV is used for the lower valued
segment R, which is less scalable protocol. Also, TORA and ZRP are assigned
according to their properties. TORA is nearer to AODV because it is on-demand
routing protocol. When nodes are partly clustered and slowly moving, ZRP could be
the better choice.

In addition, the same figure contains two dotted line indications drawn for mobility
and bandwidth requirements. They are also helpful in decision making process.
DSDV needs more bandwidth because it needs to maintain routes every time, and a
higher volume of control signals need to be sent. On the contrary, AODV does require
less bandwidth. Hence, DSDV is more suitable for networks having less speed in
comparison to AODV. Depending on networking conditions and scenarios, the
adaptive transition may occur from one protocol to another.

3.2 Adaptable Module

The architecture of auto-configuration routing module is shown in Figure 4. The
Multi-Routing Protocol Decision Support Module is provided by data packets and
CONF_Beacon packet. The module gets either data or beacon at a time by some
switching mechanism between them. Generally, CONF_Beacon is transmitted first

Fig. 4. Architectural modules for auto-configuration routing

26 U. Heo, Deepak G.C., and J. Choi

throughout the network and this is called configuration session. Once the system is
stable, the data packet transmission session starts. The time it takes to enter from first
session (configuration) to second session (data transmission) depends on the network
size, CONF_Beacon length, and bandwidth of the network.

As shown in Figure 4, there are n feedback modules referred to a Decision Support
Function. They are denoted by {f1,f2,f3,…….,fn} and the corresponding processing
modules are {B1,B2,……,Bn}. Here, the functional parameters fi , i=1,2,…,n, can be
NCR, number of nodes, transmission range, or mobility patterns, etc. All the
calculations are performed in Bi, i=1,2,...,n, which are shown in Eqs. (1) - (5). All
these parameters go into the multi-routing protocol decision support module as
cumulative feedback packets. This module decides more suitable routing protocol on
the present scenario. It then designs CONF_Beacon control packet and data packet,
appropriately.

The Protocol Box is a fairly simple module which keeps track on routing protocols.
It stores the control frame format of each protocol to be used in future. When it gets
hints about the very next protocol to be used, it generates CONF_Beacon and
broadcasts it. After some specified time period, it sends control packets. The dotted
line in the module means that it keeps on working on the same protocol unless it gets
another control packet to change the protocol. The same algorithm runs on each node
so that there will be a same decision throughout the network.

3.3 Configuration Beacon

When there is transition from one routing protocol to another, all neighbor nodes are
informed first. Because of this signaling, a network layer beacon has to be defined,
which carries information regarding the appropriate protocol changes. This beacon is
named as the configuration beacon (CONF_Beacon) and is designed as shown in
Figure 5. This beacon is broadcasted most of the time, i.e., at the initial point where
the protocol transition is going to happen. Due to the mobility of nodes and without
any fixed infrastructure of mobile ad hoc network, a neighbor node may not be
informed well in the case a node joins network lately. At this situation, the beacon is
unicasted only to that particular node. The beacon fields in bits are described follows:

B/U (4) – indication for broadcast or unicast: if the packet is a broadcast type,
the third field Dest_ID is not present in the frame. If fewer nodes need to be
informed, the unicast is appropriate one:

S_ID (32) – 32-bit IP address of the sender node: the assignment of IP address is
beyond the scope of this work. Instead, it is assumed that the address
management protocol is provided in the system.

R_ID (32) – 32-bit IP address of the receiver node: It is absent if the first field
indicates that the packet is broadcasting type.

Old_P1 (8) – the current routing protocol.

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 27

New_P2 (8) – the selected adaptable routing protocol.

M (4) – the indication for protocol transition method.

BC_Id (8) – broadcast identity field: it avoids loop formation. When a node
generates this CONF Beacon, this field is incremented by one. If a node receives
a beacon having the broadcast id, which it has already broadcasted, is simply
discarded. It is reinitialized when it reaches to maximum value.

TTL (8) – time to live field: it is decremented each time a node relay this packet

to its neighbors. The beacon having TTL field zero is discarded. The value of
this field is determined according to the size of network.

Fig. 5. Frame format of AUTO_Conf beacon control packet

4 Analysis

One of the major issues is to minimize transition time from one protocol to another.
There are a lot of factors which plays vital role to maintain transition time. Those
include processing capacity, memory unit, information acquisition of feedback
module, however, but we do not mention them here. In this analysis, we are focused
to the issue regarding the configuration beacon.

Field R_Id is not needed for broadcasting and it is known by the first field B/U. in this
case the frame size is 72 bits. For the unicast with Nb=1, the frame size is 72+32 bits,
where Nb is the number of neighbors nodes to be broadcasted. Sometimes, a node may
have to inform to some of the neighbors in the case a few nodes join the network a few
moments later. It takes more time to make them informed about the routing protocol
changes by sending the unicast packets. The limited-broadcasting may be a better idea
for information dissemination to limited number of users. For example, with Nb=5, the
frame size increases and becomes 72+32(5) bits. Considering a mobile device with a data
rate 2Mbps, then Tc the minimum ideal time needed to change the routing protocol from
one to another is as follows assuming δ represents the transmission and processing delay:

For Broadcasting, Tc = (36+ δ) μsec
For Unicasting, Tc = (51+ δ) μsec and
For limited broadcasting (for 5 nodes), Tc = (116+ δ) μsec

5 Implementation Issues

The investigated self-organizing network and its auto-configuration routing protocol
design are drawing immense attention because it is new and emerging field in

28 U. Heo, Deepak G.C., and J. Choi

ubiquitous and mobile computing. When considering implementation of architectural
modules and their procedure, there are two important issues to be taken account.

5.1 Internal Issues

The design of module is important because it determines the overall cost of the
mobile device. It deals with memory requirement, processing capacity, and/or inter-
module communications. The important one is the decision module itself and its
algorithm. The description of design of these modules is beyond the scope of this
paper.

5.2 External Issues

The external issues deals with the parameters required for internodes communication.
The important one is “data gathering module.” It may be a sensor or actuator, which
feeds bandwidth requirements, speed of nodes, coverage area of nodes, N, and/or
NCR as inputs to Bi ,i=1,2,..,.n. Another issue is to design the frame size. There must
be a compromise between a larger frame size and the amount of bandwidth for
broadcasting. If the packet type is unicast, there must be a field indicating the IP
address of destination. For the existing IPv4 addressing scheme, the beacon size is
increased by at least 32 bits plus other additional information. This dilemma makes
system design and implementation more complex. Both issues in our work are taken
into consideration.

6 Conclusions and Future Works

The recent development in ad-hoc networking is fast growing and a large amount of
literatures are accumulating. In key point of the proposed scheme is not to design new
one but to use existing protocols in efficient way. With that strategic point in mind,
our investigation has been focused on how to collect parametric information and use
them to adaptively control the routing protocol from one to another on a fly
depending on various network conditions and scenarios. We have measured the
protocol convergence factor γ which has a distinct relation to the network coverage
ratio R. These two parameters provide the basic building block of our multi-routing
protocol method along with other important network parameter such as number of
nodes, speed of nodes, transmission range, and connectivity. We could differentiate
each protocol operation range that is defined by γ gamma and R. From the basic
properties of MANET routing protocols, we have assigned them to a particular and
appropriate protocol operation ranges. In addition, we have designed configuration
beacon frame format and also presented the length of the control and data packets
under the consideration of protocol change decision time and the network bandwidth.
From the analytic work, we can conclude that the performance degradation on the
transition period is very low and yields a negligible effect. The importance of this
novel approach will play more significant role for the future multi-dimensional
networks.

In our best understanding, a scheme to change the routing protocol according to
feedback parameters is first time proposed here. By fully extending the investigation,

 A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network 29

we expect more new ideas can be derived and real-world like results can be produced.
Specifically, we need to obtain a better design on multi-protocol decision module that
can comprehensively model the dynamics of ad hoc network. Some exotic techniques
such as neural networks and/or fuzzy logic theory can also be adopted for such
purposes

Acknowledgements

This research work has been supported by the second phase of Brain Korea 21
Projects.

References

1. Santivanez, C., Stavrakasis, I.: A framework for a Multi-mode Routing Protocol for
(MANET) Networks. In: Proceedings of IEEE WCNC ’99, New Orleans, LO, pp. 515–
519 (September 1999)

2. Flores-Carets, C.A., Blair, G.S.: A Multi-Protocol Framework for Ad Hoc Service
Discovery. In: IEEE-MPAC’06, Melbourne, Australia (Nov-Dec 2006)

3. Malarias, A., Palou, G., Gounares, S.: Self-Configuring and Optimizing Mobile Ad Hoc
Networks. In: Proc. of Second IEEE Conference on Automatic Computing (ICAC) (2005)

4. Badonnel, R., state, R., Festor, O.: Monitoring End-to-End Connectivity in Mobile Ad Hoc
Networks. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3421, pp. 83–90. Springer,
Heidelberg (2005)

5. Santivanez, C., Stavrakasis, I.: Towards Adaptable Ad Hoc Networks: The Routing
Experience. In: Smirnov, M. (ed.) WAC 2004. LNCS, vol. 3457, pp. 229–244. Springer,
Heidelberg (2005)

6. Hubaux, J.P., Gross, T., Boudec, J.Y.L, Vetterli, M.: Towards Self-Organized Mobile Ad
Hoc Networks: The Terminode Project. IEEE Communications Magazine 2001, 118–124
(2001)

7. Legendre, F., de Amorim, M.D., Fdida, S.: Some Requirements for Autonomic Routing in
Self-organized Networks, In: Smirnov, M. (ed.) WAC 2004. LNCS, vol. 3457, pp. 13–24.
Springer, Heidelberg (2005)

8. Vieu, V.B., Mikou, N.: Distributed Mobility Prediction-Based Weighted Clustering
Algorithm for MANETs, In: Kim, C. (ed.) ICOIN 2005. LNCS, vol. 3391, pp. 717–724.
Springer, Heidelberg (2005)

9. Royer, E., Toh, C.T.: A review and Current Routing Protocols for Ad Hoc Mobile
Wireless Networks. IEEE Personal Comm., 46–55 (April 1999)

10. Forde, T.K., Doyle, L.E., O’Mahony, D.: Self-stabilizing Network-Layer Auto-
Configuration for Mobile Ad Hoc Network Nodes. In: Proceedings of the IEEE
International Conference on Wireless and Mobile Computing, Networking and
Communications (Wimob 2005), Montreal, Canada, 22 - 24 August 2005, pp. 22–24.
IEEE Computer Society Press, Los Alamitos (2005)

11. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.-C., Jetcheva, J.: A Performance Comparison
of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In: Proceedings of the Fourth
nnual ACM/IEEE InternationalConference on Mobile Computing and Networking
(MobiCom’98), Dallas, Texas, USA, October 25-30, 1998, IEEE Computer Society Pres,
Los Alamitos (1998)

The Development of a Wireless Sensor Network

Sensing Node Utilising Adaptive Self-diagnostics

Hai Li1, Mark C. Price1,2, Jonathan Stott1, and Ian W. Marshall1

1 Computing Laboratory, University of Kent, Canterbury, UK, CT2 7NF
2 School of Physical Sciences, University of Kent, Canterbury, UK, CT2 7NH

mcp2@star.kent.ac.uk

Abstract. In Wireless Sensor Network (WSN) applications, sensor
nodes are often deployed in harsh environments. Routine maintenance,
fault detection and correction is difficult, infrequent and expensive. Fur-
thermore, for long-term deployments in excess of a year, a node’s limited
power supply tightly constrains the amount of processing power and
long-range communication available.

In order to support the long-term autonomous behaviour of a WSN
system, a self-diagnostic algorithm implemented on the sensor nodes is
needed for sensor fault detection. This algorithm has to be robust, so that
sensors are not misdiagnosed as faulty to ensure that data loss is kept to a
minimum, and it has to be light-weight, so that it can run continuously on
a low power microprocessor for the full deployment period. Additionally,
it has to be self-adapative so that any long-term degradation of sensors
is monitored and the self-diagnostic algorithm can continuously revise its
own rules to accomodate for this degradation. This paper describes the
development, testing and implementation of a heuristically determined,
robust, self-diagnostic algorithm that achieves these goals.

1 Introduction

1.1 Background: The PROSEN Project

PROSEN (PROactive condition monitoring of SEnsor Networks) is an EPSRC
funded, multi-university project [1] which is investigating techniques to enable
automated control and proactive management of sensor arrays. The project aims
to develop a proactive Wireless Sensor Network (WSN) to enable condition mon-
itoring of a wind farm in an uncontrolled, unsupervised, outdoor environment
that will be deployed for a minimum of one year.

Each sensor node will measure temperature, wind speed, humidity, rainfall
and cloud cover and store the raw data on-board. Preliminary data checking,
analysis and sensor diagnosis will also be performed on-board. As long-range
wireless communication is power intensive, in order to prolong their life, each
node must pass only “events” (not raw data) to the management system which
will be located at one of the investigating universities. What is deemed an event is
determined from an overall system policy which is made up of a set of adapatable
policy rules which can be modified on individual nodes. For example, an event

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 30–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Development of a WSN Sensing Node 31

could be generated when a sensor records a measurement above (or below) a
certain (policy determined) threshold, when a possible sensor fault is detected,
or when the battery voltage of the node reaches a certain critical level.

Figure 1 is a schematic showing the information flow within the PROSEN
WSN. Each node will also have a short range (174 MHz) radio in order to
communicate with its nearest neighbour. This enables a second level of data ver-
ification if, for example, one node is measuring an abnormally high temperature,
it can query its neighbour to verify the validity of the reading. If the sensor
reading is invalid then a possible sensor fault condition is flagged, and reported
to the management system.

Computer

Computer

Computer

Management
System

GSM communication
(Policy Rules + Events)

Sensor Node

Sensor Node

Sensor Node

Sensor Node

Sensor Node

174 MHz communication
(Neighbour Diagnostics)

Wireless Sensor Network

Fig. 1. Schematic showing information flow within the PROSEN WSN

In traditional condition monitoring systems, the sensor nodes acquire data
under the control of a local microcontroller located on the node, and then raw
data is transmitted to a central base-station (e.g. PC). This central base-station
then performs high level, CPU intensive, functions such as data analysis and
decision making (e.g. [2]).

This type of approach is purely reactive, and prone to catastrophic failure in
reponse to unanticipated failure modes, degradation, changing operating condi-
tions or adverse environmental conditions. Moreover, a sole controlling central
station consitutes a single point failure, and should it fail the whole network
could be rendered ineffective.

32 H. Li et al.

To tackle the drawbacks of such a system, we are investigating and demon-
strating techniques that enable the automated control and management of sensor
arrays to be proactive. In order to achieve this goal, we need to give the sensor
nodes much more on-board ‘intelligence’ such as self-diagnosis, data analysis,
asessment of data quality and decision making routines.

The obvious challenge with such an approach, is that it requires a sophis-
ticated processor on each node to handle the data analysis, self-diagnosis and
decision making processes. Such processing power comes at the expensive of in-
creased power useage, thus further constraining the frequency and duration of
power hungry, long-range communications. There is therefore a requirement to
develop a self-diagnostic algorithm that is not only robust and adaptable, but
will run on a low power microprocessor.

1.2 Approaches to Sensor Self-diagnosis

Automated fault detection techniques have been widely studied and developed
during the last few years (for example, Angeli et al. [3]) and the most popular
methods include model-based methods [4,5] and artificial intelligence methods
[6]. These methods are highly reliable and are robust, but all are based on highly
complicated computation, thus requiring a high speed processor, large amounts
of memory, and therefore have a high power consumption. Two further examples
are Nithys et al. [7] and Farinaz et al. [8].

Nithys et al. [7] developed a cross-validation based technique for on-line de-
tection of sensor faults. Their idea is to compare the results of multisensor fusion
with, and without, each of the sensors involved using non-linear function min-
imization and then identify the faulty sensor using non-parametric statistical
techniques. Their simulation results indicate the high accuracy of the approach,
but the implementation complexity of non-linear function minimization is too
high for a low power microprocessor with limited memory and processing speed.

Farinaz et al. [8] propose a distributed, localized, sensor fault detection al-
gorithm for WSNs. In their algorithm, each node monitors its health status
and that of its nearest neighbours. This data is correlated and exchanged be-
tween the nodes. Each node therefore has knowledge of its own status and all its
neighbours. The drawback of this algorithm is that there is a large amount of
information transferred between nodes, resulting in a high power overhead due
to the wireless communications required.

A further avenue is to use a rule-based approach. Betrand-Krajewski et al. [9]
present a formal approach to the establishment of a such a rule-based system.
The major advantage which such a system is the low processing power required,
and the rapidity in which a working rule-set can be tested, evaluated, modified
and retested.

Jinran et al. [10] explore rule-based fault detection techniques for helping
improve the quality of the data collected by their WSN in Bangladesh. Their
research is based on the idea that fault diagnosis and repair are knowledge-
intensive and experiential tasks. After analysing a dataset, some rules have been
established to suggest actions a user can take to remedy, or validate data. For

The Development of a WSN Sensing Node 33

example, such a directive could be: “If measurements from a sensor are identified
as noisy, either check the battery or the connectors on the sensor and to the
sensor-board”. Their approach is a high level fault detection technique running
on the base station side, but requires a large amount of node-human interaction
to quickly identify, then remedy problems.

In this paper, we describe and evaluate a light weight heuristically determined
rule-based algorithm to identify possible sensor faults for each of our sensor
nodes. It has a low computing complexity and (so far) has achieved a 100%
sucess rate in detecting faults, with no false-positives reported.

We describe the architecture of our prototype platform in Section 2. Sec-
tion 3 describes our low level self-diagnosis routines, and presents some practical
results, and Section 4 gives conclusions and future work.

1.3 Hardware Development Strategy

From the outset, our design strategy has been to minimise the duration and
frequency of long range communications, and limit such communications to the
transmission of events (ie. alarms, alerts, node health status etc.), and the re-
ception of policy rules which determine the conditions under which these events
are generated.

We therefore adopted the following methodology:

1. Deploy a “first generation” prototype node in a controlled external envi-
ronment to measure base-line operational parameters of the sensors and
communications components. This has a simple self-diagnostic rule set, and
event generating capability.

2. Develop a “second generation” node that will have full system functional-
ity. This will have an adaptive self-diagnostic rule-set, full event generating
capability and be able to receive updates from the management system. It
will also incorporate two processors, a low power micro-processor that per-
forms low-level tasks, and a higher power processor which is powered up
intermittently to perform more CPU intensive tasks.

3. Using data from the first and second generation nodes, fully optimise the
hardware architecture and system parameters for the finalised “third gener-
ation” node to maximise the node lifetime.

2 A Prototype Sensor Node

In order to minimise to development time (and cost), we built the first generation
prototype sensor node using readily available commercial products in order to
quickly obtain experimental baseline data to establish an intital rule-set. The
station selected is called the Davis Vantage Pro2 [11] and consists of two major
components: the Integrated Sensor Suite (ISS), which houses and manages the
external sensor array, and the console (connected to a PC) which provides the
user interface and data display. The ISS and console communicate via a 868
MHz RF transmitter and receiver. We also integrated a Campbell Scientific

34 H. Li et al.

CR216 wireless datalogger [12], which has five 12-bit analogue inputs, two pulse
inputs, two digitial I/O lines, a RS-232 port and a RF416 spread spectrum radio
(operating at 2.4 GHz) so that we can monitor the sensors in parallel with the
Davis ISS (via the custom built sensor interface) [13]. This logger has a user-
programmable 8-bit microprocessor with 6.5 KBytes of program space, and 250
KBytes of data storage, and it is on this platform we have implemented our data
acquisition and self-diagnosis algorithm for our first generation node.

Figure 2 shows the various components of the node. The “Base Station” side
is located within the School of Physical Sciences building at the University of
Kent, and the “Sensor Node” is deployed on the first floor roof of the same
building (Figure 3). Initial deployment was carried out in July 2006.

Davis
sensor suite

Sensor
interface

Campbell
CR216

GSM
Modem

Two
temperature

sensors

Battery Solar panel

868 MHz

2.4 GHz

Sensor Node

Davis
Console

Campbell
RF416

PC

868 MHz

2.4 GHz

Base Station

Fig. 2. Components of our first generation prototype node

In addition we have also connected the Campbell data logger to a GSM modem
via its RS-232 interface. This allows us to send events and alarms to a remote
system via SMS. This has proved to be very effective, felixble and reliable and
will be developed into a two-way process in our second generation node [14].

As we also anticipate that the time between battery replacements in the field
could be anywhere between one and two years, we have added a 0.18 m2, (6
watts maximum output) solar panel to keep the 12 Volt (7 Ah) lead-acid battery
topped-up. This has provided sufficient power to keep the battery fully charged,
even over the winter.

3 Self-diagnostic Methods

3.1 Establishing the Initial Rule-Set

To establish an effective rule set, we used heuristic, phenomenological and sta-
tistical methods to establish:

The Development of a WSN Sensing Node 35

Fig. 3. A photograph of the deployed first generation sensor node

1. Sanity levels. This is simply a set of values based upon possible non-physical
readings, ie. a humidity reading greater than 100% (or less than 0%), tem-
peratures less that -40o centigrade, or greater than +40o centigrade etc. Any
reading outside of these values is a probable sensor malfunction.

2. Maximum and minimum environmental parameters (ie temperature, humid-
ity, wind speed) over a long period. This was achieved by analysing a data
set from a nominally identical weather station that has been deployed for
two years within a mile of our prototype node [15], plus additional data ob-
tained from the met office [16]. Any deviation of the measured values outside
of these values could be indicative of a sensor fault.

3. Noise parameters. Specifically the standard deviation of the noise of a sensor
over a long period. Again, any increase (or decrease) in these values may
suggest a sensor problem.

4. The correlation between different, but complementary sensors. For example,
the solar radiation sensor and solar panel both output a voltage proportional
to the intensity of the solar radiation incident upon them. Thus they should
be strongly correlated, and any deviation from this correlation could be
characteristic of a malfunction in either sensor.

In order to illustrate our methodology, we now discuss three examples of how
we obtained our base-line performance parameters for the temperature sensors,
the solar radiation sensor and the anemometer.

36 H. Li et al.

We have installed two Campbell Scientific (Model 109) temperature sensors
on our prototype node. They are housed within their own radiation shields and
are approximately 1 metre from the floor with a horizontal separation of 25 cm.

In Figure 4 (top) we have plotted the temperature as measured by our two
temperature sensors for a three day period, and (bottom) the residuals between
the two readings.

In order to calculate a base-line noise value, we calculated the standard de-
viation, σ, of the residuals for 50,000 readings (equivalent to 33 days of data),
also plotted on the bottom graph of Figure 4 are the ±3, 7 and 11σ levels.

As these temperature sensors are nominally identical, in the absence of sys-
tematic effects, the error between the two readings should be ±1% [17] and the
residual values should be normally distributed.

In Table 1, we show the number of records that should deviate more than 3, 5,
7, 9 and 11σ assuming a normal distribution, and the actual number of records
from our 50,000 data points sample that do deviate.

1000 2000 3000 4000 5000
Record number

-20

0

20

40

T
em

pe
ra

tu
re

 (
D

eg
re

es
 C

)

1000 2000 3000 4000 5000
Record number

-4

-2

0

2

4

6

D
iff

er
en

ce
 (

D
eg

re
es

 C
)

Fig. 4. Plot of the temperature recorded from the two temperature sensors (top) and
the difference (residuals) between the two readings (bottom)

As can be seen from Table 1 and Figure 4, the noise is clearly not normally
distributed and has a bias consistent with a regular systematic effect. Closer
investigation revealed that this effect was caused by the physical location of the
two temperature sensors. One of the sensors is on the east side of the node, and
the other on the west side of the node. As the sun rises in the morning, the east
sensor warms more quickly than the west sensor causing a large (∼2 degree)
temperature differential. However, during the course of the day, this difference
reduces and becomes unnoticeable. However, as this is a regular, systematic
effect, it does not change our methodology for detecting sensor faults.

The Development of a WSN Sensing Node 37

Table 1. Analysed results from 50,000 readings

Noise Number of records Number of records

deviation (Normally distributed) (Measured)

3σ 67 1132

5σ < 1 130

7σ 0 19

9σ 0 8

11σ 0 0

3.2 Solar Radiation Sensor

In order to do self-diagnosis on the solar radiation sensor, we have adopted a
different approach to that used for the temperature sensors. As we only have
one solar radiation sensor, we cannot use the same statistical method described
above.

However, we do have access to the output voltage measured where the solar
panel connects to the battery and this give us a direct reading of the output
voltage of the solar panel (plus the battery voltage). Therefore, we should see a
strong correlation between the voltage from the solar radiation sensor and the
solar panel voltage.

Figure 5 shows the correlation for a period of three days, and Figure 6 shows
the solar radiation sensor output voltage plotted against the solar panel voltage
for 72,000 readings. As can be seen, there is a clear envelope that all the data
lie within, showing a strong correlation between the two readings.

The observed hysterisis type appearance is due to the charging cycle of the
battery. In the early morning (before dawn), the battery level is low (typically
∼13 volts) and during the course of the day the battery charges up, so that after
dusk its voltage level is ∼14 volts. The battery then discharges back to 13 volts
during the course of the night, and the cycle repeats.

In order to quantify this correlation we calculate the linear correlation coeffi-
cient, r, via:

r =
∑

i(xi − x)(yi − y)√∑
i(xi − x)2

√∑
i(yi − y)2

(1)

where (xi, yi), i = 1, . . . , N represent the measured values of the battery + solar
panel voltage and the solar radiation sensor respectively, and x is the mean of x
and y is the mean of y [18].

By using Equation 1, we calculated the daily correlation coefficient, r, between
solar radiation and battery level for a 24 hour period. Figure 7 is a the plot of r for
fifty days for the data set shown in Figure 6. These data illustrate that the daily
correlation coefficient between solar radiation and battery + solar panel voltage
is always greater than 0.6, even on very overcast days. Therefore, based on this

38 H. Li et al.

3.50•104 3.60•104 3.70•104 3.80•104 3.90•104 4.00•104

Record number

0

200

400

600

800

1000

1200

S
ol

ar
 r

ad
ia

tio
n

(W
at

ts
 p

er
 s

qu
ar

e
m

et
re

)

3.50•104 3.60•104 3.70•104 3.80•104 3.90•104 4.00•104

Record number

12

13

14

15

16

17

B
at

te
ry

 +
 S

ol
ar

 p
an

el
 v

ol
ta

ge
 (

V
)

Fig. 5. Three days of data illustrating the correlation between the solar radiation
intensity, and the measured solar panel + battery voltage

12 13 14 15 16 17
Battery + Solar panel voltage (V)

0

200

400

600

800

1000

S
oa

lr
ra

di
at

io
n

(W
at

ts
 p

er
 s

qu
ar

e
m

et
re

)

Fig. 6. Correlation between solar radiation intensity and solar panel + battery output
voltage for 72,000 records

analysis, we set a threshold value, rth, of 0.6 in our self-diagnostic algorithm.
A calculated value of r < rth will flag an alert of a possible degradation in the
performance of either the solar panel, or the solar radiation sensor.

The Development of a WSN Sensing Node 39

20 30 40 50 60 70
Day Number

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt
 r

Fig. 7. Correlation coefficient, r, plotted for a 50 day period

3.3 Anemometer Diagnosis

In order to check the operation of the anemometer, we again used the fact that it
consists of two different, but complementary sensors; a wind direction sensor, and
a wind speed indicator. Due to the mechanical nature of these sensors, the most
probable failure mode is a “sticking” of the sensor in a fixed position. However, a
wind speed of zero, and/or an unvarying wind direction could just be indicative
of a very still day and not necessarily a failed sensor. We therefore analysed
our weather data for the last two years [15] in order to establish what were the
longest periods of exceptional stillness, ie. where the wind speed indicator was
zero, and when the wind direction was unvarying.

This established the following rule.

IF (Wd is changing) and (Ws is unchanged for 30 mins)

THEN ReportFault (2)

and

IF (Ws > 2 mph) and (Wd is unchanged for 30 mins)

THEN ReportFault (3)

where Wd is the measured wind direction and Ws is the measured wind speed.

3.4 Algorithm Testing

In order to test out self-diagnosis routines we forced a failure condition upon
several of the sensors to ascertain the robustness of the self-diagnosis routines,
and their ability to generate the appropriate alarm event.

40 H. Li et al.

In one test, the solar radiation sensor was totally obscured for a period of one
hour. Figure 8 (top plot) shows the point (indicated arrow) where the sensor was
covered, at approximately noon, on the 78th day, and the middle graph shows
the corresponding solar panel voltage.

The bottom plot of Figure 8 shows the correlation coefficient, r, between the
two datasets. Each point is the correlation coefficient as calculated from the
previous 24 hours of data. Also shown is our phenomenologically determined
threshold value of rth = 0.6. As can be seen, the value of r drops below rth and
an alarm signal was generated.

1.10•105 1.12•105 1.14•105 1.16•105 1.18•105 1.20•105

Record number

0

200

400

600

800

S
ol

ar
 r

ad
ia

tio
n

(W
 p

er
 s

qu
ar

e
m

et
re

)

1.10•105 1.12•105 1.14•105 1.16•105 1.18•105 1.20•105

Record number

12

13

14

15

16

B
at

te
ry

 +
 S

ol
ar

 p
an

el
 v

ol
ta

ge
 (

V
)

73 74 75 76 77 78 79 80
Day number

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt
 r

Fig. 8. Solar radiation and solar panel + battery voltage, indicating a forced failure of
the solar radiation and detection of the failure

3.5 Detection of a Real Sensor Failure

During the latter part of the tests conducted above, we frequently received alerts
indicating a failure of one of the temperature sensors. In Figure 9 (top), we have
plotted the residuals for the two temperature sensors over the period in question,
and our 11σ threshold level. As can be seen, there are many points where the

The Development of a WSN Sensing Node 41

8.0•104 9.0•104 1.0•105 1.1•105

Record number

-4

-2

0

2

4

6

D
iff

er
en

ce
 (

D
eg

re
es

 C
)

8.0•104 9.0•104 1.0•105 1.1•105

Record number

-20

0

20

40

60

80

100

T
em

pe
ra

tu
re

 (
D

eg
re

es
 C

)

Fig. 9. Detecting a real failure of one of the temperature sensors

data exceeded this threshold. The bottom graph of Figure 8 shows the raw data
for the sensor. Clearly one of the sensors is faulty as it is intermittently recording
temperatures in excess of 100o centigrade!

In this section, we introduced our base-line self-diagnosis routines, explained
some technical methods for low level sensor fault detection and showed some
experimental results. Our self-diagnosis algorithm is a rule-based system, where
knowledge obtained from analysis of a large dataset has helped determine these
rules. Practical results have shown that these rules sucessfully report sensor
failure and it can be easily implemented on a low power microcontroller.

3.6 Towards Self-adaptability

In the proceeding analysis and examples, our node reacted solely on a fixed set
of conditions imposed upon it; ie., “if X > Y generate event”. However, we have
anticipated the need for these set of conditions to be modifiable, either by the
management system or the node itself, as the base-line performance of the node
changes during its deployment. As a simple example, we consider the possible
long term degradation of the solar radiation sensor caused by buildup of deposits
on the transparent external casing of the sensor. This would manifest itself as a
weakening of the correlation between its output and that of the solar panel. In
order to compensate for any such degradation, the node can actively update the
value of rth required to generate an alert by performing a running average over
the last 50 days worth of data. Any sensor degradation would lead to a gradual
decrease in the value required to generate an alert. Such a method does not
preclude the self-diagnosis system failing the sensor in the case of a catastrophic

42 H. Li et al.

malfunction, but does mean the sensor can remain operational for longer without
generating false-positive alerts and thus (erroneously) discarding useful data.

4 Conclusions and Further Work

Previous approaches to self-diagnostics routines have involved WSNs with ac-
cess to powerful CPUs, a high level of human supervision, short (in the field)
deployment times and/or a large data transmission requirement.

We have identified the need for a WSN self-diagnostic routine that can be
implemented autonomously on a low power microprocessor for periods in excess
of a year.

By using readily available off-the-shelf components we have constructed a
prototype sensor node that can be quickly deployed. Using the data from this
deployed node, we have successfully developed and trialled a light weight, robust,
rule-based self-diagnostic algorithm that very sucessfully detects sensor faults.
Since its deployment in July 2006, the algorithm has sucessfully reported the
failure of one of the temperature sensors, and (just as importantly) not generated
any false-positive alarm events.

Our experimental results shows that this approach has a low computing com-
plexity and achieves a high probability of correct diagnosis. It can be imple-
mented on a broad set of low power microprocessors that have limited memory
and processing speed.

We thus intend to migrate our current Campbell Scientific datalogger based
system to our second generation node within the next two months. This node will
be a hybrid node, incorporating a low-power microcontroller (Texas Instruments’
MSP430F1611) to acquire data and run the low-level algorithm discussed here,
and an Intel PXA-255 embedded Linux machine (such as a “Gumstix” [19])
which is swtiched on intermittently to do more CPU intensive tasks, such as
double-checking the low-level diagnostic routine to validate alarm events.

Acknowledgments

The authors would like to thank EPSRC (Engineering and Physical Sciences
Research Council) for funding this project and the mechanical workshop of the
Electronics Department of the University of Kent for their invaluable technical
assistance.

Addendum

Since this work was initially carried out and submitted, the authors, with the
exception of Dr. Jonathan Stott, have relocated to Infolab21, Department of
Computing, University of Lancaster, Lancaster, UK, LA1 4WA.

The Development of a WSN Sensing Node 43

References

1. PROSEN. Prosen project homepage (2007), [Online]. Available:
http://www.prosen.org.uk

2. Caselitz, P., Giebhardt, J., Mevenkamp, M.: Application of condition monitor-
ing systems in wind energy converters. In: European Wind Energy Conference
(EWEC’97), Dublin, October 1997 (1997)

3. Angeli, C., Chatzinikolaou, A.: On-line fault detection techniques for technical
system: A survey. International Journal of Computer Science & Applications I(1),
12–30 (2004)

4. Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Sensor fault detection and iden-
tification in a mobile robot. In: 1998 IEEE International Conference on Robotics
and Automation, May 1998, pp. 2223–2228. IEEE Computer Society Press, Los
Alamitos (1998)

5. de Freitas, N., Dearden, R., Hutter, F., Morales-Menendez, R., Mutch, J., Poole,
D.: Diagnosis by a waiter and a mars explorer. Proceedings of IEEE 92(3), 455–468
(2004)

6. Goel, P., Dedeoglu, G., Roumeliotis, S.I., Sukhatme, G.S.: Fault detection and
identification in a mobile robot using multiple model estimation and neural net-
work. In: IEEE International Conference on Robotics and Automation, Leuven,
Belgium, May 1998, IEEE Computer Society Press, Los Alamitos (1998)

7. Ramanathan, N., Balzano, L., Burt, M., Estrin, D., Harmon, T., Harvey, C., Jay,
J., Kohler, E., Rothenberg, S., Srivastava, M.: Rapid deployment with confidence:
Calibration and fault detection in environmental sensor networks, Center for Em-
bedded Networked Sensing, UCLA and Department of Civil and Environmental
Engineering, MIT, Tech (April 2006)

8. Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, A.: On-line fault detection
of sensor measurements. In: Sensors, 2003. Proceedings of IEEE, October 2003, pp.
974–979. IEEE Computer Society Press, Los Alamitos (2003)

9. Bertrand-Krajewski, J., Bardin, J., Mourad, M., Beranger, Y.: Accounting for sen-
sor calibration, data validation, measurement and sampling uncertainities in moni-
toring urban drainage systems. Water Science and Technology 47(2), 95–102 (2003)

10. Chen, J.,Kher, S., Somani,A.:Distributed fault detectionofwireless sensornetworks.
In: DIWANS ’06: Proceedings of the 2006 workshop on Dependability issues in wire-
less ad hoc networks and sensor networks, Los Angeles, CA, USA, pp. 65–72 (2006)

11. Davis instruments, wireless vantage pro2 specifications (2006), [Online]. Available:
http://www.davisnet.com/support/weather/

12. CR200 Series Datalogger with Spread Spectrum Radio, Campbell Scientific, Inc.
(2005)

13. RF401/RF411/RF416 Spread Spectrum Data Radio/Modem, Campbell Scientific,
Inc. (2005)

14. Li, H., et al.: (In prep. 2007)
15. Stott, J.: Canterbury weather website (2006), [Online]. Available:

http://www.canterburyweather.co.uk/
16. Uk weather extremes (2007), [Online]. Available:

http://www.metoffice.gov.uk/climate/uk/extremes/index.html
17. Model 109 Temperature Probe User guide. Campbell Scientific Inc. (2002)
18. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes

in C. Cambridge university press, New York, USA (1992)
19. Gumstix. Gumstix homepage (2007), [Online]. Available:

http://www.gumstix.com

http://www.prosen.org.uk
http://www.davisnet.com/support/weather/
http://www.canterburyweather.co.uk/
http://www.metoffice.gov.uk/climate/uk/extremes/index.html
http://www.gumstix.com

Efficient and Resilient Overlay Topologies over

Ad Hoc Networks

Sandrine Calomme and Guy Leduc

Research Unit in Networking
Electrical Engineering and Computer Science Department

University of Liège, Belgium

Abstract. We discuss what kind of overlay topology should be pro-
actively built before an overlay routing protocol enters a route search
process on top of it.

The basic overlay structures we study are the K-Nearest Neighbours
overlay topologies, connecting every overlay node to its K nearest peers.

We introduce a family of optimizations, based on a pruning rule. As
flooding is a key component of many route discovery mechanisms in
MANETs, our performance study focusses on the delivery percentage,
bandwidth consumption and time duration of flooding on the overlay.
We also consider the overlay path stretch and the overlay nodes degree as
respective indicators for the data transfer transmission time and overlay
resilience.

We finally recommend to optimize the K-Nearest Neighbours overlay
topologies with the most selective pruning rule and, if necessary, to set
a minimal bound on the overlay node degree for improving resilience.

1 Introduction

Ad hoc networks are formed without the use of any existing network infrastruc-
ture nor centralized administration. The devices in contact can have different
hardware capabilities, software, application needs, and mobility pattern. Plenty
of multi-hop routing protocols have been proposed for MANETs and, in such
heterogeneous networks, the best one may be different for each set of communi-
cating nodes. The preferred routing solution could also change along time, be-
cause of mobility and varying network conditions. Consequently, the requirement
of choosing a routing protocol and imposing it to all ad hoc devices in order to
form a MANET is a limitation. To overcome this restriction, we propose to copy
the layered approach of Internet [1]: agree only on a few unspecialized protocols
at the physical, data link and routing layers, imposed by their proved qualities
or de facto, and over this basic architecture, develop plenty of more specialized
solutions, from routing to application, thanks to the overlay technique. Overlay
routing could promote the deployment of ad hoc networks, offering a very flexi-
ble ground for a variety of applications using the overlay routing protocol that
best fits their specific needs.

In this paper, we discuss what kind of overlay topology should be pro-actively
built before an overlay routing protocol enters a route search process on top

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 44–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 45

of it. As flooding is a key component of many route discovery mechanisms in
MANETs, our study focusses on the bandwidth consumption and time duration
of flooding on the overlay. We also consider the overlay path stretch and the
overlay nodes degree as respective indicators for the data transfer transmission
time and overlay resilience.

The interference level is not directly addressed. We let the task of reducing
interferences to the underlay topology control algorithm and assume that reduc-
ing the number of packets emitted per flood is an efficient way to pace collisions
due to the overlay use. We also do not present how the studied topologies can
be built or maintained. For example, the reader will not find any test on mobile
networks, which does not mean that we assume a static network. The overlay
topology control protocol itself will be presented in a follow-up paper. Its design
guideline will be to maintain, in a mobile context, the overlay topology as close as
possible to a target overlay topology, chosen in accordance with the conclusions
drawn in Section 6.

2 Related Work

A major part of the current litterature about overlays addresses peer-to-peer
applications. Although this work was not conducted for P2P networks, it could
probably be exploited in unstructured peer-to-peer middleware. We did not ex-
plore this open issue but can compare in some points our work to what have
been done for ad hoc P2P networking. In several works, for example ORION [2]
and [3], it is assumed that all nodes run the proposed protocol. The use of an
overlay allows to get rid of this restriction. In [4], the Gnutella protocol is opti-
mized for ad hoc networks. XL-Gnutella proactively builds an overlay on top of
which queries can be efficiently disseminated by the underlying routing protocol.
This is similar to our objective of building an overlay for the propagation of over-
lay routing requests. In Section 5.3, we compare the topologies we recommend
for overlay routing to the XL-Gnutella ones.

Topology control (TC) consists of selecting a subset of edges in a graph rep-
resenting the communication links between network nodes, with the purpose
of maintaining some global graph property (e.g., connectivity), while reducing
energy consumption and/or interference [5]. Similarly, our problem requires to
select a subset of paths between overlay nodes, with the purpose of maintaining
their connectivity, while reducing the number of messages they induce in the
whole network when they flood an overlay message. Hence, the roots of this
work can be found in the TC literature. Mechanisms for building the presented
overlay topologies are inspired from two topology control protocols : k-Neigh [6]
and XTC [7]. We first present overlay topologies where each overlay node must
be aware of a minimal number of the closest other overlay nodes, a process iden-
tical to the one used by k-Neigh, but without discarding asymmetric neighbours.
We then propose optimizations of the obtained topologies based on an XTC-like
criterion.

46 S. Calomme and G. Leduc

3 Study Overview

In the sequel, all concepts related to the whole ad hoc network, and not only to
overlay nodes, will be identified by the term “underlay”.

We consider a connected underlay and assume that a routing protocol that
builds the shortest symmetric paths is available to all nodes. Overlay nodes are
randomly and uniformly distributed on the set of ad hoc nodes. The proportion
of overlay nodes is called the overlay density.

3.1 Fundamental Properties

The overlay topologies we discuss are strongly connected, i.e. there exists a path
on the overlay graph between any pair of overlay nodes, at least with a high
probability.

They can be built by a fully distributed algorithm. We also take care of local-
ity: The topology can be built even if each overlay node is allowed to exchange
only a few messages with a limited number of nearest overlay nodes. As we do
not make any assumption about the underlay routing protocol type, locality is an
important feature. With reactive on-demand protocols, like AODV, the control
traffic necessary for building a data path between overlay neighbours increases
exponentially with the number of hops that separates them.

3.2 Performance Criteria

The objective of the overlay creation and maintenance is to offer a logical com-
munication structure between the overlay nodes which allows the deployment
of efficient overlay routing protocols. From this angle of view, the quality of an
overlay is strongly linked to desired properties of overlay routing protocols. We
translate this in terms of the following objectives.

1. Bandwidth: as routing control traffic is often generated by flooding, the
bandwidth necessary to send a message from one overlay nodes to all other
ones by using a simple flooding procedure must be as low as possible.

2. Diffusion time: in order to quickly compute valid routes, the overlay control
traffic must be flooded rapidly.

3. Delivery: in order to find routes, the overlay control traffic must be received
by all overlay nodes.

4. Stretch: the average cost of the shortest overlay path between any pair of
overlay nodes must be as close as possible to its value in the underlay. Its
maximal cost must also be kept reasonable. In this paper, we use the hop
metric. Other metrics, as for example the path delay, could be considered.

3.3 Flooding Technique

As flooding is a key component of many route discovery mechanisms in MANETs,
the above performance criteria mainly focus on the flooding of a message on the
overlay. We assume that, once the overlay is built, each overlay node knows the

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 47

hop distance to every neighbour it has selected. In order to spare bandwidth, an
overlay node employs the following flooding technique:

1. For all overlay neighbours located only one hop away, it emits a single overlay
message, which is actually broadcast in the underlay with a Time To Live
(TTL) field set to one.

2. For every overlay neighbour located further away, an individual overlay mes-
sage is created, which will be unicast to it by the underlay routing protocol.

3.4 Simulations Description

All simulations in this paper, except for Section 4.4, were realized with ns-2.29.
The ad hoc nodes are randomly and uniformly distributed on a square field.

We vary their number from 50 to 250. Overlay nodes are randomly chosen in
the set of ad hoc nodes. All experiments were made for overlay densities ranging
from 10 to 90%. For the sake of brievity, we only present graphics for the 50%
overlay density. Analysis is identical for all densities.

For a given set of ad hoc nodes, the more efficient underlay topology control
(TC) algorithm is used, the more traffic is needed for the construction, use and
maintenance of overlays built on top of its resulting logical topology [8]. Hence,
in order to test the overlay topologies in a stringent environment, we employ
the logical topologies obtained after the use of an ideal homogeneous underlay
TC technique which assigns the same value r to each node’s radio transmission
range, r being the minimal value that makes the underlay connected (i.e. the
critical radio transmission range).

The underlay routing protocol used is AODV [9]. The performance criteria are
only evaluated on strongly connected overlay topologies. The overlay topologies
are calculated offline and provided as input to the ns simulator. A source node
emits 23 overlay messages of 64 bytes, at the rate of one message per second.
The performance study ignores the period elapsed during the transmission of
the first 3 messages. Their flooding necessitates the building of AODV paths
between the overlay neighbour pairs. Consequently, the AODV traffic is heavier
at the beginning of the simulations and the diffusion time of the first overlay
messages is higher than for the following messages. When there is no congestion,
the latter must be forwarded on AODV paths that are already up. Each point
on the graphics is a mean calculated on 20 trials.

4 Building Topologies That Fullfill the Locality and
Connectivity Properties

4.1 Ropt: The Critical Neighbourhood Range

One simple way to give preference to nearest neighbours, and thus to respect the
locality principle, is to fix the maximal hop distance between overlay neighbours,
the neighbourhood range. For any underlay and subset of overlay nodes, one can
compute the critical neighbourhood range, that is the minimal neighbourhood

48 S. Calomme and G. Leduc

(a) Ropt (RC = 3) (b) Kopt (KC = 4)

Fig. 1. Example of the Ropt and Kopt overlay topologies for the same underlay
topology

range RC such that the overlay is connected [8]. We denote Ropt (R optimal) a
topology obtained when each overlay node considers as a neighbour any overlay
node that is located at a distance less than or equal to RC .

4.2 Kopt: The Critical Neighbourhbood Cardinality

Another simple way to respect locality is to fix the maximal number of overlay
neighbours. For any underlay and subset of overlay nodes, one can compute
the critical number of overlay neighbours, that is the minimal neighbourhood
cardinality KC such that the overlay is connected. We denote Kopt (K optimal)
a topology obtained when each overlay node considers as a neighbour its KC

nearest neighbours, the distance metric being the number of hops. Let ki be the
number of overlay nodes located at i hops from a given overlay node U. If there
exists an integer j such that

∑i=j
i=1 ki < K and

∑i=j+1
i=1 ki > K, the required

number of overlay neighbours is randomly picked in the set of overlay nodes
located at distance j + 1 from U1.

4.3 Ropt and Kopt Delivery Percentage

Figure 1 shows an example of the Ropt and Kopt overlay topologies for the
same underlay. There are 500 nodes and the overlay density equals 50 %. The
250 overlay nodes are represented with (red) squares. The remaining nodes,
represented with (blue) circles, are drawed if and only if they are on the shortest
path between a pair of overlay neighbours. For this particular underlay and
assignment of overlay nodes, the critical neighbourhood range equals 3 and the
1 We evaluated some more sophisticated policies, but none provided significantly bet-

ter performance.

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 49

critical neighbourhood cardinality equals 4. This figure also illustrates that the
Ropt overlay topologies are much denser than the Kopt ones. This is confirmed
on Figure 2(a) wich shows their average overlay nodes degree. The high overlay
nodes degree of Ropt topologies explains their very weak delivery percentage for
flooded messages. Severe congestion problems arise for a moderate amount of
overlay nodes. Figure 2(b) illustrates this problem for an overlay density equal
to 0.5.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 200 400 600 800 1000

A
ve

ra
ge

 o
ve

rla
y

no
de

s
de

gr
ee

Number of nodes

Ropt
Kopt

(a) Overlay nodes degree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

A
ve

ra
ge

 d
el

iv
er

y
pe

rc
en

ta
ge

Number of nodes

Kopt
Ropt

(b) Delivery percentage

Fig. 2. Average overlay nodes degree and overlay flooding delivery percentage for Ropt
and Kopt topologies

4.4 KNN: The Minimal Number of Overlay Neighbours Needed for
Connectivity

Problem statement. Kopt topologies provide better delivery percentages but
are difficult to build in practice. There is no analytical function that gives the op-
timal number of overlay neighbours needed for connectivity. One could imagine
a distributed algorithm that determines KC . For example, the algorithm em-
ployed in [10] for electing the best radio transmission range could be adapted.
However, this would require the exchange of a lot of information in the whole
network. We reject this solution because of its high bandwidth demand.

It the TC field, it has been demonstrated that for any protocol which preserves
worst-case connectivity of the ad hoc network, there exists a placement of n nodes
such that the maximum physical node degree in the controlled topology equals
n−1 [5] . In other words, there is no given number of physical neighbours k, with
k < n − 1, that implies the connectivity of every network composed of n nodes.
However, it has also been shown that setting the minimum number of physical
neighbours to 9 is sufficient to obtain connected networks with high probability
for ad hoc networks with the number of nodes ranging from 50 to 500 [6].

Similarly, an extensive set of simulations allowed us to determine empirically
a parameter K that assures with a high probability the overlay connectivity for
a wide range of ad hoc network sizes and overlay densities. We denote KNN
(K-Nearest Neighbours) a topology obtained when each overlay node considers
as neighbours its K nearest overlay nodes. We now describe the experiment we
conducted in order to obtain the K value necessary for the simulations described
on Section 3.4.

50 S. Calomme and G. Leduc

Testbed. We model the ad hoc network by a graph. Vertices represent the ad
hoc nodes that we randomly and uniformly distribute on a unitary square field.
We vary their number from 50 to 1000 and the overlay density from 10 to 90%.

For a given set of ad hoc nodes and communication links, the traffic needed
for the construction, use and maintenance of overlays is higher on top of sparse
logical underlay topologies, that is when an efficient underlay TC algorithm is
used [8]. Hence, in order to test the overlay topologies in a stringent environment,
we employ the logical topologies obtained after the use of an ideal homogeneous
TC technique which assigns the same value r to each node’s radio transmission
range, r being the minimal value that makes the underlay connected.

Reduction and extension rules for building the KNN overlay graph.
Let LK

U denote the set of K nearest overlay neigbhours of U. Overlay nodes U
and V are K-symmetric neighbours if and only if U ∈ LK

V and V ∈ LK
U . Figure 3

shows an example with K = 1.
Many MANET routing protocols assume bidirectionnal links. Moreover, using

unidirectional links in route searches only provides an incremental benefit because
of the high overhead needed to handle them [11]. We thus fix as an objective to
build overlay topologies where the neighbourhood relation is symmetric.

U V W

V ∈ L1
U W ∈ L1

V V ∈ L1
W

has for nearest overlay neighbour

Fig. 3. With K = 1, V is a K-asymmetric neighbour of U. V and W are K-symmetric
neighbours.

Let LU denote the set of overlay neighbours selected by overlay node U . For
each pair of overlay nodes U and V , there could be two rules to ensure symmetry
of the overlay topology:

1. Reduction rule: V ∈ LU iff. U ∈ LV
K AND V ∈ LU

K ,
2. Extension rule: V ∈ LU iff. U ∈ LV

K OR V ∈ LU
K (graph symmetric closure)

U V W

are neighbours

LU ={} LV ={W} LW ={V }
(a) The KNN overlay topology
with the reduction rule is not con-
nected

U V W

are neighbours

LU ={V } LV ={U, W}LW ={V }
(b) The KNN overlay topology
with the extension rule is con-
nected

Fig. 4. Result of the reduction and extension rules on the same example topology, with
asymmetric neighbours

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 51

With the reduction rule, only the symmetric K-neighbours of a node are in-
cluded in its neighbourhood. With the extension rule, asymmetric K-nearest
neighbours are also considered. For a given value K, the topology obtained with
the extension rule is a super-graph of the topology obtained with the reduction
rule. Its connectivity probability is thus higher. An example is given on Figure 4.

Results. Figure 5 shows the evolution of the percentage of overlays that are
connected, for 200 tests with 500 nodes, as a function of the number of nearest
overlay nodes (K) for both rules.

The same experiment has been conducted for nodes ranging from 50 to 1000.
For a given overlay density, the curves obtained for the different underlay sizes
were very close from each other. In other words, we observed that the percentage
of connected overlays was more influenced by the overlay density than by the
number of nodes.

The three lowest curves are obtained with the reduction rule and the three
highest with the extension rule. With both rules, there is a phase where the
connectivity probability is very low and a phase where it is very high. The
transition from the low-probability phase to the high-probability one arrives
sooner and is sharper with the extension rule.

0.50

0.90

0.10500 nodes. Overlay density:

 0

 20

 40

 80

 100

 0 5 10 15 20

 60

Percentage of connected overlays

Number of nearest neighbours (K)

Kext

Kred

Fig. 5. Percentage of connected overlays as a
function of the number of neighbours, with the
reduction and extension rules, and for 500 nodes

Ov. density Kext
95 Rext

95 Kred
95 Rred

95

0.1 5 5 11 8
0.3 7 3 17 5
0.5 8 3 19 4
0.7 8 2 25 4
0.9 6 2 15 3

Fig. 6. Neighbourhood cardinality
needed for a connectivity proba-
bility equal to 0.95 for the exten-
sion and reduction discovery rules
(1000 nodes)

Table on figure 6 shows the minimum number of nearest overlay neighbours
that must be considered for obtaining 190 connected overlay topologies over 200,
for 1000 nodes and different overlay densities. We respectively denoted Kred

95 and
Kext

95 this value for overlays built with the reduction and with the extension rule.
All results show that the value of Kext

95 is far less than Kred
95 . The maximal value

of Kext
95 on our whole set of experiments equals 8, while the maximal value of

Kred
95 reached 30.
This table also shows the neighbourhood range (resp. Rext

95 and Rred
95) that

must be admitted in order to allow the corresponding Kred
95 and Kext

95 number of

52 S. Calomme and G. Leduc

overlay neighbours. For each overlay density, the needed neighbourhood range is
one to three hops longer, which is not negligible. Assume that the overlay nodes
discover their neighbours by sending hello packets. In this case, the bandwidth
consumption for building the overlay rapidly grows with the distance at which
these packets must be diffused.

The number of overlay neighbours K needed to obtain a high probability of
connectivity for a KNN overlay is much lower with the extension rule, that is
if we do include the K-asymmetric neighbours, than with the reduction rule.
Moreover the K95 value with the extension rule is more reliable than with the
reduction one because of the sharper transition from the disconnected to the
connected phase. Finally, the discovery uses less bandwidth when accepting K-
asymmetric neighbours.

Our conclusion is that the extension rule should be used. It however has a side-
effect: Though the nearest neighbour lists have a limited size, a given overlay
node could be included in the neighbourhood of a larger number of overlay
nodes, due to the symmetric closure. Hence, there is no bound on the overlay
nodes degree in the KNN extended topology. Nevertheless, as will be discussed in
Section 5, a sufficiently selective pruning criterion moderates a lot this drawback.

In this testbed, with the extension rule, the number of nearest overlay neigh-
bours needed for ensuring the connectivity of 95% of the overlay graphs for any
overlay density equals 8.

We would like to point out that the solution we propose is not restricted to
the simple underlay model used in these simulations, which are only presented
as illustrations of the principles exposed. The important information they bring
is not the particular value of K = 8 but how it can be determined and why it
is preferable to use the symmetric closure and thus let the overlay node degree
unbounded.

5 Optimizing the Topologies for Overlay Routing

KNN topologies are connected with a high probability. However, as Ropt topolo-
gies, they are too dense. Their delivery percentage of flooded overlay messages is
low. In this section, we explore methods for eliminating edges while preserving
the connectivity property.

5.1 Shortest Path Pruning

Consider figure 7. The overlay nodes (U , V and W) are grey-shaded. Thick
arrows represent the flooding of an overlay message from U and thin ones the
corresponding underlay packets. In fig. 7(a), the Kopt overlay topology is used;
it is composed of the three edges (U, V), (V, W) and (U, W). The flooding of
the overlay message on the Kopt topology generates 6 packets on the underlay.
However, as illustrated in fig. 7(b), the propagation from U to V, followed by
the forwarding from V to W would have been sufficient for all overlay nodes to
receive the messages and would have generated only 3 packets. The longest edge
of the triangle is unnecessary.

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 53

U

V

W

(a) Kopt topology without SPP

U

V

W

(b) Kopt topology with SPP

Fig. 7. Motivation for the Shortest Path Pruning. Thick arrow = overlay message, thin
arrow = packet.

We thus introduce the following Shortest Path Optimization. Consider three
overlay nodes U , V and W , and a distance metric d. The distance metric can be
the hop count, the path average delay or any other real positive and symmetric
function. Assume that the edge (U, W) is the longest: d(U, V) <= d(U, W) and
d(V, W) <= d(U, W). The Shortest Path Optimization sets aside the edge (U, W)
if and only if d(U, V)+d(V, W) <= d(U, W). It preserves the connectivity of any
overlay graph because an overlay edge is suppressed if and only if an alternative
path exists on the overlay.

5.2 Maximal Pruning

Shortest Path Pruning improves the delivery percentage of flooded messages on
KNN topologies. However, this pruning method is not sufficiently selective. It
can be generalized by setting aside any overlay edge (U, W) such that d(U, V)+
d(V, W) <= αd(U, W), with α >= 1. Connectivity is still preserved.

The higher value is assigned to α, the more edges are pruned. We call this
parameter the pruning selectivity. Maximal Pruning is reached when any edge
(U, W) is suppressed as soon as there exists two shorter edges (U, V) and (V, W).
This behaviour is already obtained for α = 2: (U, W) being the longest edge, the
inequality d(U, V) + d(V, W) <= 2d(U, W) is always satisfied.

Let us make the distinction between the one-hop overlay neighbours, or broad-
cast neighbours, and the overlay neighbours located farther, the unicast neigh-
bours. The emission of only one broadcast packet is sufficient for an overlay
flooded message to reach all the broadcast neighbours. Thus, keeping all broad-
cast neighbours does not increase the bandwidth consumed per overlay flooding.
On the other hand, it densifies the final overlay, without increasing the number
of unicast neighbours of any overlay node. The consequence is a lower diffusion
time and stretch. It also improves the overlay resilience. We thus modify a little
the generalized rule in order to maintain as neighbours every pair of overlay
nodes located at one hop from each other.

Therefore we finally define the following generic pruning rule.
Consider three edges E1 = (U, V), E2 = (V, W) and E3 = (U, W), a distance
metric d, and a real number α with 1 <= α <= 2. Assume E3 is the longest
edge: d(E1) <= d(E3) and d(E2) <= d(E3).

54 S. Calomme and G. Leduc

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

A
ve

ra
ge

 d
el

iv
er

y
pe

rc
en

ta
ge

Number of nodes

KNN with Maximal Pruning
KNN with intermediate pruning

KNN with Shortest Path Pruning
KNN

(a) Delivery percentage

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000

A
ve

ra
ge

 o
ve

rla
y

no
de

s
de

gr
ee

Number of nodes

(b) Average overlay nodes degree

Fig. 8. The delivery percentage and average overlay nodes degree of KNN overlay
topologies pruned with various selectivity factors. A common key for both figures is
given on the left one.

Edge E3 is pruned if and only if:

1. E3 is longer than one hop, and
2. d(E1) + d(E2) ≤ αd(E3).

Figure 8 shows the delivery percentage and the overlay node degree for various
pruning selectivity (α) on KNN overlay graphs. The distance metric used is the
hop count. For the intermediate pruning selectivity, parameter α is set to 1.5.
The delivery percentage increases with the selectivity of the pruning method.
It is correlated with the average number of overlay neighbours. Flooding an
overlay message consumes much bandwidth. Congestion is avoided on sparse
overlay graphs.

The average overlay nodes degree of KNN overlay topologies with Maximal
Pruning is above 4, with a tight 95%-confidence interval. Maximal Pruning thus
preserves some resilience on KNN overlay topologies. Note that resilience is also
provided by the underlay topology and routing protocol. The underlay often
offers several different paths between each pair of overlay nodes, and a new
route can be built when a path between two overlay neighbours breaks.

5.3 Final Performance Study

A brief comparison with XL-Gnutella. We do not criticize the XL-Gnutella
protocol, which is intended to be used for P2P data search, not for overlay routing
applications. The point here is to show the utility of our own work in the context
of overlay routing.

XL-Gnutella is an optimization of the Gnutella protocol for ad hoc networks.
To remain fully compatible with the legacy Gnutella protocol, an overlay edge
selection algorithm maintains the number of neighbouring peers between 4 and 8.

The delivery percentage of flooded messages on the XL-Gnutella and KNN
topologies are compared on Figure 9(a). Recall that the underlays we use for
our simulations are very sparse. In this environment, forcing every overlay node
to reject neighbours once the overlay node degree has reached the highest water

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 55

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250

D
el

iv
er

y
su

cc
es

s

Number of nodes

XL-Gnutella
KNN with Maximal Pruning

(a) Delivery success

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250N
um

be
r

of
 u

nd
er

la
y

pa
ck

et
s

pe
r

ad
 h

oc
 n

od
e

Number of nodes

XL-Gnutella
KNN with Maximal Pruning

(b) Bandwidth

Fig. 9. XL-Gnutella overlay topologies are intended to be used in a P2P networking
context, not for overlay routing

mark of 8 leads a lower connectivity probability than for KNN overlay topolo-
gies, for which such restriction does not exist. For the same reason, some overlay
edges are longer in XL-Gnutella than KNN topologies. This increases a lot the
bandwidth required per overlay message flooding (Figure 9(b)). We also expect,
when the underlying routing protocol is reactive, the discovery of XL-Gnutella
topologies to consume much more bandwidth than the discovery of KNN topolo-
gies, again because some overlay neighbours are selected very far away. In the
XL-Gnutella paper, authors use a proactive routing protocol, OLSR, and a cross-
layer architecture that allows the P2P middleware to be aware of every overlay
node identity and distance, with a low bandwidth consumption. They mention
that experiences were also successful with AODV, but that results are better
with OLSR.

Comparison of Kopt and KNN with Maximal Pruning. The performance
of flooding a message on KNN and Kopt with Maximal Pruning topologies are
compared on Figure 10. These are similar, which indicates that the use of the em-
pirical value K = 8 before optimization, common for all simulations, instead of
the exact minimal number of nearest neighbours needed for overlay connectivity
KC , which value must be determined for each simulation, is not a handicap.

We can also observe that the flooding of an overlay message, which can collect
and propagate interesting information for the overlay routing applications, does
not consume much more bandwith than the flooding of a packet on the underlay
(exactly 1 packet per node). Note also the reasonable value of the overlay path
stretch.

Improving resilience. One could use an intermediate value for α instead of
Maximal Pruning, for the purpose of improving the overlay topology resilience.
Performance obtained on the KNN topologies pruned with α = 1.5 and α = 2
for instance are very close (their delivery percentage is compared on fig. 8).
However, the gain in resilience is difficult to quantify.

Setting a minimum overlay node degree is another way to increase the re-
dundance of the overlay, is easier to evaluate and simple to implement. In some
cases, it is even required. This is the case, for example, when one wants to deploy

56 S. Calomme and G. Leduc

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250

D
el

iv
er

y
su

cc
es

s

Number of nodes

KNN max. pruned with min. ov. degree set to 3
KNN with Maximal Pruning
Kopt with Maximal Pruning

(a) Delivery success

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250N
um

be
r

of
 u

nd
er

la
y

pa
ck

et
s

pe
r

ad
 h

oc
 n

od
e

Number of nodes

KNN max. pruned with min. ov. degree set to 3
KNN with Maximal Pruning
Kopt with Maximal Pruning

(b) Bandwidth

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250

D
iff

us
io

n
tim

e
(s

)

Number of nodes

KNN max. pruned with min. ov. degree set to 3
KNN with Maximal Pruning
Kopt with Maximal Pruning

(c) Diffusion time

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

A
ve

ra
ge

 o
ve

rla
y

st
re

tc
h

Number of nodes

Kopt with Maximal Pruning
KNN max. pruned with min. ov. degree set to 3

KNN with Maximal Pruning

(d) Stretch

Fig. 10. After pruning, flooding a message on KNN overlay topologies provides similar
performance results than on Kopt ones. Setting the minimal overlay degree to 3 does
not modify significantly the performance obtained on KNN with Maximal Pruning.

multipath routing on the overlay. A minimal number Kmin of overlay neighbours
is easily guaranteed by reading the nearest overlay nodes list in increasing order
of distance and beginning to apply the pruning rule only at the Kmin + 1 ele-
ment. On Figure 10, we also compare the performance obtained with Maximal
Pruning on KNN topologies when applying the pruning rule to the 3 nearest
overlay nodes and when sytematically keeping them in the final neighbourhood.

6 Conclusions

Overlay routing is well-suited to ad hoc networks. In an ad hoc network, there
is no centralized administration. Overlay routing would ease the test and the
introduction of new routing protocols, without preliminary agreement between
the whole nodes set. Furthermore, an ad hoc network is often composed of several
groups of users with specific routing needs. The network conditions, for example
the available bandwidth and the mobility level, can vary a lot. Overlay routing
would allow each group of users to employ a customized routing protocol for
their common application, or to adapt it to the network conditions.

In this paper, we discussed what kind of overlay topology should be pro-
actively built before an overlay routing protocol enters a route search process on
top of it.

The basic overlay structures we studied are the K-Nearest Neighbours overlay
topologies, connecting every overlay node to its K nearest peers. These overlays

Efficient and Resilient Overlay Topologies over Ad Hoc Networks 57

can be established with respect to the locality principle, whatever the under-
lay routing protocol type. This feature is necessary for providing a sustainable
building and maintenance cost of the overlays. Parameter K must be empirically
tuned. In order to obtain an overlay where the neighbourhood relation is sym-
metric, the symmetric closure of the K-nearest neighbour graph is preferable to
its reduction. The extension method is expected to consume less overlay topology
control traffic and is also more reliable, as the corresponding Kext value depends
less on the number of ad hoc devices and overlay density. The extension rule lets
the overlay node degree unlimited. However, an optimization of the resulting
overlay topology cancels this drawback.

We introduced a family of optimization rules of the K-Nearest Neighbours
topologies, based on a pruning rule. As flooding is a key component of many
route discovery mechanisms in MANETs, our performance study focusses on
the delivery percentage, bandwidth consumption and time duration of flooding
on the overlay. Simulations illustrated the gain in performance when flooding
a message on pruned topologies. The most selective rule, Maximal Pruning,
suppresses any overlay edge such that there exists an alternative path in the
overlay graph, while preserving from pruning any pair of overlay neighbours
that are in the direct communication range of each other. We also considered
the overlay path stretch and the overlay nodes degree as respective indicators
for the data transfer transmission time and overlay resilience. Maximal Pruning
does not increase a lot the path stretch, but can have an undesired effect on the
overlay resilience. It can be easily adapted such as to impose a minimal overlay
node degree Kmin. For reasonable values of Kmin, the performance remains very
close to the one obtained with the primary Maximal Pruning rule.

The overlay topology control protocol itself will be presented in a follow-up
paper. Its design guideline will be to maintain, in a mobile context, the overlay
topology as close as possible to the target K-Nearest Neighbours overlay topology
with Maximal Pruning and a minimal bound on the overlay node degree.

Acknowledgements

This work has been partially supported by the European Union under the ANA
FET project (FP6-IST-27489).

References

1. Clark, D.: The design philosophy of the DARPA Internet protocols. Computer
Communication Review 18(4), 106–114 (1988)

2. Klemm, A., Lindemann, C., Waldhorst, O.: A special-purpose peer-to-peer file
sharing system for mobile ad hoc networks. In: Proc. of IEEE Semiannual Vehic-
ular Technology Conference (VTC2003-Fall), IEEE Computer Society Press, Los
Alamitos (2003)

3. Duran, A., Shen, C.C.: Mobile ad hoc p2p file sharing. In: Proc. of IEEE Wire-
less Communications and Networking Conference (WCNC’04), IEEE Computer
Society Press, Los Alamitos (2004)

58 S. Calomme and G. Leduc

4. Conti, M., Gregori, E., Turi, G.: A cross-layer optimization of gnutella for mobile
ad hoc networks. In: Proc. of ACM MobiHoc 05, pp. 343–354. ACM Press, New
York (2005)

5. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comp.
Surveys 37(2), 164–194 (2005)

6. Blough, D., Leoncini, M., Resta, G., Santi, P.: The k-neigh protocol for symmetric
topology control in ad hoc networks. In: Proc. of ACM MobiHoc 03, pp. 141–152.
ACM Press, New York (2003)

7. Wattenhofer, R., Zollinger, A.: XTC: A practical topology control algorithm for ad-
hoc networks. In: Proc. of 4th International Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks (WMAN) (2004)

8. Calomme, S., Leduc, G.: The critical neighbourhood range for asymptotic overlay
connectivity in ad hoc networks. Ad Hoc & Sensor Wireless Networks journal 2(2)
(2006)

9. Perkins, C., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Proc.
IEEE Workshop on Mobile Computing Systems and Applications(WMCSA’99),
IEEE Computer Society Press, Los Alamitos (1999)

10. Narayanaswamy, S., Kawadia, V., Sreenivas, R., Kumar, P.R.: Power control in ad-
hoc networks: Theory, architecture, algorithm and implementation of the compow
protocol. In: Proc. of European Wireless 2002. Next Generation Wireless Networks:
Technologies, Protocols, Services and Applications, Florence, Italy, pp. 156–162
(February 2002)

11. Marina, M.K., Das, S.R.: Routing performance in the presence of unidirectional
links in multihop wireless networks. In: MobiHoc ’02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pp. 12–23.
ACM Press, New York, NY, USA (2002)

A Generic, Self-organizing, and Distributed

Bootstrap Service for Peer-to-Peer Networks

Michael Conrad and Hans-Joachim Hof

Institute for Telematics, Universität Karlsruhe (TH), Germany
{conrad,hof}@tm.uka.de

Abstract. In many scenarios, self-organization is the driving force for
the use of a peer-to-peer (p2p) network. However, most current p2p net-
works are not truly self-organizing, as little attention has been paid on
how new nodes join a p2p network, the so-called bootstrapping. Current
p2p network protocols rely on prior-knowledge of nodes like a list of
IP addresses of bootstrap servers or like a list of known peers of a p2p
network. However, this kind of prior knowledge conflicts with the self-
organization principle and the distributed character of p2p networks. In
this paper, we present the design of a generic, self-organizing, and dis-
tributed bootstrap service which can be used to bootstrap p2p networks of
arbitrary size, even very small, private p2p networks. This bootstrap ser-
vice works in today’s Internet and it can be easily integrated into existing
p2p applications. We present an evaluation of the proposed bootstrap-
ping service showing the efficiency of our approach.

1 Introduction

Nowadays, peer-to-peer (p2p) networks are used in many applications, e.g. for
VoIP, Instant Messaging, or filesharing. For most of these applications, decen-
tralized control and self-organization are desired. However, most current p2p net-
works do not achieve true self-organization or true decentralized control because
they often use well-known central servers or a list of known p2p network member
nodes to bootstrap new nodes. In this paper, we propose a generic, distributed
and self-organizing bootstrap service which allows nodes to join into arbitrary
p2p networks. The proposed bootstrap service itself uses a p2p network, the
bootstrap p2p network, for distributed storage of bootstrap information. The
bootstrap information may include nodes which can be used to join the p2p
network of the corresponding p2p application. For example if the user of a file-
sharing application starts the filesharing client for the first time, the client joins
the bootstrap network and retrieves bootstrap information for the filesharing
network. Then, it joins the filesharing network itself. Of course, this approach
only shifts the problem of joining a p2p network to joining the bootstrap p2p
network.

However, if the bootstrap service is implemented in more than one applica-
tion, synergy effects may be used to join the bootstrap network. The synergy
effect results from the larger number of nodes in the bootstrap network, which

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 59–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 M. Conrad and H.-J. Hof

occurs because all nodes join the same bootstrap p2p network. One method for
bootstrapping is Random Address Probing, which probes randomly chosen IP
addresses to find active nodes. These nodes are used to establish initial contact
with the p2p network. We use Local Random Address Probing for the boot-
strapping of the bootstrap p2p network. While Random Address Probing may
be successfully used by very large p2p networks, it is not efficient for small to
medium networks, as many probes are necessary. To evaluate the performance of
our bootstrap p2p network, we collected real world data about the distribution
and number of peers of a deployed, large p2p filesharing network (eDonkey).
Assuming that all eDonkey clients would use our bootstrap service, we evaluate
the performance of our protocol.

This paper is structured as follows: in section 2, requirements for a bootstrap
service are defined. Section 3 reviews related work. In section 4, the design of
our generic, distributed, and self-organizing bootstrap service is presented. The
bootstrap service is evaluated in section 5. Section 6 concludes this paper.

2 Requirements for a Generic Bootstrap Service

A generic bootstrap service for p2p applications and p2p networks must fulfill
the following requirements:

– Self-Organization and Distributed Control (R1):
A p2p network can only be self-organizing if every network protocol step,
including the bootstrapping, is self-organizing. To support the distributed
character of most p2p networks, a bootstrap service may not rely on prior
knowledge (e.g. a list of IP addresses of bootstrap servers).

– Heterogeneity (R2):
A decentralized bootstrap service should support p2p networks of arbitrary
size and function. The service should provide bootstrap support for very
small (private) p2p networks, only consisting of a few nodes, as well as for
huge p2p networks with up to millions of active nodes.

– Scalability and Robustness (R3):
The decentralized bootstrap service itself should scale well with an increasing
number of nodes. The bootstrap service should also scale with the number of
participating networks which is especially important if the bootstrap service
is used to bootstrap a huge number of small, private p2p networks. The
bootstrap service should work as expected, even in case of malfunction of
several nodes.

– Practicability (R4):
The bootstrap service should be designed for today’s Internet. Hence, the
bootstrap service may not rely on currently undeployed protocols like mul-
ticast etc.

– Seamless Integration (R5):
It should be easy to integrate the bootstrap service into an existing p2p
application.

A Generic, Self-organizing, and Distributed Bootstrap Service 61

– Modularity and Extensibility (R6):
A bootstrap service should be extendable to be able to react on changes
of the network environment and to react on innovations. If, for example,
multicast gets widely deployed in the Internet one day, it should be easy to
extend the bootstrap service.

In this paper, we do not consider other requirements like privacy issues of the
bootstrapping service etc.

3 Related Work

Cramer et al. [1] compare different bootstrapping techniques for p2p networks,
including static bootstrap servers, out-of-band node caches, random address
probing, and network layer mechanisms using any- or multicast. The results
of the Random Address Probing method are of interest for our work. We en-
hance this mechanism for the proposed bootstrap service. The focus of [1] is
on locality aware bootstrapping to offer an optimal topology for the join of new
peers. However, no detail is given about the design of a generic bootstrap service.
We fill this void with the proposed bootstrap service.

The idea of a generic bootstrap service for p2p networks was already discussed
in [2] and [3]. The first paper is proposing an approach relying on a distributed
hash table running on top of a structured overlay network, whereas the second
paper uses a prefix based routing on top of a structured overlay network. The
universal ring, which was proposed in [2], relies on a distributed hash table to
store and query informations about services and to provide bootstrap informa-
tion to use these services. While this approach can be used to provide bootstrap
support for p2p networks, it does not meet some of the requirements of section 2:
At first, the requirements R1 (Distributed Control) and R4 (Practicability) can
not be met. To join the universal ring, a server or a globally known multicast
address are used. A central server is prohibitive and multicast is a mostly unde-
ployed technology in today’s Internet. In addition, the scalability of the proposed
for huge peer-to-peer networks seems unclear. Providing bootstrap support for
large p2p networks using a distributed hash table results in storage of a huge
amount of data on a very small set of nodes, hence overloading these nodes. In
our opinion, a special distribution of bootstrapping information for huge peer-to-
peer network is necessary to avoid overloading nodes of the bootstrapping nodes.
The paper [3] lacks information on how nodes join the bootstrap service. The
authors propose to use the NEWSCAST protocol [4] for data storage instead of
a distributed hash table. As NEWSCAST relies on multicast, it does not meet
requirement R4 (Practicability).

Even existing public peer-to-peer frameworks like JXTA [5] use static boot-
strapping nodes (so-called seeds) to integrate new nodes into the peer-to-peer
network. The JXTA framework also includes decentralized bootstrapping sup-
port using multicast, however due the missing deployment of multicast in the
Internet infrastructure, this method is inapplicable for the use in the public
Internet.

62 M. Conrad and H.-J. Hof

4 Design

This sectionpresents thedesignof theproposedgeneric,distributed, self-organizing
bootstrap service. The design meets all requirements of section 2.

4.1 Overview

Instead of creating a stand alone bootstrap mechanism for each existing peer-
to-peer network (p2p network) we propose a single dedicated p2p network for
the bootstrapping of all peer of arbitrary p2p networks. This so called bootstrap
p2p network provides bootstrap information for peers which want to join a p2p
network. Our bootstrap p2p network provides a service similar to the domain
name system (DNS): while DNS resolves domain names to IP addresses, our
bootstrap p2p network resolves p2p network names to bootstrap information
(which is in most cases an IP address of a peer or a list of peers already connected
to the p2p network). These bootstrap information can be used by a node to join
the p2p network. After successfully joining a p2p network, the peer publishes
bootstrap information to the bootstrap p2p network to supporting queries for
bootstrap information for future peers. The peer also joins the bootstrap p2p
network itself.

A dedicated bootstrap p2p network shifts the problem of joining an arbitrary
p2p network to joining the bootstrap p2p network. However, as only one boot-
strap p2p network exists for all p2p networks and all peers join the bootstrap
p2p network, the bootstrap p2p network is larger than any other p2p network,
allowing bootstrapping techniques, which are prohibitive for smaller networks,
for example Random Address Probing. Especially very small p2p networks con-
sisting of only tens or hundreds of peers can profit from this bootstrap p2p
network, but it is also of benefit for large p2p networks because it simplifies the
initial deployment of any p2p network.

4.2 Components of the Bootstrap Service

To achieve a flexible and extensible design our bootstrap service consists of two
separate modules: The first module implements the initial bootstrapping of the
bootstrap p2p network. The second module is responsible for providing bootstrap
information (like a list of IP addresses of active peers) to nodes which want to
join a distinct p2p network. Figure 1 shows the public interface and the schematic
composition of the bootstrap service.

The public interface of the bootstrap service offers two methods. The method
lookup(name) is used by a new node to search for bootstrap information of a
p2p network whose identifier is name (e.g. ed2k for eDonkey peers). The method
returns a list of BootstrapData objects. Each of these object contains a boot-
strap information record (e.g. the IP address of one active node of the p2p
network). After a node successfully joined a p2p network, it uses the method
publish(name,info) to publish bootstrap information (info) about the p2p
network name.

A Generic, Self-organizing, and Distributed Bootstrap Service 63

BootstrapService

publish(name, info)

lookup(name) BootstrapManager

 BootstrapPlugin

BootstrapStorage

BootstrapCache

LocalAddressProbing
BootstrapPlugin

AnycastBootstrapPluginXXXBootstrapPlugin

Fig. 1. Schematic composition of the bootstrap service

Every bootstrap service instance runs the BootstrapManager, which is
responsible for the initial bootstrapping of the bootstrap p2p network. The
BootstrapManager offers the interface BootstrapPlugin to support plugins to
meet requirement R6 (Modularity and Extensibility). Each plugin implements
one distinct bootstrap mechanism, e.g. Random Address Probing. Plugins are
not limited to pure self-organizing bootstrapping methods. For example, there
may be bootstrap plugins which use a node cache, or there may even be server-
based plugins. However, it is recommanded to offer at least one self-organizing
bootstrap plugin as fallback to maintain the self-organizing character of the
boostrap service.

The component BootstrapStorage is responsible for storing bootstrap infor-
mation. The proposed bootstrap service uses a soft sate approach, hence old
bootstrap information will be deleted after a given time. The component Boot-
strapCache is used by the bootstrap service to cache information about peers of
bootstrap p2p network to simplify the bootstrapping in case of a reconnect to
bootstrap p2p network.

The design of the proposed bootstrap service does not contain any constraints
about programming languages or other programming paradigms. Therefore, it
can be integrated into arbitrary p2p applications. Hence, seamless integration
(requirement R5) can be achieved. We expect that the easy and seamless inte-
gration will lead to a rapid deployment of our bootstrap service, especially if the
open source community can be convinced to use the bootstrap service. Hence,
the critical mass for the bootstrap service can be easily achieved.

The following sections give a detailed overview of the two modules Bootstrap-
Manager and BootstrapStorage.

4.3 BootstrapManager: Bootstrapping of the Bootstrap p2p
Network

In our proposed bootstrap service, the BootstrapManager is responsible for the
initial bootstrapping of a new node. To join the bootstrap p2p network, the
BootstrapManager instance of the bootstrap service running on the node may
uses one or more of its bootstrap plugins to join the bootstrap p2p network.

64 M. Conrad and H.-J. Hof

A number of different bootstrapping techniques are possible. Starting from
simple bootstrapping plugins, which query static bootstrap servers (hence do not
meet requirement R1), plugins using multicast or anycast based bootstrapping
(AnycastBootstrapModule) (hence not meeting requirement R4) are possible.
To meet all the requirements of section 2 (especially Practicability (R4)) a more
advanced bootstrapping technique is needed. We propose to use Local Random
Address Probing, a variant of Random Address Probing, as the default boot-
strap technique. Random Address Probing sends probe messages to random IP
addresses hoping to find one active peer of the desired p2p network. The perfor-
mance of Random Address Probing [1] strongly depends on the number of peers
and the distribution of these peers in the IP space. For most p2p networks, Ran-
dom Address Probing is prohibitive because these networks do not have enough
users, resulting in a very poor performance of Random Address Probing.

However, the proposed bootstrap service uses the bootstrap p2p network,
which is potentially very large. Hence, Random Address Probing may be used.
Local Random Address Probing is similar to the classical Random Address Prob-
ing, but instead of probing IP addresses uniformly distributed over the complete
IP address space, the Local Random Address Probing limits the probed IP range
to the local range around the current IP address of the user. This behavior of
Local Random Address Probing improves the performance of Random Address
Probing because local communication may be faster than remote communica-
tion and because the distribution of p2p nodes may not be uniform. Hence, the
improved performance of Local Random Address Probing is partly based on the
assumption that most users of p2p applications are private users which get Inter-
net access via dialup networks (DSL, cable). Hence, we expect a higher locality
of p2p users in dialup networks than in other network ranges. We verify this
assumption in section 5.1. We exploit the higher density of p2p network peers in
dialup networks to further improve the performance of the initial bootstrapping.
Using Local Random Address Probing for our bootstrap service, requirements
R1 and R4 can be met as there are no more dependencies to a central infras-
tructure. In contrast to other bootstrap services (see section 3), our proposed
bootstrap service can be deployed in today’s Internet.

4.4 BootstrapStorage: Efficient Distribution of Bootstrap
Information

Regarding the potentially large number of nodes in the bootstrap p2p network,
the distributed management must be very efficient to avoid overloading of peers.
Management duties includes storage of potentially many published bootstrap
information and an efficient search for existing bootstrap information. These
requirements can be met by using distributed hash tables based on structured
overlays like Chord [6], CAN [7] or Pastry [8]. Distributed hash tables offer a
distributed storage of data and an efficient search. They scale well with an in-
creasing number of peers. Another advantage of structured peer-to-peer overlays
is a common abstract interface described in [9]. Hence, the bootstrap service

A Generic, Self-organizing, and Distributed Bootstrap Service 65

BI
BI

BI
BI
BI

BI
BI
BI

BI
BI
BI

BI

no salt salt

Fig. 2. The use of a salt value for our bootstrap service

can be implemented independent from the used overlay network, offering the
possibility to change it later.

The BootstrapStorage module uses the put(key,data) method to store boot-
strap information in the bootstrap p2p network. The bootstrap information data
is stored under the key key. The key is calculated from the name of the p2p
network. The bootstrap information can be retrieved using the data=get(key)
method. Both methods are provided by the common API of [9]. However, the
usage of these methods implies, that all bootstrap information for one distinct
p2p network is stored under the same key, as the key is derived from the name
of the p2p network in which a peer wants to join (e.g. “ed2k” for eDonkey).
Figure 2 (“no salt”) shows this problem. Regarding very large networks like the
eDonkey filesharing network, it is clear, that the bootstrap information of this
network would surely overload the peer of the bootstrap p2p network which
stores all bootstrap information. We propose an adaptive algorithm for a better
distribution of bootstrap information over the bootstrap p2p network:

Instead of using only the name of the requested p2p network we propose to
include an additional random value, the so called salt, in the calculation of the
key. The key is calculated using the name of the p2p network concatenated with
the salt as input of a hash function H:

key = H(name + salt)

Using this generation of the key results in a uniform distribution of bootstrap
information of one distinct p2p network across the whole bootstrap p2p network.
To search for bootstrap information, a node randomly selects a salt, calculates
the key and queries the bootstrap p2p network for that key. While the improved
distribution avoids overloading single peers of the bootstrap p2p network, it is
not suitable for small p2p networks, as the probability of a successful search
query is very small, hence resulting in many search queries with different salts.
To provide a solution for this problem, we propose an Adaptive Salt Window
Algorithm, which is able to adjust the distribution of bootstrap information
automatically to the size of the particular p2p network without knowing the
number of peers. The Adaptive Salt Window Algorithm uses an interval (the so

66 M. Conrad and H.-J. Hof

01 publish(name, info) { lookup(name) {
02
03 for(window=0, i=n; i>3 && window==0; i--) { for(i=n; i>3; i--) {
04 salt = random(2^i); salt = random(2^i);
05 key = hash(name + salt); key = hash(name + salt);
06
07 result = p2p_lookup(key); result = p2p_lookup(key);
08
09 if (|result| >= 10) { // sufficient data available if (|result| > 0) { // data available
10 window = i + 1 // increase window return result
11 } else if (|result| > 0) { // data available }
12 window = i; }
13 }
14 } for(i=0; i<8 && |result|==0; i++) {
15 key = hash(name + random(8));
16 salt = random(max(2^window, 8));
17 key = hash(name + salt); result = dht_get(key);
18 }
19 dht_put(key, info); return result
20 } }

Fig. 3. Pseudo code of publish and lookup

called Salt Window) in which all salt values are contained. The Salt Window is
adapted to the current number of peers of the p2p network. Small p2p networks
only have a small window, whereas large p2p networks have a large window.

Figure 3 shows the pseudo code of the publish method and of the lookup
method using the Adaptive Key Window Algorithm.

The publish method and the lookup method both automatically detect the
current Salt Window size of the requested p2p network. The publish method
starts with a maximum length interval of [0, 2n] in which a random salt is con-
tained. In each step, the publish method halves this interval and tries to retrieve
data using the name of the p2p network and a random salt in [0, 2i]. This step
is repeated unless bootstrap information is found. The corresponding interval
is the Salt Window used for the storage of the bootstrap information. The size
of the Salt Window is slightly adopted if more than 10 values to allow for an
increase of the Salt Window size.

When a node uses the lookup method to query for bootstrap information of
a p2p network the range of the salt value starts from the maximum value and
will be halved until one valid bootstrap information was found.

The adaptive adjustment of the key window guarantees the support for arbi-
trary p2p network independent of their number of peers. It prevents overloading
single peers hence results in an efficient storage of bootstrap information. The
Adaptive Salt Window Algorithm allows to react on an increasing or decreasing
number of peers. If the number of peers changes significantly, the Salt Window
will be resized with high probability. Therefore the proposed bootstrap service
meets requirements R2 (Heterogeneity) and R3 (Scalability and Robustness).
Other load balancing mechanisms will be addressed in future work.

5 Evaluation

In this section, we evaluate the performance of the proposed bootstrap service
which uses Local Random Address Probing for the initial bootstrapping of the
bootstrap p2p network. We also analyze the scalability of the bootstrap p2p
network.

A Generic, Self-organizing, and Distributed Bootstrap Service 67

5.1 Performance of Local Random Address Probing

In section 4.3 we assumed a non-uniform distribution of p2p network users in
the IP address space. Furthermore we assumed, that computers connected to
the Internet via dialup networks (e.g. DSL, cable) have a higher probability
of running a p2p application than computers in the rest of the Internet. In
this section, we provide strong evidence that these assumptions are justified.
To verify these assumptions, we measured the distribution of active nodes of the
eDonkey network1, one of the biggest filesharing networks in Germany today. By
inspecting a real-world p2p network, we provide a lower bound for the expected
performance of the proposed bootstrap service, because we expect several p2p
networks and not just one to integrate our generic, distributed and self-organizing
bootstrap service. The eDonkey protocol runs as default on Port 4662. To detect
eDonkey nodes, we used nmap2 to perform a TCP SYN scan on port 4662.
This scan provides a lower bound of active eDonkey nodes because it scans only
for the default port. However, it is easy to change the default port and some
users do this to prevent rate regulation of their provider. We also do not take
the blocking of the default port into consideration, which is done sometimes by
several Internet service providers.

We limit our examination of active eDonkey nodes to the German IP address
space to avoid distortion of the results by different time zones and similar effects.
We use the public daily database snapshot of the European Internet Registry
(RIPE)3 to get the currently allocated IP address space of Germany. In April
2007 this list contained about 160.000 IP ranges allocated with the German
country code. These IP ranges are equivalent to 450.000 /24 networks, each net-
work containing about 250 valid IP addresses. We used this list (GIPL, German
IP List) as basis of our experiment. The list of German dialup networks (GDUL,
German dialup network List) was created manually from a set of 38 dialup IP
ranges, consisting of 29.000 /24 networks.

The experiment itself runs on a standard desktop computer connected via 100
MBit Ethernet to the campus network. Every 6 minutes a set of 5 /24 networks
was extracted randomly from both lists (GIPL and GDUL). Each of these 5
networks was scanned for active eDonkey nodes as described above. Starting
from the given network address, nmap was configured to scan the corresponding
/20 network, which consists about 4000 valid IP addresses.

Our experiment was running from April 10th till April 18th. We scanned
21.600 /20 networks (containing 80 million ip addresses) for active eDonkey
nodes, 10.800 from each of the lists (GIPL and GDUL).

Probing ranges from GIPL, 2.987 out of 10.800 probes found at least one
active eDonkey node, whereas 9.193 out of 10.800 probes in the range of GDUL
found active eDonkey nodes.

From over 1.100.000 online computers found in networks of GIPL only 4.39%
(48.525) run the eDonkey software. The probing of the dialup networks of GDUL
1 original website down, see http://en.wikipedia.org/wiki/EDonkey2000
2 network mapper - website: http://insecure.org/nmap
3 website: http://www.ripe.net/ripe/index.html

http://en.wikipedia.org/wiki/EDonkey2000
http://insecure.org/nmap
http://www.ripe.net/ripe/index.html

68 M. Conrad and H.-J. Hof

discovered about 880.000 online computers out of which 11,46% (100.781) were
identified as active eDonkey node.

These results show that the distribution of p2p applications in dialup network
is higher than in other networks. Hence, our assumptions are justified at least
for the eDonkey network. Furthermore, in over 85% of probed dialup networks
of GDUL at least one active eDonkey node was found whereas this is the case
for only 27.65% of networks in GIPL. At the same time, the amount of active
eDonkey nodes in dialup networks is twice higher than in other networks.

Figure 4 shows the distribution of eDonkey nodes across online computers for
random networks (GIPL) and dialup networks (GDUL). It can be easily seen
that the distribution of active eDonkey nodes is higher for dialup networks than
for random networks. The maximum of active eDonkey nodes will be reached on
the weekend (14-th and 15-th of April), corresponding with the Internet usage
of dialup users.

As we will use Local Random Address Probing for the bootstrapping of the
bootstrap p2p network, the number of probes before the first active bootstrap
node stands for the overhead which our proposed bootstrap service generates and,
more important, the number of probes is directly correlated to the time a user has
to wait before it can join the p2p network which uses our bootstrapping service.

Figure 5 shows that in average about 600 probes are necessary to find an ac-
tive node of the eDonkey p2p network in dialup networks (GDUL). Finding the
first active eDonkey node requires in average less than 20 seconds. For random
networks the equivalent value can not be given, because only about 30% of the
network scans discover at least one active eDonkey node.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

19.04.18.04.17.04.16.04.15.04.14.04.13.04.12.04.11.04.10.04.

F
ra

ct
io

n
of

 a
ct

iv
e

eD
on

ke
y

no
de

s
on

 (
de

fa
ul

t)
 p

or
t 4

66
2

Date of scan

Distribution of eDonkey nodes in random networks/dialup networks

random networks
dialup networks

Fig. 4. Distribution of active eDonkey nodes in random or dialup networks

A Generic, Self-organizing, and Distributed Bootstrap Service 69

 0

 500

 1000

 1500

 2000

19.04.18.04.17.04.16.04.15.04.14.04.13.04.12.04.11.04.10.04.

N
um

be
r

of
 p

ro
be

s

Date of probing

Number of probes until first active eDonkey node was found

random networks
dialup networks

Fig. 5. Number of required probes to find first eDonkey node

In comparison with random networks (GIPL) a lower number of probes is re-
quired in dialup networks (GDUL) until the first active eDonkey nodes is found.
At the same time, the deviation is significantly lower. This result support our as-
sumption, that local random address probing is well suited for finding other peer
nodes in dialup networks. The lowest number of required probes for dialup net-
works was reached in our scan on the weekend of 14-th/15-th April.

Figure 6 shows the cumulative distribution of time needed for probing until the
first eDonkey node was found in dialup networks (GDUL) and in random networks
(GIPL). Thereby the results for random networks only rely on the 30% of success-
ful probes. It shows the efficiency of our approach. For example, after 20 seconds,
over 80% of nodes found the first eDonkey node. For our bootstrap service this is
equivalent to a successful bootstrapping.

Analyzing the eDonkey p2p network as a synonym for a distributed bootstrap
service the initial bootstrapping into the bootstrap overlay can be satisfyingly
realized by Local Random Address Probing if the bootstrap service has a large
enough number of nodes. These findings show that Local Random Address Prob-
ing can be efficiently used for the bootstrapping of our bootstrap p2p network.

5.2 Performance of the Bootstrap Information Storage

This section evaluates the performance of the Adaptive Salt Window Algorithm
(see section 4.4) used during storage and retrieval of bootstrap information.

70 M. Conrad and H.-J. Hof

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 150 100 50 25 0

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 fo
un

d
at

 le
as

t o
ne

 a
ct

iv
e

eD
on

ke
y

no
de

Seconds after start of probing

Cumulative distribution of eDonkey nodes in random networks/dialup networks

random networks
dialup networks

Fig. 6. Cumulative distribution of eDonkey nodes

We define 4 different scenarios of p2p networks distinguished by their number
of users (106, 105, 104 and 103). Starting from a running bootstrap p2p network
with 4.200.000 (222) peers, all nodes bootstrap into one network using the pro-
posed bootstrap service. Therefore new peers use to the bootstrap p2p network
to retrieve bootstrap information by generating a lookup query. In all scenarios
the number of overlay queries, resulting from lookup-queries, were inspected. Af-
ter a successful join into the desired p2p network each node publish bootstrap
information for that p2p network.

Figures 7 shows the number of overlay queries generated by lookup requests
for a large p2p network with 106 nodes, where all nodes joining the bootstrap p2p
network subsequently. For the other scenarios, only differing in the number of join-
ing nodes, similar results for the average number of overlay queries generated by
lookup requests, will be archived.

At the beginning, when only few bootstrap information for the requested p2p
network are available, up to 25 overlay queries are necessary for each lookup query.
With an increasing number of nodes which join the new p2p network and publish-
ing bootstrap information the number of overlay queries decreases significantly.

For 103 nodes the average number of lookup queries is about 12, for 104 or
105 peers 9 respectively 6 lookup queries are required in average. For large p2p
networks with 106 nodes in average only 3 lookup queries are necessary. The simu-
lation shows, that the proposed distribution of bootstrap information scales with
a increasing number of peers. At the same time, small p2p networks are also sup-
ported, although a higher number of overlay queries is required.

A Generic, Self-organizing, and Distributed Bootstrap Service 71

 0

 5

 10

 15

 20

 25

 30

106105104103102101

N
um

be
r

of
 D

H
T

 q
ue

rie
s

Number of joining peers [logarithmic scale]

Number of DHT queries until bootstrap information retrieved

106 peers joining

Fig. 7. Number of DHT queries to obtain bootstrap information

6 Conclusion and Future Work

We presented a generic, distributed, and self-organizing bootstrap service for arbi-
trary peer-to-peer networks (p2p networks) which can be used in today’s Internet.
Our proposed bootstrap service offers bootstrapping for small private p2p net-
works as well as for large p2p networks. The bootstrap service is easy to integrate
into existing p2p applications and can be extended by plugins.

For storage of bootstrap information, our bootstrap service uses a distributed
hash table. The Adaptive Salt Window Algorithm is used to achieve an efficient
distribution of bootstrap information across the nodes which run the bootstrap
service, hence preventing the overloading of single nodes.

We evaluated the proposed bootstrap service using real world data of a large
p2p network, the eDonkey filesharing network. The results show that our boot-
strap service can be efficiently used to bootstrap arbitrary p2p networks.

Future work will address a simulator implementation and a prototype imple-
mentation of the proposed bootstrap service.

References

1. Cramer, C., Kutzner, K., Fuhrmann, T.: Bootstrapping locality-aware p2p networks.
In: Proceedings of the IEEE International Conference on Networks (ICON 2004),
Singapore, November 16–19 2004, vol. 1, pp. 357–361. IEEE Computer Society Press,
Los Alamitos (2004)

72 M. Conrad and H.-J. Hof

2. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: One ring to rule them all:
service discovery and binding in structured peer-to-peer overlay networks. In: EW10:
Proceedings of the 10th workshop on ACM SIGOPS European workshop: beyond the
PC, Saint-Emilion, France, pp. 140–145. ACM Press, New York, NY, USA (2002)

3. Jelasity, M., Montresor, A., Babaoglu, O.: The bootstrapping service. In: ICD-
CSW ’06: Proceedings of the 26th IEEE International ConferenceWorkshops on Dis-
tributed Computing Systems, Washington, DC, USA, p. 11. IEEE Computer Society
Press, Los Alamitos (2006)

4. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet, Vrije
Universiteit Amsterdam, Department of Computer Science, Amsterdam. Technical
Report IR-503. Amsterdam, The Netherlands (October 2002)

5. Gong, L.: Project JXTA: A technology overview (August 2001),
http://www.jxta.org

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM’01, San
Diego, California, USA (2001)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols for computer communications,
San Diego, California, United States, pp. 161–172. ACM Press, New York, NY, USA
(2001)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API
for structured peer-to-peer overlays. In: 2nd Int. Workshop on P2P Systems (2003)

http://www.jxta.org

CSP, Cooperative Service Provisioning Using
Peer-to-Peer Principles

Michael Kleis1, Kai Büttner1, Sanaa Elmoumouhi2, Georg Carle3, and Mikael Salaun2

1 Fraunhofer FOKUS,
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

2 France Télécom R&D,
avenue Pierre Marzin 2, 22307 Lannion, France

3 University of Tübingen,
Sand 13, 72076 Tübingen, Germany

Abstract. In this paper we describe a self-organising and self-managing system
for a Cooperative Service Provisioning (CSP) of media transport and processing
services. The term cooperative is used since we assume that CSP providers as well
as users offer resources to be utilised for media delivery and processing based on
an Overlay Network principle. The core building block of the proposed system
is a Distributed Hash Table extended with a CSP specific indexing principle and
recursive search algorithm. The task of QoS constraint verification for a requested
service is distributed between participating nodes. In this paper we describe CSP
based on a Content Addressable Network (CAN) [1] DHT. The resulting system
is evaluated based on a theoretical analysis as well as simulations.

1 Introduction

One of the central challenges of service provisioning in current and future networks
is to incorporate an increasing number of wireless and wired network technologies, a
variety of heterogeneous end user terminals and the requirements of QoS sensitive and
realtime multimedia services. To optimise the perceived quality of service for its cus-
tomers, a service provider has to adapt a multimedia service to the corresponding end
user terminals as well as the transport and error characteristics of the used access tech-
nologies. This may include: Multimedia processing as transcoding and/or downscaling
of audio/video data, QoS aware transport and routing, traffic shaping as well as the
implementation of network based error correction techniques. The network and device
management actions required in this context have to be based on information received
through interaction with the network infrastructure as well as the source and the sink of
the realtime multimedia flow. From the viewpoint of a service provider, core require-
ments of a platform to meet these demands are: low costs, low management and con-
figuration complexity as well as scalability. Based on these requirements the problem
addressed in this paper is the exploration of a self-*[2] system enabling a cooperative
service provisioning (CSP) of media transport and processing services. In this context
self-* denotes self-organising, self-managing and self-repairing. The term cooperative
is used since we act on the assumption that endusers as well as network or service
providers cooperate via the provisioning of processing modules (PMs) to be used for

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 73–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 M. Kleis et al.

media processing as well as media routing. The main focus of this paper will be on the
question, how principles from the area of Peer-to-Peer (P2P) networks can be used to
establish an on demand service provision platform through coordination of a distributed
set of PMs into a Situated Overlay Network. In this context we address the following
three essential steps, which are Decomposition of Services, Service Discovery and Sit-
uated Overlay setup. In contrast to related approaches as [3], [4], [5], [6] CSP does
not rely on a central entity having global knowledge during the task of Overlay setup.
The central idea of our approach is to study how the DHT principle can be extended
to realise a distributed control plane for the setup and maintenance of Overlays. The
main incentive for using DHTs is the fact, that they are in general designed to be used
in error prone P2P scenarios and can be considered as self-organizing, self-managing
and self-repairing structures. As the anticipated benefit, the resulting CSP system can
be realised in a decentral and distributed way while inheriting the self-∗ properties
of DHTs.

The remainder of the paper is organised as follows: In section 2 we provide an
overview of the proposed CSP principle, a formal definition of the addressed core prob-
lem as well as requirements for a SLA based service decomposition. In section 3 a DHT
based approach to the addressed core problem is presented, followed by an analysis in
section 4 as well as simulations in section 5. The paper is concluded with a collection
of related work, conclusions, future work items and acknowledgements.

2 System Model

During this paper we consider an overlay network as an ordered sequence (or more gen-
eral Directed Acyclic Graph) of processing modules (PMs) connecting a service source
and a service sink. We call an overlay situated in case it has the capability to adapt to
critical (situational) changes in network or service parameters in a self-* manner en-
abling an Autonomic Service Control. To approach this we adopt the DHT principle
from the area of P2P networks to realise a distributed control plane for an overlay based
service platform.

Standard DHTs are optimised to provide a functionality to map keys to transport
addresses where data corresponding to a given key can be fetched. In contrast for the
proposed CSP system, it is required to incorporate service discovery, QoS verification
and control functionality into a search process for chains of keys. Therefore we need
to develop a DHT+++ principle supporting: Service specific registration functions for
embedding a systems service graph into a DHT address space, recursive chain queries
as well as the on demand verification of QoS constraints between any arbitrary pair
of nodes hosting processing modules. To describe the required DHT extensions for
CSP based on a CAN [1], we introduce the following notation to formalise multimedia
transport and processing services (c.f. [7]). A Processing Module PM is formalised
as a triple of the form (I, P, O) where O refers to the possible input formats the PM
can read, P refers to the processing function provided by the PM , and O refers to the
output format of the PM .

For simplicity we select I, O ∈ {x1, ..., xm} ⊂ N and P ∈ {y1, ..., yn} ⊂ N. In
a real world scenario numbers referring to different I, O values could e.g. be defined

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 75

Fig. 1. CSP Approach

using a principle similar to RTP payload types[8]. Further it is assumed that neither
Media Clients (MCs) nor Media Servers (MSs) do media processing. Therefore they
are formalised using an (I, O) notation 1. A MC, requesting content from a MS, can
be served directly if and only if the input I of the client is compatible to the output
O of the Server. In the case of non-compatibility, a PM implementing the required
transforming functionality has to be inserted between the MS and the MC in order to
start media delivery using a pipelining principle. To denote compatibility we use the
symbol ∼. Based on this formalisation we define the Service Graph determined by a set
of PMs as:

Definition 1 (Service Graph). Let V = {PM1, PM2, · · · , PMn} be a set of n pro-
cessing modules. The Service Graph associated to V is defined as the graph SG(V, E)
with e = (PMi, PMj) ∈ E :⇔ PMi ∼ PMj .

This means, that every path in a Service Graph corresponds to a valid processing chain
for a service that can be realised by the set of PMs, and in case we need to determine
the set of all processing chains to be available for instantiating a requested service it
is possible to search the corresponding service graph for valid pathes connecting the
media server and client.

2.1 Decomposition of Services

In this paper we focus only on tasks that are related to multimedia processing and that
can be assumed to be decomposable. For instance we address services as first downscal-
ing of content with regard to the resolution of a given end user terminal, then tagging of

1 MCs and MSs are considered to be software instances running on a network node. The same
node can also host independently a set of PMs performing media processing. Therefore a
scenario where e.g. a Server is running a MS and several PM modules is also possible.

76 M. Kleis et al.

Table 1. Required SLA fields

SLA field Description
SID A unique Service ID

SSID
A set of service sources (e.g. a list of transport addresses or unique names
of media servers hosting a special content)

PSID The processing chain template associated with the service

CSID

A vector of constraints associated with the service e.g.
QoS constraints as acceptable delay, required (bottleneck) bandwidth
and a monetary constraint i.e. maximal acceptable cost of processing
in the form of a fee per processing demanded by a provider or enduser

the content using watermarking and finally encrypting it, where each of this steps is per-
formed by a PM . For CSP the proposed approach for the actual service decomposition
is based on SLAs, where the SLA has to be established between a content provider and
a CSP enabled third party provider in advance of the first service request. In the case of
a more classical P2P CSP scenario, the same principle can also be applied by replacing
the service provider by a peer willing to offer a service and the third party provider by
a community of peers offering processing capabilities. The specification of a concrete
SLA principle is beyond the scope of this paper, but the required set of negotiated and/or
derivable information during SLA agreement is collected in table 1.

As soon as a SLA has been established for a service, the information about the new
SIDs can be made available by using e.g. a webpage or portal. To establish a mapping
between the SID and the content of the SLA, a DHT principle can be used.

2.2 Service Requests

After a request for a known SID is received by any node of a CSP enabled system, the
corresponding processing chain template has to be located and downloaded. In addition,
information about the possible input formats acceptable by the client as well as the
possible output formats of the server can be exchanged via standard session or capability
description protocols as e.g. SDP[9]. Thus it can be assumed that after a request phase
and analysis, the information collected in table 2 is available.

Thus, the processing chain for the requested service can completed in part as

PCSID = (IS , OS) ∼ (I, P1, ∗) ∼ · · · ∼ (∗, Pi, O) ∼ (IC , OC),

where an asterisk denotes an arbitrary input or output format. To be able to setup a
Situted Situated Overlay for this SID it is required to find an instantiation of the corre-
sponding processing chain PCSID while fulfilling the QoS constraints CSID. Address-
ing this problem directly results in a multiconstrained routing or path finding problem
which is NP-complete[10]. In contrast, in most of the practical cases it is suitable to
find a feasible solution, that can be a solution fulfilling all QoS constraints while having
lowest possible costs of processing (c.f. Table 1). As a consequence, we address in the
remainder of this paper the following Least Cost Constraint Based Routing Problem
(LCBRP):

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 77

Table 2. Information available after service request

Information Description

Service Specific
The Processing Chain template PSID and a QoS
constraint vector CSID

Client Specific At minimum one acceptable input format of the client IC

Server Specific At minimum one output format of the server OS

Ingress PM Specific The required input format I and processing function P1

Egress PM Specific The required output format O and processing function Pi

Problem 1 (LCBRP). Assume a Graph G(V, E), a processing chain

PC = (P1, P2, . . . , Pl)

and two vertices u, v ∈ V . Further we assume three constraints

CMax, DMax, BMin ∈ R
+
0

corresponding to acceptable maximal (processing) cost and delay as well as minimum
required (bottleneck) bandwidth. The Least Cost Constraint Based Routing Problem is
to find the shortest path p = (u, . . . , v) in G(V, E) with regard to processing costs such
that the CMax, DMax and BMin constraints are not violated and the order of processing
is retained.

3 Separable Constraint Based Routing, a DHT Centric Approach

After a service request, there are two main steps required to establish the Overlay for a
service SID, which are Service Discovery and selection of at least one solution to the
corresponding LCBRP for Overlay Network Setup. 2 In CSP we integrate this two steps
into the DHT search process since:

– No support from the underlaying network infrastructure is required (as e.g. support
for a special routing protocol, etc.)

– Integrating Service Discovery and setup of the Situated Overlay Network can save
communication overhead.

– A DHT based system can be deployed fast with a low state per node (i.e. in the
order of O(log N) where N is the number of nodes in a CSP system.)

– The resulting system inherits the self-∗ properties of it’s DHT.

However, DHTs are Overlay networks optimised to accomplish a search task. To be
able to adopt them it is required to reduce the addressed LCBRP problem to a search
problem.

2 In this paper paper we omit Overlay Maintenance strategies and leave them for future work.

78 M. Kleis et al.

3.1 Reduction of LCBRP Problem to a Distributed Search Problem

Based on the results summarised in section 2 we can assume to have after a service
request a partly competed processing chain of the form

(IS , OS) ∼ (I, P1, ∗) ∼ ... ∼ (∗, Pi, O) ∼ (IC , OC) (1)

as well a constraint vector CSID. The task of a CSP control plane would be now to
instantiate a valid processing chain that is a solution to the corresponding LCBRP prob-
lem. We will address this by reducing the LCBRP problem to a distributed search in a
DHT.

To realise this we aim at exploiting the following facts:

1. By using a problem specific indexing scheme, the information about available valid
processing chains can be stored implicitly in the DHT address space.

2. Using 1, the LCBRP problem can be addressed by utilising a distributed search
principle in combination with a hop-by-hop verification of QoS constraints.

A prerequisite of 1 is, that the ∼ relation has to be an invariant with regard to the
indexing scheme of the used DHT. I.e. it must be possible to derive compatibility of two
PMs by comparing their hash values in the DHT address space. To address this we use
a CAN with an address space [0, t] × [0, t] × [0, t] ⊂ R

3, for a suitable t ∈ R. After
a new node n has joined successfully the CAN, the address where to store a pointer to
data referencing a PM1 = (I1, P1, O1) hosted by n is calculated as the coordinate

hashCAN (I1, P1, O1) := (h(I1), h(P1), h(O1)) ∈ R
3

where h : N 	→ [0, t] ⊂ R is a suitable hash function. In case it is required to find
a PM2 being compatible to PM1, the CAN address where to find such information
can be directly calculated as (h(O1), h(P2), h(O2)) (where O2 is an arbitrary output
format). I.e. we have

PMi ∼ PMJ ⇔ hashCAN(PMi) ∼ hashCAN (PMJ).

To establish 2 we recall that the information about all possible services to be realisable
is represented through the Service Graph of the system.

As illustrated in figure 2, each branch of the search results in case no QoS constraints
are violated in a valid processing chain from the server to the client. A valid processing
chain for the composed service

(0, 1) ∼ (1, 1, 2) ∼ (2, 2, 1) ∼ (1, 3, 3) ∼ (3, 4, 1) ∼ (1, 0)

is marked grey.

3.2 CSP Specific Range Queries

Following expression 1 above, e.g. in case of the ingress processing module PM1

there is not enough information available so far to formulate an exact search query.

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 79

MS: 0-1

MC: 1-0

1-1-1 1-1-2
1-1-3

1-2-1 1-2-2 1-2-3 2-2-1 2-2-2 2-2-3 3-2-1 3-2-2 3-2-3

1-3-1 1-3-2 1-3-3 2-3-1 2-3-2 2-3-3 3-3-1 3-3-2 3-3-3

1-4-1 2-4-1 3-4-1

1

0

2

4

5

3

DepthCorresponding directed acyclic Search Graph

search(1,1,*)

search(a,2,*)

search(b,3,*)

search(c,4,1)

connect to MC

initiate processing

(0,1)~(1,1,*)~(*,2,*)~(*,3,*)~(*,4,1)~(1,0)

(0,1)~(1,1,a)~(*,2,*)~(*,3,*)~(*,4,1)~(1,0)

(0,1)~(1,1,a)~(a,2,b)~(b,3,*)~(*,4,1)~(1,0)

(0,1)~(1,1,a)~(a,2,b)~(b,3,c)~(c,4,1)~(1,0)

(0,1)~(1,1,a)~(a,2,b)~(b,3,c)~(c,4,1)~(1,0)

Search operation & incomplete PC

1

2

3

4

MC

MS

Composed Service

Fig. 2. Service, Search Graph and required search operations

Thus, instead searching for a concrete PM = (I, P, O) we are looking for a list of
available PMs capable of accepting the input format I , having a processing func-
tion P1, and an arbitrary output O. Such a Range Query is defined to be of the form
searchRQ(I, P, ∗).

In figure 3 we illustrate how it can be realised using a two or three dimensional CAN
and the before introduced indexing scheme. Since the two dimensional case, shown on
the left side of figure 3 is intuitive, we describe the three dimensional case for query of
the form searchRQ(IA, PA, ∗). Because of the properties of the used indexing scheme,
information about all PMs with PMA = (IA, PA, ∗) is stored along the line g(λ) =
A+λ·(0, 0, 1). For a Query Node (QN) B with CAN address (IB , PB , OB), the closest
point on g with regard to euclidean distance db,c is C = (h(IA), h(PA), OB). Thus we
define the node owning the CAN territory including C as the Range Query Initiator
(RQI). As soon as this node receives the range query from B it is forwarding it to all
its neighbours following the line g. For a query of the form searchRQ(∗, PA, OA) we
have g(λ) = A + λ · (1, 0, 0) and C = (IB , PA, OA). With regard to the scope of the
described CSP range query principle in a CAN we provide the following lemma.

Lemma 1 (Scope of a CSP range query in CANs). Given a Content Addressable
Network in a d-dimensional geometric space containing n nodes. We further assume
that the CAN is partitioned into territories of equal size. The average scope of a CSP
range query is

(
d
3 + 1

)
∗ n(1/d) − 1 and is therefore O(n1/d).

Proof. We note that for a CAN in a d-dimensional space partitioned into territories of
equal size, the average routing path length is (d/4) ∗ n(1/d) [1]. The scope of a CSP
range query can be identified with the scope of two separate CAN routing requests. The
first one, with source Query Node (QN) and destination Range Query Initiator (RQI),
can be assume to be of average scope (d/4) ∗ n(1/d). Now the RQI node is forwarding
the range query along a line in R

d crossing the territory of n1/d − 1 nodes (see also

80 M. Kleis et al.

N1

N2

N5

N3 N4

N6

I

hash(IA)

O

N1 N2 N3 N4

search (IA,*)

(RQI)

(QN)

I

P

O

v

B
(QN)

C
(RQI)

hash(PA)

hash(IA)

IB OB

PB

A

A+ ·v

dB,C

search (IA,PA,*)

A+ ·v

C

Fig. 3. Range Queries in a 2D and 3D CAN

figure 3). Therefore we have an average message complexity of
(

d
3 + 1

)
∗ n(1/d) − 1

which is O(n1/d).

3.3 Search Algorithm

Utilising the above introduced range query principle we describe now the basic CSP
search algorithm. The underlying principle of the algorithm is to distribute the search
for processing chains between the set of nodes hosting the required processing function-
ality in the form of PMs. As described above, we can start with the following partly
completed processing chain

(IS , OS) ∼ (I, P1, ∗) ∼ · · · ∼ (∗, Pl, O) ∼ (IC , OC)

together with IPMC , the IP address of MC and three additional scalar constraints
CMax for costs, DMax for delay and BMin for acceptable bottleneck bandwidth. For
the simulations performed and described in section 5, we implemented searchRQ using
a breadth fist as well as depth first principle with forward checking and backtracking.
To realise the depth first approach, the searchRQ principle can be modified in a way
that the Range Query Initiator is collecting the results of the range query and selects the
next PM based on a the used forward checking principle. However, in this section we
focus on the breadth first like algorithm.

After receiving the request, a media server MS formulates the initial CSP search
query which is of the form:

((I, P1, ∗) ∼ · · · ∼ (∗, Pl, O)), IPMC

{c < CMax}, {d < DMax}, {b > BMin}
c = 0, d = 0, b = ∞

The MS as the root of the search for the service, initiates now a querysearchRQ(I, P1, ∗),
piggybacking:

((∗, P2, ∗) ∼ · · · ∼ (∗, Pl, O)), IPMC

{c < CMax}, {d < DMax}, {b > BMin}
c = cs, d = 0, b = ∞

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 81

where cs denotes the cost of the media provisioning. Each DHT node passed by the
range query, storing information where to find a node n hosting a PM = (I, P1, O1,x)
is forwarding the piggybacked search query and the IP address of the range query
originator to n. n can now actively determine the values of d1, b1 e.g. using measure-
ments or estimation techniques between itself and the range query originator. In addi-
tion n can get the value c1 corresponding to the costs for using its P1 related PM . If
c + c1 ≤ CMax, d1 ≤ DMax and b1 > BMin, n is recursively sending a range query
of the form searchRQ(O1,x, P2, ∗) piggybacking Q1.

Q1 :=

⎧⎨⎩
((∗, P3, ∗) ∼ · · · ∼ (∗, Pl, O)), IPMC

{c < CMax}, {d < DMax}, {b > BMin}
c = cs + c1, d = d1, b = d1

This recursive process is continued and at depth i < l−1 the corresponding CSP search
query is

Qi :=

⎧⎨⎩
((∗, Pi+1, ∗) ∼ · · · ∼ (∗, Pl, O)), IPMC

{c < CMax}, {d < DMax}, {b > BMin}
c = cs + c1 + ... + ci, d = d1 + ... + di, b = min{di−1, di}

The recursion stops either if the depth of the resulting search graph is equal to the
number l of processing steps or the constraints are violated. In the case the search depth
l is reached, the actual node is sending a report message to MC, including information
about the c , d and b values corresponding to available service paths. Based on this
information the MC can select the path to be instantiated backwards from MC to MS.

4 Analysis

For a complexity analysis of the described CSP search principle we will focus on the
question “How many nodes are actively involved into the search for a given processing
chain of length n?”. A node is considered to be actively involved into a CSP search
in case it has to trigger a search request. The main reason for this focus is the fact
that a search request with its associated QoS verification task can be assumed to be
disproportional expensive with regard to computation and communication requirements
compared to standard DHT routing tasks.

In order to address this in the broadest fashion, we analyse the complexity of the
underlying service composition problem while assuming that no branch of the search is
stopped because the QoS constraints cannot be fulfilled. Thus we examine the question:
“Given a relation between the I, P, O values of the available PMs in the system as
well as a processing chain template of length n, how many possible solutions can we
expect for a service request?”.

To answer this, we consider I, P, O as random-variables supposing m different input
and output formats i.e. I, O ∈ {x1, ..., xm} independently. Further we assume n differ-
ent processing functions P ∈ {y1, ..., yn}. In addition, for y1, ..., yn we define the the
following random-variables:

(Ii, Oi) := ((I, P, O)|P = yi)

82 M. Kleis et al.

This means that the (Ii, Oi) are the random-variables which result from conditioning
(I, O) by P = yi. We further define

P (O = xi|P = yj) =: pj,i(O) and P (I = xi|P = yj) =: pj,i(I)

and a processing chain as any vector

((I ′, O1(ω)), ..., (In(ω), O′)).

A chain is valid iff Oi(ω) = Ii+1(ω) for any 1 ≤ i ≤ n − 1, and the respective set of
valid chains is denoted by C∗.

There are two possible ways of engendering a set of chains C with the cardinality
#(C) = NC :

1. By simply generating NC chains randomly.
2. By generating Ni times the random-variable (Ii, Oi) for 1 ≤ i ≤ n with

n∏
i=1

Ni = NC . (∗)

We are now interested in E(#(C∗)), the expectation of the random-variable #(C∗)
when the corresponding C is engendered as described in (2). Assuming that this value
will heavily depend on NC we can proceed as if C was engendered as described in (1),
i.e. as if we had sampled #(C) = NC chains independently.

Doing so the following reasoning leads to the simplified formula given below:
We define

#(C∗)(ω)
#(C)

=: p(ω),

the proportion of correct chains in C(ω). The expectation of the proportion p corre-
sponds to the probability to engender one single chain according to (∗). Therefore we
have:

E(p) = P (O1 = I2, ..., On−1 = In) =
n−1∏
i=1

P (Oi = Ii+1)

Because of the independence of Oi and Ii+1 we have

P (Oi = Ii+1) =
m∑

j=1

pj,i(I)pj,i(O).

Now the expectation of the number of correct chains in a random sample can be com-
puted as follows:

E(#(C∗)) = #(C)E(p)

=
n∏

k=1

NkE(p)

=
n∏

k=1

Nk

n−1∏
i=1

P (Ii = Oi)

=
n∏

k=1

Nk

n−1∏
i=1

m∑
j=1

pj,i(I)pj,i(O)

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 83

Combining this result with the fact that for a processing chain of length n, n−1 nodes3

have to perform a QoS constraint validation step we can state that the expected number
of nodes that are actively involved in the corresponding search process are

n ·
n∏

k=1

Nk

n−1∏
i=1

m∑
j=1

pj,i(I)pj,i(O)

To illustrate the above result, note that under the simplifying assumptions

(i) For each processing function we assume the same number of PMs, which is:
N = Ni, for any 1 ≤ i ≤ n

(ii) Each processing function comes with all possible I, O combination, which is:
pj,i(I) = pj,i(O) = 1

m

we obtain:

E(#(C∗)) =
Nn

mn−1
.

Thus the expected number of nodes in a CSP system that are actively involved in a
breadth first search process for a chain of length n is n · Nn

mn−1 . If N > m the expected
number grows exponential with regard to the length n of the processing chain. As a
consequence, to be able to limit the scope of a CSP search, it is important to use search
principles where the number of concurrent branches can be controlled.

5 Simulations

In this section CSP will be evaluated using a simulation approach. The performed ex-
periments are based on a network topology generated by the Georgia Tech GT-ITM[11]
topology generator using a hierarchical transit-stub model containing 1740 nodes. For
each simulation run we selected randomly a subset of 500 nodes as CSP Overlay Nodes
(ONodes). Each ONode is hosting one PM with independent I, P, O values, randomly
selected out of the set {1, ..., 5}. In addition a corresponding cost value was selected
randomly out of the set {1, ..., 100}. Delay and bottleneck bandwidth values have been
calculated based on the GT-ITM link weights using shortest path routing. For each
experiment a processing chain of length l = 1, 2, 3, 4 was selected out of the corre-
sponding service graph and the corresponding constraint vector with regard to Delay,
Bandwidth and Cost values was determined. After this, the CSP approach was used to
find a processing chain fulfilling the constraints while having same or lower costs. We
repeated each experiment 10 times and show the averaged results. For the used range
query function SEARCHRQ we implemented two variants:

1. All Branches (breadth first): Each PM found meeting the constraints continues the
search starting a new branch if required.

3 We assume the case of one PM per node.

84 M. Kleis et al.

Table 3. Simulation Results

Length Active nodes Scope num. paths disjoint paths hops
1 4.6 / 2.4 6.8 / 6.8 2.1 / 1 1.5 / 1 2 / 2.4
2 35.3 / 5.3 123.7 / 27.0 36.4 / 1 13.1 / 1 3 / 5.6
3 122.7 / 8.5 2207.3 / 82.2 776.6 / 1 14.3 / 1 4 / 11.0
4 233.9 / 9.8 55792.9 / 96.2 14829.4 / 1 19.3 / 1 5 / 14.2

(a) Active Nodes (b) Minimum steps till response

Fig. 4. Comparison of selected results

2. Single Branch (depth first): Only the PM meeting the constraints with lowest costs
is used to continue the search. The same strategy was also used for backtracking in
case the search could not be continued because of constraint violations.

We evaluated the experiments based on the following metrics

– Active Nodes: The number of CSP ONodes actively trigger search requests, as a
primary complexity measure for CSP.

– Scope of Search: The number of CSP DHT nodes involved in a search, includ-
ing active nodes and nodes involved in DHT routing. This metric covers the DHT
related communication complexity of CSP.

– Min steps till response (hops): The minimal number of search steps performed
until a solution has been found, as a rough indicator for the time required to com-
plete a request. In case of the all branches approach this is always l + 1, where l is
the length of the processing chain.

The averaged results of the performed experiments are shown in figure 4 and table 3. In
each field of the table, the left value shows the result for the all branches, and the right
value for the single branch based SEARCHRQ function. Up to a processing chain length
of 2, the all branches approach can be considered as interesting because it has accept-
able scope values while outperforming the single branch with regard to the hops metric.
A further benefit using this method is that disjunct solutions (paths) are returned, a fact
that can be exploited for resillience. In case of longer processing chains the results

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 85

Fig. 5. CSP based MRF

of our theoretical analysis are confirmed by the simulation. The complexity of the all
branches approach is rising close to exponential while the single branch approach still
shows good results, even with respect to the minimum steps till response metric. The
question how to define a hybrid search strategy with input parameters as required num-
ber of disjunct solutions, acceptable scope and response time will be one main part of
future CSP work. In addition we work on a larger setup for the validation of CSP based
on real network data.

6 Related Work

In contrast to other service composition proposals like [3], [4], [5], [6], CSP does not
rely on a central entity having global knowledge during the task of overlay setup. Com-
pared to [12] which is also utilising a DHT, CSP aims to include the overlay setup di-
rectly into the search process using a DHT routing integrated approach in combination
with a hop-by-hop QoS constraint verification. From a provider point of view the IMS
standard Rel.6, developed inside the third generation partnership project (3GPP) covers
similar functionality in a broader sense. The IMS Media Resource Function (MRF), can
be considered as its multimedia related core. It is responsible for resource consuming
tasks as e.g. playing, transcoding and mixing of media streams. Following the standard,
the MRF is a conceptional centralised entity thus scalability problems related to the
ones in case of a classical client/server approach can be anticipated. To cope with such
problems, a “distributed” MRF based on P2P-Principles can be an interesting option.
As the most promising candidates to be used to realise a distributed MRF we suggest
dedicated infrastructure nodes as well as home gateway devices and set-top boxes under
partial control of the network provider. Figure 5 illustrates conceptual how a distributed
MRF may be realised based on CSP using the IMS Mr interface to link the resulting
situated overlays to the IMS control.

86 M. Kleis et al.

7 Conclusions and Future Work

In this paper we described a self-configuring and self-managing system for a coopera-
tive service provisioning (CSP) of media transport and processing services for current
and future Networks. The target of CSP is to realise a decentralised control plane for
the setup of situated overlays. the most important difference between CSP and related
approaches is the fact, that its main target is to investigate in an DHT based integrated
approach: I.e. by using a DHT related search principle also for a discovery of the final
service path. The algorithm used for processing chain discovery as well as instantiation
is based on a distributed search principle. It allows to distribute the task of finding the
solution to a (Least Cost) Constraint Based Routing Problem among the members of a
P2P network. To introduce CSP, a system model and a formalisation of the addressed
problem space has been provided. The resulting system has been evaluated based on a
theoretical analysis and simulations. The question how to define a hybrid search strat-
egy with input parameters as required number of disjunct solutions, acceptable scope
and response time will be one main part of future CSP work.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments
which helped to improve the paper. This research was partly performed in the context of
the Situated Autonomic Service Control (SASCO) project, funded by France Télécom
R & D.

References

1. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. In: Proceedings of ACM SIGCOMM, ACM, New York (2001)

2. Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.P.A., van
Steen, M. (eds.): Self-star Properties in Complex Information Systems. LNCS, vol. 3460.
Springer, Heidelberg (2005)

3. Xu, D., Nahrstedt, K.: Nahrstedt, Finding service paths in a media service proxy network.
In: Proceedings of the ACM/SPIE Conference on Multimedia Computing and Networking
(2002)

4. Gu, X., Nahrstedt, K., Chang, R., Ward, C.: Qos-assured service composition in managed
service overlay networks. In: Proceedings of IEEE 23rd International Conference on Dis-
tributed Computing Systems, IEEE Computer Society Press, Los Alamitos (2003)

5. Jingwen Jin, K.N.: Source-based qos service routing in distributed service networks. In: Pro-
ceedings of IEEE International Conference on Communications, IEEE, Los Alamitos (2004)

6. Gu, X., Nahrstedt, K.: A scalable qos-aware service aggregation model for peer-to-peer com-
puting grids. In: Proceedings of the IEEE HPDC-11. IEEE Computer Society Press, Los
Alamitos (2002)

7. Mathieu, B., Song, M., Kleis, M.: A p2p approach for the selection of media processing
modules for service specific overlay networks. In: Proceedings of International Conference
on Internet and Web Applications and Services (ICIW) (2006)

CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles 87

8. Casner, S.: Media Type Registration of RTP Payload Formats, RFC 4855(Proposed Standard)
(February 2007), [Online]. Available:
http://www.ietf.org/rfc/rfc4855.txt

9. Handley, M., Jacobson, V., Perkins, C.: SDP: Session Description Protocol, RFC 4566 (Pro-
posed Standard) (April 2006), [Online]. Available:
http://www.ietf.org/rfc/rfc4566.txt

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

11. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. Proceedings
of IEEE Infocom. IEEE Computer Society Press, Los Alamitos (1996)

12. Gu, X., Nahrstedt, K., Yu, B. (eds.): Spidernet: An integrated peer-to-peer service composi-
tion framework. Proceedings of IEEE HPDC-13. IEEE Computer Society Press, Los Alami-
tos (2004)

http://www.ietf.org/rfc/rfc4855.txt
http://www.ietf.org/rfc/rfc4566.txt

Generic Emergent Overlays

in Arbitrary Peer Identifier Spaces

Wojciech Galuba and Karl Aberer

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{wojciech.galuba, karl.aberer}@epfl.ch

Abstract. Unstructured overlay networks are driven by simple proto-
cols that are easy to analyze and implement. The lack of structure,
however, leads to weak message delivery guarantees and poor scaling.
Structured overlays impose a global overlay topology that is then main-
tained by all peers in a complex protocol. In contrast to unstructured
approaches the structured overlays are efficient and scalable, but leave
little flexibility in how their topology can be adapted to the needs of the
application.

We propose a generic overlay maintenance and routing algorithm that
combines the simplicity of the unstructured overlays and the scalability
of the structured approaches, while allowing the application to define its
own peer identifier space. The overlay topology is not explicitly defined
but emerges in a self-organized way as the result of simple maintenance
rules. Independently of the identifier space used, our algorithm exhibits
logarithmic scaling of the average routing path length and the average
node degree.

The proposed maintenance and routing algorithm is simple and places
few constraints on how peers can open their connections. This together
with the ability to adjust both the identifier space and the tradeoff be-
tween the path length and the node degree makes the overlay customiz-
able in ways that are not possible in the existing approaches.

1 Introduction

Most of the state-of-the-art structured overlay networks [1, 2, 3, 4, 5, 6, 7, 8]
follow a similar design paradigm. First, a global network structure is defined
and the peers are placed in some identifier space [9]. The structure has prop-
erties desirable from the application point of view such as logarithmic routing
path length, high routing path redundancy and resilience to failures. Then, this
global network structure is expressed as invariants which are maintained by each
node locally to ensure the coherence of the global network structure. Structured
overlays despite their performance guarantees, have complex distributed proto-
cols and the applications have little flexibility and control over how the overlay
topology is formed.

In contrast, in unstructured overlays [10, 11], the design process starts from
the local goals and rules without any particular target global structure in mind.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 88–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 89

The resulting algorithms and protocols are simple and offer much flexibility in
forming the overlay topology and routing the messages, however they lack the
routing efficiency and scaling guarantees of structured overlays.

In this paper we take an approach to overlay network maintenance that com-
bines the flexibility and ease of implementation of the unstructured overlays with
the efficiency and scalability of the structured overlays.

We start out by observing the common characteristics of all structured over-
lays. Each node is endowed with an identifier and in every structured approach
there is some notion of distance defined between the identifiers. Through the
distance function each node can know its position relative to other nodes in the
topology. In each routing hop the message routed in the overlay is brought closer
to its destination in terms of the identifier space distance. To ensure the progress
of messages towards the destinations each node maintains a set of connections.
The global overlay connection topology guarantees efficient and scalable delivery
of messages.

We abstract out the concept of distance between overlay identifiers and allow
the application to specify it. We propose a generic overlay routing andmaintenance
algorithmthat relies solely onknowledgeof the identifier distance functionanddoes
not specify any global topology that needs to be maintained. The global topology
emerges in a self-organized way as a result of a simple connection opening rule.

The node identifiers are selected uniformly randomly from the identifier space.
In each routing step we greedily route the message to the next hop that is closest
to the destination. We compute the rate at which the message approaches its
destination, i.e. how much the distance to the destination is shortened during
one hop. We require that the rate for each hop be at least γ, a design parame-
ter. If this condition is not satisfied then additional connections are opened by
the maintenance algorithm to ensure the minimal rate of message progression
towards the destinations.

To verify the claim that the above simple algorithm is indeed able to form an
efficient overlay, we evaluate our overlay in simulation. We observe that:

– The resulting overlay has logarithmic scaling properties. Both the average
routing path length and the average node degree are logarithmic in terms of
the number of nodes in the network.

– The routing path length vs. node degree tradeoff can be controlled by ad-
justing the single design parameter γ.

– Logarithmic overlay scaling can be achieved for any identifier distance metric
by adjusting γ

– Local structures emerge tightly interconnecting nodes in the identifier space
on short distances. This common characteristic is shared by all state-of-the-
art structured overlays and is crucial for e.g. last hop routing and key replica
management in DHTs

– The overlay is robust and has low maintenance overhead even in presence of
high churn

90 W. Galuba and K. Aberer

The overlay networks generated by our algorithm have characteristics com-
parable to many of the well-known approaches, while offering a number of addi-
tional advantages:

– Up to our knowledge it is the first overlay maintenance algorithm that is
driven by the overlay traffic, i.e. connections are created only when they are
needed.

– The abstract space of node identifiers and distances between them generalizes
over the previous approaches.

– In contrast to other structured approaches there is no pre-defined rigid global
structure that has to be maintained, in our case the topology emerges in a
self-organized way as a function of the underlying identifier space. The lack
of pre-defined topology greatly simplifies the algorithm and minimizes the
implementation effort.

– The proposed algorithm leaves plenty of room for adjusting the routing ef-
ficiency and the number of connections the nodes need to maintain, this
combined with the generalized identifier space gives a level of customizabil-
ity not available in other overlays.

2 The Model

In this section we present the basic assumptions followed by the formulation of
the proposed overlay routing and maintenance algorithm.

2.1 Graph Embedded in a Metric Space

Let the network be represented by a graph G(V, E), where V is the set of overlay
nodes and E is the set of overlay connections between them. Let id : V → I be
a function that assigns an identifier from the set I to each of the nodes in V .
Let d : I × I → R be the distance function. The id function embeds the nodes
in the metric space defined by d, hence d must satisfy the four properties of
the distance function in a metric space: non-negativity, symmetry, identity and
the triangle inequality. The pair (I,d) is the identifier space and the mapping
function id maps the overlay nodes into that space.

The communication in the network proceeds by sending messages. The mes-
sages can only be sent along connections. Once a connection is established be-
tween two nodes it can be used to send messages in both directions.

2.2 Routing

Assume a source node m.src wants to send a message m to a destination node
m.dest (m.f denotes the field f in message m). The routing proceeds in the
standard hop-by-hop way. The next hop is selected by greedily minimizing the
identifier space distance to m.dest and at the same time avoiding previously
visited nodes.

Let m.visited be the set of nodes through which m has already been routed.
Let vc be the node that currently holds m and needs to forward it. Let neigh(vc)

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 91

be the set of neighbors of vc. The node vc selects the next hop vnh based on the
following rule: take the set neigh(vc)\m.visited, and from it select node vnh for
which the value d(id(vnh), id(vd)) is the lowest. After selecting the next hop, vc

adds vnh to m.visited and forwards m to vnh.
The following special cases occur:

– NHimp - next hop impossible - a message reaches a dead end, neigh(vc) \
m.visited is an empty set, the message is dropped

– TTL0 - TTL zero - each message has a time-to-live counter decremented
with every hop, when it reaches zero the message is dropped

2.3 Overlay Maintenance

The maintenance in our overlay is driven by routing. To ensure eventual delivery,
each routing hop should advance messages closer towards to the destination
in the space defined by d. What is more, this advancement should occur at a
certain minimal rate of progression to provide efficient overlay message delivery,
otherwise new connections have to be created to ensure that this happens. We
base our overlay maintenance algorithm on this simple maintenance rule.

For a given next hop vnh from the current node vc towards the destina-
tion m.dest we define the routing convergence rate as cvg(vc, vnh, m.dest) =

d(id(vc),id(p.dest))
d(id(vnh),id(m.dest)) . Let γ be the minimum required routing convergence rate.
Routing convergence rate is the measure of how much the next hop shortens
the distance to the destination. If a hop (vc → vnh, m.dest) does not satisfy the
condition cvg(vc, vnh, m.dest) ≥ γ then that hop is weak, otherwise it is strong.

When a weak hop is encountered while routing a message m, the maintenance
protocol sends a connection request cr = (vc, p.dest) with the destination set to
m.dest indicating the origin of the request as vc, the current node. The connec-
tion request is routed towards the destination normally as other messages in the
greedy self-avoiding way. When some node vresp receives a connection request
cr = (vo, dest) and if the hop (vo → vresp, dest) is not weak then vresp responds
to vo with connection acknowledgement and the connection between vo and vresp

is established and the routing of cr stops. Otherwise if (vo → vresp, dest) is weak,
the cr continues to be routed.

When a timeout happens while sending on one of the connections then the
sender closes that connection and removes the recipient from its neighbor set.

2.4 Maintenance Suppression

Every node keeps track of the connection requests that it has sent until either
the corresponding connection response arrives or a timeout occurs. This request-
response tracking has the following purpose. Consider the time between two
events: (1) the sending of a connection request c(vc, dest) by node vc and (2)
the receipt of the corresponding connection response. Assume additionally that
there are no connection requests being sent or responses arriving during that
time. However, there may be many messages with the same destination dest

92 W. Galuba and K. Aberer

arriving at vc. According to the proposed maintenance algorithm each of these
messages takes a weak next hop and triggers a connection request, which is
identical to the one already sent earlier. This would lead to the generation of
many unnecessary connection requests.

To prevent this from happening, whenever some cr = (vc, dest) is about to
be sent the list RL of requests currently awaiting their responses is checked. If
any of the potential responders to the connection requests on RL is also a valid
responder to cr, then cr is not sent. Let cr′ = (vc, dest′) ∈ RL be some con-
nection request awaiting its response. Let vr be the potential responder to cr′,
vr must satisfy the condition (1) cvg(vc, vr, dest′) ≥ γ. If vr is also a valid re-
sponder for cr, then it also satisfies (2) cvg(vc, vr, dest) ≥ γ. We also know that
the three identifiers of the three nodes (vr, dest, dest′) must satisfy the (3) trian-
gle inequality. Combining (1), (2) and (3) we obtain (4) γd(id(dest), id(dest′)) <
d(id(vc), id(dest)) + d(id(vc), id(dest′)). If there is any cr′ = (vc, dest′) ∈ RL for
which (4) is true then cr = (vc, dest) is not sent.

The operation of our overlay routing and maintenance algorithm has been
summarized in Algorithm 1. Note that for clarity the handling of timeouts,
TTL0 and NHimp events has been omitted.

3 Simulation Results

In this section we examine the behavior of our routing and overlay maintenance
algorithms experimentally.

3.1 Experimental Setup

We use ProtoPeer [12], an event-driven simulator. Each node in the simulated
network generates messages in a Poisson process. The generation rates are iden-
tical across all the nodes. A node vi generates a message m with the destination
vj �= vi selected uniformly randomly.

The average message generation rate at all nodes is set to one message every
second. All messages, connection requests and connection responses are delivered
with a latency uniformly distributed between 100ms and 200ms. The time-to-
live for overlay messages is set to 100 hops. We do not explicitly simulate the
underlying network topology. This simple network model is sufficient for verifying
the correctness of our algorithm and the structural properties of the overlay,
performance testing in a more realistic setting is left as future work (Section 4).

The bootstrap process is as follows. Each simulation begins with a set of 30
nodes interconnected uniformly randomly with an average degree of 5. The size
of this initial network is large enough to ensure that it remains a connected
graph even if some of the initial nodes depart at the beginning of the simulation.
Each new joining node connects to 5 uniformly randomly selected neighbors from
the network. These bootstrap connection requests and responses are delivered
directly and are not routed in the overlay. In a concrete implementation the
peers would be bootstrapping from a known host list (e.g. downloaded from the

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 93

Algorithm 1. Overlay routing and maintenance algorithm for arbitrary
peer identifier spaces
initialize

RL ← ∅
neigh ← initialize with peers via bootstrap mechanism

// application calls this function to send messages
function sendMessage(payload,dest)

forwardMessage(Message(payload,self,dest,∅))

function forwardMessage(Message(payload,src,dest,visited))
next hop = argminx∈neigh\visitedd(id(x), id(dest))
send Message(payload,src,dest,visited ∪ self) to next hop
if payload is ConnectionRequest then

return
end
// maintenance is triggered by weak hops
// only for payload that is not a ConnectionRequest

if d(id(self),id(dest))
d(id(next hop),id(dest)) < γ then
// check the maintenance suppression condition
if ¬∃cr′(self,dest′)∈RLγd(id(dest), id(dest′)) <
d(id(self), id(dest)) + d(id(self), id(dest′)) then

RL ← RL ∪ cr(self, dest)
// route the connection request as a new message
forwardMessage(Message(ConnectionRequest(self,dest),self,dest,∅))

end
end

receive Message(payload,src,dest,visited)
if payload is ConnectionRequest(origin,dest) then

// check if can accept the connection request

if d(id(origin),id(dest))
d(id(self),id(dest)) ≥ γ then
send ConnectionResponse(self,dest) to origin
return

end
else if dest=self then

deliver Message to application
return

end
forwardMessage(Message(payload,src,dest,visited))

receive ConnectionResponse(responder,dest)
RL ← RL \ cr(self, dest)
neigh ← neigh∪ responder

94 W. Galuba and K. Aberer

Web), we do not simulate this process in detail since our overlay is not sensitive
to the choice of initial neighbors for the peer.

To demonstrate that the results are independent of the chosen identifier space
we select five representative spaces for the experiments:

– 1D - one dimensional ring, as in Chord[1],
I = [0, 1), d(a, b) = mink∈{−1,0,1}|a − b + k|

– 2D - two dimensional spherical coordinates, the identifiers are placed on the
sphere I = [0, 2π)2 and the shortest distance is measured along the great
circle crossing the two identifiers

– 3D - three dimensional Euclidean space with wraparound (surface of a 4D
hypertorus).

– PFX - prefix routing as in Pastry[4] with the identifier space of 128bit vectors,
assume we are computing d(a, b), bits in a and b are compared from the
highest order bit to the lowest order bit, if i is the index of the first bit
which differs between a and b, then d(a, b) = 2i

– XOR - XOR distance metric as in Kademlia [5], an XOR of two identifiers is
computed and the result is taken as an integer distance value with 160 bits

For all the identifier spaces the nodes select their identifier uniformly randomly
out of the set of all possible identifiers.

The arrivals and departures of the nodes (churn) are simulated. Arrivals are
a Poisson process with a default average rate of 0.002 nodes per second. The
lifetime of the nodes is power-law distributed [13] with the minimal lifetime of
10s and the exponent of −1.2.

During the simulation we track the number of TTL0 and NHimp events (Sec-
tion 2.2). The churn is low in most simulations. We devote section 3.3 to the
study of routing failures under high churn conditions.

3.2 Scaling

To test the fundamental scaling properties of the overlay we let it increase in
size over time by setting the minimal node lifetime to a higher value of 50s.
For different network sizes and identifier spaces we measure the average routing
path length and the average and maximum degrees. The average path length
is measured over all the messages that have reached their destinations. This
excludes the connection requests and responses. The node degrees are measured
on the snapshot of the overlay topology at the end of a measurement epoch.

The measurements are plotted on Figure 1. Both the average path length
and the average degree scale logarithmically in terms of the number of nodes
as in the state-of-the-art overlays. In addition the logarithmic scaling of the
maximum degree is evidence for a balanced degree distribution, which is crucial
for balancing the message forwarding load among the peers.

The case of the 3D identifier space is anoutlier in our scaling experiments. In con-
trast to other identifier spaces, the averagedegree is rising much more rapidly. This
is caused by the “curse of dimensionality” problem, which we discuss in Sect.3.5.

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 95

3.3 Maintenance Overhead and Failures in Extreme Churn
Conditions

Apart from scaling, another important characteristic of an overlay is its mainte-
nanceoverheadand resilience tonodedeparturesor failures.Tomeasure these char-
acteristicswe switch fromthepower-lawnode lifetimemodel toPoissonarrivals and
departures, the rate of arrivals and the rate of departures are gradually increased.
While this happens the network size is kept around 1000 nodes. To stress test the
overlay we set the churn rates to values that are considerably higher than those
typically seen in peer-to-peer network deployments.

Figure 2summarizes the results. Our overlay maintenance algorithm keeps the
routing failures under 0.2% even when 40% of the nodes are replaced with new
ones every minute. For small churn rates the maintenance traffic increases faster
with the increasing churn, when the churn is higher the massive parallelism in
connection request sending lowers the number of connection requests a newly
joined node needs to open as it is more likely to receive connection requests
from other newly joined nodes. As the churn rate increases the average degree
decreases, there are more missing connections in the topology caused by churn.
Even though some poorly connected nodes might lay on the routing path, its
average length increases only slightly in high churn conditions.

The overall robustness of our overlay is high, the overlay does not loose con-
nectivity, high routing efficiency and low failure rates are maintained.

3.4 Varying the γ Parameter

The routing convergence parameter γ is crucial in our algorithm. We explore
experimentally how the changes of this parameter influence the performance of
the overlay. For gamma values varying from 0 to 4 and for the different identifier
spaces we grow the network until it reaches 1000 nodes. For the resulting network
we measure the average number of hops and the average node degree.

The results show (Figure 1) that adjusting the γ parameter allows for precise
control of the path length vs. degree tradeoff. Distinct operational regimes can
be defined:

– low degree - γ � 1.0 - most of the hops are strong and only a few new
connections are opened, message routing relies more on the self-avoidance
property of the routing algorithm, many nodes need to be visited as the
routing gradually and mostly randomly converges towards the destination,
messages are frequently dropped due to the TTL0 and NHimp events
(Section 2.2)

– high degree - γ � 1.0 - most of the hops are weak and a large number of
connections needs to be opened to form strong hops to the different areas of
the identifier space, the convergence of a message is guaranteed by the high γ
value, the distance to the destination exponentially decreases (at least by the
γ factor in each hop), self-avoidance rarely has to be used and the average
path length is small

96 W. Galuba and K. Aberer

10
2

10
3

10
4

0

20

40

60

80

100

120

number of nodes

av
er

ag
e

no
de

 d
eg

re
e

1D
2D
3D
PFX
XOR

(a)

10
2

10
3

10
4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

number of nodes

av
er

ag
e

ro
ut

in
g

pa
th

 le
ng

th

1D
2D
3D
PFX
XOR

(b)

10
2

10
3

10
4

0

50

100

150

200

250

300

350

number of nodes

m
ax

im
um

 n
od

e
de

gr
ee

1D
2D
3D
PFX
XOR

(c)

Fig. 1. The scaling of the average
path length and the node degree.
Each data point is an average of 20
measurements. Standard is under
10%, omitted for clarity.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

fraction of nodes departing/arriving per minute

m
ai

nt
en

an
ce

 tr
af

fic
 a

s
fr

ac
tio

n
of

 a
ll

tr
af

fic

(a)

0 0.2 0.4 0.6 0.8
10

−6

10
−5

10
−4

10
−3

10
−2

fraction of nodes departing/arriving per minute

fr
ac

tio
n

of
 n

on
−

de
liv

er
ed

 p
ac

ke
ts

(b)

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

av
er

ag
e

pa
th

 le
ng

th

fraction of nodes departing/arriving per minute

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

av
er

ag
e

no
de

 d
eg

re
e

average path length
average node degree

(c)

Fig. 2. Maintenance cost and
failure rates under extreme churn
conditions. Results from 20 in-
dependent experiments. Standard
deviations marked with the dotted
lines.

– balanced - γ ≈ 1.0 - in this regime the scaling of both the average degree
and the average number of hops are logarithmic in terms of the number of
nodes as demonstrated in section 3.2.

In the next section we discuss the high degree regime further and provide a way for
selecting the γ parameter such that the overlay operates in the balanced regime.

3.5 Routability

For a given identifier space only for some γ values the overlay is in the balanced
regime and we clearly need a way of determining these values. To achieve this
we define the concept of routability. The routability R(γ, I, d) of the identifier

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 97

0 50 100 150 200
0

10

20

30

40

50

average degree

av
er

ag
e

nu
m

be
r

of
 h

op
s

1D
2D
3D
PFX
XOR

(a)

0 1 2 3 4 5
0

10

20

30

40

50

γ

av
er

ag
e

nu
m

be
r

of
 h

op
s

1D
2D
3D
PFX
XOR

(b)

0 1 2 3 4 5
0

50

100

150

200

γ

av
er

ag
e

de
gr

ee

1D
2D
3D
PFX
XOR

(c)

Fig. 3. The influence of varying the γ parameter on the performance of the overlay.
Each point represents a measurement on a separate overlay that was independently
run.

space (I, d) under the convergence rate γ is the expected probability of finding
a strong next hop taken over all possible sources and destinations. Let X be the
random variable describing the distance between two random identifiers in the
(I, d) space, then R(γ, I, d) is

∫ xmax

0
P(X = x)P(0 < X < x

γ)dx. The values of
R are computed numerically for the different spaces and values of γ (Figure 4).
Low routability values indicate that the network will operate in the high degree
regime and vice versa high routability is a good predictor of the low degree
regime (compare these results to Figure 3).

To provide an extreme case we have included a highly dimensional space
EUC50, the surface of 51-dimensional hypertorus with Euclidean distance met-
ric. The value of routability for EUC50 at γ = 2.0 is very close to 0.0 and for
γ = 1.1 it is 0.17 which we have verified experimentally to be enough to provide
logarithmic scaling. This result also demonstrates that highly dimensional spaces
are not good a good choice for routing due to their “curse of dimensionality”
[14]. Only when the node degree is very high can efficient routing be achieved.

The routability concept can be conveniently used to find the ranges of γ values
and identifier spaces for which the network operates in the balanced regime, i.e.
with routability values in the mid-range, close to 0.5. It has to be noted that
this is a necessary condition for good scaling of the network, not a sufficient one.

Routability depends on the variable X which among other factors depends
on the distribution of the identifiers in the identifier space, which thus far was

98 W. Galuba and K. Aberer

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

γ

ro
ut

ab
ili

ty

1D, XOR
2D
3D
PFX
EUC50

Fig. 4. Routability for the different
identifier spaces and values of γ

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

neighborhood locality

fr
ac

tio
n

of
 th

e
no

de
s

1D
2D
3D
PFX
XOR

Fig. 5. The fraction of nodes with
a given locality

assumed to be uniform. If that distribution is skewed, this may greatly influence
the routability value. The routability formula should also factor in the actual
message traffic distribution which we assumed to be uniformly distributed over
the set of all source-destination pairs. Exploring these dependencies is beyond
the scope of the paper and is left as future work.

3.6 The Emergence of Local Structures

Some overlays maintain a completely deterministic set of neighbors, others cre-
ate random links [8]. However, all of the current structured approaches maintain
at least one deterministic connection, usually to its closest neighbor. Those con-
nections are eagerly maintained and are crucial to reliable routing, especially at
the very last hop. In our routing and maintenance algorithm, the creation of
this type of connections is not explicitly a part of the algorithm. However, nodes
following the simple local rule for sending the connection requests create a dense
network of short-range links.

To measure this effect we define the value of locality for each node. With a
vertex vi ∈ V we associate the series of vertices li1, li2, ...li(n−1) where n = |V |,
and ∀i,j,kd(id(vi), id(lij)) < d(id(vi), id(lik)) ⇒ j < k. Then locality of vi is
equal to m if ∀k=1..mlik ∈ neigh(vi). Informally, the locality of vi is the number
of nodes closest to vi in the identifier space such that all of these closest nodes
are connected to vi.

We take the topology snapshots of the overlays constructed in different iden-
tifier spaces with 1000 nodes. We measure the fraction of nodes with the given
value of locality (Figure 5). The topology snapshot is taken while the overlay
is churning and thus some of the nodes may have just joined the overlay and
have not opened a sufficient number of connections or some of the nodes may
have lost a connection due to a neighbor’s departure and have not replaced this
missing connection with another one. Churn decreases the measured fractions of
nodes. Despite churn, 80-90% of nodes are connected to their closest neighbor,
and 70-80% of the nodes are connected to two of their closest neighbors. In a 1D
ring identifier space if all of the nodes have locality 2 then there exists a global
ring spanning all of the nodes, it is possible to visit all the nodes by hopping

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 99

along that ring in one of the two directions. In overlays based on the 1D ring
identifier space (e.g. Chord[1]) this global spanning ring is explicitly maintained.
In the case of our algorithm, the ring emerges as a result of the simple con-
nection opening rule in the maintenance algorithm. This rule is independent of
the identifier space used and similar local structures are universally created in
identifier spaces other than the one-dimensional ring.

4 Discussion of Results and Future Work

We have shown how to use the concept of routability to find the range of γ pa-
rameters that ensure that the network stays in the balanced operating regime for a
given identifier space. We verified experimentally that this regime exhibits optimal
overlay scaling properties, however one might ask a question why do the values of
γ close to 1.0 still produce networks with logarithmically increasing routing path
length, despite the fact that each hop is not required to shorten the distance to
the destination. This is explained by the fact that each node has a non-negligible
probability of opening a long range link which acts as an effective shortcut in the
identifier space. Though there are few of those long range links in the case when γ
is close to 1.0 they significantly lower the average path length. We plan to comple-
ment our extensive simulations with an analytical treatment of the routing and
maintenance algorithms to explore this phenomenon in detail and relate it to other
work in small-world networks, such as the results of Kleinberg [15].

Throughout the paper we have assumed that γ is a system-wide constant.
However, it may vary in the following ways:

– per node - each node might locally decide at what routing convergence rate
it forwards the messages, indirectly this gives the node a way of controlling
its degree

– over time - γ can change to adapt to changing network conditions, e.g. churn
– per message - some types of traffic may be prioritized, e.g. traffic with a

specific destination might have a higher routing convergence rate associated
with it

Fine-grained control over γ gives a considerable degree of flexibility in shaping
the overlay, adjusting the length of the routing paths for different types of traffic
and deciding which nodes the traffic traverses through. This may be particularly
useful in cases when the source-destination distribution of the message traffic is
skewed.

In our maintenance algorithm the connection requests are triggered by mes-
sages and are normally sent immediately after the message itself towards the
same destination as the message. It is very likely that both the connection re-
quest and the message that triggered it follow the same routing path. This can
be exploited to piggyback the connection requests on the actual application mes-
sages. This can be easily implemented since each message already contains the
visited list, the connection request can then be a single bit flag attached to a
node in the visited list. We plan to implement connection request piggybacking
and investigate how much maintenance bandwidth can be saved in this way.

100 W. Galuba and K. Aberer

On the other hand, our protocol adds additional overhead to each of the
messages by storing the visited list. The size of this list equals to the number of
hops and scales logarithmically in network size. The list is used to prevent self
looping while routing. However, once the overlay is stable there are no loops and
the visited lists are not used. For γ > 1 Each routing loop has at least one weak
hop, this suggests that it may be sufficient to store visited nodes only when the
next hop is weak. Moreover, instead of explicitly storing the whole list of visited
nodes, Bloom filters on node identifiers could be used to drastically decrease
the space needed for storing the list. These optimizations await experimental
investigation.

If our overlay is used as the routing substrate for the distributed hash tables,
the emergent local structures (Section 3.6) can be used to manage the replicas of
the key-value pairs. Furthermore, the node identifier space can be selected such
that it better suits the needs of a particular DHT key space and the application
that uses the DHT. We plan to implement a DHT on top of our overlay and
investigate the advantages brought by flexible identifier spaces.

5 Related Work

Our approach is most similar to Freenet [10], which follows simple rules for open-
ing new connections. Moreover, in Freenet, just as in our approach, routing is loop
avoiding. However, in Freenet loop avoidance is implemented by keeping the rout-
ing state at the nodes, while in our algorithm we keep it in the message, which is a
stronger form of loop avoidance. Another major difference is that in Freenet new
connections are opened by performing a random walk when the node joins a net-
work. This leads to a scale-free topology with a power-lawnode degree distribution
with a small number of nodes having a very high degree. In our case the maximum
degree increases only logarithmically with the overlay size.

We have shown how adjusting γ can be used to trade off between the node
degree and the routing path length. In a real network implementation this cor-
responds to the maintenance bandwidth vs. routing latency tradeoff. This prob-
lem has been studied in the context of Accordion [16], where given a bandwidth
budget the protocol adjust the number of maintained connections to the current
churn levels. The obtained tradeoff curves are similar to the ones in figure 3. A
simplified version of this algorithm can be implemented in our overlay by making
γ a function of the current churn level and the given bandwidth budget.

A widely studied topic in the domain of complex networks are the small-world
graphs. They are commonly defined [17, 18] as graphs having both a smalldiameter
andhigh clustering coefficient.Our overlay satisfies both of these properties, except
to quantify the clustering we employed our own measure - the node locality (Sec-
tion 3.6). Our overlay can be viewed as a dynamic model for small-world growth.
The first dynamic model capable of generating networks having small-world prop-
erties was proposed by Watts and Strogatz [19] in 1998. In their approach they start
with a regular graph and then modify its structure through random rewiring. The
probability of rewiring can be controlled. As the probability increases, the network

Generic Emergent Overlays in Arbitrary Peer Identifier Spaces 101

goes through three topologically distinct stages. First, the topology is highly regu-
lar with high average path length, then it is small world and finally completely ran-
domwith short path lengths but low clustering coefficient.Kleinberg [15]places the
nodes on regular multi-dimensional lattices and addresses the problem of connec-
tion length distribution that would ensure efficient routing. We generalize on this
work further by considering a wider family of spaces in which nodes are embed-
ded and proposing a concrete routing and network growth algorithm that is able to
achieve logarithmic routing path scaling. We performed measurements of the dis-
tance distribution between connected nodes in topologies generated by our overlay
maintenance algorithm. The distributions exhibit very consistent power-law char-
acteristics identical to the ones observed by Kleinberg. However, we do not include
these results as they lay outside the scope of the paper.

6 Conclusions

In Gnutella [11], requests are flooded through the network until they reach their
destination. The nodes are not embedded in any space. What gives the structured
overlays their structure is the space the nodes are embedded in. Once the space
is added the flow of messages is given directionality and they no longer have to
move in all directions simultaneously to find their destinations but only towards
directions that decrease their distance to the destinations. A form of this greedy
routing is used in all state-of-the-art structured overlays. Routing decisions are
made solely based on local measurements of gradients in the identifier space. The
knowledge of the properties of the whole space is not necessary. We have proposed
a generic algorithm that for any metric identifier space is able to maintain the
overlay and route messages based only on local information and simple rules.

Each overlay runs a maintenance algorithm that opens connections to ensure
that for every node every forwarded message is brought closer to the destination
in terms of the space distance. Our overlay maintenance algorithm generalizes
this rule. The proposed algorithm is parameterized by γ which allows for precise
control of the path length vs. degree tradeoff while generating relatively small
maintenance traffic even under high churn.

Normally, the overlay maintenance algorithm keeps the network prepared for
efficient traffic routing from any source to any destination. In our algorithm main-
tenance is tied to routing and connections are created ondemandand only cover the
set of destinations that actually appear in the traffic without opening unnecessary
connections. This may be controlled at a finer granularity by associating different
γ values with different forwarding nodes and different types of routed traffic.

The main insight of our work is that the identifier space is flexible and the prop-
erties of the individual identifier spaces used in structured overlays are not signifi-
cant as long as the spaces provide a consistent local gradient for the greedy routing
algorithmto follow.Moreover, the topology of the overlaydoesnot have tobe an ea-
gerlymaintained pre-defined rigid structure but can emerge in a self-organizedway
from simple local maintenance rules that adapt the topology to the identifier space.
This departure from the structural rigidity of the overlays opens new possibilities

102 W. Galuba and K. Aberer

of handling skewed overlay traffic distributions, prioritizing traffic, adapting to in-
homogeneous allocation of node identifiers and customizing the identifier space to
the needs of the application.

References

[1] Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications, pp. 149–160.

[2] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Record 32(3), 29–33 (2003)

[3] Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-
1141, UC Berkeley (April 2001)

[4] Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–337. Springer, Heidelberg (2001)

[5] Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system
based on the xor metric (2002)

[6] Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM ’04: Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for computer commu-
nications, pp. 353–366. ACM Press, New York (2004)

[7] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable
content-addressable network. In: Proceedings of the 2001 conference on appli-
cations, technologies, architectures, and protocols for computer communications,
pp. 161–172. ACM Press, New York (2001)

[8] Manku, G., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small
world (2003)

[9] Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Hauswirth, M., Haridi, S.:
The essence of P2P: A reference architecture for overlay networks. In: P2P2005,
The 5th IEEE International Conference on Peer-to-Peer Computing (2005)

[10] Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–53. Springer, Heidelberg (2001)

[11] Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network (2001)
[12] Protopeer: http://lsirpeople.epfl.ch/galuba/protopeer
[13] Bustamante, F., Qiao, Y.: Friendships that last: Peer lifespan and its role in (2003)
[14] http://en.wikipedia.org/wiki/curse of dimensionality
[15] Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In:

Proceedings of the 32nd ACM Symposium on Theory of Computing, ACM Press,
New York (2000)

[16] Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-efficient management
of DHT routing tables. In: Proceedings of the 2nd USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’05), Boston, Massachusetts
(May 2005)

[17] Newman, M.: The structure and function of complex networks (2003)
[18] Albert, R., Barabási, A.: Statistical mechanics of complex networks.
[19] Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Na-

ture 393, 440–442 (1998)

http://lsirpeople.epfl.ch/galuba/protopeer
http://en.wikipedia.org/wiki/curse_of_dimensionality

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 103–118, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Common Architecture for Cross Layer and Network
Context Awareness

Manolis Sifalakis1, Michael Fry2, and David Hutchison1

1 Lancaster University, Computing Dept., Infolab21
LA1 4WA Lancaster, UK

{m.sifalakis,d.hutchison}@lancs.ac.uk
2 The University of Sydney, School of Information Technologies

NSW 2006, Australia
Michael.Fry@usyd.edu.au

Abstract. The emerging Internet and non-Internet environments have renewed
interest in flexible and adaptive communication subsystems residing in end and
intermediate systems, which utilise cross layer and wider network context in-
formation. To date most cross layer solutions have been very application and/or
network specific, and lack re-usability. Here we propose a common architecture
to support autonomic composition of functions using generic views of informa-
tion derived from lower level primitives. At its heart is a distributed Information
Sensing and Sharing framework. A combination of key features of this frame-
work are the decoupling of information collection from information use, its ca-
pability to multiplex information sources, its operational independence from
any specific protocol configuration, and its use outside a node context.

1 Introduction

The current TCP/IP-based architecture of the Internet has served very well for the last
twenty years, underpinning network growth and global information sharing at a scale
that was unimaginable at the time it was created. However, the one-size-fits-all, end-
to-end model of communication embedded in the TCP/IP architecture is now under
pressure through the emergence of pervasive wireless technologies, in new network-
ing paradigms. In the emerging Internet there is an increasing disparity between fast,
wired core networks and highly heterogeneous access networks [1]. The TCP/IP stack
is ill suited to this environment of highly heterogeneous networks and devices, caus-
ing poor performance and operational instability. As Internet technologies and proto-
cols are the basis for the next generation of converged, multi-service networks, the
rigidities of the wired and data-centric TCP/IP world needs to be relaxed.

A key idea gaining momentum in recent “clean slate” approaches is that the pure
end-to-end architectural model of the Internet no longer works. This model has al-
ready been broken in reality by the proliferation of NATs, firewalls and proxies, so it
is time to recognise this architecturally. The new Internet will consist of more loosely
connected “compartments” of networks, some implementing full TCP/IP and some
not, consisting of IP and non-IP devices. At the interstices of these compartments will

104 M. Sifalakis, M. Fry, and D. Hutchison

be application-aware interconnect points which will manage “network impedance”
and tackle inter-communication issues between network compartments such as ad-
dressing, routing, protocol translation, security/trust, performance etc [1,2]. For ex-
ample, this view underpins the work of the current EC 6th FP Autonomic Network
Architecture (ANA) Project [3].

A further key idea is cross-layering, which has been shown to be more appropriate
in newer, non-traditional environments, e.g. [4]. Cross layering breaks down layer
boundaries, sharing information about network and application state, which allows
performance to be optimised. However cross layering has to date been used in a prob-
lem and/or network specific manner. To ensure stability of operation and ongoing
interoperability in the wider Internet environment, a generic, engineered approach is
required.

Finally, as the Internet becomes the global network of convergence, there is a need
for greater application adaptivity. Cross layering supports such adaptivity. However,
there is also a need for better feedback from across the network, in terms of currently
available bandwidth, delay, jitter etc, providing richer context for adaptivity decisions
such as codec choice and content placement.

To solve these critical problems we propose dynamic composition, which will
match application requirements to the transient state of the network, using informa-
tion sensed across traditional protocol layers and from the wider network context, to
determine choice of protocol functions, mechanisms and parameters for optimal per-
formance. Our approach is to fuse ideas of cross layering and of active and passive
measurement into a generic framework, to provide unified views of network context.
These can be used at different levels of abstraction to choose protocol functions, and
dynamically compose them into a communication system for the particular applica-
tion, stream and context.

At the heart of our scheme is a generic Information Sensing and Sharing (ISS)
framework which provides a network-wide knowledge plane. The framework can be
‘programmed’ in order to abstract and aggregate information primitives, and to pro-
vide event notification at the appropriate level. While a key use of this framework is
dynamic protocol composition to ensure optimal performance, it can also underpin
network-wide functions such as autonomic network management or support for net-
work resilience metrics.

This paper is organised as follows. In section 2 we expand on the motivations for
our approach. Section 3 describes a high level approach for leveraging functional
adaptation in a system, so as to highlight the context of this work. As the primary
focus of this work is on information sharing, in section 4 we describe the ISS frame-
work in more detail. Section 5 then validates the ISS framework by proof-of-concept
scenarios of cross layering and network context awareness. In section 6 we discuss
related work before concluding in section 7 with a summary of future work.

2 Motivation

Recent years have seen a proliferation in the development of new network access
technologies, especially wireless data networks in the form of Mobile Ad Hoc Net-
works (MANETs), Wireless Sensor Networks (WSNs), and Wireless Mesh Networks

 A Common Architecture for Cross Layer and Network Context Awareness 105

(WMNs). Some are predicting an imminent “wireless explosion”, whereby use of
mobile devices, equipped with multiple, heterogeneous wireless network interfaces,
will become a pervasive and predominant form of Internet access – the so-called
“HetNet” [1]. However research to date into these networks has almost universally
focused on the physical, MAC or routing layers. There has been very little attention
paid to upper layer protocols [5,6]. These networks have been studied as self-
contained networks, with little consideration of them being interconnected to the
wider Internet. However with developments like field deployment of real WSNs, eg
[7], and prospective roll-outs of metropolitan wide WMNs, end-to-end protocol issues
are emerging as reality.

At the same time there is widespread consensus in the networking research com-
munity that the conventional TCP/IP stack is not suited to these emerging environ-
ments. For example, wireless networks display substantial variance in reliability,
speed, error rates etc, and TCP/IP does not deal effectively or efficiently with such
environments. The canonical example of this is the behaviour of the TCP congestion
control mechanism, which equates time-out events with packet loss caused by net-
work congestion, and then uses “multiplicative decrease” of the sending window to
throttle transmission rate [8]. TCP’s assumed equation of packet loss with network
congestion is typically correct for the wired Internet. However on wireless sub-nets
packet loss is often caused more by transmission errors due to noise, and then the
TCP congestion control action is unnecessary and unhelpful. Consequently there has
been significant research activity regarding TCP over wireless links, but with mixed
results [9], while a solution to this problem could produce significant gains in per-
formance [10]. This problem, and others related to the rigidities and assumptions of
the TCP/IP architecture, have not been solved and require a fresh approach.

Congestion control exemplifies a more fundamental problem in the TCP/IP stack,
which is the opaqueness of layering. While problems with layering have previously
been recognised [11], these have become much more pressing with the widespread
advent of wireless. This has renewed interest in cross layering, which embodies the
principle that layers expose information to other layers, which is then used to influ-
ence protocol behaviour.

There has been much recent research aimed at optimising performance within some
limited application domains such as video streaming, using information exposed by
the physical and MAC layers of wireless networks, eg [12,13]. However a limitation
of much of this work is that it addresses a particular application-level problem, using
techniques specific to that problem. Furthermore, it is now being realised that one-off,
uncoordinated optimisations may have competing interests, and thus have unintended
side-effects that jeopardise system stability and operational correctness [14]. There is
a great danger that a mish-mash of special purpose “tweaks” of protocol stacks will
proliferate in response to frustrations over wireless Internet performance, causing
rampant instability.

We therefore propose a framework that has a number of key goals. It must permit
efficient sharing of information across all protocol layers, independent of any specific
family of protocols. It should support the derivation of multiple views of information,
including both simple aggregation of information sources and the capability to auto-
matically generate higher level abstractions in the context of the different protocol
layers. Different views of information should be discoverable and reusable. Such
cross layer information is used to dynamically generate optimisations. However, there

106 M. Sifalakis, M. Fry, and D. Hutchison

is also a need to maintain a global view and control of the existing optimisations so as
to enable accountability, operational correctness and stability of the system.

What also propose a unified framework and mechanisms for managing cross layer
and network context information sharing and optimisations. This fuses previously dispa-
rate work on cross layering and network measurement. Architecturally, we explicitly
break the end-to-end model, assuming a loosely connected set of heterogeneous network
compartments. Our framework may be deployed on client and server end systems, and
also on intermediate proxy machines acting as gateways. We envisage a controlled
deployment by network providers and/or enterprise network owners. Not all end sys-
tems will be able to support our framework, eg a WSN node. In such cases the manag-
ing proxy node for the sub-net will compose and deploy appropriate protocol systems to
the nodes, in order to optimise both communication and “bits per watt” node perform-
ance. While not within the scope of our current work, which is focused on performance
optimisation and resilience, this architecture could more generally be used to address
wider issues in the new Internet such as routing, authentication and accountability [15],
controlling “docking” or “vertical hand-offs” of roaming users and systems.

3 Enabling Autonomic Functional Composition

We envisage a clean slate approach for enabling adaptation and autonomicity in a
wide range of cases and independently of any single network architecture. This is
illustrated in Figure 1.

The main components of this abstract representation are the following:

− The function composite. This is where the complete data path functionality of a
network node resides. A graph interconnecting functional blocks essentially dic-
tates the different data paths that information may flow across, depending on the
role the node in a network. Which protocol functions or layers are present (or en-
abled) in the composite is based on any sort of inference (however simple or com-
plex) that resides in a component external to the composite. Composition in an
autonomic network can be a highly dynamic process that can occur at bootstrap
time or at runtime.

− The logic environment. This is decision making logic for determining what func-
tions to include in the composite as well as how to interface them. It may be either
monolithic or distributed across a number of independent modules. The decisions
are based on heuristics as well as on input provided by the subsequent component.
In principle, it should be of no importance whether the input originates in the ex-
ternal environment or the internal state of the node as long as it is semantically
consistent with the expected by the modules information.

− The information sensing and sharing framework. This framework, which is the
main focus of this paper, is the heart of information exchange and awareness in the
network node. It provides the input for the logic that drives the functional composi-
tion. The essence of this component lies in an event-notification mechanism that
allows interested parties to exchange information when certain events occur. The
multiplexing capacity of this event mechanism enables both the combination of in-
formation from various information sources to be made available to the serviced
modules as well as the dispatching/de-multiplexing of events and information to

 A Common Architecture for Cross Layer and Network Context Awareness 107

multiple interested parties. One of the main objectives in this framework (as al-
ready mentioned) is the decoupling of the information collection process from the
use of this information. This permits features such as multiplexing, aggregation
and way of combining the collected (shared) information before it is supplied to its
user. Furthermore, it enables flexibility in the information exchange over the net-
work, between instances of this framework.

Fig. 1. Framework Overview

− The information collection modules. This component includes the entities re-
sponsible for the collection of the information that may be shared. These may in-
clude measurement elements distributed across the network, monitor hooks inside
a host operating system, logic modules that want to share their state, or even proto-
col functional blocks from the function composite, ie cross-layer information.

This model provides an abstract and unifying approach for acquiring, sharing and
using (state) information, which addresses many of the shortcomings of current stand
alone cross-layer solutions. This approach of exchanging information using an ab-
stracted mechanism may also leverage tasks such as network and systems monitoring
and management (monitor agents and other management components would be sim-
ple sinks of the sensory input in the logic environment) in legacy systems. At the
same time it can leverage the design of more dynamic future network systems. Its

108 M. Sifalakis, M. Fry, and D. Hutchison

current deployment with the ANA network node as part of the respective EU funded
project [3] is providing a challenging crash-test for its feasibility.

4 Information Sensing and Sharing (ISS) Framework

In this section we focus on the design and implementation of the information sensing
and sharing framework (hereafter called the ISS framework), which is the major con-
tribution of this paper. Figure 2 presents an abstract view of the building blocks that
comprise the framework and support its functionality, together with a sce-
nario/example that is discussed in the next section. A closer examination of the main
building blocks (those semantically related to its functionality) follows, along with a
description of the basic operation.

There are two sets of components in the ISS framework. The first set of compo-
nents (on-line components), provide the runtime functionality of the ISS framework,
namely system (node/network) awareness. They are responsible for collecting and
disseminating information in an event driven fashion. These components are the mul-
tiplexor, the remoting, and the data delivery manager. The other set of components
(off-line components) are related to management tasks within the framework or be-
tween the framework and its client entities. These components include the authentica-
tor, the registry and the ontology manager. The key functionality is provided by the
multiplexor, the ontology manager, the data delivery engine, and the remoting com-
ponents, which we describe next. Due to lack of space, and because they are not of
core relevance, we omit a description of the rest.

Fig. 2. ISS Framework

 A Common Architecture for Cross Layer and Network Context Awareness 109

− The multiplexor is the heart of the ISS framework as it is responsible for multi-
plexing events triggered by one or more event sources and demultiplexes them to
one or more interested client entities. Any entity sharing information of any type
acts as an event source, and any entity interested on information acts as an event
sink. Any ISS client may act as either an event source (providing information), or
event sink (consuming information) or both. The event multiplexing functionality
is founded on Boolean algebra to describe the processing that takes place and to
guarantee that at from any canonical state, the system will progress to another also
canonical state (closure property) and therefore retain stability and predictability.
Boolean logic operators combining event sources, are therefore both extensible and
easily combined to generate multiplexing capabilities (satisfying the requirements
specification of a sink). Figure 2 exemplifies three event sources or monitors on the
left, operating at different protocol layers. Two clients (or event sinks) on the right
side have registered higher level abstractions of interest that specify how the event
sources are to be multiplexed.

− The data delivery manager is responsible for the sharing of the data and delivery
to interested parties (event sinks) when a (combination) of event(s) is triggered. An
analysis of the recent literature in cross layering [39] regarding different types of
information that is typically shared across the network or across layers, leads us to
classify information sources into three main categories: those that serve simple no-
tifications (binary), those that provide single value information (scalar), and those
that provide a larger volume of (spatially or temporally) collected data. In the first
case, if an information consumer is only interested in the occurrence of an event
then the multiplexor provides the complete functionality. However, in the latter
two cases, where a larger volume of information is shared, the data delivery com-
ponent will decide on an scheme for delivering the information as well as how the
information may be arranged depending on semantic heuristics such timeliness and
volume. For instance aggregation operations may be instructed and copy of the
data to a location appointed by the information consumer or combine the informa-
tion in dynamically generated data structures as prescribed by the information con-
sumer and buffered in a queue.

− The remoting facility is used to extend the ISS functionality beyond the node’s
scope across the network, in order to enable network driven context awareness. It
augments the functionality of the mutliplexor and the data delivery component
across the network in a uniform way, thus promoting a universal view of the in-
formation collection and dissemination process towards the clients of the ISS
framework. As it simply extends the corresponding APIs, it is not bound to any
specific network transport and may deploy any available transport protocol. A sig-
nificant limitation of course is the existence of delays or errors during the propaga-
tion of information across the network and this has to be taken into account in the
construction of a multiplex. However, in cases where this is an inevitable condition
the ability to localize processing and aggregate information/events before transmit-
ting them over the network is actually a benefit. The main additional flexibility of-
fered through the ISS framework is the ability to combine separate or different
event sources across the network. These issues are still an open issue in the pro-
posed design.

110 M. Sifalakis, M. Fry, and D. Hutchison

− The ontology manager. One of the main feasibility challenges in the ISS frame-
work is the task of understanding the client/sink requirements and translating them
to a multiplexing of event/information sources. The abstraction that ISS provides
between information collection and information use relies on this capability. This
requires some formal means for expression of requirements (from the information
users), and an inference process for associating them correctly with the capabilities
and services provided by the entities that generate the events and provide the in-
formation. A domain ontology backed by a knowledge base of user provided “ex-
perience” is deployed to leverage this process. The knowledge base stores informa-
tion of how combinations of events associate with high level abstractions that the
information consumers use to express their requirements. Some simple examples
are shown below.

A summary of the operation of the ISS framework is as follows. Entities, which are
able to collect and share information, register with ISS as information providers,
while entities that want to acquire information register as information consumers.
Information providers are essentially event sources for the ISS framework, while
information consumers are event sinks. Any single client module of the ISS frame-
work may register as an information provider, consumer or both. During the registra-
tion process the client is first authenticated with the framework and acquires an ID
token (hash key) which presents to the framework thereafter in all transactions. If the
client is an information consumer module the ontology manager parses its require-
ments specification, consults the knowledge base for translating to the appropriate

Fig. 3. a and b: ISS Operation

 A Common Architecture for Cross Layer and Network Context Awareness 111

bindings of event sources, and generates the event multiplex description, which is
passed to the multiplexor for instantiation. The multiplexor then instantiates the ‘wir-
ing’ and registers the events with the event sources. Thereafter, operation begins, and
whenever the appropriate combination of events occur the collected information is
delivered to the event sink, in the form determined by the data delivery component.
This is exemplified in Figure 3.

In Figure 3.a , mux1 combines events from monitor1 and monitor2 and propagates
an event to mux2 which in turn combines with an event from monitor3 and upon trig-
ger fires a notification to moduleA (which presumably computes some logic). Simi-
larly, mux3 combines events from sources monitor2 and monitor3 and propagates an
event to a mux at a remote ISS instance in the network as well as to mux4. Finally
mux4 combines the output from mux3 and a remote event source from the network,
and upon trigger sends a notification to logic module2. The plug-in interface on the
left enables simple processing capabilities for the multiplexing elements so as to al-
low them to perform “aggregation” functions (used for internal processing of the
combined input signals). Example of such operations might be simple data aggrega-
tion, averaging of values, min-max operations, etc.

Figure 3.b at the right corner, illustrates the event API of an information provider
modules by which they are able to deploy input filter corresponding to the events to
be fired. For example when filter mask 1 and 3 are matched event 2 is fired, while
when filter mask 2 and 3 are matched event 1 is fired.

One concern regarding the ISS framework is obviously the performance overhead
that is introduced. Although, initial evaluation results are not yet available, this con-
cern has led to a number of implementation strategies that aim to minimize overhead.
First, the service provided by the ISS framework does not rely on a running server
process but rather is implemented as a set of dynamically loaded shared libraries that
maintain a shared memory allocation for the common parts of all user processes. A
second improvement is that once the initial event multiplex has been produced for an
information consumer, a number of algebraic optimizations take place to reduce the
Boolean operations required. The optimizations benefit from techniques in the litera-
ture (Mealy/Moore machines), and the expected effect is the reduction of the number
of computations, the number of intermediate processing steps in the propagation of
the event notifications, and the amount of memory allocations required for the data
structures in the multiplex. In most test cases that we have considered, after simple
optimizations the number of steps is reduced to 2, and the same stands for the number
of data structures.

5 Framework Scenarios

We now provide examples of operation of the ISS framework by way of an initial
validation.

5.1 Congestion Signals

This scenario exemplifies the use of higher layer abstractions provided by the frame-
work to properly indicate instances of congestion, which solves the canonical TCP

112 M. Sifalakis, M. Fry, and D. Hutchison

congestion problem described earlier. It uses two cross-layer optimisations derived
from the literature [16,17]. Figure 4 illustrates 5 different notifications encoded under
a congestion abstraction (ontology class), multiplexing through Boolean muxes, three
raw metric event sources (TCP retransmission timer monitor, link layer error rate
monitor and link layer transmission buffer state). These events can trigger different
optimisations at the MAC layer or the TCP layer of a current TCP/IP stack according
to Table 1. The notifications can be sent as callbacks to two (or more) client consumer
(logic) modules that perform the optimizations.

Fig. 4. Raw Metrics Multiplexing

Table 1. Notifications and optimisations

TCP
Retrans
Timer

LL
Frame
Error
Rate

LL
Buffer
State

Signal Interpretation – Action

TRUE FALSE FALSE A Congestion in the network (e2e path).
Enable TCP congestion algorithm and
possibly do resource reservation.

TRUE FALSE TRUE B Congestion at the immediate next
hop. Enable congestion relaxation at the
MAC layer.

TRUE TRUE X C Errors at the LL. Freeze congestion
control at the TCP level. Change frag-
mentation scheme at LL.

X FALSE TRUE D Congestion at the LL. Enable channel
reallocation.

X TRUE TRUE E Errors due to interference at the LL.
Change MAC fragmentation scheme.

 A Common Architecture for Cross Layer and Network Context Awareness 113

5.2 Dynamic MAC Error Control at an Intermediate System

We require a logic module that enables or disables error correction at an interface
(link-layer) on a per transport flow basis. For instance imagine a small device that has
two wireless interfaces: one WWAN (that supports GPRS) and one WLAN (that
supports IEEE 802.11x). The MAC layer of the WWAN interface supports error
correction while that of the WLAN does not. As the transmission speeds of the two
interfaces also vary substantially, the emerging problem is that if an application that
requires reliable end to end transmission (e.g. TCP) takes place of the WLAN inter-
face it may experience considerable problems with throughput due to the lack of error
control at the wireless hop. On the other hand an unreliable (e.g. UDP) time critical
transmission (such as a media stream), would similarly encounter substantial per-
formance problems over the GPRS interface where ARQ-based error control is pro-
vided by default. Therefore, being able to enable or disable MAC error control on a
per-flow per-interface basis is a useful optimisation.

A logic module to carry out such and optimisation will typically use input from
two event sources. One that notifies the presence of link layer errors at an interface
above a watermark level, and a second that notifies the appearance of data-flows on
an interface that needs reliable delivery (e.g. TCP) and which experiences increased
RTTs due to frame errors. As the wireless hop may exist anywhere inside an end-to-
end path, the appearance of an end of a reliable flow can be detected by means of the
SYN and FIN TCP packet interception on the interface (TCP layer information).
However, as both are typically memoryless events, one needs to remember the pres-
ence of a SYN to assume the existence of the TCP stream thereafter until the arrival
of a FIN packet. The operation of the event multiplex in the ISS framework is illus-
trated in Figure 5.

Fig. 5. Dynamic Error Control

When a SYN or FIN happens they trigger a notification that simply reverses the
state of the T flip-flop. Since the SYN would always precede the FIN, the D flip-flop
will be activated by the presence of the SYN (beginning of TCP stream) and de-
activated by the presence of the FIN (end of the TCP stream). If during the active
period of the D flip-flop an increased frame error rate is observed the D flip-flop will
fire the event to enable error control. Even if the increased error rate appears before

114 M. Sifalakis, M. Fry, and D. Hutchison

the stream, it will still be stored in the D flip-flop and trigger the event for enabling
error control when a TCP stream appears. While even if the error rate is temporarily
reduced when the TCP flow appears, the error correction mechanism will still be
employed, since the recent presence of increased errors is remembered in the D flip-
flop. Furthermore this mechanism will prevent the deployment of error control for
unreliable (UDP) flows.

5.3 Network Context Awareness

Finally we present some high level description of how the ISS framework can support
wider network context awareness. Adaptive multimedia applications have a fairly
long history on the Internet. Early audio and video conferencing tools, such as vat and
vic, pioneered the use of performance monitoring to provide feedback for adaptation.
Thus, measures of throughput and error rate were used to dynamically adapt the
choice of codec used, or to adapt frame rates. Skype is an example of a more modern
adaptive application [18]. Our framework can assist such applications by embedding
the appropriate active and passive monitors and providing a more generic event noti-
fication facility. Such facilities can then be re-used by new applications.

As a further example, the ISS framework may be used to optimise overlay routing
via RONs. RONs (Resilient Overlay Networks) are overlays where each overlay
member cooperates to provide a view of the resilience of the underlying routing infra-
structure. These nodes operate as reference points (“lighthouses”) in the routing infra-
structure for finding alternative paths in the presence of routing failures or fluctua-
tions. The ISS framework can assist in assessing the resilience of network nodes and
links based on a variety of network metrics, thus allowing for more consistent and
reliable selection of RON members as well as the coexistence of multiple RONs for
different classes of applications. Routing protocols such as OSPF can be instantiated
as logic modules which use monitoring via the ISS to build and maintain link state
overlay topologies. More generally, the use of application level overlays to support
network context awareness via a range of metrics has been proposed and demon-
strated [19]. Such an approach can easily be realised within the ISS framework, which
will provide abstract views of context to clients.

6 Related Work

Many cross-layer optimisations have been proposed as stand alone solutions targeting
specific protocols and applications that they optimise, for example [20-23] to name a
few. Rarely do such proposals take into account application requirements is [24].
Many of these proposed cross-layer optimisations e.g. [25,26] lack an architectural
perspective, that would enable them to be seen as architectural extensions instead
of architectural violations. They do not contemplate impact on other applications
or conflicting interactions with other optimisations. The benefits of using a
cross-layering framework such as ISS lie in providing a basis for resolving these
shortcomings. It enables sharing of information used by optimisations as well as state
information in a uniform way that can be used to ascertain stable operation [14].

 A Common Architecture for Cross Layer and Network Context Awareness 115

A number of frameworks have appeared in the literature in recent years from areas
such as autonomic networks, context aware computing, and the communities studying
the convergence of heterogeneous networks [3,34,35,36,37,38,40]. Many of these
framework proposals have been designed for specific protocol configurations and
suites, e.g.[28,29] rely on the existence of ICMP packets or IPv6 extension headers,
while[30] assumes the existence of specific TCP/IP packet formats for the piggyback-
ing and sharing of information across the network. [31,32] propose the extension of
the existing TCP/IP protocol interfaces, and [33] relies on protocol specific data struc-
tures and types. Additionally, most proposed cross layer frameworks (all but [30,34]
to our knowledge) are limited to node-local scope, rather than network-wide context.
Finally the incentives and benefits of an event-based model have been claimed in a
number of similar application domains, mainly (but not exclusively) related to sys-
tems architecting using middleware [40,41,42].

Our approach is differentiated from most previous work in a number of ways. By
decoupling the information collection process it enables re-use of optimisations in
application domains that have similar abstract requirements (the use of a domain
ontology maps abstractly expressed requirements to mechanisms in protocol setups).
A further issue is replication of information collection, e.g. [22,26,27]. The ability of
the ISS framework to multiplex information sources for various information users
reduces the performance penalties of repeating the same measurements unnecessarily.
This improvement is consolidated by the ability to perform localised aggregation or
processing of the collected information before propagating an event notification. In
addition it pushes cross-layering out of the node context to a network context in a
uniform way. Finally its functionality is not tied to any specific protocol features.

7 Conclusion

We have presented a generic architecture for managing and making available cross
layer and network context information. We have demonstrated the feasibility of the
architecture via examples. The development of the ISS framework is currently work
in progress. The main focus in the immediate future is on completing the functionality
of the multiplexor subsystem, which is the heart of the framework. The challenge is to
produce a lightweight subsystem that does not introduce significant delays during the
event propagation process and maintains scalability (that is delays are not propor-
tional to the size of the event multiplex), while at the same time retaining flexibility.
Initial results are anticipated in the near future.

A second major area of current focus is the abstractions that the ISS framework
supports between the information collection modules and the information consumers.
In this respect, the challenge we face is the development of a sufficiently descriptive,
yet simple, ontology for (i) expressing the requirements of the information user mod-
ules in terms of general protocol semantics, (ii) describing the services provided by
the information collector modules, and (iii) parsing and mapping these to autonomi-
cally generate multiplexes of event sources to event sinks. Finally a third area, which
will initially explore monitoring and measurement solutions from the literature, is the
development of the remoting service.

116 M. Sifalakis, M. Fry, and D. Hutchison

Acknowledgments

This work was funded in part by the European Union Information Society Technolo-
gies Framework Programme 6 (EU IST FP6), under the auspices of the Autonomic
Network Architecture project (EC-0174489), where Lancaster University steers re-
search on resilience and cross-layering led by J. Sterbenz and D. Hutchison.

References

1. Mapp, G., Cottingham, D., Shaikh, F., Vidales, P., Patanapongpibul, L., Balioisian, J.,
Crowcroft, J.: An Architectural Framework for Heterogeneous Networking. In: Proceed-
ings of International Conference on Wireless Information Networks and Systems (August
2006)

2. Clark, D., Sollins, K., Wroclawski, J., Faber, T.: Addressing Reality: An Architectural Re-
sponse to Real-World Demands on the Evolving Internet. In: Proceedings of ACM
SIGCOMM, pp. 247-257 (2003)

3. Autonomic Network Architecture, Situated and Autonomic Communications - EU IST
FP6, ACM Computer Communications Review vol 36-2 (April 2006), http://www.ana-
project.org

4. Borgia, E., Conti, M., Delmastro, F.: MobileMAN: Design, Integration and Experimenta-
tion of Cross-Layer Mobile Multihop Ad Hoc Networks. IEEE Communications 44(7)
(2006)

5. Akyildiz, I.F., Su, w., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Net-
works. IEEE Communications (August 2002)

6. Akyildiz, F., Wang, X., Wang, W.: Wireless Mesh Networks: a Survey. Computer Net-
works 47 (2005)

7. Hartung, C., Han, R., Seielstad, C., Holbrook, S.: FireWxNet: a Multi-Tiered Portable
Wireless System for Monitoring Weather Conditions in Wildland Fire Environments. In:
Proceedings of ACM MobiSys. ACM, New York (2006)

8. Jacobson, V.: Congestion Avoidance and Control. In: Proceedeings of ACM SIGCOMM.
ACM Press, New York (1988)

9. Balakrishnan, H., Padmanabhan, V., Seshan, S.: A Comparison of Methods for Improving
TCP Performance Over Wireless Links. IEEE/ACM Transactions on Networking 5(6)
(1997)

10. Krishnan, R., Sterbenz, J., Eddy, W., Partridge, C., Allman, M.: Explicit Transport Error
Notification (ETEN) for Error-Prone Wireless and Satellite Network. Computer Net-
works 46(3) (2004)

11. Wakeman, I., Crowcroft, J., Wang, Z., Sirovica, D.: Layering Considered Harmful. IEEE
Network , 7–16 (January 1992)

12. Liu, Q., Zhou, S., Giannakis, G.: Cross Layer Scheduling with Presribed QoS Guarantees
in Adaptive Wireless Networks. IEEE Journal on Selected Areas in Communication 23
(May 2005)

13. Khan, S., Peg, Y., Steinbach, E., Sgroi, M., Kellerer, W.: Application Driven Cross Layer
Optimisation for Video Streaming Over Wireless Networks. IEEE Comms. 44(1) (2006)

14. Kawadia, V., Kumar, P.: A Cautionary Perspective on Cross Layer Design. IEEE Wireless
Communication , 3–11 (February 2005)

15. FIND (2006), http://www.nets-find.net/

 A Common Architecture for Cross Layer and Network Context Awareness 117

16. Ci, S., Sharif, H., Noubir, G.: Improving the Performance of a MAC Layer by Using Con-
gestion Control/Avoidance Methods in Wireless Networks. In: Proceedings of ACM Sym-
posium on Applied Computing, Las Vegas, ACM, New York (2001)

17. Kang, J., Nath, B.: Resource Controlled Mac Layer Congestion Control Scheme in a Cel-
lular Packet Network. In: Proceedings of 59th IEEE Conference on Vehicular Technology,
IEEE Computer Society Press, Los Alamitos (2004)

18. Baset, S., Schulzrinne, H.: An Analysis of the Skype Peer-to-Peer Internet Telephony Pro-
tocol. In: Proceedings of IEEE INFOCOM, Barcelona (April 2006)

19. Fry, M., MacLarty, G., Wakeman, I.: Using Overlays to Support Context Awareness. In:
Proceedings of Third Workshop on Context Awareness for Proactive Systems, Surrey, UK
(June 2007)

20. Holland, G., Vaidya, N., Bahl, P.: A Rate-Adaptive MAC Protocol for Multihop Wireless
Networks. In: Proc.7th Annual Int’l. Conf. Mobile Comp. and Net, ACM Press, New York
(2001)

21. Misic, J., Shafi, S., Misic, V.: Cross-Layer Activity Management in an 802.15.4 Sensor
Network. IEEE Communications Magazine (January 2006)

22. Haratcherev, I., Taal, J., Langendoen, K., Lagendijk, R., Sips, H.: Optimised Video
Streaming over 802.11 by Cross-layer signaling. IEEE Communications Magazine (Janu-
ary 2006)

23. Ksentini, A., Naimi, M.: Toward an Improvement of H.264 Video Transmission over
IEEE 802.11e through a Cross-Layer Architecture, IEEE Communications Magazine
(January 2006)

24. Khan, S., Peg, Y., Steinbach, E., Sgroi, M., Kellerer, W.: Application driven Cross-Layer
Optimisation for Video Streaming over Wireless Networks. IEEE Comm Magazine (Janu-
ary 2006)

25. Kliazovich, D., Granelli, F.: A Cross-layer scheme for TCP Performance Improvement in
Wireless LANs, Technical Report DIT-04-025, Informatica e Telecomunicazioni, Univer-
sity of Trento (2004)

26. El Batt, T., et al.: Power Management for Throughput Enhancement in Wireless Ad-hoc
Networks, IEEE ICC, 2000, pp. 1506-1513

27. Liu, Q., Zhou, S., Giannakis, G.: Cross-layer scheduling with Prescribed QoS Guarantees
in Adaptive Wireless Networks. IEEE JSAC 23 (May 2005)

28. Sudame, P., Badrinath, B.: On Providing Support for Protocol Adaptation in Mobile Wire-
less Networks. Journal of Mobile Networks and Applications 6 (2001)

29. Wijting, C., Prasad, R.: A Generic Framework for Cross-Layer optimisation in Wireless
personal Area Networks. Wireless Personal Communications Journal 29 (2004)

30. Winter, R., Schiller, J., Nikaein, N., Bonnet, C.: CrossTalk: Cross-Layer Decision Support
Based on Global Knowledge. IEEE Communications Magazine (January 2006)

31. Kompella, R., Greenberg, A., Rexford, J., Snoeren, A., Yates, J.: Cross-Layer Visibility as
a Service. In: proceedings of Hotnets Workshop (2005)

32. Wang, Q., Abu Ragheff, M.A.: Cross-layer signaling for next-generation wireless systems.
IEEE Wireless Communications and Networking Conference (WCNC) (2003)

33. Chinta, M., Helal, A., Hernandez, E.: ILC-TCP: An Interlayer Collaboration Protocol for
TCP (2003)

34. Razzaque1, M., Dobson, S., Nixon, P.: A Cross-Layer Architecture For Autonomic Com-
munications. In: proceedings of Int’l Workshop on Autonomic Communications, Paris
(September 2006)

118 M. Sifalakis, M. Fry, and D. Hutchison

35. Hasswa, A., Nasser, N., Hassanein, H.: Tramcar: A Context-Aware Cross-Layer Architec-
ture for Next Generation Heterogeneous Wireless Networks. In: proceedings of IEEE In-
ternational Conference on Communications (ICC), Istanbul, Turkey (June 2006)

36. E2RII Project, Motorola Labs: http://e2r2.motlabs.com/
37. IST-UNITE Project: http://www.ist-unite.org/
38. Haggle Project: Situated and Autonomic Communications - an EC FET European Initia-

tive (EU IST FP6). ACM Computer Communications Review, vol. 36-2, (April 2006),
http://www.haggleproject.org/index.php/Main_Page

39. Sifalakis, M., Hutchison, D., Sterbenz, J., Zseby, T., Salamatian, K.: Functional Composi-
tion Framework, Autonomic Network Architectures, Deliverable D2.2 (February 2007),
http://www.ana-project.org/images/deliverables/D.2.2.-Func-Comp.pdf

40. Paolo, C., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G.P., Sivaha-
ran, T., Weerasinghe, N., Zachariadis, S.: The RUNES Middleware for Networked Em-
bedded Systems and its Application in a Disaster Management Scenario. In: Proceedings.
of 5th IEEE International Conference on Pervasive Computing and Communications (Per-
com07), White Plains, NY, IEEE Computer Society Press, Los Alamitos (2007)

41. Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,
Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K.: The Design and
Implementation of OpenORB v2. IEEE DS Online, Special Issue on Reflective Middle-
ware 2(6) (2001)

42. Chan, A.T.S., Siu-Nam, C.: MobiPADS: a reflective middleware for context-aware mobile
computing. Software Engineering, IEEE Transactions 29(12) (December 2003)

Network Topology Reconfiguration Against

Targeted and Random Attack

Kosuke Sekiyama1 and Hirohisa Araki2

1 Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
sekiyama@mein.nagoya-ac.jp

2 University of Fukui, 3-9-1, Bunkyo, Fukui, 910-8507, Japan
araki@robo.mein.nagoya-ac.jp

Abstract. The issue on optimality and robustness has become a ma-
jor concern in large-scale network systems. While a star-like centralized
network surtcture is optimal in terms of the average path length, it is vul-
nerable to the breakdown arising in the central node. Scale-free network
(SFN) is known to be effective topology in terms of both the average
path length and robustness against random breakdown. However, if the
hub nodes are intentionally attacked, SFN is found vulnerable. In this
paper, we propose an evolutionary network model which reconfigures a
network suructure according to the various types of breakdown or in-
tentional attacks while maintaining the system performance. The local
evaluation indice and control parameters are introduced to regulate a
balance between efficiency and robustness. Simulation results suggest
that the proposed approach is promising.

Keywords: Evolutionary Network, Adaptive Network Reconfiguration,
Intentional Attacks.

1 Introduction

A great deal of information and traffic circulate over complex and large-scale
networks. Such examples abound in an airline route or road map, and the In-
ternet web [1]. These are important social infrastructures and desired to possess
sufficient robustness against unpredictable breakdown in order to maintain ex-
pected function consistently. Including redundant nodes and links to the network
is expected to make the system more robust, however it would lead the system
to more expensive and less efficient in the ordinary situations. Therefore, a well
balanced network topology taking into account both optimality and robustness is
of great importance [2]. Recently, it has come to be known that a number of real
world networks configure the scale-free network (SFN), such as seen in the airline
route map, electrical power network, and web of the Internet [3,4,5]. One of the
main features in SFN is that the network topology exhibits a power-law degree
distribution: P (k) ∼ k−γ , where k is the number of link attached to a randomly
chosen node in the network and γ is the scaling exponent. SFN is named for
the fact that the power-law distributions do not have a median, which indicates

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 119–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 K. Sekiyama and H. Araki

the typical size of the system [6]. It is also known that the average path length
between the nodes are surprisingly small in SFN [7], hence the efficient trans-
port is expected over the network. However, despite the fact that SFN is robust
against random breakdown or removal of nodes, it is rather fragile to intentional
attacks against hubs, in which links are concentrated [8,9,10,11]. In this paper,
we present an autonomous reconfiguration model of network topology to main-
tain the balance between efficiency and robustness under the intentional attack
to nodes. In a huge network, localized attacks to the network or breakdown are
more likely to happen rather than the uniform and random breakdowns. In or-
der to cope with the problem, an evolutionary network approach is applied in an
attempt to strengthen the reliability and efficiency under the intentional attack.
The intentional attack means that the hubs (i.e., centralized nodes) are more
likely to be targeted by attacks according to the degree. Such an attack will lead
disintegration of the network, hence more flat and redundant network topology
is preferred, while a centralized network structure is more effective in a steady
and secure condition. In this paper, modified preferential linking is introduced
such that each node reconnect to the other nodes based on the evaluation of
breakdown rate. Steady condition without node breakdown will lead to more
centralized and cost-efficient network topology, while SFN or random network
are obtainable in the case that intentional attack is present.

2 Optimal Network Topology by Rewiring Process

2.1 Model Outline

Suppose a network composed of N nodes, which is depicted as a directed graph
in fig.1(a). The solid line in the figure indicates an active connection from a
sender to other nodes, while the dotted line indicates the acknowledge to the
active connection. Where, a pair of the active connection and the acknowledge is
regarded as one undirected link between the corresponding two nodes, supposing
a situation in a communication network. The number of directed link that is
allowed to be operated for each node is assumed to be L, then the number
of corresponding acknowledge link from the linking node is also L, hence the
average link number for each node over the network is 〈k〉 = 2L. We exclude the
single loop and double link as shown in fig.2. From what follows, the number of
link for node is referred to as degree.

Figs.1(a)-(d) show an outline of network reconfiguration process, where we
presume a situation of breakdown and recovery in the comunication network.
From the initial condition (fig.1(a)), a random breakdown or intentional attack
occurs in a node, and the links to the breakdown node are disconnected (fig.1(b)).
Then, the surviving nodes will attempt to rewire the connection from the break-
down nodes to another alive node. A node to be rewired is selected probabilis-
tically from all available nodes in the network, avoiding the single loop and the
double link structure (fig.1(c)). After a certain recovery time, the breakdown
nodes are supposed to recover from a failure and included to the network, hence
the network size is assumed to be constant over long time interval (fig.1(d)).

Network Topology Reconfiguration 121

(a) Start (b) Breakdown

(c) Rewiring (d) Recovery

Fig. 1. Rewiring process due to node breakdown

Double LinkSingle Loop

Fig. 2. Single loop and double link

2.2 Rewiring Process of Network Topology

The rewiring link process is defined to reconfigure the primary network topology,
which is extension from the conventional preferential linking model [12,13]. The
preferential linking will select a node by the probability which is proportional to
the degree of the node. This means that centralized nodes are more likely selected
by the other nodes. Let ki be the degree of node i, then modified preferential
linking from node i to j is given by the following equation,

pij =
(k̄j)β∑

h∈Si
(k̄h)β

. (1)

Where, Si is the node set available for rewiring from node i. For simplicity, Si

is assumed to include all nodes except for the nodes which will conflict with the
linking conditions of simple loop and double link in fig.2. Also, k̄j denotes time
average of degree for the past T time step,

k̄j =
1
T

t∑
τ=t−T

kj(τ). (2)

Reconfigured network topology is statistically characterized by degree distribu-
tion of the network. Some typical degree distributions are illustrated in fig.3.
Also, β in eq.(1) indicates the extent of preferential strength. In the case of
β = 1, eq.(1) reduces to the conventional preferential linking, and β = 0 means
random selection, and a random network is obtainable as shown in fig.3(a). If
β takes larger value, the reconfigured network topology approaches to a star-
like network (fig.3(c)) through a scale-free network structure (fig.3(b)). There-
fore, parameter β becomes a control parameter for a basic network topology
configuration.

122 K. Sekiyama and H. Araki

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(a) Random network

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(b) Scale-free network

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(c) Star-like network

Fig. 3. Reconfiguration of Network Topology

2.3 Intentional Attack to Node

According to the conventional research [14,15,16,17], robustness of the network
is examined by deleting a node from the network one after another until the
network is disintegrated. An intriguing result is that SFN is robust in that the
network can remain integrated until nearly 50 % of nodes are removed from
the network. However, it is unlikely that such a large part of the network is
randomly deleted in reality. Therefore, we assume that a breakdown for node i
occurs independently by the following probability,

qi = min(vki + d, 1.0). (3)

Where, d denotes the natural breakdown probability regardless of the degree
k ∈ [L, N − 1] and v denotes the coefficient that is related to intentional attack
according to the node degree k. While v = 0 means uniform random attack, if
v takes a larger value, the node with large degree is exposed to higher risk of
breakdown. Such a breakdown pattern is referred to as an intentional attack.
The hub nodes are more likely to be attacked with an increase of the probability
qi. Thus, the optimal network topology has to be attained corresponding to the
attack pattern.

2.4 Evaluation Index for Network Topology

To evaluate efficiency of the network topology, three evaluation indices are
introduced.

Efficiency Index based on local estimation
The first index is as to transition efficiency over the network. Let Ni be the
number of reachable node from node i within n-hop transitions. In particular,
this paper deals with the case of n=2 (2-hop). Then, normalizing reachable node
over the network, the efficiency index E is defined as the average reachable area
of the network, which is expressed as

E =
1
N

N∑
i=1

Ni

N
. (4)

Where, E has similar meaning to an average path length.

Network Topology Reconfiguration 123

Robustness Index
The second index is related to robustness evaluation against natural or inten-
tional breakdown over the network. Suppose that the number of reachable node
from node i is Ni, then a breakdown of the peripheral node would cause dis-
connection of links and reduce the reachable node number from Ni to N̂i. An
example is shown in fig.4 where the number of reachable nodes from node i
within 2-hop is Ni = 6 and the consequence of breakdown in node j leads to dis-
connections of links and reachable node is reduced to N̂i = 2. Such an influence
is normalized over the network. The normalized robustness index R is defined
in a similar manner to eq.(4) as follows,

R =
1
N

N∑
i=1

N̂i

Ni
. (5)

i

(a) Initial condition around nodesi

i

j

(b) After breakdown of node j

Fig. 4. Reachable node within 2-hop after node breakdown

Hybrid fitness index
The third index provides a hybrid fitness of the efficiency and the robustness.
According to different breakdown patterns over the network, the aim here is
to realize a well-balanced network in terms of the efficiency and the robustness
defined by eqs.(4) and (5).

H = ER =
1

N2

N∑
i=1

Ni

N

N∑
j=1

N̂j

Nj
. (6)

The efficiency and the robustness indices eqs.(4) and eq.(5) are updated in a
regular time step T as following,

R̄i(t) =
1
T

t∑
τ=t−T

Ri(τ), (7)

Ēi(t) =
1
T

t∑
τ=t−T

Ei(τ). (8)

124 K. Sekiyama and H. Araki

And they are employed for adaptive network reconfiguration for the rest of the
paper.

3 Adaptive Network Toplogy Reconfiguration

3.1 Adaptive Rewiring Process Based on Evaluation Index

Topology reconfiguration of the network is executed by rewiring links accord-
ing to observation of breakdown pattern in the peripheral nodes. The modified
preferential linking is employed, which is extension from the conventional prefer-
ential linking model [12,13]. Firstly, the observed condition of node j is denoted
by bj ∈ {0, 1} which takes bj = 1 in the case that a node breakdown occurs and
otherwise bj = 0. The average of recent T step, b̄ is given by

b̄j =
1
T

t∑
τ=t−T

bj(τ). (9)

Eq.(9) denotes the observed time average breakdown rate for the node j and
it is employed in the rewiring process. The rewiring probability is based on the
form of eq.(1), however the coefficient β is extended so as to incorporate the
breakdown situations. Therefore, such an extension is given by introducing a
new control parameter as given by

ηij = β exp[−γib̄j]. (10)

Where, β is now the constant which is specifically predefined so that the given
preferential probability can regulate various network topologies: random, scale-
free, and star-like structures. γi is a parameter to be adjusted as rewiring process
proceeds. The new preferential linking rule is now given by

pij =
(kj)ηij∑

h∈Si
(kh)ηih

. (11)

The rewiring process, however, is driven by two different purposes. One is to
repair the network topology for the node breakdown, and this process is referred
to as passive rewiring. Another rewiring process is to optimize the network effi-
ciency when serious breakdown is absent. Such a rewiring process is referred to
as active rewiring.

(1) Passive rewiring. The passive rewiring process aims at reproducing the
directed link which was lost due to a breakdown of the connected node. Then
the rewiring probability should be updated so that the network will evolve to
more distributed and robust structure against the intentional attack, which
is realized by increasing the value of γi in eq.(10).

(2) Active rewiring. In the absence of serious breakdown, a redundant net-
work structure should be optimized. By the active rewiring process, some
links are to be rewired once per T step, and the value of γi in eq.(10) is
reduced in an attempt to realize more efficient network structure, i.e., cen-
tralized form.

Network Topology Reconfiguration 125

The update rule of γi is as follows. Let tn denote the discrete time step which
is incremented when either of the active or passive rewiring process is executed,
then γi is updated with eqs.(7) and (8) as follows;
For passive rewiring:

γi(tn) =

(
1 +

e−R̄i(tn−1)

T

)
γi(tn−1). (12)

For active rewiring:

γi(tn) =
(
1 − e−Ēi(tn−1)

)
γi(tn−1). (13)

The increasing rate of 12 is attenuated by 1/T to fit the scale of variation between
increasing and decreasing rate. The optimal γi is acquired based on the balance
of both processes.

3.2 Preliminary Simulation Results

In what follows, preliminary simulation results are shown to examine that the
self-regulation of γ is able to cope with unknown intentional attack pattern.
Some intentional attack patterns are imposed on the network in tab.1, where v
and d are parameters in eq.(3). The simulation is run until t = 0 20000, and
the attack pattern is changed in every 5000 step. The network setting is also
defined in tab.2. The initial network topology is set to a random network. In the

Table 1. Intentional attack pattern

v d time step

Natural Breakdown 0.0 0.01 0 ∼ 5, 000

Light Attack 0.001 0.01 5, 001 ∼ 10, 000

Heavy Attack 0.01 0.01 10, 001 ∼ 15, 000

Light Attack 0.001 0.01 15, 001 ∼ 20, 000

Table 2. Simulation setting 1

N The number of node 1000

L The number of directed link 2

T Time step for active rewiring 100

β Basic preferential linking parameter 2

case of the natural breakdown, where intentional attack proportional to the link
degree is absent and moderate breakdowns occur randomly, the star-like network
topology emerged as shown in the degree distribution fig. 5(a). It can be seen
that only the single node has 1000 links and this is huge hub in the network. Also,
as the attack pattern becomes intensive from natural breakdown to light attack,
and to heavy attack, the network topology evolved to more distributed structure
as shown in fig. 5(b) and (c) to enhance the robustness. On the other hand, when

126 K. Sekiyama and H. Araki

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(a) t = 0 ∼ 5, 000

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(b) t = 5, 001 ∼ 10, 000

 1

 10

 100

 1000

 1 10 100 1000

D
eg

re
e

Link

(c) t = 10, 001 ∼ 15, 000

Fig. 5. Network topology corresponding to the attack pattern

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5000 10000 15000 20000

hy
br

id
 fi

tn
es

s

time step

Fig. 6. Hybrid fitness corresponding to the network topology

 0 10 20 30 0
 10

 20
 30

 0.001
 0.01
 0.1

 1

v

x

Y

x Y

Fig. 7. Left:Area division, Right:Attack pattern on each area

the attack pattern changed from Heavy Attack to Light Attack at t = 15, 000,
the network topology was reconfigured to a more centralized form to recover
the efficiency. From these results, it can be said that the proposed adaptive
network reconfiguration method functions to acquire a desired network structure,
which is well-balanced between efficiency and robustness corresponding to the
attack patterns. Fig.6 shows time evolution of the hybrid fitness according to the
network rewiring. During t = 0 5000, the hybrid fitness takes maximum value
because most efficient network is organized. Under the heavy attack, it declined
but regained soon its performance as the network improved its topology as attack
was lightened. From these results, it can be concluded that the proposed adaptive
network reconfiguration method functions to acquire a desired network structure,
which is well-balanced between efficiency and robustness corresponding to the
attack patterns.

Network Topology Reconfiguration 127

Table 3. Simulation parameter set 2

N The number of node 1089(33×33)

L The number of directed link 2

T Time step for active rewiring 100

O Observation range of node 15

β Basic preferential linking parameter 2

Fig. 8. Left:Link distribution of initial condition, Right:Link distribution at t = 5000

1

10

100

1000

1 10 100 1000

D
eg

re
e

Link

(a) Area No.2

1

10

100

1000

1 10 100 1000

 D
eg

re
e

Link

(b) Area No.2

1

10

100

1000

1 10 100 1000

D
eg

re
e

Link

(c) Area No.6

1

10

100

1000

1 10 100 1000

D

eg
re

e

Link

(d) Area No.6

Fig. 9. Left:Degree distribution at initial state, Right:Degree distribution at t = 5000

4 Localized Topology Reconfiguration

4.1 Rewiring Including Distance Between Nodes

In a huge network, the attack pattern and breakdown frequency of the node will
not be equivalent over the network, on the contrary, some specific part of the net-
work may suffer from more seirious damage. Therefore, topology reconfiguration
process should be localized according to the frequency of node breakdown. In
the following, local adaptation method of network reconfiguration is discussed.
In reality, it is not appropriate to assume that each node can recognize the

128 K. Sekiyama and H. Araki

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(a) Area No.7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(b) Area No.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(c) Area No.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(d) Area No.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(e) Area No.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

intentional time

hy
br

id
 fi

tn
es

s

(f) Area No.6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(g) Area No.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(h) Area No.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

hy
br

id
 fi

tn
es

s

intentional time

(i) Area No.3

Fig. 10. Hybrid fitness of each area

entire node conditions, hence we assume that the node that can be linked is also
restricted to a neighboring node set, which is placed whithin observation range
of radius O from node i. Let dij be the distance between node i and j, then the
preferential linking probability from node i is modified as follows;

p′ij =
(kj)ηij /dij∑

h∈Si
(kh)ηih/dih

. (14)

Where, the exponetinal ηij is equivalent to eq.(10).

4.2 Simulation Results

Simulations are conducted to examine that presented topology reconfiguration
process can cope with a localized intentional attack. Basic network configuration
is given in tab.3. The region in the network is decomposed into 9 numbered areas
as shown in fig.7 (left). Also, the strength of localized attack to each area is defined
in fig.7(right) where vertical axis is the value of v used for eq.(3). In this simulation
setting, area 5 receives most heavy attack, and area 1 and 3, 7, 9 receive heavy and

Network Topology Reconfiguration 129

light attack respectively. Simulation is run until t = 5000 step. Simulation results
in fig.8 show that starting from a uniform link distribution in each area, most link
is directed to the safety area such as area No.2 and No.5 escaping from No.5 be-
ing attacked. Also, the evolution of the degree distribution in area No.2 and No.6
suggest that network topology has been optimized from the random network to
the star-like structure because of absence of breakdown in these areas.

On the other hand, figs.10 show time development of the hybrid fitness for
respective areas. Area No.2 and No.5 exhibit best performance, however the other
areas also exhibit the balanced performance except for the area No.5 which is
exposed by the most heavy attack. This preliminary results show that localized
adaptation of network topology is suggested, however more in-depth analysis has
to be made.

5 Conclusion

In this paper, we presented a dynamical reconfiguration process of the network
topology that realizes coordination between the optimality and the robustness
against intentional attack to the network. Three primary indices to indicate ef-
ficiency, robustness and these hybrid evaluation criteria were discussed. With
these indices, the extended preferential linking rule was applied. Simulation re-
sults suggest that the well-balance network topology can be reconfigured ac-
coriding to various intentional attack patterns. It is also shown that if such an
intentional attack pattern is localized, the localized adaptation is attainable.
In the future work, we deal with the influence of cascade failure caused by the
intentional attack to the network and aim to realize alleviation of caused failure.

References

1. Echenique, P.: J.g. Gardenes, Y. Moreno. Dynamics of jamming transitions in
complex networks. cond-mat/0412053 (2004)

2. Valente, A.X.C.N., Sarkar, A., Howard, A.: Two-peak and three-peak optimal com-
plex networks. Physical Review Letters 92(2), 118702 (2004)

3. Huberman, B.A., Adamic, L.A.: Growth dynamics of the world wide web. Na-
ture 401, 130 (1999)

4. Faloutsos, C., Faloutsos, M., Faloutsos, P.: On power-law relationships of the in-
ternet topology. ACM SIGCOMM ’99 29, 251–263 (1999)

5. Strogtz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
6. Barabasi, A.L.: The New Science of Networks. Perseus Books Group (2002)
7. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Physical Review Let-

ters 90(5), 58701 (2003)
8. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex net-

works. Nature 406, 378–382 (2000)
9. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to

random breakdowns. Physical Review Letters 85(21), 4626–4628 (2000)
10. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the internet under

intentional attack. Physical Review Letters 86(16), 3682–3685 (2001)

130 K. Sekiyama and H. Araki

11. Zhao, L., Park, K., Lai, Y.-C.: Attack vulnerability of scale-free networks due to
cascading breakdown. Physical Review E 70, 35101 (2004)

12. GoLmez-Gardenes, J., Moreno, Y.: Local versus global knowledge in the barabalsi-
albert scale-free network model. Physical Review E 69, 37103 (2004)

13. Kalisky, T., Sreenivasan, S., Braunstein, L.A., Buldyrev, S.V., Havlin, S., Stan-
ley, H.E.: Scale-free networks emerging from weighted random graphs. cond-
mat/0503598 (2005)

14. Motter1, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. PHYSI-
CAL REVIEW E 66, 65102 (2002)

15. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance
of complex networks. PHYSICA A 340, 388–394 (2004)

16. Guillaume, J.-L., Latapy, M., Magnien, C.: Comparison of failures and attacks
on random and scale-free networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS,
vol. 3544, Springer, Heidelberg (2005)

17. Lee, E.J., Goh, K.-I., Kahng, B., Kim, D.: Robustness of the avelanche dynamics
in data-paket transport on scale-free networks. Physical Review E 71, 56108 (2005)

A Self-organizing Control Plane for Failure

Management in Transparent Optical Networks�

Nina Skorin-Kapov1,2 and Nicolas Puech1

1GET / Telecom Paris - LTCI - UMR 5141 CNRS, Networks and Computer Science
Department, École Nationale Supérieure des Télécommunications, Paris, France

2Department of Telecommunications, Faculty of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia
nina.skorin-kapov@fer.hr, npuech@enst.fr

Abstract. Self-organizing systems are present in many areas of nature
and science, and have more recently been increasingly applied to telecom-
munications. These systems often exhibit common structural properties,
such as the small-world property, and can react to changes in their
environment with no centralized control. With ever-increasing capac-
ity requirements, Transparent Optical Networks (TONs) have been es-
tablished as the enabling technology for future long-haul high-speed
backbone networks. Designing fast security mechanisms is critical, par-
ticularly due to the high speeds and transparency inherent in TONs.
In this paper, we propose a self-organizing small-world control plane for
failure management in TONs, which can improve scalability and adapt
to changes in the network.

Keywords: Self-organization, small-world phenomenon, transparent op-
tical networks, control plane, failure management.

1 Introduction

Self-organization is a phenomenon where low-level interactions between individ-
ual entities spontaneously emerge in certain global properties. These so-called
‘emergent’ properties, which are spontaneously achieved through the selfish ac-
tions of individuals, have certain functionality, i.e., fulfill a purpose beneficial
for the system as a whole. Common structural properties have been observed in
many such systems [1]. One of the most important is the ‘small-world’ property
[2], a term coined to describe networks which are highly clustered with short
average path lengths. Self-organizing systems and concepts have been observed
in many areas of life and science, from fireflies flashing in perfect synchrony to
the interconnection of web pages on the World Wide Web [3]. Although self-
organizing concepts have not yet been fully exploited in the design and func-
tioning of telecommunication networks, applying these concepts to various areas
� This work was supported by a Postdoctoral Research Fellowship from École Na-

tionale Supérieure des Télécommunications, Paris, France. The authors are also
grateful to the French and Croatian Governments who supported their work by
funding their joint COGITO project HONeDT.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 131–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 N. Skorin-Kapov and N. Puech

in communications is currently being intensively researched. Examples include
applications in peer-to-peer networks [4], as well as ad hoc and cellular wireless
networks [5]. However, to the best of our knowledge, these concepts have not yet
been systematically applied and explored in the context of transparent optical
networks.

In Transparent Optical Networks (TONs), the physical network consists of
an interconnection of optical fibers employing Wavelength Division Multiplex-
ing (WDM). WDM is a technology which can exploit the large potential band-
width of optical fibers by dividing it among different wavelengths. TONs are
dynamically reconfigurable networks where a virtual topology is created over
the physical optical network by establishing all-optical connections, called light-
paths, between pairs of nodes. These connections can traverse multiple links in
the physical topology and yet transmission via a lightpath is entirely in the
optical domain making them transparent. In order to provision, establish, main-
tain, tear down, or reroute lightpaths due to new connection requests, changing
traffic, and/or unexpected failures in the network, an optical control plane is
maintained employing various routing and signalling protocols [6]. Control in-
formation is sent on a separate wavelength than data signals on each link and is
electronically processed at each node.

Although the transparency of TONs offers many advantages, such as speed
and insensitivity to data rate and protocol format, it makes monitoring much
more difficult since it must be performed in the optical domain. Some of the op-
tical monitoring (OPM) equipment and techniques available today include opti-
cal power monitors, optical spectrum analyzers, OTDRs (Optical Time Domain
Reflectometer), eye monitors, BER (Bit-Error-Rate) estimation techniques, pilot
tones, and others [7]. A survey of optical monitoring techniques can be found in
[8]. Most OPM equipment generates alarms upon observing suspicious behavior.
These alarms can be used to detect certain failures, but by no means all of them.
Furthermore, due to the high cost of monitoring equipment, it is not realistic to
assume all nodes are equipped with full monitoring capabilities. Thus, obtaining
monitoring information from nodes with high monitoring capabilities efficiently
is necessary to ensure reliable network operation.

A failure management system is employed by the TON to deal with various
failures, including both component malfunctions and deliberate attacks. Attacks
can be particularly malicious since they can propagate through the network and
appear sporadically. Attacks most often include jamming and/or tapping legiti-
mate data signals by exploiting component weaknesses, such as gain competition
in amplifiers and crosstalk in switches. Various failures have been described in [9],
[10], and [11]. Failure management consists of preventing, detecting, and reacting
to such failures. Prevention mechanisms, such as strengthening and/or alarm-
ing the fiber, are measures taken to prevent failures from occurring. Detection
mechanisms are responsible for identifying and diagnosing failures according to
the alarms received from monitoring equipment (via the control plane), locating
the source, and generating the appropriate notification messages to ensure suc-
cessful reaction. Methods to locate and recover from various component faults

A Self-organizing Control Plane for Failure Management 133

are proposed in [12]. Localization algorithms to help locate the source of various
attacks are given in [7], [13], and [11]. Finally, reaction mechanisms restore the
proper functioning of the network by isolating the source of the failure, reconfig-
uring the connections, rerouting, and updating the security status of the network
[10]. In the presence of attacks, reaction mechanisms should quickly isolate the
source to preclude further attacks. Moreover, the source and destination nodes of
failed lightpaths need to be notified quickly so they can launch their restoration
mechanisms before triggering higher layer restoration. Additionally, efficiently
restoring failed lightpaths is crucial due to the hight data rates involved which
could potentially lead to huge data loss.

In this paper, we are concerned with the control mechanisms enabling effi-
cient detection and fast restoration in the presence of failures. Namely, when a
failure occurs, optical monitoring equipment sends alarms via the control plane
to be analyzed by the failure management system. Lightpaths affected by the
failure are then restored as quickly as possible, while failure management works
on locating, isolating, and repairing the failure. Here, we do not discuss the spe-
cific routing or signalling protocols involved, but present a general model for the
optical control plane. Namely, we propose a self-organizing scheme to maintain
an optical control plane whose structure implicitly enables fast monitoring in-
formation exchange for both detection and restoration purposes. The algorithm
self-organizes the control plane into a ‘small world’. The motivation for this is
to reduce the average path length of the control plane to speed up the flow of
control information, while maintaining high clustering to improve resiliency to
false alarms and the resolution power of true alarms. Simulations show that the
proposed scheme significantly reduces the average path length while maintaining
fairly high clustering, and can adapt to changes in the network in a self-organized
manner.

The rest of this paper is organized as follows. First, Sec. 2 gives an overview
of the ‘small-world’ concept. Then in Sec. 3, we propose a self-organizing control
plane which is supported by the simulation results presented in Sec. 4. Finally,
Sec. 5 concludes the paper.

2 Small Worlds

Up until the 1990’s, complex systems were generally modeled using regular and
random graphs. However, many real-world self-organizing networks, from the
collaboration of film actors to biological ecosystems, lie in between these ex-
tremes of order and randomness. Such complex networks have been successfully
described using the small world [2] model. The term small world is used to de-
scribe networks that are highly clustered with short average path lengths. The
average path length, L, is a global property describing the typical separation
between any two nodes in the network. It is defined as the average hop distance
between all pairs of nodes. The clustering coefficient, C, is a local property de-
scribing the typical cliquishness of a local neighborhood. For each node, we find
the ratio of edges in its immediate one-hop neighborhood (including itself) to

134 N. Skorin-Kapov and N. Puech

the total possible number of edges in this neighborhood1. These values, averaged
over all the nodes in the network, define the clustering coefficient, C.

Fig. 1. A small world network gen-
erated by the WS procedure where
0 < p << 1

While regular lattices are highly clustered
with long average path lengths, and random
graphs exhibit low clustering with short aver-
age path lengths, small world structures are
somewhere in between. Watts and Strogatz
[2] proposed a ‘rewiring’ method, referred to
as the WS algorithm, to generate such struc-
tures. The procedure initially starts with a
ring lattice and then randomly replaces, or
rewires, existing links with random ones with
probability p. It has been shown that even
for very small p, i.e., a tiny bit of rewiring,
a small world is born. An example of a small
world network generated in this manner is
shown in Fig. 1.

Applying the small-world concept to communication networks could prove
beneficial [14], helping to improve information flow and propagation speed in
the Internet, ad hoc networks, and possibly transparent optical networks. In-
tuitively, high-speed shortcuts between distant parts of a network could enable
faster system-wide communication, thus aiding dynamic processes such as syn-
chronization, control, and management.

3 The Proposed Self-organizing Control Plane

The physical topology of the transparent optical network is far from being a
random graph since geographic location and installation cost considerations play
a major role. The physical topology of the mesh core network is usually more
clustered and lattice-like. As already mentioned, a control plane is maintained
in the network on a separate supervisory channel on each link. Thus, the control
plane topology is equivalent to the physical topology, with point-to-point control
lightpaths in each direction between every two physically neighboring nodes.
Such a topology can have a fairly high average path length between distant parts
of the network, making control information exchange relatively slow. Adding
some ‘shortcuts’ to create a small world can help reduce the average path length.

It is not realistic to add physical long-range links between distant nodes due
to the cost of installing fiber and the inherent need for optical regenerators.
However, establishing some long-range control lightpaths between distant nodes
over the existing physical topology is feasible. Basically, the control plane would
be a hybrid control plane composed of point-to-point control lightpaths on each
physical link and a set of directed long-range control lightpaths. An example of
such a hybrid control plane for a reference European core topology from [15] is
1 It is assumed that there can be at most a single edge between a pair of nodes.

A Self-organizing Control Plane for Failure Management 135

Physical
topology

Long-range
control lightpaths

Hybrid
control plane

Fig. 2. An example of a hybrid control plane on a reference European core topology
from [15]

shown in Fig. 2. This idea was first introduced in [9] and further developed in
[16]. In this paper, we propose a self-organizing scheme to create such a hybrid
structure and maintain it in the presence of changes.

To create a small-world control plane topology in a self-organized manner,
each node must choose to which distant nodes it wants to be connected to via
lightpaths in such a way that their selfish behavior emerges in the desired global
structure. Although the physical neighbors are fixed, each node is free to choose
its distant neighbors, called ‘informants’, from which it obtains additional infor-
mation about other parts of the network. These extra lightpaths are directed,
originating at the informant and terminating at the node which chose it.

3.1 The Desired Global Structure

The motivation for creating a small world control plane is to be able to exchange
monitoring and control information quickly, particularly in the context of failure
management. It is desirable that the management system receive alarms gener-
ated from monitoring equipment (via the control plane) as quickly as possible
to ensure fast failure detection and localization. In the meantime, it is of utmost
importance that lightpaths affected by the failure be restored quickly due to
the very high data rates inherent in TONs which can potentially lead to critical
data loss causing severe service disruption. Additionally, fast restoration is nec-
essary to ensure that lightpaths are restored before higher layers trigger their
own restoration procedures creating a race condition. Failed lightpaths can be
restored by utilizing preplanned back-up paths or reactive rerouting strategies.
In both cases, the end nodes of the failed lightpath must efficiently be signalled
to handle the failure [17]. Since it is not realistic to assume that extensive optical
monitoring is available at each node, failures along a particular lightpath trigger
alarms only at a subset of optical monitoring nodes which the lightpath tra-
verses. Thus, it is desirable that the source and destination nodes of lightpaths
be well connected to the monitoring nodes they traverse.

136 N. Skorin-Kapov and N. Puech

Furthermore, clustering in the control plane is desirable in the context of
optical monitoring and security to help detect false alarms and resolve redun-
dant ones. Clustered individuals in various self-organizing systems have been
known to establish trust easier and communicate more frequently and, thus,
work together more efficiently [18]. Recall that the physical topology is often
highly clustered. By adding long-range control lightpaths, a trade-off is made by
slightly decreasing the clustering coefficient in order to significantly lower the
average path length. Our goal is to optimize this trade-off by minimizing the
drop in clustering while maximizing the decrease in average path length.

In accordance with all of this, we deem the following properties of the control
plane as the desired global structural properties.

Low L, where L is the average path length in the control plane in terms of
hops. (A hop is considered to be a control lightpath.)

High C, where C is the clustering coefficient as described in Sec. 2. (Since the
clustering coefficient is defined for an undirected graph, the directed long-
range control lightpaths are considered undirected in the calculation of C.)

Low Lmon to s and Lmon to d, where Lmon to s and Lmon to d are the average
path lengths in hops from each monitoring node to the source and destination
nodes, respectively, of all data lightpaths passing through it, averaged over
all the monitoring nodes in the network.

3.2 Local Behavior Rules

Our goal is to create and maintain a control plane topology in a self-organized
manner where the selfish behavior of individual nodes emerges in the desired
global properties. In addition to its fixed physical neighbors, each node can
choose distant ‘informants’ from which it obtains additional information about
other parts of the network. Not all nodes are equally attractive to use as in-
formants. Naturally, each node prefers to connect to nodes with access to more
information relevant to it. For example, suppose node j has certain monitoring
equipment available to monitor lightpaths passing through it. Furthermore, sup-
pose node i happens to be the source node of a lightpath routed via node j.
Node i would benefit from having j as an informant because if the monitoring
equipment at node j detects a failure, node i could be informed very quickly (in
a single hop) and could, thus, launch its restoration mechanism faster.

It is also important that the control plane self-maintains and self-organizes to
adapt to changes in its environment. Namely, nodes can change over time causing
a shift in the attractiveness of informants. In the presence of traffic changes
and/or failures, several data lightpaths could be reconfigured. New monitoring
equipment could also be acquired or existing equipment could fail. Furthermore,
informants could acquire a bad reputation after sending false information. Nodes
in our control plane can choose new informants, in light of these changes, subject
to certain constraints.

All nodes in the network have certain local information available. Each node
is aware of all the lightpaths originating at it, terminating at it, and passing

A Self-organizing Control Plane for Failure Management 137

through it (called transient lightpaths). A node maintains the following infor-
mation regarding each lightpath: its source node, its destination node, the wave-
length it utilizes, the input port on which it arrives (unless it originates at the
node), and the output port on which it is transmitted (unless it terminates at
the node). Each node is also aware of the monitoring information available to it.
It can have various optical monitoring equipment to monitor passing lightpaths,
such as spectrum analyzers or power monitors.

Node (i) Behavior Protocol
Initialization:
currentInformant := NULL ;
Rating(NULL, i) := 0;
Begin:
Periodically, send rating request to a random node j;
if received rating request from a node k then

Send rating reply to k;
end if
if received rating reply from node j then

Compute Rating(j, i);
if Rating(j, i) > Rating(currentInformant, i) then

Tear down control lightpath (currentInformant, i);
Establish new control lightpath (j, i);
currentInformant := j;

end if
end if
End

Fig. 3. The pseudocode of the node behavior protocol

To create and maintain
our desired small world
control plane, we pro-
pose the following self-
organizing scheme. Ini-
tially, each node chooses
one random informant and
establishes a correspond-
ing control lightpath. Peri-
odically, each node i sends
a rating request message
to a random node j in
the network demanding its
rating. The rating of node
j, when requested by node
i, represents its attractive-
ness as a potential infor-
mant to node i. We denote
this as Rating(j, i) and it
depends on both i and j.
Upon receiving a rating request, node j returns a rating reply message, whose
contents will be described later on. From the information provided in the
rating reply message, node i can calculate Rating(j, i). It then compares j’s
rating to the rating of its current informant. If j’s rating is better, it tears down
the lightpath connecting it to its current informant and establishes a new light-
path from node j using the signaling protocol employed by the control plane.
We set a limit on the maximum number of nodes for which a node can be an
informant (i.e., each node has a maximum control plane out-degree) due to the
limited resources available at each node. The pseudocode of the local node be-
havior protocol is shown in Fig. 3.

To help describe function Rating(j, i), we define the following parameters.

Phyj,i is a binary parameter indicating if nodes j and i are physical neighbors
and, thus, already connected via one-hop lightpaths along the physical link
connecting them.

Free Portj is a binary parameter indicating whether there are free resources at
node j to handle becoming an informant for a new node.

138 N. Skorin-Kapov and N. Puech

Monj is an integer representing the level of optical monitoring equipment and
techniquesusedatnode j. If there isnoopticalmonitoringavailable,Monj = 0.
With increased equipment and better techniques, the level increases.

TLPsi
j is an integer which represents the number of transient data lightpaths

passing through node j whose source node is node i.
TLPdi

j is an integer which represents the number of transient data lightpaths
passing through node j whose destination node is node i.

Hopsj,i represents the length of the shortest path in hops in the physical topol-
ogy from node j to node i.

CP in
j is an integer representing the in-degree of node j in the control plane
topology.

The rating function is then defined as

Rating(j, i)=(1−Phyj,i)·Free Portj ·[Hopsj,i·Monj ·(TLPsi
j+TLPdi

j)+CP in
j].
(1)

If nodes j and i are already physical neighbors, i.e., Phyj,i = 1, then there is
no need for a new control lightpath between them since they are already one-hop
away. Thus, rating Rating(j, i) = 0. The same is true if node j does not have
any free resources (i.e., a free output port) to establish a new control lightpath
originating at it. Otherwise, the rating depends on the information that can be
obtained from node j which is relevant to node i.

Node j monitors all its transient lightpaths in accordance with the level of
optical monitoring capabilities available to it, i.e., Monj . If node j detects a
failure, it sends an alarm to failure management and the source and destination
nodes of the corresponding lightpaths via the control plane. The more lightpaths
that pass through node j that happen to have their source or destination at node
i, and the better the optical monitoring performed at node j, the more attractive
j is as an informant to i.

Furthermore, node i will receive alarm(s) from j in the presence of failure
(provided j’s monitoring equipment detects it) via the shortest path in the cur-
rent control plane topology. Thus, the longer this path, the more desirable it is
for node i to employ node j as an informant in order to reduce this path. In the
Rating(j, i) function, however, the parameter Hopsj,i represents the shortest
path in the physical topology and not the control plane. The motivation for this
is as follows. As the control plane changes over time, the shortest paths between
nodes in the control plane also change. Thus, if the shortest path between j and
i in the control plane were included in function Rating(j, i), the rating could
change due to a shift in the control topology even if there are no significant
changes in the network with respect to traffic flows, data lightpaths, monitoring
equipment, etc. Since each change in the control plane requires certain signalling
overhead to tear down and establish a new informant, it is not desirable to have
frequent modifications. We aim to optimize the trade-off between the stability
of the control plane and its ability to adapt to changes in the network. By con-
sidering the shortest physical path between nodes j and i in the rating function,
the protocol initiates fewer changes and yet often gives a good indication of the

A Self-organizing Control Plane for Failure Management 139

distance between the nodes. Essentially, it is a tradeoff between updated infor-
mation and control overhead. Since the shortest path between two nodes in the
physical topology is the longest possible shortest path in the control topology
(i.e., adding informants can only lower this path), Hopsj,i considers the worst
case scenario for the node. Furthermore, preliminary testing indicated that con-
sidering the physical shortest path in the rating function, instead of the shortest
path in the control plane, lowered L for most cases while performing the same
with respect the remaining criteria.

Since nodes in the network maintain only local connectivity information, they
do not have knowledge of the shortest paths to all other nodes in either the phys-
ical or the control plane topology. Thus, a counter is included in the rating reply
message which counts the number of hops for the message to get from node j to
node i. In this message, node j provides all the elements required to calculate
Rating(i, j), except for Hopsj,i. Once the message arrives at node i, the final
Rating(i, j) is calculated by node i using the information held in the counter and
the rating reply message. Since it is not crucial that the periodic updates per-
formed at each node be extremely fast, we send rating request and rating reply
messages using only the point-to-point lightpaths in the control plane (and not
via informants). The ‘shortcuts’ in the control plane are reserved only for crucial
monitoring information when a failure occurs and are not used up by other less-
important signalling and control overhead. This way the counter would calculate
the shortest path in the physical topology Hopsj,i. If we were to define Hopsj,i as
the shortest path in the current control plane topology, then the rating request
and rating reply messages could be sent over any link in the control plane.

The last element in the rating function is simply the control plane in-degree
of node j. For the case when j has a high monitoring level and many transient
lightpaths relevant to node i, this parameter will not significantly affect the
rating. However, if two nodes have similar ratings with respect to monitoring
transient lightpaths, the node with a higher control in-degree is considered more
attractive since it has access to more one-hop control information.

In the approach, we suppose that every node has exactly one ‘informant’.
This assumption is made for simplicity but need not be so for the general case.
Furthermore, we assume nodes have global knowledge of the existence of all
other nodes in order to send random rating request messages. Since the physical
topology is for the most part fixed2, this is feasible but limits scalability. We are
currently investigating various modifications of the model to deal with these
issues.

4 Numerical Results

In order to evaluate the proposed self-organizing scheme, we developed an event-
driven simulator in C++. For simplicity, we assumed that the periodic updates
of nodes are performed synchronously. We tested the algorithm on a reference
2 Changes in the physical topology do not occur very frequently due to the difficulties

involved in laying down fiber.

140 N. Skorin-Kapov and N. Puech

topology of a pan-European basic network from the COST Action 266 project
[15] with 30 nodes and 48 bidirectional edges, shown in Fig. 4. We assumed two
levels of monitoring, differentiating between non-monitoring nodes (Monj = 0)
and nodes which are equipped with at least some optical monitoring equipment
(Monj = 1). To decide which nodes have optical monitoring equipment, we used
the monitoring placement policy described in [13]. According to this policy, if
a node is non-monitoring, all its neighbors must be monitoring nodes. Further-
more, if a node is of degree one, its neighboring node must be a monitoring
node.

Oslo

Stockholm

Copenhagen

Amsterdam

Dublin

London

Brussels

Paris

Madrid

Zurich

Milan

Berlin

Athens

BudapestVienna

Prague

Warsaw

Munich

Rome

Hamburg

Barcelona

Bordeaux

Marseille

Frankfurt

Glasgow

Zagreb

Lisbon

Kiev

Moscow

Helsinki

Fig. 4. The European basic network topol-
ogy, from [15]

Before running the simulation, an
initial virtual topology was created
for the data plane as follows. First,
a traffic matrix was generated using
the method suggested in [19] where a
fraction F of the traffic is uniformly
distributed over [0, C/a] while the
remaining traffic is uniformly dis-
tributed over [0, C ∗ Υ/a]. The val-
ues were set to C = 1250, a = 20,
Υ = 10, and F = 0.7 as in [19]. To
establish the initial virtual topology,
we set up lightpaths between pairs
of nodes in decreasing order of their
corresponding traffic, with at most
5 lightpaths originating and 5 light-
paths terminating at each node, i.e., we assumed 5 transmitters and receivers
were utilized per node3. Lightpaths were routed on their shortest physical paths,
in terms of hops, and we assumed that there were enough available wavelengths
on all links.

In the first simulation scenario, referred to as Scenario 1, requests to tear
down the lightpaths comprising the initial virtual topology described above,
arrived according to a Poisson process with rate λ = 5. New lightpath requests
also arrived according to a Poisson process with rate λ = 5, with exponentially
distributed holding times with mean b = 10. We assumed that the monitoring
equipment at nodes was fixed. In this scenario, the values of TLPsi

j and TLPdi
j

in the informant Rating function can change over time while the remaining
parameters remain constant.

Simulations were run for 3 cases. In the first case, the control plane topology
was kept equivalent to the physical topology with no long-range shortcuts. This
is denoted as Phy CP . In the second case, a hybrid control plane was created at
simulation start time by choosing a random informant for each node in the net-
work, establishing the corresponding directed lightpath, and super-positioning
it onto the physical topology. This control plane, denoted as Random CP ,
was then kept constant throughout the simulation. The third case ran the

3 At most one lightpath was established between the same pair of nodes.

A Self-organizing Control Plane for Failure Management 141

Fig. 5. The average path length in the control topology (a), the clustering coefficient
(b), and the average path lengths from monitoring nodes to the source nodes of their
transient lightpaths (c) for Scenario 1

142 N. Skorin-Kapov and N. Puech

self-organizing scheme proposed, starting initially with the random control plane
topology Random CP and then self-organizing to adapt to the network state.
This way we could analyze the benefits of the proposed scheme in compari-
son with the random case employing the same number of ‘shortcuts’ but self-
organizing itself in the presence of changes. The self-organizing control plane for
the third test case is denoted as SO CP .

Each simulation was run for 10000 time units. For the SO CP algorithm,
nodes sent rating request messages to random nodes periodically every 10 time
units. Furthermore, every 10 time units we recorded the structural properties
of the control plane and the data plane, and calculated the values for L, C,
Lmon to s, and Lmon to d. The results for L, C, and Lmon to s are shown in Fig. 5
in plots (a), (b), and (c), respectively. The results for Lmon to d are analogous to
those of Lmon to s and are, thus, omitted for lack of space. We can see from plots
(a) and (c) that the average path length of the control plane (L) and the average
path lengths from monitoring equipment to the source nodes of transient light-
paths (Lmon to s) of the Phy CP control plane are significantly decreased with
the addition of extra long-range control lightpaths (SO CP and Random CP).
This makes sense since there are an increased number if links in the control
plane topology. Naturally, the more lightpaths we add, the lower the average
path length. However, it is not desirable to establish too many control lightpaths
due to extra overhead and resource consumption. The Self-Organizing Control
Plane SO CP , obtained lower values for L, and even more so for Lmon to s (and
Lmon to d), than the Random CP even though they use the same number of
extra long-range lightpaths. With respect to the clustering coefficient C, adding
random edges to the control plane naturally decreases clustering to some extent.
However, applying the self-organizing scheme caused a smaller drop in clustering
than the random case.

Note that it is desirable that there be a minimal number of changes in the
control plane due to high control overhead, and yet we want it to achieve the
desired global structure even in the presence of changes. To analyze our model,
we recorded all changes made to the SO CP topology during the simulation.
Initially, there were 80 changes in the first 2000 time units. However, once the
control plane stabilized, it only performed 2 changes from time 2000 until 10000,
even though there were 55103 changes in the virtual topology. This shows that
learning the location of the monitoring equipment and physical distances be-
tween nodes has a more significant impact on the control plane topology than
changes in the virtual topology, i.e. the node protocol is more sensitive to varia-
tions in Hops(j, i) and Monj than the remaining parameters in the Rating(j, i)
function. Thus, intense rearrangement of the control plane would more likely
occur in the presence of drastic changes in monitoring equipment or the phys-
ical topology, rather than the virtual topology. This is very fortunate since
monitoring equipment at nodes and the physical topology are generally fairly
constant and change slowly over time. Thus, the control plane would be quite
stable.

A Self-organizing Control Plane for Failure Management 143

Fig. 6. The average path length in the control topology (a), the clustering coefficient
(b), and the average path lengths from monitoring nodes to the source nodes of their
transient lightpaths (c) for Scenario 2

144 N. Skorin-Kapov and N. Puech

To see how SO CP would adapt to more drastic changes in the network,
we created a second simulation scenario, referred to as Scenario 2. Here we ran
simulations for 10000 time units where every 1000 time units there were major
changes in both the virtual topology and the monitoring equipment. The virtual
topology would be completely torn down and the same number of new random
lightpaths would be established. Furthermore, the optical monitoring available
at each node would fail with probability Pmon = 0.5, while non-monitoring nodes
would gain new optical monitoring equipment with the same probability. This
is, of course, a much hyperbolized situation but can help us see how SO CP
can adapt and self-organize into a stable state with the desired global structural
properties in the presence of drastic changes. The results of the simulations4 are
shown in Fig. 6.

For the average path length L shown in Fig. 6.(a), SO CP oscillates around
Random CP but both remain close and significantly lower than Phy CP . We
can see from Fig. 6.(b) that the clustering coefficient C for the control planes
with long-range edges is lower than the physical topology. However, the self-
organizing control plane performs better than the random constant one. With
respect to the number of hops from optical monitoring equipment to the source
of the lightpaths they monitor (Fig. 6.(c)), SO CP outperformed Random CP
and Phy CP in all cases. The situation is analogous for the number of hops
from monitoring nodes to the destination nodes of transient lightpaths. When
drastic changes occur, SO CP performs a series of changes to adapt in a self-
organizing manner and then stabilizes after achieving the desired properties.
We are currently investigating the behavior of the control plane in the presence
of node failure and growth of the network with the addition of new nodes or
links.

5 Conclusions

In this paper, we propose a self-organizing scheme to create and maintain a
hybrid small world control plane for more efficient failure management in trans-
parent optical networks. The motivation for such a control plane lies in the fact
that fast detection, localization and restoration in the presence of failures are
particularly important in TONs due to very high data rates and their inherent
transparency. A small world control plane could significantly speed-up moni-
toring information exchange and potentially improve reliability. Furthermore,
maintaining such a topology in a self-organized manner makes it more scalable
and robust to changes in the network. Simulations performed on a reference
European topology indicate the benefits of this model. We are currently investi-
gating the possibilities of extending this model with feedback loops to minimize
the control overhead incurred by periodic node updates. Furthermore, develop-
ing trust models to establish trust between nodes and the exchange of reputation
information could prove beneficial.
4 The results for Lmon to d are again omitted since they are analogous to those of

Lmon to s.

A Self-organizing Control Plane for Failure Management 145

References

1. Strogatz, S.H.: Exploring Complex Networks. Nature 410, 268–276 (2001)
2. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Na-

ture 393, 440–442 (1998)
3. Flake, G.W., Pennock, D.M., Fain, D.C.: The Self-Organized Web: The Yin to the

Semantic Web’s Yang. IEEE Intelligent Systems 18(4), 75–77 (2003)
4. Hales, D., Arteconi, S.: SLACER: A Self-Organizing Protocol for Coordination in

Peer-to-Peer Networks. IEE Intelligent Systems 21(2), 29–35 (2006)
5. Dixit, S., Yanmaz, E., Tonguz, O.K.: On the Design of Self-Organized Cellular

Wireless Networks. IEEE Communications Magazine 43(7), 86–93 (2005)
6. Li, G., Yates, J., Kalmanek, C.R., Wang, D.: Control Plane Design for Reliable

Optical Networks. IEEE Communications Magazine 40(2), 90–96 (2002)
7. Mas, C., Tomkos, I., Tonguz, O.: Failure Location Algorithm for Transparent Op-

tical Networks. IEEE Journal on Selected Areas in Communications 23(8), 1508–
1511 (2005)

8. Kilper, D.C., et al.: Optical Perfprmance Monitoring. Journal of Lightwave Tech-
nology 22(1), 294–304 (2004)

9. Skorin-Kapov, N., Tonguz, O., Puech, N.: Self-Organization in Transparent Opti-
cal Networks: A New Approach to Security. In: The 9th International Conference
on Telecommunications (Contel 2007), Zagreb, Croatia, pp. 7–14 (invited paper)
(2007)

10. Médard, M., Marquis, D., Barry, R., Finn, S.: Security Issues in All-Optical Net-
works. IEEE Network 11(3), 42–48 (1997)

11. Bergman, R., Médard, M., Chan, S.: Distributed Algorithms for Attack Localiza-
tion in All-Optical Networks. In: Network and Distributed System Security Sym-
posium (NDSS’98) (session 3, paper 2), San Diego, Cal., USA (1998)

12. Li, C.-S., Ramaswami, R.: Automatic Fault detection, isolation, and Recovery in
Transparent All-Optical Networks. Journal of Lightwave Technology 15(10), 1784–
1793 (1997)

13. Wu, T., Somani, A.: Cross-talk Attack Monitoring and Localization in All- Optical
Networks. IEEE/ACM Transactions on Networking 13(6), 1390–1401 (2005)

14. Collins, J.J., Chow, C.C.: It’s a Small World. Nature 393, 409–410 (1998)
15. Inkret, R., Kuchar, A., Mikac, B.: Advanced Infrastructure for Photonic Networks.

In: Extended Final Report of COST Action 266, Faculty of Electrical Engineering
and Computing, pp. 19–21. University of Zagreb, Zagreb (2003)

16. Skorin-Kapov, N., Tonguz, O., Puech, N.: A ‘Small World’ Hybrid Control Plane
for Reliable Transparent Optical Networks. IEEE Journal of Selected Areas in
Communications (submitted)

17. Sivakumar, M., Shenai, R.K., Sivalingam, K.M.: A Survey of Survivabilty Tech-
niques for Optical WDM Networks. In: Sivalingam, A.M., Subramaniam, S. (eds.)
Emerging Optical Network Technologies: Architectures, Protocols and Perfor-
mance. Springer Science+Media, Inc., ch. 3, pp. 297–332 (2005)

18. Buchanan, M. (ed.): Nexus: Small Worlds and the Groundbreaking Theory of Net-
works, pp. 199–204. W. W. Norton & Company, Inc, New York (2002)

19. Banerjee, D., Mukherjee, B.: Wavelength-Routed Optical Networks: Linear Formu-
lation, Resource Budgeting Tradeoffs, and a Reconfiguration Study. IEEE/ACM
Transactions on Networking 8(5), 598–607 (2000)

A Self-organizing Approach to Tuple Distribution in
Large-Scale Tuple-Space Systems

Matteo Casadei1, Ronaldo Menezes2, Mirko Viroli1, and Robert Tolksdorf3

1 Università di Bologna, DEIS
Cesena (FC), Italy

{m.casadei,mirko.viroli}@unibo.it
2 Florida Tech, Computer Sciences

Melbourne, Florida, USA
rmenezes@cs.it.edu

3 Freie Universität Berlin, Institut für Informatik
Berlin, Germany

tolk@inf.fu-berlin.de

Abstract. A system is said to be self-organizing if its execution yields tempo-
ral global structures out of simple and local interactions amongst its constituents
(e.g agents, processes). In nature, one can find many natural systems that achieve
organization at the global level without a reference to the status of the global orga-
nization; real examples include ants, bees, and bacteria. The future of tuple-space
systems such as LINDA lies on (i) their ability to handle non-trivial coordination
constructs common in complex applications, and (ii) their scalability to environ-
ments where hundreds and maybe thousands of nodes exist. The Achilles heel of
scalability in current tuple-space systems is tuple organization. Legacy solutions
based on antiquated approaches such as hashing are (unfortunately) common-
place. This paper gets inspiration from self-organization to improve the status
quo of tuple organization in tuple-space systems. We present a solution that or-
ganizes tuples in large networks while requiring virtually no global knowledge
about the system.

1 Introduction

Self-organization is certainly a buzzword in many science fields today, which culmi-
nates in a misusage of the term. Sure self-organization has interesting characteristics
but it may also be a hindrance since it makes it harder to explain/understand its con-
sequences, causal properties, etc. If used correctly, one can exploit its characteristics
for the benefit of better solving complex problems in Computer Science. So, why only
recently has self-organization caught the attention of computer scientists? It is quite
simple: (i) computer scientists are used to having the total control over their systems’
workings, and (ii) the scale of the problems they face does not require “unconven-
tional” solutions. The consequence is that an antiquated way of thinking floods today’s
applications leading to solutions that are complex, unreliable, unscalable, and hard to
maintain.

Although far from the level of complexity of the real world, computer applications
exhibit complexity that is hard to deal with even by today’s most powerful computers.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 146–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Self-organizing Approach to Tuple Distribution 147

Data organization is one of the problems that appears again-and-again in many contexts;
Cardelli [1] argues that data organization via mobility is the only way we can overcome
physical limitations in networks such as bandwidth limitations and latency. Hence, if
data are kept close to where they are needed, one can optimize access time. A further
hypothesis we introduce based on Cardelli’s statement is that rarely a single piece of
data of a particular kind is required alone during the execution of a system. That is,
processes deal with collections of data which tend to be similar in format. Therefore,
data should be not only kept close (as per Cardelli’s arguments) but also clustered by
their kind.

The achievement of solutions that could satisfy both the locality principle and the
clustering principle is not trivial, particularly if we assume dynamic environments.
Self-organized phenomena in nature, such as brood sorting, appear to solve the afore-
mentioned problems in a very elegant way, since no global decisions are required.
Rather, the solution is an emergent property of the ants’ local interactions. Our pur-
pose in this paper is to borrow from these good ideas and employ them to provide
a solution to the data organization problem in distributed tuple-space coordination
systems.

Coordination systems are constantly being pointed as a good mechanism to deal with
some of the complex issues in large-scale systems. The so-called separation between
computation and coordination [2] enables a better understanding of the complexity in
distributed applications, but the success of these systems depends on (i) their ability
to handle non-trivial coordination constructs common in complex applications, and (ii)
their scalability to environments where hundreds and maybe thousands of nodes exist.
While (i) has been successfully solved in tuple-space systems (with the introduction
of more expressive models), tuple-space systems still have difficulties overcoming the
hurdles imposed by (ii).

One approach becoming popular for dealing with (ii) is the use of emergent coor-
dination mechanisms [3]. Examples of this approach include mechanisms proposed in
models such as SwarmLinda [4] and TOTA [5]. This paper explores one mechanism
proposed in SwarmLinda referring to the organization of data (tuples) in distributed en-
vironments, using solutions borrowed from natural forming multi-agent swarms, more
specifically based on ant’s brood sorting behavior [6].

In tuple-space coordination systems, the coordination itself takes place via generative
communication using tuples. Tuples are stored and retrieved from distributed tuples
spaces. As expected, the location of these tuples is very important for performance—
if tuples are maintained near the processes requiring them, the coordination can take
place more efficiently. In this paper we devised a mechanism to implement the approach
originally suggested in SwarmLinda to solve the tuple distribution problem. Then, we
evaluated the performance of our approach using a metric based on the spatial entropy
of the system. We showed that the organization pattern of tuples in nodes emerges
from the configuration of nodes, tuple templates, and connectivity of nodes. Then, using
definitions taken from Camazine et al. [7], we demonstrated that our approach is truly
self-organizing.

148 M. Casadei et al.

2 Characteristics of Self-organization

The use of self-organization has increased in the last decade. A quick search using
Google Scholar [8] shows that about 92,000 articles since 2000 include either the term
“self-organization” or “self-organizing” (accounting also for British spelling). Amongst
these, nearly 20,000 are in the fields of Computer Science, Mathematics and Engineer-
ing. How can this be explained? We believe there are three reasons for this increase:

1. There is clearly a hype around this term. It is fashionable and subject of many
scientific and non-scientific books, conferences, and workshops.

2. It is interesting. One cannot deny that self-organization can offer new insights on
how to deal with complex problems.

3. The complexity of today’s problems forces us to look elsewhere for solutions. Na-
ture, and in particular insect colonies (where self-organization is ubiquitous), deals
well with complexity.

On one hand, we have Item 1 leading to the unfortunate situation in which authors use
the term without a clear justification that their approaches are indeed self-organizing.
On the other hand, we have Items 2 and 3 that are acceptable incentives for the use of
self-organization in tuple-space organization.

Camazine et al. [7] argue that even though self-organization is not a simple term
to define, it can be viewed as a process referring to a plethora of mechanisms that,
working together, cause the emergence of patterns, structures and order in systems.
Moreover, these mechanisms are limited to local interactions amongst the individuals
that compose the system. Bonebeau et al. [9] prefer to provide the ingredients to self-
organization rather than define the term. They refer to mechanisms such as positive and
negative feedback, amplification of fluctuations (eg. random walks), and the existence
of multiple interactions.

But what could be an acceptable definition of self-organization? In the context of
this paper, self-organization can be loosely defined as a process where the entropy of a
system decreases without the system being guided or managed by external forces. It is a
phenomenon quite ubiquitous in nature, particularly in natural forming swarms. These
systems exhibit a behavior that seems to surpass the one resulting from the sum of all
the individuals’ abilities. By self-organizing their activities, they achieve goals beyond
their individual capabilities [9,10].

3 Linda and Self-organization

The LINDA coordination model is based on the associative-memory communication
paradigm. LINDA provides processes with primitives enabling them to store and retrieve
tuples from tuple spaces. Processes use the primitive out to store tuples. They retrieve
tuples using the primitives in and rd; these primitives take a template (a definition of
a tuple) and use associative matching to retrieve the desired tuple—while in removes
a matching tuple, rd takes a copy of the tuple. Both in and rd are blocking primitives,
that is, if a matching tuple is not found in the tuple space, the process executing the
primitive blocks until a matching tuple can be retrieved.

A Self-organizing Approach to Tuple Distribution 149

LINDA is arguably the most successful coordination model as it has been the basis
for many research projects [11,12] and commercial products [13,14,15]. Yet, all the im-
plementations of this model suffer from limitations when they need to face large-scale
environments (based on the number of tuple spaces, number of nodes in the network,
etc.).

One of the major scalability problems in LINDA is the idea of tuple organization—
related to the data-organization issues described in Section 1. The LINDA community
has tried many approaches to tuple distribution before turning to self-organization.
LINDA is a model that has been proposed 20 years ago and since then has undergone
many extensions, implementations, and studies. However, only recently with the pro-
posal of SwarmLinda [4], self-organization has started to be a choice for implementing
scalable LINDA systems.

In this paper we aim at optimizing distribution and retrieval of tuples by dynamically
determining storage locations on the basis of the template of a particular tuple. It should
be noted that we do not want to program the clustering, but rather make it emerge from
algorithms implemented by exploiting self-organizing mechanisms.

To achieve self-organization we see a network of nodes as the terrain where out-
ants roam. These ants have to decide at each hop on the network, if the storage of the
carried tuple should take place or not. The decision is made stochastically but biased by
the amount of similar tuples around the ant’s current location. There should also be a
guarantee that the tuple will eventually be stored. This is achieved by having an aging
mechanism associated with the out-ant.

The similarity function is another important mechanism. Note that it may be too
restrictive to have a monotonic scheme for the similarity of two tuples. Ideally we would
like to have a function that says how similar the two tuples are and not only if they are
exactly of the same template.

In this paper, our approach is based on the brood sorting algorithm proposed by
Deneubourg et al. [6]. We demonstrate that it is possible to achieve a good level of
entropy for the system (level of tuple organization) without resorting to static solutions
or centralized control.

4 A Solution for Tuples Distribution

Several approaches for tuple distribution in LINDA systems can be found in the liter-
ature [16,17,13], but none of them have proven to be usable in the implementation of
scalable systems. In order to find a solution to scalability, SwarmLinda went to find
inspiration in self-organization and adopted the concept of ant’s brood sorting as pro-
posed by Deneubourg et al. [6].

We consider a network of distributed nodes each containing exactly one tuple space.
New tuples can be inserted using the LINDA primitive out; tuples are of the form
N(X1, X2, ..., Xn), where N represents the tuple name and X1, X2, ..., Xn repre-
sent the tuple arguments. As discussed in Section 1, a good solution to the distribution
problem must guarantee the formation of clusters of tuples in the network. More pre-
cisely, tuples belonging to the same template should be stored in the same tuple space
or in neighboring tuple spaces. Note that this should be achieved in a dynamic and

150 M. Casadei et al.

decentralized fashion, since deterministic solutions based on central decisions are unfit
to be used in large-scale scenarios.

In order to decide how similar tuples are, we need a similarity function. The simi-
larity function can be defined as δ(tu, t), where tu and t are input arguments: tu and t
represent tuples. It is generally expected that a similarity function would return values
in a range between 0 and δmax, where δmax is the value of the maximum similarity
between two tuples, usually δmax ≤ 1. However, δmax is a control parameter of the
proposed approach and can be used to regulate the attractiveness level of similar tuples.

Upon the execution of an out(tu) primitive, the network, starting from the tuple space
in which the operation is executed, is visited in order to decide where to store the tuple
tu. According to brood sorting, the out primitive can be viewed as an ant, wandering in
the network searching for a good tuple space to drop tuple tu, that represents the carried
food.

The proposed solution to the distribution problem is composed of the following
phases: (i) a Decision Phase to decide whether to store tu in the current tuple space
or not; (ii) a Movement Phase to choose the next tuple space if the decision taken in (i)
is not to store tu in the current tuple space. The process then starts from (i).

4.1 Decision Phase

During the decision phase, the out-ant primitive has to decide whether to store the car-
ried tuple tu-food in the current tuple space. This phase involves the following steps:

1. Calculate the concentration F of tuples having a template similar to tu by using a
similarity function defined for the system.

2. Calculate the probability PD to drop tu in the current tuple space.

The concentration F is calculated by considering the similarity of tu with all the
other tuples t in tuple space TS, given by:

F =
∑

∀t∈TS

δ(tu, t) (1)

According to the original brood sorting algorithm used in SwarmLinda, the proba-
bility PD to drop tu in the current tuple space is given by:

PD =
(

F

F + K

)2

(2)

with 0 ≤ PD ≤ 1. Differing from the original brood sorting algorithm, the value of
K is not a constant and represents the number of tuple spaces that an out-ant can visit.
When an out operation is executed, the value of K is set to the maximum number of
tuple spaces each out-ant can visit (Step).

Each time a new tuple space is visited by an out-ant without storing the carried tuple
tu, K is decreased by 1. When K reaches 0, PD becomes 1 and tu is automatically
stored in the current tuple space, independently of the value of F . K is adopted to
implement the aging mechanism, since we want to avoid to have an out-ant wandering
forever without being able to store the carried tuple tu. If K > 0 and the tuple tu is not

A Self-organizing Approach to Tuple Distribution 151

stored in the current tuple space, a new tuple space is chosen in the movement phase
from the neighbors of the current one.

4.2 Movement Phase

The movement phase occurs when the tuple carried by an out-ant is not stored in the
current tuple space. This phase has the goal of choosing, from the neighborhood of the
current tuple space, a good neighbor for the next hop of the out-ant. This neighbor is a
tuple space with a high concentration F of tuples equal or similar to the carried tuple
tu.

If we denote by n the total number of neighbors in the neighborhood of the current
tuple space, and Fj the concentration of tuples similar to tu in neighbor j (obtained
by Equation 1), we can then say that the probability Pj of having an out-ant move to
neighbor j, is calculated by the proportional-selection equation below:

Pj =
Fj∑
n
i=1Fi

(3)

Adopting this equation for each neighbor, we obtain
∑

n
i=1Pi = 1. Moreover, the

higher the value of Pj , the higher the probability of choosing neighbor j as the next
hop of the out-ant. After a new tuple space is chosen, the whole process is repeated
starting from the decision phase (as described in Section 4.1).

5 Applying SwarmLinda to Scale-Free Networks

In order to verify the applicability of the SwarmLinda distribution mechanism to large
networks, we chose to perform simulations on scale-free topologies [18]. This choice
was mainly driven by the consideration that almost every real network of computers
features a scale-free topology—e.g. the WWW [18,19]. Next section reports a brief
description of the scale-free networks used for our experiments, and the algorithm used
to generate these networks.

5.1 Sample Scale-Free Networks

The networks used in our experiments were generated using the original B-A Scale-Free
Model Algorithm presented by Barabási and Albert in [18]. This algorithm is briefly
recalled in the following description. Given an initial small number m0 of tuple spaces:

– at each step of the algorithm, a new tuple space is added and connected to m < m0

already existing tuple spaces.
– The higher the degree ki of an already-existing tuple space i, the higher the proba-

bility of connecting the newly-introduced tuple space to i.

The probability Pi to have the added tuple space connected to i is:

Pi =
ki∑
j kj

152 M. Casadei et al.

so that already existing tuple spaces with a large number of connections have a high
probability to get new connections. This phenomenon is also called rich get richer.

In order to generate our sample scale-free networks we chose m0 = m = 2, and
started with an initial network of two tuple spaces linked to one another. Then, each new
tuple space was connected to two already-existing ones according to the B-A Scale-Free
Model Algorithm. We generated two scale-free networks composed of 30 and 100 tuple
spaces.

5.2 Methodology

We want our distribution mechanism to achieve a reasonable organization of tuples. Tu-
ples having the same template should be clustered together in a group of tuple spaces
near to each other. The concept of spatial entropy is an appropriate metric to describe
the degree of order in a network. Denoting by qij the amount of tuples matching tem-
plate i within tuple space j, nj the total number of tuples within tuple space j, and
s the number of templates, the entropy associated with tuple template i within tuple
space j is

Hij =
qij

nj
log2

nj

qij
(4)

and it is easy to notice that 0 ≤ Hij ≤ 1
s log2 s. We want to express now the entropy

associated with a single tuple space

Hj =
∑s

i=1 Hij

log2 s
(5)

where the division by log2 s is introduced in order to obtain 0 ≤ Hj ≤ 1. If we have r
tuple spaces, then the spatial entropy of a network is

H =
1
r

r∑
j=1

Hj (6)

where the division by r is used to normalize H , so that 0 ≤ H ≤ 1. The lower the
value of H , the higher the degree of order in the considered network. Moreover, a value
of Hj equals to 1 corresponds to a situation of complete chaos in tuple space j, since
we have qij = nj

s for 1 ≤ i ≤ s. Oppositely, a value of Hj equal to 0 corresponds to
a situation of complete order, since all the nj tuples in tuple space j are of the same
template. For each simulated network, we performed a series of 20 simulations, using
each time different values for the Step parameter that represents the maximum number
of steps a tuple can take. One run of the simulator consists of the insertion of tuples in
the network—via out primitive—until there are no pending outs to be executed in the
entire network.

After the execution of a series of 20 simulations for a given network, the value of the
spatial entropy H is calculated as the average of the single values of H resulting from
each simulation; we call this value average spatial entropy (Havg). For each network
topology presented in the next section, we considered tuples of four different templates:
a(X), b(X), c(X), and d(X).

A Self-organizing Approach to Tuple Distribution 153

100-tuple-space network

30-tuple-space network

Fig. 1. Trend of average spatial entropy Havg resulting from the simulation of the two scale-free
networks used in our experiments

The following section presents the results obtained by simulating two scale-free in-
stances. First, we performed simulations on a 30-tuple-space scale-free network in order
to preliminary evaluate the performance of the distribution mechanism. Then after hav-
ing proven that our approach is able to achieve a good tuple distribution, we executed
simulations on the 100-tuple-space scale-free network, in order to further evaluate the
performance of the distribution mechanism on larger networks.

5.3 Simulation Results

Both network instances were simulated for values of Step in the range from 0 to 80
steps, considering the occurrence of 60 out operations per tuple space—15 per tuple
template. In particular, Step = 0 corresponds to a simulation performed without apply-
ing the distribution mechanism: indeed, in this situation, every tuple is directly stored
in the tuple space in which the corresponding out operation occurs.

The simulation results for the 30-tuple-space scale-free network are reported in Fig-
ure 1. Observing the results, we can clearly see that if we use a value of Step large
enough to let an out-ant explore the network, the value of Havg becomes small, mean-
ing that the network features a high degree of clustering. For values of Step greater that
20, the distribution mechanism shows a high degree of insensitivity to different values
of Step: this is due to the fact that, even though we choose Step > 20, the capability of
exploring the entire network of our distribution mechanism remains the same. For this
reason, the trend of Havg tends to an horizontal asymptote with a value approximately
equals to 0.014.

Figure 1 shows only the trend of Havg for different values of Step, but it does not
provide any information about the tuple distribution in the network at the end of a
simulation. Figure 2 reports a qualitative representation of the tuple distribution in the

154 M. Casadei et al.

Fig. 2. Final distribution of tuples obtained with Step = 40 for two different simulations on the
30-tuple-space scale-free network. Spatial entropy corresponding to these simulation: H =
8.51 × 10−3 (left) and 1.42 × 10−2 (right).

network for two sample simulations chosen out of the 20 simulations used to calculate
Havg in the case with Step = 40. Moreover, the tuple distribution shown in Figure 2
(left) corresponds to a spatial entropy value H = 8.51 × 10−3, while Figure 2 (right)
reports a tuple distribution featuring H = 1.42×10−2. Although these final tuple distri-
butions are different, the corresponding values of H demonstrate that we can achieve a
quasi-perfect clustering. Indeed, Figure 2 makes it clear the tendency of the distribution
mechanism to organize tuples per tuple template amongst the tuple spaces composing
the network.

Looking at the two tuple distributions reported in Figure 2 also makes it clear that
even though the SwarmLinda distribution mechanism’s evolution does not allow to
know in advance where tuples of a certain template will aggregate, a good level of
information clustering (in terms of spatial entropy) can be achieved in every situation.
Nonetheless, as depicted in Figure 4, the final tuple distribution’s pattern is sensitive not
only to the values assumed by Step, but also to the initial conditions of the network. In
fact, though the previous simulations were performed on a initially-empty network, exe-
cuting simulations on a network featuring an initial configuration with one or more clus-
ters already formed leads to a final tuple distribution in which the inserted tuples tend to
aggregate around the already-formed clusters. The outcome of a set of experiments—
executed considering the presence of clusters in the network—is described later.

The observed sensitivity of the distribution mechanism to the system’s initial condi-
tions does not however mean that our approach is not self-organizing. The capability
to cluster information is independent from what Camazine et al. [7] call external cue
acting as a template for the aggregation of organisms.

As Camazine et al. point out, the emergence of patterns in organism clustering is
sometimes thought of as the result of a self-organizing process even though it is not. As
a consequence, we need to provide indications of the true self-organizing nature of our
tuple-distribution mechanism.

One first possible indication is reported in Figure 3, showing the trend of concentra-
tion F for different simulations executed using Step = 5, 10 and 40.

More precisely, F refers to the concentration of tuples similar to the current one in
the tuple space where the tuple is stored.

A Self-organizing Approach to Tuple Distribution 155

Step=5 Step=5Step=10

Step=40

Step=5

Step=40

Fig. 3. Evolution of concentration F for different simulations run on the 30-tuple-space scale-
free network using Step = 5, 10 and 40. The bottom-right graph just highlights the differences
between Step = 5 and Step = 40.

Even though Figure 3 allows to know neither the tuple space where a tuple is stored
nor the tuple template of that tuple, we can easily recognize the formation of several
clusters. This suggests that our SwarmLinda distribution mechanism exhibits a self-
organizing behavior, making clusters of similar tuples emerge from an initial state char-
acterized by an empty network. In particular, the emergence of such clusters is only
driven by the local interactions occurring between a tuple space and its neighbors. Fur-
thermore, looking at the different charts reported in Figure 3 makes it clearly visible
an increasing order arising when higher values of Step are used: note in particular the
comparison reported in Figure 3 between the results for Step = 5 and the ones for
Step = 40.

In spite of these results, we need a stronger argument to show that the pattern re-
sulting from our distribution mechanism arises as a result of a self-organizing process.
In many cases of collective behavior, organism clustering arises as a response of the
individuals to an external cue acting as a template, and not as a natural outcome of a
self-organized pattern formation [7]. In particular, such a behavior has been observed in
the stable fly of human and wood lice. In all of these cases, the aggregation process is
the result of an external stimulus, an environmental template representing a fixed feature
of the environment. Oppositely, in a self-organized aggregation the individuals respond
to signals that are dynamic and affected over time from the behavior of the individuals
themselves.

156 M. Casadei et al.

Fig. 4. Final distribution of tuples obtained with Step = 40 for two different simulations on
the 30-tuple-space scale-free network, considering a starting condition featuring clusters already
formed on the network. Cluster size used in these simulations: 10 tuples (left) and 100 tuples
(right).

One possible way to understand if one’s system is really self-organizing is to find
an environmental template suspected to lead the aggregation of system’s individuals,
and see if that aggregation occurs even though the environmental template is removed.
If, after removing the suspected environmental template, the individuals in the system
fail to aggregate, we have a good indication that the aggregation of those individuals is
based on an environmental cue and not on a self-organizing process. Furthermore, sys-
tems achieving aggregation only by environmental templates are insensitive to different
initial conditions, that is to say, they come to the same final state independently of any
variation in the system’s initial conditions. Nonetheless, some other systems feature be-
havior driven by both a self-organizing process and an external cue. Here, it is desirable
to find the relative contributions of these two factors to the aggregation process.

If we go back to our distribution mechanism, the role of individual is played by the
out-ants wandering on a network in the attempt to store the carried tuple, while the role
of possible external cue can be played by an initial condition featuring already-formed
clusters in the network at the beginning of a simulation. The results shown previously
are a first indication of the self-organizing nature of our distribution mechanism. Even
though we considered a network initially empty—with no clusters already-formed in
the network—the results demonstrate that our distribution mechanisms can however
achieve a strong level of information clustering.

In the attempt to provide a stronger argument of the self-organizing nature of our dis-
tribution mechanism, we decided to perform further simulations considering the pres-
ence of clusters. More precisely, we ran a first set of simulations on the 30-tuple-space
scale-free network considering four already-formed clusters containing 10 tuples each:
(i) 10 a(X)-template tuples in tuple space 2, (ii) 10 b(X)-template tuples in tuple space
10, (iii) 10 c(X)-template tuples in tuple space 15 and (iv) 10 d(X)-template tuples in
tuple space 29. As in the previous experiments, we simulated the insertion of 60 tuples
per tuple space—15 per tuple template. Figure 4 (left) shows the results of one of these
simulations. It is easy to see that though the size of the clusters is small—compared
to the number of tuples to be inserted in the network—they act as attractors for the tu-
ples to be stored. Moreover, we are still able to achieve information clustering, but now

A Self-organizing Approach to Tuple Distribution 157

Fig. 5. Final distribution of tuples obtained with Step = 40 for two different simulations on the
100-tuple-space scale-free network. Spatial entropy corresponding to these simulation: H =
5.43 × 10−3 (left) and 0 (right).

Step=5 Step=10

Step=10Step=40

Step=5

Step=40

Fig. 6. Evolution of concentration F for different simulations run on the 100-tuple-space scale-
free network using Step = 5, 10 and 40. The bottom-right graph just highlights the differences
between Step = 5 and Step = 40.

the evolution of our distribution mechanism is driven not only by the time-evolving
interaction between out-ants, but also by the presence of clusters. In fact, the distribu-
tion reported in Figure 4 (left) is characterized by the formation of clusters in the tuple
spaces featuring the presence of clusters.

158 M. Casadei et al.

To better understand the role played by already-formed clusters in the process of
tuple clustering, we executed a second set of simulations characterized by the same
initial conditions, but using larger clusters. The results of this second set of simulations
are shown in Figure 4 (right). In this situation the attracting tendency of the clusters is
clearly recognizable and—due to clusters of larger size—is stronger than in the previous
set of simulations.

However, comparing these results to the ones obtained by simulating the network
initially empty (Figure 2) shows that the distribution mechanism can achieve informa-
tion clustering independently from the presence of clusters in the network. Although
already-formed clusters tend to attract the evolution of larger clusters toward tuple
spaces featuring the presence of initial clusters, they are not the only cause leading to
information clustering. Indeed, the dynamic and evolving interactions between out-ants
plays also an important role in achieving a good level of clustering.

After having performed simulations on the 30-tuple-space scale-free network, in or-
der to verify the behavior of our mechanism on larger networks, we ran a new set of
simulations on a 100-tuple-space scale-free network. Figure 1 shows the trend of Havg

for these simulations, and confirms the trend already observed on the 30-tuple-space
scale-free network. Moreover, the value of the corresponding horizontal asymptote is
equal to 0.007. Figure 5 reports the final tuple concentration achieved in two sample
simulations executed with Step = 40, while Figure 6 shows the trend of F for different
simulations executed with Step = 5, 10 and 40. All these results confirm the qualitative
trend already observed on the 30-tuple-space scale-free network.

6 Conclusion and Future Work

In this work we focused on the tuple-distribution problem in tuple-space systems. Our
solution is inspired by the idea of self-organization. We applied the proposed solution
to scale-free networks, since most of the real computer networks are scale-free. To test
our proposed strategy, we used an executable specification, developed on the stochastic
simulation framework discussed in [20]. We demonstrated the emergence of organiza-
tion for two different scale-free topologies generated by Barabási and Albert algorithm
[18]: a 30-node and a 100-node scale-free networks. Each node in the network contains
only one tuple space.

Then, we discussed the obtained results showing that the proposed approach is a
true self-organizing solution to the distribution problem. To this end, we compared our
strategy to Camazine et al. argumentation about how a system has to behave to be called
self-organizing. The results described in Section 5.3 clearly show that the evolution of
our tuple-distribution strategy leads to the emergence of patterns in tuple organization.

In addition to this self-organizing feature, our distribution mechanism also achieves
low values of spatial entropy—though this does not correspond to a situation of perfect
clustering. However, this can be considered a good result, because the proposed mech-
anism works dynamically. That is, for every out(tu) operation to be executed, it tries to
store the carried tuple tu in a tuple space with a high concentration of similar tuples.
We pointed out that complete clustering may not be desirable in dynamic networks
given that processes become too dependent on certain tuple spaces being available all

A Self-organizing Approach to Tuple Distribution 159

the time. As a consequence, our approach may also be said to provide a higher degree
of fault-tolerance. Note that if the tuple space containing the majority of tuples fails, the
few tuples in other nodes act as “seeds” for the formation of clusters in those locations.

There are still many open issues to be treated: (i) we want to perform further simula-
tions on scale-free networks with an even higher number of tuple spaces; (ii) to see how
tuples aggregate around clusters, we are going to run simulations where the templates
are not totally different from each other so they feature a certain degree of similarity;
(iii) finally, over-clustering is a very important issue, since we may want to avoid tuple
spaces containing too large clusters. Therefore, we need to devise a dynamic similarity
function that takes into account the current concentration of similar tuples in a tuple
space.

In particular, (iii) is very interesting in order to apply our approach in the domain of
open networks. We believe self-organization will also play a role in the control of over-
clustering. We are starting to experiment with solutions inspired by bacteria molding as
they appear to have the characteristics we desire. We aim at achieving a balance in the
system where clustering occurs but it is not excessive.

References

1. Cardelli, L.: Lecture notes in computer science. In: Wiedermann, J., van Emde Boas, P.,
Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 10–24. Springer, Heidelberg (1999)

2. Gelernter, D., Carriero, N.: Coordination languages and their significance. Communications
of the ACM 35(2), 96–107 (1992)

3. Ossowski, S., Menezes, R.: On coordination and its significance to distributed and multi-
agent systems. Concurrency and Computation: Practice and Experience 18(4), 359–370
(2006)

4. Menezes, R., Tolksdorf, R.: A new approach to scalable linda-systems based on swarms. In:
Proceedings of the ACM Symposium on Applied Computing, Melbourne, FL, USA, ACM,
New York (2003)

5. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: A middleware for context-aware
computing in dynamic networks. In: Proceedings of the 23rd International Conference on
Distributed Computing Systems, vol. 342, IEEE Computer Society, Los Alamitos (2003)

6. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The
dynamic of collective sorting robot-like ants and ant-like robots. In: Proceedings of the First
International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3,
Cambridge, MA, pp. 356–365. MIT Press, Cambridge (1991)

7. Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraula, G., Bonabeau, E. (eds.):
Self-Organization in Biological Systems. Princeton Univ. Press (2003)

8. Google Inc.: Google scholar. http://scholar.google.com
9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial

Systems. In: Santa Fe Institute Studies in the Sciences of Complexity, Oxford University
Press, Inc., New York (1999)

10. Parunak, H.: Go to the ant: Engineering principles from natural multi-agent systems. Annals
of Operations Research 75, 69–101 (1997)

11. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda meets mobility. In: Garlan, D. (ed.)
Proceedings of the 21st International Conference on Software Engineering (ICSE’99, Los
Angeles, CA, USA, pp. 368–377. ACM Press, New York (1999)

http://scholar.google.com

160 M. Casadei et al.

12. Snyder, J., Menezes, R.: Using Logical Operators as an Extended Coordination Mechanism
in Linda. In: Arbab, F., Talcott, C.L. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp.
317–331. Springer, Heidelberg (2002)

13. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Systems Journal
Special Issue on Java Technology 37(3) (1998)

14. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns and Practice. The Jini
Technology Series. Addison-Wesley, Reading (1999)

15. Ltd., G.T.: Gigaspaces platform. White Paper (2002)
16. Tolksdorf, R.: Laura — A service-based coordination language. Science of Computer Pro-

gramming 31(2–3), 359–381 (1998)
17. Corradi, A., Leonardi, L., Zambonelli, F.: Strategies and protocols for highly parallel Linda

servers. Software Practice and Experience 28(14), 1493–1517 (1998)
18. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512

(1999)
19. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)
20. Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordination in

Maude: the collective sorting case. In: 5th International Workshop on Foundations of Co-
ordination Languages and Software Architectures (FOCLASA’06), CONCUR 2006,, Bonn,
Germany, University of Málaga, Spain, pp. 57–75 (2006)

Autonomous Optimization of Next Generation

Networks

Uwe Walter

Institute of Telematics – Universität Karlsruhe (TH)
Zirkel 2, 76128 Karlsruhe, Germany

walter@tm.uka.de

Abstract. For an efficient usage of the transmission capacity of a QoS-
supporting Next Generation Network, it is beneficial to influence the
routing of traffic flows by the optimization of link metrics. Deploying a
Network Admission Control at the network border helps to comply with
assured service guarantees as it can effectively protect against overload
situations, especially in times of varying traffic matrices or failures.

Since the manual adaptation of link metrics and NAC budgets is nei-
ther quick nor efficient, it makes sense to integrate these optimization
algorithms into a self-configuration tool, which is able to autonomously
keep the network in the best possible operational condition. This pa-
per presents a management system that re-optimizes link metrics and
NAC budgets when necessary. Different scenarios show the benefits of
this approach for an increased network resilience and efficient operation.

1 Introduction

In times of increasing demands and pressure of competition, network opera-
tors have a tremendous interest in the best possible use of their transmission
resources. The available capacity shall be used in the most efficient manner
without negatively affecting the offered service quality.

In this context, the optimization of the intra-domain routing, e.g. when using
OSPF for example, by adapting the link metrics (also known as link costs, inter-
face costs or link weights) to the current network situation can have significant
advantages [1,2,3,4,5,6]. Usually, this approach can help to reduce the maximum
utilization of individual transmission links considerably. Although there are al-
ternatives for this sort of traffic engineering (like, e.g. MPLS paths) this paper
focuses on the described adaptation of IP link metrics.

It is even possible to anticipate possible link failures in the routing optimiza-
tion [7,8,9,10]. In this case, link metrics are generated that help to prepare the
network routing for a good performance, even under the given failure scenarios.

To reduce the negative impact of link failures and peak demands, it is common
practise to keep an ample amount of transmission capacity unused in reserve
(so-called overprovisioning). However, it is far more efficient to deploy Network
Admission Control (NAC) mechanisms at the network borders to protect against

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 161–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

162 U. Walter

NAC

Network
Control
Server

A3 = Automatic
Adaptive
Autonomous

non real-time
environment

real-time
environment

Core
(stateless)

NAC
state

NAC budgets,
rules, parameters

alarms, statistics,
network reports

Fig. 1. Deploying a Network Control Server in a Next Generation Network

overload situations. In this case, traffic flows requesting a high-priority have to
ask a NAC instance for permission before they are allowed to enter the network.

This paper is based on a NAC approach, where virtual tunnels between all
ingress and egress nodes of the network are assigned with capacities called NAC
budgets. These budgets are assigned to the NAC instances at the network border,
where they are administered locally. Thereby, each network border node can
accept or deny QoS requests autonomously without having to ask a central
bandwidth broker for permission.

1.1 The Network Control Server

Both, the optimized link metrics and the NAC budgets for high-priority traffic
flows should periodically or continuously get adapted to the current network and
traffic situation for the most efficient operation. For this task a Network Control
Server (NCS) has been developed during the KING research project [11,12].

The basic design principle of this NCS is shown in figure 1. The NCS contin-
uously monitors the network’s operating conditions and adapts its parameters
if necessary, e.g. after changing traffic patterns or topology changes like link
failures or re-connections.

To influence the network’s behavior, the NCS is equipped with the link opti-
mization and NAC budget adaptation algorithms, whose output can control the
intra-domain routing and configure the NAC function.

The former is done by adjusting the link metrics and configuring the routers
accordingly. This optimization is performed with a genetic optimization algo-
rithm, using the link metrics vector as chromosomes and the objective function
to minimize the utilization of the most heavily loaded link [9]. Since these op-
timizations can take quite some runtime, it is possible to include possible link
failures into their calculation, as described in section 3. In case of an actual fail-
ure, this allows for some calculation time, since the network is already configured
to adhere to QoS guarantees even in case of, e.g. a link failure.

The calculation of NAC budgets is described in [13] and aims to minimize
the probability of high-priority flows getting blocked by the NAC instances at
the network border, based on the current capacity situation observed by the

Autonomous Optimization of Next Generation Networks 163

Network Control Server. The NAC budgets are upper bounds on the maximum
amount of admissible traffic at each NAC instance (and per service class), where
they are administered locally after being configured by the NCS.

This architecture allows to combine the advantages of a central management
node and distributed functions. While the NCS is able to autonomously optimize
network parameters to the current situation more efficiently than each network
component on its own, the network’s availability must not depend on it.

During the design and implementation of the NCS, special care has been
taken that all real-time tasks, i.e., packet forwarding, QoS signalling and failure
reaction, are handled autonomously by distributed network components (routers,
NAC boxes). Thus, a temporary failure of the Network Control Server has no
impact on the basic network operation.

In addition to keeping the network in a well-balanced operating condition, the
NCS can relieve operators of routine maintenance tasks and aid in the more com-
plex tasks, e.g. in traffic engineering for changing traffic matrices or in evaluating
network upgrade options.

The benefits of the Network Control Server and its autonomous optimizations
will be demonstrated in different scenarios in sections 2 to 4 of this paper. The
most important results will be summarized in section 5.

1.2 Reference Networks

Shown in figure 2 are reference networks that have been used to evaluate the
influence of the NCS. The COST-100G reference network consists of 11 nodes and
26 bidirectional links. The Labnet03 network has 20 nodes and 53 bidirectional
links. The example network called Worldnet is constructed from 26 nodes and
54 bidirectional links. Based on the US backbone of the Tier-1 provider Sprint
from 2001, a topology with 18 nodes and 40 bidirectional links has been built
and is depicted in figure 3. The largest of the used reference networks is based on
the US/Canada backbone of UUNet from 1997. As shown, it consists of 50 nodes
and 80 bidirectional links.

2 Reaction Towards a Changing Traffic Matrix

Due to dynamic changes of the traffic that is offered to a transmission network, its
data rates, sources and destinations (the so-called traffic matrix), the utilization
of a network can continuously fluctuate. It is one of the biggest advantages of
the NCS that it can automatically react to these variations by re-optimizing
budgets and link metrics, if this is desired by the operator.

Among the first signs, which signal the necessity for a re-optimization, is an
increasing rate of high-priority traffic request getting denied by the Network
Admission Control instances. In other words, the ratio of blocked to admitted
traffic increases because the currently active traffic budgets are no longer adapted
to the new traffic situation in the best possible way.

164 U. Walter

Amsterdam

Berlin

Brussels

Copenhagen

London

Luxembourg

Milan

Paris

Prague

Vienna

Zurich

Boston

Seattle

 San
Francisco

Los
Angeles

Miami

Buffalo

Denver

Las
Vegas

Phoenix

New Orleans

New York CityChicago

Dallas

Houston

Washington D.C.

Toronto

Cleveland

Kansas City

Orlando

Atlanta

Honolulu

Los Angeles

Vancouver Denver

Chicago

Houston

New York

Toronto
London

Berlin

Cape Town

MunichParis
Athens

Helsinki
Moscow

New Delhi

Bangkok

Beijing

Hong Kong
Singapore

Seoul
Tokyo

Melbourne

Sydney
Auckland

Fig. 2. Reference Network Topologies. Top left: COST-100G, top right: Labnet03, Bot-
tom: Worldnet.

Anaheim

Atlanta

Cheyenne Chicago

Fort Worth

Kansas City

New York

Orlando

Pearl City

Pennsauken

Raleigh

RelayRoachdaleSan Jose

Seattle

Springfield

Stockton

Tacoma

Atlanta

Austin

Baltimore

Boston
Buffalo

Calgary

ChicagoCleveland

Dallas

Denver

Detroit

Edmonton

Halifax

Hartford

Houston

Indianapolis

Jacksonville

Kansas City

Kitchener

Las Vegas

London

Los Angeles

Miami

Minneapolis

Montreal

New Orleans

New York

Orlando

Ottawa

Philadelphia

Phoenix

Pittsburgh

Portland

Raleigh

Saint Louis

Salt Lake City

San Diego

San Francisco

Seattle

Toronto

Vancouver

Washington

Fig. 3. Reference Network Topologies. Top: Sprint, Bottom: UUNet.

Autonomous Optimization of Next Generation Networks 165

The network operator can define an acceptable threshold of the blocked traffic
ratio to configure when the NCS should start re-optimizing the network param-
eters. There are different possibilities to define blocking rates, e.g. the maximum
probability of a QoS request getting denied or the sum of the data rates of
blocked high-priority request. To be able to compare blocking values among sce-
narios with different network utilizations, the ratio of the sum of blocked traffic
rates to admitted traffic rates will be used in the following.

Instead of determing the blocking rate from NAC data about denied QoS
requests, the NCS calculates blocking probabilities based on the offered traffic
matrix and the currently configured NAC budgets. This is done using the offered
traffic rates, the NAC budgets, a given traffic mix to compute the estimated ratio
of blocked traffic bT using the Kaufman-Roberts formula [14]:

bT =

∑
k=0,1,...,k

bBBBk
·rm·Ak∑

k=0,1,...,k

rm·Ak
=

∑
k=0,1,...,k

bBBBk
·Ak∑

k=0,1,...,k

Ak
(1)

In the equation bBBBk
denotes the blocking probability for a (virtual tunnel)

border to border budget BBBk as a weighted average for all traffic types given in
the traffic mix (consisting purely of small-bandwidth VoIP calls in the following).
There are K different BBBs and Ak denotes the offered traffic (in Erlang) for
budget BBBk, corresponding to a mean offered traffic (in terms of bandwidth)
of rm · Ak where rm is the mean offered bit rate of the traffic mix.

This approach offers the benefit of a quick reaction even in the range of
very small blocking probabilities, since the offered traffic can be observed more
steadily than very rare rejected QoS requests. It would take very long to measure
rare events with sufficient precision whereas very low blocking probabilities can
be easily computed analytically using the multi-rate Erlang formula [15,16].

When the Network Control Server detects an excess of rejected QoS requests
an the network border, it can react in several ways. The default strategy, which
is shown in figure 4, is divided into two reaction steps. The first step consists of
a re-adaptation of all NAC budgets to the current traffic matrix. In many cases,
these new budgets alone suffice to reduce the blocking rate to acceptable values.

If the re-adaptation of NAC budgets does not achieve a sufficient improvement
of the blocking situation, the NCS escalates its reaction to the second step of
the default strategy. In this case, the NCS re-optimizes all link metrics with the
objective to adapt them to the current traffic matrix in the most optimal way.
This is followed by the calculation of new NAC budgets, since the older ones are
not valid for the new link metrics any more.

The reason for this two-step-strategy is the fact that changing link metrics
(and the following convergence process of the intra-domain routing protocol) can
result in temporarily degraded service quality due to packet losses or short micro-
routing loops. To avoid these issues, the link metrics do only get re-optimized,
if it is really necessary or –at least– leads to a significant improvement.

If blocking still remains too high after all re-optimizations, there is likely too
much offered traffic. In this case, the NCS can temporarily suspend its operation
and instead make suggestions how to upgrade the network [17].

166 U. Walter

Active budgets

Changed (new)
traffic matrix

Budgets A

Budgets B

Metric optimization

Blocked traffic ratio
before budget adaptation

Blocked traffic ratio
after budget adaptation

Blocked traffic ratio after
metric optimization and

budget adaptation

1st reaction
step

2nd reaction
step

Budget adaptation

Budget adaptation

blocking calculation

input

blocking calculation

output:
adapted
budgets

adapted
budgets

optimized metrics blocking calculation

Fig. 4. Default two-step-reaction to changes of the offered traffic situation

Random traffic matrices have been generated as input parameters for the fol-
lowing evaluation scenarios. By nature, network optimizations show more bene-
fits, if the network is utilized to a certain degree. Because of this reason, traffic
matrices with different network utilizations were created, which result in the
most heavily loaded link in the network being utilized between 30 and 80%.
This generation was done by adding or scaling random CBR flows until the
maximum link utilization with optimized link metrics reached to target value.
The following simulations have been done with hundreds of such traffic matrices
with results being averaged, if nothing else is mentioned. As simplification, only
high-priority traffic will be used. Spare bandwidth could always be consumed
by lower priority traffic classes, e.g. best effort. An appropriate scheduling con-
figuration will have to ensure the preferential treatment of high-priority traffic
during forwarding by the routers.

In the evaluations of the reaction to changing traffic matrices, one traffic
matrix has been selected as initial traffic matrix, based on which budgets and
link metrics were optimized. Then, the traffic matrix was swapped against a
randomly selected new one (with the same overall network utilization), which
translates to a change of the offered traffic. Following this, the increase of the
ratio of blocked traffic in this un-optimized situation was evaluated and how far
the reaction strategy of the NCS was successful in reducing the blocking rate.

Exemplarily, the optimization results in the Labnet03 reference network shall
be presented in the following. In the left part of figure 5 the average blocked
traffic ratio of the different strategy steps is depicted (derived from 500 evaluation
results). The diagram on the right side shows the average reduction of the blocked
traffic ratio from the situation before the NCS reacted to the situation after a
budget adaptation in the left bar. The middle bar depicts the further reduction
in the second reaction step, from the situation after only the budget adaptation
to the results achievable by additionally optimizing the link metrics with the
traffic budgets. The bar on the right shows the overall reduction from the initial
situation after a traffic matrix change to the situation after the combination of
optimization steps.

Autonomous Optimization of Next Generation Networks 167

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Labnet03

B
lo

ck
ed

 tr
af

fic
 r

at
io

Average ratio of blocked traffic
during 500 traffic matrix changes

before budget adaptation
after budget adaptation

after metric opt. and budget adapt.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Labnet03

R
ed

uc
tio

n
of

 th
e

bl
oc

ke
d

tr
af

fic
 r

at
io

Average reduction of the blocked traffic ratio
usign the two reaction steps

1st reaction step
2nd reaction step

both reaction steps combined

Fig. 5. Average blocked traffic ratios (left) and their reductions (right) by the NCS’
optimizations in 500 random traffic matrices with a network utilization of the Labnet03
reference topology of 60%

In these 500 simulations, the blocked traffic ratio after a changing traffic
matrix lies between 14% and 67% at an average of 39%. After the budget
adaptation, the blocked traffic ratio drops to values between 1% and 50%, the
average being 15%, as shown in the middle bar of the left diagram. After the
second strategy step of the NCS, the blocked traffic ratio stays at almost 20%
in the worst case of the 500 scenarios, while most results being far better. The
best value is at only 0,03%, resulting in an average of only 2,47%.

If the optimization results are compared to the average blocked traffic ratio
directly after a change of the traffic matrix amounting to 39%, this example
shows a reduction of more then 93% as depicted by the right bar in the right
diagram. The first reaction step of the NCS alone, consisting of only the budget
adaptation, achieves a reduction of 64%. The link metric optimization adds to
another reduction of the blocked traffic ratio of more than 80%.

As mentioned above, the simulations have been done not only with a network
utilization of 60% but also with traffic matrices utilizing the networks between
30% and 80%. Figure 6 shows the resulting blocked traffic ratio (on the left
side) and the reductions the NCS was able to achieve (on the right side) in the
Labnet03 reference topology.

Considering the blocked traffic ratios after metric optimization and budget
adaptation in the Labnet03 with a network utilization of 50% and 60%, there are
first occurances of blocking rates that cannot be removed by the optimizations
of the NCS. On average, the network reaches its maximum capacity at these
utilization values. However, it is important to note, that this threshold is valid
in case of a single link failure. The budget adaptation, from which the blocking
values are derived from, was performed with the objective function to include
all possible single link failure into its calculations. This results in NAC budgets
that remain valid in case of a single link failure, enabling the network to preserve
the guaranteed service quality even during these failures.

168 U. Walter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

80%70%60%50%40%30%

B
lo

ck
ed

 tr
af

fic
 r

at
io

Network Utilization

Average blocked traffic ratios
with different network utilizations

before budget adaptation
after budget adaptation

after metric opt. and budget adapt.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

80%70%60%50%40%30%

R
ed

uc
tio

n
of

 th
e

bl
oc

ke
d

tr
af

fic
 r

at
io

Network Utilization

Average reduction of the blocked traffic ratio
usign the two reaction steps

1st reaction step
2nd reaction step

both reaction steps combined

Fig. 6. Average blocked traffic ratios (left) and their reductions (right) by optimizations
in 500 random traffic matrices with different network utilizations of Labnet03

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

all reference networks

B
lo

ck
ed

 tr
af

fic
 r

at
io

Average blocked traffic ratio in
all utilization and network scenarios

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

all reference networks

R
ed

uc
tio

n
of

 th
e

bl
oc

ke
d

tr
af

fic
 r

at
io

Average reduction of the blocked traffic ratio
usign the two reaction steps

1st reaction step
2nd reaction step

both reaction steps combined

Fig. 7. Average blocked traffic ratios (left) and their reductions (right) in all reference
networks and utilization scenarios

Regarding this strategy decision, the reference network Labnet03 reaches a
point at utilizations of 50-60% where individual traffic flows must be limited (or
even denied) by the Network Admission Control to prevent overloads in case of
link failures. This correlates nicely with the rule of thumb many providers use,
who start upgrading their network when utilization reaches the order of 50%.

Figure 7 depicts the average of the blocked traffic ratio in all reference net-
works with different network utilizations. The average ratio of blocked traffic
after a change of the traffic matrix is 57,4% and is decreased by 65% after
the budget adaptation to a ratio of 19,3%. The second strategy step of the
NCS further reduces the blocked traffic ratio by 50% on average to a value of
11,4%. Averaging all reference networks and utilization scenarios, the NCS is
able to achieve a reduction of the ratio of blocked traffic amounting to more
than 78%.

Autonomous Optimization of Next Generation Networks 169

3 Single Link Failures

Besides the reaction to a changing traffic situation, especially the anticipation
of failure cases is one of the main strengths of the Network Control Server’s
optimization algorithms. This section will present some results of the evaluation
of single link failures. A single link failure is defined as the bidirectional failure
of a direct connection between two nodes.

During the budget adaptation, failure scenarios can be included in the cal-
culations to influence which sort of network failures should be anticipated in
advance. If the failure scenarios contain all possible single link failures, the bud-
gets will get calculated in such a way that none of these failures will result in
an overload situation inside the network. The following evaluation shall demon-
strate this functionality and give an estimate about the expected consequences
if no NAC budgets would be deployed and all offered traffic would be admitted.

Each simulation is carried out with one of the reference networks and ran-
domly generated traffic matrices. For each traffic matrix optimized link metrics
and NAC budgets get calculated. Both optimizations are configured to anticipate
each possible single link failure. After this step, the reference network topology
is used to derive all possible subset networks, where exactly one link failed. For
each of these failure scenario networks, all link loads based on the original traf-
fic matrix are determined and compared to the link loads of the fully functional
reference network. These link loads represent the network situation during a link
failure, if there would be no traffic limit, as if there would be no NAC.

If a link shows a load above the value 1 it is assumed to be overloaded. While
such a value can result from the simulations, this would of course translate to
a heavy packet loss in reality, disrupting the guaranteed service quality. The
number of overloaded links (in theory) is stored as the first result for the given
traffic matrix and failure scenario. For each overloaded link, the (theoretically)
missing capacity is determined. The sum of these missing capacities is used as
the second result.

Finally, a traffic matrix is constructed based on the originally calculated NAC
budgets and used to calculate the link loads. This step gives an indication of the
network situation if all NAC budgets would be completely utilized (admitting
the maximum amount of high-priority traffic into the network), with no traffic
being rejected by the NAC. The resulting number of overloaded links and missing
capacities for this setup are used as third and fourth result. Thus, four values
are calculated as results for each traffic matrix and single link failure:

– Number of overloaded links without consideration of NAC budgets
– Sum of missing capacities of the overloaded links without consideration of

NAC budgets
– Number of overloaded links with traffic being limited by NAC budgets
– Sum of missing capacities of the overloaded links with traffic being limited

by NAC budgets

170 U. Walter

 0

 1

 2

 3

 4

 5

80%70%60%50%40%30%

N
um

be
r

of
 o

ve
rlo

ad
ed

 li
nk

s

Network Utilization

Average number of overloaded links in failure
cases and different Cost−100G network utilizations

unlimited traffic (without budgets)
traffic limited by budgets

 0

 1

 2

 3

 4

 5

80%70%60%50%40%30%

N
um

be
r

of
 o

ve
rlo

ad
ed

 li
nk

s

Network Utilization

Average number of overloaded links in failure
cases and different Sprint network utilizations

unlimited traffic (without budgets)
traffic limited by budgets

 0

 10

 20

 30

 40

 50

 60

 70

80%70%60%50%40%30%

S
um

 o
f m

is
si

ng
 li

nk
 c

ap
ac

iti
es

Network Utilization

Average sum of missing link capacities of
overloaded links in failure cases of Cost−100G

unlimited traffic (without budgets)
traffic limited by budgets

 0

 1

 2

 3

 4

 5

 6

80%70%60%50%40%30%

S
um

 o
f m

is
si

ng
 li

nk
 c

ap
ac

iti
es

Network Utilization

Average sum of missing link capacities of
overloaded links in failure cases of Sprint

unlimited traffic (without budgets)
traffic limited by budgets

Fig. 8. Number of overloaded links and sum of missing capacities during single link
failures

In the simulations performed to gather these results, 250 traffic matrices have
been used for each reference network and each network utilization class along
with each possible single link failures.

An exemplarily extract from the simulation results is shown in figure 8. The
figure shows the average of the four described results for the reference networks
Cost-100G and Sprint. In the diagrams on the left side, the mean number of
overloaded links in a failure case is depicted, differing between the unlimited
traffic given by the traffic matrix (no NAC) and with NAC budgets limiting
the admitted traffic. On the right side, the sum of missing capacities (in generic
bandwidth units) is shown.

During lower utilizations, there is no visible overload for the Cost-100G refer-
ence network in case of a single link failure. Starting with an utilization of 50%
there are overloaded links, whose number increase with the rising utilization if
there are no budgets limiting the traffic. In the highest simulated utilization this
leads to an average of five links being overloaded, if a single link fails.

If the incoming traffic is limited by the budgets of a Network Admission
Control, there is no overload of any link in case of a single link failure.

Autonomous Optimization of Next Generation Networks 171

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

80%70%60%50%40%30%

R
at

io

Network Utilization

Ratio of the average sum of admitted traffic and
sum of offered traffic in the traffic matrix

Labnet03 UUNet Worldnet Cost−100G Sprint

Fig. 9. Ratio of overall transport capacity in traffic matrix and allowed by NAC budgets
with and without anticipation of all single link failure

The lower part of figure 8 shows the according values for the Sprint reference
topology. In this example network, there are traffic matrices that lead to a link
overload even in case of a low overall network utilization during link failures, if
there is no limit on incoming traffic.

3.1 Impact of the Failure Anticipation

As demonstrated, the deployment of a Network Admission Control can protect
against overload situations during single link failures. However, while in the best
cases a NAC admits most request, it must deny and reject requests for high-
priority traffic flows in certain situations. As a result, the gained benefit of being
able to guarantee the service quality even during failure cases, comes at the price
of a possible reduction in the overall transport capacity of a network. This can
be seen as the cost for the improved resilience.

To get an insight into this reduction of transport capacity, each reference net-
work and random traffic matrices have been used to evaluate the overall sum of
transmitted traffic by adding all data rates in the traffic matrix. As a comparison,
the overall sum of all NAC budgets after a metric optimization and budget adap-
tation has been calculated, giving an estimate of the overall transport capacity
in case the QoS guarantees are protected by a Network Admission Control. The
ratio of the average of both transport capacity sums is shown in figure 9 above the
network utilization.

If the value of the ratio is higher than 1, this means, that the sum of the ad-
missible traffic flows in the NAC budgets is higher than the sum of traffic flows
in the traffic matrix. However, this does not mean, that there are no rejections
of individual traffic flows possible, since the summarization ignores the composi-
tion and source and destination of individual flows. Simplified, in these scenarios,

172 U. Walter

a network could transport more traffic than offered by the traffic matrix, even with
the guarantee that no overload will occur in case of link failures.

Below a network utilization of 50% the ratio is higher than 1 for all reference
networks. With the exception of the Sprint network it stays there until a network
utilization 70%. Being utilized to 80% two remaining networks have a ratio above
1, the Worldnet reference topology being only marginally below.

A consequence for the deployment of the NCS is, that the advantage of a higher
resilience against single link failures, does not automatically need to be joined with
a severe reduction of the overall transport capacity of a well-designed network.
Although precise numbers heavily depend on the scenario and situation, making
best use of well-adapted NAC budgets can reduce the risk of blocking too many
QoS requests.

3.2 Increased Efficiency by Calculated Risks

Network operators who object even a minor reduction of the overall transport ca-
pacity for increased resilience against failures, can vote to take a calculated risk
to further reduce this impact.

In this case, taking a risk means that not all possible single link failures must be
taken into account when calculating NAC budgets. The failure scenarios that have
the biggest hit on the overall transport capacity can be excluded. However, if such
a link would really fail it would not be possible to guarantee that this would not
result in the overload of a network link. In the absence of failures, this would allow
a further increase of the available overall transport capacity, despite the gained
protection against most possible failures.

Exemplarily such an approach was evaluated for the Sprint reference network
topology. Its results were compared against the former findings (marked “Sprint”
in the following). At first, taking a calculated risk, the protection against the one

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

80%70%60%50%40%30%

R
at

io

Network Utilization

Ratio of the average sum of admitted traffic and
sum of offered traffic in the traffic matrix

Sprint Sprint−KR1 Sprint−KR3

Fig. 10. Comparison of the overall sum of transport capacity

Autonomous Optimization of Next Generation Networks 173

 0

 2

 4

 6

 8

 10

 12

80%70%60%50%40%30%

N
um

be
r

of
 o

ve
rlo

ad
ed

 li
nk

s

Network Utilization

Average number of overloaded links in double link failure
cases and different UUNet network utilizations

unlimited traffic (without budgets)
traffic limited by budgets

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

80%70%60%50%40%30%

S
um

 o
f m

is
si

ng
 li

nk
 c

ap
ac

iti
es

Network Utilization

Average sum of missing link capacities of over−
loaded links in double link failure cases of UUNet

unlimited traffic (without budgets)
traffic limited by budgets

Fig. 11. Number of overloaded links and sum of missing capacities during double link
failures in the UUNet reference topology

single link failure, having the biggest negative impact on the admissible traffic,
was dropped, i.e. the single link failure for whose protection the NAC budgets
drop the most (marked “Sprint-KR1” in the following). Then, this was extended
to a scenario, were protection against the three most expensive single link failures
was dropped (marked “Sprint-KR3”).

Figure 10 shows the ratio of the average overall sums of admissible traffic to
traffic offered in the traffic matrices for the mentioned risk cases in comparison.
Dropping protection against the worst three single link failures in ”Sprint-KR3”
keeps the ratio above 1 even with a network utilization of 60%. At 70% it is only
marginally below 1. As expected, ”Sprint-KR3” allows a clear increase of admis-
sible traffic compared to the ”Sprint”-scenario, which protects against each single
link failure.

If desired, a network operator could further mitigate the reduction of the over-
all network transport capacity, following the deployment of a Network Admission
Control, if he accepts the risk to exclude a few failure scenarios from the resilience
protection.

4 Double Link Failures

In section 3 the effects of the NCS’ optimizations against single link failures have
been described. It has been shown that no overload situation occurs, if the NAC
budgets are deployed correctly. This section shall evaluate, how far the protec-
tion against single link failures can also lessen the negative impact of double link
failures (two bidirectional links failing at the same time).

Except for the inclusion of double link failures1, the simulations are performed
exactly as the ones in section 3. Each double link failure scenario has been evalu-
ated 250 times per utilization class.
1 Failure scenarios that would separate the network are excluded.

174 U. Walter

Figure 11 shows the results for the reference network UUNet (the other ref-
erence networks give comparable results). It can be seen that in case of higher
utilizations, the budgets used to protect against single link failures also help to a
certain degree against double link failures. This means, that a network, which is
prepared against the worst-case effects of single link failures, is also less sensitive
to double link failures, as a network without a Network Admission Control.

5 Summary

This paper described the functionality of a Network Control Server (NCS) for
IP networks with Network Admission Control (NAC). The NCS is able to au-
tonomously adapt certain network parameters and re-optimize them to changing
traffic or failure situations. To achieve this, the NCS continuously monitors the
network and reacts when necessary.

After a change of the offered traffic matrix, an estimation is made if thenew situ-
ation will lead to an increasing blocking probability of high-priority QoS requests.
If necessary, new NAC budgets are calculated, shifting available NAC capacity
to the best possible ingress and egress nodes. If the ratio of blocked traffic still
remains undesirably high, new IP link metrics are calculated in addition to the
budget adaptation.

Extensive simulations have been performed to evaluate the performance of this
reaction strategy using five realistic reference network topologies and hundreds of
traffic matrices. It has been verified that the deployment of NAC mechanisms pro-
tects from network overloads. NAC budgets, which are calculated taking failures
into consideration, can protect from these failure scenarios.

It could be shown that over all scenarios, the re-optimization of network pa-
rameters – the adaptation of NAC budgets and link metrics – after a change of
the offered traffic matrix could on average effectively cut the blocking ratio in half.
Even if the NAC budgets were only calculated to protect against single link fail-
ures, they also clearly lessen the impact of double link failures compared to a NAC
without failure protection.

The gained resilience and service guarantees definitely recommend the deploy-
ment of network optimization mechanisms. For increased efficiency, it seems ad-
visable to add integrate such functionality into autonomous tools, as it has been
demonstrated in the Network Control Server presented in this paper.

Acknowledgments. The simulations described in this paper used tools to opti-
mize link metrics [9] and to adapt NAC budgets to traffic matrices [13] from the
KING research project (Key components for the Internet of the Next Generation)
that has been partly funded by the German Ministry of Education and Research
(BMBF). Special thanks go to Uwe Riehm for his simulations and Dr. Joachim
Charzinski for his contributions to this work. Thanks are also given to the review-
ers for their very valuable comments.

Autonomous Optimization of Next Generation Networks 175

References

1. Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF weights.
In: Proceedings of IEEE Infocom, IEEE Computer Society Press, Los Alamitos
(2000)

2. Riedl, A.: A Genetic Algorithm for Routing Optimization in IP Networks Utilizing
Bandwidth and Delay Metrics. In: Proceedings of IEEE Workshop on IP Operations
and Management IPOM, Dallas, IEEE Computer Society Press, Los Alamitos (2002)

3. Ericsson, M., Resende, M., Pardalos, P.: A genetic algorithm for the weight setting
problem in OSPF routing. Journal of Combinatorial Optimization 6(3) (September
2002)

4. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS Weights in a Changing World. IEEE
Journal on Selected Areas in Communications 20(4) (May 2002)

5. Fortz, B., Rexford, J., Thorup, M.: Traffic Engineering With Traditional IP Routing
Protocols. IEEE Com. Mag. 40(10) (October 2002)

6. Rexford, J.: Handbook of Optimization in Telecommunications. Kluwer Academic
Publishers, Dordrecht (2005)

7. Nucci, A., Schroeder, B., Bhattacharyya, S., Taft, N., Diot, C.: IGP Link Weight
Assignment for Transient Link Failures. In: Proceedings of the 18th International
Teletraffic Congress (ITC-18), Berlin, Germany (August 2003)

8. Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proceed-
ings of International Network Optimization Conference (INOC), Evry/Paris, France
(October 2003)

9. Reichert, C., Magedanz, T.: A Fast Heuristic for Genetic Algorithms in Link Weight
Optimization. In: 5th International Workshop on Quality of Future Internet Services
(QoFIS), Barcelona, Spain (September 2004)

10. Hasslinger, G., Schnitter, S., Franzke, M.: The Efficiency of Traffic Engineering with
Regard to Link Failure Resilience. Telecommunication Systems Journal 29(2) (June
2005)

11. Hoogendoorn, C., Charzinski, J., Schrodi, K., Heldt, N., Huber, M., Winkler, C.,
Riedl, J.: Towards the Next Generation Network. In: 12th IEEE International Con-
ference on Network Protocols (ICNP 2004), Berlin, Germany, IEEE Computer So-
ciety Press, Los Alamitos (2004)

12. Schrodi, K.: High Speed Networks for Carriers. In: Carle, G., Zitterbart, M. (eds.)
PfHSN 2002. LNCS, vol. 2334, Springer, Heidelberg (2002)

13. Menth, M.: Efficient Admission Control and Routing in Resilient Communication
Networks. PhD thesis, University of Würzburg, Faculty of Computer Science, Am
Hubland (July 2004)

14. Mocci, U., Virtamo, J., Roberts, J.: Broadband Network Traffic: Performance Eval-
uation and Design of Broadband Multiservice Networks: Final Report of Action
Cost 242. Springer, New York (1999)

15. Labourdette, J.F., Hart, G.: Blocking Probabilities in Multitraffic Loss Systems:
Insensitivity, Asymptotic Behaviour and Approximations. IEEE Transactions on
Communications 40(8) (August 1992)

16. Nilson, A.A., Perry, M., Gersht, A., Iversen, V.: On multi-rate Erlang-B Compu-
tations. In: Proceedings of 16th International Teletraffic Congress (ITC 16), Edin-
burgh, Scotland (June 1999)

17. Charzinski, J., Walter, U.: Optimized Incremental Network Planning. In: Proceed-
ings of the 13th GI/ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems, 27.-29.3, Nürnberg, Germany, GI ITG,
VDE Verlag (March 2006) 349–362 (2006)

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 176–192, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Bandwidth-Satisfied Multicast Services in Large-Scale
MANETs

Chia-Cheng Hu

Department of Information Management, Naval Academy,
No.669, Junxiao Rd., Zuoying District, Kaohsiung City 813, Taiwan (R.O.C.)

cchu@cna.edu.tw

Abstract. Recent routing/multicast protocols in large-scale mobile ad-hoc net-
works (MANETs) adopt two-tier infrastructures by selecting backbone
hosts (BHs) in order to avoid the inefficiency of the flooding. Further, previous
MANET quality-of-service (QoS) routing/multicasting protocols deter-
mined bandwidth-satisfied routes for QoS applications. However, they
suffer from two bandwidth-violation problems. In this paper, a novel algo-
rithm that can avoid the two problems is proposed and integrated with the two-
tier infrastructures to construct bandwidth-satisfied multicast trees for QoS
applications in large-scale MANETs.

Keywords: Ad-hoc network, integer linear programming, multicast protocol,
bandwidth violation, quality-of-service.

1 Introduction

A multicast group contains a special host (server) which is responsible for transmitting
data packets to the other hosts (clients) in the same group. Motivated by increasing
importance of real-time and multimedia applications with different quality-of-service
(QoS) requirements, e.g., VoIP and video-conference, several QoS-constrained multi-
cast algorithms for multimedia communication in wired networks have been proposed
in the literature [1]-[3]. These algorithms aim to construct least-cost multicast trees
with the constraints of end-to-end delay and/or bandwidth requirement.

A mobile ad-hoc network (MANET) is formed by a group of mobile hosts that can
communicate with one another without the aid of any centralized point or fixed infra-
structure. Because of recent provision of high-speed wireless Internet services, QoS-
guaranteed applications are now crucial to new-generation wireless multimedia com-
munication systems. To meet the QoS requirements of the applications, multicast
protocols are required to construct multicast trees with QoS guaranteed. Continuing
advances in semiconductor and computer technologies will soon allow large-scale
MANETs to become viable and valuable in a wide variety of novel applications. De-
signing a robust and efficient infrastructure for distributing a large number of multi-
casting applications with QoS requirements in large-scale MANETs will become one
of the key research challenges.

In MANETs, the network topologies may dynamically change in an unpredictable
manner because hosts are free to move. Hence the admitted QoS applications may

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 177

suffer due to frequent route breaks, thereby requiring such applications to be
re-determined over new routes. Besides, each transmission in MANETs is a local
broadcast and each host shares the common radio channel with all its neighbors. An
inadequate bandwidth reservation may decline network performance, which is serious
in MANETS because of shared channel and limited bandwidth. Further, the above
difficulties will be enlarged in a large-scale MANET. Recently, several MANET
multicast protocols have been proposed in the literature [4]-[10]. They can be classi-
fied into two categories: tree-based protocols and mesh-based protocols. For both,
adding a new member into an existing multicast group will cause the flooding of a
join request message over the entire network. The flooding process is time-consuming
and bandwidth-consuming, especially, for a large-scale MANET.

To avoid the inefficiency of flooding, two-tier infrastructures [11]-[15], [21], [24]
were adopted for routing/multicasting in large-scale MANETs. Some of hosts, named
backbone hosts (BHs), were selected and responsible for managing the flooding,
maintaining the infrastructures and determining the routes. On the other hand, several
routing protocols [12], [18], [19] and multicast protocols [15], [20] have been pro-
posed for MANET QoS services. However, they may lead to bandwidth violation,
as described below. When a new flow with bandwidth requirement is permitted, a
control packet from the source is flooded in order to determine a bandwidth-satisfied
route. Each host in the neighborhood of some ongoing flows may be determined as a
forwarder for the new flow if the bandwidth increment does not induce bandwidth
violation of it and its neighbors. However, even so, bandwidth violation may happen to
its neighbors because it fails to take into account the bandwidth consumption of those
hosts that are two hops distant from it. This induces a new bandwidth-violation prob-
lem in MANETs. Similarly, another bandwidth-violation problem is induced if multi-
ple flows are permitted concurrently. The two problems are named the hidden route
problem (HRP) and the hidden multicast route problem (HMRP), respectively. They
will be elaborated in the next section.

The purpose of this paper is to propose a novel algorithm that can avoid HRP and
HMRP. The proposed algorithm is integrated with two-tier infrastructures for QoS
multicast applications in large-scale MANETs. In [21], the authors proposed a multi-
cast protocol, named OGHAM, for large-scale MANETs. OGHAM selected BHs on-
demand with the objective of minimizing the total number of hops to the other hosts,
so as to shorten multicast routes. In [24], we enhance OGHAM with mobility aware-
ness by taking host mobility into consideration. The enhanced OGHAM, denoted by
M-OGHAM, is enhanced with link prediction, i.e., to estimate the amount of remain-
ing connection time for two neighboring hosts. Link prediction is very helpful to mo-
bility awareness, and by its aid, stable BHs and stable multicast routes can be deter-
mined.

Since bandwidth and power are limited in MANETs, one way to reduce bandwidth
and power consumption is to decrease the number of hosts (i.e., forwarders) partici-
pating in packet forwarding. The problem of finding a multicast tree with minimum
number of forwarders is known to be NP-hard (see [22]). If the bandwidth consump-
tion is considered additionally, the resulting problem is also NP-hard. In this paper,
we study the problem of determining a bandwidth-satisfied multicast tree with mini-
mum number of forwarders. The problem is referred to as BSMTP in the rest of this
paper, and a heuristic algorithm is proposed to provide a feasible solution to it.

178 C.-C. Hu

2 Related Works and Problems

To meet the bandwidth requirements of bandwidth-constrained applications, a proper
admission control mechanism is needed to judge if a host is allowed to forward the
packets for a requested flow. In wired networks, there is a dedicated point-to-point
link, denoted by li,j, between two adjacent nodes vi and vj. If vi (vj) transmits packets to
vj (vi), the bandwidth consumption is bounded by the maximal available bandwidth of
li,j. When a neighbor of vi (vj) transmits packets to vi (vj), it does not consume the
bandwidth of li,j. So, vi and vj are aware of the remaining available bandwidth of li,j.
Suppose that a new flow from the source vs to the destination vd is initiated and its
bandwidth requirement is b_req. Let b_ri,j be the current remaining available band-
width of li,j. If b_ri,j≥b_req, then vi (vj) is allowed to forward the flow to vj (vi). Finally,
if vs→ 1f

v →
2fv →

3fv → … →
mf

v →vd is determined as the bandwidth- satisfied

route for the flow, then it should have min{
1,_ fsrb ,

21 ,_ ffrb ,
32 ,_ ffrb , …,

dfrb ,3
_ } ≥ b_req.

The MANET QoS routing/multicasting protocols, in CEDAR [12], [18],
MCEDAR [15] and [20], borrowed the concept of point-to-point links from the wired
networks to construct bandwidth-satisfied routes. However, a host in MANETs shares
the radio channel with its neighbors so that the bandwidth is consumed not only by it,
but also by its neighbors. For example, suppose that vs→ 1f

v →
2fv →

3fv → …

→
mf

v →vd is a bandwidth-satisfied route in MANETs. When
1f

v transmits packets

to
2f

v , the bandwidths of
1, fsl ,

21, ffl and
32, ffl are consumed. Therefore, it is more

difficult to determine a bandwidth-satisfied route in MANETs, because the computa-
tion of li,j also relies on the neighbors of vi and vj.

On the other hand, AQOR [19] determined a bandwidth-satisfied route differently.
The bandwidth computation is from the viewpoint of a host, instead of a link. Let b_ri
be the current remaining available bandwidth of vi. With the same example of
vs→ 1f

v →
2fv →

3fv →… →
mf

v →vd above, the bandwidths of vs and
1f

v are con-

sumed when vs transmits packets to
1f

v , the bandwidths of vs, 1f
v and

2fv are con-

sumed when
1f

v transmits packets to
2fv , and so on. Consequently, the total band-

width consumptions of vs, 1f
v ,

2fv ,
3fv , …,

mf
v and vd, caused by the flow, are 2 ×

b_req, 3 × b_req, 3 × b_req, 3 × b_req, …, 3 × b_req and b_req, respectively.
All QoS routing/multicasting protocols described above may suffer from two band-

width- violation problems, i.e., HRP and HMRP, because the hosts in the neighbor-
hood of ongoing flows fail to compute the bandwidth consumptions of those hosts
that are two hops distant from them.

Refer to Fig 1, where an illustrative example is shown. There are two ongoing
flows from e to f and from g to h, respectively. A new flow from a to d is permitted,
and the route determination for the new flow proceeds to c. Suppose that each host
has the same available bandwidth, say 11 units, and the bandwidth requirements for
the three flows are 2 (from e to f), 7 (from g to h) and 3 (from a to d) units, respec-
tively. If c serves as a forwarder, then total 9-unit bandwidth of c will be consumed

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 179

(c, the predecessor of c and the successor of c each require 3-unit bandwidth). Since
the ongoing flow from e to f is in the radio coverage of c, it consumes 2-unit band-
width of c. Consequently, the remaining available bandwidth of c is 11 − 2 = 9
units, and so c is allowed to be a forwarder.

d

e

a

b

c

f

h

g

Fig. 1. An example of HRP

Now we turn our attention to the bandwidth consumption of e. Since both c and g
are in the radio coverage of e, the bandwidth requirement of e is 2 + 3 + 7 = 12 units,
which exceeds its available bandwidth (11 units). The reason for the bandwidth viola-
tion is that c was not aware of the ongoing flow from g to h when it was determined to
be a forwarder. In short, the bandwidth violation happened because the ongoing flow
from g to h was hidden from the new flow from a to d. The problem is henceforth
referred to as the hidden route problem (HRP). In contrast to the hidden terminal
problem [23], which arises in the MAC layer, the hidden route problem arises in the
network layer.

An illustrative example for HMRP is shown in Fig 2, where there is a multicast
group and a new flow from a (server) to e and h (clients) is permitted. Suppose that
each host has the same available bandwidth, say 11 units, and the bandwidth require-
ment of the flow is 3 units. Also note that bandwidth reservation will be made for the
flow when data flow through the routes. Both c and g can be forwarders for the flow
from a to e and from a to h, respectively, because their bandwidth requirement (9
units) is smaller than their available bandwidth (11 units). However, since they are in
the radio coverage of each other, 3-unit bandwidth is required additionally when data
flow from a to e and h. This increases their bandwidth requirement to 12 units, which
causes a bandwidth violation. The bandwidth violation happens because the two mul-
ticast routes from a to e and from a to h are mutually hidden from each other. It is
henceforth referred to as the hidden multicast route problem (HMRP).

180 C.-C. Hu

d

e

a

b

c

f

g h

Fig. 2. An example of HMRP

Currently, two QoS routing protocols have been proposed by Yang et al. [16] and.
Chen et al. [17]. They considered the bandwidth consumption of the one-hop/two-hop
hosts when a new flow with bandwidth requirement was permitted. So, HRP can be
avoided. However, a QoS multicast protocol should determine multiple bandwidth-
satisfied routes from a server to all clients concurrently. Another bandwidth-violation
problem, i.e., HMRP, is induced if multiple flows are permitted concurrently.

3 Review of OGHAM and M-OGHAM

OGHAM and M-OGHAM construct a two-tier infrastructure by selecting BHs on-
demand for multicast applications. A multicast group contains a server which is respon-
sible for transmitting data packets to the clients in the same group. To construct a multi-
cast group, either the clients passively join the group when the server broadcasts a query
packet, or they actively sends a request to the server. In this setting, a host (server or
client) first broadcasts a message over a limited-range region (multicast region) to col-
lect necessary neighboring information. Then BHs are selected in the region. And they
are responsible for determining multicast routes, forwarding data packets, handling
dynamic group membership, and updating multicast routes due to host movement.

When a server (client) vi attempts to create (join) a multicast group, vi first tries to
find a BH within a region with a radius of 2r hops centered at vi, where r≥1 is a prede-
fined integer. If such a BH is found, then vi is attached to it. Otherwise, vi broadcasts a
message over a larger region, called multicast region, with a radius of γ hops centered
at vi for collecting neighboring information, where γ≥2r is a predefined integer. Then,
vi selects BHs for the multicast region and determines the attachment from NBHs (the
hosts are not BHs) to BHs by solving a formulated 0/1 ILP. Also, vi sends the list of
all BHs and the neighboring information to each BH.

For example, suppose that a server s intends to create a multicast group and it
fails to find a BH within 2 hops (r=1 for this example). So, s reacts by triggering the
selection of BHs in a multicast region with a radius of γ=4 hops centered at s. Refer to

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 181

 : server

: BH

 : physical link

: broadcasting

s

: attaching

bi

(a)

s

b1

b3

b2

(b)

s

Fig. 3. BH selection in a multicast region. (a) Broadcasting. (b) Selecting BHs and attaching
NBHs to BHs.

Fig 3. First, s broadcasts a message in the multicast region (refer to Fig 3(a)). Upon
receiving the message, hosts in the multicast region reply their neighboring informa-
tion to s. With the neighboring information, s then selects BHs and attaches NBHs to
BHs (refer to Fig 3(b)).

After BHs in the multicast region are selected, clients can join the multicast group
by asking the attached BHs to query the location of the server. The BH attached by
the server then replies to the queries. Through the round-trip communication (query-
ing and replying), the BH attached by the server can determine the multicast routes
from the server to the clients. With the same example of Fig 3, assume that c1 and c2
are two clients. They join the multicast group by attaching themselves to b1 and b3,
respectively. The server s is attached to b2. Both b1 and b3 can locate s by querying b2.
At the same time, the multicast routes, i.e., s−b2−f1−b1−f2−c1 and s−b2−f1−b3−c2,
from s to c1 and c2, respectively, can be determined (refer to Fig 4).

As described above, the BHs attached by clients are responsible for querying the
location of the server. For a client in a different multicast region from the server, the
attached BH fails to locate the server, and so it floods a query message over the entire
network, in order to locate the server. Through the flooding, the two multicast regions
where the client and the server are positioned can be merged into a larger one. After
the merging, a multicast route from the server to the client can be determined.

Following the example of Fig 4, we assume that there is a client c3, which
is outside the multicast region of Fig 4, attempting to join the multicast group crea-
ted by s. The gray portion of Fig 5 shows the multicast region created by c3. There

are two BHs, i.e., '
1b and '

2b , selected in the new multicast region and c3 is atta-

ched to '
1b . In order to locate s, '

1b floods a message. Upon receiving the mes-

sage, b2 replies to '
1b . Through the message exchange, a multicast route, i.e.,

s−b2−f1−b1−f2−f4− '
1b −c3, from s to c3 is then determined.

182 C.-C. Hu

 : server

: BH

 : physical link

: multicast route

s

bi

s

b1

f2

f1

b3

b2

ci : client

c1

c2

fi : forwarder

Fig. 4. Determining multicast routes

b2

c3

b1

f4

 : physical link

: multicast route

s

bi

ci

fi

s

b1

f2

f1

b3

b2

f3

c1

c2

 : server

: BH

 : client

: forwarder

'

'

Fig. 5. Determining multicast routes across two multicast regions

Stable BHs and stable multicast routes are preferred in M-OGHAM. OGHAM and
M-OGHAM differ in the computation of remaining connection time between two
neighboring hosts. In M-OGHAM, the remaining connection time (dented as ti,j) is first
estimated for every pair of neighboring hosts vi and vj. The server (or a client) broad-
casts a message over the multicast region for collecting neighboring information and
the remaining connection time, in order to create (or join) a multicast group. Then,
those hosts with fewer hops and longer remaining connection time to the other hosts
are selected as BHs. And, the selected BHs are stable.

Recall that the BH attached by the server is responsible to determine the multicast
routes from the server to the clients. In order to obtain stable multicast routes, the

BHs, selected in M-OGHAM, construct an n×n matrix, denoted by N. Let
'
i,jt be the

up-to-date remaining connection time between vi and vj, which is equal to ti,j minus
the amount of time elapsed since ti,j is computed. The BH sets N(i, j)=1 if vi and vj are

neighboring and
'
i,jt ≥ρ, and N(i, j)= ∞ otherwise, where ρ is a predefined constant.

Intuitively, N(i, j)=1 means that the link between vi and vj is stable. Then, stable mul-
ticast routes from the server to clients can be obtained by applying the Dijkstra’s
shortest-path algorithm [29] to the matrix N.

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 183

4 A Heuristic Algorithm

In this section, a heuristic algorithm that can provide a feasible solution to BSMTP is
proposed. The algorithm can admit a new flow with bandwidth requirement for some
multicast service by constructing a bandwidth-satisfied multicast tree. Besides, the
algorithm attempts to minimize the number of forwarders for the new flow. The exe-
cution of the algorithm involves a basic procedure, named Shortest_Routes, which can
establish shortest (minimum number of hops) routes to a particular destination. Fi-
nally, the algorithm is integrated into M-OGHAM to support bandwidth-constrained
multicast services in large-scale MANETs.

Shortest_Routes has four input parameters: vd, b_req, Δ and Φ, where vd is a desti-
nation of the new flow, b_req is the bandwidth requirement for the new flow, and Δ,
Φ are two sets of hosts. Shortest_Routes also has two output parameters: H and P
(explained later). The execution of Shortest_Routes invokes another procedure,
named B_Violation, which returns true if bandwidth violation happens and false else.
B_Violation uses Δ and Φ for checking bandwidth violation, which will become clear
later. Shortest_Routes is a modification of the well-known Dijkstra’s shortest-path
algorithm, which can compute the shortest paths from a node to the other nodes. Dif-
ferently, Shortest_Routes establishes shortest routes in a reverse direction from all
hosts to vd. For each host vi in the shortest routes, let hi denote the minimum number
of hops from vi to vd, and Pi denote the set of forwarders along the shortest vi-vd route.
Initially, set hi = 1 and Pi = {vi} if vi is neighboring to vd and the inclusion of vi in the
shortest routes will not cause bandwidth violation. Otherwise, set hi = ∞ and Pi = {}
(the empty set). Host vi will (will not) cause bandwidth violation if
B_Violation(b_req, Δ, {vi} ∪ Φ) returns true (false).

The shortest routes are established iteratively by a repeat-until loop. In each itera-
tion, a host vx that is closest to vd (i.e., hx is minimum) and was not selected before is
determined. Then, for each neighbor vj of vx, the vj-vd route (i.e., Pj) is replaced with
the vx-vd route augmented with the vj-vx hop (i.e., Px ∪ {vj}), if the new vj-vd route is
shorter and does not cause bandwidth violation. The latter can be checked by in-
voking B_Violation(b_req, Δ, {vj} ∪ Px ∪ Φ). Finally, the shortest routes are repre-
sented by means of H and P, which are two sets containing all his and Pis, respec-
tively. Shortest_Routes is detailed in the following.

Procedure Shortest_Routes(vd,b_req,Δ,Φ,H,P);
/* V is the set of all hosts. */
X←V−{vd};
for each vi ∈ X do

 if vi and vd are neighboring and
B_Violation(b_req, Δ, {vi} ∪ Φ) = false

 then hi ← 1 and Pi ← {vi}
 else hi ← ∞ and Pi ← {};
repeat

 determine vx∈X so that hx=min{hi|vi∈X} and de-
lete vx from X;

184 C.-C. Hu

 if hx ≠ ∞
 then for each neighbor vj of vx do
 if hj > hx + 1 and

B_Violation(b_req,Δ,{vj}∪Px∪Φ) = false
 then hj ← hx + 1 and Pj ← Px ∪ {vj}
until hx = ∞ or X = {};
H ← {} and P ← {};
for each vi ∈ V − {vd} do

 H ← H ∪ {hi} and P ← P ∪ Pi.

Next, we explain the execution of B_Violation. B_Violation has three input pa-

rameters: b_req, Δ and Φ’, where b_req and Δ are inherited from Shortest_Routes and
Φ’ is a superset of Φ. The hosts in Δ (Φ’) are destinations (forwarders) of the new
flow. B_Violation first checks if the forwarders in Φ’ cause bandwidth violation. If
bandwidth violation happens, then B_Violation returns true. Let Ni be the set of hosts
that are neighboring to vi and b_maxi be the maximal available bandwidth of vi. Also,
let b_ongoingi be the total bandwidth requirement of the ongoing flows that are for-
warded by vi and M be the set of destinations and forwarders of all ongoing flows. A
forwarder vi in Φ’ causes bandwidth violation if its bandwidth consumption exceeds

its maximal available bandwidth, i.e., |{vi}∪(Ni∩Φ’)|×b_req+ ∑
∪∈ iik Nvv

kongoingb
}{

_ >

b_maxi.
Let vj ∈ M be a neighbor of vi. Similarly, vj causes bandwidth violation if |Nj ∩ Φ’|

× b_req + ∑
∪∈ jjk Nvv

kongoingb
}{

_ > b_maxj. By means of checking vj, HRP can be

avoided to the ongoing flows that pass through the neighborhood of the forwarders in
Φ’. A destination vl ∈ Δ causes bandwidth violation if |Nl ∩ Φ’| × b_req

+ ∑
∪∈ llk Nvv

kongoingb
}{

_ > b_maxl. Finally, B_Violation returns false, if no bandwidth

violation happens. B_Violation is detailed in the following.

Procedure B_Violation(b_req, Δ, Φ’);
for each vi ∈ Φ’ do
 begin

 if |{vi} ∪ (Ni ∩ Φ’)| × b_req
+ ∑

∪∈ iik Nvv
kongoingb

}{
_ > b_maxi

 then return true;
 for each neighbor vj ∈ M of vi do
 if |Nj∩Φ’|×b_req + ∑

∪∈ jjk Nvv
kongoingb

}{
_ > b_maxj

 then return true
 end;

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 185

for each vl ∈ Δ do
 if |Nl∩Φ’|×b_req+ ∑

∪∈ llk Nvv
kongoingb

}{
_ >b_maxl

 then return true;
return false.

There are multiple shortest routes to vd established by Shortest_ Routes. If the new

flow is carried with a single route, then the bandwidth requirement can be satisfied.
However, bandwidth violation may happen if the new flow is carried with two or more
routes simultaneously. In the next section, by the aid of Shortest_Routes, an algorithm
is proposed to construct a bandwidth-satisfied multicast tree.

The proposed heuristic algorithm, named B_Satisfied_Multicast_Tree, has three
input parameters: vs, D and b_req, where vs is the source (i.e., the server) of the new
flow, D is the set of the destinations (i.e., the clients) of the new flow, and b_req is the
bandwidth requirement for the new flow. B_Satisfied_Multicast_Tree intends to estab-
lish a bandwidth-satisfied multicast tree for the new flow. Let Δ ⊆ D be a subset of
the destinations and F be the set of forwarders in the multicast tree. Initially, set Δ =
{} and F = {}.

The bandwidth-satisfied multicast tree is established iteratively by a for-loop.
Without loss of generality, assume D = {

1dv ,
2dv , …,

cdv }, where c = |D|. During

the ith iteration, a shortest route to
idv is selected from P (computed by Short-

est_Routes) so that the selected shortest routes to
1dv ,

2dv , …,
idv are bandwidth-

satisfied. Moreover, F and Δ are updated. At first, when i = 1 (the first iteration), Ps is

selected, which is a shortest route from vs to
1dv , and F (Δ) is replaced with F ∪ Ps (Δ

∪ {
1dv }). It should be noted that Ps is bandwidth- satisfied.

When i = 2, a forwarder vx ∈ F that is closest to
2dv is first determined. Then, Px

∈ P is selected as the shortest route to
2dv . Also F (Δ) is replaced with F ∪ Px (Δ ∪

{
2dv }). Now F represents a tree that connects vs with

1dv and
2dv . The tree is

bandwidth-satisfied (hence can avoid HMRP), as a consequence of executing Short-
est_Routes(

2dv , b_req, Δ, F, H, P), where Δ = {
1dv } and F = Ps (Ps was obtained

when i=1). The execution for the other iterations (i.e., when 3 ≤ i ≤ |D|) is very simi-
lar. Finally, when the execution of B_Satisfied_Multicast_Tree terminates, F repre-
sents a bandwidth-satisfied multicast tree that connects vs with

1dv ,
2dv , …,

cdv .

B_Satisfied_Multicast_Tree is detailed in the following.

Procedure B_Satisfied_Multicast_Tree(vs,D,b_req);
Δ ← {} and F ← {};
for i ← 1 to |D| do
 begin

 Shortest_Routes(
idv , b_req, Δ, F, H, P);

186 C.-C. Hu

 if i=1
 then if hs ≠ ∞
 then F ← F ∪ Ps and Δ ← Δ ∪ {

idv }

 else exit
 else begin

 determine vx ∈F so that hx=min{hi|vi∈F};
 if hx ≠ ∞
 then F ← F ∪ Px and Δ ← Δ ∪ {

idv }

 else exit
 end
 end.

For example, refer to Fig 6, where B_Satisfied_Multicast_Tree(s, {c1, c2, c3},
b_req) is executed to establish a bandwidth-satisfied multicast tree that connects the
server s with three clients c1, c2 and c3. During the first iteration, Shortest_Routes(c1,
b_req, Δ, F, H, P) is invoked to establish a shortest route, i.e., s−a−b−e−c1, to c1,
where Δ = {} and F = {} (refer to Fig 6(a)). The set F (Δ) is updated to {} ∪ {s, a, b,
e} = {s, a, b, e} ({} ∪ {c1} = {c1}).

During the second iteration, b−f−c2 is established as the shortest route to c2
(i.e., vx = b and Px = {b, f}) after invoking Shortest_Routes(c2, b_req, Δ, F, H, P),
because b is the closest forwarder in F to c2, where Δ = {c1} and F = {s, a, b, e}. The
set F is updated to {s, a, b, e} ∪ {b, f} = {s, a, b, e, f}, which represents a tree that
connects s with c1 and c2 (refer to Fig 6(b)). The set Δ is updated to {c1} ∪ {c2} =
{c1, c2}.

Similarly, during the third iteration, e−g−c3 is established as the shortest route to
c3 after invoking Shortest_Routes(c3, b_req, Δ, F, H, P), because e is the closest for-
warder in F to c3, where Δ = {c1, c2} and F = {s, a, b, e, f}. A bandwidth-satisfied
multicast tree that connects s with c1, c2 and c3 is represented by F = {s, a, b, e, f} ∪
{g} = {s, a, b, e, f, g} (refer to Fig 6(c)).

For most of multicast services, the number (i.e., |D|) of clients is considered a con-
stant, in contrast to the number of hosts in the MANET. Since different permutations
of

1dv ,
2dv , …,

cdv will result in different multicast trees established, we execute

B_Satisfied_Multicast_ Tree(vs, D, b_req) |D|! times, each for a different ordering of
clients. Then the multicast tree with minimal number of forwarders is selected.

B_Satisfied_Multicast_Tree can be easily adapted to M-OGHAM when the BHs
determine bandwidth-satisfied multicast trees. Recall that the adjacency of hosts is
necessary to B_Violation (a basic procedure of B_Satisfied_Multicast_Tree). Also, all
b_ongoingjs (the total bandwidth requirement of ongoing flows that are forwarded by
vi) and the set M (the set of destinations and forwarders of all ongoing flows) are
necessary to Shortest_Routes and B_Violation (the other two basic procedures of
B_Satisfied_Multicast_Tree). Hence, they should be made available before
B_Satisfied_Multicast_Tree is invoked by the BHs.

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 187

s

c3

c2

c1e

b
a

(a)

s

c3

c2

c1

f

e

b
a

(b)
s

g

c3

c2

c1

f

e

b
a

(c)
Fig. 6. A bandwidth-satisfied multicast tree. (a) A route from s to c1. (b) A tree connecting s
with c1 and c2. (c) A tree connecting s with c1, c2 and c3.

Recall that a sever (or a client) vi broadcasts a message over a multicast region for
selecting BHs. The hosts vjs within the multicast region reply their neighboring in-
formation and remaining connection time to vi. In this way, the BHs selected by vi can
compute the adjacency of hosts. Further, vj also reply b_ongoingj to vi if vj is a desti-
nation or forwarder of some ongoing flow. So, b_ongoingjs and M can be derived by
the BHs.

5 Simulation

Simulation is implemented using the Network Simulator 2 package (ns-2) [28]. IEEE
802.11 is used as the MAC layer protocol. Data/control packets are sent using the un-
slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). The
simulation environment models a large-scale MANET of 200 hosts which are ran-
domly spread in a 2000m×2000m area. Each host is equipped with a radio transceiver
whose transmission range is up to 250 meters over a wireless channel. The data trans-
mission capability of each host is assumed 800 Kbps. Forty runs with different seed
numbers are conducted for each scenario and collected data for these runs are
averaged.

Three performance measures: receiving rate, admission rate and number of control
packets are adopted. The receiving rate is the ratio of the number of data packets
received by clients to the number of data packets delivered from servers. If bandwidth
violation happens, it will drop drastically. The admission rate is the ratio of the num-
ber of multicast groups admitted to the number of multicast groups requested. When
the admission rate goes up, the network performance increases. On the other hand, the

188 C.-C. Hu

number of control packets can reflect the overheads incurred for construct-
ing/maintaining the multicast routes.

For convenience, we use Heu-M-OGHAM to denote the integration of M-
OGHAM with B_ Satisfied_Multicast_Tree. Since B_Satisfied_Multicast_Tree is heu-
ristic, an optimal algorithm for BSMTP is necessary in order to evaluate the perform-
ance of B_Satisfied_Multicast_Tree. In [27], the authors formulated BSMTP as a 0/1
integer linear programming, which can be well solved by a branch-and-bound algo-
rithm (see [26]). We use Opt-M-OGHAM to denote the integration of M-OGHAM
with such a branch-and-bound algorithm. Opt-M-OGHAM can serve as a benchmark
for evaluating the performance of Heu-M-OGHAM.

The simulation is performed with two aspects. First, performance comparison is
made among Heu-M-OGHAM, Opt-M-OGHAM and MCEDAR under the assump-
tion of static hosts. Second, the same performance comparison is made for mobile
hosts. MCEDAR [15] is a representative two-tier multicast protocol and an extension
to CEDAR [12] which is a routing algorithm for QoS applications in MANETs.

5.1 Performance Comparison: Static Hosts

Ten multicast groups, denoted by G1, G2, …, G10, are randomly created. Each multi-
cast group consists of one server and three clients. A flow requiring 50 Kbps is sent
from the server to the clients. The simulation proceeds for 1000 seconds; G1 starts
first, G2 starts after 100 seconds elapsed, G3 starts after 200 seconds elapsed, and so
on. Fig 7 and Fig 8 compare the admission rates and receiving rates of Heu-M-
OGHAM, Opt-M-OGHAM and MCEDAR under the assumption of static hosts.

Refer to Fig 7. When the number of multicast groups is smaller than 5, Heu-M-
OGHAM has higher admission rates than MCEDAR, as a consequence that the multi-
cast trees constructed by it have fewer forwarders. On the other hand, when the
number of multicast groups exceeds 5, Heu-M-OGHAM has lower admission rates

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of multicast groups

A
d

m
is

si
o

n
 r

a
te

MCEDAR
Heu-M-OGHAM
Opt-M-OGHAM

Fig. 7. Admission rate for static hosts

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 189

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of multicast groups

R
e

ce
iv

in
g

 r
a

te

MCEDAR
Heu-M-OGHAM

Fig. 8. Receiving rate for static hosts

than MCEDAR. Recall that the probability that MCEDAR induces HMRP jumps up
when the number of multicast groups exceeds 5. Also, Fig 8 demonstrates that the
receiving rate of MCEDAR drops drastically when the number of multicast groups
exceeds 5. When the number of multicast groups increases to 10, the receiving rate of
Heu-M-OGHAM is still high, but the receiving rate of MCEDAR drops seriously.

When there are feasible solutions to BSMTP, Opt-M-OGHAM can always deter-
mine the optimal one. However, it is likely that Heu-M-OGHAM fails to find a feasi-
ble one. Fig 7 also reveals the success rate of Heu-M-OGHAM in finding a feasible
solution to BSMTP. The success rate can be estimated by means of the ratio of the
admission rate of Heu-M-OGHAM to the admission rate of Opt-M-OGHAM.

5.2 Performance Comparison: Mobile Hosts

Host mobility is based on the random waypoint model [25], in which a host’s move-
ment consists of a sequence of random length intervals, called mobility epochs.

5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
MCEDAR
Heu-M-OGHAM

A
ve

g
a

g
e

 r
e

ce
iv

in
g

 r
a

te

Speed (m/sec)

Fig. 9. Receiving rate for mobile hosts

190 C.-C. Hu

5 10 15 20
2

3

4

5

6

7

8

9

10
x 10

4

MCEDAR
Heu-M-OGHAM

N
u

m
b

e
r

o
f c

o
n

tr
o

l p
a

ck
e

ts

Speed (m/sec)

Fig. 10. Number of control packets for mobile hosts

During each epoch, a host moves in a constant direction and at a constant speed. The
simulation proceeds for 1000 seconds and the speed varies from 5 to 20 meters per
second (or 18 to 72 kilometers per hour). The first seven multicast groups, i.e., G1, G2,
…, G7, that were created in Section 5.1 are used in the simulation.

Figure 9 compares the receiving rates of Heu_M_OGHAM and MCEDAR under
the assumption of mobile hosts. Like the previous situation of static hosts,
Heu_ODMRP has higher receiving rates than MCEDAR. Figure 10 shows that Heu_
M_OGHAM generates fewer control packets than MCEDAR. Control packets are
generated for constructing a new bandwidth-satisfied multicast tree if the current
multicast tree cannot satisfy the bandwidth requirement.

6 Conclusions

HRP and HMRP, which are two bandwidth-violation problems that may occur
to previous QoS routing/multicasting protocols, were introduced in this paper.
Since bandwidth and power are limited in MANETs, they should be taken into con-
sideration in routing/multicasting protocols. The problem (i.e., BSMTP) of determin-
ing a bandwidth-satisfied multicast tree with minimum number of forwarders was
studied in this paper. An algorithm (i.e., B_Satisfied_Multicast_Tree) that can generate
bandwidth-satisfied multicast trees was proposed. It constructed multicast trees with
the objective of minimizing the total number of forwarders, in addition to bandwidth
satisfaction. The algorithm was integrated into M-OGHAM to support bandwidth-
constrained multicast services. The integration (i.e., Heu-M-OGHAM) can construct
bandwidth-satisfied multicast trees without inducing HRP and HMRP.

Performance comparison was made among Heu-M-OGHAM, Opt-M-OGHAM and
MCEDAR, where Opt-M-OGHAM served as a benchmark. Heu-M-OGHAM has
higher receiving rates than MCEDAR, and it maintains high receiving rates even if
the network traffic is saturated. If the network traffic is not saturated, Heu-M-
OGHAM can admit more multicast groups than MCEDAR, which is a consequence

 Bandwidth-Satisfied Multicast Services in Large-Scale MANETs 191

that the multicast trees constructed by it have fewer forwarders. Moreover, the admis-
sion rate of Heu-M-OGHAM is close to the benchmark.

References

[1] Low, C.P., Song, X.: On finding feasible solutions for the delay constrained group multi-
cast routing problem. IEEE Transactions on Computers 51, 581–588 (2002)

[2] Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia commu-
nicationl. IEEE Transactions on Computers 51, 581–588 (2002)

[3] Sun, Q., Langendoerfer, H.: Multicast routing for multimedia communication. In: Pro-
ceedings of the Second Workshop on Protocols for Multimedia Systems, pp. 452–458
(1995)

[4] Corson, M.S., Batsell, S.G.: A reservation-based multicast (RBM) routing protocol for
mobile networks_ initial route construction phase, ACM/Baltzer Wireless Networks 1(4),
427–450 (1995)

[5] Belding-Royer, E.M., Perkins, C.E.: Transmission range effects on AODV multicast
communication. ACM/Kluwer Mobile Networks and Applications 7, 455–470 (2002)

[6] Xie, J., Talpade, R.R., Mcauley, A., Liu, M.: AMRoute: adhoc multicast routing proto-
col. ACM/Kluwer Mobile Networks and Applications 7, 429–439 (2002)

[7] Gupta, S.K.S., Srimani, P.K.: Cored-based tree with forwarding regions (CBT-FR), a
protocol for reliable multicasting in mobile ad hoc networks. Journal of Parallel and Dis-
tributed Computing 61(9), 1249–1277 (2001)

[8] Chan, K., Nahrstedt, K.: Effect location-guided tree construction algorithms for small
group multicast in MANET. In: Proceedings of the 21st International Annual Joint Con-
ference of the IEEE Computer and Communications Societies vol. 3, pp. 1180–1189
(2002)

[9] Lee, S.J., Gerla, M.: On-demand multicast routing protocol in multihop wireless mobile
networks, ACM/Kluwer Mobile Networks and Applications 7, 441–453 (2002)

[10] Garcia-Luna-Aceves, J.J., Madruga, E.L.: The core-assisted mesh protocol. IEEE Journal
on Selected Areas in Communications 17, 1380–1394 (1999)

[11] Kozat, U.C., Kondylis, G., Ryu, B., Marina, M.K.: Virtual dynamic backbone for mobile
ad-hoc networks. Proceedings of the IEEE International Conference on Communica-
tions 1, 250–255 (2001)

[12] Sinha, P., Sivakumar, R., Bhanghavan, V.: CEDAR: a core-extraction distributed ad-hoc
routing algorithm. IEEE Journal on Selected Areas in Communications 17, 1454–1465
(1999)

[13] Sivakumar, R., Das, B., Bharghavan, V.: Spine routing in ad-hoc networks, Cluster
Computing, a special issue on mobile computing 1(2), 237–248 (1998)

[14] Jaikaeo, C., Shen, C.C.: Adaptive backbone-based multicast for ad hoc networksx. Pro-
ceedings of the IEEE International Conference on Communications 5, 3149–3155 (2002)

[15] Sinha, P., Sivakumar, R., Bhanghavan, V.: MCEDAR: multicast core-extraction distrib-
uted ad-hoc routing. In: Proceedings of the IEEE Wireless Communications and Net-
working Conference, pp. 1313–1317. IEEE, Los Alamitos (1999)

[16] Yang, Y., Kravets, R.: Content-aware admission control for ad hoc networks. IEEE
Transactions on Mobile Computing 4(4), 363–377 (2005)

[17] Chen, L., Heinzelman, W.: Qos-aware routing based on bandwidth estimation for mobile
ad hoc networks. IEEE Journal on Selected Areas in Communications 23(3), 561–572
(2005)

192 C.-C. Hu

[18] Chen, S., Nahrstedt, K.: Distributed quality-of-service routing in ad hoc networks. IEEE
Journal on Selected Areas in Communications 41, 120–124 (1999)

[19] Xue, Q., Ganz, A.: Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks.
Journal of Parallel and Distributed Computing 41, 120–124 (2003)

[20] Pagani, E., Rossi, G.P.: A framework for the admission control of QoS multicast traffic
in mobile ad hoc networks. In: Proceedings of the ACM International Workshop on
Wireless Mobile Multimedia, pp. 3–12 (2001)

[21] Hu, C.C., Wu, E.H.K., Chen, G.H.: OGHAM: On-Demand Global Hosts for Mobile Ad-
Hoc Multicast Services, accepted for Ad Hoc Networks

[22] Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc networks.
In: Proceedings of the ACM International Workshop on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, pp. 61-68 (2000)

[23] Bharghavan, V., Demers, A., Shenker, S., Zhang, L.: MACAW: a media access protocol
for wireless LAN’s. In: Proceedings of ACM SIGCOMM, pp. 212–225 (1994)

[24] Hu, C.-C., Wu, E.H.-K., Chen, G.-H.: Mobility-aware on-demand global hosts for ad-hoc
multicast. In: Lu, X., Zhao, W. (eds.) ICCNMC 2005. LNCS, vol. 3619, pp. 375–384.
Springer, Heidelberg (2005)

[25] Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random waypoint mobil-
ity for wireless ad hoc. IEEE Transactions on Mobile Computing 2(3), 257–269 (2003)

[26] Geoffrion, A., Marsten, R.: Integer programming algorithms: a framework and state- of-
the-art survey. Management Science 18, 465–491 (1972)

[27] Hu, C.-C., Wu, E.H.-K., Chen, G.-H.: Bandwidth-satisfied multicast trees in MANETs.
IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob) 3, 323–328 (2005)

[28] Network Simulator (Version 2): http://www-mash.cs.berkeley.edu/ns/
[29] Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathe-

matik 1, 269–271 (1959)

Localising Multicast Using Application

Predicates

Ian Wakeman1, Stephen Cogdon, Laurent Mathy2, and Michael Fry3

1 Dept of Informatics, University of Sussex, Brighton, UK
2 Dept of Informatics, Lancaster University, Lancaster, UK

3 School of IT, University of Sydney, Sydney, Australia

Abstract. In this paper, we investigate how to incorporate an applica-
tion metric into the construction of a multicast tree so as to facilitate
the use of range constrained multicast. We first describe the construction
and delivery protocols, show through an analysis drawing on stochastic
geometry that the protocol is scalable, and provide simulations showing
the performance of the protocol against trees derived from reverse path
forwarding construction.

1 Introduction

Multicast is widely accepted as being a useful tool in the construction of dis-
tributed applications. However, for economic reasons, and because it is believed
that the amount of state needed to fully deploy native multicast is infeasible in
current router designs, native multicast has been deployed only in small sections
of the Internet. There has therefore been a wide set of research on application
level multicast, such as HMTP [1], HostCast [2], switch-trees [3], DCMALTP [4],
NICE [5], Narada [6] and TBCP [7]. These protocols aim to provide the facili-
ties for construction of an overlay network for distributing data across the group.
All of these protocols improve network performance by mapping application re-
quirements into the delivery of messages. In this work we aim to extend this
approach to design further, and investigate the benefit that can be obtained by
utilising application metrics in the construction of the delivery tree, and in the
propagation of messages.

Our motivating application has been to develop a protocol to allow communi-
cation between map servers for virtual worlds. Macedomia et al [8] propose that
a distributed world be split across different servers so that each node serves a
different geographical locality. They then propose that events be disseminated
only to those nodes which need to know about them because active objects in the
world managed by those nodes are able to detect the events. In any distributed
world, the density of activity is uneven, and for efficiency reasons the density
of nodes is uneven. We wish to design a protocol that efficiently disseminates
events to those nodes that should receive them.

We assume that nodes within the application can provide a real-valued mea-
sure of the distance between the nodes. This measure can be anything, such as
the measured latency of packet delivery, the similarity between the content in a

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 193–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 I. Wakeman et al.

file sharing system, or a measure of the degree of trust between two nodes. We
then use this measure to provide an enhanced application level multicast that
can localise the delivery of messages to those nodes that meet predicates on the
measure, allowing services such as locate the set of nodes which are trusted to a
certain degree, or replicate content to nodes which already have similar content
to provide an efficient storage redundancy. In this paper, we consider solely the
less than (<) operator, and we leave the consideration of more sophisticated
predicates to later work.

A massive multiplayer game (MMORPG) such as World of Warcraft is a
topical example of a distributed virtual world in need of scaling. Ratnasamy et
al’s [9] state that “Multiple servers are each assigned a region of the virtual world
and relay communication between players. Such scaling can be problematic and
indeed numerous reports cite overloaded servers affecting the user experience.”
We believe that designs such as the ones we posit can solve such problems.

Besides distributed virtual worlds, other candidate applications that may ben-
efit from our protocol are those with the following characteristics:

1. There are distance measures between the nodes
2. There are likely to be enough nodes or sufficient churn in group membership1

such that full knowledge of the group is infeasible
3. The nodes want to ask queries of each other based on their distance metrics.

In the rest of this paper we first describe the protocols, then provide a mathe-
matical analysis using techniques from stochastic geometry to show the scalabil-
ity of the system. We then provide simulations which confirm our mathematical
analysis, and then describe simulations showing that the protocols can provide
an improved service over native shortest path first multicast for some significant
set of queries.

2 Description of the Protocols

Before we develop our own protocol, it is instructive to first consider two alter-
native approaches. Our aim is to deliver a message to all members of a group
which have an application distance from the sender less than some figure. We
assume that the distances are time invariant, and require at least one exchange
of messages to calculate the distance. The first approach is to calculate the pair-
wise distances between each sender and potential receiver, and then to distribute
the message to each receiver. This would require each sender to track the mem-
bership of the group, and then to initiate a message exchange with each receiver
to discover the distance between the nodes. Although the measured distances
can be cached, the initial delay before sending the message to all receivers will
be large.

An alternative approach is to deliver the message first, and then measure
the distances to see if the message should be delivered. If we assume that the
1 We do not address maintenance in this paper, but the techniques of TBCP [7] can

be used to repair the tree.

Localising Multicast Using Application Predicates 195

Record: Node
1: List < Address >: children
2: double : distanceTo
3: double : coi

Procedure: probe(cand) : Node
4: return children, distanceTo(cand), coi

Procedure: join(cand)
5: children.add(cand)
6: for all c ∈ children do
7: c.addSibling(cand)
8: end for

Procedure: addSibling(cand)
9: siblings.add(cand)

Procedure: testChildren(Node : adopter)
10: closest ← null
11: minD ← null
12: for all c ∈ adopter.children do
13: n ← c.probe(this)
14: if n.d < n.coi then
15: if n.d < minD then
16: closest ← n
17: minD ← n.d
18: end if
19: end if
20: end for
21: if closest �= null then
22: if testChildren(closest) then
23: return true
24: else
25: becomeChild(closest)
26: return true
27: end if
28: else
29: return false
30: end if
Procedure: becomeChild(p)
31: parent ← p
32: coi ← distanceTo(p)/2
33: p.join(this)

Fig. 1. Tree construction algorithm

message can be delivered over a source-rooted shortest path tree and that routes
are symmetric, then the total cost in traffic will be the cost of the multicast tree
plus the number of message exchanges to measure distance. Whilst the initial
cost of dissemination of events is cheap, the cost of distance calculation is high.

Our approach has been to incorporate the calculation of distances into the
construction of the delivery tree, implicitly holding the distance measurements

196 I. Wakeman et al.

Procedure: propagate(msg, radius)
1: if radius == 0 then
2: deliverLocal(msg)
3: end if
4: for all c ∈ children do
5: if distanceTo(c) + c.coiLimit > radius then
6: c.propagate(msg,0)
7: end if
8: end for

Procedure: checkDistance(msg,radius,node)
9: if distanceTo(node) ¡ radius then

10: node.propagate(msg,0)
11: else if distanceTo(node) - node.coi ¡ radius then
12: newRadius ← distanceTo(node) − radius
13: node.propagate(msg,newRadius)
14: end if
Procedure: checkSiblings(msg, radius)
15: for all s ∈ siblings do
16: checkDistance(msg, distance, s)
17: end for
Procedure: propagateUp(msg, radius, distance)
18: checkSiblings(msg, radius + distance)
19: if distance < radius then
20: deliverLocal(msg)
21: end if
22: if parent �= null then
23: rad ← radius + distance
24: dist ← distance + distanceTo(parent)
25: parent.propagateUp(msg,rad, dist)
26: end if
Procedure: send(msg, radius)
27: distance ← distanceTo(parent)
28: parent.propagateUp(msg,radius, distance)
29: checkSiblings(msg, radius)
30: for all c ∈ children do
31: checkDistance(msg, radius, c)
32: end for

Fig. 2. Distance constrained propagation

in the tree topology, and using this information to localise the delivery of the
message. This reduces the number of nodes needing to exchange messages to
measure distances.

As in nearly all multicast protocols, our protocol can be split into a tree
construction phase, shown in Figure 1, and a message propagation phase, shown
in Figure 2.

In the algorithmic descriptions of the protocols in Figures 1 and 2, the
distanceTo method will return a real valued number representing the distance

Localising Multicast Using Application Predicates 197

from the calling to the called node. This method is application specific, and may
or may not make additional calls over the network to determine the distance.

We assume that the distance comes from a metric space in that

A.distanceTo(A) = 0 (1)

A.distanceTo(B) = B.distanceTo(A) (2)

A.distanceTo(B) + B.distanceTo(C) ≥ A.distanceTo(C) (3)

We discuss how we use this assumption below.
Each node has a circle of influence (coi). When a node is probing to join a

the tree, it can only become a child of a node if the distance is less than the
circle of influence. The circle of influence is a function of the distance between
a node and its parents. In this paper, we assume that this is always set to
distanceTo(parent)/2, since analysis shows that this provides good scalability.
Other approaches for setting the coi are for future investigation.

Our tree construction is an abstracted version of the tree building control
protocol (TBCP) presented in [7]. When a node wishes to join the tree, it con-
tacts the root node, which returns a list of its children. The joining node will
then query all of the children to discover in which nodes’ circle of influence the
requesting node lies, and which of these nodes is closest. If such a node is found,
then it will attempt to join the children of the closest node. If no such node is
found, then it will become a child of the current best candidate.

At the end of the tree construction phase, we will have built a hierarchical
tree, in which we have the guarantee that the children of a node are all closer
than its circle of influence. Each node will have a list of its siblings and its
immediate children, and the relevant application distances to these nodes. We
will show in Section 3 that is O(log(n)) in the amount of state required.

When a node N wishes to send a message, it specifies the surrounding radius
of delivery of the message. The message shall go to at least all nodes n for which
n.distanceTo(N) < radius. The sending node knows the distance to all of its chil-
dren, siblings and parent, and the size of their coi. It can thus immediately discount
those nodes whose children cannot fall within the radius of delivery. The sending
node always propagates upwards to its parent unless the parent is the root node,
since the parent may have siblings whose coi overlaps with the delivery radius. If
a sibling falls within the radius of delivery, it is asked to propagate the message to
all of its children, since the children may be within the radius of delivery. If a node
falls outside of the radius of delivery, but its coi overlaps with the radius, then it is
asked to propagate to those nodes which have a distance such that they would lie
within the ring around the node whose inner diameter is tangent upon the radius.

Since we are using a distance metric, for two siblings A and B at distance
dAB, and A is sending a message at radius R for a node C at distance dAC , then
the children of B must be at least at a distance of dAB − coiB by Equation (3).
Therefore, if R + dCA < dAB − coiB then the children of B cannot fall within
the radius. If R + dCA < dAB but R + dCA > dAB − coiB, then the inner circle
of nodes defined by at a radius from B of dAB − R − dCA are out of the radius

198 I. Wakeman et al.

also by equation (3). Similar arguments follow for the remaining recalculations
of distance in Algorithm 2.

As an optimisation, when a node is asked to propagate with a radius of 0 and
it has a number of children, it can recalculate the distanceTo function so as to
more accurately determine which children to propagate the message to.

Each node therefore stores its parent, siblings and children. As we show in
section 3, the number of children of each node tends to a constant multiplied
by logarithm of the area of the circle of influence, and is independent of the
total number of nodes. The amount of state at any node therefore has a finite
bound, and the number of message exchanges to establish the tree is worst case
logarithmic in the number of nodes.

3 Algorithm Analysis

In this section, we analyse a model of the cluster tree algorithm. The nodes wishing
to join the tree are assumed to appear randomly upon a 2 dimensional plane, as
part of a Poisson point process Φ with intensity λ, and the distance between nodes
is calculated as the straight line distance between the points. We assume without
loss of generality that the root of the tree is based at the origin. Each node has a
circle of influence which is a function of its distance from its parent h(r). When a
newnodeappears, if it iswithin the circleof influenceof an existingnode, then itwill
recursively attempt to join the children of that node. If it cannot join any children,
then it will become a new child of that node. This process starts at the root node.

We follow the analysis of the algorithm as a Hard-core point process from [10].
Each node is marked with a random number, m(x), between 0 and 1. This mark
can be viewed as an indication of when the node appeared in the process and thus
its age. We then use a thinning process on the nodes to remove those younger
nodes which would be subsumed in the subtree formed under a node to create a
new point process Φh. A node is retained if there is no other point marked with
a smaller random number (i.e. older) in the retained process close enough such
that the first point would fall within the circle of influence of the second point.
We denote the volume induced around x in which no point must lie at distance
r(x) by h(.) as b(r(x), h(.)). Formally, the thinned process is given by

Φh = {x ∈ Φ : m(x) < m(y) ∀y ∈ Φh ∩ b(r(x), h(.))}

The intensity of Φh is obviously dependent upon the distance from the origin
and is given by:

λh(r) = ph(r)λ

An approximation of the Palm retaining probability ph(r) is calculated by inte-
grating over all values of the random variable m(x) and calculating the prob-
ability that there are no other points in the induced volume. We are therefore
ignoring the probability that a point falls within the induced volume, but is
captured by some older point.

ph(r) =
∫ 1

0

exp(−λb(r, h(.))t)dt

Localising Multicast Using Application Predicates 199

In the simple case where h(.) is a constant value H , then we have

ph =
∫ 1

0

exp(−λπH2t)dt

=
1 − exp(−λπH2)

λπH2

The intensity of Φh, λh, is calculated from

λh = phλ

=
1 − exp(−λπH2)

πH2

λh is interpreted as the number of nodes per unit area on the plane that are
directly attached to the root node.

In general, the calculation of b(r, h(.)) is not a nice problem. However, it turns
out that when h(.) = r/2, the solution is particularly neat. If we consider the
diagram in Figure 3, we can show that

cos(φ) =
a2 − h2(a) + r2

2ar

cos(φ) =
3
4a2 + r2

2ar

If we return to Cartesian Coordinates, remembering that a2 = x2 + y2 and
cos(φ) = y/(x2 + y2)1/2 then

y =
3/4x2 + 3/4y2 + r2

2r

a

h(a)

r

φ

Fig. 3. Calculation of the induced area

200 I. Wakeman et al.

To calculate the area as a function of r, we express the curve describing the
induced area as a function of y, and then integrate with respect to y between
the two roots of the polynomial.

x = (8/3ry − 4/3r2 − y2)1/2

b(r, r/2) =
∫ 2r

2r/3

(8/3ry − 4/3r2 − y2)1/2dy

Completing the square, substituting u = (y − 4r/3) and using standard integral
tables

b(r, r/2) =
∫ 2r

2r/3

(4r2/9 − (y − 4r/3)2)1/2dy

=
∫ 2r/3

−2r/3

(4r2/9 − u2)1/2du

= [u(4r2/9 − u2)1/2 + 4r2/9 sin−1(3u/2r)]2r/3
−2r/3

=
4
9
πr2

We can then plug this back into our equation for ph(r),

ph(r) =
1 − exp(−λπ 4

9r2)
λπ 4

9r2

The instantaneous intensity of Φh, λh, is calculated from

λh(r) = ph(r)λ

=
1 − exp(−λπ 4

9r2)
π 4

9r2

λh is interpreted as the number of nodes per unit area on the plane that are
directly attached to the root node.

If we wish to calculate the limiting number of top level nodes in a particular
area, we simply integrate over the area, having let λ tend to infinity. Therefore in
the ring from radius d1 to d2, the expected number of top level nodes, N(d1, d2)
is given by

N(d1, d2) =
∫ d2

d1

2πr
4
9πr2

dr

=
9
2

∫ d2

d1

1
r
dr

=
9
2
[log(r)]d2

d1

=
9
2

log(d2/d1)

Localising Multicast Using Application Predicates 201

For levels other than the top, the distribution of nodes is dependent not only
on the radius from the parents, the number of overlapping nodes, but on the
point in the process when the node appeared in the tree. For these reasons, the
processes are not amenable to analysis, but we believe they can be approximated
by the top level analysis.

Choosing the sphere of influence h(.) = r/2 gives logarithmic scaling proper-
ties in the expected number of top level nodes. However, this choice of function
does suffer from a pole at the origin, and so the number of top level clusters
is infinite if the radius is drawn from (0,d). If there is some limit on the mini-
mum radius, then the number of clusters will tend to some limit, calculable from
above.

3.1 Expected Message Complexity

When a new node wishes to join the tree, it will query the root node for the set
of children who it may need to join. For the case of the circle of influence being
r/2, this includes any children of the root whose distance from the root, d, falls
in the following range:

2r > d > 2r/3

The expected number of top level nodes the joining node will have to query
can be calculated as: ∫ 2r

2r/3

2πxλhdx

=
∫ 2r

2r/3

2πx
1 − exp(−λπ 4

9x2)
π 4

9x2
dx

= 9/2
∫ 2r

2r/3

1/x −
exp(−λπ 4

9x2)
x

dx

= 9/2(log(3r) − (Ei(−λπ
16
9

r2) − Ei(−λπ
16
27

r2)))

which in the limit as the intensity tends to infinity, shows that the number will
increase as the logarithm of the distance from the root.

Exact analysis of the distribution of points below the top level is made diffi-
cult by the multiple dependencies as described above. Instead, we appeal to the
following argument to characterise the number of children for any given node.
As shown above, the intensity of the point distribution follows an inverse square
law dependent upon the distance from the parent to a first approximation for
the top level. We assume that the intensity of nodes on other levels can also
be approximated by an inverse square law. We can argue that since the area of
the coi is proportional to the square of the radius, when we calculate the ex-
pected number of nodes in the coi of any node, the two dependencies will cancel
out, and the number of children of any node is constant to a first approximation.

202 I. Wakeman et al.

The number of levels beneath any node will be dependent upon the logarithm
of the distance from its parent.

4 Simulations

To demonstrate the effectiveness of the algorithm, our control will be the source-
routed shortest path tree using native routing, with and without the calculation
of the cost of the return paths to the source node. We argue that these are the
most useful controls since they illustrate how the algorithm performs when there
need be no negotiation between nodes to determine the distance between nodes,

Table 1. Transit Stub generation parameters

10 stubs per transit domain
0.1 probability of extra transit-stub edge
0.1 probability extra stub-stub edge
10 transit domains per graph fully connected to each
other
20 nodes per transit domain modelled as a random graph
with edge probability of 0.8
10 nodes per stub domain, modelled as random graphs
with edge probability 0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Application distance versus tree size relative to spf tree

Actual 20
Algorithm 20

Actual 40
Algorithm 40

Actual 80
Algorithm 80

Actual 160
Algorithm 160

Actual 320
Algorithm 320

Actual 640
Algorithm 640

Actual 1220
Algorithm 1220

Fig. 4. Ratio of tree size for the algorithmic determination of delivery tree and the
actual tree against the shortest path tree for all group members, when distance comes
from position on a sphere

Localising Multicast Using Application Predicates 203

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

Application distance versus tree size relative to spf tree

Actual 20
Algorithm 20

Actual 40
Algorithm 40

Actual 80
Algorithm 80

Actual 160
Algorithm 160

Actual 320
Algorithm 320

Fig. 5. Ratio of tree size for the algorithmic determination of delivery tree and the
actual tree against the shortest path tree for all group members, when distance comes
from weights of connecting links

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Application distance versus tree size relative to spf tree with return path

Actual 20
Algorithm 20

Actual 40
Algorithm 40

Actual 80
Algorithm 80

Actual 160
Algorithm 160

Actual 320
Algorithm 320

Actual 640
Algorithm 640

Actual 1220
Algorithm 1220

Fig. 6. Ratio of tree size for the algorithmic determination of delivery tree and the
actual tree against the shortest path tree and the return path for all group members,
when distance comes from position on a sphere

204 I. Wakeman et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

Network distance versus tree size relative to spf tree with return path

Actual 20
Algorithm 20

Actual 40
Algorithm 40

Actual 80
Algorithm 80

Actual 160
Algorithm 160

Actual 320
Algorithm 320

Actual 640
Algorithm 640

Fig. 7. Ratio of tree size for the algorithmic determination of delivery tree and the
actual tree against the shortest path tree for all group members, when distance comes
from weights of connecting links

and when negotiation is needed. In each case, we show the ratios of the size of
delivery graphs constructed against the control.

We used four transit stub networks generated by gt-itm [11] consisting of
20200 nodes, generated from the parameters shown in Table 1. We do not claim
that these topologies are representative of the current state of the Internet, but
they are similar to the topologies used in other work within the area [12]. We
have conducted two experiments with application metrics. In experiment 1, we
have used an arbitary application metric completely unrelated to the network
topology. Each node is placed on the unit sphere, and the distance between nodes
is measured as the great circle diameter between their corresponding positions
on the nodes. In experiment 2, we used the length of the edges connecting the
nodes within the transit stub graph as the application metric, showing how the
protocols can construct network efficient structures.

Our measurements first discover the shortest path tree from the source to all
the other nodes within the group. The size of this tree is calculated as the sum
of the weights of each unique edge in the tree. We then calculate the size of
the application level delivery tree. This is composed of the intra-group edges.
We calculate the length of each individual intra-group edge, and then sum the
values of each intra-group edge. Note that since there is an underlying transit
stub graph, some nodes will be used to carry the same traffic multiple times as
the traffic traverses transit domains.

Localising Multicast Using Application Predicates 205

In both experiments, we vary the group and distances as shown. We then
have chosen each group ten times from the possible nodes, and have chosen ten
source nodes per group. We have then repeated this process for each of the four
graphs. Thus each point in the graph is the mean of 400 samples. The sets of
distribution radii used in the graphs are chosen so that over half the nodes in
the group are covered for the largest radius.

There are two factors working against the efficiency of the cluster tree algo-
rithm. If we use an application metric which is unrelated to the network, then
the overlay tree may be very inefficient, with large degrees of network stretch.
In Tan et al [12] and in [13], they show that the basic TBCP algorithm will con-
struct trees which are up to twice as large as those produced by a shortest path
spanning tree. When an arbitrary application metric is used, these inefficiencies
increases with the number of members of the group. Also, the delivery algorithm
is working with incomplete information, and will deliver to a number of nodes
which do not need the message. As the radius of delivery increases, the number
of excess nodes will also increase.

In Figure 4, we see the ratios of tree size for the arbitrary metric when there
is no return path incorporated into the size. For small groups, such as 20 nodes,
the algorithm is more effective since the discrepancy in tree efficiencies is low,
and the algorithm has fewer false postives to discount. However, as we move to
large groups, then the inefficient tree and the excess nodes make the algorithm
less efficient than a basic tree delivery at a delivery radii of around 30% of nodes.

This is borne out when we use network metrics as the distance metric as in
Figure 5. The underlying constructed tree is now closer to the topology of the
minimum spanning tree, and the efficiencies now arise from the excess nodes.
The lower lines marked as being from the actual nodes show the size of the
subtree constructed only from the nodes actually within the delivery radius. The
algorithm trees then become less efficient as we increase the number of excess
deliveries due to incomplete information. These would be reduced on subsequent
deliveries as cached distance figures become available.

In Figures 6 and 7, we show the relative ratios of tree size when a single return
message to the source is required. The cost of the shortest path control is now
dominated by the set of return paths. Thus the algorithm is efficient even when
the overlay tree is inefficient, since it reduces the number of return messages.
In figure 6, the largest groups have the best performance ratio, since the return
paths grow linearly in size as the group size grows for the control, whereas the
number of excess nodes in the algorithm grows sub-linearly.

5 Related Work

Besides the application layer multicast described in Sec 1, a similar approach to
the design of overlays comes from the work on distributed hash tables (DHT).
DHTs provide an efficient lookup mechanism for information which is necessarily
distributed, providing a layer of indirection. Multicast in systems such as Scribe
[14] use the DHT routing as the primary route, and then for multicast topics

206 I. Wakeman et al.

or addresses form a tree using reverse path forwarding. Utilising a cluster tree
building approach over the dht may solve some of the problems discussed in [15],
and is a promising level of investigation for building multicast over a CAN style
DHT [16]. If we were to solve the problem of range delivery predicates within the
framework of a DHT, then we would look to solutions such as Mercury [17], in
which multiple range predicates are implemented using separate overlay networks
for each attribute.

Our approach is similar to the formation of quadtrees and r-trees [18], where
the tree structure is defined spatially by creating a hierarchy of rectangles over
the space, although we we work in any metric space rather than solely in a
Euclidean space. The use of such structures is natural for decomposing sensor
networks as in [19].

6 Conclusions

In this paper, we investigate how to incorporate an application metric into
the construction of a multicast tree so as to facilitate the use of range con-
strained multicast. We first describe the construction and delivery protocols,
show through an analysis drawing on stochastic geometry that the protocol
is scalable, and provide simulations showing the performance of the protocol
against trees derived from reverse path forwarding construction.

In future work, we intend to investigate how the protocol can be made resilient
to churn, and to determine its performace in real applications.

References

1. Zhang, B., Jamin, S., Zhang, L.: Host multicast: A framework for delivering mul-
ticast to end users. In: IEEE INFOCOM (2002)

2. Li, Z., Mohapatra, P.: Hostcast: A new overlay multicasting protocol. In: IEEE
Int. Communications Conference (ICC), IEEE, Los Alamitos (2003)

3. Helder, D., Jamin, S.: End-host multicast communication using switchtrees proto-
cols. In: Global and Peer-to-Peer Computing on Large Scale Distributed Systems
(2002)

4. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construc-
tion of an efficient overlay multicast infrastructure for real-time applications. In:
IEEE INFOCOM, San Francisco, USA, IEEE Computer Society Press, Los Alami-
tos (2003)

5. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer mul-
ticast. In: SIGCOMM ’02: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications, October
2002, vol. 32(4), pp. 205–217. ACM Press, New York (2002)

6. Yang-hua, C., Rao, S., Seshan, S., Zhang, H.: A case for end system multicast.
Selected Areas in Communications, IEEE Journal on 20(8), 1456–1471 (2002)

7. Mathy, L., Canonico, R., Hutchison, D.: An overlay tree building protocol. In:
Networked Group Communication, London, UK, pp. 76–87 (2001)

Localising Multicast Using Application Predicates 207

8. Macedomia, M., Zyda, M., Pratt, D., Brutzman, D., Barham, P.: Exploiting reality
with multicast groups: a network architecture for large-scale virtual environments.
In: Virtual Reality Annual International Symposium (VRAIS’95), p. 2 (1995)

9. Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting ip multicast. In: SIG-
COMM (2006)

10. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications.
Wiley, Chichester (1987)

11. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In:
IEEE Infocom, vol. 2, pp. 594–602. IEEE, San Francisco, CA (1996)

12. Tan, S.-W., Waters, G., Crawford, J.: A performance comparison of self-organising
application layer multicast overlay construction techniques. Computer Communi-
cations 29, 2322–2347 (2006)

13. Cogdon, S.: Application-level multicast for group communication. Ph.D. disserta-
tion, University of Sussex (2003)

14. Castro, M., Druschel, P., Rowstron, A.: Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE Journal on Selected Areas in Com-
munications 20(8) (October 2002)

15. Bharambe, A., Rao, S., Padmanabhan, V., Seshan, S., Zhang, H.: The impact of
heterogeneous bandwidth constraints on dht-based multicast protocols. In: The
Fourth International Workshop on Peer-to-Peer Systems (February 2005)

16. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable
Content-Addressable Network. In: Proc of SIGCOMM, ACM Press, New York
(August 2001)

17. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. SIGCOMM Comput. Commun. Rev. 34(4), 323–366 (2004)

18. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc.
ACM SIGMOD International Conference on Management of Data, pp. 45–57
(1984)

19. Soheili, A., Kalogeraki, V., Gunopulos, D.: Spatial queries in sensor networks. In:
GIS ’05: Proceedings of the 13th annual ACM international workshop on Geo-
graphic information systems, pp. 61–70. ACM Press, New York (2005)

Cost Aware Adaptive Load Sharing

David Breitgand1, Rami Cohen2, Amir Nahir3, and Danny Raz4

1 IBM Haifa Research Lab, Israel
davidbr@il.ibm.com

2 CS Department, Technion, Haifa, Israel
ramic@cs.technion.ac.il

3 IBM Haifa Research Lab, Israel
nahir@il.ibm.com

4 CS Department, Technion, Haifa, Israel
danny@cs.technion.ac.il.

Abstract. We consider load sharing in distributed systems where a
stream of service requests arrives at a collection of n identical servers.
The goal is to provide the service with the lowest possible average wait-
ing time. This problem has been extensively studied before, but most
previous models have not incorporated the monitoring costs explicitly.
This paper focuses on a rigorous study of maximizing the utility of mon-
itoring.

We extend the Supermarket Model for dynamic load sharing by ex-
plicitly incorporating monitoring costs. These costs stem from the fact
that the servers have to answer load queries, a task which consumes both
CPU and communication resources. This Extended Supermarket Model
(ESM) allows us to formally study the tradeoff between the usefulness
of monitoring information and the cost of obtaining it. In particular, we
prove that for each service request rate, there exists an optimal number
of servers that should be monitored to obtain minimal average waiting
time.

Based on this theoretical analysis, we develop an autonomous load
sharing scheme that adapts the number of monitored servers to the cur-
rent load. We evaluate the performance of this scheme using extensive
simulations. It turns out that in realistic scenarios, where monitoring
costs are not negligible, the self-adaptive load balancing scheme is clearly
superior to any load-oblivious load sharing mechanisms.

1 Introduction

Consider a service that is being provided by a set of servers over the network.
The goal of the service provider is to provide the best service (say, to minimize
the service time) given the amount of available resources (e.g., the number of
servers). The provider can add a load sharing system (for example as suggested
in RFC 2391 [1]) and improve the service time. If incoming service requests are
routed to the executing servers according to the pre-computed probabilities, the
load sharing scheme is static. Static load sharing schemes are simple and have

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 208–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cost Aware Adaptive Load Sharing 209

minimal control overhead. Unfortunately, static load sharing is poorly equipped
to cope with dynamic environments, where the actual availability of each server
changes over time.

To address this issue effectively, the load sharing mechanism needs to adapt
to the current global state of the system. This implies that updated load infor-
mation needs to be collected from the servers. Handling such load information
requests requires small but nonzero resources (e.g., CPU) from each server. This
may reduce the actual service rate of the server, and thus, it is not easy to predict
the actual amount of improvement expected from preferring a specific configura-
tion of a dynamic load sharing scheme. For this reason it is important to identify
just the right amount of resources that should be allocated to monitoring of the
servers’ load in order to maximize the overall system performance. Moreover,
since the optimal amount of monitoring depends on external parameters (such
as the arrival rate of the service requests stream), the system should self-adjust
the amount of monitoring according to the current conditions.

A very efficient load sharing model was studied in [2] by Mitzenmacher. This
model, termed the supermarket model, uses a very simple randomization strat-
egy: when a new task arrives, d < n servers are selected uniformly at random,
and the task is assigned to the server with the shortest queue among these d
chosen servers. For d = 1 this process simply assigns jobs (we refer to service re-
quests as jobs throughout this paper) to servers uniformly at random, regardless
of their load. However, for d = 2, the job is assigned to the least loaded server
(the one with the shortest queue) among the two randomly chosen servers. It
is shown in [2] that this simple process results in an exponential improvement
of the expected overall time in the system compared to the (load independent)
random assignment scheme. Further increasing d improves the expected service
time linearly. The results of [2] suggest that even a very small amount of man-
agement information coupled with random job assignment may lead to a very
efficient adaptive load balancing strategy, and as we use more information we
keep on improving the scheme. However, this study assumes that the informa-
tion about the local load of the servers is obtained and processed at no cost. As
explained above, in many scenarios this assumption is not realistic.

In this paper we focus on developing a rigorous analytical model for adaptive
load sharing where the model explicitly accounts for the inherent monitoring
overhead and allows to study the effects of non-negligible monitoring cost in a
quantitative way. Using this model, we address the question: what is the right
amount of monitoring that is needed to maxs imize the global benefit from
employing adaptive load sharing. Our approach is as follows.

We extend the aforementioned supermarket model by incorporating the man-
agement costs into it. In particular, we assume that when a server is polled about
its load, it has to allocate resources in order to answer this query. The Extended
Supermarket Model (ESM) allows us to rigorously study this intuitively obvious
tradeoff between the usefulness of monitoring information and the cost of its
maintenance. In other words, when a server answers a monitoring inquiry, it can
spend less CPU cycles on processing the actual service requests. An important

210 D. Breitgand et al.

factor is the ratio between the time it takes a server to answer a load request and
the mean expected service time of a job. This load monitoring efficiency ratio,
denoted by C, reflects the amount of disturbance the monitoring task has on the
actual service. The overall capacity reduction of a server is also proportional to
the number of monitoring inquires per time unit, which depends linearly on d.
When d increases we have more information and thus the expected average time
in the system decreases thanks to better load sharing. On the other hand, each
server becomes more affected by load queries and thus the service time (and
therefore also the overall time in the system) increases.

The main outcome of this theoretical analysis is that for each system load and
monitoring efficiency ratio C, there exists an optimal number d∗ of servers that
should be monitored in order to minimize the overall expected time of jobs in
the system. One of the corollaries of this finding is that knowing more about the
global state of the system through detailed monitoring may be not only useless,
but actually harmful to the total quality of service.

The centralized load sharing device can poll d servers when it receives a service
request (as described above), but it can also poll the servers load periodically.
This may reduces the number of load queries but, depending on the polling rate,
may affect the load balancing quality due to the staleness of the data. We study
the tradeoff between the staleness and reduced overhead imposed by the periodic
updates. Our results indicate that under high load conditions, using a periodic
updates scheme does not help reducing the monitoring overhead considerably.
The reason is as follows. Unless the periodic updates are performed frequently
enough, the local information about other servers’ load rapidly becomes obsolete
and the quality of load sharing reduces dramatically.

Another important aspect that should be addressed is the dynamic behavior of
the environment. In practical systems, many parameters such as the job requests
rate (i.e., the system load), traffic load, and the availability of servers varies over
time. Thus, the optimal number of servers that should be queried changes over
time. An adaptive load sharing system is a system that self adapts its working
point according to the current environment parameters. Such a system should
be able to accurately approximate the value of the relevant parameters, and to
dynamically adjust the number of the monitored servers to the optimal value.
The most relevant parameter in our case is the overall system load. Note that
the load results from both the mean time between arrivals and the service time.
However, the actual service time is known only to the servers and not to the
dispatcher. Hence estimating the current system load is not trivial.

In today’s complex systems, management costs are inherent. Even though they
can be reduced by configuring a system in a different way, or by using a different
algorithm, they cannot be avoided completely. This paper is a first step toward
better understanding the tradeoff between monitoring cost and its benefit for
adaptive load sharing. To make the presentation more coherent and focused we
concentrate on studying the centralized load balancing schemes. However, the
reader referred to [3] for a discussion of the distributed Extended Supermarket
Model.

Cost Aware Adaptive Load Sharing 211

The rest of this paper is organized as follows. In Section 2 we describe re-
lated work. In section 3 we formally define the model for the framework, explain
the basic approach, and analyze the expected performance. We evaluate optimal
working points in Section 3.1 and study periodic updates in section 3.2. In Sec-
tion 4 we describe the adaptive scheme that adjust the amount of monitoring to
the actual load and evaluate its performance. We conclude in Section 5 with a
short discussion of our results.

2 Related Work

Multiple aspects of load sharing and load balancing were extensively studied in
a variety of contexts over the last three decades. Due to space limitations we
concentrate in this section on the prior art which is most directly relevant to this
paper. The reader is encouraged to refer to [3] for a more extensive treatment of
the literature.

In our study we concern ourselves with non-preemptive load sharing. In non-
preemptive load sharing, tasks may be transferred from one server to another
only upon entering the system and prior to their execution start. However, when
a process starts executing, it cannot be moved to another computer.

An important example of non-preemptive load sharing was presented in [4].
In this solution, a unified cost model for heterogenous resources was presented.
Using this cost model, the “marginal cost” of adding a task to a given destination
is computed. A task is dispatched to a destination that minimizes the total
marginal cost. In a sense, this is a variation of a greedy algorithm. However,
thanks to its sophisticated cost model, this solution outperforms simple greedy
algorithms. Note that the monitoring costs involved in marginal cost evaluation
are not accounted explicitly.

Another approach that combines a threshold-based method with the greedy
strategy in an interesting way was presented in [5]. The primary goal of this work is
to achieve an autonomic adaptable strategy for peer-to-peer overlay maintenance
with QoS guarantees in spite of possible server crashes. This paper, similarly to
many other papers in the field, considers average time in the system as the perfor-
mance parameter that should be minimized. The load balancing scheme of [5] was
studied through simulations. Even though the monitoring process plays a pivotal
role in [5], its cost is not explicitly accounted in these simulations.

In [6] the authors considered the case in which monitoring costs are not neg-
ligible and studied the effects of this assumption on the efficiency of adaptive
load sharing. The authors compared a static load sharing scheme to a dynamic
adaptive one based on load thresholds. In this scheme, if the local load of a server
exceeds a pre-specified level (threshold), a new task is transferred to a server with
minimal expected load. The expectations of the server loads are based on the
shared data structure. The value of load threshold can be adapted dynamically
to influence task redistribution policy of load balancing. The authors study their
threshold based scheme under various conditions to quantitatively estimate rela-
tive importance of load threshold values and frequency of load updates and find

212 D. Breitgand et al.

the best empiric values for these parameters. Although an insightful study, its
conclusions rely on simulations alone and, therefore, are difficult to generalize.

Monitoring costs, pertaining to network latency, delay, routes availability, etc.,
were also considered in [7]. The authors claim that monitoring cost can be signifi-
cantly reduced through cooperative measurements as opposed to uncoordinated
active probing from multiple network locations. Similarly to [6], [7] resorts to
simulation analysis in order to study the effects of non-negligible monitoring
and provides no generic framework for a systematic study of the monitoring
overhead.

In their milestone paper [8], Azar et. al. introduced the supermarket model
(see previous section) for evenly spreading a finite number of items among n iden-
tical locations. Azar et. al. showed that by simply making two random choices
(d = 2) and selecting a location with the least number of items already assigned
(ties are broken arbitrarily), one reduces the maximal number of items per sin-
gle location exponentially. Further increasing d results in a linear decrease of the
maximal number of items per location. Azar et. al. studied a closed finite system
in which items never leave the system and the load balancing process terminates
when all items are assigned to their locations.

An application of the supermarket model to dynamic load balancing, where
an infinite number of service requests arrive from a stream with a given traffic
intensity and where clients leave the system once their request is serviced, was
done by Mitzenmacher [2]. In this work, an infinite stochastic supermarket model
is limited by a set of deterministic differential equations describing the queue
length dynamics. It turns out that results similar to [8] hold, but the analysis
is much more complicated.

As was already noticed in the introduction, the supermarket model of [2]
does not take the cost of acquiring the local state of the servers into account.
In [9], a question of how often the local state of the servers should be polled, is
addressed. It turned out that obtaining a closed form solution for the expected
average time in the system is difficult in this case. Therefore, [9] resorted to an
extensive simulation study, showing that randomness is a powerful tool to curb
herding effect, which becomes a dominant factor in performance degradation
as the system state is acquired periodically with decreasing rate. The effect of
periodic updates on the ESM performance is studied in this paper in Section 3.2.

The cost of monitoring is an integral part of the overall cost of the adap-
tive load sharing algorithm. Clearly, a trade-off exists between the quality of
monitoring and the cost of acquiring the monitoring data. On the one hand,
the more updated is the monitoring data, the higher is the total quality of load
balancing [9,10,11,3]. On the other hand, since monitoring takes small, but non-
zero amount of computational and communication resources, its inherent cost
becomes a limiting factor for scalability. Although this trade-off has been long
noticed, no formal study of it was performed until this work [3]. In contrast to
other adaptive load sharing mechanisms, our solution is based on the predic-
tive model that explicitly takes monitoring costs into account, striving to the
provably optimal behavior.

Cost Aware Adaptive Load Sharing 213

3 The Extended Supermarket Model (ESM)

Following the supermarket model, we consider a system that consists of n iden-
tical servers. Each server processes its incoming service requests according to
the FIFO discipline. Jobs arrive to the system in a Poisson stream of rate λ · n,
0 < λ < 1, service time is exponentially distributed with mean 1. In the central-
ized ESM model depicted in Figure 1, all clients’ requests arrive at a centralized
load balancing device. This device then selects d < n servers uniformly at ran-
dom (with replacement) and sends d inquiries about the length of the server
queue to each of the selected servers. These monitoring requests have a prece-
dence over the actual service requests, i.e., upon receiving a monitoring request,
the server preempts the currently running job (if such exists) and answers the
load request immediately. We assume that processing the monitoring request
takes a fraction 0 < C < 1 of the mean service time of the actual service. This
factor is the load monitoring efficiency ratio that reflects the fraction of the re-
sources (i.e., CPU) needed in order to answer a load request. When the load
balancing device (dispatcher) obtains all d answers (we assume that there are
no message losses), it selects the server with the minimal queue length (ties are
broken arbitrarily) and forwards the job to this server. In some practical im-
plementations the servers load monitoring is performed periodically rather than
per-request. We study periodic updates in Section 3.2.

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

d = 3

clients

n servers

servers’ queues

Load Sharing
 Unit

Fig. 1. The Extended Supermarket Model

Note that we do not model the time it takes the load inquiries to get back to
the centralized load sharing device, or the processing time for the decision. The
actual time in the system starts when the job arrives to the selected server. In
this model, the system is fully described by the time it takes a server to answer a
load query. This time depends on the system architecture; the load query can be
handled by a separate thread or even a separate process. The load request query
time is composed of receiving the load query, parsing it, getting the requested
data, and sending an answer back to the dispatcher. In addition it may contain
context switching time in the server’s operating system. In all cases, the server
must allocate resources to this task, resources that could be otherwise used to

214 D. Breitgand et al.

serve real client requests. The load monitoring efficiency ratio reflects the affect
of this architecture with respect to the average service time of jobs.

The mean service time and thus also the mean service rate is 1. However,
since the servers answer load queries immediately (thus suspending the service
to regular requests), the effective service rate is smaller than 1. Job requests
arrive at rate λ · n (where the time unit is such that the service time is one)
and each job creates d load queries. Since we have n servers and they are chosen
uniformly at random, each server gets a Poisson load query stream with incoming
rate of d ·λ. Thus, handling each load query takes C time units and the effective
service rate is:

μ′ = 1 − λ · d · C . (1)

Let ρ = λ/μ′ be the arrival rate normalized by the effective service rate; we
get:

ρ =
λ

1 − λ · d · C . (2)

Clearly, ρ must be smaller than one in order to keep the system stable. In
other words, if we want to have a stable state where the queues in the system
have finite lengths we must have ρ < 1, or

λ <
1

1 + d · C . (3)

Note that Equation 3 indicates that in some cases where the load is high, the
monitoring process can push the system into an unstable state. This means that
in some cases we would be better off without any monitoring whatsoever. In this
case, a random server selection is performed.

We follow the footsteps of [2] and define ni(t) to be the number of servers
with exactly i jobs in their queue at time t (This includes the job that is being
served). Next we define

si(t) =
∞∑

k=i

nk(t)
n

(4)

to be the fraction of the servers with at least i jobs in the queue. When not
needed we omit t; clearly s0 = 1 and s1 is the fraction of non empty servers.

It is easy to see that:

∞∑
i=1

si(t) =
1
n

∞∑
i=1

i · ni(t) (5)

is the average queue length at time t.
For any d > 1, C, finite n, and λ that satisfy Equation 3, the system is in

stable state, and when t is large enough there is a fixed probability to be in each
of the states defined by the vector (s0, s1, s2, . . .).

In such a case, a new job joins a server with a queue of size i only if all d
chosen servers have queues not smaller than i, and at least one of them has a
queue of size i. This happens with probability sd

i −sd
i+1. Similarly, the probability

Cost Aware Adaptive Load Sharing 215

that a job is finished from a server with queue of size i is si − si+1. This implies
that the following differential equation holds for i ≥ 1:

dsi

dt
= ρ(sd

i−1 − sd
i) − (si − si+1), (6)

where s0 = 1. This set of equations has a unique fix point (see (1) in [2]).

si = ρ
di−1
d−1 . (7)

In order to compute the expected time a job spends in the system, we could
use the method described in Section 2.4 of [2], or use Little’s Theorem [12], and
divide the expected queue length by λ. Note that we need to divide by λ and
not by ρ since we want to have the expected time in the system in units of the
service rate and not of the effective service rate that depends on C and d. We
get:

Td(λ) =
1
λ

∞∑
i=1

ρ
di−1
d−1 =

1
1 − λ · d · C

∞∑
i=1

ρ
di−1
d−1 −1 =

Td(λ) =
1

1 − λ · d · C

∞∑
i=1

ρ
di−d
d−1 (8)

Before we proceed to the simulation analysis of Td(λ), we would like to develop
some intuition about the function’s behavior. As shown in [2], in the original su-
permarket model, Td(λ) is a monotonically decreasing function for any 0 < λ < 1.
However, Equation 8 suggests that as d increases, the denominator decreases,
resulting in higher waiting times, and when λ · d · C approaches 1, the waiting
time in the system goes to infinity. Thus, we expect Td(λ) to decrease when d
increases, but at some point as d keeps on increasing, the value of Td(λ) should
increase as the servers put more and more resources into monitoring the load
and this affects the service time.

In order to verify that the Extended Supermarket Model (ESM) indeed models
correctly the behavior of server systems as described in the previous sections,
we conducted an extensive set of simulation runs. This is done using an in-house
event driven simulation software. The Centralized ESM is simulated for different
load, d, and C values.

The left hand side of Figure 2 is obtained through simulating the Central-
ized ESM with 300 servers for C = 0.003. We observed typical service time of
300-400 milliseconds when monitoring a Web based application called PlantsBy-
WebSphere on top of IBM WebSphere 6.0 application server, under normal load
conditions. The load query time of 1 millisecond was observed in our preliminary
experiments conducted on a realistic testbed. Due to space limitations, we do
not describe these experiments here. We plotted the simulation results and the
model prediction obtained from Equation 8 on the same graph. Each simulation
sequence contained 1, 000, 000 jobs, and each value in the graph is the average
of 10 such runs, where the values of the standard deviation were well below 1%

216 D. Breitgand et al.

of the obtained service times for all points except for λ = 0.85 and d > 40 where
the standard deviation values were up to 20%.

One can see that the expected behavior indeed realized. The expected time
in the system decreases when d increases, and at some point it starts increasing.
When the system load is low (e.g., λ = 0.55) the value of Td(λ) drops from 1.34 for
d = 2 to about 1.02 for d = 10, and then it increase almost linearly as d increases.
This is due to the fact that when d increase from 2 to 10 the load sharing quality
increases, while the effect of the cost devoted to monitoring is still small, however
at this point, the return from increasing the number of peers becomes negligible
while the effect of the monitoring cost keeps on increasing linearly.

When the load is higher (e.g., 85%) one can see that there is a point in which
Td(λ) starts increasing very fast. This happens when the system approaches the
instability point predicted by Equation 3. In this area the results becomes much
more noisy, and the standard deviation of the simulation results increase.

The parameters chosen here reflect normal working conditions of distributed
server systems. A cluster size of 300 servers may seem to be large, but this is
not entirely far-fetched. Even today there exist many organizations that deploy
300 and more server farms (e.g., Yahoo, Google, etc.). The value of the load
monitoring efficiency ratio (C) was chosen to be 0.003, as explained above. One
can observe that the model predicts the system behavior very accurately in this
range even when we used n = 300 servers in the simulation and the model deals
with n → ∞. The effect of the number of servers n is very small; all we need
is a large enough (n > 100) number. This is due to the fact that the system
load is n · λ and therefore the average load on each server depends only on the
load parameter. In fact, we ran several simulations for different values of n and,
similarly to the results of [2], the behavior is the same but the accuracy of the
simulation improves as n increases.

The right hand side of Figure 2 depicted the simulated results and the model
prediction for high load values. Again C = 0.003 and each point is the average
of 10 runs each produced from a set of 1, 000, 000 jobs. The number of peers in

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

k − the number of Peers

A
ve

ra
ge

 T
im

e
in

 th
e

S
ys

te
m

Model Lambda=0.55
Model Lambda=0.65
Model Lambda=0.75
Model Lambda=0.85
SimData Lambda=0.55
SimData Lambda=0.65
SimData Lambda=0.75
SimData Lambda=0.85

0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4

4.5

k − the number of Peers

A
ve

ra
ge

 T
im

e
in

 th
e

S
ys

te
m

Lambda=0.80
Lambda=0.85
Lambda=0.90
Lambda=0.95
SimData Lambda=0.80
SimData Lambda=0.85
SimData Lambda=0.90
SimData Lambda=0.95

low load high load

Fig. 2. Model Vs. simulation

Cost Aware Adaptive Load Sharing 217

this case goes from 2 to 40, and the number of servers was 500. One can observe
similar behavior, and the precision of the model is quite good, except when ρ
approaches one, and the system becomes less stable.

3.1 Optimal Load Balancing in ESM

In order to get the best d for a fixed set of parameters one needs to get the
derivative of Td(λ) with respect to d. This is a rather complex expression and it
has no closed formulation. Figure 3 depicts the optimal number of peers (d) as
a function of the system load for different load monitoring efficiency ratio (C)
values. One can see that for relatively high values of C (i.e., C = 0.02 where a
load query takes 2% of a job service time) the optimal number of peers increases
slightly as the load increases over 50% but it does not go over 10, and at around
λ = 0.7 it start decreasing. This is happening since the the monitoring cost is
relatively high, and cannot be justified by the improvement in performance due
to better load balancing. Furthermore, when load is high, the number of peers
must be small in order to keep the system stable (as indicated by Equation 3).
For low values of efficiency ratio (i.e., C = 0.001 where a load query takes only
0.1% of a job service time) the picture is quite different. In this case the optimal
d increases significantly as the load increases and reaches a value of 46 at λ = 0.9.
This is due to the fact that the monitoring cost is relatively low and it is worth
to improve the average time in the system by improving the load sharing quality.
When the load increase over 90%, the cost effect becomes dominant and thus
the optimal number of peers decreases sharply.

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Load

B
es

t n
um

bn
er

 o
f p

ee
rs

 (
d)

Cost=0.001
Cost=0.005
Cost=0.01
Cost=0.015
Cost=0.02

Fig. 3. Best number of peers as a function of the load

3.2 Periodical Update Model – A Simulation Study

In practical implementations, the monitoring information (in our case the load
of the servers) is often acquired using periodic updates. This is done in order
to conserve communication and processing resources of the network. One of
the more important generic management problems is determining an optimal
frequency at which the management information should be gathered.

The tradeoff here is intuitively clear. If we poll the servers’ load often, then the
monitoring cost is high, but the load information is up to date, and therefore the

218 D. Breitgand et al.

load balancing decisions are improved. On the other hand, the less frequent are
the updates, the lower is the cost of monitoring, but then the local information
becomes stale, and the overall quality of the load balancing process decreases.
We use a simulation study to investigate the effect of periodic updates in ESM,
when monitoring cost is part of the model. We consider the centralized ESM,
but the load sharing device uses periodic load polling instead of the per job
load polling mechanism. Every q units of time, all servers are polled for their
load (i.e., their queue size), this information is kept in a local database at the
load sharing device. When a new job arrives, the load sharing device chooses
d servers uniformly at random, and forwards the job to the server that has
the smallest queue according the information in the local database. As in the
centralized ESM, the load answer by each server during the load poll takes a
fraction 0 < C < 1 of the mean service time of the actual service request.
However, unlike the centralized ESM case, using a larger value for d does not
create more load on the servers since the load is a function of the update rate
1
q , and d only affects the number of lookups in the local database.

It is important to note that the time the job is waiting for the server as-
signment in the centralized load sharing device is not part of the total time in
the system as defined for the ESM model in Section 3. We simulated a cluster
of 300 servers, processing 100, 000 jobs that arrive from Poisson streams with
different traffic intensities (i.e., loads). Each simulation run is repeated 10 times
and the average of these runs were computed to produce the results. Similarly
to Section 3, we used the load monitoring efficiency ratio C = 0.003.

The left hand side of Figure 4 shows dependency of the average time in the sys-
tem ond (number ofmonitoredpeers) for traffic intensityλ = 0.55.Different curves
on the graph correspond to different load update periods. The per-job load polling
policy serves as a baseline. As evident from the figure, for this case (low traffic in-
tensity), periodic updates do not yield substantial savings even for large values of
d. Moreover, the actual mean times in the system obtained using periodic polling
are marginallyhigher than the baseline for smaller d’s. One can also observe that in
the tested parameters there is no benefit touse d values that are larger than 20 since
increasing d only gives marginal improvement in the average time in the system.

There are two primary reasons for this behavior. To start with, when ρ = 0.55,
the queues are empty most of the time. Therefore, on the one hand, using CPU
cycles for updating the load bulletin board delays only a small fraction of jobs. On

0 20 40 60 80
1

1.5

2

2.5

k − the number of Peers

A
ve

ra
ge

 ti
m

e
in

 th
e

S
ys

te
m

Per−job load polling (baseline)
Board update every 300 time units
Board update every 6 time units
Board update every 3 time units
Board update every time unit

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

9

k − the number of Peers

A
ve

ra
ge

 T
im

e
in

 th
e

S
ys

te
m

Per−job load polling
Boad update every time unit
Board update every 2 time units
Board update every 4 time units
Board update every 190 time units

ρ = 0.55 ρ = 0.85

Fig. 4. Average Time in the System for ESM with Periodic Updates

Cost Aware Adaptive Load Sharing 219

the other hand, the value of the information gained from the load updates is low.
In fact, most of the time these updates show zero length queues at many servers.
The second reason has to do with the fact thet the periodic updating of the load
bulletin board is done synchronously at all servers. Thus, the probability that
jobs that considerably deviate from the mean service time would get preempted
and delayed are marginally higher than those in the case when only a fraction
of servers is polled for their queue length upon a new job arrival.

0 100 200 300 400
1

1.5

2

2.5

Board update frequency (once per X time units)

A
ve

ra
ge

 T
im

e
in

 th
e

S
ys

te
m d= 2

d= 10
d= 20
d= 40

0 50 100 150 200
0

2

4

6

8

10

12

Board Update Frequency (once per X time units)

A
ve

ra
ge

 T
im

e
in

 th
e

S
hy

st
em

d = 2
d = 10

ρ = 0.55 ρ = 0.99

Fig. 5. Average Time in the System as a Function of Update Rate

One may think that when the system becomes more heavily loaded, the ad-
vantages of the periodic updates would become evident. The right hand side of
Figure 4 shows the system behavior for ρ = 0.85. Indeed, for a large fixed value of
d (60), using the appropriate update rate (once every 4 time units) periodic up-
dates provided almost a factor of 2 improvement compared to the per-job load
query case. However, for smaller d values performance of the periodic update
scheme was considerably worse than that of the per-job arrival polling.

Figure 5 shows the time in the system as a function of the centralized load
polling period length for ρ = 0.55 and ρ = 0.99. As one can see, when the update
period increases beyond a certain value, the total quality of the load balancing
decreases due to staleness of the data. We observe that the trend is similar for
both traffic intensities even though the pace of the service degradation due to
the management data staleness is different in each case. Not surprisingly, the
higher is the traffic intensity, the faster is the load balancing degradation due to
longer update periods.

As simulation results show, similarly to existence of d∗, which is the optimal
number of polled peers, there exist an optimal rate of polling for each fixed d.
To gain minimal time in the system, the administrator or an automated policy
may vary either of these two parameters. If we compare per-job polling with
optimal d values as described in Section 3.1, to the optimal rate we find here, we
still see that optimally tuned per-job load queries result in better mean times in
the system. Hence, periodic updates can be configured in such a way that the
total quality of load balancing is not hurt, but periodic updates do not improve
the total system cost effectiveness. This may sound somewhat surprising, since
this counters a popular belief that periodic updates in some form or another is
always more cost efficient than the per task polling.

220 D. Breitgand et al.

4 Self Adaptive Heuristics

In Section 3.1 we saw that given a load and a overhead efficiency ratio C of
the system, one can derive the optimal value of d (the number of servers that
are monitored). As we described before, the overhead efficiency ratio reflects the
time it takes a server to answer a load query normalized by the mean service
time. This means that in practice these parameters (the load and C) may change
dynamically. Thus, selecting a value of d that is optimal at one point in time may
utilize the system less efficiently in other times when the system state1 changes.
In this section, we present a self adaptive heuristic that deals with this problem.
In particular, using this heuristic, the value of d dynamically changes according
to the current state of the system.

Clearly, in order to realize this approach, one has to address two practical
difficulties. First, one has to estimate the current load and the current overhead
efficiency ratio. Then one needs to determine the optimal value of d for the
current state in an efficient way (computing d as presented in Section 3 requires
a considerable amount of computing resources, and it cannot be done on-line by
the dispatcher).

This last point can be solved by pre-computing the optimal value of d (off-
line) for several values of load and C and storing them in a table located in
the dispatcher. In this case, the dispatcher can obtain d by simple lookup at
this pre-computed table. Clearly, the granularity of the table, i.e., the number
of entries in the table, determines the accuracy of the estimation, but since the
range of d is discrete, relative small and finite number of entries are sufficient to
get an accurate estimation.

On the other hand, estimating the load and the overhead efficiency ratio C
accurately, which is critical to the performance of the system, is more difficult.
The load of the system and the overhead efficiency ratio C depend on the average
job service time, the mean time between job arrival (MTBA), and the number
of servers. While the number of servers may be assumed to be fixed (or, at least,
known to the dispatcher), the MTBA, and the average job length, may change
often. Therefore, the MTBA and the average job length should be computed
dynamically by the dispatcher.

First we deal with the estimation of the MTBA. The dispatcher that receives
all the requests can compute the MTBA of jobs arrived so far. This is done in the
following way. The dispatcher divides the time axis into fixed time intervals, and
it computes the MTBA of each time interval separately. The MTBA computed
by the dispatcher in the last interval is used to estimate the current MTBA. The
length of each time interval should be long enough to contain a large number of
samples (i.e. the average number of jobs arrived at each time interval should be
large enough). On the other hand, if the length of the time interval is too long, the
reactions of the dispatcher to MTBA changes will be too slow. A typical MTBA
in a server farm that contain about 100 servers could be a few milliseconds, thus
a time interval of one second contains a large number of samples and it induces

1 In this context the term state refers to the current values of the load and C.

Cost Aware Adaptive Load Sharing 221

10 20 30
0.3

0.4

0.5

Time

M
T

B
A

T=0.1 Sec
Actual MTBA

10 20 30
0.3

0.4

0.5

Time

M
T

B
A

T=0.5 Sec
Actual MTBA

10 20 30
0.3

0.4

0.5

Time

M
T

B
A

T=1 Sec
Actual MTBA

10 20 30
0.3

0.4

0.5

Time
M

T
B

A

T=2 Sec
Actual MTBA

Estimating MTBA

Fig. 6. Estimating the MTBA

a reasonable adjustment time of one second when the MTBA changes. Figure 6
depicts the estimated MTBA for different lengths of time interval. One can see
that while a short interval induces fast adjustment it also creates a considerable
amount of noise.

In the method described in the previous paragraph, the dispatcher estimates
the MTBA by considering only the MTBA computed in the previous interval.
However, one can also refer to the values of MTBA computed in earlier intervals
by adding another parameter α that defines the importance of the last sample
compared to the entire history. In this case the MTBA that is used in interval i
is equal to

α · MTBAi−1 + (1 − α) · MTBA(i − 1). (9)

Where ≤ α ≤ 1, MTBAi−1 denotes the MTBA used in time interval i− 1, and
MTBA(i− 1) is the MTBA computed according to interval i− 1 (the method
described above is a special case where α = 1). Since both parameters, α and
the interval length have similar effects on the estimated MTBA, the value of
one parameter can be eliminated by the other (i.e. a small value of α can be
eliminated by selecting a short interval and vice versa).

Estimating the average length of a job is more complicated. In this case, the
dispatcher that receives the requests does not know the actual service time. Only
the servers that serve the requests know this information and this is only once
the job processing has been completed. Thus, each server needs to compute the
average job length (of jobs assigned to it), using techniques similar to those
described above. When a load query arrives at a server, the server adds to its
answer regarding the queue length also the average job length as computed
locally during the previous interval and the number of jobs used to compute this
value. Consider, for example, that the dispatcher has monitored two servers, and
obtained the following job length values (computed and sent by the servers):
20 and 100 milliseconds. The dispatcher cannot conclude that the average job

222 D. Breitgand et al.

length, in this case, is 100+20
2 = 60 since the number of samples, used to compute

the average job length at this particular interval in one server may be different
from the number of samples in the other server. In particular, short jobs may
induce a large number of samples compare to large jobs. Thus, the dispatcher
must compute the weighted average, taking into account the number of samples
used in each server.

The actual interval size and the value of the α parameter should be chosen
in a way similar to the choice of these parameters for the MTBA case. One can
notice that the average job length is usually n times larger than the MTBA at
the dispatcher. Thus, one should use a time interval that contains a reasonable
number of samples in order eliminates noise and in order to increase the accu-
racy of the estimation. Figure 7 depicts the estimated average job length for
different interval sizes. One can see that a time interval that is shorter than 500
milliseconds may cause an insufficient estimation even when α is relative small.
On the other hand, time interval of one or two seconds guarantees an accurate
estimation.

10 20 30
90

100

110

120

130

Time

A
ve

ra
ge

 J
ob

 L
en

gt
h α=0.1 T=0.5 Sec

Actual Length

10 20 30
90

100

110

120

130

Time

A
ve

ra
ge

 J
ob

 L
en

gt
h α=1 T=0.5 Sec

Actual Length

10 20 30
90

100

110

120

130

Time

A
ve

ra
ge

 J
ob

 L
en

gt
h α=0.4 T=1 Sec

Actual Length

10 20 30
90

100

110

120

130

Time

A
ve

ra
ge

 J
ob

 L
en

gt
h α=1 T=2 Sec

Actual Length

Estimating the Average Job Length

Fig. 7. Estimating the average job length

The self adaptive heuristic works as follows: The dispatcher maintains an
estimated value for MTBA and for the average service time. According to these
values, a system parameter indicating the average reply time to a load query,
and the optimal d values table, it computes the current number of servers that
should be monitored. When a new job request arrives, the dispatcher queries the
load of d randomly chosen servers and assigns the job to the least loaded server
among them. In addition it updates its current estimation using the parameters
described above. When a time interval ends, the dispatcher updates the values
for the current interval using the α parameters, and using these values it finds
the new optimal d value to be used.

In order to evaluate the performance of this heuristic, we simulated it, using
the same configurations described in Section 3 to evaluate the performance for

Cost Aware Adaptive Load Sharing 223

the fixed d cases. In particular we used n = 300, Average service time (job length)
of 100 milliseconds, and load values between 0.8 and 0.98. The time it takes a
server to answer a load query was set to be 0.3 milliseconds. As explained before
this parameter depends on the system architecture and the overhead efficiency
ratio is thus 0.003, similar to the one used in Section 3.

Figure 8 depicts the average response time vs. the load using the fixed values of d
and with the self adaptive heuristic. For this simulation we used the values of d that
are optimized with respect to a load of 0.98 and 0.8. The length of a time interval is
one second and α = 0.4 both for the (MTBA) and for the average job length. One
can see that while the d = 22 case performs well when the load is low, when the
load increases over 0.92 the system waiting time increases dramatically since the
monitoring cost makes the system unstable. In a similar way if we choose d = 5,
the system remains stable in high load but the performance when the load is 0.8
are 25% worse. The adaptive heuristic, on the other hand, performs well across all
load values, and the quality of the performance is not affected by the system load.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
1

1.5

2

2.5

3

3.5

4

Load

A
ve

ra
ge

 T
im

e
in

 th
e

S
ys

te
m

Self Adaptive
d=5
d=22

Fig. 8. Estimating system load

5 Conclusions and Future Work

The ability to quantify the benefit of a system management tool and the overhead
associated with it is an important step toward developing cost effective self-
enabled systems. We consider a service setting where the goal is to minimize the
total average time required to provide the service to the customers. Much of the
overhead associated with load balancing systems in such a setting is due to the
need to monitor the load on the different servers in order to assign job requests
to sub-utilized servers.

In order to understand the tradeoff between utilizing the load information and
the cost of obtaining it we develop a formal model that captures both the cost
of and the benefit from management processes, concentrating on load sharing
among distributed servers. This model allows us to develop an adaptive scheme
that adjusts the amount of the monitoring to the actual load, thus maximizing
the utility of the system. The usefulness of this system in practical settings was
demonstrated through extensive simulations.

224 D. Breitgand et al.

This paper is just the first step in the formal study of this monitoring dilemma.
One possible next step is to extend this model to a distributed setting in which
load sharing is done by the servers themselves and not a separated centralized
unit. Some steps in this direction are reported in [3]. Other very promising direc-
tions for further research deals with non-Poisson arrival rate, non-homogeneous
servers, and the use of memory in the spirit of [13].

References

1. Srisuresh, P., Gan, D.: Load Sharing using IP Network Address Translation
(LSNAT) (August 1998)

2. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems 12(10), 1094–1104 (2001)

3. Breitgand, D., Nahir, A., Raz, D.: To know or not to know: on the needed amount of
management information. Tech. Rep. IBM-TJ-0242, IBM Research, Watson (2006)

4. Amir, Y., Awerbuch, B., Barak, A., Borgstrom, R.S., Keren, A.: An Opportu-
nity Cost Approach for Job Assignment in a Scalable Computing Cluster. IEEE
Transactions on Parallel and Distributed Systems 11(7), 760–768 (2000)

5. Adam, C., Stadler, R.: Adaptable Server Clusters with QoS Objectives. In: 9th
IFIP/IEEE International Symposium on Integrated Network Management (IM
2005), Nice, France, May 2005, IEEE Computer Society Press, Los Alamitos (2005)

6. Efe, K., Groselj, B.: Minimizing control overheads in adaptive load sharing. In: Pro-
ceedings of the 9th International Conference on Distributed Computing Systems,
June 1989, pp. 307–315 (1989)

7. Seshan, S., Stemm, M., Katz, R.H.: SPAND: Shared passive network performance
discovery. In: USENIX Symposium on Internet Technologies and Systems (1997)

8. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal
on Computing 29(1), 180–200 (2000)

9. Mitzenmacher, M.: How useful is old information? IEEE Transactions on Parallel
and Distributed Systems 11(1), 6–20 (2000)

10. hui, C.-C., Chanson, S.T.: Improved Strategies for Dynamic Load Balancing. IEEE
Concurrency 7(3), 58–67 (1999)

11. Othman, O., Balasubramanian, J., Schmidt, D.C.: Performance Evaluation of an
Adaptive Middleware Load Balancing and Monitoring Service. In: 24th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan,
May 2004, IEEE Computer Society Press, Los Alamitos (2004)

12. Little, J.D.C.: A Proof for the Queueing Formula L = kW. Operations Re-
search 9(3), 383–387 (1961)

13. Mitzenmacher, M., Prabhakar, B., Shah, D.: Load balancing with memory. In:
FOCS ’02: Proceedings of the 43rd Symposium on Foundations of Computer Sci-
ence, Washington, DC, USA, pp. 799–808. IEEE Computer Society Press, Los
Alamitos (2002)

14. Cohen, A., Rangarajan, S., Slye, H.: On the performance of TCP splicing for URL-
aware redirection. In: 2nd USENIX Symposium on Internet Technologies and Sys-
tem, Boulder, CO, USA, October 1999 (1999)

15. IBM Developer Network. SOA and Web Services.
16. Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theoretical Computer

Science 130(1), 73–84 (1994)

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 225–239, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self-configuration in MANETs: Different Perspectives

Jing Wang, R. Venkatesha Prasad, and Ignas Niemegeers

EEMCS, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
{j.wang3,vprasad,ignas.n}@ewi.tudelft.nl

Abstract. The number of communication devices one uses is increasing day by
day. Configuring these devices for optimal functioning, especially Mobile
Ad-hoc Networks (MANETs), has not been an easy task for users. Self-
configuration of the devices for optimal networking performance, being
imperative, has been studied by various researchers considering the tasks at
hand in various layers of the network stack. We have made a comprehensive
study on self-configuration at different layers, and discussed the required
interactions amongst them from different perspectives, which we think
important. We break down the design complexity and identify system-level
merits with the help of earlier studies. We further present our vision to provide
such merits with self-configuration architecture. Our work presented here aims
at understanding the potential challenges posed by the newer applications and
services, and identifying research directions while providing the foundation for
design of self-configurable systems.

1 Introduction

Self-Configuration is a means of organizing various devices in a network such that
intended tasks requested by users are optimally performed. In this context,
configuration refers to the way the network is set up, not only the configuration of
individual devices. To connect a new device (such as a PDA) to the network, e.g., the
appropriate network interface card needs to be configured. To be recognized by other
devices a device should be properly assigned a network address. To enable the
interactions with other devices, services available on devices should be advertised
without human intervention. For Mobile Ad-hoc Networks (MANETs) -- which are
heterogeneous, distributed and dynamic in nature – it is unrealistic to assume that
users have expertise to manage such networks. A vision of autonomic
communications as presented in [1] constitutes a new paradigm where network
devices can configure and re-configure themselves automatically under any,
predictable or unpredictable, conditions with minimal or no human intervention. Self-
configuration is expected to speed up the correct responses in order to reduce the
effect of network dynamics to users.

We view self-configuration in two stages. (1) Internal to a device, where self-
configuration is an issue to optimize a set of auto-configurable parameters at different
layers of the communication stack. An auto-configuration protocol defines rules for
network devices executing specific configuration process to connect to other devi-
ces without fixed network infrastructure. Moreover it provides certain applications

226 J. Wang, R.V. Prasad, and I. Niemegeers

without manual input. Auto-configuration protocols are generally confined to layers.
(2) External to a device, where interaction with external devices is also considered.
Self-configuration follows the same design principle as that of network self-
organization [2], but concretizes further the issues into more detailed protocols to
enable interaction and coexistence among autonomous devices. That is, each self-
configuration action is triggered and executed based on the awareness of situation and
policies, or it is guided by sophisticated decision mechanism. In other words, the
challenge comes from enabling the network to self-organize according to changing
situations by re-configuring itself in a most suitable way. Thus, self-configuration is
often concerned with cross-layer approaches.

Our work is motivated by the fact that most current contributions related to self-
configuration issues are focusing on developing isolated layer-dependent protocols. A
coherent overview is somehow missing. Further, we also believe that self-
configuration can be seen from various points of view such as, at different levels of
the network stack or from the user point of view. Thus it is imperative that we study
the existing self-configuration techniques. Based on this overview, we bring up
important requirements for self-configuration, and form the foundation by introducing
self-configuration management architecture for realizing efficient ad- hoc networking.
Consequently, we organize this paper based on this division. In section 2, self-
configuration techniques at different levels of the network stack are enumerated. In
section 3, we base our discussion on four self-configuration issues generalized from
system-level. In section 4, we introduce our proposed self-configuration management
architecture. In the end, we conclude in section 5.

2 Self-configuration at Different Levels

Self-configuration techniques are mostly layer specific. Often, configuration
processes in the adjacent layers are closely related to each other. For simplicity, we
model the OSI seven layers into three levels, with respect to connectivity, networking
and services provisioning in the network, as shown in Fig.1.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Fig. 1. Three-level model

 Self-configuration in MANETs: Different Perspectives 227

2.1 Connectivity-Level

The connectivity level encompasses the Link and Physical layers of the OSI network
stack and considers the different radio domains. Connectivity-level self-configuration
is the first step for a network device to automatically set up communication links with
other devices even before the formation of network. When the device is powered on,
it first performs device discovery to know other devices within its transmission range
- its neighbors. Device discovery process is usually specific to radio access
techniques. If a device has more than one radio interface, device discovery with each
interface could be performed simultaneously as long as there is no interference.

Consequently, a device could have full knowledge of its neighbors, and can
potentially decide how to configure connection with them. In MANETs, such
configuration benefits from clustering. It enables individual devices to be grouped
together into virtual groups, and to form certain network topology based on specific
criteria for a given scenario. Traditional metrics such as mobility and location of the
devices have been exploited as cluster formation criteria [3]. Besides, learning
algorithms have been explored for more sophisticated cluster formation schemes,
where individual behavior is affected by either the best local or global objectives [4].
Within each cluster, different performance metrics are used for selection of cluster
head, such as those based on identity (Lowest-ID) and location (Highest-Degree), or
based on combined metrics of mobility, energy, degree and so on [3] [4] [5]. In this
way, the network automatically builds a hierarchy and simplifies other connectivity-
level configuration processes, such as channel reservation, transmission scheduling
and power control etc.

2.2 Network-Level

The network level corresponds to the Network and Transport layers or the TCP/IP of
the Internet architecture. At this level self-configuration is concerned with creating an
end-to-end connectivity between devices, which possibly are not neighbors and in
different clusters. Primary self-configuration task is for each device to obtain a valid
network address in an effective way to cope with dynamics in MANETs. Depending
on whether or not the addressing state is globally visible and controllable, address
autoconfiguration can be identified either as stateful or stateless.

In stateful approaches, an allocation table is typically maintained by the cluster
head, which takes the role as a dynamic host configuration protocol (DHCP) server.
Several modifications have been made to take into account the dynamic network
situations and to speed up the configuration process. Some examples are, refining the
structure and the types of control messages to provide configuration-change-recovery
mechanism [6]; combining local address selection with centralized address validation
[7]. Besides, the allocation table can be split into many and may be distributed in
various devices in the cluster. Different address pool splitting and updating schemes
have been investigated in [8][9]. In this way, any configured device that has a part of
allocation table is able to assign address to an un-configured device, thus it further
enhances the robustness and scalability.

Stateless address auto-configuration protocols enable devices to configure on their
own independently, and to validate their choices through agreement with other

228 J. Wang, R.V. Prasad, and I. Niemegeers

devices in the network, without necessarily having a comprehensive global view. As
presented in [10], when a device joins the network, it selects an IP address by itself
and performs duplicate address detection (DAD) to validate the usability of the
address by broadcasting the address within the cluster. Other approaches suggest
implementing on each device a distributed address generation function in such a
manner to minimize the address collision as proposed in [11].

In principle, stateful approaches guarantee zero risk of address collision while
stateless approaches provide more flexibility and scalability. Hybrid approaches are
therefore proposed to combine the strength of both stateful and stateless approaches,
but at the expense of complexity. For example, in [12] each device randomly selects
an address from a virtual address space based on an estimation algorithm, and it
further reduces the conflict probability by incorporating an address allocation table,
which is maintained using cross-layer information from the traffic of routing protocol.

With valid network addresses, route discovery using ad hoc routing protocols may
be used to find the routes to all the devices within or outside the cluster or even to the
Internet gateway. Besides, as discussed in [7] and [8], joint consideration of
addressing and routing is also able to improve the performance and simplify DAD in
auto-configuration [12] [13] [14].

2.3 Service-Level

The service level corresponds to the Session and Application layers. Self-
configuration at this level enables a network device to automatically provide services
to- and use services from- other devices on the network. Service discovery in
MANETs can use the similar schemes for infrastructure-based networks by
employing a dedicated service directory. The directory is normally implemented in
the cluster head, which is responsible for collecting service information and keeping it
updated. When a device needs service, it simply requests the service via looking up
the directory [17]. Although the service discovery process is greatly simplified by
involving a centralized service directory, it is not flexible enough for devices with
high mobility. Therefore many service discovery protocols proposed for MANETs
operate in a completely decentralized manner, such as Bluetooth SDP, UPnP SSDP
etc. Information of the available services propagates through the cluster either
proactively, by service providers announcing their presence periodically, or
reactively, by service providers responding to the requests from the devices that needs
the service. However, as most decentralized approaches use broadcast to flood
messages, they often have limited scalability.

Network resources are unevenly distributed and constrained in MANETs.
Sophisticated service discovery protocols take into account additional contextual
information such as power consumption [18], physical link quality [19], geographic
locations of the service provider and seeker [32], etc. In order to present such
contextual information along with the service, hierarchical attribute-value pair naming
structures [15] and object-oriented naming structures [16] [31] are suggested as the
promising candidates. They provide extensible capability to describe a service with
rich meanings. Depending on context, different names can be bound to a given service
at the same time, and a name can refer to different services at different times. Thus
this is demanding on more flexible and sophisticated service discovery algorithms to
find the optimal service for the request under given situation.

 Self-configuration in MANETs: Different Perspectives 229

3 System-Level Self-configuration Issues

Self-configuration solutions are currently developed with a strong focus on each layer
and often specific that layer. It potentially leads to incoherent or even conflicting
system configuration due to the lack of system level organization. Especially with
emerging MANET scenarios such as those envisioned in autonomic computing e.g.,
Personal Networks [20], self-configuration is crucial. This is due to the fact that these
environments are heterogeneous, distributed and dynamic in nature. Regardless of
network dynamics and resource diversity, the network should always be able to
configure on its own to fulfill the needs of its users in a most suitable manner. In
addition, federation of MANET with public or private infrastructures can be
envisioned. These new complex networking scenarios and their stringent
requirements are fuelling the need for sophisticated self-configuration strategy, for
which we generalize several features that requires further discussions. They are user-
centric, context-aware, adaptive and collaborative; and we elucidate them by firstly
generalizing a system-level view with respect to their location as illustrated in Fig. 2.

Fig. 2. A system-level view of Self-configuration issues

3.1 Three Tiers

Three tiers can be seen in the system-level view in Fig. 2. The top tier is the high-
level goal of networking. This goal is purely decided by the users’ requirements and
is described as the concrete network configuration objective. The middle tier is
application space, where an application suite containing a bundle of services is
configured to represent the specific task according to the service-level abstraction.
The bottom tier is the configurable network environment, where resides in all
network elements to be configured to support identified services in the application
space.

230 J. Wang, R.V. Prasad, and I. Niemegeers

3.2 Two Mappings

To interpret high-level requirements into specific network and device parameter
settings, two levels of mapping are necessary to connect the three tiers. During the
first mapping, the high-level goal is broken down into detailed service types and
further into specific service attributes. This mapping should be performed under the
guidelines of the preferences of users and the contextual information, since they form
the high-level goals and thus influence the service attributes. The second mapping is
from the service requirements to the network setup. This mapping is bidirectional.
From top-to-down, services are mapped to the specific network devices, which
potentially have enough resources to provide those services with the requested
quality. This is typically carried out by sophisticated service discovery protocols. On
the other hand, in cases when dynamics of network results in dramatic capacity (e.g.
link quality) degradation, and current service quality can not be achieved by any
alternative configuration at network and connectivity levels, a bottom-to-up mapping
represents the necessity to reconfigure applications to adapt to the currently available
network capacity.

3.3 Four Issues

The system-level view in Fig. 2 highlights four important issues: user-centric,
context-aware, adaptive and collaborative, which in our opinion are desired features
of self-configuration in MANETs. In the following subsections we discuss them in the
sequel.

3.3.1 User Centric
Configuring a network is intrinsically linked with certain requirements of users who
influence the configuration process. Self-configuration should reduce laborious
human involvement, but keep their requirements intact during configuration. In [21]
the concept of “Goal-driven self-assembly” is proposed for autonomic computing
systems. On initialization, autonomic network elements only know about the high-
level descriptions of tasks to which they have been preset. They need to contact each
other and configure themselves to build up a relationship as required to obtain the
needed services. Although user-centricity has already been noticed as an important
self-configuration aspect, coupling a natural user state with a technical network state,
as shown in Fig. 3, is still a challenge to design and implement. Some of the
challenges are discussed here.

Firstly, the network must know about the users’ intentions and clarify the users’
requirements in a specific situation to identify applications accordingly. However, due
to implicitness and ambiguity of human expressions, getting this information is a task
that requires expertise, such as advanced monitoring and recognition methods,
sensing technology and even psychological models. From computer networking
prospective, we steer our focus on concretizing the users’ needs into a set of services
which are provided by the network. For example, if a user wants to watch a movie,
the network has to first identify the multimedia content, display, audio services and so
on. Each service to be configured must be an instance of services needed by the

 Self-configuration in MANETs: Different Perspectives 231

 User State Network State

User Needs

User Preference

User Satisfaction

Application Identifying

Service attributes QoS
Specifying

Configuration Actions

Application
Presentation

Fig. 3. User centricity in Self-configuration

application, and network formation should be configured to support these services on
top. In [22], users’ goal is formulated into tasks, which are explicitly encoded and
represented by the quality attributes of the services used to perform those tasks.

Secondly, users’ preferences must be incorporated to specify quality attributes of
each service, which is the only way to impart satisfaction to a user. Preferences of
users provide criteria for the system in deciding configuration strategy optimally,
especially when multiple configuration possibilities are available. For example, if a
user cares more about the video quality than audio quality for viewing a sport, the
network should configure itself in the way to display the sport channel on a large
screen with high resolution rather than to use high fidelity audio systems consuming
large bandwidth. Accordingly, Quality-of-Service (QoS) requirements that network
configuration has to meet can be defined based on the quality attributes of the
services. The most straightforward way to incorporate user preference is to produce
“if-then” policy space, but such space easily grows unboundedly due to numerous
preferences and attributes. A more up-to-date method is to manipulate a utility
function which is optimized when the most desirable configuration state is reached. In
[22] the users’ preferences are denoted as “weights” of the inputs to the function, to
help in scaling the importance of the quality attributes of each service.

Thirdly, since self-configuration has to fit itself in dynamic network environment,
a feedback loop is needed to evaluate the current configuration. For user-centric self-
configuration, such evaluation should come from the user. As we discussed above,
eliciting users’ satisfaction still needs substantial work. A qualified evaluation can be
a binary choice between “satisfied” and “un-satisfied”, which is limited in scope.
Thus quantifying “satisfaction” on a scale, similar to Mean Opinion Score (MOS) for
audio system is a flexible approach.

User-centricity is one of the main concerns for the first of the two mappings
illustrated in the system-level view Fig. 2. Since the users’ needs and preferences are
always specific to certain application, this level of mapping based on user-centricity
should be distributed and can be implemented within specific applications.

3.3.2 Context-Aware
Since the long-term goal of self-configuration is to eliminate human administration, it
should be aware of context as humans do. Following the definition in [23], context

232 J. Wang, R.V. Prasad, and I. Niemegeers

can be interpreted as any information that can be used to characterize the situation of
an entity, which is considered relevant to the interaction between a user and a
network. Current studies typically formulate context-awareness as a service-level
problem, and focus on context-based service provisioning. However, with respect to
self-configuration issue, context-awareness is intrinsically a cross-layer problem and
is necessarily posted at each level. As shown in Fig. 2, we opine that context-
awareness is a requirement for configuration strategy at all levels using all the
available context information.

At the service-level proper configuration of services is required, and it should be
aware of user context, such as the location and the surroundings and also be aware of
network context such as availability and capability of the network and the devices.
Currently, several studies have made an effort towards context-aware service
configuration protocols. Basically, the context-aware manipulation of device parameters
or network configuration takes place within service discovery and selection processes.
In directory-based protocols, service selection can be handled by the directory servers,
which make decisions during the course of service discovery process [26]. This process
benefits from the well-defined context-aware naming structures, such as attribute-value
pairs or name objects, by combining advanced naming resolution schemes to enable
applications being aware of situations in a transparent manner [31]. If the service
directory is unavailable, the service seeker has to evaluate each service on its own [17]
according to selection policies, which take into account versatile network performance
metrics such as time for service discovery [19], round trip latency or geographic
proximity [24] between service provider and the seeker.

Network and Connectivity level self-configuration is twofold in terms of context-
awareness. On one hand, it should understand application’s requirements in the form of
QoS, and configure network connection to support the QoS requirements with optimal
or sub-optimal configuration. However, it is possible that due to serious network
degradation, the QoS requirements are not likely to be guaranteed; no matter what lower
level self-configuration strategy is used. In this case a notification from lower level must
be sent to application that triggers new service-level self-configuration, which in turn
specifies new QoS requirements for lower level self-configuration processes. On the
other hand, lower level self-configuration should be aware of the available resources of
network and network devices, such as mobility, density, location etc. Though some of
these considerations may not have direct impact on QoS provisioning, they potentially
optimize the whole system performance. For example consider energy-aware
configuration, temporal over-use of energy may lead to an over-optimized solution for
QoS provisioning, such as higher data rate, or shorter delay. However, from a long-term
point of view, fast depletion of battery power in MANET devices increases the chance
of handovers, which degrade the overall performance of a given application.

In our opinion, two considerations are important to realize context-aware self-
configuration in MANETs, viz., context aggregation and context distribution. Context
aggregation should define methods for individual devices to acquire user context and
network context. It should comprise of interactive user interfaces, sensor input
processing modules, middleware for network state querying and notification, as well
as communication methods to acquire context from other devices in the network. To
share one’s knowledge with other devices, context distribution is needed. It is simpler
in cases that certain device, e.g. the cluster head possibly configures itself as the

 Self-configuration in MANETs: Different Perspectives 233

context repository, than in cases where context is possessed by individual devices in a
distributed manner. The latter case is useful to cope with mobility in MANETs but
require more sophisticated schemes to propagate information across the network in a
timely manner with low overhead.

3.3.3 Adaptive
Another requirement for self-configurable network is to efficiently deal with dynamic
situations, i.e., the network should be aware of the situation and trigger the proper re-
configuration process under certain policies or guided by some decision mechanisms.
The challenge comes from enabling a network to be self-adaptive to the changing
situations by re-configuring itself in a suitable way. Changes may come from the user. A
trigger to move a multimedia application from PDA to a big LCD display requires higher
resolution and thus more bandwidth, while a video session changing to a lower data rate
codec requires less bandwidth. Changes in the network composition may result from
single device independent initialization, or initialization of all the devices in the vicinity.
It can also happen when devices join, when network partitions and while networks
merge. As discussed in [14], these events cause change in link quality, network topology
and service availability. Three levels of adaptations have been discerned for network self-
configuration in [2]; here we base our discussion on a two-level adaptation strategy.

The first level is local adaptation, where adaptation is mainly achieved through
device parameter reconfiguration, such as wake-up cycle, memory allocation and
frame size, or via adaptive applications. The last one provides adjustable quality of an
application under the same network configuration state. An example of such
adaptation is the transcoding mechanism provided in MPEG-21 [25]. Local adaptation
provides a relatively small scale of configuration possibility, and tries to optimize the
system performance at a lower re-configuration cost.

The second level is global adaptation, which is designed to cope with severe
dynamic changes that are beyond the ability of local adaptation. In this case, current
network state is no longer suitable to maintain system performance requirements and a
new state has to be reached through adaptive reconfiguration. At service-level an
important issue is session mobility management, which incorporates fast service re-
discovery and session handover to enable a multimedia session transferred from one
device to another. This can be achieved directly between the communication ends, and
it can also be handled by employing proxies or delegates [24][26]. At network-level
address re-allocation is required in cases of terminal mobility and network mobility.
For example, network merging can invoke address duplication, and network partition
requires releasing some of the assigned addresses. A common solution is to
periodically broadcast an identifier on the network. It enables devices to detect network
merging or partition explicitly and to adapt addressing configuration accordingly. In
[13] and [14], merging and partition of a network are not necessarily detected, address
duplicates are tolerable, and are solved on the fly. If a device is connected to the
Internet, mobility management functions such as assignment of Care-of-Address
(CoA) by access router and address binding update to home agent are required.

Adaptation is important for mapping the service requirements to the network
settings. To realize the mapping there is a need to develop a common messaging
protocol. It should define a set of methods and mutually understandable messages for
communicating requirements by applications and network configurations, which are

234 J. Wang, R.V. Prasad, and I. Niemegeers

consequently able to adapt to each other. We envision that such a messaging protocol
can make use of the makeup languages such as XML. To design adaptive self-
configuration protocols, an important prerequisite is to design an effective control
loop which gives feedback on the fitness of current configuration. In the control loop,
an essential component is the decision making block which is required to decide the
necessity to trigger re-configuration. This means that we must take into account the
adaptation cost such as service delivery delay and packet loss. As discussed in [22],
adaptation is only triggered when system performance lies outside the acceptable
region of performance. Besides, cognitive techniques can bring in a new dimension
for decision making under dynamic environments. However defining proper learning
algorithms is normally very complex in distributed network environments and is still
an open issue.

3.3.4 Collaborative
MANETs are typically organized autonomously according to certain network
formation criteria. In most cases, there is no central administrator or common
coordinator thus it requires self-configuration to enable collaboration amongst devices
and even clusters to optimize system performance. Generally, collaboration is related
to specific configuration problems, and it must drive the development of more
sophisticated self-configuration protocols. We believe that it is pragmatic to keep it
within the protocol scope rather than go for generality.

Mutual understanding amongst devices and networks with different configuration
protocols is the precondition for collaborative self-configuration strategy. Network
address translation (NAT), for example, is needed for inter-networking devices with
different addressing syntaxes and semantics. Similarly at service-level, a scheme for
naming [27] has been proposed to enable a device to understand different naming
structures.

In MANETs a device by nature autonomously configures itself to optimize its own
performance in terms of achieving certain local performance goals such as those of
power consumption, storage utility, etc. For example, a device may turn off the
unused radio interface to achieve power optimization, or to generate a link local
address rather than a global IP address for local traffic to save configuration time.
However this local goal achievement is likely to conflict with global performance
goals. When the device configures itself with only one of several radio interfaces on
board for power saving, from global perspective concerning its capacity and mobility,
it should have taken the role of a gateway to bridge communications between devices
with different radio interfaces. Therefore self-configuration should be guided by a
collaborative mechanism which can resolve potential contradictions between local
and global needs and fulfill the performance goal that goes beyond the vision of an
individual device. For example, it is especially challenging for ad hoc networks to
assign roles of network infrastructure elements, such as routers, servers, etc., since no
dedicated device takes such roles and devices in MANETs need to configure
themselves on-the-fly [29]. It is similar to the idea of “self-assembly” in [28]; i.e.,
given a set of devices capable of networking, which have heterogeneous capability
and functional diversity; they are able to configure themselves to form a complete
system which realizes certain applications required by the user.

 Self-configuration in MANETs: Different Perspectives 235

Besides, collaboration also means a fair use of network resources amongst devices
and applications, i.e., to prevent “starving” of some applications to satisfy the needs of
heavy resource-consuming ones. A design principle mentioned in [2] is to develop local
behavioral rules that achieve global performance goals. Stateless address
autoconfiguration protocols in [11] [12] are such examples in that each device follows
the predefined local procedure for address assignment that results in network-wide non-
ambiguous address allocation. Another example is a clustering algorithm based on
Particle Swarm Optimization [4], a model mimicking the choreography of a bird flock
or a school of fish. Further, selfish configuration behavior of individual devices can be
potentially solved by game theoretical approaches [30] or by incentive schemes [33].

4 Self-configuration Management Architecture

We regard user-centric, context-aware, adaptive and collaborative configuration as the
essential requirements for self-configurable networks. We noticed that previous

Table 1. Overview of self-configuration techniques

User-
centricity

Context-awareness Adaptation Collaboration

Service-level Service
selection

Utility
based:
[22], [28];

Service discovery
Context-based
advertising/query
[26];
Based on Name
resolution: [31];

Service selection
Performance
metrics based:
[19];
Location based:
[24] [32];
Utility based
[22];
Based on mobile
agent: [17];

Name structure
attribute-value
pairs: INS,
modified INS
[15];
Objectified name:
OMG-NSS [16],
ONS [31];

Adaptable
application

MPEG-21 [25];
Service discovery

Routing-based:
[18];
Utility based:
[22]

Session
migration: [24],
[26]

Resource
allocation

Utility based:
[28];

Naming platform
“Ecosystem”:
[27]

Network-
level

NA Context-aware
addressing

Hop distance
based addressing
Network size

IP addressing
Based on
Partition ID:
[8], [11], [9];
Based on weak

IP translation
Address
translation:
NAT
Protocol

236 J. Wang, R.V. Prasad, and I. Niemegeers

Table 1. (continued)

based variable-
sized addressing
[12]

DAD: [13],
[14];
Based on
routing and link
information:
[12];

IP Mobility
COA-HA
binding

translation:
SIIT, NAT-PT

Addressing
Decentralized
address
assignment:
[11], [12]

Router
allocation

Game theory:
[29]
Incentive
based: [33];

Connectivity-
level

NA Clustering
Identity-based
(Lowest-ID)
Location-based
(Highest-Degree)
Combined
metrics (mobility,
energy, degree
etc.): [3] [4] [5]

Clustering
Energy and
mobility
adaptive cluster
head reselection
[5]
Mobility based
“hello period”
adjustment [5]

Clustering
Particle swarm
optimization
[4]

Medium access
Game theory:
[30]

Power control
Game theory:
[30]

studies have already proposed some solutions to meet the requirements from different
perspectives, and we listed them in Table 1. However, considering diversity and
variety of configuration aspects, we focus on general architecture to automate self-
configuration management in MANETs. We believe such architecture can provide a
basis for future protocol design to meet all the requirements.

User

Applications

Network
elements

Self-configuration Management Module

Service
Configuration

Models

Networking
Configuration

Models

Connectivity
Configuration

Models

High-
level

Network
Goal Context

Config
States

Configuration
Manager

Fig. 4. Architecture of Self-configuration Management

 Self-configuration in MANETs: Different Perspectives 237

Our proposed architecture is centered on a self-configuration management mo-
dule, as shown in Fig.4. This module interacts with the three tiers discussed in
the Section 3.1. The module comprises of three main components: an information
abstraction, a set of level-specific configuration models and a management
administrator. They potentially provide methods to fulfill the four requirements.

Information abstraction is the essential component to realize user-centricity and
context-awareness. It aggregates contextual information from user, applications,
network elements, and defines configuration states of both users and network. By
mapping these two states as shown in Fig.3, it interprets user needs and preferences
into network tasks with high-level goals. Meanwhile the contextual information can
be directly used by the configuration models of different network levels to support
context-aware configuration protocols.

Configuration models are grouped separately at service, networking and
connectivity levels. They aim to realize specific configuration tasks within the level,
and flexibly to allow sophisticated protocol design. The protocol should be designed
in the way to enable harmonic collaboration amongst autonomous MANET devices
and effective adaptation to changing situations, by utilizing advanced techniques and
multi-dimension contextual information.

Configuration manager takes an overview of current configuration states and is
responsible for coordinating configuration models beyond local levels. In some cases
optimal performance can only be achieved by joint consideration and decision of all
levels. For example, mobility in MANETs can be handled either at connectivity,
networking or service level, thus configuration manager has to decide which one is
the best solution by being aware of the nature of scenarios. The configuration
manager makes it possible to achieve collaboration and adaptation from global
perspective.

The entire management module can be implemented in the cluster head or the most
capable device in terms of computation, storage and power resources, whilst taking
into account the mobility. Resource-restricted devices only need to implement part of
the module such as layer specific configuration models. In this way, centralized or
hierarchical management can be organized. When centralized approach is not useful
in certain scenarios, this management module can also be implemented fully or
partially on each device with adequate resources to provide distributed management.

5 Conclusions

We studied the requirements of self-configuration in MANETs aiming at
understanding the problems and their solutions at different layers of OSI stack. We
have presented here many techniques used for self-configuration such as clustering,
addressing, and service discovery. The study also considered all aspects of services
and solutions currently employed for a better self-organization of networked devices.
Further, from a global perspective we generalized four important issues which are
challenging the self-configurable network paradigms. We proposed self-configuration
management architecture as the foundation for solutions to those challenges. With this
discussion we believe that a global picture of self-configuration from different
perspectives is rendered. However, this is only the initial step. Further studies include

238 J. Wang, R.V. Prasad, and I. Niemegeers

implementation and generalization of protocols for self-organization that balances
between local and global perspectives.

Acknowledgement

We thank IOP GenCom Future Home Network project, IST MANGET Beyond
project and Freeband PNP2008 project for funding this work.

References

1. Dobson, S., et al.: Survey of autonomic communications. ACM Transactions on
Autonomous and Adaptive Systems 1(2), 223–259 (2006)

2. Prehofer, C., Bettstetter, C.: Self-organization in communication networks: principles and
design paradigms. IEEE Communication Magazine 43(7), 78–85 (2005)

3. Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for mobile
ad hoc networks. Journal of Clustering Computing (Special Issue on Mobile Ad Hoc
Networks 5(2), 192–204 (2002)

4. Ji, C., Zhang, Y., Gao, S., Yuan, P., Li, Z.: Particle Swarm Optimization for Mobile Ad
Hoc Network Clustering. Proc. of IEEE ICNSC (2004)

5. Gavalas, D., Pantziou, G., Konstantopoulos, C., Mamlis, B.: Lowest-ID with adaptive ID
reassignment: A novel mobile ad-hoc networks clustering algorithm. Proc. of IEEE
ISWPC (2006)

6. McAuley, A.J., Manousakis, K.: Self-configuring Networks. Proc. IEEE
MILCOM (2000)

7. Sun, Y., Belding-Royer, E.: Dynamic Address Configuration in Mobile Ad hoc Networks.,
Technical Report 2003-11, Computer Science Department, UCSB (2003)

8. Nesargi, S., Prakash, R.: MANETconf: Configuration of hosts in a mobile ad hoc
network’. Proc. IEEE INFOCOM (2002)

9. Thoppian, M.R.: A Protocol for Dynamic Configuration of Nodes in MANET, Master’s
thesis, Computer Science, University of Texas at Dallas, August (2002)

10. Perkins, C.E., Malinen, J.T., Wakikawa, R., Belding-Royer, E.M., Sun, Y.: IP address
autoconfiguration for ad hoc networks. draft-perkin-manet-autoconf-01.txt, Work in
progress (2001)

11. Zhou, H., Ni, L.M.: Prophet Address Allocation for Large Scale MANETs. Proc. IEEE
INFOCOM (2003)

12. Weniger, K.: PACMAN: Passive Autoconfiguration for Mobile Ad hoc Networks. IEEE
JSAC Special Issue ’Wireless Ad hoc Networks 23, 507–519 (2005)

13. Vaidya, N.H.: Weak Duplicate Address Detection in Mobile Ad Hoc Networks. In: ACM
MobiHoc, ACM Press, New York (2002)

14. Sun, Y., Belding-Royer, E.: A study of dynamic addressing techniques in mobile ad hoc
networks. Wireless Communications and Mobile Computing, 4(3), 315–329 (2004)

15. Chen, G., Kotz, D.: Context-sensitive resource discovery. In: Proc. IEEE PerCom, IEEE
Computer Society Press, Los Alamitos (2003)

16. OMG, Naming service specification (October 2004), http://www.omg.org/docs/formal/04-
10-03.pdf

17. Tyan, J., Mahmoud, Q.H.: A network layer based architecture for service discovery in
mobile ad hoc networks. Proc. IEEE CCECE-CCGEI (2004)

 Self-configuration in MANETs: Different Perspectives 239

18. Ververidis, C.N., Polyzos, G.C.: Extended ZRP: a routing layer based service discovery
protocol for mobile ad hoc networks. Proc. MobiQuitous (2005)

19. Liu, J., Issarny, V.: Signal Strength based service discovery in mobile ad hoc networks.
Proc. IEEE PIMRC (2005)

20. Jacobsson, M., Niemegeers, I.: Privacy and anonymity in personal networks. Proc. IEEE
PerSec (2005)

21. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural
approach to autonomic computing. Proc.IEEE.ICAC (2004)

22. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dyanmic Configuration of Resource-
aware services. Proc. IEEE ICSE (2004)

23. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
Better Understanding of Context and Context-Awareness. Proc. ACM HUC (1999)

24. Shacham, R., Schulzerinne, H., Thakolsri, S., Kellerer, W.: The virtual device: expanding
wireless communication services through service discovery and session mobility. Proc.
IEEE WiMob (2005)

25. Min, O., Kim, J., Kim, M.: Design of an adaptive streaming system in ubiquitous
environment. Proc. IEEE ICACT (February 2006)

26. Phan, T., Xu, K., Guy, R., Bagrodia, R.: Handoff of application session across time and
space. Proc. IEEE ICC (2001)

27. Doi, Y., Wakayama, S., Ishiyama, M., Ozaki, S., Ishihara, T., Uo, Y.: Ecosystem of
naming systems: discussions on a framework to induce smart space naming systems
development. Proc. IEEE ARES (2006)

28. Chess, D., Segal, A., Whalley, I., White, S.: Unity: Experiences with a prototype
autonomic computing system. Proc. IEEE ICAC (2004)

29. Felegyhazi, M., Buttyan, L., Hubaux, J.P.: Nash equilibriums of packet forwarding
strategies in wireless ad hoc network. IEEE Transactions on Mobile Computing (May
2006)

30. MacKenzie, A.B., Wicker, S.B.: Game theory and the design of self-configuring, adaptive
wireless networks. IEEE Communication Magazine 39(11), 126–131 (2001)

31. Lee, K., Lee, D., Ko., Y., Lee, J., Chung, Y.C.: An objectified naming system for
providing context transparency to context-aware applications. Proc. IEEE SEUS-
WCCIA (2006)

32. Lenders, V., May, M., Plattner, B.: Service discovery in mobile ad hoc networks: a field
theoretic approach. Proc. IEEE WoWMoM (2005)

33. Garyfalos, A., Almeroth, K.C.: Coupons: wild scale information distribution for wireless
ad hoc networks. Proc. IEEE GLOBECOM (2004)

Knowledge-Based Reasoning Through

Stigmergic Linking

Kieran Greer1, Matthias Baumgarten1, Maurice Mulvenna1, Chris Nugent1,
and Kevin Curran2

1 School of Computing and Mathematics
Faculty of Engineering, University of Ulster

Northern Ireland, UK
2 School of Computing and Intelligent Systems

Faculty of Engineering, University of Ulster
Northern Ireland, UK

Abstract. A knowledge network is a generic structure that organises
distributed knowledge into a system that will allow it to be efficiently
retrieved. The primary features of this network are its lightweight au-
tonomous framework. The framework allows for smaller components such
as pervasive sensors to operate. Stigmergy is thus the preferred method
to allow the network to self-organise and maintain itself. To be able to re-
turn knowledge, the network must be able to reason over its stored infor-
mation. As part of the query process, links can be stigmergically created
between related sources to allow for query optimisation. This has been
proven to be an effective and lightweight way to optimise. These links
may also contain useful information for providing knowledge. This paper
considers a number of possibilities for using these links to return knowl-
edge through a distributed lightweight reasoning engine, thus upholding
the main features of the network.

1 Introduction

CASCADAS 1 is a European Framework VI funded research project aimed at
developing the next generation of autonomous network systems. The main focus
of our work on this project is the lightweight organisation and request-based
provision of knowledge and towards this goal the concept of a knowledge network
has been developed. The network must be able to accommodate relatively small
network devices, for example sensors and so a lightweight framework is required.
Because of this, stigmergy is central to allowing the components to self-organise
with regard to knowledge. Stigmergy (for example Ricci et al. 8) is a lightweight
way of building an understanding through changes in the environment rather
than through any real knowledge. One example of stigmergy is the Ant Colony
Optimisation algorithm (Dorigo et al. 2). ACO works by copying the actions of
ants as they try to find the optimal route from one position to another. They

1 For more information on the overall project see http://www.cascadas-project.org

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 240–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Knowledge-Based Reasoning Through Stigmergic Linking 241

randomly select a number of routes and leave a pheromone behind indicating
the route they took. The shortest route will build up the strongest pheromone
amounts and so eventually all ants will choose this route. The ants do not know
what the optimal route is, but rather discover it through the experience of all
the routes that they take. Their reasoning does not require any knowledge of the
environment, but only to be able to read the pheromone trail.

A knowledge network (for example Baumgarten et al. 1 or Mulvenna et al. 5)
is a generic structure that organises distributed knowledge of any format into a
system that will allow it to be efficiently retrieved. The knowledge network acts
as a middle layer that connects to a multitude of sources, organises them based on
various concepts and makes this knowledge available to individual services and
applications. To turn the network of information into a real knowledge network,
it would be necessary to be able to derive new information from the information
that it stores. It would be useful to introduce some kind of cognitive process into
the network that would allow it to reason about its contents. Reasoning generally
requires an understanding of knowledge, which can be a much more heavyweight
process. To retrieve information the network must be queried. This paper will
suggest using the query results to stigmergically organise the information in the
network. The framework can then also be used to perform some basic reasoning.
This means that the network can do more than simply information retrieval,
while remaining lightweight. This way of using links appears quite novel, due to
the lack of related work.

The rest of the paper is organised as follows: Section 2 gives a brief description
of the knowledge network. Section 3 describes the linking method that has been
proposed and summarises some tests. Section 4 describes some related work in
the areas of linking and stigmergic reasoning. Section 5 describes the stigmergic
reasoning methods proposed in this paper. Section 6 develops these further to
include autonomous behaviour and Section 7 gives some conclusions on the work
presented in this paper.

2 Knowledge Network

A knowledge network is a hierarchical structure with sources at leaf nodes pro-
viding information. A source can provide live data that may also be volatile
(constantly changing). For example a number of sensors may return current
weather information. Other sources can contain embedded data. This is data
that does not change and represents a particular condition that occurred. The
knowledge network architecture does not limit the type of source and so static
data could also be represented by something like a Web page. One node can ag-
gregate other nodes, acting as the organisational component of the network. The
organisation of sources can take place based on the values that sources produce,
their locations or their meaning. If using semantics, sources can be aggregated
in a hierarchical way into other higher level concepts, building up a network
of knowledge. We allow each component to store services that can be used to
perform calculations on the data. These services can be dynamically loaded into

242 K. Greer et al.

the network and can be of any type, so there is really no limit to the function-
ality that can be provided. A node refers to any node in the network, including
nodes that aggregate or reference other nodes. A source refers to a leaf node
that actually references a source that provides data.

3 Stigmergic Linking

Some kind of querying process is required to query the network, to retrieve the
information. As the network can be of any size, query optimisation is important.
To try and optimise the network in a stigmergic manner, temporary views can be
generated, or links can be created between sources, based on the experience of the
querying process. Sources can be linked to each other in a stigmergic manner by
linking sources that answer the same types of query. This is stigmergic because
the sources to be linked are selected from the query results, or the querying
experience. For a particular type of query there may be many potential sources
that could answer the query. It may be useful to be able to tell the network to look
at only a certain number of these sources, thus reducing the amount of search
required. So far, testing has been done using a select-from-where statement,
where the ’where’ clause contains a number of comparisons that need to be
satisfied. For example, a query might look like:

SELECT A.Value1, B.Value2 FROM A, B, C WHERE (A.Value3 EQ
B.Value4) AND (B.Value2 LE C.Value1 OR B.Value3 GT C.Value2)

This statement contains information about source types (’A’ for example),
value types (’Value1’ for example) and comparison operators (’EQ’ or ’LE’ for
example) that are related to each other through the query. It is possible to
use this information to create a linking structure that describes parts of the
query. This structure can be made from sets of nested hashtables, where the
keys represent the source types, value types and operators. The most successful
structure that was tested contained, for the source in question, the following
elements for source linking:

For the source in question store a structure with: value type - related source
type - related value type - operator - related source instance

As an example, for answering the above query the engine firstly retrieves all
C source instances and B source instances, where B and C represent source
types. It stores the B source instances that satisfy the comparison ’B.Value3 GT
C.Value2’. Then only these B source instances are used to satisfy the other query
parts, thus reducing the number of sources looked at and thus the search space.
This process filters through the whole query, where a full search is performed
only when a new source type is encountered. The query engine would traverse the
network to retrieve the C source instances, evaluate the first comparison and then
use the results to limit the search for the rest of the query. The search to find the
first set of sources or a new set of sources however can still potentially retrieve a
large number of source instances. It is possible to use a linking structure similar

Knowledge-Based Reasoning Through Stigmergic Linking 243

to the one that links sources to create a view of the network. This view can be
specific to a particular application and can store the nodes that are frequently
used by that application only. When performing a search, before doing a full
search of the network, the application can firstly search its view to determine if
it contains any relevant nodes and then use only these nodes if they exist. This
will help to reduce the search process. The view linking structure may store only
source type and value type as keys, for example. On top of this, if one source is
retrieved for a query part, its linking structure can be checked to see if it links
to any instances of the other source type in the comparison. If links exist then
only these sources need be looked at to evaluate the comparison.

The linking structure can store different levels of references, where each new
level has a threshold value that must be met before a linked source is allowed
to be stored there. Each source that is stored is given a weight value that can
be incremented or decremented, allowing the source to be moved up or down
the levels. The top level is the linked level and it is only these sources that
are returned as links. This means that sources must be consistently related to
each other before they are recognised as links. It is also possible to control the
amount of memory used by the linking structure, by limiting the number of
allowed entries, ensuring that the structure stays lightweight. It is also possible
to include learning algorithms to learn certain parameters. Consider evaluating
the query part ‘B.Value3 GT C.Value2’. A number of B source instances returned
that satisfy the query part could be linked to the C source instances through a set
of nested hashtables with the keys Value2 - B - Value3 - GT - B source instances.
If these instances are then consistently associated they can build up their weight
values until they reach the link threshold, when they will then be returned as
links, or sources to look at instead of searching the whole network. Note that
the storage mechanism is quite flexible as it stores links for query parts and not
whole queries, allowing the query parts to be related to different queries. Each
source stores a linking structure that contains the hastables for sources linked
to it. If the source is associated with a query part, then the hashtable related to
that query part is retrieved. The referenced sources are then looked at.

If a linked source is used in the current query answer, then its weight value
is incremented, while if it is not used its weight value is decremented. This may
mean that sources are moved up or down levels in the linking structures and so
memory management becomes a factor. A source can be moved down if its weight
now falls below the threshold value for a level, or if a weight for another source is
now greater. While this is a technical issue, it is possible to manage this. It is also
possible to allow one source to borrow memory from another, so that a heavily
used source could borrow memory from a lightly used one. In these tests this was
done between sources of the same type only and ensures that the total amount of
memory remained the same. Also implemented was an algorithm that allowed the
linking structure to learn the best weight decrement value. This was the fraction
of the increment amount that a source weight would then be decremented by
if it was not subsequently used. The decrement was less than the increment so
that a source could stay at a certain level for a period of time even if not always

244 K. Greer et al.

used. These tests allowed each branch of the linking structure to store a reserve
entry, which was an extra entry that a source could be referenced by before it
was moved into the linking structure itself. This was shown to produce much
better results. But because it was then difficult to manage memory, it became
optional. Later tests then also allowed a local view to store links that could also
be used along with the global network links. The extra reserve entry became a
sort of benchmark that could be compared to a configuration of limited memory
in the network itself but with an additional local view. Tests showed that the
two setups could produce similar performances when appropriate configurations
were used. The linking structure is the most basic possible. It is simply a link
between two nodes, represented by a weight. As such it is completely flexible
and dynamic. Alternative approaches are certainly possible, such as building up
a case of statistics. But if these were to be evaluated through more heavyweight
knowledge-based algorithms they may lose some of their dynamism. It is not
possible from these tests to say what approach would be best.

3.1 Example of Test Evaluations

Some tests have been carried out to determine the possible effectiveness of the
linking with regard to query optimisation. Only a brief summary of some test
results can be given here as this is not the main focus of this paper. We hope to
publish more complete analyses in other papers. To give some idea of possible
performance, a network with 300 source nodes was queried with queries skewed
towards certain types of request. The work assumes that the queries would need
to be skewed towards certain types for the linking to be effective. The skewing
was done by placing source and value types into probability bands and then
randomly generating queries by selecting source or value types from each band.
The results are provided in the graphs of Fig. 1. The queries generated only used
the equivalence operator in the ‘where’ clause comparisons. This was shown to
benefit most from the links as compared to queries with all types of comparison
and is equivalent to text or concept matching. The results are for queries gen-
erated from a 0.7:0.3 probability distribution, where one of 7 source types or 2
value types would be selected 70% of the time and one of the remaining 3 source
types or 3 value types would be selected the remaining 30% of the time. The
linking methods limited the amount of memory available by limiting the number
of allowed entries. The other configuration factors were as follows: There were
10 different source types and 5 different value types. There were a total of 30
instances of each source type, where each source instance contained all 5 value
types. Each value type could have a range of integer values from 1 to 10. For
the linking methods that managed memory, each of the storage structures (3
levels in these tests) was allowed a total of 50 entries for each atom. Each query
was made up of a maximum of 2 sources in the ‘select’ clause and 3 sources in
the ‘from’ clause. If the ‘select’ clause had 2 sources, the ‘from’ clause had 2
or 3 sources. Other tests with a 0.9:0.1 distribution split showed that in some
cases, queries with all comparison operators could be optimised with reasonable

Knowledge-Based Reasoning Through Stigmergic Linking 245

Fig. 1. Graph a) Percentage of reduction in the number of nodes searched when using
one of the three linking methods described for queries with the equals operator only.
Lm stands for limited memory, lml stands for limited memory with learning and lmb
stands for limited memory with borrowing. Graph b) Percentage of reduction in quality
of service when using one of the three linking methods described for equals only queries.

quality as well. Graph 1.a shows the amount of search reduction produced by
the linking and Graph 1.b shows the related reduction in quality of service.

Limited memory means that the number of entries allowed in the linking
structure itself was limited. This would also limit the search process to what
links would be available. These tests however also allowed the reserve entry and
so did not limit memory with regard to overall memory size. But the reserve entry
would not be used in the search process, only the highest level links. Borrowing
would then allow nodes to borrow memory from each other at each linking level
and learning would allow the nodes to learn the best weight decrement value. As
these are only initial tests, the algorithms used are relatively crude. This was the
intention so as to give some baseline indications. More sophisticated algorithms
could certainly be tried.

The metrics used to measure performance were as follows: To measure the
node reduction a search that used linking was compared to a full search. The
full search was still guided by the hierarchical structure of the network, but
would look at all sources of a particular type. However, if a previous evaluation
indicated that only certain sources were suitable for that query part, then only
these would be looked at for the other evaluations. The linking search would
consider only linked sources when links were available. If no links were available
then it would look at all possible sources. If the linked search did not return a
result, then a full search would be performed as well. If the full search returned
an answer, then its node count would be added to the linked search count. If
the linked search did return a result, then the full search node count would
not be added, but a comparison would be made between the quality of answer
between the full search and the linked search. All source values were represented
by integers. Thus a range of 1 to 10 would mean 10 possible different values.
This would be just as suitable for text matching as for numerical comparison.
However, to measure quality of service a way was needed to define what the best
sources were. To do this an evaluation function was used that tried to maximise
the sum total for all of the sources that were asked for by a query. Thus the
sources with the larger values would be defined as the better services. A full

246 K. Greer et al.

search would find the best services, but the linked search might not contain
links to all of the best services. Thus the difference in the average value returned
for a single source between the full and linked searches could be taken as a
measure of QoS. As the search size is reduced, fewer nodes are searched and so
the quality of service also reduces. But the tests showed that a reasonable QoS
could still be maintained. They also indicated a substantial reduction in search
size through using links. While these tests only used the equivalence operator,
other tests with more skewed data showed that the links could still be effectively
used with queries that had all comparison operators as well. For example, queries
skewed with a 0.9:0.1 distribution could produce only a 3% worse QoS for equals
only queries, but then the search reduction might be around only 35%. All of
these figures are relative however. A real environment with a much greater ratio
of instances to source types might expect a much greater search reduction, for
example. Initial tests including views also show reasonable results for queries
with all comparison operators.

3.2 Knowledge Provided by the Links

The structure that stores the links may actually contain useful information that
could be used to infer new knowledge. These links may be created primarily
through the experience of the users that issue requests. There is thus some
cognitive process used in creating them and they will link sources that should be
sensibly associated together. These may be sources that are not obviously linked
by semantics or any ontology of the network that may exist. Section 5 will look
at the possibility of using the linking information to derive new knowledge in a
lightweight manner, but before that some related work will be discussed.

4 Related Work

Related work can be split into work that tries to use links for optimisation and
work that tries to reason stigmergically. One example of using links in networks
can be found in Koloniari et al. (3), where they try to cluster nodes in a peer-
to-peer network based on query workloads. They measure how similar a node’s
content is to a type of query, which will mean that it is more likely to return
an answer to that type of query. They then try to cluster nodes with similar
workloads together in workload-aware overlay networks. This will maximise the
number of relevant nodes that can be visited in a time period to answer a par-
ticular query, by having them just a few links apart. They describe that the
mechanism for calculating the workload value is still an open issue and could
be based on a node storing statistics on the queries that pass through it. They
state that 60% more queries can be answered in the same time frame when nodes
are aggregated this way. Another example can be found in Raschid et al. (6) or
Vidal et al. (11). They apply linking to the problem of finding routes through
web resources in the area of Life Sciences. In this set of resources, there are
known to be different routes to different resources that may answer the same

Knowledge-Based Reasoning Through Stigmergic Linking 247

query. They create a directed acyclic graph to describe the possible routes and
then adjust weights in transition matrices to produce a ranking of sources to
investigate next.

There does not seem to be a lot of work focused on stigmergic reasoning.
Serugendo et al. (9) describe self-organising methods for the Internet or mobile
communications and includes stigmergic examples. Data mining might be a re-
lated topic as the links would generate new clusters of data from the existing
information. Ramos and Abraham (7) describe a stigmergic method to self-
organise by generating clusters through data mining. Two examples of directly
related work seem to be Torres (10) or Ricci et al. (8). Torres (10) discusses the
use of stigmergy to produce collective intelligence in robots. A global problem is
broken down into simpler tasks that each robot can perform, where collectively
they exhibit some form of intelligence. Ricci et al. (8) describes a process and
framework for producing cognitive stigmergy. Stigmergy essentially reacts to its
environment and cognitive stigmergy tries to add some cognitive or intelligent
processes to this. In their paper they suggest doing this through the use of arti-
facts. Artifacts are first-class entities representing the environment that mediate
agent interaction and enable emergent cooperation. The stigmergic process itself
is not changed, but artifacts are stored in the agents or in the environment and
they can trigger certain events. They can be combined and as such, can indi-
vidually or collectively produce cognitive behaviour in the network as a whole.
They note that stigmergic processes that might be included in artifacts include
diffusion (diffuse information to nearby nodes to improve awareness), aggrega-
tion (translate a set of annotations into a single annotation for evaluation, for
example), and selection and ordering (order or select annotations according to
their importance to a particular artifact). These artifacts could provide the same
sort of functionality as the links, but they may be able to represent anything.
This paper proposes generating the links through the querying process, based
on the knowledge of the users. Artifacts would appear to be more heavyweight
knowledge-based entities that are then stigmergically used to provide collective
intelligence. They are not necessarily organising mechanisms, but more like ser-
vices. However, more heavyweight options will also be suggested in this paper,
so there are clear similarities between the two approaches.

5 Stigmergic Reasoning

It may be possible to use the linking information to infer new knowledge using
just simple mathematical operators like percentage, sum, average, or simple text
comparison. The links are still created stigmergically as described in Section
3 and so only require simple weights and thresholds. The reasoning can then
be done by recognising a simple operation and using one of the mathematical
operators to calculate it. This would produce a sort of distributed lightweight
reasoning engine. The reasoning in the network itself would still be limited, but
may be able to answer questions like the following:

248 K. Greer et al.

1. What is the best value of one value based on other values?
2. Is a certain value (or action) possible based on other values?

The information used to infer this is based on the querying experience and so
depends on the currently existing links. As it is not built on knowledge itself, if
a link is missing it may not be able to give the correct answer. Because of this it
would be useful to provide a value describing the reliability of the answer. This
could simply be a percentage that describes how reliable the final answer was
compared to other possible answers. Consider the following types of reasoning
that might be possible.

5.1 Reasoning Examples

Following are a number of examples of possible queries that a user may ask that
require reasoning. The examples will also show the select-from-where statement
that needs to be executed to evaluate the query. These examples are based on a
weather network with other related concepts. These examples could probably be
answered by different queries and are slightly contrived, but they give an idea
of the sort of reasoning that is possible.

What is the best temperature for wearing t-shirts? We have a number
of sources in the network relating to t-shirts. We retrieve these sources and look
to see if they have any weather links. If weather links exist, then these sources
are accessed and their values are retrieved. The temperature values are then
averaged to produce the best value. The query for this might look like:

Select best weather.temp From weather, clothes Where clothes.item EQ t-shirt.

If there exist links between clothes and weather then you could argue that
both sources must initially have been related through a common concept that
allowed them to be linked as part of the where clause evaluation and so could be
queried directly. However, the query is asking for an aggregated value. It is not
providing a specific temperature value to check. Also, if a common concept exists
associating the two source types, then there may be many variations of possible
related values. The user is asking for the best value based on knowledge. This
knowledge is provided by the other users of the system and they decide what
the best temperature for wearing a t-shirt is.

Can I go swimming in Belfast based on the current rain and temper-
ature weather? We retrieve the current live rain and temperature conditions
from sensor sources. We then navigate to swimming sources and retrieve any
weather links. The weather links stored contain embedded data that describe
weather conditions during which swimming took place. If any links exist with
weather conditions that match the current weather then swimming is possible.
The query for this might look like:

Knowledge-Based Reasoning Through Stigmergic Linking 249

Select exists swimming From swimming, weather, current weather Where
weather.rainEQcurrent weather.rainAndweather.tempEQcurrent weather.temp.

The reply could be the percentage of swimming sources with linked weather
sources that match and also the current weather conditions.

What clothes should I wear in Belfast when it is windy? We retrieve
the Belfast source and from this the wind conditions sources. We select the wind
conditions sources that indicate windy weather. From these sources we retrieve
links to related clothes sources. We look at the clothes values to see what clothes
people have worn. For example, if 3 sources specify coat, while 2 sources specify
jumper, as coat is specified more often it can be returned as the answer. The
answer can again be returned as a percentage indicating some level of confidence.
The query for this might look like:

Select best clothes From clothes, city, weather Where city.name EQ Belfast
AND city.weather EQ weather.conditions AND weather.wind EQ windy.

Note that these evaluations are done based purely on links and relatively sim-
ple mathematical operations or simple comparisons. This allows the reasoning
engine to be distributed over the whole network and allows each individual rea-
soning component to be relatively lightweight. If no linked sources exist then the
reply can specify this, rather than indicating an incorrect request. It is also possi-
ble to include percentage values with the reply to indicate the level of confidence.
The linking structure might contain nested keys that provide more information
than is required. For example, if constructed from the where clause comparisons
then a structure like that given in Section 3 may exist. But linked sources can be
retrieved from different branches that contain the query request, if the request
is more general, and then aggregated.

The reasoning engine must be able to recognise a set of extra keywords on
top of what the query engine recognises for the select-from-where statement. For
example, in the above queries, the extra keywords are ’best’ or ’exists’. These
would trigger a different kind of query, maybe to retrieve all relevant sources
and average their values. But this process should remain lightweight and not
extend the querying process by too much. There is also a slight difference in
the query structure, where all sources do not need to be linked together by
comparisons in the where clause. If we perform some sort of aggregation for a
source based on other sources, we can look directly at the existing links. For
example, in the swimming query, swimming is not directly linked to the other
sources by comparisons. But we can retrieve the swimming sources, look for any
links through the related source type weather and then use these to compare
with existing weather conditions.

5.2 More Complex Reasoning

The query engine, or simple reasoning engine, is only able to perform a limited
amount of reasoning. Other types of reasoning cannot be inferred directly from

250 K. Greer et al.

available information, but require extra information in the form of rules. For
example, say we have a rule that ‘the brother of a mother is an uncle’. Then we
have the following statements stored in the network through links:

• Susan is John’s mother.
• David is Susan’s brother.

A user then asks the query: ‘does John have an uncle?’ If the extra rule exists
then we can infer that David is John’s uncle, but if it does not then we cannot say
this. The knowledge network, through links, could certainly store the information
that Susan is John’s mother and David is Susan’s brother. But we need the rule
that the brother of a mother is an uncle to be included into the system as an
extra piece of information. The reasoning engine must then also perform a more
complex piece of reasoning to come up with the answer. This may result in a
system that is becoming too heavyweight for the stigmergic framework.

If we want to allow this type of query, then one possible solution is to include a
centralised, more heavyweight component that can do some pre-processing. This
component could be application specific, when it would be part of the client ap-
plication and store sets of rules for just that particular application. As it is not
distributed through the whole network the network remains lightweight. This
pre-processing essentially re-writes the query to make it possible to execute it
in the network. The query can be re-written as a select-from-where statement
from the existing rules, for example:

Select exists C From C, A, B Where (A.brother EQ C) and (B.name EQ John
and A.name EQ Susan and B.mother EQ A)

So this re-writing will produce a new query that can then be executed in the
network as normal without requiring any heavyweight reasoning. We note that
the re-writing could produce a query that does not necessarily require links to
be retrieved. The sources could be queried directly from this example. But the
query can then be executed in a distributed and lightweight manner through the
network. Maybe something like ConceptNet (Liu and Singh 4) could be used to
retrieve the rules from. With programs offering machine-readable interfaces, a
rule-base like ConceptNet could be queried with the concepts in question and
related rules retrieved. The query would then be re-written using the most ap-
propriate rule. Section 6 will consider autonomic reasoning and introduce some
other features that may be important for a lightweight network. These can be
combined into an overall system that is schematically illustrated in Fig. 2. The
diagram is shown now to give you a clearer view of the concepts. The extra con-
cepts illustrated in the diagram are a global ontology that could also store the
rules and a concept matcher that can be used to determine similar source types
based on the matching of concept descriptions. Also, an evaluation function can
be loaded into certain nodes to evaluate certain concepts for autonomic linking.
These features are discussed in the next section.

Knowledge-Based Reasoning Through Stigmergic Linking 251

Fig. 2. Schematic view of the concepts discussed in this paper

6 Autonomic Reasoning

If we make the nodes in the network slightly more heavyweight then we can allow
them to create the links autonomously thus generating their own knowledge.
Each node could be loaded with an evaluation function that evaluates a certain
feature. It then looks for other nodes that can provide the input to the function.
The evaluation function will know what the best evaluation is and so it can
retrieve values from nodes it finds and then create links to those that give it the
best evaluation. The evaluation can also be distributed, where each node only
evaluates a part of it, similar to evaluating one of the where clause comparisons.
The links can then be used as described previously to provide reasoning. If the
node continuously evaluates, it can cope with more volatile information and
can adjust its links to reflect the current state of the network. This means that
the knowledge is generated not just by humans executing the queries but also
autonomously by the system itself and this may help to ensure that certain
features are included in the network and so can be answered even if not previously
queried by a user.

Depending on the evaluation process, the nodes may still be relatively
lightweight and not very cognitive. It may only know about some of the sources
it can link to. If a new source joins the network or an unknown source is found,
then the node may not know how to use it. One solution to this is an even more
heavyweight node that can match metadata in a semi-intelligent way. There is
also a centralised solution to this. Say that there is an ontology built up from the
network structure that defines the network concepts. This ontology can be used
to build the network structure, or by a user to discover the network contents.
A centralised metadata component could periodically search the ontology and
retrieve sources that provide the same sort of functionality. It may be able to

252 K. Greer et al.

do this by recognising the context in which the sources are used. It could sim-
ply build up a list of similar source types and this list can be sent through the
network to all nodes. If a node is on the list, or if it links to a node type on the
list, then it can try to retrieve information from the other related source types
to see if they will improve its evaluation. This centralised matching engine could
be application dependent with the links then stored in a view rather than the
network itself, making the whole process local and more specific to a particular
requirement. Or it could update links in the actual network to make the whole
network more intelligent, when any user can benefit from it. Fig.2 gives some
idea of how the centralised and distributed components might interact.

7 Conclusions

The focus of this work has been on the development of a lightweight framework
for building networks of knowledge. The lightweight framework allows sources of
small sizes, for example sensors in a pervasive environment, to use the network.
It does not however prevent other source types such as Web pages or databases
etc. to all connect to and also be used by the network. The network should be
autonomous and so should be able to maintain itself through stigmergic activi-
ties. However, stigmergy does not assume any knowledge or intelligence and to
develop the next generation of network some form of cognitive process would be
very desirable. This would allow the user to ask queries that require some form
of reasoning and this will increase the scope of the applications that can use the
network. The knowledge network can use linking of sources to optimise query
performance. This linking can be local in a view or global in the network itself,
when new users can then benefit from the experiences of other users. Tests have
shown that the linking is indeed very useful and could justify itself purely as an
optimisation technique. Tests have also shown that the linking can maintain a
reasonably good quality of service with regard to the query answer. This means
that any knowledge that it provides will be reasonably good. Tests with query
numbers of 10000 or greater is certainly a large number. But the tests showed
that performance was still improving after this number. The network would need
to monitor itself before this, to determine when the links were reliable and could
be made live.

The linking structures can be seen to provide information that may be useful
for reasoning as well. As they are built by the cognitive processes of the users of
the network, the information should be fairly sensible. With the addition of some
basic mathematical operators, it is possible to build a lightweight distributed
reasoning engine that can answer user’s questions that are more advanced than
simple information retrieval. This reasoning can also return an indication of the
reliability of the information. By making the network nodes slightly more heavy-
weight it is possible to introduce autonomous processes that can use evaluation
functions to generate these links by themselves. In this case the network can
dynamically configure itself and generate knowledge for specific concepts that
can provide answers even if not previously queried by any user. However, storing

Knowledge-Based Reasoning Through Stigmergic Linking 253

data will make the nodes more heavyweight and so it is possible to limit the
number of allowed links. But there needs to be a balance between limiting the
amount of memory and allowing enough links to be created for knowledge to be
effectively inferred. A user could ask for reasoning over anything but the replies
will be limited to the linked information only. For the linking to be effective it
is assumed that the queries will be skewed, but it could probably be assumed
that the reasoning queries would also reflect the same use of the network that
the information retrieval queries did.

The stigmergic approach however still has limitations. In a typical knowledge
base there will be sets of rules that can be used to derive new information
from sets of facts. The network contents represent the facts, but the storage
requirements for the rules may also be substantial. Such rules may not exist
in the knowledge network itself, but could be included locally in a client-side
application or in an application like ConceptNet. The application would store
rules relating to the information that it allows a user to query. The rules might
be read from an ontology. The client-side application would also need a query
re-writing tool. Then, through a re-writing of the query using these rules, it
would be possible to generate an alternative query to be executed that does not
require the same level of reasoning. The network itself does not then need to
become more heavyweight but can still provide distributed reasoning over even
more complex questions. The only addition to the query language would maybe
be two additional keywords. The linking mechanism is also very lightweight as
two nodes only need to inform each other that they are related. These links
could partially, but not completely, replace an ontology, for example. While the
stigmergic linking has been shown to be effective for optimisation, the reasoning
ideas suggested in this paper are still open questions. While different methods
could probably be used to implement the reasoning, the simplicity of the process
could make it an attractive possibility for a lightweight autonomous framework.

Acknowledgements

This work has been carried out in the project CASCADAS (IST-027807), which
is supported by the European Framework VI FET Proactive Initiative IST-2004-
2.3.4 programme of the European Commission.

References

Baumgarten, M., Bicocchi, N., Curran, K., Mamei, M., Mulvenna, M.D., Nugent, C.,
Zambonelli, F.: Towards Self-Organizing Knowledge Networks for Smart World
Infrastructures. In: Invited Session on Service Development and Provisioning
through Situated and Autonomic Communications at International Conference on
Self-Organization and Autonomous Systems in Computing and Communications
(SOAS’2006), Erfurt, Germany, (18-21 September, 2006)

Dorigo, M., Birattari, M., Stutzle, T.: Ant Colony Optimization - Artificial Ants as
a Computational Intelligence Technique. IEEE Computational Intelligence Maga-
zine (2006)

254 K. Greer et al.

Koloniari, G., Petrakis, Y., Pitoura, E., Tsotsos, T.: Query workload-aware overlay
construction using histograms. In: Proceedings of the 14th ACM International Con-
ference on Information and Knowledge Management., pp. 640–647 (2005)

Liu, H., Singh, P.: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT
Technology Journal 22 (2004)

Mulvenna, M.D., Zambonelli, F., Curran, K., Nugent, C.D.: Knowledge Networks. In:
Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 99–114.
Springer, Heidelberg (2005)

Raschid, L., Wu, Y., Lee, W.-J., Vidal, M.-E., Tsaparas, P., Srinivasan, P., Sehgal,
A.K.: Ranking Target Objects of Navigational Queries. In: 8th ACM International
Workshop on Web Information and Data Management WIDM’06, pp. 27–34 (2006)

Ramos, V., Abraham, A.: Evolving a Stigmergic Self-Organized DataMining. In: IADIS,
editor, IADIS-04, International Conference on Web Based Communities (2004)

Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive Stigmergy: A Frame-
work Based on Agents and Artifacts. In: The Third International Workshop on
Environments for Multiagent Systems (E4MAS) (2006)

Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-Organisation and Emergence
in MAS: An Overview. Informatica 30, 45–54 (2006)

Izquierdo-Torres, E.: Collective Intelligence in Multi-Agent Robotics: Stigmergy, Self-
Organization and Evolution (2004) (last accessed 7/4/07),
citeseer.ist.psu.edu/izquierdo-torres04collective.html

Vidal, M.-E., Raschid, L., Mestre, J.: Challenges in Selecting Paths for Navigational
Queries: Trade-off of Benefit of Path versus Cost of Plan. In: Seventh International
Workshop on the Web and Databases (WebDB 2004), 61–66 (2004)

citeseer.ist.psu.edu/izquierdo-torres04collective.html

Dynamic Ontology Mapping for Interacting

Autonomous Systems

Steven Heeps1, Joe Sventek1, Naranker Dulay2, Alberto Egon Schaeffer Filho2,
Emil Lupu2, Morris Sloman2, and Stephen Strowes1

1 Department of Computing Science, University of Glasgow
{heeps,joe,sds}@dcs.gla.ac.uk

2 Department of Computing, Imperial College London
{n.dulay,aschaeff,e.c.lupu,m.sloman}@imperial.ac.uk

Abstract. With the emergence of mobile and ubiquitous computing en-
vironments, there is a requirement to enable collaborative applications
between these environments. As many of these applications have been
designed to operate in isolation, making them work together is often
complicated by the semantic and ontological differences in the meta-data
describing the data to be shared. Typical approaches to overcoming onto-
logical differences require the presence of a third party administrator, an
approach incompatible with autonomous systems. This paper presents
an approach to automatic ontology mapping suitable for deployment in
autonomous, interacting systems for a class of collaborative application.
The approach facilitates the collaboration of application-level data col-
lections by identifying areas of ontological conflict and using meta-data
values associated with those collections to establish commonality. A mu-
sic sharing application has been developed to facilitate the sharing of
music between peers.

1 Introduction

Recent advances in ubiquitous and mobile computing have dramatically changed
the role of the computer in users’ lives and made mobile computing the new
personal computing and communication paradigm. The overriding motivation is
that computing systems should seamlessly integrate into the life of the user and
interoperate with other systems to offer mobile services as and when desired.

We have previously proposed the concept of a Self-Managed Cell (SMC) as the
fundamental management design pattern for autonomous systems [20]; an SMC
is a policy-based architecture that provides autonomic management capabilities
for ubiquitous computing environments [3,6,10,19]. In ubiquitous environments,
SMCs need to collaborate without having a pre-agreed schema, and it is also
desirable that there is agreement and common semantics for applications and
devices. The SMC architecture currently supports integration at the system and
management level where the basics for SMC interaction are handled in terms of
policy, data and event exchanges [17]. Successful SMC integration at this level
provides the mechanisms for services at the application level to collaborate.

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 255–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

256 S. Heeps et al.

This paper explores the challenge of integration at the application level. Se-
mantic differences between collaborating applications are usually managed by an
administrator who maps the differences or documents a strict ontology to which
systems developers and users adhere. It is likely that ontological and semantic
differences between individual applications will prove a barrier to application
collaboration due to the autonomous nature of the environment.

To explore application level ontology conflict and develop suitable mapping
mechanisms, we have investigated the use of SMCs in the domain of peer-to-
peer music sharing. The ability to see and listen to the music of others became
prominent when Apple Inc. released a version of iTunes that supported the
sharing of music collections on the same sub-network through the DAAP protocol
[1]. This change, from music players as a single-user jukebox application to a
tool for music sharing, brings with it the potential for further study, particularly
with regards to the divergence of meta-data used to describe the tracks within
each player. The following example highlights this problem: Bob and Alice have
streaming access to each other’s music collection. Bob loves “Indie” music, and
searches for this in Alice’s collection. Disappointingly, no matching tracks are
found as Alice has not defined the genre “Indie”, despite having a number of
tracks that Bob would commonly classify as ”Indie”. There is a clear semantic
difference in the way Bob and Alice define their music collections; whilst this
is a standard feature of personal music collections, overcoming these differences
automatically would undoubtedly enhance the users music sharing experience.

The paper is organised as follows: Section 2 describes the automatic ontology
mapping mechanism; Section 3 discusses a prototype implementation in a peer-
to-peer wireless music sharing environment; Section 4 presents related work, with
conclusions and directions for future work presented in Section 5.

2 Automatic Ontology Mapping Mechanism

Seamless collaboration at the application level is difficult. It is unlikely that dis-
covered services and applications will adhere to a common language or naming
structure. It is likely that different devices and applications will originate from
different vendors who use different semantic descriptions. Alternatively, seman-
tics are user-defined and thus subject to great variation [18].

Ontologies are used to solve the semantic difference problem between applica-
tion and application content. Ontologies capture knowledge of a given domain in
a generic yet formal way, so that it can be reused and shared across applications
and users. Ontologies are generally created via a man-made, time-consuming pro-
cess where humans attempt to define all aspects of a system in a very explicit
fashion. Frequently, different ontologies define very similar knowledge. Mapping
between ontologies associates terms defined in one ontology with terms in an-
other. Currently, such mappings are identified manually [15]. This is extremely
resource intensive, not always possible and susceptible to ontology change. Au-
tomatic ontology mapping covers a large number of fields from machine learning
and formal theory to database schema and linguistics. Applications also range

Dynamic Ontology Mapping for Interacting Autonomous Systems 257

significantly, from academic prototypes to large scale industrial applications [5].
Most systems are fairly complex, resource intensive creations and, as such, are
not deployable in resource-limited, ubiquitous computing environments [11,13].

To confirm the need for ontology mapping in the music player context, we
analysed the music collections of 17 users comprising 64,704 songs. There were a
total of 6,040 artists and 462 distinct music genres in the libraries studied. The
existence of 462 distinct genres indicates immediately that there are going to be
vast ontological differences between the music of only 17 peers. Apple’s iTunes,
for example, only contains approximately 30 different default genres, indicating
that user-defined genres are very popular. The analysis also highlighted that
approximately one third of all artists had more than one genre associated with
them across the libraries. Table 1 shows six popular Artists from the libraries
studied and the number of unique genres with which they were associated. This
was apparent for all track meta-data, such as Track Size, Length, Album, Format
and Artist.

Table 1. Genres Associated with Artists

Artist Number of Genres
Unique Genres

Miles Davis 3 Alternative and Punk, Jazz , No Genre

Mozart 3 Classical, Classicism, Concerto

Marvin Gaye 4 Dance, Electronica, RandB, No Genre

Bob Dylan 6 Folk, Pop, Rock, Soundtrack, Various, No Genre

The Beatles 7 Alternative Rock, Dance, Electronica, Pop
Rock, Rock and Pop, Rock and Roll, No Genre

Oasis 8 Alternative, Alternative and Punk, Alternative Rock
Brit Pop, Pop, Punk, Rock, No Genre

2.1 The Basic Mechanism

We restrict our considerations to applications that manipulate data that conform
to a common schema - i.e. the application expects to access a data collection
that can be modelled as a relational table; each row of the table corresponds to
one object (e.g. a musical track), and each column corresponds to a metadata
attribute for that type of object (e.g. Genre, Artist); finally, one, additional
column containing the value of the object is included in each row (e.g. the actual
encoding of a musical track).

Using the music player example, the collection of tracks used by a particular
player can be represented as shown in Table 2.

Each user is associated with a “home” collection of objects; in the music
sharing example, it is the collection associated with the users music player;
difficulty can ensue when the application has access to one or more “foreign”
collections in addition to the “home” collection. The user is most familiar with
navigation through the “home” collection; in order to effectively access objects
in the “foreign” collections, it is important to map the metadata values that
describe the “foreign” objects into values that have meaning to the user.

258 S. Heeps et al.

Table 2. An Example Home Collection

Title Artist Composer Genre Album Size(mb) ... Value
Son Jethro Tull Ian Anderson Rock Benefit 2.77 mt000001.mp3

Black Hole Sun SoundGarden Chris Cornell Grunge Superunknown 5.02 mt000002.mp3
Exsultate, jubilate Kiri Te Kanawa Mozart Classical 14.11 mt000003.mp3

Rusty Cage Johnny Cash Chris Cornell Country Unchained 1.31 mt000004.mp3
Hush Tool Metal Opiate 1.30 mt000005.mp3

Sleeping The Band Country Rock Stage Fright 3.11 mt000006.mp3
Hello Evanescence Gothic Rock Fallen 3.48 mt000007.mp3
...

In general, the metadata attributes exhibit correlated values within a collec-
tion - i.e. many objects with attributei = valuei also have attributej = valuej.
The degree of correlation between attributei and attributej will depend upon:
the attributes chosen, the nature of the collection, and the degree of consistency
in value assignment when objects are added to the collection. For example, most
artists are strongly correlated with a particular genre (e.g. all tracks produced
by Pearl Jam are associated with the Grunge genre), while release dates are only
weakly correlated with a particular genre (e.g. Grunge is correlated with release
dates 1990 and beyond, but not before). Such correlations can be asymmetric
due to the fact that some attributes have broader scope than others; the correla-
tion strength is a measure of the predictive power of one value over the value of
the other (e.g. Pearl Jam strongly predicts Grunge, but Grunge predicts Pearl
Jam, Soundgarden, Alice in Chains, etc.).

Consider a collection of N objects, and each object has M metadata attributes
associated with it. Let us focus upon two attributes, i and j. In a particular
collection, Attri takes on values vi1...vin; similarly, Attrj takes on values vj1...vjn.
We can then analyze all of the tracks in the collection to yield the following
matrix (Table 3):

Table 3. Pairwise Classification of Objects in a Collection

Attri/Attrj Vj1 Vj2 ... Vjn
Vi1 C11 C12 C1n
...

Vim Cm1 Cm2 Cmn

where Ck1 is the number of objects in the collection that have Attri = Vik and
Attrj = Vjl. It is informative to consider two limiting cases:

1. Attri is strongly correlated with Attrj : in this case, if there are Nik objects
with Attri = Vik, then most of those objects will have Attrj = Vjl for some
l ; note that by definition, Nik > 0.

2. Attri is not correlated with Attrj : in this case, the Njk objects with Attri =
Vi,k are distributed over many different values for Attrj .

We can sum over the pairwise matrix in Table 3 to determine the predictive
power of Attri for Attrj as well as the predictive power of Attrj for Attri. One
such formulation is as follows:

Dynamic Ontology Mapping for Interacting Autonomous Systems 259

predictive poweri,j =
m∑

k=1

maxl{ckl}∑n
l=1 ckl

(1)

Obviously, the predictive powerj,i simply requires that we swap k for l and m
for n in Equation (1). Performing this analysis for all pairs of attributes yields
a correlation matrix of the form shown in Table 4. The value in the i, jth cell
indicates how strongly correlated values of Attri are to values of Attrj ; obviously,
the diagonal elements have a value of 1. Armed with this correlation information
for the home collection, we now describe a protocol that uses this mechanism to
dynamically map objects from a foreign collection into the home object ontology.

Table 4. Predictive Power

Attr1 Attr2 Attr3 ... AttrM
Attr1 1.000 0.357 0.771 0.467
Attr2 0.953 1.000 0.849 0.121

... 1.000
AttrM 0.125 0.294 0.186 1.000

2.2 The Mapping Protocol

The general protocol is as follows: if one is interested in objects in the foreign
collection with Attri = V aluei, and none exist, then one searches the ith column
of Table 4 from the home collection for the Attrj with the largest correlation
value (excluding row i). One can then query for objects corresponding to known
V aluej’s, and discover the V aluei’s that the foreign collection associates with
those objects. One can then import objects with those particular V aluei’s, re-
placing the actual V aluei with the value used by the home collection.

Assume that two peers are sitting on a train, each with a personal music
player in the form of a PDA hosting a music streaming service; the two players
have discovered each other, and the policies in the two players permit streaming
of tracks from one player to the other. Once the players have bound together,
the music services on each player can enter into the ontology mapping protocol.
Bob’s music service remotely performs a genre search on Alice’s system for each
value of the genre meta-data attribute defined for Bob’s system; for example,
suppose that one value of the genre attribute is “Grunge”. Unfortunately Alice
does not have any music defined as “Grunge”, so the initial query returns a
negative. The ontology mapping mechanism in Bob’s music player selects a meta-
data attribute strongly correlated with Genre, namely Artist, and queries Alice’s
player with a list of Artists associated with the genre “Grunge”. Alice’s music
service then searches for those Artists in her collection, and returns the most-
prevalent genre value, if any, associated with each artist in her collection. The
protocol has established a Bob-specific mapping from his genre values to those
used by Alice. Bob’s music service can now represent tracks in Alice’s system
using Bob-specific genre values. Besides enabling comfortable navigation over the
other individual’s collection and subsequent streaming, the mapping information
can also be retained for future sharing with each other, or possibly to inform
future negotiations with other peers. The current protocol maps Bob’s genre

260 S. Heeps et al.

value to multiple genre values in Alice’s collection. Another approach would be
to only solicit the Alice genre value for the artist in Bob’s collection with the
largest number of tracks with that particular value, or the largest percentage of
tracks with that particular value. The current approach maximises the number of
tracks mapped to facilitate human navigation; more study is needed to determine
if other approaches yield more usable results.

Table 5. Predictive Power of Music Tracks

Genre Artist Name Album Year BitRate Kind
Genre 1 0.579 0.25 0.57 0.475 0.646 0.885
Artist 0.818 1 0.623 0.861 0.855 0.865 0.921
Name 0.908 0.946 1 0.912 0.905 0.939 0.941
Album 0.857 0.893 0.275 1 0.793 0.888 0.964
Year 0.283 0.259 0.139 0.256 1 0.376 0.462

BitRate 0.238 0.188 0.187 0.234 0.184 1 0.939
Kind 0.18 0.13 0.039 0.035 0.064 0.299 1

The mapping factor (attribute strongly linked to “Genre” in the preceding
example) is determined through analysis of music collections. The application
of Equation (1) to the meta-data from 17 unique iTunes music libraries yielded
Table 5. The mapping factors for music collections indicate, for example, that
there is a close relationship between Artist and Genre (0.818). In other words, if
the Genre is not known then Artist is a good aspect of meta-data to map from,
as is, Name and Album. Kind and Year, however, would not be suitable search
attributes.

Even though our discussion is dominated by music sharing examples, other
types of data collections are accessed in this way; for example, the collection of
books maintained by a library. Initial results from a study of the meta-data for
multiple book libraries also shows similar disparities across Subject Headings.

3 Experimental Validation

The Self-Managed Cell architecture running a music sharing service has been
implemented as a test platform for our automatic ontology mapping technique.
The music sharing service utilises core SMC services such as the discovery and
policy service.

The SMC has been built to run on a PDA (HP iPAQ hx4700, with a 624MHz
XScale PXA270 processor and 64MB RAM, running Familiar Linux 0.8.4 or
Windows Mobile 5.0). The SMC is written in Java, and uses JamVM 1.4.3 [8] in
a bid to cut down on memory usage. The policy service used is Ponder2 written in
Java 1.4. The music player, built to run as a service on an SMC, is also written
in Java 1.4. The player enables a user to search the music collection of other
discovered music players and stream music found from their search via wifi to
their music player. It uses the DAAP [2] which performs as an HTTP server for
advertising and streaming requested songs to clients. At present the music player
has been successfully tested and functions successfully under J2SE. Currently
attempts are being made to run the player on a PDA under Windows Mobile
5.0 using the Mysaifu JVM [14]. The music player is approximately 4Mb in size

Dynamic Ontology Mapping for Interacting Autonomous Systems 261

and has a memory footprint of around 15-30mb depending on activity status
i.e. idle, playing, streaming etc. The music service relies upon the mechanism
documented in [17] for establishing the initial peer-to-peer binding between a
pair of music players running as services on SMCs.

The ontology mapping mechanism, as used to enhance collaboration between
peer music libraries, has been fully tested and evaluated. Analysis of collabora-
tions using the 17 peers documented in Section 2 revealed significant use of the
mapping system, with song returns frequently running into the hundreds where
initial collaboration had revealed few or no artists. Genre-to-Artist mapping re-
sults from a peer-to-peer collaboration are shown in Table 6. Only genre searches
where no song results were initially returned are shown.

Table 6. Genre-Artist Mapping

Peer 1 Peer 2 Returns after Mapping
Genre Request Genres Artists Songs

Blues 2 337 3594
Classic Rock 2 282 2352
Electronica 1 115 587

Folk 2 282 2352
Rock/Pop 2 337 3594

Soul 1 11 109
Top 40 1 40 467

4 Related Work

Automatic Ontology mapping has seen a surge of research interest in recent
years. Formal ontology mapping approaches have modelled ontologies using
graphs, logic and models with mappings being developed from viewing graph,
logic and model convergence [11,13]. Current software systems that automati-
cally generate ontology mappings are ONION [13], MAFRA [4] and IFF [16].
ONION generates mappings using graph transformations. MAFRA combines
different similarity measures, both lexical and structural, to establish the map-
pings. IFF is based on convergence between logical theories [5].

Such ontology mapping mechanisms are unlikely to be suitable for use in our
ubiquitous environment. They have primarily been designed to provide auto-
mated administrative assistance when mapping well defined but conflicting on-
tologies in traditional conflicting environments. They require considerable user
input and tend to focus on the use of a bridging ontology, a resource unlikely
to be available in the ubiquitous world. Furthermore, the mapping mechanisms
would likely struggle in the undefined and uncontrolled ubiquitous world. Most
mechanisms are also not suitably lightweight so as to be deployable on resource
limited devices.

Online music based Information Retrieval mechanisms are also gaining promi-
nence. Last.fm [9], for example, leverages each user’s musical profile to make
personalised recommendations and connect users who share similar tastes. The
downside of such mechanisms is the need for a common software plug-in and a
network connection.

262 S. Heeps et al.

5 Conclusions and Future Work

A novel automated ontology mapping mechanism has been described that sup-
ports application-level integration within ubiquitous systems. The mechanism
facilitates the successful collaboration of data collections by using meta-data
contained within the collections to identify areas of commonality between them.
The commonality identified is then used to automatically generate a common
ontology and map between the areas of conflict. By using the meta-data informa-
tion stored within music tracks, for example, we were able to successfully share
music between peers despite there being no outwardly visible signs or common-
ality for collaboration. The techniques establish the beginnings of a common
ontology and enabled a reference regarding the mapping to be held for future
sharing. The system is suitably lightweight and resource efficient that it is capa-
ble of running in constrained environments such as PDAs and mobile telephones
using our Self-Managed Cell architecture .

The current prototype uses exact string match during the mapping protocol.
Given the anarchy that exists within some distributed collections we will inves-
tigate similarity matches between attribute values in an attempt to understand
if this provides improved matching results. Likewise, future work will investigate
enhancements to the quality of the mapping mechanism, particularly in relation
to ranking results based on the probability a user will like them and will define
how the mapping factors are regenerated over time.

Acknowledgements

The authors wish to thank the UK Engineering and Physical Sciences Research
Council for their support through grants GR/S68040/01, GR/S68033/01 and
GR/N15986/01.

References

1. Apple. ipod and itunes (2007), http://www.apple.com/itunes
2. Boot, C.: Digital audio access protocol (2007), http://daap.sourceforge.net/
3. Dulay, N., Heeps, S., Lupu, E., Mathur, R., Sharma, O., Sloman, M., Sventek, J.:

Amuse: Autonomic management of ubiquitous e-health systems. In: Proceedings
of the UK e-Science Al l Hands Meeting, UK (2005)

4. Kalfoglou, Y., Schorlemmer, M.: IF-map: an ontology mapping method based on
information flow theory. Journal on Data Semantics, 98–127 (2003)

5. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1), 131 (2003)

6. Keoh, S.L., Twidle, K., Pryce, N., Schaeffer-Filho, A.E., Lupu, E., Dulay, N., Slo-
man, M., Heeps, S., Strowes, S., Sventek, J., Katsiri, E.: Forthcomming: Policy-
based management for body-sensor networks. In: 4th International Work- shop on
Wearable and Implantable Body Sensor Networks (2007)

7. Kong, L.C.Y., Wang, C.L., Lau, F.C.M.: Ontology mapping in per- vasive com-
puting environment. In: International Conference on Embedded and Ubiquitous
Computing, pp. 1014–1023 (2004)

http://www.apple.com/itunes
http://daap.source forge.net/

Dynamic Ontology Mapping for Interacting Autonomous Systems 263

8. Lougher, R.: Jamvm (2007), http://jamvm.sourceforge.net/
9. Last.fm (2007), http://www.last.fm

10. Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K.,
Keoh, L., SchaefferFilho, A.E.: Amuse: autonomic management of ubiquitous sys-
tems for e-health. Special Issues of the Journal of Concurrency and Computation:
Practice and Experience (2006)

11. Maedche, A., Motik, B., Silva, N., Volz, R.: A mapping framework for dis- trib-
uted ontologies. In: 13th International Conference on Knowledge Engineering and
Knowledge Management (2002)

12. Microsoft. Zune (2007), http://www.zune.net
13. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for ar- ticula-

tion of ontology interdependencies. In: 7th International Conference on Extending
Database Technology (2000)

14. Mysaifu. Mysaifu (2007), http://sourceforge.jp/projects/mysaifujvm/
15. Nay, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology

merging and alignment. AAAI (2000)
16. Romn, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrst, K.:

Gaia:a middleware infrastructure to enable active spaces. IEEE Pervasive Com-
puting, 74–83 (2002)

17. Schaeffer-Filho, A., Lupu, E., Dulay, N., Keoh, S., Twidle, K., Sloman, M., Heeps,
S., Strowes, S., Sventek, J.: Supporting interactions between self-managed cells.
In: International Conference on Self-Adaptive and Self-Organizing Systems (2007)
(submitted)

18. Heeps, S., Dulay, N., Lupu, E., Schaeffer-Filho, A.E., Sloman, M., Strowes, S.,
Sventek, J.: The autonomic management of ubiquitous systems meets the seman-
tic web. In: The Second International Workshop on Semantic Web Technology For
Ubiquitous and Mobile Applications (2006)

19. Strowes, S., Badr, N., Dulay, N., Heeps, S., Lupu, E., Sloman, M., Sventek, J.:
An event service supporting autonomic management of ubiquitous systems for e-
health. In: 5th International Workshop on Distributed Event-Based Systems (2006)

20. Sventek, J., Badr, N., Dulay, N., Heeps, S., Lupu, E., Sloman, M.: Self-managed
cells and their federation. In: CAiSE Workshops vol. 2, pp. 97–107 (2005)

http://jamvm.source forge.net/
http://www.last.fm
http://www.zune.net
http://sourceforge.jp/projects/mysaifuj vm/

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 264–271, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Trade-Off Between Performance and Energy
Consumption in Wireless Sensor Networks

José-F. Martínez, Ana-B. García, Iván Corredor, Lourdes López, Vicente Hernández,
and Antonio Dasilva

EUIT Telecomunicación - DIATEL
Universidad Politécnica de Madrid

Ctra. Valencia, Km. 7, 28031, Madrid, Spain
{jfmartin,abgarcia,icorred,llopez,vhernandez,

adsilva}@diatel.upm.es

Abstract. Nowadays WSNs support applications such as target tracking,
environmental control or vehicles traffic monitoring. Generally, these
applications have strong and strict requirements for end-to-end delaying and
loosing during data transmissions. In this paper, we propose a practical scenario
for application of the WSN field in order to illustrate selection of an appropriate
approach for guaranteeing performance in a WSN-deployed application. The
methodology we have used includes four major phases: 1) Requirements
analysis of the application scenario; 2) QoS modelling in different layers of the
communications protocol stack and selection of more suitable QoS protocols
and mechanisms; 3) Definition of a simulation model based on an application
scenario, to which we applied the protocols and mechanisms selected in phase
2; 4) Validation of decisions by means of simulation; and 5) analysis of results.
This work has being partially developed in the framework of the CRISAL -
M0700204174 project (partially funded by “Universidad Politécnica de
Madrid” and “Comunidad de Madrid”, Spain).

Keywords: Wireless Sensor Networks, QoS protocols, performance, target
tracking, natural environments surveillance.

1 Introduction

Recently, we have witnessed significant progress in the field of wireless sensors. The
latest stage has been characterized by improvements in sensor hardware issues
(miniaturization of pieces, increased ROM and RAM capacities, more energy capacity,
etc). These facts and the new field of possibilities for their application have boosted
interest in Wireless Sensor Networks (WSN). WSN might be defined as follows:
Networks of tiny, small, battery-powered, resource-constrained devices equipped with
a CPU, sensors and transceivers embedded in a physical environment where they
operate unattendedly. While a good deal of research and development has been carried
out in architecture and protocol design, energy saving and location, only a few studies
have been done on network performance in WSN (Quality of Service – QoS).

Some studies on QoS have focused on protocols and mechanisms for MAC and the
network layer, and almost all these have been developed and tested through simulations.

 Trade-Off Between Performance and Energy Consumption in WSN 265

All these approaches for supporting QoS in WSN may constitute a basis for future work
in this direction, and they obviously represent the starting point in our proposal. We
have already conducted work on state-of-the-art QoS in WSNs [1]. This work has
focused mainly on QoS-based protocols and mechanisms in MAC and network layers.

The remainder of the paper is organized as follows:
The case study is depicted in section 2. In this section the proposed application

scenario is described, as are all its QoS-related characteristics. Based on these
characteristics, the section concludes with a selection of the most suitable protocols
for network layer available in literature on WSN. The validity of decisions on QoS
protocols is verified in section 3, with the use of simulation software to perform tests.
Section 4 concludes this paper with an overview of future research activities.

2 QoS in Natural Environments Surveillance (Case Study)

We will begin by extracting the QoS-related requirements from the real-time forest
surveillance application; allow us to select the network protocols later that best suit
these requirements.

2.1 Description and Analysis of Requirements of Application for Real-Time
Forest Surveillance

The main objective of the application will be the early detection of forest fires to
avoid ecological disasters, as well as detection and tracking of strange vehicles.

Sensor nodes collect measurement data, such as relative humidity, temperature,
magnetic radiation, COx and NOx gases. Other components of the WSN supporting
our application are laptops and/or PDAs (as support to firemen and safety watchmen)
and a data base server. All WSN services will be accessible to remote users through
web services. Figure 1 illustrates the proposed scenario.

Specifically, the application will have the following characteristics:

1) Topology and network dynamics: The WSN topology is a design parameter that
should be taken into account when guaranteeing QoS.

Fig. 1. Forest surveillance application scenario

266 J.-F. Martínez et al.

2) Geographical information: Sensor nodes must obtain geographical information –
i.e., coordinates – in order to locate the events within the natural reserve. For WSNs, a
GPS-based approach is too expensive, thus our WSN implements a distributed
location service [2].
3) Real-time requirements: Fire monitoring or target tracking reflects the physical
status of dynamically changing environments such as temperatures or positions of
moving targets in forest areas. This sensory data is valid only for a limited time;
hence it needs to be delivered within a time deadline.
4) Unbalanced mixture traffic: Another characteristic which will considerably affect
QoS decisions is reactive-proactive hybrid behaviour.
5) Data redundancy: High redundancy in the sensor data is a common characteristic
to most WSNs. Redundancy may improve several the reliability and robustness of
data delivery. However, this uses a large amount of energy. To solve this problem, we
could use data fusion or data aggregation to maintain robustness while decreasing
redundancy in the data. On the other hand, these mechanisms also complicate QoS
design in WSNs.
6) Energy efficiency: An important challenge to this application will be energy
efficiency. The need to operate over a long period of time (from 6 months to 1 year),
between other factors, will require careful management of energy resources.
Nowadays, achieving this energy distribution without compromising the QoS
requirements is very difficult since mechanisms and protocols do not usually consider
both possibilities at the same time.
7) Sensor data priority: Not all sensing data are equal; hence they have different
levels of priority depending on their importance level into the application. For
example, the data generated in a fire detection event will have more importance than
that generated in monitoring the conditions that increase the risk of fire. QoS
mechanisms will determine the data delivery priorities for the different data types
existing in the WSN.

As a result, QoS support for the network will take into account almost all of the
aforementioned characteristics in the application specifications.

2.1.1 Selected Network Protocols
Considering the characteristic just described, we believe that only a few of the
network protocols of surveyed in [1] could be used in our WSN. We have selected
two candidates from among these protocols: MMSPEED [4], and Directed Diffusion
[5]. (See table 1).

Table 1. Comparative table of routing protocols in Wireless Sensor Networks

Network
topology

Data
delivery
model

Data
aggreg
ation/f
usion

Traffic
guarantees

Several
traffic
classes

Networks
dynamics

Resources
reservation

Scalability

Directed
Diffusion

Flat
Query-

driven and
Event-driven

Yes Reliability No Limited Yes Medium

MMSPEED Flat
Event-driven

and
Continuous

No
Reliability
and Real-

time
Yes Limited No High

 Trade-Off Between Performance and Energy Consumption in WSN 267

We selected these protocols for several reasons:

MMSPEED
MMSPEED implements localized geographic routing, which is fundamental for the

network layer of our stack protocol. These mechanisms increase self-adaptability of
the network to dynamic changes as well as scalability of the network. In addition, this
protocol is suited for both periodic (real-time) and aperiodic traffic because routing
decisions are local (i.e., no path setup and failure recovery).

MMSPEED implements a multi-speed mechanism to assign diverse deadlines to
the packets with different delay requirements. This mechanism is ideal for supporting
multiple traffic types (continuous, event-driven, etc.). Its dynamic speed
compensation mechanism, which is capable of immediately correcting small
inaccuracies occurring in initial routing decisions, is also quite useful.

Routing decisions in MMSPEED are also made according to the reliability level
required by the packet. To route on the basis of the reliability requisite, MMSPEED
has an advanced method of lending reliability to data transmissions which involves
using the frame loss rate of the MAC layer to make an estimate of the reliability level
of each link.

However, MMSPEED lacks a method for dealing with the data redundancy
problem. In this sense, we are in the course of studying how a data aggregation
mechanism (such as meta-data negotiation [3]) can be added to MMSPEED.

Directed Diffusion

 Directed Diffusion is a data-centric and application-aware paradigm. This protocol
implements a mechanism based on data aggregation to eliminate redundant data
coming from different sources. This feature reduces the number of transmissions
drastically, leading to two main consequences: firstly, the network saves energy and
extends its lifetime, and secondly, it has higher bandwidth in the links near the sink
node.

Directed diffusion is based on a query-driven model. This means that the sink node
requests data by means of broadcasting interests. When events begin to appear, they
start to flow towards the originators of interests along multiple paths. This behaviour
provides reliability and robustness to data transmissions in the network.

Although Directed Diffusion includes all these optimization mechanisms, the
protocol has two shortcomings in the realm of QoS: Directed Diffusion can neither
explicitly manage QoS parameters such as delay and reliability, nor differently handle
more than one traffic class.

3 Simulation of Application Scenario

3.1 Simulation Model

The table 3 depicts the simplified simulation model defined for the application
described in this section.

The sensor nodes are deployed around the mountain, distributed in four
sectors (North, South, West and East). The sink node is placed at coordinate (0,0).
(See figure 1).

268 J.-F. Martínez et al.

Table 2. Simulation Environment Settings

Size terrain 600mx600m
Terrain morphology A mountain of 400mx400m, centered in the terrain.
Sensor node number 176 nodes (sink included)
Radio range 80 m
Initial energy charge 1000 Joules
Bandwidth 200 Kbps
Payload 32 bytes

Fig. 2. WSN deployment

J-SIM is simulation software selected to implement the model. It was chosen

because it is component-based, a feature that enables users to modify or improve it.
Network protocols have been configured with different parameters according to

capacities.
All the parameters defined for each protocol are depicted in following sub-

sections:

MMSPEED

Table 3. MMSPEED parameters

 Attaining sink probability Max. delay (in seconds)
High priority traffic (events) 0.4 0.5
Low priority traffic (monitoring) 0.2 4

Moreover, we have defined two speed layers which have been configured with

different speed levels (1000 m/s and 250 m/s, respectively).

Directed Diffusion

Directed Diffusion can be configured with multiple parameters. The most significant
parameters for the simulation tests are the following: diffusion area of interests
(complete area); duration of interests (all time simulation); interest refresh (every 10
seconds).

 Trade-Off Between Performance and Energy Consumption in WSN 269

0,01

0,1

1

10

250 300 350 400 450 500 550 600 650 700

D
e
l
a
y

Simulation Time

Sector S Monitoring

Sector E Monitoring

Fire Detection

Dir. Diff Traffic (Sector
Monitoring+Fire Detection)

Seconds

Seconds (log)

Fig. 3. Delays with MMSPEED and Directed Diffusion. Comparative graphics.

3.2 Simulation results

Deadline

-MMSPEED: The results of simulations with MMSPEED are significant in the way
they show how the protocol is capable of differentiating traffic classes (see Figure 2).

When low and high-priority traffic concurs in the WSN, MMSPEED successfully
supported the QoS level assigned to both traffic classes. The maximum delay
configured for high-priority traffic (0.5 seconds) was never exceeded. Furthermore,
the jitter (or delay fluctuation) is not excessively high, which will improve the quality
of real-time data received by the application, especially if these data have been
generated by the tracking of a person inside the area monitored by the WSN. In
addition, low-priority traffic manages to maintain acceptable levels of delay, although
the jitters are somewhat high. As it is obvious, the data proceeding from East Sector
register higher delay and jitter than the data proceeding from South Sector because of
this sector is placed to more distance to the sink node.
-Directed Diffusion: According to the results, it is evident that the mechanisms
implemented in Directed Diffusion are insufficient to ensure the QoS level required
by the WSN, specifically with regard to delays (in terms of latency and jitter). Both
the delay (average value 2,5 sec) and jitter (very fluctuating reaching times) values
are not suitable to provide a good QoS level to the real time traffic. These bad results
are due to the data aggregation mechanism that implements Directed Diffusion needs
a long processing time in intermediate nodes of the WSN.

Reliability

-MMSPEED: When MMSPEED initiates a packet flow to the sink following a
period of inactivity, it is common for intermediate nodes to have incoherent routing
information. Until MMSPEED recovers operational status, tenths of seconds to one
second may elapse, during which a few packets might be discarded. In other cases
(see figure 3), MMSPEED shows a great robustness due to its multi-path mechanism.
The figure 3 shows a congestion period (3,5 seconds) during which are discarded a

270 J.-F. Martínez et al.

few packets both high priority and low priority: 30 and 270 packets, respectively. This
congestion is generated by the coincidence of monitoring and fire detection traffic
during this period. The MMSPEED protocol gives lower discard priority to the real-
time data packets as higher attaining sink probability was assigned to the real time
traffic than to the monitoring traffic. In spite of the discarded packets, almost all of
low priority, no notification gets lost since the aforementioned multipath mechanism.

0

50

100

150

200

250

700 700,5 701 701,5 702 702,5 703 703,5

D
i
s
c
a
r
d
e
d

p
a
c
k
e
t
s

Simulation Time

Discarded
packets (low
priority)

Discarded
packets (high
priority)

Seconds

Fig 4. Discarded packets with MMSPEED during a congestion period

-Directed Diffusion: The simulation tests with Directed Diffusion were satisfactory
in terms of reliability. Although Directed Diffusion does not implement an explicit
mechanism to provide reliability, it achieves an acceptable reliability level by means
of a multi-path routing that selects the best paths towards the sink.

Energy consumption

During the first 12 hours of simulated time, the consumption of energy of the eight
nodes closest to the sink was recorded. The results can be seen in the table 4.

Table 4. Energy consumption with each protocol

 Average energy consumption Lifetime in a real WSN
MMSPEED 3.5225 Joules/hour 9 months
Directed Diffusion 0.9575 Joules/hour 3 years

The first column shows the average levels of energy consumption in the simulation

period. The second column shows the lifetime of a real WSN, assuming that sensor
nodes use AA alkaline batteries.

Directed Diffusion showed the best rate of energy consumption (3 years approx.).
These good results have been obtained through use of the data aggregation
mechanism implemented by Directed Diffusion. This mechanism significantly
reduces the number of data transmissions, and therefore helps saves a great deal of
energy.

 Trade-Off Between Performance and Energy Consumption in WSN 271

MMSPEED achieves an acceptable lifetime (9 months) and a good energy/delay
balance. However, this lifetime could be increased if MMSPEED implemented a
mechanism for reduction of redundant data (e.g. meta-data negotiation or data
aggregation).

Taking into account all the simulation results, we conclude that the most suitable
protocol for improving performance in our WSN is MMSPEED. However, this
protocol should be improved with several add-on features, which should be the
subject of future research.

4 Conclusions and Future Study

In this paper we have presented a study of network layer protocols that have been
defined to provide QoS in wireless sensor networks. We have focused on the basic
mechanisms used in these protocols for guaranteeing performance parameters to
applications.

Taking this study as a basis, we have also selected a forest surveillance application
in order to show how appropriate protocols for QoS could be selected by defining the
performance requirements of the application and the classification criteria for protocol
study.

This research has also shown what we consider to be shortcomings in the
protocols. For instance, the MMSPEED protocol lacks a data aggregation or an even
more preferable meta-data negotiation system. Other aspects that could be considered
in more detail in MMSPEED are the energy-delay trade-off.

We are presently working on defining and subsequent deploying a WSN scenario
in which a surveillance application will be run. For future research, and after the
functional aspects of the application are working, we plan to include performance
monitoring in the system. This will allow us to perform empirical studies of the
influence of the parameters we have considered on the quality offered to the
application.

References

1. Martínez, J.F., García, A.B., Corredor, I., López, L., Hernández, V., Dasilva, A.: QoS in
Wireless Sensor Network: Survey and Approach. ACM DL (May 2007)

2. He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.: Range-Free Localization
Schemes for Large Scale Sensor Networks. Proc. Mobicom Conf. (2003)

3. Kulik, J., Heinzelman, W.R., Balakrishnan, H.: Negotiation-based protocols for
disseminating information in wireless sensor networks. Wireless Networks 8, 169–185
(2002)

4. Felemban, E., Lee, C.-G., Ekici, E.: MMSPEED: multipath Multi-SPEED protocol for QoS
guarantee of reliability and. Timeliness in wireless sensor networks 5(6), 738–754 (2006)

5. Intanagonwiwat, C., et al.: Directed diffusion: A scalable and robust communication
paradigm for sensor networks. In: Intanagonwiwat, C., et al. (eds.) The Proc. of
MobiCom’00, Boston, MA (August 2000)

6. Sobeih, A., Hou, J.C., Kung, L.-C.: J-Sim: a simulation and emulation environment for
wireless sensor networks. Wireless Communications, IEEE 13(4), 104–119 (2006)

Automated Trust Negotiation in Autonomic

Environments

Andreas Klenk1, Frank Petri1, Benoit Radier2, Mikael Salaun2,
and Georg Carle1

1 Wilhelm-Schickard-Institut,
Sand 13, 72076 Tübingen, Germany

2 France Télécom R&D,
avenue Pierre Marzin 2, 22307 Lannion, France

Abstract. Autonomic computing environments rely on devices that are
able to make intelligent decisions without human supervision. Automated
Trust Negotiation supports the cooperation of devices with no prior trust
relationship. They can reach an agreement by iteratively exchanging cre-
dentials during a negotiation process. These credentials can serve as au-
thorization tokens or may carry information that becomes a parameter
of the further service usage. A careful negotiation strategy helps in pro-
tecting sensitive credentials that must only be available to authorized
entities. We introduce the VersaTrust framework that supports a state-
less negotiation protocol to reach comprehensive agreements. We argue
how this approach applies to autonomic environments and demonstrate
its scalability.

Keywords: attribute-based access control, stateless automated trust
negotiation.

1 Introduction

The growing complexity of the information technologies infrastructure leads to
an increase in administrative effort to ensure availability and security of the
systems. There is a lot of manual configuration associated with implementing
administrative decisions. Autonomic computing research aims for facilitating
administration of complex infrastructures by introducing self-management ca-
pabilities [7] into networks and devices. The coordination of autonomic enti-
ties is challenging if these entities are part of different administrative domains
without unbounded mutual trust. In such scenarios, constraints of future inter-
actions between the devices need to be considered [4] depending on the trust
between the entities. The Global Grid Forum recognized the need for an auto-
mated establishment of agreements between web services with its work on the
WS-AgreementNegotiation specification draft [5]. However, the draft neglects the
protection of sensitive information during the negotiation and requires session
state at the participating hosts.

The research on Automated Trust Negotiation (ATN) [14] [12] [2] deals with
automatically establishing mutual trust between strangers by an iterative

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 272–279, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automated Trust Negotiation in Autonomic Environments 273

credential exchange. Automated Trust Negotiation systems use a policy driven
iterative negotiation process to reach an agreement between two parties that
need not have a prior trust relationship. The main focus is on the protection
of sensitive information (credentials and policies) and the definition of policy
languages for the negotiation process. However, ATN does not help to supervise
or enforce the agreement. Other techniques must complement the ATN to check
if the other party adheres to its promises.

In this paper, we explore the use of Automated Trust Negotiation for auto-
nomic systems. We show how to reach an agreement via an automated exchange
of policies and credentials.

1. We introduce the VersaTrust framework for stateless trust negotiation, ex-
plain how policies control the negotiation process and evaluate the feasibility
and the performance of the implementation.

2. We argue how to represent the final agreement and the complete negotiation
in one single document. That allows to demonstrate all conditions under
which the negotiation succeeded, at a later point in time, say if the terms of
the agreement are under dispute. This feature is a clear advantage over cur-
rent ATN implementations which can only state the results of the negotiation
but lack a method to prove the interrelation of the received credentials.

In Sec. 2 we survey related work. In Sec. 3 we introduce the stateless trust
negotiation and show experimental results of the implementation in Sec. 4.

2 Related Work

Winsborough and Li came from the idea of credentials as tokens for authoriza-
tion and introduced the idea of Automated Trust Negotiation for establishing
trust between strangers in [14]. They discussed the parsimonious strategy to
disclose only the minimal amount of credentials necessary for the successful ter-
mination of the negotiation. Sometimes the negotiation process itself discloses
private information by referring to the existence of sensitive credentials dur-
ing the negotiation process. The authors enhanced their negotiation with Ack
policies to address these privacy concerns in [8].

IBM specified the Trust Policy Language for a role based access control scheme
that uses credentials to determine which roles a principal can obtain. Trust-
Builder [12] uses this language to implement a trust negotiation system that
incorporates trust reputation measures.

PeerTrust [10] is an ATN system that can handle X.509 certificates and im-
port RDF for its policies. Yamaki et al introduce user preferences into the trust
negotiation by assigning a cost metric to the release of a credential [15]. The
authors in [16] use a locally trusted third party to break cyclic dependencies
between credentials that can occur during a negotiation. Frikken et al. [6] pro-
posed a protocol that can reach a decision if the negotiation fails or succeeds
without actually revealing hidden credentials. This method is appropriate if the
information of the credentials is of no importance for the further service usage.

274 A. Klenk et al.

Within the scope of multi-agent systems, a large body of work exists on the
negotiations between distributed agents to reach some specific goals [3]. Negoti-
ations in multi-agent lack the capabilities of ATN systems for the protection of
sensitive information and are not specifically fit to deal with credentials. ATN
systems are comparable lightweight, because they reach a binary decision, (e.g.
access granted/access denied), in contrast to multi-agent systems which negoti-
ate about complex tasks, for instance, the market price of goods [9].

The Trust-X of Bertino, Ferrari and Squicciarini [1][2] is a recent ATN frame-
work that had a strong influence on our work. This framework uses XML for
its Trust Negotiation Language, disclosure policies and credentials. It uses DTD
to specify credential types. It supports different negotiation strategies and op-
timization mechanisms. An important difference is that the Trust-X transmits
individual disclosure policies and credentials during each round and relies on
local state during the negotiation. Hence, it is not obvious how to proof the
interrelation of the credentials retrospectively. VersaTrust in contrast can rep-
resent all conditions under which promises were made, that led to a specific
agreement, within one single digitally signed document. Another difference is
that VersaTrust allows for an easy recovery from system failure during the ne-
gotiation due to the stateless realization of its negotiation process.

3 Mutual Agreement with Automated Trust Negotiation

Automated Trust Negotiation governs the access to resources by attribute based
authorization. Authorization can use properties connected to a subject in
contrast to solely the identity. This functionality can be useful for the self-mana-
gement in environments where autonomic devices without prior trust relation-
ship join the network and establish trust at the time they interact with other
services. Another scenario is the collaboration of autonomic services across ad-
ministrative domains without the need for manual configuration. An important
property of ATN is the disclosure of only the minimal set of credentials and
the protection of sensitive information within credentials. It is even possible to
authorize a resource access without revealing the actual identity of the requester.

3.1 Credentials and Disclosure Policies

ATN systems use digital credentials usually signed by a trustworthy third party.
VersaTrust utilizes currently a XML data structure for the credentials; for real
world use other credential formats, for instance, X.509, or SAML are preferable.
We denote the credential set of the party that initiates the request by CL and
the credential set of the the remote party by CR.

Disclosure policies define logical conditions that must be met before a resource
can be accessed or a credential can be released. Propositional formulas help to
express the conditions of the disclosure policies [13][17] using the logical symbols
∧, ∨, ← and parentheses. The formula O ← FO(R1, R2, R3..., Rk) governs the
access to an object O. The propositional variable Ri is true if the associated

Automated Trust Negotiation in Autonomic Environments 275

credential Ci ∈ CR can be offered by the other party and if conditions regard-
ing the attributes of the credential Ci are satisfied. The expression Cj ← FCj

states that the disclosure of credential Cj ∈ CL is regulated by the formula FCj .
Credentials without protection requirements are called unprotected and are by
default Ck ← true. The implementation uses XML for the disclosure policies
and the negotiation state. The formula Rx ∧ (

∨
0<y<n Ry) is equivalent to the

XML representation of a node Rx having a number n of children Ry.

3.2 Iterative Negotiation Process

The objective of Automated Trust Negotiation is to find a safe disclosure se-
quence of credentials (C1, C2, ..., Cn) in a way that all preconditions attached to
the release of credentials are met before releasing them. This strategy is known
as parsimonious strategy [13]. Before a negotiating party is willing to release a
credential it must check that Ci ← FCi(

⋃
k>i Ck) = true, Ci ∈ CL, Ck ∈ CR.

Fig. 1. State diagram of the negotiation process

The iterative exchange of Negotiation State messages during the automated
trust negotiation contains all information about a particular negotiation process
and can be evaluated without the need for session state. This is in contrast to
related ATN systems which work on a tree data structure in local memory and
exchange only incremental messages. The negotiation process itself is a transition
of four states as depicted in the state transition diagram in Figure 1:

– Resource Request: The service requests access to the resource. As the
resource is protected by a disclosure policy, a trust negotiation is initiated.

– Negotiation Phase: The objective of this phase is to find the safe disclo-
sure sequence by evaluating requested credentials and their local disclosure
policies.

– Credential Exchange Phase: This phase starts after at least one safe
disclosure sequence was identified. The credentials that were requested most
recently in the negotiation are now transmitted first. The credential exchange
happens iteratively in reverse order until all credentials are disclosed.

– Agreement: After all required credentials were successfully exchanged, the
trust negotiation terminates with a positive outcome. The objective of the
negotiation is reached, for example, access to the storage service is permitted.

The Negotiation Phase is critical for the discovery of a safe disclosure se-
quence. The algorithm that processes a received Negotiation State is depicted

276 A. Klenk et al.

Parsing and
validating

negotitation
message

Identifying
requested
credentials

Identifying
protected

credentials

Build and send
negotitation

state

Identifying
required

credentials

Disclosure
policies

Entering
credential exchange

phase

[no credentials
requested]

[no protected
credentials]

[no additional
credentials required][invalid message]

Credential
requests

Requested
credentials

Fig. 2. Activity diagram of a processing step during the Negotiation Phase

in Figure 2. The first task is to assure syntactical and logical correctness and
discard invalid messages. The next activity is to identify the requests Ri of the
remote party for credentials. If a credential Ci is protected by a Disclosure Policy
Pi, the algorithm extends the tree structure appending Pi to all leafs containing
Ci in the path from root to lead. The algorithm marks leafs as failed that contain
credentials that cannot be offered. After completion of the processing the state
is sent to the other party. This algorithm iterates till a safe disclosure sequence
is found, that means there are no additional credential requests for the path.

A negotiation fails during Negotiation Phase if the parties cannot reach an
agreement. However, if there is a technical failure, or one party tries to cheat,
the negotiation process can also fail at another point in time. One precaution is
to exchange credentials in reverse order during the Credential Exchange Phase,
processing the safe disclosure sequence in the tree from the corresponding leaf to
the root. That implies that all required credentials are present and the conditions
on the values of the credentials are met.

3.3 Security Aspects of the Negotiation

Security is especially challenging in trust negotiations, due to the large potential
negative impact and the legal dimension of the negotiation. Both parties can
protect the integrity and confidentiality against a malicious third party by using
asymmetric cryptography and digital signatures with cryptographic protocols,
like TLS/SSL or WS-Security.

It is more difficult to protect the negotiation against manipulations of the
other negotiating party. The VersaTrust relies solely on the received Negotiation
State. We are currently investigating a strategy to apply digital signatures to
the Negotiation State to detect manipulations.

4 Experimental Results

A short overall negotiation time is important for fast service access. The outcome
of one negotiation can serve as authorization for a long lasting service usage, and
thereby reduce the number of required negotiations. The time for an Automated
Trust Negotiation results from the iterative exchange of the negotiation messages.

Automated Trust Negotiation in Autonomic Environments 277

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

E
ffe

ct
iv

e
T

ra
ns

ac
tio

n
R

at
e

(1
/s

ec
)

Offered Negotiation Rate (1/sec)

1x Pentium IV 2,2GHz
2x Pentium IV 2,2GHz
3x Pentium IV 2,2GHz

Dual Xeon 2,8GHz
 0

 2

 4

 6

 8

 10

 0 50 100 150 200

A
ve

ra
ge

 N
eg

ot
ia

tio
n

D
ur

at
io

n
(s

ec
)

Offered Negotiation Rate (1/sec)

1x Pentium IV 2,2GHz
2x Pentium IV 2,2GHz
3x Pentium IV 2,2GHz

Dual Xeon 2,8GHz

Fig. 3. Scalability under varying Load Conditions: (a) Effective Transaction Rate (b)
Average Negotiation Duration

As ATN is a young direction little experience exists on the characteristics
of real negotiations. We used the reference example as one test case for our
measurements. It allows for a negotiation consisting of 4 transactions: 2 for the
negotiation phase and 2 for the credential exchange phase. It performs addition-
ally a constraint check on an attribute of the credential. In the first experiment,
one server (2,8 GHz Dual Xeon, 2x1024KiB L2 cache) was put under stress by 5
clients (2,2 GHz Pentium IV); all running with a standard configuration of Fe-
dora Core 4, being connected in a local area network with RTTs below 0.1 ms.
Both, server and client were multi threaded to support parallel processing of re-
quests. The clients started trust negotiations at a defined rate; each experiment
lasted for 600 seconds.

The left-hand figure 3(a) shows the effective transaction rate for different
negotiation rates. The Xeon server scales for up to 60 complete negotiations
per second in this experiment, totaling to 240 transactions per second. Another
important metric is the total negotiation time - that is the time between the
construction of the request till the receipt and interpretation of the last negoti-
ation message at the requester. Figure 3(b) shows that the average negotiation
of a single server stays below 0.3 seconds for the whole negotiation till it gets
into overload beyond 60 requests per second, after that point the server starts
queuing.

Another experiment concerns the scalability of the system. How does the
system scale with off-the-shelfe standard hardware? We used haproxy1 for load
balancing of up to three Pentium IV machines (see Figure 3(a)) One system can
handle 80 concurrent transactions per second, two 160 and three 240, demon-
strating the linear scalability of VersaTrust. The results in figure 3(b) show that
despite the additional latency by the load balancer, the negotiation duration
stays beyond 0.3 seconds besides overload conditions.

1 The Reliable, High Performance TCP/HTTP Load Balancer,
http://haproxy.1wt.eu/

278 A. Klenk et al.

It is difficult to put these results into perspective; performance evaluations of
ATN systems are rare. Certain results are published about a system that uses
TrustBuilder in [11]. One single negotiation without integrity protection and
about the release of one credential took already 7 second, and 0.5 seconds for
each additional credential on comparable hardware. The comparison with the
measures of our system is not fair, because we do not use X.509 certificates but
much smaller proprietary XML certificates without cryptographic protection. We
expect a performance decrease in our system when we introduce real certificates
and cryptographic integrity protection of the negotiation.

5 Conclusion

This paper presented and studied a new Automated Trust Negotiation frame-
work for attribute based resource access, called VersaTrust. Our approach reaches
binding agreements by using a policy driven and privacy preserving negotia-
tion. We introduced a novel stateless trust negotiation algorithm that operates
on messages that encompass the complete negotiation state. The agreements in
VersaTrust demonstrate the relationship between the credentials. Measurements
of our prototype showed the scalability. Future work includes support of the se-
curity strategy and of other credential formats. We are hopeful that automated
trust negotiation can become an important technology for the self-management
of autonomic networks.

References

1. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust Negotiations: Concepts, Systems,
and Languages. Computing in Science and Engineering 06(4), 27–34 (2004)

2. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust-X: A Peer-to-Peer Framework
for Trust Establishment. IEEE Transactions on Knowledge and Data Engineer-
ing 16(7), 827–842 (2004)

3. Bui, H., Venkatesh, S., Kieronska, D.: An architecture for negotiating agents that
learn (1995)

4. Chess, D.M., Palmer, C., White, S.R.: Security in an autonomic computing envi-
ronment. IBM Syst. J. 42(1), 107–118 (2003)

5. Andrieux, A., et al.: Web Services Agreement Negotiation Specification (WS-
AgreementNegotiation). Technical report, Global Grid Forum (2007)

6. Frikken, K.B., Li, J., Atallah, M.J.: Trust Negotiation with Hidden Credentials,
Hidden Policies, and Policy Cycles. In: Proceedings of the Network and Distributed
System Security Symposium, NDSS 2006, San Diego, California, USA. The Internet
Society (2006)

7. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Syst. J. 42(1), 5–18 (2003)

8. Li, N., Winsborough, W.: Towards Practical Automated Trust Negotiation. In:
POLICY’02. POLICY ’02: Proceedings of the 3rd International Workshop on Poli-
cies for Distributed Systems and Networks, p. 92. IEEE Computer Society Press,
Washington (2002)

Automated Trust Negotiation in Autonomic Environments 279

9. Lopes, F., Mamede, N., Novais, A.Q., Coelho, H.: A negotiation model for au-
tonomous computational agents: Formal description and empirical evaluation
(2002)

10. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: automated trust negotiation for
peers on the semantic web (2003)

11. Olson, L., Winslett, M., Tonti, G., Seeley, N., Uszok, A., Bradshaw, J.: Trust Nego-
tiation as an Authorization Service for Web Services. In: ICDEW’06. ICDEW ’06:
Proceedings of the 22nd International Conference on Data Engineering Workshops,
IEEE Computer Society Press, Los Alamitos (2006)

12. Smith, B., Seamons, K.E., Jones, M.D.: Responding to Policies at Runtime in
TrustBuilder. In: POLICY, pp. 149–158 (2004)

13. Winsborough, W., Seamons, K., Jones, V.: Automated Trust Negotiation. Techni-
cal report, North Carolina State University at Raleigh, Raleigh, NC, USA (2000)

14. Winsborough, W.H., Li, N.: Protecting sensitive attributes in automated trust
negotiation. In: WPES ’02. Proceedings of the 2002 ACM workshop on Privacy in
the Electronic Society, pp. 41–51. ACM Press, New York (2002)

15. Yamaki, H., Fujii, M., Nakatsuka, K., Ishida, T.: A Dynamic Programming Ap-
proach to Automated Trust Negotiation for Multiagent Systems. rrs, 0:55–66 (2005)

16. Ye, S., Makedon, F., Ford, J.: Collaborative Automated Trust Negotiation in Peer-
to-Peer Systems. In: P2P’04. P2P ’04: Proceedings of the Fourth International Con-
ference on Peer-to-Peer Computing, pp. 108–115. IEEE Computer Society Press,
Washington, DC (2004)

17. Yu, T., Winslett, M., Seamons, K.E.: Interoperable strategies in automated trust
negotiation. In: CCS ’01. Proceedings of the 8th ACM conference on Computer
and Communications Security, pp. 146–155. ACM Press, New York (2001)

Collaborative Anomaly-Based Attack Detection

Thomas Gamer1, Michael Scharf1, and Marcus Schöller2

1 Institut für Telematik, Universität Karlsruhe (TH), Germany
2 Computing Department, Lancaster University, UK

Abstract. Today networks suffer from various challenges like distributed denial
of service attacks or worms. Multiple different anomaly-based detection systems
try to detect and counter such challenges. Anomaly-based systems, however, of-
ten show high false negative rates. One reason for this is that detection systems
work as single instances that base their decisions on local knowledge only.

In this paper we propose a collaboration of neighboring detection systems
that enables receiving systems to search specifically for that attack which might
have been missed by using local knowledge only. Once such attack information
is received a decision process has to determine if a search for this attack should
be started. The design of our system is based on several principles which guide
this decision process. Finally, the attack information will be forwarded to the next
neighbors increasing the area of collaborating systems.

1 Introduction

Today, the Internet is used by companies frequently since it simplifies daily work,
speeds up communication, and saves money. But the more popular the Internet gets
the more it suffers from various challenges that appear with increasing frequency. Chal-
lenges currently threatening networks include attacks like denial-of-service (DDoS) at-
tacks [1] and worm propagations [2] besides others. DDoS attacks, for example, aim to
overload a victim’s resources like link capacity or memory by flooding the system with
more traffic than it can process. The attack traffic is generated by many slave systems
called zombies which an attacker has compromised prior to the attack. The attacker
only has to coordinate all these slave systems to start the attack nearly at the same time.
A DDoS attack is a distributed attack where zombies are located in various domains
of the Internet. Every zombie generates only a small bandwidth attack flow to prevent
detection of the zombies. This traffic runs on different routes through the Internet to the
victim aggregating at intermediate systems the nearer it gets to the victim (see figure 1).
Keeping the zombie systems undetected enables the reuse of them for a later attack.

Current efforts aim at detecting attack flows and blocking them to prevent them from
reaching the victim. The detection systems are usually deployed in the access networks.
Because of the small bandwidth at the zombies’ detection systems close to them can
hardly detect the attack flows and therefore are not able to block them in most cases.
A detection close to the victim can still protect the victim’s system against an attack
but only if the detection system itself is not overwhelmed by the attack. There are two
possibilities to bridge the gap between the point in the network where you want to block
attack traffic and the place where you can detect it: on the one hand attack specific

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 280–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Collaborative Anomaly-Based Attack Detection 281

Detection system

Intermediate system

Zombie

Victim

Attack traffic

Fig. 1. Traffic aggregation during a DDoS attack

information can be exchanged in order to enable the systems close to the zombies to
detect the attack traffic [3,4,5]. On the other hand, detection systems can be pushed
deeper into the network if they pay special attention to the resource constraints there.
The deeper the detection system is placed in the network the more attack traffic can
have aggregated. A detection of this aggregated traffic is easier than a detection of the
low bandwidth traffic close to a zombie.

In [6] we proposed an anomaly-based detection system that can be deployed within
the network in order to detect adverse events as early as possible. This ensures a fast
reaction and therefore, an effective protection of the victim. Furthermore, the network
itself and its resources can be better protected by such a detection system since de-
tection takes place on routers within the network instead of at the victim’s edge. We
identified two disadvantages of such an approach: unfavorable aggregation of attack
traffic and upstream activated countermeasures. If attack flows aggregate only close to
the victim our approach suffers from the same effects as deployment of detection sys-
tems close to the edge of the network. An early detection is unlikely. Furthermore, if
one of our systems detects an attack flow and starts blocking it detection systems down-
stream will experience attack traffic with a smaller bandwidth. Again, this decreases the
likelihood of detection. As a consequence anomaly-based detection systems that decide
on the existence of an adverse event based on local knowledge only show false nega-
tive errors, i.e., some adverse events are not detected. These detection problems could
be solved or at least diminished if the knowledge of multiple detection systems can be
shared and thereby detection systems collaborate in a self-organized manner. There-
fore, we propose to combine in-network deployment of detection systems with infor-
mation exchange in order to build an effective system that detects and prohibits adverse
events.

By combining local knowledge and remote information we built a system that orga-
nizes itself and that enables each node to autonomously decide if the suspicious traffic
is an adverse event or just a legal traffic anomaly. Thereby, a coordinated collabora-
tion of independent systems is achieved. Furthermore, the detection of adverse events
is improved by the fact that a false negative of one detection system is compensated by
exchanging information between neighborhood detection systems. Thus, the probabil-
ity of detecting adverse events increases. But such an information exchange comes with
risks, too. First, an attacker can try to launch an attack on the detection system itself

282 T. Gamer, M. Scharf, and M. Schöller

by injecting bogus information. Second, the scalability of the overall system must be
guaranteed so that the exchange of information does not overload the detection systems.

The rest of this paper is structured as follows: after a review of related work we detail
the metric-based decision algorithm in section 2. This algorithm is applied for reason-
ably reacting on the reception of an attack report. Additionally, we address the issues
of describing adverse events detected by a detection system and of discovering neigh-
borhood detection systems. Thereby, we consider security aspects like authentication,
trust, or integrity, too. Finally, section 3 gives a short summary about this paper and
mentions future work.

1.1 Related Work

Today there is a great research effort in intrusion detection systems. Common intrusion
detection techniques can be divided into misuse and anomaly detection [7]. Misuse de-
tection, e.g. snort [8], relies on signatures that define byte patterns of known attack
packets. They provide a low false positive rate but are not able to detect previously
unknown or protocol-conform attacks. Anomaly detection systems like NSOM [9] or
NETAD [10], on the other side, monitor network traffic and search for anomalous be-
havior, e.g. by applying neural networks or threshold-based mechanisms. Thus, they are
able to detect previously unknown attacks at the expense of a higher false positive and
false negative rate. These and other similar intrusion detection systems [11,12,13] use
local knowledge to form a local opinion on an observed traffic flow. So they consider a
detection system just as a single instance. and do not use the possibility of exchanging
information with other detection systems.

There also exist other approaches like Emerald [14], INDRA [15] or CITRA [16]
that deal with the coordination of distributed detection systems and use its advantages.
The INDRA-Project proposes the cooperation of different detection systems through
a subscription-based group communication with a peer-to-peer architecture. CITRA-
devices report detected attacks to a central Discovery Coordinator that coordinates
countermeasures based on a complete view on the network. Such frameworks and in-
frastructures are able to detect domain-wide threats and thus, could improve their detec-
tion reliability. But they have to deal with higher communication efforts and close trust
relationships between the involved entities in order to prevent an attacker from abus-
ing the detection system. Additionally, the communication of these approaches often is
based on a central control entity.

At last, there exist several other approaches to cope with adverse events like DDoS
attacks. Traceback techniques like Itrace [3] or SPIE [4] allow to identify the origin of
an attack even in case that spoofed source addresses are used by zombies. The Push-
back [5] mechanism examines congestion situations as an indication for a DDoS attack
and reacts to it with a request to preceding routers to initiate rate limiters. This could
defuse the congestion situation at the victim.

Our approach has the advantage that it can detect and react to adverse events during
the build-up of the event. Furthermore, different detection systems could inform each
other about their recognitions and thus, enhance their detection reliability without need
for a central control entity. The fact that detection systems need not trust each other
absolutely reduces the requirements for security aspects.

Collaborative Anomaly-Based Attack Detection 283

2 Design

The self-organizing extension for our detection system can be separated into three parts:
first of all, a neighbor discovery has to be performed. Afterwards, a system communi-
cates its information to a neighborhood detection system. The receiving detection sys-
tem then autonomously has to decide on how to react to this information. Therefore,
we propose a metric-based decision algorithm. Third, the adverse event detected by
the sending system has to be described in a comprehensible way, so that all detection
systems involved in the coordination are able to process a message correctly.

2.1 Neighbor Discovery

In section 1 we mentioned that a self-organizing collaboration of detection systems is
necessary to improve an anomaly-based detection of adverse events. Such a collabora-
tion is based on an exchange of information between neighborhood detection systems.
Therefore, a detection system must be able to discover neighborhood detection systems
in order to communicate the locally gathered information. Having discovered a neigh-
borhood detection system a communication channel can be established that must have
certain characteristics specified by the sender, e.g. reliable message transfer. Before ex-
changing the available information a security association – authentication of communi-
cating systems or data integrity – should be established in order to prevent an exchange
of wrong or forged information and DoS attacks against the detection system itself.

We believe that detection systems are sparsely distributed in the Internet and thus,
two detection systems are rarely connected directly with each other. Furthermore, a de-
tection system in our opinion has no detailed knowledge about the whole topology and
the distribution of all detection systems in the Internet since only a minimal amount of
long-lived state information should be maintained. Additionally, a neighbor discovery
mechanism has to regard dynamics of the Internet, e.g. changing of routes or dynam-
ically activated detection systems which cause new neighbor relationships. Thus, we
need a mechanism that is able to locate neighborhood detection systems on demand.
In order to discover neighborhood detection systems multiple methods are possible:
expanding ring search, path-coupled mechanisms, overlay networks, and others.

With an expanding ring search [17], for example, the metric that defines the notion
neighborhood detection system in most cases is a maximal hop count. A problem of
most expanding ring search mechanisms currently deployed is that no security is pro-
vided. Another approach that provides discovery of neighborhood detection systems
are path-coupled mechanisms as provided by the signaling framework NSIS [18]. This
framework additionally enables a sender to specify communication requirements, e.g.
reliable and confidential message exchange.

2.2 Metric-Based Decision

In our previous work as well as in many related approaches an anomaly-based detection
system represents an independent and autonomous network device that detects adverse
events based on local measurement. We propose to reduce the false negative rate of
such an anomaly-based detection system by a self-organizing exchange of information

284 T. Gamer, M. Scharf, and M. Schöller

about adverse events already detected elsewhere in the network. The system we have
developed is based on the following design principles:

Verify received information. No system should commit itself to a tight trust relation-
ship with other detection systems but rather rely on its own recognitions.

This ensures robustness against bogus information as well as message injec-
tion attacks due to local verification of received information. Furthermore, a close
trust relationship between detection systems would constrain flexibility in dynamic
environments and cause an increased overhead.

Consider current workload. The available resources of the detection system limit the
number of parallel executed detection threads.

If the detection system is heavily loaded, i.e. it already does multiple fine-
grained detections in parallel, it should reject an additional parameterized detection
to prevent overload situations.

Rate report granularity. The more fine-grained the data in the attack report is the
fewer resources must be spent on its verification.

If only few characteristics of the adverse event are known, i.e. the anomaly
description is rather coarse-grained, the receiver must apply some stages of re-
finement. Thus, the verification of received information may waste valuable free
resources.

Count duplicates. The more systems report an ongoing attack the higher is the likeli-
hood to detect the attack locally, too.

If the same adverse event is reported by different detection systems the impor-
tance of the information increases dependent on the number of duplicate messages.

Check significance. The traffic volume of the detected attack must be compared to the
overall traffic on the detection system.

If the sender of a message, compared to the receiver, only scans a rather small
amount of traffic for anomalies the adverse event he reports may be negligible for
the receiver. The message of a detection system that is located at the edge of the
network and processes an average traffic amount of 100 Mbit/s, for example, is
nonsignificant for an in-network detection system that processes 5 Gbit/s. But the
information about a detected attack of this in-network system is of great signifi-
cance to the edge system. If, however, multiple detection systems at the edge report
the same attack, the significance of this information increases due to the principle
count duplicates.

Measure distance. The farther apart two neighborhood detection systems are the more
likely the attack will be detected at the system receiving an attack report.

The distance between two neighborhood detection systems in regard to IP hops
recommends a parameterized detection since the probability that attack traffic ag-
gregates between these system is the higher the longer the distance between the
communicating detection systems is. This also increases the probability that a re-
ceiving detection system is able to detect the reported adverse event even if preced-
ing systems apply countermeasures since attack traffic may be present again due to
aggregation in intermediate systems.

Use verification failure history. An attack report that has been checked unsuccess-
fully by the predecessors is not likely to be detected.

Collaborative Anomaly-Based Attack Detection 285

If the message has passed several detection systems that scanned for the adverse
event described without detecting it the message becomes less important. Addition-
ally, the message is discarded after a maximum number of failed verifications in
order to keep communication localized.

Use verification history. If an attack report has been forwarded unchecked by the pre-
decessors the distance to the detection instance which verified the adverse event
last must be regarded.

This ensures that communication of information about an adverse event does not
run endlessly without being verified by a neighborhood detection system. There-
fore, importance of a message grows the more often a verification is refused by a
receiving detection system. In combination with the parameter verification failure
history this parameter guarantees that a verification is done once in a while and
thus, communication ends after a certain time if the adverse event reported cannot
be verified at multiple systems.

Having considered all aspects described previously the detection system receiving
an attack report should react in the following way:

– The system has to check if it has already detected the reported adverse event on its
own. If so it can silently discard the message because it has informed its neighbor-
hood systems before.

– If the system decides to start an anomaly detection that is parameterized by the
message content and the verification succeeds it should start appropriate counter-
measures. Furthermore, it communicates its own recognitions to a neighborhood
detection system. If the verification, however, fails it updates the received message
with its local knowledge, e.g. the verification failure history, and then forwards the
message. Additionally, the content of the message is stored for a certain time in or-
der to detect duplicate messages in the future, i.e., a soft-state approach is applied.

– If the system decides not to start an anomaly detection and the adverse event re-
ported is not yet known to the receiving system it updates the received message
with its local knowledge, e.g. the verification history, and then forwards the mes-
sage. The content of the message is stored in order to detect duplicate messages.

– If the system receives a duplicate message the action depends on former decisions.
If the message reports an adverse event the receiving system did not verify before it
must reconsider its decision. In case that the parameters now recommend a verifica-
tion and this verification is successful the system communicates its new knowledge
to a neighborhood system. Otherwise – if the verification fails or if a verification
was already done earlier – the message is discarded without doing something since
it was forwarded before and no new knowledge is available.

In order to achieve the behavior described above a receiver needs not only the de-
scription of the adverse event but some additional information: current workload, re-
port granularity and the number of duplicate messages can be obtained based on local
knowledge. The distance between neighborhood detection systems has to be obtained
by neighbor discovery (see section 2.1). Other parameters like significance of the send-
ing detection system, verification history and verification failure history must be trans-
mitted in addition to the description of the adverse event.

286 T. Gamer, M. Scharf, and M. Schöller

2.3 Description of Adverse Events

Having received an attack report the detection system may decide, based on the metric-
based decision described in the previous section, to start a fine-grained detection itself
if it is able to interpret the message correctly. At this point it must be considered that
detection systems of different domains may scan for different protocol anomalies, i.e.,
not all systems necessarily must know the same anomalies due to different local poli-
cies or knowledge. Thus, a message possibly contains information the receiver cannot
understand. Therefore, a generic and extensible message format, e.g. based on a type-
length-value (TLV) structure, must be used for description of detected anomalies. In
this case different data records are differentiated by the type field. The length field in-
dicates the byte length of the following data field and thereby, enables a system to skip
unknown data records. Thus, a receiving system extracts only that information it is able
to understand and ignores unknown data records. Another approach that enables a flex-
ible and extensible description of anomalies is the usage of a structured description
language like XML [19].

3 Summary and Outlook

In this paper we presented a collaboration of anomaly-based detection systems which
use local knowledge and measurements and combine them with remote information
received by their neighbors. After establishing communication channels with detection
systems in the neighborhood attack information can be freely exchanged. The reaction
to such a message is determined by a metric-based decision process. The design of this
decision process is guided by a set of principles. Depending on available resources,
trust, and history of the message the system starts a search for the described attack
locally to verify the message, forwards the message unprocessed or drops it silently.

We additionally implemented the collaborative attack detection proposed in this pa-
per. Therefore, we extended our detection system [6] with a decision and a communica-
tion engine. Neighbor detection is implemented as an external process in order to allow
for transparent addition of new neighbor detection and security mechanisms. Some first
evaluations in different usage scenarios show how the decision process derives a reac-
tion to an attack information received from a neighborhood detection system. But these
evaluations representing small simulated environments only describe the microscopic
behavior of such a collaboration of detection systems. Thus, future work has to ad-
dress the question how the collaboration behaves in a macroscopic scenario. We plan to
implement our anomaly-based detection system as well as the extension we proposed
in a network simulator which allows a simulation of more and larger networks. This
macroscopic analysis enables an examination how each single design principle influ-
ences the metric-based decision algorithm and thus, enables the choice of an optimal
decision function. Additionally, it will show which effect the collaboration has on the
false negative rate. Finally, different neighbor discovery mechanisms have to be evalu-
ated and some work has to be done regarding the description of adverse events that are
only known domain-wide and have to be communicated to a detection system outside
the domain of the sending system.

Collaborative Anomaly-Based Attack Detection 287

References

1. Hussain, A., Heidemann, J., Papadopoulos, C.: A framework for classifying denial of service
attacks-extended. Technical report, USC/Information Sciences Institute (2003)

2. Shannon, C., Moore, D.: The spread of the witty worm. IEEE Security and Privacy 2(4),
46–50 (2004)

3. Bellovin, S., Leech, M., Taylor, T.: Icmp traceback messages. Internet draft, Internet Engi-
neering Task Force, Work in Progress (2003)

4. Snoeren, A.C.: Hash-based IP traceback. In: SIGCOMM, pp. 3–14 (2001)
5. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Control-

ling high bandwidth aggregates in the network. SIGCOMM Computer Communication Re-
view 32(3), 62–73 (2002)

6. Gamer, T.: A system for in-network anomaly detection. In: Kommunikation in Verteilten
Systemen, February 2007, pp. 275–282. Springer, Heidelberg (2007)

7. Kumar, S.: Classification and Detection of Computer Intrusions. PhD thesis, Purdue Univer-
sity (1995)

8. Roesch, M.: Snort, intrusion detection system (1999), http://www.snort.org
9. Labib, K., Vemuri, V.R.: NSOM: A tool to detect denial of service attacks using self-

organizing maps (2004)
10. Mahoney, M.V.: Network traffic anomaly detection based on packet bytes. In: Proceedings

of the ACM symposium on Applied computing (SAC), pp. 346–350. ACM Press, New York
(2003)

11. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In: Proceed-
ings of the 2004 conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM), pp. 219–230 (2004)

12. Paxson, V.: Bro: a system for detecting network intruders in real-time. Compututer Net-
works 31(23-24), 2435–2463 (1999)

13. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson,
E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer,
Heidelberg (2004)

14. Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses to anoma-
lous live disturbances. In: Proc. 20th NIST-NCSC National Information Systems Security
Conference, October 1997, pp. 353–365 (1997)

15. Janakiraman, R., Waldvogel, M., Zhang, Q.: Indra: A peer-to-peer approach to network intru-
sion detection and prevention. In: Proceedings of 12th IEEE Workshops on Enabling Tech-
nologies, Infrastructure for Collaborative Enterprises (WETICE), June 2003, pp. 226–231.
IEEE Computer Society Press, Los Alamitos (2003)

16. Schnackenberg, D., Holliday, H., Smith, R., Djahandari, K., Sterne, D.: Cooperative intrusion
traceback and response architecture (CITRA). In: Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX), June 2001, pp. 56–68 (2001)

17. Boggs, D.R.: Internet Broadcasting. PhD thesis, Stanford University (1982)
18. Hancock, R., Karagiannis, G., Loughney, J., den Bosch, S.V.: Next steps in signaling (NSIS):

Framework. RFC 4080, Internet Engineering Task Force (2005)
19. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Xml 1.1, 2nd

edn. W3C recommendation, W3C (2006)

http://www.snort.org

Modeling and Management of Service Level

Agreements for Digital Video
Broadcasting(DVB) Services

Thapelo Tlhong and Jeff S. Reeve

Electronics and Computer Science
University of Southampton
SO17 1BJ United Kingdom

Abstract. This paper describes a metamodeling strategy of Service
Level Agreements for Digital Video Broadcasting services based on Ser-
vice Level Agreement Language(SLAng). The purpose of the paper is to
provide a detailed analysis of SLAs in this domain and provide a moti-
vation for modeling and automating their management. We also discuss
why precise and machine readable SLAs can improve the levels of au-
tomation in SLA Management thereby reducing potential violations. The
meta-modeling approach based on the Model Driven Architecture(MDA)
described in this paper also simplifies the integration of a SLA Manage-
ment systems with other infrastructure that delivers the service to the
client.

1 Introduction

Service Level Agreements(SLAs) have traditionally been considered as a legal
binding between a service provider and a customer. However, the advent of Ser-
vice Oriented Architectures(SOA) and service based business models has seen
the IT industry move away from considering SLAs only as a legal document
but instead as means of enforcing and managing user requirements and expec-
tations. As proposed in [1] a SLA can be used as a basis for the specification
and development of a contracted service. Hence, it is necessary to integrate the
specification and management of SLAs with other systems that are involved
in the development, provision, maintenance and management of the service.
A potential benefit of this integration is the ability to monitor the real time
conformance of the service performance and related metrics to the SLA require-
ments. This can enable service reconfiguration and adjustment to minimise SLA
violations. Traditionally SLAs are defined in legalese whilst the actual service
being constrained by the SLA is specified, designed and implemeted in a tech-
nical context [2]. This paper presents an analysis of requirements for modeling
SLAs in a Digital Video Broadcasting domain and a modeling strategy based on
SLAng [3].

D. Hutchison and R.H. Katz (Eds.): IWSOS 2007, LNCS 4725, pp. 288–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling and Management of Service Level Agreements 289

2 Related Work

2.1 SLAng

Service Level Agreement Language(SLAng) [4] forms the basis of the our work
on SLA. However, the original SLAng was developed for Web (application) Ser-
vices. The language is based on OMG’s Meta Object Facility(MOF)1 and Ob-
ject Constraint Language(OCL)2. SLAng’s dependence on MDA standards(XMI,
UML, MOF and OCL) means that the extensibility mechanisms offered by such
standards can also be utilized in extending SLAng. Moreover, the separation of
concepts between the domain of the language and the language itself used in
specifying the language enables SLAng to be extended to different domains for
which it was not originally defined. This makes it an appropriate candidate for
adaptating existing specifications for DVB services.

2.2 X-Contract

In [5] a contract representation scheme is proposed based on the Finite State
Machine(FSM) semantics. In this strategy, a contract is interpreted as a set
of rights and obligations which are divided into sets R and O of Rights and
Obligations respectively for each signatory party in the contract. According to [6]
a right is defined as an action that a signing entity can do if it wishes to and an
obligation is a duty that an entity is expected to perform. Consequently failure
to perform an obligation may result in a breach of the contract or violation. The
designers of the language propose a state machine-like approach implementation
of the contracts(SLAs) written in the language, by having one state machine
for the R and another for O per party. The violations of or conformance to the
SLA can then be inferred from any given state in the FSM. This approach might
be sufficient for small scale SLAs but for large systems of SLAs it will lead to
complicated state machines that are not maintainable.

2.3 RBSLA

The Rule Based Service Level Agreement Language is a rule based modeling and
implementation of SLAs [2] based on Predicate Logic and Event calculus. The
language extends RuleML with concepts that enable SLA specification to be
written as accurately as possible. These concepts include Event, Condition and
Action model, Procedural Attachments, External Data Integration and Typed
Logic, which enable assigning logical terms a type. The formal approach taken
in defining RBSLA provides accurate type and constraints checking as well as
allowing formal analysis of SLA written in the language. The dependence of the
language on the use of rules for the specification of SLAs restricts the deployment
of such SLAs to rule based systems which is in contradiction implementation
independence we propose in Section 4.1.
1 http://www.omg.org/cgi-bin/doc?formal/2006-01-01
2 http://www.omg.org/docs/ptc/03-10-14.pdf

290 T. Tlhong and J.S. Reeve

3 DVB over Terrestrial Services

DVB3 is a standard based on the MPEG-2 video compression scheme for the
provision of digital video services [7]. Since DVB has several flavours and their as-
sociated standards - Satellite(DVB-S), Terrestrial(DVB-T), Cable(DVB-C) and
Handheld(DVB-H), the scope of this paper is on Digital Terrestrial Television
(DVB-T) services. Traditionally the broadcaster or content producer was also
the transmission provider. However, this operational model has changed over re-
cent years. This has lead to a fragmentation of the broadcast transmission chain
as shown in Figure 1. Compared to traditional analogue video broadcasting,

Fig. 1. DTT transmission chain showing inter-domain and intra-domain SLA interfaces

DVB offers the ability to deliver high quality video and audio, subtitles, au-
dio descriptions, wide screen signalling, MHEG data services, Conditional Ac-
cess Control and Schedule Management in the form of Electronic Programme
Guide(EPG). The multipartite service composition means that the potential for
errors occuring in the service increases since error probability varies linearly
with the number of service components. Moreover, some broadcast services are
time-shared or time-exclusive, which means that multiple services can share a
single service slot within the service multiplexer and the switching between the
services is performed on time based schedules. As the signal traverses the chain
from one domain to the other it is necessary to have well defined metrics and
parameters that describe the service at each domain interface. This requires well
specified and precise SLAs that explicitly state the roles and responsibilities of
each party at each service interface point.

4 DVB SLAs

A DVB Service traverses at least three domains - Broadcast, Telecom and Trans-
mission, before reception by the viewer(Figure 1). The interfaces between these
domains represent inter-domain SLAs and vertically within each domain there
is also intra-domain SLAs. In the context of this paper the Broadcast(DVB)
SLA refers to a bilateral agreement between a transmission service provider and
3 http://www.dvb.org

Modeling and Management of Service Level Agreements 291

a broadcaster that controls the management, performance, quality and moni-
toring of the service (denoted MAIN-SLA in Figure 1). We informally define
such SLA as a set of contract clauses that specify and constrain the behaviour
of entities along the transmission chain to ensure reception of a decodable and
viewable service.

Several languages and Information Models for SLAs have been proposed. In-
stead of proposing a new model, we chose to build on an existing model(SLAng)
and use such to evaluate the specification and management of DVB SLAs. The
choice of the relevant strategy is based on the following requirements that we
impose on the existing strategies.

4.1 Requirements for SLA Modeling and Specification

Integration - SLA specification language should ease the integration of the
SLA management framework with other subsystems that cooperate to provide
the service to the customer.
Machine Readability- is the basis for automating the management of service
level agreements and enabling exchange of SLA specific information with other
systems involved in the provision of the service e.g. Fault Management and Cor-
relation systems.
Automatability - is meant to ensure a more proactive monitoring of the run-
time system that provides the service to the SLA requirements. Automatability
is necessary for a system of SLAs to self manage and adapt itself to minimise
violations.
Implementation Independence - It is necessary to describe SLAs in a lan-
guage that is technology neutral and platform independent to cohere with the
Integration requirement described above.
Reusability - is necessary to allow SLAs for different domains(e.g. Web Ser-
vices, Broadcast, Telecoms) to be expressed in the specified language without
requiring extensive modification to the language.
Extensibility - an SLA language/specification should provide extension mech-
anisms that allows language users to extend it for other peculiar service domains
and service provision scenarios for which it was not originally defined. This re-
quirement is an extension to the Reusability requirement discussed above.

Other requirements for SLA specifications are described in detail in [3] and
these include Precision, Expressiveness, Understandability and Analysability.

5 DVB SLA Model

This section describes the adaptations and extensions we made to SLAng to
make it appropriate for modeling SLAs for DVB services. As per the SLAng
paradigm, we have two sets of models, the Domain and the Service models as
described in the next section.

292 T. Tlhong and J.S. Reeve

DVBServiceServiceComponent
TransmissionElement

name: String
BroadcastNetwork

TransportStream

Fault

description: String
endTime: Date
degradation: Degradation

duration(): Real

Schedule

MultiplexerStation

coveragePopulation: int
effectivePower: int
incomingFeed: TransportStream

serviceFaults

Fig. 2. Domain model for which Transmission service SLAs apply

5.1 Broadcast Domain Model

A broadcast SLA imposes constraints on the behaviour of entities and services
within the broadcast domain, as such it is imperative to first model the domain
on which the SLA constraints apply. The structure and relationship between the
entities within the domain are shown in Figure 2. A DVB service is contained
within an MPEG2 Transport Stream which also contains service components and
transport level tables that enable the services in the stream to be decoded. The
service is carried over a transmission network by different types of transmission
elements. The domain model provides the context for the constraints and enables
us to attach semantic definitions to the SLA elements in Figure 3. For instance,
a StationClause and StationDefinition are used to express constraints in OCL
on the behaviour of Station objects.

<<dvbsla>>

ServiceAvailabilityClause

<<dvbsla>>

StationAvailabilityClause

<<dvbsla>>

DegradationDefinition

<<dvbsla>>

DegradationWeighting

<<dvbsla>>

ServiceDefinition

PenaltyDefinition<<dvbsla>>

StationDefinition

<<dvbsla>>

ReportingClause

ViolationClause

<<dvbsla>>

TimeWeighting

<<dvbsla>>

ContractClause

PenaltyClause

<<dvbsla>>

BroadcastSLA

<<dvbsla>>

Weighting

Terms

SLA

+clauses

*

+services

*

+weightings

*

+violation

1..*

+penalties

* +degradations

*

+stations

1..*

Fig. 3. Service(SLA) model for a broadcast SLA

Modeling and Management of Service Level Agreements 293

In the original SLAng model, parties to the SLA are defined as entities that
are signatory to the contract. However, we found this approach to be limit-
ing in terms of modeling other relationships that exist in the the SLA. Instead
of this approach, we model a SLA Party as an individual or enterprise whose
“behaviour” can affect the conformance of the service to the SLA. Roles are
then attached e.g. ProviderRole, MonitoringRole, ClientRole to these parties as
required. This approach enables us to model complex interactions of parties in-
volved in the SLA and also enables Accountability for observed service behaviour
to be assigned to the appropriate party based on their role.

abs t r a c t c l a s s s e r v i c e s : : Broadcas tServ i ce extends
: : s l ang : : S e r v i c eDe f i n i t i o n

{
s e r v i c eFau l t s : Fault [0 , ∗] oppos i t e sLA unique
s e r v i c eFau l t s : Fault [0 , ∗] unique
components : ServiceComponent [1 , ∗]
s t a tu s : : : types : : S e rv i c eS ta tu s

i nva r i an t {
s e r v i c eFau l t s−>f o rA l l (f 1 : Fault , f 2 : Fault |

f 1 . degradat ion = f2 . degradat ion
and f 1 . startTime = f2 . startTime
and f 1 . endTime = f2 . endTime
implies f 1 = f2

)
}

}

Listing 1.1. Sample EMOF/OCL Specification for a BroadcastService

5.2 Constraints Checking

The textual syntax of the SLA is in EMOF and OCL. Listing 1.1 shows a sample
specification for DVBService and an invariant that specifies that any account-
able fault affecting the service must not be duplicated. This is to restrain from
applying penalties for a single fault occurence multiple times. The specification
is converted into a JMI 4 repository using the UCLMDA Tools [8]. Constraints
checking is performed by creating instances of the SLA from the repository and
populating the instance fields with SLA requirements e.g. availability values for
a given time period. Each entity in the specification has an embedded constraint
checking. For example, an instance of the BroadcastService shown in Listing
1.1 with have an methods, verifyConstraints() and verifyConstraintsDeep() that
when called will verify that there are no duplicates for all faults affecting this
service.

4 http://java.sun.com/products/jmi/index.jsp

294 T. Tlhong and J.S. Reeve

6 Conclusion and Further Work

In this paper we have presented the an detailed analysis of service level agree-
ments in the broadcast domain and also the motivation for focusing on broadcast
services, one of which is the lack of research or publications concerning manage-
ment of SLAs in this domain. We also discussed the challenges posed by the
transition from analogue to digital video broadcasting. The metamodeling ap-
proach for specifying broadcast SLAs adopted in this paper based on SLAng
language provides a basis for developing an SLA Management framework that
we can use to study the effects and level of automation SLA management that
can be achieved based on this approach. Further work will focus on the integra-
tion of a machine readable broadcast SLA and predictive modeling techniques
to determine how previous SLA impact information can be used to predict the
potential of SLA violation based on classification of service impact. This can en-
able the system to reconfigured adaptively against potential violations instead
of reconfiguring the system only based on the current status of different SLAs.

References

[1] Bournan, J.: Specification of service level agreements clarifying concepts on the
basis of practical research. Software Technology and Engineering Practice, 1999,
pp. 169–178 (1999)

[2] Paschke, A.: A declarative rule-based service level agreement language based on
ruleml. In: International Conference on Intelligent Agents, Web Technology and
Internet Commerce, University of Munich, November 2005, vol. 2, pp. 308–314
(2005)

[3] James, S.: Slang - language for service level agreements. Ph.D. dissertation, De-
partment of Computer Science, Univerity College London, Malet Place, London
WC1E 6BT, UK (2006)

[4] Lamanna, D.D., Skene, J., Emmerich, W.: Slang: a language for defining service
level agreements. In: FTDCS 2003. Proceedings the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems, pp. 100–106. IEEE Computer
Society Press, Los Alamitos (2003)

[5] Molina-Jimenez, C., Shrivastava, S., Solaiman, Warne, J.: Contract representation
for run-time monitoring and enforcement. In: Proceedings IEEE International Con-
ference on E-Commerce. CEC 2003, pp. 103 – 110 (2003),
http://dx.doi.org/10.1109/COEC.2003.1210239

[6] Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Run-time monitoring
and enforcement of electronic contracts. Electronic Commerce Research and Ap-
plications 3(2), 108–125 (2004),
http://dx.doi.org/10.1016/j.elerap.2004.02.003

[7] Dubery, P., Wilson, D.: Policing slas for digital video. Cable and Satellite Interna-
tional, Tech. Rep. (May 2003) [Online]. Available:
http://www.cable-satellite.com/features/may jun%2003/csi%2029 30.pdf

[8] Skene, J.: The uclmda tools, robust implementation of omg standards for research
and development. Open Source Project

http://dx.doi.org/10.1109/COEC.2003.1210239
http://dx.doi.org/10.1016/j.elerap.2004.02.003
http://www.cable-satellite.com/features/may_jun%2003/csi%2029_30.pdf

Author Index

Aberer, Karl 88
Araki, Hirohisa 119
Arronategui, Unai 3

Baumgarten, Matthias 240
Breitgand, David 208
Büttner, Kai 73

Calomme, Sandrine 44
Calvert, Ken L. 2
Carle, Georg 73, 272
Casadei, Matteo 146
Choi, Jaeho 18
Cogdon, Stephen 193
Cohen, Rami 208
Conrad, Michael 59
Corredor, Iván 264
Curran, Kevin 240

Dasilva, Antonio 264
Deepak, G.C. 18
Dulay, Naranker 255

Elmoumouhi, Sanaa 73

Fry, Michael 103, 193

Galuba, Wojciech 88
Gamer, Thomas 280
Garćıa, Ana-B. 264
Greer, Kieran 240

Heeps, Steven 255
Hellerstein, Joseph L. 1
Heo, Ung 18
Hernández, Vicente 264
Hernando, Luis A. 3
Hof, Hans-Joachim 59
Hu, Chia-Cheng 176
Hutchison, David 103

Kleis, Michael 73
Klenk, Andreas 272

Leduc, Guy 44
Li, Hai 30
López, Lourdes 264
Lupu, Emil 255

Marshall, Ian W. 30
Mart́ınez, José-F. 264
Mathy, Laurent 193
Menezes, Ronaldo 146
Mulvenna, Maurice 240

Nahir, Amir 208
Niemegeers, Ignas 225
Nugent, Chris 240

Petri, Frank 272
Prasad, R. Venkatesha 225
Price, Mark C. 30
Puech, Nicolas 131

Radier, Benoit 272
Raz, Danny 208
Reeve, Jeff S. 288

Salaun, Mikael 73, 272
Schaeffer Filho, Alberto Egon 255
Scharf, Michael 280
Schöller, Marcus 280
Sekiyama, Kosuke 119
Sifalakis, Manolis 103
Skorin-Kapov, Nina 131
Sloman, Morris 255
Stott, Jonathan 30
Strowes, Stephen 255
Sventek, Joe 255

Tlhong, Thapelo 288
Tolksdorf, Robert 146

Viroli, Mirko 146

Wakeman, Ian 193
Walter, Uwe 161
Wang, Jing 225

	Title Page
	Preface
	Organization
	Table of Contents
	Engineering Self-Organizing Systems
	Infrastructure and Self-organization in Postmodern Internet Architecture
	Mercator: Self-organizing Geographic Connectivity Maps for Scalable Ad-Hoc Routing
	Introduction
	Related Work
	Connectivity Maps
	The Mercator Protocol: C-Map Construction
	Previous Considerations
	Mercator Protocol’s Information: The C-Map
	Calculation of Fragment’s Identifier
	Discovery of Level 0 Information
	C-Map Addition Operation
	C-Map Information Exchange
	Higher Level Fragment Information Composition
	A Global View of Built C-Maps

	Routing with C-Maps
	Costs Analysis and Experimental Results
	Experimental Results
	Observations

	Conclusions
	References

	A New Approach to Adaptive Multi-routing Protocol for Mobile Ad Hoc Network
	Introduction
	Routing Scenario
	Proposed Method
	Configuration Parameters
	Adaptable Module
	Configuration Beacon

	Analysis
	Implementation Issues
	Internal Issues
	External Issues

	Conclusions and Future Works
	References

	The Development of a Wireless Sensor Network Sensing Node Utilising Adaptive Self-diagnostics
	Introduction
	Background: The PROSEN Project
	Approaches to Sensor Self-diagnosis
	Hardware Development Strategy

	A Prototype Sensor Node
	Self-diagnostic Methods
	Establishing the Initial Rule-Set
	Solar Radiation Sensor
	Anemometer Diagnosis
	Algorithm Testing
	Detection of a Real Sensor Failure
	Towards Self-adaptability

	Conclusions and Further Work
	References

	Efficient and Resilient Overlay Topologies over Ad Hoc Networks
	Introduction
	Related Work
	Study Overview
	Fundamental Properties
	Performance Criteria
	Flooding Technique
	Simulations Description

	Building Topologies That Fullfill the Locality and Connectivity Properties
	Ropt: The Critical Neighbourhood Range
	Kopt: The Critical Neighbourhbood Cardinality
	Ropt and Kopt Delivery Percentage
	KNN: The Minimal Number of Overlay Neighbours Needed for Connectivity

	Optimizing the Topologies for Overlay Routing
	Shortest Path Pruning
	Maximal Pruning
	Final Performance Study

	Conclusions
	References

	A Generic, Self-organizing, and Distributed Bootstrap Service for Peer-to-Peer Networks
	Introduction
	Requirements for a Generic Bootstrap Service
	Related Work
	Design
	Overview
	Components of the Bootstrap Service
	BootstrapManager: Bootstrapping of the Bootstrap p2pNetwork
	BootstrapStorage: Efficient Distribution of BootstrapInformation

	Evaluation
	Performance of Local Random Address Probing
	Performance of the Bootstrap Information Storage

	Conclusion and FutureWork
	References

	CSP, Cooperative Service Provisioning Using Peer-to-Peer Principles
	Introduction
	System Model
	Decomposition of Services
	Service Requests

	Separable Constraint Based Routing, a DHT Centric Approach
	Reduction of LCBRP Problem to a Distributed Search Problem
	CSP Specific Range Queries
	Search Algorithm

	Analysis
	Simulations
	Related Work
	Conclusions and Future Work
	References

	Generic Emergent Overlays in Arbitrary Peer Identifier Spaces
	Introduction
	The Model
	Graph Embedded in a Metric Space
	Routing
	Overlay Maintenance
	Maintenance Suppression

	Simulation Results
	Experimental Setup
	Scaling
	Maintenance Overhead and Failures in Extreme Churn Conditions
	Varying the γ Parameter
	Routability
	The Emergence of Local Structures

	Discussion of Results and Future Work
	Related Work
	Conclusions
	References

	A Common Architecture for Cross Layer and Network Context Awareness
	Introduction
	Motivation
	Enabling Autonomic Functional Composition
	Information Sensing and Sharing (ISS) Framework
	Framework Scenarios
	Congestion Signals
	Dynamic MAC Error Control at an Intermediate System
	Network Context Awareness

	Related Work
	Conclusion
	References

	Network Topology Reconfiguration Against Targeted and Random Attack
	Introduction
	Optimal Network Topology by Rewiring Process
	Model Outline
	Rewiring Process of Network Topology
	Intentional Attack to Node
	Evaluation Index for Network Topology

	Adaptive Network Toplogy Reconfiguration
	Adaptive Rewiring Process Based on Evaluation Index
	Preliminary Simulation Results

	Localized Topology Reconfiguration
	Rewiring Including Distance Between Nodes
	Simulation Results

	Conclusion
	References

	A Self-organizing Control Plane for Failure Management in Transparent Optical Networks
	Introduction
	SmallWorlds
	The Proposed Self-organizing Control Plane
	The Desired Global Structure
	Local Behavior Rules

	Numerical Results
	Conclusions
	References

	A Self-organizing Approach to Tuple Distribution in Large-Scale Tuple-Space Systems
	Introduction
	Characteristics of Self-organization
	Linda and Self-organization
	A Solution for Tuples Distribution
	Decision Phase
	Movement Phase

	Applying SwarmLinda to Scale-Free Networks
	Sample Scale-Free Networks
	Methodology
	Simulation Results

	Conclusion and Future Work
	References

	Autonomous Optimization of Next Generation Networks
	Introduction
	The Network Control Server
	Reference Networks

	Reaction Towards a Changing Traffic Matrix
	Single Link Failures
	Impact of the Failure Anticipation
	Increased Efficiency by Calculated Risks

	Double Link Failures
	Summary
	References

	Bandwidth-Satisfied Multicast Services in Large-Scale MANETs
	Introduction
	Related Works and Problems
	Review of OGHAM and M-OGHAM
	A Heuristic Algorithm
	Simulation
	Performance Comparison: Static Hosts
	Performance Comparison: Mobile Hosts

	Conclusions
	References

	Localising Multicast Using Application Predicates
	Introduction
	Description of the Protocols
	Algorithm Analysis
	Expected Message Complexity

	Simulations
	Related Work
	Conclusions
	References

	Cost Aware Adaptive Load Sharing
	Introduction
	Related Work
	The Extended Supermarket Model (ESM)
	Optimal Load Balancing in ESM
	Periodical Update Model – A Simulation Study

	Self Adaptive Heuristics
	Conclusions and Future Work
	References

	Self-configuration in MANETs: Different Perspectives
	Introduction
	Self-configuration at Different Levels
	Connectivity-Level
	Network-Level
	Service-Level

	System-Level Self-configuration Issues
	Three Tiers
	Two Mappings
	Four Issues

	Self-configuration Management Architecture
	Conclusions
	References

	Knowledge-Based Reasoning Through Stigmergic Linking
	Introduction
	Knowledge Network
	Stigmergic Linking
	Example of Test Evaluations
	Knowledge Provided by the Links

	Related Work
	Stigmergic Reasoning
	Reasoning Examples
	More Complex Reasoning

	Autonomic Reasoning
	Conclusions
	References

	Dynamic Ontology Mapping for Interacting Autonomous Systems
	Introduction
	Automatic Ontology Mapping Mechanism
	The Basic Mechanism
	The Mapping Protocol

	Experimental Validation
	Related Work
	Conclusions and Future Work
	References

	Trade-Off Between Performance and Energy Consumption in Wireless Sensor Networks
	Introduction
	QoS in Natural Environments Surveillance {\it (Case Study)}
	Description and Analysis of Requirements of Application for Real-Time Forest Surveillance

	Simulation of Application Scenario
	Simulation Model
	Simulation results

	Conclusions and Future Study
	References

	Automated Trust Negotiation in Autonomic Environments
	Introduction
	Related Work
	Mutual Agreement with Automated Trust Negotiation
	Credentials and Disclosure Policies
	Iterative Negotiation Process
	Security Aspects of the Negotiation

	Experimental Results
	Conclusion
	References

	Collaborative Anomaly-Based Attack Detection
	Introduction
	RelatedWork

	Design
	Neighbor Discovery
	Metric-Based Decision
	Description of Adverse Events

	Summary and Outlook
	References

	Modeling and Management of Service Level Agreements for Digital Video Broadcasting(DVB) Services
	Introduction
	Related Work
	SLAng
	X-Contract
	RBSLA

	DVB over Terrestrial Services
	DVB SLAs
	Requirements for SLA Modeling and Specification

	DVBSLAModel
	Broadcast Domain Model
	Constraints Checking

	Conclusion and Further Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

