
The Theory of Calculi with Explicit Substitutions
Revisited

Delia Kesner

PPS, Université Paris 7 and CNRS (UMR 7126), France

Abstract. Calculi with explicit substitutions (ES) are widely used in different
areas of computer science. Complex systems with ES were developed these last
15 years to capture the good computational behaviour of the original systems
(with meta-level substitutions) they were implementing.

In this paper we first survey previous work in the domain by pointing out the
motivations and challenges that guided the development of such calculi. Then we
use very simple technology to establish a general theory of explicit substitutions
for the lambda-calculus which enjoys fundamental properties such as simulation
of one-step beta-reduction, confluence on metaterms, preservation of beta-strong
normalisation, strong normalisation of typed terms and full composition. The cal-
culus also admits a natural translation into Linear Logic’s proof-nets.

1 Introduction

This paper is about explicit substitutions (ES), an intermediate formalism that - by de-
composing the higher-order substitution operation into more atomic steps - allows a
better understanding of the execution models of complex languages.

Indeed, higher-order substitution is a meta-level operation used in higher-order lan-
guages (such as functional, logic, concurrent and object-oriented programming), while
ES is an object-level notion internalised and handled by symbols and reduction rules
belonging to their own worlds. However, the two formalisms are still very close, this
can be easily seen for example in the case of the λ-calculus whose reduction rule is
given by (λx.t) u →β t{x/u}, where the operation t{x/v} denotes the result of sub-
stituting all the free occurrences of x in t by u, a notion that can be formally defined
modulo α-conversion 1 as follows:

x{x/u} := u (t1 t2){x/u} := (t1{x/u}t2{x/u})
y{x/u} := y (x �= y) (λy.v){x/u} := λy.v{x/u}

Then, the simplest way to specify a λ-calculus with ES is to incorporate substitutions
into the language, then to transform the equalities of the previous specification into re-
duction rules (so that one still works modulo α-conversion), thus yielding the following
reduction system known as λx [36, 37, 44, 10].

1 Definition of substitution modulo α-conversion avoids to explicitly deal with the variable cap-
ture case. Thus, for example (λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.

J. Duparc and T.A. Henzinger (Eds.): CSL 2007, LNCS 4646, pp. 238–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Theory of Calculi with Explicit Substitutions Revisited 239

(λx.t) u → t[x/u]
x[x/u] → u
y[x/u] → y (x �= y)
(t1 t2)[x/u] → (t1[x/u] t2[x/u])
(λy.v)[x/u] → λy.v[x/u]

The λx-calculus corresponds to the minimal behaviour 2 that can be found in most of
the calculi with ES appearing in the literature. More sophisticated treatments of substi-
tutions also consider a composition operator allowing much more interactions between
them. This is exactly the source of the problems that we discuss below.

Related Work. In these last years there has been a growing interest in λ-calculi with
ES. They can be defined either with unary [44, 35] or n-ary [2, 23] substitutions, by
using de Bruijn notation [11, 12, 32, 27], or levels [39], or combinators [20], or director
strings [46], or ... simply by named variables as in λx. Also, a calculus with ES can be
seen as a term notation for a logical system where the reduction rules behave like cut
elimination transformations [22, 29, 16].

In any case, all these calculi were introduced as a bridge between formal higher-
order calculi and their concrete implementations. However, implementing an atomic
substitution operation by several elementary explicit steps comes at a price. Indeed,
while λ-calculus is perfectly orthogonal (does not have critical pairs), calculi with ES
such as λx suffer at least from the following well-known diverging example:

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v] →∗ t[x/u][y/v]

Different solutions were adopted in the literature to close this diagram. If no new
rewriting rule is added to those of λx, then reduction turns out to be confluent on terms
but not on metaterms (terms with metavariables used to represent incomplete programs
and proofs). If naive rules for composition are considered, then one recovers confluence
on metaterms but loses normalisation: there exist terms which are strongly normalisable
in λ-calculus but not in the corresponding ES version. This phenomenon, known as
Melliès’ counter-example [40], shows a flaw in the design of ES calculi in that they are
supposed to implement their underlying calculus (in our case the λ-calculus) without
losing its good properties. More precisely, let us call λZ-calculus an arbitrary set of (λZ-
)terms together with a set of (λZ-)reduction rules. Also, let us consider a mapping toZ
from λ-terms to λZ-terms. The following list of properties can be identified:

(C) The λZ-reduction relation is confluent on λZ-terms: If u ∗
λZ

← t →∗
λZ

v, then there
is t′ such that u →∗

λZ
t′ ∗

λZ
← v.

(MC) The λZ-reduction relation is confluent on λZ-metaterms.
(PSN) The λZ-reduction relation preserves β-strong normalisation: If the λ-term t is in

SN β , then toZ(t) is in SN λZ .
(SN) Strong normalisation holds for λZ-typed terms: If the λZ-term t is typed, then t is

in SN λZ .
(SIM) Any evaluation step in λ-calculus can be implemented by λZ: If t →β t′, then

toZ(t) →∗
λZ

toZ(t′).

2 Some presentations replace the rule y[x/u] → y by the more general one t[x/u] → t (x /∈ t).

240 D. Kesner

(FC) Full composition can be implemented by λZ: The λZ-term t[x/u] λZ-reduces to
t{x/u} for an appropriate notion of (meta)substitution on λZ-terms.

In particular, (MC) implies (C) and (PSN) usually implies (SN).
The result of Melliès appeared as a challenge to find a calculus having all the prop-

erties mentioned above. There are already several propositions in the literature giving
(partial) answers to this challenge; they are summarised in the following table, where
we just write one representative calculus for each line, even if there are currently many
more references available in the literature (by lack of space we cannot cite all of them).

Calculus C MC PSN SN SIM FC
λx [44] Yes No Yes Yes Yes No
λσ [2] Yes No No No Yes Yes

λσ⇑ [23] Yes Yes No No Yes Yes
λζ [41] Yes Yes Yes Yes No No
λws [14] Yes Yes Yes Yes Yes No
λlxr [29] Yes ? Yes Yes Yes Yes

In other words, there are many ways to avoid Melliès’ counter-example in order to
recover the PSN property. More precisely, one can forbid the substitution operators to
cross lambda-abstractions [38, 18] or avoid composition of substitutions [6]. One can
also impose a simple strategy on the calculus with ES to mimic exactly the calculus
without ES. The first solution leads to weak lambda calculi, not able to express strong
beta-equality (used for example in implementations of proof-assistants). The second
solution is drastic when composition of substitutions is needed for implementations of
HO unification [15] or functional abstract machines [24]. The last one does not take
advantage of the notion of ES because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [14] defined a calculus with
labels called λws, which allows controlled composition of ES without losing PSN and
SN. But the λws-calculus has a complicated syntax and its named version [13] is even
less intelligible. However, the strong normalisation proof for λws given in [13] reveals a
natural semantics for composition of ES via Linear Logic’s proof-nets [19], suggesting
that weakening (explicit erasure) and contraction (explicit duplication) can be added to
the calculus without losing strong normalisation.

Explicit weakening and contraction are the starting points of the λlxr-calculus [29],
which is in some sense a (complex) precursor of the λes-calculus that we present in
this paper. However, while λ-syntax could be seen as a particular case of λes-syntax,
a special encoding is needed to incorporate weakening and contraction operators to
λ-terms in order to verify the so-called linearity constraints of λlxr. Moreover, the
reduction system of λlxr contains 6 equations and 19 rewriting rules, thus requiring
an important amount of combinatorial reasoning. This is notably discouraging when
one needs to check properties by cases on the reduction step; a reason why confluence
on metaterms for λlxr is just conjectured but not still proved.... Also, whereas λlxr
gives the evidence that explicit weakening and contraction are sufficient to verify all the
properties one expects from a calculus with ES, there is no justified reason to think that
they are also necessary.

The Theory of Calculi with Explicit Substitutions Revisited 241

We choose here to introduce the λes-calculus by using concise and simple syntax
in named variable notation style (as in λx) in order to dissociate all the renaming de-
tails which are necessary to specify higher-order substitution on first-order terms (such
as for example terms in de Bruijn notation). Even if this choice implies the use of
α-equivalence, we think that this presentation is more appropriate to focus on the fun-
damental computational properties of the calculus. Moreover, this can also be justified
by the fact that it is now perfectly well-understood in the literature how to translate
terms with named variables into equivalent terms in first-order notation. Another im-
portant choice made in this paper is the use of minimal equational reasoning (just one
equation) to specify commutation of independent substitutions. This will turn out to be
essential to obtain a safe notion of (full)composition which does not need the complex
use of explicit operators for contraction and weakening. Also, simultaneous substitution
(also called n-ary substitution), can be simply expressed within our framework.

We thus achieve the definition of a simple language being easy to understand, and
enjoying a useful set of properties: confluence on metaterms (and thus on terms), sim-
ulation of one-step β-reduction, strong normalisation of typed terms, preservation of
β-strong normalisation, simulation of one-step β-reduction and full composition. More-
over, these properties can be proved using very simple proof techniques while this is not
the case for other calculi axiomatising commutation of substitutions. Thus for example,
the calculus proposed in [45] specifies commutation of independent substitutions by a
non-terminating rewriting system (instead of an equation), thus leading to complicated
notions and proofs of its underlying normalisation properties.

The λes-calculus admits a natural translation into Linear Logic’s proof-nets, thus
providing an alternative proof of strong normalisation. Also, a more implementation
oriented calculus based on λes could be specified by means of de Bruijn notation and
n-ary substitutions. These two last topics are however omitted in this paper because of
lack of space, we refer the interested reader to [28].

The rest of the paper is organised as follows. Section 2 introduces syntax for Λes-
terms and appropriate notions of equivalence and reduction. In Section 3 we develop
a proof of confluence for metaterms. Preservation of β-strong normalisation is studied
and proved in Section 4. The typing system for λes is presented in Section 5 as well as
the subject reduction property and the relation between typing derivations in λes and
λ-calculus. Finally, strong normalisation based on PSN is proved in this same section.

We refer the reader to [28] for detailed proofs and to [9, 47] for standard notions
from rewriting that we will use throughout the paper.

2 Syntax

A Λes-term is inductively defined by a variable x, an application t u, an abstraction
λx.t or a substituted term t[x/u], when t and u are Λes-terms. The syntactic object
[x/u], which is not a term itself, is called an explicit substitution.

The terms λx.t and t[x/u] bind x in t. The sets of free and bound variables of a term
t, denoted t and t respectively, can be defined as usual. Thus, the standard notion of α-
conversion on higher-order terms is obtained so that one may assume, when necessary,
that two bound variables have different names, and no variable is free and bound at the

242 D. Kesner

same time. Indeed, when using different symbols x and y to talk about two nested bound
variables, as for example in the terms (λy.t)[x/u] and t[x/u][y/v], we implicitly mean
x �= y. The use of the same name for bound variables appearing in parallel/disjoint
positions, as for example in t[x/u] v[x/u] or (λx.x) (λx.x) is not problematic.

Besides α-conversion the following equations and reduction rules are considered.

Equations Reduction Rules
t[x/u][y/v] =C t[y/v][x/u] (λx.t) u →B t[x/u]

(y /∈ u & x /∈ v) The (sub)set of rules s:
x[x/u] →Var u
t[x/u] →Gc t (x /∈ t)
(t u)[x/v] →App1

t[x/v] u[x/v] (x ∈ t & x ∈ u)
(t u)[x/v] →App2

t u[x/v] (x /∈ t & x ∈ u)
(t u)[x/v] →App3

t[x/v] u (x ∈ t & x /∈ u)
(λy.t)[x/v] →Lamb λy.t[x/v]
t[x/u][y/v] →Comp1

t[y/v][x/u[y/v]] (y ∈ u & y ∈ t)
t[x/u][y/v] →Comp2

t[x/u[y/v]] (y ∈ u & y /∈ t)

It is appropriate to point out here that α-conversion is necessary in order to avoid
capture of variables. Thus for example the left-hand side of the Lamb-rule (λy.t)[x/v]
implicitly assumes y �= x and y /∈ v. See also Sections 4.2 and 6 for a a discussion
about the minimality of the subset s w.r.t its number of rules.

The higher-order rewriting system containing the rules {B} ∪ s is called Bs. The
equivalence relation generated by the conversions Es = {α, C} is denoted by =Es . The
reduction relation generated by the rewriting rules s (resp. Bs) modulo the equivalence
relation =Es is denoted by →es (resp. →λes), the e means equational and the s sub-
stitution. More precisely,

t →es t′ iff there are u, u′ s.t. t =Es u →s u′ =Es t′

t →λes t′ iff there are u, u′ s.t. t =Es u →Bs u′ =Es t′

The notation →∗
λes (resp. →+

λes) is used for the reflexive and transitive (resp. transi-
tive) closure of →λes.

Remark that any simultaneous (n-ary) substitution can now be thought as a sequence
of consecutive independent unary substitutions representing the same mapping. Thus
for example [x/u, y/v] can be expressed as [x/u][y/v] (or [y/v][x/u]) where y /∈ u and
x /∈ v. The use of the equation C to make a list of independent substitutions behave like
a simultaneous one is essential. We leave to the reader the verification that composition
of simultaneous substitution can be expressed within our λes-reduction relation.

The equivalence relation preserves free variables and the reduction relation either
preserves or decreases them. Thus, t →λes u implies u ⊆ t.

Also, the (sub)calculus es, which is intended to implement (meta-level) substitution,
can be shown to be terminating by associating to each Λes-term t a measure which
does not change by Es but strictly decreases by →s (details can be found in [28]).

We now address the property of full composition. For that, we extend the standard
notion of (meta-level)substitution on λ-terms given in the introduction to all the Λes-
terms by adding the new case t[y/u]{x/v} := t{x/v}[y/u{x/v}], where we implicitly
mean x �= y & y �∈ v. Remark that t{x/u} = t if x /∈ t, thus we can prove:

The Theory of Calculi with Explicit Substitutions Revisited 243

Lemma 1 (Full Composition). Let t and u be Λes-terms. Then t[x/u] →∗
λes t{x/u}.

We now establish basic connections between λ and λes-reduction. As expected, β-
reduction can be implemented by the more atomic notion of λes-reduction while this
one can be projected into β.

Lemma 2 (Simulating β-reduction). Let t be a λ-term s.t. t →β t′. Then t →+
λes t′.

Proof. By induction on β-reduction using Lemma 1.

Λes-terms are encoded into λ-terms as follows: L(x) := x, L(λx.t) := λx.L(t),
L(t u) := L(t) L(u) and L(t[x/u]) := L(t){x/L(u)}. Thus, projection is obtained:

Lemma 3 (Projecting into β-reduction). If t →λes u, then L(t) →∗
β L(u).

Proof. First prove that t =Es u implies L(t) = L(u) by the well-known substitution
lemma [4] of λ-calculus. Remark that t →s u trivially implies L(t) = L(u). Finally,
prove that t →B u implies L(t) →∗

β L(u) by induction on the reduction step t →B u.

3 Confluence on Metaterms

Metaterms are terms containing metavariables denoting incomplete programs/proofs
in a higher-order unification framework [25]. Metavariables should come with a min-
imal amount of information to guarantee that some basic operations such as instantia-
tion (replacement of metavariables by metaterms) are sound in a typing context. How-
ever, known formalisms in the literature for the specification of higher-order metaterms,
such as Combinatory Reduction Systems (CRS) [30] or Expression Reduction Systems
(ERS) [26], do not allow, at least in a simpler way, to specify the precise set of free vari-
ables which is expected from a (sound)instantiation. Thus for example, a CRS metaterm
like M(x, y) specifies that x and y may occur in the instantiation of M , but M can also
be further instantiated by any other term not containing x and y at all. Another example
is given by the (raw) ERS metaterm t = λy.y X (λz.X) because the instantiation of
X by a term containing a free occurrence of z would be unsound (see [41, 15, 17] for
details).

We thus propose to specify incomplete proofs as follows. We consider a countable
set of raw metavariables X, Y, . . . associated to sets of variables Γ, Δ, . . ., thus yielding
decorated metavariables denoted by XΓ , YΔ, etc. This decoration says nothing about
the structure of the incomplete proof itself but is sufficient to guarantee that different
occurrences of the same metavariable inside a metaterm are never instantiated by dif-
ferent metaterms.

The grammar for Λes-terms is extended to generate Λes-metaterms as follows:

t ::= x | XΔ | t t | λx.t | t[x/t]

We extend the notion of free variables to metaterms by XΔ = Δ.
Reduction on metaterms must be understood in the same way reduction on terms: the

λes-relation is generated by the Bs-relation on Es-equivalence classes of metaterms.

244 D. Kesner

In contrast to the ERS notion of metaterm, α-conversion turns out to be perfectly
well-defined on λes-metaterms by extending the renaming of bound variables to the
decoration sets. Thus for example λx.Yx =α λz.Yz .

It is well-known that confluence on metaterms fails for calculi without composition
for ES as for example the following critical pair in λx shows

s = t[x/u][y/v] ∗← ((λx.t) u)[y/v] →∗ t[y/v][x/u[y/v]] = s′

Indeed, while this diagram can be closed in λx for terms without metavariables [10],
there is no way to find a common reduct between s and s′ whenever t is (or contains)
metavariables: no λx-reduction rule is able to mimic composition on raw or decorated
metavariables. This can be fortunately recovered in the case of the λes-calculus.

3.1 The Confluence Proof

This section develops a confluence proof for reduction on λes-metaterms based on
Tait and Martin-Löf’s technique: define a simultaneous reduction relation denoted �es;
prove that �∗

es and →∗
es are the same relation; show that �∗

es is confluent; and finally
conclude. While many steps in this proof are similar to those appearing in other proofs
of confluence for the λ-calculus, some special considerations are to be used here in
order to accommodate correctly the substitution calculus as well as the equational part
of our notion of reduction (see in particular Lemma 6).

A first interesting property of the system es is that it can be used as a function on
Es-equivalence classes:

Lemma 4. The es-normal forms of metaterms are unique modulo Es so that t =Es u
implies es(t) =Es es(u).

The simultaneous reduction relation �es on es-normal forms is now defined in terms
of a simpler relation � working on Es-equivalence classes.

Definition 1 (The relations � and �es). Simultaneous reduction is defined on meta-
terms in es-normal form as follows: t �es t′ iff ∃ u, u′ s.t. t =Es u � u′ =Es t′, where

– x � x
– If t � t′, then λx.t � λx.t′

– If t � t′ and u � u′, then t u � t′ u′

– If t � t′ and u � u′, then (λx.t) u � es(t′[x/u′])
– If ui � u′

i and xi /∈ uj for all i, j ∈ [1, n], then XΔ[x1/u1] . . . [xn/un] �
XΔ[x1/u′

1] . . . [xn/u′
n]

The simultaneous relation is stable in the following sense.

Lemma 5. If t �es t′ and u �es u′, then es(t[x/u]) �es es(t′[x/u′]).

It can be now shown that the relation �es has the diamond property.

Lemma 6. If t1 es� t �es t2, then ∃t3 s.t. t1 �es t3 es� t2.

Proof. 1. First prove that t � u =Es u′ implies t =Es t′ � u′ for some t′ by induction
on t � u. Thus conclude that v es� v′ =Es u′ implies v =Es t′ � u′ for some t′.

The Theory of Calculi with Explicit Substitutions Revisited 245

2. Prove that t1 � t � t2 implies t1 �es t3 es� t2 for some t3 by induction on �
using Lemma 5.

3. Finally prove the diamond property as follows. Let t1 es� t =Es u � u′ =Es t2.
By point (1) there is u1 such that t1 =Es u1 � u and by point (2) there is t3 such
that u1 �es t3 es� u′. Conclude t1 �es t3 es� t2.

We thus obtain the main result of this section:

Corollary 1. The reduction relation →∗
es is confluent.

Proof. The relation �∗
es enjoys the diamond property (Lemma 6) so that it turns out to

be confluent [9]. Since �∗
es and →∗

λes can be shown (using Lemmas 4 and 5) to be the
same relation, then conclude that →∗

λes is also confluent.

Although this confluence result guarantees that all the critical pairs in λes can be closed,
let us analyse a concrete example being the source of interesting diverging diagrams in
calculi with ES (c.f. Section 1), giving by the following case:

s3
∗
λes← s1 →B s2

? ((λx.t) u)[y/v] t[x/u][y/v]

The metaterm s3 as well as the one used to close the diagram can be determined by
the following four different cases:

y ∈ t y ∈ u s3 Close the diagram by
Yes Yes t[y/v][x/u[y/v]] s3 Comp1← s2
Yes No t[y/v][x/u] s3 =Es s2
No Yes t[x/u[y/v]] s3 Comp2← s2
No No (λx.t) u s3 →B t[x/u] Gc← s2

4 Preservation of β-Strong Normalisation

Preservation of β-strong normalisation (PSN) in calculi with ES received a lot of atten-
tion (see for example [2, 6, 10, 32]), starting from an unexpected result given by Melliès
[40] who has shown that there are β-strongly normalisable terms in λ-calculus that are
not strongly normalisable when evaluated by the reduction rules of an explicit version
of the λ-calculus. This is for example the case for λσ [2] and λσ⇑ [23].

Since then, different notions of safe composition where introduced, even if PSN
becomes more difficult to prove ([8, 14, 1, 29, 31]). This is mainly because the so-
called decent terms are not stable by reduction : a term t is said to be decent in the
calculus λZ if every subterm v appearing in some substituted subterm u[x/v] of t is
λZ-strongly normalising. As an example, the term x[x/(y y)][y/λw.w w] is decent in
λes since y y and λw.w w are both λes-strongly normalising, but its Comp2-reduct
x[x/(y y)[y/λw.w w]] is not.

This section proves that λes preserves β-strong normalisation. For that, we use a
simulation proof technique based on the following steps. We first define a calculus λesw
(Section 4.1). We then give a translation K from Λes-terms (and thus also from λ-terms)
into λesw s.t. t ∈ SN β implies K(t) ∈ SN λesw (Corollary 4) and K(t) ∈ SN λesw

implies t ∈ SN λes (Corollary 2).

246 D. Kesner

4.1 The λesw-Calculus

A Λesw-term is inductively defined by x, t u, λx.t, t[x/u] or Wx(t) (an explicit weak-
ening). We extend the notion of free variables to explicit weakenings by adding the case
Wx(t) = {x} ∪ t. The notion of strict term will be essential: every subterm λx.t and
t[x/u] is such that x ∈ t and every subterm Wx(t) is such that x /∈ t.

Besides equations and rules in λes, those in the following table are also considered.

Additional Equations Additional Reduction Rules
Wx(Wy(t)) =WC Wy(Wx(t)) Wx(t)[x/u] → Wu\t(t)
Wy(t)[x/u] =Weak1 Wy(t[x/u]) (x �= y & y /∈ u) Wy(t) u → t u (y ∈ u)
Wy(λx.t) =WAbs λx.Wy(t) (x �= y) Wy(t) u → Wy(t u) (y /∈ u)

t Wy(u) → t u (y ∈ t)
t Wy(u) → Wy(t u) (y /∈ t)
Wy(t)[x/u] → t[x/u] (y ∈ u)
t[x/Wy(u)] → Wy(t[x/u]) (y /∈ t)
t[x/Wy(u)] → t[x/u] (y ∈ t)

Given a set of variables Γ = {x1, . . . , xn}, the use of the abbreviation WΓ (t) for
Wx1(. . . Wxn(t)) in the first reduction rule is justified by the equation WC. In the par-
ticular case Γ = ∅, we define W∅(t) = t. It is suitable again to recall that we work
modulo α-conversion. Thus for example the terms Wy(λx.t) and t[x/Wy(u)] have to
be always understood as x �= y. However, this is not the case for example for λx.Wy(t)
or Wy(t)[x/u] where the variables x and y may be equal or different, that’s the reason
to explicitly add the side-condition x �= y in some of the previous equations and rules.

The rewriting system containing all the reduction rules in the previous table plus
those in system s is called sw. The notation Bsw is used for the system {B} ∪ sw. The
equivalence relation generated by all the equations in the previous table plus those in Es
is denoted by =Esw . The relation generated by the reduction rules sw (resp. Bsw) modulo
the equivalence relation =Esw is denoted by →esw (resp. →λesw). More precisely,

t →esw t′ iff there are u, u′ s.t. t =Esw u →sw u′ =Esw t′

t →λesw t′ iff there are u, u′ s.t. t =Esw u →Bsw u′ =Esw t′

From now on, we only work with strict terms, a choice that is justified by the fact
that λesw-reduction relation preserves strict terms.

In order to infer normalisation of λes from that of λesw, a relation between both
notions of reduction is needed. For that, a translation K from Λes-terms (and thus also
from λ-terms) to (strict) Λesw-terms is defined as follows:

K(x) := x K(u v) := K(u) K(v)
K(λx.t) := λx.K(t) If x ∈ t K(λx.t) := λx.Wx(K(t)) If x /∈ t
K(u[x/v]) := K(u)[x/K(v)] If x ∈ t K(u[x/v]) := Wx(K(u))[x/K(v)] If x /∈ t

Remark that K(t) = t. Also, λesw-reduction can be used to push out useless weak-
ening constructors as follows:

The Theory of Calculi with Explicit Substitutions Revisited 247

Lemma 7. If u →λes v, then K(u) →+
λesw Wu\v(K(v)).

Proof. The proof is by induction on →λes and it accurately puts in evidence the fact
that Weak1 and WAbs are needed as equations and not as rewriting rules.

The previous lemma allows us to conclude with the following preservation result:

Corollary 2. If K(t) ∈ SN λesw, then t ∈ SN λes.

4.2 The ΛI -Calculus

The ΛI -calculus is another intermediate language used as technical tool to prove PSN.
The set of ΛI-terms [30] is defined by the grammar:

M ::= x | M M | λx.M | [M, M]

We consider the extended notions of free variables and (meta)level substitution on
ΛI -terms. We restrict again the syntax to strict terms (every subterm λx.M satisfies
x ∈ M). The following two reduction rules will be used:

(λx.M) N →β M{x/N}
[M, N] L →π [M L, N]

Strict ΛI -terms turn out to be stable by reduction since they do not lose free variables
during reduction.

A binary relation (and not a function) I is used to relate λesw and ΛI-terms, this
because Λesw-terms are translated into ΛI -syntax by adding some garbage information
which is not uniquely determined. Thus, each Λesw-term can be projected into different
ΛI -terms, and this will be essential in the simulation property (Theorem 1).

Definition 2. The relation I between strict Λesw-terms and strict ΛI -terms is induc-
tively given by the following rules:

x I x

t I T

λx.t I λx.T

t I T u I U

t u I T U

t I T u I U

t[x/u] I T {x/U}

t I T & M strict
t I [T, M]

t I T & x ∈ T

Wx(t) I T

The relation I enjoys the following properties.

Lemma 8. Let t I M . Then t ⊆ M , M ∈ ΛI and x /∈ t & N ∈ ΛI implies
t I M{x/N}.

Remark however that t I M implies t ⊆ M only on strict terms. This can be seen as
a proof technical argument to exclude from our calculus rewriting rules not preserving
strict terms like

(App) (t u)[x/v] → t[x/v] u[x/v]
(Comp) t[x/u][y/v] → t[y/v][x/u[y/v]] (y ∈ u)

Reduction in λesw can be related to reduction in ΛI by means of the following
simulation property (proved by induction on the reduction/equivalence step).

248 D. Kesner

Theorem 1. Let s ∈ Λesw and S ∈ ΛI .

1. If s I S and s =Esw t, then t I S.
2. If s I S and s →sw t, then t I S.
3. If s I S and s →B t, then there is T ∈ ΛI s.t. t I T and S →+

βπ T .

The second preservation result can be now stated as follows:

Corollary 3. If s I S and S ∈ SN βπ, then s ∈ SN λesw.

Proof. Suppose s /∈ SN λesw. As →esw can easily be show to be well-founded (see [28]
for details), then an infinite λesw-reduction sequence starting at s is necessarily pro-
jected by the previous Theorem into an infinite βπ-reduction sequence starting at S.
This leads to a contradiction with the hypothesis.

4.3 Solving the Puzzle

All the parts of the puzzle together give a PSN argument for λes. The starting point is
the following encoding from λ to ΛI -terms:

I(x) := x I(λx.t) := λx.I(t) x ∈ t
I(t u) := I(t) I(u) I(λx.t) := λx.[I(t), x] x /∈ t

Now, starting from a λ-term u, which is also a Λes-term, one computes its K-image
- a λesw-term - so that some ΛI -term will be in I-relation with it. More precisely, a
straightforward induction on u gives:

Theorem 2. For any λ-term u, K(u) I I(u).

Preservation of β-strong-normalisation, which is one of the main results of the paper,
can be finally stated:

Corollary 4 (PSN). If t ∈ SN β , then t ∈ SN λes.

Proof. If t ∈ SN β , then I(t) ∈ WNβπ [34] and thus I(t) ∈ SNβπ [42]. As K(t) I I(t)
by Theorem 2, then K(t) ∈ SN λesw by Corollary 3 so that t ∈ SN λes by Corollary 2.

5 The Typed λes-Calculus

Simply types are built over a countable set of atomic symbols (base types) and the type
constructor → (functional types). An environment is a finite set of pairs of the form
x : A. Two environments Γ and Δ are said to be compatible iff for all x : A ∈ Γ and
y : B ∈ Δ, x = y implies A = B. The union of compatible contexts is written Γ
 Δ.
Thus for example (x : A, y : B)
(x : A, z : C) = (x : A, y : B, z : C). The following
properties on compatible environments will be used:

Lemma 9.

1. If Γ ⊆ Γ ′ and Δ ⊆ Δ′, then Γ
 Δ ⊆ Γ ′
 Δ′.
2. Γ
 (Δ
 Π) = (Γ
 Δ)
 Π .

The Theory of Calculi with Explicit Substitutions Revisited 249

Typing judgements have the form Γ � t : A where t is a term, A is a type and Γ is an
environment. Derivations of typing judgements, written Γ �λes t : A, can be obtained
by application of the (multiplicative) rules in the following table.

x : A � x : A
(axiom)

Γ � t : A → B Δ � u : A

Γ � Δ � (t u) : B
(app)

Γ � t : B

Γ \ {x : A} � λx.t : A → B
(abs)

Γ � u : B Δ � t : A

Γ � (Δ \ {x : B}) � t[x/u] : A
(subs)

The axiom rule types a variable in a minimal environment but variables not ap-
pearing free may be introduced by binder symbols by means of the rules abs and subs.
Thus for example starting from the derivable typing judgement x : B � x : B one can
derive judgements like � λx.x : B → B or x : B � λz.x : A → B. Remark that
when Γ
 Δ appears in the conclusion of some rule, then by definition, Γ and Δ are
compatible.

The typing rules for λes ensure that every environment Γ contains exactly the set of
free variables of the term t. Thus, Γ �λes t : A implies Γ = t.

The typed calculus enjoys local subject reduction in the sense that no meta-theorem
stating weakening or thinning is needed to show preservation of types.

Lemma 10 (Subject Reduction). Let Γ �λes s : A. Then s =Es s′ implies Γ �λes s′ :
A and s →λes s′ implies Π ′ �λes s′ : A for some Π ′ ⊆ Π .

The connexion between typed derivations in λ-calculus (written �λ) and typed der-
ivations in λes-calculus is stated as follows, where Γ |S denotes the environment Γ
restricted to the set of variables S.

Lemma 11. If Γ �λ t : A, then Γ |t �λes t : A and if Γ �λes t : A, then Γ �λ L(t) : A.

We now prove strong-normalisation for λes-typed terms by using PSN. Another proof
of strong-normalisation based on a translation of typed λes-terms into Linear Logic’s
proof-nets is also developed in [28].

Theorem 3 (Strong Normalisation). Every typable Λes-term M is in SNλes.

Proof. First define a translation C from λes to λ as follows: C(x) := x, C(t u) :=
C(t) C(u), C(λx.t) := λx.C(t) and C(t[x/u]) := (λx.C(t)) C(u). Thus for example,
C((x[x/y] z)[w/(w1 w2)]) = (λw.((λx.x) y) z)(w1 w2).

We remark that for every Λes-term one has C(t) →∗
λes t. Also, when t is typable in

λes, then also C(t) is typable in λes (just change the use of subs by abs followed by
app). By Lemma 11 the term L(C(t)) = C(t) is also typable in simply typed λ-calculus
and thus C(t) ∈ SNβ [5]. We get C(t) ∈ SNλes by Corollary 4 so that t ∈ SNλes.

This proof technique, which is very simple in the case of the λes-calculus, needs some
additional work to be applied to other (de Bruijn) calculi [43, 3].

250 D. Kesner

6 Conclusion

In this paper we survey some properties concerning ES calculi and we describe work
done in the domain during these last 15 years. We propose simple syntax and simple
equations and rewriting rules to model a formalism enjoying good properties, specially
confluence on metaterms, preservation of β-strong normalisation, strong normalisation
of typed terms and implementation of full composition.

We believe however that some of our proofs can be simplified. In particular, PSN
might be proved directly without using translations of λes to other formalisms. We
leave this for future work.

Another interesting issue is the extension of Pure Type Systems (PTS) with ES in
order to improve the understanding of logical systems used in theorem-provers. Work
done in this direction is based on sequent calculi [33] or natural deduction [41]. The
main contribution of λes w.r.t the formalisms previously mentioned would be our safe
notion of composition.

It is also legitimate to ask whether λes is minimal w.r.t. the number of rewriting rules.
Indeed, it is really tempted to gather the rules{App1, App2, App3} (resp.{Comp1, Comp2})
into the single rule App for application (resp. Comp for composition) given just after
Lemma 8. While this change seems to be sound w.r.t. the properties of the calculus3,
the translation of Λes-terms into ΛI -terms (c.f. Section 4.2), respectively into proof-nets
(c.f. [28]), does not work anymore. We thus leave this question as an open problem. Note
however that λes-reduction can be translated to the correspondent notion of reduction in
this calculus : thus for example App1 can be obtained by App followed by Gc.

As far as implementation is concerned, it would be preferable from a practical point
of view to avoid the systematic use of the equivalence classes generated by the axioms
α and C. In other words, it would be more efficient to work with a pure rewriting system
(without equations) verifying the same properties than λes. We believe that simulta-
neous substitutions will be needed to avoid axiom C while some technology like de
Bruijn notation will be needed to avoid axiom α (as in the λσ⇑ -calculus). We leave this
topic for future investigations, but we refer the interested reader to [28] for a concrete
proposition of such a calculus.

Acknowledgements

This work has benefited from fruitful discussions with E. Bonelli, R. David, R. Di
Cosmo, J-P. Jouannaud, S. Lengrand, C. Muñoz and V. van Oostrom.

References

[1] Arbiser, A., Bonelli, E., Rı́os, A.: Perpetuality in a lambda calculus with explicit substitu-
tions and composition. In: WAIT (2000)

[2] Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.-J.: Explicit substitutions. JFP 4(1), 375–416
(1991)

3 While the weaker rule for composition given by t[x/u][y/v] → t[x/u[y/v]] (y /∈ t), is well-
known [7] to affect strong normalisation and preservation of β-strong normalisation.

The Theory of Calculi with Explicit Substitutions Revisited 251

[3] Arbiser, A.: Explicit Substitution Systems and Subsystems. PhD thesis, Universidad
Buenos Aires (2006)

[4] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amster-
dam (1984)

[5] Barendregt, H.: Lambda calculus with types. Handbook of Logic in Computer Science 2
(1992)

[6] Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit
substitutions which preserves strong normalisation. JFP (1996)

[7] Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. TCS 6(5),
699–722 (1999)

[8] Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven Uni-
versity of Technology (1997)

[9] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)

[10] Bloo, R., Rose, K.: Preservation of strong normalization in named lambda calculi with ex-
plicit substitution and garbage collection. In: Computer Science in the Netherlands (1995)

[11] de Bruijn, N.: Lambda-calculus notation with nameless dummies, a tool for automatic for-
mula manipulation, with application to the church-rosser theorem. Indag. Mat. 5(35), 381–
392 (1972)

[12] de Bruijn, N.: Lambda-calculus notation with namefree formulas involving symbols that
represent reference transforming mappings. Indag. Mat. 40, 356–384 (1978)

[13] Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. In: Tiuryn,
J. (ed.) ETAPS 2000 and FOSSACS 2000. LNCS, vol. 1784, Springer, Heidelberg (2000)

[14] David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution.
MSCS 11, 169–206 (2001)

[15] Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions.
I&C 157, 183–235 (2000)

[16] Dyckhoff, R., Urban, C.: Strong normalisation of Herbelin’s explicit substitution calculus
with substitution propagation. In: WESTAPP 2001 (2001)

[17] de Flavio Moura, M.A.-R., Kamareddine, F.: Higher order unification: A structural rela-
tion between Huet’s method and the one based on explicit substitution. Available from
http://www.macs.hw.ac.uk/∼fairouz/papers/

[18] Forest, J.: A weak calculus with explicit operators for pattern matching and substitution.
In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, Springer, Heidelberg (2002)

[19] Girard, J.-Y.: Linear logic. TCS 50(1), 1–101 (1987)
[20] Goubault-Larrecq, J.: Conjunctive types and SKInT. In: Altenkirch, T., Naraschewski, W.,

Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, Springer, Heidelberg (1999)
[21] Hardin, T.: Résultats de confluence pour les règles fortes de la logique combinatoire

catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris VII
(1987)

[22] Herbelin, H.: A λ-calculus structure isomorphic to sequent calculus structure. In: Pacholski,
L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, Springer, Heidelberg (1995)

[23] Hardin, T., Lévy, J.-J.: A confluent calculus of substitutions. In: France-Japan Artificial
Intelligence and Computer Science Symposium (1989)

[24] Hardin, T., Maranget, L., Pagano, B.: Functional back-ends within the lambda-sigma cal-
culus. In: ICFP (1996)

[25] Huet, G.: Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse de doctorat
d’état, Université Paris VII (1976)

[26] Khasidashvili, Z.: Expression reduction systems. In: Proceedings of IN Vekua Institute of
Applied Mathematics, Tbilisi, vol. 36 (1990)

http://www.macs.hw.ac.uk/~fairouz/papers/

252 D. Kesner

[27] Kesner, D.: Confluence properties of extensional and non-extensional λ-calculi with ex-
plicit substitutions. In: Ganzinger, H. (ed.) Rewriting Techniques and Applications. LNCS,
vol. 1103, Springer, Heidelberg (1996)

[28] Kesner, D.: The theory of calculi with explicit substitutions revisited (2006), Available as
http://hal.archives-ouvertes.fr/hal-00111285/

[29] Kesner, D., Lengrand, S.: Extending the explicit substitution paradigm. In: Giesl, J. (ed.)
RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)

[30] Klop, J.-W.: Combinatory Reduction Systems. PhD thesis, Mathematical Centre Tracts 127,
CWI, Amsterdam (1980)

[31] Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Uniform Normalization Beyond Orthogo-
nality. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, Springer, Heidelberg (2001)

[32] Kamareddine, F.: A λ-calculus à la de Bruijn with explicit substitutions. In: Swierstra, S.D.
(ed.) PLILP 1995. LNCS, vol. 982, Springer, Heidelberg (1995)

[33] Lengrand, S., Dyckhoff, R., McKinna, J.: A sequent calculus for type theory. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, Springer, Heidelberg (2006)

[34] Lengrand, S.: Normalisation and Equivalence in Proof Theory and Type Theory. PhD the-
sis, University Paris 7 and University of St Andrews (2006)

[35] Lescanne, P.: From λσ to λυ , a journey through calculi of explicit substitutions. In: POPL
(1994)

[36] Lins, R.: A new formula for the execution of categorical combinators. In: Siekmann, J.H.
(ed.) 8th International Conference on Automated Deduction. LNCS, vol. 230, Springer,
Heidelberg (1986)

[37] Lins, R.: Partial categorical multi-combinators and Church Rosser theorems. Technical Re-
port 7/92, Computing Laboratory, University of Kent at Canterbury (1992)

[38] Lévy, J.-J., Maranget, L.: Explicit substitutions and programming languages. In: Pandu
Rangan, C., Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology and
Theoretical Computer Science. LNCS, vol. 1738, Springer, Heidelberg (1999)

[39] Lescanne, P., Rouyer-Degli, J.: Explicit substitutions with de Bruijn levels. In: Hsiang, J.
(ed.) Rewriting Techniques and Applications. LNCS, vol. 914, Springer, Heidelberg (1995)

[40] Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, Springer, Heidelberg
(1995)

[41] Muñoz, C.: Un calcul de substitutions pour la représentation de preuves partielles en théorie
de types. PhD thesis, Université Paris 7 (1997)

[42] Nederpelt, R.: Strong Normalization in a Typed Lambda Calculus with Lambda Structured
Types. PhD thesis, Eindhoven University of Technology (1973)

[43] Polonovski, E.: Substitutions explicites, logique et normalisation. Thèse de doctorat, Uni-
versité Paris 7 (2004)

[44] Rose, K.: Explicit cyclic substitutions. In: Rusinowitch, M., Remy, J.-L. (eds.) Conditional
Term Rewriting Systems. LNCS, vol. 656, Springer, Heidelberg (1993)

[45] Sakurai, T.: Strong normalizability of calculus of explicit substitutions with composition.
Available on
http://www.math.s.chiba-u.ac.jp/∼sakurai/papers.html

[46] Sinot, F.-R., Fernández, M., Mackie, I.: Efficient reductions with director strings. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, Springer, Heidelberg (2003)

[47] Terese.: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science,
vol. 55. Cambridge University Press, Cambridge (2003)

http://hal.archives-ouvertes.fr/hal-00111285/
http://www.math.s.chiba-u.ac.jp/~sakurai/papers.html

	The Theory of Calculi with Explicit Substitutions Revisited
	Introduction
	Syntax
	Confluence on Metaterms
	The Confluence Proof

	Preservation of β-Strong Normalisation
	The $lambda esw$-Calculus
	The $Lambda_I$-Calculus
	Solving the Puzzle

	The Typed λes-Calculus
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

