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Abstract. This paper considers logical formulas built on the single bi-
nary connector of implication and a finite number of variables. When the
number of variables becomes large, we prove the following quantitative
results: asymptotically, all classical tautologies are simple tautologies. It
follows that asymptotically, all classical tautologies are intuitionistic.
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1 Introduction

We investigate the proportion between the number of formulas of size n that
are tautologies against the number of all formulas of size n for propositional
formulas built on implication and k variables. Our interest lays in proving the
existence and computing the limit of that fraction when n grows to infinity.
This limit can be called the density of truth for the logic with k variables.
After isolating the special class of formulas called simple tautologies, of density
1/k + O(1/k2), we exhibit some families of non-tautologies whose cumulated
density is 1 − 1/k + O(1/k2). It follows that the fraction of tautologies, for
large k, is very close to the lower bound determined by simple tautologies. A
consequence is that classical and intuitionistic logics are close to each other when
the number of propositional variables is large.

This work is a part of the research in which the likelihood of truth is esti-
mated for the propositional logic with a restricted number of variables. We refer
to Gardy [4] for a survey on probability distribution on Boolean functions in-
duced by random Boolean expressions. For the purely implicational logic of one
variable, and at the same time simple type systems, the exact value of the density
of truth was computed in the paper of Moczurad, Tyszkiewicz and Zaionc [9].
The classical logic of one variable and the two connectors implication and nega-
tion was studied in Zaionc [12]. Over the same language, the exact proportion
between intuitionistic and classical logics has been determined in Kostrzycka and
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Zaionc [6]. Some variants involving formulas with other logical connectives have
also been considered. The case of and/or connectors received much attention
– see Lefmann and Savický [7], Chauvin, Flajolet, Gardy and Gittenberger [1]
and Gardy and Woods [5]. Matecki [8] considered the case of the equivalence
connector.

We next give a couple of definitions. Section 2 briefly presents the use of enu-
meration via generating functions and analytic combinatorics, which constitutes
the main tool we shall use. The different classes of formulas we consider are
described in Section 3, while Section 4 is devoted to the enumeration of these
classes and the computation of their densities.

Definition 1. Let {x1, x2, . . . , xk} a set of Boolean propositional variables. We
define Fk to be the set of all Boolean expressions (or formulas) over these vari-
ables and the implication connector →. Boolean expressions are defined recur-
sively from Boolean variables and the implication connector by the following
grammar: F := x1 | . . . | xk | (F → F ).

Obviously the expressions can be represented by binary planar trees, suitably
labelled: their internal nodes are labelled by the connector → and their leaves by
some Boolean variables. By ‖φ‖ we mean the size of expression φ which we define
as the total number of occurrences of propositional variables in the expression
(or leaves in the tree representation of the expression). Parentheses which are
sometimes necessary and the implication sign itself are not included in the size
of expression. Formally,

‖xi‖ = 1 and ‖φ → ψ‖ = ‖φ‖ + ‖ψ‖ .

We denote by Fn
k the set of expressions of Fk of size n.

We can now define the canonical form of an expression. Let T be an expres-
sion. It can be decomposed with respect to its right branch – see Figure 1. Hence
it is of the form

A1 → (A2 → (. . . → (Ap → r(T )) . . .));

we shall write it
T = A1, . . . , Ap → r(T ).

The formulas Ai are called the premises of T and r(T ), the rightmost leaf of the
tree, is called the goal of T . Of course the expression T = A1 → (A2 → (. . . →
(Ap → r(T )) . . .)) is logically equivalent with A1 ∨ A2 ∨ . . . ∨ Ap ∨ r(T ), where
Ai stands for negation of Ai.

For a subset A ⊆ Fk we define the density μ(A) as:

μ(A) = lim
n→∞

|{t ∈ A : ‖t‖ = n}|
|{t ∈ Fk : ‖t‖ = n}|

if the limit exists. The number μ(A) if it exists is an asymptotic probability (with
respect to uniform distribution) of finding a formula from the class A among all
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→

A1 →

A2 →

Ap r(T )

Fig. 1. The canonical decomposition of a tree

formulas from Fk; it can be interpreted as the asymptotic density of the set A
in the set Fk. It can be seen immediately that the density μ is finitely additive
so if A and B are disjoint classes of formulas such that μ(A) and μ(B) exist then
μ(A ∪ B) also exists and μ(A ∪ B) = μ(A) + μ(B).

2 Generating Functions

In this paper we investigate the proportion between the number of formulas
of size n that are tautologies against the number of all formulas of size n for
propositional formulas of the language Fk. Our interest lays in finding the limit
of that fraction when n grows to infinity. For this purpose analytic combinatorics
has developed an extremely powerful tool, in the form of generating series and
generating functions. A nice exposition of the method can be found in Wilf [11],
or in Flajolet, Sedgewick [2,3]; see also Gardy [4, 5.2] for a systematic application
of these techniques to densities for Boolean functions. As the reader may now
expect, while working with propositional logic we will be often concerned with
complex analysis, analytic functions and their singularities.

Let A = (A0, A1, A2, . . .) be a sequence of real numbers. The ordinary gener-
ating series for A is the formal power series

∑∞
n=0 Anzn. And, of course, formal

power series are in one-to-one correspondence to sequences. However, considering
z as a complex variable, this series, as known from the theory of analytic func-
tions, converges uniformly to a function fA(z) in some open disc {z ∈ C : |z| < R}
of maximal diameter, and R � 0 is called its radius of convergence. So with the
sequence A we can associate a complex function fA(z), called the ordinary gen-
erating function for A, defined in a neighbourhood of 0. This correspondence
is one-to-one again (unless R = 0), since, as it is well known from the theory
of analytic functions, the expansion of a complex function f(z), analytic in a
neighbourhood of z0, into a power series

∑∞
n=0 An(z − z0)n is unique. For F a

function in z analytic in a neighbourhood of 0, we shall denote by [zn]F the
coefficient of zn in the series expansion of F .

Many questions concerning the asymptotic behavior of A can be efficiently
resolved by analyzing the behavior of fA at the complex circle |z| = R. This is
the approach we take to determine the asymptotic fraction of tautologies and
many other classes of formulas among all formulas of a given size.
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Each set of expressions is defined recursively from simpler sets; we build the
generating functions enumerating the elements of these sets by size (number
of leaves), using univariate functions with the variable z marking the leaves,
and obtain a generating function φ(z) for the set under consideration. We then
extract the coefficient [zn]φ(z) and obtain the density of the set under study as
limn→∞[zn]φ(z)/[zn]fk(z), fk(z) being the generating function for the set of all
expressions of Fk.

We now recall three constructions on classes of combinatorial objects, and how
they translate into ordinary generating functions. Let A and B be two classes
of combinatorial objects, with generating functions fA(z) and fB(z). The first
construction, called combinatorial sum, captures the union of disjoint sets. The
generating function of the combinatorial sum of A and B is fA(z) + fB(z). The
second construction called cartesian product forms all possible ordered pairs of
objects from A and B – the size of (a, b) being the sum of the size of a and b. The
generating function enumerating this class is fA(z)fB(z). Finally the sequence
construction builds all sequences of objects from A. Again the size of a sequence
of objects is the sum of their size. The generating function enumerating this class
is 1/(1 − fA(z)).

The Catalan number Cn is defined as the number of full binary trees (i.e.
every vertex has either two children or no children) with n internal nodes and
n + 1 leaves. Basic results about Catalan numbers and its generating function
are summarized below.

Proposition 1. Let C(z) be the generating function enumerating full binary
trees with respect to the number of leaves; it satisfies:

C(z) = z + C(z)2,

and is equal to:

C(z) =
1 −

√
1 − 4z

2
.

Its coefficients are

[zn+1]C(z) = Cn =
1

n + 1

(
2n

n

)

.

It follows that the number of Boolean expressions of size n over k variables is
knCn−1, since such an expression is obtained by labelling the n leaves with any
of the variables x1, . . . , xk.

As an example, in the rest of this section we show how we can obtain the
generating function fk(z) for the set of all the expressions built on k variables
and the implication connector, before defining several subsets of expressions in
Section 3 and computing their generating functions in Section 4.

Proposition 2. The generating function enumerating the set Fk of all Boolean
expressions over k variables is

fk(z) = kz C(kz) =
1 −

√
1 − 4kz

2
.
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Proof. Using the canonical form of an expression, we know that a tree is a
(possibly empty) sequence of trees, followed by a leaf – see Figure 1. The function
fk(z) thus satisfies

fk(z) =
kz

1 − fk(z)
, ie fk(z) = kz + fk(z)2.

Solving the equation and choosing between the two possibilities (fk(0) = 0) gives
the solution. 	


Proposition 2 gives another way to obtain the number of expressions of size n by
extracting the coefficients from fk(z). In the rest of the paper, fk is abbreviated
to f .

Finally, the following basic computations will be used intensively in the rest
of the paper. First notice that for all j,

lim
i→∞

Ci

Ci+j
=

1
4j

.

Furthermore,

[zn]
√

1 − 4kz = (4k)n[zn]
√

1 − z = −2knCn−1.

3 Tautologies and Non-tautologies

Let us now define several classes of expressions, all of them being special kinds
of either tautologies or non-tautologies.

Definition 2. We define the following subsets of Fk:

– Clk is the set of all classical tautologies i.e. formulas which are true under
any valuation.

– Intk is the set of all intuitionistic tautologies i.e. formulas for which there
are closed lambda terms (constructive proofs) of type identical with the for-
mula.

– Piercek is the set of all Pierce expressions i.e. classical tautologies which
are not intuitionistic ones.

– SNk is the set of simple expressions which are not classical tautologies,
defined as

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) �= r(T ).

– Gk is the set of simple tautologies i.e. expressions that can be written as

T = A1, . . . , Ap → r(T ),

where there exists i such that Ai is a variable equal to r(T ).
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– LNk is the set of less simple expressions that are not classical tautologies,
defined as the set of trees of the form

T = B1, . . . , Bi−1, C, Bi, . . . , Bp → r(T ),

such that
C = C1, C2, . . . , Cq → r(C),

where r(C) = r(T ), q � 1, and

C1 = D1, D2, . . . , Ds → r(D),

where r(D) �= r(T ), s � 0, and the following holds: for all j, r(Bj) �∈
{r(T ), r(D)} and r(Dj) �∈ {r(T ), r(D)}.

Adding a superscript n to the sets we have just defined means that we consider
only expressions of size exactly n (the tree that represents the expression has n
leaves).

Note that simple tautologies are instuitionistic ones since one of the premises is
equal to the goal. The obvious relations between classes above are the following.

SNk ∪ LNk ⊂ Fk \ Clk

SNk ∩ LNk = ∅
Gk � Intk � Clk � Fk \ (SNk ∪ LNk)

Piercek = Clk \ Intk

Our aim in the rest of this paper will be to compute the densities of these sets.
Results are summed up in Figure 2; proofs are given in the following section. As
a consequence, we obtain the following result, giving a positive answer to the
conjecture of [9, page 593].

Theorem 1. Asymptotically (for a large number k of Boolean variables), all
tautologies are simple i.e.

lim
k→∞

μ(Gk)
μ(Clk)

= 1.

Proof. We know that for any k the density of classical logic with k propositional
variables μ(Clk) exists. Such a result is obtained by standard technics in analysis
of algorithms; we skip the details and refer the interested reader to Flajolet and
Sedgewick [3] or to [4].

Since Gk ⊂ Clk ⊂ Fk \ (SNk ∪ LNk), and from the densities obtained in
propositions 3, 4 and 5, we have

4k + 1
(2k + 1)2

= μ(Gk) � μ(Clk) � 1 −
(

k(k − 1)
(k + 1)2

+
2k(k − 1)2

(k + 2)4

)

.

The upper and lower bounds are asymptotically identical, equal to 1/k+O(1/k2).
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Using the very same argument we can also obtain a result relating the asymptotic
behavior of classical versus intuitionistic logics.

Corollary 1. Asymptotically (for a large number k of Boolean variables), clas-
sical tautologies are intuitionistic i.e.

lim
k→∞

μ−(Intk)
μ(Clk)

= 1

where μ−(Intk) = lim infn→∞
|Intn

k |
|Fn

k | .

Proof. From the fact that Gk ⊂ Intk ⊂ Clk, we have

μ(Gk) = lim
n→∞

|Gn
k |

|Fn
k | � lim inf

n→∞
|Intnk |
|Fn

k | � lim sup
n→∞

|Intnk |
|Fn

k | � lim
n→∞

|Clnk |
|Fn

k | = μ(Clk).

The result follows from the fact that both μ(Gk) and μ(Clk) are equal to 1/k +
O(1/k2). 	


This result also allows to estimate the size of the difference between classical and
intuitionistic logics (so called Pierce formulas). Details are given in section 4.4.

4 Enumeration of Classes

We now compute the densities of the three sets SNk, Gk and LNk. The compu-
tation of these densities is done in a systematic way. First each set of expressions
is defined recursively from simpler sets; this allows to build the generating func-
tions enumerating the elements of these sets by their size (the number of leaves),
and to obtain a generating function φ for the considered class. Then we ex-
tract the coefficient [zn]φ(z) and obtain the density of the set under study as
limn→∞[zn]φ(z)/[zn]f(z) – we recall that f denotes the generating function of
all formulas.

The last part deals with Pierce formulas. Although we don’t know if this set
of formulas has a density, we give some bounds and show that their order is
Θ(1/k2).

4.1 Simple Non-tautologies

We first consider the set SNk of simple expressions that are non-tautologies. If
T ∈ SNk, then T is of the kind

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) �= r(T ). We first check that this is indeed not a
tautology. Just consider the following valuation of propositional variables. Define
r(T ) as false and all r(Ai) as true. Under this valuation the whole expression is
false. Let us next compute the generating function SN(z) associated to SNk.
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Fig. 2. Densities of simple tautologies, simple and less simple non-tautologies

First fix a Boolean variable α and consider all trees with r(T ) = α. Such a
tree is a simple non-tautology if and only if all its premises Ai satisfy r(Ai) �= α.
The generating function of all possible premises is k−1

k f(z). As a simple non-
tautology with goal α is a sequence of such premises followed by the leaf α, the
generating function SNα of simple non-tautologies with goal α is equal to

SNα(z) =
z

1 − k−1
k f(z)

.

Since α can be chosen arbitrarily among the k literals, we have SN(z) = k ·
SNα(z), which gives

SN(z) =
kz

1 − k−1
k f(z)

.

Proposition 3. The density of simple non-tautologies exists and is equal to

μ(SNk) =
k(k − 1)
(k + 1)2

.
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For large k, this density is 1 − 3/k + O(1/k2).

Proof. This result was already given in the paper [9, page 586], with a different
proof. We give an alternative proof here. If it exists, the density is given by the
following formula:

μ(SNk) = lim
n→∞

|SNn
k |

|Fn
k | = lim

n→∞
[zn]SN(z)
[zn]f(z)

.

After modifying the denominator of the generating function SN(z), we obtain :

SN(z) =
k(k + 1)z + kz(1 − k)

√
1 − 4kz

2(1 + z(k − 1)2)
.

The denominator of the rational fraction SN(z) has a unique zero ρ = −1/(k −
1)2. However this value also cancels the numerator of the expression since

k(k + 1)ρ + k(1 − k)ρ
√

(−ρ)((k − 1)2 + 4k) = 0.

So ρ is not an actual pole. Hence the only singularity that matters asymptotically
is z = 1/4k. Putting aside the error term, we obtain

[zn]SN(z) = −2k2(k − 1)
(k + 1)2

[zn−1]
√

1 − 4kz =
4k(k − 1)
(k + 1)2

knCn−2.

This gives

μ(SNk) = lim
n→∞

|SNn
k |

|Fn
k | =

4k(k − 1)
(k + 1)2

lim
n→∞

Cn−2

Cn−1
=

k(k − 1)
(k + 1)2

,

hence the density of SNk exists and is equal to k(k − 1)/(k + 1)2. 	


4.2 Simple Tautologies

If T is a simple tautology, then T can be written as

T = A1, . . . , Ap → r(T ),

with one of the Ai equal to r(T ). It is straightforward to check that T is indeed
a tautology since it is logically equivalent with

T ∼ A1 ∨ . . . ∨ r(T ) ∨ . . . ∨ Ap ∨ r(T ).

which obviously evaluates to true.
Let us now compute the generating function of simple tautologies. A tree

T is not a simple tautology if and only if all its premises are different from
r(T ) – see figure 3. The generating function for Fk \ Gk is therefore equal to
kz/(1 − (f(z) − z)). It follows that the generating function of Gk is

G(z) = f(z) − kz

1 + z − f(z)
.
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→

A1 �= r(T ) →

A2 �= r(T ) →

Ap �= r(T ) r(T )

Fig. 3. Trees that are not simple tautologies

Proposition 4. The limit density of simple tautologies on k variables exists and
is equal to

μ(Gk) =
4k + 1

(2k + 1)2
.

For large k, this density is asymptotically equal to 1/k − 3/4k2 + O(1/k3).

Proof. Another, earlier proof of this result is given in the paper [9, page 584].
We give here an alternative proof. The generating function G(z) can be written
as

G(z) =
P (z) − (1 + z)

√
1 − 4kz

2(1 + k + z)
,

with P (z) a suitable polynomial. Let ρ be its pole; ρ = −1 − k. But ρ is larger
that the algebraic singularity 1/(4k); hence 1/(4k) is the dominant singularity
of G(z). Finally we obtain (up to the error term)

[zn]G(z) = − 2k

(2k + 1)2
[zn]

√
1 − 4kz − 2k

(2k + 1)2
[zn−1]

√
1 − 4kz

=
4k

(2k + 1)2
knCn−1 +

4
(2k + 1)2

knCn−2.

Let us prove the existence and compute the value of the density of Gn
k .

μ(Gk) = lim
n→∞

|Gn
k |

|Fn
k | = lim

n→∞

( 4k

(2k + 1)2
knCn−1 +

4
(2k + 1)2

knCn−2

)
· 1
knCn−1

=
4k

(2k + 1)2
+

4
(2k + 1)2

· lim
n→∞

Cn−2

Cn−1
.

Hence μ(Gk) does exist, and is equal to (4k + 1)/(2k + 1)2. 	


4.3 Less Simple Non-tautologies

In the family SNk of simple non-tautologies, we did not allow any premise to
have a rightmost leaf equal to r(T ). But here we will consider trees with exactly
one such premise.
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We recall that a tree T defines a less simple non-tautology if it is of the kind

T = B1, . . . , Bi−1, C, Bi, . . . , Bp → r(T ),

where C = C1, . . . , Cq → r(C), with r(C) = r(T ), q � 1, and C1 = D1, D2, . . . ,
Ds → r(D) is such that r(D) �= r(T ), s � 0, and the following holds: for all j,
r(Bj) �∈ {r(T ), r(D)} and r(Dj) �∈ {r(T ), r(D)}. See figure 4 for the general
form of the tree and figure 5 for the subtree C; in these figures, if a subtree A is
underlined, it means that it is subject to the constraint r(A) �∈ {r(T ), r(D)}.

→

B1 →

Bi−1 →

C →

Bi →

Bp r(T )

Fig. 4. Less simple non-tautologies

→

→

D1 →

Ds r(D) �= r(T )

→

C2 →

Cq r(C) = r(T )

Fig. 5. Subtree C of a less simple non-tautology

Let us first prove that such a tree is not a tautology. For this, consider the
assignement where all the variables are true, except r(T ) and r(D) which are
false; under this assignement, the whole expression evaluates to false – to check
this, just notice that the function computed by such a tree can be developed
into a conjuction of terms, one of them being

∨
i r(Bi)∨ r(T )∨

∨
i r(Di)∨ r(D).

We shall now compute the generating function of LNk. Let us fix α and β
two distinct variables. We shall first compute ψ(z) the generating functions of
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all trees LNα,β
k from LNk such that r(T ) = α and r(D) = β. By symmetry, ψ(z)

is independent of the choice of α and β.
Let b(z) be the generating function of all trees T ∈ Fk such that r(T ) �∈ {α, β}.

Of course b(z) = (k−2)/k·f(z). This generating function enumerates the possible
subtrees Bj but also the possible subtrees Dj. Thus, the generating function of
all possible trees for D is d(z) = z/(1 − b(z)), since it is a sequence of trees Dj

such that r(Dj) �∈ {α, β}, followed by the leaf β. In the same way, the generating
function for the subtree C is c(z) = d(z) · 1/(1 − f(z)) · z. Note that a tree of
LNα,β

k is built as a sequence of trees Bj with r(Bj) �∈ {α, β}, then a subtree C as
described as above, another sequence of trees Bj with r(Bj) �∈ {α, β}, followed
by the leaf α. Moreover, this decomposition is unique. The generating function
for LNα,β

k is thus equal to

ψ(z) =
1

1 − b(z)
c(z)

1
1 − b(z)

z.

Now it can be easily seen that LNk is the disjoint union of the LNα,β
k . Indeed,

given a tree T ∈ LNk, then α is equal to r(T ) and the premise C of T is uniquely
determined because it is the only premise of T with goal r(T ). Thus, β is uniquely
determined as well since it is the goal of the first premise of C. It follows that
φ(z) = k(k − 1)ψ(z).

Proposition 5. The density of less simple non-tautologies is equal to

μ(LNk) =
2k(k − 1)2

(k + 2)4
.

For large k it is equal to 2/k + O(1/k2).

Proof. After modifying the denominator of the generating function φ(z), we
obtain :

φ(z) =
P (z) + k(k − 1)(−k2 + (2k3 − 6k2 + 8)z)z2

√
1 − 4kz

2(2 + (k − 2)2z)3
,

where P (z) is a suitable polynomial. The denominator of the rational fraction
φ(z) has a zero ρ = −2/(k − 2)2. However this value also cancels the numerator
(and its first two derivatives) of the expression, and is not an actual pole of φ.
Hence the only singularity that matters asymptotically is z = 1/4k. Putting
aside the error term, we obtain:

[zn]LN(z) = − k3(k − 1)

2(2 + (k−2)2
4k )3

[zn−2]
√

1 − 4kz

+
k(k − 1)(2k3 − 6k2 + 8)

2(2 + (k−2)2
4k )3

[zn−3]
√

1 − 4kz

=
kn+1(k − 1)

(2 + (k−2)2
4k )3

Cn−3 − kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2
4k )3

Cn−4.
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Let us prove the existence and compute the value of the density of LNn
k :

μ(LN) = lim
n→∞

|LNn
k |

|Fn
k |

= lim
n→∞

( kn+1(k − 1)

(2 + (k−2)2
4k )3

Cn−3

knCn−1
− kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2
4k )3

Cn−4

knCn−1

)

=
64k4(k − 1)

(k + 2)6
· lim

n→∞
Cn−3

Cn−1
− 64k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
· lim

n→∞
Cn−4

Cn−1

=
4k4(k − 1) − k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
=

2k(k − 1)2

(k + 2)4
.

This density does exist, and is equal to:

2k(k − 1)2/((k + 2)4).

For large k this is asymptotically equal to 2/k + O(1/k2). 	


4.4 Pierce Formulas

We are ready to estimate the number of Pierce formulas. Although we don’t
know if the set of Pierce formulas has a density, we shall give bounds on
lim supn→∞

|Piercen
k |

|Fn
k | and lim infn→∞

|Piercen
k |

|Fn
k | . A simple upper bound on Piercek

can be obtained from

Piercek = Clk \ Intk ⊂ Fk \ (SNk ∪ LNk ∪ Gk).

Since SNk, LNk and Gk are disjoint we have a simple upper estimation based
on propositions 3, 4 and 5:

lim sup
n→∞

|Piercen
k |

|Fn
k | � 1 − k(k − 1)

(k + 1)2
− 2k(k − 1)2

(k + 2)4
− 4k + 1

(2k + 1)2
=

63
4k2 + O(

1
k3 ).

However, we can obtain a sharper bound on the number of Pierce formulas.
For this, we next bound the density of tautologies which are not simple – this
density exists since we already know that both the density of all tautologies and
the density of simple tautologies exist. Note that this result gives an alternative
proof for Theorem 1.

Lemma 1. The density of non simple tautologies T such that exactly one premise
has a goal equal to r(T ) is bounded from above by 5/k2 + O(1/k3).

Proof. Let A be a non simple tautology with goal r(A) = α. Let p be the
number of premises of A. We call B the premise of A whose goal is r(A) and
α1, . . . , αp−1 the goal of the premises other than B. By hypothesis, αi �= α for all
i ∈ {1, . . . , p − 1}. Of course B cannot be reduced to a leaf (otherwise A would
be a simple tautology). Let us decompose B = (B1, . . . , Bm, α), with m � 1. As
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B = B1∧. . .∧Bm∧α, by developing the expression A, we obtain that necessarily,
for all j ∈ {1, . . . , m},

Bj ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Let us denote C(α1,...,αp−1,α) the set of trees such that

C ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Let C ∈ C(α1,...,αp−1,α).

– If C is reduced to a leaf γ then necessarily γ ∈ {α1, . . . , αp−1}.
– Otherwise, let us decompose C = (C1, . . . , Cs, γ) with s � 1. Let γi = r(Ci).

Then
γ1 ∨ . . . ∨ γs ∨ γ ∨ α1 . . . ∨ αp−1 ∨ α

has to evaluate to true. It follows that α ∈ {γ1, . . . , γs} or γ ∈
{γ1, . . . , γs, α1, . . . , αp−1}.

We shall now compute a generating function c(α1,...,αp−1,α) giving an upper bound
on the number of trees of C(α1,...,αp−1,α). Let us define

c(α1,...,αp−1,α)(z) = (p−1)z+
1

1 − ((k − 1)/k)f(z)
·f(z)

k
· 1
1 − f(z)

·kz+
∞�

s=1

f(z)s·(s+p−1)z

the first term corresponding to the first point above, the second term cor-
responding to the case α ∈ {γ1, . . . , γs} and the third term to the case
γ ∈ {γ1, . . . , γs, α1, . . . , αp−1}. This generating function depends only on p; thus
we shall now denote it by cp. Let us now define

bp(z) =
cp(z)

1 − cp(z)
· z.

This function gives an upper bound on the number of trees B (for p � 1 and
α, α1, . . . , αp−1 fixed) such that

B ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Of course

bp(z) � b̃p(z) := cp(z) +
(cp(z))2

1 − f(z)
.

We now define

ap(z) = p · ((k − 1)/k · f(z))p−1 · b̃p(z) · z · k.

The generating function ap gives an upper bound on the number of non simple
tautologies A with p premises, exactly one of them having a goal equal to r(A).
Indeed, z corresponds to r(A) = α, k corresponds to the choice of α among the
literals and p corresponds to the position of the unique premise with goal α.

We now define a(z) =
∑∞

p=1 ap(z). This function bounds the number of non
simple tautologies A with only one premise with goal r(A). The computation
based on the generating function defined above leads to an asymptotic density
5/k2 + O(1/k3). 	
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Lemma 2. The density of non simple tautologies T such that exactly two
premises have a goal equal to r(T ) is O(1/k3).

Proof. Let us consider a non simple tautology A with exactly two premises B1
and B2 having a goal equal to r(A). Let α1, . . . , αp−2 the goals of the other
premises. Since A is not simple, both B1 and B2 are not reduced to a leaf. Let
C be the first premise of B1, and D be the first premise of B2. Let γ be the goal
of C and γ1, . . . , γs the goals of its premises (with s � 0). We define δ, δ1, . . . , δt

the corresponding literals for the tree D. Since A is a tautology we can argue as
in the previous lemma and we obtain that necessarily

γ1 ∨ . . . ∨ γs ∨ γ ∨ δ1 ∨ . . . ∨ δt ∨ δ ∨ α1 . . . ∨ αp−2 ∨ α

evaluates to true. The same method as in the previous lemma (not detailed here)
leads to a density O(1/k3). 	


Lemma 3. The asymptotic density of trees T such that at least three premises
have a goal equal to r(T ) is O(1/k3).

Proof. The generating function of this family of trees is equal to
(

1
1 − (k/(k − 1))f(z)

· f(z)
k

)3

· 1
1 − f(z)

· kz.

We obtain a density O(1/k3). 	


Proposition 6. The asymptotic density of non simple tautologies is bounded
from above by 5/k2 + O(1/k3).

Proof. A tautology is not reduced to a leaf. Moreover, a tautology T has (at
least) a premise with goal r(T ): otherwise, it would be a simple non-tautology.
The density of non simple tautologies is thus bounded from above by the sum
of the three densities obtained in lemmas 1, 2 and 3. Hence it is bounded above
by 5/k2 + O(1/k3). 	


We can obtain a lower bound for Pierce formulas by the following argument.
Consider special formulas from Fk of the form ((a → T ) → a) → a where
T = A1, . . . , Ap → r(T ) is a simple non-tautology taken from Fk (see section 4.1)
and variable a differs from r(T ). We observe that ((a → T ) → a) → a must be a
Pierce formula. It is obviously a classical tautology. Suppose ((a → T ) → a) → a
is also an intuitionistic tautology. It means that there must exist a closed term
of the type ((a → T ) → a) → a. The long normal form of this term has the
form λp(a→T )→a.p(λqa.t) where t is a term of type T with only free variables
p and q. Consider a closed term λp(a→T )→aλqa.t. The type of this term is the
implicational formula

((a → T ) → a) → (a → T ).

But this type is again a simple non-tautology since the variables a and r(T ) are
different. So the formula is unprovable classically and therefore intuitionistically
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too; contradiction. For more details about relation between intuitionistic logic
and lambda calculus consult for example Sørensen, Urzyczyn [10].

Now we have to count this family. The number of such formulas is (k − 1) ·
|SNn−3

k |. Thus the density of this special set of Pierce formulas exists and is
equal to

lim
n→∞

(k − 1) · |SNn−3
k |

|Fn
k | = lim

n→∞
(k − 1) · |SNn−3

k |
|Fn−3

k |
· |Fn−3

k |
|Fn

k | =
1

64k2

(k − 1)2

(k + 1)2

since limn→∞ |Fn−3
k |/|Fn

k | = 1/(4k)3.

Proposition 7. We have the following bounds on the number of Pierce formu-
las:

1
64k2 − O

(
1
k3

)

� lim inf
n→∞

|Piercen
k |

|Fn
k | � lim sup

n→∞
|Piercen

k |
|Fn

k | � 5
k2 + O

(
1
k3

)

.

Proof. The lower bound comes from the previous discussion. Since Pierce formu-
las are non simple tautologies, the upper bound is a consequence of proposition 6.

	


5 Final Remarks

We have shown that asymptotically, all tautologies over implication are simple,
i.e. one of the premises is equal to the goal. The method developed in this paper
extends to the logic of implication with both positive and negative literals. In this
new setting again, we can prove that most of the tautologies, when the number
of variables becomes large, exhibit a very simple structure; more precisely, most
of the tautologies have one of their premises equal to the goal (as before), or
have two of their premises which are opposite literals.

Some questions remain about the set of Pierce formulas. We conjecture that
for any k, the densities μ(Intk) and μ(Piercek) exist. If it is the case, it would
be interesting to evaluate the asymptotic densities of these sets.
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